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CHAPTER I
PRELIMINARY CONCEPTS

The purpose of this chapter is to present some of the background
and notions which underlie the material in the remaining chapters.,

In Chapter II analogs of several well known theorems relating
moments and derivatives of characteristic functions are proved in the
setfing of a real separable Hilbert space., It should be noted that ac-
éording to Grenander (see [5], p. 28) not much‘work has been done with -
moments of order greater than one in sbstract spaces, An appropriate
hotion of moment function is introduced, and the Gateaux derivative is
used in order that the theorems may be extended from the finite dimen-
sional case,

The follOWing‘theorem due to Carleman is aiso extended to the set-

ting under consideration,

Theorem 1,1 (Carleman) Let the k~dimensional moment problem correspond=-

3y J J
ul 2 k )
jl’jz’too,jk P Lk xl X2 ntoxk dP(Xlgng.,,,"xk:)g

jlijasa--$jk = 0y 1y 2ye0e9 have a solution. Let AEn

ing to the moments m

= Mn,040ees0

ceo 4 m A sufficient condition for the moment

mO,Zn,O,.,o.,O +‘ 0,0,...,Zn’
problem to be determined is that
e .

~1/(2n) "
¥ gk -

n=1



This theorem is proved in a distinguished monograph on the moment
problem by J, A, Shohat and J. D. Tamarkin [12],

The theorems in Chapter III are related to binomial destrucﬁion in
nature,; a problem considered by C., R, Rao [9]. In the setting under
consideration a non;negative integer valued random variable X assumes
a value which may then be reduced ("partially damaged" or "destroyed")
by some random destructive mechanism S, to yield S(X), As an example,
let X denote the number of auto accidents in a town during the month
of May and S(X) the number of accidents reported for that month,
Given that one knows how the destructive mechanism acts (the distribu-
tion of S(X) given X) it is natural to ask what relationships hold
between X and S(X), or if certain relationships are known to exist
between X and S(X), what the destructive mechanism is,

Rao and H, Rubin [10] proved the following theorem.

Theorem 1,2 Let X be a discrete random variable taking the values

Oy1y ee0s and let P[S(X) =r[X=n] = (‘;)pr(l—wn‘”, r=0y1y00.sn. Then

i

P{S(X) =r] = P[S(X) =r|S(X) <X] = P[S(X) =r|S(X) =X],
r=041ly oo0oy if, and only ify X has a Poisson distribution,

Chapter III considers the following setting. Suppose that X is
acted upon by a random destructive mechanism yielding the variable Sl’
which is acted upon by some destructive mechanism yielding the variable

S eoo ylelding the variable St’ for some positive integer t. A

29
result similar to the above theorem is proved,
The second part of Chapter III is devoted to a proposition of R, C,

Srivastava and A. B, L. Srivastava [13].



Conjecture 1,1 Let X = (Xl,XZ) be a discrete random vector where X
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X2 take on the values O,y1l, ...y and let S be a process acting on

X satisfying for some P sp, € (0,1)
PISD) = () IE = (0] = (Do @-pp (I @ -ppd

for all non-negative integers i and Jj and all r=0y1y.e091i and all
S:O’lg ooo’j. .Then
PLS(X) = (rys)] = P[S(X) = (r,s)|S(X) 4 X)
. (1.1)
= P[S(X) = (ry8)|8(X) = X]
for all r=0y1y 4es and all 8=0,1y,.,. only if X obeys a

bivariate Poisson law possesgsing probability generating function
G(xl,x2) = exp {al(xl -1) + aa(x2 -1)} (Ixil <1)
for some positive real numbers Qs Ose

The authors could not prove this conjecture, but noted that the

probability generating function associated with X satisfies
G(pl Xy P, x2) = G(pl, p2) Gr(p:L X, + (1 w-pl) 'y P,y Xy + (1« p2)) (1.2)

for all x; & [-3=, 11, 1=1,2.
i .
This is not difficult to see since taking, say, P[S(X) = (r,s)] =

P{S(X) = (r,s)|S(X) = X1, then

Y RS = (o) E = (5,97 - FERI=lmisl e Fri)],
& P[s(X) =X, ¥ = (i,9)]

s i>0
20

whence



i>r
Jzs

plrpzsptif = (ry8)]

Y e pert - 1
>0
£o

=

The denominator of the right member of the preceding equation is equal
to G(Pl’p2)° Multiplying both sides of the equation by x{rxgs and
summing over r,s5 >0 yields (1.2). By equating the first two members

of (1,1) or the last two members of (1.,1), (1.,2) follows similarly,

Now (1,2) is equivalent to
G(ng) = G(pl,pz) G(x+ql,y+q2)g -lSXS_P]_s °1_<_Y$P29

Qhere Q = l‘-pi, i=1,2, It is shown in Chapter III that an even

stronger property holds, namely
r
G(x,y) = G (pl,pz) G(x+rq1, y+rq2)

for all real numbers r and all (x,y) in the strip
~q; P,< 4, X=-0q;¥<a, Py satisfying XyYsX+Tr QY +Tq, € (=111,
Chapter IV presents the following characterization of the arc sine

law as suggested by I. I. Kotlarski,

Theorem 1,3 Let Xl’x2 be independent identically distributed randem

variables with common density

| lxl< [£]
o = m\/(8) -+ (1.3)
o Ix|2 1£1  (b4o).



Xl * XZ
Then Y = R and 7 = Xla X2 are identically distributed.

Theorem 1.4 Let Xl,X2 be independent identically distributed random
variables with common symmetric non~degenerate distribution function,

Suppose that all moments & = E[Xik], k=1ly 2y cea exist, Let b=¥0

be a real number, If

X +X
1 2
Y = b and Z:.-XI.XZ

are identically distributed, then Xi are distributed according to

density (1 93) .

The proofs of these theorems are based on the moments of the random
variables, and Theorem 1,1 is an important tool in the proof of Theorem
1.4, An example is given to illustrate that the symmetry requirement

in Theorem 1.4 may not be deleted,



CHAPTER II

ON MOMENTS AND THE CHARACTERISTIC FUNCTIONAL

IN HILBERT SPACE
Terminology

The purpose of this chapter is to generalize to the Hilbert space
setting several well known theorems relating moments, derivatives of
characteristic functions, and Carleman's condition,

Let )t be a real separable Hilbert space and [ denote the sigma
algebra of Borel sets of )}, Let P be a probability measure (p.m.) on
®s and R denote the set of real numbers. The characteristic functional

(cof.) g(s) of P is defined by

g(y) = f ei(x’y)dP(x), Y € ¥ty
ba
where (°¢,¢) denotes the inner product. The Gateaux derivative is the
perfect type of derivative needed to achieve the generalizations of this

chapter, The following notation is used for Gateaux derivatives of the

complex valued function g,

61g(y;u) = ot gly) = lim gly+ru) - gly) r € R,
u a0 r

for u g } if this limit exists. Inductively, for Upo Uy ocoy By € e

derivatives of order k are defined by

1

u )y k=29390000

k=1
6 g(y;ul,uz,,,,,u

k
6 g(ygul’uzioooguk) = 6
k

k<1



For convenience, define 62g(y3u2) = bgg(y;u;u), and inductively; for

m
R LT R - positive integers with 2: & = k,

n=1
=]

1 k-1, ., %1 %2 *n-1 _ %m .

[ b umb 8(y’u1 ‘Ju2 jeee ’umwl ium )7 if ..m>l
t } a a
k 1 2
6 g(y;ul 'u2 90.-!umln)“ <
& R a

1l k=1 . 1 m-1 . }

. b umb S(yaul 9112 Yeoe 'um-l ) 9 if am.—.l.

The reader is cautioned not to view the aj's above as exponents of the

uj's, even if }t =R. Set A = {(ajsa,5...): & non-negative integers,
-] 0
0< :E: a < =}, If (al,aa,...) e A and :E: a = J, then define
n=1 n=l
a a 8 a a
1 2 1! 2! '
6jg(y;ul 9u2 i.oo) = 6j8(y§ul' Qua' '.oo‘um|m )
where a

is the first nonzero ay & is the second nonzero a s

1! 2!

esey & , 1is the last nonzero a_.
m n
The definition of moment to be introduced now will easily indicate
the analogy between the theorems of finite dimensional space and the

theorems in this chapter, Hereafter we have the convention that

(‘9°)O = lo

Definition 2,1 Let )} be & real separable Hilbert space and [ denote

the sigma algebra of Borel sets of )}t and P & pems on R. For ugH
and n a non-negative integer the nth moment of P with respect to
u is

m (™) xf (x,u) aP(x)
' ¥

provided that this integral exists., Inductively, for ulngg sooy Wy et



k
and non-negative integers al, 12«, cs09 ak, with E = I,

&
=2

a k a
mn(ull,uza,....ukk) = j n (x,‘uj) de(x).
3=

Finally, if ul, uzs veey € )1 and 819853 eeey are non-negative integers

00
satisfying Z aj = n< %, then

=
s, a o a
mn(ull,uaz,...) = j T (x,uj) Jap(x).

o 3=

Now in a separable Hilbert space every orthonormal system is counta-
bles and there is a complete orthonormal system {an} ({an} is complete
if (x,an) =0 for every n=1l,2, .0,y implies that x = 8) (see [11],

p. 212), Further, for any x ¢ )t,

x= Y Goede amd lxl?e Y (a)?
n=1 n=1
where || ¢ || denotes the norm of }t.

The real and imaginary parts of a complex valued function are de-

noted by R and I as usual,
The Theorems

Theorem 2,1 Ifj Il x ”de(x) < ® for some positive integer k, and g

H

denotes the c¢.f. of P, then for all integers j, 1 < j <k, and all

y £ty all jth order Gateaux derivatives of g exist and are given by

.3 .
6jg(y§ulsooo,uj) —"-j iJT-ll: (X,um)el(Xiy)dP(X)o (Zol)
yom



All jth order moments exist and are given by

i mj(ul,...'uj) = 6jg(eiuln..guj).

be a complete orthonormal system in }{, and k

be a positive integer. Ify for each positive integer n, bzkg(eﬁaik)

exists and :E: [R[bakg(e,aak)]}l/k exists, then Jr || % Hade(x) < e,

n=1 ¥
The theorem holds if R[b g(@,aak)] is replaced by m., <a2k)

T 2.2 Let (o}
heorem 2, et an n=l

- -]
Theorem 2.3 Let {ah}n~l be a complete orthonormal system in )}, and k

be a positive integer. If .[ Il x deP(x) < %, then as ||y |l = 0O,

bas

k jin (}'sa ) m a a
gly) =1+ Z “l“;' 2 mm}o mj(all,aaz,...) + ol [lyll®
i | LIRS

(al'aaioo.)bA m=1

0
PITIE
m

- mxl ]

Theorem 2.4 (Carleman) Let ¥t be a real separable Hilbert space, w =

(1,04050046) 5 U, = (03130309004) 35009 be the standard complete orthonormal

systemy, P be a p.m, on [, the Borel sets of )}, and m (ujn) exist
n,, .

for every Jj=ly24e.. and n=0,1,.,, . Denote 7\ = Zmz (uan)s
o}

where, here, "' may be replaced by the dimension of }+, if it is finite,

If :E:K;i/(zn) = ®, then the moment problem is determined.
=1 .

icr
Lemma 2,1 If rye € R with r40, then ]E__;;Lil < lel.

icr 1/2
Proof Set h(r) = ]E—u;élii, r40. Then h(r) = V5(1«~0ﬁ3 er) 1
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2(1 - cos cr)
2 *
r

We bound |h(r)| by bounding hz(r) =

Without loss of
generality we may assume that c¢,r > O,
l-cos cr increases from O to 2 as r increases from 0O to

g; which leads to two cases.

2
Case I, sup h2(r) = h3(Z) = E%?.
a ¢ ul
o
- t2 (sin s)t3
Case II. Since cos t =1 =37 + T for some s ¢ (0,t), then
for r e (O;g),
2 2 r202 r'c
h“(r) = 3 (1 (1 - 5+ (sin s)—gr- )),
r - ]

for some & € (0, rc) C (0,7, Therefore w2 (r) < c2. Thus, [h(r)]| <

lel.

Proof of Theorem 2,1 Note that Jr Il x deP(x) <~ 0<j<k, First
it

let j = K o= 1.

- &

gly + ruy) - gly) f ei(x'y+ ry)  i0oy)
&+

r == T dP(X)
ir(x.u. )
1(x,y), T %Y
wf & e - =1} ip(x). (2,2)
Y

Denoting the integrand in (2.,2) by f (x;ul,y), we have ]fr(xaul,y)] <
l(x,u Yo< =l Ilu Iy from which llm j- f (x,u y7)dP(x) =
j;+1(x,u )e (x’y)dP(x), To see thls, assume the opposite, that there
is a sequence {r } of nonzero real numbers tending to zero for which

it is not true that 1lim j. £ (x,ul,y)dP(x) »v];fi(x,ul)ei(st)dP(x).

i (x,y) for all x, we have a coun-

Since 1lim £ (x,ul,y) J.(x,u )e
ks "k
terexample to the dominated convergence theorem, Inductively,
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1 rgj=l . ’ J=1 (..

= (69 g(y + ruj,ulg..,.uj‘_l) -5 g(ygul,...,uj_l)]
ir(x,uj)
=] - 1} dP(X)o

j=1 ,

1  j=1 & i (x,y)
= = i I ! (xyu de {
r.’;‘_ es m

By the same reasoning as above we have (2,1).

Corollary 2.1 Iff f(x,u)lde(x) exists for some positive integer k;
and u ¢ )}, then, for all integers j, 1 < j < ky 633(1“'11;11:]) exists

and is equal to f ij(x,u)jel(x’ r’u)dP(x), r g R,
e
, cas . 2k .2k
Lemma 2,2 If, for some positive integer k and some wue}f, & g(8iu"")

exists where g(.) is the c¢.f. of a pem, P, then mZk(uzk) < o,

Proof First suppose that k=1, Then 61g(r uju) exists for every
re(-aya), some opew interval which contains O, Now we look at g(ru),

r € R, as a complex valued function of r with
1 . ' 2 . .2 Tr
R[67g(ruju)] = [Rg{ru))' and R[6%(ru;u)] = [Rg(ru)]

(and similar equalities for I and for higher order derivatives).

Letting '"-" denote the complex conjugate function we have

lim E.E&Eﬂil;iil x'R[blg(e;u)] = lim B.E&E:ElgL;L
r-+0 r -0 -

since g(-x) = g(x), x ¢ H, Therefore R[blg(esu)] = 0,

J ewr?apo - 2 1am Lmcoslrlam] gpy)

" ¥ 0 r®
ir(x,u) ~ir(x,u)
S.l;.i_@,f -[e -2;e 1 4p(x)
0 Y+ r
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-2[Rg{ru) = 1]

- lim <[g{ru) - 2+gl-ru)l ]

B = lim
-0 T -0 r

ase =[Reg(rw)] R[61g(r uj u)] ~R[61(8;u)]
lim = lim =~
=<0 * =0 r

i

-y -3
- R[6%g(83u") ],

Inductively, suppose that 62kg(9;u2k)

exists and that f (x',u)zkuzdP(x)
k=2 )“.

exists, Set G(C) = | (x,u)
() ¢
GG > 0, then aon is @ p.m. and has c.f, f£(+) satisfying

dP(x), C € B, Assuming momentarily that

(x,u)Zk—Ze 1 (X’ I"U.)

f(ru) = a%:gf%

dP(X)g reR,

By Corollary 2.1

2k=2

k-1

f(ru) = 3

Therefore 62f(6;u2) exists, and, by the induction hypothesis,

k=1
sy ) PRt < R6’r(end)] = R She 6Pa(en™),
}.{,
Or
[ et < (-1 rrePgon®1, (2.3)

}.‘.

If GO = 0 then P({x: (xyu) = 0}) = 1, and by Corollary 2,1 this

lemma and (2.3) remain true,

Proof of Theorem 2,2 By Lemma 2,2, f (x,an)ade(x)j_i_f(l)kR[E:Zkg(esaik)]

H

for Nn=1y2ye0s « Let m be a positive integer., By repeated use of
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Minkowski's inequality
m m Kk
f ( z (x,an)2)kdp(x) < {Z(f(x’an)zk@(x))l/l{}
}.{. n=l Tz )+

~ k
< {Z [(-D)¥ R[62kg(6;an2k)]]l/% .

n=1

The theorem is proved since

2k
f”x i dP(J%) =f::i[z (x,a )] dP(x) .< lim Lz (x,e )] dP(x),

rt Y+ n=1
In the following, if x & } - {6}, then x' will denote 'H_%Tr

Proof of Theorem 2,3 If y=6 the theorem is clear, Suppose ¥y +6,

gly) = Rg(y) + iIg(y) =Rg(Jly ey + iIgCllylley").

By Taylor's theorem, as |y |l = 0,

i

k k
gyt J(eryrd :
o) =1+ Y BEEOI Dyl oyt 4 g Y 2EEOEI gy,

j=l j=1
ol 11

1 Z 82O D 13 4 oty 1)

Gy
i
ot

f;iu,yv)idp(x)} i3 + oClly 1®)

i
-
+
M=
S

L3
i
—t

Lo

f
[
+
gl
i

.
it
=

» fij(x,y)de(xﬂ + of Hy”k)
B—F

e
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k %
2 [f ij{z (xy0. )(y,a% dP(x)j| + oIyl

n=1

2 2 2 .
Now 0 < (x + y,an) = (x,an) + 2(x,an)(y,an) + (y,an) . From this

|Gon)(rag) ] < 3[Gea)? + G0 )], s tha

m m
1Y ada)l = 1Y Gha) el xlllyl

n'_-l nﬂl

m
{z [ETPRICTD 1} [l
n=1l
< {Z% (ta)? s @ .an>2]}nxn Iyl

n=l

i

IA

= x|yl

By the dominated convergence theorem and the fact that f Hx”de(x> < ®,

b
. — ~
gly) =1+ Z-% fijn(x,a ) n(y,a ) Bap(x) | +
=1 ”(a ,) m=1 n=1
(al"2’°"°)EA me=1
a2 =]

ol 1y ')

k j n(y,a ) & a
=1+ Z.EIT Z n-l bj,g(e;a.llgazzgnog)“"O( "Y”k)o
j:l n(a ')

me1

(algaajooo)ﬁﬁ

Sa -
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Proof of Theorem 2.4 For M finite dimensional Euclidean space the the-

orem is known (see [12], p. 21), so assume otherwise, Let Q be a p.m,
on B having the given moments, TTk:}‘("-* Rk be the projection map, ’l'l‘k(x) =
((x,ul),(x,ua),...,(x,uk)), for k a positive integer, and TTk(B)'be the
sigma algebra of subsets of ®Y  induced by B TTk(QD is just the usual
sigma algebra of Borel sets of RE since 1Tk(%) is generated by || ¢ |]
when restricted to Rk, and all norms on I#( generate the same topology,
Note that 1Tk(-) is @ measurable function, hence it makes sense to de=-

1kl(C)).' For integers

) , then

fine the p.m, QkﬂTk(ﬁ)-*[O,l] by Qk(C) = QI

jok with 1 < j < k, and denoting u! =1Tk(u

J J

m, (o2 = [ Gepu

2n ;yen
RSN P = [ Gy 9, ().

R J

Now since

Z{mZH(ulzn) + e0s + man(ukzn)}"l/(an) = @,

n=1

then by Carleman'’s condition for finite dimensionsl spaces Qk is unique~
k

ly determined (k=1,2y 400)s Let y & )} and Ve = :E:(y,uj)u Then
je=l

jn
ag k - =, llyk‘=y || = 0, and if we let h(e) denote the c,f, of Q,

then h(yk) -~ h(y). But

h(y,) = f}fexp(i(x,yk)]dQ(x) - -L'kexp{i(x,ﬂk(yk))}qu(x)

is a uniquely determined complex number since Qk(°) is determined,

Hence h(y) is a uniquely determined number, Thus, the c.f.'s of Q

and P are equal, whence P = Q (see [8], p. 152).
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Examples and Comments

It is easy to show that the convergence condition given in Theorem
2.2 is necessary if k = 1, Unfortunately this is not the case for

larger k, as is seen in the following., Let }t= Q,2 and a = \[Y{an

Where a-l ax (1,0,0’0..), a2

where s is a constant, 1<s8<2, and ¢ is a norming constant
]2k 2k(x’an)2k

=T (0’110'0'000)’ sse o Let pn = P({an}) =

k+
n

defined by Zp =1, Then f l|x] dP(x)

dP(x) <= while fi
k <]
"1) Z -—-—7-’ diverges for K = 2435 eee o Howevery if
n=1 n
fllxl]zde(x)<°°, we can conclude at least that i( ~1) g(e ) < o

n=1
31nce

fZ(x,an)deP(x) <f z(x,a) dP(x)

oS n=1 D=l
An easy example which illustrates the use of Theorem 2.4 is obtained

by letting H and {a,} be as given above and setting P( {a D =

3 o3

Then m_(a ™) :a:‘—", and ')\ 1, n=1,2y.00 « Thus, Zx-l/(En) o,
AN Y

n=1

whence P is uniquely determined by {mn(a55: J=1929000y N=0yly0e0le

This chapter conteins a package of theorems relating moments and
derivatives of characteristic functions. Theorem 2,1 can be shown to
hold in an arbitrary real Banach space, (L, say, with the c¢.f. defined
byf ix (de( ), x* a continuous linear functional, In order to
obtaln the package in an optimal setting; a suitable notion of moment
must be determined, which would give rise to "the moment problem"” in an

abstract space,; an appealing problem.



CHAPTER IIXY
ON A CHARACTERIZATION OF THE POISSON DISTRIBUTION
Sequential Damage

C. R, Rao [9] considered the following situation., A random varia-
ble X is produced by nature where X takes on only non-negative inte-
ger values, X is then acted upon by a process S to yieldb S(X)
where S reduces or destroys X, that is, if 1 is the value of X
then S(X) =r for some integer r, 0<r<i., If we know the distribu-
tion of S(X) given X then it is natural to ask what distribution(s)

X must have in order that

P[S(X) = r] = P[S(X) = r|damaged] = P[S(X) = r|undamaged]
or equivalently

P[S(X) = r] = P[S(X) = r|S(X) < X] = P[S(X) = r|S(X) = X].
Rao and H, Rubin proved the following theorem (see [10]):

Thecrem 3,). Let X be a discrete random variable taking the values

Oyly eoey and let PLS(X) = r]X =n] = (f_)pr(“l )T, £ =051y 0ees e
Then
PIS(X) =1] = PLS(X) = r}S(X) <X] = PLS(X) =2|S(X) =X]y, r=0y1, eaes

if, and only ify X has a Poisson distribution,

17
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Now let us consider the following situation, A random variable X
is as above, and X is reduced to Sl(X) by a process S;. Suppose
further that Sl(X) is reduced to SZ(Sl(X)) by some process S..

This leads to the following,

Theorem 3,2 Let t be a positive integer and X=S_. and Sl, 82,..., St

0

be random variables taking on the values 04y 1ly ssey and let Py3Dps eees

P, € (041), Suppose for all k=1,2, ¢eoyt and for all integers

Jgr 39 eeer 3, satisfying 0 < J, <3, 5 < +o° < J, that

PIS, =3, 18, 3 = d 10 Sy =dppreeer 8y =31 =PIS =3, IS, ; =34 ,]
(3.1)

J J =3
k- ) k k-1~ Yk
={ . Jp. (1=p ) .
( 5y JPx k
Then

P[Stzr] = P[Stzrlst<X] £ P[Stnr‘st=x1, I'=t0g .19 sce

if, and only ify X has a Poisson distribution.

Proof We first make an observation, Let jo, jt be integers such that

P[X=J,] > 0, and 0 < J, < Jge

PLS, =], [X=3,] = PIS =3y 0 8, 1=Jy_qveees Sy=dy [X=31e (3.2)

3,83 15 <Y

{
Note that the summand is equal to
PSy=Jgs 8y g=dgoqseeer Sy=dps X=3ol/ PLX = 3]
= PIS;=J, 'Stal“‘jt-l’ Spo=dgapreesr X=Jplt

P[Stulzjt“l,° co9 X = jO]/P[x = jo]
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i1

P[St i jtlst=1 = jt=1] P[St'-’l = jt°1’°°°’ X= jO]/P[X = jo:]

ﬂ P[S _;jmlsm 1= 3pagde (3.3)

=1

J
Substituting (3.3) in (3.2), multiplying each side by x Y then summing

each side from jtzo to jt mjo, we obtain the probability generating

function, G of S, given ijos

t,jo’ t

do

3y L Ipe1 = S
Gtst(X) £ z X { Z 1]1( 3 )Pm (l'Pm)

jt: Y jtsjt-lS’ * '..<.jo

1

s s (i (s,

34=0 3,S e <dg

dya1 Jy Jpa-dy
(jt )(ptx (l-pt)

t-1, 3 3 i =3 )
= z {n( ?ml)pmm(l=pm) m-1 m} [ptx+ (1~—-pt)] t-1
=1

m m
03y gSe=2do

t2dpa\ da Jpa1 = dn |
DR i (o SISt

O—Sjtal«snn ° osjo

Jpoz Jga1 P
(dtal)[ptu_l[ptx-é- (lupt)]] (l_ptal)
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t=2 /3 3 ioo=3 1
- Z n ( lgiml)pmm(l_pm) me-1 m\

s . m=1 m
0‘5‘]'{;.:.250.0530

C x + (1= >1jt"2
Pr.1 Py P11 Py

oy 41 Jo =33 3y
= Z (jl)pl (lﬂpl) [pzo.optx +(1“p2-noopt)]

jO.
o {plp2“°ptx+(1"p1p2°"pt)} .

Thus the distribution of 'S, given X = Jj. is binomial
t: 0

(3.4)

with parameters jo and PPy oee Py

Both parts of the proof follow from Theorem 3,1 and observation (3.h4).

It should be noted that Theorem 3,2 is easily related to the lan-
guage of Markov processes, where, for instance, X could represent the

size of a population, S, the size of the kth generation, and (3,1)

k

describes the one step transition prcbabilities,

Corollary 3,1 Let X be a random variable possessing a binomial distri-

bution with parameters n and Po* where n is a positive integer and
P, € [0,1]. Let t be a positive integer, P13 Pyt eoas Dy € 0,11, and

8 52’ XY St with 8,2X be random variables taking on only the values
0, l’ esoy Such that for all k=1, 2y oooy t and for all integers joi 319

...,jt satisfying O_gjtg <oo-§=j0§n

Jpa1

jkﬂl jk jk-=1=- jk
P[Sk = jklskﬂl = Jk_19sk“2 = jk=29 coe ’SO = jO] = ( jk )pk (l.:. pk) ¢



21

Then St has a binomial distribution with parameters n and PoPiec Pye

Proof Just as in the proof of Theorem 3,2 the Probability generating
i i = i eee LI ] j
funetion of St given X=3j is {plp2 Py X + (1 PP, pt)} for

j::O,l, ceey No Thus for k==1,2, ceey N1

n n
P(stzk) - z P(Stzk,X=j) - Z p(stzmxmj)P(xgj)
j=k j=k

n

3 k v yIK(m) 3 n-

= Z(k)(plpa"“l"t) (L-pypyeeepy) (j)Po(l“Po) .
J=k

Thus the probability generating function of St is

n n
j k L eeoe j“’k n j - n.,.,j k
3 5 (o {ipia-a
k=0 j::k ‘
oon 3 :
) Z Z(k}plpzmptﬂ (1-p) pyeeepy) (J)Po(l-Po)
3=0 k=0

#

n ‘
z {pl pzoooptx + (1°p1 p2°°'pt)}j(§)poj(l-po)n_j
j=0

n
[Py Py ce* Py X + (1-pypy voc p)3%

4

The Bivariate Case

R, C, Srivastava and A, B, L, Srivastava [13] considered the two

dimensional analog of Theorem 3.1 and conjectured as follows,

Conjecture 3,1 Let ¥ = (xl’XZ) be a discrete random vector where Xl’

X2 teke on the values O41l, seey and let S be a process acting on %

satisfying for some p 4D, € (0,1)
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PsH) = (ry) X = (291 = (L) F o (I) 7 G -p P

for all non-negative integers i and J and all r=0,1y 4eey i and

all s=0y1y.0e9 js Then
PLS(X) = (rys)] =PLS(X) = (ry8) [S(X) $X] =P[S(X) = (rys) |S(X) =X (3.5)

for all r=0y,1, ... and all s=0,1y,.. only if X obeys a bivariate

Poisson law possessing probability generating function
G(xl,x2)= exp{al (xl-l)+ a, (xz-l)} (]Xi]_<=l)
for some positive real numbers @3 Gye

In [13] the authors verified the converse, leaving the conjecture

open, with the observation that (3,5) implies
G(pl Xy P, xz) = G(pl,pz)G(pl x| + (1 -«pl) sP, X, + (1 =-p2)) (3.6)

for all X. €& [“""}"9 l:]g iﬂl, 2.
i Py
Aczel [2] solved (3.6) under the assumption that (3.6) holds for

all Xj2%, € (<1,1) and all PyaP, € (041). The solution of Theorem

2
3,1 did not require that p be a variable; and it is natural to wonder
if the conjecture is true for Py P, fixed, This author, using a tech-
nique which appeared in the paper of Rao and Rubin, has arrived at the
following extension of (3.6), where Py P, € (0,1) are assumed fixed.

In the following let  Z denote the set of integers; R the set of

real numbers, and q = l«-pi, i=1,2,

Theorem 3,3 Under the hypothesis of the preceding conjecture the proba-

bility generating function G of X satisfies
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Glx,y) = Gr(pl,pz) G(x+rq1,y+rq2)

for all r ¢ R and all (x,y) in the strip =q; P,< 4, X =q; ¥< q, P

satisfying Xs¥ X+ Q) s¥y+Tq, € [«1,1].
Proof Replacing p, x, by x and p,x, by ¥, (3,6) becomes
G(xyy) = G(p sp,)G(x+q sy +a,), ~l<xg<pyy ~1<y<p,. (3.7)

Using (3.7) we can define a function F(x,y) such that F and G agree
on the Cartesian preduct (0,1)X(0,1) and F is defined on the open

domain D bounded by the two polygonal lines Ll’ L2:
L = {(kq1+x,1+kq2), (kql,p2+kq2+y)=ksz, 0<x<qys OSySqZ}

L, = {(1+(k~l)q1+x,kq2), (1+kql,kq2+y):kez, 0<x<ays OSYSQZ}

I |
e
Ll\
(0,1)
(=q1,p2) 0rp) (ql,l) D
W
r-)
P
I
(pl,O)
(190) X
(p;1-a,)
e

Figure 1. D and Its Boundaries
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(see Figure 1) and
F(x,y) = F(pl,pa) F(x+ql,y+q2), (x,y) €D, (3,8)

It is easily shown that each line lying wholly in D has equation

4 ol
x == (y~-p,) +¢ for some ¢, O<e<p, +— p., (3.9)
a5 2 ey 2
Let the strip in R2 determined by all lines (3.,9) be denoted D Pick

1°
¢ from the interval given in (3,9). Inductively (3.8) becomes (on the

line determined by «c)

Pl 2L (yop) s - FE( YE(2L (yop) 4o 4k +k
qa y p2 Csl‘f = P19P2 q2 y p2 c ql9y q2 ]

kegd; yeR, Set

{1

it
s(y) F(a— (y-—pz) +c,y) ' vy e R.

2

Then for kg,

#

q
S(y+kq2) F(E-:-Lw (y+kq2«-p2)+c,y+kq2)

2

q
1
= F(q‘? (y-pa) to+kayy+ kqa).

Hence

s(y) Fk(pl,pa) S(y+ qu), keZ, yeR, (3,10)

i

Let

7(1ogF(p, 4 p,))/a,

t

A(y) S(y) e y R, (3.11)
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Then for ke,

y(logF(pl, pz))/q2 klogF(plgpa)
S(y+kq2 e e

i

H(y+kq2) (3,12)

y(log F(p,,p,))/a
S(y) e 1272 | oy,

]

and in particular H(qu) = H(0) = S(0) 4% O for every ke2 (S(‘O)#O
follows from (3,10) and the fact that G is a probability generating
function).

The line of D1 determined by ¢ intersects (0,1)X(0,1) at
points whose y coordinates beleong to an interval (lc, uc) the length
of which is greater than dse That S is absolutely monotonic on R

will follow from (3.10) if it can be shown that S is absolutely mono~

tonic on (1 ,u ).
¢’ e

q
Let y, ¢ (lc,uc). Then (El— (yOppZ)«kc,yO) e (0,1) x(0,1) and
2

1 1
S(yo) = F(q2 (yo-p2)+c,yo) = G(qa (y0=p2)+c,yo)

c q

where p,_ ] 2 P[X = (k,j)]. For a given k and j the function
9

L

- - k J
b () = pk’j(qz y-p) + o)y

is absoclutely monotonic on (1 ,u_) since h(n)
[+] -8 kgj

lyeoey and for every ys(lc, uc). Since (3,13) converges, 1,<¥yp<u,s

(y) > 0 for every n=0,

then S(y) is absolutely monotonic on (lc’ uc) (see [14], p. 151), and

S is absolutely monotonic on R, and in particular on (=%,0), Hence
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(-]

for «=<y<0, 8(y) = S(O)f e9tdaa(t) for some distribution function
0

o (see [14], p. 162 - Bernstein's Theorem). Therefore

e taalt). (3.14)

y(Llog F(p, s p,))/q
Hy) = e 1772 2s(o)f

0

Recalling from (3,12) that H(y) is periodic(qa) then

H(wq.) = =2 s(o)fm 2% e
2 T T ) 0"

5(0) = 2ayt
F=(p;+p,) 70

= H(=2 q2) = do(t);

or

® gq.t > ' ® D q2t
F(pl,pa) = ‘[O e da(t) and F (pl’PE) = f e da(t),
0

- -q2t 2 -q2t 2 =~q2t '
Thus [E(e )} = E(e which implies that e = F(pl,pa)

a.,e.(a), But exp(-—q2 t) is a strictly decreasing function of t.

' 1ogF(p,sp,)
Therefore a(t) is a distribution with point mass 1 at t rma-m=—-—a .
12

So from (3,14), for y<O

y(Llog F(p, s p.))/q =y(logF(p, s pN/g

a constant, This and (3,11) with H periodic on R implies

=y(logF(p, s p.))/q
s(y) = 5(0) e 1rerre

or

ay q Pyay
F(;—(ympz) +c,y>= F(E-(-apz) +¢c,0]e ' yeR,
2 2
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where
Pe L
4
In rectangular coordinates with x = -q—= (yapa) +¢ this becomes
2

q PYQ
1 ) -] 19 (x,y) ED]_. (3015)

F(x,y) = F(x--—y,o
9

Symmetrically it can be shown that

a5 PXQq, '
F(x,y) = F(O,y-—-——-x)e , (x,y) D, .
qq . 1

From (3.15), for reR, (x,y) le, we, have F(x+rql,y+rq2) =
F(x,y)F-r(pl,pa). The domain of the hypothesis follows by intersecting

["1,1] X [“’l’l] with Dlo



CHAPTER IV
ON PROPERTIES OF THE ARC SINE LAW

Two properties of the arc sine law appear in this chapter. In par=-

ticular, let Xl, X2 be independent identically distributed random var-
X, +X )

. . . 1 "2

iables satisfying x1-+x2f\/xl-x 5 .nuxl.xa,

notes "is distributed as". Theorem 4,2 exhibits a non-degenerate dis-

or where """ de-

2

tribution for the random variables in each case,

Theorem 4,1 Let Xl,X2 be independent identically distributed rardom

variables with common density

1 2
x| < 121
2 2 2 :
tx) =d (;) - x (1)

2

0 Ix] > ]gl (b 4£0),

X1+X2
Then Y = = and 2 = X1°12 are identically distributed.

Proof The support of Xi is in a finite interval hence so are the sup-
ports of Y, Z and their moments characterize their distribution func-
tions (see [3], p. 178). Let k be a positive integer. If k is odd
then since the distribution corresponding to f£(x) is symmetric then

m = E[Xik] = 0 = E[Xlkvxzkj = E[Zk]. Examining the other case

28
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12] 1£]
1
pud
lzl \/i - %2 \/ - x2
1
2 2k
2 (S) Y
= = y
(i 2
0 1-y
=(g) k 1.3 (2k-1) _ (g)zk (2k) ¢
b 2etof eee (2k) b (x1)2 2k
p-ok (2;‘)
2k bk 2k2 . 2k=1
Hence E[Z™] = b (k) while E[2Z 1 = 0,
k k
Ky _ .-k xJyk=3\ _ -k k
B = b E{z (5) &' } v () mymese
:j"-:O jzo
Note that if k 1is odd then E[Yk] like E[Zk] equals zero., On the
other hand
2k
2k -2k 2k -2k :
E[Y ] = b Z( j )ma makm = b z (23 )m2j m2k==2j
J=0 J=0
-2k Z( ) -23( )23’»—2k(2k-2j)“ L=tk ( )( j)(2k=2j>
2;
N k
wltle 1
=b (2k)!
go (38)%0(k=3)112

(4,2)

k
4k (2K)? kY k
=D k! k! z(j)(k=j> .
3=0
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This last summation may be looked upon as the coefficient of _xk in the

2
product (1 +x)K (1 +x)k. Therefore (4.2) becomes b"L}k(akk> « Thus
E(YY) = E[ZX], and Y and 2 are identically distributed,

Theorem 4,2 Let Xl, X2 be independent identically distributed random
variables with common symmetric non-degenerate distribution function F,

Suppose that all moments a, = E[Xik], K=1y2y eaey exist, Let b 40

k

be a real number., If

X, +X

1
3 and 2 = Xlo X2

Y =

are identically distributed, then Xi are distributed according to

density (4.1).

Proof Now E[Zk] and E[Yk] exist since E[Xlk] exist, and the hy~
pothesis implies that E[Zk] = E[Yk], k=1y2y¢0s « If k is odd then
ak;O since F 1is symmetric. Hence E[Zk] = E[Xl- X2]k = E[Xlk] E[Xak]

= O, For even subscripts

]

X + X2)2k

2 2k 2k 1
a5 E[Xl :IE[:X2 ] = E( T

2k
-2k 2k, J 4 2k=j
b B Z( j)xl X,
3=0
2k

bo2k Z 2k -
i) k=]

3=0

fi

ft

k

=2k 2k |
= b 2(23) By 8 0q° (4,3)
J=0

. . 2 =2[f2 2 2 2
Letting k=1 this becomes ay = b [(O)a2+(2)a2-] or b a2a2a2= 0,

whence a2=0 or 8,= S But since F is non-degenerate, no moment
b
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of even order can be zero. Therefore ay, =3 = b—2(2!)' An inductive

2
b2 1
argument used on (4.3) shows that a5, = p~2K (if), k=132y 400

From Theorem 1,1 it is known that a distribution function is com~

pletely determined by the sequence {ak} of its moments if the sum

oD f
-1/(2k)
S o
k=1

-1/(2k)

s . 2k\, -2k ~1/(2k) 2k
is divergent. Since 85 = (k )b then Aoy = |b ]( K ) N
We now compare (%f)"l/(ak) to %, the general term of the harmonie

series, We note the inequality

2k . (2Kk)! . e
KT > e (k>1), (4.5)

To see this, the right member of (4.,5) may be looked upon as the
number of 2k~long binary sequences in which exactly as many zeros as
ones appear. The left member is the number of 2k-long k-ary sequences
(i, e,y with a choice of k digits for each position), Hence (4.5) .is
clear,

Therefore

=1
2k =2k
3] > x

-1

=1/{2k)
(2k) > x

\ k

and (4,4) diverges if a is replaced by a,

It was shown in Theorem 4,1 that the moments associated with den-

sity (4,1) are My = (2k>b"2k, and m

1 okl = 0., 8Since the moments

{ak:kz.-l, 24000} characterize F and a, =m, then Xi are distrib-

uted according to density (4,1),
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It should be noted that the assumption of symmetry cannot be removed
from the hypothesis of Theorem 4,2 as is seen by letting Xi have the

common distribution

1
P[Xi = o= =] o=

P) and P[Xi = 1] =

izl, 29

Wir

1
“59
and b:2.

The author wishes to thank I, I, Kotlarski for suggesting this

problem and helping in its solution.
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