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CHAPTER I 

INTRODUCTION 

It is frequently advisable to analyze a set of reser-

voirs which are in the same river basin as a system, because 

of the interrelationship between the reservoirs, in func-

tions such as flood control, hydroelectric power, inlaad 

navigation, recreation, pollution abatement, irrigation, 

and fish and wildlife conservation. 

In the Eastern Oklahoma watershed area, there is a sys-

tern of seven multi-purpose reservoirs.in the Arkansas River 

basin. These are: Keystone, at the confluence of the 

Cimarron and the Arkansas rivers; Fort Gibson, on the Grand 

River; Webbers Falls, on the Arkansas River; Tenkiller-

Ferry, on the Illinois River; Eufaula, on the Canadian 

River; Robert S. Kerr, on the Arkansas River; and Oologah, 

on the Verdigris River. Six of these seven reservoirs are 

also capable of generating hydroelectric power, which is 

' sold to local electric utilities, rural electrification 

cooperatives, and other major uses through the Southwestern 

Power Administration. 

The ability to generate commercially salable power in 

this system is a substantial technological achievement, 

because of the nature of the topography of the area. Over 

1 



this range the average water drop per mile of running river 

i's relativel~ small, 1. 96 feet per mile, with. no mountains 

or large waterfalls. As a result, the :system is what the 

power engineers would call a "low head project, II that is, 

capable of generating relatively little power. 

Another interesting feature of the system is the fact 

that high inflows have different effects upon storage and 

power generation capability depending on the nature of the 

reservoir. In this case, four of the six power-generating 

reservoirs, Keystone, Fort Gibson, Tenkiller-Ferry, and 

Eufaula, are storage reservoirs. Therefor~, water can be 

stored in high flow periods and used to generate power at .a 

later point of time. The other two reservoirs, Webbers 

Falls and Roberts. Kerr, are "run-of-river" reservoir-s, 

which have storage capacity for at most a few hours and, 

2 

therefore, cannot be used to generate hydroelectric power in 

high flows because all water has to be released to prevent 

flooding upstream. 

An elevation pool as high as possible is required for 

hydroelectric power generation. However, because the reser-
' 

voir .has other purposes which require high downstream 

levels, it is not ~lways possible to operate the reservoir 

so as to generate the maximum amount of power possible. 

For flood control purposes, it is necessary to keep as 

much free storage space as possible behind the dam so that 

the excess runoff can be stored safely for the areas down-

stream. Hydroelectric power generation and recreation on 



the other hand, require an elevation pool as high as pos­

sible behind the dam. 1 

The purpose of this dissertation is to describe the 

application of a technique called differential dynamic pro-

3 

gramming for obtaining an optimal storage and release policy 

for a system of reservoirs, for a 12-mont? period based upon 

a fixed rainfall pattern predicted over the 12 months. This 

technique, which is a modification of Bellman's dynamic pro-

gramming, is an iterative approximation method for arriving 

t t . l l' 2,3,4 a an op ima po icy. 

The releases from a given reservoir depend on the 

volume of water in storage and the releases from other res-

ervoirs in the system in a given period of time. In this 

sense, the water allocation problem is a multi-stage deci-

sion process in which the decisions taken at each period in 

time are not independent. Besides we are interested in the 

entire span of time under study rather than in each period 

as an entity, this means that the releases from the reser-

voirs in the system must be optimal in view of the entire 

span of time under study. 

As a mathematical technique, dynamic programming has 

many desirable characteristics. Unlike linear programming 

increasing the number of constraints makes the solution 

easier by limiting the policy space. It also eliminates the 

necessity for examining all the alternative options at one 

period of time by taking each stage as it comes and choosing 

the best decision, out of the alter~ative available at each 
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time interval reducing in this way the size of the problem. 

Dynamic programming also has its drawbacks. Unlike 

l'inear programming where the simplex algorithm 

is a fairly universal technique, dynamic programming does 

not provide a general purpose algorithm. Each problem has 

its own characteristics and the proper optimization tech-

nique must be found. 

The most important disadvantage of dynamic programming 

is what Bellman calls "the curse of dimensionality," or the 

large amount of high speed computer memory required to 

implement the solution of ~he algorithm. Widespread use of 

dynamic programming in large and complex real .. life systems 

has been deterred because of this requirement for high-speed 

memory. 

Several algorithms have been developed to solve this 

dimensionality problem of dynamic programming~ 5 In general, 

these algorithms could be classified into two groups: (1) 

function space approximations 6 and (2) policy space 

approximations. 7 

In this study, a new and promising technique to allev-

iate the high speed memory disadvantage of dynamic program-

8 
ming is presented. This technique was developed by Mayne, . 

9 10 Jacobson, Gerschwin and Jacobson, and Jacobson and 

Mayne. 11 Jacobson named this technique "differential 

dynamic programming. 11 

Differential dynamic programming is an iterative method 

which starts with a trial solution satisfying predetermined 
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constraints. Applying increments to the trial solution 

values a new state space is created close to this trial 

solution. 

Then the performance criterion is used ·to search for an 

improved solution among the values in the neighborhood of 

this trial solution. This improved solution is used as the 

trial solution of the next iteration. This iterative pro-

cess continues until some convergence conditions are metQ 

Since the iterative procedure will always move in the 

direction of better solutions, the procedure will always 

move to at least a local maximumQ This loss of global opti-

mality assurance is the trade off for rather large reduc-

tions in computer memory requirements. 

Review of the Literature 

There have been several interesting applications of 

dynamic programming to water resources. The.first big scale 

study of a complex water resource system that employed 

dynamic programming was the work done by Hall and Shephard 

et al. in which they obtained the optimal operational policy 

for a system of ten reservoirs, eight with power plants, in 

Northern California. 12 They combined linear and dynamic 

programming in the following way: first, they solved a 

dynamic linear programming model that maximizes the revenue 

from energy and water supply and combined all the reser-

voirso This master program provided the water and energy 
', 

commitments for each of the reservoirs of the system, and 
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the shadow prices for energy and water. Then, for each 

individual reservoir they used dynamic programming to deter-

mine the optimal operational policy. 

Larson and Keckler used the successive approximations 

method of dynamic programming to maximize the benefits from 

water for irrigation and power generation for a fictitious 

system of four reservoirs, which contained both series and 

parallel connections between reservoirs. 13 

Heidari, Chow, Kokotovic, and Meredith outlined the 

potentials of differential dynamic programming for opti-

14 mtzing the operation of complex water resources systems. 

As an example, they applied this technique to the fictitious 

model of four reservoirs analyzed by Larson and Keckler 

. th th d f · · · 15 using e me o o successive approximations. 

Millham and Rusell employed dynamic programming on a 

simplified three reservoir system on the Snake and Columbia 

rivers in the states of Idaho, Oregon, and Washington, for 

studying the economic losses from power generation and pol-

lution by diverting water from the Snake river to geograph­

ical areas other than the Pacific Northwest. 16 Later, 

Dutton and Millham expanded the previous model and included 

seven reserv~irs, and studied the economic losses by divert-

ing water from the Snake and Columbia rivers to other 

h . l 17 geogra.p ica areas. 

State incremental dynamic programming was used by 

Fults and Hancock to obtain the optimal operational policy 

for a system of five reservoirs in Northern Californi~o 18 
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But the objective was to maximize the firm energy production 

of two parallel reservoirs, Shasta Reservoir on the 

Sacramento River and Claire Engle on the Trinity River. Yeh 

and Trott used a combination of state incremental dynamic 

programming and the method of successi~e approximations to 

determine the optimum design parameters of six reservoirs on 

the Eel River and Cache Creek in Northern California. 19 

First, they decomposed the problem by successive approxima-

tions, and they applied state incremental dynamic program-; 

ming to optimize for each of the parameters under 

consideration for each of the reservoirs. iThe· objective.was 
! 

to maximize the,benefits from firm water supply from the six 

reservoirs. 

Ct.her mathematical techniques have also been used to 

study water resrouce systems. Dorfman used simulation to 

evaluate the operation of a fictitious system composed by 

two reservoirs and one power plant. 2° Fredrich likewise 

used simul a.tion to analyze and evaluate a complex water 

resource system composed by the Arkansas, White, and Red 

rivers in the states of Arkansas, Missouri, Oklahoma, and 

Texas. 21 This sytem included 23 reservoirs, of which 19. had 

power plants .. 

Stephenson employed a network (transportation) model to 

minimize water conveyance costs in the Orange-Vaal basis in 

South Africa. 22 He considered a model with three reservoirs 

and eight rivers and twenty-two uses of the water. 
' 

Fitch, King, and Young proposed an algorithm based on 



maximizing the net returns from operating a multi-purpose 

system. 23 The net returns are represented by gain func­

tions for each alternative use of the water, which are 

maximized using a recursive procedure rooted in dynamic 

programming. As an illustration they solved a fictitious 

problem consisting of three reservoirs and five treatment 

plants, and one gain function for recreation, power genera­

tion, and water supply maintenance. 

O'Neill used a branch and bound procedure of mixed­

integer programming to minimize the construction and opera­

tion costs of a proposed eight reservoirs system in South 

24 East England. 

Description of the Arkansas.River Basin 

and the System of Reservoirs 

The Arkansas River and its longest tributary, the 

Canadian River, have their sources in the Sangre de Cristo, 

Sawatch, and Front Ranges of the Southern Rocky Mountains 

8 

in Colorado and New Mexico. The Arkansas River flows 1,450 

miles southeasterly through Colorado, Kansas, Oklahoma, and 

A.rkansas, and empties into the Mississippi River 575 miles 

above the Head of Passes, Louisiana.. Moving eastward the 

High Plains become more dissected by stream i~lleys and give 

wa.y to the Central Lowlands. Within this; formation, drain­

age becomes more numerous and streamflow increases notably. 

In particular, the Verdigris and Grand (Neosho) Rivers con­

tribute large flows to the main stem of the Arkansas River. 25 
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The watershed covers 160,650 square miles and is about 

870 miles long and averages 185 miles in width. The 

Arkansas River has a total fall of about 11, 400 feet with a 

slope ranging from 110 feet per mile near the source to Oo4 

· 26 
feet per mile near the mouth. 

., Climate in the Ark;ansas basin is semiarid to arid in 

the western part, subhumid in the central part and humid in 

the eastern part, and is characterized by long hot summers 

and short cold winters. Annual precipitation averages about 

60 inches in the ea.stern part and decreases rather uniformly 

westward to about 12 inches in the Western Great Plains~, 

then it increases to 32 inches in the mountains of Colorado 

·and New Mexico. High wind velocities and high evaporation 

rates are associated with the dry climate of the western 

half of the region. 

The population in the Arkansas basin above Fort Smith, 

Arkansas was about 3.3 million in 1970. Agriculture is 

the major economic activity with cattle, wheat, cotton, 

grain sorghums, and rice as the chief farm productso 

Manufacturing represents. a growing and increasingly 

important segment of the regional economy with food and 

lumber products, air-craft assembly, iron and steel milling, 

oil and other petrochemical refining and glass manufacturing 

as the most important industries. 

Outdoor recreation and tourism industries have grown in 

the last 25 years and are expected to continue expanding. 

Millions of visitors come into the region every year, and 
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their expenditures are the major source of revenue for the 

enterprises related to tne travei and recreation industryo 

There are many mineral resources in the region, petro-

leum and natural gas being the most importanto Other sig-

nificant minerals produced are zinc, lead, germanium, gold, 

silver, molybdenum, bauxite, copper, cadmium; mercury, tung-

sten, tin, iron, and manganese. There are important coal 

reserves, but coal mining is competitive only in localized 

areas. The region also has extensive deposits of cement, 

· 27 
building stone, ceramic clays, sand, gravel, and. salto 

The McClellan-Kerr Arkansas River Navigation System is 

a major feature of the water resources development in the 

Arkansas Basin in Oklahoma, Arkansas, and Kansas. It ex-

tends from the Mississippi River to near Tulsa, Oklahomao 

In the Oklahoma portion of the Arkansas River Basin, 

the Uo So Army Corps of Engineers constructed and operates 

seven major upstream lakes: Keystone, Fort Gibson, Webbers. 

Falls, Tenkiller-Ferry, Eufaula, Robert So ~err, and 

Oologaho The first six have power plants and only Oologah 

does noto A brief description of the main characteristics 

of the six reservoirs included in this study is as follows! 

(1) Keystone Reservoir is located at mile 53808 on 

the Arkansas River, in the Northwest corner of 

Tulsa Countyo The dam is about two miles down-

stream from the mouth of the Cimarron River and 

about 15 miles west of Tulsa, Oklahomao Its 

purposes are flood control navigation, 
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hydroelectric power, fish and wildlife conserva-

tion, and water supply. The power plant has two 

generating units with an installed capacity of 

70,000 kwo 

The lake has a surface of 26,300 acres and 

a total storage capacity of 1,879,000 acre-feet, 

of which 1, 216, 000 .acre-feet is available for 

the storag~ ~f flood waters. The conservation 

pool contains 351,000 acre-feet of dead storage. 

(2) Fort Gibson Reservoir is located at mile 7.7 on 

the Grand (Neosho) River in Wagoner, Cherokee, 

and Mayer Counties, abo~t five miles northeast 
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of Fort Gibson, Oklahoma. Its purposes are flood 

control and hydroelectric power. The power plant 

has four generating units with an installed 

capacity of 45,000 kw. 

Normally the lake has a surface area of 

19,900 acres and retains 365,200 acre-feet of 

dead storage, and 53,900·acre-feet for power 

pondageo 

(3) Webbers Falls Reservoir (Lock No. 16 in the 

Arkansas Navigation System) is located at mile 

432.3 on the Arkansas River about five miles 

northwest of Webbers Falls in Muskogee· County, 

Oklahoma. Its purposes are navigation, hydro-

electric power, recreation, and fish and wildlife 

conservation. The power plant has three 
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generating units with an installed capacity 

of 66,000 kw. 

The lake has a surface of about 10,900 
. 

acres and a storage capacity of 165, 200 acre-

feet, of which 135,000 acre-feet are dead storage 

and 30,000 acre-feet for power generation. 

(4) Tenkiller-Ferry Reservoir is located at mile 

12,8 on the Illinois River in Sequoyah County 

about 22 miles southeast of Muskogee, Oklahoma. 

Its uses are flood control and hydroelectric 

power. The power plant has two generating units 

with an installed capacity of 34,000 kw. 

The lake has a surface area of 12, 700 acres, 

with a power storage of 283,100 acre-feet, a dead 

pool for powerhead of 358,300 acre-feet, an ad.di-

tional capacity of 588,600 acre-feet is available 

for floodwaters storage. 

(5) Eufaula Reservoir is located at mile 27 on the 

Canadian River, about 13 miles ea.st of Eufaula 

in Mcintosh County, Oklahoma. Its purposes are 

flood control, inland navigation, hydroelectric 

power, water supply, and fish,and wildlife 

conservation. 

It is the fifteenth largest man-made lake 

in the United States with a' total storage 

capa.ci ty of 3, 848, boo acre-feet. Of this 

capacity, 1,470,000 acre-feet are for flood 



13 

control and 1,481,000 acre-feet are allocated 

for power, and 897,000 acre-feet of dead storage 

for powerhead and sedimentation. The power plant 

has three generating units with an installed 

capacity of 90, 000 kw. 

(6) Roberts. Kerr Reservoir (Lock No. 15 in the 

Arkansas Navigation System) is located at mile 

395.4 on the Arkansas River, about eight miles 

south of Sallisaw, Oklahoma, in LaFlore and 

Sequoyah Counties. Its purposes are hydro-

electric power, inland navigation, recreation, 

and fish and wildlife conservation. 

The lake has a storage capacity of 493,600 

acre-feet of which 79,500 acre-feet are for power 

pondage and 414,000 acre-feet for dead pool. The 

power plant has four generating units with an 

installed capacity of 110, 000 kw. 28 

'Analysis 

The optimization procedure is performed using a deter-

ministic discrete approach so that the future volumes of 

water in storage, the inflows, and the net evaporation rates 

are known quantities at each month for each of the six res-

ervoirs. Three different situations were considered~ a 

critical period or drought year, a year with average flows, 

and a high rainfall year. These are defined respectively as 

' the sequence of twelve months in which the reservoirs 



displayed pronounced drought cycles in the hydrologic 

record, average and average plus one standard deviation. 
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In order to determine if the optimal solution corre­

sponds to a global maximum for each of these three situa­

tions,the analysis is performed using two different trial or 

initial solutions or policies. In this study, a trial solu­

tion is the set of twelve storage and release values for 

each of the six power-generating reservoirs in the system. 

This string o~values is also called a trajectory. 

If the optimal release policies for the six reservoirs 

are identical for both trial trajectories, a global maximum 

has been attained. Otherwise the solution reached by each 

trajectory is a local maximum. 

In each of the three situations considered, there was a 

substantial divergence between the optimal storage and 

release policies for the two different trajectories. Inter­

estingly enough, in each case the optimal solution did not 

differ by very much in the value of the hydroelectric power 

generated. For example, in the high inflows period the 

difference in the value of the hydroelectric power was 

0 .10%; in the average period, it was only O. 0092%; and in 

the critical period, 0.37%. 

This leads to the hypothesis, which we were not able to 

prove, that the value of the hydroelectric power generated 

will be approximately the same over a wide range of optimal 

policies. 
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Interpolation Using Spline Functions 

At different stages of the optimization procedure, it 

is necessary to retrieve values of functions which have been 

stored as tables. This action requires the use of an inter­

polation procedure. 

The interpolation technique used in this study is a 

cubic spline fitting which is a type of piecewise polynomial 

fitting. Using this technique, the data set is divided into 

a number of nonoverlapping intervals and the points in each 

interval are fitted by a polynomial. 

Organization of this Study 

Chapter II presents the discrete differential dynamic 

programming approach and the application of this technique 

to water resources sy~tems analysis. In Chapter III, the 

problem is set up as a multi-stage sequential decision pro­

cess which can be optimized using discrete differential -

dynamic programming. Chapter IV presents the optimal stor-

. age and release policies under the different hydrological 

conditions considered in the analysiso Chapter V contains 

the summary and conclusions of the study. 
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CHAPTER II 

THE THEORETICAL MODEL 

This chapter presents the discrete differential dynamic 

programming approach for optimizing a multi-stage and multi-

variable decision process. 

Following, an example illustrates the application of 

t~is optimization technique to a water resources system. 

The Discrete Differential Dynamic 

Programming Approach 

Dynamic programming, developed by Richard E. Bellman, 

is a sequential technique for optimizing a multi-stage 

1 2 decision process. ' The optimum policy is obtained by cal-

Gulating the optimum solution at any given stage as a func~ 

tion.of the optimum solution of the immediately preceding 

~tage, for every possible state of the system at each stage. 

Discrete differential dynamic programming is a variant 

of dynamic programming in which a nominal; or trial trajec-

tory is initially employed as an app:roximation of the opti-

mal policy. Improvements are made iteratively, by imbedding 

the solution at any given iteration within the function 

defining the optimum for the next one. A pe~turbation tech-

nique with a relatively concise grid is .employed to obtain 
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the policy for the next iteration, where the grid has as 

many dimensions as there are decision or state variables. 

The index which defines stage is the symbol k, that 

determines the order in which events occur in timeo Since 

there are 12 months or time increments considered in the 

an al y sis k = 1 , 2 , ••• , 12 • 
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Let x denote the state variable indicating the level of 

storage in each of the six reservoirs, then a six dimen­

sional state vector is employed in the analysis. At a given 

month x(k) is the state vector at the end of stage k. 

The control or decision variable is denoted by u, and 

it refers to the volume of water released from the dam 

during a given month. Since in the system there are four 

storage reservoirs, Keystone, Fort Gibson, Tenkiller-Ferry, 

and Eufaula, on which decisions are to be'.made, the control 

variables are denoted by a four dimensional • control vector 

u(k). In a time span of 12 months, 48 decisions need to be 

made for this sytem of reservoirs. 

The domain of values for the state variables is limited 

to the sex X bounded by the maximum and m~nimum allowable 

storages for each of the six reservoirs. Also, the values 

of the control variables are delimited to the set U(k) 

bounded by the permitted minimum and maximum releases from 

each dam in a given month. 'l'hen, 

x(k) E X 

(1) 

x(k) E U(k). 
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Besides, in this study the six reservoirs start and 

finish the analysis at the same level of storage, imposing 

an initial and a final boundary condition on the values of 

the state vector as follows: 

x(O)=x(l2). ( 2) 

In discrete differential dynamic programming, it is 

assumed that the optimal control u0 (k), k = 0, 1, o"", 11, is 

unknown, but a sequence of nonoptimal control variables 

u(k), k=O, 1, ••• , 11, which satisfies the control con-

straints in (1) i~ called a trial solution or policy; then 

using these values the state variabies are calculated for 

the 12 stages under analysis. The sequence of values of the 

state vectors satisfying the state constraints in (1) and 

boundary conditions (2) is called a trial trajectory, and it 

is design'ated by x(k) I k = 0 I 1, o • o I 12. 

The system of equations which explains the dynamic 

behavior of the six reservoirs in the system is composed by 

six difference equations like the following: 3 

where: 

I 
! 
I 

x. (k) = x. (k-1) + in. (k-U - u. (k-'l) - ev. (k-1), 
l l l l l 

i=l, 2, ••• , 6. 

x. (k) volume of water stored in the .th 
= l 

l 

reservoir in period k, 

x.(k-1) volume of water stored in the .th = l 
l 

reservoir in period k-1, 

( 3) 
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in. (k-1). 
J. = inflow into the ,th 

J. reservoir in 

period k-1, 

u. (k-1) volume of water released from the . th 
= J. 

J. 

reservoir in period k-1, and 

ev. (k-1) = volume of water evaporated from the ith 
J. 

reservoir in period k-1. 
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Equation (3) is known as the "principle of continuity" 

or 11 storage equation. 114 When the releases, inflows, and 

evaporation are defined properly and measured in standard-

ized units, this equation is appropriate for storage 

accounting when the length of the period kin consideration 

is long enough so that the travel time through the reser-

voirs in the system is not significant. It should be noted 

that the definition of inflow implies that all diversions 

into the reservoirs are added to the natural inflow to ob-

tain the inflow volume. The standardized unit of measure-

ment employed in this study is a kilo-acre-feet (KAF), the 

volume of water contained in a surface of one thousand acres 

one foot deep. 

In the form in which this problem is set up, we are 

searching for the best decision at stage k-1 in order to 

bring the system to a specific value of the state vector at 

stage k from a knowp value of the state vector at stage k-L 

The index h defines the iteration number during the 

iterative optimization procedure employed in this analysiso 

Let L[x(k-1), u(k-1)] represent the return or dollar 

value of the hydroelectric power generated in one time 
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period as the result of decision u(k-1) made at stage k-1 

with the system in state x(k-1). Also, let J represent the 

:sum of returns from the system over a time horizon of 12 

months, then 

12 
J = ~ L[x(k-1), u(k-1)] • 

k=l 
(4) 

Let Jh[x(k)] be the maximum total return from stage O 

to stage k when the system is x(k) and the analysis is at 

iteration h~ If the optimization procedure is carried-out 

forward in time and the objective is maximize the return 

(4) over k stages, then applying Bellman's principle of 

optimality, the following variational performance equation 

. b . d S is o taine : 

Jh[x(k)] = u(k-l) ~a~(k-l) [L[x(k-1), u(k-1) J 
(5) 

Now, if Equation (3) is solved for x(k-1), the value 

of the state vector at stage k-1 can be expressed as a func-

tion of the value of the state vector at stage k and the 

control variable values at stage k-1 in the following way: 

X{k-1) = e[x{k) I u(k-1)] • (6) 

Substituting (6) into (5), the following variational 

performance equation is obtained: 
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Jli [x(k)] = u(k-l)~xU(k-1) [ L[x(k)' u(k-1)] 

(7) 

Equation (7) may be solved for every x(k) as a function 

of u(k-1) only. The solution of (7) for a given value of 

the state vector in the sex X in (1) provides an optimal 

u(k-1), or the optimal decision that should be made for some 

state vector pt stage k-1 to bring the system to a given 

value of the stat.e vector at stage k. 

Substituting the trial trajectory values x(k), k= 0, 1, 

• • • I 12, and policy u(k), k= 0, 1, ••• , 11, in Equation (4), 

it is obtained the total return associated with this trial 

trajectory and policy over a span of time of 12 months. 

This return is designated by J may not be the optimum return 

for the system. 

. ~·/{ .,., 

12 
Jh= I: L[xCk-1>, uCk-1>J 

k=l 

where h indi.cates the iteration number. 

(8) 

Let 6 x. (k) represent a state increment value or per-
1.n 

turbation associated with the nth state variable, approxi-

mately equal to 10% of the smallest power stbrage capacity 

among the six reservoirs in the system. These perturbations 

form a six dimensio.nal vector that when added to the trial 

trajectory define a subdomain for the state variables in 

the neighborhood, i.e., close to, the trial trajectory 

values. Let T be the total number of assumed increments for 
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the ~tate variable domain:; and DXt, t = 1, 2, ••• , T, the 

actual increment .value for·the state variables, then any of 

the n:th components & x. (k) ·for n.= 1, 2, •••. , 6 and k= 1, 2, 
in 

••• , 12, can take on any one value DXt, t = ·1, 2, ••• , T, 

which is the tth assumed increment for the state variable 

domain. 

L !::. x. (k) denote the number of increment vectors at 
]. 

stage k, then the total number of these vectors is given by 

n T, or the total number of assumed state increments raised 

to a power equal to the number of stc(te variables.. In this 

study T = 3 (+DX, O, -DX), and since there are four storage 

reservoirs ·on which decisions are to be made, the total 

number of increment vectors at stage k is 81 (Tn = 34 ). The 

perturbation vector is designated by 

x. (k) = 
]. 

• 

• 

i = 1, 2, • • • I 81 

k = 1, 2 I o o • I 12 

When adc:iled to the trial trajectory at stage k these 

increment vectors form an n-dimensional subdomain that is 

designated as S (k) o 

(9) 

Two examples of subdomains are presented in Figures 1 

.and 2 for two and three state variables. 



i ... , 

x (k) 

Figure 1. Subdomain S(k) 
Indicating the 
Nine Lattice 
Points Around 
the Trial Tra­
jectory Value 
at Sta.ge k, for 
a Problem of Two 
State Vari ables 
and Three Incre­
mental Values 
( DX = + 1, DX = 0, 
and DX= -1) 
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x, 

Figure 2. Subdomain S(k) Indi­
cating the Twenty­
Seven Lattice Points 
Around the Tri al 
Trajectory Value at 
Stage k, for a 
Problem of Three 
State Variables and 
Three Incremental 
Values (DX= +l, 
DX = O , and DX = -1) 
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Figure 1 shows the subdomain of nine lattice points 

around the trial trajectory value x(k) at stage k for a 

problem with two state variables and three incremental 

values. Figure 2 presents the subdomain of twenty-seven 

lattice points around the trial trajectory value x(k) at 

stage k, for a system with three state variables and three 

incremental values. Note in these figures that one of the 
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incremental values has to be zero since the trial trajectory 

is always in the subdomain. 

In differential dynamic programming, all subdomains 

S (K) for k = 1, ••• , K, considered together form a "corri-

dor," that is, designated as ch. In Figure 3 is hown the 

corridor Ch' at iteration h, in the neighborhood of a trial 

trajectory for a problem with one state variable, three 

incremental values, five stages, and an initial and final 

boundary condition. Using this approach, the corridor Ch 

is used as the set of admi"s-sible values for the state vari-

ables, and the optimization procedure constrained to these 

values. 

When the optimum-se~ching procedure is constrained to 

cert~in values and the state variables do not vary con­

tinuously, a "lattice search'' procedure is defined. 6 • 7 The 

only requirements of this procedure are that the number of 

points under consideration be finite and arrangeable in some 

order that will make the performance criterion unimodal. 8 

. * · Let xn ( k) , n = 1, 2, ••• , 6; represent the value of the 

state vector composed by the trial trajectory values plus 
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the perturbations, then the variational performance Equation 

(7) can be expressed in terms of the trial trajectory values 

and the increments by letting 

k = 1, 2 I o ••I 12 
(10) 

i = 1, 2 I • • • I 81 

Substituting these values in Equation (7), the follow-

ing variational function is obtained: 

J;[x(k)] = u(k-1) mt~(k-1) {[L x+ &x(k-1), u(k-1}] 

+ J;[ X + 6X(k-l>J} " 

* 

(11) 

where Jh represents the maximum total return at iteration 

h for the corricor ch. 

Usipg the total return value as a measure of conver-

gence, tp.e iterative analysis proceeds · in the following 

way: if the retuJ:rn associate¢! with the state variables 

* with the ircrements (J) ~s greater thap the total return 

associated with the trial trajector:y (J) by a certain pre­

* deter.mined convergence index value, the v_alues of x (k) and 

* u (k), k= 1, 2, .... , 12, are saved to define a new trajec-

tory and repeat the process again until no improvements in 

total return can be achieved in relation to the ·convergence 

criterion •. Given this characteristic of the discrete dif-

ferential·dyaam.ic programming,.it can be classified as an 

approximation in policy space algorithm. 9 

In the course of the iterative process, the size of the 

corridor may be changed gradually by choosing different 
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[DXt}h, t= 1, 2, 3. If the corridor.size is kept constant 

at every iter~tion and no improvement is observed in the 

total return, it is 

reduced starting at 

suggested that ( nxt} h' t= 1, 2, 

the (h + 1) th i terati~n, and the 

3, be 

process 

is continued with the new corridor size until the policy 

values, or release values coincide for t~o consecutive 

iterationso Then the corridor size is further reduced 

starting at the next iteration, and the process is repeated 

until a predetermined convergence condition is meto 

In Figure 4 and following Jacobson, the overall compu-

tational algorithm for discrete differential programming is 

10 presented. 

Since the optimization search procedure of the alga~ 

rithm is constrained to the quantized state variables values 

defined by the corridor ch' the algorithm is designed to 

drastically reduce the number of grid points over which the 

optimization search procedure must search for the optimal 

trajectoryo The rationale of the algorithm is based upon 

the concept that with a given sta.rting trial solution, the 

search is carried out only on a certain constrained region 

of the state space around this 'trial trajectory. If a new 

and better solution is contained in this "corridor" of the 

state space sw:::r:-cnmding the trial trajectory, this new solu-

tion is used as the basis for construe.ting a new "corridor" 

to be searched. This process is repeated until convergence 

is reached. 

The differential dynamic programming algorithm differs 



Figure 4. 

Using a trial control trajectory 
u(k), calculate a trial state 
trajectory x(k), fork= 1, ... K. 
Calculate the value of the per­
formance criterion associated 
with this trial trajectory. 
Store the i and u trajectories 

and J" 

Introduce the increment vectors 
axi(k), fork= 1, ... , K, and 
form the corridor Ch in the 
neighborhood of the trial 

trajectory. 

Apply the principle of optimality 
to the lattice points in corridor 
Ch. If the current trial trajectory, 
or if an improved control 
trajectory cannot be found stop 

the computation. 

If an improved trajectory is 
obtained replace the old x and 
u trajectories and J by the new 
values of the improved trajec­
tory x*, u*, and J*, and repeat 

the process. 

Overall Computational Algorithm 
for Discrete Differential 
Dynamic Programming 
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from classical dynamic programming in that, unlike the 

classical apprdach, it searches only in the immediate vicin,-

ity of a specified trial solution instead of all state 

spaceo The algorithm then uses the best solution found in 

the restricted space to form a new trial trajectory to 

iterate upon. Repeated iterations will find "a best" solu-

tion, unlike the "best solution" found by dynamic program-

ming, that under the assumption of a sufficient grid 

fineness, is always a global maximum, differential dynamic 

programming may find pnly a local optimum solution. 

The biggest obstacle which has prev~nted a widespread 

use of dynamic programming is the high speed memory require-

ment of the algorithm. This requirement refers to the 

number of locations in the high-speed access memory (core 

memory) which must be available during the computationso In 

addition to the locations needed for the program, the com-

piler, and other special functions, locations are required 

to store the values of the performance criterion values for 

all the feasible values of the state variables at a single 

stage. In general, this is done by storing one value of the 

performance criterion for every feasible quantized value of 

· the' state variable, and using an interpolation procedure for 

the non-quantized v~lues. The minimum number of locations 

required by the classical dynamic programming is given by~ 

n 
M = 2K TT Q. 

. 1 ]. 
l.= 

(12) 
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where: 

M = number of core locations, 

K = number of stages, 

Q. number of quantized values of the .th 
= 1 

1 

variable, and 

n = number of state variables. 

In order to solve a problem with four state variables, 

ten stages and one hundred quantization levels for each· 

variable (Qi=lOO, for i=l, 2, 3, 4.), the number of loca­

tions required·are: 

9 
M = 2 ( 10) • (13) 

This number exceeds the total high-speed storage capacity 

of any existing computer. 

Invertible Systems 

If the control or decision variables can be expressed 

in terms of the values of the state vectors at stage k-1 

and k the system Equation (3) can be written in the follow-

ing form: 

u(k-1) ='±' [x(k), x(k-1)]. 

A system of equations that can be expressed in this 

form was called an "invertible system" by Heidari, Chow, 

Kokotovic, and Meredith. 11 

(14) 

An invertible system permits to calculate the optimal 
·, 

value of the control variable at stage k-1 in order to bring 
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the system to a specific value of the state vector at stage 

k from a known value of the state vector at stage k-1. 

Figure 5 shows the possible decisions for a system of one 

state variable and three incremental values in order to take 

the system from the three points defined in the subdomain 

S(k-1} to a given value of the state variable in the sub­

domain S(k}. The values of the control variables must be 

checked for feasibility in relation to the constraints at 

that stage. 

In general, when the optimization is being performed 

in the states of the corridor Ch the use of the inverti­

bility property provides with Tn possible values for the 

control variables, which when applied to the states in the 

subdomain S(k-1} will bring the system to x(k}. 

Furthermore, for an invertible system it is possible 

to assume first an admissible trial trajectory x(k}, k = O, 

1, ••• , 12, and then use these values and the system 

Equation (12} to calculate the trial policy u(k}, k::;0, 1, 

• e o I 11. 

The Larson and Keckler four reservoirs system is pre-

12 sented here as an example of an invertible system. The 

diagrammatic representation of this system is shown in 

Figure 6. The equations explaining __ the dynamic behavior 

of this system are the following: 

x 1 (k} = x1 (k-1} + in1 (k-1} - u1 (k-1} - ev1 (k-1} 



State 

x(k-1) + ox1 (k-1) • x(k) + ox1 (kl 

u2 (k-1) 
x(k-1) + ox2 (k-1) ------------ --· x(k) + ox2 (k) .,,,,,,. 

x(k-1) + ox3 (k-1) _.,,,,,, 

k-2 k-1 

~\ / 
~ /~ 

\)'\ /. 
/. 

. e x(k) + ox3 (k) 

k k + 1 

Figure 5. Possible Controls Leading to State x(k) + x 2 (k) 
from Stage k-1, for a System with n = 1 ana T = 3 

k 
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Figure 6. Diagrammatic Representation of the 
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x 3 (k) = x 3 (k-1) + in3 (k-1) - :u3 (k-1) - ev3 (k-1} + u 2 (k-1) . 

(15) 

x 4 (k) = x 4 (k-1) + in4 (k-1) - u 4 (k-1) - ev 4 (k-1) + u 1 (k-1) 

+ u 3 (k-1). 

Using a deterministic approach, the inflows and evapo-

ration rates are known quantities at each stage; besides, if 

a forward algorithm is employed, the terms x. (k-1) i = 1, 2, 
l 

3, 4, are also known. Then, in matrix form, it is expressed 

as: 

xl -1 0 0 0 ul 

x2 0 -1 0 0 u2 

H = + 
X3 0 1 -1 ,•O U3 

(16) 

X4 1 0 1 -1 U4 

where x. = x. (k) and u. = u. (k-1), for i = 1, 2, 3 I 4. 
l 1 l l 

Expressed in concise form: 
13 

a more 

x =Bu+ C. ( 17) 

We. can solve Equation ( 17) in terms of u as proposed in 

Equation (14) under the assumption that matrix Bis invert-

ible, or nonsingular. 

From matrix algebra we know the square matrix B, which 

is lower triangular (b .. = 0 if j > i), is invertible· if and 
lJ 

only if the diagonal coefficients are different from zero 

(b .. I,. 0, i = j). 14 The proof of this theorem is found in 
lJ .· 

the fact that any matrix is nonsingular if the value of the 
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determin~nt is different from zero •. In this example, it is 

different from zero. 

When the matrix Bis invertible, we can express the 

control variables as a function of the state variables as 

follows: 

-1 -1 
U=B x-B C. 

According to these findings, the Larson and Keckler 

system can be classified as an invertible system. 

(18) 
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CHAPTER III 

THE EMPIRICAL MODEL 

In this chapter, the problem is set up as a multi-stage 

sequential decision process amenable to optimization by dis­

crete differential dynamic programming. The system of 

equations is represented by six difference equations,which 

explain the qynamic behavior, and interrelations among the 

reservoirs according to the principle of continuityQ 

The monthly inflows data are presented for each reser­

voir. Three levels of monthly inflows are defined as 

11 cri tic al period inflows, " "average inflows, " and "high 

inflows," to be used later in the analysis of the behavior 

of the system under different hydrological conditions. 

Next, the net evaporation rates data for each reser~ 

voir, and a method to determine the volume of water evapo­

rated at each month are presented. 

A methodology to determine the generation of hydro­

electric energy, and its classification as on-peak and 

off-peak is developed for the two types of reservoirs 

included in the analysis. 

Finally, the performance criterion and the storages and 

releases constraints for the system are presented and 

qiscussed. 
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The System of Equations 

The system of six reservoirs to be analyzed in this 

study is composed py the Keystone, Fort Gibson, Webbers 

Falls, Tenkiller-Ferry, Eufaula, and Robert Sq Kerr reser­

voirs on the Arkansas River basin in Eastern Oklahomao The 

diagrammatic representation of the system is shown ih 

Figure 7. 

In order to use the continuity principle to analyze the 

storage behavior of the reservoirs, all the variables in­

cluded in the analysis must be measured on a standard unito 

In this study, the standardized unit of measurement is the 

kilo-acre feet or the volume of water contained in a sur­

face of 1,000 acres one foot deep. This unit is abbreviated 

as KAF. All the variables related to water lik~ storage, 

releases, inflows, and evaporation are measured with this 

unit. 

Following the principle of continuity and the relations 

among the reservoirs shown in Figure 7, the system of dif~ 

ference e~uations describing the dynamic behavior of this 

system of six reservoirs is: 

Keystone Reservoir (Reservoir No. 1) 

x 1 (k) = x 1 (k-1) - u 1 (k-1) + in1 (k-1) - ev1 (k-1) (1) 

Fort Gibson Reservoir (Reservoir No. 2) 

(2) 
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Figure 7. Diagrammatic Representation of the 
System 
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Tenkiller-Ferry Reservoir (Reservoir No" 3) 

x 3 (k) = x 3 (k-1) ,- u 3 (k-1) + in3 (k-1) - ev3 (k-1) 

Eufaula Reservoir (Reservoir No. 4) 

x 4 (k) = x 4 (k-U - u 4 (k-1) + in4 (k-1) - ev 4 (k-1) 

Webbers Falls Reservoir (Reservoir No. 5) 

x 5 (k) = x 5 (k...-1) - u 5 (k-1) + in5 (k-1) - ev5 (k-1) 

1 + u 1 (k-1) + u 2 (k-l) + man(k-1) 

Robert Sa Kerr Reservoir (Reservoir No. 6) 

+ u 3 (k-1) + u 4 (k-1) + u 5 (k-1) G 

In matrix notation, these equations look like 

follows: 

xl -1 0 0 0 0 

~ ul 

x2 0 -1 0 0 0 u2. 

~] X3 = 0 0 -1 0 0 0 U3 + 

x4 0 0 0 -1 0 0 u4 

XS l 1 0 0 -1 0 us 

x6 0 0 1 1 1 -1 u6 

as 

Since a deterministric approach is being used, the 

matrix C contains the known values for x. (k-1), in. (k-1), 
l l 
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( 3) 

(4) 

( 5) 

( 6 ) 

evi (k-1), for i = 1, 2, 3, 4, 5, 6, and the Inola Gage flows" 



In a more concise form 

X= Bu+ Co 

The determinant of matrix Bis different from e; then this 

matrix is invertible. The equation can be expressed in 

terms of the control variables 

-1 -1 U=B x-B C. 

The six difference equations describing the system 

2 considered in this study form an invertible system. 

The Monthly In~lows 

In order to analyze the sensibility of the optimal 
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operation of the system under different hydrological condi-

tions, the analysis is performed for three different levels 

of monthly inflows. 

The first level corresponds to the "critical period" 

inflows, indicating the inflows during a sequence of 12 months 

in which the reservoirs displayed pronounced drought cycles 

in the hydrologic recordo 3 The critical period is the year 

1956 for Keystone, Fort Gibson, Webbers Falls, Eufaula, and 

Roberts. Kerr reservoirs, and the year 1964 for Tenkiller-

Ferry reservoir. The critical period approach to the anal-

ysis is a conservative practice which assumes that if the 

energy and/or water commitments are met during a "worst per-

iod, 11 they can also be satisfied during any other period. 

The monthly inflows corresponding to the critical period for 

the six reservoirs in the system are presented in Table Io 



k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

·TABLE I 

MONTHLY CRITICAL PERIOD INFLOWS FOR THE SIX RESERVOIRS 
IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula 

33.0 9.0 3.0 9. 0 9.0 

10.0 4.0 8.0 10. 0 3.0 

3.0 2.0 1. 0 8.0 1. 0 

4.0 1. 0 1. 0 4.0 1. 0 

7.0 2.0 2.0 4.0 10.0 

4.0 3.0 3.0 7. 0 17.0 

14.0 2.0 19. 0. 33.0 12,0 

21. 0 3.0 9.0 21. 0 68.0 

16.0 2.0 6.0 38.0 15.0 

16.0 5.0 24.0 40.0 13.0 

21. 0 23.0 33.0 18.0 163.0 

32.0 20.0 
I 

24.0 17.0 99.0 

Robert S. Kerr 

2.0 

10.0 

6.0 

2.0 

7.0 

9.0 

8.0 

32.0 

19.0 

10.0 

41. 0 

16.0 

Source: U.S. Army Corps of Engineers, Southwestern Division, Basic Data, Vol. I of Arkansas, White, 
Red Rivers System Conservation Studies. 2 Vols., Dallas: Texas, January, 1970. 
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"Average inflows" are the second level of inflows 

considered, they are the average monthly inflows into the 

4 six reservoirs during the years 1923 to 19670 The average 

inflows- for the syste:w are. shown in Table II o 

The third level of monthly inflows is the "high in-

flows, 11 that are defined as the monthly average into each 

reservoir plus one monthly standard deviation. These values 

were obtained from the inflows record from 1923 to 1967. 5 

The high inflows for the six reservoirs are presented in 

Table III. 

In order to calculate the monthly average inflows and 

monthly standard deviations for the six reservoirs in the 

system, a computer program waft developed with this particu-

lar purpose. 

The inflows into Webbers Falls reservoir corresponding 

to the term man(k-1) are the natural flow above Inola Gage 

plus the releases from Oologah reservoir, when necessary. 

If the water passing at Inola Gage is below a certain mini-

mum value, water is released from Oologah reservoir. For the 

purpose of this study, these inflows are set equal to the 

minimum flow at Inola Gage, and are going to remain constant 

along the analysiso These values are shown in Table IV. 

Determination of the Volume of 

Water Evaporated 

The net evaporation rates in inches for the six reser-

voirs are shown in Table v. The volume of water evaporating 



k · Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

·TABLE II 

MONTlll..Y AVERAGE INFLOWS FOR THE SIX RESERVOIRS 
IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula 

288.5 36.3 48.7 50.6 302.2 

163.7 17.8 26.9 45. 1 167.9 

191. 3 23.5 22.6 30.9 233.6 

251. 5 28.4 34.9 47.9 329.4 

134. 3 23. 5 · 42. 1 57.9 206.7 

91. 9 18. 1 60.6 71. 4 205.0 

82.2 20.3 47.0 81. 9 215.5 

93. 1 25. 3 117. 7 95.4 264.8 

128.0 35. 1 65.4 123.5 309.2 

294.6 70.4 108.9 172. 8 536.4 

484.4 70.4 155.6 177. 9 841. 9 

451. 8 69.5 101. 9 119. 5 598.2 

Robert S. Kerr 

104.2 

54.5 

51. 8 

88.6 

69.3 

83.7 

80.0 

96.5 

166.9 

210.0 

241. 9 

157.8 

Source: U.S. Army Corps of Engineers, Southwestern Division, Basic Data, Vol. I of Arkansas, White, 
Red Rivers System Conservation.Studies. 2 Vols., Dallas: Texas, January,· 1970. 



k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

I 8 February 
' 

9 March I 

10 April 

11 May 

12 June 

TABLE III 

MONTHLY HIGH INFLOWS FOR THE SIX RESERVOIRS 
IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

653.4 95.4 107.7 112. 0 642. 1 

376.4 42. 1 77. 0 124.4 413. 2 

376. 9 55, 1 59.0 64.5 488.6 

695.7 69.3 85.7 119.3 952.8 

313. 7 57.4 116. 9 136. 2 515,2 

182.4 36.0 199,0 147.4 469.2 

158.6 41. 4 108.8 159.9 560.2 

230.5 49.4 494.4 186.5 629.2 

247.0 66.7 171. 8 249. 1 672. 3 

663.7 152.7 293. 1 360. 1 1, 159. 5 

1,022.3 149.4 380. 1 367.5 1,599.0 

930. 1 159.4 220. 1 264.0 1,221.4 

Robert S. 

237.5 

148.7 

177. 5 

278.3 

192.8 

184.0 

179. 1 

232.3 

464.0 

472. 8 

478.5 

388.4 

Source: U.S. Army Corps of Engineers, Southwestern Division, Basic Data, Vol. I of Arkansas, White, 
Red Rivers System Conservation Studies. 2 Vols., Dallas: Texas, January, 1970. 

Kerr 

u, 
0 



-TABLE IV 

-MINIMUM. FLOW AT INOLA GAGE, INCLUDES FLOW 
AT INOLA PLUS RELEASES FROM OOLOGAH 

RESERVOIR (WHEN NECESSARY) IN 
THOUSANDS OF ACRE-FEET 

k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ll 

12 

Month 

July 

August 

September 

October 

November 

December 

January 

February 

March 

April 

May 

June 

Flow 

12. 91 

12. 11 

10.23 

8.92 

8.03 

7.50 

7.50 

6.77 

7.50 

8.03 

10.57 

10.23 

Source: U.S. Army Corps of Engineers, Tulsa District, Tulsa, 
Oklahoma. 
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TABLE V 

MONTHLY NET EVAPORATION IN INCHES FOR THE SIX RESERVOIRS 

k Mon~h Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula Robert S. Kerr 

1 July 5.23 5. 16 3. 78 4.61 4.44 3.78 

2 August 4.41 4.95 3.27 4. 14 4.08 3.27 

3 September 3.24 3.41 I. 59 2.53 I. 79 I. 59 

4 October 2.01 2. 16 - . 07 1. 09 1.49 - • 07 

5 November I. 12 1. 21 - • 16 • 61 . 16 - . 16 

6 December • 66 .56 - . 14 .39 .29 - . 14 

7 January .-59 .47 - . 03 .38 - . 06 - . 03 

8 February I. 30 . 72 .39 .78 . 18 .39 

9 March 2.48 I. 84 .69 I. 49 I. 72 .69 

10 April 2.85 2.39 . 97 I. 99 I. 79 • 97 

11 May 2.25 2.68 I. 05 2. 10 I. 33 I. 05 

12 June 3.27 . 3. 91 2. 13 3.04 2.75 2. 13 

Source: U.S. Army Corps of Engineers, Southwestern Division, Basic Data, Vol. I of Arkansas, White, 
Red Rivers System Conservation Studies. 2 Vols., Dallas: Texas, January, 1970. 
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from the reservoir depends on the area of the reservoir, at 

the same time the area is a function of the volume of water 

in storage. 

In this study, the area of the reservoirs is a function 

of storageo Selected values of these functions are shown in 

Table VI for Keystone, in Table VII for Fort Gibson, in 

Table VIII for Tenkiller-Ferry, and in Table IX for Eufaulao 

As it is explained later in this chapter, the storages of 

Webbers Falls and Robert So Kerr reservoirs remain constant 

for the period under study, and are set equql to: 

Webbers Falls = 10,630 acres 

Robert S. Kerr= 40,875 acres. 

The volume of water evaporated from the reservoir is 

calculated using the following formula: 

Evap. (k) = S. [ x. (k)] • Evra. (k) 
l l l l 

where: 

Evap. (k) = volume of water evaporated from the ith 
. l 

reservoir in month k measured in KAF, 

( 7) 

s.[x. (k)] = surface of the ith reservoir as a function 
1 l 

of storage in month k, measured in thou-

sands of acres, and 

Evra. (k) = net evaporation rate in feet for the ith l . 

reservoir in month k. 



Area 
(Acres) 

14,490 

15,400 

16,290 

17, 240 

18,520 

20,150 

22,000 

23,590 

25,240 

26,020 

26,940 

' 28,540 

29,070 

30,090 

31,740 

33,280 

34,950 

36,250 

38,090 

39,570 

41,470 

43,540 

45,630 

47,900 

50, 320 

52,810 

55,320 

58,080 

60,890 

63,830 

TABLE VI 

AREA, ENERGY CAPACITY, ENERGY RATE, AND 
STORAGE FOR KEYSTONE RESERVOIR 

)WD POWER PLANT 

Energy Capacity Energy Rate 
(KW) (KWH/KAF) 

60,200 o.o 
62,250 5,050.4 

64,250 9,624.8 

66,250 13,790.5 

68,250 17,646.9 

70,000 21,302.0 

70,000 24,807.5 

70,000 28, 124. 6 

70,000 31,262.6 

70,000 32,760.5 

70,000 34, 221. 0 

70,000 37,007.6 

70,000 37,942.8 

70,000 
" 

39,645.5 

70,000 42, 157.6 

70,000 44,570.3 

70,000 46,913.7 

70,000 49, 051. 9 

70,000 51, 180. 7 

70,000 53,233.0 

70,000 55,231.6 

70,000 57,086.5 

70,000 58,955.2 

70,000 60,767.4 

70,000 62,574.8 

70,000 64,382.6 

70,000 66,074.0 

70,000 67,767.9 

70,000 69,536.4 

70,000 71,224.4 

Storage 
(KAF) 

287.5 

317.6 

349.2 

382.8 

418.6 

457.0 

498.6 

543.9 

592.4 

618.0 

644.4 

700.1 

720.4 

758.9 

820.8 

885.5 

952.6 

1,025.2 

1,099.3 

1,176.3 

1,256.4 

1,342.7 

1,431. 9 

1,526.0 

1,624.2 

1, 726. 6 

1,836.5 

1,951.1 

2,068.6 

2, 193,7 

Source: U.S. Department of the Interior, Southwestern Power Administration, 
Tulsa, Oklahoma. 
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Area 
(Acres) 

TABLE VII 

AREA, ENERGY CAPACITY, ENERGY RATE, AND 
STORAGE FOR FORT GIBSON RESERVOIR 

AND POWER PLANT 

Energy Capacity Energy Rate Storage 
(KW) (KWH/KAF) (KAF) 

17, 000 .. 50,000 o. 0 311. 3 

17,600 50,000 2,617.9 328.5 

19,000 50,000 2,617.9 365.2 

20, 600 50,000 11,913.5 404.5 

22, 100 50,000 15,991.0 447.0 

23,700 50,000 19, 748.3 492.6 

25,500 50,000 23,326.7 541. 6 

27,400 50,000 26, 503.4 594.3 

29,400 50,000 29,574.4 650.9 

31, 700 50,000 32,477.9 711. 9 

34,000 50,000 35,239.9 777.5 

36,800 50,000 37,893.3 847.9 

39,500 50,000 40,454.6 923.8 

42,300 50,000 42,298.3 1,005.4 

45,200 50,000 45,249.4 1,092.7 

48, 100 50,000 47,517.1 1, 185. 7 

51, 000 50,000 49, 704.9 1,184.4 

53,800 50,000 51,812.3 1,388.8 

56,600 50,000 53,850.2 1,498.6 

59,600 50,000 55,851.5 1,613.3 

62,800 50,000 57,769.5 1,735.0 

Source: U.S. Department of the Interior, Southwestern Power 
Administration, Tulsa, Oklahoma. 
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TABLE VIII 

AREA, ENERGY CAPACITY, ENERGY RATE, AND STORAGE FOR 
TENKILLER-FERRY RESERVOIR AND POWER PLANT 

Area Energy Capacity Energy Rate Storage 
(Acres) (KW) (KWH/KAF) (KAF) 

7,500 31,200 0.0 283. 1 

7,530 32, ooo· 3,596.2 294.2 

7, 760 33,000 8, 133. 1 309.6 

7,992 34,000 12,453,9 325.2 

8,230 35,000 16, 557. 4 341. 6 

8,490 36,000 20,494. 1 358.2 

8,730 37,000 24,256.8 375.4 

9,020 38,000 27,873.3 393. 1 

9,298 39,000 31,356.3 411. 4 

9,590 39,000 34,694.5 430.5 

9,890 39,000 37, 941. 7 449.9 

10, 180 39, 000 41,054,9 470.2 

10, 500 39, 000 44, 106.4 490.7 

10,820 39,000 47,043.5 512 .• 1 

11, 180 39,000 49,926,9 533.9 

11, 520 39,000 52,699,3 556.8 

11,840 39,000 55,429.3 580.0 

12, 190 39,000 58, 066, 5 604. 1 

12; 355 39,000 59,360,8 616.4 

12,520 39,000 60, 653', 7 628.7 

12, 700 39,000 61, 948, 5 641. 0 

12,880 39,000 63, 167. 7 654, 1 

13, 040 39,000 64,388,5 667.2 

13, 200 39,000 65, 610. 7 680.3 

13, 570 39, 000 68,023,7 706.9 

13,940 39,000 70,343.0 734. 7 

14, 309 39,000 72,684,6 762.5 

14,667 39,000 74,897. 1 791. 9 

15, 025 39,000 77, 131. 4 821. 3 

15,383 39,000 79, 26.6. 4 852.0 

15, 741 39, 000 81,381.3 883.2 

16,099 39,000 83, 414. 1 915.6 

16,499 39,000 85,389.9 949.0 

16,899 39,000 87,355.0 983.0 

17,299 39,000 89,203.0 1,018.8 

17,759 39,000 91, 104. 7 1,054,6 

18,219 39,000 92,910.6 1,092.2 

18, 739 39,000 94, 733.7 1, 130. 4 

19, 319 39,000 96,588.2 1, 169, 2 

19, 899 39,000 98,349.8 1, 210. 2 

21,200 39,000 100, 286, I 1,251.2 

21,700 39, 000 102, 204. 1 1,294.4 

22,200 39, 000 104, 127.2 1,338.2 

Source: U.S. Department of the Interior, Southwestern Power Administration, 
Tulsa, Oklahoma. 
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TABLE IX 

AREA, ENERGY CAPACITY, ENERGY RATE, AND 
STORAGE FOR EUFAULA RESERVOIR 

AND POWER PLANT 

Area Energy Capacity Energy Rate 
(Acres) (KW) (KWH/KAF) 

46,910 60,000 0.0 

49,350 61,400 3,083.6 

54,500 64, 100 8,892.2 

59,680 66,700 14,426.6 

64,900 69,300 19,090.7 

69,790 72,300 23,557.2 

75,200 74,600 27,654.6 

80,920 77, 800 31,449.9 

86,670 80,400 34,953.4 

92,700 · 83,200 38,243.5 

99, 100 86,200 41,310.7 

102,200 87,500 42,766.9 

105,400 88,800 44, 187. 6 

111, 800 91,600 46,938.8 

118, 700 94,500 49,516.0 

125,600 97,250 51, 981. 1 

132,700 100,050 54, 319. 1 

140,000 102,712 56, 584.3 

143,750 103,500 . 57, 648. 4 

147,300 103,500 58,712.6 

155,000 103,500 60,836.2 

162,200 103,500 62,832.4 

169,800 103,500 64,736.2 

177,500 103,500 66,645.4 

18_5, 200 103,500 68,454.4 

193, 100 103,500 70,202.3 

Storage 
(KAF) 

864.8 

913. 2 

1,015.5 

1,113.5 

1,254.9 

1,389.3 

1,534.1 

1,689.7 

1,857.9 

2,036.5 

2, 228. 5 

2,329. 7 

2,433.6 

2,649.3 

2, 880. 1 

3, 124. 0 

3,382.9 

3,654.6 

3, 798.3 

3,944.3 

4,243.9 

4, 562.2 

4,897.4 

5,243.2 

5,608.2 

5,990.2 

Source: U.S. Department of the Interior, Southwestern Power 
Administration, Tulsa, Oklahoma. 
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Hydroele-ctric Energy Generation 

As it was mentioned in the introduction, the only mar­

ketable use of the water with an associated monetary value 

is the production of hydroelectric energy. Hydroelectric 

energy is sold by the Southwestern Power Administration, a 

division of the u. S. Department of the Interior, wholesale 

under contract for "firm" or 11 on-peak 11 energy corresponding 

to the period during each month in which energy demands are 

high. 11 Non-firm 11 or 11 non-peak 11 energy is that one produced 

in excess of firm energy commitments which can be sold but 

at substantial lower prices than firm energy. The prices 

charged for these two types of energy by the Southwestern 

Power Administration, including the capacity charge, are for 

1974: 

On-peak energy: 8.99 mills/kilowatt-hour 

Off-peak energy: 2.47 mills/kilowatt-hour. 6 

Reservoirs and-their power plants are classified into 

two categories: run of water and storage reservoirs. A 

storage reservoir is one of sufficient capacity to permit 

carry-over storage from.the high inflows season to the low 

inflows season. This characteristic allows a controlled 

firm flow above the minimum natural flow. A run-of-river 

reservoir has very limited storage c'apacity. Some run-of-

river reservoirs have pondage, or storage volume which per­

mitslto store water during off-peak hours for its use during 

7 peak hours the same day. 
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In this study, Keystone, Fort Gibson, Tenkiller-Ferry, 

and Eufaula are classified as storage reservoirs and 

·w-ebbers Falls and Roberts. Kerr as run-of-river reservoirs. 

Energy Generation at the Power Plant 

of a Storage Reservoir 

For a storage reservoir, the energy generated depends 

on the "energy rate," that represents the energy stored as 

water in the reservoirs. In this study, it is measured as 

kilowatt-hours per thousands of acre-feeto We obtain the 

hydroelectric energy generated multiplying the energy rate 

times the volume of water flowing through the turbines 

during stage k. 

The maximum capacity of hydroelectric energy production 

is given by the "energy capacity" that represents the maxi­

mum hydroelectric energy which can be produced given the 

technical characteristics of the turbines in the power 

plant. 

Energy rate and energy capacity depend on the effi­

ciency of the turbines, and on the head of water on the 

turbine during period k. 8 Assuming a constant turbine effi­

ciency, the energy rate and energy capacity are only depen­

dent on the head of water. The head in the reservoir 

depends primarily on the volume of water in storage at 

period k. This approach to energy generated had been used 

by Koopmans 9 and by Roefs and Bodin. 10 

Energy rate and energy capacity will be assumed to be 
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functions of ttte volume of water in storage at period k. In 

mathematical-terms, 

where 

Energy rate = ER[><:. (k)] = f [x. (k)] 
l l 

ER[xi(k)J = energy rate at storage x in month k, 

measured in kilowatt-hours per KAF, 

(k} l f d . th .th x. = vo ume o water store 1n e 1 
l 

reservoir in stage k, measured in KAF. 

Energy capacity = EC[x. (k}] 
l 

= f[ x. (k)] 
l 

where: 

EC[x. (k)] = energy capacity at storage x in month k 
l 

measured in kilowatt-hours, 

x. (k) = volume of water stored in the ith res-
1 

ervoir at stage k measured in KAF. 

(8) 

(9) 

Selected values of the energy rate and energy capacity 

functions are shown in Table VI for Keystone, in Table VII 

for Fort Gibson, in Table VIII for Tenkiller-Ferry, and in 

Table IX for Eufaula. 

To calculate the total hydroelectric energy generated 

by the power plant of a storage reservoir, the energy rate 

function is multiplied by the volume of water released 

through the turbines of the power plant in month k, as 

follows~ 

EN. ( k} = ER. [x ( k)] 0 u . ( k} 
l l l 

(10) 



where: 

EN. (k) = total hydroelectric energy generated 
i 

at the ith power plant during month k, 

measured in kilowatt-hours, 

ER [ ( k )] t . th . th . t . x = energy ra e in e i reservoir a 
i 

storage x in month k, measured in 

kilowatt-hours per KAF, 

u.(k) = volume of water released through the 
i 

turbine at the ith reservoir at stage 

k, measured in KAF. 

Energy Generation at the Power Plant 

of a Run-of-River Reservoir 

Energy generation at Webbers Falls and Robert S. Kerr 
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reservoirs, the two run-of-river reservoirs included in this 

study, is explained by equations different from those for 

the storage reservoirs. The water at these reservoirs, that 

are also locks of the Arkansas River Navigation Project, can 

be used in energy generation as it comes, since there is no 

sufficient storage space to regulate the releases in a 

period of time longer than a day. 

Given this characteristic, their storage capacities are 

going to be kept constant during the 12-month period under 

analysis. The constant storage for Webbers Falls is set to 

160 KAF and for Roberts. Kerr at 473.7 KAF. 

For these two reservoirs the energy generated is 

assumed as a function of the release through the power plant 



and the net head elevation, or the difference between the 

water elevation upstream of the dam minus the water eleva­

tion downstream of the darn, also called tailwater 

elevationo 
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Then the formula that provides the total hydroelectric 

energy generated at these two reservoirs, considering a tur­

bine efficiency of 86e3 per cen:t, is the following: 11 

EN= 883. 5248•Release· [Water Elevation - Tailwater Elevation] 

(11) 

Since the volume in these reservoirs is going to be 

kept constant, the water elevation upstream of the darn is a 

constant. Thus, the energy-generation formula for the two 

reservoirs is 

for Webbers Falls reservoir: 

EN= 88305248 • .u(k) • [489.5,.. T~E.] 

where: 

EN= hydroelectric energy generated in kilowatt-

hours, 

u(k) = release through the power plant at stage k 

in KAF, 

489.5 = water elevation in feet equivalent to a 

storage of 160 KAF, 

(12) 

T.E. = tilwater elevation in feet, or height of the 

water downstream of the dam. 
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for Roberts. Kerr reservoir: 

EN= 883.5248 • u(k) • [459.5,-Ti.E.J (13) 

where: 

EN= hydroelectric energy generated in kilowatt-

hours, 

u(k) = release through the power plant at month k 

in KAF, 

459.5 = water elevation in feet equivalent to a 

storage of 473.7 KAF, 

T.E. = tailwater elevation in feet, or height of 

the water downstream the dam. 

The tailwater elevation downstream of the dam is a 

function of the total release from the reservoir. Defining 

total release as the sum of all the releases for different 

purposes, the tailwater function is given by 

where: 

T.E •. (tu)= tailwater elevation at total release u 1. 

(14) 

f th .th . d. f t or e 1.. reservoir, measure 1.n ee , 

tui(k) = total release from the ith reservoir in 

month k, measured in KA,F. 

The energy capacity of the turbines in the power plant 

of a run-of-river reservoir is a function of the tailwater 

elevation, which is a function of the total release from 

the reservoir. In this study, the energy capacity of the 
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run-of-river reservoirs is a function of the total release 

from the reservoir, as follows: 

EC. (tu) = f [tu. (k)] (15) 
l. l. 

where: 

ECi(tu) = ~nergy capacity at a certain total release 

f th .th . d. k'l tt rom e 1. reservoir measure 1.n 1. ow~ , 

tu. (k) = total release from the ith reservoir 
l. 

measured in KAF. 

Selected values of .the tailwater-total release, and 

energy capacity-total release functions are shown in Table X 

for Webbers Falls reservoir, and in Table XI for Roberts. 

Kerr reservoir. 

Determination of the On-peak and 

Off-peak Energies 

Following the approach given by Hall and Shephard et. 

al., the procedure to determine the on-peak and off-peak 

energies from the total energy produced at each power plant 

· 12 during a particular month. 

Before stating the procedure, the following terms need 

to be defined: 

h_1 . (k) ,= number of peak-hours in month k for the 
l. ' 

.th . l 1. power p ant, 

h 2 (k): = total number of hours in month k. 

The estimated number of peak-hours for the six reser-

voirs are shown in Table XII, and the total number of hours 

in each month are presented in Table XIII. 



TABLE X 

TAILWATER ELEVATION, TOTAL RELEASE (FLOW), AND 
ENERGY CAPACITY FOR WEBBERS FALLS 

RESERVOIR AND POWER PLANT 

Tail water Total Energy 
Elevation Release Capacity 

(Feet) (KAF) (KW) 

460.0 0.0 69,000.0 

461.0 1, 487. 6 69,000.0 

462.0 2,082.7 69,000.0 

463.0 2,796.7 69,000.0 

464.0 3, 421. 5 69,000.0 

465.0 4,076. l 69,000.0 

466.0 4,849.6 69,000.0 

468.0 6,277.8 60,000.0 

470.0 7,884.4 49,500.0 

472.0 9,550.5 39,000.0 

474.0 11, 454. 7 0.0 

Source: U.S. Department of the Interior, Southwestern Power· 
Administration, Tulsa, Oklahoma, 
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TABLE XI 

TAILWATER ELEVATION, TOTAL RELEASE (FLOW), AND 
ENERGY CAPACITY FOR ROBERTS. KERR 

RESERVOIR AND POWER PLANT 

Tailwater Total Energy 
Elevation Release Capacity 

(Feet) (KAF) (KW) 

413. 4 0.0 126,500.0 

415. 1 297.5 126,500.0 

416.5 595.0 126,500.0 

417.7 892.6 126,500.0 

418.7 1, 190. 0 126,500.0 

419.6 1,487.6 126,500.0 

420.4 1, 785. 1 126,500.0 

421.2 2,082.7 126,500.0 

422.0 2,380.2 126,500.0 

422.8 2,677.7 126,500.0 

423.6 2,975.2 126,500.0 

427.0 4, 165. 3 113, 000. 0 

431. 6 5,950.5 94,000.0 

436.5 8,925. 7 73,000.0 

439.8 11, 901. 0 59,000.0 

443.0 15, 768.8 0.0 

Source: U .. S. Department of the Interior, Southwestern Power 
Administration, Tulsa, Oklahoma. 
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TABLE XII 

ESTIMATED MONTID.,Y ON-PEAK HOURS BY -RESERVOIR, h 1 (k) 

k Month Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula Robert S. 

1 July 432 502 180 374 339 548 

2 August 324 376 135 280 254 411 

3 September 216 251 90 187 169 274 

4 October 1"35 157 56 117 106 171 

5 November 135 157 56 117 106 171 

6 December 216 251 90 187 169 274 

7 January 216 251 90 187 169 274 

8 February 162 188 67 140 127 205 

9 March 162 188 67 140 127 205 

10 April 16Z 188 67 140 127 205 · 

11 May 162 188 67 140 · 127 205 

12 June 378 439 158 327 296 480 

Source: U.S. Department of the Interior, Southwestern Power Administration, Tulsa, Oklahoma.. 

Kerr 

O'I 
.....J 

! . 
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TABLE XIII 

TOTAL NUMBER OF HOURS IN EACH MONTH, h 2 {k) 

k Month Total Hours 

1 July 744 

2 August 744 

3 September 720 

4 October 744 

5 November 720 

6 December 744 

7 January 744 

8 February 672 

9 March 744 

10 April 720 

11 May. 744 

12 June 720 
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Next, the maximum hydroelectric energy generation is 

defined as the product of the energy capacity times the 

total :r;iumber of hours in month k. 

Storage Reservoir: EMAX. ( k) = EC . [ x . ( k) ] 0 h 2 ( k) 
1 1 1 

(16) 

where: 

EMAXi(k) = maximum energy generated in month k 

at the ith power plant in kilowatt-hours, 

EC.[ x. (k)] = energy capacity at storage x(k) during 
1 1 

month k at the ith reservoir, in 

kilowatts, 

h 2 (k) = total number of hours in month k. 

Run-of-river reservoir: EMAX. ( k) = EC. [tu. ( k) ] • h.. ( k) 
1 1 1 -z 

where: 

EMAX. (k) = maximum energy generated in month k 
1 

at the ith power in kilowatt-hours, 

(17) 

EC. [tu. (k)] = energy capacity at total release tu(k) 
1 1 

d . th k t th . th . uring mon a e 1 reservoir 

in kilowatts, 

h 2 (k) = total number of hours in month k. 

The maximum on-peak energy generated is defined as the 

energy capacity for a given storage or total release times 

the number of peak-hours in month k. 

Storage Reservoir: EPEAK. (k) = EC.[ x. (k)] • h 11. (k) 
1 1 1 

(18) 



where: 

EPEAK. (k) = maximum on-peak energy generated during 
J. 

month k at the ith power plant in 

kilowatt-hours, 

EC.[ x. (k)] = energy capacity at storage x(k) during 
J. J. 
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month kin the ith reservoir in kilowatts, 

h 1i(k) = number of on-peak hours during month k 

d .th 1 t an J. power pan. 

Run of river reservoir: EPEAK. (k) = EC. [tu. (k)] 
J. J. J. hli(k) 

(19) 

where: 

EPEAK. (k) = maximum on-peak energy generated in 
J. 

month k at the ith power plant in 

kilowatt-hours, 

EC.[tu. (k}] = energy capacity at total release u(k) 
J. J. 

in the ith reservoir during month kin 

kilowatts, 

h 1i(k} = number of on-peak hours for the ith 

power plant in month k. 

With these concepts already defined for the two types 

of reservoirs included in the system we can give a criterion 

to recognize when the energy generated will be on-peak or 

off-peak. Defining 

EUF = on-peak energy generation in kilowatt-hours, 

EVH = off-peak energy generation in kilowatt-hours, 

According to this terminology, we set up the following 

inequalities: 



if: 

if: 

if: 

tH EN = 
ii-· 

EN< EPEAK 

EVH = 0 

rH EPEAK = 
EPEAK < EN < EMAX 

EVH = EN - EPEAK 

tEUH = EPEAK 

EN > EMAX 

EVH = EMAX. - EPEAK. 
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(20) 

According to these inequalities we determine the on-

peak and off-peak energies generated at each of the six 

power plants in the system. 

The Performance Criterion 

The performance criterion to be maximized is the sum of 

the returns due to the sale of energy generated at the six 

power plants during·a period of twelve months. 
• 1. 

12 6 
J = t: Z L[PU(EUH.) + PV(EVH. )] 

k=l i=l 1. 1. 

(21) 

where: 

J = total return from operating the system for a 

period of 12 months, 

L = return from a single stage, 

PU= price of the on-peak energy, 

EUH t d k t the 1..th . = energy genera e on-pea, a 
1. 

power pl ant, 
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PV = price of non-peak energy, and 

EVH t d ff k t the ]..th ·. i = energy genera e o -pea , a 

-power plant. 

Constraints on the Operation 

of the System 

Three types of constraints are imposed on the system: 

the first, is related to storages, i.e., the state va.ri-

ables; the second is related to releases and control vari-

ables; and the third to the initial and final boundary 

conditions. 

For the storages we have 

(22) 

where: 

x. (k) volume of water in storage in the .th 
= ]. 

]. 

reservoir at month, k, in KAF, 

Stomin. minimum storage allowable in the .th = ]. 
]. 

reservoir, in KAE'., 

Stomaxi = maximum storage allowable in the i th 

reservoir, in KAF. 

The values for Stomin and Stomax for the six reservoirs 

are presented in Table XIV. 

The following constraints are imposed for the releases: 

Relmini (k) < ui (k) < Relmaxi.(k) (23) 



·TABLE XIV 

MAXIMUM AND MINIMUM STORAGES FOR THE SIX 
RESERVOIRS IN THOUSANDS OF ACRE-FEET 

Reservoir STOMIN STOMAX 

Keystone 287.5 2,193.70, 

Fort Gibson 311. 3 1, 735. 05 

Webbers Falls 135.2 165.20 

Tenkiller -Ferry 283.1 1,338.20 

Eufaula 864.8 5,990.20 

Robert S. Kerr 414. 1 493.60 

Source: U.S. Department of the Interior, Southwestern Power 
Administration, Tulsa, Oklahoma. · 
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where: 

Ck) 1 f th . th . . ~i ·. = re ease rom e i reservoir in 

period k, 

R 1 .. , (k} . ' . d 1 f th 'th e min; · = minimum require re ease rom e i 
J,. . 

reservoir to achieve all the uses of the 

water downstream of the dam in month k, 

in KAF, 

Relmax. Ck)= maximum allowed release from the ith 
i 
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reservoir in month k without jeopardizing 

the areas downstream of the dam. 

The values of Relmin and Relmax for each of the reser-

voirs and months are shown in Table xv. According to this 

data, the only reservoir that has minimum mandatory releases 

is Keystone reservoir. 

The third type of constraints is represented by the 

initial and final boundary conditions specifying the initial 

and final storages of water required for the six reservoirs 

and the beginning and end of the period of 12 months under 

analyf:$is. 

The initial and final boundary conditions for the sys-

tern of reservoirs are given by the following values: 

Keystone reservoir = 
Fort Gibson = 
Tenkiller-Ferry reservoir= 

618. 0 [KAF] 

365.2 [KAF] 

654.1 [KAF] 

Eufaula reservoir 

Webbers Falls reservoir 

= 2,329.7 [KAF] 

= 160.0 [KAF] 

Roberts. Kerr reservoir = 473.7 [KAF]. 

(24) 



k Month 

I July 

2 August 

3 Septembe·r 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

TABLE XV 

MONTHLY MINIMUM AND MAXIMUM RELEASES FOR THE SIX 
RESERVOIRS IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

REL MIN REL MAX REL MIN REL MAX RELMIN REL MAX REL MIN REL MAX REL MIN RELMAX 

45.01 860.84 0 688.67 0 2,189.0 0 260.65 0 882 •. 00 

50.05 860.84 0 688.67 0 2,189.0 0 260.65 0 882.00 

35.52 833.07 0 666.45 0 2, 118.4 0 252.24 0 853,54 

25.03 860.84 0 688.67 0 2, 189. 0 0 260.65 0 882.00 

16. 13 833.07 0 666.45 0 2, 118.4 0 252.24 0 853.54 

11. 68 860.84 0 688.67 () 2, 189. 0 0 260.65 0 882.00 

11. 68 860.84 0 688.67 0 2, 189. 0 0 260.65 0 882.00 

10.55 777. 53 0 622.02 0 1, 977. I 0 235.42 0 796.64 

16.66 860.84 0 688.67 0 2, 189. 0 0 260.65 0 882.00 

24.22 833.07 0 666.45 0 2, 118. 4 0 252.24 0 853.54 

36.71 860.84 0 688.67 0 2, 189. 0 0 260.65 0 882.00 

41. 95 833.07 0 666.45 0 2, 118.4 0 252.24 0 853.54 

Source: U.S. Department of the Interior, Southwestern Power Administration, Tulsa, Oklahoma. 

Robert S. Kerr 

REL MIN REL MAX 

0 2, 576. 4 

0 2,576.4 

0 2,493.3 

0 2, 576,4 

0 2,493.3 

0 2, 576. 4 

0 2,576.4 

0 2,327.0 

0 2,576.4 

0 2,493.3 

0 2,576.4 

0 2,493.3 

...J 
lJ1 
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These values indicate that the analysis starts and 

finishes with the six reservoirs filled up to the level of 

storage corresponding to the top of the power pool for each 

of the six reservoirs. 

The Trial Trajectories 

In Oklahoma, the flow of the rivers depends primarily 

on the rainfall, which is less predictable than snow. It is 

convenient to assume that the reservoirs in the system are 

filled up to the top of the power pool level at the begin-

ning of the summer. In this geographical area, this season 

coincides with the low stream flows, but at the same time, 

it is the period in which the electric-energy demand is the 

highest during the year. 

With these considerations in mind, July is selected as 

the initial month. At the beginning of July, all of the 

reservoirs are filled up to the top of the power pools. At 

the end of a period of 12 months, the reservoirs should have 

the same storage level to start another year of operation. 

In this study, the ana],.ysis uses two different tria.l 

trajectories. This is done in order to determine if optimal 

1 t . ' . d'. 1 13 If h 1 f h . 1 l' sou ion is unimo a. t e va ues o t e optima poi-

cies using the two trial trajectories coincide a global 

maximum has been reached: otherwise, a local maximum is 

obtained. 

The first trial trajectory keeps the storages in the 

reservoirs constant all along the year at the top of the 
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power pool. ·These values are presented in Table XVI for the 

system of reservoirs. 

In the second trial trajectory, we start at July with 

the reservoirs filled up to the top of the power pool, then 

from August through May the storage capacity increases up to 

95 per cent of the total storage capacity of the reservoirso 

Finally, in ·.June it goes down again to a storage level 

equivalent to the top of the power pool, then the next year 

starts with the reservoirs filled up to these levels. The 

values for this trial trajectory are shown in Table XVII. 

Use of the Constraints 

At every month when we introduce'the increments DX and 

create the subdomain S(k) around the trial trajectory value 

for the state variable, every neighbor value is checked 

against the state variables constraints Stomin and Stomax 

for each of the reservoirs in the system; if one of these 

neighbor values violates these constraints, it is deleted 

from any further analysis. 

The optimal releases found in corridor ch are checked 

for feasibility according to the Rel min and Relmax con-

straints values for each month. We proceed in the follewing 

way: 

if: 

(25) 

this inequality indicates that if the optimal releases from 

the ith reserveir at month k is less than the minimum 



k 

1 

2 

3 

4 

5 

6 

7 

-8 

9 

10 

11 

12 

13 

Month 

July 

August 

['ABLE XVI 

FIRST TRI.AL POLICY INDICATING THE MONTHLY VOLUME OF WATER 
STORED IN EACH RESERVOIR IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula 

618.0 365.2 160.0 655. 1 2,329.7 

618.0 365.2 160.0 654. 1 2,329.7 

September 618.0 365,2 160.0 654. 1 2,329.7 

October 618.0 365.2 160.0 654. 1 2,329.7 

November 618.0 365,2 160.0 654. 1 2,329.7 

December 618.0 365.2 160 .. 0 654. 1 2,329.7 

January 618.0 365,2 160.0 654. 1 2,329.7 

February '618. 0 365.2 160.0 654. 1 2,329.7 

March 618.0 365.2 160.0 654. 1 2,329.7 

April 618.0 365.2 160.0 654. 1 2,329.7 

_May 618. 0. 365.2 160.0 654. 1 2,329.7 

June 618.0 365.2 160.0 654. 1 2,329.7 

July 618.0 365.2 160.0 654. 1 2,329.7 

Robert S. 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

Source: U.S. Department of the Interior, Southwestern Power Admi11istration, Tulsa, Oklahoma. 

Kerr 

-..J 
(X) 



k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

13 July 

TABLE XVII 

SECOND TRIAL POLICY INDICATING THE MONTHLY VOLUME OF WATER 
STORED IN EACH RESERVOIR IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

618.0 365.2 160.0 654. 1 2,329.7 

2,078.0 1,625.3 160.0 1,294.4 5,751.4 

2,078.0 1, 625. 3 160.0 1,294.4 5,751.4 

2,078.0 1,625.3 160. 0 1,294.4 5,751.4 

2,078.0 1, 625. 3 160.0 1, 294. 4 5,751.4 

2,078.0 1,625.3 160. 0 1, 294. 4 5,751.4 

2,078.0 1,625.3 160.0 1, 294. 4 5,751.4 

2,078.0 1, 625. 3 160.0 1, 294. 4 5, 751.4 

2,078.0 1,625.3 160.0 1,294.4 5,751.4 

2,078.0 1, 625. 3 160.0 1,294.4 5,751.4 

2,078.0 1, 625. 3 160. 0 1, 294. 4 5,751.4 

2,078.0 1,625.3 160.0 1, 294. 4 5,751.4 

618.0 365,2 160.0 654. 1 2,329.7 

Robert S. Kerr 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 
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releases mandatory from the ith reservoir at this month, 

we let 

u. (k} = Relmin. (k) • 
1 1 

(26) 

Now if we consider the other extreme release situation 

where 

u. (k) > Relmax. (k) 
1 1 

(27) 

that is, when the optimal release from reservoir ith at 

month k is greater than the maximum allowable release at 

this stage, we let 

(28) 

Interpolation Procedure 

The values of energy rate, energy capacity, and surface 

as a function of the volume of water for the storage reser-

voirs; the tailwater elevation, and the energy capacity as a 

function of the total release for the run-of-river reservoir 

are stored in the computer as tables indicating chosen 

values of a given function relating pairs of these 

variables. 

Under the impossibility of tabulating all the values 

of a function, or even a very large set of values, some 

interpolation procedure must be used permitting us to re-

create a general value from a few chosen values. 

In order to calculate the energy generated at the power 



81 

plant of a storage reservoir by a given sequence of 

releases, it is necessary to kno•·the energy rate and energy 

capacity at the storage levels associated with these re-

leases. Also, the energy capacity and tailwater elevation 

related to a sequence of total releases are required in 

order to calculate the energy generated at the power plant 

of a run-of-river reservoir. 

If the storage or total release values are not tabu-

lated, an interpolation scheme is used to determine the 

energy related values associated with these particular 

values. The interpolation procedure adopted in this study 

is a cubic spline fitting which is a type of piecewise 

polynomial fitting. 14 

The name spline comes ffom a mechanical device used l;)y 
\ 

draftsmen to fit a curve of minimum curvature through sue-

cessive pairs of point of a set. 

Spline fitting does not find an analytical function 

which passes through each of a given set of pointso In-

stead, the interval is broken into a number of nonoverlap-

ping subintervals and the points in each subinterval are 

fitted by a polynomiai. 15 , 16 

The spline fitting has the property of minimum curva-

ture, in this sense the spline fits provide the "smoothest" 

interpolating functions for each subintervai. 17 

Conditions for Convergence 

The convergence of the discrete differential dynamic 
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programming algorithm depends upon the choice of the incre­

mental value DX of the state variables and on the conditions 

of convergence, or the stopping criterion for the algorithm. 

Choosing a value of DX too small or a stopping condition too 

large may result in missing the global optimum, although the 

algorithm may converge to a local optimum as it was indi­

cated in Chapter II. 

The procedure followed in this study is the following: 

we assign a value of DX "large enouglp." to guarantee a good 

sweeping of the state space in the first iterations. Then 

this value is cut progressively by half, and the iteration 

process continues until DX reaches pre-determined small 

value of convergence. 

The initial DX value considered in this study is for 

the critical period and the average inflows 

DX= 32 KAF 

and for the high inflows 

DX= 256 KAF. 

The value of DX is larger for the high inflows in order 

to make the convergence process faster; we are dealing with 

large volumes of water, so if the DX is small the convergence 

process takes a long time. 

In order to determine the convergence of the algorithm, 

.two stopping conditions are defined. 

E0 = stopping condition for the increment value DX, 
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EJ = stopping condition for the total return J. 

By using these two stopping conditions at the same time 

we could achieve the convergence of the algorithm. 

Convergence tests are performed only for optimal solu-

tions that converged for a given value of DX. A solution 

converges for a certain value of DX when the optimal solu-

tion, optimal sequence of releases, are the same for two 

successive iterations with a given DX value. 

Then, every time we reach convergence for a certain DX, 

we will test to see if 

(29) 

If DX if smaller, we stop the calculations; otherwise, we 

continue the iterative process. 

The stopping condition value related with the DX value 

to be used in this study is set up to the following value: 

ED = 1.0 KAF. 

In order to discuss the stopping condition associated 

with the performance criterion return, we define the follow-

ing index: 

J(new) - J(old) 
J(old) (30) 

This index indicates the relative change in the return 

for two successive solutions which converged ,for certain 

values of DX. J(new) indicates the return obtained from the 
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la.tter convergence solution, and J(old) indicates the return 

for the preceding converged solution: 

Then, if the value of this index is smaller than the 

value EJ' we stop the calculations; otherwise, we continue 

the iteration process in the following way: 

J(new) - J(old) 
J(old) < EJ. ( 31) 

The value for EJ used in this study is: 

EJ = 0.0001. · ./ .. 

An 11 or 11 relationship between the two stopping condi-

tions is used. In this sense, if only one of the stopping 

conditions is met, the iterative process is halted. If 

neither of the stopping conditions is met, a new value for 

DX is defined, the previous value is cut in half and the 

iterative process continues. 

The flow-chart of the computer program performing the 

discrete differential dynamic programming algorithm used in 

this study is shown in Figure 8. 



DX, 
DX• T 

Define a new trial 
trajectory with the 
x"and u* values at 
the iteration that 
converged for a 
given value of DX 

Figure 8. 
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: Start 

Read input data: 
'Triit trajectory, · · j Eq rate-storage, energy 
I Storages, and releases , : capacity--ffOrage, and surface-
_constraints, / storage tables, 
: Monthly inflows into Tailwater elevation-total release, 
: each r...,.,;r, , and energy capacity-total release 
, Monthly net evaporation , tables, 
: for each reservoir, : On-peak, and total monthly houn, 

No 

h-11+1 

Define a new 
trial trajectory 
with the x • and 
u* values at 
Iteration h 

Inola Gage minimum Initial DX value, 
flows, ; Stopping con<!itions E J and 
Energy prices, ED. 

No 

1Calculate releases and return 
auociated with the trial trajec· 
1tory. Store the ii' and ii trajec­
'tories and return J 

Introduce increments DX to the 
trial trajectory values, deter­
mine the neighbor points in 
corridor Ch and check their 
feasibility 

i Optimize by Dynamic Programming 
in the corridor Ch• calculate the 

: sequence op optimal mle&MS and 
check their feasibility. Stora the 
x • and u • optimal trajectories and 
optimal return J* for this iteration 

The solution converged 
for a given value of DX 

Write the optimal values for the storage 
and release trajectories and the optimum return 
associated with them 

Stop 

Flow Chart Indicating the Steps of the 
Discrete Differential Dynamic 
Programming Algorithm Employed in 
this Study 
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CHAPTER IV 

THE OPTIMAL OPERATIONAL POLICIES 

In this chapter, the optimal operational policies are 

presented for the system of six reservoirs under the three 

hydrologica.l conditions considered in the analysis. The 

optimal return for the system and the optimal storage and 

release policies for each particular reservoir are presented 

and discussed for the critical period, average, and high 

inflows. Also, the hydroelectric generation at each power 

plant is introduced. 

Critical Period Inflows 

The optimal returns for the system of six reservoirs 

associated with the critical period inflows, and the two 

·· trial trajectories are 

First trial trajectory= $841,398 

Second trial trajectory= $838,259 

There is a difference of $3,139 between the optimal 

~eturns. In relative terms, this difference represents a 

0.37% variation from the smallest optimal return value. 

The'convergence of the solution toward the optimal 

return is shown in Figure 9 for the two trial trajectories. 

88 
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Figure 9. Total Return for the System of Six 
Reservoirs as a Function of the 
Number of Iterations for the 
Critical Period of Inflows 
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The number of iterations required for convergence were 36 

for the first trial trajectory and 25 for the second trial 

trajectory. 

The total processing time required to optimize the 

operation of the system for a period of 12 months is pre-

sented in Table XVIII. 

TABLE XVIII 

* TOTAL PROCESSING TIME REQUIRED FOR 
THE ALGORITHM TO OPTIMIZE THE 

OPERATIOW OF THE SYSTEM 

90 

Trial Number of Total Processing Processing Time per 
Trajectory Iterations Time, Minutes Iteration, Minutes 

1st 36 13.04 0.362 

2nd 25 4.49 0.179 

* IBM System 360 Model 65. 

The first trial trajectory takes almost three times·--

more than the second trial trajectory to converge to the 

optimal solution. 

Following, the optimal storage and release policies 

for each reservoir are presented. 
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Keystone Reservoir 

The optimal storage policy for Keystone reservoir is 

presented in Table XIX for the first trial trajectory, in 

Table XX for the second trial trajectory, and graphically in 

Figure 10. 

As we can observe in Figure 10, the optimal storage 

policy of this reservoir did not meet the final boundary 

condition. This is due to the fact that regardless of 

evaporation losses, the yearly critical peribd inflows 

totaled 181 KAF and the yea.rly minimum rele~ses add up to 

325.19 K.AF. The total minimum releases are bigger than the 

total yearly inflows. 

Keystone starts with a storage of 618 KAF and at the 

end of 12 months operation finishes with a storage of 418.7 

KAF. There has been a loss of 32.3% of the water in stor-

, age after a year of operation. In order to avoid this loss 

of water, the minimum releases from this reservoir must be 

eliminated, or set equal to the inflows minus evaporation, 

and in this way, the reservoir storage remains constant" 

The optimal releases for the two trial trajectories 

are the same, and equal to the minimum releases required du 

during each month, as it is shown in Table XXI for the 

first trial trajectory and in Table XXII for the second 

trial trajectory. 

Fort Gibson Reservoir 

The optimal storage policies for Fort Gibson reservoir 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

TABLE XIX 

OPTIMAL STORAGE POLICY FOR THE CRITICAL PERIOD INFLOWS AND 
THE TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Month Keystone For!: Gibson Webbers Falls Tenkiller -Ferry Eufaula 

July 618. 0 365.2 160.0 654. 1 2,329.7 

August: 594.6 337.0 160.0 658. 1 2,300.9 

September 545.3 333.2 160.0 663.7 2,269.4 

October 506.4 329.8 160. 0 668.9 2,255,5 

Nove.mber 481.7 327.4 160.0 671. 8 2,244,0 

December 470.6 327.5 160.0 675. 1 2,252.7 

January 461. 8 329.7 160. 0 681. 7 2,267.3 

February 463. 11 330.9 160.0 714.2 2,279.8 

March 466.3 331. 8 160.0 751, 4 2,293.3 

April 461. 4 333.9 160.0 789.6 2,291.8 

May 453.4 353.2 160.0 789.2 2,439.7 

June 433.9 ·351. 8 160.0 807.6 2,254.0 

July 418.7 365.2 160.0 654. 1 2,329,7 

Robert S. 

473.7 

473.7 

473.7 
.. 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473. 7 · 

473.7 

473.7 

Kerr 

I..O 
N 



k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

TABLE XX 

OPTIMAL STORAGE POLICY FOR THE CRITICAL PERIOD INFLOWS AND THE 
-- SECOND~ TRIAL":-:'TRMECTORY .. IN:'.THOUSANDS ~OF .. ACRE-F.EET-

Month Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula Robert S. Kerr 

July 618.0 365.2 160.0 654. 1 2,329.7 473.7 

August 594.6 365.2 160.0 658. 1 2,052.9 473.7 

September 545.3 337.4 160.0 663. 1 2,023.4 473.7 

October l 506.4 330.0 160.0 668. 1 2, 010. 5 473.7 

November 481.7 327.6 160.0 670. 1 2,000.0 473.7 

December 470.6 327.7 160.0 673. 1 2,008.7 473.7 

January 461. 8 329.9 
' 

160. 0 679. 1 2,023.3 473.7 

February 463. 1 331. 1 160.0 711. 1 2,034.8 473.7 

March 466.3 332.0 160.0 748. 1 2,048.3 473.7 

April 461. 4 334. 1 160.0 786. 1 2,047.8 473.7 

May 453.4 .353. 2 160.0 801. 1 2, 196. 7 473. 7 . 

June 433.9 3 51. 9 160. 0 808. 1 2,253.7 473.7 

July 418.7 365. 2 160.0 654. 1 2,329.7 473.7 
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Figure 10. Keystone Reservoir: Optimal Storage Policies 
for the Critical Period Inflows 
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k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

TABLE XXI 

OPTIMAL RELEASE POLICY FOR THE CRITICAL PERIOD INFLOWS AND THE 
FIRST TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula Robert S, Kerr 

45.01 0.83 58.40 0.05 248.00 295.58 

50.05 24.00 91.26 0.54 0.74 91. 41 

35.52 4.27 49.60 0.26 0.21 50.66 

25.03 0. 19 35.20 0.81 0.01 38.26 

16. 13 o. 11 26.41 0.33 o. 11 34.39 

11. 68 0.05 22.35 o. 57 0.20 32.60 

11. 68 0.04 38.25 0. 58 o. 96 47. 89 

10.55 0.06 23.04 o. 11 0. 12 40.94 

16.66 0. 16 47.71 0.25 o. 14 55.75 

24.22 0.41 64.80 0.58 0.23 103.30 

36.71 o. 11 55.45 11. 41 o. 13 95.42 

41. 95 0.74 75.03 167.23 o. 11 251. 12 

I..O 
l1l 
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2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

TABLE XXII 

OPTIMAL RELEASE POLICY FOR THE CRITICAL PERIOD INFLOWS AND THE 
SECOND TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Month Keystone Fort Gibson Webbers Falls Tenkiller -Ferry Eufaula Robert S. Kerr 

July 45.01 29.00 86.57 0.00 0.00 75.70 

August 50.05 0,46 67.73 0.00 o.oo 66.59 

September 35.52 0.31 45.66 0.00 0.00 46.24 

October 25.03 0.20 35.21 0.00 0.00 37.45 

November 16. 13 o. 11 26.41 0.00 0.00 33. 96 

December 11. 68 0.05 22.35 0.00 0.00 31. 83 

January 11.68 0.04 38.25 0.00 0.00 46.35 

February 10.55 0.06 23.04 0.00 0.00 40.71 

March 16.66 0. 17 47. 72 0.00 0.00 55.37 

April 24.22 0.22 64.61 16.00 0.00 118. 31 

May 36.71 0.26 55.61 0.03 242.00 326.07 

June 41. 95 0.56 74.85 166. 72 0.45 250.76 
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are shown in Table XIX for the first trial trajectory and 

in TalDle XX for the second trial trajectory, and graphically 

in Figure 11. 

According to these results, the storage decreases from 

July to December when it reaches the smallest value; from 

then on, it increases until it reaches the final boundary 

condition for this reservoir. 

The optimal release policies for the two trial trajec-

tories are presented in Table XXI and XXII. The two poli-

cies are different specially for the first three months of 

operation; using the first tr±.al trajectory, the greatest 

release occurslin August; for the 2nd trial trajectory, the 

biggest release takes place in July, the first month of 

operation. 

Tenkiller-Ferry.Res~rvoir 

The optimal storage policies for Tenkiller-Ferry res-

ervoir a.re presented in Tables XIX and XX, fir the first 

and second trial trajectories, respectively, and graphically 

in Figure l2o 

The values of the optimal storages for the two trial 

trajectories are very similar, the biggest difference in 

values encountered corresponds to 3.5 KAF in the month of 

Aprilo The optimal storages indicated that the volume of 

I . 
water is never smaller than the storage corre~ponding to a 

full power pool or 654.1 KAF, they always increase up to 
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June, and then decrease to meet the final boundary condition 

value. 

The optimal release policy for the first trial tra-

jectory is shown in Table XXI, for the se1ond trial tra-
I 

jectory in Table XXII. The optimal releaJe policies differ 

for the two trial trajectories; for the first trial tra­

jectorY, water is always released in small 'amounts along the 

year; according to the results for the second trial tra-

jectory, there are releases only for three months in the 

period: April, May, and June and nothing during the rest 

of the year. 

Eufaula Reservoir 

The optimal storage policies for Eufaula reservoir are 

shown in Table XIX for the first trial trajectory and in 

Table XX for the second trial trajectory, and graphically in 

' Figure 13 o The values of the two optimal policies differ 

markedly for more than 200 KAF in each montho 

These results indicate that the storage decreases.from 

· July to Novetttber, when it reaches the lowest value, and then 

increases until the final boundary is reachedo 

The optimal release policies also differ for the two 

trial trajectorieso For the first trial trajectory, the 

biggest releases occurs in July; and in the rest of ~he 

year, only small amounts of water are releasedo The oppo-

site occurs using the second trial trajectory, the biggest 
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release takes place in May at the end of the period of 

operation.;- · 

Webbers Falls and Roberts. Kerr 

Reservoirs 

1oi 

As it was stated in the empirical model presented in 

Chapter III, the storage in these two run-of-river reser­

voirs is going to be kept constant and equal to 160 KAF for 

Webbers Falls and 473.7 KAF for Roberts. Kerr. 

The required released to keep the storage volumes at 

these two levels are shown in Table XXI for the first trial 

trajectory and in Table XXII for the second trial 

trajectory. 

Energy Generation 

· The annual energy generation for the system of six 

reservoirs is shown in Table XXIII for the two trial tra­

jectorieso As it was expected, all the hydrqelectric energy 

is generated on-peak, there is no off-peak energy produc­

tion. More than 48% of the annual energy is generated at 

the Roberts. Kerr power plant for both trial trajectories. 

The monthly energy generation at each power plant for 

the critical period is presented in Table XXXVI for Key­

stone, in Table XXXVII for Fort Gibson, in Table XXX:VIII 

for Webbers Falls, in Table XXXIX for Tenkiller-Ferry, in 

Table XL for Eufaula, and in Table XLI for Robert So Kerr 

(see Appendix A). 



·· TABLE XXIII 

ANNUAL ENERGY PRODUCTION IN KILOWATT-HOURS 
FOR THE SYSTEM OF SIX RESERVOIRS AND 

THE CRITICAL PERIOD INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Power Plant 

On-Peak On-Peak 

Keystone 8,277,580 8,277,580 

Fort Gibson 77,364 77,450 

Webbers Falls 15,303,616 15,316,298 

Tenkille r-Fe rry 13,867,790 13,884,619 

Eufaula 10,717,241 10, 729, 127 

Robert S. Kerr 45,337,033 44,946,791 

System Total 93, 580,624 93,231,865 

103 
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Aver age Inflows 

The optimal returns obtained from operating the system 

are for the two trial trajectories: 

First trial trajectory= $6,492,249 

Second trial trajectory= $6,491,650e 

There is a difference of $599 between the two optimal 

trajectories; in relative terms, the difference represents 

a 0.0092% variations from the smallest return. 

The rate of convergence toward the optimal return for 

each trial trajectory is presented in Figure 14. The first 

trajectory required 39 iterations to reach the optimal solu-

tion, and 46 iterations the second trial trajectory. 

The total processing time required to optimize the 

operation of the six reservoirs for a period of 12 months 

is presented in Table XXIV for the two trial trajectories. 

TABLE XXIV 

* TOTAL PROCESSING TIME REQUIRED FOR THE ALGORITHM 
TO OPTIMIZE THE OPERATION OF THE SYSTEM 

Trial Number of Total Processing Processing Time per 
Trajectory Iterations Time, Minutes Iteration, Minutes 

1st 39 59.09 1.515 

2nd 46 48.68 1.058 

* IBM System 360 Model 65 
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The optimal storage and release policies for each 

reservoi-rin-the system are presented next. 

Keystone Reservoir 

106 

The optimal storage policies for Keystone reservoir are 

shown in Table XXV for the first trial trajectory and in 

Table XXVI for the second trial trajectory, and graphically 

in Figure 15. 

The values of the optimal storage policies are very 

similar for the two trial trajectories. The largest differ­

ence corresponds to November with a difference of 20.3 KAF 

between the two trial trajectories results. 

The pattern of storage management indicated by the two 

optimal storage policies shows that the storage increases 

from July to September; decreases from September to October; 

increases again from October to December; decreases from 

December to February, the month at which the storage reaches 

its lowest value; increases from February to June; and 

finally, decreases to reach the final boundary condition 

value. 

The optimal release policies are presented in Table 

XXVII for the first trial.trajectory and in Table XXVIII for 

the second trial trajectoryo The release values are similar 

for both trajectories, only three months show differences: 

August, October, and November; the largest difference 

encountered in these three months is 35.02 KAF and it occurs 

in October. 



k Month 

1 July 

2 August· 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

13 July 

TABLE XXV 

OPTIMAL STORAGE POLICY FOR THE AVERAGE INFLOWS .AND THE 
FIRST TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

618.0 365.2 160.0 654. 1 2,329.7 

850.0 312.2 160. 0 699. 1 2,332.7 

694.0 312.2 160. 0 739. 1 2,204.7 

671. 0 330.2 160.0 664. 1 2, 170. 7 

I 857.0 312.2 160.0 Vi9. 1 2,226.7 

912.0 312.2 160.0 645. 1 2, 168. 7 

670.0 329.2 160.0 599. 1 2,030.7 

327.0 348.2 160.0 558. 1 1, 985. 7 

407.0 330.2 160.0 549. 1 1, 936. 7 

427.0 362.2 160.0 566. 1 1, 971. 7 

656.0 428.2 160.0 635. 1 2,241.7 

810.0 493.2 160.0 722. 1 2,811.7 

618.0 365.2 160.0 654. 1 2,329.7 

Robert S. Kerr 

437. 7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

1--' 
0 
-.J 
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1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

TABLE- XX.VI 

OPTIMAL STORAGE POLICY FOR THE AVERAGE INFLOWS AND THE SECOND 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Month Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

· July 618.0 365.2 160. 0 654. 1 2,329.7 

August 850. 1 393.3 160.0 699.7 2, 333. 1 

September 679.9 402.8 160. 0 586.2 2,205,5 

October 656.2 420.5 160. o 614. 1 2,.172.1 

November 877. 3 312. 1 160.0 660.7 . 2, 228. 5 

December 911. 5 332.3 160.0 646.9 2, 172. 5 

January 669.2 349.4 160. 0 · 601. 8 2,034.3 

February 328.4 368.8 160.0 558. 1 1, 989. 5 

March 408.6 350.6 160. 0 549.4 1, 940. 1 

April 427.4 382.9 160. 0 566.6 1, 975. 4 

May 656.0 449. 1 160.0 636.4 2, 246. 1 

June 810.0 514.2 160. 0 722. 4 2,815.4 

July 618.0 365.2 160. 0 654. 1 2,329.7 

Robert S. Kerr 

473.7 

473.7 

473.7 

473,7 

473.7 

473.7 

'473. 7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

I-' 
0 
(X) 
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TABLE XXVII 

OPTIMAL RELEASE POLICY FOR THE AVERAGE INFLOWS AND THE FIRST 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

k Month Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula 

1 July 45. 16 81. 13 184.55 0.65 261. 39 

2 August 307.78 10. 77 354.66 0.45 261. 12 

3 September 206.64 0.66 238. 72 102.95 252.93 

4 October 60.85 43.22 147.95 51. 72 261. 32 

5 November 76.26 21. 78 148.31 71.24 263.38 

6 December 

! 
332.03 0.30 400.56 116.98 340.65 

i 
! 

7 I January i 423.83 o. 61 478.97 122.52 260. 96 

8 
I February 11. 40 42.20 177. 73 103.65 312.43 I 
I 

9 I March 104.26 0.39 176.95 105.08 261. 40 

61. 12 0.64 177.83 101. 87 252.90 10. April 

11 May 32,5. 28 0.61 491. 12 88.69 260.87 

12 June 635.22 189. 77 935.24 184.01 1,053.46 

Robert S. Kerr 

537.91 

659.60 

640.98 

549.84 

552.78 

942.37 

942.55 

688.98 

707.97 

739.29 

1, 079. 01 

2,323.26 

f-' 
f-' 
0 



k Month 

l July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

TABLE X.XVIII 

OPTIMAL RELEASE POLICY FOR THE AVERAGE INFLOWS AND THE SECOND 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Keystone· Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula Robert S. Kerr 

45.01 0.00 103.27 0.00 261. 00 455.59 

322.05 o.oo 358.16 154. 00 · 260.67 816.20 

f 

207.39 0.00 238.81 0.44 252.34 537.97 

25.83 133.00 202.71 o. 19 260.89 552.61 

I 97.05 1. 50 148.83 71. 10 261.40 551.17• l 

332.32 0.23 400~78 116. 10 340.90 941. 95 

421. 65 o. 19 476.37 125. 13 260.76 942.37 

11. 18 42.29 177. 60 103.38 312.82 688.97 

105.47 0.00 177.76 104.89 216.02 708.22 

61.44 0.27 177. 78 101. 10 252.24 737.81 

325.33 0.39 490. 96 89. 69 261. 54 1, 080. 51 

635.22 210.45 955.95 184. 31 1, 057. 13 2,347.94 
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Fort Gibson Reservoir 

The optimal storage policies for this reservoir are 

shown in Table XXV for the first trial trajectory and in 

Table XXVI for the second trial trajectory, graphically 

these optimal policies are presented in Figure 16. The 

optimal storage values are different for both trial tra­

jectories, and only in the month of November are they almost 

the same. 

There is no general pattern of behavior like the one 

found for Keystone reservoir. In general, it could be said 

that the first trial trajectory indicates that the storage 

decreases from July to September, increases in October, 

decreases again from October to December, and then increases 

until June. Finally, the storage decreases for both tra­

jectories to meet the final boundary condition. 

The optimal release policies for Fort Gibson reservoir 

are presented in Table XXVII for the first trial trajectory 

and in Table XXVIII for the second trial trajectory. The 

optimal release values for both trajectories differ mark­

edly. The biggest difference is found in the first four 

months of the period. The first trial trajectory solution 

indicates that there are releases in the first four months; 

according to the second trial trajectory, there are no re­

leases in the first three months, they are concentrated in 

the fourth month. 
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Tenk±1-1-er-Ferry Reservoir 

The optimal storage policies for this reservoir are 

shown in Table XXV for the first trial trajectory and in 

Table XXVI for the second trial trajectory, and graphically 

in Figure 17. The optimal storag~ values are very similar 

for both trajectories, with the exception of September in 

which there is a difference of 152.9 KAF, and in October 

with a difference of 50 KAF. 

The general pattern for the first trial trajectory 

solution indicates that the storage should increase from 

July to October, decrease from October to March, and 

increase again until June. The second trial trajectory 

indicates a different behavior for September and October; 

according to this trial trajectory, the volume increases 

from July to August, decreases from August to September, 

increases from September to November; apd from November on, 

the optimal storage policy follows the same pattern found 

in the first trial traj 7ctory solution. 

The optimal release policies are presented in Table 

XXVII for the first trial and in Table XXVIII for the second 

trial trajectory. The optimal values of the optimal re­

leases are different from July to October, but' very similar 

the rest of the period. During the. first four months, the 

optimal releases are concentrated in. September for the first 

trial trajectory and in August for the second trial 

trajectory. 
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Eufaula Reservoir 

The optimal storage policies for Eufaula reservoir are 

shown in Table XXV for the first trial trajectory and in 

Table XXVI for the second trial trajectory, graphically 

the optimal storages are shown in Figure 18. 

The optimal storage values are very similar for both 

trial trajectories, the largest difference encountered 

between these values corresponds to only 4.4 KAF occurring 

during May. 

The general pattern of storage operation for this 

reservoir is the following: storage increases from July 

to August, decreases from.August to October, increases in 

November, decreases from November to March, increases again 

from March to June, and then decreases to meet the final 

boundary condition. 

The OJ)timal release policies for this reservoir are 

presented in Table XXVII for the first trial trajectory and 

in Table XXVIII for the second trial trajectory. The opti­

ma.l release values for the two trial trajectories are very 

similar with a maximum difference of 3.67 KAF during Juneo 

Webbers Falls and Robert So Kerr 

Reservoirs 

The required releases from these two reservoirs in 

order to keep their storages constant at 160 KAF in Webbers 

Falls and 473.7 KAF in Roberts. Kerr are shown in Table 



Storage 

5,500 

5,000 

4,500 

4,000 

3,500 

3,000 

2,500 

2,000 

1,700 

I 
I 

I 
I 

1 

I---------------------------. -- ------\ 
I 
I 
I 
I 
I 

\ 
--- 1st Trial Trajectory \ 

\ 
\ 

I 
- --- 2nd Trial Trajectory 

\ 
I 
I 
I 
I 
I 
I 
I 
I 

-·-·- Optimal Policy Using the 1st Trial Trajectory 

- . ·- Optimal Policy Using the 2nd Trial Trajectory 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

~=· \ .~, 
#" .. \ 

2 3 4 5 6 7 8 9 10 11 

Figure 18. Eufaula Reservoir: Optimal Storage Policies 
for the Average Inflows 

, .. \ 

12 13 k 



118 

XXVII for the first trial trajectory and in Table XXVIII for 

the second- tri-al trajectory. 

Energy Generation 

The annual hydroelectric energy generated for the sys­

tem of six power plants is shown in Table XXIX. It can be 

observed that as the volume of infows increases off-peak 

energy starts being produced. 

Using the first trial trajectory 769,195,538 kilowatt­

hours are generated; from this amount 704,310,607 kilowatt­

hours, or 91.56% are generated on-peak; and 64,884,931 

kilowatt~hours, or 8.44% are generated off-peak. Employing 

the second trial trajectory 770,616,771 kilowatt-hours are 

generated; from this total energy 703,630,519 kilowatt­

hours, or 91.31% are generated on-peak, and 66,986,252 

kilowatt-hours, or 8.69% are generated off-peak. 

Robert S. Kerr reservoir produces the greatest share 

of energy of the system, 49% of the on-peak energy, and 

more of the 49% of the off-peak energy. T_he same occurs 

for the critical period inflows. 

The monthly energy generation on-peak and off-peak are 

shown in Table XLII for Keystone, in Table.XLIII for Fort 

Gibson, in Table XLIV for Webbers Falls, in Table XLV for 

Tenkiller-Ferry, in Table XLVI for Eufaula, and in Table 

XLVII for Roberts. Kerr power plants (see Appendix A)o 



-TABLE· XXIX 

ANNUAL ENERGY PRODUCTION IN KILOWATT-HOURS FOR THE SYSTEM 
OF SIX.RESERVOIRS AND THE AVERAGE INFLOWS 

1st Trial Trajectory . 2nd Trial Trajectory 
Power Plant 

On-Peak Off-Peak On-Peak Off-Peak 

Keystone 98,785,012 135, 261 98,948,245 144,899 

Fort Gibson 4,233,437 - 6, 551, 936 . -
Webbers Falls 69,674,490 29,557,840 67,714,958 30, 900, 107 

Tenkille r -Ferry 64,095,562 39,668 63,995,880 82,883 

Eufaula 122,094,586 2,774,995 122, 195,420 2,782,635 

Robert S. Kerr 345,427,520 32, 377, 168 344,224,080 33,075,728 

System Total 704,310,607 64,884,931 703,630,519 66,986,252 

I-' 
I-' 
\.0 . 
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High Inflows 

The optimal returns associated with the equation of 

the system of six reservoirs under the high inflows and for 

the two trial trajectories are: 

First trial trajectory= $9,542,004 

Second trial trajectory= $9,551,575. 

There is a difference of $9,571 between the two 

optimal returns. In relative terms, this difference 

represents a 0.10% variation from the smallest optimal 

return value. 

The rate of convergence of the two trial trajectories 

toward the optimal returns is shown in Figure 19Q In order 

to reach convergence, the first trial trajectory required 

53 iterations, and the second trial trajectory required 58 

iterationso 

The total processing time employed to optimize the 

operation of the system for the two trial trajectories and 

a period of twelve months are presented in Table XXXo 

The optimal storage and release policies for each 

individual reservoir under the high inflows are presented 

next. 
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TABLE XXX 

* TOTAL PROCESSING TIME REQUIRED FOR THE ALGORITHM 
TO OPTIMIZE THE OPERATION OF THE SYSTEM 

Trial Number of Total Processing Processing Time per 
Trajectory Iterations Time, Minutes Iteration, Minutes 

1st 53 92040 1.743 

2nd 58 72.48 1.249 

* IBM System 360 Model 65 

Keystone Reservoir 

The optimal storage policies are presented in Table 

XXXI for the first trial trajectory and in Table XXXII for 

the second trial trajectory, and graphically in Figure 200 

The optimal storage values are similar from July to 

February, from then on the values vary between the two 

trial trajectories for as much as 251 KAF in Marcho 

According to these optimal storages, the storage 

increases from July to August, decreases from August to 

October, increases from October to December, decreases from 

December to April to June, and then decreases to meet the 

final boundary condition. The difference between the re-

sults of the two trial trajectories is the rate at which 

storage decreases from Jan'U:ary to Aprilo The storage de-

creases more rapidly using the first trial trajectory than 

it does the the second trial trajectoryo 



k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December ; 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

13 July 

TABLE XXXI 

OPTIMAL STORAGE POLICY FOR THE HIGH INFLOWS A.ND THE FIRST 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkille r -Ferry Eufaula 

618.0 365.2 160.0 654. 1 2,329.7 

868.0 451. 2 160.0 536. 1 1, 850. 7 

716.0 456.2 160.0 439. 1 1,746.7 

684.0 504.2 160.0 501. 1 1,922,7 

1, 114. 0 568.2 160.0 537. 1 2,603. 7 

1, 241. 0 622.2 160.0 582. 1 2,864.7 

1, 145. 0 656. 2. 160.0 598. 1 3,069.7 

797. 0 696. 2 160.0 630. 1 2,989.7 

749.0 743.2 160.0 725. 1 2,388.7 

592.0 527.2 160.0 555. 1 2,202.7 

697.0 674.2 160.0 796. 1 2,294.7 

853.0 816.2 160.0 775. 1 2,588.7 

618.0 365.2 160.0 654. 1 2,329.7 

Robert S. Kerr 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

473.7 

I-' 
N 
w 



k Month 

1 July 

2 August 

3 September 

4 October 

5 November 

6 December 

7 January 

8 February 

9 March 

10 April 

11 May 

12 June 

13 July 

TABLE XXXII 

OPTIMAL STORAGE POLICY FOR THE HIGH INFLOWS AND THE SECOND 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Keystone Fort Gibson Webbers Falls Tenkiller-Ferry Eufaula Robert S. Kerr 

618.0 365.2 160.0 654, 1 2,329.7 473.7 

866.0 451. 4 160.0 534. 1 1,855.0 473.7 

713. 5 484.3 160.0 436.6 1, 724. 3 473.7 

681. 0 532.8 160.0 498.8 1,899.4 473.7 

1,110.0 597.6 160.0 538.6 2,580.4 473.7 

1,236.0 652.2 160. 0 583.9 2, 841. 4 473.7 

1, 140. 0 686.8 160.0 600.4 3,046.3 473.7 

1, 007. 0 417.0 160. 0 633.4 3,035.4 473.7 

1,000.·0 464.5 160.0 729. 4 2,391.4 473.7 

554.0 527.0 160.0 806.4 1, 969. 4 473.7 

659.0 674.4 160.0 795.4 2,313.4 473.7 

815.0 816. 1 160.0 774. 4 2,554.4 473.7 

618.0 365.2 160.0 654. 1 2,329.7 473.7 
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The optimal release policies·are shown in Table X.XXIII 

for the first trial trajectory and in Table JOQCIV for the 

second trial trajectory. The optimal releases are similar 

from July to December, vary from January to March, are 

similar again in April and May, and vary again in June. 

Fort Gibson Reservoir 

The optimal s'torage policies for Fort Gibson reservoir 

are presented in Table XXXI for the first trial trajectory 

and in Table XXXII for the second trial trajectory, and 

,graphically in Figure 21. 

The optimal storage values are very similar for August 

and from April to June, varying for not more than 0.2 KAF. 

The rest of the values are not similar. The biggest differ­

ences are found- in February and March. 

The optimal results of the first trial trajectory 

indicate that the storage increases from July to March, 

decreases in April, increases from April to June, and 

decreases in July. According to the second trial trajectory 

results, the stora9e increases from July to January, 

decreases in February, increases from February to June, and 

decreases in July to meet the final boundary condition 

value •. 

The optimal release values are shown in Table XXXIII 

for the first trial trajectory and in Table XXXIV for the 

second trial trajectory. The value and distribution of the 

optimal releases are different. According to the results 



TABLE XXXIII 

OPTIMAL RELEASE POLICY FOR THE HIGH INFLOWS AND THE FIRST 
, TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

k Month Keystone Fort Gibson Webbers Falls Tenkille r-Fe rry Eufaula 

1 July 392.06 0.23 509.55 225.05 1,083.28 

2 August 516.32 27.92 630.46 217.53 487.81 

3 _September 401. 10 0.73 469.63 0.45 300.23 

4 October 261. 00 0. 96 356.63 82.33 260.77 
t 

5 November ' 183. 12 0.73 308.92 90.63 252.73 

6 December 276. 14 0.68 483.44 131. 01 261. 34 

7 January 504.68 0.24 621. 25 127.52 640.82 

8 February 275. 13 0.53 776. 48 90.68 1,228.37 

9 March 397.84 277.68 854.20 417.38 843.39 

10 April 552.71 0.73 853.70 117.19 1,052.84 

11 May 860.96 0.64 1,251.34 385.92 1,293.79 

12 June 1, 156. 24 598. 78 1,983.33 381. 33 1, 455. 19 

Robert S. Kerr 

2,042. 51 

1, 473. 37 

942.40 

978.27 

845.62 

1,060.27 

1,568.79 

2,326.51 

2,576.63 

2,493.23 

3,405.98 

4, 201. 13 

I-' 
N 
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1 

2 

3 

4 

5 

6 

7 

8· 

9 

10 

11 

12 

TABLE XXXIV 

OPTIMAL RELEASE POLICY FOR THE HIGH INFLOWS AND THE SECOND 
TRIAL TRAJECTORY IN THOUSANDS OF ACRE-FEET 

Month Keystone Fort Gibson Webbers Falls Tenkille r-Ferry Eufaula 

July 394.00 o.oo 511. 27 227.00 1,079.00 

August 516.85 0.00 603.07 218.07 514.45 

September 401.65 0.00 469.48 0.27 301.23 

October 

I 
261. 98 0.00 356.66 78.52 260.84 

November 184. 12 0.00 309. 19 90.33 252.74 

December 276. 14 0.00 482. 77 130. 52 261. 44 

January 289.69 310.00 716.01 126.51 571.76 

February 233.58 0.67 735,08 89.68 1,271.35 

March 685.56 o. 71 864.96 170.38 1,079.38 

April 553.01 0.28 853,56 368.64 802.01 

May 861. 16 o. 96 1, 251. 86 385.92 1,346.73 

June 1,118.49 598.67 1,945.62 380.64 1,421.12 

Robert S. Kerr 

2,041.89 

1,473.15 

943.06 

974.57 

845.62 

1,059.21 

1, 593. 50 

2, 327. 10 

2,576.37 

2,493.71 

3,459.44 

4, 128. 52 

I--' 
N 
()'.) 
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for the second trial trajectory, there are no releases from 

July to September; this fact does not occur for the first 

trial trajectory. The optimal releases indicate the 

releases are concentrated in two months of the year, March 

and June, for the first trial trajectory, and January and 

June for the second trial trajectory. The value of the June 

release almost has the same value for the two trajectorieso 

Tenkiller~Ferry Reservoir 

The optimal storage values are presented in Table XXXI 

for the first trial trajectory, in Table XXXII for the 

second trial trajectory, and graphically in Figure 220 

The optimal storage values for the two trial trajec­

tories are very similar, with the storage in April being 

the only value which varies drastically. The greatest 

difference found for the other months is of 4o3 during 

March. 

The results of the first trial trajectory indicate 

that the storage decreases from July to September, increases 

from September to March, decreases in April, increases in 

May, and decreases from May to July. The difference with 

the second trial trajectory is that the storage increases 

in the period from September to April, and then decreaseso 

The optimal release values are shown in Table XXXIII 

for the first trial trajectory and in Table XXXIV for the 

second trial trajectory. With the exception of the releases 

for March and April, the optimal releases values are very 
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similar for both trial trajectories. Besides, the distri-

bution of the releases is very similar for the two trial 

trajectories, with the exception of March and. April in which 

the order of the release is inverted for the two 

· trajectories. 

Eufaula Reservoir 

I ., 
The optimal storage values are shown in T~ble XXXI for 

the first trial trajectory and in Table XXX.II for the second 

trial trajectory, and Figure 23 presents them graphically. 

The opti~al storage values are similar for both trial 

trajectories, the only month that shows a significant dif-

ference is April in which the optimal values have a vari-

ation of 23304 KAF which corresponds to a 10% of the initial 

stor~ge of this reservoir. The largest difference for the 

other ;month is c;mly 45. 7 KAF in February. 

The general pattern of management for this reservoir 

should be the following: the storage decreases from July 

to September, increases from September to February, de-

creases from February to April, increases from April to 

June, and finally decreases to meet the final boundary con-

dition value. 

The optimal release values are presented in Table 

XXXIII for the first trial trajectory and in Table XXXIV 

for the second trial trajectory. The value and distribution 

of the optimal values are different in March and April in 

which the values are inverted for the two trial trajectorieso 
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Webbers F~lls and Robert S. ,Kerr 

Reservoirs 

The required releases to keep the storage in Webbers 

Falls constant at 160 KAF, and also constant in Robert So 

Kerr at 473.7 KAF are shown in Table XXXIII for the first 

trial trajectory and in Table XXXIV for the second trial 

trajectory. 

Energy Generation 

The annual energy generated by the system of power 

plants under the high inflows is presented in Table XXXV. 

We observe from these results that when the amount of water 

flowing into the reservoir increases, the amount of energy 
.. 

generated also increases. The system is producing more 

than 1.4 billion kilowatt-hours under the high inflows com-

pared with the 0.7 billion generated under the average 

inflows. 

From the total of m~re than 114 billion kilowatt-hours 

produced using either of the two trial trajectories, on-peak 

en~rgy represents more than 63%, and the off-peak represents 

more than 36%. When.compared in relative terms with the 
·-

average inflows generation, it is observed that the on-peak 

energy generation decreased from a 91% for the average 

inflows to 63% for the high inflows, and the off-peak 

generation increased from 8% for the average inflows to 

36% for the high inflows. 

The Roberts. Kerr powe~ plant, as it occurred for the 



TABLE XXXV 

ANNUAL ENERGY PRODUCTION IN KILOWATT-HOURS FOR THE SYSTEM OF 
SIX RESERVOIRS AND THE HIGH INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Power Plant 

I On-Peak Off-Peak On-Peak Off-Peak 

Keystone 171,571,070 51,851,712 171,636,890 53,884,194 

Fort Gibson 31,916,459 66,583 31,686,926 49,088 

Webbers Falls 77, 486, 222 117,402,652 77,486,237 118, 423, 927 

Tenkiller -Ferry 82,643,335 63,216,281 82,537,839 67,845,255 

Eufaula 129, 175, 502 3,022,286 127,975,933 2,912,978 

Robert S. Kerr 425,538,432 284, 964, 688 425,923,008 285,310,464 

System Total 918,331,020 520,524,202 917,246,833 528,425,906 

I-' 
w 
u, 



critical period and average inflows, is the one that 

generates more energy, representing more than 46% of the 

on-peak energy and more than 53% of the off-peak energy. 

136 

The monthly energy generation on-peak and off-peak is 

presented in Table XLVIII for Keystone, in Table XLIX for 

Fort Gibson, in Table L for Webbers Falls, in Table LI for 

Tenkiller-Ferry, in Table LII for Eufaula, and in Table LIII 

for Roberts. Kerr (see Appendix A). 



CHA,PTER V 

SUMMARY AND CONCLUSIONS 

This chapter is divided in three parts .. The first 

presents the objectives and the procedure followed in this 
.A . 

study, the second presents the main finding'and conclusions, 

and finally the third indicates the limitations of the 

study and provided suggestions for further research in the 

area of optimization methods applied to water resources 

systems. 

Objectives and Procedures 

The main objectives of this study are the presentation 

and application of a new optimization technique called 

differential dynamic programming which drastically reduces 

the high speed memory requirements of the dynamic program-

ming algorithm .. The application of this optimization 

tool uses a complex water resources system composed by six 

multi-purpose reservoirs in Eastern Okiahoma. The reser-

voirs included in the analysis are Keystone, Fort Gibson, 

Webbers Falls, Tenkiller-Ferry, Eufaula, and Roberts .. Kerr. 

Considering the actual operation of the system and the 

nature of the water contracts, hydroelectric energy is con-

sidered in this research as the only "marketable" use of the 

137 
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water with an associated monetary returno Then, the per­

formance criterion to be maximized was the return obtained 

by selling hydroelectric energy. A distinction is made 

between energy on-peak and off-peak, depending if the energy 

was generated during a high or a low demand period, respec­

tively. This differentiation is important bec~use in 1974 

the price charged for the on-peak energy is 3.6 times higher 

than the off-peak price. An empirical model was developed 

as a multi-stage sequential decision process amenable to 

optimization by discrete differential dynamic programming. 

This model has a built-in procedurerto transform the water 

released from the reservoirs into hydroelectric energy, and 

at the same time to differentiate between the on-peak and 

off-peak energy generation. 

A deterministic approach is adopted in the analysis: 

the monthly inflows and the net evaporation rates are known 

quantities for the twelve months period under analysis. 

In order to estimate the sensitivity of the optimal 

operational policy of the system under different hydrologi­

cal conditions, the analysis is performed for three levels 

of monthly inflows corresponding to the critical period, 

average, and high inflows. 

Findings and Conclusions 

The findings and conclusions of this study are pre­

sented in two parts. The first presents the reduction in 

core memory achieved using this algorithm, the second part 



presents and discusses the optimal operational policies 

obtained applying the technique to the system of six 

reservoirs. 

High Speed Memory Requirements 

A drastic reduction in core memory was achieved by 

using differential dynamic programmingo But before the 

results are presented, it is necessary to clarify some 

characteristics of the system under study. 

139 

In this dissertation, we are dealing with six reser­

voirs or six state variables; but actually, after the 

storages of Webbers Falls and Roberts. Kerr reservoirs were 

assigned constant values, the problem becomes a four state 

variables problem. In tnis sense, a decision has to be 

made for Keystone, Fort Gibson, Tenkiller-Ferry, and 

Eufaula reservoirs.~ 

If the state policy space for these four reservoirs 

presented in Table XIV is quantized in a grid with a step 

size of 32 KAF, 60 grid points are necessary fo+ Keystone, 

45 grid points for Fort Gibson, 33 grid points for 

Tenkiller....,Ferry, and 161 grid points for Eufaula reservoiro 

Then, according to formula {12) on page 33, the minimum 

number of memory locations required to solve this problem 

by programming are: 

M = 24 • 60 • 45·· 33 • 161 

= 344,282,400 

[ :bytes] 

[ bytes] 
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Dynamic programming requires 336,213 K[bytesJ 1 of high 

speed memory to solve this problem. For the same problem 

the differential dynamic programming required only 52 

K-bytes , or 0.015% of the requirements of dynamic 

programming. 

Another major obstacle found in applying dynamic pro-

gramming is the computer time required for the computations 

and comparisons that must be made for, each value of the 

control variable at each stage. If the control feasible 

space for these four variables is quantized in a grid with 

a step size of 16 KAF, then 46 grid points are required for 

Keystone, 39 grid points for Fort Gibson, 15 grid points for 

Tenkiller-Ferry, and 50 grid points for Eufaula reservoir. 

The total combinations of decisions provided by these 

points is given by the product of these values or 

46 ° 39 ° 15. 50 = 1,345,500. 

More than 1.3 million of combinations of decisions are 

required to optimize this problem using dynamic programming. 

If the optimization is limited to th~ neighborhood of the 

trial trajectory, this amount is greatly reduced. Besides, 

if the system is invertible like in this study, the number 

of combinations to take the system from x(k-1) to a partic-

n ular x(k) is given by the formula T, or the number of 

incremental values raised to the number of state variables 

power. In this problem where three incremental values are 

considered (+DX, 0, -DX), and there are four state 
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variables, the number of decisions at each stage is 3 4 , or 

81 decisions need to be considered instead of more than L 3 

![!:ill ion for the classi-cal algorithm. 

The Optimal Operational Policies 

As the monthly inflows for the system increase, so 

does the value of the performance criterion. The optimal 

return associated with the critical period inflows is 

approximately 0.84 million, for the average inflows is 6.49 

millions, and for the high inflows i 9.54 millions. The 

annual return increases dramatically by 672.6% between the 

critical period and the average inflows, and only by a 47% 

between the average and the high inflows. 

More than 93 millions of kilowatt-hours are-generated 

in a year under the critical period inflows, and all the 

hydroelectric generation is on-peak energy. The annual 

energy generation increases to 770 millions of kilowatt­

hours for the average inflows from which more than 91% is 

produced on-peak and only approximately 8. 5% is off-peak 

energy. For the high inflows, the annual energy generation 

is over 1.4 billion kilowatt-hours of which more than 63% 

is generated on-peak, and more than 36% is off-peak energy. 

For every level of monthly inflows considered, the 

results indicate that Roberts. Kerr power plant generates 

over 48% of the annual total hydroelectric energy. 

The optimal operational policies obtained for each of 

the six reservoirs in the system for the two trial 
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trajectories employed in the analysis indicate that the 

optimal solutions are not unimodal for any of the three 

levels of inflows, the global optimal value of the per­

formance criterion is unknown, as the optimal value of DX 

is also unknown. 

Given the proximity of the optimal solutions, it is 

estimated that the algorithm reached al t~rnati V'f= local 

optimum solutions. This characteristics of the algorithm 

was discussed in Chapter II, where an application of this 

technique was proposed for a fictitious water resource 

system. 

These results may be considered only as approximate· 

values of the optimum, but this is the trade-off that has 

to be paid to achieve such large reductions. in core memory 

requirements. A few suggestions to improve this algorithm 

are given in the next section. 

Limitations and Suggestions for 

Further Research 

The limitations are mainly two: the first, associated 

with the stochastic nature of the inflows; and the second 

with the selection of the trial trajectory and the value of 

incremental values DX to form the subdomain S(k) at each 

stage of the analysis. Therefore, the suggestions for 

further research presented in the following section are 

related to procedures designed to overcome the obstacles 

presented by these two limitations. 



Selection of the Trial Trajectory and 

the Incremental Values 
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In their work on discrete differential dynamic pro­

gramming Gershwin and Jacobson state that in order to guar­

antee the convergence of the algorithm to a gl~bal maximum, 

it is necessary to choose a "sufficiently good" trial 

trajectory with respect to the objective of the research. 2 

In this sense, "a priori knowledge" on the behavior of the 

performance criterion is a prerequisite for the application 

of the optimization technique. 

When the return obtained by operating a reservoir is 

maximized using an iterative optimization technique, it is 

necessary to have some knowledge about the behavior of 

return under different operational policies and hydrological 

conditions for each individual reservoir in a systemo Using 

this information, a "trial trajectory" which is "close" to 

the unknown optimal operational po+icy of the system can be 

used as the reference policy to start the optimization 

algorithm. This information is not available at the present 

for the six reservoirs considered in this study. 

Optimization techniques used in management decision­

making require basic economic data on the individual compo-

nents of a systemo As the complexity of the optimization 

method increases, so does the requirements fo'r good basic 

datao This represents a very productive area of research 

in future water resources studieso 

The other important requirement of the discrete 
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differential dynamic programming algorithm required for 

convergence to a global optimum is the selection of the 

state variable incremental value DX in order to determine 

the subdomain S(k) at each stage in the analysiso If a 

global maximum is to be reached the incremental value should 

be chosen "properly," otherwise, the algorithm could con-

verge to a local maximum, or minimum. 

Jacobson proposes an interesting method to determine 

h 1 f h . bl . 3 t e va ue o testate varia e incremento Basically, the 

method consists in making the size of the increment DX a 

function of the stage variable. Then by choosing stage k 1 

near kf in the interval [k1 , kf] where k0 ~ k 1 < kf' the 

state increment DX can be forced to be as small as wanted. 

This method is also effective for large values of the con-

trol variable. 

Briefly, it can be said that there exists a stage k 1 

close to the final stage kf in the interval k 0 < k 1 < kf' 

such that the trial trajectory solution is followed from 

k0 to k 1 , and then the variational performance criterion 

given by Equation (11) on page 30 is calculated applying the 

principle of optimality from k 1 to kf. Solving this equa­

tion for DX provides a state increment value small enough 

as required by the algorithmo Tris procedure could be 

'~applied at the beginning of each iteration or when the· 

performance criterion obtained from two successive itera-

tions shows little or no improvemento 

In order to check if the incremental value DX obtained 
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4 by this method is small enough Jacobson and Gershwin and 

5 Ja~obson propose the following test based on the value of 

the performance criterion 

* where Jh is the value of the performance criterion with the 

trial trajectory with the increments at iteration h, and Jh 

indicates the value of the performance criterion associated 

with the trial trajectory at iteration h. 

If the value of ~Jh is close to zero, it can be in­

ferred that the DX value is small enough as required by the 

algorithm. 

This procedure to obtain the incremental value DX was 

not employed in this study. Provided the results of this 

research, in future applications of differential dynamic 

programming, it seems advisable to calculate the value of DX 

by the method proposed in this section. 

The problems presented by the choice of a 11 good 11 trial 

trajectory, and a 11 proper 11 value for the state variable 

increment are not only limited to differential dynamic pro-

gramming, they are also shared by other iterative optimiza-

tion methods like the gradient and second variations 

method. 6 ' 7 

Stochastic Nature of the Inflows 

The reservoir problem is an inventory problem in which 

the water flowing into the reservoir in a given period of 
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time is a random variable. The stochastic nature of the 

monthly inflows was not considered in this study, as a means 

to overcome this problem, instead the flows were included at 

three different levels in order.to estimate the sensibility 

of the system under different hydrological conditions. 

Rainfall is the main source of water for the stream-

flows in Oklahoma. Given the fact that rainfall cannot be 

predicted accurately, it may be advisable. to include the 

inflows a.s random variables in the analysis. In order to do 

this, it is necessary before hand to study ~he probability 

distributions describing the inflows during a given period 

of time. Furthermore, the dependence in time of the inflows 

must be studied carefully, because the dynamic programming 

optimization of systems that show complex dependence becomes 

8 very cumbersome. 
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-TABLE :XXXVI 

KEYSTONE POWER PLANT: MONTHLY ENERGY PRODUCTION 
IN KILOWATT-HOURS FOR THE CRITICAL 

PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

1 . July 1,474,572 1,474,572· 

2 August 1,571,479 1,571,479 

3 September 1,002,397 1,002,397 

4 October 636,068 636,968 

5 November 378, 123 378, 123 

6 December 262,806 262,806 

7 January 253,801 253,801 

8 February 230,474 230,474 

9 March 368,686 368,686 

10 April 525,516 525,516 

11 May 770, 004 770,004 

12 June 803,654 803,654 

Total 8, 277, 580 8;277,580 
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TABLE XXXVI I 

FORT GIBSON POWER PLANT: MONTHLY ENERGY 
PRODUCTION IN KILOWATT-HOURS FOR 

THE CRITICAL PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 2,050 69, 157 

August 56,809 1, 251 

September 11,812 861 

October 507 525 

November 207 279 

December 125 129 

January 111 114 

February 171 177 

March 446 462 

April 1, 128 607 

May 208 504 

June 3, 727 3,348 

Total 77,364 77,450 
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TABLE XXXVIII 

WEBBERS FALLS POWER PLANT: MONTIIl..Y ENERGY 
PRODUCTION IN KILOWATT-HOURS FOR THE 

CRITICAL PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 1,521,401 2,228,740" 

August 2,350,727 1, 763, 786 

September 1,292,036 1, 189, 238 

October 917,062 917,246 

November 688,050 688, 151 

December 582,460 582,509 

January 996,530 996, 569 

February 600,283 600,345 

March 1,242,918 1,243,075 

April 1, 687, 696 1,682,896 

May 1,444,484 1,448,536 

June 1,979,969 1,975,307 

Total 15,303,616 15,316,298 
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TABLE XXXIX 

TENKILLER-FERRY POWER PLANT: MONTHLY ENERGY 
PRODUCTION IN KILOWATT-HOURS FOR 

THE CRITICAL PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 3,281 -
August 34,248 -
September 16, 707 -
October 52, 517 -
November 21,686 -
December 37,270 -
January 38, 152 -

February 7,809 -
March 17,644 -

April 43, 137 1, 120, 836 

May 862,845 77,225 

June 12,732,494 12,686,558 

Total 13,867,790 13, 884, 619 
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TABLE XL 

EUFAULA POWER PLANT: MONTHLY ENERGY PRODUCTION 
IN KILOWATT-HOURS FOR THE CRITICAL 

PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 10,563,416 -

August 28, 163 -
September 7, 776 -

4 October 204 -
5 November 4,034 -

6 December 7,388 -
7 January 36,491 -

8 February 4,620 -

9 March 5,402 -

10 April 8,639 -

11 May 5, 121 10,669,062 

12 June· 45,987 60,065 

Total 10, 717, 241 10, 729, 127 
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TABLE XLI 

ROBERTS. KERR POWER PLANT: MONTHLY ENERGY 
PRODUCTION IN KILOWATT-HOURS FOR THE 

CRITICAL PERIOD INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 11,560,034 3,013,222 

August 3,639,090 2,688,409 

September 2,049,283 1,871,791 

October 1,550,450 1,517,709 

November 1,394,626 1,376,929 

December 1, 322, 177 1, 291, 193 

January 1,938,618 1,876,638 

February 1,658,824 1,649,456 

March 2,252,217 2,238,929 

April 4, 151, 270 4,705,889 

.May 3, 838, 511 12, 748,385 

June 9,981,933 9, 968, 242 

Total 45,337,033 44,946,791 
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TABLE XLII 

KEYSTONE POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE AVERAGE INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 1, 479, 451 - 1,474,540 -
August 13,272,297 - 13,891,538 -
September 7,597,199 - 7,483,890 -
October 2,169,049 - 901, 180 -
November 3,321,707 - 4,300,087 -

December 15,119,986 8,907 15, 119, 986 15,974 

January 15, 087,885 - 14,993,015 -
February 7 5, 741 - 14,993,015 -

March 1', 726, 191 - 1, 763, 729 -
April 1, 135, 589 - 1, 143,845 -
May 11, 339, 949 7,234 11, 339, 950 9,805 

June " 
. 

26,459,968 119, 120 26, 459, 968 119, 120 

Total 98,785,012 135, 261 98,948,245 144,899 
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. · TABLE XLIII 

FORT GIBSON POWER PLANT: MONTHLY ENERGY 
PRODUCTION IN KILOWATT-HOURS FOR 

THE AVERAGE INFLOWS 

1st Trial 2nd Trial 
Trajectory Trajectory 

Month 
On-Peak On-Peak 

July 197,913 -
August 3,921 -
September 237 -
October 119, 460 l, 893, 3 58 

November 7,935 752 

December 111 899 

January 1, 655 680 

February 97,255 130,409 

March 1,068 -
April l, 453 1,869 

May 9,025 6,563 

June 3,793,404 4, 517, 406 

Total · 4,233,437 6, 551, 936 
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TABL-E XL-IV 

WEBBERS FALLS POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE AVERAGE INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
k Month 

On-Peak Off-Peak On-Peak Off-Peak 

1 July 4, 775, 955 - 2,689, 143 -
2 August. 9, 185,424 - 9,276,231 -
3 September 6,207,574· - 6,209,955 275 

4 October 3,850,754 - 3,863,975 1, 383, 4.12 

5 November 3, 860, 184 - 3,863,982 9,650 

6 December 6, 209, 932 4, 188, 145 6,209,932 4, 193,762 

7 January 6, 209~ 921 6, 211, 111 6,209,926 6,144,244 

8 February 4,622,974 1,564 4, 621, 103 -
9 March 

I 
4,604,035 - 4,622,974 28, 194 

10 April 4,622,974 3,939 4,622,974 2,887 

11 May 4,622,941 8, 110, 951 4,622,941 8, 106,956 

12 June 10,901,822 11, 042, 130 10,901,822 11, 030, 722 

Total 69,674,490 29,557,840 67,714,958 30, 900, 107 
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TABLE XLV 

TENKILLER-FERRY POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE AVERAGE INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory· 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 41, 181 - - -
August 30, 727 - 10,378,845 -
September 7,280, 100 - 24,624 -
October 3,315,052 - 11,023 -
November 4,533, 100 - 4,534,973 -
n·ecember 7,292,998 296 7,256,881 4,705 

, 

January 7,048,818 - 7,235,273 -
February 5,459,998 18,304 5,459,997 -
March 5, 441, 672 -· 5,435,665 -
April 5,459,996 21,068 5,445,604 -
May 5,440,324 - 5,459,998 53,787 

June 12, 751, 596 - 12,752,997 23,883 

Total 64,095,562 39,668 63,995,880 82,883 
I-' 
O'I 
N 
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TABLE XLVI 

EUFAULA POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE AVERAGE INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On.;.Peak Off-Peak On-Peak Off-Peak 

July 11, 135, 892 -· ll, 119, 385 -
August 11, 161, 749 - 11, 163, 152 -
September 10,334, 118 -· - 10,337,272 -
October 9, 049, 485 1, 493, 790 9,051,770 1, 497, 211 

November 9, 136, 007_ 1,281,204 9, 138, 737 1,285,424 

Pecember 10,535,204 - 10,550,670 -
January 9,946,549 - 9,962,667 -
February 8,797,021 -·- 8,812,956 -

March 9,506,560 - 9,522,990 -
April 9,361,865 - 9,378,780 -
May 10,822,317 -. 10,839, 106 -
June 12,307,819 - 12,317,935 -

Total 122,094,586 2, 774, 994 122, 195, 420 2,782,635 
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TABLE XLVII 

ROBERTS$ KERR POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE AVERAGE INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak· On-Peak Off-Peak 

July 20,482,816 - 17,522,688 -
August 24,862,736 - 30, 317, 136 -
September 24, 239, 776 - 20, 556,928 -
October . 20, 984, 624 - 21,048,928 -
November 21,090,896 - 21, 033, 104 -
December 34,653,872 - 34,639,648 -
January 34,660,032 - 34,654,032 -
February 25,932,480 304 25,932,368 -
March 25,932,464 665,536 25,932,464 709, 184 

April 25,932,480 1, 758,352 25,932,464 1,706,816 

May 25,932,464 13, 303, 232 25,932,464 13, 353, 760 

June 60,722,880 16,649,744 60, 721, 856 17,305,968 

Total 345,427, 520 32, 377, 168 344, 224, 080 . 33,075,728 
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TABLE XLVIII 

KEYSTONE POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 12,811,295 - 12, 875, 185 -
August 22,679,968 20,464 22,679,968 6,832 

September 15, 119, 986 35,884 15, 120, 000 12,353 

October 9,449,974 20,668 9,449,974 18, 104 

November 9,449,991 1, 298 9,449,991 33, 153 

December 15,119,986 37,735 15, 119, 986 4, 770 

January 15, 119, 986 11,346,862 15, 119, 986 33,767 

February 11, 339, 989 12,365 11,339,990 3, 197 

March 11,339,989 4,279,227 11,339,990 21,815,008 

April 11,339,959 5,958,937 11,341,903 4,627,586 

May 11,339,979 20, 432, 656 11,339,949 18,824,032 

June 26,459,968 9,705,616 26, 459, 968 8,505,392 

Total 171, 571, 070 51,851,712 171,636,890 53,884, 194 



TABLE XLIX 

FORT GIBSON POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

I 1st Trial Trajectory 2nd Trial Trajectory 
k Month 

On-Peak Off-Peak On-Peak Off-Peak 

1 July 568 - - -

2 August 437,473 - - -

3 September 12,008 - - -
4 October 19, 776 - - -
5 November 18,208 - - -

6 December 18, 960 - - -
7 January 7, 152 - 9,679,704 -
8 February 16,864 - 9,393 -
9 March 9,399,997 12,039 12,281 -

10 April 16, 156 - 6, 152 -

11 May 19,313 - 29,412 -

12 June 21,949,984 54,544 21,949,984 49,088 

Total 31,916,459 66, ·533 31,686,926 49,088 



k 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

TABLE L 

WEBBERS FALLS PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 12,419,842 763,046 12,419,842 807,307 

August 9,314,865 6,970,073 9,314,865 6,295,940 

September 6,209,926 5, 970, 177 6,209,926 5, 966, 403 

October 3,863,961 5,398,257 3, 863, 961 5,399,330 

November 3,863,968 4, 163, 530 3, 863, 965 4, 170,797 

December 6,209,921 6,326,225 6,209,921 6,309,014 

January 6,209,910 9,866,936 6,209,904 12,263,024 

February 4,622,924 15,413, 716 4,622,924 14, 360, 960 

March 4,622,924 17, 382, 160 4,622,924 17,654,048 

April 4,622,924 17,365,584 4,622,924 17,365,760 

May 4,622,949 17,825,520 4,622,949 17, 825, 152 

June 10, 902, 108 9,957,428 10, 902, 128 10, 006, 192 

Total 77,486,222 117,402,652 77,486,237 118,423,927 
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TABLE LI. 

TENKILLER-FERRY POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

1st: Trial Trajectory 2nd Trial Trajectory 
! Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 14,216,005 - 14,339,055 -
August 10,920,003 884 10,894;591 -
September 16,257 - 9,678 -
October 3,750,834 - 3,552,789 370 

November 4,561,236 - 4,563,003 -
December 7,293,000 286 7, 292, 725 -
January 7,293,000 29,845 7,292,998 3,507 

February 5,460,000 53,961 5,460,000 24,731 

March 5_, 460, 000 23,555,984 5,460,000 6,449,516 

April 5;460,000 692,350 5,460,000 22,558,368 

May 5,460,000 23~ 555, 984 5,460,000 23,546,784 

June 12,753;000 15,326,987 12,753,000 15,261,979 

Total 82,643,335 63,216,281 82, 537,839 67,845,255 
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TABLE LII 

EUFAULA POWER PLANT: MONTHLY ENERGY PRODUCT I ON IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 11, 147, 179 - 11, 147, 179 -
August 9,079,060 - 9, 100,872 -
September 8,253,464 - 8, 132,059 -
October 8,627, 114 811, 407 8, 589, 213 734,717 

November 9,647,914 2,055,239 9,615,677 2,014,571 

December 12,866,519 - 12,801,747 -
January 13,414,415 - 13, 354, 331 -
February 11,927,609 - 12, 036, 039 · -
March 11, 207, 313 155,640 11, 211, 607 160,918 

April 10, 326, 501 - 9,351,332 -
May 11, 022, 143 - 11, 088, 409 2, 772 

June 11, 656, 271 - 11, 547, 468 -
Total 129, 175,502 I 3,022,286 127,975,933 2,912,978 
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TABLE LIII 

ROBERTS. KERR POWER PLANT: MONTHLY ENERGY PRODUCTION IN 
KILOWATT-HOURS FOR THE HIGH INFLOWS 

1st Trial Trajectory 2nd Trial Trajectory 
Month 

On-Peak Off-Peak On-Peak Off-Peak 

July 69,255,392 - 69,237,504 -
August 51,961,744 - 51,986,720 -
September 34,654,064 - 34,660,976 15,888 

October 21,631,472 14,233,616 21,631,472 14, 108,992 

November 21,631,472 9, 730, 144 21,631,472 9, 730, 016 

December 34, 660, 960 3,951,456 34,660,960 3, 916, 112 

January 34,661,040 20,332,080 34, 661, 072 21,072,368 

February 25, 933, 728 51,446,576 25,933,712 51, 459, 968 

March 25,926,336 58,233,840 25,926,336 58,233,552 

April 25,927,808 56,009,296 25, 927, 776 56,008,896 

May 25,316,832 53,654,400 25, 193, 296 53,428,384 

June 53, 977, 584 17,373,280 54,471,712 17,336,288 

Total 425,538,432 284,964,688 425,923,008 285,310,464 
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C THIS PROGRAM CALtULATES THE OPTIMAL OPERATIONAL POLICY FOR A S~STE~ JF 
C SIX MULTI-PJRPOSE RESERVOIRS 

COMHON/DATA/Xl(30J,ER1(30),EC1130J,SURF1(30l,X2(21l,E~2121l, 
1EC2121),SURF2121J,X3(43),ER3(43),EC3(43J,SURF3(,3J,X,(2~J, 
2ER4(26),EC4(26J,SURF4(26J,U5(ll)~EC5(lll,TEL5(11),ER5,SU~F5, 
3U6( 16) ,EC6( 16 l, TEL6( 16) ,ER6, SJRF6, NXl, NX2 ,NX3 ,NX4, NX5, NX6 

COMMON/SPL~E/WER1160),wEC1(60J,WSU~Fl(60l,WER2(42J,WEC2(42l, 
1WSURF2 (421 ,W ER3 ( 861, w EC3 ( 86 l, WSUH3 ( 86), WEH·( 5 21, WE:4( 52), 
2WSURF4(52J,WEC5122),WTEL5(22),WEC6(32l,WTEL6(32) 

COMMON/HISC/ISTAGE,NSTAGE,~OGOOO,NITER,NITHAX,XK1(6J,DX,DXMIN, 
l XN OM ( 4 , 13 ) , X K ( 6 t , H l( 6 , 12 ) , .H2 I 12 ) , P I K ( 8 1 >, X 5, X 6 , J\H 6, 12 l , E V ( 6 , 12 l , 
2RELMAX(6,12J,PlK1181J,RMIN1(12l,STOMIN(4l,STOMAX(4l,INOLA(l2), 
3UNOW(6J,U(6,12),Pl,PIBEST,LPI,PICU~,PU,PV 

COMMON/LATIC/CONTRL(81,4l,LCHG(8ll,LNOMl81,1Jl,LBAK(lll 
COMMON/PO~ER/EUSl12,6J,EVS(12,6) 

-DI HENS ION XX 11), YY Ill 
REAL IN, INOLA 

C INITIALIZE Tl~ER · 
CALL ELAPSE(ITIMEJ 

C READ CONTROL PAR~METERS 
READ(5,910)NSTAGE,NITMAX,DXMIN,DX,TlMET,DELJ 

910.FORMATl215,4Fl0.0J 
C READ OR GENERATE INITIAL STORAGE TRAJECTORY 

READl5,930l(XNOM(I,1J,I=l,4),X5,X6,TEMP 
lF(TEMP.EQ.O.O)GO TO 8 
DO 7 1=1,NSTAGE 

7 READ(5,936l(XNOM(J,I+ll,J=l,4) 
GO TO 9 

8 K=l 
DO 200 J:;2,13 
DO 200 J=l,4 

200 XNOM(J,Il=XNOM(J,KI 
C READ DATA DESCRIBING EACH RESERVOIR 
C KEVSTONE=RESERVOIR 1 
C FORT GIBSON=~ESERVOIR 2 
C TENKILLER~FE~RY~RESEPVOIR 3 
C EUFAULA =RESERVOIR 4 
C WERBBERS FALLS= RESERVOIR 5 
C ROBERTS. KERR=RESERVOIR 6 

9 READ(5,920)~Xl 
920 FORMAT(12,30H 

00 10 I=l,NXl 
READ I 5, 930 I SURF 1( I I, ECU I I, EU( I) , Xl I I ) 

10 CONTINUE 
930 FORMATISFlO.O) 

PEAD15,9201NX2 
DO 20 l=l, NX2 
PEAD I 5, 930 t SURF 2( I ) , EC2 ( Il , ER 2( I) , X2 l I I 

20 CONTINUE 
REA0(5,9201NX3 
DO 30 I=l,NX3 
REA0(5 ,930 )SURF3 I I), EC3 (It, ER3( I l, X3( I) 

30 CONTINUE 
READ(5,9201NX4 
DO 40 I=l,NX4 
READ(5,930)SURF4(1l,EC~(Il,ER41Il,X4(I) 

40 CONTINUE 
READ(5 ,950) NX5 

950 FORMAT(I~,30H 



DO 50 1=1,NX5 
READ( 5,930JTEL5( I) ,U5(1) ,EC5( I) 

50 CONTINUE 
READl5,950)NX6 
DO 60 I=l,NX6 
READ(5,930JTEL6(1),U6lll,EC6ll) 

60. CONTINUE 
READl5,930ISURF5,SURF6 . 

C CREA'TE THE NEIGHBOR IDENTIFICATION 14ATil.IX 
DO 70 I =1, 81 
DO 70 J=l, 4 

70 CONTRL{l,J)=O.O 
DO 80 I=l, 79,3 
CONTRLl I, U=-1.0 

80 CONTRL(l+2,ll=l.O 
, DO 90 l=l, 73,9 

CONT RU I, 2) =-1. 0 
CONTRL(l+l,2)=-1.0 
CONTRL(l+2,21=-l~O 
CONTRL(I+6,2)=1.0 
CONTRL(I+7,2)=1.0 

90 CONTRL(l+8,Zl=l.O 
DO 100 I=l,9 

100 CONTRL(l,3)=-1.0 
·Do 110 1=28,36 

110 CONTRLCI,3)=-1.0 
DO 120 I=t9,27 

120 CONTRL(l,3)=1.0 
DO 130 I=l ,40 

130 CONTRL(41+1,3)=-CONTRL(41-I,3) 
DO 140 I=l ,27 
CONTRL(l,4)=-1.0 

140 CONTRL(·l+54,41=1.0 
DO 150 I=l,81 

150 LCHG(l)=l.O 
DO 160 I=l,79,3 

160 LCHGCI)=LCHG(I)+l 
DO 170 I=l,72,9 

170 LCHG(IJ=LCHG(l)+l 
DO 1 80 I = 1 , 5 5 , 2 7 

180 LCHG(l)=LCHG(ll+l 
C READ INFLOW DATA 

DO 210 I=l, 12 
210 READ(5,930l(INIJ,Il,J=l,6) 

C READ EVAPORATION DATA 
DO 220 I=l,12 

220 READ(5,930J(EVIJ,ll,J=l,61 
C READ RELEASE CONSTRAINTS 

DO 230 J:1,12 
230 READ(5,9301RMINl(l),CRELMAX(J,Il,J=l,6) 

C READ STORAGE CONSTRAINTS .. 
DO 240 I=l,4 

240 READ(5,930JSTD~IN(It,STOMAX(l) 
C READ INOLA INFLOWS 

READ ( 5, 930 IC I NOLA (I) , I= 1, 7 J 
READC5,930)CINDLA(Il,I=8,12J 

C READ ON AND OFF PEAK HOURS AND PRICES 
DO 250 I=l, 12 

250 READC5,930tCHlCJ,Il,J=l,6) 
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READ(5,930)H2 
READ(5,930)PU,PV 

C CONVERT DATA TO CORRECT UNITS 
PU=PU*0.001 
PV=PV*0.001 
TEMP=l .0/ 12 .o 
DO 260 I=l,12 
DO 260 J=l,6 

260 EV(J,I)=TEMP*EV<J,I) 
DO 270 I=l,NXl 

270 SURFl(l)=SURFl(l)*O•OOl 
DO 280 I=l,NX2 

280 SURF2(I)=SURF2(11*0.001 
DO 290 I=l,NX3 

290 SURF3(I)=SURf3(I)*0.001 
DO 300 I=l,NX4 

300 SURF4(I)=SURF4(1)*0.001 
SURF5=SURF5*0.001 
SURF6=SURF6*0.001 

C INITIALIZE ALL THE SPLINE FITS FOR THE DATA 
CALL SPLINE(Xi,SURFl,WSURfl,XX,YY,Xl(lJ,1.0,NXl,1,0,IE~) 
CALL SPLINE(X2,SURF2,WSURF2,XX,YY~X2(11,1.0,NX2,1,0,IER) 
CALL SPLINE(X3,SURF3,WSUR.F3,XX,YY,X3( 1) ,1.0,NX3,1,0,IER) 
CAlL SPLINE(X4,SURF,,WSURF,,XX,YY,X4(1J,1.0,NX4,1,0,IE~I 
CALL SPLINE(Xl,ERl,WERl,XX,YY,Xl(l) ,1.0,NXl,1,0,IERJ 
CALL S PU 114 E ( X2, ER 2, W ER 2.., XX, VY, X 2( 11 , l. 0, NX2, 1, O, IE R) 
CALL SPLINE(X3,ER3,WER3,XX,~Y,X3(1),1.0,NX3,1,0,IER.) 
CALL. SPLINE(X4,ER4,WER,,XX,YY,X4(l) ,1.-0,NX,,1,0,IER) 
CALL SPLINE(Xl,ECl,WECl,XX,YY,Xl(l),1.0,NXl,1,0,IERI 
CALL SPLINE{X2,EC2,WEC2,XX,YY,X2(1J,1.0,NX2,1,0,IER) 
CALL SPLINE(X3,EC3,WEC3,XX,YY,X3(11,1.0,NX3,1,0,IER) 
CALL SPLINE(X4,Ec,,wEc,,xx,YY,X4(1),1.0,NX4,1,0,IE~) 
CALL SPLINE(U5,EC5,WEC5,XX.,YY,U5(lj ,1.0,NX5,1,0,IERJ 
CALL SPLINE(U6,EC6,WEC6,XX,YY,U6(l),1.0,NX6,1,0,IERJ 
CALL SPLINE(U5,TEL5,WTEL5,XX,YY,U5(1J,L.O,~X5,1,0,IE,) 
CALL SPLINE(U6,TEL6,WTEL6,XX,YY,U6,ll,l.O,NX~,1,J,IERI 

C DETERMINE THE INITIAL RELEASES AND RETURN 
XK(5)=X5 
XK(6J=X6 
XK1(5)=X5 
XKH 6) =X6 
P ICUM=O .O 
DO 310 ISTAGE=l,NSTAGE 
J=I STAGEH 

C DEFINE THE KAND K-1 STORAGE VECTOR 
C XK=X(K) AND XKl=X(K-1) 

304 DO 301 I=l,4 
XK(I)=XNOM( I,J) 

301 XKl(I)=XNOM(I,ISTAGE) 
CALL UPONE 

C IS THE CONTROL OK 
IF(NOGOOD.EQ.O)GO TO 309 

C BAD CONTROL - ALTER STORAGE T,AJE:TORY AND TRY A~AIN 
IF (UNOW(l).GE.RMINl(ISTAGE)) GO TJ 302 
XNOM(l,JJ=XNOM(l,JJ-(RMINl(ISTAGEI-UNOW(l)) 

302 DO 303 1=2,4 
IF (UNOW(IJ.GE.O.OJ GO TO 303 
XNOM(I,Jl=XNOM(I,J1+UNOW(IJ 

303 CONTINUE 
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GO TO 304 
C GOOD CONTROL - INCREMENT P.ETURN 

309 PICUM=PICUM+PI 
DO 310 1=1, 6 

310 Ull,ISTAGEJ= UNOW(I) 
C WRITE OUT INITIAL STORAGE, RELEASES, AND RETURN 

NITER=O 
WRITE(6,960) NITER• PICUM 

960 FORMAT ( 1 11TERATION NUMBER' ,14,/,'0THE RET~RN IS 1 ,Fl2.2,I) 
WRITE(6,971) 

971 FORMAT ( 1 0THE STATE TRAJECTORY 15 1 ,/) 

WRITE( 6, 980) 
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980 FORMAT(1X, 1 STAGE 1 ,5X,'KEYSTONE 1 ,6X,'FORT GIBSON 1 ,2X,'T=NKILLER-FER 
$RY 1 ,4X, 1 .EUFAULA 1 ,5X, 1 WEBBERS FALLS 1 ,2X, 1 ROBERT S. <EU.',11 

NSTGl=NSTAGE+l 
DO 320 1-=1,NSTGl 

320 WRITE(6,990Jl,(XNOM(J,IJ,J=l,4J,X5,X6 
990 FORMAT (1X,I3,6Fl5.4J 

WRITE (6,1000) 
1000 FORMAT( 1 0THE CONTROL TRAJECTORY IS 1 ,/J 

WRITE(6,980J 
DO 330 IPl,NSTAGE 

330 WRITE(61990ll,IU(J,IJ ,J=l,6) 
C CHECK INITIAL DX VALUE 

IF(OX.EQ.O.O) DX=O.l*AM1Nl(XK(ll,XK(2J,XK(3J,XK(4)l 
NN=NSTAGE-2 

C INITIALIZE TIMING VARIABLES 
CALL ELAPSE(ITIMEJ 
ITIMET=TIMET*60000.0 
IT I MEC=IT I ME 
ITIMEF=ITIME 
IT IMEi= ITV4E 

C BEGIN OPTIMIZATION LOOP 
DO 520 NITER=l,NIT MAX 

C UPDATE TIMING VARIABLES 
CALL ELAPSE(ITIME) 
ITIMEC=ITIMEC+ITIME 
TIME=ITIMEC 
TI ME=O. OOl*TIME 
MINC=TIME 
MINC:;:MINC/60 
SECC=MINC 
SECC=TIME-60.0*SECC 
ITIMEI=ITIMEI+ITIME 
TI ME =I TI ME I 
TIME=O .OOl*TI ME 
MIN=TIME 
MIN=MIN/60 
SEC=MIN 
SEC=TIME-60.0*SEC 
ITI MEI =O 

C OUTPUT TIME FJR LAST ITERATION 
WRITE (6,1100) MIN,SEC,MINC,SECC 

1100 FORMAT l'OITERATION TIME =1 ,12, 1 MIN 1 ,F6.2,' SEC 1 ,l, 1 0ELAPSE TI~E =1 

$ = 1 ,13, 1 MIN 1 ,F6.2,' SEC') 
IF (NITER.EQ.l) GO TO 335 
LEFT=I TIMET-ITIMEC 
ITER=(ITIMEC-ITIMEFJ/(~ITE~-lJ 
ITER=ITER+ITER/4 



C CHECK REMAINING TIME 
IF (lEFT.GE.ITER) GO TO 335 

C ENO DUE TO TIME 
WRITE (6,1110) 

1110 FORMAT ( 1 0THE PROGRAM IS TERMIN~TING DUE TO TIME.•) 
GO TO 525 

C CALCULATE ALL RETURNS FROM StAGE 1 TO 2 
335 ISTAGE=l 

DO 340 I=l,4 
340 XK l( I) =XNOM ( I , 11 

CALL UPONE 
00.360 I=l,81 
J=LCHG( I) 

C GENERATE STAGE 2 NEIGHBORS 
DO 350 K=l,J 

350 XK(K)=XNOM(K,2)•CONTRL(I,K)*DX 
PIK ( I J =-1. 0 

C CHECK NEIGHBORS FOR STORAGE CONSTRAINTS 
DO 355 J=l,4 
IF. (XK(JJ.GT.STOMAX(J)) GO TO 360 
lF (XK(JJ.LT.STOMIN(J)J GO TO 360 

355 CONTINUE 
C GOOD POINT - FIND RETURN 

PIK ( I )=O. 0 
CALL UPTwO 

' IF RELEASE IS OK STORE RETURN 
IF (NOGOOD.EQ.OJ PIKCIJ=PI 

360 CONTINUE 
C END OF STAGE 1 TO 2 CALCULATIONS 
C BEGIN STAGE 2 TO 'ISTAGE-1 CAL:UUTIONS 

DO 405. KK=l ; NN 
I STAGE=KKH 
L=KK•2 

C STORE. RETURNS UP TO STAGE !STAGE 
C ZERO THE RETURN AT STAGE K ARRAY 

DO 370 I=l,81 
PIKllI)=PIK(I> 

3 70 PIK ( 11 = 0. 0 
C GENERATE ALL NEIGHBORS AT STAGE K 

DO 375 I =1,4 
DO 374 J=l,3,2 
PIBEST=XNDM(l,LJ•DX*(~-2> 

C CHECK FOR STAGE K STORAGE CONSTRAINTS 
IF (PIBEST.LT.STOMIN(II) GO TO 371 
IF (PIBEST.LE.STOMAX(l)I GO TO 374 

C IF A STORAGE IS VIOLATED ELIMINATE THIS NEIGHBOR AT STAGE< 
371 PIBEST=J-2 

DO 372 K=l,81 
IF CCONTU(K,I).EQ.PIBEST) PIK(KJ=-1.0 

372 CONTINUE 
3 74 CONTINUE 
375 CONTINUE 

DO. 402 JJ=l, 81 
J=LCHG(JJJ 

C GENERATE STAGE K-1 NEIGHBORS 
DO 380 I=l,J 

380 XKl(IJ=XNOM(I,ISTAGE)+DX*CONTRL(JJ,11 
C SKIP CALCULATIONS IF THIS NEIGHBO~ IS NO GOOJ 

IF (PIKl(JJJ.LE.O.OJ GO TO 402 
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C CALL UPONE FD~ CALCULATIONS DEPENDENT ON STAGE <-1 
CALL UPONE 
DO 400 LL=l,81 
J=LCHG(LL) 

C GENERATE STAGE K NEIGHBORS OF K-1 POINT 
DO 390 I=l,J 

390 XK(I)=XNOMII,L)+CONTRL(LL,I)*D~ 
C SKIP BAK STAGE K POINTS 

If (PlK(LL).LT.O.O) GO TO 400 
C FIND RETURN AND RELEASES 

CAlL UPTWO 
C If THE RELEASES ARE OK COMPA~E RETU~~S 

IF (NOGOOD.NE.O) GO TO 40J 
P l=P I+PIK 1( JJ) 

C SAVE STAGE K NEIGHBOR GtVING LARGEST ~ETURN 
IF (PIK(LLJ.GE.PI) GO TO 400 
PIK(LL)=PI 

C SAVE LARGEST RETURN LOCATION 
LNOM(LL,KK)=JJ 

400 CONTINUE 
402 CONTINUE 
405 CONTINUE 

C PERFORM FINAL STAGE CALCULATIONS 
DO 410 1=1,4 

410 XK(l)=XNOM(l,NSTGl) 
PIBEST=O.'Q 
ISTAGE=NSTAGE 

C GENERATE FINAL STAGE LESS ONE NEIGHBORS 
00 430 KK=l,81 
J=LCHG(KK) 
DO 420 K=l,J 

420 XKl(K)=XNOMIK,ISTAGE)+:ONTRL(KK,K)*DX 
C SKIP BAO NEIGHBORS 

IF (PIK(KK).LE.O.O) GO TO 430 
C FIND RETURN AND RELEASES 

CALL UPONE 
Pl=PI+PIK( KK) 

C SKIP IF RELEASES ARE BAD 
If(NOGOOO.LT.O)GO TO 430 

C SAVE BE ST RETURN AND RETURN LOCATION 
IF(PI.LE.PIBEST)GO TO 430 
Pl BEST=PI . 
LPI=KK 

430 CONTINUE 
C CHECK FOR CONVERGENCE FOR CURR E'H Dl< 

LBAKiNSTAGE-l)=LPI 
LPl=IABS(LPI-41) 
DO 440 I=l,NN 
J=NSTAGE-1-1 
LBAK(J)=LNOM(LBAK(J+l),J) 

440 LPl=LPI+IABS(LBAK(J)-411 
IF(LP!.NE.O)GO TO 450 

C CONVERGENCE FOR DX - CHEC< DX~IN AND :HAN~E I~ RETU~N 
IF(DX.LE.DXMIN)GO TO 530 
IF((PIBEST-PICUMJ/PICUM.LE.DELJ)GO TO 530 
PICUM=PIBEST 
TEMP=O. 5*DX 
WRITE(6,1010)DX, TEMP , 
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1010.FORMAT('OTHE SOLUTION HAS CONVERGED FOR DX= •,li>El4.6,l, 1 0T-IE l!:.-1 



SOX VALUE =• ,El4.6) 
DX=TEMP 
GO TO 520 

C RECOVER THE NEW NOMINAL STORAGES 
450 K=NSTAGE-1 

DO 470 ISTAGE=l,K 
~=LBAKUSTAGE) 
DO 460 1=1, 4 
XKl(l)=XNOM(I,ISTAGEJ 
X.K( lJ=XNOM( t, ISTAGE+l) +CONTRL ( J, I )*DX 

460 XNOMU,ISTAGE+U=XK(I) 
CALL UPONE 

C STORE NEW NOMINAL RELEASES 
00 470 I=l, 6 

470 U(I,ISTAGE)=UNOW(I) 
DO 480 I=l,4 
XKU I J=XK( I J 

480 XK(l)=XNOM(I,NSTGl) 
ISTAGE=NSTAGE 
CALL UPONE · 
DO 490 I=l, 6 

490 U(l,NSTAGEJ=UNOW(l) 
C WRITE THE RESULTS OF T~IS ITERATION 

WRITE(6,960JNITER, PIBEST 
WRITE (6,971) 
WRITE( 6, 9'80 J 
DO 500 I=l,NSTGl 

500 WRITE(6,990)I,(XNOM(J,I),J=l,4),X5,X6 
WRITE(6, 1000) 
WRITE(6,980) 
DD 510 I=l,NSTAGE 

510 WRITE(6,990)I,(U(J,I),J=l,6) 
520 CONTINUE 

C WRITE APPROPRIATE TERMINATION MESSAGE 
525 WRITE (6,1020) 

1020 FORMAT( 1 0THE SOLUTION DID NOT CONVERGE.• l 
GO TO 535 

530 WRITE(6,1030) 
1030 FORMAT('OTHIS IS THE FINAL TRAJECTO~Y.') 

C PUNCH CURRENT CONTROL PARAMETERS ANO STORAGE FOR RERUN 
535 WRITE(7,1050)NSTAGE,NlfMAX,DXHIN,DX,TIMET,DELJ 

WRITE(7,1040) (XNOM(J,U ,J=l ,4),X5,X6,X5 
DO 540 I=l,NSTAGE 

540 WRITE'7,1040) (XNOM(J, I+ll ,J=l,4),X5,X6 
1040 FORMAT( 8Fl0.31 
1050 FORMAT(215,2Fl0.3,lP2El0.4) 

C WRITE OUT POWER PRODUCED ON LAST ITERATION 
WRITE( 6, 1080) 

1080 FORMAT( 1 1THE POWER PRODUCED IS 1 ,/I 
WRITE(6,980J 
DD 560 I=l,NSTAGE 
WRITE(6,990lI,(EUS(l,J),J=l,6) 

560 WRITE(6,1090t(EVS(l,JJ,J=l,6) 
1090 FORMAT(4X,6Fl5.4,/) 

STOP 
END 
SUBROUTI"iE UPONE 
COMMON/DATA/Xll30),ER1(30),EC1(3J),SJRF1(30),X2(21),E~2(211, 

1EC2( 21> , SURF 2( 2 ll , X3 ( 43) , ER 3 ( 43) , EC 3 ( 43) , SURF3 ( ft.3) , X+l 2 !» J, 
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2ER4(26J,EC4(26),SURF4(26l,U5(11),EC5Cll),TEL5(11),ER5,SJ~F5, 
3U6( 16) ,EC(>( 16), TEL6( 16) ,ER6, SURF6,!'<1Xl ,NX2 ,NX3, NXlt;NX,, Nl(!> 

COMMON/S~LNE/WER1(60J,•ECll60),WSURF1(60l,WER2(421,WEC2(42J, 
1WSURF2(~2),WER3(86),WEC3(86),WSURF3(86),WER4(52J,WEC4(52), 
2WSURF4(52J,WEC5(22J,WTEL5(22),WEC6(32),WTEL6l321 
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COMMON/MISC/ISTAGE;NSTAGE,NOGOOD,NITER,NITMAX,XK1(6),DX,DX~I~, 
1XNOMC4,13),XK(6),Hl(6,12),H2(12),PIK(81),X5,X6,1Nl6,12l,EVC6,1Z>, 
2RELMAX(6Jl2),PIK1(81),~MIN1Cl21,STOMIN(4),STOMAX(4),INOLA(l2), 
3UNOW(6J,U(6,12J,PI,PIBEST,LPI,PICUM~PU,PV 

COMMON/POWER/EUSC12,6J,EVS(12,6) 
DIMENSION ECC(6J,EVAP(6),ERR(6) 
DI MENS ION XXU) 
REAL IN, l!IIOLA 

C DETERMINE ER, €C, AND SURF FOR STAGE K-1 
CALL SPLINE(Xl,ERl,WERl,XX,ERR(lJ,XKl(l),1.0,NXl,1,1,IER) 
CALL SPLINE(X2,ER2,WER2,XX,ERR(2J,XKll2l,1.0,NX2,1,1,IER) 
CALL SPLINE(X3,ER3,WER3,XX,ERR(3),l(Kl~3),1.0,NX3,1,1,IERJ 
CALL SPLINECX4,ER4,WER4,XX,ERR(4),XK1(4J,1.0,NX,,1,l,IER) 
CALL SPLINElXl,ECl,WECl,XX,ECC(lJ,XKl(l),1.0,NXl,1,1,IER) 
CALL SPLINE(X2,EC2,WEC2,XX,ECCC2J,XK1(2),1.0,~X2,1,1,IE~) 
CALL SPLINE(X3,EC3,WEC3,XX,ECC(3),XK1(31,1.0,NX3,1,1,IER) 
CALL SPLINE(X4,EC4,WEC4,XX,ECC(4),XK1(4),1.0,NX4,1,1,IER) 
CALL SPLINE(Xl,SURFl,WSURFl,XX,EVAP(ll,XKlllt,1.0,NXl,1,1,IERJ 
CALL SPLINE(X2,SURF2,WSURF2,XX,EVAPC2J,XK1(2),1.0,NX2,1,l,IER) 
CALL SPLINE ( X3, SUR F3, WS URF3, XX, EV Ai> C 3 J, XK 1( 3), 1. O, ~X3, 1, 1, IE RI 
CALL SPLfNE(X4,SURF4,WSURF4,XX,EVAP(41,XK1(4),1.0,NX,,1,1,IER) 

C CHANGE EVAP TO KAF 
DO 40 I =1,4 

40 EVAP(lJ=EVAPCI)*EVCI,ISTAGEl 
EVAP(5J=SURF5*EVC5,ISTAGE) 
EVAPC6)=SURF6*EVC6,ISTAGE) 
ENTRY UPTWO 

C CALCULATE REQUIRED RELEASE 
DO 50 I=l,4 

50 UNOW(IJ=X~l(IJ-XK(IJ+INCI,ISTAGEI-EVAPl!I 
UNOW(5J=IN(5,ISTAGEI-E~AP(5J+U~OW(l)+UNOW(2)+INJLA(IST~GEI 
UNOW ( 6 l=I NC 6, I STAGE )-EVAP C 6 J+UNOW l 3) +UNOW ( 4) +UNOW ( 5 J 

C CHECK RELEASE CONSTRAINTS 
IF (UNOW(4J.LT.-0.001) GO TO 20 
IF (UNOWl3).LT.-0.001) GO TO 20 
IF (UNOW(2t .LT .~0.001) GO TO 20 
IF lUNOWll).LT.0.999*RMINllISTAGE)) GO TO 20 

C DETERMINE ER AND EC FOR RESERVOIRS 5 AND 6 
CALL SPLINE(U5,TEL5,wTEL5,XX,ERR(5),UN0~(5),1.0,NX5,1,1,IER) 
CALL SPLINECU6,TEL6,WTEL6,XX-ERR(6l,UNOW(6),1.0,NX6,1,1,IER) 
CALL SPLINE(U5,EC5,WEC5,XX,ECC(5),UNOW(5),1.0,NX5,1,1,IER) 
CALL SPLINE ( U6, EC6 ,WEC!> ,XX, ECC(6), JNOW ( 6\ ,1.0, NX6, 1, 1, !ER) 

C DETERMINE THE RETURN . 
P I=O .O 
HEL=489.5 
DO 80 l=l, 6 

C DETERMINE RELEASE USED FOR POWER GENE~ATION. 
UN=UNOWC lJ 
IF(UN.GT.RELMAXCI,ISTAGE))UN=RELMAXCI,ISTAGE)" 
IF(I.LE.41GO TO 72 

C CALCULATE EN FOR RESERVOIRS 5 AND 6 
EN=813.5248*U~*(HEL-ER~ll)) 
HEL=459.5 
GO TO 74 



C CALCULATE EN FOR RESERVOIRS 1 TO 4 
72 EN=ERR( I )*UN 

C CHECK RELATIONSHIPS FOR EN, EUH, EVH, EMAX, AND EPEAK 
74 EMAX=ECC(l)*H2(ISTAGEJ 

EPEAK=ECC(Il*Hl(I,ISTAGE) 
IF (EN.LE.EPEAK) GO TO 70 
IF (EN.GT.EMAX) EN=EMAX 
EUH=EPEA< 
EVH=EN-EPEAk 
IF(EVH.LT.O.O)EVH=O.O 
GO TO 75 

70 EUH=EN 
EVH=O.O 

C SAVE EUH AND EVH 
75 EVS(ISTAGE,It=EVH 

EUS(ISTAGE,I)=EUH 
C ADO RETURN FOR RESERVOIR I-TH 

BO PI=PI+PU*EUH+PV*EVH 
NOGOOD=O 
RETURN 

C RELEASE CONSTRAINTS VIOLATED - RETURN NOGOOD NOT ZE~J 
20 NOGOOD=-1 

RETURN 
END 

C CUBIC SPLINE INTERPOLATION RETURN 

180 

C REFERENCE: A FIRST COURSE IN :OMPUTIN; AND NUME~ICAL METHJDS, JOH~,. 
C JACQUEZ, READING, MASSACHJSETTS, ADDISON-WESLEY PUBLIS~I~G CJ., 

1970, PP. 263-266. 
C CALLING ARGUMENTS 
C X - ARRAY OF INDEPENDENT VARIABLE DATA LENGTH N 
C V - ARRAY OF DEPENDENT VA~IABLE DATA LEN~T~ N 
C W - WORK1NG ARRAY LENGTH 2N UNIQJELY ASSOCIATED WIT~ A ~IVE~ CX,Yl 
C SET QF DATA 
C XVAL - ARRAY OF NVAL RETURNED X VALUES AT WHICH THE INTERPOLATING 
C FUNCTION HAS BEEN EVALUATED 
C VVAL - ARRAY OF NVAL RETURNED V VALUES DETERMINED BY EVALUATING 
C THE INTERPOLATING FUNCTION: YVAL(I)=F(XVAL(III 
C XVALl - THE VALUE TO BE USED FOR XVAL(l) 
C DX - INC~EMENT IN XVAL: XVAL(I)=XVALl•<I-lt*DX 
C N - NUMBER OF DAT A POINTS IN X 
C NVAL - NUMBER OF INTERPOLATED VALUES TO BE DETERMINE) 
C NVFLAG - CONTROL FLAG 
C O - THIS IS THE FIRST CALL FOR A UNIQUE (X,Y,~) T~IPL= 
C 1 - THIS IS A SUBSEQUENT CALL WITH A UNIQUE ((,Y,w) 
C TRIPLE 
C NOTE: IF X, V, OR WIS MODIFIED BETWEEN CAL_S ~VFLAG=J 
C MUST BE USED 
C IER - RETURN CODE 
C -1 XVAL IS NOT IN THE RANGE OF X 
C O NO ER~ORS 
C 1 ONLY !ER I~TERPOLATED VALUES WERE :ALCULATE) 
C BECAUSE XVAUIER+lJ WOULD HAVE BEEN OUT OF THE 
C THE RANGE ClF X 

. C NOTE: WHENEVER NVFLAG=O THE X ANDY DATA IS REO~DERED I~ l\lCREASIIJ~ 
X ORDER. 

SUBROUTINE SPLINE(X,Y,W,XVAL,YVAL,XVALl,DX,N,NVAL,NVFLAG,IER) 
c 

DIMENSION X(ll,Y(ll ,Will ,XVAL(l) ,VVAUl) 
c 



c 
IF (NVFLAG.NE.O) GO TO 60 

J=N-1 
DO 20 K=l,J 
I = K 
Tl =X(I) 
L=K+ 1 · 
00 10 M=L, N. 
IF(X(M).GE.Tl) GO TO lJ 
I=M 
Tl ;::X( Il 

10 CONTINUE 
lf(I.EQ.K1 GO TO 20 
X(I) = X(K) 
X(K) = Tl 
Tl = Y(l) 
Y(l) = Y(K) 
Y(K) = Tl 

20 CONTINUE 
Tl = X(2) - XU) 
J=J~l 
DO 30 1=1,J 
K=I+l 
L=I+2 
T = Tl 
·n = X(U -X(K) 
T2 = 1. 0/Tl 
W( K) = T*T2 

30 W(N+KI = 6.0*T2*(T2*(Y(L)-V(<)l-(V(K)-Y(l))/T) 
WC U =O.O 
W(N+U=O.O 
DO 40 I=l,J 
K=I+l 
Tl=W(K) 
T=-1.0/12.0+Tl+Tl+Tl*W(l)) 
W(K)=T 
K=K+N 

40 W(K)=T*(Tl*W(K-11-W{K)) 
T=X( N)-X(N-1) 
W(N)=O.O 
J=J+l 
DO 50 I=l, J 
K=N-I 
W(K)=W(K)*W(K+l)+W(K+N) 
Tl=X (K +1)-X ( K) 
IF (Tl.GT.Tl T=Tl 

50 W( K+N) =Tl 
W(N+N)=T 

.60 IER=-1 
IF (XVALl.LT.X(l)) GO TO 130 
IF (XVALl.GT.X(N)) GD TO 130 
T=(XVALl-X(l))/W(N+N) 
I=T 
_IF.(I.LT.ll I=l 
K=N 

70 J=( I +K J/2 
IF (XVALl-X(J)) 72,78,74 

72 K=J 
GO TO 76 
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74 I=J 
76 IF (K-I.GT.l) GO TO 70 

L=I 
GO TO 80 

78 L=J 
80 J=l 

IER = 0 
X3=XVAL1 

100 T=W(N+L) 
T4=Y(L)/T-T*W(L)/6.0 
I=L+l 
T3 = Y(I)/T-T*W(l)/6.0 
T 1 = 1 • 0 I ( 6 • 0 *T ) 
T2=W( I )*Tl 
Tl=W( L )*Tl 
T = X(L) 
TS = X(I) 

110 Xl = TS - X3 
X2 = X3-T 
XVAL(J) = X3 
YVAL(J) = Tl*Xl*Xl*Xl •T2•x2~x2•X2tT3*X2tT4•Xl 
IF(J.GE.NVAL) GO TO 13J 
X3 = X3+ DX 
J=J+l 
IFCX3.LE.TS) GO TO 110 

120 L=L+ l 
IF (L.GE.N) GO TO 140 
lf(X3-X(L+l)) 100,120,120 

140 IER = J-1 
130 RETURN 

END 
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