(C) Copyright by

Gerald Lee Pauler 1974
By
GERALD LEE PAULER
Bachelor of Arts
Kansas State Teachers CollegeEmporia, Kansas
1963
Master of Business AdministrationUniversity of Mississippi
Oxford, Mississippi
1970
Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

Thesis Approved:

938641

This study is concerned with the analysis and prediction of performance for the American Airlines fleet of $D C-10$ commercial jet aircraft. The purpose is to develop a means to predict the performance of the DC-10 fleet whereby airlines management may determine whether its goals will be attained. The analysis includes the application of computer programs to determine the statistical properties of aircraft delay times and times-between-delays. Monte Carlo simulations based on analysis of (1) both delay times and times-between-delays, and (2) delay times only, provide statistical estimates of historical performance. Similar techniques are then used to predict the future performance of the fleet.

Accordingly, Chapter I defines the subject area and scope and introduces the performance measures of interest: observed availability and dispatch reliability. Chapter II sketches the development of theories of reliability, maintainability, availability, and the development of Monte Carlo simulation techiques. Chapter III describes the delay times and times-between-delays used in the study. Chapters IV and V detail the results of fitting the data to appropriate families of distributions; the fitting procedure, the estimated parameters obtained, and the results of goodness-of-fit analysis are discussed. Chapter VI deals with a "new" distribution derived by the author to handle a set of fitting problems. Chapter VII demonstrates how the results of the statistical analysis are used to simulate past and future performance; the
results of the simulations are discussed. Chapter VIII summarizes the procedure and presents the conclusions reached.

I should like to express my appreciation to my major adviser,
Dr. Mitchell O. Locks, for his inestimable guidance, assistance, and encouragement throughout this study. Appreciation is also given to my other committee members, Dr. J. Leroy Folks, Dr. Wayne A. Meinhart, Dr. Donald R. Williams, and Professor Fred Black, for their support and suggestions during the development of this study. I am also indebted to Dean Richard L. Williamson, College of Business Administration, Loyola University of Los Angeles, for his continued support and encouragement during the final phases of research.

A note of thanks is given to Mr. Truman Evans and to Mr. Alton Whitworth, of the American Airlines Maintenance and Engineering Center, Tulsa, Oklahoma, for their enthusiastic help in providing access to the data necessary to this study and for their clarifications of American Airlines' reliability program. Special thanks is also given to Ms. Velda Davis for the excellence of the final copy and for her service in helping with the myriad of last-minute details.

TABLE OF CONTENTS
Chapter Page
I. INTRODUCTION 1
Subject Area 1
Purpose 1
Scope 2
Methodology 3
II. SURVEY OF LITERATURE 5
Overview 5
Reliability 5
Maintainability 7
Availability 8
Monte Carlo 8
III. DATA BASE 12
Reliability Program for the DC-10 12
Delay Times Data 13
Times-Between-Delays 14
IV. CHARACTERISTICS OF THE DATA 15
Overview 15
Distributions of Delay Times 15
Distributions of Times-Between-Delays 20
V. TESTS OF THE DATA 23
Overview 23
Goodness-of-Fit for the Delay Times 23
Goodness-of-Fit of the Times-Between-Delays 27
VI. A MIXTURE OF DISTRIBUTIONS 29
Detection of the Mix 29
The Derived Distribution 29
Analysis 30
VII. SIMULATIONS OF PERFORMANCE 35
Overview 35
Observed Availability 35
Comparison of Observed Availability and Dispatch Reliability 37
Simulations of Historical Dispatch
Reliability 40
Predictions of Dispatch Reliability 42
Significance of the Predictions 50
VIII. SUMMARY AND CONCLUSIONS 52
Summary 52
Conclusions 53
REFERENCES 55
SELECTED BIBLIOGRAPHY 61
APPENDIX A - DISPATCH INOPERATIVE LIST 70
APPENDIX B - MEANING AND EXAMPLES OF OBSERVED AVAILABILITY (AO) 73
APPENDIX C - PROGRAM LIST FOR SIMULATION OF DISPATCH RELIABILITY 76
APPENDIX D - PROGRAM LIST FOR SIMULATION OF OBSERVED AVAILABILITY 80
APPENDIX E - PROGRAM LIST FOR ANALYSIS OF TIMES-BETWEEN-DELAYS 84
APPENDIX F - PROGRAM LIST FOR ANALYSIS OF DELAY TIMES 89
Table Page
I. Estimated Parameters for Delay Times From
the First 30 Months of Revenue Operations 18
II. Estimated Parameters for Times-Between-Delay
From the First 18 Months of Revenue Operation 22
III. Summary of Chi-Square Goodness-of-Fit Analysis for Delay Times 25
IV. Summary of Chi-Square Goodness-of-Fit Analysis for Times-Between-Delay 28
V. Analysis of Selected Delay Times Showing Fit
to Lognormal Distribution Only 33
VI. Analysis of Selected Delay Times Showing Fit to a Mixture of Log-Uniform and Lognormal Distributions 33
VII. Comparison of Observed Availability and Dispatch Reliability 38
VIII. Analysis of Dispatch Reliability for the First 30
Months of Revenue Operations 43
Figure Page

1. Cumulative Distribution Function for Delay Times From August, 1973, Fitted to a Mixture of the Lognormal and Log-Uniform Distributions 32
2. Distribution of Observed Availabilities WithLognormal Delay Times and WeibullTimes-Between-Delays . 36
3. Comparison of Observed Availability and Dispatch Reliability 394. Trend of Values of $\hat{\mu}$ From August, 1971, ThroughJanuary, 1974 . 46
4. Trend of Values of $\hat{\mu}$ From February, 1972,
Through January, 1974 47
5. Trend of Values of $\hat{\mu}$ From February, 1972,Through January, 1974 (Four Values Replaced) 48

INTRODUCTION

Subject Area

In August, 1971, American Airlines introduced a fleet of DC-10 wide-bodied commercial jet aircraft into revenue service. The subject area of this study is the prediction of fleet performance based on data generated during revenue operation and comparison of those predictions to expected performance. In 1968 , when American Airlines contracted for the acquisition of its fleet of $25 \mathrm{DC}-10$ aircraft, certain performance goals were specified as part of the purchase agreement with the manufacturer, McDonnell Douglas Corporation. These goals, formulated during the design stage, are expected to be realized in revenue operation. One of the goals was expressed in terms of "dispatch reliability" (DR), a performance measure calculated as the ratio of departures within a stated time of scheduled departure to total departures.

Purpose

The purpose of this study was to establish from data accumulated during the first 30 months (August, 1971, through January, 1974) of revenue operation of the $D C-10$ fleet a means to predict $D R$ and to determine whether management's objectives for dispatch reliability would be attained. The $D R$ goals were established as $99 \% \mathrm{DR}$ for delays over

15 minutes by the end of the third year of revenue operation - that is; no more than a one percent probability of a delay over 15 minutes - and 99.75\% DR for delays over 60 minutes. Although DR is monitored for each month of operation, management does not have a method for predicting DR from the current trends of $D R$. Preliminary results of this study demonstrated through simulation of $D R$ to the end of the third year of revenue operation that management's objectives for July, 1974, would not be met.* In the present study, DR values are predicted to the end of the fourth year of revenue operation (July, 1975) based on the analysis of performance data from the first 30 months.

Scope

This study treats primarily the analysis of data to yield the subsequent predictions. To a lesser extent, certain analyses were undertaken to establish the comparability, and thus the usefulness, of observed availability (A_{0}) to DR.** Problems associated with component level performance are not considered, nor are specific maintenance procedures or policies. The emphasis is rather on the application of certain statistical concepts and procedures which ultimately yield a straightforward means of obtaining predictions of DR.

[^0]
Methodology

Abstract

The study proceeded in several stages. The initial step was to compile the data. Delay times (DT) for each of the 30 months were collected. Times-between-delays (TBD), necessary for the assessment of A_{o}, were determined for the first 18 months. The first phase in analyzing the data consisted of determining the characteristics of the delay times by fitting the data from each of the 30 months to several different candidate families of distributions. In general, good fits were obtained to the lognormal family of distributions; however, in some cases it was necessary to use a mixture of distributions in order to obtain goodness-of-fit. When this occurred, a derived distribution, which could be called "log-uniform," was fitted to the tails of the otherwise lognormally distributed data. By applying fitting and testing techniques to the TBD data from the first 18 months, good fits were obtained to the Weibull family of distributions.

The findings from the analysis of delay times and times-betweendelays allowed for Monte Carlo simulations of A_{0}, using data from the first 18 months. Resulting assessments of A_{0} did not compare closely enough to the $D R$ values as calculated by American Airlines to be fully useful for the prediction of DR. Monte Carlo simulation of $D R$ using the results of the analysis of delay times, however, yielded values quite close to those computed by American. The same Monte Carlo simulation technique was then used to predict $D R$ for future months of operation of the $D C-10$ fleet.

This methodology resulted in the development of a procedure which provides a means to predict performance levels for any specified period

and is capable of providing airlines management with timely predictions based on actual performance levels. Such predictions can be used for comparison with future goals as part of a comprehensive performance evaluation program.

This study describes in detail the methods used to fit the DT and TBD data to the appropriate distributions, the tests used to determine the goodness-of-fit to those distributions, the development and application of the "log-uniform" distribution, and the Monte Carlo simulation used to assess and predict DR.

CHAPTER II

SURVEY OF LITERATURE

Overview

Abstract

This chapter presents a representative survey of the literature associated with reliability, maintainability and availability.* Since the body of literature has become quite large in the last two decades, this survey traces the main lines of development with special emphasis on aspects relevant to this study.** Overlapping areas also considered are estimation of parameters, fitting data to distributions and Monte Carlo techniques.

Reliability

The field of reliability is generally traced to the experience in World War II with complex military systems: Barlow and Proschan [2] provide a general historical sketch. Shooman [3] points out that the fields of communication and transportation had gained rapidly in
*Relevant definitions are (1) Reliability: the probability that a device will operate according to specification in a given environment; (2) Maintainability: the probability that a device will be restored to specification within a given time; and (3) Availability: the probability that a device will be operational at a required time.
**Studies of general usefulness peripheral to this thesis are listed in the Bibliography.
complexity when reliability engineering became identified as a separate discipline in the late 1940^{\prime} s and early 1950's. This development may be viewed as an outgrowth from the field of quality control since certain aspects such as "life testing" may be shown to be special applications of quality control procedures according to Duncan [4]. Some of the earliest procedures in life testing and the use of the exponential distribution were developed by Epstein and Sobel [5]. An influential series of papers followed ([6]-[11]), which, in conjunction with a paper by Davis [12], presented much evidence for the use of the exponential distribution with failure data. This influence is present in the reports of the nine task groups of the Advisory Group on Reliability of Electronic Equipment (AGREE) [13], which is significant since many current reliability practices can be traced to their reports.

Studies extending the applicability of the Weibull distribution to reliability have also become important. This distribution was first proposed by Weibull [14] and received greater notice due to the influence of Kao, who treats estimation of its parameters in [15] and [16]. In [17], Kao discusses a mixture of Weibull distributions. Zelen and Dannemiller [18] contributed further to the use of the Weibull distribution by questioning the use of the exponential distribution for life testing. The work of Nancy R. Mann has been a factor in the usefulness of the Weibull distribution. Her contributions include the development of the following items: (1) linear techniques for goodness-of-fit (with Fertig and Scheur [19]); (2) a series of tables for weighted estimates of parameters [20]; and (3) confidence and tolerance bounds (with Fertig [21]).

Of special interest in this study is the lognormal distribution. While it has found application to failure times (for example, see Epstein [22] and Freudenthal [23]) its greatest value seems to be involved with maintainability, e.g., repair times. This and other distributions and procedures relevant to reliability are treated in studies of general interest in the Bibliography.*

Maintainability

The study of maintainability grew out of the recognition that for repairable systems or components, the measure of reliability is only part of the total problem in actual operation. Like reliability, maintainability as a measure of system effectiveness is based on applied probability. Many of the same procedures, therefore, apply.

Since much of the work in maintainability is conducted in the design stage, the literature concerns phases of the maintenance operation and distributions of down times. Studies representative of this approach include Aeronautical Radio Corporation's (ARINC) [27], Pieruschka [28], Bazovsky [29], and Retterer [30]. In the effort to assess and predict maintainability, Bovaird and Zagor [31], drawing on the work of Howard, Howard and Hadden [32], proposed the distribution of down times as a suitable tool. They showed that the lognormal distribution provides for meaningful parameters of down times. More recently, Locks [33] has shown how to assess maintainability when repair times follow either the exponential or lognormal distribution.

[^1]
Availability

Abstract

Like maintainability, availability studies show a variety of approaches and definitions. Thus, Hosford [34] uses measures he calls "pointwise availability" and "interval availability"; Pieruschka [28] defines availability as the ratio of the number of units ready for use to the total number; Barlow and Proschan [2] follow Hosford's terminology with the addition of "limiting interval availability"; Sandler [35] refers to the same measures as "instantaneous availability," "average up-time," and "steady state availability." Measures relevant to the design phase include "intrinsic availability" and "operational availability" [27]. In general, these measures have in common the combined analysis of times-between-failures (TBF) and times-to-repair (TTR). There are also a variety of distributions used. Assuming exponential TBF and lognormal TTR, Gray and Lewis [36] tabulate the distribution of the ratio, where availability is given by $A=T B F /(T B F+T T R)$. Gray and Schucany [37], assuming the same distributions, establish lower confidence limits for the availability ratio. Locks [33] uses measures of "inherent availability" (with an example using exponential TBF and TTR) and "observed availability (A_{o})" (with examples of both exponential TBF and TTR and Weibull TBF with lognormal TTR). Also shown is a Monte Carlo technique which yields confidence levels for the various estimates of A_{0}.

Monte Carlo

In order to analyze and predict dispatch reliability for the $\mathrm{DC}-10$ fleet, a simulation model was constructed which uses Monte Carlo

Abstract

techniques.* The development of Monte Carlo techniques has a lengthy history. Teichroew [39] suggests that simulation is an extension of distribution sampling practiced by statisticians since the turn of the century and provides an extensive bibliography of early studies. Investigation of Monte Carlo techniques thus preceded, by quite a while, the origin of the term.** Current development is attributed to the work of von Neumann and Ulam during World War II on neutron diffusion. The paper by Metropolis and Ulam [40] introduced the term "Monte Carlo" and is considered to be historically significant. Their approach, still an application of Monte Carlo, was essentially a statistical one applied to integrals and differential equations. The development of Monte Carlo techniques has been enhanced by the concurrent development of computers so that it is now relatively simple to apply to a wide range of problems. **

Monte Carlo simulation, as applied in this study, consists generally of transforming random variables to variates of selected density functions based on observed data. General discussions are in Amstadter [42] and Brown [43], with more detailed treatments in Chorafas [44], Fabrycky [45], and Buslenko et al. [46].

[^2]Monte Carlo is also described in much of the literature of operations management. Chase and Aquilano [47], Bierman, Bonini, and Hausman [48], King [49], and Buffa [50] give methodologies and sample applications, especially to queuing problems. In reliability studies, Thoman, Bain, and Antle [51] and Nancy R. Mann [52], have used Monte Carlo for work with the Weibull distribution. Complex systems are treated by Curtin [53] and Gilmore [54].

Since Monte Carlo techniques require a source of random sumbers, the problem of their generation appears frequently in the literature. Three methods have found favor. The first, and earliest to develop, is tables of random numbers which have been subjected to statistical tests for randomness. The Rand Corporation, for example, in 1947 generated 10^{6} random digits from a physical source. The use of tables, however, is generally unsuited for use with computers. Von Neuman and Metropolis proposed an alternate means of generating random numbers, which is described by Haugen [55] and Chambers [56]. This method, however, has faults also and has been superseded by methods which are more rapid and economical for computer use [57]. This study employs the method used by IBM for their subroutine package RANDU, described by Schmidt and Taylor [58], pp. 225-229. Although there is concern with the uniformity of distribution of randomly generated sequences ([46], [57] [58] [3]), this method was considered sufficiently accurate for this study. Once a random number is generated, however, it is then necessary to transform it to variate based on the distribution being considered. General discussions of transformations are in [44] [47] [55] [58] [59] and [60]. A detailed treatment is given by Kahn [61].

Kamins [62] developed a method for transformation using the lognormal
distribution, which has been refined by Locks [33].

DATA BASE

Reliability Program for the DC-10

The development of reliability into a separate discipline and the increasing cost of maintenance of newer, larger, and more complex airm craft induced commercial operators to increase requirements for manufacturers. When American Airlines was contracting for its $D C-10$ fleet, the respective roles for both the operator and the designer were established in order to provide for a reliable, maintainable aircraft [63]. One important aspect from the contract negotiations was the specification of goals for dispatch reliability ($D R$) . As indicated previously, $D R$ is calculated by American Airlines as the ratio of aircraft departures within a stated time of scheduled departure to total departures. For example, in January, 1973, there were 2752 total departures, of which 2531 departed within five minutes of schedule; therefore, $D R$ for that case was 91.97%. More accurately, an estimate, $\widehat{D R}$ of $D R$, has been obtained which is an estimate of the probability that an aircraft will depart within a stated time of scheduled departure. Its complement, 1 - $\widehat{D R}$, is therefore an estimate of the probability of delay.* Values

[^3]of DR as calculated by American Airlines are denoted as $D R$, while the estimates obtained in this study are shown as $\widehat{\mathrm{DR}}$.

Delays of 15 minutes and under are not considered to have a significant impact on revenue service. Therefore, contractual $D R$ goals are expressed in terms of delays over 15 minutes and delays over 60 minutes. For delays over 15 minutes, the contractual agreement specifies a $D R$ goal of 99% at the end of the third year of revenue service; for delays over 60 minutes, the specified $D R$ goal is 99.75%. For each of these categories, the associated $D R$ is the ratio of departures within the stated time of scheduled departure to total departures. For January, 1973, for instance, there were 168 delays over 15 minutes and 65 delays over 60 minutes. Therefore, the $D R$ for delays over 15 minutes, denoted by DR_{15}, was 93.90%; for over 60 minutes, DR_{60} was 97.64%.

Delay Times Data

Values for dispatch reliability are determined each month by American Airlines using their delay time reports for that month. Accordingly, the reports of delay times for the $D C-10$ fleet for the 30 months from the inauguration of revenue service, August, 1971, through January, 1974, provided the basic data for this study. Delays are reported only when certain safetymrelated equipment or certain passenger convenience items do not meet requirements for scheduled dispatch. It is only when the corrective maintainance causes a delay from scheduled departure of the aircraft for over five minutes that the delay time is reported.* For example, if failure of a given dispatch-related item is

[^4]not corrected within five minutes of a scheduled departure, a delay from scheduled departure is reported. Since delay times are reported in whole minutes, the smallest delay time possible in the reporting system is six minutes.

Times-Between-Delays

A portion of this study was devoted to comparing dispatch reliability to an alternative measure of performance discussed by Locks [33], observed availability $\left(A_{0}\right) .^{*}$ Since A_{0}, as applied here, is the ratio of time-between delays to time-between-delays plus delay time, an additional data set, times-between-delays (TBD) was extracted from the American Airlines reporting system。 Since American does not assess A_{o}, TBD's are not monitored. This data was obtained by correlating information contained in aircraft \log books, routing charts, and delay reports. It was collected for the 18 months, August, 1971 , through January, 1973. The extraction process yielded monthly TBD sets expressed in hours of actual operating time between reported delays.

[^5]
Overview

Abstract

Analysis of the delay times (DT) and times-between-delays (IBD) was undertaken as the initial step in developing predictions of performance for the $D C-10$ fleet. In order to determine the nature of the $D T$ and TBD, both random variables, they were fitted by month to appropriate families of distributions. Estimated parameters from these distributions were then used for Monte Carlo simulations of performance.

Distributions of Delay Times

Delay times from the first 30 months of revenue operation were fitted to several different candidate families of distributions, including normal, lognormal, exponential, and Weibull. The application of probability plotting,* and subsequent goodness-of-fit tests (Chapter v) to a wide range of data determined that the best fits were obtained to lognormal distributions.** Since only delays of six minutes or over

[^6]are reported for data collection by American Airlines, the fitting procedure begins with the subtraction of 5.5 minutes from all delay times in order to provide a fit from a point closer to zero; that is, 0.5 minutes. This means that the difference between the actual delay time and 5.5 minutes is lognormally distributed. The 5.5-minute value is practically the same as the cut-off used by American Airlines for reporting a delay time.

Next, delay times were fitted, by month, to lognormal distributions using a least squares technique. Let DT denote the delay time, in minutes, and let $t=D T-5.5$. Also, let μ and σ represent the parameters of the lognormal distribution (the mean and standard deviation, respectively, of the normally distributed logarithms of the values). The lognormal distribution has the probability density function (pdf),

$$
\begin{equation*}
f(t)=(2 \pi)^{-1 / 2}(\sigma t)^{-1} \exp \left\{-1 / 2(\ln t-\mu)^{2} / \sigma^{2}\right\}, \quad t \geq 0 \tag{1}
\end{equation*}
$$

Least-squares was used to fit the deliy times to Fquation (1). Let

$$
\begin{equation*}
\ln t=\sigma z+\mu \tag{2}
\end{equation*}
$$

where z is the standard normal deviate with mean zero and standard deviation one. A given set of delay time data consists of n order statistics $\ln t_{1} \leq \ln \cdot t_{2} \leq \cdots \leq \ln t_{n}$. Corresponding to each order

[^7]statistic $\ln t_{i}$ there is an estimated plotting value \hat{F}_{i} of the normal distribution function given by,
\[

$$
\begin{equation*}
\hat{F}_{i}=(i-1 / 2) / n \tag{3}
\end{equation*}
$$

\]

and an associated \hat{Z}_{i} which is a function of \hat{F}_{i} (when successive equal values of $\ln t_{i}$ are encountered, an average value of i is used to obtain the value of \hat{F}_{i}).

The estimates $\hat{\mu}$ of μ and $\hat{\sigma}$ of σ were obtained by a two-parameter least-squares fit of the n observed data points in Equation (2) using a computer program which was especially prepared for this analysis (Appendix: F). Results from the first 30 months of revenue operation yielded estimated values of μ ranging from 2.34 , corresponding to a median delay of approximately 16 minutes, to 3.73 , corresponding to a median delay of approximately 47 minutes. The estimated scale parameter σ is approximately 1.28. The results are shown in Table I, including the corresponding estimated median delay times.

By viewing the values displayed in Table I over the period from August, 1971, to January, 1974, it is clear that the delay times display an increasing tendency while the values obtained for $\hat{\sigma}$, the estimated standard deviation, exhibit a relative stability about their average value of 1.28. Since $\hat{\mu}$ and $\hat{\sigma}$ are in terms of the logarithms of the delay times, this means that the dispersion in terms of minutes is increasing. For example, suppose that three successive values of μ were $2.97,3.10$, and 3.23 with a of 1.28 . Then the percentage increase in the dispersion of minutes for the range $\mu \pm \sigma$ between successive distributions is a constant of approximately 13.9%. Thus, with respect to the

TABLE I

ESTIMATED PARAMETERS FOR DELAY TIMES FROM THE FIRST 30 MONTHS OF REVENUE OPERATIONS

Month	$\hat{\mu}$	$\begin{aligned} & \exp (\hat{\mu})+5.5 \\ & (\text { Median } D T) \end{aligned}$	$\hat{\sigma}$
August, 1971	3.085	27.4	1.310
September	2.818	22.2	0.623
October	2.490	17.6	1.373
November	2.545	18.2	1. 529
December	2.340	15.9	1.431
January, 1972	2.683	20.1	1.373
February	2. 949	24.6	1.186
March	3.188	29.7	1.431
April	2.791	21.8	1.317
May	2.817	22.2	1.299
June	3.088	27.4	1.250
July	2.833	22.5	1.416
August	3.030	26.2	1.243
September	3.341	33.8	1.305
October	3.250	31.3	1. 330
November	3.296	32.5	1.207
December	3.533	39.7	1.229
January, 1973	3.233	30.9	1.329
February	3.242	31.1	1.288
March	3.079	27.2	1.322
April	3.167	29.2	1.220

TABLE I (Continued)

Month	$\hat{\mu}$	$\begin{aligned} & \exp (\hat{\mu})+5.5 \\ & \text { (Median DT }) \end{aligned}$	$\hat{\sigma}$
May, 1973	2.914	23.9	1.249
June	3.283	32.1	1.355
July	3.085	27.4	1.396
August	3.196	29.9	1. 538
September	3.048	26.6	1. 135
October	2.921	24.0	1. 121
November	3.264	31.6	1.217
December	3.730	47.2	1.386
January, 1974	3.424	36.2	1.220

delay times, a constant value of σ with increasing values of μ means that the spread of the delay times is increasing.*

Distributions of Times-Between-Delays

Times-between-delays (TBD) from the first 18 months of revenue operation were also fitted to several different candidate families of distributions. Using a combination of probability plotting, a goodness-of-fit test by Mann, Fertig, and Scheur [19] and the chi-square test (Chapter V), the best fits were obtained to the Weibull family of distributions.

The computer program developed for this analysis uses a leastsquares calculation to obtain estimated parameters of the Weibull distributions for each month (Appendix E supplies a listing of the program used for analysis of TBD). Since delays can occur as soon as an aircraft begins operation, a location parameter was not used and estimation of δ and β (the "characteristic TBD" and "shape" parameters) was accomplished by using the two-parameter Weibull distribution. Using t to denote TBD, the pdf is given by

$$
\begin{equation*}
f(t \mid \delta, \beta)=\left(\beta t^{\beta-1} / \delta^{\beta}\right) \exp \left\{-(t / \delta)^{\beta}\right\} \tag{4}
\end{equation*}
$$

Let R denote the probability that delay occurs after t; that is,

[^8]\[

$$
\begin{equation*}
R(t)=1-F(t)=\exp \left\{-(t / \delta)^{\beta}\right\} \tag{5}
\end{equation*}
$$

\]

From Equation (5), the straight line function corresponding to $y=\beta x+c$ is

$$
\begin{equation*}
\ln (-\ln R)=\beta \ln t-\beta \ln \delta, \tag{6}
\end{equation*}
$$

so that when $\ln (-\ln R)=0, \beta$ is the slope and δ is obtained by $\delta=\exp (-c / \beta)$.

For a sample of n observations, let the order statistics be given by $\ln t_{1} \leq \ln t_{2} \leq \cdots \leq \ln t_{n}$, and let $\ln (-\ln R)$ be the corresponding function with a corresponding plotting value \hat{F}_{i} as given by Equation (3).

The estimates $\hat{\beta}$ of β and $\hat{\delta}$ of δ are obtained by a two-parameter least-squares fit of the n observed data points to Equation (6). Estimated parameters are shown in Table II. Results show that while the values of $\hat{\delta}$, the "characteristic TBD" appear to be increasing slightly, the value of $\hat{\beta}$ is approximately 1.0 **

[^9]
TABLE II

ESTIMATED PARAMETERS FOR TIMES-BETWEEN-DELAY FROM THE FIRST 18 MONTHS OF REVENUE OPERATION

Month	$\hat{\delta}$	β
August, 1971	14.66	1.139
September	5.31	O. 856
October	19.34	1.342
November	7.53	0.978
December	12.70	1.131
January, 1972	21.54	1.130
February	25.40	1.092
March	34.48	0.984
April	29.55	1.054
May	39.21	1.014
June	25.21	1. 108
July	25.82	1.055
August	21.69	1.032
September	29.68	0.990
October	30.18	0.970
November	36.47	1.133
December	31.92	1.049
January, 1973	24.35	1.011

CHAPTER V

TESTS OF THE DATA

Overview

After fitting the delay times and times-between-delays to the lognormal and Weibull distributions, respectively, different goodness-offit tests were considered in order to establish the usefulness of the fitted distributions for the simulations of performance and the predictions of dispatch reliability.

Although different tests were used in early experimentation and analysis,* chi-square was adopted as the primary test for use in this study. The chimsquare test, originated by Pearson in 1900 , is well documented in many textbooks and manuals.**

```
Goodness-of*Fit for the Delay Times
```

The lognormal distributions based upon the values of $\hat{\mu}$ and $\hat{\sigma}$ fitted to the monthly delay times were tested against the data by means of chisquare goodness $=0$ f - fit tests. Let k be the number of segments over the

[^10]range of values of the delay times. For each segment i, let \hat{f}_{i} denote the number of observations in that segment based upon the distribution with parameters $\hat{\mu}$ and $\hat{\sigma}$, and let $f_{i o}$ be the number observed from the data; then,
\[

$$
\begin{equation*}
x^{2}=\sum_{i=1}^{k}\left(\hat{f}_{i}-f_{i o}\right)^{2} / \hat{f}_{i} \tag{7}
\end{equation*}
$$

\]

The computer program prepared for the analysis of delay times computes the number of segments, k, according to a rule that there be at least five observations in each segment and that each segment should contain a specified percentage of the total number. In general, a percentage specification of .05 or .10 provided a satisfactory division of the data. (The computer program listed in Appendix F shows the detailed Fortran steps used to perform the analysis.)

The X^{2} values were computed by Equation (7). Since two parameters, $\hat{\mu}$ and $\hat{\sigma}$, are estimated for fitting the data to the lognormal distribution, the number of degrees of freedom for X^{2} is $\nu=k-1-r$, where $r=2$, unless portions of the data are truncated, in which case additional restrictions are imposed which are discussed in Chapter VI for mixed distributions. The results, shown in Table III, reveal that on the whole, the fits were good. Analysis of the first three months (August, 1971, through October, 1971) of the first 30 months of delay times are not shown in Table III because of a small number of data points. The chi-square values at the .05 level were obtained from Harter's tables [73].

TABLE III

SUMMARY OF CHI-SQUARE GOODNESS-OF-FIT ANALYSIS
FOR DELAY TIMES

Month	Delays	k	ν	x^{2}	$\begin{gathered} X^{2} \text { at } \\ .05 \\ \text { level } \end{gathered}$
November, 1971	33	4	1	1.39	3.84
December	42	6	3	3.00	7.81
January, 1972	49	8	5	10.78	11.07
February	58	9	6	9.40	12.59
March	49	8	5	0.90	11.07
April	75	12	9	10.00	16.92
May	61	10	7	4.00	14.07
June	99	10	7	6.35	14.07
July	129	10	7	6.43	14.07
August	160	18	15	21.72	25.00
September	140	10	7	6.43	14.07
October	134	10	7	6.60	14.07
November	130	18	15	25.77*	25.00
December	156	10	7	7.59	14.07
January, 1973	221	19	16	24.08	26.30
February	231	20	17	18.44	27.59
March	265	20	17	13.87	27.59
April	196	18	15	25.34*	25.00
May	206	10	7	9.63	14.07
June	223	19	16	24.76	26.30
July	222	19	16	16.74	26.30

TABLE III (Continued)

Month	Delays	k	ν	χ^{2}	χ^{2} at .05 level
August	250	10	5	10.15	11.07
September	177	18	15	22.55	25.00
October	134	16	12	14.25	21.03
November	100	14	11	14.90	19.68
December	99	11	7	12.90	14.07
January, 1974	115		7	3.70	14.07

*Significant at 5\% level.

Goodness-of-Fit of the Times-Between-Delays

A chi-square test was also included in the computer program usedfor analysis of the TBD (Appendix E). The number of classes is estab-lished in a manner identical to that used for DT analysis; classboundaries, however, are given by

$$
\begin{equation*}
\mathrm{BD}=\ln \{-\ln (1-\mathrm{BK})\}-\mathrm{C} / \beta, \tag{8}
\end{equation*}
$$

where $B D$ denotes the boundary and $B K$ denotes the percentage rule used to determine expected frequency for each class. The results, shown in Table IV, demonstrate that on the whole, the fits are good. An additional test also showed that, for this data, there is no significant difference between a Weibull and an exponential distribution. A test statistic from Epstein [9] was used to test the hypothesis that $\hat{\beta}$ is not different from 1.0. Application of the statistic is also discussed in detail by Fercho and Ringer [74].

TABLE IV

```
SUMMARY OF CHI-SQUARE GOODNESS-OF-FII ANALYSIS
FOR TIMES-BETWEEN-DELAY
```

Month	TBD	K	ν	x^{2}	$\begin{aligned} & X^{2} \text { at } \\ & .05 \\ & \text { level } \end{aligned}$
November, 1971	33	5	2	8.01*	5.99
December	42	6	3	4.46	7.81
January, 1972	49	6	3	1.92	7.81
February	57	9	6	5.54	12.59
March	49	6	3	0.90	7.81
April	75	8	5	4.47	11.07
May	61	8	5	9.90	11.07
June	98	10	7	5.88	14.07
July	126	10	7	7.49	14.07
August	157	10	7	8.67	14.07
September	139	10	7	9.99	14.07
October	131	10	7	7.24	14.07
November	127	9	6	13.08*	12.59
December	152	10	7	7.21	14.07
January, 1973	219	10	7	10.45	14.07

[^11]
CHAPTER VI

A MIXTURE OF DISTRIBUTIONS

Detection of the Mix

Abstract

Aggregations of the monthly delay times showed lack of fit to the lognormal distribution because of the nature of the data in the tails of the distribution. Analytical procedures were developed to handle this problem when encountered with monthly delay times. Of the 30 months, three - August, October, and December, 1973 - showed lack of fit to the lognormal distribution upon application of the chi-square test using the .05 level of significance $\left(X_{.05}^{2}\right)$. A procedure was adopted by which the tails of the ordered data, fitted to the lognormal family of distributions for each of these months, were truncated. These truncated portions were then fitted to a derived distribution which may be termed "log-uniform."

The Derived Distribution

[^12]upper and/or lower portions of the problem months; however, even better fits were obtained by using the logarithms of the delay times. Thus, by using the $\ln t_{i}$ as had been done in the center portion, goodness-of-fit was established for the lower and/or upper portions.

A uniform distribution with parameters a and b is defined by the pdf,

$$
\begin{equation*}
f(x)=1 /(b-a), \quad a \leq x \leq b \tag{9}
\end{equation*}
$$

For $x=\ln t$, a transformation of variables results in the pdf of what may be termed a "log-uniform" distribution,

$$
\begin{equation*}
f(t)=1 /(b-a) t, \quad \exp \{a\} \leq t \leq \exp \{b\} \tag{10}
\end{equation*}
$$

Although this derived distribution was a natural step in the research, since logarithms had been used for previous analysis, no reference to this particular form of distribution has been found in the literature.

Analysis

The analysis of the tails of the distribution begins with visual inspection of the plotted data fit to the lognormal distribution which is provided for by the initial computer analysis of the monthly delay times. By such inspection, an approximate percentage point for each truncation is determined. A chi-square value is then determined for each portion, resulting in a combined total X^{2} value which is tested against χ^{2} at the .05 level of significance. Since trial and error is necessary to establish the estimate of the exact percentage breaking
point, the computer program for analysis of delay times (Appendix F) is adapted to analyze up to 25 different combinations per run in order that the optimum mix can be chosen on the basis of the total chi-square statistics. For each χ^{2} test statistic, one additional degree of freedom is subtracted to account for the additional restraints on the data imposed by each estimated percentage point on the cumulative distribution function at which a truncation occurs. This breaking point is given by the percentage point of the cumulative distribution function which corresponds to the value of z obtained by rearrangement of Equation (2):

$$
\begin{equation*}
z=\left(\ln t_{i}-\hat{U}\right) / \hat{\sigma} \tag{11}
\end{equation*}
$$

Figure 1 displays the estimated percentage points for the month of August, 1973, which separate the data into a mix of log-uniform and lognormal distributions. Thus, the log-uniform distribution applies from 0 to . 0348 and from .8051 to 1.0 , while a lognormal fit explains the center portion.

Selected results for the months of August, October, and December, 1973, which show both the initial fit to the lognormal distribution and the fit to the mixed situation are shown in Tables V and VI. Note, for example, that when the 250 delay times for the month of August, 1973, are fitted to and tested against the lognormal distribution, the χ^{2} obtained is 18.24 (Table V). Since μ and σ are estimated, the degrees of freedom are $\nu=k-1-2$, where $k=10$, for a $X_{.05}^{2}$ test statistic of 14.07. Clearly, a significant difference between the observed data and the lognormal distribution is noted. The subsequent fit to a mixture of lognormal and log-uniform distributions, however, provided a total χ^{2} of

Figure 1. Cumulative Distribution Function for Delay Times From August, 1973, Fitted to a Mixture of the Lognormal and Log-Uniform
Distribution

TABLE V

ANALYSIS OF SELECTED DELAY TIMES SHOWING FIT TO LOGNORMAL DISTRIBUTION ONLY.

Month	Delays	$\begin{gathered} X^{2} \text { for } \\ \text { all delays } \end{gathered}$	k	ν	χ^{2} at .05 level
August, 1973	250	18. 24	10	7	14.07
October, 1973	134	26.45	15	12	21.03
December, 1973	99	23.00	10	7	14.07

TABLE VI

ANALYSIS OF SELECTED DELAY TTMES SHOWING FIT TO A MIXTURE OF LOG-UNIFORM AND LOGNORMAL DISTRIBUTIONS

Month	Selected Range of Delays		Estimated Boundaries of (between O and 1)	Lower x^{2}	$\begin{gathered} \text { Center } \\ \chi^{2} \end{gathered}$	$\begin{gathered} \text { Upper } \\ X^{2} \end{gathered}$	k	ν	$\begin{gathered} \text { Total } \\ x^{2} \end{gathered}$	$x^{2} \text { at }$ $.05$ Level
August, 1973	9-210		. $0348, .8051$	0.06	8.53	1.56	10	5	10.15	11.07
October, 1973	1-124		--- , . 9032	----	13.49	0.68	16	12	14.17	21.03
December, 1973	7-99		. $0543,--$	0.07	9.07	-----	11	7	-9.15	14.07

10. 15 (Table VI). Using $\nu=k-1-4$, since two additional parameters were estimated, that is, the percentage points separating the distributions, the $X_{.05}^{2}$ test statistic is 11.07 .

For October, 1973, an upper truncation was made at . 9032 in order to establish goodness-of-fit while for December a lower truncation at . 0543 was sufficient. In general, about five percent of the data in each tail of the monthly delay times was not well behaved even though, in most cases, good fits were obtained to lognormal distributions. When this was not the case, the analysis resulted in definitive mixtures such as explained above.

SIMULATIONS OF PERFORMANCE

Overview

The preceding analysis of the delay times (DT) and times-betweenm delays ($T B D$) provided estimated parameters of distributions for use in the Monte Carlo simulations of performance. Since the simulations of observed availability (A_{o}) did not compare closely to historical yalues of dispatch reliability, final predictions of dispatch reliability were accomplished based on a simulation technique which uses the analysis of the delay times.

Observed Availability

Results from the analysis of data from the first 18 months of revenue service of the $D C-10$ fleet were used to evaluate performance in terms of A_{o}. The value of A_{o} for a single cycle is obtained by a Monte Carlo selection of values based upon the distributions of the DT and TBD. A large number of Monte Carlo trials is employed to generate a distribution of A_{0}. Since the percentage points of the resulting simulated distribution of A_{0} are the confidence limits on A_{o}, assessments may be performed for any particular confidence level desired [33]. For example, data from the month of January, 1973, is shown as a graph of the cumulative distribution function of A_{o} in Figure 2. Using 60% as the level of

confidence desired for assessment, the A_{o} value of 93.80% may be noted. Sinilar assessments were performed for each of the first 18 months of revenue service and compared to the $D R$ values as calculated by American Airlines. Appendix D contains the computer program used for the simulation of $A_{0} \cdot *$

Comparison of Observed Availability
and Dispatch Reliability

Since the DR measures of interest were for delays over 15 minutes and delays over one hour, the assessments and predictions of A_{o} were made with regard to such delays. Comparison with DR values is shown in Table VII. In general, at a given confidence level applied to all periods to determine values of A_{o}, close comparison with the historical values of DR is not displayed. By using a range of confidence levels for A_{o} between 40 and 70 percenti, values of $D R$ are generally bracketed; however, the necessity of this procedure in order to establish comparability with DR values demonstrated the need for a more definitive procedure for predicting values of DR. For example, Table VII shows that the month of January, 1973, has a value of DR_{15} of .9390 which is close to the A_{0} value of . 9383 at the 60% level of confidence, but for the month of November, 1972 , with a DR_{15} of .9466 , it is necessary to select a confidence level of 70% in order to obtain a closely related A_{o} value of .9480. Figure 3 also demonstrates this lack of comparability by showing A_{o} values at two different levels of confidence which bracket the $D R_{15}$

[^13]TABLE VII
COMPARISON OF OBSERVED AVAILABILITY AND DISPATCH RELIABILITY

Month	Delays Over 15 Minutes			Delays Over 60 Minutes		
	A_{o} at .? Confidence Level $(Y=.7)$	DR_{15}	$\begin{gathered} A_{o} \text { at } .6 \\ \text { Confidence } \\ \text { Level } \\ (Y=.6) \end{gathered}$	A_{o} at .5 Confidence Level $(\gamma=.5)$	${ }^{\mathrm{DR}_{60}}$	A_{0} at .4 Confidence Level $(y=.4)$
August, 1971	. 8885	. 9091	. 9189	. 9546	. 9545	. 9674
September	. 8056	. 8644	. 8618	. 9948	1.0000	. 9959
October	. 9456	. 9471	. 9586	. 9822	. 9765	. 9869
November	. 8357	. 8909	. 8730	. 9495	. 9697	. 9615
December	. 9215	. 9330	. 9395	. 9807	. 9854	. 9852
January, 1972	. 9404	. 9360	. 9554	. 9815	. 9801	. 9860
February	. 9413	. 9245	. 9569	. 9817	. 9832	. 9867
March	. 9314	. 9577	. 9519	. 9727	. 9819	. 9805
April	. 9523	. 9456	. 9655	. 9867	. 9843	. 9900
May	. 9617	. 9681	. 9718	. 9892	. 9891	. 9919
June	. 9329	. 9423	. 9512	. 9743	.9833	. 9818
July	. 9380	. 9468	. 9539	. 9783	. 9816	. 9842
August	. 9218	. 9359	. 9432	. 9717	. 9788	. 9805
September	. 9194	. 9432	. 9442	. 9652	-9773	. 9749
October	. 9263	. 9488	. 9481	. 9703	. 9802	. 9788
November	. 9480	. 9466	. 9634	. 9769	. 9776	. 9831
December	. 9227	. 9465	. 9472	. 9632	. 9739	. 9725
January, 1973	. 9133	. 9390	. 9383	. 9638	. 9764	. 9739

Figure 3. Comparison of Observed Availability and Dispatch Reliability
values. Note that the confidence levels of 60% and 70% only provide a general bracketing since some values of DR_{15}, such as April, 1972, are not contained in the range of A_{o} values between the two levels of confidence shown.

Simulations of Historical
Dispatch Reliability

While the simulations of A_{o} represented a partial solution to the prediction problem. by indicating the general trend of aircraft performance levels, simulations of historical $D R$ values provided a more direct and accurate comparison to DR as calculated by American Airlines. Accordingly, this procedure was adopted for further analysis.

Each run of the computer program for simulating historical values of $D R$ requires as input data: estimates of lognormal parameters μ and σ, estimated percentage points delineating log-uniform boundaries, the number of departures for each month, the number of delays of 5.5 minutes or more (that is, 6 minutes or more in the American Airlines maintenance reporting system), and a specified number of Monte Carlo trials to represent aircraft departures.* In initial analyses, up to 20,000 trials were used to determine an efficient number. Simulation of 3000 trials was adopted for final runs since a computer run could be obtained faster with this number of trials than by using a much larger number and the results from simulations using different numbers of trials were practically the same.

[^14]The simulation model works as follows. For each trial, a random number is first generated to determine whether a delay of 5.5 minutes or more occurs by comparison with the ratio of departures with 5.5 minutes or more delay to total departures. If the random number is equal to or less than this ratio, then a delay time is determined by obtaining a second random number which is used to select a percentage point on either the lognormal distribution with estimated parameters ψ and σ, or the log-uniform distribution, based on the input specifications. A value of the scale parameter of the lognormal distribution, $\sigma=1.28$, was assumed as a good representative value as previously noted in discussion of Table I. By specifying a log-uniform distribution for the lower and upper 5% of the cumulative distribution function, better estimates of $D R$ were obtained than otherwise. The percentage point obtained is then converted to a specific delay time for the trial based on the estimated parameters of the applicable distribution. When all trials are complete, values of $D R$ are estimated for $D R_{15}$ and $D R_{60}$.

Using a 90% confidence coefficient, lower confidence limits for estimated $D R$ values are established by,

$$
\begin{equation*}
\widehat{D R}-Z \sqrt{\frac{\widehat{D R}(1-\widehat{D R})}{n}}, \quad Z=1.645 \tag{12}
\end{equation*}
$$

This type of calculation is discussed by Mosteller [64] as a suitable approach to confidence limits when the value of \bar{p}, expressed in the above as $\widehat{\mathrm{DR}}$, is not close to 50% and n is large.*

[^15]
Abstract

The estimated value, $\stackrel{\rightharpoonup R}{15}$, of the 15 -minute dispatch reliability is the ratio of the number of trials with less than 15.5 minutes to the total number of trials; likewise, $\widehat{\mathrm{DR}} 60$ is the ratio of the number of trials with less than 60.5 minutes delay to total trials. The results of the DR simulations shown in Table VIII display very close agreement between the estimates, $\widehat{D R}_{15}$ and $\widehat{D R}_{60}$, and the corresponding calculated values of DR_{15} and $D R_{60}$, for the first 30 months of revenue operations. Also shown in Table VIII are the lower confidence limits for $\widehat{\mathrm{DR}_{15}}$ and $\widehat{\mathrm{DR}} 60^{\circ}$ Although 3000 trials were used, the table shows the confidence limits calculated by using the number of actual departures for the value of n in Equation (12) in order to provide, in most cases, more conservative values. For example, for January, 1974, the lower confidence limit for $\widehat{\mathrm{DR}}_{15}$ using 3000 as n would be .9364 , a value slightly higher than that shown in the table as .9343 , a value which results from using the number of departures as the value of n. In general, the differences between the $D R$ values as calculated by American Airlines and the estimated values are in the neighborhood of . 005 . This closeness is a good indication that the methodology for simulating $D R$ is suitable for prediction of future values of DR.

Predictions of Dispatch Reliability

Predictions of dispatch reliability are performed using the same Monte Carlo technique which yielded the simulated values of historical $D R$. The predicted values of $D R$ are based on trends of $\hat{\mu}$ from the fitted distributions of the delay times for each of the first 30 months, the .05 allowance for the log-uniform in the tails, estimated delays of 5.5

TABLE VIII

ANALYSIS OF DIEPATCH RELIABILITY FOR THE FIRST 30 MONTHS OF REVENUE OPERAIIONS

Month	Departures	Delays Over 15 Minutes				Delays Over 60 Minutes			
		Delays	DR_{15}	$\widehat{\mathrm{DR}}_{15}$	```\mp@subsup{\textrm{DR}}{15}{}\mathrm{ for .9} Confidence Level (Y=.9)```	Delays	DR_{60}	$\widehat{\mathrm{DR}}_{60}$	$\begin{gathered} \widehat{D R}_{60} \text { for } .9 \\ \text { Confidence Level } \\ (\gamma=.9) \end{gathered}$
August, 1971	44	4	. 9091	. 9200	. 8527	2	. 9545	. 9710	. 9294
September	59	8	. 8644	. 9027	. 8392	0	1.0000	.9747	. 9410
October	170	9	. 9471	. 9403	. 9104	4	. 9765	. 9863	. 9717
November	165	18	. 8909	. 8807	. 8392	5	. 9697	. 9737	. 9532
December	343	23	. 9329	. 9357	. 9139	5	. 9854	. 9873	. 9774
January, 1972	453	29	. 9360	. 9327	. 9133	9	. 9801	. 9850	. 9756
February	596	45	. 9245	. 9333	. 9165	10	. 9832	. 9770	. 9669
March	827	35	. 9577	. 9547	. 9428	15	. 9819	. 9837	. 9764
April	956	52	. 9456	. 9437	. 9314	15	. 9843	. 9883	. 9826
May	1285	41	. 9681	. 9720	. 9644	14	. 9891	. 9937	. 9900
June	1317	76	. 9423	. 9367	. 9256	22	. 9833	. 9823	. 9764
July	1523	81	. 9468	. 9460	. 9365	28	. 9816	. 9860	. 9810
August	1794	115	. 9359	. 9350	. 9254	38	. 9788	. 9800	. 9746
September	1936	110	. 9432	. 9493	. 9411	44	. 9773	. 9823	. 9774
October	1974	101	. 9488	. 9440	. 9355	39	. 9802	. 9790	. 9737
November	2005	107	.9466	. 9497	. 9416	45	. 9776	.9847	. 9802

TABLE VIII (Continued)

Month	Departures	Delays Over 15 Minutes				Delays Over 60 Minutes			
		Delays	nR_{15}	$\widehat{\mathrm{DR}}_{15}$	$\begin{gathered} \widehat{\mathrm{OR}}_{15} \text { for }-9 \\ \text { Confidence Level } \\ (\mathrm{y} \quad .9) \end{gathered}$	Delays	DR60	$\widehat{\mathrm{nR}}_{60}$	$\begin{gathered} \widehat{D R}_{60} \text { for } .9 \\ \text { Confidence Level } \\ (\gamma=-9) \end{gathered}$
December, 1972	2372	127	.9465	. 9497	. 9423	62	. 9739	. 9790	. 9742
January, 1973	2752	168	. 9390	. 9413	. 9340	65	. 9764	. 9783	. 9738
February	3531	173	. 9350	. 9373	. 9294	72	. 9716	. 9763	. 9714
March	2840	192	. 9324	- 9290	. 9211	62	. 9782	. 9737	. 9687
April	2877	147	- 9489	- 9460	. 9391	51	. 9823	. 9807	. 9764
May	2710	141	. 9480	. 9467	. 9396	44	. 9838	. 9840	. 9800
June	3156	167	.9471	. 9457	. 9390	74	. 9766	. 9800	. 9759
July	3272	154	. 9529	. 9440	. 9374	64	. 9804	.9827	. 9789
August	3336	186	- 9442	. 9530	.9470	69	. 9793	. 9837	. 9801
September	3012	127	. 9578	. 9597	.9538	36	. 9880	. 9883	. 9851
October	2863	95	. 9668	. 9527	. 9461	26	. 9909	. 9750	. 9702
November	2100	75	. 9643	. 9640	. 9573	31	. 9852	. 9870	. 9829
December	1984	81	. 9592	. 9583	. 9509	46	. 9768	. 9817	. 9767
January, 1974	1772	95	. 9464	. 9433	. 9343	36	. 9797	.9777	. 9719

minutes or more, and estimated departures.
The critical input to the computer program for prediction of dispatch reliability is the projected values of $\hat{\mu}$. These were determined by regression of different structures of the estimated values of $\hat{\mu}$ obtained from the analysis of each of the first 30 months of revenue operation. Using a computer* program called FUTURE [76], results from regression of the 30 values are shown in Figure 4. A relatively high positive slope of .022 may be noted for this regression. The next regression, shown in Figure 5, uses the last 24 months of the first 30 , resulting in a slightly smaller positive slope of .O14. In a variation of this regression, which also does not use the first six months of "start up" data, the four highest values were replaced by the original regression values shown in Figure 5. Because of the relatively conservative nature of these results (Figure 6), with a slope of . O11, they were considered to be the most suitable for obtaining future values of $\hat{\mu}$ to be used in the predictions of DR.

Summary results showing selected regression equations obtained, by different structures of the 30 values, with their corresponding projected values of $\hat{\mu}$ for July, 1974, January, 1975, and July, 1975, are shown in Table IX. The regression equation used, as discussed above for Figure $6, \hat{\mu}_{i}=2.969+.011 t_{i-6}$, is noted by underlining. Comparison of this equation with the others also displays its appropriateness to the predictions. Table IX shows, for example, that projected values from this regression are slightly lower than those obtained by regression of the last 24 months and slightly higher than those from regression of only the last 18 months. Thus, projected values of $\hat{\mu}$ for the

Figure 4. Trend of Values of $\hat{\mu}$ From August, 1971, Through January, 1974

Figure 5. Trend of Values of $\hat{\mu}$ From February, 1972, Through January, 1974

(Four Values of Vâ From February, 1972, Through January, 74
Replaced)
1974

TABLE IX

REGRESSION EQUATIONS AND PROJECTED VALUES OF $\hat{\mu}$

Structure of Regression	Regression Equation for μ_{i}	Projected Values of $\hat{\mu}$ for Selected Months		
		July, 1974	January, 1975	July, 1975
All 30 months	$2.708+.022 \mathrm{t}_{\mathbf{i}}{ }^{*}$	3.515	3.649	3.783
The last 18 of the first 24 months	$2.984+.014 t_{i-6}$	3.406	3.490	3.574
The last 24 of the first 30 months	$2.976+.014 t_{i-6}$	3.405	3.490	3.576
The last 24 of the first 30 months with 4 RV**	$2.969+.011 t_{i-6}$	3.295	3.361	3.426
The last 24 of the first 30 months with 6 RV	$2.957+.011 t_{i-6}$	3.288	3.354	3.420
The last 18 of the first 30 months	$3.190+.004 t_{i-12}$	3.277	3.299	3.321
The last 12 of the first 30 months	$3.015+.028 t_{i-18}$	3.517	3.684	3.852

${ }^{*} t_{i}$ denotes time period, for $i=1,2,3, \cdots, 48$, where month 1 is August, 1971 .
**RV $=$ Replacement values for the high values of $\hat{\mu}$.

36 th month, July, 1974, the 42 nd month, January, 1975, and the 48 th month, July, 1975, were selected for the predictions of DR based on projections of $\hat{\mu}$ as shown by Figure 6. Results are shown in Table X, where it can be seen that the predicted values, $\widehat{\mathrm{DR}}_{15}=.9780$ and $\widehat{\mathrm{DR}}_{60}=.9907$ for the end of the fourth year of revenue operation.

TABLE X

PREDICTED VALUES OF DISPATCH RELIABILITY

Month	$\widehat{\mathrm{DR}}_{15}$.9 Lower Confidence Limit	$\widehat{\mathrm{DR}}_{60}$.9 Lower Confidence Limit
July, 1974	.9563	.9495	Lim)	
January, 1975	.9660	.9606	.9843	.9802
July, 1975	.9780	.9736	.9863	.9828

Significance of the Predictions

The significance of the predictions shown in Table X is that the predicted values of $\widehat{\mathrm{DR}}_{15}$ and $\widehat{\mathrm{DR}}_{60}$ for the end of fourth year of operation are both still less than the original management objectives established for achievement by the end of the third year of revenue operation.*

[^16]The increasing trend in the values of $\hat{\mu}$, evidenced by analysis shown in Table IX and Figures 4, 5, and 6, indicate that longer and longer delay times are being experienced by $D C-10$ aircraft. This tendency could be a result of a trend toward less problems from the systems which have primarily caused less than 16 -minute delays; that is, these problems are being overcome with relative success compared to problems with systems which primarily account for delays over 15 minutes. Thus, the implication is that, to achieve an improvement in future values of $D R$ and to attain the $D R$ goals specified in the contract between American Airlines and McDonnell Douglas, the values of μ to be attained in future months must be substantially reduced.

* (Continued) are bounded from below by the .9 confidence limits
 .018 and between $D R 60$ and $\widehat{D R}_{60}$ it is .003.

CHAPTER VIII

SUMMARY AND CONCLUSIONS

Summary

The dispatch reliability goals for American Airlines fleet of DC-10 aircraft, originally established for achievement by July, 1974, have not yet been attained; nor is it likely that they will be by July, 1975 , based upon current trends of increasing delay times. Analysis of both delay times and times-between-delays was accomplished for use in assessment, by Monte Carlo simulation, of observed availability in an effort to establish comparability of this measure to that of dispatch reliability. The findings were that these simulations do not compare well enough to historical values of $D R$, as calculated by American Airlines, to provide a suitable basis for prediction of DR. Thus, the need for the development of different techniques to establish a more suitable foundation for the prediction of dispatch reliability was indicated. Detailed analysis of the delay times from the first 30 months of revenue operation of the fleet (August, 1971, through January, 1974) constituted basic input to the Monte Carlo simulations of historical values of DR. Goodness-of-fit analysis revealed that delay times for departures delayed six minutes or more tend to fit lognormal distributions. In certain cases, a mixture of the lognormal and log-uniform distributions
was found to provide an even better explanation of the delay times. By allowance for a log-uniform distribution in the lower and upper five percent of the otherwise lognormally-distributed delay times, estimated DR values were obtained by Monte Carlo simulations in terms of delays over 15 minutes and delays over one hour for each of the first 30 months. The mixed distribution with the allowance for log-uniform portions in the tails had the additional virtue of yielding better values of $\widehat{D R}$ than obtained by using only the estimated parameters from the fits provided to lognormal distributions only. Consequently, findings of these simulations showed very close agreement with $D R$ values as computed by American Airlines. By similar allowance for the log-uniform portions and by using projected values of $\hat{\mu}$, with a representative value of $\hat{\sigma}$, predictions of $D R$ to the end of the fourth year of revenue operation were accomplished using the same simulation technique developed for the assessments of historical values of DR. For July, 1975, predictions are $\widehat{\mathrm{DR}}_{15}=.9780$ and $\widehat{\mathrm{DR}}_{60}=.9907$.

Conclusions

Since the projection of values of $\hat{\mu}$ used in the simulations of $D R$ are based on a conservative evaluation of several alternative projections, all of which showed a positive slope value, the chances are that the DR_{15} and DR_{60} values to be attained in future months will be less than the established goals. Because of the effect of the increasing values of $\hat{\mu}$, as indicated by analysis of past data, the DR_{15} goal of .9900 and DR60 goal of .9975 are still higher than the predicted values for the end of the fourth year (July, 1975). Since these predictions
are $\widehat{\mathrm{R}}_{15}=.9780$ and $\widehat{\mathrm{D}}_{60}=.9907$, it may be noted that they are short of the goals by . 0120 and .0068 , respectively. Additionally, because of the relatively stable value of $\hat{\sigma}$, accompanied by the increasing values of $\hat{\mu}$, the spread of the delay times is increasing. Statistically, this means that the median and mode parameters of the lognormally distributed delay times are also increasing; in terms of density, however, the occurrence of the mode and median values is decreasing. This might indicate, for instance, that solutions are being obtained to problems typified by delay times around these densities.

The procedures, integrated into specially prepared computer programs, developed by this study for the specific predictions constitute analytical tools for detailed analyses of delay times and their effect on dispatch reliability. By continual tracking and analysis of delay times, future findings from revenue operation can be used in a similar manner as input for the provision of continual predictions which serve to monitor progress toward goals and provide airlines management with an objective view of present and future performance in terms of dispatch reliability.

REFERENCES

[1] Locks, Mitchell O., and Gerald L_{0} Pauler. "Simulation of Dispatch Reliability for a Fleet of Large Commercial Aircraft." Annals of Assurance Sciences. Proceedings of the Annual $\overline{R e l i a b i l i t y ~ a n d ~ M a i n t a i n a b i l i t y ~ S y m p o s i u m, ~ 1974, ~ 226-228 . ~}$
[2] Barlow, Richard E., and Frank"H: Proschan. Mathematical Theory of Reliability. New York: John Wiley \& Sons, Inc., 1965.
[3] Shooman, Martin. Probabilistic Reliability: An Engineering Approach. New York: McGraw-Hill, 1968.
[4] Duncan, Acheson J. Quality Control and Industrial Statistics. 4th ed. Homewood, Ill.: Richard D. Irwin, Inc., 1974.
[5] Epstein, B., and M. Sobel. "Life Testing." JASA, 48 (1953), 486-502.
[6] Epstein, B. "Statistical Problems in Life Testing." Proceedings of the Seventh Annual Convention, American Society for Quality Control, 1953, 385-393.
[7] Epstein, B., and M. Sobel. "Some Theorems Relevant to Life Testing from an Exponential Distribution." Ann. Math. Stat., 25 (1954), 373-381.
[8] Epstein, B. "Stochastic Models for Length of Life." Proceedings of the Statistical Techniques in Missile Evaluation Symposium, 1958, 69-84.
[9] Epstein, B. "Testing for the Validity of the Assumption That the Underlying Distribution of Life is Exponential." Technometrics, 2 (1960), 83-101.
[10] Epstein, B. "Estimation From Life Test Data." Technometrics, 2 (1960), 447-454.
[11] Epstein, B. "Estimation of Life Test Data." IRE Transactions on Reliability and Quality Control, ${ }^{\text {RQC-9 (April, 1960), 104-107. }}$
[12] Davis, D. J. "The Analysis of Some Failure Data." JASA, 47 (1952) , 113-150.
[13] U. S. Advisory Group on Reliability of Electronic Equipment [AGREE]. Reliability of Military Electronic Equipment. Washington, D. C., 1957.
[14] Weibull, W. "A Statistical Distribution Function of Wide Application." J. Appl. Mech., 18 (1951), 293-297.
[15] Kao, J. H. K. "A New LifemQuality Measure for Electron Tubes." IRE Transactions on Reliability and Quality Control, PGRQC-7 (April, 1956), 1-11。
[16] Kao, J. H. K. "Computer Methods for Estimating Weibull Parameters in Reliability Studies." IRE Transactions on Reliability and Quality Control, PGRQC-13 (1958), 15-22.
[17] Kao, J. H. K. "A Graphical Estimation of Mixed Weibull Parameters in Life-Testing of Electron Tubes." Technometrics, 1 (1959), 389-407.
[18] Zelen, M., and M. C. Dannemiller. "The Robustness of Life Testing Procedures Derived From the Exponential Distribution." Technometrics, 3 (1961), 29-49.
[19] Mann, Nancy R., Kenneth W. Fertig, and Ernest M. Scheuer. "Confidence and Tolerance Bounds and a New Goodness-of-Fit Test for Two-Parameter Weibull or Extreme-Value Distributions (with Tables for Censored Samples of Size 3(1)25)." Aerospace Research Laboratories, U. S. Air Force, ARL 71-0077, 1971.
[20] Mann, Nancy R. "Tables for Obtaining the Best Linear Invariant Estimates of Parameters of the Weibull Distribution." Rocketdyne Research Report No. 66-9, 23 March, 1966.
[21] Mann, Nancy R., and Kenneth W. Fertig. "Tables for Obtaining Weibull Confidence Bounds and Tolerance Bounds Based on Best Linear Invariant Estimates of Parameters of the Extreme-Value Distribution." Technometrics, 15 (1973), 87-101.
[22] Epstein, B, "Application of the Theory of Extreme Values in Fracture Problems." JASA, 43 (1948), 403 ff.
[23] Freudenthal, A. M. (ed.). Fatigue Life in Aircraft Structures. New York: Academic Press, 1956.
[24] Zelen, Marvin S. Statistical Theory of Reliability. Madison, Wis.: University of Wisconsin Press, 1963.
[25] Balaban, H. S. "A Selected Bibliography on Reliability and Quality Control." IRE Transactions on Reliability and Quality Control, $\mathrm{BQC-11}$ (July, 1962), 86-103.
[26] Aitchsion, J., and J. A. C. Brown. The Log-Normal Distribution. New York: Cambridge University Press, 1957.
[27] ARINC Research Corporation. Reliability Engineering. Englewood Cliffs, N. J.: Prentice-Hall, 1963.
[28] Pieruschka, Erich. Principles of Reliability. Englewood Cliffs, N. J.: Prentice - Hall, 1963.
[29] Bazovsky, Igor. Reliability Theory and Practice. Englewood Cliffs, N。 J.: Prentice-Hall, 1961。
[30] Retterer, B. L. "Consideration of Maintainability in Reliability Programs." In Reliability Handbook, edited by William G. Ireson. New York: McGraw-Hill, 1966.
[31] Bovaird, R. L., and H. I. Zagor. "Lognormal Distribution and Maintainability in Support Systems Research." Naval Logistics Quarterly, 8 (1961), 343-356.
[32] Howard, R. R., W. J. Howard, and F. A. Hadden. "Study of Down Time in Military Equipment." Annals of Reliability and Maintainability, Fifth Annual Symposium on Reliability, 1959, 402-408.
[33] Locks, Mitchell O. Reliability, Maintainability, and Availability Assessment. Rochelle Park, N. J.: Hayden Book Co., 1973.
[34] Hosford, J. E. "Measures of Dependability." Operations Research, 8 (1960), 53-64.
[35] Sandler, Gerald H. System/Reliability Engineering. Englewood Cliffs, N. I.: Prentice-Hall, 1963.
[36] Gray, H. L., and T. O. Lewis. "A Confidence Interval for the Availability Ratio." Technometrics, 9 (1967), 465-471.
[37] Gray, H. L., and W. R. Schucany. "Lower Confidence Limits for Availability Assuming Lognormally Distributed Delay Times." IEEE Transactions on Reliability, R-18 (1969), 157-162.
[38] Harling, John. "Simulation Techniques in Operations Research--A Review." Operations Research, 6 (1958), 307-319.
[39] Teichroew, D. "A History of Distribution Sampling Prior to the Era of the Computer and Its Relevance to Simulation." JASA, 60 (1965) , 27-49.
[40] Metropolis, N., and S. Ulam. "The Monte Carlo Method." JASA, 44 (1949), 335-342.
[41] Malcolm, D. G. "Bjbliography on the Use of Simulation in Management Analysis." Operations Research, 8 (1960), 169-177.
[42] Amstadter, Bertram. Reliability Mathematics. New York: McGrawHill, 1971.
[43] Brown, G. W. "Monte Carlo Methods." In Modern Mathematics for the Engineer, edited by E. Beckenbach. New York: McGrawHill, 1956.
[44] Chorafas, Dimitri N. Statistical Processes and Reliability Engineering. New York: Van Nostrand, 1960.
[45] Fabrycky, W. J., P. M. Ghare, and P. E. Torgersen. Industrial Operations Research. Englewood Cliffs, N. J.: PrenticeHall, 1972.
[46] Buslenko, N. P., et:al. The Monte Carlo Method: The Method of Statistical Trials. Edited by Yu. A. Shreider; translated by G. J. Tee; translation edited by D. M. Parkyn. New York: Pergamon Press, 1966.
[47] Chase, Richard B., and Nicholas J. Aquilano. Production and Operations Management. Homewood, Ill.: Richard D. Irwin, Inc., 1973.
[48] Bierman, Harold, Jr., Charles P. Bonini, and Warren H. Hausman. Quantitative Analysis for Business Decisions. 4th ed. Homewood, Ill.: Richard D. Irwin, Inc., 1973.
[49] King, G. W. "The Monte Carlo Method as a Natural Mode of Expression in Operations Research." Operations Research, 1 (19521953), 46-51.
[50] Buffa, E. S. Modern Production Management. 3rd ed. New York: John Wiley \& Sons, Inc., 1966.
[51] Thoman, Darrel R., Lee J. Bain, and Charles E. Antle. "Inferences on the Parameters of the Weibull Distribution." Technometrics, 11 (1969), 445-460.
[52] Mann, Nancy R. "Computer-Aided Selection of Prior Distributions for Generating Monte Carlo Confidence Bounds on System Reliability." Naval Research Logistics Quarterly, 17 (March, 1970), 41-54.
[53] Curtin, Kenneth. "A 'Monte Carlo' Approach to Evaluate Multimoded System Reliability." Operations Research, 7 (1959), 721-727.
[54] Gilmore, Donald B. "Application of a 'Monte Carlo' Method to the Determination of Mean Time to Failure of Complex Systems." Annals of Assurance Sciences. Proceedings of the Annual Reliability and Maintainability Symposium, 1968, 391-396.
[55] Haugen, Edward B. Probabilistic Approaches to Design. New York: John Wiley \& Sons, Inc., 1968.
[56] Chambers, R. P. "Random Number Generation on Digital Computers." IEEE Spectrum, 4 (Feb., 1967), 48-56.
[57] Clark, C. E. "Importance Sampling in Monte Carlo Analysis." Operations Research, 9 (1961), 603-620.
[58] Schmidt, J. W., and R. E. Taylor. Simulation and Analysis of Industrial Systems. Homewood, Ill.: Richard D. Irwin, Inc., 1970.
[59] Kozlov, G. A. "Estimation of the Error of the Method of Statistical Tests (Monte Carlo) Due to Imperfections in the Distribution of Random Numbers." Theory of Probability and Its Applications, XVII (1972), 493-509.
[60] Hershkowitz, B, H., M. E. Wheelock, and D. P. Maher. "Reliability Simulation Model." Annals of Assurance Sciences. Proceedings of the Annual Reliability and Maintainability Symposium, 1964, 186-200.
[61] Kahn, Herman. Applications of Monte Carlo. RAND Corporation Memorandum, RM-1237-AEC: Santa Monica, Calif., 1956.
[62] Kamins, Milton. Two Notes on the Lognormal Distribution. RAND Corporation Memorandum, RM-3781-PR. Santa Monica, Calif., 1963.
[63] "Designer's Role in Aircraft Maintenance and How it is Influenced by the Airlines." Unpublished American Airlines Memorandum, presented at the FAA/NTSB Briefing, Miami, Florida, October 16, 1971.
[64] Mosteller, Frederick, Robert E. K. Rourke, and George B. Thomas, Jr. Probability With Statistical Applications. Reading, Mass.: Addison-Wesley, 1961.
[65] Nelson, Wayne. "Hazard Plotting for Incomplete Failure Data." Journal of Quality Technology, 1 (1969), 27-52.
[66] Goldman, A. S., and T. B. Slattery. Maintainability: A Major Element of System Effectiveness. New York: John Wiley and Sons, Inc., 1964.
[67] Lilliefors, Hubert W. "On the Kolmogorov-Smirnov Test for Normality With Mean and Variance Unknown." JASA, 62 (1967), 399-402.
[68] Cochran, William G. "The X^{2}-Test of Goodness of Fit." Ann. Math. Stat., 23 (1952), 315-345.
[69] Watson, G. S. "Some Recent Results in Chi-Square Goodness-of-Fit Tests." Biometrics, 15 (1959), 440-468.
[70] Williams, C. A., Jr. "On the Choice of the Number and Width of Classes for the Chi-Square Test for Goodness of Fit." JASA, 45 (1950), 77-86.
[71] Mann, H. B., and A. Wald. "On the Choice of the Number of Intervals in the Application of the Chi-Square Test." Ann. Math. Stat., 13 (1942), 306-317.
[72] Gumbel, E. J. "On the Reliability of the Classical Chi-Square Test." Ann. Math. Stat., 14 (1943), 253-263.
[73] Harter, H. Leon. New Tables of the Incomplete Gamma Function Ratio and of Percentage Points of the Chi-Square and Beta Distributions. Wright-Patterson AFB, Ohio: Aerospace Research Laboratories, U. S. Air Force, U. S. Government Printing Office, 1964.
[74] Fercho, W. W., and L. J. Ringer. "Small Sample Power of Some Tests of the Constant Failure Rate." Technometrics, 11 (1972), 713-724.
[75] Smith, Lee H., and Donald R. Williams. Statistical Analysis for Business: A Conceptual Approach. Belmont, Calif.: Wadsworth Publishing Co., 1971.

SEIECTED BIBLIOGRAPHY

Alder, Henry L., and Edward B. Roessler. Introduction to Probability and Statistics. 3rded. San Francisco: W. H. Freeman \& Co., 1964.

Allen, W. R., L. J. Tick, and M. A. Woodbury. "Some Mathematical and Statistical Techniques Useful in Reliability Analysis." Proceedings of the Fourth National Symposium on Reliability and Quality Control, 1958, 63-68.

Ash, Robert B. Basic Probability Theory. New York: John Wiley \& Sons, Inc., 1970.

Ash, Robert B. Real Analysis and Probability. ([Series on] Probability and Mathematical Statistics, edited by Z. W. Birnbaum and E. Lukacs.) New York: Academic Press, 1972.

Bain, Lee J., and Charles E. Antle. "Estimation of Parameters in the Weibull Distribution." Technometrics, 9 (1967), 621-627.

Barlow, R. E., and L. C. Hunter. "Mathematical Models for System Reliability, Part I." Sylvania Technologist, 13 (Jan., 1960), 16-31.

Barlow, R. E., and L. C. Hunter. "Reliability Analysis of a One-Unit System." Operations Research, 9 (1961), 200-208.

Barlow, R. E. "Some Recent Developments in Reliability Theory." In Selected Statistical Papers, Vol. 1. Mathematical Centre Tracts, No. 27, European Meeting 1968 on Statistics, Econometrics, and Management Science. Amsterdam, 1968, 49-66.

Barlow, R. E., and L. C. Hunter. "System Efficiency and Reliability." Technometrics 2 (1960), 43-53.

Bauer, W. F. "The Monte Carlo Method." J. Soc. Ind. Appl. Math., 6 (1958), 438-451.

Billman, Barry R., Charles E. Antle, and Lee J. Bain. "Statisticsl Inference From Censored Weibull Samples." Technometrics, 14 (1972),

Birnbaum, Z. W., J. D. Essary, and S. C. Saunders. "Multi-Component Structures and Their Reliability." Technometrics, 3 (1961), 55-77.

Bovaird, R. L., A. S. Goldman, and T. B. Slattery. Concepts in Operational Support Research. RAND Corporation Memorandum, RM-60TMP-70. Santa Monica, Calif., 1960.

Bovaird, R., and H. I. Zagor. A Systems Approach to Specifying and Measuring Polaris FCS Operational Availability. RAND Corporation Memorandum, RM-59TMP-57. Santa Monica, Calif., 1959.

Buckland, William R. Statistical Assessment of the Life Characteristic. (Griffin's Statistical Monograph Series, No. 13.) New York: Hofner, 1964.

Calabro, S. R., M. Barov, and V. Selman. "Availability: A New Approach to System Reliability." Fifth National Symposium on Global Communications, 1961.

Calabro, S. R. Reliability Principles and Practice. New York: McGrawHill, 1962.

Calabro, S. R., and S. Pearlman. "Simulation Techniques Verify Reliability." Proceedings of the Third National Symposium on Reliability and Quality Control, 1956, 213-219.

Carhart, R. R. A Survey of the Current Status of the Electronic Reliability Program. RAND Corporation Memorandum, RM-1131. Santa Monica, Calif., 1953.

Chorafas, D. N. Systems and Simulation. New York: Academic Press, 1965.

Conner, John A. "Prediction of Reliability." Proceedings of the Sixth $\frac{\text { National }}{134-154 .}$ Symposium on Reliability and Quality Control, 1960 ,

Cramér, Herald. The Elements of Probability Theory and Some of Its Applications. New York: John Wiley \& Sons, Inc., 1955.

Cramér, Harald. Mathematical Methods of Statistics. Princeton, N. J.: Von Nostrand, 1946.

Cramér, Harald. Random Variables and Probability Distributions. (Cambridge Tracts in Mathematics and Mathematical Physics, No. 36, edited by F. Smithies and J. A. Todd.) Cambridge, Eng.: Cambridge University Press, 1962.

Dagen, H., and R. Saum. "Relationship Between Demonstrated and Operational Reliability." Annals of Reliability and Maintainability. Sixth Reliability and Maintainability Conference, 1967, 292-304.

Darling, D. A. "The Kolmogorov-Smirnov, Cramer-von Mises Tests." Ann. Math. Stat., 28 (1957), 823-838.

Doob, J. L. "Heuristic Approach to the Kolmogorov-Smirnov Theorems." Ann. Math. Stat., 20 (1949), 393-403.

Downs, W. R., and C. Kasparian. "A Method of Synthesizing Repair Times." Annals of Reliability and Maintainability, Tenth Reliability and Maintainability Conference, 1971, 178-180.

Drenick, R. E. "The Failure Law of Complex Equipment." J. Soc. Ind. Appl. Math. . 8 (1960), 680-690.

Drenick, R. E. "Mathematical Aspects of the Reliability Problem." J. Soc. Ind. Appl. Math. , 8 (1960), 125-149.

Dummer, Geoffrey W., and R. C. Winton. An Elementary Guide to Reliability. Elmsford, N. Y。: Pergamon Press, 1968.

Enrick, Norbert Lloyd. Quality Control and Reliability. 5th ed. New York: The Industrial Press, 1966.

Faragher, W. E., and H. S. Watson. "Availability Analysis--A Realistic Methodology." Annals of Assurance Sciences, Annual Reliability and Maintainability Conference, 1964, 365-378.

Feller, W. An Introduction to Probability Theory and Its Applications. Vol. 1 (3rd ed.), 1968; Vol. 2 (2nd ed.), 1971. New York: John Wiley \& Sons, Inc.

Feller, W. "On the Kolmogorov-Smirnov Limit Theorems for Empirical Distributions." Ann. Math. Stat., 19 (1948), 177-189.

Flehinger, B. J. "A General Model for the Reliability Analysis of Systems Under Various Preventive Maintenance Policies." Ann. Math. Stat., 33 (1962), 137-156.

Fridell, H. G., and H. G. Jacks. "System Operational Effectiveness." Proceedings of the Fifth National Symposium on Reliability and Quality Control, 1959, 179-196.

Fry, Thornton. Probability and Its Engineering Uses. 2nd ed. Princeton, N. J.: Van Nostrand, 1965.

Garner, Norman R., and Richard W. Vail, Jr. "Confidence Limits for Systems Reliability." Military Systems Design, 5 (Sept.-Oct., 1961), 24-27.

Gedye, Gordon R. A Manager's Guide to Quality and Reliability. New York: John Wiley \& Sons, Inc., 1968.

Geise, John, and Walker W. Holler. Maintainability Engineering. Orlando, Fla.: Martin Co., 1965.

Gertsbakh, I. B., and Kh。B. Kordonskiy. Models of Failure. Trans. by Scripta Technica, Inc. New York: Springer, Verlag, 1969.

Gnedenko, Boris, J. Belyayev, and A. D. Solovyev. Mathematical Methods of Reliability. Translation edited by R. E. Barlow. New York: John Wiley \& Sons, Inc., 1969.

Goel, A. L., P. S. Nanda, and N. D. 'Sa. "A Statistical Analysis of Maintenance System Simulation." Proceedings of the Nineteenth National Symposium on Reliability and Quality Control, 1973, 125-135.

Goldberg, Samuel. Probability: An Introduction. Englewood Cliffs, N. J.: Prentice-Hall, 1960.

Green, A. E., and A. J. Bourne. Reliability Technology. New York: John Wiley \& Sons, Inc., 1972.

Gross, A. J., and M. Kamins. Reliability Assessment in the Presence of Reliability Growth. RAND Corporation Memorandum, RM-5346-PR, Santa Monica, Calif., 1967.

Hadden, F. A., and L. W. Sepmeyer. "Techniques in Putting Failure Data to Work for Management." Proceedings of the First National Symposium on Reliability and Quality Control, 1954, 95-109.

Hahn, G. J. "Understanding Statistical Intervals." Industrial Engineering, 2 (Dec., 1970), 45-48.

Hald, A. Statistical Theory With Engineering Applications. New York: John Wiley \& Sons, Inc., 1952.

Hammersley, J. M., and D. C. Handscomb. Monte Carlo Methods. New York: John Wiley \& Sons, Inc., 1964.

Harris, V_{0}, and M. Mo Tall. "Development of Techniques for Inherent Reliability Measurement and Prediction。" Annals of Assurance Sciences. First Reliability and Maintainability Conference, 1954, 71~80。

Haviland, Robert P. Engineering Reliability and Long Life Design. Princeton, No J.: Van Nostrand, 1964.

Hawkins, Richard H. "A Note on Multiple Solutions to the Mixed Distribution Problem." Technometrics, 14 (1972), 973-976.

Herd, G. R. "Estimation of Reliability Functions." Annals of Assurance $\frac{\text { Sciences }}{113-122}$, Second Reliability and Maintainability Conference, 1956, 113-122.

Herd, G. R. "Some Statistical Concepts and Techniques for Reliability Analysis and Prediction." Proceedings of the Fifth National Symposium on Reliability and Quality Control, 1959, 126-136.

Hill, Bruce M. "Information for Estimating the Proportions in Mixtures of Exponential and Normal Distributions." JASA, 58 (1963), 918932.

Hodges, J. L., Jr., and E. L. Lehmann. Basic Concepts of Probability and Statistics. San Francisco:. Holden-Day, Inc., 1964.

Hoel, Paul Go, and Raymond J. Jessen. Basic Statistics for Business and Economics. New York: John Wiley \& Sons, Inc., 1971e

Hoel, Paul G. Introduction to Mathematical Statistics. 4 th ed. New York: John Wiley \& Sons, Inc., 1971.

Horvath, William J. "Application of the Log-Normal Distribution to Servicing Times in Congestion Problems." Operations Research, 7 (1959), 126-128.

Howard, W. J. Some Physical Qualifications for Reliability Formulas. RAND Corporation Memorandum, RM-1724, Santa Monica, Calif., 1956.

Ireson, William G., ed. Reliability Handbook. New York: McGraw-Hill, 1966.

Kabak, Irwin W. "System Availability and Some Design Implications." Operations Research, 17 (1969), 827-837.

Kahn, H., and A. W. Marshall. "Methods of Reducing Sample Size in Monte Carlo Computations." Operations Research, 1 (1952-1953), 263-278.

Kamins, Milton, and J. J. McCall, Jr. Rules for Planned Replacement of Aircraft and Missile Parts. RAND Corporation Memorandum, RM-2810, Santa Monica, Califa, 1961.

Kao, J. H. K. "A Summary of Some New Techniques of Failure Analysis." Proceedings of the I.R.E. National Symposium on Reliability and Quality Control, 6 (1960), 190-201.

Knight, C. R., E. R. Jervis, and G. R. Herd. "Terms of Interest in the Study of Reliability." ARINC Research Corporation, Monograph \#2, Washington, D. C., 1955; reprinted in IRE Transactions on Reliability and Quality Control, RQC-5 (April, 1955), 34-56.

Landers, Richard R_{0} Reliability and Product Assurance: A Manual for Engineering and Management. Englewood Cliffs, N. J.: PrenticeHa11, 1963.

Landers, R. R. "Systems Reliability Measurement and Analysis." Proceedings of the Fourth National Symposium on Reliability and Quality Control, 1958.

Leake, Charles E. A Simplified Presentation for Understanding Reliability. Pasadena, Calif.: Pasadena Lithographers, 1962.

Lieberman, G. J. "Prediction Regions for Several Predictions from a Single Regression Line." Technometrics, 3 (1961), 21-27.

Lloyd, E. H. "Generalized Least-Squares Theorem 20-27." In Contributions to Order Statistics, edited by Ahmed E. Sarhan and Bernard G. Greenberg. New York: John Wiley \& Sons, Inc., 1962.

Lloyd, E. H. "Least-Squares Estimation of Location and Scale Parameters Using Order Statistics." Biometrika, 39 (1952), 88-95.

Maisel, Louis. Probability, Statistics, and Random Processes. New York: Simon and Schuster, 1971.

Mann, Nancy R., and S. C. Saunders. "On Evaluation of Warranty Assurance When Life Has a Weibull Distribution." Biometrika, 56 (1969), 615-625.

Massey, Frank J., Jr. "The Kolmogorov-Smirnov Test for Goodness of Fit." JASA, 46 (1951), 68-78.

Menon, M. V. "Estimation of the Shape and Scale Parameters of the Weibull Distribution." Technometrics, 5 (1963), 175-182.

Miller, R. G. "Early Failures in Life Testing." JASA, 55 (1960), 491-502.
von Mises, Richard. Mathematical Theory of Probability and Statistics. Edited by Hilda Heiringer. New York: Academic Press, 1964.

Mize, Joe H., and J. Grady Cox. Essentials of Simulation. Englewood Cliffs, N. J.: Prentice-Hall, 1968.

Mohan, C., R. C. Garg, and P. P. Singal. "Dependability of a Complex System." Operations Research, 10 (1962), 310-313.

Muth, Eginhard. "Excess Time: A Measure of System Repairability." IEEE Transactions on Reliability, R-19 (1970), 16-19.

Myers, R. E. "How Meaningful are Reliability Predictions?" Annals of Assurance Sciences, Eighth Reliability and Maintainability Conference, 1969, 412-416.

Naylor, T. H., J. M. Balintfy, D. S. Burdick, and K. Chu. Computer Simulation Techniques. New York: John Wiley \& Sons, Inc., 1968.

Nelson, Wayne. "Charts for Confidence Limits and Tests for Failure Rates." Journal of Quality Technology, 4 (1972), 190-195.

Nelson, Wayne. "Hazard Plotting Methods for Analysis of Life Data With Different Failure Modes." Journal of Quality Technology, 2 (1970), 126-149.

Nelson, Wayne. "A Statistical Prediction Interval for Availability." IEEE Transactions on Reliability, 19 (1970), 170-189.

Nelson, Wayne, and Vernon C. Thompson. "Weibull Probability Paper." Journal of Quality Technology, 3 (1971), 45-50.

Nylander, J. E. "Statistical Distributions in Reliability." IRE Transactions on Reliability and Quality Control, RQC-11 (July, 1962), 43-53.

Parzen, E. Modern Probability Theory and Its Applications. New York: John Wiley \& Sons, Inc., 1960.

Parzen, E. Stochastic Processes. (Holden-Day Series in Probability and Statistics, edited by Erich L. Lehmann.) San Francisco: HoldenDay, 1962.

Pieruschka, Erich. "Mathematical Foundation of Reliability Theory." In Production and Field Reliability. Milwaukee, Wis.: American Society for Quality Control, 1959, 60-82.

Polovko, A. Fundamentals of Reliability Theory. Translated by Scripta Technica; translation edited by William H. Pierce. New York: Academic Press, 1968.

Reesing, H. A. "The DC-9 Reliability Program." Annals of Reliability and Maintainability. Fourth Annual Reliability and Maintainability Conference, 1965, 447-456.

Reesing, H. A. "DC-10 Reliability Program." Annals of Assurance Sciences. Eight Reliability and Maintainability Conference, 1969, 309-314.

Research Triangle Institute. Practical Reliability. 5 vols. Durham, North Carolina: National Aeronautics and Space Administration, 1968.

Roberts, Norman H. Mathematical Methods in Reliability Engineering. New York: McGraw-Hill, 1964.

Rohn, W. B. "Reliability Prediction for Complex Systems." Annals of Assurance Sciences. Fifth Reliability and Maintainability Conference, 1959, 381-388.

Rosenblatt, Murry. Random Processes. New York: Oxford University Press, 1962.

Ryerson, C. M. "Numerical Assessment of Reliability." Proceedings of the Second National Symposium on Reliability and Quality Control, 1958, 122-132.

Shellard, G. D. "Failure of Complex Equipment." Operations Research, 1 (1952-1953), 130-136.

Simshauser, Ernest M. "Maintainability Prediction by Function." Annals of Reliability and Maintainability, Fifth Reliability and Maintainability Conference, $1966,421-427$.

Smirnov, N. "Table for Estimating the Goodness of Fit of Empirical Distributions." Ann. Math. Stat., 19 (1948), 279-281.

Smith, David Joseph. Reliability Engineering. New York: Barnes and Noble, 1972.

Snedecor, George W. Statistical Methods. 4th ed. Ames, Iowa: University of Iowa Press, 1946.

Stewart, Donald Arnott. Probability, Statistics and Reliability. Richmond, Surrey: Draughtsman's and Allied Technicians' Association, 1966.

Stout, C. L. "DC-10 Dispatch Reliability--A New Challenge for Flight Test." Annals of Reliability and Maintainability, Tenth Reliability and Maintainability Conference, 1971, 101-103.

Stovall, Frank A. "Reliability Management." IEEE Transactions on Reliability, R-22 (1973), 232-237.

Thoman, D. R., L. J. Bain, and C. E. Antle. "Maximum Likelihood Estimation, Exact Confidence Intervals for Reliability, and Tolerance Limits in the Weibull Distribution." Technometrics, 12 (1970), 363-371.

Thompson, M. "Lower Confidence Limits and a Test of Hypotheses for System Availability." IEEE Transactions on Reliability, R-15 (1966), 32-36.

Truelove, A. J. "Strategic Reliability and Preventive Maintenance." Operations Research, 9 (1961), 22-29.

Tucker, Howard G. A Graduate Course in Probability. ([Series on] Probability and Mathematical Statistics, edited by Z. W. Birnbaum and E. Lukacs.) New York: Academic Press, 1967.

Vesely, W. E. "The Evaluation of Failure and Failure Related Data." Annals of Assurance Sciences, Twelfth Reliability and Maintainability Conference, 1973, 500-506.

Welker, E. L. "Relationship Between Equipment Reliability, Preventive Maintenance Policy, and Operating Costs." Proceedings of the Fifth National Symposium on Reliability and Quality Control, 1959, 270-280.

Zak, Eugene T. "Intrinsic to Operational Reliability and Maintain-ability--A Credibility Gap?" Annals of Reliability and Maintainability, Sixth Reliability and Maintainability Conference, 1967, 182-191.

APPENDIX A

DISPATCH INOPERATIVE LIST

DISPATCH INOPERATIVE LIST

Air Transport Association (ATA) is a classification scheme which
reports data according to the following major system number and
identifier:
ATA System Number Identifier

21
22
23
23A
24
25
25A
25B
26
27
28
29
30
31
32
33 33A 33B 34 35 36 38 49 50 52 53 54 55 56
57
70
71
72
73
74
75

Air Conditioning
Autopilot
Communications
Entertainment
Electrical
Equipment and Furnishings
Buffet
Furnishings
Fire Protection
Flight Controls
Fuel
Hydraulic Power
Ice-Rain/Pneumatics
Instruments
Landing Gear
Lights
Interior Lights
Exterior Lights
Navigation
Oxygen
Pneumatic
Water/Waste
Auxiliary Power Unit (APU)
Structures
Exterior Doors
Fuselage
Pylons
Stabilizers
Windows
Wings
Power Plant
Cowling
Engines
Engine Fuel
Ignition
Engine Bleed

ATA System Number Identifier

76
77
78
79
80

Engine Control
Engine Indicators
Exhaust
Engine Oil
Starting

APPENDIX B

MEANING AND EXAMPLES OF OBSERVED AVAILABILITY (A_{O})

MEANING AND EXAMPLES OF OBSERVED
AVAILABILITY (A_{O})
A_{0}, as applied to a fleet system, is the probability that an individual aircraft, selected at random, will meet a scheduled departure within a stated time period. A_{o} is a random variable defined in terms of an availability cycle. The two consecutive periods of the cycle are (1) an operation time until delay, and (2) a delay time. A_{o} is the ratio of time in the first period to the time of the cycle:

For example, suppose a new aircraft begins service and makes several flights, adding up to 98 hours, prior to a delay. Suppose further that it experiences a two-hour delay prior to beginning its next A_{o} cycle. Measurement of A_{0} for the first cycle is thus:

$$
A_{0}=\frac{\text { Operation Time Until Delay }}{\text { Time in Cycle }}=\frac{98}{100}=.98
$$

or

$$
A_{0}=\frac{T B D}{T B D+D T}=\frac{98}{98+2}=.98
$$

On the basis of this information only, A_{0} would be assessed as 98 percent. With no other information, this aircraft's next cycle could be expected to yield an A_{o} of 98 percent. Another example, which would
also yield an A_{o} of 98 percent could be a TBD of 9.8 hours and a DT of . 2 hours:

$$
A_{0}=\frac{T B D}{T B D+D T}=\frac{9.8}{9.8+.2}=.98 .
$$

This illustrates that different combinations of TBD and DT can result in the same A_{o}. Thus, A_{o} may also be interpreted as the probability of being in service during a specified time period.

One approach to the assessment of A_{o} is to estimate the parameters of the family of distributions which govern a given collection of TBD and DT. Monte Carlo simulations of A_{0} can then be performed in order to obtain a distribution of A_{0} where the ordinate (O to 1.0) may be used to determine confidence levels (using Y as the confidence level, 1 - Y is the corresponding point on the ordinate). The range of the abscissa is determined by the range of simulated values of A_{0}, for example, from . 01 to 1.0 .

Monthly collections of $T B D$ and $D T$ are used for assessment of A_{0}. Since several aircraft compose a fleet and each contributes to the TBD and DT collections, A_{o} may be viewed as the probability of take-off within a specified time after scheduled departure for an aircraft selected at random.

APPENDIX C

PROGRAM LIST FOR SIMULATION OF DISPATCH RELIABILITY

```
C
C
C
C
C
C
C
c
C
C s
c
101
    FORMAT(1H1,T60, DISPATCH RELIABILITY*.//.'T55.*NUMBER OF TRIALS IS'
    7.I6." (= N)*./%. T30.*SIMULATED DR COLUMNS
    1 SHOW THE LOWER CONFIDENCE LIMIT USING THE`.FG.2.* LEVEL OF CDNFID
    2ENCE*.///.T10.'MONTH DPTRS DELAY>5 DR SIM DR DR EST
    3 DELAY>15 DR SIMDR DREST OELAY>60 DR SIM DR DR
    4 EST*)
    READ MONTH DATA
    READ (NCARD. 102) MO. DEL. DEP. XMU. SIGMA,DELI5.OELGO
    FORMAT (110. GE10.3)
    M(IX)=MO
    XM(IX)=XMU
    SIG(IX)=SIGMA
C IF THE BLANK CARD AFTER ALL MONTH CARDS IS DETECTED, FINAL RESULTS ARE
C PRINTED ANO PROGRAM ENDED.
    IF (MO) 2. 3. 2
    3 IX=IX-1
        JO=NO+1
        WRITE(NPRNT, 200)
        FORMAT\IHI.T53."ANALYSIS CF DISPATCH RELIABILITY'.//.TBO.'SIMULATE
    6D DR COLUMNS SHOWS LOWER CCNFIDENCE LIMIT USING NUMBER OF DEPARTUR
    7ES AS N*///.T4.'MONTH',T14,
    2*DR>5*.T24.*SIN DR*.T34.* CR EST**T44.0DR-DR EST*.T54.
    3'DR>15'.T64.'SIM DR*.T74.*DR EST*.TE4.*DRTDR EST*.T94.
    4"DR>60.,T104.*SIM DR*.T114., DR EST'.T123, 'DR-DR EST')
        URITE(NPRNT, 300)(M(J),FD(J),ALOW(J),AD(J),DRO(J),R15(J), DRL(J),
```



```
        FORMAT(1H0.5X,13,3X,12F10.6)
        #RITE(NPRNT,320)(M(J),ALCW(J),AD(J),DRL(J),D15(JR.,DR6L(J),D60(J).
    \J=JO.KO!
        FORMAT (1HO,5X,13,13X,2F10.6. 20X, 2F10.6. 20X, 2F10.6)
        WRITE\NPRNT, 350\
350 FORMAT(IH1.T14.'ESTIMATED VALUES OF MU AND SIGMA..//.TI9."MO..T34.
    5.MU*.T4B.*SIGMA../)
    FORMAT(1H0,15X,1 3, 2F10.5)
    WRITE(NPRNT, 400)(M(JI), XM(JI).SIG(JI),JI=1&RO)
    DO 500 J=1.NO
    DA=DRO(J)+DA
    DA15=CA15 +DRO15(J)
    DA60=DA60+DRO60(J)
    CONTINUE
    WRITE(NPRNT,551)DA.LA15.CAGO
551 FORMAT\1HI.TS,'TOTAL DIFFERENCES CF OR AND DR ESTIMATES*.//T10,3F1
    20.6)
    CALL EXIT
        CONTINUE
```

```
C REINITIALIZE VALUES.
    IOVRS = 0
    IOVR15=0
    IOVR60 = 0
    SIGN=1.0
    FACTOR = DEL / DEP
    RDR=1.0-FACTOF
    RO(IX)=RDR
    COMPUTE ACTUAL DR VALUES THROUGH THE LAST MONTH OF DATA, THEN COMPUTE FOR
C COMPUTE ACTUAL OR
    IF(MO-NO)321.321.322
321 CONTINUE
    RDR15=1 --(DEL15/DEP)
    R15(IX)=ROR15
    RDR60=1.-(DELG0/DEP)
    R6O(IX)=RDR60
322 CONTINUE
C COMPUTE DELAY DATA FOR A GIVEN NUMEER OF TRIALS.
    DO 10 I = 1. ITRYS
        jX = RNDSD
        CALL RANDU (JX. RNOSC, RNDNO)
        IF (RNDNO - FACTOR) 11. 11. 10
    DETERMINE OF A DELAY OCCURS FOR THIS DEPARTUREIITTRYI.
    JX = RNDSD
    CALL RANDU (JX; RNDSD, XI )
C ALLOWANCE FOR LOGUNIFORM PORTIONS.
            IF(XI-.05)544.545.545
    545 IF(XI-.95)546,E46.E4e
    544 R=XI/.05
    DELTM=EXP((R*1.7)-.7)
    GO TO 55O
    548 DELTM=EXP(XI*5.75)
    GO TO 550
    546 CONTINUE
    O = XI
    IF (0-0.5) 12,13.13
    IF (0-0.5)
13 0 = 1.0-XI
C HASTINGS APPROXIMATION DF NOMMAL OISTRIBUTION.
    SIGN = -1.0
12 ETA = SORTC -ALOGI Q*O 11
    z=2.515517+0.802853*ETA + 0.010328*ETA*ETA
    Z=Z/11.0 + 1.432788*ETA + 0.189269*ETA*ETA 0.001308*ETA*ETA
        1
            z=SIGN#(ETA - z)
            SIGN = I.O
            THE SIMULATED DELAY TIME IS INTERPRETED IN MINUTES.
            DELTM = EXPPSIGMA * z + XMU ;
    If ALL ORIGINAL DT SUBTRACTED 5.5 MINUTES PRIOR TO FITTING THEN THE
    C SImULATED TIME MUST ADC GACK THIS 5.5 MINUTES.
    550 CONTINUE
            DEL TM=DEL TM+5.5
            IF (DELTM - 5.5) 11. 14. 14
    IOVRS = I OVRS + I
    IF (DELTM - 15.5) 16.15.15
    IOVR15 = IOVR15 + 1
    IF (DELTM - 60.5) 10.17.17
    IOVR60 = IOVR60 + 1
    CONT INUE
    RTRYS=FLOATTITRYS\
    IF(MO-NO)323,323,324
    X15=FLOAT(IOVF15)
    OEL15#OEP#(X15/RTRYS)
    ROR15=1--(DEL15/DEP)
    R15(IX)=RDRI5
    X60=FLOAT(IOVRGO)
    DELG0=DEP*{X60/RTRYS)
    RDRG0=1.0-(0EL60/DEP)
    R60(IX)=RDR60
    X5=FLDAT (IOVFS)
    DEL=DEP*《X5/RTRYS)
    RD(IX)=1.0-(DEL/DEP)
323 CONTINUE
C CALCULATE CONFIDENCE IATEGVAL FOR THE THREE CAT,: GORIES.
    XS=FLOAT(IOVRS)
    AOR=1.0-(XS/RTFYS)
    AO(IX)=AOR
```

```
        MULD=ZE*SQRT((ADR*(1.0-ADR))/FATF`S)
        ALOWDR = ADF - HOLD
        HOL = ZE*SQRT((ADF*(1.O-ADF))/DEP)
        ALOW (IX)=ADR=HCL
        AUPDF = AUR + HCLD
        OF15 = FLOAT(ITQYS - {CVF15) / FTTAYS
        015(IX)=DR15
        HOLD=ZE*SORT((DFIS*(1.0-DF15))/RTFYS)
    OR15LO = OR15- HOLD
    HOL = 2E*SQRT((DF15*(1.C-DR15))/DEP)
    DRL (IX)= DF 15-HIOL
    DF15UP= CF15 + HULD
    DF60 = FLCAT(ITFYS - IOVRGO) / RTRYS
    D60(IX)=DP60
    HOLD=2E*SQRT((DRGO*(1.0-OFGO))/RTRYS)
    DFGOLJ = DR 60 - HCLC
    DF60LP = DF6O + HOLD
    DRGOUP = DR60 + HOLD
    DF6OUP = CR60 + HOLC
    HOL = ZF*SOFT((DRGO*(1.(-DF60))/DEP)
    DFGL(IX)=DN60-HOL
    IF(MO-NC) 301.301.312
    C
    SET DR EQUAL TO THF ESTIMATE WHEN PREUICTING SINGE THERE IS NO AGTUAL DR.
    AD(IX)=1.-(DEL/DEP)
            015(IX)=1.-(DELIS/DEF)
            060(1X)=1.-(DEL60/OEP)
            CCNT INUE
            FIND THE DIFFEFENCE BETWEEN THE ACTUAL DR AND THE ESTIMATED DF IN EACH
C FIND CATEGOFY,>5 MINUTES,DIE MINUTES AND >GO MINUTES.
            DAC(IX)=RER-AUF
            DFO1S(IX)=ROP15-DF15
            DR060(IX)=FDDR60-DF60
            IX=1+I X
            WFITE FESULTS.
            IF(MC-NC)100.100.112
        100 WFITE\NPFNT,107)MC,CEP,DEL,RDF,ALQWDF,ADR,DEL15,RDR15,DR1SLO,DR15,
            1DEL60.FDR60. DF 6OLO.DF6C
        107 FCFMAT (1HO.10X,13,2F7.0.3F10.6.F9.0. JF10.6.F6.0.3F10.6)
            GO TO 1
        112 WRITE(NPRNT.113)MO.DEP.OEL.ALOWDR,ADR,DEL15.DR15LO.DF15.DEL6O.
            I DFGOLO,DFGO
        113 FORMATY HHC,10X,I 3, 2F7.C,1OX,2F10.6.2X,F7.0.10X,2F10.06,F6.0.10X,2F1
            10.6)
            GO TC I
            END
```

APPENDIX D

PROGRAM LIST FOR SIMULATION OF OBSERVED AVAILABILITY

```
LOgnufmal dt-we.ibull ted simulation
    PROGFAM REQUIFIG TWO IMFLT CAFDS:
    CARO 1
        COL DATA
        1-10 INTEGEP VALUE FOR RANDOM NUMBER
                gFNERATOF SEEC, NOT A pOWER OF }2
    CARD 2
        COL EATA
        1-4 INTEGEF numeer cF thiALS. l=5000
        5-11 HI:AL VALUE OF MU, TYDE IN DECIMAL
        12-1% GEAL VALUE CF SIGMA, TYPE IN DECIMAL
        19-25 REAL VALLE CF DELTA, TYPE IN DECIMML
        26-32 HEAL VALUE OF BETA, TYPE IN DECIMAL
        33-39 UELAY IN MINLTES. TYPE IN DECIMAL
    45-52 BLOCK TIME FOR DF
    67-72 MCNTH AND YEAR CF DATA
    DIMENSION NA(5000),IN(122),PLT(121).P(10),A(13)
    DATA PTバ+*'
    DATA 甘LNK/! !/
    FFFAD(1.15)lx
    READ(1,5)ITFILSS,AMUHAT,SIGNA,CELTA,BETA,DELAY, BLOCK,MO, IYR
    NTTWO=0
    TTED=0.0
    DELSPC =6.160.
    XPEC=16./EO
    G5PEC=61./60.
    IF(ITRILS.EQ.OIGO TC 846
    If amuhat is input in terns of minutes and delta is in terms of
    HOURS THIS RUUTINE IS NECESSAFY FCR CONPATIBILITY .
    CONVT=EXP (AMUHAT)/GO.
    AMUHAT=ALCG(CCNVT)
5 FORMAT (I4,2F7.5,F7.4,F7.5,F7.0.5X.FB.6.14X.1A4.12)
15 FORMAT(IIO)
    BLANKS DUT PLDT LINE
    DC 1 I=1.121
    PLT(I)=日LNK
    l cont inue
    ac calculations
    DO300 M=1.ITRILS
    RANDU IS IGM SYSTEM RANDUM NLmBER GENËfATOF
    CALL RANDU(IX, (Y,XI)
    I X=I Y
    TONE IS DERIVED FRUM WEIBLLL DISTKIBUTION FUNCTIION
    TONF=OELTA*((-ALOG(1.-XI))**(1./BETA))
3 CONTINUE
    CALL RANDU(IX, (Y,XI)
    IX=IY
    a=xI
    REOUIRES fANDOM NUMBER TO BE LESS THAN .S IN
    ORDER TC CALCULATE CALY UFPEF ONG-HALF OF
    tHE NORMAL UISTPIBUTICN
    SIGN=1.
    IF(G.LE.O.5) GC TO 150
    a=1.-xI
    SIGN UTILIZES THE SYMMETRY OF THE NORMAL DISTRIBUTION
    SIGN=-1.
150 ETA=SOFT(-ALOG(O*O))
    Z=2.515517+0.802853*ETA+0.010328*ETA*ETA
    Z=Z/(1.+1.4327R&*EETA+0.189269*ETA*ETA*O.001308*ETA**3.)
    l=SIGN*(ETA-L)
    SIGN=1.
    TTWO=E XP(SIGMA*Z+AMLHAT)
        NTTWO=NTTWO +1
    IF(TTWC.LT.OELSPC) GC TC }7
    IF(DELAY.EO.60.) GO TO 163
    IF(OELAY.EG.IS.) GO TO 164
    GO TC 169
163 IF(TTWO.GE.GSPEC) GC TC 1G9
```

```
        CALL FANDU(IX,IY,XI)
        I X=1 Y
        TONE=TONE+(DELTA*((-ALCG(1,-XI))**(1./EETA)))
        GO TO 73
    164 IF(TTWO.GE.XPEC) GO TO 169
        CALL RANDU(IX,IY,XI)
        IX=IY
        TONE=TONE+(DELTA*(<-ALCG(1.--XI))**(1-/BETA)))
        GO TO }7
    169 CONTINUE
        IF(BLOCK.EO.0.0) GO TO 170
        TTBD=TONE +TTBD
        XT=NTTMO
        TONE=TONE/BLOCK
        TTMO=1.0
    17O CONT INUE
            AOH=TONE/(TONE+TTWO)
            INTEGER ARRAY UNTILIZED TC CONSERVE CORE
            NA(M)=IFIX(AOH*100000+.5)
    300 CONTINUE
C
            SORT ROUTINE, ASCENDING
            IITRIL=ITRILS-1
            DO 500 I=1.IITRIL
            LSM=10000000
            II= \ +1
            NO=1
            OO 400 J= I,ITRILS
            IF(ISM.LE.NA(J)) GO TO 400
            ISM=NA(J)
            NO=J
    400 CONT INUE
            IF(NO.EG.1) GO TO 460
            OO 450 KL=II,NO
            K=NO+II -KL
            KK=K-1
            NA{K)=NA(KK)
    4 5 0 ~ C O N T ~ I N U E ~
    460 CONTINUE
        NA(I)=ISM
    500 CONT INUE
C
C SETS VALUES TO TOP AND BOTTON DF RANGE
            ALG=NA(ITRILS)+.5
            ASM=NA(1)-.5
            AINCR=( ALG-ASM)/12.
            ISLT=IFIX(ASM)
            SUMT=0.
            APCT=FLOAT(ITRILSI/IO.
                    C zeros OUT PERCENTAGE AFRAY
            OO 520 I=1.122
    520 IN(I)=0
            k=0
            I=0
    530 K=K+1
    540 I= i+1
            IF(I.GT.ITRILS) GO TO EOO
            IF(NA(I).GT.ISLT) GO TO 550
    CUTS NUNBER CF OCCUFRANCES IN ARRAY IN
            IN(K)=IN(K)+1
            GO TO 54O
    550 CONTINUE
            SUMT=SUMT+IN(K)
    C THERE ARE 10 plotting slots within EACH INCREmENT
            ISLT=ISLT+AINCE/10.
    590 I= I-1
            G0 10 530
    600 CONTINUE
            PUTS PERCENTAGES OF OCCURANCES IN ARRAY IN
            SUMT=SUNT+IN(K)
            CUM=0.
            DO 700 I=1.122
            CUM=CUM+FLOAT(IN(I))/FLCAT(ITRILS)
            IN(I)=IFIX({CUM+.005C)*100)
    7OO CONT INUE
            WRITES GRAPH HEADINGS
            IF\BLOCK.NE.O.O) GO TO 7CG
```

```
        #RITE(3.701)MC,IYR.ITRILS
        GO TC }70
    706 WRITE(3,708)MO.IMR.ITRILS
    708 FORMAT (IHI,40X,'CUMULATIVE DISTRIBUTION OF DR FOR'.IX.IA4.IL.
        1/.47x.'TRIALS = '.IB)
    707 CONTINUE
    701 FORMAT (1HI,4OX,' CUMULATIVE DISTRLBUTION OF AO FOR',IX,IA4,IZ,
        1/.47X.'TRIALS = '.IBI
        WRITE(3,702)BETA,DELTA,SIGMA,AMUHAT
    702 FORMAT(IX.32X.4EETA = *F10.5,* DELTA = .FF10.5.
        1/.33X.'SIGMA = .,F10.5," MU= .,Fi0.5).
            plotting routine
        IDOT=122
        DO 800 I=1.50
        NUM=0
        1PCT=102-2*1
    7OS IF(IN(IDOT).LT.IPCT) GO TO 710
        NDOT = IDCT-1
        PLT(NDCT)=PT
        IOOT=IOOT-I
        NUM=NUM+1
        GO TO 705
    710 INTGER = IFIX(IFLOAT(I)-1.1/10.)*10
        II=I-1
        IF{INTGER.EQ.II) GOTC 730
        WRITE(3.720) PLT
    720 FORMAT(1X, 7X.'*'.121A1)
        GOTO 750
    730 WRITE(3.725)IPCT.PLT
    725 FORMAT(2X,14."X -'.121A1)
    750 IF(NUM.EQ.O) GOTO BCO
        DO 760 K=1,NUM
        KDOT=IDCT*K-1
        PLT(KDOT)=BLNK
    760 CONTINUE
    800 CONTINUE
        GRITES BOTTOM LINE OF GRAPH
        #RITE(3,805)
    805 FORMAT(4X,90% / 0,12(0**********/!))
        DO 810 I= 1.13
        A(I)=(ASM * AINCR*(I-I))/100000.
    8IO CONTINUE
        WRITES VALUES FDR GRAPM
        WRITE{3,820){A(L),L=1,13)
    820 FORMAT(1X,5X,12(F6.4.4X),F5.1)
        DO 830 I=1.10
        P(1)=100.-1*10.
    830 CONTINUE
        WRITES VALUES FOR CUMULATIVE PERCENTAGES
        WRITE(3,835)(P(L),L=1,10)
    835 FQRMAT(///.1X, 'CUM PCT *.10F10.1)
    DO 840 I=1.10
    IA=(FLOAT(ITRILSI/|C.J#I
    A{I)=FLCAT(NA(IA))/100COO.
    84O CONTINUE
        IF(BLOCK.NE.O.O) GO TO E4I
        WRITE(3,845)(A(L),L=1,10)
        GO TO 842
    841 GRITE(3,847)(A(L),L=1.10)
    847 FOFMAT(1X."DR.,6X. 10FIO.S)
    842 CONTINUE
    845 FORMAT(IX.'AOP, 6X, IOFIC.51
        GO TC 2
    B44 CONTINUE
    846 CONT INUE
    END
```

APPENDIX E

PROGRAM LIST FOR ANALYSIS OF TIMES-BETWEEN-DELAYS


```
C
    THE TBDS, ONE PER CARD, FOLLOWED BY A BLANK CARD. THEN A VARIABLE
    NUMBER OF SELECTICN CARDS COATAINIG XLO AND UP IN 2IS.FDLLGUED
    BY A BLANK, LASTLY ARE THE PARAMETEF CARDS FOR THE PLOT.
```



```
C THIS LOOP SELECTS A VARIABLE NUMBER OF TBD RANGES FOR ESTIMATION OF
BETA AND DELTA BY LEAST SOUARES AND FOR A CHI-SOUARE CALCULATION.
```



```
        DO 90 NP=1,25
        READ(5,40) LOW(NP),LP{NP)
        LLO=LCW (NP)
        IP=L.P(NP)
        FORMAT(213)
        IF\LOW(NP).EG.O)GO TO $5
        WRITE(6.63)LLO.IP
    63 FORMAT(1H1,T5. "TABULAR INFORMATION FOR SELECTION DF TIMES BETMEEN
        IDELAY FROM ORDER NUMBER * 13. TO *I3/T5, ©FOLLOWED BY A WEIBULL
        2PROBABILITY X LOGARITHMIC FLCT AND CHI-SGUARE DATA.*)
        WRITE(6.65)
```



```
        11..T57.'LN(-LN(R))*.T7O.*Y=BX+C*.TT9.*FY=1-EXP{-EXP{Y)!*)
C
    CREATE AN ARRAY FOR X&Y WHERE }X=LN(TBD) AND Y=LN(-LN(R:):
        SUMY=0.0
        SUMX=0.0
        SUMX2=0.0
        SUMXY=0.0
        SMTBD=0.0
    45 DO 110 I=LLO, IP
        XY{I\=TBDLN(I)*ALNR{I)
        SOx(I)=TBOLN(I)**2
C SUM APPROPRIATE ARRAYS FOR LEAST SOUARES ESTIMATORS.
            SUMY=SUMY + ALNR(I).
            SUMX=SUMX+TBDLN(I)
            SUMX2=SUMX2+SOX(1)
            SUMXY=SUMXY*XY(I)
            SMTBD=SMTBD+TED( [)
    1LO CONTINUE
        OIF=IP-LLOHI
C THIS ROUTINE CALCULATES AN EPSTEIN STATISTIC TO TEST THE FOLLOWING HYPOTHESES:
C HO: BETA.EG.I
HA: BETA.NE.I
DATA REOUIRED ARE N, SUM OF TDE. THE LNETBD:|AND SUM OF LN&TED)
            A=ALCG{SMTBD/DIF)
            B=SUMX/DIF
            C=1.+((DIF*1.)/(6.*)[F))
            EPS=2.*DIF*(A-B)/C
            BETA=(DIF*SUMXY-SUMX*SLMY)/(DIF*SUMX2-SUMX**2)
            CEPT={SUMX2*SUMY-SUMX*SUMXY / (DDFFSUMX2-SUMX**2}
            DELTA=I - /EXP(CEPT/GETA)
            DO 126 I=LLD.IP
            Y(I)=BETA秉TBOLN(I)+CEPT
            FY(I)=1.-EXP(-EXP(Y(I)))
            WRITE(6.1:5)I, TBD(I),TBDLN(I),FI(I),R(I):|ALNR(I) Y(I) FFY(I)
    115
            FORMATIIH,T5.I3.TI2.F10.4.T23.F10.5.T34.F10.5.T45,F10.5.T56.
            1F10.5,T67,F10.E.T78,F10.5)
            CONTINUE
c
C USING THE LEAST SQUARES ESTIMATORS A CHI-SOUARE GOODNESS-OF-FIT TEST
C MAY BE PERFFORMED GY COUNTING OBSERVATIONS WITHIN INTERVALS DIVIDED BY
C NATURAL LOGARITHMS ALCNG THE HORIZONTAL AXIS. THE COUNT EEGINS
C WITH TBOLN(XLO). ITS COFAESPGNDING POINT IS OETAINED BY SOLVING FOR Y IN
C Y = EXTC.FOR INCREMENTING. Y IS CONVERTED TO A PROBABILITY;,
C FY=1-EXP(-EXP(Y)): A PERCENTAGE INTERVALIXEYX) DETERMINES THE
C SUBSEOUENT BOUNDARY POINTS.
    IF(LP(NP) EEO ON) FY(IP)=1.
    IF(LLO.EQ.1 IFY (LLO)=0.0
    BK=FY(LLO)+XBYX
    BY=ALOG(-ALOG(1--BX))
    XLNBD = (BY-CEPT)/ EET A
    I XX=1
    NX=({FY(IP)-FY(LLO))/XBYX)+1.
C CHECK TO SEE IF THE NUMBER CF OESERVATIONS EXCEEDS THE NUMBER OF
    ORIGINAL INTERVALS AS A FUNCTION OF XEYX.
    IF(NX.GT.N)GO TO I2O1
    GO TO 1203
1201 WRITE(6.1204)
1204 FORMAT (1HO.30X,* NEED TO INCREASE THE XBYX*)
1203 CONTINUE
```

```
C INITIALIZE THE ARRAYS TO ZERO.
    DC 120 I=1,NX
    ECP(1)=0.0
    XCHISO(I)=0.0
    108\times(I)=0
    120 CONTINUE
C THIS LOOP COUNTS OBSERVATIONS OF TBDLN WITH LOG BOUNDARIES FOR NX CLASSES.
    DO 150 I=LLO.IP
    130 IF(TBDLN&I).LT.XLNBD) GC TC 140
        ek =BK+XEYX
        IF(BK.GE.1.) BK=.999990
        BY=ALOG(-ALOG(1.--BK))
        XLNBD=(BY-CEPT )/ BETA
        134 1 XX=1 XX+1
        GO TO 130
    140 IOBX(IXX)= IOBX(IXX)+1
    150 CONTINUE
C CALCULATE EXPECTED FREQUENCY IN THE INTERMALS.
    XNO=N
    IXX=1
    BK=FY(LLO)
    IF(LLO.NE.1)GO TO 151
    IF(LLO.EC.1) BK=0.0
    IF(BK.EO.0.0) BC=.01
    GY=ALOG(-ALOG(1--BC)
    GO TO }15
    151 BY=ALOG(-ALOG(1--BK))
    52 CONTINUE
        XLNBO=(BY-CEPT)/BETA
        XXBYX=0.0
        O 160 IX=1,NX
        IF(BK+XBYX.GT.FY(IP))XXBYX=FY(IP)-BK
        IF(IP.EQ.N.AND.BK+XBYX.GT.1.)XXBYX=1.-BK
        CP(IX)=XBYX*XNO
        IF(IX.EQ.NX)ECP(IX)=XXGYX*XNO
        BK=8K+XeYX
    160 CONTINUE
        TOTCHI=0.0
        BK=FY(LLO)
        BX=FY(LLC)
        IF(LLO.EQ.1)BK=0.0
        IF(LLO.EG.1) EX=0.0
        IF{BK.NE.O.O)GO TO 161
        IF(BK.EO.O.0) BC=.01
        EY=ALOG(-ALOG(1.-BC))
        GO TO 162
    161 BY=ALOG(-ALOG(1.--BK))
    162 CONTINUE
        XLNBD=(BY-CEPT)/BETA
C WRITE NEW PAGE HEADING AND OTHER INFORMATION.
    WRITE{6.170)
    170 FORMATI 1H1.50X.'TBD ANALYEIS*)
        WRITE(6,171)CEPT.BETA,DELTA
        FORMAT(IHO.T10.'LEAST SQUARES ESTIMATORS: INTERCERT = *F10.5.
        1" BETA = .,F10.5." AND DELTA =.,F10.5//J
        WRITE(6.169)
    169 FORMAT(1HO.TS,*CLASS IATERVAL*,T32.'CLASS INTERVAL*.TSS.
        1'EXPECTEO*,T65.'OBSERVED*.175."INDIVIDUAL* .TBE, *CUMULATIVE*/T5,
        2.IN PERCENT'.T32.'IN LOGARITHMS*.TS5. PFREQUENCY..T65.
        3'FREQUENCY*,T75,'CHI-SQUAFE'.TBS.'CHI -SQUARE')
C WRITE OUT CLASS INTERVAL IN PERCENT. INTERVAL IN LOGS. EXPECTED
C FREQUENCY, CBSERVEO FFEQUENCY, INDIVIDUAL CHI-SQUARE AND
C CUMULATIVE CHI-SQUARE. ASCERTAINING THAT EACH CLASS HAS
C AT LEAST FIVE OBSERYATIONS.
    KLAS=0
    00260 L=1,NX
    IF(ICBX(L).GE.5)GO TO 230
    IF(L.EQ.AX.AND.IOBX(L).LT.5) GO TO 6500
    GO TO 6600
6500 CBSVD=10Ex(L-1)+10EX(L)
    EXPD=ECP(L-1)+ECP(L)
    BX= EX+XBYX
    IF(BX.GE.1.) BX=.999999
    BY=ALOG(-ALOG(1.-BX))
    XLNEX= (BY-CEPT //BETA
    GO TO 6700
6600 CONTINUE
```

```
    IF(L.EO.NX)GO TO 240
220 ECP(L+1)=ECP(L+1)+ECP(L)
    108\times(L+1)=10B\times(L+1)+108\times(L)
        Bx=8x+x EY }
    BY=ALOG(-ALOG(1.-BX))
    XLNB X=(BY-CEPT)/BETA
    GO TO 260
2 3 0
    L.EG.NX) GO TO 240
    IF(IOEX(L+1),EQ.O) GO TO 220
240 IF(ECP(L) EQ.O .O) GO TO 250
    OBSVD=I OBX(L)
    EXPD=ECP(L)
6700 CONT IMUE
    XCHISO(L)=( (EXPD-OBSVD)**2)/REXPD
250
    CHI= TOTCHI+XCHISO(L)
    CUMCHI(L)=TCTCHI
    BX=BX+XBYX
    IF(BX.GE.1.)BX=.99959999
    EY*ALOG(-ALOG(1.- -BX))
    XLNBX=(BY-CEPT)/BETA
    IF(L.EQ.NX)EX=FY(IP)
    IF{IP.EG.N.AND.L.EG.NX)BX=1 & O
    WRITE(G,270) EK,BX, XLNBD,XLNBX,ECP(L),1OEX(L),XCHLSO(L),CUMCHISL)
    KLAS =KLAS +1
    IF(L.EG.NX)KLASES(NF)=KLAS
    BK=8X
    IF(EK.GE.1.)BK=.99999999
    BY=ALOG(-ALOG(1,-BK))
    XLNED=(BY-CEPT)/BETA
    IF(L.EQ.NX)CUQCHI(NP)= CUMCHI(NX)
265
260
    FORMAT (1HO,FB.5., TO -.FB.5.3X,F10.5., TO •,F10.5,5X,F10.4.3X.13.
    13X,F10.5.3X,F:O.5)
    WRITE(6.180)LLO.IP.TBD(LLO). TBD(LP) , TBDLN(LLO),TBDLN(IP) &FY{LLO\ .
    IFY(IP),KLAS,XBYX,CUHCHI{NX)
180 FORMATIIHO.T7."RANGE OF*.T28.* RANGE OF&.T52."RANGE OF:.T72.
    1*PERCENT',T87, 'NUMBER OF'.TG8, 'CLASS',T1OT,*CHI-SQUARE*/T7.
```



```
    4F10.5.T66.FB.5." TO ..FB.5.T89.I3.T95.F8.5.T105.F10.5)
    IDIF=DIF
    DO 1000 ICOPY=1.IOIF
    COPY I (I COPY) =T BC (LLO +1COPY-1)
    COPY2(ICOPY)=ALNR(LLO +ICCFY-1)
    COPY3(ICOPY)=DUM(LLO +ICOPY-1)
1000 CONTINUE
    CALL PLOT(COPY1,3,COPY2.0.COPY3.0.1DIF.1.,1.3.2.1.1)
    WRITE(6,410)EPS,OIF
    4IO FORMAT(IHI,TZO, THE EPSTEIN STATISTIC IS*.FIO.5. |WITHK =.,F5.0/NI
    cont INUE
    CONTINUE
    WRITE(6,281)
281 FORMATIIHO,45X."SUMMARY FOR WEIBULL SELECTION*II
    WRITE(6.280)
280 FORMAT(1HO,TT.*RANGE OF*.T28."RANGE OF*.TS2.'RANGE OF*.TTZ.
```



```
    3'SIZE*//1
    NPI=NP-1
    OO 300 IW=1,NFI
    LLO=LOW(IW)
    IP=LP(Iw)
    WRITE(6.380)LLO.IP.TED(LLCI.TBD(IP),TBDLN(LLO).TEOLN(IP),FY(LLO).
    IFY(IP),KLASES(1W),XBYX.CUCCHI\IW)
300 CONT INUE
2000 CONTINUE
380 FORMATKIHO.T5.13," TO .,I3.T18.F9.4." TO *,F9.4.T40,F10.5." TO *,
    4F10.5.T66.FB.5.'TO &.F8.E.TEG.I3.T95.F8.5.T105.F10.5)
    STOP
    END
```


APPENDIX F

PROGRAM LIST FOR ANALYSIS OF DELAY TIMES

```
C PROGRAM LOG-NORMAL
```



```
    THIS PROGRAM PRGVIDES FOR BOTH A CHI-SOUARE GOOONESS OF FIT(GOF)
    TEST AND A LILLIEFGRS KOLMQGQROY-SMIRNOY IK-SJ GOF TEST TO THE LOG NORMAL
    FAMILY OF DISTRIBUTIONS. IT USES THE ARITHMETIC MEAN (XBARI FOR THE KOS
    TEST AND USES LEAST SQUARES ESTIMATES OF MEAN&MU\ AND STANDARD OEVIATION
    (SIGMA) FOR THE CHI-SQUARE GOF TEST. THE K-S TEST IS APPLICABLE
    ONLY TO A COMPLETE DATA SET. WHEN CENSORING IS USED THE CHI-SOUARE GOF TEST
    APPLIES. IN THIS CASE THE PROGRAM ALSO CALCULATES CHI-SOUARE FOR LOWER
    AND UPPER TAILS FOR GOF TO THE LDG-UNIFORM FAMILY OF DISTRIBUTIONS.
```



```
            K-S LILLEFORS TEST FOR AN UNSPECIFIED LOG-NORMAL DISTRIBUTION
```



```
        THIS PROGRAM ACCEPTS SETS OF DELAY TIMES. ESTIMATES THE PARAMETERS AND
        PERFORMS A GOODNESSTOFHFIT TEST TO THE LOG NORMAL FAMILY OF OISTRIEUTIONS.
```



```
        THE OUTPUT PROVIDES A LISTING AND A PLOT OF THE DELAY TIMES AND THE
        CORRESPONDING EMPIRICAL PLDT POINT. FHATFL/NN, PARAMETERS AND THE D STATISTIC
        ARE ALSO SHOWN WITH A STATEMENT REGARDING THE GOOCNESS -OF-FIT.
        THE TEST IS BASED ON THE DIFFERENCE BETMEEN THE EMPIRICAL FLOT POINT\THE
        HYPOTHESIZED CUMULATIVE CISTRIBUTION FUNCTION&C.D.F.JJ AND THE C OD.F.FOR
        THE SAMPLE DATA.
```



```
        IF THE TEST STATISTIC IS SMALL ENOUGH. THE NULL HYPOTHESIS IS ACCEPTED.
        IMPLYING THAT THERE IS NO OBSEAVED EVIDENCE OF A POOR FIT. IF IT IS TOO
        LARGE,I.E. EXEEOS THELILLIEFORS TABULATED D STATISTIC. THIS IMPLIES A
        POORR FIT.
```



```
        THE LILLIEFDRS TEST STATISTIC D IS THE LARGEST ABSOLUTE DIFFERENCE BETMEEN
        THE EMPIRICAL ANC THE CALCULATED COD OF. FOR ANT VALUE OF THE RANDOM
        VARIAELE X: D=MAXIX)|F(X)-FHAT(X)I.
```



```
    LET X GE AN R.V. WITH CUMULATIVE OISTAIEUTION FUNCTION
    FOR X SUB-1 . S SUB-2.....X SUB-N OF SIZE N ORDERED X SUB*1 < DR =
        X SUB-2 < OR =, ...AGR = X SUE-N,THEN EMPIRICAL DIST. FUNC. IS:O FOR
        x<x SUB-1.
    F SUE-N(X)=I/N FOR X SUE-I < OR = X < OR = X SUB-(I*1) I = 1.2.0
    ...N-1.
                1 FOR X SUB-N < OR = X
    F(X) = PROEABILITY (X< OR = X)
    TABLES USED ARE FOR UNSPECIFIED LN POPULATION* I EE* THE PARAMETERS
        ARE ESTIMATED FFEM THE SMMFLE, REF:JASA ARTIGLE BY LILLIEFORS
        VOL . 62 318
    THE D STATISTIC INTRODUCEC EY KOLMOGOROV IN 1933 I S:
        D = LEAST UPPER BCUNDIF(X) -F SU日-N(X)|
    REF: ARTICLE BY BIRNBAUM IN JASA. VCL 4%.PP. 425-441
    XBAR IS THE MEAN
    VAR IS THE VARIANCE
        DIMENSION GVAL(1000).GFHAT(1000).DUM&I000),GD\134.0)
        DIMENSICN GPLOT (1000)
        DIMENSICN VAL(1000).T(1000).G(1000).PRROQ(1000), CAT1(19)
        DIMENSION EXPD{1000) &F.XSO{1000).UXSQ(1000).IOEX(1000).LOW(100).
        ILP(100)
            DIMENSICN ZP(1COO)
        DIMENSIDN CUXSQ(100)
        DIMENSION XCHISQ(60), CUMCHI(60)
C DIMENSION OF THE LEAST SOLARES CALCULATION,LNIDTI=2PLOT&SIGMAHMU
        DIMENSION ZXLNDT(1000),SOZ(1000)
        LS
        DIMENSICN TECB{1000}
        DIMENSION OBX(100)
        DIMENSION IE(100)
        INTEGER XLO.UP
        EXTERNAL CNORM
        DATA BLANK/3HXXX/
        REAL MEAA,MU
```



```
C INPUT CAPAEILITY FOF NBR. XBYX, A VARIABLE SET OF DELAY TIMES
        \DTI. A VARIABLE SET OF SELECTIONS. A PROGRAM NER LOOP TO READ
        ANOTHEFS SET OF DT AND SELECTIONS. IN THE CASE GF RUNNING SEVERAL
        SETS OF DT SELECTIONS MIGHT BE FOR ALL DATA PER SET.
```



```
        RPIE=1./SORT(6.283184)
        B=0.5
        J=1
        x=0.
c
c
C CrEATION DF the obSERVED
    6 Y=0.005/6.*(RFIE#1./EXP{X**2/2.0)4.**(RPIE*1./EXP(SX+0.0025)**2/2.
        ())+(RPIE*1./EXP({X+C,0C5)**2/2.)})
        B=日+Y
        PROB(J)=E
        IFIX.GT.4.1)GO TO 7S
        d=\+1
        x=x+0.005
        GO TO 6
79 CONTINUE
    READ(5.102)NBF
        READ (5, 206) XBYX
206 FORMAT (F8.5)
    DD 1000 JJ=1.NBR
    DO 202 JF=1,1000
    READ(5,2) VAL(JF)
    IF(VAL(JF).EO.O.1GO TO 203
    VAL(JF)=VAL(JF)-5.5
202 CONTINUE
    WRITE(6.5123)
5123 FORMAT(1H1,'DECK OVER 1000**
    GO TO 1009
203 N=JF-1
C THIS 'DO LOOP. DO 1000' ALLOES THE PROGRAM TO BE EXECUTED -NBR' TIMES
C INItIALIzE the ls values
```



```
C NRR AND XGYX ARE REAC, AFTER WHICH ALL DT ARE READ IN AND
C ASSIGNEO LOGARITHMS AFTER SORTING.
```



```
C SORT INPUT - LOwEST TO fIGHEST
    I=N
    31 IF(I.EQ.N)GO TO 39
            IF(VALII).LE.VALII+1:)GO TO 36
            K=1+1
    32 IF(K.EQ.1)GO TO 36
        IF(VAL(K).GE,VAL(K-1))EOTO 36
        VALSV=VAL(K)
        VAL(K)=VAL(K-1)
        VAL(K-1)=VALSV
        K=K-1
            GO TC 32
        36 I=I +1
            GO TO 31
    39 CONT INUE
C ASSIGN LOGARITHM FOR EACH DT
    ASSIGN LOGA
        T(K)=ALOG{VAL(K))
    3 CONTINUE
C**&###################################################################GFHAT ROUTINE
C THE FOLLOWING STATEMENTS THROUGH STATFMENT NUMBER 360 ARE USED FOR
C RESOLUTION OF EQUAL VALUES CF THE OBSERVATIONS. A CORRESPONDING
C EMPIRICAL PLOT POINT IS USEO MHICH IS AN AVERAGE VALUE.
C THIS LOOP WILL EE REPEATED FCR THE SELECTIONS READ IN.
C READ VARIABLE NUMBER OF SELECTILAS OF CENSORED DATA.
            DO 209 NP=1.25
            READ(5.2(E)LCW(NP).LF(NP)
            IF(LOW(NP).EQ.OIGO TO ICCO
208 FORMAT (213)
            XLO=LOW(NP)
            UP=LP(NP)
            SUM=0.
            SUMSO=0.
            00 207 K=xLO.up
            XNI=N
            CALL HISTO(5,T(K).1.0/XNI.0.0.1.7.30.0)
                SUM=SUM + T(K)
            SUMS O=SUMS Q+T(K)**2
207 CONTINUE
            Y=UP-XLO O+1
```

```
    XBAR=SUM/Y
    VAR=(SUMSO-(SUM**2/Y)1/(Y-1)
    SO=SORT (VAR)
    ASSIGN EMPIRICAL FLCT VALUE
    LOL=XLO
    IXLC=xLC+1
    DO 350 L=1XLO.UP
    IF{VAL(LOL).EQ.VAL(L)) GC TC 350
    ICTR=L-LOL
    LLL=L-1
    C=LOL
    CC=L-1
    GFHT=(((C-.5)+(CC-.5))/2.)/XNI
    DO 340 1 JK=LOL.LLL
340 GFHAT(IJK)=GFHT
    LOL=L
    contInue
    1CTR=L-LCL+1
    LLL=L
    C=LOL
    CC=L
    GFHT=(((C-.5)+(CC-.5))/2.)/XN I
    DO 360 I JK=LOL,LLL
360 GFHAT(IJK)=GFHT
    SUMT=0.0
    SUMZ=0.0
        Sumz2=0.0
            SUMZT=0.0
                LS vals
```



```
            DO 4L=XLO.UP
            C=L
c
C DmamemeremistaUTION FUNCTION
    FHAT=GFHAT{L}
    ZPLOT=SINRT(O..1. .FHAT.CNCFN..OI.400)
    LL=L-(XLC-1.)
    GPLOT(LL)=2PLOT
    GVAL(LL)=VAL(L)
C CREATE A COLUMN FOR Z&LN(DTB, USE 2 FROM FHAT.
    ZXLNOT(L)=2PLOT*T(L)
C CREATE A COLUMN FO Z SQUARED:
    IF(2PLOT.GT.-.001.ANC.2PLOT.LT..001) GO TO 98
    SOT(L)=2PLOT**2
    60 ro }19
98 SOZ(L)=0.0
198 CONTINUE
C SUM COLUMNS OF ZPLOT, SOZ. T. AND ZXLNOT FOR THE CALCULATION OF MU E SIGMA.
    SUMT=SUMT+T(L)
    SUMZ =SUMZ+2PLOT
    SUM22=SUM22+SOZ(L)
    SUMZT=SUMZT+2XLNCT(L)
    9 9 9 ~ C O N T I N U E ~
    4 CONTINUE
C AFTER THE LOOP FIND THE ESTIMATES OF MU AND SIGMA EY LEAST SQUARES FORMULA.
    XNO=UP-XLO+1
    MU=((SUM22*SUMT)-{SUMZ*SUMZT ) )/((1XNO*SUMZ2)-(SUMZ***2))
    SIGMA=((XNO* SUMZT)-(SUMZ*SUMT))/\(XNO*SUMZZ)-(SUMZ**Z))
    WRITE(6.62)XLO.UP
62 FORMATIIHI.T4." TABULAF INFOGMATION FOR SELECTION OF DELAY TIMES
    IFROM ORDER NUMBER •,I 3.* TO -.I3/T5.' FOLLOWED OY A PROBABILITY X
    2LOGARITHMIC PLOT. A HISTOGRAM AND CHI-SOUARE DATA.'I
        WRITE\6.59)
        DO 1999 L=XLO,LP DO LOOP
        LL=L-(XLC-1.)
        Z={T(L)-MU)/SIGMA
        IF(Z.LT..OS.AND.Z.GT.-.CSJGO TO 789
        ZP(L)=Z
        EST=2*200.
        IFEZ.LT.O.IGO TO 89
        JO=EST
        80=JO
        IFIEST-80.GT .0.5) JO= J0+1
        TROQ(L)=PROE(JO)
        GO TO 99
        89 JO=(-EST)
            BO=JO
```

```
        EST={-FST)
        IF(EST-BO.GT.O.S)JO=JO+1
        TROB(L)=1.-FFCE(Jj)
        GO TO 99
    789 TROE(L)=CNOFM(2)
C
THIS :S ONLY APPLICABLE FCR NONCENSORED DATA.
C THIS IS THE D STATISTIC WIICH MEASURES ABSOLUTE DIFFERENCE BET WEEN
C THE EMPIFICAL ANC THE CBSERVED CUMULATIVE DISTAIGUTION FUCTION.
C USE FI=I/N FOR THE D STATISTIC. THUS CORFECT WITM +.5/NN
    99G(L)=A日S{GFHAT(L)-TFOE(L)) +.5/N
c
C
c
IF(L.EG.1)GO TO 7
            IF(G(L).GT &EIGO)GO TO 8
        GO TC 1999
        7 BIGD=G(1)
        GC TC 1999
        & BIGO=G(L)
```



```
        1F8.5.T72,FB.5)
    1995 CONTINLE
        IDIFF=UP-XLO+1
        WFITE (6.1021)IOIFR
        WFITE(6.1997)SLMT.SUNZ.SUNZZ.SUMZT
    1997 FORMAT (1HO. SUM OF LNS='.F13.5.' SUM OF Z=4.F13.5." SUM OF Z S
        ICUARED=*,F13.5." SUM CF 2 *LNS=*,F13.5)
        M = (N/B) +1
        K=1
        DO 1001 1 = 1.N
        DO 1001 J = 1, e
        IF (K.GT.N) GO TO 1002
    1003GO(I,J)=G(K)
        K=K+1
        GO TO 1001
    1002 IF ((M* 8)-K) 1CC7.1CC5.1005
    1005 GC (I.J) = BLANK
    1001 CCNT INUE
    1004 CALL PLDT(GVAL.3.GPLCT.O.DUM.0.1DIFR.1.1.3.2.1.1)
        WRITE(6,50)
```



```
C NOTE THE LOWER LIMIT
```



```
        CALL HISTO(S.T.0.0.6.0.-.7.30.1)
        WRITE(E.EO)
        WRITE(6.1100)
    IIOO FORMATG THE FOLLOWING STATEMENTS REGAFD A GOF TEST USING D STATIS
            ITIC*/" DISFEGARD WHEN CENSORING AND USE CHI-SQUARE://)
            v=n
            S=SORT(V)
            IF(HIGD,GT.(O.ECS/S))GC TC g
            WFITE(6.10)
            GO TC 11
            9IF(BIGD.GT.(0.8.g6/S))GO TO 12
            WRITE(6.13)
            GO TC 11
        12 IF(B1GO.GT.(1.C31/S))GO TO 14
            WRITE(6,15)
            GO TC 11
        14 WFITE(6.16)
    1:MEAN=EXP((VAF/2.)+XEAR)
            VARY=EXP((2.*XPAF)+(2.*VAR))-EXP((2.*XEAR)+VAR)
            STOY=SORT (VARY)
            WFITE(6.60)IXEAF.VAR.SD
            WRITE(6.50)
            WFITE(6,1111)
        1111 FORMAT (" THE FGLLOWING INFORMATION APPLIES TO A GOF TEST USING CHI-
            1-SQUAFE'/" THE MU ANO SIGMA AFE DETAINED EY LEAST SQUARES USING-*/
            1* LN(DELAY TIME)=(FHAT Z * SIGMA) + MU*//)
            WRITE(6.53)MU.SIGMA
5H FORMATIIH, LEAST SQUAFES MU IS*.F9.5." AND SIGMA [S*.FO.5)
            WRITE(5,184) TROF(XLO),TROE(UP),T(XLO),T(UP),VAL(XLO),VAL(UP)
            FGRMAT(IHO."RANGE CF F IS ".FB.5." TU ".F8.5." LOGARITHMS *.
            1FB.5.:TO.,F8.5.* FOR DELAY TIMES .F5.1.* TO *.F5.1.* MINUTES*/)
```

```
C THE NEXT SEVEFAL INSTGUCT IONS CALCULATE THE X SQUARE STATISTIC
```



```
C SET THE NUMBER OF CLASSES FOR THE CHI-SOUARE CALCULTIONS.
            IF(LCW(NF).FO.1)TROE(XLC)=0.C
            IF(LP(NP).EO.N)TROA(UF)=1.0
            NX=((TRQB(UP)-TROR(XLO))/XBYX) +1.
            IF(NX.GT.N)GGTG 9700
            GO TO 9710
    9700 WFITE{6.97111
    9711 FORMAT(1HO," INCFEASE XEYX')
        go TO 209
    9710 CCNTINUE
            XNC=A
C SET THE BREAK POINT AS XBYX,E.G.,.OS. IF STAFTING WITH ORDER NUMBER
C ONE OR IF DATA IS TRUNCATED.USE XBYX PLUS THE PERCENTAGE ASSOCIATED
C ITH THE STARTING ORDER NUMEER
            BK=TROB(XLO) +XBYX
            IF(XLO.EG.1)EK=XEYX
            ZIP=SINRT(O..1..EK,CNOFN..C1.400)
            BKL=ZIP #SIGMA +MU
            I }\timesX=
C INITIALIZE THE AFEAYS TC C.
            DC 121 I=I,NX
            IE(I)=0
            XCHISQ(I) =0.0
    121 CEX(I)=0.0
C THIS ROUTINE COUNTS THE EXPECTED AND OBSERVED OCCURRENCES IN EACH CLASS.
C THIS LOOP COUNTS LN(OT) WITHIN LOGARITHMIC BOUNDS CORRESPONDING TO VALUES
C OF Z CBTAINED FROM THE INCFEMENTS OF F.
```



```
            DO 151 I=x O. UP
    150 IF(T(I).LE.BKL) GO TC 149
            BK=BK+XBYX
    7351 IF(EK.GE.1.)BK=.959599
            ZIP=SINRT(0..1.,BK.CNCFM,.01.400)
            BKL=ZIP*SIGMA+MU
            IXX=IXXX+1
            GC TE 150
    149 IE(IXX)=IE(IXX)+1
    151 CCNT INUE
```



```
C THE ORSERVATIINS ARE NOW IN NX ARRAYS OF LE.
            IXX=1
            EK=TFOB(XLO)
            IF{XLO.EQ. 1}BK=0.0
            XECX=0.0
C Afray the EXPECtED FREQUENCIES IN NX CLASSES.
            DO 105 IX =1,NX
            XBCX=TFCE(UP)-EK
            OBX(IX)=XBYX*XND
            [F\IX.EG.NX)OBX(IX)=XBCX*XNO
            BK=BK+XBYX
    105 CONTINUE
            TCTCHI=0.0
            BK=TROB{XLO\
            BX=TROQ(XLO)
            WFITE(6,166)
            KL }£=
            OO 108 L=1.NX
            IF(IE(L).GE.5) GC TC 103
            IF(L.EO.NX.AND.IE(L).LT.S)GC TO 6500
            GO TO 6600
6500 EXZ=1E(L-1)+IE(L)
            OBV=OBX(L-1)+OBX(L)
            EX=EK+XEYX
            GG TC 701
6600 CONT INUE
            [F(L.EO.NXIGO TO 104
        10908\times(L+1)=0Bx(L+1)+08x(L)
            IE(L+I)=IE(L+1)+IE(L)
            RX=RX+XEYX
            GO TO 108
    103 IF(L.EO.NX)GO TO 104
            [F(IE{L+1).EG.O) GO TC 109
    104 IF(OBX(L).EQ.0.0) GC TC 1C7
        EXZ=IE(L)
```

```
    CBV=Cex(L)
    701 XCHISQ(L)={(OBV-EXZ)**2)/cev
    107 TOTCHI=TOTCHI&XCHISG(L)
    CUMCHI (L)=TCTCHI
    BX=BX+XBYX
    IF(L.EO.NX) EX=TROB(UP)
    IF(UP.EG.N.AND.L.EG.NX)EX=1.O
    WRITE(6,167)BK,BX,OEX(L),IE(L), XCHISO(L),CUMCHI(L)
    KLS=KLS +1
    BK=BX
    108 CONTINUE
```



```
    WRITE (6,19)
    19 FORMAT(1HO./1)
    WRITE{6,17} CUMCHI{NX),KLS.XBYX
        I7 FORMAT('0., 10X.'CHI SQUARE STATISTIC EGUALSP OFIO.5.* FOR •.I3.
        1* INTERVALS OF ",F5.3.* OR MLLTIPLES.*)
    166 FORMATIIHO."CLASS INTEFVAL".I2X."EXPECTED*,8X, 'OESERVEO*.
    16X.'INDIV CHISO*.9X. 'CUM CHISQ';
    167 FORMATIIHO.FB.5., - .,FB.E.EX.FG.4.10X.I 3.9X,F10.5.8X,F10.5)
C********************************************************LOWERCHI-SOUARE****************
C ONCE A CENSORED SELECTION HAS BEEN MADE A CHI-SQUARE IS
C CALCULATED FOR THE CENSORED PORTIONS.
C CALCUATE EXPECTED FREQUENCY FOR LOWER PART.
    IF(XLO.EO.1.AND.UP.EO.NIGO TO 2OS
        IF(XLO.EQ.1.ANC.UP.NE.NIGO TC 3061
        INT=(VAL(XLO)-VAL(1)+1.)/2.
        XNT=INT
        IF(((VAL{XLO)-VAL(1)*1.)//XAT).NE.2.) GO TO 2030
        NXX=4
        GO TO 2035
    2030 NXX=3
    2035 KLASES=0
        TOXS 0=0.0
    2040 00 2020 IK=1.NXX
        EXPD(IK)=0.0
        FXSO(1K)=0.0
        uxSQ(IK)=0.0
        IOEX(IK)=0.0
    2020 CONTINUE
C calculate the percentage for each interval. then the expected frequency
C PER INTERVAL.
    XNXX=NKX
    PCT=TRDE( XLLS)/XNXX
    2045 00 2050 IX=1,NXX
    EXPD(IX)=PCT *XNO
    2050 CONTINUE
```



```
C CALCULATE OBSERVED FFEGUENCIES IN EACH CLASS USING LN(DT\
C BOUNDARIES.
    NIP=XLO-1
    XLN=(T(XLG)-T(1))/X^XX
    IXI=1
    XLNBD=XLN+T(1)
    2080 00 2060 IO=1.NIP
    20日3 1F(T(IO)-LT.XLNBO) GO TO 2070
    XII=1XI
    XLNBO=XLNBOD XLN
    IXI=IXI+1
    GO TO 2083
    2070 (00x(IXI)=100x(1) [1) +1
2060 CONTINUE
    XLNBD=T (1)
    PCT=0.0
        PCT EK=0.0
        XLNBK=T(1)
C INSERT HEADING FOR CALCULATICN CF THE CHI-SOUARE STATISTIC FOR THE LOWER
C PART OF THE DISTRIBUTION.
    WRITE{6.3001)
    3001 FORMATGIHI,' THE CHI-SQUARE STATISTIC FOR THE LOWER PART OF TH
    IE DISTRIRUTION*///" LOG EDUNDS'.13X.'PERCENT BOUNDS'.
    212X,*EXPECTEO'.3X."CESEFVEO'.4X.'CHI-SOUARE*/TTM*
    3'INOIV',6X, 'CUM-//)
```



```
C THE OBSERVED AND EXPECTED FREGUENCIES ARE NOW AVAILABLE IN
C EACH CLASS FOR CALCLLATION OF THE CHI-SQUARE STATISTIC.
    DO 3060 L=1.NXX
```

```
    IF(IOBX(L).GE.5) GO 10 3030
    IF(L.EQ.NXX) GO TO 3040
3020 EXPO(L+1)=EXPD(L+1)+EXPD(L)
    IOBX(L+I)=108\times(L+1)+IOEX(L)
    XLNEK=XLNBK+XLN
    PCTBK=PCTBK+TFCE(XLC)/XNXX
    GO TO 3060
3030 IF (L.EG.NXX) GO TO 3040
    IF(ICBX(L+1).EO.0) GO TC 3020
3040 IF{EXPD(L).EQ.O.0) GO TO 3050
    OSVD=IOEX(L)
    ECP=EXPD(L)
    FXSQ(L)=((ECP-OSVD)**2)/ECP
3050 TOXSO=TEXSG+FXSORL)
    CUXSQ(L)=TOXSQ
    XLNBK=XLNBK +XLN
    PCTBK=PCTEK+TFCE(XLC)/XNNX
    WRITE(6,3070) XLNBD.XLNBK,FCT.PCTEK,EXPO(L),IOAX(L),FXSO(L),
    1 CUxSQ(L)
        KLASES=KLASES+1
        XLNBD= XLNGK
        PCT=PCT BK
3060 CONTINUE
    GO TO 3062
3061 NXX=1
    CUXSO(NXX)=0.0
3062 CONT INUE
    XDIST=0.0
    XDIST=C UXSO(NXX) + CUNCHI(AX)
    WRITE{6,50)
```



```
C NOU THAT THE CHI-SQUARE HAS EEEN CALCULATED FOR A LOWER ANDJOR CENTER PORTION
C OF THE DATA, A CHI-SOUARE IS CALCULATED FOR UPPER PARTAIF ANYI. THUS A TOTAL
C CHI-SQUARE STATISTIC IS OETAINEO WHICH APPLIES TO TME TOTAL DISTRIBUTION.
    OBSU=0.0
    EXPU=0.0
    UCHI=0.0
    IF(UP.EQ.N)GO TO 3075
C CALCULATE MUMBER OF OBSERVATIONS IN UPPER TAIL OF THE DISTRIBUTION.
            XNUB=N
            XUPR=UP
    DESU=XNUB-XUPR
C CALCULATE THE EXPECTED FAEQUENCY
            EXPU=XNUE*(1.-TROB(UP))
C CALCULATE THE CHI-SQUARE CONTRIBUTION OF THE UPPER TAIL.
            UCHI=((EXPU-OBSU)**2)/EXPU
3075 CONTINUE
C PRINT OUT THE TOTAL CHI-SOUARE STATISTIC
            IF(UP.EO.N) UCHI =O.O
            IF (XLO.EQ.1)NXX=1
            IF(XLO.EQ.1)CUXSG(NXX)=0.0
            WRITE(6.3093)OESU.E XPU.CLCHI
3093 FORMAT (1H0," OESERVEC FREQUENCY FOR THE UPPER TAIL IS * FIO.5.
            1. AND THE EXPECTED frequeRCY IS *,FIO.5." for a CHI-SOUARE OF !,
            2F10.5//)
            WRITE(6,3077)CUXSQ(NXX), CUMCHI(NX),UCHI
307T FORMATIIHO.'CHI-SQUARE FCF LCWER PART IS *,F1O.5.' AND FOR THE CEN
            ITER PART IS •,F1O.S." FOR THE UPPER PART IT IS *.FIO.5//')
            IF(UP.NE.N)XDIST=CUXSQ(NXX)+CUMCHI(NX)+UCHI
            WRITE{6.3071)XDIST
209 CONT INUE
1000 CONT INUE
```



```
    13X,F10.5,3X,F10.5)
3071 FORMATIIHO." THE CHI-SGUARE STATISTIC FOR THE TOTAL DISTRIBUTION I
            1S 4.F10.5)
1030 FORMAT(-O^,25X,F10.5)
            WRITE(6.33)
    2 FORMAT(F3.0)
    10 FORMAT (POTHERE IS NO EVICENCE AT THE TEN PCT. FIVE PCT.*/. OR ONE
        SPERCENT LEVEL THAT THE OATA FCORLY FIT A LOG NORMAL*/: DISTRIBUTIO
        $N.')
    13 FORMAT|"thERE IS EVIDENCE AT THE 10 pCT LEVEL*" that the data po
        SORLY FIT A LOG NORMAL DISTRIBUTION.')
    15 FORMAT^"OTHERE IS EVIDENCE AT THE FIVE PCT LEVEL*/* THAT THE DATA
```

```
        $POORLY FIT A LCG NOFMAL DISTRIBUTION.*)
    16 Format' Othere is evidence at the one pct level./: that the oata
        SPODRLY FIT A LCG NOFMAL DISTRIBUTION.")
    1B FORMAT(IHO. 8F8.4)
    33 FORMAT(IHI)
    50 FOGMat (1HO./////)
59 FORMAT(1HO.T5.'OES*.TIO."DELAY*.T20.'FHAT'.T 32. 'LN(OTI*.T4O.*Z=LNK
    LOT)-MU*.T54, "COF*.T65,'D*.T72.'Z FROM FHAT"/T43."SIGMA*//)
    60 FORMATIIHO." XEAR =..F10.4.3X.* VAR =4.FIO.4.3X.
    $* STDEV =.,F10.41
    61 FORMAT(1HO,*POP. MEAN =*.F10.4." POP VAR =*.FIO.4.3X.
    $0POP STDEV =',F10.4)
102 FORMAT(14)
1008 FORMAT ({HI.DDG IS TOO SMALL.)
1020 FORMAT(10A4.11 X.6A4)
1010 FORMAT (20A4)
1021 FORMAT ( 1HO. *TOTAL CELAYS= * 13)
    GC TO 1009
1007 WRITE (6,1008)
1009 STOP
    END
    SLBROUTINE HISTO(NI,A1,W,A2.A3.N2,N3)
    OIMENSION EIN(10.52), ERR(10.52),NEV(10.52), KOUNTI 10)
    DIMENSICN NONUN(10),KH{104)
    DATA NHMAX/10/.NEMAX/5C/
    DATA MNLIN/2O/
    DATA KHLIN/120/
    DATA MAXER/50/
    DATA KBL/" %/.KPL/*+!/.KMN/---/,KX/0X!/
    DATA INISH/O/.NERR/O/
    kw=6
    NHIST=N1
    A=A1
    WT=W
    A MAX = A2
    AMIN=A3
    NEINS=N2
    NS ENS=N3
    IF(NH1ST)150.150.10
    10 IF(NHIST-NHMAX)20.20.1E0
    20 IF(NEINS)150.150.30
    30 IF(NBINS-NBMAXI40.40.150
    40 IF(AMAX-AMIN)150.150.5C
    50 IF(INISH)80.60.80
    60 INISH=7
    DO 7O J=I.NHMAX
    KOUNT(J)=0
    NONUN(J)=0
    KTCP=NEMAX +2
    DO 70 K=1,KTOP
    EIN(J.K)=0.
    ERR(J,K)=0.
    70 NEV(J.K)=0
    80 KOVFL=NEINS+2
    (F(NSENS)180.90.180
    90 BINSINEINS
    K=((A-AMIN)/(AMAX-AMIN)) 由EINS+2.
    IFCK)100.100.110
100 K=1
110 IF(K-KQVFL)130.130.120
120 K=KOVFL
130 BIN(NHIST,K)=BIN(NHIST,K) +\T
    ERR(NHIST,K)=ERR(NHIST,K &WT**2
    NEV(NHIST.K)=NEV(NHIST-K)*1
    KOUNT(NHIST)=KOUNT(NHIST)*I
    IF(WT-1.)140.730.140
140 NONUN(NHTST)=7
    GO TO 730
150 IF(NERR-MAXER)160,160.730
160 NERR =NERR+1
    WRITE(KW,170 )NHIST,NEINS,AMAX,AMIN
170 FORMATI/34H ILLEGAL INPUT TO HISTO. NHIST = 15.5X BHNBINS = I5. HISTM 99
    * 5x 7HAMAX = E12.5.5x 7HAMIA = E12.5)
        GC TC 730
180 DO 190 K=1,KOVFL
190 ERR(NHIST,K)=SORT(ERR(NHIST.K))
        NBPU =NBINS +1
```

```
    NI N=0
    HMAX=0.
    OO 210 K=2.NAPU
    NIN=NIN+NEV(NHIST,K)
    H=BIN(NHIST,K) +ERR(NHIST,K)
    IF(H-HMAX)210.210.200
200 HMA X=H
2IO CONT INUE
    LNBIN=MNLIN/NBINS+(MNLIN-(MNLIN/NEINS)*NBINS*NEINS-I)/NGINS
    JUMP=0
    IF(AONUN(NHIST))230.22C,230
220 JUMP=-1
230 NBEFR=(LNBIN-1)/2
    NAFTR=LNEIN-I-NEEFR
    NCH=KHLIN-54
    IF(JUMP)240,250,240
240 NCH=KHLIN-34
250 ENCH=NCH
    SCALE=O.
    IF\HMAX\270,270.260
260 SCALE=ENCH/HMAX
270 WRITEIKM.28O INHIST. AMAX.AMIN.NGINS.SCALE
280 FORMAT&//18H HISTOGFAM NUMEEF 13.5X7HAMAX = E12.5.5X7HAMIN =
    * E12.5.5XBHNBINS = 13.5xeriSCALE = ElO.3)
    IF(JUMP)290.320,320
290 WRITE(KW,300:
300 FORMAT (///7XIOHBIN LIMITS GX6HEVENTS/6X12H------*-----7.-7x
        8H--------)
    WRITE(KM,3IO)NEV(NHIST,1)
310 FORMAT(/7X9HUNDERFLON SXI7/1H )
    GO TC 350
320 WRITE(KW-330)
330 FORMAT ////7XIOHBIN LIMITS SXGMEVENTS 3XGHHEIGHT &XSHERROR/
    * 6\times12H------------7\times8t--------1\times8H----m---2\times7H---------1
    WRITE(KW, 340)NEV(NHIST,1),BIN(NHIST.1),EERR(NHIST,1)
340 FOGMAT (/7X9HUNDERFLOM SXIT.2E10.3/1H)
350 ENBIN=NBINS
    DEL= (AMAX-AMINI/ENBIN
    00660 K=2.NEPU
    DO 360 J=1:NCH
360 KH(J)=KBL
    NX=SCALE*BIN(NH.IST,K)+.5
    IF(NX)440.440.370
370 IF(NX-NCH)390,390,380
380 NX=NCH
390 DO 400 J=1.NX
400 KH(J)=KX
    NX=SCALE*(BIN(NHIST,K)-ERF(NHIST,K))*.5
    IF(NX)440.440.410
410 IF(NX-NCH)430.430.420
4 2 0 ~ N X = N C H
430 KH(NX)=KMI
440 NX=SCALE*&GIN(NHIST,K)*ERR(MHIST,K))+.5
    IF(NX)450,450,460
450 NX=1
    GO TO 490
460 IF(NX-NCH)480.480.470
470 NX=NCH
480 KH(NX) =KPL
490 IF(NEEFR) 560,560.500
500 DO 550 J=1,NEEFF
    IF(JUMP)51 0.530.510
510 WR1TE(KW,520)(KH(L) ,L=1,NX)
S20 FORMAT(33X1HI86A1)
    GO TO 550
530 WRITE(KW,540)(KH(L).L=1,NX)
S40 FORMAT(53X1HI66A1)
550 CONTINUE
560 AK=K
    XL=AMIN+(AK-2.)*OEL
    XH:= XL +DEL
    IF(JUMP )570,590,570
570 WRITE(KW,580)XL,XH,NEV(NHIST,K),(KH(L),L=1,NX)
S80 FORMAT(1XE10.3.4H TO E10.3.17.2H I 86A1%
    GO TO 610
590 WRITE(KW,600) XL, XH,NEV(NHIST,K), BIN(NHIST,K),ERR(NHIST,K).
```

```
    * (KH(L),L=1,NX)
    600 FORMAT(1XE10.3.4H TO E10.2,17,2E:C.3,2H I 66A1)
    610 IF(NAFTF)660.660.620
    620 DO 650 J=1.NAFTR
    IF(JUMP)6 30,640,630
    630 WRITE(KW.520)(KH(L),L=1,NX)
    GO TO 6EO
    640 WFITE{KW,540)(KH(L),L=1.NX)
    6 5 0 ~ C O N T I N U E ~
    6 6 0 ~ C O N T ~ I N U E ~
    IF(JUMP)670.690.670
    67C WFITE(KW,680)NEV(NHIST,KCVFL)
    680 FORMAT (/7XBHOVERFLOW 10X17.2E10.3)
    GC TO }70
    690 WRITE{KM.680)NEV\NHIST,KQVFL),日IN(NHIST,KOVFL),ERR(NHIST,KOVFL) HISTM22
    700 WFITE(KW.T10)NIN.KOUNT (NHIST)
    710 FOFMATI///42H NUMBEF CF EVENTS BETMEEN XMIN AND XMAX = I7.5X
    * 26H TOTAL NumBER OF EVENTS = I7 J
        KCUNT (NHIST)=0
        NONUN(NHIST)=0
        OD }720\textrm{K}=1.KTO
        BIN(NHIST:K)=0.
        ERR(NHIST,K)=0.
    720 NEV(NHIST,K)=0
730 FETURN
    END
    DOUBLE PRECISION FUNCTION CNORM(YYY)
C COMPUTES CUMULATIVE NORMAL OISTRIBUTION FUNCTION FOR A STANDA&RD NORMAL
C WITH ERROR<1.5 < 10**(-7)
    Y= YYY
    IF(Y)Z.I.I
    2 X=-Y
        CNORM=1.0-0.5#(1.0+X#&.C49E673470+X#(.0211410061+X* (.00327762634
        1x*(.0000380036+x*(.0000488906*x* .0000053830)1))))**(-16*)
        CNORM=1.O-CNORN
        RETURN
    1 X=Y
    CNORM=1.0-0.5*(1.0+X#1.0498673470+X*(.0211410061*X*&.0032776263+
    1x*(.00003800364x*(.000048es(6* x*. (0000E3830))))])***(-16.)
    FETURN
    END
    FUNCTION SINRT(A.B,C.F.ERROX.ITER)
    LF(B-A):1.1.2
    WRITE(6.3)A.R
    FORMATIIM 'SINRT WAS CALLED WITH LEFT ENPT'.EI4.7.", THAN RIGHT
    2 ENDPT '.EI4.7.' NO VALUE GETUFNED')
    RETUFN
    x1=A
    x2=A
    OO 50 I=1.1TER
    Y2=F(x2)-C
    Y1=F(x1)-C
    1f(Y2-Y1)10.15.10
    IF(Y2)16.17.16
    16 (F(Y1)18.19.18
    17 SINRT=X2
    GE TUEN
    19 SINRT=X1
    gETURN
    18 CONTINUE
C 18 WRITE(6.5)\times1.\times2.Y2
C 5 FORMATIIH. SINRT ERROR XI=|.E14.7."X2= ".E14.7.0 F(X1)-C=
C 2=F(X2)-C=:.E14.7."X2 RETUGAEC:).
    SINRT= X2
    GETUFN
    10 x3=x2-Y2*(X2-X1)/(Y2-Y1)
    X1= X2
    50 x2=x3
    SINRT=X3
    RETURN
    END
```

VITA

Gerald Lee Pauler

Candidate for the Degree of

Doctor of Philosophy

Thesis: SIMULATION OF DISPATCH RELIABILITY FOR A FLEET OF LARGE COMMERCIAL AIRCRAFT

Major Field: Business Administration

Biographical:

Personal Data: Born in Emporia, Kansas, May 27, 1938, the son of Mr. and Mrs. Francis J. Pauler.

Education: Graduated from Emporia High School, Emporia, Kansas, in May, 1956; received Bachelor of Arts degree from Kansas State Teachers College in 1963; enrolled in Master of Business Administration degree program at George Washington University, 1966-1967; received Master of Business Administration degree from University of Mississippi in 1970; enrolled in doctoral program in 1970 and completed requirements for the Doctor of Philosophy degree at Oklahoma State University in December, 1974.

Professional Experience: Engineering Assistant, Boeing Aircraft Corporation, 1959-1960; Engineer Aide to City Engineer, Emporia, Kansas, 1961-1963; Major, U. S. Army Corps of Engineers, 1963-1970; Instructor, Oklahoma State University, College of Business Administration, 1970-1973; Assistant Professor of Management, Loyola University of Los Angeles, 1973 to present.

[^0]: *These results, based on the analysis of data from the first 18 months of revenue operation, were presented at the 1974 Reliability and Maintainability Symposium [1].
 ${ }^{*} A_{0}$, as used in this study, is calculated for a single availability cycle as the ratio of time-between delays to time-between-delays plus delay time.

[^1]: *Special bibliographies of interest are found in Weiss's article in Zelen [24], in Balaban [25], and in Aitchison and Brown [26].

[^2]: *There is some disagreement regarding appropriate terminology. Harling [38], for example, suggests that "simulation" is to be preferred to "Monte Carlo" since the latter term suggests limitation to statistical sampling experiments and the former implies a more inclusive stochastic model. General practice, however, does not tend to make this distinction.
 **Buffon's needle problem and Lord Rayleigh"s "random walks" are examples.
 ***A bibliography with a sampling of procedures and applications is given by Malcolm [41]

[^3]: *Mosteller, Rourke, and Thomas [64] present a clear, basic discussion regarding this type of estimate.

[^4]: *See Appendix A for the "Dispatch Inoperative List" determining the necessity of unscheduled repair or maintenance.

[^5]: *Examples using this measure are contained in Appendix B.

[^6]: *Nelson [65] describes methods of probability plotting for several different distributions applicable to this study.
 **Aitchison and Brown, whose monograph on the lognormal distribution [26] is quite useful, note a variety of applications of this distribution. Bovaird and Zagor [31], Howard, Howard, and Hadden [32], and Goldman and Slattery [66] all present evidence that down times are lognormally distributed. Pieruschka [28], p. 165, suggests that when time

[^7]: ** (Continued) spent in fault isolation predominates, down times tend to be exponentially distributed; otherwise down times are appropriately described by lognormal distributions. Since delay times exhibit characteristics similar to repair times and down times (when repair times are predominant), such as positive skewness, the lognormal family of distributions was also intuitively appealing as a choice for describiñg delay timés.

[^8]: *Aitchison and Brown [26] show the effect of a variety of values for μ and σ by displaying graphs of lognormal probability density functions. For a given σ, increasing values of μ mean decreasing values of $f(t)$ obtained by Equation (1) when the value of t is taken as the mode of the lognormal distribution, $\exp \left\{\mu-\sigma^{2}\right\}$. In terms of this study, this represents a "flattening" of the shape of the lognormal distributions of the delay times. Additionally, this also means a decrease in the density of the median $(\exp \{\mu\})$.

[^9]: *In Equation (4), setting $\beta=1.0$ yields the exponential pdf, $f(t)=\lambda \exp \{-\lambda t\}, \lambda=1 / \delta$.

[^10]: *Such as the Lilliefors versions of the K-S test (for lognormal distributions) [67] and the Mann-Fertig-Scheuer test (for Weibull distributions) [19].
 **Good reviews are provided by Cochran [68] and Watson [69]. Choice of intervals for the test are discussed by Williams [70], Mann and Wald [71], Gumbel [72], and Pieruschka [28].

[^11]: *Significant at 5\% level.

[^12]: Enough delay times were removed from the tail(s) of the observed distribution of monthly delay times until goodness-of-fit to the lognormal distribution was obtained for the remaining portion. The portions represented by the truncated tails were then fitted and tested against alternative distributions. Since only a few data points were involved, the uniform distribution was found to be satisfactory for the

[^13]: *This program represents an adaptation of methods explained by Locks [33].

[^14]: *The computer program for simulation of dispatch reliability, which was especially prepared for this study, is shown in Appendix C.

[^15]: *Smith and Williams [75] also provide a good discussion of various methods used for estimating confidence limits.

[^16]: *In a recent check of data with American Airlines, it was learned that for the month of July, 1974 , they reported a DR_{15} of .9743 and a DR60 of .9877. By reference to Table X, it can be seen that these values

