SYSTEMS SIMULATION OF PUBLIC POLICY

STRA'TEGIES FOR MULTICOUNTY
DISIRICT ECONOMIC
DEVELOPMENT
By
JAMES RALPH NFLSON
Bachelor of ScienceTexas Tech UniversityLubbock, Texas
1966
Master of Science
Texas Tech University
Lubbock, Texas
1968

Submitted to the Faculty of the Graduate College of the Oklahoma State University
in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY

July, 1974

SYSTEMS SIMULATION OF PUBLIC POLICY STRATEGIES FOR MULTICOUNTY
 DISTRICT ECONOMIC
 DEVELOPMENT

Thesis Approved:

PREFACE

Appreciation is extended to Dr. Luther G. Tweeten, Graduate Committee Chairman, for his advice and extremely helpful suggestions on this thesis and throughout my graduate program at Oklahoma State University. Thanks are also due to the other members of my committee: Dr. Gerald Doeksen, Dr. Larkin Warner and Dr. David Weeks.

I wish to express appreciation to the Department of Agricultural Economics and the NDEA for financial support throughout my Ph.D. program.

Thanks are extended to Ginny Gann and the departmental statistical staff and to Jeanne Edwards, Dee Wells, Joan Dowell, and the other departmental secretaries for data processing and typing assistance. I am also grateful to Mary Huffman for expert typing on the final copy.

Finally, special gratitude is expressed to ny wife, Patricia, and our daughters, Cindy and Jennifer, for their understanding, encouragement and many sacrifices.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
Objectives 5
Methodology 6
Estimation of Efficiency Coefficientsfor Development Activities 7Evaluation of the Effectiveness of
Development Policy Packages 11
Organization of Study 13
II. THE MODEL 14
Some Recent Development Studies Utilizing Systems Simulation 15
A Regional Macroeconomic Model 16
A National Rural-Urban Model 16
A National Microanalytic Model 17
A State Simulating Model 18
General Comparisons 18
Theoretical Bases 19
Neoclassical Theory 19
A Theory of Development Planning 23
Technical Aspects 26
Socio-Demographic Data 26
Alternative Development Activities 28
Technical Coefficients 30
Simulator Output 31
III. STUDY AREA AND SOCIO-DEMOGRAPHIC DATA 33
Study Area 33
Socio-Demographic Data 36
IV. TECHNICAL COEFFICIENTS 38
Demographic Coefficients 38
Income Coefficients 39
Employment Coefficients 41
Development Activity Efficiency Coefficients 42
Labor Mobility Programs 42
Industrialization Programs 4
Education Programs-School Dropout Prevention 50
Chapter Page
Technical Training Programs 51
Family Planning Programs 51
Summary of Technical Coefficients 52
V. RESULTS 56
Strategies Simulated 57
Strategy 1 60
Strategy 2 62
Strategy 3 64
Strategy 4 67
Strategies 5 and 6 69
Strategies 7 - 12 72
Strategy 13 72
Strategy Comparison and Evaluation 79
Strategy Comparison-Activity Combinations 84
Strategy Comparison-Industrialization Efficiencies 87
Strategy Evaluation 88
VI. SUMMARY, LIMITATIONS AND FUTURE RESEARCH NEFDS 93
Summary 93
Limitations and Future Research Needs 101
A SEIECTED BIBLIOGRAPHY 104
APPENDIX - A USERr ${ }^{\text {S GUIDE TO THE RURAL AREA DEVELOPMENT }}$ SIMULATOR 109

LIST OF TABLES

Table

Page

I. Socio-Demographic Data for the Eastern Oklahoma
Development District-1970. 37
II. Summary of Sịmulator Technical Coefficients for the Eastern Oklahoma Development District 53
III. Development Strategies Simulated for the Study Area 61
IV. Simulated Results of Strategy 1 63
V. Simulated Results of Strategy 2 65
VI. Simulated Results of Strategy 3 66
VII. Simulated Results of Strategy 4 68
VIII. Simulated Results of Strategy 5 70
IX. Simulated Results of Strategy 6 71
X. Simulated Results of Strategy 7 7.3
XI. Simulated Results of Strategy 8 74
XII. Simulated Results of Strategy 9 75
XIII. Simulated Results of Strategy 10 76
XIV. Simulated Results of Strategy 11 77
XV. Simulated Results of Strategy 12 78
XVI. Simulated Results of Strategy 13 80
XVII. Summary of Simulated Final Results of Strategies Considered. 81

LIST OF FIGURES

Figure Page

1. Equilibrating Wage Rates Between Areas. 21
2. Study Area Counties 34

CHAPTER I

INTRODUCTION

Many rural areas are plagued with problems of poverty, declining population, inadequate schools and other services, and a high ratio of dependent to nondependent population. Many urban areas are plagued by slums, crowding, deteriorating public transportation, suburban sprawl, sharply rising welfare costs, increasing alienation, crime, pollution, and severe fiscal pressures on central city governments. The mass exom dus of people from rural areas to urban areas has been a panacea to neither area. In fact, many of the problems of both urban and rural areas can be related, either directly or indirectly, to rural-urban migration and the adjustments that such migration necessitates. However, some elements of success are apparent:

In recent decades, the poor, like others, have migrated to metropolitan areas in large numbers. And they have come for much the same reasons: to seek improved income and employment opportunities... However bad conditions are in urban slums, the migration has been successful. Real incomes and employment opportunities are better in urban than rural areas, and the incidence of poverty is lower despite the immigration of poor (Mills, 1972, p. 145).

These success elements notwithstanding, there is considerable evidence that public policies could have been used more effectively to reduce problems of migrants. Furthermore, many problems remain. In 1969, only 27 percent of the population of the United States lived in rural areas. However, 36 percent of the people in poverty lived in rural
areas. The incidence of poverty was 18 percent in non-metropolitan
areas and only 10 percent in metropolitan areas. Over half of the blacks in rural areas were in poverty while only 30 percent of the blacks in urban areas were so classified. Mean family income was $\$ 2,500$ less in rural than in urban areas. In 1970, more than 55 percent of the adult urban population had a high school education. In contrast, only 44 percent of the adult rural population had a high school education and less than seven percent had a college education.

Area development programs (including related public assistance and manpower programs) have expanded markedly in recent years to deal with the problems of both rural and urban areas. Federal funds for community and regional development increased by 3.8 times from 1961 to 1971 when they totaled $\$ 55$ billion. ${ }^{1}$ Federal expenditures on labor and manpower programs increased from $\$ 809$ million in 1961 to $\$ 2.6$ billion in 1971. Federal public assistance payments increased from $\$ 2.2$ billion in 1961 to $\$ 7.8$ billion in 1971 (U. S. Bureau of Census, 1972b).

In 1965 federal legislation was passed which formed the Economic Development Administration (EDA). The EDA was charged with providing assistance necessary to permanently eliminate substantial and persistent unemployment and underemployment in economically distressed areas. The primary influence in preparing the EDA legislation was the experience acquired from the Area Redevelopment Administration (ARA) which existed from 1961 to 1965. "The ARA was regarded as an experimental program to give legislative support to the declaration of the Full Employment Act of 1946" (Economic Development Administration, 1972, p. I). The ARA was

[^0]involved primarily in piece-meal project-by-proječt development activities. "One worthy objective in reconstituting the Area Redevelopment Administration as the Economic Development Administration in 1965 was to place greater emphasis on regional development plans" (Tweeten, 1970, p. 401). In 1965, EDA expenditures were $\$ 55$ million. In 1966, their first full year of operation, EDA expenditures grew to $\$ 72$ million (Executive Office of the President, 1966). EDA outlays for 1973 included expenditures of about $\$ 217$ million and loans of about $\$ 47$ million. The $\$ 217$ million expenditures included $\$ 162$ million for development facilities grants; \$22 million for planning, technical assistance and research; \$22 million for operations and administration; and $\$ 11$ million for other expenditures (Executive Office of the President, 1972). The development facilities grants were made to state, local or nonprofit organizations to be used for the purchase or construction of facilities to improve opportunities for the establishment or expansion of industrial or commercial firms. The funds for planning, technical assistance and research were used to aid communities and districts in their planning for economic development. ...The loans were low-interest, long-maturity loans for the construction of commercial, industrial and development facilities.

Other sources of major development related projects have been the Manpower Bevelopment and Training Administration and the Office of Economic Opportunity. These agencies were formed by federal legislation enacted in 1962 and 1964 respectively. Their programs included labor mobility projects, education and training-including retraining and onthe job training. These programs were aimed at the unemployed and underemployed and at minority groups with goals of alleviating poverty and insuring equal opportunity.

Three stages of rural area development research are apparent. The first stage, documenting the dimensions of the problem, began as early as the 1790 census of population. The phase peaked in the 1950° s with numerous special personal interview surveys of rural areas. It continues through the present though it now receives less relative effort than previously. The second phase, planning programs for development, gained prominence in the 1960's. Major development programs of the Manpower Development and Training Administration and the Office of Economic Opportunity were originated during this time. Spurred by the program planning and budgeting emphasis, many of these programs were evaluated for costm effectiveness, But the evaluations failed to view development programs as a package and to recognize the need for coordination of programs in reaching a critical mass for rural development. The second stage, however, provided the foundation for a third stage, programming plans. In contrast to planning programs as separate entities, the third stage rem cognizes the need to coordinate programs and to determine the level and mix of programs required to reach development goals efficiently. The third stage can be methodologically conceptualized within the dynamic context of systems plarning (Tweeten, 1974a).

The systems approach developed in this study can improve both classroom instruction and public policy in rural area development. Shortcomings of legislation and inadequate planning have resulted in fragmented, inefficient and overlapping programs. Previous studies have not considered the many possible programs for economic development as part of a comprehensive system. Economic evaluation of the efficiencies of various programs, viewed in the context of systems planning, can help public policy decision makers decide which public programs to expand and
which to contract, and what total level of funds is required to reach development targets. Systems planning can be used to devise an efficient rural development strategy that makes limited public funds go as far as possible to reach development targets.

In the classroom, the systems approach, organized as a rural development game, allows students to gain "experience" in devising a development strategy. It serves as a method to make students aware of the complicated relationships which exist among demographic factors and policy activities within the system of an area econony. Students ${ }^{7}$ development program plans for a specific time interval can be fed into a computerized simulation model which provides a printout of outcomes. In subsequent planning sessions, students revise their development plans and the results are printed. This process is continued until the game is complete and targets are met, "public funds" for development are exhausted or the simulated time within the development planning horizon has passed. The gaming approach has been used in other problem areas with success, and has generated enthusiasm, experience and feedback that are important for effective learning.

Objectives

The purpose of this study is to develop and utilize an exemplary model to simulate and evaluate the results of potential rural area development policies. The model is applicable to classroom instruction and to the evaluation of "real world" public policy packages directed at rural area development. The formal objectives of the study are as follows:

1. Estimate technical efficiency coefficients for alternative area development activities.
2. Evaluate the effectiveness of potential rural area development policy packages in attaining alternative goals.
3. Compare the simulated effectiveness of policy packages which are currently politically feasible with the simulated effectiveness of ideal policy packages deemed potentially possible.

Methodology

Policy makers must specify area development goals and estimate the results of alternative policies before the policies can be evaluated and courses of action can be selected. The results of regional development policies, especially when viewed in a dynamic framework, are dependent upon the interaction of many variables within a complicated, interrelated system of social, economic, political and demographic factors. Each of these factors can be taken as a subsystem. Each subsystem can be broken into still lesser systems, and, at least conceptually, this process can be continued until the complete hierarchy of systems of a rural area is identified。

The immediate practical problems of this endeavor are obvious. The conceptual dynamic interrelationships of even relatively simple systems mushroom until they become "mind-boggling." Also such systems develop voracious appetities for minutely detailed data. These two problems can be countered to some extent by the utilization of modern computer hardware. However, even with computer assistance, the ability to conceptualize comprehensive systems can easily exceed the technical capabilities for simulating the workings of such systems.

Still, to predict or estimate the results of alternative development policies, some system of policies and results must be simulated in a more or less formal manner. A formal quantitative systems simulation model, while of necessity abstracting from many real world exigencies, can substantially improve on the deaision making frameworks now in use by planners, and can give useful and hitherto unavailable estimates of the efficient level and mix of public policies required to reach specified development targets.

Estimation of Efficiency Coefficients

for Development Activities

Numerous publicly supported programs are available to improve the well-being of the inhabitants of an underdeveloped area. Examples are welfare payments, investment in human capital, programs to move people to jobs outside the area and programs to generate local jobs through industrial development.

Efficiency coefficients, meaning the impact of these alternative development activities on various subpopulations within the study area, will be estimated from primary and secondary sources. A considerable body of literature dealing with analysis of individual development projects currently exists. Project efficiency coefficients are calculated in many of these studies. While these secondary data do not always ap ply to the areas examined in this study, the coefficients can be modified to fill data needs. In other instances, coefficients will be calculated from raw data available from state and federal agencies.

Ordinarily, allocation of development funds to welfare (public assistance) programs is not considered to be an efficient use of such
funds. Welfare programs providing only cash assistance to the poor do not constitute an investment in human capital that generates a future income stream, Welfare programs do bring immediate gains in buying power, and for some people (those who are physically or mentally incapable of work), welfare payments may be a cost-effective way to eliminate poverty. Outlays to upgrade skills of those who are most disadvantaged generate incomes for instructors but not for the disadvantaged.

Human capital investments in the form of education and training do, indeed, increase the productive potential of some people in an underdeveloped area. One use of such funds is to keep potential dropouts in school. Neighborhood Youth Corps programs administered by the Office of Economic Opportunity and other sources yield estimates of the cost effectiveness of such programs to keep dropouts in school (Somers and Stormsdorfer, 1972). Information from manpower projects as well as age-earnings profiles generated from census data indicate the increased individual earning potential which can be expected to result from staying in school. Another use of human capital investment funds is for vocational training (or retraining) programs. Several estimates of cost effectiveness coefficients for such programs are available in the literature (Shallah and Tweeten, 1970; Goldstein, 1972). However, people who have increased their earning potential through education and training must have jobs to utilize their newly developed capabilities before this potential can be realized。 ${ }^{2}$
$2^{\prime \prime}$ Improved skills will be of little value in an economy which provides no market for these skills" (Hirsch, 1973, p. 167). Thus programs to move people to jobs (labor mobility programs) and jobs to people (industrial development programs) are likely to serve as the basis for most successful comprehensive area development programs. And even these programs can only be successful if national full employment policies are in effect-a presumption that underlies the rural development model.

Programs to move people to jobs outside underdeveloped areas have the advantage of increasing income fairly rapidly (much more so than human capital investment programs). However, such programs can face considerable problems. Studies of labor mobility projects in rural poverty areas indicate that a significant proportion of the migrants who are outside the home area return each year (Nelson and Tweeten, 1973). Other individuals who could raise incomes by employment elsewhere cannot be moved at all. Also, political obstacles preclude moving large numbers of people out of underdeveloped areas. Thus programs to move jobs to people in underdeveloped areas can usefully supplement other programs. But the coordination of such programs with other development efforts is important. Estimates of cost effectiveness coefficients for labor mobility projects will, for this study, be made from data available on Manpower Development and Training Administration labor mobility projects (Fairchild, 1970; Nelson and Tweeten, 1973).

Because of limited opportunities for local job expansion and high initial costs of attracting industry, public programs to generate jobs locally generally provide less income to people in the short run for a given public outlay than either welfare programs or labor mobility programs. However, job creating industrial development programs can yield favorable returns over time. A review of the literature relating to recent Economic Development Administration (EDA) industrial development projects provides data which are used in this study to estimate the cost effectiveness of creating jobs for people in underdeveloped areas (Boise Cascade Center for Community Development, 1970; Economic Development Administration, 1970). This same literature on EDA projects provides information used in this study to estimate the percentages of jobs
attributable to such projects which go to the poor and which are filled" from local labor sources.

A study of plant location and expansion in the state of Oklahoma (Childs, 1973) provides data used in this study to estimate the expected. industrial mix of jobs attributable to EDA projects. This industry mix data plus employment multipilier estimates for a rural Oklahoma area (Muncrief, 1972) and data on direct, indirect and induced income resulting from government expenditures in Oklahoma (Doeksen, 1971 and 1972) are used to estimate the full effects on employment and income of public funds spent on industrialization and other development activities in the rural area considered in this study.

Some development programs are not easily grouped. with welfare, human capital investment and job creation programs. One such program considered in this study is family planning. The importance of family planning to the economic well-being of individuals has been noted by economists since at least 1796 when Thomas R. Malthus published his Essay on the Principle of Population (Mceleary, 1953). Malthus recognized that the poor or the working class were the ones whose economic well-being was most hindered by large familly size. This condition still persists. "Progress in reducing poverty in recent years is greatest among small-sized families; it is also more difficult for a large family to exit from poverty" (Sheppard, l967, po 22). Consequently family planning programs, to allow the poor to have the number of children they desire, can be viewed as one possible alternative use for development program funds.

A family planming program would provide information and contraceptives to the poor to allow them to have the number of children they desire. Studies show that such programs would decrease the number of
children born into poverty. Estimates of cost effectiveness of such family plaming programs (Kershaw and Courant, 1970) are used in this study to evaluate the effects of public expenditures for family planning on rural poverty.

Evaluation of the Effectiveness

of Development Policy Packages

Economic development of an area is defined as an increase in the well-being of the area's inhabitants wherever they eventually reside. Because well-being cannot be measured directly, it is necessary to use more immediate and measurable goals such as income, poverty and employment in a quantitative model of economic development. Ideally, the evaluation of area development policies and activities requires specification of the goals of the area's inhabitants. The trade-offs among goals which are not perfectly compatible pose conceptual problems. Personal goals often include the maximization or attainment of satisficing levels of such diverse and sometimes incompatible elements as income, wealth, leisure, prestige and political power. Goals also vary over time.

To evaluate area development activities, the individual personal goals of the inhabitants of the region considered must be aggregated. Such aggregation necessitates the use of a common denominator to measure personal goals. Since income is the means to many goals sought by individuals, it can serve as one easily aggregated economic proxy for many human goals. The selection of income to measure development still leaves unsolved the problems of income distribution among inhabitants of an area and over time. While public debate and political rhetoric clearly point
to income distribution as an important issue, it is not possible to set forth an ideal income distribution without making heroic assumptions.

Goals of equity and efficiency conflict in many programs. Some development activitiers generate relatively large amounts of income but help only a few poor people. Other equally costly projects generate less income but remove more people from poverty. Some projects generate relatively large amounts of future income and little current income while other programs do the opposite. These choices are resolved in this study only by showing alternatives.

The approach in this study is to assume various goals and then search for public policy strategies which best satisfy these goals. Hopefully, the range of goals or objectives considered is broad enough to include discogent opinions on the part of citizens, community leaders and policymakers of what constitutes an optimal set of goals. Once development project evaluation criteria have been established, policy makers can use the model developed herein to estimate the results of alternative policy packages and select courses of action which satisfy area development goals as fuily as possible.

The use of a model such as the one described herein can make decision makers aware of complex relationships over time which are difficult to conceptualize informally, and help decision makers predict ranges into which results of specific policy actions can be expected to fall. Decision makers responsible for investing development funds can examine the results of alternative courses of action without actually having to invest funds in the alternative activities. A course of action with desirable results can be singled out for consideration, and unforeseen problems can be identified before they occur in real situations.

Organization of Study

The following chapter includes a discussion of the model developed and utilized in this study to simulate rural area development. Some other studies utilizing systems simulation to evaluate development activities are discussed briefly, the theoretical bases for the model are examined and techrical aspects of the model are discussed.

Chapter III includes a definition and description of the rural area to which this study pertains. Sociomdemographic data on the study area, cross-classified as necessitated for simulation, are presented in the chapter. Estimates of the technical and efficiency coefficients required for operation of the model are presented in Chapter IV. Literature sources continuing information used for coefficient estimation are discussed in the chapter.

Results of alternative development plans are specified and discussed in Chapter V. Chapter VI summarizes the study. Conclusions and implications are discussed in the chapter.

CHAPTER II

THE MODEL

A rural area development planning model is developed in this study to simulate results over time of potential rural area development policy packages or strategies. Simulation is "essentially a technique that involves setting up a model of a real situation and then performing experiments on the model" (Naylor, et $2 l_{0}, 1966, \mathrm{p}$. 2). For a simulation model to be a useful tool in applied research, it must be a logically complete though simplified representation of a segment of reality which can be operated on mathematically or by other systematic means to yield quantitative or at least interpretable results. A useful model must have sound theoretical bases and be technically operable.

Extensive use of simulation to construct and experiment upon economic and other potentially complicated systems developed concurrently with digital computers. Increasing capacity of computers reduced computational constraints and made possible increasingly greater depth of analysis. "With simulation one is limited in depth only by his knowledge and capacity to handle data management problems that arise when he attempts to model reality more closely" (Eidman, 1971, p. 8).

Simulation then, in contrast to other analytical models, accomodates the study of highly complex relationships. Conceptually, the complexity of relationships that can be simulated is almost unlimited. These can include discontinuous relationships, time lags, indivisibilities and
non-linear relationships. Realistically, of course, the usefulness of simulation is limited by such things as the abilities of the researcher to recognize relationships and state them in mathematical terms, the abilities of the researcher to obtain and manage large quantities of accurate data, and the progranming capacity of available computer hardware. Simulation is not ordinarily used as an optimizing procedure. Economic optimizing models generally determine activity levels endogenously. Activity levels must usually be specified as exogenous variables for a system being simalated. However, after these exogenous variables are specified, the rescarcher can compare the implications and results of various levels of alternative variable combinations to select those which best satisfy some previously determined criteria.

The following section reviews selected studies which applied systems simulation techniques to problems of economic development and public policy evaluation. The last two sections of the chapter discuss the theoretical bases and technical aspects of the model developed for this research.

Some Recent Development Studies
Utilizing Systems Simulation

Other researchers have applied systems simulation to research questions of edonomic"development and public policy evaluation. These studies have addressed development questions from various levels of aggregation ranging from local regions to the nation as a whole. Similarities and differences in these studies and the research presented in this thesis are noted.

A Regional Macroeconomic Model

Eddleman and Ryner (1972) present a macroeconomic simulation model for evaluating the supply and demand factors influencing production in a regional economy, The model can be used to simulate "a region's growth over a previous time period and for projecting future levels of employment, income and regional balance of payments" (Eddleman and Tyner, 1972, p. 195). Using this model a researcher can set target levels for growth measured in output terms and then examine the feasibility of the target levels in terms of human, natural and financial resource constraints. The model presented by Eddleman and Tyner, simulates area development from the standpoint of production in the area. It provides little infor mation on the effects of public policies and programs to supplement the human, natural and financial resources of an area if target levels of output cannot be obtained with existing resources. Also, the EddlemanTyner model does not consider the distributional aspects of the income generated by the area's production.

A National Rural-Urban Model

A model to simulate rural and urban population, income and employment in the United States was developed in the U. S. Department of Agriculture, Economic Flesearch Service (Edwards and De Pass, 1971). Using this model and current national trends, Edwards and De Pass predicted population, income and employment for the rural and urban sectors of the nation to the year 2020. Then the effects of changes in rural-urban migration rates, changes in population growth rates in both sectors, job creation (especially in rural areas) and increased labor productivity (especially in rural areas) were simulated to the year 2020. Thus,
conclusions could be drawn about the changes necessary to attain, over time, specified popuㅋation, income and employment targets. This model makes it possible to simulate the effects of some rather broad types of economic development policies. However, these effects are simulated on a national basis, ard the distributional aspects of the results and the costs of carrying out the policies used are not considered.

A National Microanalytic Model

In recent years the Urban Institute has worked on the development and application of a microanalytic simulation model designed to provide a dynamic representation of the population of the United States which can be used to trace the effects of public policies on the behavior and well-being of individuals and families over time. An auxiliary macroanalytic model has also been developed to provide a simulated environment for the mieroanalytic model (orcutt, et al., 1971). Thesd models make possible the simulation of such demographic and aconomic factors as births, deaths, educational attainment, income, and employment for the population of the United States. Then, if the simple effects of various public policies on individuals in the nation can be specified, the aggregate affects of individual policies or groups of policies on the population can be simulated (Guthrie, 1972). The Urban Institute Midroanalytic Simulation Model could be used to simulate the impacts of public policies on the population of the nation in much the same way the model used in this research allows the simulation of public policy impacts on a raral region. The Urban Institute model, however, does not directly incorporate the cost effectiveness of alternative public programs into the simulated results.

A State Simulating Model

A Leontief inputwoutput type simulation model for the econony of the state of Oklahoma has been developed and utilized by Gerald A. Doeksen (1972). Doeksen used data from the Oklahoma social accounts to simulate levels of state economic variables from 1963 to 1980. Using input-output multipliers, such impact parameters as the effects of new plants by sectors, the expected investment cost per job created by sectors and the effects of increased government spending were estimated. Then it was demonstrated how such projections and impact estimates could be used by a conmurity for planning its public services. The study by Doeksen provides impact estimates of the effects of broad development policies and activities. Also, income and employment multipliers such as those estimated by Doeksen are necessary inputs into a specific area development policy planning model such as is used in this thesis.

General Comaprisons

The studies discussed above are only a few of those recently completed or in progress applying simulation techniques to economic development and public policy evaluation. They indicate the types of issues to which simulation has been applied in the development area. The model developed and utilized in this study draws from concepts and estimates of simulation studies discussed in this section. Using systems simulation to estimate the general impact of public development policies is common to all of the studies discussed here and to the model used in this thesis. The demographic aspects of the Urban Institute Model (Orcutt, et al., 1971) are similar to those used in this research. The multiplier estimates made by Doeksen (1972) as well as other similar
input-output muetipitiers are used in this study to estimate the effects on income and employment in an area resulting from public expenditures on development programs.

This study, however, is different from the ones discussed above in that the specific effects (rather than the broad, general effects) of various public policy decisions, and the resulting mix of specific develw opment programs are simulated for an underdeveloped multicounty area. The model used in this study utilizes cost effectiveness estimates for different development programs to simulate the impacts of various program combinations on measures of the well-being of the people in a particular area. Well-being, as discussed in the previous chapter, is measured only indirectly by income, poverty and employment in a quantitative model of economic development.

Theoretical Bases

Neoclassical economic theory explains income, poverty and employment and so is discussed in this section, Also discussed in this section is a theory of development planning which explairs how regional development decision makers can act to vary instrumental variables for an area, thus causing changes in target variables such as income, poverty and employment.

Neoclassical Theory

Neoclassical economic theory tells us that if all resources, including labor, are mobile and knowledge is complete then economic activity gravitates to locations with comparative advantage. An area has comparative advantage in a particular commodity if the profit it can
make from producing and selling that commodity is greater than it can make on any other commodity. Thus a particular area may make more profit per unit of a particular commodity than any other area (a situation of absolute advantage), yet it may specialize in another commodity on which it can make an even greater profit (a situation of comparative advantage) (Tweeten, 1974b). What products an area will produce depends not only on the area's productive capabilities for particular commodities, but also on the relative productive capabilities of other areas.

Once competitive equilibrium is attained, equivalent resources rem ceive the same returns in all areas. In the case of labor, neoclassical theory states that higher wages offered in one location than in another constitute a disequilibrium situation which the market will move to rem solve. In considering disequilibrium, assume an econonty consisting of two areas, A and B_{e} The economy is static in the sense of constant total population and production functions invariant over time. Assume further that area A has a natural advantage in production. Consequently its value of marginal product of labor is greater than that of area B (Figure I). Say that initialiy the amount of labor in area A is $L_{A I}$ and the amount of labor in area B is $L_{B 1}$. Because wages are higher in A than in B, some B labor will move to A until wages in both areas are equal at P_{0} (Hoch 1972).

Thus a perfect market will equate wage rates (or returns to any other resources) among areas. There is evidence, however, of market failure in enticing labor to migrate to its highest wage location. "Unfortunately for some areas, labor earnings are chronically depressed over an extended period" (Tweeten, 1974b, p. 7). Also, the possibility of market failure in firm locational decisions is suggested by many undesirable environmental effects associated with cities (Tolley, 1971).

Figure 1. Equilibrating Wage Rates Between Areas

Such market failures arise from externalities not priced in the market and exogenous restrictions and rigidities imposed by outside institutions. Externalities which are not, priced in the market system are especially in evidence in urban areas with problems of congestion, pollution and crime. Exogenously imposed"restrictions and rigidities are apparent in all sectors of the market. where is some evidence that real returns to labor (Schreiner and Knutson, 1974) and capital (Janssen, 1974) do not differ widely among areas, but that market imperfections such as minimum wages, union wage patterns and other rigidities create improper incentives in a capital and labor market that functions reasonably well. For overall economic efficiency, it is necessary, in such situations, to intervene in the market to alter incentives in line with social incentives. Because these market imperfections have worked to the disadvantage of depressed rural areas, public intervention seems warranted to make the actual market perform more nearly like a perfect market (Tweeten, 1973).

Neoclassical theory provides insight into how such intervention can increase economic activity in an area and how this increased economic activity can be maintained. According to neoclassical theory, an underdeveloped area characterized by low wages attracts labor intensive industries. These industries cause increased area output and investment in infrastrueture and in other material and human capital. Thus the price of capital falls relative to the price of labor. More capital intensive industries are now enticed into the area, bidding labor away from low wage, labor intensive industries which gradually phased out (Tweeten, 1974b)。

This pattern characterizes the New England area where the labor intensive textile industry was gradually replaced by electronics and other
capital intensive industries. The textile industry shifted to the Piedmont. Now the Piedmont is likewise moving toward more capital intensive industry. One conclusion is that a depressed area may appropriately begin making economic progress with labor intensive, low-wage industry and then rely to a degree on the impersonal working of the price system for self sustaining economic progress as accumulation of capital sets the stage for further growth in capital and income.

The analysis reported herein is based on the assumption that, to achieve efficiency "in the large" or equity, policy makers make a decision to assist depressed areas. Given this assumption, this research is specifically involved with the analysis of efficiency "in the small," addressing the issue of the least cost public programs required to reach certain development targets in a depressed area. The systems simulation procedures utilized in this study are designed to assist decision makers in evaluating the effects of such public programs on the economy of an area to which they are applied.

A Theory of Development Planning

To utilize a systems simulation approach to area development program evaluation the econong of an area can be conceptualized as follows:

$$
\begin{aligned}
& f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots z_{m}\right)=0 \\
& f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots z_{m}\right)-0 \\
& \cdot \\
& f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots z_{m}\right)=0
\end{aligned}
$$

where:
$X_{i}{ }^{\prime}$ s are variables endogenous to the system of the area economy. X_{j} 's are variables exogenous to the system of the area economy. The above system of implicit equations could be solved to yield the following expiicit functional statements:

$$
\begin{aligned}
& x_{1}=g_{1}\left(z_{1}, z_{2}, \ldots, z_{m}\right) \\
& x_{2}=g_{2}\left(z_{1}, z_{2}, \ldots, z_{m}\right) \\
& \vdots \\
& \vdots \\
& x_{n}=g_{n}\left(z_{1}, z_{2}, \ldots, z_{m}\right)
\end{aligned}
$$

Some group of endogenous variables ($X_{1}, X_{2}, \ldots, X_{k}$) can be selected as target variables and their desired levels determined by the goals of policy makers. Then, if some subset of the exogenous variables $\left(Z_{1}, Z_{2}\right.$, Oo, Z_{h}) can be manipulated as instrument variables, some or all of the goals may be attainable。 If the number of instrumental variables (h) equals the number of target variables (k), then all of the goals can be attained. If k is greater than h, the desired goals can be reached in more than one maner. If k is less than h the desired goals cannot all be attained simultaneously (Tinbergen, 1956).

The simalation model used in this study is designed to approximate this conceptual decision making framework. Using simulation procedures, the levels of exogenous instrumental variables in the model can be varied and the resulting attairment of various assumed goals can be noted. In such a manner the effectiveness of potential packages of rural development policies in attaining alternative goals can be compared and evaluated。

Existing political and legal restrictions constrain all types of public policy. These restrictions may reflect legitimate social or economic considerations consistent with the goals of society, or they may reflect political compromise and logrolling. Logrolling and political compromise may be unavoidable, but such compromises are not without costs. These costs are in evidence when alternative goals are made unreachable by compromised pablic policy.

Such costs can be viewed in the context of the generalized economic system discussed above as a constrained maximum problem. The constrained function can be stated as follows:

$$
\begin{aligned}
W_{\lambda}= & w\left(X_{1}, x_{2}, \ldots, x_{n}\right)+\lambda_{1} f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, \ldots, z_{m}\right) \\
& +\lambda_{2} f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}, z_{1}, z_{2}, z_{m}\right)+\ldots, \lambda_{e} f_{e}\left(x_{1}, x_{2}, \ldots,\right. \\
& \left.X_{n}, Z_{1}, z_{2}, \ldots, Z_{m}\right)
\end{aligned}
$$

where,
W is a constrained social welfare function,
W is an unconstrainted social welfare function,
$I^{\text {through }} e$ are Lagrangian multipliers, and
f_{I} through f_{e} are constraints.
This constrained social welfare function could be maximized, the optimum levels of all variables determined and the results compared with those from an unconstrained solution. Systems simulation will be used in this study to estimate the results in terms of goal attainment of alternative constrained and unconstrained development policy decisions on an area economic system. Differences in results between constrained and unconstrained solutions measure the opportunity cost of political and other impediments to development, and alternatively the gain to society if it chooses to remove them.

Technical Aspects

The simalation model developed and demonstrated in this study simulates economic development in a specified underdeveloped area (as evidenced by high rates of unemployment, underemployment, and poverty). The population in the area is divided into socio-demographic categories based on income, work eligibility, age and levels of education and training, It is assumed that a decision making authority has funds available on an annual basis which can be spent on programs which influence measure of well-being of the people in the area.

The allocation decisions of the decision making authority are entered into a computerized simuiation model (see Appendix). The model simulates adjustment of the population by births, deaths and aging. It also simulates changes in the population resulting from changes in educational and training levels, birth rates and the number of people in poverty caused by the allocation decisions of the decision making authority. The output of the computerized model describes, at the end of each simulated year, the simulated new situation of subpopulations in the area consider ed and the simulated aggregate economic condition of the area as a whole.

Socio-Demographic Data

Impacts of public programs vary for a developing area depending on the socio-demographic situation of the area. Also, the socio-demographic situation of an area can suggest to decision makers what types of development programs are most needed for an area. For the simulator used in this research, the population of the area considered is cross-classified into 21 socio-demographic categories depending on income, age, ability to work and levels of education and training.

The poor in the area are categorized according to their ability to work as salvageable or unsalvageable-those incapable of supporting themselves by working being classified as unsalvageable. Unsalvageable poor are further categorized as working age (15-64) or above working age (65 and over). Salvageable poor are cross-classified by age, attainment of a high school education and possession of technical training. The nonpoor in the area are categorized by age and income level.

Young unsalvageable poor (age 15-64) are those who are working age but cannot hold a job for reasons of physical or mental disability. Most of these people are capable of performing "make-work" tasks. Thus, if closely supervised, they could be employed by public agencies for such work as grounds maintenance, litter clean up and other physical taskso Such public employment is a form of welfare but allows the recipient to maintain a certain degree of dignity for performing a service to the community. Unlike older unsalvageable poor, many of these people have children to support.

Elderly unsalvageable poor (age 65 and over) are assumed to be physically incapable of work. It is assumed that the only way to remove these people from poverty is to giverthem public assistance grants.

The salvageable poor are defined as capable of holding conventional jobs in the labor market. In this model there are two ways to provide jobs for the salvageable poor. They can be employed in new jobs created in the underdeveloped region in which case they move into nonpoor classifications, or they can be moved out of the area to be employed in vacant jobs in other areas. It is assumed that such jobs are available in other areas, but there is a cost associated with moving people to the jobs. Also it is assumed that a certain percentage of movers return to

Abstract

their home area every year even though no job awaits them. Thus, over time, many poor who are moved out to get jobs will return to poverty rolls in their home areas.

It is assumed that poor children and students are moved out of poverty only as their parents are taken off poverty rolls. Thus the simulated number of poor children and students decreases as the number of poor parents decreases.

Alternative Development Activities

It is assumed that the decision making authority responsible for dispersing development funds in the area can allocate these funds among the following alternative activities:
I. To unsalvageable poor over age 65 (public assistance grants).
2. To unsalvageable poor, ages 15-64 (public assistance grants).
3. To education (school dropout prevention).

40 To technical training.
5. To family planning。
6. To industrialization.
7. To labor mobility subsidization。

These alternative activities, as considered in this study, represent special development activities which can be initiated over and above "typical" public investments in an area. It is assumed in this study that roads, schools, and other services and infrastructure are adequately funded in the area considered. ${ }^{\text {l }}$
$I_{\text {Data }}$ are unavailable for estimating the economic payoff from additional investment in infrastructure. One hypothesis is that the most efficient approach to development is to generate an economic base, then depend on the local community to decide how they wish to devote additional income to investment in infrastructure. Findings of White and.

Unsalvageable poor are removed from poverty by continuous transfer payments. People in the salvageable poor categories who reach age 65 and are still not employed go on the roles of unsalvageable poor over age 65.

Funds allocated to education are used to keep students from dropping out of school. Funds allocated to technical training are used to train untrained poor, ${ }^{2}$ These activities do not directly provide income to poor people. However, when people are employed they receive higher incomes if they have high school education or training.

Funds allocated to family planning are used to make information and contraceptives available to the poor and thus reduce the birth rate. Such a reduction of the birth rate decreases, over time, the number of young children and students in poverty.

Funds allocated to industrialization and labor mobility subsidization make jobs available to the poor. Jobs made available by industrialm ization and labor mobility subsidization go first to the best educated, best trained and youngest poor. All jobs made available by industrialization are filled first, then jobs outside the region made accessible by labor mobility subsidization are filled. Wages paid to people taking new jobs in the area vary according to the levels of education and train ing of the workers.

[^1]Funds for industrialization also create new jobs for the nonpoor. It is assumed that some of these new jobs are filled by local nonpoor who vacate their old jobs to the poor, and some are filled by nonpoor who migrate into the area. While funds allocated to activities other than industrialization do not create permanent jobs in the area, such expenditures do create income for both the nonpoor and the poor in the area. This income varies as the expenditures vary.

All development allocations are assumed to have indirect effects as Well as direct effects. In the case of allocations to industrialization, the direct jobs created in the area are assumed to be permanent, and are assumed to generate indirect jobs in the area. The total jobs created (direct and indirect) result in inereased income for the area which continues after the industrialization programs have ended. Jobs to area residents who obtain jobs elsewhere from labor mobility allocations also create continuing income to the area in accordance with the definition of development given earlier. However, since the jobs are outside the area, no indirect income results. Allocations to other development activities create both direct and indirect income for the area, but it is of a temporary nature since no permanent jobs are created, and the area income continues only as long as the activities or programs are continued.

Technical Coefficients

The simulated effects of development strategies on the population of a developing area depend on the values assigned to technical coefficients in the simulator. The values of these coefficients must be determined or estimated exogenously and entered into the simulator along with socio-demographic data and decisions about the levels of alternative development activities to be simulated.

The technical coefficients required for this simulator are of four types: demographic coefficients, income coefficients, employment coefficients and development activity efficiency coefficients. Demographic coefficients describe demographic activity of the population of the study area. These coefficients include birth rates, death rates and net migration rates for socio-demographic categories. Income and employment coefficients describe the economic conditions of the population of the study area. Income coefficients include income thresholds for sociodemographic categories, potential earnings for salvageable poor, area income resulting per dollar of public funds expenditure and the percentm age of area income going to the poor. Employment coefficients include labor force participation rates and unemployment and underemployment rates for sociomdemographic categories. Development activity coeffim cients define expected direct effects on the study area population of alternative development activities. Most development activity coeffim cients are stated in cost effectiveness terms.

Simulator Qutput

The output of the simulator includes, for each year simulated, a reclassification by sociomdemographic categories of the population of the study area, measures of income generated by simulated development activities, public costs of sueh activities, comparisons of income generated to public costs and measures of the incidence of poverty in the study area.

The simulator results allow a researcher to examine and evaluate potential outcomes over time of different allocation decisions. If pubo lic policy goals can be stated in terms of the variables specified in
the results of the simulator, alternative allocation strategies can be evaluated according to the extent to which they attain these goals. The model has been programed for computer use both for rural development research purposes and as a classroom game at Oklahoma State University (see Appendix). The model has been applied to alternative comprehensive development strategies for an underdeveloped area in eastern Oklahoma. This application of the model and the consequent simulated results are discussed in the following chapters of this thesis.

CHAPTER III

STUDY AREA AND SOCIO-DEMOGRAPHIC DATA

The model developed in this research and discussed in the previous chapter was designed to simulate the effects of development activities on an underdeveloped rural area. The specific underdeveloped area to which the model is applied is described in this chapter. Geographic, economic and socio-demographic data descriptive of the study area and dictated by the requirements of the model are presented.

Study Area

The study area includes Adair, Cherokee, McIntosh, Muskogee, Okmulgee, Sequoyah and Wagoner counties in eastern Oklahoma (Figure 2). This area comprises the Eastern 0klahoma Economic Development District and is a part of the Ozarks Economic Development Region. Like most of the Ozarks region, the study area has a high incidence of poverty. Approximately 40 percent of the area's population had family equivalent incomes less than $\$ 4,000$ in 1970 (calculated from U. S. Bureau of Census, 1971, and U.S. Bureau of Census, 1972a). Unemployment in the area averaged six percent in 1970. This was well above the average for Oklahoma and the nation which were four and five percent respectively. Underemployment in the area is quite high. Kampe and Iindamood (1969) estimated 1960 rates of underemployment for males in the study area counties ranging from 19 to 41 percent. The study classified underemployment of over

Figure 2. Study Area Counties

20 percent as severe. They found that all but one county (Muskogee) in the study area had severe underemployment.

The topography of the area varies from rolling hills to mountains. Much of the land is in timber. However, much of the timber is not properly sited, managed or of the quality required for commercial utilization. Much of the land is unsuited to agriculture (McCoy, 1970). Still, the population of the area is predominately rural, and in three of the seven counties 75 to 100 percent of the population is rural. Many residents either are unemployed or are underemployed in agriculture or in small business and industry in area communities.

Four communities in the area had 1970 populations of between 2500 and 20,000 people, and only one city (1九uskogee) had over 20,000 populatioh (U.S. Bureau of Census, 1971)。 The area borders the Tulsa metropolitan ara to the northwest and the Fort Smith metropolitan area to the southeast. The area has excellent highway arteries (Muskogee Turnpike and Indian Nation Turnpike) and one major national highway artery (Interstate 40).

Several large reservoirs are located wholly or partially within the study area. Eufaula, Robert So Kerr, Webbers Falls, Tenkiller and Fort Gibşon Resprvoirs provide water for recreation, flood control, power generation and for navigation in the Arkansas-Verdigris Waterway. This waterway begins at the Port of Catoose, a suburb of Tulsa, crosses the stindy area from northwest to southeast, and follows the Arkansas River channel to join the Mississippi River some 250 miles to the east. Thus, the area has barge transportation linkage with the Mississippi River and the Gulf of Mexico.

The city of Muskogee is located in the geographic center of the area; It is approximately 30 miles from-Huskogee to either the north or south borders of the study area, and approximately 50 miles to either the east of west borders of the area.... Muskogee can also be described as the economic center of the area. In 1970, Maskogee had a population of 37,331, more than twice that of the next largest town (Okmulgee, population of 15,180) in the study area and more than four times as large as any other town in the area. It is also the headquarters of the Eastern Oklahoma Economic Development District, an organization charged with coordinating the economic development of the study area. The city of Muskogee is the primary growth center of the area from the standpoint of both economic activity and spatial accessibility。

Socio-Demographic Data

The classification of socio-denographic data from the study area for use in this study was dictated by the requirements of the simulator used. The population of the study area was cross-classified into 21 socio-demographic categories (Table I). The nonpoor population of the are was crossmelassified by age, level of education and training, and ability to work (salvageable and unsalvageable).

All persons with family income equivalents of less than $\$ 4,000$ per year were classified as poor. The low income, nonpoor classification includes all persons with family income equivalents from $\$ 4,000$ to $\$ 8,000$ per year. The medium income classification includes all persons with family income equivalents from $\$ 8,000$ to $\$ 15,000$ per year. All persons with family income equivalents greater than $\$ 15,000$ per year were clasm sified as high income.

TABLE I

SOCIO-DEMOGRAPHIC DATA FOR THE EASTYRR OKIAHOMA DEVELOFMFNP DISTRIER- 1970°

	Number of"Pērsons
Nonpoor	
Less than age 20	114,104
School dropouts (low income)	1,376
Young children and students	38,609
Age 20-39	
High income	2,931
Medium income	12,016
Iow income	14,361
Age $40-64$	
High income	3,535
Medium income	14,492
low income	17,319
Age 65 and over	9,465
Poor	
Unsalvageable	77,090
Age 15-64	15,298
Age 65 and over	17,147
Young children and students	29,813
Salvageable	
Age 20-39	
With high school education and training	312
With high school education and no training	1,024
With training and no high school education	1,201
With neither high school education nor training	3,958
Ag $\$$ 40-64	
With high school education and training	362
With high school education and no training	1,205
With training and no high school education	1.407
Witfi neither high school education nor training	4,633
Age 15-19	
With neither high school education nor training (school dropouts)	730
${ }^{\text {a Calculated }}$ from: U. S. Bureau of Census, Census of Population:	
1970-General Population Characteristics, Oklahoma, 19 Social and Economic Characteristics, Oklahoma, 1972.	l, and General

CHAPIER IV

TECHNICAL COEFFICIENTS

The values of technical coefficients specified for the rural development simulator determine the simulated economic and other changes which occur in the study area over the time period simulated. Some of these changes are affected by development activities while others are independent of such activities. The population constitutes a dynamic environment, over time, whether or not development activities are initiated in the area.

Technical coefficients are discussed in this chapter as demographic coefficients, income coefficients, employment coefficients and development activịty efficiency coefficients. The coefficients were obtained from numerous sources. These sources are discussed along with the coefe ficients. All of the coefficients are summarized in the last section of the chapter.

Demographic Coefficients

Demographic coefficients on birth rates, death rates and population growth rate for the study area population were estimated from census data。 The annual birth rate per nonpoor adult, not in school, age $15-40$ was esm timated to be 6.65 per 100 for the study area (U. S. Bureau of Census, 1972a). The birth rate for the poor was estimated to be 10.48 per 100。 Death rates applicable to the study area for people age 65 and over,
people age 40-64 and unsalvageable poor, age 15-64 were estimated to be 6.4469 per $100,0.8075$ per 100 and 0.4137 per 100 respectively (U. S。 Bureau of Census, 1977, and U. So Bureau of Census, 1972b). A population growth rate for the area, based on data for the 1960-1970 decade (U. S. Bureau of (Census, 1971) was estimated as a positive 0.0085 per year.

Income Coefficients

The income coefficients specified for the simulator include poverty income thresholds for socio-demographic categories of the study area population, potential earnings for the area's poor who take jobs created by development activities, total income resulting in the area per dollar of public funds spent on development activies, and the percentage of the area's income which goes to the area's poor.

As indicated in the previous chapter, the nonpoor population of the area was cross-classified by age and income levels. The minimum annual family income levels for low, medium and high income nonpoor were assumed to be, respectively, $\$ 4,000, \$ 8,000$ and $\$ 15,000{ }^{1}$

For purposes of this study all poor were aggregated into family groups. It was estimated from information reported by the U. S. Bureau of Census (1972a) that, for unsalvageable poor age 65 and over, an annual income of $\$ 1704$ per person is equivalent to the annual family income poverty threshold of $\$ 4,000$. For unsalvageable poor age $15-64$, such a poverty threshold was estimated as $\$ 2,777$ per year per person. The
$I_{\text {When considered on }}$ family by family basis these income thresholds would vary with family size. However, for the level of aggregation of this study, specification of these income thresholds based on average family size were deemed sufficient.
composition of the family groups into which the poor population were aggregated indicated that the provision of family poverty threshold income ($\$ 4,000$) to one salvageable poor adult would remove 1.4406 poor adults from poverty on the average. Thus it was estimated that the provision to a poor person of one job, paying an annual wage of $\$ 4,000$ or more, from poverty 1.4406 adults.

Potential annual earnings for the area's poor who take jobs created by development activities were estimated from information reported by the U_{0} S. Bureau of Census (1972a) on median earnings of Oklahoma workers by occupation groups. These estimates are as follows:
I. $\$ 9,231$ for job recipients with a high school education and technical training。
2. $\$ 6,882$ for job recipients with a high school education and no training or with training and no high school education.
3. $\$ 5,821$ for job recipients age 20 or over, with neither a high school education nor training。
4. $\$ 4,000$ for job recipients, less than age 20 , with neither a high school education nor training (school dropouts).

Total income resulting in the study area per dollar of public funds spent on development activities includes direct, indirect and induced income created. In a study aimed at developing a social accounting system for Oklahoma and using this system for input into a Leontief inputoutput type simulation model, Doeksen (1971), reported the household income directly resulting from federal expenditure in Oklahoma in 1963 as $\$ 806,650,000$. He also reported the total federal expenditure in the state for the same year as $\$ 1,219,000,000$. From this information an
income input-output ratio for the federal government sector in Oklahoma was estimated as 0.6617 . In a related study, Doeksen (1972) estimated an income multiplier including direct, indirect and induced effects for income from federal sources in Oklahoma of l.62. Multiplying this multiplier times the income-output ratio for the federal government sector, estimated above, yields an estimate of income resulting in the study area per dollar of public funds spent in development activities of \$1.0720。

The proportion of the income of the study area going to the area's poor was calculated from 1970 data of the U. S. Bureau of Census (1972b) as 13.09 percent.

Employment Coefficients

The simulator requires the specification of three coefficients descriptive of the labor force of the area considered. These include the percentage of "normal," working age adults in the labor force; the percentage of poor in the labor force who have jobs but are underemployed; and the percent underemployment of the underemployed poor. The propor tion of normal, working age adults in the study area labor force in 1970 was calculated from U.S. Bureau of Census (1972a) information as 77.39 percent. The number of poor in the labor force was calculated as 11, 478, of which 3,418 were unemployed. It was assumed that all people who were employed but still poor were underemployed. Thus the proportion of poor in the labor force who, in 1970, had jobs but were underemployed was estimated as 70.22 percent $((11,478-3,418) / 11,478)$. It was assumed that, had these underemployed poor been fully employed, they would have been in the low income nonpoor category. Thus the percent underemployment of
underemployed poor was estimated by dividing the median income of underemployed poor by the median income of low income nonpoor. The resulting estimate is that underemployed poor are 66.67 percent underemployed on the average.

Development Activity Efficiency Coefficients

Numerous pilot projects have been conducted in the last $10-15$ years to determine the effects of development activities. Most of these projects have involved only one development activity such as industrialization or subsidized labor mobility. Programs to provide concerted sets of activities were too poorly furlded and evaluated to be of use for this study. As discussed in the previous chapter, one of the major objectives of this study is to evaluate the effects of potential rural area policy packages. Sưch policy packages or strategies contain multiple development activities. Linkages among these activities cause the total effects of the policy packages to differ from the summation of the single program effects taken separately. In this study estimates of effects of each activity (activity efficiency coefficients) serve as a starting point for estimating total effects of strategies containing multiple development activities. The development activity efficiency coefficients utilized in this study include those describing labor mobility programs, industrialization programs, school dropout prevention programs, technical training programs and family planning programs.

Labor Mobility Programs

Necessary simulator input information for labor mobility programs includes a basic cost effectiveness coefficient, a coefficient stating
what portion of program funds goes to purposes other than relocation assistance allowances (such as to administration) and coefficients describing the expected dropout or attrition rate for programs. In a study published in 1970, Charles Fairchild evaluated the cost effectiveness of 67 labor mobility projects funded by the Manpower Administration of the U. S. Department of Labor from 1965 through 1969. Fairchild calculated average public expenditure per relocated worker as $\$ 867$. However, 16 of the 67 projects were conducted to assist the urban disadvantaged and people affected by mass layoffs. Since these are problems not dealt. with in this study of rural area development, the cost effectiveness coefficients reported above were reestimated with these projects excluded. The average public expenditure per relocated. worker was calculated as $\$ 820$ after these projects were excluded。 Adjusted for inflation by the implicit price deflator for total GNP, this cost effectiveness coefficient, in 1970 dollars is $\$ 935$ per relocatee。 The reciprocal of this coefficient (0.001070) was used in this study as an estimate of the number of relocatees expected per public dollar of expenditure on labor mobility programs in the study area.

An estimate of the percentage of labor mobility allocation funds which goes to purposes other than relocation assistance allowances (administrative and operational expenses) was also calculated from the information reported by Fairchild. For the projects reported by Fairm child, 34 percent of direct public expenditures went to relocation assistance allowances. The remainder (66 percent) went to such activities as administration, premrelocation training and counseling, and post-rem location follow-up and counseling, It was assumed that this same perw centage (66 percent) of public labor mobility allocation funds went to
purposes other than relocation assistance allowances for all projects simulated for the study area.

Two coefficients describe expected labor mobility program attrition. A limit to program attrition is specified as a percentage of program relocatees who remain outside the study area permanently. An annual attrition or backmovement rate is specified as a percentage of the number of labor mobility relocatees remaining outside the study area in any year. This annual attrition rate is applicable only until the liminal attrition level mentioned above is reached. Estimates of both of these coefficients were taken from a study by Nelson and Tweeten (1973). They estimated individual rates of return (negative to 33 percent) to five labor mobility projects as well as an aggregate rate of return (33 percent) to 67 projects reported by Fairchild and mentioned above. They concluded that on the average approximately one-third of relocatees remain outside the supply area permanently and that approximately 30 percent of relocatees return each year to be unemployed or underemployed in their home area until this liminal level of attrition is attained. These labor mobility program attrition coefficients were utilized for the labor mobility projects simulated in this study。

Industrialization Programs

Many rural communities made great efforts to seek industry in the 1960° s (Tweeten, 1974). However, several studies conducted during that time (Advisory Committee on Intergovernmental Relations, 1967; Stinson, 1968; Hansen, 1969), concluded that such efforts were not only ineffective but also inappropriate from the standpoint of national efficiency. This conclusion implicitly assumed the public cost of generating a new
job in a depressed area was infinite. These economists reasoned that industry required traditionally metropolitan endowments such as agglomeration economies, nearness to markets and skilled labor.

Subsequent studies, however, have indicated that industry is deceno tralizing (Haren, 1974), that profit rates do not differ significantly by sector location (Janssen, 1974), and that major net economic benefits do accrue to communities attracting industry (Shaffer, 1972). In a comprehensive article on industry location incentives, Neil Singer (1971) concluded that subsidies of approximately $\$ 17,000$ were required to generate a new job in industry.

Jackie Smith (1974) used multiple regression to analyze the cost effectiveness of industrialization programs. Independent variables regressed on public outlays per direct job generated included measures of population, unemployment, income, welfare, government expenditures and proximity to centers of population and interstate highways for locations of industrialization programs. Smi.th used data on 103 Economic Development Administration (EDA) industrialization projects, each of which created at least some jobs from 1965 to 1970 (Economic Development Administration, 1970; Boise Cascade Center for Community Development, 1970). Regression analysis excluded data reported by EDA and Boise Cascade on 73 other projects which were conducted specifically to create jobs by encouraging industrialization, but which were unsuccessful in generating jobs。

Using Smith's coefficients and values of the independent variables for communities in the eastern Oklahoma study area, cost effectiveness coefficients were estimated for industrial development. This procedure yielded a cost effectiveness estimate for industrial development in

Muskogee of 5,582 public dollars per direct job created. The estimates for Muskogee showed much more favorable cost effectiveness than estimates for any other community in the study area. This is not surprising since, as mentioned in Chapter III, Muskogee is both the economic and geographic center of the study area and is readily accessible from almost all of the rest of the study area.

The industrialization cost effectiveness coefficient stated above (5,582 public dollars per direct job created) is quite optimistic, since it assumes that decision makers can tie public investment in indus trialization to job creation, thus subsidizing no unsuccessful programs。 ${ }^{2}$ Another estimate of cost effectiveness of industrialization programs (one that appears to be more realistic) was obtained by adjusting the estimate stated above by the proportion of industrialization projects sampled which were successful (103/176)。 This procedure yielded a cost effectiveness estimate of 9,538 public dollars per direct job created and is considered to be the most realistic of the industrialmdevelopment coefficients.

The reciprocals of the two industrialization project cost effective ness estimates stated above were used as "upper limit" and "most realistic" estimates of cost effectiveness coefficients for industrialization activities in the simulator in this study. These reciprocals are 0.00179 direct jobs generated per public dollar (upper estimate) and 0.000105 direct jobs generated per public dollar (middle estimate).

[^2]The final estimate of cost effectiveness for industrialization, the effects of which were simulated in this research, was arbitrarily set at 20,000 public dollars per direct job created or 0.00005 direct jobs generated per public dollar spent on industrialization. This coefficient was chosen as a lower estimate of cost effectiveness. It is indicative of the effectiveness (or lack of it) hypothesized by researchers who, in the relatively near past, first began to seriously examine the potential roles of industry location subsidies in rural development (Singer, 1971).

Jobs created directly by industrialization projects result in indirect and induced jobs. The number of indirect and induced jobs depends on the multiplier effects which result from the direct jobs created. These multiplier effects vary depending on the economic conditions and constraints in effect in the area under consideration. Within a particular area, multiplier effects vary by industry. So the number of indirect and induced jobs resulting from the jobs indirectly created by industrialization in an area depends on the industries in which the direct jobs are created.

Milburn Childs (1973) analyzed the number of jobs created by new plant locations and plant expansions in Oklahoma from 1963 to 1971. These new and expanding plants were classified by SIC codes. Thus the types of industries creating new jobs in Oklahoma were determined. Data developed by Childs on new jobs created by industries in Oklahoma ${ }^{7}$ s Economic District I^{3} were used to calculate the percentages of these new
$3_{\text {Oklahoma Economic District } I \text { is one of three Oklahoma districts }}$ delineated by C. H. Little (1967)。 His delineations are based on similar economic activity within each district. The study area for this research lies within Economic District I。 EDA data from which cost per job coefficients were estimated gave inadequate information to tailor the coefficients to type of industry. The EDA results for a typical mix
jobs attributable to different industry types．These percentages were used to weight employment multipliers for the different industry types （Muncrief，1972）${ }^{4}$ and calculate a generalized employment multiplier of 2．3031．This multiplier is an estimate of the ratio of direct，indirect and induced jobs to direct jobs created by new and expanded plants in Oklahoma Economic District I．As such，it was used in the simulator as a coefficient of total study area jobs（direct，indirect and induced） resulting per direct job generated by industrialization programs．

When new jobs are formed in an area they may be filled by poor and nonpoor workers from within and without the area．When workers take new jobs，they vacate jobs which may be refilled．Three coefficients re－ quired for the simulator describe how simulated jobs generated by indus－ trialization are distributed．These coefficients are the percentage of new jobs which go to the area＇s poor，the new jobs going to workers out－ side the area as a percentage of new jobs going to people other than the area＇s poor，and the percentage of old jobs vacated by nonpoor workers which are refilled．

Estimates of these coefficients were calculated from information reported by Shaffer（1972），Economic Development Administration（EDA） （1970），Boise Cascade Center for Community Development（1970）and Kuehn et al。（1972）。 All of these studies considered impacts of new industry on underdeveloped area economies．The EDA，Boise Cascade and Kuehn，et
of industry do not appear to be markedly out of line with the types of industry assumed in the analysis．

4 These multipliers calculated by Muncrief（1972）are for industries in Oklahoma Planning Region Nine，a predominantly rural area in Southern Oklahoma。 Planning Region Nine does not coincide with Economic District I．However，since both are rural Oklahoma areas，economic multipliers for the two areas should not differ greatly．
al. studies each evaluated industrialization impacts on several diverse areas while Shaffer's work considered only one region. Consequently more data were available from each of the EDA, Boise Cascade and Kuehn, et al. studies. The Shaffer, EDA and Boise Cascade studies each considered the effects of public industrial development activities in generating new jobs. Kuehn, et al. studied the results of new and expanding industry in underdeveloped rural areas without regard to public development activities in the areas.

The study by Shaffer of the impact of new industry on rural communities in eastern Oklahoma, indicated that approximately one-half of the new jobs in a community go to the poor, the same proportion as indicated by the data reported by EDA and Boise Cascade. For data considered by Kuehn, et $a l_{0}$, on the average one-quarter of new jobs went to the poor. Data presented by Shaffer show the ratio of the number of new jobs going to workers from outside the area to the number of new jobs going to the nonpoor as 0.09. Data presented by EDA and Boise Cascade show the ratio to be 0.24 , and the Kuehn, et al. findings indicate that the ratio is 0.31. Data reported by Shaffer indicate that approximately 78 percent of jobs vacated by workers who take new jobs are refilled.

The information from the studies discussed above provided guidelines for the estimation of coefficients entered into the simulator to describe how simulated jobs generated by industrialization are distributed. The coefficient of the proportion of new jobs which go to the area ${ }^{\text {b }}$ s poor was entered as 33 percent. The coefficient of new jobs going to workers outside the area as a percentage of new jobs going to people other than the area's poor was entered as 24 percent. The coefficient
the proportion of old jobs vacated by nonpoor workers which are refilled was entered as 78 percent.

Education Programs School

Dropout Prevention

During the 1960° s Neighborhood Youth Corps programs administered by the Office of Economic Opportunity were conducted with a primary objective of keeping potential dropouts in school. Several studies of the effects of these programs have since been conducted (Somers and Stormse dorfer, 1972; Borus, et al., 1970; Woltman and Walton, 1969)。 Somers and Stormsdorfer, who conducted the most comprehensive of these studies, calculated the public costs of Neighborhood Youth Corps (NYC) programs and evaluated the extent to which such programs reduced the high school dropout rate for their enrollees. Based on 780 observations of NYC parm ticipants and control persons, the authors estimated average federal government costs of the NYC programs in fiscal years 1966 and 1967 as \$31.3 per participant for in-school and summer programs combined. Adjusting for inflation by the implicit price deflator for GNP (Council of Economic Advisors, 1971) the average public cost per participant is $\$ 372$ in 1970 dollars. The findings of Somers and Stormsdorfer indicate that an upper limit to cost effectiveness of NYC type programs is approximately $\$ 2,000$ (1970 dollars) public funds per potential dropout kept in school, and a more realistic cost effectiveness estimate is $\$ 4,000$ public investment per potential dropout kept in school。

The $\$ 4,000$ estimate of public investment per potential dropout kept in school was assumed applicable in this study. The reciprocal of this estimate-0.00027 dropouts kept in school per dollar of public
expenditure-was entered into the simulator to describe cost effectiveness of school dropout prevention programs.

Technical Training Programs

The number of people trained per public dollar spent on vocational training is a necessary input coefficient for the simulator. Shallah and Iweeten $(1970)^{5}$ evaluated the economic benefits from investment in different fields of study at Oklahoma State Tech, a post high school technical school in eastern Oklahoma. The annual public costs per student for different types of programs from 1960-1965 ranged from $\$ 832$ to $\$ 1,576$ in 1959 dollars.

To estimate a generalized coefficient of people trained per dollar of public expenditure on technical education programs, the average annual public cost per student (1960-1965) in each type of program at Oklahoma State Tech was weighted by the number of students in each program. The resulting estimated average annual public cost per student was $\$ 1098$ in 1959 dollars and, adjusting for inflation by the implicit price deflator for total GNP; is $\$ 1461$ in 1970 dollars. The reciprocal of this cost estimatemo.000684 people trained per dollar of public expendituremwas entered into the simulator as a coefficient of cost effectiveness of technical training programs。

Fomily Plarning Programs

The effects of family planning programs on area development are
$5_{\text {Many }}$ other studies of cootech programs are in evidence in the litmo erature Findings of Shallah and Tweeten (1970) were used to estimate cost effectiveness of such programs"for this research because their data was more comprehensive than most and was specific to the study are con sidered herein。
considered in this study even though family planning may not be a conventional development activity. Kershaw and Courant (1970) estimated the cost effectiveness of such family planning programs under two differm ent sets of assumptions. First they assumed that family planning prom grams reached 50 percent of the women at which they were directed, and, after the program, they bore children at the same rate as nonpoor women, For the second estimate they assumed that such programs reached 75 perm cent of the women at which they were directed, and that these women stopped having children after joining the program. For both cases a $\$ 50$ cost per women per year was assumed. These estimates yielded cost effectiveness coefficients ranging from 293 to 1,667 public dollars per unplanned poor birth avoided.

For purposes of this study the midpoint of this range (\$980) was taken as a best estimate of public dollar expenditure per unplanned poor birth avoided. Thus this coefficient's reciprocal (0.0010204) was entered into the simulator as the coefficient of the expected number of unplanned poor births avoided per public dollar of family planning expenditure.

The technical coefficients presented above constitute the foundation of the rural development planning simulator used in this rdsearch. No single coefficient determines the full effect of any development strategy。 Rather, the entire set of technical coefficients is necessary to dem scribe the results of each of the strategies simulated. For clarificam tion and reference, all of these coefficients are summarized in Table II.

TABLE $I I_{\text {m }}$

SUMMARY OF SIMULATOR TECHNICAL COEFFICIENTS FOR THE EASTERN OKIAHOMA DEVELOPMENT DISTRICT

Demographic Coefficients

Annual birth rate per nonpoor adult, not in school,	0.0665
age $15-40$	
Annual birth rate per poor adult, not in school, age	
$15-40$	0.1048
Annual death rate for persons age 65 and over	0.064469
Annual death rate for persons age $46-64$	0.008075
Annual death rate for unsalvageable poor, age 15-64	0.0004137
Annual area population growth rate	0.0085

Income Coefficients

Minimum family income levels for non-poor categories (annual income)

Low income	$\$ 4,000$
Medium income	$\$ 8,000$
High income	$\$ 15,000$

Poverty Thresholds (annual income)
Salvageable poor (per family) \$4,000
Unsalvageable poor-mage 65 and over (per person) \$1,704
Unsalvageable poor-age 15064 (per person) , \$2,777
Number of adults removed from poverty per non-poverty family income unit provided for the poor
1.4406

Average annual earnings for poor persons employed in jobs generated by development activities

Persons with a high school education and training \$9,231
Pdrsons with a high school education but no
training or with training but no high school
education
\$6,882
Persons, age 20 or over, with neither a high
school education nor training
$\$ 5,821$
Persons less than age 20 with neither a high school education nor training (school dropouts)
$\$ 4,000$
Area income resulting per dollar of public funds spent on development activities
$\$ 1.0720$
Percent of area income which goes to the poor

TABLE II (Continued)

Employment Coefficients

Percent of normal working age adults in labor force
77.39%
Proportion of poor in the labor force who have jobs but are unemployed

Percent underemployment of underemployed poor
70.22%
66.67%

Development Activity Coefficients

Labor Mobility Programs

Number of people moved to jobs per dollar of public expenditure on labor mobility programs
0.001070

Proportion of labor mobility allocation funds which goes to purposes other than relocation assistance
allowances (administration, training and counseling)
Proportion of relocatees who remain outside study area permanently (limit .to program attrition) 33%
Proportion of relocatees who return to study area each
year (until liminal attrition level is reached)

Industrialization Programs

Number of jobs directly created per dollar of public expenditure on industrialization programs

Estimate 1 ("upper limit")	0.000179
Estimate 2 ("most realistic")	0.000105
Estimate 3 ("lower limit")	0.00005

Total area jobs resulting per direct job generated by industrialization
2.3031

Proportion of jobs generated by industrialization which goes to area's poor
33%
New jobs going to workers outside the area as a percentage of new jobs going to people other than the area ${ }^{\text {s }}$ p poor
24%
The proportion of jobs vacated by nonpoor workers which are refilled
78%
Education Programs-School Dropout Prevention
Number of potential dropouts kept in school per dollar of public expenditure on education programs

TABLE II (Continued)

Technical Training Programs

Number of people trained per dollar of public expenditure on training programs
0.000684

Family Planning Programs

Number of unplanned poor births avoided per dollar of public expenditure on family planning programs 0.0010204

CHAPTER V

RESULTS

The quantitative model developed in this research was utilized to simulate the effects of alternative development strategies on the population of the eastern Oklahoma study area. A strategy is defined as a set of public programs. In this chapter the simulated results of alternative strategies are discussed and the strategies are compared and evaluated in light of various development goals. The development goals assumed in this study were amelioration of poverty in the study area and the generation of income for the people of the study area.

Simulated poverty amelioration in the study area was measured by the number of simulated years required for alternative strategies to eliminate poverty, and by the simulated person poverty years accumulated for alternative strategies over the time horizon considered. Of these two measures, person poverty years accumulated is the most complete. It is defined as the sum over all years simulated of the number of people remaining in poverty in the study area at the end of each simulated year. Thus, it is one measure of the relative effectiveness of alternative development strategies in removing people from poverty and keeping them out of poverty over time.

Simulated efficiencies of alternative strategies in generating income for the people of the study area were measured by two different efficiency ratios calculated within the simulator. These ratios included
a ratio of present value of simulated total regional income generated by each strategy to the present value of simulated total public costs of the strategy (including transfer payments) and a ratio of present value of simulated income generated for the study area's poor by each strategy to the present value of simulated total public costs of the strategy (including transfer payments). For all of the efficiency ratios reported. herein, a discount rate of six percent was used to calculate present values of incomes generated by development activities and present values of costs of development activities.

Conceptually these efficiency ratios are similar to traditional benefit-cost ratios, but the two concepts are not equivalent. The ratios calculated in this study do not account for all future benefits and are only indexes of income generation efficiency for the strategies considered. They were only calculated over the 15 year planning horizon of the study (until all of the strategies that had the potential to alleviate poverty had done so). Because benefits beyond this 15 year horizon were not simulated, none were included in the efficiency ratios calculated. Consequently, while these efficiency ratios are indexes to compare income generation efficiencies of alternative strategies, caution is necessary in their interpretation because of incomplete accounting for the eventual payoffs from long term investments.

Strategies Simulated

The number of strategies which could be simulated was almost unlimited. To counter this problem, those possible development strategies which appeared to be the most reasonable and feasible from the standpoint of social, economic and political practicality were simulated. The
strategies simulated were also selected so that their results would be comparable from strategy to strategy. This made it possible for the researcher to compare the effects on the study area of alternative combinations of development activities in light of exogenous restrictionseconomic, political or otherwise-and differing goal hierarchies.

Preliminary work with the simulator indicated that the input coefficient of the number of jobs directly created per public dollar spert on industrialization is of critical importance to results of many strategies. Consequently, some of the strategies simulated included the same development activities as other strategies, but were based on different assumptions about the cost effectiveness of industrialization programs.

It was assumed that a major objective for development activities in the study area is to remove from poverty those poor who, for reasons of mental or physical incapabilities, cannot work to support themselves (unsalvageable poor)。 Almost $\$ 50$ million were allocated to this purpose (public assistance) in the study area in 1970 (U. S. Office of Economic Opportunity, 1970)。 Preliminary work with the simulator indicated that grants totaling almost $\$ 72$ million per year in the early years of a development planning horizon would be required to remove all of these unsalvageable poor from poverty. This preliminary work also indicated that, to exert an appreciable influence toward the amelioration of poverty among salvageable poor in the area within a meaningful time horizon (less than 20 years), annual development allocations of from two to four million dollars in excess of allocations to unsalvageable poor are necessary.

To facilitate comparisons among programs by holding selected variables constant, a limit of annual funds available for development activities of $\$ 75$ million was imposed for the strategies simulated. For one
of the strategies considered (a strategy of continuing programs in effect in 1970) simulated annual allocations remained well under $\$ 75 \mathrm{mil}$ lion. For the other strategies considered, simulated annual allocations were at this limit in early years, then decreased as development program effects were felt.

This annual development allocation limit spreads development strategy results over a longer, more realistic period. "Overnight" development would likely result in undesirable political, social and physical disruptions in an area even if it were technically and economically feasible。

For all but two of the strategies considered simulated poverty in the study area was virtually eliminated in 15 or fewer years, attaining, as completely as possible, the goal of poverty reduction. The only simulated poverty in the area beyond this point resulted from the few children of unsalvageable poor who entered the area labor market each year and did not find jobs immediately. Such poverty is primarily a structural phenomenon. Beyond the point of eliminating all but residual, structural poverty, most simulated development allocations went to welfare or public assistance grants, with only enough funds going to industrialization to provide jobs for these structurally impoverished. In reality, even these funds might not be necessary, since self sustaining economic growth (see Chapter III) might create enough jobs for these people.

As discussed in Chapter IV, three different estimates of cost effectiveness for industrialization programs were calculated in this study. For Strategies l-8 the middle estimate (9,538 public dollars per direct job created) was assumed; for Strategies 9 and 10 the upper estimate $=$
(5,582 public dollars per direct job created) was assumed; and for Strategies 11 and 12. the lower estimate (20,000 public dollars per direct job created) was assumed (Table III). Strategy 13 included no allocations to industrialization so no estimate of industrialization cost effectiveness was necessary.

Strategy 1

Strategy 1 continued programs in effect in 1970 (Table III). The major factor differentiating this strategy from others simulated is the fact that funds for public assistance grants were sufficiently limited that, while the incomes of unsalvageable poor could be supplemented somewhat, they could not all be raised to the poverty threshold.

It was not possible, from information available, to determine exactly how public development funds were used in the study area in 1970. Information was available, however, describing what funds were allocated to various general development activities in that year (U. S. Office of Economic Opportunity, 1970)。Assumptions were made as to how these development activity funds were actually used.

It was assumed that public assistance funds totaling \$1,567 annually were allocated to each unsalvageable poor person, age 65 and over. A grant of $\$ 1,506$ was assumed allocated to each unsalvageable poor person, age 15 to 640 Thus, all unsalvageable poor received some welfare funds but, on the average, their incomes were not brought up to the poverty threshold. Up to $\$ 1,713,722$ per year were allocated to education and training. It was assumed that first priority for these funds went to education to decrease the school dropout rate (less than $\$ 50,000$ each year), with the remainder going to technical training as long as there

TABLE III

DEVELOPMENT STRATEGIES SIMULATED FOR THE STUDY AREA

Strategy	Programs Included	Assumed Industrialization Cost Effectiveness (Public Dollars per Direct Job Created)
1	programs in effect -0.1970	9,538
2	welfare, training, education, family planning, labor mobility, industrialization	9,538
3	welfare, training, education, family planning, industrialization	9,538
4	Welfare, education, family planning, industrialization	9,538
5	welfare, education, industrialization	9,538
6	welfare, family planning, industrialization	9,538
7	welfare, labor mobility, industrialization	9,538
8	welfare, industrialization	9,538
9	welfare, labor mobility, industrialization	5,582
10	welfare, industrialization	5,582
11	welfare, labor mobility, industrialization	20,000
12	welfare, industrialization	20,000
13	welfare, training, education, family planning, labor mobility	no industrialization allocations

were untrained salvageable poor in the area. The 1970 allocation of industrial development funds ($\$ 3,402,764$) was continued for each simulated year as long as there were selvageable poor in the area. ${ }^{l}$

The results of Strategy 1 (Table IV) show simulated poverty among salvageable poor in the study area to be alleviated in 14 years. However, insufficient funds were allocated each year to unsalvageable poor to bring their incomes up to the poverty threshold, and over 38 thousand poor people (17 percent of the total population) remained in the area at the end of the fifteenth simulated year. The results indicated that the continuation of existing development programs in the study area would yield positive economic returns to public costs, but would have only limited effectiveness in reducing the incidence of poverty.

Strategy 2

Strategy 2 provided for the annual allocation of up to $\$ 75$ million to welfare, education, training, family planning, labor mobility and in-dustrialization-all of the activities considered in this research (Table III)。 Sufficient funds were allocated to unsalvageable poor (bath age categories) to bring the incomes of all unsalvageable poor persons to the poverty threshold. Annual public development expenditures on education and training were limited to 1970 allocations and were allocated as in Strategy lo Sufficient funds were allocated to family planning

[^3]TABLE IV
SIMULATED RESULTS OF STRATEGY J^{3}

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	Efficiency Ratio 1 b	$\begin{aligned} & \text { Efficiency } \\ & \text { Ratio } \\ & 2^{\mathrm{c}} \\ & \hline \end{aligned}$	Person Poverty Years Accumulated
1	191,194	77,090	55,024,623	1.0957	1.0079	73,779
2	193,069	73,779	54,121,356	1.1349	1.0468	144,383
3	194,963	70,604	53,233,768	1.1728	1.0845	211,885
4	196,875	67,502	52,355,259	1.2100	1.1214	276,317
5	198,808	64,432	51,525,275	1.2466	1.1578	337,717
6	200,761	61,400	50,738,984	1.2829	1.1939	396,143
7	202,736	58,426	49,972,881	1.3188	1.2295	451,666
8	204,731	55,523	49,211,235	1.3543	1.2648	504,354
9	206,746	52,688	47,112,987	1.3901	1.3026	554,279
10	208,782	49,925	45,220,153	1.4256	1.3399	601,532
11	210,837	47,253	45,454,702	1.4607	1.3765	646,207
12	212,916	44,675	44,669,653	1.4954	1.4124	688,399
13 d	215,012	42,192	43,715,154	1.5287	1.4468	738,157
14.	217,134	39,758	40,355,255	1.5623	1.4871	777,184
15 16	219,144 221,036	39,027 38,482	39,425,218	1.5927	1.5122	815,666

${ }^{a}$ Strategy l-continuation of programs in effect in 1970 (middle estimate of industrialization cost effectiveness was assumed).
${ }^{\mathrm{b}}$ Ratio of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{\text {chatio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
${ }^{c}$ For Strategy 1 , simulated poverty among salvageable poor in the study area was virtually eliminated. in the fourteenth year, but simulated poverty was not eliminated among unsalvageable poor in the study area.
to reduce the poor birth rate to the level of the nonpoor birth rate. Remaining funds were allocated first to labor mobility until all salvageable poor had an opportunity to move to jobs outside the area, then were allocated to industrialization as long as there were salvageable poor in the area to take jobs. Many of the salvageable poor employed in jobs created by industrialization allocations were people who returned to the area after dropping out of labor mobility programs.

Other simulated strategies were more effective in eliminating poverty and more efficient in generating income than Strategy 2 (Table V). However, this strategy, including all of the development activities considered in the study, may be desirable. The program diversification reduces risk and fosters complementarity among development activities. Furthermore, society may choose to support a "second best" development strategy because of expected social or political benefits (real or imagined) not measured in this study. For example, residents might prefer to stress human resource improvement (education and training programs) and family planning rather than a more "efficient" apprdach emphasizing job creation if they place a high value on the social desirability of such peoplemoriented programs and feel an aversion to industrial development.

Strategy 2

Strategy 3 allocated funds as in Strategy 2 except no funds were allocated to labor mobility programs (Table III). By comparing the two above strategies, the effects of labor mobility programs can be viewed within the context of comprehensive area development plans (Table V and Table VI). Such comparisons are discussed later in this chapter.

TABLE V
STMULATED RESUETS OF STRATEGY 2^{2}

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	Efficiency Ratio Ib	Efficiency Ratio $2^{\text {c }}$	Person Poverty Years Accumulated
1	191,194	77,090	75,000,000	1.1452	1.0452	27,102
2	190,833	27,102	75,000,000	1.1936	1.0906	49,781
3	189,356	22,679	75,000,000	1.2457	1.1398	67,256
4	186,957	17.475	73,284,190	1.2794	1.1737	83,691
5	187,160	16,435	70,942,886	1.2827	1.1788	103,825
6	190,752	20,134	69,905,020	1.2772	1.1673	126,406
7	193,767	22,581	69,239,290	1.2677	1.1609	150,565
8	196,393	24,159	68,764,840	1.2572	1.1530	175,712
9	198,758	25,147	68,439,200	1.2470	1.1448	201,445
10	200,952	25,733	68,231,880	1.2374	1.1371	227,495
11	203,033	26,050	68,121,080	1.2288	1.1300	253,680
12	205,043	26,185	68,090,880	1.2211	1.1237	279,879
13	207,010	26,199	68,052,160	1.2143	1.1180	306,013
14.	208,954	26,135	67,953,120	1.2083	1.1130	332,033
15	210,887	26,020	67,800,360	1.2030	1.1085	357,906
16	212,722	25,873				

 industrialization programs.
${ }^{\text {b Ratio of }}$ the present value of total regional income generated by development programs to the present value of total public costs of the programs.
$c_{\text {Ratio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.

SIMULATED RESULIS OF STRATEGY 3^{a}

Year	Total Population	Total Poor	$\begin{aligned} & \text { Annual } \\ & \text { Funds } \\ & \text { Allocated. } \\ & \text { (dollars) } \end{aligned}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 1 \end{gathered}$	Efficiency Ratio 2^{c}	Person Poverty Years Accumulated
1	191,194	77.090	75,000,000	1.0793	0.9888	29,277
2	192,949	29,277	75,000,000	1.0925	1.0024	57,097
3	194,758	27,820	75,000,000	1.1073	1.0175	83,063
4	196,617	25,966	75,000,000	1.1244	1.0351	106,840
5	198,525	23,777	75,000,000	1.1435	1.0543	128,121
6	200,479	21,281	75,000,000	1.1645	1.0756	146,597
7	202,476	18,476	75,000,000	1.1873	1.0987	162,002
8	204,516	15,405	75,000,000	1.2115	1.1233	174,163
9	206,598	12,161	75,000,000	1.2370	1.1499	183,728
${ }^{10} \mathrm{~d}$	208,739	8,565	75,000,000	1.2647	1.1793	186,915
$11^{\text {d }}$	210,976	4,187	75,000,000	1.2918	1.2081	187,717
12	213,175	802	67,445,720	1.3222	1.2393	188,511
13	215,138	794	67,064,903	1.3477	1.2657	189,303
14	217,120	792	66,843,770	1.3707	1.2893	190,113
15	219,120	810	66,669,560	1.3909	1.3100	190,932
16	221,012	819				

${ }^{\text {a }}$ Strategy 3-annual allocation of up to $\$ 75$ million among all development activities considered except labor mobility programs (middle estimate of industrialization cost effectiveness was assumed).
$b_{\text {Ratio of }}$ the present value of total regional income generated by development programs to the present value of total public costs of the programs.
$c_{\text {Ratio of }}$ the present value of income to the poor generated by development programs to the present value of total costs of the programs.
$d_{\text {For Strategy 3, simulated poverty in the study area was virtually eliminated in the eleventh year. }}$

Strategy 3 might be a desirable strategy for an underdeveloped area desiring to minimize outmigration. Community business leaders may view subsidized migration as undesirable, since it may reduce the local labor supply and raise wages. Also, communities frequently do not like to see young people leave.

Results of this strategy indicate that over time, poverty could be virtually eliminated in the study area without the use of labor mobility programs to subsidize outmigration of the poor. Such a strategy, however, would not eliminate poverty as rapidly or as efficiently (in terms of resultant income) as a strategy including labor mobility activities in the short run. Thus, the exclusion of labor mobility programs from development strategies is not without costs.

Strategy 4

Strategy 4 allocated funds as in Strategy 2 except no funds were allocated to technical training or labor mobility programs (Table III). Because Strategies 3 and 4 differ only by the exclusion of technical training programs, the results (Table VI and Table VII) can be compared to estimate the effects of technical training on area development. A later section of this chapter analyzes such comparisons.

Results of Strategy 4 indicate that if training programs are currently operating at adequate levels in the study area to provide enough trained workers to support job development, then economic development plans for the area can have significant effects toward poverty elimination and can yield net economic benefits without further investments in training activities. This result, however, would not likely hold for other depressed areas less endowed with formal and informal technicai training programs.

TABLE VII

SIMULATED RESULTS OF STRATEGY 4

Year	Total Population	Total Poor	$\begin{aligned} & \text { Annual } \\ & \text { Funds } \\ & \text { Allocated } \\ & \text { (dollars) } \end{aligned}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 1^{b} \\ \hline \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\text {c }} \\ \hline \end{gathered}$	Person Poverty Years Accumulated
1	191,194	77,090	75,000,000	1.0878	1.0201	28,243
2	193,034	28,243	75,000,000	1.1099	1.0351	54,248
3	194,757	26,005	75,000,000	1.1214	1.0419	77,286
4	196,699	23,038	75,000,000	1.1441	1.0701	97,013
5	198,694	19,727	75,000,000	1.1711	1.0932	113,154
6	200,735	16,141	75,000,000	1.1996	1.1323	125,405
7	202,827	12,251	75,000,000	1.2294	1.1626	133,495
$8{ }_{\text {d }}$	204,967	8,090	75,000,000	1.2602	1.1940	137,234
9	207,157	3,739	72,354,674	1.2920	1.2263	138,002
10	204,395	768	67,882,010	1.3263	1.2605	138,781
11	211,380	779	67,402,663	1.3551	1.2993	139,564
12	213,321	783	66,810,320	1.3809	1.3250	140,355
13	215,281	791	66,506,590	1.4123	1.3473	141,162
14	217,264	807	66,314,110	1.4328	1.3669	144,970
15	219,266	808	66,252,570	1.4501	1.3840	142,786
16	221,152	816				

${ }^{\text {a }}$ Strategy 4-annual allocation of up to $\$ 75$ million among all development activities considered except labor mobility and technical training programs (middle estimate of industrialization cost effectiveness was assumed).
$b_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.

Chatio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 4, simulated poverty in the study area was virtually eliminated in the tenth year.

An assumption implicit in the simulator is that jobs can be generated with the same degree of cost effectiveness (number of jobs per dollar) regardless of the skill levels of the job recipients. For this model, potential earnings vary by skill levels, but job generating capabilities of industrialization and labor mobility programs do not. If, in fact, jobs can be generated more efficiently for trained people than for untrained people, then technical training programs may be a necessary ingredient in viable area development strategies, in which case the results of Strategy 4 may not be meaningful. On the other hand, if existing training programs (high school, post-high school and on-the-job) in the area can provide an adequate base of trained people and if job generating development activities can generate employment for unskilled area inhabitants, then Strategy 4 represents a valid public policy development plan for rural development policy decision makers.

Strategies 5 and 6

Strategy 5 differed from Strategy 4 only by the exclusion of family planning programs. Sịmilarly, Strategy 6 differed from Strategy 4 only by the exclusion of education (school dropout prevention) programs (Table III). Thus the results of Strategies 5 and 6 (Tables VIII and IX), when compared with the results of Strategy 4 , indicate the effects of family planning and education programs as components of development plans. Such programs were found to be relatively insignificant in funds requirements, shallow in effects and more nearly justifiable on social than on economic grounds. While they have a favorable economic payoff, they are less efficient than other major programs in reaching development targets in this study within the time frame considered. A longer

TABTE VIII
SIMULATED RESULTS OF STRATEGY 5^{a}

Year	Total Population		Total Poor	Annual Funds Allocated (dollars)	Efficiency Ratio I^{1}	Efficiency Ratio $^{\text {Cio }}$	Person Poverty Years Accumulated
1	191,194		77.090	75,000,000	1.0889	1.0290	27,876
2	193,062		27,876	75,000,000	1.1146	1.0550	52,909
3	194,934		25,033	75,000,000	1.1434	1.0847	76,716
4	196,953		23,807	75,000,000	1.1749	1.1159	92,963
5	198,980		16,247	75,000,000	1.2065	1.1477	107,316
6	201,058		14,353	75,000,000	1.2391	1.1805	117,486
7	203,188		10,170	75,000,000	1.2727	1.2144	123,289
8	205,368		5,803	75,000,000	1.3067	1.2485	124,488
9	207,600		1,199	68,063,520	1.3444	1.2859	125,257
10	209,540		769	66,874,960	1.3764	1.3177	126,031
11	211,465	4	774	66,425,907	1.4034	1.3445	126,816
12	213,410	,	785	66,092,590	1.4265	1.3675	127,605
13	215,372		789	65,821,340	1.4465	1.3874	128,403
14	217,356		798	65,619,880	1.4647	1.4048	129,209
15	219,358		806	65,489,450	1.4797	1.4203	130,024
16	221,252		815				

${ }^{2}$ Strategy 5-annual allocation of up to $\$ 75$ million among welfare, education and industrialization programs (middle estimate of industrialization cost effectiveness was assumed).
$\mathrm{b}_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
cratio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 5, simulated poverty in the study area was virtually eliminated in the ninth year.

TABLE IX
SIMULAIED RESULIS OF STRATEGY 6^{a}

Year	Total Population	Total Poor	```Annual Funds Allocated (dollars)```	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 16 \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\mathrm{c}} \\ \hline \end{gathered}$	Person Poverty Years Accumulated
1	191,194	77.090	75,000,000	1.0880	1.0204	28,226
2	193,039	28,226	75,000,000	1.1102	1.0431	53,928
3	194,934	25,702	75,000,000	1.1358	1.0690	76,716
4	196,889	22,788	75,000,000	1.1642	1.0978	96,254
5	198,892	19,538	75,000,000	1.1936	1.1276	112,197
6	200,949	15,943	75,000,000	1.2238	1.1582	124,181
7	203,058	11,984	75,000,000	1.2553	1.1901	132,018
${ }_{8}{ }_{\text {d }}$	205,213	7,837	75,000,000	1.2879	1.2231	135,551
$9{ }^{\text {d }}$	207,420	3,533.	72,067,320	1.3217	1.2571	136,365
10	209,534	814	67,364,300	1.3553	1.2905	137,171
11	211,463	806	66,904, 498	1.3835	1.3186	137,985
12	213,410	814	66,550,270	1.4077	1.3427	138,807
13	215,373	822	66,273,520	1.4287	1.3636	139,637
14	217,357	830	66,075,360	1.4472	1.3819	140,476
15	219,361	839	65,942,590	1.4635	1.3982	141,324
16	221,279	848				

${ }^{a}$ Strategy 6-annual allocation of up to $\$ 75$ million among welfare, family planning and industrialization programs (middle estimate of industrialization cost effectiveness was assumed).
$b_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
$c_{\text {Ratio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
${ }^{d}$ For Strategy 6, simulated poverty in the study area was virtually eliminated in the ninth year.
time frame would improve the relative efficiency of these programs, but would not show them to have a massive impact on the outcomes measured herein.

Strategies 7-12

Results of Strategies 7-12 (Tables $\mathrm{X}-\mathrm{XV}$) indicate the effects on development goal attainment of varying cost effectiveness of industrialization. Strategies 7, 9 and 11 allocated funds to welfare grants, labor mobility and industrialization while Strategies 8, 10 and 12 allocated funds only to welfare grants and industrialization (Table III). For Strategies 7 and 8 , the middle cost effectiveness estimate for industrialization was assumed. For Strategies 9 and 10 and Strategies 11 and 12, the upper and lower estimates of industrial development cost effectiveness were assumed, respectively。 Simulated results indicate how the time required for full development of unused or underused labor resources varies with the cost effectiveness of industrial development programs. As would be expected, more cost effective industrial development programs simulated were found to alleviate study area poverty more rapidly and efficiently than less cost effective programs. However, even programs with very low industrialization cost effectiveness were successful in a.lleviating poverty in the later years of the time horizon simulated,

Strategy 13

Strategy 13 provided for the allocation of funds as in Strategy 2 except no funds were allocated to industrialization programs (Table III)。 The development activities included in Strategy 13 were welfare, education, training, family planning and labor mobility.

TABTE X
SIMULATED RESULIS OF STRATEGY 7^{a}

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	\qquad	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\text {Cin }} \\ \hline \end{gathered}$	Person Poverty Years Accumulated
1	191,194	77,090	75,000,000	1.2844	1.1938	20,875
2	186,266	20,875	75,000,000	1.3608	1.2686	33,816
3	181,882	12,947	75,000,000	1.3613	1.2797	48,438
4	186,275	14,622	75,000,000	1.3612	1.2668	62,648
5	189,958	14,210	75,000,000	1.3666	1.2788	74,894
6	193,169	12,246	75,000,000	1.3781	1.2948	84,355
7	196,066	9,461	75,000,000	1.3952	1.3151	90,214
8	198,763	5,859	75,000,000	1.4160	1.3384	91,719
9	201,338	1,505	67,735,080	1.4442	1.3680	93,980
10	203,493	777	66,855,930	1.4684	1.3932	94,094.
11	205,569	785	66,411,335	1.4905	1.4160	95,110
12	207,601.	791	65,683,480	1.5088	1.4350	96,063
13	209,606	801	65,298,560	1. 5249	1.4517	96,976
14	211,602	806	65,023,880	1.5393	1.4666	97,864
15	213,597	814	64,816,760	1.5522	1.4799	98,756
16	215,473	821				

${ }^{a}$ Strategy 7-annual allocation of up to $\$ 75$ million among welfare, labor mobility and industrialization programs (middle estimate of industrialization cost effectiveness was assumed).
$\mathrm{b}_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{\text {chatio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
${ }^{d}$ For Strategy 7, simulated poverty in the study area was virtually eliminated in the ninth year.

TABLE XI
STMULATED RESULTS OF STRATEGY $8^{\text {a }}$

Year	Total Population		Total Poor	Annual Funds Allocated (dollars)	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ \text { 1b } \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ R_{\text {Ratio }} \\ 2^{\mathrm{c}} \\ \hline \end{gathered}$	Person Poverty Years Accumulated
1	191,194		77,090	75,000,000	1.0891	1.0293	27,859
2	193,068		27,859	75,000,000	1.1157	1.0561	52,863
3	194,991		25,004	75,000,000	1.1453	1.0861	74,617
4	199,002		21,754	75,000,000	1.1774	1.1184	92,808
5	199,002		18,191	75,000,000	1.2096	1.1508	107,080
6	201,088		14,272	75,000,000	1.2427	1.1842	117,169
7	203,222		10,089	75,000,000	1.2770	1.2187	122,892
8	205,408		5,723	75,000,000	1.3115	1.2534	123,994
9.	207,644		1,102	67,826,110	1.3497	1.2914	124,794
10	209,576		800	66,845,310	1.3819	1.3233	125,600
11	211,505	$\%$	806	66,398,621	1.4091	1.3503	126,416
12	213,450		816	66,061,000	1.4324	1.3734	127,237
13	215,416		821	65,783,210	1.4527	1.3935	128,066
14	217,402		829	65,590,380	1.4704	1.4112	128,904
15	219,405		838	65,461,165	1.4864	1.4270	129,749
16	221,289		845				

${ }^{a_{S t r a t e g y ~}}$ 8-annual allocation of up to $\$ 75$ million to welfare and industrialization programs (middle estimate of industrialization cost effectiveness was assumed).
$b_{\text {Ratio of }}$ the present value of total regional income generated by development programs to the present value of total public costs of the programs.
$c_{\text {Ratio }}$ of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 8, simulated poverty in the study area was virtually eliminated in the ninth year.

TABLE XII
SIMULATED RESULIS OF STRATEGY $9^{\text {a }}$

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 1_{1}^{b} \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\text {c }} \\ \hline \end{gathered}$	Person Poverty Years Accumplated
1	191,194	77,090	75,000,000	1.2844	1.1938	20,875
2	186,266	20,875	75,000,000	1.3630	1.2708	33,623
3	181,897	12,748	75,000,000	1.3796	1.2981	45,714
4	186,477	12,091	75,000,000	1.4006	1.3245	55,246
5	190,376	9,532	75,000,000	1.4300	1.3573	60,248
6	193,831	5,002	71,601,710	1.4649	1.3941	62,563
$7{ }^{\text {d }}$	196,723	2,315	68, 463,160	1.4980	1.4283	63,324
8	199,188	761	67,363,290	1.5256	1.4567	64,093
9	201, 468	769	66,497,920	1.5491	1.4807	64,870
10	203,625	777	65,806,430	1.5692	1.5013	65,654
11	205,705	784	65,393,375	1.5866	1.5190	66,447
12	207,747	793	64,847,080	1.6020	1.5348	67,247
13	209,749	800	64,533,784	1.6157	1.5487	68,055
14	211,746	808	64,310,940	1.6279	1.4511	68,871
15	213.745	816	64, 172,280	1.6389	1.5723	69,654

${ }^{\text {a }}$ Strategy 9-annual allocation of up to $\$ 75$ million among welfare, labor mobility and industrialization programs (upper estimate of industrialization cost effectiveness was assumed).
$\mathrm{b}_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{\text {Ratio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For Strategy }}$ 9, simulated poverty in the study area was virtually eliminated in the seventh year.

TABLE XIII

SIMULAIED RESUETS OF STRATEGY $10^{\text {a }}$

Year	Total Population	Total Poor	```Annual Funds Allocated (dollars)```	Efficiency Ratio 1 l	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\mathrm{c}} \\ \hline \end{gathered}$	Person Poverty Years Accumulated.
1	191,194	77,090	75,000,000	1.1269	1.0670	26,332
2	193,184	26,332	75,000,000	1.1757	1.1161	47,956
3	195,256	21,624	75,000,000	1.2268	1.1676	64,180
4	197,410	16,224	75,000,000	1.2794	1.2204	74,351
5 d	199,651	10,171	75,000,000	1.3347	1.2759	77,927
$6^{\text {a }}$	201,975	3,576	70,858,400.	1.3889	1.3300	78,716
7	204,040	789	67,624,000	1.4350	1.3757	79,495
8	205,916	779	66,951,630	1.4711	1.4116	80,281
9	207,810	786	66,379,870	1.5005	1.4407	81,075
10	209,721	794	65,898,250	1.5249	1.4650	81,877
11	211,651	802	65,492,017	1.5457	1.4857	82,694
12	213,599	817	65,196,620	1.5637	1.5035	83,511
13	215,566	817	64,948,030	1.5794	1.5192	84,337
14	217,552	826	64,785,260	1.5933	1.5330	85,172
15	219,559	835	64,688,750	1.6048	1.5444	85,316
16	221,457	844				

${ }^{a}$ Strategy 10-annual allocation of up to $\$ 75$ million to welfare and industrialization programs (upper estimate of industrialization cost effectiveness was assumed).
$\mathrm{b}_{\text {Ratio of }}$ of present value of total regional income generated by development programs to the present value of total public costs of the programs.
$c_{\text {Ratio of }}$ the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 10, simulated poverty in the study area was virtually eliminated in the sixth year.

TABLE XIV
SIMULATED RESULTS OF STRATEGY $11^{\text {a }}$

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	\qquad	\qquad	Person Poverty Years Accumulated
1	191,194	77,090	75,000,000	1.2844	1.1938	20,875
2	186,266	20,875	75,000,000	1.3567	1.2645	33,958
3	181,868	13,083	75,000,000	1.3429	1.2613	50,429
4	186,133	16,471	75,000,000	1.3259	1.2498	69,293
5	190,081	18,846	75,000,000	1.3133	1.2406	88,984
6	193,404	19,691	75,000,000	1.3061	1.2357	108,422
7	196,309	19,438	75,000,000	1.3039	1.2351	126,877
8	198,937	18,455	75,000,000	1.3061	1.2386	143,385
9	201,160	16,508	75,000,000	1.3122	1.2458	157,391
10	203,164	14,006	75,000,000	1.3210	1.2554	168,797
11	205,196	11,406	75,000,000	1.3318	1.2668	177,718
12	207,249	8,921	75,000,000	1.3440	1.2796	184,139
13	209,334	6,421	75,000,000	1.3572	1.2933	188,124
14 d	211,445	3,985	75,000,000	1.3710	1.3076	189,632
15	213,584	$1,508$	68,991,320	1.3883	1.3251	190,474
16	215,484	842				190,4

${ }^{a}$ Strategy ll-anmual allocation of up to $\$ 75$ milition among welfare, labor mobility and industrialization programs (lower estimate of industrialization cost effectiveness was assumed.).
$\mathrm{b}_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{c}$ Ratio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.

[^4]TABLE XV
SIMULATED RESULTS OF STRATEGY 12^{2}

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	Efficiency Ratio 1 b	$\begin{aligned} & \text { Efficiency } \\ & \text { Ratio } \\ & 2^{\mathrm{c}} \end{aligned}$	Person Poverty Years Accumulated
1	191,194	77.090	75,000,000	1.0588	0.9895	28,983
2	192,979	28,983	75,000,000	1.0701	1.0106	56,454
3	194,797	27,471	75,000,000	1.0823	1.0230	82,231
4	196,649	25,777	75,000,000	1.0958	1.0367	106,192
5	198,531	23,961	75,000,000	1.1104	1.0515	128,221
6	200,444	22,029	75,000,000	1.1259	1.0673	148,211
7	202,389	19,990	75,000,000	1.1424	1.0840	166,104
8	204,363	17,893	75,000,000	1.1588	1.1005	181,813
9	206,367	15,709	75,000,000	1.1753	1.1172	195,242
10	208,401	13,429	75,000,000	1.1920	1.0347	206,321
11	210,460	11,079	75,000,000	1.2088	1.1510	215,180
12	212,543	8,859	75,000,000	1.2257	1.1680	221,798
13	214,655	6,618	75,000,000	1.2425	1.1850	226,223
14 d	216,797	4,425	75,000,000	1.2594	1.2020	228, 422
$15^{\text {d }}$	218,963	2,199	72,022,360	1.2772	1.2198	229,286
16	220,963	864				

$a_{\text {Strategy }} 12$-annual allocation of up to $\$ 75$ million to welfare and industrialization programs (lower estimate of industrialization cost effectiveness was assumed).
$\mathrm{b}_{\text {Ratio }}$ of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{c}$ Ratio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 12, simulated poverty in the study was virtually eliminated in the fifteenth year.

An area development program package such as simulated by Strategy 13 is representative of a development plan which might be utilized in an area where industrial development is not feasible either because residents are opposed to industry or because the area lacks basic economic attributes required for firms to make a profit. An area could have such a paucity of developable resources that industry, even if publicly subsidized, could not develop such resources for a profit. This situation was indicated to be widespread based on a few early studies of micropolitan industrialization (Advisory Commission on Intergovernmental Relations, 1967; Stinson, 1968; Hansen, 1969)。 The comparison of the results of this strategy (Table XVI) with those of the other strategies simulated indicates the limitations to area development that such infeasibility of industrialization would impose。 Without industrial development there appears to be little hope for attaining major development targets within a reasonable time period for tolerable cost in public funds.

Strategy Comparison and Evaluation

All but two of the development strategies simulated in this study virtually eliminated simulated poverty in the study area in 15 or fewer years (Table XVII). The two exceptions were Strategy l, which did not provide sufficient welfare grants to raise the incomes of the area's unsalvageable poor to the poverty threshold, and Strategy 13, for which it was assumed that job creation by industrialization was infeasible. Other strategies were successful to different degrees. Some eliminated simu lated poverty quicker than others. And they all yielded different ratios of present values of area income and income of the poor to present value of total public costs of development programs.

TABLE XVI
SIMULATED RESULIS OF STRATEGY 13^{a}

Year	Total Population	Total Poor	Annual Funds Allocated (dollars)	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ \text { 1 }^{\mathrm{b}} \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\mathrm{c}} \\ \hline \end{gathered}$	Person Poverty Years Accumulated
1	191,194	77.090	75,000,000	1.1452	1.0452	27,102
2	190,833	27,102	75,000,000	1.1936	1.0906	49,781
3	189,356	22,679	75,000,000	1.2457	1.1398	67,256
4	186,957	17,275	75,000,000	1.2788	1.1736	85,868
5	187,244	18,612	75,000,000	1.2891	1.1871	105,595
6	191,037	19,727	75,000,000	1.2961	1.1963	124,823
7	194,285	19,228	75,000,000	1.3046	1.2064	142,388
8	197,172	17,565	75,000,000	1.3160	1.2191	157,455
9	199,827	15,067	75,000,000	1.3308	1.2357	169,122
10	202,357	11,667	75,000,000	1.3494	1.2565	176,550
$11{ }_{\text {d }}$	204,839	7,428	75,000,000	1.3714	1.2805	179,758
12 .	207,257	3,208	70,778,270	1.3966	1.3072	180,554
13	209,479	796	67,073,020	1.4218	1.3334	181,359
14	211,516	805	66,676,560	1.4439	1.3565	182,170
15	213,539	811	66,404,280	1.4635	1.3769	182,988
16	215,434	818				

${ }^{a}$ Strategy 2-annual allocation of up to $\$ 75$ million among all development activities considered (middle estimate of industrialization cost effectiveness was assumed).
${ }^{\mathrm{b}}$ Ratio of the present value of total regional income generated by development programs to the present value of total public costs of the programs.
${ }^{c}$ Ratio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.
$\mathrm{d}_{\text {For }}$ Strategy 2, simulated poverty in the study area was virtually eliminated in the twelfth year.

TABIE XVII
SUMMARY OF SIMULATED FINAL RESULTS OF STRATEGIES CONSIDERED ${ }^{\text {a }}$

Strategy	Programs IncIuded	Assumed Industrial- ization Cost Effectiveness	Years Required to Substantially Eliminate Poverty	Person Poverty Years Accumulated	Present Value of Total Income Generated ${ }^{\text {c }}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 1^{\mathrm{d}} \\ \hline \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{\mathrm{e}} \\ \hline \end{gathered}$
1	programs in effect- 1970	M	Qoverty not eliminated	815,666	illion dol 807	.) 1.59	1.51
2	welfare, training, education, family planning, labor mobility, industrialization	M	12	182,988	1,169	1.46	1.38
3	welfare, training, education, family planning, industrialization	M	11	190,932	1,050	1.39	1.31
4	welfare, education, family planning, industrialization	M	9	142,786	1,085	1.45	1.38
5	welfare, education, industrialization	M	9	130,024	1,095	1.48	1.42
6	welfare, family planning, industrialization	, M	9	141,324	1,086	1.46	1.40
7	welfare, labor mobility, industrialization	M	9	98,756	1,142	1.55	1.48

TABLE XVII (Continued)

Strategy	Programs IncIuded	Assumed Industrial- ization Cost Effectiveness ${ }^{\text {b }}$	Years Required to Substantially Eliminate Poverty	Person Poverty Years Accumulated	Present Value of Total Income Generated ${ }^{\text {C }}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ I^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { Efficiency } \\ \text { Ratio } \\ 2^{e} \\ \hline \end{gathered}$
8	welfare, industrialization	M	9	129,749	1,103	1.49	1.43
9	welfare, labor mobility, industrialization	U	7	69,654	1,186	1.64	1.57
10	welfare, industrialization	U	6	85,316	1,160	1.60	1.54
11	welfare, labor mobility, industrialization	, L	15	190,474	1,140	1.39	1.33
12	welfare, industrialization	L	15	229,286	1,051	1.28	1.22
13	welfare training, education, family planning, labor mobility	- no industrialization allocations	poverty not eliminated	357,906	888	1.20	1.11

$\mathrm{a}_{\text {Results }}$ are for year l5--the final year simulated
${ }^{\mathrm{b}}$ M--Middle estimate of cost effectiveness ($\$ 9,538$ public dollars required per direct job created). U-Upper estimate of cost effectiveness ($\$ 5,582$ public dollars required per direct job created). L--Lower estimate of cost effectiveness ($\$ 20,000$ public dollars required per direct job created).
${ }^{{ }^{c} \text { Present }}$ value, over the planning horizon simulated, of total area income generated by development activities, including incomes of labor mobility relocates living outside the study area.

TABLE XVII (Continued)

$d_{\text {Ratio of }}$ the present value of total regional income generated by development programs to the present value of total public costs of the programs.
eRatio of the present value of income to the poor generated by development programs to the present value of total public costs of the programs.

The simulated differences in final strategy results can be explained by the different development activities and industrialization cost effectiveness adsumed for various strategies. The following two subsections of this chapter list differences in strategy results, followed by a discussion of the implications of these differences in light of alternative goals and restrictions.

Strategy Comparison-Activity Combinations

Strategies l-8 are those for which the most realistic industrialization cost effectiveness was assumed. Strategies 9-12 included some of the same activity combinations included in Strategies l-8, but were simulated for different industrialization cost effectiveness assumptions, and Strategy 13 did not include industrialization as a development activity.

Comparisons of the final simulated results of Strategy 1 with those of Strategies 2-8 (Table XVII) indicate the effects of limiting expenditures on welfare grants. Strategy l, with limited welfare expenditures, was ineffective in alleviation simulated poverty among unsalvageable poor in the area, and yielded a high number of person poverty years accumulated. However, both of the efficiency ratios of income generated to public costs were relatively high for Strategy 1, and the present value of total income generated for the strategy was relatively low. These comparative results can be explained by the fact that welfare allocatiorts per recipient were limited in Strategy l; thus a relatively greater portion of allocated funds went to job development than in other strategies simulated. Welfare programs providing only cash or in-kind assistance to the poor do not constitute an investment in jobs or human capital that generates a
future income stream. Thus decreasing welfare expenditures relative to other development activity expenditures causes efficiency ratios of incomes to costs to increase in all but the very short run. Moreover, for unsalvageable poor, welfare grants are the only effective means of eliminating poverty。 So limiting welfare grants precludes poverty alleviation among unsalvageable poor and results in a high number of person poverty years accumulated.

Comparisons of the final simulated results of Strategies 2 and 3 and of Strategies 7 and 8 (Table XVII) indicate the effects of including labor mobility programs in development strategies. In both cases the strategy including labor mobility as a development activity (Strategy 2 and Strategy 7) was more efficient in eliminating poverty and in generating incomes both total area and poor incomes (as indicated by higher values of efficiency ratios and greater present values of income generated) than the strategy in which labor mobility was excluded.

The relative effects of including labor mobility in a development strategy appear to be less when comparing Strategies 2 and 3-person poverty years accumulated decreased from 190,932 to 182,988 (Table XVII)— than when comparing Strategies 7 and 8-person poverty years accumulated decreased from 129,749 to 98,756 (Table XVII). This was because, for Strategy 2, welfare, training, education and family planning had first priority for funds, with labor mobility and industrialization receiving the residual; while for Strategy 7 only welfare had priority for funds over labor mobility. So, for Strategy 7 labor mobility funds were utilized more intensively or in earlier years, keeping person poverty years from accumulating as rapidly as they did in Strategy 2.
.- Strategy 4 included all of the development activities of Strategy 3 except for technical training. The results shown in Table XVII indicate that the funds allocated to technical training programs were less efficient than funds allocated to other activities. Person poverty years accumulated were greater for Strategy 3, which included technical training, than for Strategy 4 which excluded such programs. Also, the income generation efficiency ratios were higher for Strategy 4 .

These results are explainable by the fact that the role of technical training programs, as specified in the simulator utilized in this research, is passive. It was assumed that training does not directly create job opportunities for the poor, but rather increases their potential earnings when jobs become available. So, without bringing people to jobs or jobs to people, technidal training programs have small payoffs. If, in fact, technical training programs complement job development programs, causing them to generate more jobs per dollar of public expenditure, then the simulated differences in Strategies 2 and 3 may be unrealistic. However, some strong high school and post-high school technical training programs are currently operating in the study area. So, it seems reasonable that training made available by these programs, supplemented with on-the-job training by new or expanding firms, might provide an adequate base of trained employees for most labor intensive industries.

Comparisons of the final simulated results of Strategies 4 and 6 and of Strategies 5 and 8 (Table XVII) indicate the effects of including school dropout prevention (education) programs in development strategies. For both cases the strategies which did not include education programs (Strategy 6 and Strategy 8) were slightly more effective in eliminating poverty (indicated by lower value of person poverty years accumulated) and more efficient in generating incomes (indicated by higher efficiency
ratios and greater present values of income generated). These results do not indicate that the education programs simulated were absolutely inefficient, but just that they were less efficient than the other programs in the strategies considered.

Comparisons of the final simulated results of Strategies 4 and 5 and of Strategies 6 and 8 (Table XVII) indicate the effects of including family planning programs in development strategies. In both cases the strategies which did not include family planning programs (Strategy 5 and Strategy 8) were more effective in eliminating poverty (fewer person poverty years accumulated) and more efficient in generating income (higher efficiency ratios and greater present values of income generated).

The comparative results of Strategies 4, 5, 6 and 8, as discussed above, indicate that family planning programs are slightly less efficient than education programs and that both activities, as simulated in this study, are shallow, requiring relatively few funds and yielding relatively minimal results. This shallowness is indicated by the small simulated differences in person poverty years accumulated, present values of income generated and efficiency ratios among these strategies; and by the fact that the simulated years required to substantially eliminate study area poverty did not vary at all among these strategies. These results do not necessarily mean that the programs are inefficient over a longer period than considered in this study, but they are no substitute for other major programs in accomplishing economic development objectives.

Strategy Comparison-Industrialization

Efficiencies

Comparisons of Strategies 7, 9 and 11 and of Strategies 8, 10 and

12 indicate the effects of different industrialization cost effectiveness levels on the efficiency with which development strategies could eliminate poverty and create income in the study area (Table XVII). The simulated results of these strategies indicate, as would be expected, that greater industrialization cost effectiveness eliminates poverty more rapidly and generates income more efficiently.

Strategy 13, which contained no industrial development activity, was ineffective in eliminating study area poverty. Generating jobs locally appears to be basic to development of underdeveloped areas. The simulated results of Strategies 2-12 indicate that, given the assumptions of the model and given the feasibility of industrialization programs, poverty in the study area could be eliminated within a not too lengthy time horizon, and it could be eliminated efficiently-as india cated by economic returns in excess of public costs-even if actual industrialization cost effectiveness is very low. Alternatively simulated results of Strategy 13 indicate that without industrialization, an underdeveloped area makes economic progress slowly and with considerable public cost of programs. The principal reason for this conclusion is that even with strong programs to assist outmovement of labor, many workers return home and will be unemployed or underemployed without efforts to generate productive local employment. And the human resource development activities, as stated earlier, are ineffective unless accompanied by labor mobility or capital mobility programs.

Strategy Evaluation

The results of this research indicate that, given the assumptions of the model used, poverty could be eliminated in the study area in 15
or fewer years by annually allocating no more public funds to non-welfare development activities than were allocated in the area in 1970 (approximately $\$ 5$ million) if sufficient funds were allocated to welfare grants to raise the incomes of the area's unsalvageable poor to the poverty threshold. Public assistance and job development programs were found to be necessary aspects of successful development strategies. However, alone, neither of these activities was found to be sufficient to alleviate poverty efficiently。 Rather they must be utilized together, with possible supplementation by human resource development programs. It was found that a development strategy containing all of the development activities considered in the study (Strategy 2) could substantially eliminate poverty in the study area over the planning horizon considered (15 years) and could yield efficient income streams. Such a strategy would provide a wide range of program diversification, thus reducing risk and allowing for complementarity among development activities. This strategy was based on public assistance grants to provide minimum nonpoverty incomes for the unsalvageable poor and job development activities (labor mobility and industrialization) to provide employment and consequent incomes for the salvageable poor. Political restrictions might reduce or eliminate the use of labor mobility programs on grounds that they encourage outmigration of an area's youth, deplete a surplus labor pool or are inconsistent with programs to create jobs within the area。 ${ }^{2}$ The findings of this research indicate that a similar strategy
${ }^{2}$ Arguments by an area's nonpoor (especially employers) that labor mobility programs encourate out-migration of an area's youth and deplete an area's surplus labor pool may be valid. However, the argument that such programs are inconsistent with programs to create jobs within the area seems less well founded. Labor mobility programs can have much more rapid effects in removing salvageable poor from poverty than can
to the one discussed above, but excluding labor mobility programs (Strategy 3) would be less effective but could still eliminate poverty and yield positive returns to public costs.

Simulated results of strategies including education (school dropout prevention) activities were not found to differ greatly from strategies excluding such activities. An implicit assumption included in the model is that when poor people take jobs and join the ranks of the nonpoor, the school dropout rate applicable to their children becomes the dropout rate of nonpoor children. This assumption may not be realistic in the short run. If the school dropout rate for the previously poor does not decline rapidly to the dropout rate for nonpoor as poverty is decreased in an area, then the effects of dropout prevention education programs may be greater than indicated in this study. In any case, education (dropout prevention) programs, as considered in this study, are quite shallow (affect only a few people and require minimal funding) so if they are considered socially desirable it does not appear that they should necessarily be avoided.

Family planning, like school dropout prevention, is a shallow activity, and its simulated effectiveness also may be underestimated because of an implicit assumption in the model。 This assumption is that when poor people take jobs and join the ranks of the nonpoor the birth rate determining their fertility becomes the rate applicable to the
industrialization programs. However, labor mobility programs typically have high attrition rates. Consequently, short run labor mobility programs may be consistent with long run area industrialization activities. Mobility programs generate income while industrial development is getting started, and provide a source of labor for local industry as workers return home. It is far more efficient from an economic, though not necessarily from a social standpoint, to hold the reserve labor supply awaiting local jobs in distant employment than in local underemployment.
previously nonpoor. In reality it may take some time for the previously poor to adopt the child bearing habits of their nonpoor peers. Also, the avoidance of unwanted births may be very socially desirable.

Strategies containing post-high school technical training programs were not found to be as effective in eliminating poverty or generating income for the study area as similar strategies with technical training excluded. An implicit assumption in the model is that on-the-job training programs with established and new industry along with existing high school and post-high school training programs operate at past levels in the area over the years simulated. With some realignment of programs, existing technical programs may provide an adequate base of trained personnel to support the development of labor intensive industry in the area. If, however, the strong existing technical training program eludes the poor and if jobs can be generated more efficiently with a major increase in trained people, then technical training programs for the disadvantaged may be a useful component of a viable area development strategy。

It was found that, for the study area, allocations to public assistance grants totaling almost $\$ 72$ million per year in the early years of a development plan would be required to bring the income of all unsalvageable poor up to the poverty threshold. These funds constitute the bulk of "development" funding. Comparatively small annual allocations to other development activities (especially job development) of only two to four million dollars could appreciably reduce poverty among salvageable poor in the area. This suggests that, for underdeveloped areas where job. development activities are currently not being actively pursued, the public may be overlooking a chance to use comparatively few economic
development funds to yield relatively large payoffs in terms of poverty amelioration and income generation.

Regardless of what programs are included in rural area development program packages or strategies, if poverty elimination is, a major goal, efficient strategies must include public assistance grants and job development. While much poverty can be eliminated among salvageable poor by job development, poverty can be eliminated among the unsalvageable poor only by welfare grants. For a development strategy to be effective in eliminating poverty in a depressed area, such development activities must be continued for a sufficient period of time to allow a critical mass of self-sustaining economic activity to become entrenched in the area. Other development activities (primarily human resource development.) may be supportive of job development activities and have other results which are socially or politically desirable。 But, improvement of human, natural or public resources yields favorable returns only as these resources are gainfully employed.

SUMMARY, LIMITATIONS AND FUTURE RESEARCH NEEDS

Many rural areas of the United States can be classified as underdeveloped, based on low returns to labor and high rates of underemployment relative to the rest of the nation. This phenomenon is explainable, according to neoclassical economic theory, by the existence of externalities not priced in the market (pollution, congestion and crime) and factor market imperfections, including minimum wage laws, union wage scales and commitment of people to specific areas or jobs as a way of life. The purpose of this study was to develop and utilize an exemplary model to simulate and evaluate the results of potential public policy strategies directed toward alleviating these problems of underdeveloped rural areas. This chapter summarizes the research presented in this thesis, notes limitations of the analysis and suggests future research needs.

Summary

During the 1960° s underdeveloped areas became the objects of increasing public concern, and allocations of public funds to development programs greatly increased. Many of these programs of the 1960's were evaluated for cost effectiveness. However, the individual programs were generally viewed as separate entities rather than as integral parts of development packages or strategies. There was little or no recognition
of the need for coordination of programs in reaching a critical mass for rural development. Fragmented, inefficient and overlapping publicly funded development activities resulted.

It was assumed in this study that the allocation of public funds to development activities directed toward improving the performance of an imperfect market and fostering equity or efficiency "in the large" will continue. Given this assumption, the systems approach developed herein can assist decision makers in planning program packages to attain efficiency "in the small" by identifying least cost strategies required to reach certain development targets in a depressed area. Economic evaluam tion of the efficiencies of various programs, viewed in the context of systems planning, can help public policy decision makers decide which public programs to expand and which to contract, and what total level of funds is required to reach development targetso Systems planning can be used to devise an efficient rural development strategy that makes limited funds go as far as possible to reach development targets.

The systems approach, organized as a rural development game, can be used in the classroom to give students "experience" in devising a development strategy。 It makes students aware of the inter-relationships which exist among demographic factors and policy activities within an area's economic system。

A rural development planning simulation model was developed in this study to simulate results over time of potential rural area development policy strategies. The model utilizes cost effectiveness estimates for different development programs to simulate the impacts lof various program combinations on measures of the wellmbeing of the people in a particular area. Well-being was measured indirectly by income, poverty and
employment. Each of the strategies simulated was evaluated on how effectively it eliminated study area poverty over time and how efficiently relative to public costs it generated income for the area's inhabitants. Such income, as simulated, came primarily from generating employment for salvageable poor and providing public assistance grants to unsalvageable poor. Coefficients in the simulator included estimates of unemployment and underemployment, and it was assumed that all job recipients received earnings comparable with those they could earn elsewhere based on their training and skills. These earnings were based on median earnings of Oklahoma workers by occupation groups and should be reasonably representative of market equilibrium wages. Thus, for the model utilized herein, elimination of all but structural poverty among salvageable poor through job development is tantamount to elimination of all but structural unemployment and underemployment.

For the simulator used in this research, the population of the area. considered was cross-classified into 21 socio-demographic categories based on income, age, ability to work and levels of education and training. The poor were categorized according to their ability to work as salvageable or unsalvageable-nthose capable of supporting themselves by working being classified as salvageable。 Salvageable poor were cross classified by age, attainment of high school education and possession of technical training. Nonpoor were categorized by age and income level。

It was assumed that a decision making authority responsible for dispersing development funds in an underdeveloped area could allocate these funds among public assistance grants for unsalvageable poor, education (school dropout prevention), technical training, family planning, industrialization and labor mobility subsidization. These
alternative activities, as considered in the study, represented special development activities which could be initiated over and above "typical" public investments in an area. It was assumed that roads, schools and other services and infrastructure initially were adequately funded in the area considered and that any improvements would be financed as desired by area residents from funds made available by the development process itself.

Public assistance grants were included to remove unsalvageable poor from poverty. Education allocations were assumed to decrease the school dropout rate among students in poverty. It was assumed that public funds allocated to technical training were used to train untrained poor, since sound vo-tech training is already available for "conventional" students in the study area. Family planning funds were assumed to decrease the birth rate by making family planning devices and information available to the poor.

All development activities were assumed to have direct as well as indirect effects on both the poor and the nonpoor in the area. Income resulting from jobs created by industrial development was assumed to continue through the time horizon simulated. Income resulting from jobs made available by labor mobility subsidization was also assumed to continue, as long as labor mobility program participants did not return to the home area. Income resulting from other development activities was of a temporary nature, continuing only as long as programs were continued.

Technical coefficients necessary to operate the model were estimated from primary and secondary sources. These coefficients included demo graphic coefficients, income coefficients, employment coefficients and development activity efficiency coefficients.

Demographic coefficients included birth rates，death rates and a population growth rate including migration for the area considered；and were estimated from U．S．Census data．Income coefficients included in－ come thresholds for the poor and for low，medium and high income non－ poor；potential earnings by skill levels for salvageable poor；a public funds－income multiplier；and the estimated proportion of this income from public funds going to the poor for the area considered．These coef－ ficients were estimated from census data and from information reported in several input－output studies．

Employment coefficients included estimates of labor force participa－ tion rates and measures of incidence and degree of unemployment and of underemployment in the area．These coefficients were estimated primarily from U．S．Bureau of Census information．

Development activity efficiency coefficients，expressing the im－ pacts of alternative development activities on various subpopulations of the area considered，were estimated primarily from information re－ ported in individual project evaluation studies．Most development ac－ tivity coefficients were stated in cost effectiveness terms．

Much of eastern Oklahoma is characterized by problems of under－ development．The study area includes seven eastern Oklahoma counties （Adair，Cherokee，McIntosh，Muskogee，Okmulgee，Sequoyah and Wagoner） for which the community of Muskogee（population 37，331）is the largest and most centrally located city．In 1970，approximately 40 percent of the area ${ }^{1}$ s population had family equivalent incomes less than $\$ 4,000$ （calculated from U。S。Bureau of Census， 1971 and U 。 S 。Bureau of Census， 1972a）．Unemployment in the area averaged six percent in 1970，well above the average for Oklahoma and the nation which were four and five
percent respectively. Underemployment in the area is an even greater problem than unemployment. Kampe and LIndamood (1969) estimated 1960 rates of underemployment for males in the area ranging from 19 to 41 percent. They classified underemployment of over 20 percent as severe, and they found that all but one county (Muskogee) in the study area had severe underemployment.

The results of 13 development strategies simulated for this study area were reported herein. One of these strategies assumed continuation of programs in effect in 1970. These 1970 programs included limited welfare grants and allocations to education, training and industrialization activities.

The other 12 strategies simulated included sufficient annual allom cations to welfare or public assistance to remove all unsalvageable poor from poverty; remaining funds, up to a total annual allocation limit of $\$ 75$ million, went to various combinations of the other development activities considered. Preliminary work with the simulator indicated that in the early years of simulated development almost $\$ 72$ million in welfare grants would be required to remove all unsalvageable poor from poverty. Almost $\$ 50$ million were allocated to this purpose (welfare grants) in 1970。

Major conclusions of the study are summarized as follows:
lo Alleviation of poverty and all but structural unemployment and underemployment with positive returns to public development expenditures is possible in the study area within a reasonable time frame. These goals were found to be inseparable, since, for the model used herein, simulated poverty alleviation among salvageable (employable) poor was accomplished by providing them with jobs, the earnings from which were
comparable with what they could earn elsewhere based on their training and skills. Given the assumptions of the model, annual public allocations of no more than $\$ 75$ million to development activities would achieve major development goals within 15 years。 Approximately $\$ 55$ million were allocated to such activities in 1970. Simulation of the continuation of these 1970 program levels, however, indicated that, unless the real dollars allocated to these programs are increased, 39 thousand people or 18 percent of the total study area population will still be in poverty in 1985.
2. The number of programs in an area development plan need not be large. In fact real advantages in administrative feasibility and avoidance of waste and program overlaps accrue from limiting the number of programs in a development strategy. The broadest strategy considered in this study (Strategy 2). should provide adequate diversification for risk reduction and program complementarity; but the number of activities it incIuded was not nearly as great as the number now being used in the area.
3. Public assistance programs to provide income to unsalvageable (unemployable) poor would be the most massive program in a comprehensive development strategy for the study area. To avoid waste, administrative care is necessary to maintain work incentives among the employable poor and to reward those who work more than those on welfare.
4. Human resource development programs alone have low payoffs and, for efficiency, must be accompanied by programs to generate jobs locally or generate labor mobility to distant jobs. Education (school dropout prevention) and family planning activities were found to be quite shallow in effects; relatively inexpensive and more nearly justifiable on social than on economic grounds in the time frame considered herein.
5. Job development, through industrial incentives or other means, is essential to reach targets considered herein. Industrial development program effectiveness can be enhanced by tying industry subsidies directly to job creation and subsidizing firms according to labor rather than capital use, and by not first investing in area infrastructure and then "hoping" for job development.
6. Subsidized migration of salvageable poor is highly efficient in the use of development funds, but alone is inadequate to alleviate poverty in depressed areas because many people will not move at all and many return who do move. Labor mobility programs complement rather than compete with industrial development programs except, possibly, in the Iater years of development。
7. Regardless of what programs are included in area development strategies, if poverty elimination is a major goal, efficient strategies must include public assistance grants and job development. Much poverty can be eliminated among salvageable poor by job development, but, for unsalvageable poor, welfare grants are the only means to this end. Other development activities (primarily human resource development) may be supportive of job development activities and have other results which are socially or politically desirable. But resource improvement can yield returns only as these resources are gainfully employed. Industrialization program cost effectiveness was shown to be a major determinant of the rapidity with which results of poverty amelioration are achievable by development strategies. However, for the strategies simulated and the study area considered.s results indicated that poverty could be eliminated efficiently-as indicated by economic returns in excess of
public costs-even if actual industrialization effectiveness was very low.
8. Strategies containing post-high school technical training programs in excess of such programs currently existing were not found to be as effective in eliminating poverty or generating income for the study area as similar strategies with technical training excluded. This result likely would not hold for other depressed areas less endowed with formal and informal technical training programs. And, even for the study area considered, if jobs can be generated more efficiently for trained people than for untrained people, then technical training programs may be a necessary aspect of viable area development strategies.

Limitations and Future Research Needs

One obvious limitation of this study is that the results specifically apply only to the study area. Some of the findings, such as the relative payoffs from various development activities in alternative program packages, should have general applications to development plans for other depressed areas. But specific results of alternative development strategies are dependent on the particular income, employment and sociodemographic situations of areas to which such strategies are applied. Thus levels of alternative development programs necessary to attain a critical mass of self sustaining economic activity vary among underdevelm oped areas.

This study also was limited by lack of data describing the effects of alternative development activities. For some types of activities no information was available, so the activities were not included. For other activities some information was available, but lacked the precision desired.

Data are, for the most part, unavailable for estimating economic payoff's from state or federal subsidies to develop area infrastructure. No studies were available showing the portion of public investments in such infrastructure items as roads and water and sewer systems going to the poor in underdeveloped areas or the effectiveness of such investments in generating jobs. Also, no information was available on the effects of public processes (e.g. by the extension service) to initiate and maintain local planning activities and development organizations in underdeveloped areas. Cost effectiveness data on such activities would make it possible to include these activities in a systems model such as presented in this thesis.

Although the most complete information available was used, data describing the effects of education. (school dropout prevention) programs and family planning programs was much less comprehensive than desired. Both of these activities affect only a small part of the population. Further research could provide information useful in more definitively assessing the potential contributions of these and other area development programs, and also could provide data on chance or random elements to include in a stochastic model of development.

Price decreases for the output of newly developed industries or increases in public costs of programs to generate jobs could result in diminishing returns to industrial development activities. Such diminishing returns are not directly accounted for in the model presented herein. However, this should not be a problem if development programs are focused on ohly a few depressed areas with potential for eventual self sustaining development given a critical mass of assistance. The study area appears to have such potential. Other areas lacking transportation
facilities, adequate population or a growth center may not have such development possibilities. It was assumed that the types of development activities considered would, at most, only be initiated in a few underdeveloped areas dispersed throughout the nation. It was further assumed that there is a sufficient number of expanding local firms or footloose outside industries willing, if subsidized, to locate in such areas so that cost effectiveness coefficients would not change appreciably as more jobs are brought into the area. If, in fact, diminishing returns to public development funds allocated to an area do exist, future research into the problem is needed. Traditional evaluations of development activities examine only one level of costs and returns. Typical studies also give little attention to the distribution of costs and benefits among economic and socio-demographic groups. These traditions will need to change if the concept of systems planning for area development is widely applied.

A SELECTED BIBLIOGRAPHY

Advisory Commission on Intergovernmental Relations．
1967 State－Local Taxation and Industrial Location．Washington， D．C．：U．S．Government Printing Office．

Boise Cascade Center for Community Development．
1970 An Evaluation of EDA Public Works Projects．Washington，D．C．： U．So Department of Commerce，Economics Development Adminis－ tration．

Borus，Michael Eo，et al．
1970 ＂A Benefit－Cost Analysis of the Neighborhood Youth Corps： The Out－of－School Program in Indiana．＂Journal of Human Resources，V（Spring），139－159．

Childs，Milburn Dan．
1973 ＂An Economic Analysis of Plant Location by Community Size in Oklahoma．＂（Unpublished M．S．thesis，Oklahoma State Univer－ sity。）

Council of Economic Advisors．
1971 ＂Economic Indicators．＂Washington，D．C．：U．S．Government Printing Office．

Doeksen，Gerald Arthur．
1971 ＂A Special Accounting System and Simulation Model Projecting Economic Variables and Analyzing the Structure of the Okla－ homa Economy．＂（Unpublished Ph．D。thesis，Oklahoma State University。）

1972．＂Application of Simulation to Regional and Community Plan－ ning．＂Southern Journal of Agricultural Economics，IV，35－43．

Economic Development Administration．
1970 Public Works Program－An Evaluation．Washington，D．C．：U．S． Department of Commerce．

1972 The EDA Experience in the Evolution of Policy．Washington， D．C．：U．S．Department of Commerce．

Eddleman，B．R．，and F．H．Tyner．
1972 ＂A Simulation Model for Forecasting Development of Rural Areas．＂In Quantitative Techniques With Application to Rural Development Research（Garnett L．Bradford and Fred B．Sanders，eds．）．Atlanta：Southern Farm Management Research Committee for the Farm Foundation．

Edwards，Clark and Rudolph DePass．
1971 ＂Rural－Urban Population，Income and Employment：A Simulation of Alternative Future．＂Washington，D．C．：U．S．Department of Agriculture，Economic Research Service．

Eidman；Vernon R．（ed．）．
1971 Agricultural Production Systems Simulation．Stillwater： Oklahoma State University。

Executive Office of the President．
1966 The Budget of the United States Government－1966．Washing－ ton，D．C．：U．S．Government Printing Office．

1972 The Budget of the United States Government－1972．Washing－ ton，D．C．：U．S．Government Printing Office．

Fairchild，Charles K．
1970 Worker Relocation：A Review of U．S．Department of Labor Mobility Demonstration Projects．Washington，D．C．：E．F． Shelley and Company，Inc．

Goldstein，John．
1972 ＂The Effectiveness of Manpower Training Programs．＂Paper No． 3 of the Joint Economic Committee，Ninety－Second Congress． Washington，$D_{0} C_{0}: ~ U . S$ ．Government Printing Office。

Guthrie，Harold W。
1972 ＂Microanalytic Simulation for Evaluation of Public Policy．＂ Washington，D．C．：The Urban Institute．

Hansen，Niles．
1969 ＂Regional Development and the Rural Poor．＂Journal of Human Resources，IV（Spring），205－214．

Haren，Claude C．
1974．＂Location of Industrial Production and Distribution．＂Rural Industrialization：Problems and Potentials．Ames，Iowa： North Central Regional Center for Rural Development，3－26．

Hirsch, Werner Z.
1973 Urban Economic Analysis. New York: McGraw-Hill Book Company. Hoch, Irving.

1972 "Income and Cịty Size." Urban Studies, IX (October), 299-328. Janssen, Larry.

1974 "Comparative Profit Rates of U.S. Manufacturing Firms by City Size." (Unpublished M.S. thesis, Oklahoma State University)。

Kershaw, Joseph, and Paul Courant.
1970 Government Against Poverty. Chicago: Markham Publishing Company.

Kuchn, John, et al。
1972 Impact of Job Development on Poverty in Four Developing Areas. Washington, D.C.: U.S. Department of Agriculture; Economic Research Service.

McCleary, George Frederick
1953 The Malthusian Population Theory. London: Faber and Faber.
McCoy, John L.
1970 "Rural Poverty in Three Southern Regions: Mississippi Delta, Ozarks and Southeast Coastal Plain." Washington, D.C.: U.S. Department of Agriculture, Economic Research Service.

Mills, Edwin S.
1972 Urban Economics Glenview, Illinois: Scott, Foresman and Company.

Muncrief, George Edward.
1972 "Development of Interindustry Analysis for Use Within a Public Service Framework to Estimate Generation of Solid. Wastes in South Central Oklahoma." (Unpublished M.S. thesis, Oklahoma State University).

Naglor, Thomas Ho, et al.
1966 Computer Simulation Techniques. New York: John Wiley and Sons, Inc.

Nelson，James，and Iuther Tweeten．
1973 ＂Subsidized Labor Mobility－An Alternative Use of Development Funds．＂The Annuals of Regional Science，VII（June），57－66．

Orcutt，Guy，et al．
1971 ＂Microanalytic Simulation：A Demographic Model．＂Washing－ ton，D．C．：The Urban Institute．

Shaffer，Ronald。
1972 ＂The Net Ecomomic Gain from New Industry in Eastern Oklahoma．＂． （Unpublished Ph。D．thesis，Oklahoma State University．）

Shallah，Salim，and Luther Tweeten．
1970 ＂Economic Returns to Technical Education at Oklahoma State Tech．＂Agricultural Experiment Station Bulletin B－685． Stillwater：Oklahoma State University．

Sheppard，Harold I．
1967 ＂Effects of Family Planning on Poverty in the United States．＂ Kalamazoo：W．E．Upjohn Institute for Employment Research．

Singer，Neil M．
1971 ＂Federal Tax Incentives for Regional Growth．＂Southern Economic Journal，XXXVIII（October），230－237．

Smith，Jackie．
1974 Unpublished research，Agricultural Economics Department， Oklahoma State University．

Somers，Gerald，and Ernest Stormsdorfer．
1972 ＂Neighborhood Youth Corps：A Nationwide Analysiss＂Journal of Human Resources，VII（Fall），446－459．

Stinson，Thomas．
1968 ＂The Effects of Taxes and Public Financing on Local Indus－ trial Development．＂Washington，D．C．：U．S．Department of Agriculture．

Tinberger，J。
1956 Economic Policy：Principles and Design．Amsterdam：North Holland Publishing Company．

```
Tolley,G. S.
```

1971 "Population Distribution Policy." Paper presented at the Conference on Public Policy Education. Custer, South Dakota.

Tweeten, Luther G:
1970 Foundations of Farm Policy. Lincoln, Nebraska: University of Nebraska Press.

1973 "Emerging Issues for Sparsely Populated Areas and Regions Under a National Growth Policy." American Journal of Agricultural Economics, LV (December), 840-850.

1974 a "The Need for the Systems Approach to Rural Development Research." Southern Journal of Agricultural Economics, (forthcoming)。

1974b "Theories of Micropolitan Economic Development." (Unpublished manuscript, Oklahoma State University.)
U.S. Bureau of Census.

1971 Census of Population: 1970-General Population Characteristics, Oklahoma. Washington, D.C.: U.S. Government Printing Office.

1972a Census of Population: 1970-General Social and Economic Characteristics, Oklahoma, Washington, D.C.: U.S. Government Printing Office.

1972 b Statistical Abstract of the United States. Washington, D.C.: U.S. Government Printing Office.
U.S. Office of Economic Opportunity.

1970 Federal Outlays in Oklahoma, Fiscal Year 1970. Washington, D.C.: Executive Office of the President.

White, Fred, and Luther Tweeten.
1973 "Internal Economics of Rural Elementary and Secondary Schooling。" Sociomeconomic Planning Science, VII, 353-369.

Woltman and Walton.
1969 "Evaluations of the War on Poverty-The Feasibility of Benefit-Cost Analysis for Manpower Programs." Bethesda, Maryland: Resource Management Corporation.

APPENDIX

A USER'S GUIDE TO THE RURAL AREA
 DEVELOPMENT SIMULATOR

A computer listing of the simulator utilized in this research, as programmed for the 360-65 computer at Oklahoma State University, is presented in this appendix along with a brief guide to the use of the program. Required data cards and their formats are indicated in lines 1-120 of the program.

For an initial run (first simulated year) the number of strategies simulated per run must be entered as N (line 32), then the following data must be specified for each strategy according to the formats shown in the program:

CF-First year allocation te unsalvageable poor, age 65 and over
(line 35)
CP-First year allocation to unsalvageable poor, age 15-64 (line 35)
CEWFirst year allocation to education (line 35)
CT-First year allocation to training (line 35)
CSmirst year allocation to family planning (line 35)
dI-First year allocation to industrialization (line 35)
CL-First year allocation to labor mobility (line 35)
AI-Number of unsalvageable poor, age 15-64 (line 40)
XNDX—Strategy number (line 40)
B-Number of unsalvageable poor, age 65 and over (line 47)

OLDRCH-Number of nonpoor, age 65 and over (line 41)
Ell-Number of salvageable poor with high school and training, age 20-39 (line 42)

F1-Number of high income nompoor, age 20-39 (line 42)
El2-Number of salvageable poor with high school and training, age 40-64 (line 4)

F2-Number of high income nonpoor, age 40-64 (line 43)
E2l-Number of salvageable poor with high school but no training, age 20-39 (line 44)

Gl-Number of medium income nonpoor, age 20-39 (line 44)
E22-Number of salvageable poor with high school but no training, age 40-64 (line 45)

G2-Number of medium income nonpoor, age 40-64 (line 45)
E3l-Number of salvageable poor with no high school but training, age 20-39. (line 4.6)

H1-Number of low income nonpoor, age 20-39 (1ine 46)
E32-Number of salvageable poor with no high school but training, age 40-64 (line 47)

H2-Number of low-income nonpoor, age 40-64 (line 47)
E47-Number of salvageable poor with no high school and no training, age 20-39 (line 48)

H3-Number of low income nonpoor, age 15-19 (line 48)
E42-Number of salvageable poor with no high school and no training, age 40-64 (line 49)

RCHKID-Number of nonpoor children and students less than age 19 (ine 49)
E43-Number of salvageable poor with no high school and no training, age $15-19$ (line 50)

TH-Number of poor children and students less than age 19 (line 51)
\$NO-Number of jobs directly created per dollar of publif expenditure on industrialization programs (line 19)

PVCAI-The year being simulated (enter I for initial year) (line 120)

All other data are entered as zeros or blanks for the initial run.
Output from the run includes 80 punched cards for each strategy simulated. To run the simulator for a second simulated year, enter the values of $\mathrm{CF}, \mathrm{CP}, \mathrm{CE}, \mathrm{CT}, \mathrm{CS}, \mathrm{CI}$ and CL on one card (line 35) for each strategy, place the card before the 80 computer punchec cards, be sure that the data deck is preceded by the card on which the number of strategies (\mathbb{N}) is dunched (line 32), and make another run. This process can be continued until the desired number of years (up to 20) have been simulated.

Other variables included in the simulator are identified as follows: \$MBR-Annual birth rate per nonpoor adult, not in school, age 15-40 (line 216)

G-Annual birth, rate per poor adult, not in school, age 15-40 (line 211)

DB-Annual death rate for persons, age 65 and over (line 209)
D2-Annual death rate for persons, age 46-64 (line 210)
DA-Annual death rate for undsalvageable poor, age 15-64 (ine 208) GRORT-Annual area population growth rate (line 162)

Q-Minimum annual family income for low income nonpoor (line 137) GLOW-Minimum annual family income for medium income nonpoor (line 202) FLOW-Minimum annual family income for high income nonpoor (line 203)

AH-Poverty threshold for unsalvageable poor age 65 and over (per person) (line 136)
\$MULTmArea income resulting per dollar of public funds spent on development activities (line 189)

PERPR-Proportion of area income which goes to the poor (line 184)
AB-Number of adults removed from poverty per job created for the poor (line 132)

AE-Proportion of normal working age adults in labor force (line 135)

AC-Proportion of poor in the labor force who have jobs but are underemployed (line 1353)

AD -Percent underemployment of underemployed poor (line 134)
\$N-Number of people moved to jobs per dollar of public expenditure on labor mobility programs

PERLM-Proportion of labor mobility allocation funds which goes to purposes other than relocation assistance allowances (administration, training, and counseling) (line 185)
\$MXRET-Proportion ©f relocatees who eventually return to study area (limit to program attrition) (line 193)

A-Proportion of relocatees outside study area who do not return each year (until liminal attrition level is reached) (line 191)

Xll-Average annual earnings for poor persons with high school training, age 20-39, employed in jobs made available by labor mobility activities (line 194)

Xl2—Average annual earnings for poor persons with high school and training, age $40-64$, employed in jobs made available by labor mobility activities (line 195)

X21-Average annual earnings for poor persons with high school but no training, age 20-39, employed in jobs made available by labor mobility activities (line 196)

X22-Average annual earnings for poor persons with high school but no training, age 40-64, employed in fobs made available by labor mobility activities (line 197).

X31-Average annual earnings for poor persons with no high school but training, age 20-39, employed in jobs made available by labor mobility activities (line 198)

X32-Average annual earnings for poor persons with no high school but training, age 40-64, employed in jobs made available by labor mobility activities (line 199)

X41—Average annual earnings for poor persons with no high school or no training, age 20-39, employed in jobs made available by labor mobility activities (line 200)

X42-Average annual earnings for poor persons with no high school or no training, age $40-64$, employed in jobs made available by labor mobility activities (line 201)

CM-Total area jobs resulting per direct job generated by industrialization (line 174)

PC-Proportion of jobs generated by industrialization which go to area's poor (line 173)

RCHIN-New jobs going to nonpoor within the area as a percentage of all new jobs going to people other than the area's poor (line l86)

RCHOVR-The proportion of jobs vacated by nonpoor workers which are refilled (line 187)

Zll-Average annual earnings for poor persons with high school and training, age 20-39, employed in jobs generated by industrialization activities (Iine 175)

Zl2-Average annual earnings for poor persons with high school and training, age 40-64, employed in jobs generated by industrialization activities (line 176)

Z21—Average annual earnings for poor persons with high school, but no training, age 20-39 employed in jobs generated by industrialization activities (line 177)

Z22-Average annual earnings for poor persons with high school but no training, age $40-64$, employed in jobs generated by industrialization activities (line 178)

Z31-Average annual earnings for poor persons with no high school but training, age 20-39, employed in jobs generated by industrialization activities (line 179)

Z32-Average annual earnings for poor persons with no high school but training, age 40-64, employed in jobs generated by industrialization activities (line 180)

Z4I-Average annual earnings for poor persons with no high school and no training, age 20-39, employed in jobs generated by industrialization activities (line 181)

Z42—Average annual earnings for poor persons with no high school and no training, age $40-64$, employed in jobs generated by industrialization activities (line 182)

Z43-Average annual earnings for poor persons with no high school and no training, age 15-19, employed in jobs generated by industrialization activities (line 183)

RTRD-Physically or mentally disabled students as an annual percentage of students, age 15-19 (line 218)

S-Annual school dropout rate for capable poor students, age 15-19 (line 212)
\$MDP—Annual school dropout rate for capable nonpoor students, age 15-19 (line 217)

U-Number of potential dropouts kept in school per dollar of public expenditure on education programs (line 215)

DCR-Number of unplanned poor births avoided per dollar of public expenditure on family planning programs (line 213)

DSCNT—Discount rate (line 172)

```
9999 FORMAT(F25.8)
9997. FORMAT (7F10.0)
99998 READ(5,9997,END=99999)CF,CP,CE,CT,CS,CI,CL
9998 FORMAT(F25.8, 2X,F10.0,39X,F4.0)
9995 FORMAT (2F20.0)
9993 FORMAT(F25.0,F25.8)
9994 FORMAT (2F25.0)
    READ(5,9998)AL*PPY,XNDX
    READ(5,9995)B,OLDRCH.
    READ(5,9995)E11,F1
    READ(5,9995)E12,F2
    READ(5,9995)E 21,G1
    READ(5,9995)E22,G2
    READ(5,9995)E31,H1
    READ(5,9995)E32,H2
    READ(5,9995)E41,H3
    READ(5,9995)E42,RCHKID
    READ (5,9999) E43
    READ(5,9999)TH
    READ(5,9994) Y1 1,COST1
    READ(5,9994)YI2,COST2
    READ(5,9994)YI3,COST3
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
    READ(5,9994)YI4,COST4
    READ(5,9994)YI5,COST5
    READ(5,9994 IY 16, COST6
    READ(5,9994)YI7,COST7
    READ(5,9994)YI 8,COST8
    READ(5,9994)YI9,COST9
    READ(5,9994) YI 10,COST1O
    READ(5,9994)YI 11,COST11
    READ(5,9994)YI12,COST12
    READ(5,9994)YI 13,COST13
    READ(5,9994 )Y I 14, COST 14
    READ(5,9994)YI15,COST15
    READ(5,9994) YI 16,COST16
    READ(5,9994)YI17,COST17
    READ(5,9994)YI18,COST18
    READ(5,9994) YI 19,COST 19
    READ(5,9994) YL 1, COS T 20
    READ(5,9993) YL2,HE1 L
    READ (5,9993)YL 3, HE21
    READ(5,9993)YL4,HE31
    READ(5,9993) YL5,HE41
    READ(5,9993)YL6,HSTAY
    READ(5,9993)YL7,OLDGRO
    READ(5,9993) YL 8,F1GRO
    READ(5,9993)YL9;F2GRO
    READ(5,9993)YLIO,G1GRO
    READ(5,9993)YL11,G2GRO
    READ(5,9993) YL.12,Hl GRO
    READ(5,9993) YL13,H2GRO
    READ(5,9993)YL 14,H3GRO
    READ(5,9993) YL15,RHKGRO
    READ (5,9993) YL16,$MBTOT
    READ (5,9993)YL17,RETTOT
    READ(5,9999) YLL18
    READ(5,9999)YL19
    READ(5,9999)SM11
    READ(5,9999) SM12
    READ(5,9999)SM21
    READ(5,999))SM22
    READ(5,9999) SM31
    READ(5,9%99)SM32
    READ(5,9999)SM41
    READ(5,9994)SM42,RMB
9996 FORMAT (3F25.0)
    READ(5,9996)Y1,YRCH1,YTOT1
    READ(5,9996)Y2, YRCH 2, YTOT2
    READ(5,9996)Y3,YRCH3, YTOT3
    READ(5,9996) Y4, YRCH4,YTOT4
    READ(5,9996)Y5, YRCH5, YTOT5
    READ(5,9996) Y6, YRCH6, YT OT6
    READ(5,9996)Y7, YRCH7, YTOT7
    READ(5,9996 )Y8,YRCH8,YTOT8
    REAU(5,9596)Y9,YRCH9,YTOT9
    READ(5,9996) Y10, YRCH10, YTOT10
```


CARD

```
E11=(E11/AB)*((1-AC)+AC*AD)
E12=(E12/AB)*((1-AC)+AC*AD)
E21=(E21/AB)*((1-AC)+AC*AD)
E22=(E22/AB)*((1-AC)+AC*AD)
E31=(E31/AB)*((1-AC)+AC*AD)
E 32=(E32/AB)*((1-AC)+AC*AD)
E41=(E41/AB)*((1-AC)+AC*AD)
E42=(E42/AB)*((1-AC)+AC*AD)
E43=(E43/AB)*((1-AC)+AC*AD)
DSCNT =0.06
PC=0.33
CM=2.3031
Z11=9231.
Z12=9231.
L21=6882.
z22=6882.
231=6882.
232=6882.
241=5821.
Z42=5821.
243=4000.
PER PR=0.1309
PERLM=.66
RCHIN=0.76
RCHOVR=0.78
PERCT=0.0
$MULT=1.0720
$M=0.00106952
A=0.70
AKEEP=A
$MXRET=0.67
X11=9231.
X12=9231.
x21=6882.
< 22=6882.
x31=6882.
x32=6882.
X41=5821.
X42=5821.
GLOW=8000.
FLOW=15000.0
$F=0.0
$G=0.0
$H=0.0
$H3=0.0
DA=0.004137
DB=0.064469
D2=0.008075
G=0.1048
S=0.0123
DCR=0.0010204
V=0.000684
U=0.0002520
$MBR=0.0665
```



```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
    RM41=SM41-SM41/20.0
    RM4 2=SM42-0 2*SM42-1(SM42-D 2* SM4 2)/25.0) +SM41/20.0
    RMB=ISM12-D2*SM12+SM2 2-D 2*SM 22+SM 32-D 2*SM 32+SM42-D 2*SM42)/25+RMB-
    1RMB * DB
    RMT OT=RM11+RM12+RM21+RM22+RM31+RM32+RM41+RM42+RMB
    RET11=RM11*(1.0-A)
    RET 12=RM12*(1.0-A)
    RET 21=RM21*(1.0-A)
    RET 22=RM22*(1.0-A)
    RET31=RM31*(1.0-A)
    RET 32=RM32*(1.0-A)
    RET41=RM41*(1:0-A)
    RET42=RM42*(1.0-A)
    RETB=(1.0-A)*RMB
    RETOT1=RET11+RET12+RET21+RET22+RET31+RET32+RET41 +RET42+RETB
    RET TOT=RETTOT +RETOT 1
    IF (RETTOT.LE.$MXRET*$MBTOT) GO TO 21
    IF (RETTOT-RETOTI&GT.$MXRET*$MBTOT) GO TO.19
    A=(RMTOT-$MXRET$$MBTOT + (RETTOT-RETOT1))/RMTOT
    GO TO 20
    19 A=1.0
    20 RET11=RM11*(1.0-A)
    RET12=RM12*(1.0-A)
    RET21=RM21*(1.0-A)
    RET22=RM22*(1.0-A)
    RET31=RM31* (1.0-A)
    RET 32=RM32*(1.0-A)
    RET41=RM41*(1.0-A)
    RET42=RM42*(1.0-A)
    RET B=RMB* (1.0-A)
    RETTOT=RETTOT-RETOT1
    RETOT1=RET11+RET12+RET21+RET22+RET31+RET32+RET41+RET42 +RETB
    RETTOT=RETTOT + RETOT l
    21 YI20=YI19
    YI19=Y118
    Y118=Y117
    YI17=YI16
    YI16=YI15
    YI15=YI14
    YI14=YI13
    Y113=YI12
    YI12=YI11
    YIll=YI10
    YI10=YI9
    YI9=YI8
    YI8=YI7
    YIT =Y 16
    YI6=YI5
    YI5=Y14
    YI4 =Y I 3
    YI3=Y12
    Y12=YI1
    YII =YI
    YL20=YL19*A
```

CARD
272
275
278
279
280
281
282
283
284
280
288
289
290
291
292
295
298
304
307
312
313
314
315
317
318
319
320
321
322
324

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

YL19=YL18*A
YL18=YL17*A
YL17=YL16*A
YL16=YL15*A
YL15=YL14*A
YL14=YL13*A
YL13=YL12*A
YL12=YL11*A
$Y L 11=Y L 10 * A$
$Y L 10=Y L 9 * A$
$Y L 9=Y L 8 * A$
$Y L 8=Y L 7 * A$
$Y L 7=Y L 6 * A$
$Y L 6=Y L 5$ * A
$Y L 5=Y L 4 * A$
$\mathrm{YL4}=\mathrm{YL} 3 * A$
$Y L 3=Y L 2 * A$
$Y L 2=Y L 1 * A$
$Y L 1=Y L$
$A=A K E E P$
RETR = (TH/4.0) *RTRD
SMRT = (TH/4.0)-RETR
IF ((U*CE).GT. ((SMRT)*S)-(SMRT)*\$MDP) GO TO 2
$S 1=(S M R T * S-U * C E) / S M R T$
GO TO 3
2 Sl=\$MDP
$R C E=(U * C E-((S M R T) * S-S M R T * \$ M D P)) / U$
3 IF (($(E 11+E 21+E 31+E 41+E 43+A L / 2) * G-D C R * C S)$.GT. $(\$ M B R *(E 11+E 21+E 31+$
$1 E 41+E 43+A L / 21 J) G O T O 4$
THA $=T H$
$H=(S M R T / 5.0)-(S M R T / 5.0) * S 1$
$\mathrm{F}=\mathrm{SMR} T *$ SI
$T H B=T H A+(E 11+E 21+E 31+E 41+E 43+A L / 2)$ + $\$$ MBR-F-H-RETR
$R C S=(\$ M B R *(E 11+E 21+E 31+E 41+E 43+A L / 2)-((E 11+E 21+E 31+E 41+E 43+A L / 2)$
1*G-OCR*CS)//DCR
GO TO 5
4 THA = TH
$H=($ SMRT $/ 5.0)-($ SMRT $/ 5.0) * S 1$
$\mathrm{F}=\mathrm{S}$ MRT*SI
$T H B=T H A+(E 11+E 21+E 31+E 41+E 43+A L / 2) * G-(D C R * C S)-F-H-R E T R$
$5 \mathrm{TH}=\mathrm{T} \mathrm{HB}$
10 IF (GET.EQ. 1.0) GO TO. 51
IF (GET.EQ. 2.01 GO TO 101
IF (GET EQ. 3.0) GO TO 151
IF (GET.EQ. 4.0) GO TO 201
IF (GET.EQ. 5.0) GO TO 251
IF (GET .EQ. 6.0) GO TO 301
IF (GET.EQ. 7.01 GO TO 351
IF (GET .EQ. 8.01 GO TO 401
IF (GET .EQ. 9.0) GO TO 501
IF (GET.EQ. 10.0) GO TO 551
IF (GET .EQ. 11.01 GO TO 601
IF (GET.EQ. 12.0) GO TO 651
IF (GET.EQ. 13.0) GO TO 701

```
000000000111111111122222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
    IF IGET .EQ. 14.01 GO TO 751
```

 IF IGET .EQ. 14.01 GO TO 751
 IF (GET .EQ . 15.0) GO TO 801
 IF (GET .EQ . 15.0) GO TO 801
 IF (GET.EQ. 16.0) GO TO 851
 IF (GET.EQ. 16.0) GO TO 851
 IF (GET .EQ. 17.0) GO TO 1001
 IF (GET .EQ. 17.0) GO TO 1001
 IF (GET .EQ . 18.0) GO TO 1051
 IF (GET .EQ . 18.0) GO TO 1051
 IF (GET .EQ. 19.0) GO TO 1101
 IF (GET .EQ. 19.0) GO TO 1101
 IF (GET.EQ. 20.0) GO TO 1151
 IF (GET.EQ. 20.0) GO TO 1151
 IF (GET EQ. 21.0) GO TO 1201
 IF (GET EQ. 21.0) GO TO 1201
 IF (GET.EQ. 22.0) GO TO 1251
 IF (GET.EQ. 22.0) GO TO 1251
 IF (GET .EQ. 23.0) GO TO 1301
 IF (GET .EQ. 23.0) GO TO 1301
 IF (GET .EQ. 24.0) GO TO 1501
 IF (GET .EQ. 24.0) GO TO 1501
 IF \GET.EQ. 25.0) GD TO 1551
 IF \GET.EQ. 25.0) GD TO 1551
 IF (GET .EQ. 26.0) GO TO 1601
 IF (GET .EQ. 26.0) GO TO 1601
 IF (GET .EQ. 27.0) GO TO 1651
 IF (GET .EQ. 27.0) GO TO 1651
 IF (GET.EQ. 28.0) GO TO 1701
 IF (GET.EQ. 28.0) GO TO 1701
 IF (GET .EQ. 29.0) GO TO 1751
 IF (GET .EQ. 29.0) GO TO 1751
 IF (GET.EQ. 30.0) GO TO 2001
 IF (GET.EQ. 30.0) GO TO 2001
 IF (GET .EQ. 31.0) GO TO 2051
 IF (GET .EQ. 31.0) GO TO 2051
 IF (GET .EQ. 32.01 GO TO 2101
 IF (GET .EQ. 32.01 GO TO 2101
 IF (GET.EQ. 33.0) GO TO 2151
 IF (GET.EQ. 33.0) GO TO 2151
 IF (GET .EQ. 34.0) GO TO 2201
 IF (GET .EQ. 34.0) GO TO 2201
 IF (GET .EQ. 35.0) GO TO 2501
 IF (GET .EQ. 35.0) GO TO 2501
 IF (GET .EQ. 36.0) GO TO 2551
 IF (GET .EQ. 36.0) GO TO 2551
 IF (GET .EQ. 37.C) GO TO 2601
 IF (GET .EQ. 37.C) GO TO 2601
 IF. (GET .EQ. 38.0) GO TO 2651
 IF. (GET .EQ. 38.0) GO TO 2651
 IF (GET.EQ. 39.0) GO TO 3001
 IF (GET.EQ. 39.0) GO TO 3001
 IF (GET . EQ . 40.0) GO TO 3051
 IF (GET . EQ . 40.0) GO TO 3051
 IF (GET.EQ. 41.0) GO TO 3101
 IF (GET.EQ. 41.0) GO TO 3101
 IF (GET .EQ. 42.0) GO TO 3501
 IF (GET .EQ. 42.0) GO TO 3501
 IF (GET .EQ. 43.0) GO TO 3551
 IF (GET .EQ. 43.0) GO TO 3551
 IF (GET.EQ. 44.0) GO TO 4001
 IF (GET.EQ. 44.0) GO TO 4001
 IF (GET .EQ. 45.0) GO TO 4051
 IF (GET .EQ. 45.0) GO TO 4051
 SM11=RM11-RET11+CL*$M*A
 SM11=RM11-RET11+CL*$M*A
 SM12=RM12-RET12
 SM12=RM12-RET12
 SM21=RM21-RET 21
 SM21=RM21-RET 21
 SM22=RM22-RET22
 SM22=RM22-RET22
 SM31=RM31-RET31
 SM31=RM31-RET31
 SM32=RM32-RET32
 SM32=RM32-RET32
 SM41=RM41-RET41
 SM41=RM41-RET41
 SM42=RM42-RET42
 SM42=RM42-RET42
 DEN=E21+E22 +E41+E42
 DEN=E21+E22 +E41+E42
 EllRCH=CI*$N
 EllRCH=CI*$N
 IF ((V*CT)*(E21/DEN).GT.E21) GO TO 11
 IF ((V*CT)*(E21/DEN).GT.E21) GO TO 11
 R11=E11-CI*$N-CL*$M*A+V*CT*(E21/DEN)
 R11=E11-CI*$N-CL*$M*A+V*CT*(E21/DEN)
 R21=E21-V*CT*(E21/DEN)
 R21=E21-V*CT*(E21/DEN)
 GO TO 12
 GO TO 12
 11R11=E11-CI*$N-CL*$M*A*E21
 11R11=E11-CI*$N-CL*$M*A*E21
 R21=0
 R21=0
 RCT1=((V*CT)*(E21/DEN)-E21)/V
 RCT1=((V*CT)*(E21/DEN)-E21)/V
 12 IF ((V*CT)*(E4I/DEN).GT.E41) GO TO 13
 12 IF ((V*CT)*(E4I/DEN).GT.E41) GO TO 13
 R31=E31+V*CT*(E41/DEN)
 R31=E31+V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 GO TO 14
 GO TO 14
 13 R31=E31+E41
    ```
    13 R31=E31+E41
```

CARD
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
412
420
426
429
431
432

379
380 382
383
385 386 387
389 390 392 393 395 396 398
398 399 401 402 403
404
405 406
407

00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

CARD

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
401
462
463
464
465
466
467
468
469 470

R41 $=0$
RCT2=(V * CT) * (E41/DEN)-E41)/V
14 IF ($(V \neq C T) *(E 22 / D E N)$. GT.E22) GO TO 15
$R 12=E 12+V * C T *(E 22 / D E N)-D 2 *(E 12+V * C T *(E 22 / D E N))$
$R 22=E 22-V * C T *(E 22 / D E N)-D 2 *(E 22-V * C T *(E 22 / D E N))$
GO TO 16
15 R12 = E12 + E22-D2* (E12+E22)
R22 $=0$
RCT3 $=((V * C T) *(E 22 / D E N)-E 22) / V$
16 IF (V * CT* (E42/DEN)). GT•E42) GO TO 17
$R 32=E 32+V * C T *(E 42 / D E N)-D 2 *(E 32+V * C T *(E 42 / D E N))$
$R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$ GOTO 18
17 R 32=E32+E42-D2立 (E324E42) R42=0

18 R 43=E43+F GO TO 9000
50 IF (CL*\$M-(E11-CI*\$N).GT.E12) GO TO 100
$Y L=(E 11-C I * \$ N) \neq A * X I I+(C L \neq \$ M-(E 11-C I * \$ N)) * A * X 12$
GET $=1.0$
GO TO 1
51 \$NUM 1=E11-CI*\$N
\$NUM2 $=C L \neq \$ M-\$ N U M 1$
$D E N=E 21+E 22+E 41+E 42$
SM11=RM11-RET11+\$NUM1*A
SM12=RM12-RET12+\$NUM2*A
SM21=RM21-RET21
SM22=RM22-RET 22
SM31 $=$ RM31-RET31
SM3 2=RM 32-RET32
SM4 1 =RM41-RET 41
SM42 =RM42-RET42
IF (V*CT* (E21/DEN).GT.E21) GO TO 52
RII $=\$ N U M 1 *(1.0-A)+V * C T *(E 21 / D E N)$
$\mathrm{R} 21=\mathrm{E} 21-\mathrm{V}$ ※ $\mathrm{C} T$ ($\mathrm{E} 21 / \mathrm{DEN}$)
GOTO 53
52 R11 = E21 + $\$ \mathrm{NUM1}$ * ($1.0-\mathrm{A}$)
$R 21=0$
RCT $1=((V * C T) *(E 21 / D E N)-E 21) / V$
53 IF ($V \neq C T \neq(E 41 / D E N)$-GT-E41) GOTO 54
$R 31=E 31+V+C T \neq(E 41 / D E N)$
R41 $=E 41-V$ *CT $\#(E 41 / D E N)$
GOTO 55
54 R31=E31+E41
$R 41=0$
RCT2=((V*CT)*(E41/DEN)-E41)/V
55 IF (V*CT*(E22/DEN).GT•E22)GO TO 56 R12 =E12-\$NUM2*A+V*CT*(E22/DEN)-D2*(E12-SNUM2*A+V*CT*(E22/DEN)) R22=E22-V*CT*(E22/DEN)-D2*(E22-V*GT* (E22/DEN)) GOTO 57
56 R12=E12-\$NUM2*A+E22-D2* (E12-\$NUM2*A+E22)
R22 $=0$
RCT $3=((\mathrm{V} * \mathrm{CT}) *(E 22 / D E N)-E 22) / \mathrm{V}$

```
000000000111111111112ご2222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

57 IF（V＊CT＊（E42／DEN）．GT．E42）GOTO 58
$R 32=E 32+V * C T *(E 42 / D E N) \rightarrow D 2 *(E 32+V * C T *(E 42 / D E N))$
$R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$
GOTO 59
58 R32 $=E 32+E 42-02$＊（E32 $+E 42)$
$242=0$
RCT4＝（（V＊CT）$=(E 42 / D E N)-E 42) / V$
$59 R 43=E 43+F$
GO TO 9000
100 IF（CL＊\＄M－（E11－CI＊\＄N）－E12．GT．E21）GD TD 150
$Y L=(E 11-C I * \$ N) * A * X 11+E 12 * A * X 12+(C L * \$ M-(E 11-C I * \$ N)-E 12) * A * \times 21$ $G E T=2.0$
GOTO 1
$101 \$ N U M=C L * \$ M-(E 11-C I * \$ N)-E 12$
$D E N=E 21-\$ N U M+E 22+E 41+E 42$
SM11＝RM11－RET11＋（E11－CI＊\＄N）$\ddagger A$
SM12＝RM 12－RET12＋E12＊A
SM21＝RM21－RET21＋\＄NUM＊A
SM2 2＝RM22－RET22
SM31＝RM 31－RET31
SM32＝RM32－RET 32
SM41＝RM41－RET41
SM42＝RM42－RET42
IF（V＊CT＊（（E21－\＄NUM）／DEN）．GT。E21－\＄NUM）GO TO 102

R21＝E21－\＄NUM＊A－V＊CT＊（（E21－\＄NUM）／DEN）
GOTO 103
102 R11＝E 21－\＄NUM＋（E11－CI＊\＄N）＊（1－0－A）
R21＝\＄NJM＊（1．O－A）
RCTL $=((V * C T) *((E 21-\$ N U M) / D E N)-(E 21-\$ N U M)) / V$
103 IF（V＊CT＊（E41／DEN）。GT．E41）GUTO 104
$R 31=E 31+V \neq C T *(E 41 / D E N)$
$R 41=E 41-V * C T *(E 41 / D E N)$
GO TO 105
$104 R 31=E 31+E 41$
R41＝0
RCT 2＝（（V＊CT）＊（E41／DEN）－E41）／V
105 IF（V＊CT＊（E22／DEN）．GT＊E22）GO TO 106
R12＝E12＊（1．O－A）＋V＊CT＊（E22／DEN）－D2＊（E12＊（1．0－A）＋V＊CT＊（E22／DEN））
R22＝E22－V＊CT＊（E22／DEN）－D2＊（E22－V＊CT＊（E22／DEN））
GO TO 107
106 R 12＝E12＊（1．0－A）＋E22－D2＊（E12＊（1．O－A）＋E22）
R22 $=0$
RCT $3=((V * C T) *(E 22 / D E N)-E 22) / V$
107 IF（V＊CT＊（E42／DEN）．GT．E42）GO TO 108
R32＝E32＋V＊CT＊（E42／DEN）－D2＊（E32＋V＊CT＊（E42／DEN））
$R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$
GO TO 109
$108 \mathrm{R} 32=\mathrm{E} 32+E 42-\mathrm{D} 2$＊$(E 32+E 42)$
$R 42=0$
RCT4＝（（V＊CT）＊（E42／DEN）－E42）／V．
$109 \mathrm{R} 43=E 43+F$
GO TO 9000
150 IF（CL $\$ \$ M-(E 11-C I * \$ N)-E 12-E 21 . G T . E 22) G 0$ TO 200
CARD
487
488
489
496
500
503
506
511
512
516
517
520
527
529
531
532
538
540

```
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778

```
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
    E11-CI*$N)*A*X11+E12*A*X12+E21*A*X21+(CL*$M-(E11-CI*$N)-E12-
```

 E11-CI*$N)*A*X11+E12*A*X12+E21*A*X21+(CL*$M-(E11-CI*$N)-E12-
 1E21)*A* X22
 1E21)*A* X22
 GET=3.0
 GET=3.0
 GO TO 1
 GO TO 1
 151 $NUM=CL*$M-(E11-CI*$N)-E12-E21
 151 $NUM=CL*$M-(E11-CI*$N)-E12-E21
 DEN=E22-$NUM +E41+E42
 DEN=E22-$NUM +E41+E42
 SM11=RM11-RET11+(E11-CI*$N)*A
 SM11=RM11-RET11+(E11-CI*$N)*A
 SM12=RM 12-RET12+E12*A
 SM12=RM 12-RET12+E12*A
 SM21=RM21-RET21+E21*A
 SM21=RM21-RET21+E21*A
 SM22=RM22-RET22+$NUM*A
 SM22=RM22-RET22+$NUM*A
 SM31=RM31-RET31
 SM31=RM31-RET31
 SM32=RM32-RET32
 SM32=RM32-RET32
 SM41=RM41-RET41
 SM41=RM41-RET41
 SM42=RM42-RET42
 SM42=RM42-RET42
 RII=(El1-CI*$N)*(1.0-A)
 RII=(El1-CI*$N)*(1.0-A)
 R2l=E21*(1.0-A)
 R2l=E21*(1.0-A)
 IF(V*CT*(E41/DEN).GT.E41)GO TO }15
 IF(V*CT*(E41/DEN).GT.E41)GO TO }15
 R31=E31+V*CT*(E41/DEN)
 R31=E31+V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 GO TO 153
 GO TO 153
 152 R31=E31+E41
 152 R31=E31+E41
 R41=0
 R41=0
 RCT2=((V*CT)*(E4 1/DEN)-E41)/V
 RCT2=((V*CT)*(E4 1/DEN)-E41)/V
 153 IF(V*CT*((E22-$NUM)/DEN).GT.E22-$NUM) GO TO 154
 153 IF(V*CT*((E22-$NUM)/DEN).GT.E22-$NUM) GO TO 154
 R12=E12*(1.0-A)+V*CT*((E22-$NUM)/DEN)-D2*(E12*(1.0-A)+V*CT*(E22-
 R12=E12*(1.0-A)+V*CT*((E22-$NUM)/DEN)-D2*(E12*(1.0-A)+V*CT*(E22-
 1$NUM)/DEN)
 1$NUM)/DEN)
 R22=E22-$NUM*A-V*CT*((E22-$NUM)/DEN)-D2*(E22-$NUM*A-V *CT*(E22-
 R22=E22-$NUM*A-V*CT*((E22-$NUM)/DEN)-D2*(E22-$NUM*A-V *CT*(E22-
 1$NUM|/DEN)
 1$NUM|/DEN)
 GO TO 155
 GO TO 155
 154 R 12=E12*(1.0-A)+E22-$NUM-D2*(E12*(1.0-A)+E22-5NUM)
 154 R 12=E12*(1.0-A)+E22-$NUM-D2*(E12*(1.0-A)+E22-5NUM)
 R22 = $NUM*(1.0-A)-D2#($NUM*(1.0-A))
 R22 = $NUM*(1.0-A)-D2#($NUM*(1.0-A))
 RCT3=(V*CT*((E22-$NUM)/DEN)-(E22-$NUM))/V
 RCT3=(V*CT*((E22-$NUM)/DEN)-(E22-$NUM))/V
 155 IF(V*CT*(E42/DEN).GT.E42) GO TO 156
 155 IF(V*CT*(E42/DEN).GT.E42) GO TO 156
 R32=E32+V*CT*(E42/DEN)-D2*(E32+V*CT*(E42/DEN))
 R32=E32+V*CT*(E42/DEN)-D2*(E32+V*CT*(E42/DEN))
 R42=E42-V*CT*(E42/DEN)-D2*(E42-V*CT*(E42/DEN))
 R42=E42-V*CT*(E42/DEN)-D2*(E42-V*CT*(E42/DEN))
 GO TO 157
 GO TO 157
 156 R32=E32+E42-D2*(E32+E42)
 156 R32=E32+E42-D2*(E32+E42)
 R42=0
 R42=0
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 157 R43=E43+F
 157 R43=E43+F
 GO TO 9000
 GO TO 9000
 200 IF (CL*$M-(E11-CI*$N)-E12-E21-E 22.GT.E31) GO TJ 250
 200 IF (CL*$M-(E11-CI*$N)-E12-E21-E 22.GT.E31) GO TJ 250
 YL=(E11-CI*$N)*A*X11+E12*A*X12+E21*A*X21+E22*A*X22+(CL*$M-(E11-CI*
 YL=(E11-CI*$N)*A*X11+E12*A*X12+E21*A*X21+E22*A*X22+(CL*$M-(E11-CI*
 1$N1-E12-E21-E221*A*X31
 1$N1-E12-E21-E221*A*X31
 GET =4.0
 GET =4.0
 GO TO 1
 GO TO 1
 201 $NUM=CL*$M-(E11-C1*$N)-E12-E21-E22
 201 $NUM=CL*$M-(E11-C1*$N)-E12-E21-E22
 DEN=E31-$NUM +E41+E42
 DEN=E31-$NUM +E41+E42
 SM11=RM11-RET11+(El1-CI*$N)*A
 SM11=RM11-RET11+(El1-CI*$N)*A
 SM12=RM12-RET 12*E12#A
 SM12=RM12-RET 12*E12#A
 SM21=RM21-RET21+E21*A
 SM21=RM21-RET21+E21*A
 SM22=RM 22-RET22+E22*A
 SM22=RM 22-RET22+E22*A
 SM31=RM31-RET 31+$NUM##
 SM31=RM31-RET 31+$NUM##
 SM42=RM42-RET42
    ```
    SM42=RM42-RET42
```

00000000011111111112222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

SM32=RM32-RET32
SM41=RM41-RET41
R11 $=(E 11-C I * \$ N) *(1,0-A)$
R21 $=(E 21) *(1,0-A)$
IF (V\#CT*(E41/DEN).GT.E41) GO TO 202

R41 =E41-V*CT* (E41/DEN)
GO TO 203
202 R31 = E31-\$NUM*A+E41
R41 $=0$
RCT $2=(.(V * C T) *(E 41 / D E N)-E 41) / V$
203 R12=E12*(1.0-A)-D2*(E12*(1.0-A))
$R 22=E 22 *(1.0-A)-D 2 *(E 22 *(1.0-A))$
IF (V*CT*(E42/DEN).GT.E42) GO TO 204
$R 32=E 32+V * C T *(E 42 / D E N)-D 2 *(E 32+V * C T *(E 42 / D E N))$
$R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$
GOTO 205
204 R32 $=E 32+E 42-D 2 *(E 32+E 42)$
$R 42=0$
RCT4 = ((V*CT)* (E42/DEN)-E42)/V
$205 R 43=E 43+F$
GO TO 9000
250 IF ($(C L * \$ M-(E 11-C I * \$ N)-E 12-E 21-E 22-E 31) . G T . E 32)$ GO TO 300
$Y L=(E 11-C I * \$ N) * A * X 11+E 12 * A * X 12+E 21 * A * X 21+E 22 * A * X 22+E 31 * A * X 31+$ $1(C L * \$ M-(E 11-C I * \$ N)-E 12-E 21-E 22-E 31) * A * X 32$
GET=5.0
GO TO 1
251 \$ $N U M=C L * \$ M-(E 11-C I * \$ N)-E 12-E 21-E 22-E 31$
DEN=E41+E42
SM11=RM11-RET11+(E11-C1*\$N) *A
SM1 $2=$ RM12-RET $12+E 12$ * A
SM21=RM21-RET21+E21*A
SM22=RM 22-RET 22+E22*A
SM31 = RM31-RET $31+E 31$ *A
SM 32=RM 32-RET32+\$NUM * A
SM41=RM41-RET41
SM42=RM42-RET42
R11=(E11-CI*\$N) $=(1.0-A)$
R21 $=E 21$ * (1.0-A)
IF (V*CT*(E41/DEN).GT.E41) GO TO 252
R31=E31*(1.0-A) +V*CT* (E41/DEN)
R41 =E41-V*CT* (E41/DEN)
GO TO 253
252 R31=E31*(1.0-A) +E41
R41=0
RCT2=((V亩CT)*(E41/DEN)-E41)/V
253 R12 = E12*(1.0-A)-D2*(E12*(1.0-A))
$R 22=E 22 *(1.0-A)-D 2 *(E 22 *(1,0-A))$
IF (V\#CT*(E42/DEN).GT.E42) GO TO 254
$R 32=E 32-\$ N U M * A+V$ *CT*(E42/DEN)-D2*(E32-\$NUM*A+V*CT*(E42/DEN))
R42-E42-V*CT* (E42/DEN)-D2*(E42-V*CT*(E42/DEN))
GO TO 255
254 R32 $=E 32-\$ N U M * A+E 42-D 2 *(E 32-\$ N U M * A+E 42)$
$R 42=0$

```
0000000001111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
        RCT4=((V*CT)*(E42/DEN)-E42)/V
```

 RCT4=((V*CT)*(E42/DEN)-E42)/V
 255 R43=E43+F
 255 R43=E43+F
 GO TO 9000
 GO TO 9000
 300 IF((CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32).GT.E4i)GO TO 350
 300 IF((CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32).GT.E4i)GO TO 350
 YL=(El1-CI*SN)*A*X11+E12*A*X12+E 21*A*X21+E 22*A* X22+E31*A*X31+E32*
 YL=(El1-CI*SN)*A*X11+E12*A*X12+E 21*A*X21+E 22*A* X22+E31*A*X31+E32*
 1A* X32+(CL*$M-(E11-CI*5N)-E12-E21-E22-E31-E32)*A*X41
 1A* X32+(CL*$M-(E11-CI*5N)-E12-E21-E22-E31-E32)*A*X41
 GET=6.0
 GET=6.0
 GO TO 1
 GO TO 1
 301 $NUM=CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32
 301 $NUM=CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32
 DEN=E41-$NUM+E42
 DEN=E41-$NUM+E42
 SMIl=RMLl-RET11+(EL1-CI*$N)*A
 SMIl=RMLl-RET11+(EL1-CI*$N)*A
 SM12=RM12-RET12+E12*A
 SM12=RM12-RET12+E12*A
 SM21=RM 21-RET 21+E21 #A
 SM21=RM 21-RET 21+E21 #A
 SM22=RM22-RET22*E22*A
 SM22=RM22-RET22*E22*A
 SM31=RM 31-RET31+E31*A
 SM31=RM 31-RET31+E31*A
 SM3 2=RM32-RET 32*E32*A
 SM3 2=RM32-RET 32*E32*A
 SM41 =RM41-RET41+SNUM*A
 SM41 =RM41-RET41+SNUM*A
 SM42=RM42-RET42
 SM42=RM42-RET42
 R11=(E11-CI*$N)*(1.0-A)
 R11=(E11-CI*$N)*(1.0-A)
 R21=(E21*(1.0-A))
 R21=(E21*(1.0-A))
 IF(V*CT*((E41-$NUM)/DEN).GT.E41-$NUM) GO TO 302
 IF(V*CT*((E41-$NUM)/DEN).GT.E41-$NUM) GO TO 302
 R31=E31*(1.0-A)+V*CT*((E41-$NUM)/DEN)
 R31=E31*(1.0-A)+V*CT*((E41-$NUM)/DEN)
 R41=E41-V*CT*((E41-$NUM)/DEN)-$NUM*A
 R41=E41-V*CT*((E41-$NUM)/DEN)-$NUM*A
 GO TO 303
 GO TO 303
 302 R31=E31*(1.0-A)+E41-$NUM
 302 R31=E31*(1.0-A)+E41-$NUM
 R41=$NUM*(1.0-A)
 R41=$NUM*(1.0-A)
 RCT2=((V*CT*(E41-$NUM)/DEN)-(E41-$NUM))/V
 RCT2=((V*CT*(E41-$NUM)/DEN)-(E41-$NUM))/V
 303.R12=E12*(1.0-A)-D2*(E22*(1.0-A))
 303.R12=E12*(1.0-A)-D2*(E22*(1.0-A))
 R22=E 22*(1.0-A)-D2*(E22*(1.0-A))
 R22=E 22*(1.0-A)-D2*(E22*(1.0-A))
 IF(V*CT*E42/DEN.GT.E42)GO TO 304
 IF(V*CT*E42/DEN.GT.E42)GO TO 304
 R32=E32*(1.0-A) +V*CT*E42/DEN-D2*(E32*(1.0-A) +V*CT*E42/DEN)
 R32=E32*(1.0-A) +V*CT*E42/DEN-D2*(E32*(1.0-A) +V*CT*E42/DEN)
 R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
 R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
 GO TO 305
 GO TO 305
 304 R 32=E 32*(1.0-A)+E42-D2*(E32*(1.0-A)+E42)
 304 R 32=E 32*(1.0-A)+E42-D2*(E32*(1.0-A)+E42)
 R42=0
 R42=0
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 305 R43=E43+F
 305 R43=E43+F
 GO TO 9000
 GO TO 9000
 3501F(CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32-E41.GT.E42)GO TO 400
 3501F(CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E32-E41.GT.E42)GO TO 400
 YL=(E11-CI*$N)*A*X11+E12*A+E21*A*X21+E22*A*X22+E31*A*X31+E32*A*X32
 YL=(E11-CI*$N)*A*X11+E12*A+E21*A*X21+E22*A*X22+E31*A*X31+E32*A*X32
 1+E4I*A*X41+(CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E 32-E41)*A*X42
 1+E4I*A*X41+(CL*$M-(E11-CI*$N)-E12-E21-E22-E31-E 32-E41)*A*X42
 GET=7.0
 GET=7.0
 GO TO 1
 GO TO 1
 351$NUM=(CL*$M-(E11-CI*$N))-E12-E21-E22-E31-E32-E41
 351$NUM=(CL*$M-(E11-CI*$N))-E12-E21-E22-E31-E32-E41
 SM11=RM11-RET11+(Ell-CI*$N)*A
 SM11=RM11-RET11+(Ell-CI*$N)*A
 SM12=RM12-RET 12+E12*A
 SM12=RM12-RET 12+E12*A
 SM21=RM21-RET21+E21*A
 SM21=RM21-RET21+E21*A
 SM22=RM 22-RET 22+E 22*A
 SM22=RM 22-RET 22+E 22*A
 SM31-RM31-RET31+E31*A
 SM31-RM31-RET31+E31*A
 SM3 2=RM32-RET32+E32*A
 SM3 2=RM32-RET32+E32*A
 SM4 1=RM41-RET41+E41*A
 SM4 1=RM41-RET41+E41*A
 SM4 2=RM42-RET42+5NUM*A
 SM4 2=RM42-RET42+5NUM*A
 R11=(E11-CI*$N)*(1.0-A)
 R11=(E11-CI*$N)*(1.0-A)
 R21=E21*(1.0-A)
    ```
        R21=E21*(1.0-A)
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
R41=E41*(1.0-A)
R31 \(=\) E31* \((1.0-A)\)
R12=E12* (1.0-A)-D2* (E12*(1.0-A) )
\(R 22=E 22\) * ( \(1.0-A\) )-D2*(E22*(1.0-A))
IF(V*CT.GT.E42-SNUM)GOTO 352
\(R 32=E 32 *(1.0-A)+V * C T-D 2 *(E 32 *(1.0-A)+V * C T)\)
\(R 42=E 42-\$ N U M * A-V * C T-D 2 *(E 42-\$ N U M * A-V * C T)\)
GO TO 353
352 R32=E 32*(1.0-A) 1 E42-\$NUM-D2* (E32*(1.0-A) +E42-\$NUM)
R42 \(=\) \$NUM* ( \(1.0-A\) )
RCT4=(V*CT-(E42-\$NUM) )/V
\(353 R 43=E 43+F\)
GO TO 9000
\(400 \mathrm{YL}=(E 11-C I * \$ N) * A * X 11+E 12 * A * X 12+E 21 * X 21 * A+E 22 * A * X 22+E 31 * A * X 31+E 3\)
```



```
\(R C L=(C L \neq \$ M-(E 11-C I * \$ N)-E 12-E 21-E 22-E 31-E 32-E 41-E 42) / 5 M\)
GET \(=8.0\)
GO TO 1
401 SM11=RM11-RET11+(E11-CI*\$N)*A
SM12=RM12-RET12+E12*A
SM21=RM21-RET21 +E21*A
SM22=RM22-RET22+E22*A
SM31 = RM31-RET31 3 E31 *A
SM32=RM32-RET32+E32*A
SM41=RM41-RET41+E41*A
SM42=RM42-RET42*E42*A
R11 \(=(E 11-C I \neq \$ N)\) ( \(1.0-A)\)
R21=E21*(1.0-A)
R41 =E41*(1.0-A)
R31=E31*(1.0-A)
\(R 12=E 12 *(1.0-A)-D 2 *(E 12 *(1.0-A))\)
R22=E22*(1.0-A)-D2*(E22*(1.0-A))
\(R 32=E 32 *(1.0-A)-D 2 *(E 32 *(1,0-A))\)
\(R 42=E 42 *(1.0-A)-D 2 *(E 42 *(1.0-A))\)
R43 \(=E 43+F\)
RCT \(4=C T\)
GO TO 9000
500 IF (CI* \(\$ \mathrm{~N}-E 11\).GT.E12) GO TO 1000
\(Y I=E 11 * 211+(C I * \$ N-E 11) * Z 12\)
IF ((CL*\$M).GT.(E12-(CI*\$N-E11) ) GO TO 550
\(Y L=C L * \$ M * A * X 12\)
GET \(=9.0\)
GO TO 1
501 DEN \(=\mathrm{E} 21+\mathrm{E} 22+\mathrm{E} 41+\mathrm{E} 42\)
SM11-RM11-RET11
SM12=RM12-RET12+CL*\$M*A
SM21=RM21-RET21
SM22=RM22-RET 22
SM31=RM31-RET31
SM32=RM32-RET 32
SM41-RM41-RET41
SM42=RM42-RET42
Ell RCH=E11
E12RCH=CI*\$N-E11
```

```
```

*)

```
```

*)
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
    IF((|V*CT)*(E21/DEN)).GT.E21)GO TO 502
```

 IF((|V*CT)*(E21/DEN)).GT.E21)GO TO 502
 R11=V*CT*(E21/DEN)
 R11=V*CT*(E21/DEN)
 R21=E21-V*CT*(E21/DEN)
 R21=E21-V*CT*(E21/DEN)
 GO TO 503
 GO TO 503
 502 R11=E21
 502 R11=E21
 R21=0
 R21=0
 RCT1=((V*CT)*(E21/DEN)-E21)/V
 RCT1=((V*CT)*(E21/DEN)-E21)/V
 503 IF(((V*CT)*(E4 1/DEN)).GT.E41)GO TO 504
 503 IF(((V*CT)*(E4 1/DEN)).GT.E41)GO TO 504
 R31=E31+V*CT*(E41/DEN)
 R31=E31+V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 R41=E41-V*CT*(E41/DEN)
 GO TO 505
 GO TO 505
 504 R31=E31+E41
 504 R31=E31+E41
 R41=0
 R41=0
 RCT 3=((V*CT)*(E22/DEN)-E22)/V
 RCT 3=((V*CT)*(E22/DEN)-E22)/V
 505 IF((V*CT* (E22/DEN)).GT.E22)GO TO 506
 505 IF((V*CT* (E22/DEN)).GT.E22)GO TO 506
 R12=E12-CL*$M*A+V*CT*(E22/DEN)-(CI*$N-E11)-D2*(E12-CL*$M*A+V*CT*(
 R12=E12-CL*$M*A+V*CT*(E22/DEN)-(CI*$N-E11)-D2*(E12-CL*$M*A+V*CT*(
 CE22/DEN)-(CI*$N-Ell))
 CE22/DEN)-(CI*$N-Ell))
 R22=E 22-V*CT*(E22/DEN)-D2*(E22-V*CT*(E22/DEN))
 R22=E 22-V*CT*(E22/DEN)-D2*(E22-V*CT*(E22/DEN))
 GO TO 507
 GO TO 507
 506 R12=E12-CL*$M* A+E22-(CI*$N-E1:1)-D2*(E12-CL*$M*A +E 22-(CI*$N-E11))
 506 R12=E12-CL*$M* A+E22-(CI*$N-E1:1)-D2*(E12-CL*$M*A +E 22-(CI*$N-E11))
 2 22=0
 2 22=0
 SM11=RM11-RET11
 SM11=RM11-RET11
 507 IF(V*CT*(E42/DEN).GT.E42)GO TO 508
 507 IF(V*CT*(E42/DEN).GT.E42)GO TO 508
 R 32=E32+V*CT*(E42/DEN)-D2*(E32+V*CT*(E42/DEN))
 R 32=E32+V*CT*(E42/DEN)-D2*(E32+V*CT*(E42/DEN))
 R42=E42-V*CT*(E42/DEN)-D2*(E42-V*CT*(E42/DEN))
 R42=E42-V*CT*(E42/DEN)-D2*(E42-V*CT*(E42/DEN))
 GO TO 509
 GO TO 509
 508 R 32=E32+E42-D2*(E32-E42)
 508 R 32=E32+E42-D2*(E32-E42)
 R42=0
 R42=0
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 RCT4=((V*CT)*(E42/DEN)-E42)/V
 509 243=E43+F
 509 243=E43+F
 GO TO 9000
 GO TO 9000
 550 IF(CL\&$M-(E12-(CI*$N-E11)).GT.E21)GO TO 600
550 IF(CL\&$M-(E12-(CI*$N-E11)).GT.E21)GO TO 600
YL=(E12-(CI*\$N-E11))*A*X12+(CL* $M-(E12-(CI*$N-E11)))*A*)
YL=(E12-(CI*\$N-E11))*A*X12+(CL* $M-(E12-(CI*$N-E11)))*A*)
GET=10.0
GET=10.0
GO TO 1
GO TO 1
551 $NUM=(El2-(CI*$N-E11))
551 $NUM=(El2-(CI*$N-E11))
IF(V*CT*(E21-(CL*$M-$NUM))/DEN.GT.E21-(CL*$M-$NUM))GO TO 552
IF(V*CT*(E21-(CL*$M-$NUM))/DEN.GT.E21-(CL*$M-$NUM))GO TO 552
DEN=E21-(CL*$M-$NUM)+E22+E41+E42
DEN=E21-(CL*$M-$NUM)+E22+E41+E42
SML2=RM12-RET12+$NUM*A
 SML2=RM12-RET12+$NUM*A
SM21=RM21-RET21+(CL*$M-$NUM)*A
SM21=RM21-RET21+(CL*$M-$NUM)*A
SM22=RM22-RET 22
SM22=RM22-RET 22
SM31 = RM31-RET31
SM31 = RM31-RET31
SM32=RM32-RET32
SM32=RM32-RET32
SM41=RM41-RET41
SM41=RM41-RET41
SM42=RM42-RET42
SM42=RM42-RET42
R11=V*CT*(E21-(CL*$M-$NUM))/DEN
R11=V*CT*(E21-(CL*$M-$NUM))/DEN
R21=E21-(CL*$M-$NUM)*A-V*CT*(E21-(CL*$M-$NUM))/DEN
R21=E21-(CL*$M-$NUM)*A-V*CT*(E21-(CL*$M-$NUM))/DEN
GO TO 553
GO TO 553
552 R11=E21-(CL*$M-$NUM)
552 R11=E21-(CL*$M-$NUM)
R21=(CL*$M-$NUM)*(1.0-A)
R21=(CL*$M-$NUM)*(1.0-A)
RCT1=(V*CT*((E21-(CL*$M-$NUM))/DEN)-(E21-(CL*$M-$NUM)1//V
RCT1=(V*CT*((E21-(CL*$M-$NUM))/DEN)-(E21-(CL*$M-$NUM)1//V
553 IF(V*CT*(E4I/DEN).GT.E41) GOTO 554
553 IF(V*CT*(E4I/DEN).GT.E41) GOTO 554
R31=E31+V*CT*(E41/DEN)
R31=E31+V*CT*(E41/DEN)
R41=E41-V*CT*(E41/DEN)

```
    R41=E41-V*CT*(E41/DEN)
```

GO TO 555
554 R31=E31+E41
R41 $=0$
RCT2=((V*CT)*(E41/DEN)-E41)/V
555 IF(V*CT $\#(E 22 / D E N)$.GT.E22) GO TO 556
R12 $=$ SNUM* ($1.0-A 1$ +V*CT*(E22/DEN)-D2* (\$NUM* (1.0-A) $+V * C T *(E 22 / D E N)$)
R22=E22-V*CT*(E22/DEN)-D2*(E22-V*CT*(E22/DEN))
GO TO 557
556 R12 $=\$ N U M$ ($1.0-A$) $+E 22-D 2 *(\$ N U M *(1.0-A)+E 22)$
R22 $=0$
RCT3 $=(1 \mathrm{~V} \# \mathrm{CT}) *(E 22 / D E N)-E 22) / \mathrm{V}$
557 IF (V*CT*(E42/DEN).GT.E42) GO TO 558 R32=E32+V*CT*(E42/DEN)-D2*(E32+V*CT*(E42/DEN)) R42 $=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$ GO TO 559
558 R32 $=$ E32 + E42-D2 ${ }^{(E)}$ E32+E42)
$R 42=0$
RCT4=($(\mathrm{V} * \mathrm{CT}) *(E 42 / D E N)-E 42) / V$
559 R43 $=543$ +F GO TO 9000
$600 \mathrm{IF}(\mathrm{CL}) * \$ \mathrm{M}-(E 12-(C I * \$ N-E 11))-E 21 . G T . E 22) G 0$ TO 650 $Y L=(E 12-(C I * \$ N-E 11)) * A * X 12+E 21 * A * X 21+(C L * 5 M-(E 12-(G I * \$ N-E 11))-E 11)$ 1*A*X22
GET=11.0 GO TO 1
601 SNUM=E12-(CI*\$N-E11)
DEN $=E 22-(C L * \$ M-\$ N U M-E 21)+E 41+E 42$
SM11=RM11-RET11
SM12=RM12-RET12+\$NUM*A
SM21=RM21-RET $21+E 21 * A$
SM22=RM22-RET22+(CL*\$M-\$NUM-E21)*A
SM31=RM31-RET31
SM32=RM32-RET 32
SM41=RM41-RET41
SM42=RM42-RET42
R11 $=0$
R21=E21*(1.0-A)
IF(V*CT*(E41/DEN).GT.E41) GO TO 602
R31 $=$ E31 + V*CT*(E41/DEN)
R41=E41-V*CT*(E41/DEN)
GO TO 603
602 R31-E31+E41
R41 $=0$
RCT2 $=((V * C T) *(E 41 / D E N)-E 41) / V$
$603 \mathrm{IF}(\mathrm{V}$ *CT*(E22-(CL*\$M-\$NUM-E21))/DEN .GT.E22-(CL*SM-SNUM-E21)) GO TO 2604
R12=\$NUM*(1.0-A) +V*CT*(E22-(CL*\$M-\$NUM-E21))/DEN-D2* (\$NUM* (1.0-A) + 3V*CT*(E22-(CL*\$M-\$NUM-E21))/DEN)
R22=E22-1CL*\$M-\$NUM-E21)*A-V*CT*(1CL*\$M-\$NUM-E21)/DEN)-02*(E22-(CL 4*\$M-5NUM-E21)*A-V*CT*(CL *SM-\$NUM-E21)/DEN)
60 TO 605
$604212=\$ N U M *(1.0-A)+E 22-(C L * \$ M-\$ N U M-E 21)-D 2 *(\$ N U M *(1.0-A)+E 22-(C L * \$ M-$ 5\$NUM-E21)
R22 $=(C L * \$ M-\$ N U N-E 21) *(1.0-A)$

605 IF $V * C T *(E 42 / D E N)$.GT.E42) GO TO 606
$R 32=E 32+V * C T *(E 42 / D E N)-D 2 *(E 32+V * C T *(E 42 / D E N))$
R42=E42-V*CT* (E42/OEN)-D2*(E42-V*CT*(E42/DEN))
GO TO 607
$606 \mathrm{R} 32=E 32+E 42-\mathrm{D} 2 *(E 32+E 42)$
R42=0
RCT $4=\left(\begin{array}{l}\text { (V*CT }) ~ * ~(E 42 / D E N)-E 42) / V ~\end{array}\right.$
607 R43 $=E 43+F$
GO TO 9000
650 IF(CL*\$M-(E12-(CI*\$N-E11))-E21-E22.GT.E31)G0 TJ 700 $Y L=(E 12-(C I * \$ N-E 11)) * A * X 12+E 21 * A * X 21+E 22 * A * X 22+(C L * \$ M-(E 12-(C I * \$ N$ 2-E11)J-E21-E22)*A*X31
GET $=12.0$
GO TO 1
651 \$NUM $1=E 12-(C I * \$ N-E 11)$
\$ NUM2 =CL* $\$$ M- $\$$ NUM1-E21-E22
DEN=E $41+E 42$
SM11=RM11-RET11
SM12-RM12-RET12+\$NUM1*A
SM $21=R M 21-R E T 21+E 21 * A$
SM22=RM22-RET22+E22*A
SM31 = RM31-RET31 + SNUM2*A
SM 32=RM32-RET32
SM41=RM41-RET41
SM42=RM42-RE T42
R11=0
R21 = E2l*(1.0-A)
IF(V*CT* (E41/DEN).GT.E41) GO TO 652
R31=E31-\$NUM2*A+V*CT*(E41/DEN)
R41 $=E 41-V * C T *(E 41 / D E N)$
GO TO 653
652 R31=E31-\$NUM2*A+E41
$R 41=0$
RCT2=((V*CT) $\boldsymbol{*}(E 41 / D E N)-E 41) / V$
653 $\mathrm{Kl} 2=\$ \mathrm{NUM1}$ * (1.0-A)-D2*(\$NUM*(1.0-A)
R22=E22*(1.0-A)-D2* (E22*(1.0-A))
IF $(V * C T *(E 42 / D E N)$.GT.E42) GO TO 654 .
$R 32=E 32+V$ *CT* $(E 42 / D E N)-D 2 *(E 32-V * C T *(E 42 / D E N))$
$R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))$
GUTO 655
$654 R 32=E 32+E 42-D 2 *(E 32+E 42)$
R42=0
RCT4 $=((\mathrm{V} * \mathrm{CT}) *(E 42 / D E N)-E 42) / V$
655 R43 $=\mathrm{E} 43+\mathrm{F}$
GO TD 9000
700 IF(CL*\$M-(E12-(CI*\$N-E11))-E21-E22-E31.GT.E32)S0 TO 750
$\mathrm{YL}=(\mathrm{E} 12-(\mathrm{CI}+\$ \mathrm{~N}-\mathrm{E} 11)) * A * X 12+E 21 * A * X 21+E 22 * A * X 22+E 31 * A * X 31+(C L * 5 M-(E$
112-(CI*\$N-E11) $-E 21-E 22-E 31) * A * X 32$
GET=13.0
GO TO 1
701 \$NUM1=E12-(CI*\$N-E11)
\$NUM2 = CL* $\$$ M-\$NUM1-E21-E22-E31
$D E N=E 41+E 42$

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890 12345678901234567890123456789012345678901234567890123456789012345678901234567890
SM11=RM11-RET11
SM12=RM12-RET12+\$NUM1*A
SM21-RM21-RET21 +E21*A
SM22=RM22-RET22+E22*A
SM31=RM31-RET31+E31*A
SM32=RM32-RET32*\$NUM2*A
SM41=RM41-RET41
SM42=RM42-RET42
R11=0
\(R 21=E 21 *(1.0-A)\)
IF(V*CT*(E41/DEN).GT.E41)GO TO 702
R31=E 31*(1.0-A) + V\#C T*(E41/DEN)
R41 = E41-V*CT*(E4 1/DEN)
GO TO 703
702 R 31 = E31* (1.0-A) + E41
R41 \(=0\)
RCT2 \(=\left(\left(V^{*} C T\right) *(E 41 / D E N)-E 41\right) / V\)
703 R 12= \$NUM 1* (1.0-A)-D2\# (\$NUM1*(1.0-A))
\(R 22=E 22\) * ( \(1.0-A\) )-D2* (E22*(1.0-A) )
IF(V*CT*(E42/DEN).GT.E42) GO TO 704
\(R 32=E 32-\$ N U M 2 * A+V * C T *(E 42 / D E N)-D 2 *(E 32-\$ N U M 2 * A+V * C T *(E 42 / D E N))\)
\(R 42=E 42-V * C T *(E 42 / D E N)-D 2 *(E 42-V * C T *(E 42 / D E N))\)
GO TO 705
704 R32=E32-\$NUM2*A+E42-D2*(E32-\$NUM2*A+E42)
R42 \(=0\)
RCT4=( \((V * C T) *(E 42 / D E N)-E 42) / V\)
705 R43 \(=\) E43 +F
GO TO 9000
750 IF(CL*\$M-(E12-(CI*\$N-E11))-E21-E22-E31-E32.GT.E41)GO TC 800 \(Y L=(E 12-(C I * \$ N-E 11)) * A * X 12+E 21 * A * X 21+E 22 * A * X 22+E 31 * A * X 31+E 32 * A * X 32\)
\(1+(C L * \$ M-(E 12-(C I * \$ N-E 11))-E 21-E 22-E 32-E 41) * A * X 41\)
GET \(=14.0\)
GOTO 1
751 \$NUM1=E12-(CI*\$N-E11)
\$NUM2=CL*\$M-\$NUM1-E21-E22-E31-E32
\(D E N=E 41-\$ N U M 2+E 42\)
SM11=RM11-RET11
SM12=RM12-RET12+\$NJM1*A
SM21 = RM21-RET21 +E21*A
SM22=RM22-RET22+E22*A
SM31=RM31-RET \(31+E 31\) *A
SM32=RM32-RET32+E32*A
SM41=RM41-RET41+\$NUM2*A
SM42=RM42-RET42
RM1 \(1=0\)
R21 2 E21*(1.0-A)
```



```
R31=E31*(1.0-A)+V*CT*(E41-\$NUM2)/DEN
R41 = E41-\$NUM2*A-V*CT*(E41-\$NUM2)/DEN
GO TO 753
752 R \(31=E 31\) * ( \(1.0-A)+E 41-\$ N U M 2\)
R41 \(=\$\) NUM2 \(*(1.0-A)\)
RCT2 \(=((V * C T *(E 41-\$\) NUM2 \() / D E N)-(E 41-\$ N U M 2)) / V\)
753 R12=\$NUM1*(1.0-A)-D2* (\$NUM1*(1.0-A) )
```

CARD
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
964
965
966
967
968
969
970
971
972

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

00000000011111111112222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

R22=E22*(1.0-A)-D2*(E 22*(1.0-A))
IF(V*CT* (E42/DEN).GT.E42) GO TJ 754
R32=E 32*(1.0-A) +V*CT*(E42/DEN)-D2*(E32*(1.0-A) +V*CT*(E42/DEN))
R42=E42-V*CT*(E42/DEN)-D2*(E42-V*CT*E42/DEN)
GO TO 755
754 R 32 $=E$ 32* (1.0-A) $+E 42-D 2 *(E 32 *(1.0-A)+E 42)$
R42 $=0$
RCT4=(($\left.\left.V^{*} C T\right) *(E 42 / D E N)-E 42\right) / V$
755 R43=E43+F
GOTO 9000
800 IF(CL*\$M-(E12-(CI*\$N-E11))-E21-E22-E31-E32-E41.GT.E42)G0 TO 850
$Y L=(E 12-(C I * 5 N-E 11)) * A * X 12+E 21 * A * X 21+E 22 * A * X 22+E 31 * A * X 31+E 32 * A * X 32$
$1+E 41 * A * X 41+(C L * \$ M-(E 12-(C I * \$ N-E 11))-E 21-E 22-E 31-E 32-E 41) * A * X 42$
GET=15.0
GOTO 1
801 \$ NUM1 =E12-(CI*\$N-E11)
\$NUM2=CL* $\$$ M-(E12-(C1*\$N-E11))-E21-E22-E31-E32-E41
SM11=RM11-RET11
SM1 2=RM12-RET12+\$NUML*A
SM21=RM21-RET21+E21*A
SM22=RM22-RET 22+E22*A
SM31-RM31-RET31+E22*A
SM32=RM32-RET 32+E32*A
SM41-RM41-RET41+E41*A
SM42=RM42-RET42+5NUM2*A
R11=0
$R 21=E 21 *(1.0-A)$
R $31=E 31 *(1.0-A)$
R41 $=$ E41 * (1.0-A)
R12 $=\$$ NUM1*(1.0-A)-D2*(\$NUM1*(1.0-A))
$R 22=E 22 *(1.0-A)-D 2 *(E 22 *(1.0-A))$
IF(V\#CT.GT.E42-\$NUM2)GU TO 802
$R 32=E 32 *(1,0-A)+V * C T-D 2 *(E 32 *(1,0-A)+V * C T)$
242=E42-\$NUM2*A-V*CT-D2*(E42-\$NUM2*A-V*CT)
GO TO 803
802 R 32-E 32*(1.0-A) +E42-\$NUM2-D2* (E32* (1.0-A) +E42-\$NUM2)
R42 $=\$$ NUM $2 *(1,0-A)$
RCT4 $=(V$ *CT-(E42-\$NUM2))/V
803 R $43=E 43+F$ GO TO 9000
850 YL=(E12-(CI*\$N-E11))*A*X12+E21*A*X21+E22*A*X22+E31*A*X31+E32*A*X32 $1+E 41 * A * X 41+E 42 * A * X 42$
RCL=(CL*\$M-(E12-(CI*\$N-E11))-E21-E22-E31-E32-E41-E42)/\$M
GET=16.0
GO TO 1
851 \$ NUM=E12-(CI*\$N-E11)
SM11=RM11-RET11
SM12=RM12-RET12+\$NUM *A
SM21 = RM21-RET21+E21*A
SM22=RM22-RET22+E22*A
SM31 $=$ RM31-RET $31+E 31$ *A
SM32=RM32-RET32*E32*A
SM41=RM41-RET41+E41*A
SM42-RM42-RET42+E42*A

```
000000000111111111122222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
    R11=0
    R21=E21*(1.0-A)
    R31=E31*(1.0-A)
    R41=E41*(1.0-A)
    R12=$NUM*(1.0-A)-D2*($NUM*(1.0-A))
    R22=E22*(1.0-A)-D2*(E22*(1.0-A))
    R32=E32*(1.0-A)-D2*(E32*(1.0-A))
    R42=E42*(1.0-A)-D2*(E42*(1.0-A))
    R43 = E43 +F
    RC T4=C T
    GO TO }900
1000 IF(CI*$N-E11-E12.GT.E21) GO TO 1500
    YI=E11*Z11+E12*212+(CI*$N-E11-E12)*221
    IF(CL*$M.GT.E21-(CI*$N-E11-E12)) GO TO }105
    YL=CL*$M*A*X12
    GET=17.0
    GO TO 1
1001 $NUM=CL*$M+(CI*$N-El1-E12)
    DEN=E21-$NUM+E22+E41+E42
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET21
    SM22=RM22-RET 22
    SM31=RM31-RET31
    SM32=RM32-RET 32
    SM41-RM41-RET41
    SM4 2=RM42-RET42
    EllRCH= Ell
    E12RCH=El2
    E 21RCH=CI*$N-E11-E12
    IF(V*CT*((E21-$NUM)/DEN).GT.E21-SNUM) GO TO 1002
    R11=V*CT*((E21-$NUM)/DEN)
    R21=E21-(CI#$N-E 11-E 12)-CL*$M*A-V*CT*((E21-$NUM)/DEN)
    GO TO 1003
1002 R11=E 21-$NUM
    R21=CL*$M*(1.0-A)
    RCTl=((V*CT)*((E2l-$NUM)/DEN)-(E2l-$NUM))/V
1003 IF(V*CT*E41/DEN.GT.E41) GO TO 1004
    R31= E31 +V #CT %E41/DEN
    R41=E41-V*CT*E41/DEN
    GD TO 1005
1004 R31=E31 +E41
    R41=0
    RCT 2=((V*CT)*(E41/DEN)-E41)/V
1005 IF(V*CT*E22/DEN.GT.E22)GO TO 1006
    R12=V*CT*E22/DEN-D2*V*CT*E22/DEN
    R22=E22-V*CT*E22/DEN-D2*(E22-V*CT*E 22/DEN)
    GO TO 1007
006 २ 12=E 22-D 2*E22
    R22=0
    RCT3=((V*CT)*(E22/DEN)-E22)/V
1007 IF(V*CT*E42/DEN.GT.E42) GO TO 1008
    R32=E32+V*CT*E42/DEN-D2*(E32+V*CT*E42/DEN)
    R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
```

```
    0000000001111111111112222222222333333333344444444445555555555666666666677777777778
    12345678901234567890123456789012345678901234567890123456789012345678901234567890
        GO. TO 1009
    1008 R32=E32+E42-D2*(E32+E42)
        R42=0
        RCT4=((V*CT)*(E42/DEN)-E42)/V
    1009 R43=E43 +F
        GO TO 9000
    1050 IF(CL*$M-(E21-(CI*$N-E11-E12)).GT.E22) GO TO 1100
        YL=(E21-(CI*$N-Ell-E12))*A*X21+(CL*$M-(E2l-(CI*$N-E11-E12)))*A*X22
        GET=18.0
        GO TO 1
    1051 $NUM=E21-(CI*$N-E11-E12)
        $NUM2=CL*$M-$NUM
        DEN=E22-$NUM 2+E4 1+E42
        SM11=RM11-RET11
        SM12=RM12-RET12
        SM21=RM21-RET 21+$NUM*A
        SM22=RM22-RET22+$NUM2*A
        SM31=RM31-RET31
        SM3 2=RM32-RET 32
        SM41=RM41-RET41
        SM42=RM42-RET42
        R11=0
        R21=5NUM*(1.0-A)
        IF(V#CT*E41/DEN.GT.E41) GO TO 1052
        R31=E31+V*CT*E41/DEN
        R41=E41-V*CT*E41/DEN
        GO TO 1053
    1052 R31=E31+E41
        २41=0
        RCT 2=((V*CT)*(E4 1/DEN)-E41)/V
    1053 IF(V*CT*((E22-$NUM2)/DEN).GT.E22-$NUM2)GO TO 1054
        R12=V#CT*((E22-$NUM2)/DEN)-D2*(V*CT*((E22-$NUM2)/DEN))
        R22=E22-5NUM2*A-V*CT*((E22-$NUM 2)/DEN)-D2*(E 22-$NUM2*A-V*CT*((E22-
        1$NUM2I/DENI I
        GO TO 1055
    1054 R12=E22-$NUM2-02*(E22-$NUM2)
        k 22=$NUM2*(1.0-A)
        RCT3=((V*CT*(E22-$NUM 2)/DEN)-(E22-$NUM2))/V
    1055 IF(V*CT*E42/DEN.GT - E42) GO TO 1056
        R 32=E 32+V*CT*E42/DEN-D2*(E32+V*CT*E42/DEN)
        R42=E42-V *CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
        GO TO 1057
    1056 R32=E32+E42-D 2*(E32+E42)
        R42=0
        RCT4=((V*CT)*(E42/DEN)-E42)/V
    1057 R43=E43+F
        GO TO 9000
    1100 IF(CL*$M-(E21-(CI*$N-E12))-E22.GT.E31) GO TO 1150
        YL=(E2l-(CI*$N-E1l-E12))*A*X21+E 22*A*X22+(CL*$M-(E21-(CI*$N-E11-E1
        12)!-E221*A* X31
        GET=19.0
        GO TO 1
    1101 $NUML=E21-(CI*$N-E11-E12)
        $NUM2=CL#$M-$NUM1-E22
```

```
00000000011111111111122222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET 21 + $NUM1 #A
    SM22=RM22-RET22+E22*A
    SM31=RM31-RET31+$NUM2*A
    SM32=RM32-RET32
    SM41=RM41-RET41
    SM42=RM42-RET42
    R11=0
    R21=$NUM1*(1.0-A)
    IF(V*CT*E41/DEN.GT.E41)'GO TO 1102
    R31=$NUM2*(1.0-A)+V*CT*E41/DEN
    R41=E41-V*CT*E41/DEN
    GO TO 1103
1102 R 31=$NUM2*(1.0-A)+E41
    R41=0
    RCT2=((V*CT)*(E41/DEN)-E41)/V
1103 R12=0
    R22=E22*(1.0-A)-D2*(E22*(1.0-A))
    IF(V*CT*E42/DEN.GT.E42) GO TO 1104
    R 32=E 32+V*CT*E 42/DEN-D2*(E32+V*CT*E42/DEN)
    R42=E42-V *CT *E42/DEN-D2*(E42-V*CT*E42/DEN)
    GO TO 1105
1104 R32=E32+E42-D 2*(E32+E42)
    R42 =0
    RCT4=(1V*CT)*(E42/DEN)-E42)/V
1105 R43=E43+F
    GO TO 9000
1150 IF(CL*$M-(E21-(CI*$N-E11-E12))-E22-E31.GT.E32) GO TO 1200
    YL=(E21-(CI*$N-E11-E12))*A*X21+E22*A*X22+E31*A*X31+(CL*$M-(E21-(CI
    1*$N-E11-E12I)-E22-E31)*A*X32
    GET=20.0
    GO TO 1
1151 $NUML=E21-(CI*$N-E11-E12)
    $NUM2=CL*$M-$NUM1-E 22-E 31
    DEN=E41+E42
    SMll=RM1l-RETll
    SM12=RM12-RET12
    SM21=RM21-RET21+$NUMI*A
    SM22=RM22-RET22+E22*A
    SM31=RM31-RET31+E31*A
    SM32=RM32-RET32+$NUM2*A
    SM41=RM41-RET41
    SM42=RM42-RET42
    R11=0
    R21=$NUM1*(1.0*A)
    IF(V*CT*E41/DEN.GT.E41) GO TO 1152
    R31=E 31*(1.0-A) +V*C T*E41/DEN
    R41=E4l-V *CT*E41/DEN
    GO TO 1153
1152 R31=E31*(1.0-A) +E41
    R41=0
    RCT2=((V*CT)*(E41/DEN)-E41)/V
1153 R12=0
```

 \(R 22=E 22 *(1.0-A)-D 2 *(E 22 *(1.0-A))\)
 IF (V*CT*E42/DEN.GT.E42) GO TO 1154
 R 32=E 32-\$NUM2*A+V*CT*E42/DEN-D2* (E32-\$NUM2*A+V*CT*E42/DEN)
 R42 \(=E 42-V * C T * E 42 / D E N-D 2 *(E 42-V * C T * E 42 / D E N)\)
 GO TO 1155
 1154 R 32=E32-\$NUM2*A+E42-D2* (E32-\$NUM2*A+E42)
R42 $=0$
RCT4 $=((V * C T) *(E 42 / D E N)-E 42) / V$
1155 R43 $=\mathrm{E} 43+\mathrm{F}$
GO TO 9000
1200 IF(CL*\$M-(E21-(CI*\$N-E11-E12))-E22-E31-E32.GT.E41) GOTO 1250
$Y L=(E 21-(C I * \$ N-E 11-E 12)) * A * \times 21+E 22 * A * \times 22+E 31 * A * \times 31+E 32 * A * X 31+(C L * \$$
1M-(E21-(CI*\$N-E11-E12))-E22-E31-E32)*A*X41
GET $=21.0$
GO TO 1
1201 \$NUM1 = E21-(CI*\$N-E11-E12)
\$NUM 2=CL* $\$$ M- \$NUM1-E 22-E 31-E 32
DEN=E41-\$NUM2+E42
SM11-RM11-RET11
SM12=RM12-RET12
SM21 = RM21-RET 21 + \$NUM1*A
SM22-RM22-RET22+E22*A
SM31=RM31-RET31+E31*A
SM32-RM32-RET 32 +E32*A
SM41=RM41-RET41*\$NUM2*A
SM42=RM42-RET 42
R11 $=0$
R21 $=$ \$NUM1*(1.0-A)
IF (V*CT*((E41-\$NUM2)/DEN).GT.E41-\$NUM2) GO TO 1202
E31 =E31*(1.0-A) +V*CT* ((E41-\$NUM2)/DEN)
E41=E41-\$NUM2*A-V*CT*((E41-\$NUM2)/DEN)
GO TO 1203
1202 E31 $=$ E31*(1.0-A) +E41-\$NUM2
E41 = \$NUM 2* (1.0-A)
RCT2 $=(($ V*CT* $(E 41-\$ N U M 2) / D E N)-(E 41-\$ N U M 2)) / V$
1203 R12=0
R22=E22*(1.0-A)-D2*(E22*(1.0-A))
IF (V*CT*E42/DEN.GT.E42) GO TO 1204
$R 32=E 32 *(1.0-A)+V * C T * E 42 / D E N-D 2 *(E 32 *(1.0-A)+V * C T * E 42 / D E N)$
R42 $=E 42-V * C T * E 42 / D E N-D 2 *(E 42-V * C T * E 42 / U E N)$
GO TO 1205
1204 R 32 $=$ E32* ($1.0-A)+E 42-D 2^{*}(E 32 *(1.0-A)+E 42)$
E42 $=0$
RCT4=(V *CT)*(E42/DEN)-E42)/V
1205 R43 $=\mathrm{E} 43+\mathrm{F}$
GO TO 9000
1250 IF (CL*\$M-(E21-(CI*\$N-E11-E121)-E22-E31-E32-E41.GT.E42)GOTO 1300
$Y L=(E 21-(C I * S N-E 11-E 12)) * A * X 21+E 22 * A * \times 22+E 31 * A * X 31+E 32 * A * X 32+E 41 * A$
$1 * X 41+(C L * \$ M-(E 21-(C I * \$ N-E 11-E 12))-E 22-E 31-E 32-E 41) * A * X 42$
GET $=22.0$
GO TO 1
1251 \$NUM1=E2L-(CI*\$N-E11-E12)
\$NUMZ=CL*\$M-\$NUM1-E 22-E31-E32-E41
SMI 1-RMI1-RET11

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
    SM1 2-RM12-RET12
    SM21=RM21-RET21+$NUML*A
    SM22=RM 22-RET 22+E22*A
    SM31=RM31-RET 31 +E31 *A
    SM32=RM32-RET32+E32*A
    SM41=RM41-RET41+E41*A
    SM42=RM42-RET42+$NUM2*A
    R11=0
    R21 = $NUM1 # (1.0-A)
    R31=E31*(1.0-A)
    R41=E41*(1.0-A)
    R12=0
    R22=E 22*(1.0-A)-D2*(E22*(1.0-A))
    IF(V*CT.GT.E42-$NUM2) GO TO 1252
    R32=E32* (1.0-A)+V*CT-D2*(E32*(1.0-A) +V*CT)
    R42=E42-$NUM2*A-V*CT-D2*(E42-$NUM2*A-V*CT)
    GO TO 1253
1252 R32=E32*(1.0-A)+E42-$NUM2*A-D2*(E32*(1.0-A)+E42-$NUM2*A)
    R42=$NUM2*(1.0-A)-D2*($NUM2*(1.0-A))
    RCT4=(V#CT-(E42-$NUM2))/V
1253 R43=E43+F
    GO TO 9000
1300 YL=(E21-(CI*$N-E11-E12))*A*X21+E22*A*X22+E31*A*X31+E32*A*X32+E 41*A
    2*X41+E42*A* X42
    RCL=(CL*$M-(E21-(CI*$N-E11-E12))-E22-E32-E41-E42)/$M
    GET=23.0
    GO TO 1
1301 $NUM=E21-(CI#$N-Ell-El2)
    SML1=RM11-RET11
    SM12=RM12-RET12
    SM21 = RM21-RET 21+$NUM*A
    SM22=RM22-RET22+E22*A
    SM31=RM31-RET 31+E31*A
    SM32=RM32-RET 324E32*A
    SM4 1=RM41-RET41+E41*A
    SM42=RM42-RET42+E42*A
    R11=0
    R21=$NUM*(1.0-A)
    R31=E31*(1.0-A)
    R41=E41*(1.0-A)
    R12=0
    R22=E22*(1.0-A)-D2*(E22*(1.0-A))
    R32=E32*(1.0-A)-D2*(E22*(1.0-A))
    R42=E42*(1.0-A)-D2*(E22*(1.0-A))
    R43=E43+F
    RCT4=CT
    GO TO 9000
1500 IF(CI*$N-E11-E12-E21.GT.E22)GO TO 2000
    YI =E11*Z11+E12*Z12+E21*Z21+(GI*$N-E11-E12-E21)*Z22
    IF(CL*$M.GT.E22-(CI*$N-E11-E12-E21))GO TO 1550
    YL=CL*$M*A* X22
    GET = 24.0
    GO TO 1
1501 $NUM=CL*$M+(CI*$N-E11-E12-E21)
```

```
C00000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
C0000000011111111112222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890
(22+\$NUM+E41+E42
SM11=RM11-RET11
SM1 2=RM12-RET 12
SM22=RM22-RET22*CL*\$M*A
SM31~RM 31-RET 31
SM32-RM32-RET32
SM42=RM42-RET42
R11 \(=0\)
R21 =0
E11RCH=E11
E12RCH=E12
E21RCH=E2I
E22RCH=CI*\$N-E11-E12-E21
IF (V*CT*E41/DEN.GT.E41)GO TO 1502
R 31=E31+V*CT*E41/DEN
\(R 41=E 41-V\) \#CT.*E41/DEN
GO TO 1503
1502 R \(31=E 31+E 41\)
R41 \(=0\)
RCT2=((V*CT)*(E41/DEN)-E41)/V
1503 IF (V*CT*( (E 22-\$NUM)/DEN).GT.E22-\$NUM)GO TO 1504
R12 =V*CT* ( (E22-\$NUM)/DEN)-D2*(V*CT* ( \(E 22-\$ N U M) / D E N))\)
R22=E22-\$NUM-V*CT* ( \((E 22-\$ N U M) / D E N)+C L * \$ M *(1-0-A)-D 2 *(E 22-\$ N U M-V * C T\)
```



```
GO TO 1505
1504 २ 12=E22-\$NUM-D2* (E22-\$NUM)
```



```
RCT3 = (V*CT* ( (E22-\$NUM)/DEN)-(E22-\$NUM))/V
\(1505 \mathrm{IF}(\mathrm{V}\) *CT*E42/DEN.GT.E42)GOTO1506
\(R 32=E 32+V\) \# \(C T\) * \(E 42 / D E N-D 2 *(E 32+V * C T * E 42 / D E N)\)
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
GO TO 1507
1506 R32 \(=E 32+E 42-D 2+(E 32+E 42)\)
R42=0
RCT4=((V*CT)* (E42/DEN)-E42)/V
1507 R43 = E43 +F GO TO 9000
1550 IF(CL*\$M-(E22-(CI*\$N-E11-E12-E21)).GT.E31)GOTO 1600 \(Y L=(E 22-(C I * \$ N-E 11-E 12-E 21) * A * X 22)+(C L * \$ M-(E 22-(C I * \$ N-E 11-E 12-E 21)\) 1)) \(れ \mathrm{~A}\) \# X 31 GET \(=25.0\) GO TO L
1551 \$NUM1=E22-(CI*\$N-E11-E12-E21)
\$NUM2 = CL* \(\$\) M-\$NUM1
DEN=E41+E42
SM11=RM11-RET11
SM1 2 = RM12-RET 12
SM21=RM21-RET21
SM2 2=RM22-RET22+\$NUM1*A
SM31-RM31-RET31+\$NUM2\#A
SM32=RM32-RET 32
SM4 1 = RM41-RET4 1
SM42=RM42-RET42
R11=0
```

```
0000000001111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
    R21=0
    IF(V*CT*E4l/DEN.GT.E41)GO TO 1552
    R31=E31-$NUM2*A+V#CT*E41/DEN
    R41=E41-V*CT*E41/DEN
    GO TO 1553
1552 R31=E31-$NUM2*A+E41
    R41=0
    RCT2=((V*CT)*(E41/DEN)-E41)/V
1553 R 12=0
    R22 = $NUM1*(1.0-A)-D2*($NUM1*(1.0-A))
    IF(V*CT*E42/DEN.GT.E42)GO TO 1554
    R 32=E 32+V*CT*E42/DEN-D2*(E32+V*CT*E42/DEN)
    R42 = E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
    GO TO 1555
1554 R32=E32+E42-D2*(E32+E42)
    R42=0
    RCT4=((V*CT)*(E42/DEN)-E42)/V
1555 R43=E43 +F
    GO TO 9000
1600 IF(CL*$M-(E22-(CI*$N-E11-E12-E21))-E31.GT.E32)GO TO 1650
    YL=(E22-(CI*$N-E1l-E12-E21))*A*X22+E31*A*X31+(LL*$M-(E22-(CI*$N-E1
    11-E12-E21)I-E31)*A*X32
        GET = 26.0
        GOTO 1
1601 कNUM1=E22-(CI*$N-E11-E12-E21)
    $NUM2=CL*$M-$NUM1-E31
    DEN=E41+E42
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET21
    SM22=RM22-RET22+$NUM1*A
    SM31=RM31-RET314E31*A
    SM32=RM32-RET 32+$NUM2#A
    SM41=RM41-RET41
    SM42=RM42-RET.42
    R11=0
    R21=0
    IFIV#CT*E41/DEN.GT.E41)GO TO 1602
    R31=E31*(1.0-A) +V*CT*E41/DEN
    R41=E4l-V #CT*E41/DEN
    GO TO 1603
1602 R 31=E31*(1.0-A)+E41
    R41=0
    RCT2=((V*CT)*(E41/DEN)-E41)/V
1603 2 12=0
    R22 = $NUM1 *(1.0-A)-D2*($NUM1*(1.0-A))
    IF(V*CT*E42/DEN.GT.E42)GO TO 1604
    R32=E32-$NUM2*A+V*CT*E42/DEN-D2*(E32-$NUM2*A+V*CT*E42/DEN)
    R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
    GO TO 1605
1604 R32=E32-$NUM2*A+E42-D2*(E32-$NUM2*A*E42)
    R42=0
    RCT4=((V*CT)*(E42/DEN)-E42)/V
1605 R43=E43+F
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
GO TO 9000
1650 IF(CL*$M-(E22-(CI*$N-E11-E12-E21))-E31-E32.GT.E41)GOTO 1700
    YL=(E22-(CI*$N-E11-E12-E21))*A*X22+E31*A*X31+E32*A*X32+(CL*$M-(E22
    1-(CI*$N-E11-E12-E21))-E31-E32)*A*X41
        GET=27.0
        GO TO 1
1651 $NUMI=E22-(CI*$N-E11-E12-E21)
    $NUM 2=CL*$M-$NUM1-E 31-E 32
    DEN=E41-$NUM2+E42
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET 21
    SM22=RM22-RET22*$NUML#A
    SM31=RM 31-RET31+E3I*A
    SM32=RM32-RET32*E32*A
    SM41=RM41-RET41+$NUM2*A
    SM42=RM42-RET42
    R11=0
    R2l=0
    IF(V*CT*((E41-$NUM2)/DEN).GT.E41-$NUM2)GO TO 1652
    R31=E31*(1.O-A)+V*CT*((E41-$NUM2)/DEN)
    R41=E41-$NUM2*A-V*CT*((E41-$NUM2)/DEN)
    GO TO 1653
1652 R31=E31*(1.0-A)+E41-5NUM2
    241=$NUM2#(1.0-A)
    RCT2=((V*CT*(E41-$NUM2)/DEN)-(E41-$NUM2))/V
1653 212=0
    R22=$NUM1*(1.0-A)-D2*($NUM1*(1.0-A))
    R22=$NUM1*(1.0-A)-D2*($NUM1*(1.0-A)
    R 32=E 32*(1.0-A) +V*C,T*E42/DEN-D2*(E32*(1.0-A) +V*CT*E42/DEN)
    R42=E42-V*CT*E42/DEN-D2*(E42-V*CTT*E 42/DEN)
    GO TO 1655
1654 R 32=E32*(1.0-A)+E42-D 2*(E32*(1.0-A) +E42)
    R42 =0
    RCT4=((V*CT)*(E42/DEN)-E42)/V
1655 243=E43+F
    GO TO 9000
1700 IF(CL*$M-(E22-(CI*$N-E11-E12-E21))-E31-E32-E41.GT.E42)GO TO 1750
    YL=E22-(CI*$N-El1-E l2-E21)*A*X22+E 31*A*X31+E 32*A*X32+E4l*A*X41+(CL
    1*$M-(E22-(GI*$N-E11-E12-E21))-E31-E32-E41)*A**42
    GET = 28.0
    GO TO l
1701 $NUM1=E22-(CI*$N-E11-E12-E21)
    $NUM2=CL*$M-$NUM1-E 31-E32-E41
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET 21
    SM22=RM22-RET 22+$NUM1 *A
    SM31=RM 31-RET31+E31*A
    SM32=RM32-RET 32*E32*A
    SM4 1=RM41-RET41+E41*A
    SM42=RM42-RET42*E41*A
    R11=0
    R11=0
    R21=0
```

CARD
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1428
1429
1430
1431
1432
1433
1434
1434
435
1436
1437
437
1438
1439
1440
1440
1441
1442
1443
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
454
1455
1456
1457
1458

```
        R31=E31*(1.0-A)
        R41=E41*(1.0-A)
        R12=0
        R22 =$NUM* (1.0-A)-D2*($NUM1* (1.0-A))
        IF(V*CT.GT.E42-$NUM2)GO TO 1702
        R32=E32*(1.0-A)+V*CT-D2*(E32*(1.0-A)+V*CT)
        R42=E42-$NUM2*A-V*CT-D2*(E42-$NUM2*A-V*CT)
    GO TO 1703
1702 R32=E32*(1.0-A)+E42-$NUM2-D2*(E32*(1.0-A) +E 42-$NUM2)
    R42=$NUM2*(1.0-A)
    RCT4=(V*CT-(E42-$NUM2))/V
1703 R43=E43+F
    GO TO 9000
1750 YL=E22-(CI*$N-E11-E12-E21)*A*X22+E31*A*X31*E32*A*X32*E41*A*X41+E42
    2*A* X42
        RCL=(CL#$M-(E22-(CI*$N-E11-E12-E21))-E31-E32-E41-E42)/$M
        GET=29.0
        GO TO 1
1751 $NUM=E22-(CI*$N-E11-E12-E21)
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET 21
    SM22=RM22-RET 22+$NUM*A
    SM31=RM 31-RET31+E31*A
    SM32=RM32-RET 32*E32*A
    SM4I=RM41-RET41*E41*A
    SM42=RM42-RET42+E42*A
    R11=0
    R21=0
    R31=E31*(1.0-A)
    R41=E41*(1.0-A)
    R12=0
    R22=$NUM*(1.0-A)-D2*($NUM*(1.0-A))
    R32=E32*(1.0-A)-D2*(E32*(1.0-A))
    R42=E42*(1.0-A)-D2*(E42*(1.0-A))
    R43=E43 +F
    RCT4=CT
    GO TO 9000
2000 IF(CI*$N-E11-E12-E21-E22.GT .E31)GO TO 2500
    YI=E11*Z11+E12*Z12+E21*Z21+E22*Z22+(CI*$N-E11-E12-E21-E22)*Z3I
    IF(CL$$M.GT.E31-(CI*$N-E11-E12-E21-E22))GO TO 2050
    YL=CL*$M* A* X 3 1
    GET=30.0
    GO TO 1
2001 $NUM=CL*$M+(CI*$N-E11-E12-E21-E22)
    DEN=E41+E42
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM2l=RM21-RET21
    SM22=RM22-RET 22
    SM31=RM31-RET31+CL*$M*A
    SM32=RM32-RET32
    SM41=RM41-RET41
    SM42=RM42-RET42
```

```
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778

```
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

```
    R11=0
```

 R11=0
 R21=0
 R21=0
 E11RCH=El1
 E11RCH=El1
 E12RCH=E12
 E12RCH=E12
 E21RCH=E21
 E21RCH=E21
 E22RCH=E22
 E22RCH=E22
 E31RCH=CI*$N-E11-E12-E21-E22
 E31RCH=CI*$N-E11-E12-E21-E22
 IF(V#CT*E41/DEN.GT.E4l)GO TO 2002
 IF(V#CT*E41/DEN.GT.E4l)GO TO 2002
 R31=E31-$NUM+V*CT*(E41/DEN+CL*$M*(1.0-A))
 R31=E31-$NUM+V*CT*(E41/DEN+CL*$M*(1.0-A))
 R41=E41-V*CT*E41/DEN
 R41=E41-V*CT*E41/DEN
 GO TO 2003
 GO TO 2003
 2002 R.31=E31-$NUM+E41+CL*$MM(1.0-A)
2002 R.31=E31-$NUM+E41+CL*$MM(1.0-A)
241=0
241=0
RCT2=((V*CT)*(E41/DEN)-E41)/V
RCT2=((V*CT)*(E41/DEN)-E41)/V
2003 R12=0
2003 R12=0
R22=0
R22=0
IF(V*CT*E42/OEN.GT.E42)GO TO 2004
IF(V*CT*E42/OEN.GT.E42)GO TO 2004
R32=E32+V*CT*E42/DEN-D2*(E32+V*CT*E42/DEN)
R32=E32+V*CT*E42/DEN-D2*(E32+V*CT*E42/DEN)
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
GO TO 2005
GO TO 2005
2004 R 32=E32+E42-02*(E32+E42)
2004 R 32=E32+E42-02*(E32+E42)
R42 =0
R42 =0
RCT4=((V*CT)*(E42/DEN)-E42)/V
RCT4=((V*CT)*(E42/DEN)-E42)/V
2005 R43=E43+F
2005 R43=E43+F
GOTO 9000
GOTO 9000
2050 IFICL*$M-(E31-(CI*$N-Ell-E12-E21-E22)).GT.E32)GO TO 2100
2050 IFICL*$M-(E31-(CI*$N-Ell-E12-E21-E22)).GT.E32)GO TO 2100
YL=(E31-(CI*$N-E11-E12-E21-E22))*A* X31+(CL*$M-(E31-(CI*$N-E11-E12-
 YL=(E31-(CI*$N-E11-E12-E21-E22))*A* X31+(CL*$M-(E31-(CI*$N-E11-E12-
2E21-E22)J)*A**32
2E21-E22)J)*A**32
GET=31.0
GET=31.0
GO TO 1
GO TO 1
2051 $NUM1=E31-(CI*$N-E11-E12-E21-E22)
2051 $NUM1=E31-(CI*$N-E11-E12-E21-E22)
$NUM 2=CL*$M-\$NUM1
$NUM 2=CL*$M-$NUM1
 DEN= E41 +E42
 DEN= E41 +E42
 SM11=RM11-RET11
 SM11=RM11-RET11
 SM12=RM12-RET12
 SM12=RM12-RET12
 SM21=RM21-RET21
 SM21=RM21-RET21
 SM22=RM22-RET22
 SM22=RM22-RET22
 SM31=RM31-RET31+$NUM1*A
SM31=RM31-RET31+$NUM1*A
 SM32=RM32-RET 32+$NUM2 \#A
SM32=RM32-RET 32+$NUM2 #A
 SM41=RM41-RET41
 SM41=RM41-RET41
 SM42=RM42-RET42
 SM42=RM42-RET42
 R11=0
 R11=0
 R21=0
 R21=0
 IF(V*CT*E41/DEN.GT.E41)GO TO 2052
 IF(V*CT*E41/DEN.GT.E41)GO TO 2052
 R31=5NUM1*(1.0-A)+V*CT*E41/DEN
 R31=5NUM1*(1.0-A)+V*CT*E41/DEN
 R41=E4l-V*CT*E41/DEN
 R41=E4l-V*CT*E41/DEN
 GO TO 2053
 GO TO 2053
2052 R31=$NUM1\#(1.O-A)+E41
2052 R31=$NUM1#(1.O-A)+E41
 E41=0
 E41=0
 RCT2=((V*CT)*(E41/DEN)-E41)/V
 RCT2=((V*CT)*(E41/DEN)-E41)/V
2053 R 12=0
2053 R 12=0
 R22=0
 R22=0
 IF(V*CT*E42/DEN.GT.E42)GO TO 2054
 IF(V*CT*E42/DEN.GT.E42)GO TO 2054
 R32=E 32-$NUM2*A+V*CT*E42/DEN-D2*(E32-\$NUM2*A+V*CT*E42/DEN)

```
    R32=E 32-$NUM2*A+V*CT*E42/DEN-D2*(E32-$NUM2*A+V*CT*E42/DEN)
```

```
        R42=E42-V*C T*E42/DEN-D2*(E42-V*CT*E42/DEN)
        G0 TO 2055
2054 R32=E32-$NUM2*A+E42-D2*(E32-$NUM2*A +E42)
        R42=0
        RCT4=((V*CT)*(E42/DEN)-E42)/V
2055 R43=E43+F
        GO TO 9000
2100 IF(CL*$M-(E31-(CI*$N-E11-E12-E31-E22))-E32.GT.E41)GO TJ 2150
        YL=(E31-(CI*$N-E11-E12-E21-E22))*A*X31+E32*A*X32+(CL*SM-(E31-(CI*$
        2N-E11-E 12-E21-E22)J-E 321*A*X41
        GET=32.0
        GO TO 1
2101 $NUM1=E31-(CI*$N-E11-E12-E21-E22)
    $ NUM2 =CL*$M-$NUM1-E32
    DEN=E41-$NUM2+E42
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM21=RM21-RET21
    SM22=RM22-RET 22
    SM31-RM31-RET31 + $NUML *A
    SM32=RM 32-RET32+E 32*A
    SM41=RM41-RET41+$NUM2*A
    SM42=RM42-RET42
    R11=0
    R21=0
    IF(V*CT*((E41-$NUM2)/DEN).GT.E4l-$NUM2)GO TO 2102
    R31=$NJM1*(1.0-A)+V*CT*((E41-$NUM2)/DENI
    R41=E41-$NUM2*A-V*CT*((E41-$NUM2)/DEN)
    GO TO 2103
2102 R31=$NUM1*(1.O-A)+E41-$NUM2
    R41=$NUM2*(1.0-A)
    RCT2=((V*CT*(E41-$NUM2)/DEN)-(E4I-$NUM2))/V
2103 R21=0
    R22=0
    IF(V*CT*E42/DEN.GT.E42)GO TO 2104
    R32=E32*(1.0-A) +V*CT*E42/DEN-D2*(E32*(1.0-A) +V*CT*E42/DEN)
    R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
    GO TO 2105
2104 R32=E32*(1.0-A)+E42-D2*(E32*(1.0-A)+E42)
    R42=0
    RCT4=((V*CT)*(E42/DEN)-E42)/V
2105 R43=E43+F
    GO TO 9000
2150 IF (CL*$M-(E31-(CI*$N-E11-E 12-E 21-E 22))-E 32-E41.GT.E42)G0 TO 2200
    YL={E3l-(CI*$N-E11-E12-E21-E22))*A*X31+E32*A*X32+E41*A*X4l+((CL*$M
    2-(CI*$N-E11-E12-E21-E22))-E32-E41)*A*X42
        GET=33.0
        GO TO 1
2151 $NUM1=E31-(CI*$N-E11-E12-E21-E22)
    $NUM2 =CL*$M-$NUM1-E32-E41
    SMI1=RM11-RET11
    SML2=RM12-RET12
    SM21 = RM21-RET 21
    SM22=RM22-RET22
```

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678701234567890123456789012345678901234567890123456789012345678901234567890

CARD
1621
1622
1623
1624
1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
1635

SM31=RM31-RET31+\$NUM1*A
SM32=RM 32-RET 32+E32*A
SM41=RM41-RET41+E41*A
SM42=RM42-RET42+\$NUM2*A
R11 $=0$
$R 21=0$

$R 41=E 41$ * ($1.0-\mathrm{A}$)
R12=0
R22 $=0$
IF(V*CT.GT.E42-\$NUM2)GO TO 2152
R32 =E32* (1. O-A) +V*CT-D2* (E32* (1.0-A) +V* CT)
$R 42=E 42-\$$ NUM $2 * A-V * C T-D 2 *(E 42-\$ N U M 2 * A-V * C T)$ GO TO 2153
2152 R 32 $=$ E 32* (1.0-A) +E42-\$NUM2-D2* (E32* (1.0-A) +E42-\$NUM2)
R42=\$NUM2*(1.0-A)-D2*(\$NUM2*(1.0-A))
RCT4 = (V푸CT-(E42-\$NUM2))/V
2153 R43 $=\mathrm{E} 43+\mathrm{F}$
GO TO 9000
2200 YL= $(E 21-(C I * \$ N-E 11-E 12-E 21-E 22)\} * A * X 31+E 32 * A * X 32+E 41 * A * X 41+E 42 * A * X$ 242
RCL $=(C L * \$ M-(E 31-(C I * \$ N-E 11-E 12-E 21-E 22))-E 32-E 41-E 42) / \$ \mathrm{M}$
GET=34.0
GO TO 1
2201 \$NUM=E31-(CI*\$N-E11-E12-E21-E22)
SM11-RM11-RET11
SM12=RM12-RET12
SM21=RM21-RET 21
SM22=RM22-RET 22
SM31=RM31-RET31+\$NUM*A
SM32=RM32-RET 32+E32辛A
SM41=RM41-RET41+E41*A
SM42=RM42-RET42+E42 \#A
R11 $=0$
$R 12=0$
R31 $=\$$ NUM $*(1.0-A)$
$\mathrm{R} 41=\mathrm{E} 41$ ㅎ (1.0-A)
R21 $=0$
R22 $=0$
R32 $=E 32 *(1.0-A)-D 2 *(E 32 *(1.0-A))$
R42=E42*(1.0-A)-D2* (E42*(1.0-A))
$R 43=E 43+F$
RCT4=CT
GO TO 9000
2500 IF (CI*\$N-E11-E12-E21-E22-E31.GT.E32)GO TO 3000
YI = E11*Z11+E12*Z12+E21*Z21+E22*Z22+E31*231+(CI*\$N-E11-E12-E21-E22-
2E31)*232
IF(CL*\$M.GT•E32-(CI*\$N-E11-E12-E21-E22-E31)).GO TO 2550
$Y L=C L * \$ M * A * X 32$
GET $=35.0$
GO TO 1
$2501 \$ N U N=C L \geqslant \$ M+(C I * \$ N-E 11-E 12-E 21-E 22-E 31)$
DEN=E41 $+E 42$
SM11=RM11-RET11
CARD
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1713
1714
715
1715
1716
1717
1718
1718
1719
1720
721
1721
1722
1722
1723
1724
1725
1726
1727
1728

```
C0000000011111111111122222222223333333333444444444455555555556666665666777777777778
```

C0000000011111111111122222222223333333333444444444455555555556666665666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
12345678901234567890123456789012345678901234567890123456789012345678901234567890
SM12=RM12-RET12
SM12=RM12-RET12
SM12=RM12-RET12
SM21=RM21-RET 21
SM21=RM21-RET 21
SM21=RM21-RET 21
SM22=RM22-RET 22
SM22=RM22-RET 22
SM22=RM22-RET 22
SM31=RM31-RET31
SM31=RM31-RET31
SM31=RM31-RET31
SM32=RM32-RET32+CL*$M*A
 SM32=RM32-RET32+CL*$M*A
SM32=RM32-RET32+CL*$M*A
 SM41=RM41-RET41
 SM41=RM41-RET41
 SM41=RM41-RET41
 SM42=RM42-RET42
 SM42=RM42-RET42
 SM42=RM42-RET42
 R11=0
 R11=0
 R11=0
 R21=0
 R21=0
 R21=0
 E|IRCH=E11
 E|IRCH=E11
 E|IRCH=E11
 E12RCH=E12
 E12RCH=E12
 E12RCH=E12
 E21RCH=E21
 E21RCH=E21
 E21RCH=E21
 E22RCH=E 22
 E22RCH=E 22
 E22RCH=E 22
 E31RCH=E31
 E31RCH=E31
 E31RCH=E31
 E32RCH=CI*$N-E11-E12-E21-E22-E31
E32RCH=CI*$N-E11-E12-E21-E22-E31
 E32RCH=CI*$N-E11-E12-E21-E22-E31
IF(V\#CT \#E41/DEN.GT.E41)GO TO 2502
IF(V\#CT \#E41/DEN.GT.E41)GO TO 2502
IF(V\#CT \#E41/DEN.GT.E41)GO TO 2502
R31=V*CT*E41/DEN
R31=V*CT*E41/DEN
R31=V*CT*E41/DEN
R4l=E4l-V*CT*E41/DEN
R4l=E4l-V*CT*E41/DEN
R4l=E4l-V*CT*E41/DEN
GO TO 2503
GO TO 2503
GO TO 2503
2502 R31=E41
2502 R31=E41
2502 R31=E41
R41=0
R41=0
R41=0
RCT2=((V\#CT)*(E41/DEN)-E41)/V
RCT2=((V\#CT)*(E41/DEN)-E41)/V
RCT2=((V\#CT)*(E41/DEN)-E41)/V
2503 R 12=0
2503 R 12=0
2503 R 12=0
R22=0
R22=0
R22=0
IF(V*CT*E42/DEN.GT.E42)GO TO 2504
IF(V*CT*E42/DEN.GT.E42)GO TO 2504
IF(V*CT*E42/DEN.GT.E42)GO TO 2504
R 32=E 32-$NUM +V*CT*E42/DEN+CL*$M*(1.O-A)-D2*(E32-$NUM+V#CT*E42/DEN +
 R 32=E 32-$NUM +V*CT*E42/DEN+CL*$M*(1.O-A)-D2*(E32-$NUM+V\#CT*E42/DEN +
R 32=E 32-$NUM +V*CT*E42/DEN+CL*$M*(1.O-A)-D2*(E32-$NUM+V#CT*E42/DEN +
 3CL*$M*(1.0-A))
3CL*$M*(1.0-A))
 3CL*$M*(1.0-A))
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
R42=E42-V*CT*E42/DEN-D2*(E42-V*CT*E42/DEN)
GO TO 2505
GO TO 2505
GO TO 2505
2504 R32=E32-$NUM+E42+CL#$M*(1.0-A)-D 2\#(E32-$NUM+E42+CL*$M*(1.0-A))
2504 R32=E32-$NUM+E42+CL#$M*(1.0-A)-D 2\#(E32-$NUM+E42+CL*$M*(1.0-A))
2504 R32=E32-$NUM+E42+CL#$M*(1.0-A)-D 2\#(E32-$NUM+E42+CL*$M*(1.0-A))
R42=0
R42=0
R42=0
RCT4=((V\#CT)*(E42/DEN)-E42)/V
RCT4=((V\#CT)*(E42/DEN)-E42)/V
RCT4=((V\#CT)*(E42/DEN)-E42)/V
2505 R43=E43 +F
2505 R43=E43 +F
2505 R43=E43 +F
GO TO 9000
GO TO 9000
GO TO 9000
2550 IF(CL*$M-(E32-(CI*$N-E11-E12-E21-E22-E31)).GT.E41) GO TO 2600
2550 IF(CL*$M-(E32-(CI*$N-E11-E12-E21-E22-E31)).GT.E41) GO TO 2600
2550 IF(CL*$M-(E32-(CI*$N-E11-E12-E21-E22-E31)).GT.E41) GO TO 2600
YL=(E32-(CI*$N-E11-E12-E21-E22-E31))*A*X32+(CL*$M-(E32-(CI*$N-E11-
 YL=(E32-(CI*$N-E11-E12-E21-E22-E31))*A*X32+(CL*$M-(E32-(CI*$N-E11-
YL=(E32-(CI*$N-E11-E12-E21-E22-E31))*A*X32+(CL*$M-(E32-(CI*\$N-E11-
2E12-E 21-E 22-E311)I*A*X41
2E12-E 21-E 22-E311)I*A*X41
2E12-E 21-E 22-E311)I*A*X41
GET = 36.0
GET = 36.0
GET = 36.0
GO TO 1
GO TO 1
GO TO 1
2551 $NUM1=E32-(CI*$N-E11-E12-E21-E22-E31)
2551 $NUM1=E32-(CI*$N-E11-E12-E21-E22-E31)
2551 $NUM1=E32-(CI*$N-E11-E12-E21-E22-E31)
\$NUM2=CL.\# \$M- \$NUM1
\$NUM2=CL.\# \$M- \$NUM1
\$NUM2=CL.\# \$M- \$NUM1
DEN=E41 - \$NUM2 +E42
DEN=E41 - \$NUM2 +E42
DEN=E41 - $NUM2 +E42
 SM11=RM11-RET11
 SM11=RM11-RET11
 SM11=RM11-RET11
 SM12=RM12-RET12
 SM12=RM12-RET12
 SM12=RM12-RET12
 SM21=RM21-RET21
 SM21=RM21-RET21
 SM21=RM21-RET21
 SM22=RM22-RET22
 SM22=RM22-RET22
 SM22=RM22-RET22
 SM31-RM31-RET 31
 SM31-RM31-RET 31
 SM31-RM31-RET 31
 SM3 2=RM 32-RET32+$NUM1 *A
SM3 2=RM 32-RET32+$NUM1 *A
 SM3 2=RM 32-RET32+$NUM1 *A
SM41=RM41-RET41+$NUM2*A
 SM41=RM41-RET41+$NUM2*A
SM41=RM41-RET41+$NUM2*A
 SM42=RM42-RET 42
 SM42=RM42-RET 42
 SM42=RM42-RET 42
 R11=0
 R11=0
 R11=0
 R21=0
 R21=0
 R21=0
 IF(V*CT*((E41-$NUM2)/DEN).GT.E41-$NUM2)GO TO 2552
 IF(V*CT*((E41-$NUM2)/DEN).GT.E41-$NUM2)GO TO 2552
 IF(V*CT*((E41-$NUM2)/DEN).GT.E41-$NUM2)GO TO 2552
 R31=V*CT*((E41-$NUM2)/DEN)

```
    R31=V*CT*((E41-$NUM2)/DEN)
```

 R31=V*CT*((E41-$NUM2)/DEN)
    ```
```

00000000011111111111122222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```

12345679901234567890123456789012345678901234567890123456789012345678901234567890

R41=E41-5NUM2-V*CT*( (E41-\$NUM2)/DEN) + \$NUM2* (1.0-A)
GOTO 2553
2552 R31 \(=\) E41-\$ NUM2
\(R 41=\$ N U M 2 *(1.0-A)\)
RCT \(2=((V \neq C T *(E 41-\$ N U M 2) / D E N)-(E 41-\$ N U M 2)) / N\)
2553 R12 \(=0\)
\(R 22=0\)
IF(V*CT*E42/DEN.GT.E42)GO TO 2554
R32 \(=\$\) NUM1* ( \(1.0-A)\) +V*CT*E42/DEN-D2*(\$NUM1*(1.O-A) +V*CT *E42/DEN)
R42=E42-V*CT*E42/DEN-D2* (E42-V*CT*E゙42/DEN)
GOTO 2555
2554 R 32 = \$NUM1*(1.0-A) +E 42-D2* (\$NUM1*(1.0-A) +E42)
R42 \(=0\)
RCT4=((V*CT)*(E42/DEN)-E42)/V
2555 R43=E43+F
GO TO 9000
2600 IF( \(C\) CL* \(\$ M-(E 32-(C I * \$ N-E 11-E 12-E 21-E 22-E 31))-E 41) . G T . E 42) G O\) TO 2650
\(Y L=(E 32-(C I * \$ N-E 11-E 12-E 21-E 22-E 31)) * A * X 32+E 41 * A * X 41+(C L * \$ M-(E 32-(\)
5CI* \(\$ \mathrm{~N}-\mathrm{E} 11-\mathrm{E} 12-\mathrm{E} 21-\mathrm{E} 22-\mathrm{E} 31\) ) \(1-\mathrm{E} 41\) ) * \(\mathrm{A} * \mathrm{~K}_{4} 2\)
GET=37.0
GO TO 1
2601 \$NUM1=E32-(CI*\$N-E11-E12-E21-E22-E31)
\$NUM2 =CL*\$M-\$NUM1-E41
SM11=RM11-RET11
SMI 2=RM12-RET 12
SM21=RM21-RET21
SM2 2=RM22-RET 22
SM31=RM31-RET31
SM32=RM32-RET32+\$NUM1*A
SM41=RM41-RET41+E41*A
SM42=RM42-RET42+\$NUM2*A
R11=0
\(R 21=0\)
\(R 31=0\)
\(\mathrm{R} 41=\mathrm{E} 41\) * \((1.0-\mathrm{A})\)
R12 \(=0\)
R22 \(=0\)
IF (V*CT.GT.E42-\$NUM2)GO TO 2602
R32 \(=\$ \mathrm{~N} U M 1\) * (1.0-A) V * \(\mathrm{CT}-\mathrm{D} 2 *(\$ N U M 1 *(1.0-A)+V * C T)\)
R42=E42-\$NUM2-V*CT+\$NUM2* (1.0-A)-D2*(E42-\$NUM2-V*CT+\$NUM2*(1.0-A))
GO TO 2603
2602 R32 \(=\) \$NUM1 * (1.0-A) +E42-\$NUM 2-D2* (\$NUM1*(1.0-A) +E42-\$NUM2)
R42=\$NUM2*(1.0-A)-D2*(\$NUM2*(1.0-A))
RCT \(4=(V * C T-(E 42-\$ N U M 2)) / V\)
2603 R43 \(=\mathrm{E} 43+\mathrm{F}\)
GO TO 9000
\(2650 \mathrm{YL}=(\mathrm{E} 32-(\mathrm{CI} * \$ \mathrm{~N}-\mathrm{E} 11-\mathrm{E} 12-\mathrm{E} 21-\mathrm{E} 22-\mathrm{E} 311) * \mathrm{~A} * \times 32+E 41 * A * X 41+E 42 * 4 * \times 42\)
RCL = (CL*\$M- \(\operatorname{CE32-(CI*\$ N-E11-E12-E21-E22-E31)~)-E41-E42)/\$ M~}\)
GET=38.0
GOTO 1
2651 \$NUM=E32-(CI*\$N-E11-E12-E21-E22-E31)
SM11=RM11-RET11
SMI 2=RM12-RET 12
SM21=RM21-RET21

CARD
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

CARD
1783
1784
1785
1786
1787
1788
1789 1790
1791
1792
1793
1794
1795
1796
1797
1798 1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816 1817
1818
1819 1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835 1836

SM22=RM22-RET22
SM31=RM31-RET31
SM32 \(=\) RM32-RET \(32+\) \$NUM*A
SM41-RM41-RET41+E41*A.
SM42=RM42-RET42+E42*A
R11 \(=0\)
R21 \(=0\)
R \(31=0\)
\(R 41=E 41 *(1.0-A)\)
R12 \(=0\)
R22 \(=0\)
R42 \(=E 42 *(1.0-A)-D 2 *(E 42 *(1.0-A))\)
\(R 43=E 43+F\)
RCT4=CT
GO TO 9000
3000 IFICI \(\$\) N-E11-E12-E21-E 22-E31-E32.GT.E41)GO TO 3500
\(Y \mathrm{I}=\mathrm{E} 11 * \mathrm{Zl} 1+\mathrm{E} 12 * \mathrm{Z} 12+\mathrm{E} 21 * \mathrm{Z} 21+\mathrm{E} 22 * 222+E 31 * 231+E 32 * \mathrm{Z} 32+(\mathrm{CI}\) * \(\$ \mathrm{~N}-E 11-E 12-\) 6E21-E22-E31-E321*Z41
IF(CL \(\$ \$\) M. GT.E41-(CI * \(\$ N-E 11-E 12-E 21-E 22-E 31-E 32) / G O T O 3050\)
\(Y L=C L * \$ M * A * \times 41\)
GET=39.0
GO TO 1
3001 \$NUMェCL*\$M+(CI*\$N-E11-E12-E21-E22-E31-E32)
\(D E N=E 41-\$ N U M+E 42\)
SM11=RM11-RET11
SM1 2=RM12-RET12
SM21=RM21-RET21
SM22=RM22-RET 22
SM31=RM31-RET31
SM32=RM32-RET 32
SM41-RM41-RET41+CL*\$M*A
SM42=RM42-RET42
R11 \(=0\)
R21 \(=0\)
E11RCH=E11
E12RCH=E12
E21RCH=E21
E22RCH=E22
E31RCH=E31
E32RCH=E32
E41RCH=CI*\$N-E11-E12-E21-E22-E31-E32
\(I F(V * C T *((E 41-\$ N U M) / D E N)\).GT.E41-\$NUM)GD TO 3002
R 31 = V* C T* ( (E41-\$NUM)/DEN)
R4I=E41-\$NUM-V*CT*(
GO TO 3003
3002 R 31-E41-\$NUM
R41 \(=C L * \$ H *(1.0-A)\)
RCT2 \(=\left(\left(V^{*} C T *(E 41-\$ N U M) / D E N\right)-(E 41-\$ N U M)\right) / V\)
3003 R12 \(=0\)
R22 \(=0\)
IF (V*CT*E42/DEN.GT.E42)GOTO 3004
R32 = V *CT*E42/DEN-02* (V*CT*E42/DEN)
\(R 42=E 42-V * C T * E 42 / D E N-D 2 *(E 42-V * C T * E 42 / D E N)\)
GO TO 3005
```

0000000001111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

3004 R 32=E 42-D 2* E42

```
3004 R 32=E 42-D 2* E42
    R42=0
    R42=0
    RCT4=((V*CT)*(E42/DEN)-E42 )/V
    RCT4=((V*CT)*(E42/DEN)-E42 )/V
3005 R 43=E43+F
3005 R 43=E43+F
    GO TO 9000
    GO TO 9000
3050 IF(CL*$M-(E41-(CI*$N-E11-E12-E21-E22-E31-E321).GT.E42)GO TD 3100
3050 IF(CL*$M-(E41-(CI*$N-E11-E12-E21-E22-E31-E321).GT.E42)GO TD 3100
    YL=(E41-(CI*$N-E11-E12-E21-E22-E31-E32))*A*X41+(CL*$M-(E41-(C1*$N-
    YL=(E41-(CI*$N-E11-E12-E21-E22-E31-E32))*A*X41+(CL*$M-(E41-(C1*$N-
    7E11-E12-E21-E22-E31-E32I||A*X42
    7E11-E12-E21-E22-E31-E32I||A*X42
    GET=40.0
    GET=40.0
    GO TO 1
    GO TO 1
3051 $NUM1=E41-(CI*$N-E11-El2-E21-E22-E31-E32)
3051 $NUM1=E41-(CI*$N-E11-El2-E21-E22-E31-E32)
    $NUM 2=CL*$M-$NUM1
    $NUM 2=CL*$M-$NUM1
    SM11=RM11-RET11
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM12=RM12-RET12
    SM21=RM21-RET21
    SM21=RM21-RET21
    SM22=RM22-RET22
    SM22=RM22-RET22
    SM31=RM31-RET31
    SM31=RM31-RET31
    SM32=RM 32-RET32
    SM32=RM 32-RET32
    SM41=RM41-RET41+$NUM1*A
    SM41=RM41-RET41+$NUM1*A
    SM42=RM42-RET42+$NUM2*A
    SM42=RM42-RET42+$NUM2*A
    R11=0
    R11=0
    R21=0
    R21=0
    R31=0
    R31=0
    R41=$NUM1*(1.0-A)
    R41=$NUM1*(1.0-A)
    R12=0
    R12=0
    R22=0
    R22=0
    IFIV*CT.GT.E42-$NUM2I GO TO 3052
    IFIV*CT.GT.E42-$NUM2I GO TO 3052
    R32 = V*CT-D2* (V*CT)
    R32 = V*CT-D2* (V*CT)
    R42=E42-$NUM2*A-V*CT-D2*(E42-$NUM2*A-V*CT)
    R42=E42-$NUM2*A-V*CT-D2*(E42-$NUM2*A-V*CT)
    GO TO 3053
    GO TO 3053
3052 R32=E42-$NUM2-D2*(E42-$NUM2)
3052 R32=E42-$NUM2-D2*(E42-$NUM2)
    R42=$NUM2*(1.0-A)
    R42=$NUM2*(1.0-A)
    RCT4=(V*CT-(E42-$NUM2))/V
    RCT4=(V*CT-(E42-$NUM2))/V
3053 R43=E43+F
3053 R43=E43+F
    GO TO 9000
    GO TO 9000
3100 YL=(E41-(CI*$N-E11-E12-E21-E22-E31-E32))*A*X41+E42*A*X42
3100 YL=(E41-(CI*$N-E11-E12-E21-E22-E31-E32))*A*X41+E42*A*X42
    RCL=(CL*$M-(E41-(CI*$N-E11-E12-E21-E22-E31-E32))-E42)/$M
    RCL=(CL*$M-(E41-(CI*$N-E11-E12-E21-E22-E31-E32))-E42)/$M
    GET=41.0
    GET=41.0
    GOTO1
    GOTO1
3101 $NUM=E41-(CI*$N-E11-E12-E21-E22-E31-E32I
3101 $NUM=E41-(CI*$N-E11-E12-E21-E22-E31-E32I
    SM11=RM11-RET11
    SM11=RM11-RET11
    SM12=RM12-RET12
    SM12=RM12-RET12
    SM2l=RM21-RET21
    SM2l=RM21-RET21
    SM22=RM22-RET 22
    SM22=RM22-RET 22
    SM31=RM31-RET31
    SM31=RM31-RET31
    SM32=RM32-RET32
    SM32=RM32-RET32
    SM41=RM41-RET41+$NUM*A
    SM41=RM41-RET41+$NUM*A
    SM42=RM42-RET42+E42*A
    SM42=RM42-RET42+E42*A
    R11=0
    R11=0
    R21=0
    R21=0
    R31=0
    R31=0
    R41=$NUM*(1.0-A)
    R41=$NUM*(1.0-A)
    R12=0
    R12=0
    R22=0
```

 R22=0
    ```
CARD
1837
1838
839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1868
1870
1871
1871
1872
1873
1874
1874
1875
1876
1877
1878
1379
1880
1881
1882
1883
1884
1885
885
1886
1887
1888
1889
1890

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

\section*{GARD}

1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

R 32 \(=0\)
\(R 42=E 42 *(1,0-A)-02 *(E 42 *(1.0-A))\)
R43=E43+F
RCT4=CT
GO TO 9000
3500 IF(CI* \(\$\) N-E11-E12-E21-E22-E31-E32-E41.GT.E42)GO TO 4000
YI =E11*Z11+E12*Z12+E21*Z21+E22*222+E31*Z31+E32*Z32+E41*241+(CI*5N-
1E11-E12-E21-E22-E31-E32-E41)*Z42
IF(CL*\$M.GT.E42-(CI*\$N-E11-E12-E21-E22-E31-E32-E41))GO TO 3550
\(Y L=C L * \$ M * A * X 42\)
GET \(=42.0\)
GO TO 1
\(3501 \$ \mathrm{NU}\) M \(=\mathrm{CL} * \$ \mathrm{M}+(\mathrm{CI} * \$ \mathrm{~N}-\mathrm{E} 11-\mathrm{E} 12-\mathrm{E} 21-\mathrm{E} 22-\mathrm{E} 31-\mathrm{E} 31-\mathrm{E} 32-\mathrm{E} 41\) )
SM11=RM11-RET11
SM12=RM12-RET12
SM21=RM21-RET21
SM22=RM22-RET22
SM31=RM31-RET22
SM32=RM32-RET 32
SM41=RM41-RE T41
SM42=RM42-RET42+CL*\$M*A
R11=0
R21=0
R31 \(=0\)
R41 \(=0\)
R \(12=0\)
R22 \(=0\)
E11RCH=E11
E12RCH=E12
E21RCH=E21
E22RCH=E22
E31RCH=E31
E32RCH=E32
E41RCH=E41
E42RCH=CI*\$N-E11-E12-E21-E22-E31-E32-E41
IF (V*CT.GT.E42-\$NUM)GO TO 3502
R 32 \(=V\) * \(C T-02 * V * C T\)
R42=E42-\$NUM-V*CT+CL*\$M*(1.0-A)-D2*(E42-\$NUM-V*CT+CL*\$M*(1.0-A))
GO TO 3503
3502 R 32=E42-\$NUM-D 2*(E.42-\$NUM)
R42 \(x\) CL*\$M* (1.0-A)-D2*(CL *M*(1.0-A))
RCT4=(V*CT-(E42-\$NUM))/V
3503 R43=E43+F
GO TO 9000
3550 YL=(E42-(CI*\$N-E11-E12-E21-E22-E31-E32-E41))*A*X42
\(R C L=(C L * \$ M-(E 42-(C I * \$ N-E 11-E 12-E 21-E 22-E 31-E 32-E 41)) / / \$ M\)
GET \(=43.0\)
GD TO 1
3551 \$NJM=E42-(CI*\$N-E11-E12-E21-E22-E31-E32-E41)
SM1L=RM11-RET11
SM12=RM12-RET12
SM2 \(1=\) RM12-RET 21
SM22=RM22-RET22
SM31-RM31-RET31
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

 SM32=RM32-RET32
    ```
    SM32=RM32-RET32
    SM41=RM41-RET41
    SM41=RM41-RET41
    SM42=RM42-RET42+SNUN*A
    SM42=RM42-RET42+SNUN*A
    R11=0
    R11=0
    R21=0
    R21=0
    R31=0
    R31=0
    R41=0
    R41=0
    R12=0
    R12=0
    R22=0
    R22=0
    R32=0
    R32=0
    R42=E42*(1.0-A)
    R42=E42*(1.0-A)
    R43=E43+F
    R43=E43+F
    RCT4=CT
    RCT4=CT
    GO TO 9000
    GO TO 9000
4000 IF(CI*SN-E11-E12-E21-E22-E31-E32-E41-E42.GT.E43)GO TO 4050
4000 IF(CI*SN-E11-E12-E21-E22-E31-E32-E41-E42.GT.E43)GO TO 4050
    YI=E11*Z11+E12*Z12+E22*Z22+E31*231+E32*Z32+E41*Z41+E42*Z42+(CI FSN-
    YI=E11*Z11+E12*Z12+E22*Z22+E31*231+E32*Z32+E41*Z41+E42*Z42+(CI FSN-
    2E11-E12-E 21-E22-E31-E32-E41-E42)* Z43+E21*221
    2E11-E12-E 21-E22-E31-E32-E41-E42)* Z43+E21*221
        YL=0.0
        YL=0.0
    RCL=CL
    RCL=CL
    GET=44.0
    GET=44.0
    GO TO 1
    GO TO 1
4001 SM11=RM11-RET11
4001 SM11=RM11-RET11
    SM12=RM12-RET12
    SM12=RM12-RET12
    SM21=RM21-RET21
    SM21=RM21-RET21
    SM22=RM22-RET22
    SM22=RM22-RET22
    SM31=RM31-RET31
    SM31=RM31-RET31
    SM32=RM32-R ET32
    SM32=RM32-R ET32
    SM41=RM41-RET41
    SM41=RM41-RET41
    SM4 2=RM42-RET42
    SM4 2=RM42-RET42
    R11=0
    R11=0
    R21=0
    R21=0
    R31=0
    R31=0
    R41=0
    R41=0
    R12=0
    R12=0
    R22=0
    R22=0
    R32=0
    R32=0
    R42=0
    R42=0
    R43=E43-(CI*$N-E 11-E12-E21-E22-E31-E32-E41-E42)+F
    R43=E43-(CI*$N-E 11-E12-E21-E22-E31-E32-E41-E42)+F
    El1RCH=E11
    El1RCH=E11
    E12RCH=E12
    E12RCH=E12
    E21RCH=E21
    E21RCH=E21
    E22RCH=E22
    E22RCH=E22
    E3IRCH=E31
    E3IRCH=E31
    E32RCH=E32
    E32RCH=E32
    E41RCH=E41
    E41RCH=E41
    E42RCH=E42
    E42RCH=E42
    E43 R.CH=CI*$N-E11-E12-E21-E22-E31-E32-E41-E42
    E43 R.CH=CI*$N-E11-E12-E21-E22-E31-E32-E41-E42
    GO TO 9000
    GO TO 9000
4050 YI=El1*Z11+E12*Z12+E22*Z22+E 31*Z31*E32*232+E41*241+E42*Z42+E43*243
4050 YI=El1*Z11+E12*Z12+E22*Z22+E 31*Z31*E32*232+E41*241+E42*Z42+E43*243
    1+E21*221
    1+E21*221
    YL=0
    YL=0
    RCI=(CI*$N-E11-E12-E21-E22-E31-E32-E41-E42-E43)/$N
    RCI=(CI*$N-E11-E12-E21-E22-E31-E32-E41-E42-E43)/$N
    RCL=CL
    RCL=CL
    GET=45.0
```

 GET=45.0
    ```
CARD
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
```

00000000011111111111222222222233333333334444444444555555555566666666667777777777B
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```

045078901234567990123456789012345678901234567890123456789012345678901234567890 12345678901234567890123456789012345678901234567890123456789012345678901234567890

4051 SM11=RM11-RET 11 SM12-RM12-RET12 SM21=RM21-RET21 SM2 2=RM 22-RET 22 SM31-RM31-RET31 SM32=RM32-RET32 SM41=RM41-RET41 SM42 =RM42-RE T4 2
R11=0
R21 \(=0\)
\(R 31=0\)
R41 \(=0\)
\(R 12=0\)
R22=0
R \(32=0\)
R42 \(=0\)
R43=F
RCT4=CT
EllRCH=E11
E12RCH=E12
E21RCH=E21
E22RCH=E22
E31RCH=E31
E32RCH=E32
E41 RCH=E4 1
\(\mathrm{E} 42 \mathrm{RCH}=\mathrm{E} 42\)
E43 RCH \(=\mathrm{E} 43\)
GO TO 9000
9000 IF(PVCAL.GT. 1)GO TO 9011
HEl \(1=(E 11 /(E 11+E 21))\)
HE2l=(E21/(E11+E21))
HE31 \(=(E 31 /(E 31+E 41)\}\)
HE41 \(=(E 41 /(E 31+E 41))\)
IF (H.GT. (E11+E2l)/20.0) GO TO 9012
HST \(A Y=1.0\)
GO TO 9011
9012 HSTAY=((E11+E21)/20.0)/H
9011 E11=R11-(R11/20.0) +RET11+HE11*HSTAY*H
E21 \(=\) R21-(R21/20.0) + RET21 + HE21*HST AY*H
E31=R31-(R31/20.0) +RET31+HE31*(R43/5.0)
\(E 41=R 41-(R 41 / 20.0)+R E T 41+H E 41 *(R 43 / 5.0)\)
E 12=R12-(R12/25.0) +(R11/20.0) +RET12
\(E 22=R 22-(R 22 / 25.01+(R 21 / 20.0)+R E T 22\)
\(E 32=R 32-(R 32 / 25.0)+(R 31 / 20.0)+R E T 32\)
\(E 42=R 42-(R 42 / 25.01+(R 41 / 20.0)+R E T 42\)
\(E 43=R 43-(R 43 / 5.01\)
\(\$ I=(R 12+R 22+R 32+R 42) / 25\)
\(\$ M=\$ M 1\)
\(\$ N=\$ N 1\)
\$MBTOT=\$MBTOT-DIOUT+(CL-RCL)/\$MTEL
\(S I 4 P I=((C F / Q O L D)-B) * Q O L D\)
IF (CF/QOLD.GT.B) GD TO 9005
\(W L F B=1 C F / Q Q L D)-D B *(C F / Q O L D)\)

CARD 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
\(B=B-(C F / Q O L D)-C E *(B-(C F / Q O L D))+\$ I+R E T B\)
IF (CP/QDSBL.GT.AL) GO TO 9010
\(W L F A L=(C P / Q D S B L)-D A *(C P / Q D S B L)\)
\(A L=A L-(C P / Q D S B L)-D A *(A L-(C P / Q D S B L))+R E T R\)
GO TO 9100
9005 IF (CP/QDSBL.GT.AL) GC TO 9007
IF ((CP+SIMP 1)/QDSBL.GT.AL)GO TO 9008
WLFB \(=B-D B * B\)
\(B=\$ I+R E T B\)
\(W L F A L=((C P+S I M P 1) / Q D S B L)-D A *((C P+S I M P I) / Q D S B L)\)
\(A L=A L-((C P+S I M P I) / Q D S B L)-D A *(A L-((C P+S I M P 1) / Q D S B L))+R E T R\)
GO TO 9100
9007 WLFB \(=B-D B * B\)
\(B=\$ I+\) RETB
WL.FAL \(=A L-D A * A L\)
\(A L=R E T R\)
\(R C F=((C F / Q O L D)-B S) * Q O L D\)
\(R C P=((C P / Q D S B L)-A L S) * Q D S B L\)
GO TO 9100
9008 WLF \(=3-D B * B\)
\(B=\$ I+R E T B\)
WLFAL =AL-DA*AL
\(A L=R E T R\)
\(R C F=(((C P+S I M P 1) / Q D S B L)-A L S) * Q D S B L\)
GOTO 9100
9010 WLFAL \(=A L-D A * A L\)
\(A L=R E T R\)
\(R C P=((C P / Q O S B L)-A L S) * Q D S B L\)
GO TO 9100
\(9100 \mathrm{RCT}=\mathrm{RCT} 1+\mathrm{RCT} 2+\mathrm{RCT} 3+R C T 4\)
\(T P=A L S+B S+E 11 S+E 12 S+E 21 S+E 22 S+E 31 S+E 32 S+E 41 S+E 42 S+E 43 S+T H S\)
\(T A L=C F+C P+C E+C T+C S+C I+C L\)
\(X Y Z=C F-R C F+C P-R C P+C E-R C E+(C T-R C T) \neq P E R C T+(C F-R C F+C P-R C P+C E-R C E+(C T-\)
\(1 R C T) \neq P E R C T) *(\$ M U L T-1) * P E R P R+((C T-R C T) *(1-P E R C T)+(C L-R C L) \neq P E R L M+C S-\)
1RCS) \(\ddagger(\$ M U L T-1) \neq P E R P R\)
\(Z Y X=(C F+C P+C E-R C F-R C P-R C E+C T-R C T+(C L-R C L) * P E R L M+C S-R C S) *(\$ M U L T-1) *\)
\(1(1-P E R P R)+(C T-R C T) \geqslant(1-P E R C T)+(C L-R C L) * P E R L M+C S-R C S\)
\(Y=Y \cdot I 1+Y I 2+Y I 3+Y 14+Y I 5+Y I 6+Y I 7+Y I 8+Y I 9+Y I 10+Y I 11+Y I 12+Y I 13+\)
\(1 Y I 14+Y I 15+Y I 16+Y I 17+Y I 18+Y I 19+Y I 20+Y L 1+Y L 2+Y L 3+Y L 4+Y L 5+Y L 6+Y L 7+Y L 8\)
\(1+Y L 9+Y L 10+Y L 11+Y L 12+Y L 13+Y L 14+Y L 15+Y L 16+Y L 17+Y L 18+Y L 19+Y L 20+X Y Z\)
\(Y R I C H=((F 1 / A F) * \$ F+(F 2 / A F) * \$ F+(G 1 / A F) * \$ G+(G 2 / A F) * \$ G+(H 1 / A F) * \$ H+(H 2 /\)
IAF) \(\ddagger \$ \mathrm{H}+(\mathrm{H} 3 / A F) \neq \$ \mathrm{H} 3) * \mathrm{RICH}(\mathrm{CI}-\mathrm{RC} I)\)
RICHI=RICH
RICH=RICH/AE
IF (RICH*RCHIN* (CI-RCI).LT.AF)GOTO 9101
F1IN=(F1/AF) *RICH*(CI-RCI)-F1

G1IN=(G1/AF)*RICH\#(CI-RCI)-GI
G2IN \(=(\mathrm{G} 2 / \mathrm{AF}) * \mathrm{RICH} *(\mathrm{CI}-\mathrm{RCI})-\mathrm{G} 2\)
HIIN=(HI/AF) \(\#\) RICH* (CI-RCI)-HI
\(H 2 I N=(H 2 / A F) * R I C H *(C I-R C I)-H 2\)
\(H 3 I N=(H 3 / A F) * R I C H *(C I-R C I)-H 3\)
GO TO 9102
9101 FIIN=RICH*(I-RCHIN)*(CI-RCI)*(F1/AF)
```

0000000001111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
F2IN=RICH*(1-RCHIN)*(CI-RCI)*(F2/AF)
GIIN=RICH*(1-RCHIN)*(CI-RCI)*(G1/AF)
G2IN=RICH*(1-RCHIN)*(CI-RCI)*(G2/AF)
H1IN=RICH*(1-RCHIN)*(CI-RCI)*(HI/AF)
H2IN=RICH*(1-RCHIN)*(CI-RCI)*(H2/AF)
H3IN=RICH*(l-RCHIN)*(CI-RCI)*(H3/AF)
9102 RETRCH=(RCHKID/4.0)*RTRD
SMTRCH=(RCHKID/4.0)-RETRCH
HRCH=(SMTRCH/5.0)-(SMTRCH/5.0)*$MDP
 FRCH=SMTRCH*$MDP
NOWRKD=RCHKID+(Fl+Gl+H1 +H3)*\$MBR-FRCH-HRCH-RETRCH
$NTOT=F1IN+F2IN+G1IN+G2IN+H1IN+H2IN+H3IN
 Fl=Fl+FIIN+(GI/AF)\not=RICH*(CI-RCI)*$G/(FLOW-GLOW)
F2=F2+F2IN+(G2/AF)*RICH*(CI-RCI)*$G/(FLOW-GLOW)
 Gl=G1 +F2IN+(H1/AF)*RICH*(CI-RCI)*$H/(GLOW-2)-(GI/AF)*RICH*(CI-RCI)
1*$G/(FLOW-GLOW)
 G2=G2+G2IN+(H2/AF)*RICH*(CI-RCI)*$H/(GLOW-Q)-(G2/AF)*RICH*(CI-RCI)
1*$G/(FLOW-GLDW)
 HI=H1+H1IN+El|RCH+E2lRCH+E3 1RCH+E4lRCH-(HI/AF)*RICH*(CI-RCI)*$H/
l(GLOW-Q)
H2=H2+H2IN+E12RCH+E22RCH+E3 2RCH+E42RCH-(H2/AF)*RICH*{CI-RCI)*\$H/
l(GLOW-Q)
H3=H3+H3IN+E43RCH
GTLDF2=(F2-F2*D2)/25
GTLDG2=(G 2-G 2\#D2)/25
GTLDH2=(H2-H2\#\#2)/25
F1=F1-F1/20+F2*D2+G TLDF2
F2=F2-F 2*D2-GTLDF 2
G1=G1-G1/20 +G2 \#D2 +GT LDG2
G 2=G 2-G 2*D2-GTLDG2
H1=H1-H/2O+H2*D2+GTLDH2*H1/(H3+H1)
H2=H2-H2*D2-GTLDH2
H3=H3-H3/5+GTLDH2*H3/(H3+H1)
RCHKID=(NOWRKD/AF)*(Fl+F2+Gl+G2+H l+H2+H3)
OLDRCH=OLDRCH-CLDRCH*DB+GTLDF2+GTLDG2 +GTLDH2
AL=AL-(AL/50I +RETRCH
B=B+(AL/50)
WLFB =WLFB +WLFAL/50
WLFAL=WLF AL-WLFAL/50
\$ NEWB = B +WLFB
\$NE WAL=AL+WLFAL
TH=(THS/(TP-THS-BS))*(E11+E 12+E 21+E 22+E31+E32+E41+E42+E43+AL)
WLFTH=(THS/(TP-THS-BS))*WLFAL
$NEWTH=TH+WLFTH
 E43=E43+FRCH
 TRP =AL+B+El l +E 12+E21+E22+E31+E32+E41+E42+E43+TH
 PPY = TRP +PPY
 TOTRCH=F1 +F2 +G1+G2+H1 +H2+H3+OL DRCH+RCHK 1D
 RICH=RICHI
 YRICH=YRICH+ZYX
 GRDSMP=((CL-RCL)/$NTEL)-RETOT 1
IF(TOTRCH+TRP+WLFB+WLFAL+WLFJH+GROSMP-\$NTOT.GT. (TOTRHS +TP)*(1.0+
CGRORT| GO TO 9103
GROW=(TOTRHS +TP)\#(1.0 +GRORT)-(TOTRCH+TRP +WLFB+WLFAL +WLFTH+GROSMP-

```
```

00000000011111111111222222222233333333333444444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
00000000011111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

 C$NTOT)
    ```
    C$NTOT)
        Fl=F1+GROW*F1GRO
        Fl=F1+GROW*F1GRO
        F2=F2 +GROW*F2GRO
        F2=F2 +GROW*F2GRO
        G1=G1+GRO W*G1GRD
        G1=G1+GRO W*G1GRD
        G2=G2+GROW*G2GRO
        G2=G2+GROW*G2GRO
        H1 = H1 +GROW*H1 GRO
        H1 = H1 +GROW*H1 GRO
        H2=H2+GROW*H2GRC
        H2=H2+GROW*H2GRC
        H3=H3+GROW*H3GRO
        H3=H3+GROW*H3GRO
        OLDRCH=OLDRCH+GROW* OL DGRO
        OLDRCH=OLDRCH+GROW* OL DGRO
        RCHKID=RCHKID+GROW*RHKGRO
        RCHKID=RCHKID+GROW*RHKGRO
        TOTRCH=F1+F2+G1+G2+H1+H2+H3+OLDRCH+RCHKID+WLFAL+WLFB+WLFTH
        TOTRCH=F1+F2+G1+G2+H1+H2+H3+OLDRCH+RCHKID+WLFAL+WLFB+WLFTH
9103 IF (PVCAL.EQ.1.0) GO TO 9301
9103 IF (PVCAL.EQ.1.0) GO TO 9301
    IF (PVCAL.EQ.2) GO TO 9302
    IF (PVCAL.EQ.2) GO TO 9302
    IF (PVCAL.EQ.3) GO TO 9303
    IF (PVCAL.EQ.3) GO TO 9303
    IF (PVCAL.EQ.4) GO TO 9304
    IF (PVCAL.EQ.4) GO TO 9304
    IF (PVCAL.EQ.5) GO TO 9305
    IF (PVCAL.EQ.5) GO TO 9305
    IF (PVCAL.EQ.6) GO TO 9306
    IF (PVCAL.EQ.6) GO TO 9306
    IF (PVCAL.EQ.7) GO TO 9307
    IF (PVCAL.EQ.7) GO TO 9307
    IF (PVCAL.EQ.8) GO TO 9308
    IF (PVCAL.EQ.8) GO TO 9308
    IF (PVCAL.EQ.9) GO TO 9309
    IF (PVCAL.EQ.9) GO TO 9309
    IF (PVCAL.EQ&10) GO TO 9310
    IF (PVCAL.EQ&10) GO TO 9310
    IF (PVCAL.EQ.11) GO TO 9311
    IF (PVCAL.EQ.11) GO TO 9311
    IF (PVCAL.EQ.12) GO TO 9312
    IF (PVCAL.EQ.12) GO TO 9312
    IF (PVCAL.EQ.13) GO TO 9313
    IF (PVCAL.EQ.13) GO TO 9313
    IF (PVCAL.EQ.14) GO T0 9314
    IF (PVCAL.EQ.14) GO T0 9314
    IF (PVCAL.EQ.15) GO TO 9315
    IF (PVCAL.EQ.15) GO TO 9315
    IF (PVCAL.EQ.16) GO TO 9316
    IF (PVCAL.EQ.16) GO TO 9316
    IF (PVCAL.EQ.17) GO TO 9317
    IF (PVCAL.EQ.17) GO TO 9317
    IF (PVCAL.EQ.18) GO TO 9318
    IF (PVCAL.EQ.18) GO TO 9318
    IF (PVCAL.EQ.19) GO TO 9319
    IF (PVCAL.EQ.19) GO TO 9319
    IF (PVCAL.EQ.20) GO TO 9320
    IF (PVCAL.EQ.20) GO TO 9320
9301. Y1=Y
9301. Y1=Y
    COST1=T AL
    COST1=T AL
    YRCHI=YRICH
    YRCHI=YRICH
    YTOT1=Y+YRCHL
    YTOT1=Y+YRCHL
    YTOT=YTOT1
    YTOT=YTOT1
    YRCH1=YRICH-ZYX
    YRCH1=YRICH-ZYX
    GO TO 9329
    GO TO 9329
9302 Y2=Y
9302 Y2=Y
    COST2=TAL
    COST2=TAL
    YRCH2=YRICH
    YRCH2=YRICH
    YTOT2=Y +Y RCH1 +YRCH2
    YTOT2=Y +Y RCH1 +YRCH2
    YTOT=YTOT2
    YTOT=YTOT2
    YRCH2=YRICH-ZYX
    YRCH2=YRICH-ZYX
    GO TO }932
    GO TO }932
9303 Y3=Y
9303 Y3=Y
    COST 3=TAL
    COST 3=TAL
    YRCH3=YRICH
    YRCH3=YRICH
    YTOT3=Y+YRCH1+YRCH2 +YRCH3
    YTOT3=Y+YRCH1+YRCH2 +YRCH3
    YTOT=YTOT 3
    YTOT=YTOT 3
    YRCH3 =YRICH-ZYX
    YRCH3 =YRICH-ZYX
    GO TO 9329
    GO TO 9329
9304 Y4=Y
9304 Y4=Y
    COST4=TAL
```

 COST4=TAL
    ```


2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210
```

```
000000000111111111111222222222333333333344444444445555555555666666666677777777778
```

```
000000000111111111111222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

 YTOT4=Y Y YRCH1+YRCH 2+YRCH 3+YRCH4
    ```
    YTOT4=Y Y YRCH1+YRCH 2+YRCH 3+YRCH4
    YTOT=YTOT4
    YTOT=YTOT4
    YRCH4=YRICH-ZYX
    YRCH4=YRICH-ZYX
    GO TO 9329
    GO TO 9329
9305 Y5=Y
9305 Y5=Y
    COST5=TAL
    COST5=TAL
    YRCH5=YRICH
    YRCH5=YRICH
    YTOT5 =Y +YRCH1 +YRCH2 +YRCH3 +YRCH4 +YRCH5
    YTOT5 =Y +YRCH1 +YRCH2 +YRCH3 +YRCH4 +YRCH5
    YTOT=YTOT5
    YTOT=YTOT5
    YRCH5=YRICH-ZYX
    YRCH5=YRICH-ZYX
    GO TO 9329.
    GO TO 9329.
9306 Y6=Y
9306 Y6=Y
    COST6=TAL
    COST6=TAL
    YRCH6=YRICH
    YRCH6=YRICH
    YTOT6 = Y +YRCH1+YRCH2+YRCH3+YRCH4+YRCH5 +YRCH6
    YTOT6 = Y +YRCH1+YRCH2+YRCH3+YRCH4+YRCH5 +YRCH6
    YTOT=YTOT }
    YTOT=YTOT }
    YRCH6 =YRICH-2YX
    YRCH6 =YRICH-2YX
    GO TO 9329
    GO TO 9329
9307 Y7=Y
9307 Y7=Y
    COST7=TAL
    COST7=TAL
    YRCH7=YRICH
    YRCH7=YRICH
    YTOT7 = Y +YRCH1 +YRCH2+YRCH3+YRCH4+YRCH5+YRCH6+YRCH7
    YTOT7 = Y +YRCH1 +YRCH2+YRCH3+YRCH4+YRCH5+YRCH6+YRCH7
    YTOT=YTOT7
    YTOT=YTOT7
    YRCH7=YRICH-ZYX
    YRCH7=YRICH-ZYX
    GO TO 9329
    GO TO 9329
9308 Y8=Y
9308 Y8=Y
    COST8=TAL
    COST8=TAL
    YRCHB=YRICH
    YRCHB=YRICH
    YTOT8= Y +YRCH1 + YRCH2 + YRCH3 + YRCH4 +YRCH5 +YRCH6 +YRCH7 +YRCH3
    YTOT8= Y +YRCH1 + YRCH2 + YRCH3 + YRCH4 +YRCH5 +YRCH6 +YRCH7 +YRCH3
    YTOT=YTDT&
    YTOT=YTDT&
    YRCH8=YRICH-ZYX
    YRCH8=YRICH-ZYX
    GO TO 9329
    GO TO 9329
9305 Y9=Y
9305 Y9=Y
    COST9=TAL
    COST9=TAL
    YRCH9=YRICH
    YRCH9=YRICH
    YTOT9 = Y +YRCH1 +YRCH2+YRCH3+YRCH4 +YRCH5+YRCH6 +YREH7+YRCH8+YRCH9
    YTOT9 = Y +YRCH1 +YRCH2+YRCH3+YRCH4 +YRCH5+YRCH6 +YREH7+YRCH8+YRCH9
    YTOT=YTOT 9
    YTOT=YTOT 9
    YRCH9=YRICH-ZYX
    YRCH9=YRICH-ZYX
    GO TO 9329
    GO TO 9329
9310 Y10=Y
9310 Y10=Y
    COST10=TAL
    COST10=TAL
    YRCH1O=YRICH
    YRCH1O=YRICH
    YTOT10=Y+YRCH1 +YRCH2+YRCH3+YRCH4+YRCH5+YRCH6 +YRCH7 +YRCH8 +YRCH9 +
    YTOT10=Y+YRCH1 +YRCH2+YRCH3+YRCH4+YRCH5+YRCH6 +YRCH7 +YRCH8 +YRCH9 +
    1YRCH1O
    1YRCH1O
        YTOT=YTOT1O
        YTOT=YTOT1O
        YRCHIO=YRICH-ZYX
        YRCHIO=YRICH-ZYX
        GO TO 9329
        GO TO 9329
9311 Y11=Y
9311 Y11=Y
    COST11=TAL
    COST11=TAL
    YRCHLI=YRICH
    YRCHLI=YRICH
    YTOT11 = Y +YRCH1 +YRCH2+YRCH3+YRCH4 +YRCH5 +YRCH6 +YRCH7 +YRCH8 +YRCH9 +
    YTOT11 = Y +YRCH1 +YRCH2+YRCH3+YRCH4 +YRCH5 +YRCH6 +YRCH7 +YRCH8 +YRCH9 +
    IYRCHIO+YRCHII
    IYRCHIO+YRCHII
    YTOT=YTOT11
```

 YTOT=YTOT11
    ```
CARD
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
228
2228
2229
2230
230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2255
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268

\section*{2215
2216 \\ 2216 \\ 2216 \\ 2217}

2218
2219
2220
2221
2222
2223
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2255
2257
2258
2259
2260
2261
2262
2263 2264 2265 2266
2267 2268
        YRCHLI=YRICH-ZYX
        GO TO 9329
    9312 Y 12=Y
        COST12=TAL
        YRCH12=YRICH
        YTOT \(12=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
        \(1 Y R C H 10+Y R C H 11+Y R C H 12\)
        YTOT=YTOT12
        YRCH12=YRICH-ZYX
        GO TO 9329
    \(9313 \mathrm{Y} 13=\mathrm{Y}\)
        \(\operatorname{COST} 13=T A L\)
        YRCH13=YRICH
        YTOT \(13=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
        1 YRCH1O+YRCH11+YRCH12+YRCH13
        YTOT=YTOT 13
        YRCH13=YRICH-Z \(X X\)
        GO TO 9329
\(9314 \mathrm{Y} 14=\mathrm{Y}\)
            COST14=TAL
            YRCH14=YRICH
        YTOT14 \(=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y F C H 9+\)
    1 YRCH1O + YRCH11 + YRCH12+YRCH13+YRCH14
        YTOT = YTOT 14
        YRCH14= YR ICH-ZYX
        GO TO 9329
5315 Y15 = Y
    COST15=TAL
        YRCH15 =YRICH
        \(Y\) YOT15 \(=\mathrm{Y}+\mathrm{YRCH} 1+Y \mathrm{RCH} 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
        1 YRCH10+YRCH11+YRCH12+YRCH13+YRCH14+YRCH15
        YTOT=YT OT 15
        YRCH \(15=Y\) ICH-ZYX
        GO TO 9329
\(9316 \mathrm{Y} 16=\mathrm{Y}\)
        COST16=TAL
        YRCH1 \(6=Y\) ICH
        \(Y\) TOT16 \(=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
        IYRCH1 O+YRCH11+YRCH12+YRCH13+YRCH14+YRCH15+YRCH16
        YTOT=YTOT 16
        YRCH16=YRICH-ZYX
        GO TO 9329
9317 Y17 = Y
        COST17=TAL
        YRCH17=YRICH
        YTOT \(17=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
        1 YRCH10 1 YRCH \(11+Y R C H 12+Y R C H 13+Y R C H 14+Y R C H 15+Y R C H 16+Y R C H 17\)
        YTOT=YTOT 17
        YRCHIT=YRICH-ZYX
        GO TO 9329
\(9318 \mathrm{Y} 18=\mathrm{Y}\)
    COST18=TAL
    YRCHIB=YRICH
    \(Y T O T 18=Y+Y R C H 1+Y R C H 2+Y R C H 3+Y R C H 4+Y R C H 5+Y R C H 6+Y R C H 7+Y R C H 8+Y R C H 9+\)
```

000000000111111111112<222222223333333333444444444455555555556666666666777777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
IYRCH10+YRCH11+YRCH12+YRCH13+YRCH14+YRCH15+YRCH16+YRCH17+YRCH18
YTOT=YTOT 18
YRĆH18= YRICH-ZYX
GO TO }932
9319 Y19=Y
CDST19= TAL
YRCH19=YRICH*
YTOT19 = Y+YRCH1 +YRCH2+YRCH3 +YRCH4+YRCH5 +YRCH6 +YRCH7 +YRCH8 +YRCH9 +
1YRCH10+YRCH11+YRCH12+YRCH13+YRCH14+YRCH15+YRCH1 6 +YRCH17 +YRCH18 +
1YRCH19
YTOT=YTOT 19
YRCH19=YRICH-ZYX
GO TO 9329
9320 Y20=Y
COST20=TAL
YRCH20=YRICH
YTOT20 = Y +YRCH1 +YRCH 2+YRCH3+YRCH4+YRCH5+YRCH6 +YRCH7 +YRCH8 +YRCH9 +
1 YRCH1O +YRCH1 1 +YRCH1 2+YRCH13+YRCH14+YRCH15+YRCH16+YRCH17+YRCH1 8+
1 YRCH19+YRCH2O
YTOT=YTOT 20
YRCH2O=YRICH-ZYX
GO TO 9329
9329 PVY=Y1+(Y2/((1+DSCNT)**1))+(Y3/((1+DSCNT)**2))+(Y4/((1+DSCNT)**3)
1)+(Y5/((1+DSCNT)**4)) +(Y6/((1+DSCNT)**5))+(Y7/((1+DSCNT)**6))+
l(Y8/((l+DSCNT)**7))+(Y9/((l+DSCNT)**8))+(Y1l/((l+DSCNT)**lO))+
l(Y12/((1+DSCNT)**11))+(Y13/((1+DSCNT)** 12))+(Y14/((1+DSCNT)**13))
l+(Y15/((1+DSCNT)**14))+(Y16/((1)+DSCNT)**15))+(Y17/((1+DSCNT)**16))
1+(Y18/((1+DSCNT)**17))+(Y19/((1+DSCNT)**18))+(Y20/((1+DSCNT)**19))
1+(Y10/((1+DSCNT)*\#9))
D=1+OSCNT
PVYTOT=YTOT 1+(YTOT2/D) +(YTOT3/D**2) +(YTOT4/D**3) +(YTOT5/D**4) +
1(YTOT6/D**5) +(YTOT7/D**6) +(YTOT8/D**7) +(YTOT 9/)**8) +(YTDT10/D**9) +
1(YTOT11/D**10) +(YTOT12/D**11) +(YTOT13/D**12) +(YTOT14/D**13)+
1(YTOT 15/D**14) +(YTOT16/D**15) +(YTOT17/D**16) +(YTOT18/D**17) +
1(YTOT19/D**18) +(YTOT20/D**19)
P VCOST=COSTl+(COST2/D)+(COST3/D**2) +(COST4/D**3) +(COST5/D**4) +
1(COST6/D**5)+(COST7/D**6)+(COST 8/D**7)+(COST9/D**8)+(COST10/D**9) +
1(COST11/D**10)+(COST12/D**11)+(COST13/D**12)+(COST14/D**13)*
1(COST15/D**14) +(COST16/D**15)+(COST17/D**16)+(こOST18/D**17) +
1(COST19/D**18)+(COST20/0**19)
IF(PVCOST.EQ.O.CIGO TO 9350
BCPOOR=PVY/PVCOST
BCTOT=PVYTOT / P VCOST
GO TO 9351
9350 BCPOOR=0.0
BCTOT=0.0
9351 CONTINUE
9328 CSTEL=(($NEWAL/2+E11+E21+E31+E41+E43)*(G-$YBR))/DCR
SMRTl=($NEWTH/4.0)-($NEWTH/4)\#RTRD
CETEL=(SMRTl*(S-\$MDP))/U
9353 YEAR=PVCAL
PVCAL=PVCALL+1
WLFCAP=(CF+CP)/(TOTRHS+TP)
NDX = XNDX

```
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
XNDXA(NDX)=XNDX
TALA(NDX) =TAL
TOPOPA(NDX) =TOTRHS+TP
TOPRA(NDX)=TP
PPYA (NDX) =PPY
BCPRA (NDX)= BCPOOR
BCTOTA(NDX)=BCTOT
WLFYSA(NDX) =WLFAL+WLFB
WLFNOA (NDX) =AL +B
TOWLFA(NDX)=CF+CP
WLFCPA(NDX) =WLFCAP
TOPOAL (NDX)=TOTRCH+TRP
TOPRAL (NDX) =TRP
9500 WRITE(6,10042) XNDX
0042 FORMAT('1
10043 FORMAT(;
WRITE(6,9501)
9501 FORMAT(' STARTING SITUATION:')
WRITE(6,10039)

```

```

 WRITE(6,9523)TOTRHS
 9523 FORMAT('0',/,' TOTAL NONPOOR ',F25.0)
WRITE(6,9524) OLDRHS
9524 FOPMAT('O1,%,' NUMBER OF NONPOOR OVER. AGE 65 ',F25.0)
WRITE(6,95.25)FIS
9525 FORMAT(' NUMBER OF HIGH INCCME NONPOOR--AGE 20--39 ',F25.0)
WRITE (6,9526)F2S
9526 FORMAT(' NUMBER OF HIGH INCOME NONPOOR--AGE 40--64 ',F25.0)
WRI TE(6,9527)GIS
9527 FORMAT(' NUMBER OF MEDIUM INCOME NONPOOR--AGE 20--39,;F25.01
WRITE(6,9528)G2S
9528 FORMAT(: NUMBER OF MEDIUM INCOME NONPOOR--AGE 40--64 ',F25.0)
WRITE(6,9529)H1S
9529 FORMAT(' NUMBER CF LOW INCCME NCNPOOR--AGE 20--39 ',F25.0)
WRITE(6,9530)H2S
9530 FORMAT(' NUMBER OF LOW INCOME NONPQOR--AGE 40--64 ',F25.0)
WRITE(6,9531)H3S
9531 FORMAT(' NUMBER OF.LOW INCOME NONPOOR--AGE 15--19.',F25.01
WRITE(6,7532)RCHKDS
9532 FORMAT(' NUMBER OF NONPOOR CHILDREN AND STUDENTS BELOW 19 *,F25.0)
WRITE(6,9515)TP
9515 FORMAT('0',/,' TCTAL POOR ',F25.0)
WRITE(6,9502)ALS
9502 FORMAT('0',/,' NUMBER OF UNSALVAGABLE POOR--AGE 15--64 ',F 25.0)
WRITE(6,9503)BS
9503 FORMAT(' NUMBER OF UNSALVAGABLE POOR AGE 65 AND OVER ',F25.0)
WRITE(6,9504)E11S
9504 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL AND TRAINING--
CAGE 20--39 1,F25.01
WRITE(6,9505)E12S
9505 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL AND TRAINING--
CAGE 40--64 ',F25.0)
WRITE(6,950.6)E21S

```
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
```

```
000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
```

12345678901234567890123456789012345678901234567890123456789012345678901234567890

```
```

5506 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL BUT NO TRAININ

```
5506 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL BUT NO TRAININ
        CG--AGE 20--39 ',F25.01
        CG--AGE 20--39 ',F25.01
        WRITE(6,9507)E22S
        WRITE(6,9507)E22S
    9507 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL BUT NO TRAININ
    9507 FORMAT(' NUMBER OF SALVAGABLE POOR WITH HIGH SCHOOL BUT NO TRAININ
        CG--AGE 40--64 !,F25.01
        CG--AGE 40--64 !,F25.01
        WRITE(6,9508)E31S
        WRITE(6,9508)E31S
    9508 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL BUT TRAININ
    9508 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL BUT TRAININ
        CG--AGE 20--39 1,F25.0)
        CG--AGE 20--39 1,F25.0)
        WRITE(6,9509)E32S
        WRITE(6,9509)E32S
    9509 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL BUT TRAININ
    9509 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL BUT TRAININ
        CG--AGE 40--64 ',F25.0)
        CG--AGE 40--64 ',F25.0)
        WRITE(6,9510)E41S
        WRITE(6,9510)E41S
9510 FORMATI' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
9510 FORMATI' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
    CNING--AGE 20--39 ',F25.0)
    CNING--AGE 20--39 ',F25.0)
        WRI TE(6,9511)E42S
        WRI TE(6,9511)E42S
9511 FORMÁT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
9511 FORMÁT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
    CNING--AGE 40--64 ',F25.0)
    CNING--AGE 40--64 ',F25.0)
        WRITE(6,9512)E43S
        WRITE(6,9512)E43S
    9512 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL ANJ NO TRAI
    9512 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL ANJ NO TRAI
        CNING--AGE 15--19 ',F25.0)
        CNING--AGE 15--19 ',F25.0)
        WRITE(6,9513)THS
        WRITE(6,9513)THS
9513 FORMAT(' YOUNG CHILDREN AND STUDENTS LESS THAN AGE 19 *,F25.0)
9513 FORMAT(' YOUNG CHILDREN AND STUDENTS LESS THAN AGE 19 *,F25.0)
        WRITE(6,9516)Y
        WRITE(6,9516)Y
9516 FORMAT('O',/,' INCOME TO POOR FROM ALL PROJECTS THIS YEAR ',F25.O)
9516 FORMAT('O',/,' INCOME TO POOR FROM ALL PROJECTS THIS YEAR ',F25.O)
        WRITE(6,9517).YTCT
        WRITE(6,9517).YTCT
9517 FORMAT('O', /,' TOTAL REGIONAL I NCOME FROM ALL PROJECTS THIS YEAR.'
9517 FORMAT('O', /,' TOTAL REGIONAL I NCOME FROM ALL PROJECTS THIS YEAR.'
    C,F25.0)
    C,F25.0)
        WRI TE(6,9514)P VY
        WRI TE(6,9514)P VY
    9514 FORMAT('0',/'' PRESENT VALUE OVER TIME OF INCOME TO POOR FROM ALL
    9514 FORMAT('0',/'' PRESENT VALUE OVER TIME OF INCOME TO POOR FROM ALL
        CPROJECTS 1,F25.0)
        CPROJECTS 1,F25.0)
        WRI TE(6,9518) PVYTOT
        WRI TE(6,9518) PVYTOT
    9518 FORMAT('O',/,' PRESENT VALUE OVER TIME OF TOTAL REGIONAL INCOME FR
    9518 FORMAT('O',/,' PRESENT VALUE OVER TIME OF TOTAL REGIONAL INCOME FR
        COM ALL PROJECTS ', F25.0)
        COM ALL PROJECTS ', F25.0)
        WRI TE (6,9522HPPY
        WRI TE (6,9522HPPY
    9522 FORMAT ('0',/'' PERSON POVERTY YEARS ACCUMULATED ',F25.0)
    9522 FORMAT ('0',/'' PERSON POVERTY YEARS ACCUMULATED ',F25.0)
        WRITE(6,10000) CF
        WRITE(6,10000) CF
10000 FORMAT('0',/', ALlOCATION TO UNSALVAGABLE PQOR OVER AGE 65 ',
10000 FORMAT('0',/', ALlOCATION TO UNSALVAGABLE PQOR OVER AGE 65 ',
    CF25.0)
    CF25.0)
        WRI TE(6,10001)CP
        WRI TE(6,10001)CP
10001 FDYMAT(' ALLOCATION TO UNSALVAGABLE POOR--AGE 15--64 !,F25.0)
10001 FDYMAT(' ALLOCATION TO UNSALVAGABLE POOR--AGE 15--64 !,F25.0)
        WRITE(6,10002)CE
        WRITE(6,10002)CE
10002 FORMAT(! ALLOCATICN TO EDUCATION ',F25.0)
10002 FORMAT(! ALLOCATICN TO EDUCATION ',F25.0)
        WRITE(6,10003)CT
        WRITE(6,10003)CT
10003 FORMAT(' ALLOCATION TO TRAINING ',F25.0)
10003 FORMAT(' ALLOCATION TO TRAINING ',F25.0)
        WRI TE(6,10004)CS
        WRI TE(6,10004)CS
10004 FORMAT(' ALLOCATION TO FAMILY PLANNING *,F25.0)
10004 FORMAT(' ALLOCATION TO FAMILY PLANNING *,F25.0)
        WRITE(6,10005)CI
        WRITE(6,10005)CI
10005 FORMAT(' ALLOCATION TO INDUSTRIALILATION ',F25.0)
10005 FORMAT(' ALLOCATION TO INDUSTRIALILATION ',F25.0)
    WRITE(6,10006)CL
    WRITE(6,10006)CL
10006 FORMAT(' ALLOCATICN TO LABOR MOBILITY ',F25.0)
10006 FORMAT(' ALLOCATICN TO LABOR MOBILITY ',F25.0)
    WRITE(6,10022) TAL
    WRITE(6,10022) TAL
10022 FORMAT('O',/,' TOTAL ALLOCATION ',F F25.0)
10022 FORMAT('O',/,' TOTAL ALLOCATION ',F F25.0)
    WRITE (6,10047)WLFCAP
    WRITE (6,10047)WLFCAP
10047 FORMAT ('0',1,' WELFARE EXPENDITURE PER CAPITA ',F25.0)
```

10047 FORMAT ('0',1,' WELFARE EXPENDITURE PER CAPITA ',F25.0)

```

```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
CG-AGE 40--64,F25.01
CG-AGE 40--64,F2
10014 FORMAT(' NUMBER OF SALVAGABLE PODR WITH NO HIGH SCHOOL BUT TRAININ
CG--AGE 20--39 ',F25.0)
WRITE(6,10015)E32
10015 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL BUT TRAININ
CG--AGE 40--64 , F25.0)
WRITE(6,10016)E41
10016 FORMAT(" NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
CNING--AGE 20--39 ',F25.0)
WRITE(6,10017)E42
10017 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
CNING--AGE 40--64 ',F25.0)
WRITE(6,10018)E43
10018 FORMAT(' NUMBER OF SALVAGABLE POOR WITH NO HIGH SCHOOL AND NO TRAI
CNING=-AGE 15-19*,F25.0)
WRITE(6,10019)TH
10019 FORMAT(' YOUNG CHILDREN AND STUDENTS LESS THAN AGE 19 ',F25.0)
11000 FORMAT (F25.8,51X,F4.0)
11002 FORMAT(3F25.0,1X,F4.0)
11001 FORMAT(F25.8,2X,F10.0,39X,F4.0)
11003 FORMAT (2 F20.0,36X;F4.0)
11004 FORMAT(2F25.0,26X,F4.0)
11005 FORMATIF25.0,F25.8,26X,F4.0)
WRITE(7,11001) \$NEWAL, PPY, XNDX
WRITE(7,11003) \$NEWB, OLDRCH, XNDX
WRITE(7,11003)E11,F1, XNDX
WRITE(7,111003)E12,F2, XNDX
WRITE(7,11003)E21,G1, XNDX
WRITE(7,11003)E22,G2,XNDX
WRITE(7,11003) E31,H1;XNDX
WRITE(7,11003)E32,H2, XNDX
WRITE(7,11003)E41,H3, XNDX
WRITE(7,11003)E42,RCHKID,XNDX
WRITE(7,11003)E42,RCHKID,XNDX
WRITE(7,11003)E43,QOLD, XNDX
WRITE(7,11003) \$NEWT H,QDSBL, XNDX
WRITE(7,11004) YI 1,COST1,XNDX
WRITE(7,11004)YI2,COST2,XNOX
WRITE(7,11004)YI3;COST3,XNDX
WRITE(7,11004) YI4,COST4,XNDX
WRITE(7,11004)YI5,COST5,XNDX
WRITE(7,11004)YI6,COST6 XNDX
WRITE(7,11004)YI 7,COST7,XNDX
WRITE(7,11004)YI8,COST8,XNDX
WRITE(7,11004) YI 9,COST9;XNDX
WRITE(7,11004) YI 10,COST10,XNDX
WRITE(7,11004)YIII, COST11,XNDX
WRITE(7,11004)YI12,COST12,XNDX
WRITE(7,11004)YI13,COST 13,XNDX
WRITE(7,11004)YI14,COST14,XNDX
WRITE(7,11004)YI15,COST15;XNDX
WRITE(7,11004)YII6,COST 16,XNDX
WRITE(7,11004)YI17,COST17,XNDX
WRITE(7, 11004)YI18,COST18,XNDX

```
CARD
2539
2541
2542
2544
2545
2547
2550
2551
2552
2553
2554
2556
2556
2560
2562
2563
2565
2566
2568
2569
2570
2571
2574
2376
2577
2579
2582
2585
2586
2587
2588
2590
2592

0000000001111111111222222222333333333344444444445555555555666666666677777777778 12345678901234567890123456789012345678901234567890123456789012345678901234567890

WRITE(7, 11004) YI 19, COST 19, XNDX
WRITE(7,11004)YLI,COST20, XNDX
WRI TE (7,11005) YL2,HE11, XNDX
WRITE(7,11005) YL 3, HE21, XNDX
WRITE(7,11005) YL4, HE31,XNDX
WRITE(7,11005) YL5,HE41, XNDX
WRITE(7,11005) YL6, HSTAY, XNDX
WRI TE \((7,11005)\) YLT, OLDGRO,XNOX
WRITE(7,11005) YL \(8, F\) 1GRO, XND X
WRITE(7,11005)YL9,F2GRO, XNDX
WRI TE (7,11005) YL10,G1GRO,XNDX
WRITE (7,11005) YL11,G2GRO, XNDX
WRITE(7,11005)YL12, H1 GRO, XNDX
WRITE (7,11005) YL13, H2GRO, XNDX
WRITE(7,11005)YL14, H3GRO, XNDX
WRI TE(7,11005)YL15,RHKGRO,XNDX
WRITE(7,11005) YL16, \$MBTOT, XNDX
WRITE(7,11005)YL17, RETTOT, XNDX
WRI TE (7,11000) YL18, XNDX
WRITE(7,11000) YL19, XNDX
WRITE(7,11000)SM11, XNDX
WRITE17,11000) SM1 2, XNDX
WRITE (7,11000) SM 21, XNDX
WRITE (7,11000)SM22, XNDX
WRI TE (7,11000) SM31, XNDX
WRITE(7,11000)SM32, XNDX
WRI TE ( 7,11000 ) SM4 1, XNDX
WR I TE (7, 11004) SM42, RMB, XNDX
WRITE (7, 11002 )Y 1, YRCH1, YTOT \(1, X N D X\)
WRITE (7,11002)Y2,YRCH2,YTOT \(2, X N D X\)
WRITE (7, 11002 )Y3, YRCH3, YTOT 3 , XNDX
WRITE \((7,11002) Y 4, Y R C H 4, Y T O T 4, X N O X\)
WRI TE ( 7, 11002 )Y5, YRCH5, YTOT5,XNDX
WRITE (7, 11002)Y6, YRCH6; YTOT6, XNDX
WRITE (7,11002)Y7,YRCH7,YTOT7,XNDX
WRITE \((7,11002)\) Y8,YRCH8,YTOT \(8, X N D X\)
WRITE (7,11002)Y9,YRCH9,YTOT9,XNDX
WRI TE \((7,11002) Y 10, Y R C H 10, Y T O T 10, X N O X\)
WRITE (7,11002)Y11, YRCH11, YTOT11,XNDX
WRITE (7,11002)Y12,YRCH12,YTOT12, XVDX
WRITE \((7,110021\) Y13, YRCH13,YTOT13,XNDX
WRITE \((7,11002)\) Y14, YRCH14, YTOT14, XNOX
WRITE (7,11002)Y15,YRCH15, YTOT15,XNDX
WRITE \((7,11002)\) Y16, YRCH16, YTOT16, XNDX
WRITE (7,11002)Y17, YRCH17,YTOT17,XNDX
WRITE \((7,11002) Y 18, Y R C H 18, Y T O T 18, X N D X\)
WRITE (7,110021Y19, YRCH19,YTOT19,XNDX
WRITE (7,11002)Y20, YRCH20, YTOT 20, XNDX
WRITE \((7,11000)\) \$NO,XNDX
WRITE(7,11000) PVCAL, XNDX
WRITE \((6,12000)\) RCF
12000 FORMAT( \({ }^{\prime \prime} 0^{\prime \prime}, 1\) ' FUNDS REMAINING--UNSALVAGABLE POOR OVER AGE \(65 \quad 1\), CF25.0)
WRI TE (6, 12001) RCP

\section*{80/80 LIST}
```

000000000111111111112222222222333333333344444444445555555555666666666677777777778
12345678901234567890123456789012345678901234567890123456789012345678901234567890
12001 FORMAT'' FUNOS REMAINING--UNSALVAGABLE POOR--AGE 15--64 ',F25.0)
WRITE(6,12002)RCE
12002 FORMAT(" FUNDS REMAINING--EDUCATION ',F25.0)
WRI TE (6,12003) RCT
12003 FORMAT(' FUNDS REMAINING--TRAINING ',F25.0)
WRITE(6,12004)RCS
12004 FORMAT(' FUNDS REMAINING--FAMILY PLANNING ',F25.01
WRITE(6,12005) RCI
12005 FORMAT(" FUNDS REMAINING--INDUSTRIALIZATION ',F25.01
WRI TE (6,12006) RCL
12006 FORMAT(' FUNDS REMAINING--LABOR MOBILITY ',F25.0)
GO TO 99998
99999 WRI TE(6,12011)
12011 FORMAT('1')
WRI TE (6,10048) YEAR
L0048 FDRMAT('0',1,' OUTPUT SUMMARY--YEAR ,,F4.0)
WRITE (6,10049)
10049 FORMAT(', START PERSON
C WELFARE WELFARE PERSON END I
10050 FORMAT(')
C WRITE (6,10051)
10051 FORMAT(' FUNDS TOTAL TOTAL YEARS B/C
CB/C WELFARE NOT ON WELFARE PER TOTAL TOTAL *I
WRITE(6,10052). NOT ON WELFARE PER NOL
10052 FORMAT'' STRA ALLOCATED POP POOR ACCUM (POOR) IT
COTAL) RECIPS WELFARE EXPEND CAPITA POP (POOR)POOR
C GRD 1)
DO 12009 NDX=1,N
WRITE(6,12010)XNDXA(NOX),TALA(NDX),TOPOPA(NDX),TOPRA(NDX),
CPPYA(NDX), BCPRA(NDX), BC TOTA(NDX),WLFYSA(NDX),WLFNOA(NDX),
CTOWLFA(NDX), WLFCPA(NDX),TOPOA1(NDX),TOPRA1(NDX),GRD (NDX)
12010 FORMAT(F4.0,F10.0,2X,F8.0,2X,F8.0,2X,F8.0,2X,FB.5,2X,F8.5, 2X,F8.0,
C2X,F8.0,F 10.0, 2X,F F.0,2X,F8.0,2X,F8.0,2X,F4.0)
12009 CONTINUE
STOP
END
\$ ENT RY
\$IBSYS

```
CARD
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2658
2659
2659
2660
2661
2662
2663
2664
2665
2667
2668
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2683
2684
2684
2685
2686

\title{
VITA \\ James Ralph Nelson \\ Candidate for the Degree of \\ Doctor of Philosophy
}

\section*{Thesis: SYSTEMS SIMULATION OF PUBLIC POLICY STRATEGIES FOR MULTICOUNTY DISTRICT ECONOMIC DEVELOPMENT}

Major Field: Agricultural Economics
Biographical:
Personal Data: Born in Lubbock, Texas, March 2, 1944, the son of Ralph and E.lizabeth Nelson.

Education: Graduated from Littlefield High School, Littlefield, Texas, in 1962; received the Bachelor of Science degree in Agricultural Economics from Texas Tech University in 1966; received Master of Science in Agricultural Economics from Texas Tech University in 1968; completed requirements for the Doctor of Philosophy degree at Oklahoma State University in July, 1974.

Professional Experience: Research Assistant, Texas Tech University, Lubbock, Texas, 1966-1968; partner and manager, Luce and Nelson Implement Company, John Deere dealership, Littlefield, Texas, 1968-1971; NDEA Fellow, Department of Agricultural Economics, Oklahoma State University, Stillwater, Oklahoma, 1971-1974。```


[^0]:    $I_{\text {Includes }}$ outlays for agriculture and rural development, natiaral resources, commerce and transportation, community development and housing, health, education and manpower, but excludes social security.

[^1]:    Tweeten (1973) showed differences in socio-economic background of students rather than differences in quality of education accounted for low schooling achievement in under-developed areas of Oklahoma. No studies were available showing the portion of public investments in such infrastructure items as roads and water and sewer systems going to the poor in underdeveloped areas.
    $2_{\text {Vocational-technical schools currently operating in the multicounty }}$ study area have adequate existing capacity to train "conventional" students in skills required.

[^2]:    $2_{\text {The }}$ unsuccessful efforts to generate jobs entailed outlays for public services in hopes of attracting industry. If monetary inducements for industrial development were carefully managed, providing funds only when job creation was assured, cost effectiveness of $\$ 5,582$ might be realistic.

[^3]:    $l_{\text {The same cost effectiveness was assumed for actual } 1970 \text { allocations }}$ to education and training as was assumed for similar allocations simulated in other strategies. For 1970 industrial development allocations, the middle cost effectiveness estimate ( 9,538 public dollars per direct job created) was assumed. Actual cost effectiveness of 1970 allocations may have differed from these estimates, but no information was available describing actual cost effectiveness in the study area.

[^4]:    $\mathrm{d}_{\text {For }}$ Strategy 11, simulated poverty among salvageable door was virtually eliminated in the fifteenth year.

