
SOME ASPECTS OF NITROGEN METABOLISM OF 

WHEAT WITH SPECIAL REGARD TO NITRATE 

REDUCTASE AND PROTEASE SYSTEMS 

EFFECTS ON GRAIN PROTEIN 

By 

WILLIAM GEORGE MORRIS 
l 'I 

Bachelor of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1968 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1970 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
May, 1974 



SOME ASPECTS OF NITROGEN METABOLISM OF 

WHEAT WITH SPECIAL REGARD TO NITRATE 

REDUCTASE AND PROTEASE SYSTEMS 

EFFECTS ON GRAIN PROTEIN 

Thesis App1:oved: 

nnA~ 
Dean of the Graduate College 

902152 
ii 

OKLAHOMA 

STATE UNIVERSITY 
LIBRARY 

MAR 13 1975 



ACKNOWLEDGME;NT S 

·1 wish·to express my appreciation to the Agronomy·Department of 

Oklahoma State.University for the use of their facilities and their fi­

nancial support. Also, gratitude is expressed to Dr. L •. I. Croy and the 

other members of my committee, Dr. E. L. Smith, Dr. L. G. Morrill, and 

Dr. G. W. Todd for their encouragement and guidance during these stud-

ies. 

Appreciation is expressed to Carolyn Luthye and Susan Hoffman for 

their help with the laboratory analysis. 

Special appreciation is expressed to my wife, Marjorie, for typing 

the rough draft and for her help and patience during this research. 

I want to thank God for giving me the endurance and patience to 

complete the research and to write this dissertation. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION •••••••••••• 111.lilGfllOllO_III. 

II. INHERITANCE OF PROTEASES IN VEGETATIVE PARTS OF WINTER 
WHEAT PLANTS AND THEIR RELATIONSHIP TO GRAIN PROTEIN 
PRODUCTION 

Abstract • 
Introduction and Literature Review. 
Materials and Methods ••••. 

Experiment One • • . • • • 
Experiment Two 

Results and Discussion 

. . 
Experiment One 
Experiment Two 

Summary •••••• 

....... • 

0 .. , Iii _ 0 0 

III. LEVELS OF NITRATE REDUCTASE AND PROTEASE IN VEGETATIVE 
PART OF WINTER WHEAT CULTIVARS • • • • 

Abstract •••••••• 
Introduction and Literature Review. 
Materials and Methods ••••• 
Results and Discussion 
Summary 

IV. PROTEASES FROM WHEAT FORAGE • 

Abstract •.•.•••• 
Introduction and Literature Review • 

ooa..~•o 

Materials and Methods •••• 
Substrate Evaluation ••. : 
Extraction Buffers • • • •• 
Extraction Buffer Additives 
Buffer Strength •••• • • 0 v. 

Substrate Concentrations and Michaelis Constant 
Temperature Effects ••••• 
pH Optima • • • • • • 
Inhibitors •••••• 
Results and Discussion • 
Extraction Buffers ••• 
Extract Additives 
Buffer Strength •••• 

iv 

O O e, 0 G 

• 0 .• 

Page 

1 

3 

3 
4 
9 
9 

12 
15 
15 
26 
34 

36 

36 
37 
40 
41 
58 

62 

62 
62 
65 
66 
66 
6:6 
67 
67 
67 
67 
67 
68 
68 
68 
70 



Chapter 

Substrate Concentration • • Cl G G • • 

v. 

VI. 

Temperature 
pH Optimum • 
Inhibitors 
Summary 

THE EFFECTS OE .NITROGEN SOURCES AND 
NITRATE REDUCTASE AND PROTEASE OF A 
GRAIN PROTEIN WHEAT .• • • • . • • • 

Abstract • • • 

TEMPERATURE ON 
'HIGH' AND 'LOW' 

Introduction and Literature Review. 
Materials and Methods • . • • • • 
Results and Discussion • 
Summary 

SUMMARY. 

LITERATURE CITED 

APPENDIX. 

v 

. . . . 

. . 

Page 

70 
73 
75 
75 
78 

79 

79 
80 
84 
86 

106 

107 

110 

117 



LIST OF TABLES 

Table Page 

I. Precipitation for Crop Years 1971-1972 and 1972-1973 at 
Agronomy Research Station, Stillwater, Oklahoma • • • • 14 

IL Broad Sense Heritability Coefficients for Protease 4 and 
7, Alpha Amino Nitrogen, Water Soluble Protein, Grain 
Nitrogen, Forage Nitrogen, and Yield for Crop Years· 
1971-1972 • • . . • . • • • • • • • • • • • • • • • 16 

III. Significance of Protease 4 and 7~ Alpha Amino Nitrogen, 
and Water Soluble Protein for-Five Sampling Dates, 
January 12, April 14, May 19 arid 25 and June 1, 
1972 • • O • • 0 ~ • e O II g Cl e o •••• e • • D• 19 

IV. Noteworthy Correlation Coefficients for Five Dates, 
January 12, April 14, May 19 and 25 and June 1 and 
Across Dates for Crop Year 1971-1972 •••••.••• ·• 22 

V. Means for Protease 4 and 7, Alpha Amino Nitrogen, Water 
Soluble Protein, Grain and Forage Nitrogen for High 
and Low Protein PaF~nts and F2 Populations Resulting 
From Their Cross in 1971-1972 • . • • • • 24 

VI. Means for Protease 4 and 7, Water Soluble Protein, 
Nitrate, Alpha Amino Nitrogen, and Nitrate Reductase 
for April, 1973 . . • • • • • • • • • . . • • • 28 

VII. Noteworthy Correlation Coefficients for Two Periods, 
April and May in 1972-1973 • . • • • • . 30 

VIII. Means for Grain Protein, Protease 4 and 7, Water Soluble 
Protein, Nitrate, Alpha Amino Nitrogen, Nitrate Re-
ductase and Yield for May, 1973 • • • • • 32 

IX. Grain Protein Groups and Maturity Groups for Crop Year 
1972-1973 • • . • • • • • • • • • 42 

X. Protease Activity for Ten Wheat Cult_ivars for Four 
Dates, February 23, March 12~ April 26, and May 21, 
1973 0 0 ••••.••••••••• Cl " • • • • • . • •• 43 

XI. Noteworthy Correlation Coefficients for Four Sampling 
Dates, February 23 ~ March 12, Apri 1 26, and May 21, 
1973 • 0 0 Cl Iii O e • e O O O e O O o G e O rill rill o O O 47 

vi 



Table 

XII. Protease 7 for Ten Wheat Gultivars for Four Sampling 
Dates, February 23; March 12, April 26, and May 21~ 
1973 • g ill. GI Cl • e c, • • e • ill 9 0 

XI.II. Nitrate Reductase Activity for Ten Wheat Cultivars 
for Four Sampling Dates, February 23, March 12~ 

, Page 

49 

April 26, and May 21, 1973 • • • • • • • • • • 53 

XIV. Water Soluble .Protein Con.tent of Ten Wheat Cul ti vars 
for Four Sampling Dates, February 23, March 12 1 

April 26, and May 21, 1973 .•.••••••.• 

XV. Alpha Amino Nitrogen Content for Ten Wheat Cultivars 
for Four Sampling Dates, February 23, March 12, 
April 26, and May 21, 1973 . • • • • 

XYI. Nitrate Content of Ten Wheat Cultivars for Four 
Sampling Dates, February 23, March 12, April 26, 

57 

59 

and May 21, 1973 • • • • • • • • • • • • • • • • • 60 

XVII. Protease Activity Measured at pH 4 and 7 on Four 
Substrates . • • • -- • • • • • • • • • , • • 69 

XVIII. Extraction Buffer Effects on Protease 4 and 7 Activities • 69 

XIX. Effects of Extraction Buffer Additives on Protease 4 
and 7 Activities . • • • • . • . • • • • • • 70 

XX. Effects of Buffer Strength on Protease 4 and 7 
Activities .• , •••• 

W. Effects of Phenylmethyl Sulfonylfluoride, 5 ,5 Di thio~:bis 
(2··Nitro Benzoic Acid) and Cleland Reagent on Protease 

- 73 

4 and 7 Activities ••••••••••••••• •- ... -· 77-

XXII. Percentage Inhibition of Protease 4 Activity by Metal 
_ Ions and Cyanide • • • • • .. • • • • • • • • • • • _. 77 

XXLII. Cultivars, Nitrogen Treatments, Temperature Means for 
Nitrate-Reductase, Nitrate and Alpha Amino Nitrogen 87 

XXIV. Leaf Nitrate Content As a Function of Nitrogen 
Treatments • oeoa•••••o• 

I 

X:XV. Protease 4 and 7 Activities, Water Soluble Protein and 
Kjeldhal Nitrogen Means As a Function of Cultivar, 

92 

Nitrogen Treatment and Temperature . . • • • • • • • 95 

XX.VI. Bartlett 1 s .Test of Homogeneity of Variances for Water 
Soluble Protein on April 14, and June 1 and for 
Protease 4 on May 25, 1972, and on a Pooled Basis 118 

vii 



LIST OF FIGURES 

Figure Page 

1. Frequency of Protein Content for High, Low Protein Parents 
and 'rhe~r F 2 Population for Crop Year 1971-1972 • • •• · • • 18 

2. Seasonal Patterns of Protease 4 and 7, Alpha Amino Nitrogen, 
and Water Soluble Protein for High, and Low Protein 
Parents and Their F 2 Crosses for 1971-1972 Crop Year 20 

3. Frequency of Protein Content for F3 Populations Resulting 
From a Cross of High and Low Protein Parents for 197 2-
1973 Crop Year • • • • • • • • • • • • • • • • • • 27 

4. Protease 4 for .Protein Groups for Sampling Dates, February . 
23, March 12, April 26, and May 21~ 1973 • • • . • • 45 

5. Protease 4 for Maturity Groups for Sampling Dates, 
February 23, March 12, April 26, and May 21, 1973 . . . . . 46 

6. Protease 7 for Protein Groups for Sampling Datess February 
23, March 12, April 26, and May 21, 1973 . . . . . . . . . 50 

7. Protease 7 for Maturity Groups for Sampling Dates, 
February 23, March 12, April 26, and May 21, 1973 51 

8. N_itrate Reductase for Maturity Groups for Sampling Dates 9 

February 23, March 12, April 26, and May 21 9 1973 • . • 54 

9. Nitrate Reductase for Protein Groups for Sampling Dates, 
February 23, March 12, Apri. l 26 ll and May 21 9 1973 • · 55 

10. Activity of Protease 4 for Various Concentrations of 
Hemoglobin • • • • • • • • • • • • • • . • • • • • • • 71 

11. Hemoglobin Concentration Plotted Against the Reciprocal of 
Enzyme Velocity for Protease 4 of Maturing Wheat 72 

12. Temperature Responses of Protease 4 and 7 Activities 74 

13. pH Responses of Protease Act;ivity 76 

14. The Influence o:f Plant Age on Nitrate Reductase Activity 
for Two Wheat Cultivars . • • • • • • • • • • • • • • • 88 

viii 



Figure 

15. The Influence of Plant Age on Nitrate Levels for Two 
Nitrogen Treatments , •••••••••••• 

16. The Influence of Plant Age on Nitrate Reductase Activity 
for Two Nitrogen Treatments •••• 

17. The Influence of Plant Age on Alpha Amino Nitrogen for 
Two Nitrogen Treatments • • • ••• 

18. The Influence of Plant Age on Protease 4 Activity for 
Two. Wheat Cultivars .• _ ............... . 

19. The Influence of Plant Age on Protease 4 Activity for 

Page 

89 

90 

93 

96 

Two Nitrogen Treatments • • • • • • • • • • • • • • • 97 

20. The Influence of Plant Age on Water Soluble Protein 
for Two Nitrogen Treatments • • • • 99 

21. The Influence of Plant Age on Protease 7 Activity for Two 
Wheat Cultivars • • • • • • • • • • • • • • • . 100 

22. The Influence of Plant Age on Protease 7 Activity for Two 
Nitrogen Treatments . • • . • . • • . • • • • • 101 

23. The Influence of Plant Age on Kjeldahl Nitrogen for Two 
Wheat Cultivars • • • • . • • ••• . . .. 103 

24. The Influence of Plant Age on Water Soluble Protein for 
Two Wheat Cul ti vars . . . . . . ' . . . . 104 

25. The Influence of Plant Age on Water Soluble Protein for 
Two Temperature Regimes . . . . . . . . . . . . . 105 

ix 



CHAPTER I 

INTRODUCTION 

The research reported in this dissertation is divided into four 

. chapters. Each chapter is a manuscript prepared for.publication in a 

professional journal. The·manuscripts appear as they will be submitted 

to the journals for-publication, except for modifications to comply with 

publication standards. 

The world at the present time is facing a need for additional pro-

tein. Many areas of the world are faced with a critical shortage.of 

protein. Since wheat is a major crop throughout the world, an increase 

in the levels of protein in wheat could be a major step toward procuring 

.. 

the·protein needed. With the discovery of high protein genotype in the 

variety, 1Atlas, 1 by Middleton (1954) the possibility of high grain pro-

tein development exists. However, the efficiency of breedings for high 

grain protein is difficult to measure due to the large influence envi= 

ronment has on the protein character. The second chapter in this dis·-

sertation presents information on the inheritance and the relationship 

of nitrate reductase and protease levels to grain protein. If it is 

found,.that NR and proteases are regulated by simpler g<enetics, then these 

enzymes could be used as breeding.tools to imp:r6ve grain protein. The 

third chapter involves a continuation of this research, using ten culti-

vars of wheat differing in grain protein. A major objective of this 

study was to find the sampling period when the best correlations between 

1 
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nitrate reductase, protease and grain protein occur. In the fourth 

chapter the characteristics of leaf protease are examined. These en-

zymes are involved in degradation of protein in the vegetative··portio~ 

of the plant; thus, proteases would be associated with,potential levels 

of nitrogenous material available to the grain. A characterizati0n 

study.would provide a better understanding of the nature.of these en-

zymes. If differences in protein genotypes could be detected in young 

seedlings, screening for high prqtein genotypes could be done·more rap-

idly •. The fifth chapter deals with seedling testing for enzyme levels 
i . 

as well as the responses of nitrate·reductase and protease activities 

to different nitrogen sources and te~perature. 



CHAPTER II 

INHERITANCE OF PROTEASES IN VEGETATIVE PARTS OF 

WINTER WHEAT PLANTS AND THEIR RELATION­

SHIP TO GRAIN PROTEIN PRODUCTIONl 

Abstract 

Heritability estimates were calculated for protease 4 and 7, alpha 

amino nitrogen, water soluble protein, grain and forage nitrogen and 

grain yield using F 2 generation from a cross of a high and low protein 

2 parents. Protease 7 and forage nitrogen had high heritability estimates 

and could possibly be used as tools in breeding for high grain.protein. 

Correlation coefficients were calculated and numerous correlations 

between protease 7 and other factors of nitrogen metabolism were found. 

The F 2 plants were classified according to protein content as high, 

medium or low. Protein heritability based on regression of F3 progeny 

and F 2 plants was low, however, the high protein class did contain the 

F3 lines with the highest protein content and suggests that selection in 

F2 for-protein content might be successful. 

The correlation coefficients based on F3 lines revealed a negative 

1Article coauthored with L. I. Croy for submission to Crop Science 
for-publication. 

2Abbreviations used in this-paper: NR-,nitrate·reductase~ WSP-water 
soluble proteins. 

3 
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relationship between nitrate reductase and protease. Additional Key 

Words for Indexin~: Nitrate reductase, Heritability coefficients, Grain 

·nitrogen. 

Introduction and Literature Review 

One of the major problems facing the,world is a shortage.sf protein • 

Since wheat is a staple. in the diet of a· larg~ · proportion o.f the ·wotld us 

population, an increase :i,.n wheat.protein would be·signifieant~ Earty 

·r~sea;rch on br~eding for· high grain' protein in whe.at · indicat:ed that 

grain-protein was neg~tively correlated with grain yield (Qiark, i926). 

The data indicated that inheritance of grain protein was as complex as , 

the·inheritance for yield. In.a study on-protein content of 13 soft-red 

winter wheats, large varietal differences were found (Middleton, et -al:, 

1954) •. Cultivars having· 1Frondosa' or 1Frontiera 1 in their-parentage 

were significantly higher in both protein and yield than the standard 

culti:v.etrs. Considerable variat:i,on in· protein content was found in popu­

lations from crosses of 'Wichita' and 'Atlas 66 1 in the F2 generation 

when compared to parental populations (Stuber, et al., 1962). Several 

F2 plant~ exceeded the-protein value found-in the high protein parent, 

sugges.ting that the low ·protein parent may have· contributed a gene or 

genes for·high protein potential absent in Atlas 66. Consequently poly~ 

genie control of protein was suggested with no indications of a prepon= 

derance of dominant genes for either high or low grain protein. Grain 

.~rotein heritability estimates of .678 to .827 were obtained depending 

on·the method. of calculation. 

Other workers have calculated heritabilities for grain protein. 

Heritabili,,ty estimates of .54 to .69 for grain protein were .calculated 
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for soft winter wheat crosses derived from Atlas 66 parentage (Davis, 

et al., 1961). The ratio of population means to parental means indi-

cated partial dominance £0r low protein content. Lofgen, et'al., (1968) 

using cr:osses of Atlas 66 with 'Kaw' and 'Triumph' .estimated a three or 

four · gene difference. for· pl'ptein .· cop.,twi,t in th~, parents and intergenera-

tion regression heritability estimates ranging from .374 to .636 were 

-calculated. Heritability estimates ranging from .37 to .70 were ob-

tained by Lebsock, et al., (1964). Frequency distribution of F 3 lines 

from high and low protein crosses were-constructed and protein content 

was found to be distributed normally over the range of protein:present 

in the·parents. Broad sense and narrow sense estimates of heritability 

of ;56 and .28 respectively for Atlas 66 x 'Comanche' populations gi:own 

under greenhouse conditions were found brHaunold, et al., (1962). 

flant growth and yield are the result of a series of biochemical 
.. 

reactions present in the,plant each of which is catalyzed by specific 

enzymes (Hageman, et al., 1968). If these enzymes can be isolated and 

their control mechanism determined, then selection for genotypes supe= 

rior for a particular enzyme would hasten development of superior geno-

types for complex traits such as ·grain protein. 

Nitrate reductase (NR) (E.C.1.6.6.1.) is an enzyme whose study 

could pro.duce valuable insight into the complex metabolism involved in. 

grain protein production. Nitrate reductase is appropriate because it 

is known to be (A) the first enzyme in the-pathway of nitrate reduction 

(Kessler, 1964); (B) substrate inducible (Afri.di, et al., 1965, Beevers, 

et al., 1965); (C) labile in vi.vo under.environmental stress (Mattas and 

Pauli, 1965); (D) variable. in activity levels both diurally and season.,, 

ally (Hageman, et al., 1961); (E) related to total reduced nitrogen 
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accumulated i.n the plant (Schrader, et al., 1968); (F) associated with 

increased protein formation and decreased nitrate content (Hageman, et 

al., 1961); and (G) linearly related to total grain .protein production 

within a genoty.pe (Croy and Hageman, 1970). 

In a study of nitrate reductase, Hageman, et al., (1961) found that 

·-
the diurnal variation in NR was correlated positively with water soluble 

protein (WSP) content and negatively with nitrate content. However, 

Zieserl, et al., (1963) found no overall correlation between NR and WSP 

content, although seasonal protein content paralleled NR activity with a 

7 to 10 day lag period. 

The relationship between NR and grain protein was studied by sev-

eral workers. Deckard, et al.; (1973) working with corn found that NR 

activity of the total leaf canopy, expressed as seasonal average activ= 

ity OP-converted into seasonal input-of reduced nitrogen, showed a sig-

nificant positive correlation with grain protein. The highest correla-

tion between NR activity and yield of grain protein was obtained during 

the ear initiation and development stage. 

A correlation coefficient of .856 between NR activity and WSP con= 

tent in winter wheat was found by Harper and Paulsen (1967); and, NR 

activity decreased as the.plants approached maturity. This decrease was 

asseciated with a decrease in nitrate uptake; although, tissue aging 

and high temperature could have been causal agents. 

Zieserl and Hageman· (1962) evaluated 47 inbred lines of corn for 

·NR activity and discovered that some inbreds had enzyme levels up to 

five times higher than·that found in other inbreds. Also, significant 

differences in nitrate and WSP contents were found; however, no positive .. 

·carrelation was fourtd between NR activity and WSP or-negative 



correlation between NR and nitrate content. Differences were noted in 

the seasonal pattern of NR which could be associated with different ge­

netic backgrounds. 

7 

Zieserl, et al., (1963) working with four corn hybrids and their 

parents found that seasonal mean NR levels conformed to a generally ad­

ditive mode ·of inheritance. Schrader, et al., (1966) ranked corn inbred 

lines as low or high with regard to seasonal mean levels of NR. Crosses 

were made among the high x high, high x low, and low x low lines. None 

of the high x high F1 hybrids showed higher enzyme activity than the 

·midparent value. The high x low F1 hybrids had activities intermediate 

to the parental inbreds. Within the low x low F1 hybr-ids two exhibited 

heterosis while others were not significantly different from the mid­

parent value. A two-locus system with dominance was suggested by Warner, 

et al., (1969) as the·control of NR inheritance in corn. 

Croy and Hageman (1970) found that there was a significant positive. 

correlation between input of reduced nitrogen and the accumulation of 

grain protein in two wheat cultivars differing in grain protein content. 

The high protein cultivar, Ponca, had higher WSP content and NR activity 

than the low grain protein cultivar, Monon. 

Estimates of heritability up to .717 for·NR on a single date were 

found by Duffield, et al., (1972). However, NR activity was found to be 

greatly influenced by physiological stage of development and environ­

mental factors. Pooled heritability estimates of .290 were obtained 

when data were pooled across dates. 

Johnson, et al., (1968) stated that high grain·protein was·not as= 

sociated with differential nitrogen uptake·or nitrogen accumulation in 

the·plant. Evidence.points to more ~fficient and complete translocation 
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of nitrogen from the other parts of the plant to the grain as the physi­

ological basis of high grain protein. Plants of 1Warrior, 1 a low grain 

protein ctiltivar, contained significantly-more nitrogen in the forage 

than the high protein selection, NE 65305, but this nitrogen was not 

translocated to the grain, implicating translocation as a probable major 

factor in grain·pr-otein accumulation. 

Seth, et al., (1960) working with wheat found no differences in 

the nitrogen content of the vegetative parts of high and low protein 

cultivars. However, the data indicated a more rapid transfer -of n:ttro,-, 

genous materials from the vegetative parts to the heads of the high pro­

tein cultivars. Protease, the enzyme responsible for the breakdewn of 

proteinaceous materials, was found to have higher activity in high pro= 

tein wheat than in low protein wheat after flowering (Rao and Croyj 

1972)-.. Law protein cultivars had higher leaf protease activity before 

flowering but were surpassed by the high protein cultivar after flower­

ing. 

Among three rice cultivars with similar grain yield, the cultivar 

with highest protein content tended to translocate more leaf nitrogen 

to the developing grains than the rice with average grain protein con­

tent (Perez, et al., 1973). This high protein cul ti var had higher pro­

tease activity in the leaves than the lower protein cultivar. 

The objectives of this study were to determine (A) the heritability 

of protease, NR, WSP, Alpha Amino Nitrogen, and grain and forage nitro­

gen; (B) the relations~ip among these variables; (C) the relationship of 

these variables to grain protein in wheat. 
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Materials and Methods 

Experiment One 

Th.is study was conducted on Kirkland silt loam soil at the Agronomy 

·Research Station, Stillwater, Oklahoma. The parents, NE 65679 and 

D145B4, and F 2 seeds were provided by Dr. E. L. ·Smith from greenhouse 

crosses. NE 65679, a selection from a cross between Atlas 66 and 

Comanche, was obtained from Dr. V. A. Johnson, U. S •. D. A. A. R. s., 

Agricultural Experiment Station, Lincoln, Nebraska. D145B4 is a 

'Triumph-type' hard red winter wheat tracing to breeder's samples be= 

queathed to Oklahoma State University by Joseph E. Danne. D145B4 is 

early in maturity, well adapted to Oklahoma and exhibits intermediate 

-protein content. NE 65679 is later in maturity, less adapted to Okla= 

homa conditions and has higher protein content than Dl45B4. These seeds 

were·planted on November 1, 1971, and blocked by sampling date. On 

Janul:lry 18, 1972, two additional blocks were.planted. 

2 Within the blocks, an area of 3.35m was plotted at 0.305 meter 

intervals in a checkerboard manner. One. seed was planted at each 0.305 

meter mark in a randomized pattern with regard to genotype. Each block 

contained 24 F2 plants, and 4 of the high and low protein parent ran­

domly placed. Border· plants were planted around the blocks in an at-

tempt to equalize competition between test plants. Extra rows of space 

planted plants of each genotype were planted and these plants were used 

when a plant was missing within a block. 

The plots were.fertilized with the equivalent of 20.0-21.8-0 Kg/ha 

N=P-K preplant and topdressed with 67.2 Kg/ha of ammonium nitrate on 

March 16th. One gram samples of leafy material were sampled between 



8-9 A.M. January 12, April 14, May 19, May 25, and June 1, 1972, and 

packed in ice. 

10 

The January 12th date represents a period of winter dormancy with 

little growth; .April 14th, a period of rapid growth just preceding in= 

florescence initiation, May 19th and 25th, periods of rapid enlargement 

of kernels and rapid translocation of materials to developing kernels; 

and June 1st, a period of senescence of the vegetative parts of the 

plant and terminal stage of grain development. The·May 25th and June 

1st dates were sampled from blocks planted on January 18th. 

Seven ml of a 25mM K2HP04 , 5mM EDTA, 2mM cysteine solution were 

added per gram of plant tissue and homogenized for two minutes in a 

motorized Thomas homogenizer. The homogenate was strained through a 

double layer of cheesecloth and the suspension cleared by centrifugation 

at 0,C. 'I'he cleared solution was decanted and used as a crude extract 

for all tests. 

Protease activity was measured by the method of Kuo and Yang (1966) 

with some modifications. Assay tubes contained 2.0 mls of 0.5% bovine 

hemoglobin (Sigma Chem. Co.) dissolved in the citrate phosphate buffers. 

The pH 4 solution contained 15.4 mM citric acid and 16.5 mM sodium 

phosphate; the pH 7 solution contained 3 .3 mM citric acid and 21. 8 mM 

sodium phosphate. pH levels of 4 and 7 (protease 4 and 7, respectively) 

were based on protease pH optima determined previously by Rao (1971). 

Crude enzyme extract (0.2 ml) was added to the buffered hemoglobin so= 

lution in two tubes. Immediately 2.2 ml of 10% trichloracetif acid 

(TCA) were added to one tube to precipitate.protein and inactivate the 

·protease-enzymes. The-assay tube (NO TCA) and the inactivated tube 

(blank) were incubated at 40 C for two hours and then the·reaction was 
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terminated in the assay tube by the addition of 2.2 ml of 10% TCA. 

Both the tubes were then centrifuged at 1000 x g for 10 minutes to sedi-

ment the undigested hemoglobin. The supernatant was decanted and saved 

for protein determination by the method of Lowry, et al., (1951). Pro-

tease activity per hour was measured as the difference in digested 

nitrogenous materials between the assay and blank. Bovine serum albumin 

was used to standardize the protein test, 

WSP of the crude enzyme preparation was determined on 5% TCA pre~, 

cipitable material by Lowry, et al., (1951) procedure. Nitrate content 

was determined by the method of Woolley et al., (1960). Alpha amino 

nitrogen was estimated by the procedure of Yemm and Cocking (1955) on 

the crude extract. 

Forage and grain nitrogen were determined on oven dry mature tissue 

by micro-kjeldahl procedure, NR activity was determined on the last 

three sampling dates by the method of Croy and Hageman (1970). 

Estimates of heritability were calculated according to formula used 

by-Burton (1951): 

H 

H--broad sense heritability 

Vp 1--variance of one parent 

VF -
2 

Vp 2-~variance of other parent 

VF 1--variance of F1 population 

(Vpl + Vp2 + VF 1) 

3 

VF i~-Phenotypic variance of F 2 (estimate of total variance) 



(Vpl + Vp2 + VFl) 

3 

mean phenotypic variance of nonsegregating 
population. Since F1 generation was not 
present in this experiment, its variance 
term was deleted and the sum of Vp1 j Vp 2 
was .divided by two. . 

12 

Multivariant analyses of variance were performed on data pooled across 

dates as well as on a single date basis and correlation coefficients 

adjusted for genotype were determined .. The multivariate analysis of 

variance program contained in the statistical analysis system designed 

by Barr and Goodnight (1972) was used to determine the adjusted corre-

lation coefficients. All correlation coefficients used in this study 

are adjusted for genotype and the pooled coefficients were.adjusted for 

genotype and genotype by date. Since the adjusted correlation coeffi-

cients were expected to be rather low due to the.multiplicity of factors 

which can affect the protein character and due to the preliminary na-. 

ture of the research it was decided the ten percent level of probability 

would be used in evaluating adjusted correlation coefficients • 

. · Experiment Two 

The F3 seeds were obtained from F2 plants of the previous experi= 

ment. The F2 individuals were selected first on the basis of grain 

yield per plant and then on the basis of protein content as determined 

by the method described by Udy· (19.56). · After protein analysis, seeds 

from .. F 2 plants were grouped into three classes based on protein content. 

The high protein group had protein percentages ranging from 17.13 to 

18.99, the medium group ranged from 15.56 to 16.64, and the low group 

· ranged from 13. 84 to 15. 23. Each group contained ten F 3 lines. The 

· entries within each group were· ~!anted in two row plots in a randomized 

pattern in three·replicati.ons on.September 6th. A seeding rate.of 6.4 



gm per 3.05 m row was used, The soil type and fertilization was the 

same as for the first experiment except 100.8 Kg/ha ammonium nitrate 

were applied on March 15th. 

13 

Replica ti.on one was sampled on April 11 and May 11, replication two 

on April 13 and May 14, and replication three on April 18 and May 16. 

Sampling techniques were similar to the previous experiment except that 

samples were taken from five to six locations within the left row of 

the plot in order to sample genetic diversity within the selections. 

These subsamples were combined for enzyme extraction. Grinding and ex­

traction techniques were the same.as in the previous experiment except 

that the samples were ground in a Virtis 45 homogenizer at medium speed 

for one minute. Analytical techniques for protease 4,. 7,.WSP, NR, ni­

trate and forage protein were the same as in the previous experiment, 

however, alpha amino nitrogen was measured by the method of Moore and 

Stein (1948). 

Weather conditions were quite different in the two years in which 

this study was conducted. The first year was extremely dry with high 

temperatures in mid-April which caused sterility of many florets. The 

second year was extremely wet particularly in March, and cool tempera­

tures prevailed throughout the spring. Precipitation data for the two 

years are shown in Table I, 



Month 

September 

October 

November 

December 

January 

February 

March 

April 

May 

, TABLE I 

· PRECIPITATION FOR CROP YEARS 1971=1972 AND 
1972-1973 AT AGRONOMY RESEARCH STATION 9 

STILLWATER, OKLAHOMA 

1971-1972 

Millimete:FS·· ··· · 

184.87 

57.18 

14.36 

73.07 

2.05 

3.59 

26 .92 

59.49 

65.13 

Total 486.66 

14 

197Z=l9_73 

64.36 

126.41 

96.41 

34 .61 

83.08 

30.77 

198.20 

88.20 

82 ._05 

824 .09 
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Results and Discussion 

Experiment One 

The estimates of heritability for seven variables are shown in 

Table II. Pooled heritabilities for protease 7 (.638) and forage nitro­

gen (.673) were high enough to be important criterion in a breeding pro­

gram. However, it must be remembered that the parents did not differ 

significantly for these variables so higher herita~ilities would be ex­

pected than if significant differences occurred between the parents. 

The heritability coefficients for yield and grain nitrogen were both 

negative and best estimated as zero. These values were extremely low 

compared to values calculated by Davis, et al., (1961). Sunderman, et 

al., (1965) found low heritability values for grain protein content and 

stated that selection for this characteristic in the F 2 would be in­

effective. 

On a pooled basis, heritability estimates for protease 4, alpha 

amino nitrogen, and WSP were low. However, on an individual date basis, 

heritability estimates were high for protease 4 on April 14; for alpha 

amino nitrogen on Jan. 12, May 19, and May 25; and for WSP on Jan. 12 

and May 25. The extreme variation in heritability coefficients: was a 

reflection of the large environmental influence, small sample size, and 

possibly growth patterns of the parents. Dl45B4 selection matured ear~ 

lier than NE 65679. An interesting feature of these data was the fact 

that for most variables a large proportion of the variance within the 

,parents could be associated with the high protein parent. This would 

suggest that the high protein parent was not as homogeneous as the .. low 

protein parent. If this were the case then the estimates of 



TABLE II 

BROAD· SENSE HERITABILITY COEFFICIENTS FOR PROTEASE 4 AND 7 ~ 
ALPHA AMINO NITROGEN, WATER SOLUBLE PROTEIN$ GRAIN 

NITROGEN, FORAGE NITROGEN~ AND YIELD FOR 

Variable 

Protease 4 

Protease 7 

Alpha Amino 
Nitrogen 

Water Soluble 
Protein 

Jan .. 12 

-539.00 

36.56 

72.49 

85.39 

CROP YEARS 1971-1972 

Date 

Aeril 14 Mai.19 

* 57.61 40.81 

60. 72 74 0 72 

1 74. 77 

0.0 14.61 

Mai 25 June 1 

* * =38.46 =18.74 

74 0 78 . 63.12 

79. 28 47. 29 

* 68.68 -51.33 

16 

Pooled 

12.62 

63.82 

3.59 

27.54 

* Grain Nitrogen -31.09 

Forage Nitrogen 66.47 

Yield - 2. 75 * 

* Value is negative and best estimated as zero~ 

1 Datum lost. 
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heritability would be reduced by the increased variance associated with 

the parents. 

The mean of all F 2 plants was practically the same as the mid= 

parent value for grain protein (16.20, 16.18% respectively). However, 

when the percentage grain protein was plotted against frequency of 

occurrence (Figure 1), F 2 population was shown to be skewed toward the 

low protein value which might suggest a slight dominance effect for low 

protein percentage. Lebsock, et al., (1964) also found low protein per= 

centage to be partially dominant over high. 

Protease 4 activity was not significantly different among genotypes 

on any sampling date (Table III). However, as physiological maturity 

was approached a tendency for F 2 plants to have higher protease 4 ac­

tivity than that of the parents was evident (Figure 2). This tendency 

was most pronounced on the May 25 sampling date. 

Although protease 7 did not reach significantly different levels 

on any sampling date (Table III), the levels of activity measured on the 

last four dates were substantially higher for the high grain protein 

parent and the F2 genotypes than for the low grain protein parent 

(Figure 2). This suggests that high protease 7 activity was associated 

with higher protein contents present in these genotypes. 

Rao and Croy (1972) found that protease 4 activity was higher in a 

low protein cultivar than in a high protein cul.tivar pri~r to flowering 

but lower after flowering. In this study, similar data was found before 

flowering; however, the reversal noted previously after flowering was 

not found. This inconsistency may be the result of differences in en= 

vironmental conditions over the two years studied. 

Alpha amino nitrogen was not significantly different on any 
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TABLE III 

SIGNIFICANCE OF PROTEASE 4 AND 7, ALPHA AMINO NITROGEN, 
AND WATER SOLUBLE 'PROTEIN. FOR FIVE SAMPLING DATES, 

JANUARY 12, APRIL 14, MAY 19 AND 25 
AND JUNE 1, 1972 

Factor 
Jan. 

Protease 4 NS 

Protease 7 NS 

Alpha Amino Nitrogen NS 

Water Soluble Protein NS 

NS - Denotes nonsignificance. 

* 

12 April 14 

NS 

NS 

1 

* 

Date 

May 19 May 25 

NS * 

NS NS 

NS NS 

NS NS 

Significance by F=test but invalidated by unequal variances. 

1 Datum lost. 

19 

June 1 

NS 

NS 

NS 

NS 
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sampling date among genotypes (Table III). Levels were highest on the 

early sampling dates and generally declined with maturity (Figure 2). 

The F 2 population tended to have higher amounts of alpha amino nitrogen 

than the parents. 

Water soluble protein (WSP) was not significantly different among 

genotypes on any sampling date (Table III). On the first two dates the 

high protein parent was low in WSP content but it was higher on the last 

three dates (Figure 2). 

The data are consistent with the hypothesis that protease 4 is de­

grading protein to alpha amino nitrogen. The higher activity of pro= 

tease 4 in the F 2 compared to the high protein parent on the last two 

dates is associated with elevated amounts of alpha amine' nitrogen and 

reduced amounts of WSP. The correlation coefficients further confirm 

this association particularly on June 1 (Table IV). There was a posi­

tive correlation between alpha amino nitrogen and protease 4 and a neg·· 

ative correlation between protease 4 and WSP on June 1. Also, on May 

19, a positive correlation between protease 4 and alpha amino nitrogen 

was found. 

Rao (1972) stated that protease. 4 cleaves protein into low molecu­

lar weight compounds while protease 7 cleaves protein or peptides into 

amino acids. Since the low protein parent was higher in protease 4 ac­

tivity, it may contain many peptides which could be detected as alpha 

amino nitrogen by the method of Yemm and Cocking (1955); however, these 

compounds could not be translocated to the grain. A trend for the high 

protein parent to have higher protease 7 activity was found which could 

result in higher contents of amino acids. These amino acids would be 

readily available for translocation to the grain and could be 
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TABLE IV 

NOTEWORTHY CORRELATION COEFFICIENTS FOR FIVE DATES, 
JANUARY 12, APRIL. 14, MAY 19 AND 25 AND 

JUNE 1 AND ACROSS' DATES FOR CROP 

Variables 

Protease 7 
Protease 7 
Protease 4 

Protease 7 

Protease 4 
Protease 4 

Protease 4 
Alpha Amino Nitrogen 
Water Soluble Protein 

Protease 4 
Alpha Amino Nitrogen 
Protease 4 

Grain Nitrogen 
Grain Nitrogen 
Forage Nitrogen 

* Denotes significance 

** Denotes significance 

+ Denotes significance 

YEAR 1971= 1972 

Correlated 

Alpha Amino Nitrogen 
Forage Nitrogen 
Yield 

Grain Nitrogen 

Alpha Amino Nitrogen 
Yield 

Forage. Nitrogen 
Grain Nitrogen 
Yield 

Alpha Amino Nitrogen 
Grain Nitrogen 
Water Soluble Protein 

Forage Nitrogen 
Yield 
Yield 

Date 

January 
January, 
January 

April 14 

May 19 
May 19 

May 25 
May 25 
May 25 

June 1 
June 1 
June 1 

12 
12 
12 

Across Dates 
Across Dates 
Across Dates 

at 5% level of probability,. 

at 1% level of probability. 

at 10% level of probability. 

Correlation 
Coefficient 

* -0.403 

+ 0.341* 
0.358 

* -0 .410* 
-0.433* 

0.471 

* 0.367+ 
-0.313+ 
-0.332 

** 0.355** 
=0.280** 

0.358 
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incorporated into proteins. This idea is reenforced by results obtained 

in this study, particularly by the occurrence of significant negative 

correlations between alpha amino nitrogen and grain nitrogen on the May 

25 and June 1 sampling dates. These correlations should occur if pro­

tease 7 is degrading proteins to amino acids which are then being trans­

located to the head. 

Significant correlations were found between protease 7 and forage 

nitrogen and significant negative correlation between protease 7 and 

alpha amino nitrogen were found on the January 12 sampling date (Table 

IV). Also a negative correlation was found between protease 7 and grain 

nitrogen on the April 14 sampling date, These correlations are diffi­

cult to explain physiologically. 

A correlation between yield and WSP occurred on the May 25 sampling 

date. This suggests that high levels of vegetative protein on this date 

were necessary for high yield. Wallace, Ozbun and Munger (1972) state 

that one half of the total leaf protein is in the form of 1,5 ribulose 

diphosphate carboxlyase, the enzyme which catalyzes attachment of co2 in 

co2 fixation. Therefore, a positive correlation between WSP and yield 

seems likely since with higher WSP more enzymes could be available for 

co2 fixation. This additional carbohydrate production could then be 

translocated to the head for incorporation into grain. 

When the data were pooled across dates, significant differences 

among genotypes occurred for forage and grain protein (Table V). The 

high protein parent was significantly higher in grain nitrogen than the 

· F 2 population or the. low protein parent. Also the· low. pro.tein parent 

was significantly lower in grain nitrogen than the·F2 population. The 

·high protein parent had significantly less forage nitrogen than theF 2 



TABLE V 

I:1EANS FOR PROTEASE 4 AND 7, ALPHA AMINO NITROGEN, WATER SOLUBLE PROTEIN, 
GRAIN AND FORAGE NITROGEN FOR HIGH AND LOW PROTEIN PARENTS AND 

F 2 POPULATIONS RESULTING FROM THEIR CROSS IN 1971-1972 

Alpha Amino Water Soluble 
Protease 4 Protease 7 Nitrogen Protein Grain Nitrogen Forage Nitrogen 

mg Protein Digested/hr/g Fr. Wt. ug/g Fr. Wt. 

High 22.50 1.70 1790 

Low 22.50 1.25 1810 

F 
2 

24 .60 1.84 1731 

NS NS NS 

NS - Denotes nonsignificance. 

* Denotes significance at 5% level of probability. 

** Denotes significance at 1% level of probability. 

+ LSD01 for high protein parent compared to F2 = 0.330, 
LSD01 for low protein parent compared to F 2 = 0.305, 

++ LSD05 for parGnts compared to F2 = 0.0959. 

mg/g Fr. Wt. 

LSD05 
LSD05 

15.20 

14. 20 

13.70 

NS 

0.236. 
= 0 .. 2180 

Percent 

3.20 0.53 

2.50 0.55 

2. 90 0.63 

**+ *++ 
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population although, it was not different from the low protein parent. 

None of the other parameters measured were significantly different among 

the genotypes when the data were pooled across dates. 

Significant negative correlation coefficients were obtained between 

grain nitrogen and yield. Forage nitrogen and grain nitrogen and yield 

and forage nitrogen were positively correlated (Table IV). 

The negative correlation.between yield and grain nitrogen has been 

reported by other workers (Stuber, et al., 1962). The correlation be­

tween forage nitrogen and grain nitrogen suggests that a plant must have 

a high potential to reduce nitrogen before high protein will result. 

This high level of nitrate reduced results in high levels of nitrogen in 

both the grain and forage. 

An interesting feature of the statistical analysis was that several 

variables were described as statistically significant by F-tests which 

were not. of magnitude which would be declared significantly different 

by t-tests. This discrepancy is the result of unequal genotype vari­

ances as determined by Bartlett's test (Appendix TableXXVI). Equal 

variance is an assumption for F-tests. The variance within the high 

protein parent was larger than within the low protein parent. Cochran 

and Cox (1957) stated that if variances are not equal then both the sig­

nificance levels and sensitivity of the F-test are affected and too 

many significant results are obtained. In this case, protease 4 on May 

25 and on a pooled basis as well as WSP on April 14 were declared sig­

nificant but were not. These data suggest that the high protein parent. 

was .not homogeneous with regard to protease 4 activity and WSP content • 

. This lack of homogeneity in the high protein parent is ,possibly the 

reason that signif;i.cantly d;i.fferent levels of protease 4 and WSP were 
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I.. 
not found between the parents. 

Experiment Two 

The heritability estimates for grain protein based on the regres-

sion of F 3 lines on E' 2 plants was 13. 15%. This value was lower than 

that found by most other workers (Haunold, et al., 1962) although it was 

similar to that of Sunderman et al., (1965). When protein classifica-

tions were plotted against protein levels and frequency of occurrence 

(Figure 3), the classes overlapped. However, the high protein class 

' 
contained the selection with the highest protein percentage. The high 

class had a higher grain protein mean (15.11) than the medium and low 

classes (14.55 and 14.64 respectively). This suggests that although 

heritability for grain protein is low, selection in F 2 for high protein 

could lead to increased protein levels in subsequent generations. 

On the April sampling datej none of the variables was significantly 

different (Table VI). On the April 11 sampling date there was a posi-

tive correlation between protease 4 and WSP and between protease 4 and 

protease 7 (Table VII). A high negative correlation coefficient was 

noted between protease 4 and NR. 

The correlation between protease 4 and WSP suggests that protease 

4 is substrate inducible since high amounts of WSP tend to produce high 

enzyme activity. The correlation between protease 4 and 7 suggests 

that both enzymes are affected to some degree by similar conditions. 

1he negative correlation between protease 4 and NR and between 

protease 7 and NR on May 14 probably reflect the seasonal pattern of 

activity of these enzymes. Rao (1972) noted a decline in the NR activ-

ity as protease was increasing late in the growing season. A similar 
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TABLE VI 

MEANS FOR :PROTEASE 4 AND 7, WATER SOLUBLE PROTEIN, NITRATE, ALPHA AMINO 
NITROGEN, :AND NITRATE REDUCTASE FOR APRIL, 19.73 

F3 Water Soluble Alpha Amino Nitrate 
Populations Protease 4 Protease 7 Protein Nitrate Nitrogen Reductase 

--

mg Protein Digested/ mg Protein/ umoles N02/ 
hr/g Fr. Wt. g Fr. Wt. ug/g Fr. Wt. hr/g Fr. Wt. 

1 15.0 3.69 30.8 203 2602 5.76 
2 13.4 1.87 32.7 290 1728 5.43 
3 17.9 3.08 34 .6 196 2680 4.10 
4 14.8 1.66 36.0 . 152 2571 3.69 
5 14.8 3.80 34.3 219 1717 4.82 
6 13 .o 2.24 29 .6 339 2777 5.40 
7 17.8 1.31 37.7 229 4650 4.20 
8 14 .1 3.47 37.2 232 2697 4.63 
9 12.5 1.90 32.8 205 2605 4.25 

10 15.6 2.22 41. 7 253 3656 2.74 
11 13.8 1.18 30.2 207 2562 4.45 
12 13.1 2.18 32.4 275 1678 5.39 
13 15 .1 3.21 37.4 140 2314 5.06 
14 12.5 0.96 39.1 241 2428 6.08 
15 15.7 1.81 40.5 181 2466 3.69 
16 15.0 2.00 32.9 126 1528 3.96 
17 10.7 1.61 33.9 367 2199 4.56 
18 17.2 1.12 49.1 219 3190 3.69 
19 14.6 1.65 36.3 304 3593 4.90 
20 12.7 1.44 35.5 157 3714 5.57 
21 14.6 .1.64 30.8 176 1841 3.65 
22 9.1 1.79 33.9 189 2781 4.89 

N 
00 



TABLE VI (Continued) 

.... ~3 Water Soluble Alpha Amino Nitrate 
Populations Protease 4 Protease 7 Protein Nitrate Nitrogen Reductase 

mg Protein Digested/ mg Protein/ ' ·• umoles N02/ 
hr/g Fr. Wt. g Fr. Wt. ug/g Fr. Wt. hr/g Fr. Wt. 

23 11.5 1.81 35.2 220 2358 5.67 
24 15 .o 1.00 35.5 140 1445 4.67 
25 12.9 1.87 37.6 365 2364 5.82 
26 17. 2 2.95 42.8 107 3731 2.38 
27 16.0 1.47 39.5 357 2308 3.56 
28 11.5 1.95 29 .9 220 1623 4.93 
29 15.3 0.83 85 .5 167 2638 5.96 
30 13.3 1.21 30.9 280 2755 4.93 

NS NS NS NS NS NS 

NS= Denotes nonsignificance at 5% level. 



TABLE VII 

NOTEWORTHY CORRELATION COEFFICIENTS FOR TWO 
PERIODS, APRIL AND MAY IN 1972-1973 

Variables Correlated Date 

Nitrate Reductase Protease 4 April 11 
Protease 7 Protease 4· April 11 
Water Soluble Protein Protease 4 April 11 
Water Soluble Protein Nitrate April 11 

Protease 7 Water Soluble Protein May .14 
Protease 7 Alpha Amino Nitrogen May 14 
Protease 7 Nitrate Reductase May 14 
Protease 7 Yield May 14 
Protease 4 Yield May 14 
Water Soluble Protein Grain Protein May 14 

* Denotes significance at 5% level of probability. 

** Denotes significance at 1% level of probability. 

+ significance 10% level of probability. Denotes at 

30 

Correlation 
. Coefficient 

** ·-0.618* 
0.298+ 
0.251** 

-0.419 

* ·~0 ... 328** 
-0.346** 
-0.376+ 
-0.251+ 
-0.217* 
-0.272 

'*'', 
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pattern was present in this study. 

On the May sampling date, WSP and NR were significantly different 

at 5 and 1% levels respectively among the F3 lines (Table VIII). Six 

of F3 selections were higher in NR activity. Of these, all but one was 

substantially above the mean of the F3 populations with regard to final 

grain protein content. With regard to WSP, fourteen of the F3 popula­

tions were higher in WSP; however, high ·wsp seemed to have little bear­

ing on the levels of final grain protein. 

Many of the correlation coefficients were high on the May date 

(Table VII). The negative correlations between protease 4 and 7 and 

yield are quite interesting. These suggest that if protease activity 

is high, yield will be low. Wallace, Ozbun and Munger (1972) suggest 

that 1,5 .ribulose diphosphate carboxylase accounts for one half the 

total leaf protein and if protease is actively reducing the level of 

this enzyme, then reduced co2 fixation could occur. This reduction 

could ultimately result in a reduction in yield. The occurrence of a 

negative correlation between. protease 7 and WSP found in the present 

study tends to support this idea since it indicates that protease 7 re­

duces the amount of leaf protein as well as the amount of 1,5 ribulose 

diphosphate carboxylase. 

The F3 _populations were significantly different at 1% level for 

yield and grain protein (Table VIII). The F 3 selection identified as 

. line number 14 is of particular interest since it had the highest. level 

of grain protein and also.a high yield. It should be a good selection 

for further study, 



TABLE VIII 

MEANS FOR GRAIN PROTEIN,, PROTEASE 4 AND 7, WATER SOLUBLE PROTEIN, NITRATE, 
ALPHA AMINO NITROGEN, NITRATE REDUCTASE AND YIELD FOR MAY, 1973 

F3 Popu- Grain Water Soluble Alpha Amino Nitrate 
lat ions Protein Protease 4 Protease 7 Protein Nitrate Nitrogen Reductase Yield 

mg Protein Digested/ mg Protein/ umoles N02/ 
Percent hr/g Fr. Wt. g Fr. Wt. ug/g Fr. Wt. hr/g Fr. Wt. Kg/ha 

1 14.92 16.23 5.18 26.7 243 3234 0.07 3789 
2 13.90 21.32 2.55 32. 7 313 2855 0.67 3534 
3 15.17 22.87 2 .98 38.4 251 2415 0.74 3932 
4 14.63 21.19 3.92 25.5 285 3145 0.15 3932 
5 13.88 22.24 3.50 27 .o 251 3294 0.14 5240 
6 13.55 22.29 2.86 31. 7 266 2812 0.29 4031 
7 13.12 23.69 4.ll 28.7 255 2813 0.07 4337 
8 13.55 23.43 3.86 20.4 470 3007 0.17 4621 
9 15.56 22.79 2.27 24 .3 300 2688 0.11 4216 

10 15.22 23. 27 1.18 28.7 235 2884 0.18 4076 
11 15.32 22.28 2.44 40.6 281 2667 0.73 3718 
12 15.86 22.13 2.48 34.3 263 2813 0.80 3462 
13 15.55 23.49 2.78 35.5 213 3104 0.19 3572 
14 16 .11 23.84 2.93 30.4 250 2816 0.33 4529 
15 14 .62 20.07 3.60 30.2 260 2583 0.15 4216 
16 15.53 22. 77 3 .04 28.7 299 2688 0.19 4977 
17 15.97 21.64 5 .51 40.3 402 2881 o. 7 2 3320 
18 15.19 21.40 2.68 35.2 220 2770 0.22 4003 · 
19 15.80 21.91 3.16 41.8 296 2718 0.31 4316 
20 14.89 21.88 4.36 31. 7 368 2859 0.02 4785 
21 14.93 22.92 3.13 38.2 207 2564 0.17 4102 
22 15 .24 22.19 2.17 36.6 281 3108 0.67 3107 

w ·,. N 



F3 Popu- Grain 
lat ions Protein Protease 4 Protease 

mg Protein Digested/ 
Percent hr/g Fr. Wt. 

23 15. 20, 23:.29- 2.76 
24 13.55 23.16 2.80 
25 13.68 24.07 3.09 
26 14 .04 22.15 2.68 
27 13 .92 24 .37 2.94 
28 14 .81 20.87 2.71 
29 13.86 22.36 3.05 
30 15.44 22.01 2.56 

LSD05 1.13 NS NS 

NS - Denotes nonsignificance at 5% level. 

TABLE VIII (Continued) 

Water Soluble 
7 Protein Nitrate 

mg Protein/ 
g Fr. Wt. ug/g 

36~3 ,; 308 
28.9 237 
37.0 339 
38.9 281 
44.9 317 
35.9 301 
25 .2 269 
42.0 277 
10.92 NS 

Alpha Amino 
Nitrogen 

Fr. Wt. 

3286 
2494 
3171 
3101 
2689 
2627 
3040 
3119 

NS 

Nitrate 
Reductase 

umoles NOz/ 
hr /g Fr. Wt. 

0.33 
0.09 
0.48 
0.52 
o. 24 
o. 72 
0.08 
0.97 
0.41 

Yield 

Kg/ha 

3982' 
4337 
4216 
4195 
3555 
4316 
4479 
3861 

982 

w 
w 



34 

Summary 

If one examines the data of this experiment in light of the objec­

tives, several conclusions can be made: 

I. Protease 7 and forage nitrogen had sufficiently high heritabil-

ities that their inclusion in a breeding program for increasing grain 

protein should be practical. 

3. Heritability estimates based on individual sampling date for 

several variables could be of value in a breeding program i.e., protease 

4, April 14, alpha amino nitrogen on January 12, May 19 and 25, and WSP 

on January 12 and May 25 .. However, more study is needed to find the 

ideal sampling date. 

3. The pooled correlations were low for all variables which could 

be used to predict final grain protein. 

4. Alpha amino nitrogen measured on May 25 and June 1 was corre­

lated negatively with grain nitrogen, however, these sampling dates may 

be too late in the season, thus limiting their value io the breeder. 

On April 14, protease 7 was negatively correlated with grain nitrogen. 

This information could possibly aid a breeder in selection for high 

protein. 

5. The pattern of development of protease 7, as well as the numer­

ous correlations between it and other factors in nitrogen metabolism 

suggests that this enzyme would be one which should be studied more 

thoroughly. 

6. The extreme variationin weather conditions which prevailed in 

these two years makes comparison of the years difficult, if not 
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impossible. The fact that NR and nitrate were not detectable the first 

year and found throughout the second year exemplifies this difference. 



CHAPTER III 

LEVELS OF NITRATE REDUCTASE AND PROTEASE 

IN VEGETATIVE PART OF WINTER WHEAT 

CULTIVARS 1 ' z 

Abstract 

Ten winter wheat cultivars ranging from high to low p;r-otein content 

were analyzed for protease 4, protease 7 and nitrate reductase activity. 

The cultivars differed in protease 4, protease 7, and nitrate reductase 

activity. Protease 7 and nitrate reductase were found to correlate with 

forage and grain protein. It is suggested that nitrate reductase could 

be used to predict final grain protein, This work adds evidence to the 

suggestion that protease enzymes and nitrate reductase provide nitrogen 

substrate for the plant. The nitrate reductase system was most active 

in the early stage of growth and protease was most active as the plant 

matured. Additional key words for indexing: Grain Protein, 

~Article coauthored with L. I. Croy for submi.ssion to Crop Science 
for publication. 

2Abbreviations used in this paper: NR-nitrate reductase; NAD­
nicatinamide adenine dinuc leotide; NAD·0.nicotinamide adenine dinuc leo·· 
tide phosphate; WSP-water soluble proteins, 

36 
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Introduction and Literature Review 

Most plants require nitrate as a source of nitrogen. This nitrate 

once absorbed by the plant must be reduced to ammonia for the formation 

of amino acids by amination and transamination of keto acids. NR is the 

rate limiting enzyme in the reduction of nitrate to ammonia._ Evans and 

Nason (1953) were the first to extract NR in a partially purified form 

from higher plants • 

. The induction of NR was found to be approximately proportional to 

the level of nitrate in the tissue (~eevers, et al., 1965). An in-

crease in NR activity in response to an increase in the nitrate levels 

of the nutrient media has. been observed (Hageman. and Flesher, 1960). 

The relationship of NR to protein production has been studied by 

many workers. Deckard, et al., (1973) found a significant correlation 

-
between NR activity and grain protein. A significant positive correla-

tion between seasonal NR activity and percent grain protein in 15 wheat 

cultivars was found by Eilrich (1968). Croy and Hageman (1970) found a 

significant positive correlation between input of reduced nitrogen esti-

mated from NR activity and the accumulation of grain protein in the 

wheat cultivars· 0Ponca u and uMonon °. The high protein cul ti var Ponca 

had higher levels of NR activity than the low protein cultivar. 

Johnson, et al., (1968) concluded that more-efficient and complete 

translocation of nitrogen from the vegetative plant parts to the grain 

is the physiological basis of high protein grain. A low protein culti-

var, 0Warrioru was found to contain more nitrogen in the vegetative 

plant than a high protein selection uNE 65305°. A possible r~ason for 

the slow rate of translocation in Warrior could be a low level of 



protease enzyme which would lessen degradation of proteins to amino 

acids for translocation to the grain. 
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Many workers have studied the proteases of seeds during germina­

tion. An increase in protease activity during germination of wheat 

seeds was found by Mounfield (1936). Two types of enzymes were present 

which he classified as a proteinase and dipeptidase. He noted that by 

the seventh day after germination a tenfold increase in activity had 

occurred. Irving and-Fontaine (1945). found a proteolytic enzyme in 

peanut meal which would hydrolyze benzoyl-1 arginine amide. 

Working with sorghum, Garg and Virupaksha (1970) found that resting 

seeds had low proteolytic activity and during the first two days of 

germination, the activity remained low; however, by the sixth day a 

threefold increase was noted. This enzyme specifically cleaved the 

peptide linkage involving alpha-carboxyl group of either aspartic acid 

or glutamic acid with the release of the acyl portion of these acidic 

amino acids. Palmiano and Juliano (1972) found that protease activity 

was highest on the fifth day after germination in rice. This protease 

which was synthesized or liberl:}ted during germination probably has 

properties similar to those of the proteases of mature grain. An acid 

protease was found associated with protein bodies in ungerminated bar­

ley seeds (Ory and Henningsen, 1969). This protease catalyzed the ini­

tial production of amino acids from reserve protein. A protease in 

peanut cotyledons was. found to increase in activity during the first 

week of germination (Mainguy, et a L 9 1972). However" this protease 

could not digest complex proteinaceous materials. 

Work with proteases of vegetative parts of the plant is not as 

prevalent as work with seed proteases probably because the enzyme occurs 
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in low levels in leaves. Greenberg.and Winnick (1945) listed eleven 

plants which had protease activity. In most of these plants the pro­

tease activity was found in the latex. Working with many plant species 

including wheat, Tracey (1948) found protease activity in both sap and 

fiber; however, this activity was about 1/10 of that found in pineapple. 

Kawashima, et al., (1968) examined a protease from tobacco leaves. 

They found that matured leaves of tobacco lost half their protein during 

three days flue curing. Simul.taneous with this. loss was an increase in 

protease activity. 

Protease can be synthesized during the senescence of leaves (Martin 

and Thimann, 1972). De nova synthesis of this proteolytic enzyme may 

,be the primary biochemical change in senescence. Two proteolytic en­

zymes were found, one with peak activity at pH 3 and the other with peak 

activity at pH 7.5 •. A neutral protease from etiolated oat shoots was 

described by Pike and Briggs (1972) •. It degraded phytochrome and was a 

endoprotease. This protease would degrade a variety of proteins in­

cluding casein, phytochrome, and hemoglobin. 1he protease was only a 

protease (not peptidase, amidase or estrase) and was not specific as to 

bond cleavage. 

In apple leaves, protease activity followed a seasonal pattern with 

senescence (Spencer and Titus, 1972). Protease levels were highest 

after the first frost in the fall. However. protease activity was not 

correlated with loss of leaf protein. Total protein had declined to 

40% from its maximum before proteolytic activity began to increase sig­

nificantly. 

High protein lines of wheat have·higher·levels of protease than 

· low protein lines in the seedling stage .(Rao and Croy,, 1971). Their 
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data suggest that the high protease activity of the high protein line 

resulted in more rapid rate of growth than that measured in the low 

protein line. The high protein cultivars exhibited higher levels of 

protease activity after the flag :j.eaf stage than low protein cultivars. 

High protease levels were associated with increases in grain-yield and 

grain protein production per acre (Rao and Croy~ 1972). High protein 

lines of rice had higher protease activity in the grain than low protein 

cul ti vars (Cruz, et al., 1970). However, no association be.tween pro­

tease activity and accumulation of protein in the ripened grain was 

found. The mean levels of protease activ:j_ty in leaf blades were higher 

at flowering and during grain.development in rice cultivars giving a 

high yield of grain protein (Perez, et al., 1972). 

The objectives of this experiment were to measure NR,and protease 

activities and determine the relationship of these activities to grain 

protein content. 

Materials and Methods 

This experiment included ten cultivars which varied in grain pro­

tein content. The cultivar B4930 is a Purdue selection which was pre­

viously classified as having high protein content derived from crosses 

of 1Atlas 66 1 • The cultivars NE 65305» NE 65317, NE 65318, NE 65320, 

and NE 65679, are Nebraska s1:_!ections previously classified as having 

_high protein derived from.Atlas 66 crosses. The cultivars· uGenessee 1 

and uMonon 1 are low protein cultivars •. 1 Triui:nph 64 1 was included be­

cause· it is a cultivar well adapted to Oklahoma conditions. It is 

intermediate in protein content. 'Warrior I was included because it con­

tained high protein in the forage but low protein i.n the;grain 
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(Johnson, et al., 1968). 

These experiments were conducted on Stillwater Agronomy Research 

. Station. The cultivars.were .planted on Kirkland silt: learn. in a random­

ized block pattern on October 6,. 1971, at a seeding rate of 67.2 I<g/ha. 

Prior to planting 20.0-.21..8-0 Kg/ha N-P-K were ~pplied te the test searea. 

Each plot consisted 9f four rows 3.965 m. long which were t.r.i.l;llllled. to 

3.05 m .early the following spring •. Four replications were planted. On 

March 15,, 100.8 tg/ha actual N as ammonium .nitrate were applied te the 

plots. Samples were taken for enzyme extract.ion.on February. 23, March 

14, April 26 , and May 21. 

Extraction and assay procedures fer protease 4 and 7, alpha amino 

nitrogen, nitrate reductase,. water soluble pretein,_and nitr~te, were 

the same as. the second experiment in the previeus chapter •.. However, 

. percent grain protein was. determined by the Udy analysis method instead 

of micro-kjeldahl procedures as in the previous experiment •. Ferage pr.s­

tein was.determined by micro-kjeldahl procedure on mature vegetative 

tissue. Multivariate analysis. ef variance ·was performe·d to obtain the 

correlation coefficients after adjusting for cultivar effects. 

The ten cultivars were divided into preteinaµd maturity groups 

based on1973 data. The groups are listed in Table ·IX. 

Res.ults and Discussion 

. Protease 4 activity was significantly different at 1% level. on 

• February 23" and Apr-il. 12 and at 5% level on March 12 (Table .X). On 

t)le February. 23 sall!pling date the cultivars Triut!lph 64, Genessee, and 

NE 65320 were .lower in activity than the ether .cul ti vars. NE 65.318 was 

.. lower than the other cultivars on March. 12 sam_pling date •. On April 26 



Low 

NE 65318 
Genes see 
Monon 

Early 

Triumph 
Monon 

TABLE IX 

GRAIN PROTEIN GROUPS AND MATURITY GROUPS 
FOR CROP YEAR 1972.-1973 

Protein Groug 

% Protein Medium % Protein High 

14.5 B4930 15.6 NE 65305 
13.0 Triumph 15.6 NE 65317 
14.5 Warrior 15.9 NE 65320 

NE 65679 

Maturity Gro~ 

Days to Days to 
Heading Medium Heading Late 

201 Warrior 204 Genes see 
202 NE 65317 205 NE 6530.5 

NE 65318 203 B4930 
NE 65320 .· 204 
NE 65679 205 
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% Protein 

16.2 
16.9 
16.1 
16.4 

Days to 
Heading 

209 
209 
209 



Cul ti var 

B4930 

Genes see 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

Triumph 64 

Warrior 

TABLE X 

PROTEASE ACTIVITY FOR TEN WHEAT CULTIVARS FOR FOUR 
DATES, FEBRUARY 23, MARCH 12, APRIL 26~ 

AND MAY 21, 197 3 

Sampling Dates 
February 23 f March 12 April 26 

mg Protein Digested/hr/g Fr. Wt. 

9 .42 4. 7 2 14.23 

7.07 5.24 15. 29 

9.21 5.30 19.72 

8.55 5.43 16.61 

7.85 5.07 17.12 

7.92 3.30 17.98 

6.60 5.09 17.43 

9.72 5. 23 16,18 

6.79 5 .13 20.41 

8.08 4 .70 18.67 

LSD01 2. 27 LSD01 3.75 

LSD 05 1.68 LSD OS 1.98 ,LSD05 2. 77 
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May 21 

18. 27 

17.32 

21.68 

20.85 

18.93 

22.62 

19. 21 

20.03 

21.10 

22.10 

NS 
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sampling date MonQn, Triumph 64, and Warrior were significantly higher 

in activity than the other cultivars" It is interesting to note that 

these cultivars were early or medium in maturity which suggests the 

higher protease 4 activity was associated with later sta~es of physio­

logical development" Protease 4 a~tivity was not significantly differ­

ent on the May 21 date •. There seemed to be little association between 

grain protein content and protease activity" 

No clear cut pattern of protease 4 activity with protein groups 

could be found (Figure 4), When maturity group was plotted agqinst 

sampling date, it was revealed that the early maturity group was sub­

stantially higher in activity on the two later sampling dates than me­

dium or late maturity group. The medium maturity group was intermediate, 

and late maturity group was low in activity (Figure 5). The enhanced 

activity for the early maturity group was probably a reflection of ear"' 

lier senescence in the leaves for this group" 

A negative correlation was found between protease 4 and yield on 

March 12 (Table XI), Two possible explanations for this correlation 

are: (l) that high protease 4 activity on this date results in a loss 

of material which, if present later, could be incorporated into the 

grain; possibly this ''loss 11 of material is incorporated into membranes 

within the leaf tissue; (2) that high protease 4 activity results in a 

degradation of enzyme responsible for co 2 fixation which could result in 

a reduction of carbohydrates available for translocation to the gr~in, 

Also a negative correlation was found between protease 4 and ni­

trate on the May 21 sampling date (Table XI), This :i,mplies that as ni­

trates decrease, prot~ase 4.increases" These ~ata suggest that protease 

4 is.related to nitrogenmetab.0lism, It would seem tp.at nitrogenous 
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TABLE XI 

NOTEWORTHY CORRELATION COEFFICIENTS FOR FOUR 
SAMPLING DATES, FEBRUARY 23, MARCH.12, 

APRIL.26, AND MAY 21, 1973 

Variables Correlated Date 

Nitrate Reductase Alpha Amino Nitrogen Feb. 23 
Forage Protein Water S,olu,ble Protein Feb. 23 

Protease 7 Alpha Amino Nitrogen March 12 
Protease 7 Nitrate Reductase March 12 
Protease 7 Forage Protein March 12 
Protease 4 Yield March 12 
Nitrate Water Soluble Protein March 12 
Nitrate Nitrate Reductase March 12 

Nitrate Reductase Forage Protein April 26 
Nitrate Reductase Grain Protein April 26 
Nitrate Reductase Yield April 26 
Protease 7 Forage Protein April 26 

Protease 4 Nitrate May 21 
Protease 7 Forage Protein May 21 
Nitrate Reductase . Forage Protein May. 21 
Water Soluble Protein Yield May 21 

* Denotes significance at 5% level of probability. 

** Denotes significance at 1% level of probability, 

+ Denotes significance at 10% level of probahility. 
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Correlation 
Coefficient 

** -0.508+ 
-0.331 

* 0.386+ 
0.392* 
0.372+ 

-0.343* 
0.383* 
0.411 

+ 
0.351+ 
0.335+ 

-0 .328+ 
0.389 

* 
-0.413-* 
-0.409* 

0.44f>'+ 
-0.321 
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material can be supplied by either reduction through NR or by degrada-

tion by proteases, The amount of these processes would seem to be con-

trolled by the availability of substrate, If nitrate levels were low 

then NR activity was.reduced and then the needs for amino acids were 

provided by protease enzymes, The trend for NR activity to decrease 

with maturity while protease 4 increased, substantiates this idea, 

Differences among cultivars for protease 7 activity were signifi= 

cant on the May 21 ·sam,e!ing _ date ·bti.f:.not for 'anf of t~e other dates 

(Table XII), Monon, Triumph 64, and Warrior were higher in activity 

than the other cultivars, These data are not consistent with the find= 

ings of Rao and Croy (1972), who found that higher levels of protease 7 

were associated with the high protein cultivar in the growing season, 

Howeverll it must be remembered that Triumph 64 and Monon mature earlier 

than the other cultivars while Warrior is medium in maturity, 1here= 

fore, the peak of activity may have not been reached in the later ma-

--
turing cultivars on this date, The plot of maturity group against date 

shows that the early maturity group had higher activity on the last date 

than either the medium or late maturity group (Figure 6), Also the low 

protein group was higher in protease 7 activity on the last date than 

the medium or high group (Figure 7),. Both of these patterns suggest 

that peak activity-had not been.reached on the last sampling date in 
... 

the medium and late maturity groups and high and medium protein groups, 

-
Several correlations were found with protease 7, Positive corre-

· lation was found between protease 7 and forage protein on the March- 12 

and April 26 sampling dates while a negative correlation was found- on 

the May 21 sampling date (Table XI), The positive correlations.may be 

associated with degradation products of protease 7 being incorporated 



Cul ti var 

B4930 

. Genessee 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

Triumph 64 

Warrior 

LSD05 

TABLE XII 

PROTEASE 7 FOR TEN WHEAT CULTIVARS FOR FOUR 
SAMl?LING DATES, FEBRUARY 23, MARCH 12, 

APRIL 26, AND MAY 21,1973 

Sameling·Dates 

February 23 March 12 April 26 

mg Protein Digested/hr/g Fr. Wt. 

0.95 0.54 2.64 

0.59 0.24 2.57 

1.81 0.27 2.38 

· 1.59 0.47 2. 72 

0.80 · 0.54 2.68 

1.34 .. 0.46 2.67 

1..13 0.57 2.61 

0.99 0.56 2.03 

. 1. 70 0.55 2.38 

1. 76 · o. 79 2.06 

NS NS NS 
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May 21 

1.86 

3 • .:,1 

6.49 

3.63 

3.15 

3015 

2. 72 

2.58 

4.08 

4.00 

2.13 
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into protein structures which will remain in the forage as membranes. 

The negative correlation suggests that protease 7 was actively breaking 

down proteins in the forage and that these degradation products were 

being translocated out of the forage to the grain. 

On the March 12 sampling date, protease 7 was positively correlated 

with alpha amino nitrogen. This correlation would be expected since 

·protease 7 breaks proteins.into amino acids; therefore, high protease 

7 activity should produce high alpha amino nitrogen. 

Differences among cultivars for nitrate reductase activfty were ~lg~ 

nificant on the April 26 sampling date (Table XIII). The B4930 and NE 

65317 were higher than the other cultivars in NR activity. 

The pattern of NR activity (Figure 8) was similar for the late and 

medium maturity groups with the late group maintaining slightly higher 

activity later in the season. The early maturity group lost activity 

earlier than the other groups and was.lower in activity on all dates 

sampled. The pattern for protein groups was marked by high levels of 

NR activity for the high protein group on March 12 (Figure 9). The 

medium protein class was low on March 12 but regained some activity on 

April 26. The low group was inactive on both the March 12 and April 26 

sampling dates. 

Nitrate reductase activity was correlated with several factors 

(Table XI), One of the most interesting of these was the positive 

correlation between NR and forage protein on April 26 and the May 21 

sampling dates and with grain protein on April 26 sampling date. These 

correlations indicated that NR can be related to plant protein content . 

. These data also indicate that measures of NR at this stage of growth 

could possibly predict the level of protein in the grain. Deckard 
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Cul ti var 

B4930 

Genes see 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

Triumph 64 

Warrior 

LSD05 

TABLE XIII 

NITRATE REDUCTASE ACTIVITY FOR TEN WHEAT CULTIVARS 
FOR FOUR. SAMPLING DATES,. FBBRUARY · 23, MARCH 12 ~ 

APRIL 26, AND MAY 21, 1973 

Samelil!& Dates 

February 23 March 12 4pril 26 

umoles KN0 2/hr/g Fr. Wt. 

4.02 0.62 1.09 

2.74 0.28 0.48 

2.92 0.79 0.78" 

3.66 0.66 0.63 

3~81 0.38 0.80 

3.92 0.30 0J30 

3. 71 1.16 0.43 

3 .31 0.88 o. 78 

3.77 o. 27 0.34 

3.32 0.40 0.49 

NS NS 0.49 
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May 21 

0.02 

0.08 

o.oo 

0.00 

0.02 

0~00 

0.03 

0.00 

0.03 

o.oo 

NS 
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(1973) also found a streng relationship between NR activity and grain 

protein. These data suggest that if NR activity level can be increased 

in a cultivar then higher grain protein should result. 

On the February 23 sampling date, a negative correlation was found 

between NR and levels of alpha amino nitrogen. This correlation implies 

that if amino acids are low, NR activity will be high. This inferma= 

tion suggests that NR activity may be controlled by amino acid levels 

as proposed by Filner (1966). 

On the March 12 sampling date there was a positive correlation be­

tween NR and nitrate. This should be expected since NR is known to be 

substrate inductible (Afridi, et al., 1965; Beevers, et al., 1965) •. The 

positive correlation between WSP and nitrate on the same date probably 

. is related to the correlation between NR and nitrate in that high NR 

activity provides amino acids which can be incorporated.into protein to 

increase WSP. Also on March 12 a positive correlation between.NR and 

protease 7 occurred. This correlation suggests that both enzymes are 

controlled by the same factor possibly amino acid levels .• 

. Differences among cultivars for WSP were significant at 1% level 

on the May 21 sampling date (Table XIV) •. The cultivars Triumph 64 and 

NE 65679 were considerably lower in WSP levels than the other cultivars. 

The WSP contents were unusually high for all cultivars. for this-late 

stage·of growth. These high values were.probablyrelated to the un­

usually high moisture levels during the growing season which allowed for 

maximum forage growth. 

WSP was negatively correlated with forage protein on February 23 

sampling date (Table XI). This correlation is difficult to explain 

physiologically. WSP was also negatively correlated with yield on May 



Cul ti var 

B4930 

Genes see 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

TABLE XIV 

WATER SOLUBLE PROTEIN CONTENT OF TEN WHEAT CULTIVARS 
FOR FOUR SAMPLING DATES, FEBRUARY 23, MARCH 12, 

APRIL 26, AND MAY 21, 1973 

Sameling Dates 

February 23 · March 12 April 26 

mg Protein/g Fr. Wt. 

22.5 19.4 20.0 

23.6 23.4 26.7 

22.5 21.5 23 .3 

19.4 21.3 22.3 

24 .2 18.8 22.7 

21.4 12.4 24.4 

20.8 23.0 24 .1 

17 .o 20.7 30.0 

Triumph 64 17.8 19 .8 26.1 

Warrior 20.1 15.4 23.3 

LSD01 NS NS NS 

LSD05 
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May 21 

47.8 

44.7 

35.1 

37.9 

32.6 

38.5 

47.1 

27 .3 

13.7 

36.4 

17.4 

12.9 
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21. This correlation possibly relates to the idea that WSP must be de-

graded and these degradation products translocated to the grain for 

maximum yield to occur. Therefore, as WSP is degraded, its level de-

creases while translocable products increase which increase yield. 

Alpha amino nitrogen and nitrate were not significantly different 

on any sampling date (Tables XV, XVI). 

The cultivars were significantly different at the 1% level for 

-
grain protein, but not for forage protein or yield. 1Genessee 0 was low 

in grain protein and NE 65317 was high. 

Summary 

Several observations can be made from this study: 

1. Protease 4 activity was different among the cultivars on the 

early season sampling dates. However, little association between pro-

tease 4 levels and final grain protein could be found. Protease 4 

lev~ls appeared to be associated more closely with stage of maturity 

than with levels of grain protein. 

2. The cultivars were different in protease 7 activity fate in the 

growing season with low protein cultivars having higher activity. Also, 

early maturing cultivars had higher activity later in the season. How-

ever, the possibility exists that the other cultivars had not reached 

peak activity. 

3. NR activity was significantly different among the cultivars 

only on the April 26 sampling date. Generally the cultivars with high 

NR activity were those which had high final grain protein. Also, corre-

lations were found between NR and forage and grain protein in the later 

part of the growing season. 



Cul ti var 

B4930 

Genes see 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

Triumph 64 

Warrior 

Lsn05 

TABLE XV 

ALPHA AMINO NITROGEN CONTENT FOR TEN WHEAT CULTIVARS 
FOR FOUR SAMPLING DATES, FEBRUARY 23, MARCH 12, 

APRIL 26, AND MAY 21,° 1973 

Same ling Dates 

February 23 March 12 April 26 

ug/g Fr. Wt. 

1246 853 1918 

1211 1054 1344 

1593 974 17 27 

1284 1279 1501 

1526 856 1429 

1466 751 1796 

1435 779 1599 

1200 1118 1301 

1368 647 1535 

1304 706 1639 

NS NS NS 

59 

l:'lay 21 

1468 

1613 

1059 

1098 

1335 

1175 

881 

1285 

1532 

1315 

NS 



Cul ti var 

B4930 

Genes see 

Monon 

NE 65305 

NE 65317 

NE 65318 

NE 65320 

NE 65679 

Triumph 64 

Warrior 

LSD05 

TABLE XVI 

NITRATE CONTENT OF TEN WHEAT CULTIVARS FOR FOUR 
SAMPLING DATES, FEBRUARY 23, MARCH 12, 

APRIL 26, AND MAY 21, 1973 

Sameling Dates 

February 23 March 12 April 26 

ug/g Fr, Wt. 

1232 1684 814 

826 1057 661 

752 1767 381 

782 1050 272 

612 1099 311 

572 1540 227 

639 814 343 

618 1391 483 

706 1324 263 

565 684 292 

NS NS NS 
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May 21 

780 

638 

926 

710 

644 

526 

512 

703 

937 

521 

NS 
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4. Predictions of grain protein could be made from measurements of 

NR in plants at the stage of growth present between late March and 

April. 

5. Nitrate reductase and protease systems are related in that each 

acts as a source of amino acids for protein synthesis. Nitrate reduc­

tase is most active early in the growing season with protease most 

active as the plant matures. 



CHAPTER IV 

PROTEASES FROM WHEAT FORAGEl' 2 

Abstract 

The effects of varied substrate, temperatures, pH, inhibitors, 

ionic streng~h and extraction buffer on protease enzymes of winter 

wheat forage were determined. Hemoglobin was the best substrate t~sted 

and protease activity was highest at pH's 4 and 7. , The. pH activity 

peaks are believed to be two enzymes denoted as protease 4 and 7. Pro= 

tease 4 had a temperature optimum of at least 50 C while protease 7 

optimum was 40 C. The Inhibitor study indicated that protease 4 con-

tains an active sulphydryl group. Also, high ionic strength reduced 

-· 

protease 4 and 7 activity. Additional key words for indexing:. Ionic 

strength, Sulphydryl groups. 

Introduction and Literature Review 

Mounfield (1936) described the chan~cteristics of a proteinas~ and 

dipeptidase from aqueous extracts of germinated wheat seeds.. He found 

1Article coauthored with L. I. Croy for submission to Crop Science 
for publication. 

2Abbreviations used in this paper: DNTB-5,5 1 Dithio-bis-(2-Nitro 
Benzoic Acid), PMSF-PhenyLmethyl sulfonylfluoride, Cleland Reagent= 
dithiothreitol, Km-Michaelis constant. 
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that wheat proteinase was relatively stable in buffer solution main­

tained at pH 4 or 6 but was destroyed at pH 8 in less than three days. 

The dipeptidase lost its activity slowly_at p:{I 6 but was almost imme-" 

diately destroyed by exposure to a medium at pH 4. Furthermore both 

enzymes were activated by cyanide. 
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Many organic substances have been shown to affect protease enzymes. 

A protease from tobacco leaves was found to be enhanced in activity by 

0.02 M solutions of sodium sulfide, sodium hyposulphite, potassium 

cyanide, ascorbic acid and cysteine by Tracey (1948). Iodoacetate and 

copper were shown to be inhibitors. The enzyme was described by-Tracey 

(1948) as a upapain 1 type protease. 

Other types of proteases have been found. Irving and Fontaine 

(1945) found a proteolytic enzyme in peanut meal that was capable of 

hydrolyzing benzoyl-1-arginine amide to yield benzoyl-1 arginine and 

ammonia, This enzyme called arachain was trypsin-like. It was unaf­

fected by cysteine, ascorbic acid and cystine. 

Proteases seem to vary widely in pH optima. Johnson, et al., 

(1956) described a protease involved in bread-making. This protease had 

a pH optimum which varied with substrate. The pH optimum was 3 to 4 

using hemoglobin as substrate or 5.5 to 6.0 with casein substrate. A 

protease in soybean flour was found which had a pH optimum of 5.5 and a 

temperature optimum of 50 C (Weil, et al., 1966). 

Kawashima, et al., (1968) found a protease enzyme in leaves of 

curing tobacco. It had a pH optimum of 5.5 and was inactivated at 

tanperatures higher than 40 C, They also noted that cysteine, gluta­

thione, mercaptoethanol, and ascorbate increased the enzymes activity 

while copper, iron, magnesium, zinc, and cyanide ions had no effect on 
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it. Two protease enzymes were found in stem bromelain (Minami, et al., 

1971). One had an acidic isoelectric point while the other was a basic. 

Cysteine was an activator for both enzymes. 

Protease enzyme from germinated sorghum seeds was examined by Garg 

and Virupaksha (1970a). This enzyme had maximal activity at pH 3-.6 and 

less than 20 percent of maximum at pH 5.0. It had a temperature optimum 

of 50 C and Michaelis constant value of 0.55 mg/ml for bovine serine 

albumin. The metal ions mercury, copper, zinc, iron, inhibited the 

enzyme activity by 30 to 50 percent. In a subsequent paper (1970) this 

enzyme was shown to specifically cleave the peptide linkage involving 

the dicarboxyl group of aspartic acid and glutamic acids with the re­

lease of the acyl portion. 

Many proteases from germinated or ungerminated seeds and young 

seedlings have been described. An acidi~ protease which is associated 

with protein bodies in ungerminated barley was found by Ory and 

Hennigsen (1969). The initial production of amino acids from reserve 

protein is catalyzed by this acid protease. 

Several proteinases from the aleurone of barley with a pH optima 

ranging from 3.9 to 9 were described by Sunderblom, et al., (1972·). The 

main component of these proteinases was a SH-proteinase with pH optimum 

of 3.9. 

Mainguy, et al., (1972) examined a.protease from six=day old peanut 

seedling cotyledons. This enzyme was barely affected by potassium 

iodide or hydrogen peroxide. They classified this enzyme as a serine 

protease. 

A.protease was found in pea cotyledons which had two pH optima 

(Guardiola and Sutcliffe, 1971). One optimum was at pH 5 and the other 



near pH 7. This enzyme was described as nonspecific endo-peptidase or 

mixture of exo-endo peptidases. 
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Horiguchi and Kilagishi (1969) showed the presence of a protease 

which had two pH optima (3 and 8) in rice when rice glutelin was used as 

substrate. 

There has been some characterization of proteases from older plant 

tissue. A protease with pH optima of 3 and 7.5 and a minimum at 5 with 

hemoglobin substrate was described by Martin and Thimann (1972). L= 

serine enhanced the activity of this. enzyme. Pike and Briggs (1972) 

studied a protease from oats and found that it was an endoprotease with 

pH optimum of 6.4. It was inhibited by high ionic strength but with 

small specific ion effects. Also HgC1 2 and DTNB were strong inhibitors. 

They concluded that this protease was one which had no specificity for 

bond cleavage location. 

Rao (1971) found a protease in wheat leaves and stated that it was 

a complex of two enzymes. 

The objective of this study was to characterize the protease en­

zymes isolated from wheat leaves. 

Materials and Methods 

All tests were performed on NE 65317, a high protein wheat derived 

from a cross of 1 Atlas 66' and 1Comanche 1 • The plant material was one 

to two weeks of age at the time of evaluation. All extractions and 

assay procedures were as described in previous experiments except-where 

indicated. As in previous experiments, proteases measured at pH 4 and 

7 are designated as protease 4 and 7, respectively. 
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Substrate Evaluation 

Bovine hemoglobin, gluten, plant protein, and blood serum albumin 

·-

were tested as substrates for the protease enzymes. These substrates 

were tested at concentrations of 0.25 percent final volume. The plant 

protein was extracted from wheat plants growing in the field using the 

standard protease extraction procedures. The extract was combined with 

an equal volume of 10% trichloracetic acid and allowed to stand for two 

hours so that precipitation would be complete. The precipitant was then 

spun down by centrifugation for ten minutes at 2000 g. The supernatant 

was decanted and the sediment allowed to dry. After drying, the material 

was added to the usual pH 4 and pH 7 buffers for enzyme activity de-

terminations. 

Extraction Buffers 

Extraction buffers consisting of EDTA-Po4 , Tris,(Hydroxymethyi 

Aminomethane) and Po4 were examined. The EDTA: P04 buffer is the stand­

ard extraction buffer for protease. The phosphate buffer system was ,01 

M concentration adjusted to pH 7 by the combining of KH2Po4 and K2HP04 • 

The Tris buffer was .01 M concentration of Tris adjusted to pH 7 with 

.01 M HCL. 

Extraction Buffer Additives 

Cysteine, cystine, glutathione and sucrose were tested as additives 

to the extraction solution. Cysteine, cystine and glutathione were at 

lmM concentration and sucrose was a 5% solution. 
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Buffer Strength 

The effects of ionic strength on protease activity was examined, 

using three concentrations of EDTA and phosphate: lmM, .01 Mand 0.1 M. 

Substrate Concentrations and Michaelis Constant 

Substrate concentrations of 0.00391, 0.0078, 0.0156, 0.03125, 

0.0625, 0.125, 0.25 and 0.5 mg of hemoglobin per milliliter were tested. 

The Km was calculated plotting 1/velocity against 1/substrate according 

to Lineweaver and Burk (1934). 

Temperature Effects 

The optimum temperature for protease activity was determined by 

measuring activity at 10, 20, 30, 40, 50 C. 

pH Optima 

The pH optima were determined by measuring activity at pH 3 through 

9. Varied concentrations of citric acid-sodium phosphate buffer were 

used for pH 3 to 7. Tris buffer was used for pH 8-9. 

Inhibitors 

PMSF, DTNB, Cleland reagent were tested as inhibitors of protease 

activity. As were the metal ions FE+++, Zn++, Ni++, Sn++, Ca++, Mg++, 

K+ ++ , Hg • All metal ions were at 0.25 mM concentrations. PMSF was 1.74 

mg/ml, DTNB at 17.42 mg/ml and Cleland reagent at 15 mg/ml. DTNB was 

dissolved in methanol and PMSF was dissolved in 5% ethanol solution, 

this concentration of ethanol had little effect on protease activity; 



however, the methanol solution did reduce protease activity, compli­

cating the effects of DTNB. All materials tested as inhibitors were 

incubated with the enzyme extract for thirty minutes prior to assay 

procedures. 

Results and Discussion 
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Protease 4 and 7 activity levels were highest using the hemoglobin 

substrate (Table XVII). The activity was almost twice as. large as that 

using plant protein. Protease activity levels were low in blood serum 

albumin with almost no activity on gluten. 

Extraction Buffers 

The highest protease 7 activity was obtained when EDTA-Po4 extrac­

tion buffer was used (Table XVIII). The highest protease 4 activity 

levels was obtained with the phosphate buffer. Protease 4 and 7 activi­

ties were low when Tris was used as the extraction buffer. 

Extract Additives 

The addition of cysteine enhanced protease 4 and 7 activities 

while cystine, glutathione, sucrose decreased activity substantially 

(Table XIX). These data suggest a sulfhydryl group may be involved in 

the active site of protease since cysteine acts as a sulfhydryl pro­

tecting agent. Kawashima, et al., (1968) found that cysteine enhanced 

the activity of protease enzyme in tobacco leaves. 



TABLE XVII 

PROTEASE ACTIVITY MEASURED AT pH 4 AND 7 ON FOUR SUBSTRATES. 

Substrate 

0.5% hemoglobin 
0.5% gluten 
0.5% plant protein 
10 mg/ml BSA 

pH 4. pH 7 

mg Protein Digested/hr/g Fr. Wt. 

6.60 
0.32 
3.50 
1.23 

2.60 
o.oo 
1.00 
0. 29 

Assay conducted at 40 C for two hours. 

TABLE XVIII 

EXTRACTION BUFFER EFFECTS ON PROTEASE 4 AND 7 ACTIVITIES 

Buffer 

EDTA:P04 
Tris 
P04 

pH 4 pH 7 

mg Protein Digested/hr/g Fr. Wt. 

8.01 
6.40 
8.72 

4.43 
2.46 
3.15 

Assay conducted with. 0.5% hemoglobin substrate for two hours at 40 C. 
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TABLE XIX 

EFFECTS OF EXTRACTION BUFFER ADDITIVES 
ON PROTEASE 4 AND 7 ACTIVITIES 

Buffer Additives pH 4 pH 7 

mg Protein Digested/hr/g Fr. Wt. 

cysteine 
cystine 
glutathione 
surcose 
buffer only 

13.43 
7.73 

10.14 
5.02 

11. 77 

3.87 
3.15 
3. 27 
1.24 
3.40 
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Assay conducted with 0.5% hemoglobin as substrate for two hours at 40 C. 

Buffer Strength 

The high concentration of EDTA and phosphate reduced activity of 

the protease enzymes (Table XX) indicating that high ionic strength ad-

versely affects protease activity. Pike and Briggs (1972) also found 

that high ionic strength inhibited protease activity in oats. For some 

unexplained reason activity was low for all treatments in this test. 

Substrate Concentration 

The plot of substrate concentration against protease 4 activity 

(Figure 10) shows a concentration of greater than .125 mg/ml allowing a 

reaction rate approximating zero order, while at lower concentrations 

first order reaction rates are approximated. The Lineweaver-Burk plot 

of substrate· against substrate concentration by velocity (Figure 11) ap= 

preaches a str~ight line relationship with Km of 0.0437 mg/ml. The data 

for.' ~rotease 7 activity were very erratic in all experiments and were 
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not analyzed further. These data were obtained from wheat protease col-

lected from plants in the maturation stage rather than on week old seed-

lings. 

TABLE XX 

EFFECTS OF BUFFER STRENGTH ON PROTEASE 4 AND 7 ACTIVITIES 

Strength 

.001 M EDTA 

.01 M EDTA 

.1 M EDTA 

.001 M P04 

.01 M P04 

.1 M P04 

pH 4 pH 7 

mg Protein Digested/hr/g Fr. Wt .. 

2.59 
3.12 
0.47 
1.13 
2.82 
2. 72 

0.28 
0.11 
o.oo 
0.115 
0.35 
0.22 

.5% hemoglobin was used as substrate; incubation for two hours at 40 c. 

Temperature 

The temperature optima were at 40 C for protease 7 and 50 C or 

higher for protease 4 (Figure 12). Temperatures above 50 C were not 

tested. Garg and Virupaksha (1970) found a temperature optimum of 50 C 

for sorghum protease enzyme. Weil, et al, (1966) also found a tempera-

ture optimum for protease of 50 C. However, Rao (1971) found the opti-

mum temperature for wheat protease was 40 C. 
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The plot of protease activity against pH reveals two activity 

peaks, the larger at pH 4 and a smaller broader peak at pH 7 (Figure 

13). Rao (1971) found similar data working with wheat. Sundblom, et 

al., (1972) found that in germinating barley a. protease with· pH optima 

of 3.9 and 7 existed. Martin and Thimann .(1972) found pH optima at; pH 

3 and 7.5 with a minimum at pH 5 using hemoglobin as a substrate. Garg 

and Virupaksha (1970b) found a protease in sorghum with peak activity 

at pH 3.6 and negligible activity above pH 5. Minami, et al., (1971) 

found high protease activity on casein over the range from 7 to 8.5. 

Inhibitors 

Cleland reagent and DTNB were the .most inhibitory while PMSF was 

slightly inhibitory to protease 4 activity (TableXXI). When.protease 7 

activity was measured, Cleland reagent and PMSF were most inhibitory. 

The data suggest the involvement of a sulfhydryl group on the enzyme 

since both Cleland reagent and DTNB affect sulfhydryl groups. Pike and 

Brigg (1972) found a stimulatory effect of DTNB on a protease enzyme of 

oats; however,. it is not improbable·that the protease enzymes. in oats 

and wheat are of a different type. 

The Hg++ was.the most inhibitory of the metal ions and since it is 

a sulfhydryl antagonist this supports the results observed with DTNB 

and Cleland reagents (Table XXII); also, cyanide was an inhibitor. 

Cyanide inhibition was .not found by Mounfield (1936) who found increased 

protease activity with cyanide. However, he found that peptidases were 

inhibited by cyanid;. therefore,.the inh.ibitionnoted in the present 
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study suggests that this enzyme is a peptidase. 

TABLE XXI 

EFFECTS OF PHENYLMETHYL SULFONYLFLUORIDE, 5,5 DITHIO-BIS 
(2-NITRO BENZOIC ACID) AND CLELAND REAGENT ON 

PROTEASE 4 AND 7 ACTIVITIES 

77 

Inhibitors pH 4 % Inhibition pH 7 % Inhibition 

PMSF 17.2% 11.3% 
Cleland Reagent 24.4% 52.5% 
DTNB 3.9% 17.3% 
Water 0.0% 0.0%' 

.5% hemoglobin substrate; incubated for two hours at 40 C. 

:CABLE XXII 

PERCENTAGE INHIBITION OF PROTEASE 4 ACTIVITY 
BY METAL IONS AND CYANIDE · 

Metal Ions 5mM 25mM 

Percent 
++t 13 ~·8 28:3 Fe+I-

Zn+I- 7.7 14.9 
Ni+I- 20.8 22.4 
Sn+I- 1.9 19.9 
Ca+I- 30.0 39.7 
Mg o.o 13.7 
Ct"° 28:7 50.3 
K ++ 1.7 4.9 
Hg 43.4 48.6 

Metal ions were incubated with enzyme extract for thirty minutes prior 
to activity determination. Determinations were.made on .5% hemoglobin 
substrate incubated for two hours at 40 C. 
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Summary 

The study of protease enzymes of wheat presented, supports several 

cone lusions: 

1. Hemoglobin substrate supports the highest levels of wheat pro­

tease activity. 

2. EDTA:P04 buffer was a satisfactory buffer system.for extraction 

of protease enzymes from wheat. 

3. Cysteine added to the extraction buffer enhanced protease ac­

tivity. 

4. High ionic strength solutions reduced protease activities. 

5. Km of 0.0437 mg/ml was noted for protease 4 activity on hemo­

globin. 

6. Temperature optima of 40 C for protease 7 and 50 C or higher 

for protease 4 were obtained. 

7. pH optima for protease activity were at 4 and 7. 

8. The inhibitor study gives evidence that wheat protease contains 

an active sulfhydryl group and is a peptidase. 

9. Further study is needed to better characterize wheat protease 

active sites and degradation products. 



CHAPTER V 

THE EFFECTS OF NITROGEN SOURCES AND TEMPERATURE 

ON NITRATE REDUCTASE AND PROTEASE OF A 

1HIGH 1 AND 1 LOW 1 GRAIN 

PROTEIN WHEAT1 ' 2 

Abstract 

The effects of nitrate only and nitrate plus ammonium nitrogen on 

nitrate reductase (NR) and protease 4 and 7 of high and low grain pro-

tein cultivars were determined. The presence of ammonium ion increased 

protease 4 and decreased NR and protease 7 activity. The high and low 

grain protein cultivars were found to differ in levels of NR and pro-

tease 7. The high grain protein cultivar had higher NR activity and 

lower protease 7 activity than the low grain protein cultivar. Tempera-

ture regimes of 18-25 C and 25-30 night-day temperatures were found to 

have little effect on NR and protease activities. Additional key words 

for indexing: Ammonium, Nitrate, Temperature. 

1Article coauthored with L. I. Croy for submission to Crop Science 
for publication. 

2Abbreviations used in this paper: NR-nitrate reductase, WSP-water 
soluble proteins, TCA-trichloroacetic acid. r-
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Introduction and Literature Review 

Seed protein content is associated with seedling vlgor. When total 

dry matter production is used as a measure of seedling vigor, high posi­

tive correlation was found between seedling vigor and seed protein con­

tent within wheat cultivar by Lowe and Ries (1972). No differences were 

found between the performance of low and high protein seed at emergence 

of the coleoptile but after seven days the high protein seedlings were 

taller with larger leaf area and higher shoot dry matter. In a subse­

quent study, the absolute amount of endosperm protein was linearly re­

lated to seedling growth and was an important source of nutrients for 

the germinating embryos and young seedlings (Lowe and Ries, 1973). 

There are two postulates for the differential resp0nses of high and low 

protein seeds: 

1. Different levels of respiratory substrate and amino acids are 

associated with differences in endosperm protein; 

2. Different levels of enzyme induction are assoc,iated with dif­

ferent levels of amino acids which result fromhydrolysis of seed pro­

tein. 

The degradation of reserve seed protein seems to be mediated by 

protease enzymes. Ory and Henningsen (1969) working with barley, showed 

that in germination the initial production of amino acids from reserve 

protein is catalyzed by an acid protease. Other workers have reported 

the presence of proteases in germinating seeds (Wiley and Ashton, 1967). 

Several control mechanisms have been suggested for regulation of 

protease of germinating seeds. Oaks (1965) proposed that protease 

degradation of protein in the endosperm was a process regulated by the 
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demands of the embryo for amino acids. However~ other workers have 

suggested a more complex system of degradation control. Beevers and 

Guernsey (1966) found that degradation of protein during germination 

could not be explained simply by the amount of protease present and sug­

gested that another mechanism for controlling the rate of degradation 

of reserve protein must exist. Further evidence for a complex system 

of regulation of protein degradation was found by Guardiola and 

Sutcliffe (1971). They found that control of protein hydrolysis in pea 

cotyledons was not mediated through the level of protease enzyme as 

indicated by proteolytic activity of tissue extracts, but that protease 

activity seemed to be regulated by the shoot probably through a harmonal 

effect. 

Differences in protease activities have been found between high 

and low grain protein wheat cultivars. Rao and Croy (1971) found -high 

levels of protease in seedlings associated with the high protein culti­

vars suggesting that the high protease levels of the high protein line 

promoted higher WSP, amino acids, and indoacetic acid. This resulted in 

more rapid growth rate than for the low protein line. 

Another enzyme important to early plant growth is NR, Schrader and 

Hageman (1967) have stated that NR is an important enzyme to any study 

of nitrogen metabolism because it is: 

1. the first enzyme in the pathway of nitrate reduction; 

2. inducible by substrate; 

3, labile in viy:£ under environmental stress; 

4. variable in level both diurnally and seasonally; 

5. linearly related to grain protein in wheat within a genotype. 

The activity of NR has been shown to be regulated by the presence 
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of nitrogenous compounds in the growth medium. The induction of NR was 

found to be approximately proportional to nitrate level in the tissue 

(Beevers, et al., 1965)0 Increases in nitrate in the nutrient media 

have been shown to increase NR activity (Hageman and Flesher, 1960)0 

NR was shown to increase with the addition of nitrate and to decrease 

with addition of ammonium in Chlorella vilgaris (Syrett and Morris, 

1963). Furthermore they found that ammonium chloride, urea, aspartic 

acid, glutamic acid, leucine, histidine, arginine, citrulline, ornithine, 

and lysine inhibited the induction and synthesis of NR in vivo. They 

concluded that in Chlorella the control of NR is by repression of en­

zyme synthesis and not by feedback inhibitiono Filner (1966) and 

Beever, et alo, (1965) observed that NR was repressed by ammonia in 

lower plants but not in higher plants. In tobacco cell cultures, NR 

was regulated by nitrate and end-product amino acids (Filner, 1966). 

Nitrate was shown to induce, while casein hydrolysate and amino acids 

inhibited nitrate uptake and NR activity (Ziekle and Filner, 1971)0 

Praline repressed NR activity and accumulated in plants grown under 

stress conditions which resulted in loss of NR activity (Filner, 1966)0 

However, Schrader and Hageman (1967) found enhancement of NR induction 

in the presence of ammonium salts, which they attributed to increased 

levels of amino acids and amides derived from the readily available 

ammonium ions, They also found that all L-amino acids, including pro~ 

line, enhanced NR induction, They concluded that amino acids are not 

natural inhibitors of NRo 

Work with apple seedlings showed maximum NR activity when nitrate 

was the·only source of nitrogen (Frith, 1972). If only ammonium were 

. present, little NR activi.ty occurred. The reduction was possibly due to 



the effects of ammonium ions on absorption of nitrate. Ammonium mark­

edly inhibited nitrate absorption in nitrogen starved wheat seedlings 
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but did not decrease the proportion of absorbed nitrate reduced (Minotti, 

Williams, and Jackson, 1969). It seems that ammonium or products of 

ammonium do not interfere with induction, stability or activity ~f NR. 

Furthermore, when ammonium and nitrate are present in equal amounts, 

ammonium uptake generally exceeds nitrate uptake. The addition of am­

monium substantially decreased the concentration of nitrate in wheat 

plants even though the external. concentration of nitrate remained high 

(Cox and Reishenhour, 1973). Ammonia fed plants had higher levels of 

total nitrogen and amino acids than nitrate fed plants. High le';els of 

amino acids in maize roots were associated with ammonium absorption 

(Ingverson and Ivanko, 1970). These elevated levels were due to more 

suitable conditions for the incorporation of nitrogen into keto acids 

which act as precursors of various amino acids, 

The absorption of nitrate and ammonium by wheat plants is tempera­

ture dependent. Minotti, Williams and Jackson (1969) showed that maxi­

mal absorption of ammonium occurred at 25 C whereas the nitrate absorp~, 

tion maximum occurred at 35 C. Marked changes in nitrogen constituents 

and enzyme activities in wheat plants were shown to be a function of 

temperature (Srivastava and Fowden, 1972). Growth at low temperature 

increased levels of glutamic acid, aspartic acid, alpha aminobutryric 

acid, alanine, serine and lysine, Also the activity of glutamic decar­

boxylase was increased by low temperatures • 

. The objectives of this experiment were threefold: 

l, to test the effect of varietal differences for grain protein 

on levels of NR and protease; 
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2. to test the effect of nitrogen source on NR and protease ac-

tivities; 

3. to test the effect of temperature on NR and protease activities. 

Materials and Methods 

The cultivars uGenessee 1 and NE 65317 were chosen for use in this 

experiment because of their differences in grain protein. Genessee, a 

low protein line, is a white wheat. The ''high" protein line is a se­

lection from a cross between 1Atlas 66u and 1 Comanche 1 • One hundred 

seeds of each cultivar were planted at uniform depth in plastic trays 

using perlite as a support medium. Four trays of each cultivar were 

planted and two were placed in a controlled environment chamber at 

either 18-25 C or 25-30 C night-·day temperatures at light intensity of 

2000 foot candles with 14 hour days. At each temperature one tray was 

subirrigated with 0.5 strength Hoagland 1 s solution containing only ni­

trate as the source of nitrogen. The other tray was subirrigated with 

0.5 strength Hoagland us solution in which ammonium ions accounted for 

half the total nitrogen supply. Plants were collected for analysis 5, 

7, 9, 11, 13, and 15 days after the experiment initiation. Plant tissue 

was sampled by cutting the plants at the level of the perlite arid plac­

ing them on ice. The roots of the sampled plants were removed to stop 

regrowth. Samples were collected between 9:00 and 10:00 A.M. on all 

dates. The samples were immediately brought to the laboratory and 

homogenized i.n a motorized Thomas homogenizer for two minutes. Extrac­

tion procedures were those _previously described by Croy and Hageman 

(1970) for NR. The grinding medium contained 50 mM potassium phosphate 9 

1.0 mM cysteine and 35 mM EDTA adjusted to pH 7.0 with KOH. The same 
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plant extraction was used for protease and NR activity determinations. 

The plant extract after grinding was filtered through two layers of 

cheesecloth and centrifuged for 15 minutes at 13,000 rpm (20,850 x g), 

After centrifugation the supernatant was decanted and used for all en-

zyme assays (Croy and Hageman, 1970). The protease assay procedure was 

that of Kuo and Yang (1966) with certain modifications. The assay tubes 

contained 2.0 ml of freshly prepared 0.5% bovine hemoglobin dissolved in 

citrate-phosphate buffer (15.4 mM citric acid and 16.5 mM sodium phos-

phate for pH 4 and 3 .3 mM citric acid and 21. 8 mM sodium phosphate for 

pH 7). Protease activity was determined at pH 4 and 7, and these ac-

tivities are called protease 4 and 7 subsequently. A 0.2 ml sample of 

enzyme extract was added to duplicate tubes of 0.5% hemoglobin and 2.2 

ml of 10% TCA solution was added to one tube (blank) to stop enzyme 

activity. The two tubes were incubated at 40 C for two hours. After 

two hours, 2.2.~l of 10% TCA solution was added to the assay tube to 

stop the reaction. Samples were stirred and centrifuged at 2,000 rpm 

(1,000 x g) for ten minutes to sediment all undigested hemoglobin. Th.e 

supernatant was collected and assayed for digested nitrogenous material 

·-· 
by the Lowry method (Lowry, et al,, 1955) using bovine serum albumin as 

a standard. The difference in the assay and blank was used to estimate 

protease activity. 

,-

Alpha amino nitrogen was assayed by procedure of Yemm and Cocking 

(1955) using isoleucine as a standard. WSP content was determinedfor 

the crude enzyme extract by precipitation with 5% TCA and performing a 

Lowry procedure (Lowry et al., 1955). Plant total nitrogen percentage 

was determined by the micro-Kjeldahl procedure, 

Th.e experiment was performed three times. Each experiment was 



considered as a replication for statistical purposes, The data were 

analyzed statistically as a split-split plot with the main plot being 

temperature and subplots nitrogen source. and cultivar, 

Results and Discussion 
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The levels of NR within each cultivar were significantly different 

(Table XXIII). The high protein cultivar had higher NR activity on all 

dates sampled (Figure 14). The pattern of activity was similar in both 

cultivars with maximum activity occurring on the seventh day and then 

declining. The marked decrease in activity on days 11, 13, and 15 for 

the nitrate only treatment suggests ihat some'type of regulation of NR 

activity occurred, However, the type of regulation could not be ascer­

tained from the experiment, and it appeared to be associated with both 

low nitrate and high amino acids. Increasing nitrate in the ammonium 

treatment (Figure 15) probably was the reason for the lack of a decline 

in NR activity in that treatmenL Zieserl and Hageman (1962) found 

levels of NR activity were different between inbred lines of corn when 

the plants were 2-3 .weeks old. Croy (1967) found that 1Ponca 1 wheat, 

which has a higher grain protein content than 1 Mononu j also had a higher 

NR activity. 

The presence of ammonium ions in the nutrient medium were found to 

reduce NR activity compared to nitrate alone (Table XXIII). Differences 

occurred on days 5, 7, 9 with no significant differences on days 11, 13, 

and 15 (Figure 16). The data suggest that ammonium was inhibiting NR 

activity or nttrate uptake. If one assumes that the level of nitrate in 

the ammonium treated plants should be one-half that in nitrate treated 

plants simply due to the difference exogenous nitrate concentration, 



TABLE XXIII 

CULTIVARS, NITROGEN TREATMENTS~ TEMPERATURE MEANS FOR NITRATE 
REDUCTASE, NITRATE AND ALPHA AMINO NITROGEN 
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Factors Nitrate Reductase Nitrate Alpha Amino Nitrogen 

umoles NO/g Fr. Wt/hr ug/g Fr. Wt. 

Genes see 7 0 25 2960 3197 

'7r:* 
NE 65317 10.34 3170 3310 

** .Ammonium 7.95 2050 3782 

** *"I< 
Nitrate only 9.64 4080 2724 

18- 25 C 8 .58 3040 3175 

25-30 C 9.01 3080 3331 

*''( 
Denotes significance at 1% level 
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then any additional reduction is related to the presence of the ammonium 

ion. The reduction is 36% on days 5 and 7, and 12 and 9 percentage on 

days 9 and 11 respectively (Table XXIV). The decline in inhibition was 

possibly caused by bacterial oxidation of the ammonium in the nutrient 

medium with time. However, it cannot be deduced conclusively from this 

study whether this reduction in NR activity is due solely to decreases 

in nitrate uptake or inhibition of NR. However, it would seem that the 

reduction in NR upon addition of ammonium noted was a result- of reduced 

nitrate uptake and, consequently, reduced substrate for nitrate reduc-

tion. 

Ward and Miller (1971) working "7ith tomatoes found fertilization 

with ammonium nitrate resulted in accumulation of amino acids, particu-

larly in arginine. NR in tobacc-0 can be regulated by end-product amino 

acids (Filner, 1966). It is conceivable that this regulation is brought 

about by reduction in nitrate levels since Heimer and Filner (1971) 

showed that nitrate uptake in tobacco XD cells is subject to end-product 

-
control by amino acids. Casein hydrolysate and amino acids have been 

shown to inhibit the development of NR activity (Zielke and Filner~ 

1971). Therefore, if ammonium increases amino acids levels it could re-

duce levels of NR. From data collected in this experiment it was ap-

parent that ammonium significantly increase,~ the levels of alpha amino 

nitrogen presence in the plants (Figure 17). Therefore, it seems pos-

sible that this increased level of amino acid was indirectly reducing 

the level of NR present. However, in work by Schrader and Hageman 

(1967) they did not show reduction in NR in response ta high endogenous 

levels of amino acids in the induction media. Consequently the reducr 

tion noted in NR cannot be attributed to either low nitrate or high 
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TABLE XX.IV 

LEAF NITRATE CONTENT AS A FUNCTION OF NITROGEN TREATMENTS 

Da 

5 7 9 11 13 15 

Mg x 102 

Nitrate only 2.13 3 .58 5.06 5.62 3.69 4.42 .. 
Ammonium+ nitrate 0.67 1.15 2.21 2.53 2.73 2.97 

Difference from 1/2 
nitrate only and 
ammonium+ nitrate -0.39 -0.64. -0.31 -0.28 +0.89 +0.76 

% reduced leaf nitrate 36% 36% 12% 9% 
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amino acids conclusively. The temperature used did not have a signifi­

cant effect on NR (Table XXIII). This might be expected since both 

temperatures used are within the range where Croy (1967) founq good ex-

• pression of NR activity. It is interesting to note the ammonium caused 

a delay of two days in the maximal activity of NR. This delay plus the 

fact that nitrate within the plant increased with time suggests that the 

ammonium was being converted to nitrate by bacteria. 

Protease 4 levels were not significantly different for cultivars 

(Table XXV). This is in contrast to data of Rao a~d Croy (1971) who 

showed differences in protease levels for high and low protein genotypes 

in wheat. The pattern of development of protease 4 activity was similar 

in both cultivars with peaks on days 9 and 15 (Figure 18). 

The addition·of ammonium to the nutrient media caused a marked in­

crease in the activity of protease 4 (Figure 19). These data are diffi­

cult to interpret since Oakes (l965) stated that protease activity in 

the cotyledon is regulated by amino acid levels, low amino acids causing 

higher activity. However, it must be remembered that leaf and cotyledon 

are quite different anatomically and similarity in 1=nzyme regulation 

might not be expected. Although a reduction in protease activity was 

found to be associated with increased amino acids by Yomo and Varner 

(1973) in pea cotyledons. These workers found that as amino acid con­

tent increased in cotyledons, the rate of storage protein loss and pro­

tease activity was reduce~. Also the rate of storage protein loss and 

protease activity were retarded by the presence of casein hydrolysate. 

There isa parad'E>x in that high protease activity should reduce WSP 

content, since protein is the substrate for p;rotease. llowever, this was 

not true with the ammonium treatment since it also increfi.sed-WSP 



TABLE XXV 

PROTEASE 4 AND 7 ACTIVITIES, WATER SOLUBLE PROTEIN AND KJELDHAL NITROGEN MEANS 
AS A FUNCTION OF CULTIVAR, NITROGEN TREATMENT AND TEMPERATURE 

Protease 4· Protease 7 Water Soluble Protein Kjeldahl Nitrogen 

mg Protein Digested/hr /g Fr. Wt. mg/g Fr. Wt. Percent 
** Genes see 11.05 2.09 23.87 4.93 

** NE 65317 11.18 1. 78 25 0 72 5.36 

** 'Annnonium 12.17 1.82 26.21 5.57 

** ** Nitrate only 10 0 07- 2.04 23.38 4. 71 

* 18-25 c 1L32-- 1.97 23.45 5.31 

25-30 C 10.92 L90 26.14 4.97 

* Denotes significance at 5% level. 

** Denotes significanc~ at 1% level. 
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proteins (Figure 20). The possibility exists that annnonium treatment 

was supplying nitrogen at high enough levels that protein synthesis was 

surpassing protease degradation of protein. These data raise the ques-

tion about the importance of protease 4 in the metabolism of a juvenile 
• 

plant. The lack of correspondence between protease 4 and WSP levels 

sugges.ts that only a part of the enzyme is active in vivo in protein 

degradation. Beevers and Guernsey (1966) suggest that degradation of 

protein at the early stages of germination in peas cannot be explaine~ 

simply by the amount of protease present. A complex mechanism .of con-

trol may be involved in.protease regulation in the plant. This control 
·-

could involve isolation of protease enzyme within the plant cells; pos-

sibly in the vacuole or in lysosomes. The possibility of active site 

inactivation by inhibitors or conformational changes exists also. 

Guardiola and Sutcliffe (1971) stated that protease activity seems- to 

be closely linked to senescence of cotyledon of peas. Therefore, it is 

possible that protease 4 is functioning in senescence in ·the shoot. 

Support for this idea comes from the fact that prote.ase 4 levels tend to 

increase with time (Figure 18). Temperature regime had no effect on 

protease levels measured at pH 4 (Table XXV) •. 

Differences between the cultivars were significant for protease 7. 

Genessee, the low protein cultivar, was higher in activity particularly 

on the later <h,tys than NE 65317 (Table XXV, Figure 21). ·However, high 

protease activity was shown to be associated with high protein wheat 

cultivars by Rao and Croy (1971) •. The .addition of ammonium· generally 
" 

lowered the levels of protease 7, particularly on the first two days 

(Figure 22). This information, plus the increased alpha amino nitrogen 

levelsj suggests that alpha amino nitrogen was regulating protease 7 
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activity. Protease levels in young seedlings did not correspond well 

with protease activity found in plants approaching physiological matu= 

rity with regard to relationships between protease and protein levels of 

the grain as found by Rao and Croy (1972) and Perez, et al., (1973). 

Temperature regime had no effect on protease 7 levels (Table XXV). 

The levels of Kjeldahl nitrogen were significantly different be­

tween the cultivars with the high protein cultivar having the higher 

value (Table XXV). This is a reflection of the initial higher nitrogen 

levels in the seed of the high protein cultivar and the higher NR activ­

ity. Kjeldahl nitrogen levels throughout the experiment were similar for 

both cultivars (Figure 23). The general pattern was a reduction in 

Kjeldahl nitrogen with time, however, the last day showed a marked in­

crease and was probably a reflection of the level of nitrate present. 

The addition of ammonium significantly increased Kjeldahl nitrogen, as. 

would be expected in light of the increase in alpha amino nitrogen and 

WSP associated with aunnonium. Temperature regime had no effect on lev­

els of Kjeldahl nitrogen present (Table XXV). 

WSP was higher in the high protein cultivar and addition of ammo­

nium increased its value (Figures 20, 24). Pattern of WSP content 

across days was similar to Kjeldahl nitrogen. WSP levels were signifi­

cantly different with temperature (Table XXV). The higher temperature 

regime produced more WSP than the low regime (Figure 25). This in­

crease is probably a reflection of the increased enzyme activity or the 

.increased nutrient absorption usually associated with high temperature; 

although the activity of NR and protease 4 and 7 were not significantly 

affected by-temperature regime. 
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The temperature by ammonium interaction was significant for WSP 

and is probably a reflection of the large effect of temperature and 

ammonium additions on WSP. 

Alpha amino nitrogen was not significantly different between the 

cultivars or temperatures; however, the addition of ammonium did sig­

nificantly increase the levels of alpha amino nitrogen in the plants 

(Figure 17). 
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Nitrate levels were not significantly different between cultivars 

or temperatures. The addition of ammonium did cause a significant dif­

ference for the reasons discussed under ammonium effect on NR (Figure 

15). 

Summary 

Conclusions drawn from the results of this study indicate: 

1. Genetic differences in grain protein are reflected in the lev­

els of NR and protease 7 in young seedling but not in levels of protease 

4; 

2. Ammonium additions reduce NR, increase protease 4 and reduce 

protease 7 activity; 

3. The temperatures used had no signficant effects on NR or pro= 

tease activities, although it did affect WSP contents. 



CHAPTER VI 

SUMMARY 

These studies, although preliminary in nature, reveal several fea­

tures of the nitrate reductase and protease systems. Nitrate reductase 

activity was found to correlate with both forage and grain protein. 

These correlations suggest that breeding for increased nitrate reductase 

activity could be a tool for increasing grain protein. Large variation 

for nitrate reductase activity was found among the cultivars tested. 

Therefore, genetic differences for nitrate reductase apparently exist 

and it should be possible to identify types with high levels. 

The regulation of nitrate reductase in the plant seems to be de­

pendent on both nitrate and alpha amino nitrogen levels. A positive 

correlation was found betwe.en nitrate reductase and nitrate and negative 

correlation with alpha amino nitrogen. These data were consistent with 

a nitrate induction and alpha amino nitrogen inhibition of nitrate re­

ductase activity. Ammonium ions supplied in the nutrient media were 

found to reduce nitrate reductase activity possibly by reducing the 

amount of nitrate in the ~eaf and increasing the alpha amino nitrogen. 

Either of these effects would tend to reduce nitrate reductase activity. 

Protease activities were found to differ among the cult~vars tested 

indicating that genetic diversity does exist for these characters. Two 

proteases were postulated. One protease had a pH optimum of 4 with a 

temperature optimum of at least 50 C, while the other had a pH optimum 
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of 7 and a temperature optimum of 40 C. Protease measured at pH 7 seems 

to have correlated with plant protein on more dates than protease 4. 

Several positive correlations between protease 7 and forage protein were 

found before flowering with negative correlation after flowering. In 

young seedlings protease 7 is higher for the low protein genotype than 

for the high grain protein genotype. The occurrence of differences at 

early stage of development is significant in that it might allow a 

bre'etler to select for high protein.character without growing out the 

seed; therefore, the relationship protease 7 and grain protein in seed­

lings should be studied further. 

Also the information that protease 7 has fairly high heritability 

coefficients would indicate that further study of this enzyme might be 

advantageous to increasing grain protein. 

Protease 4 was found to be negatively correlated with forage nitro­

gen late in the growing season. 

These studies se.em to have proposed more questions than they have 

answered. In subsequent studies more attention should be given to 

growth pattern of the cultivars. Physiological age seems to-have a 

great effect on these enzymes. If future experiments were grouped ac­

cording to maturity group, much of the inconsistencies of these-data 

could be removed. 

Also a more rapid and sensitive test for protease 7 is needed. The 

use of color releasing medium for protease 7 activity measurements might 

be useful in this regard. This procedure would reduce the amount of 

time required to run a sample; therefore, increasing the num:i,er of sam­

ples which can be run in a day. If more samples could be run within a 

given period then the reliability of parameters such as heritability 
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could be improved. 

Several conclusions can be. drawn from these studies: 

1. Genetic diversity does exist for nitrate reductase and protease 

characters; 

2. Protease measures at pH 7 has a high enough heritability that 

it could be used as a tool in a breeding program; 

3. Control of nitrate reductase and protease systems was complex 

and seems to involve alpha amino nitrogen and nitrat~; 

4. 
I 

More study is needed to further understand the nature and func-

tion of these enzymes in the wheat plant. 



LITERATURE CITED 

Afridi, M. M., R. K. and E. J. Hewitt. 1965. The inducible formation 
and stability of nitrate reductase in higher plants. J, Exptl. 
Bot. 16: 628-645. 

Arkcoll, D. B., and.G. N. Festestein. 1971. A preliminary study.of the 
agronomic factors affecting the yield of extractable leaf protein. 
J, Sci. Fd. Agri. 22: 49-56. 

Barr, A. J., and J. H. Goodnight. 1972. A user's guide to the statis­
tical analysis system. Student Supply Stores, North Carolina State 
University. 

Beevers, L., L. E. Schrader, D. Flesher, and R. H. Hageman. 1965. The 
role of light and nitrate in the induction of nitrate reductase in 
radish cotyledons and maize seedlings. Plant Physiol. 40: 691-
698. 

Beevers, L., and F. S. Guernsey. 1966. Changes in some nitrogenous 
components during the germination of pea seeds. Plant Physiol.,. 41: · 
1455-1458. 

Beevers, L., and R.H. Hageman. 1969. Nitrate reductase in higher 
plants. Ann. Rev. Plant Physiol. 20: 495-522. 

Burton, G, W. 1951. Quantitative inheritance in pearl millet 
(Pennisetum glaucum). Agron. J, 43: 409-417. 

Clark, J. A. 1926. Breeding wheat for high protein content. Agron. J. 
18: 648-661. 

Cochran, W. G., and G. M. Cox. 
and Sons, Inc~ New York. 

1957. Experimental Designs. 
91 p. 

John Wiley 

Cox, W. J., and H. M. Reisenaur. 1973. Growth and ion uptake by wheat 
supplied nitrogen as nitrate, or ammonium or both. Plant and Soil. 
38: 363-380. 

Croy, L. I. 1967. Nitrate reductase in wheat· (Triticum aestivum 1.) 
and its relationship to.grain protein and.yield. Ph.D. Thesis. 
University of Illinois. 

Croy, L. I., and R. H •. Hageman. 1970. Relationship of nitrate reduc'.". 
tase activity to grain protein produ~tion in wheat. Crop Sci. 10: 
280-285. 

110 



Cruz, L. J., G. B. Cagampang, and B. O. Juliano. 1970. Biochemical 
factors affecting protein accumulation in rice grain. Plant 
Physiol. 46: 743-747. 

111 

Davis, W. H., G. K. Middleton, and T. T. Hebert'. 1961. 
protein, texture, and yield in wheat. Crop Sci. 1: 

Inheritance of 
235-238. 

Deckard, E. L., R. J. Lambert, and R.H. Hageman. 1973. Nitrate re­
ductase activity in corn leaves as related to yields of grain and 
grain protein. Crop Sci. 13: 343-350. 

Duffield, R. D., L. I. Croy, and E. L. Smith. 1972. Inheritance of 
nitrate reductase activity, grain protein, and straw protein in 
hard red winter wheat cross. Agron. J. 64: 249-251. 

Eilrich, G. L. 1968. Nitrate reductase activity in wheat (!!iticum 
aestivum h·) and its relationship to grain protein production as 
affected by genotype and spring application of calcium nitrate. 
Ph.D. Thesis., University of Illinois (Diss. Abstr. 29: 4478=B). 

Evans, H.J., and A. Nason. 1953. Pyridine nucleotide-nitrate reduc­
tase from extracts of higher plants. Plant Physiol. 28: 233-254. 

Filner, P. 
cells. 

1966. Regulation of nitrate reductase in cultured tobacco 
Biochem. Biophys. Acta 118: 299-310. 

Frith, G. J. T. 1972. Effect of ammonium nutrition on the activity 
of nitrate reductase in the roots of apple seedlings. Plant and 
Cell Physiol. 13: 1085-1090. 

Garg, G. K., and T. K. Virupasksha. 1970. A. Acid protease from germi­
nated sorghum; 1. Purification and characterization of the enzyme. 
Eur. J. Biochem. 17: 4-12. 

Garg, G. K., and T. K. Virupaksha. 1970. B. Acid protease from germi= 
nated sorghum; 2. Substrate specificity with synthetic peptides 
and ribonuclease A. Eur. J. Biochem. 17: 13-18. 

Greenberg, D. M., and T. Winnick. 1945. Enzymes that hydrolyze the 
carbon-nitrogen bond: proteinase, peptidase and amidases. Ann. 
Rev. Biochem. 14: 31-68. 

Guardiola, J. L., and J. F. Sutcliffe. 1971. Control of protein hy­
drolysis in the cotyledons of germinating pea (Pisum satuvum L.) 
seeds. Ann. Bot. 35: 791-807. 

Hageman, R.H., and D. Flesher. 1960. Nitrate reductase activity in 
corn seedlings as affected by light and nitrate content of nutrient 
media. Plant Physiol. 35: 700-708. 

Hageman, R.H., E. R. Leng, and J. W. Dudley. 1968. A biochemical 
approach to corn breeding. Adv. Agron. 20: 45-85. 



112 

Harper, J.E., and G. M. Paulsen. 1967. Changes in reduction and 
assimilation of nitrogen during growth of winter wheat. Crop Sci. 
7: 205- 209. 

Haunold, A., V. A. Johnson, and J. W. Schmidt. 1962. Genetic measure­
ments of protein in the grain of Triticum aestivum 1· ,Agron. J. 
54: 203- 206. 

Heimer, Y. M., and P. Filner, 197L Regulation of the nitrate assimi­
lation pathway in cultured tobacco cells. III. The nitrate up­
take system. Biochem. Biophys. Acta 230: 362-372. 

Horiguchi, T., and K. Kitagishi. 1969. Changes in protease activity 
and nitrogen compound of germinating rice seeds; Biochemical 
changes in the rice grain during germination. In Palminano, F. L. 
and B. 0. Juliano. Plant PhysioL 49: 751-,756. 

Ihle, J, N., and L. Dure III. 1970. Hormonal regulation of translation 
inhibition requiring RNA synthesis. Biochem. Biophy. Res. Comm. 
38: 995-1001. 

Ingversen, J., and S. Ivanko. 1971. Investigation on the assimilation 
of nitrogen by maize roots and the transport of some major nitrogen 
compounds by xlem Sap. II. Incorporation of taken-up nitrogen 
into free amino acids and protein of maize roots. Physiol. Plant. 
24: 199- 204. 

Irving, G. W. Jr., and T. D. Fontaine. 1945. Purification and proper~ 
ties of archain, a newly discovered proteolytic enzyme of the pea­
nut. Arch. Biochem. 6: 351~364. 

Ivanko, S., and J. Ingversen. 1971. Investigation on the assimilation 
of nitrogen by maize roots and the transport of some maj~r nitrogen 
compounds by xylem sap. I. Nitrate and ammonia uptake and assimi­
lation in the major nitrogen fractions of nitrogen-starved maize 
roots. Physiol. Plant. 24: 59-65, 

Johnson, J, A., B. S, Miller, P. D. Boyer, and W. F, Geddes. 1956. 
Properties of certain protease systems used in breadmaking. Cereal 
Chem, 33: 1-17. 

Johnson, V. A., J. W. Schmidt, and P. J. Mattern. 1968. Cereal breed­
ing for better protein impact. Econ. Bot. 22: 16-25, 

Jones, R. W., and R. W. Sheard. 1973. Nitrate reductase activity of 
dark grown and light-exposed etiolated field peas (Pisum arvense). 
Can. J, Bot. 51: 27-35, 

Juliano, B. 0., C. C, Ignacio, V. M. Panganiban, and C, M. Perez. 1971. 
Screening for high protein rice varieties. Cereal Sci. Today. 13: 
299-301, 



113 

Kawashima, N., H. Fukushima, A. Imai, and E. Tamaki. 1968. Studies on 
protein metabolism in higher plants. Part V. Some prop~rties of 
a tobacco leaf protease increased during curing •. Agr. Biol. Chem. 
32: 1141-1145. 

Kessler, E. 1964. 
Physiol. 15: 

Nitrate assimilation by plants. 
57-69. 

Annual Rev. Plant 

Kuo, T. T., and S. E. Yang. 1966. Physiology of 'Bakanase' disease. I. 
Effect of GA3 on metabolic changes in germinating rice seedlings. 
Bot. Bull. of Academic Sinica 8: 199-208. 

Lebsock, K. L., C. C. Fifield, G. M. Gurney, and W. T. Greenaway. 1964. 
Variation and evaluation of mixing tolerance, protein content, and 
sedimentation value in early generation of spring wheat, Triticum 
aestivum 1· 

Lineweaver, H., and D. J. Burk. 1934. The determination of-·enzyme. 
dissociation constants. J. Am. Chem. Soc. 56: 568-666. 

Lofgren, J. R., -K. F. Finney, E.G. Heyne, L. C. Bolte, R~ C. Hoseney, 
and M. D. Shegren. 1968. Heritability estimates of protein con­
tent and certain quality and agronomic properties in bread wheats 
(Triticum aestivum,1). Crop Sci. 8: 563-567. 

Lowe, L.B., and.S. K. Ries. 1972. Effects of environment on the re­
lation between seed protein and seedling vigor in wheat. Can. J. 
Plant Science 52: 157-164. 

Lowe , L • B • , and S • K • Ries • 19 7 3 • 
terminant of seedling growth. 

Endosperm of wheat seeds as a de­
Plant Physiol. 51: 57-60. 

Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. 
Protein measurement with the folin-phenol reagent. J. Biol. Chem. 
193: 257-265. 

Mainguy~ P. N.R., R. B. VanHuystee, and D. B. Hayden. 1972. Form and 
action of a protease in cotyledons of germinating peanut seeds. 
Can. J. Bot. 50: 2189~2195. 

Martin, C., and K. V. Thimann. 1972. Role of protein synthesis in the 
senescence of leaves. II. The influence of amino acids on senes­
cence. Plant Physiol. 50: 432-437. 

Mattas, R. E., and A.·W. Pauli. 1965. Trends in nitrate reduction 
fractions in young corn (Zea mays ,1.) plants during heat and mois-· 
ture .stress. Crop Sci. 5: 181-184. 

Middleton, G. K., C. E. Bode, and B. B. Bayless. 1954. Comparison of 
quantity and quality of protein in certain varieties of soft 
wheat. Agron. J. 45: 500-502. 



114 

Mikesell, M. E., and G. M. Paulsen. 1971. Nitrogen translocation and 
role of individual leaves in protein accumulation in wheat grain. 
Crop Sci. 11: 919-922. 

Minami, Y., D. I., and T. Hata. 1971. Fractionation purification and 
some properties of proteolytic enzyme from stem bromelain. Agri. 
BioL Chem. 35: 1419-1430. 

Minami, Y., R. Hayash, and T. Hata, 1972. Yeast pro-proteinase C. 
Part III. The activation by protein denaturants. Agri. Biol. 
Chem. 36: 621-629. 

Minotti, P. L., D. C. Williams, and W. A. Jackson. 1969. Nitrate up­
take by wheat as influenced by ammonium and other cations. Planta 
86: 267=271. 

Moore, S., and W. H. Stein. 1948. Photometric ninhyrin method for use 
in the chromatography of amino acids. J. Biol. Chem, 176: 367-
387 0 

Mounfield, J. D. 1936, The proteolytic enzymes of sprouted wheat II. 
Biochem. J. 30: 1778-1786. 

Oakes, A. 1965. The regulation of nitrogen loss from maize endosperm ... 
Can, J, Bot. 43: 1977-1982. 

Oji, Y,, and G, Izawa, 1972. Quantitative changes of free amino acids 
and amide in barley plants during ammonia and nitrate assimilation. 
Plant and Cell Physiol. 13: 249-259. 

Ory, R, L., and K. W, Hennigsen, 1969. Enzymes associated with P!Otein 
bodies isolated from ungerminated barley seeds, Plant Bhysiol. 44: 
1488-1498. 

Palmiano, E. P,, and B. 0, Juliano, 
rice grain during germination, 

1972. Biochemical changes in the 
Plant Physiol, 49: 751-756. 

Pike, C. S,, and W.R. Briggs. 1972. Partial purification and charac­
terization of phytochrome degrading neutral protease from etiolated 
oat shoots, Plant Physiol. 49: 521-531, 

Penner, D., and F. M. Ashton. 1967. 
activity in squash cotyledons. 

Hormonal control of proteinase 
Plant Physiol. 42: 791-796. 

Perez, C. M., G. B. Cagampang~ B. V. Esmama, R. U. Monserrate, and B. 0. 
Juliano. 1973. Protein metabolism in leaves and developing grains 
of rice differing in grain protein content. Plant Physiol. 51: 
537-542. 

Rao, S. C. 1971. Enzyme systems involved in nitrogen metabolism in 
green plants and their influence on yield and grain protein pro­
duction in wheaL Ph.D. Thesis, Oklahoma State University. 



115 

Rao, S. C., and L. I. Croy. 1971. Protease levels in "high" verse 
"low" grain protein wheats and their association with the pro<!_uc­
tion of amino acids, tryphophan and IAA during early growth. Crop 
Sci. 11: 790-791. 

Rao, S. C., and L. I. Croy. 1972. Protease and nitrate reductase 
seasonal patterns and their relation to grain protein production of 
'high' vs 'low' protein wheat varieties. J. Agri. and Food Chem. 
20: 1138-1141. 

Schrader, L. E., D. M. Peterson, F. R. Leng, and R.H. Hageman. 1966. 
Nitrate reductase activity of maize hybrids and their parental in­
breds. Crop Sci. 6: 169-172. 

Schrader, L. E. and R.H. Hageman. 1967. Regulation of nitrate reduc­
tase activity in corn (Zea mays 1,) seedlings by endogenous 
metabolites. Plant Physiol. 42: 1750-1755. 

Seth, J., T. T. Hebert, and G. K. Middleton. 1960. 
tion in high and low protein wheat varieites. 
209. 

Nitrogen utiliza­
Agron. J. 52: 207-

Skupin, J., and J. Warchalewski. 
protease A from wheat grain. 

Smith, F. W., and J. F. Thompson. 
tase in Chlorella vulgaris. 

1971. Isolation and properties of 
J. Sci. Fd. Agri, 22: 11-15. 

1971. Regulation of nitrate reduc­
Plant Physiol. 48: 224-227. 

Spencer, P. W., and J, S. Titus. 1972. Biochemical and enzymatic 
changes in apple leaf tissue during autumnal senescence. Plant 
Physiol. 49: 746-750. 

Srivastava, G. C., and L. Fowden. 1972. The effect of growth temper­
ature on enzyme and amino-acid levels in wheat plants. J. Exp. 
Bot. 23: 921-929. 

Stuber, C. W., V. A. Johnson, and J. W. Schmidt. 1962. Grain protein 
content and its relationship to other plants and seed characteris­
tics in the parents and progeny of a cross of Triticum aestivum 1· 
Crop Sci. 2: 506-508. 

Sundblom, Nils - olof, and J. Mikola. 1972. On the nature of the 
proteinase secreted by the aleurone layer of barley grain. Physiol. 
Plant 27: 281- 284. 

Sunderman, D. W., M. Wise, and E. M. Sneed. 1965. Interrelationships 
of wheat protein content, flour sedimentation value, Farinograph 
peak time, and dough mixin_g and baking characteristics in the F 2 
generations of winter wheat, Triticum aestivum f. Crop Sci. 5: 
537-540. . 

Syrett, P. J., and L Morris. 1963. 
lation by ·ammonium in chlorella. 

The inhibition of nitrate .assimi­
Biochem Biophys Acta 67: 566-575. 



Tracey, M. V, 1948. Leaf protease of tobacco and other plants. 
Biochem. 42: 281-287. 

Udy, D. C. 1956. Estimation of protein in wheat and flour by ion­
binding. Cereal Chem. 33: 190. 

116 

Ward, G. M., and M. J. Miller. 1971. The influence of fertilization 
with KN03 and Nll4N03 on some nitrogen fractions in tomato seedlings 
tissue._ Can. J. Bot. 49: 1643-1646; 

Warner, R. W., R.H. Hageman, J. W. Dudley, and R. J. Lambert .. 1969. 
Inheritance of nitrate reductase activity in Zea mays _1. Proc. 
Natl. Acad. Sci. U. S, 62: 785-792. 

Weil, J., A. Pinsky, and S. Grassman. 1966. The proteases of the soy­
bean. Cereal Chem. 43: 392-399. 

Wiley, L., and F. M. Ashton. 1967. Influence of t-he embryon_ic axis on 
protein hydrolysis in cotyledons of Cucubita maxima. Physiol. 
Plant 20: 688-696. 

Woolley, J. T., G. P. Hicks, and R.H. Hageman. 1960. 
nation of nitrate and nitrite in plant material. 
Chem. 8: 481-482. 

Rapid determi­
J. Agr :· and Food 

Yemm, E.W., and E. c. Cocking, 1955. The determination of amino acids 
with ninhydrin. Analyst. 80: 209-213. 

_ Yomo, H., and J. E. Varner. 197 3. Control of the formation of amylase 
and proteases in the cotyledons of germinating peas. Plan~ Physiol. 
51: 708-713. 

Zielke, H. R., and P. Filner. 1971. Synthesis and turnover of nitrate 
reductase induced by nitrate in cultured tobacco cells. _J. Biol. 
Chem. 246: 177 2-1779. 

Zieserl, J, F., and R.H. Hageman. 1962. Effect of genetic composition 
on nitrate reductase activity in maize. Crop Sci. 2: 512~515. 

Zieserl, J, F., W. L. Rivenbark, and R.H. Hageman. 1963. Nitrate re­
dt1cta_se activity, protein content, and yield of four maize hybrids 
at varying plant populations. Crop Sci. 3: 27-31. 

Zioni, A. B., Y. Vandia, and S, H. Lips. 1970. Correlations between 
nitrate reduction, protein synthesis, and malate accumulation. 
Physiol. Plant. 23: 1039-1047. 



APPENDIX 

1.17 



TABLE XXVI 

BARTLETT'S TEST OF HOMOGENEITY OF VARIANCES FOR WATER SOLUBLE 
PROTEIN ON APRIL 14, AND JUNE 1 AND FOR PROTEASE 4 ON 

MAY 25, 1972, AND ON A POOLED BASIS 
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Date Variable df Chi Square 1% Probability 

** April 14 WSP 2 32.3' 9.21 

** June 1 WSP 2 39.0 9. 21 

** Pooled · Protease 4 2 308.69 9.21 

** May 25 Protease 4 2 38.269 9. 21 

** Denotes significance at 1% level of probability. 
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