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VAPOR DENSITY AND PVT STUDIES OF MOLECULAR 

INTERACTIONS OF POLAR SUBSTANCES

CHAPTER I 

INTRODUCTION

"Water . . . shows tendencies both to add and give up hydrogen,

which are nearly balanced. Then . . .  a free pair of electrons on one

water molecule might be able to exert sufficient force on a hydrogen 

held by a pair of electrons on another water molecule to bind the two

molecules together. Indeed the liquid may be made up of large aggre

gates of molecules, continually breaking up and reforming under the 

Influence of thermal agitation."

Such an explanation amounts to saying that the hydrogen nucleus 

held between 2 octets constitutes a weak "bond." This was stated In 

J. Am. Chem. Soc., 1431 (1920) by W. M. Latimer and W. H. Rodebush.^

So five decades ago the concept of the hydrogen bonding was

first proposed, although It had been employed In vague form as early as 
2 31910. ’ It seems somewhat surprising, therefore, that now In 1971 

there Is little direct information about the stoichiometry and structure 

of aggregates In water vapor; needless to say, the situation with respect 

to liquid water Is even worse. Indeed, the field of hydrogen. bOndlhg 

is very complex and the evolution of satisfactory models for systems of 

polar molecules will probably require several more decades.

-1-
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Extensive data have been accumulated on association reactions 

Involving hydrogen-bonded components;^”® however» except for the asso

ciation of carboxyllc acids, which are generally agreed to form dimers 

In preference to other polymers, there Is little general agreement re

garding the nature of aggregates of hydroxy11c compounds. Dimers of 

carboxyllc acids In the vapor phase and most probably In dilute solutions 

are cyclic; their enthalpy of formation In the vapor phase Is generally 

In the range (-14 ± 1) kcal/mole, and the enthalpy does not appear to 

depend strongly on the size of the acids or the substituents attached 

to the carboxyl group.

One must note» however» that In these acld systems » the percent

age of the complex species Is very high (20-60%) compared to other classes 

of hydrogen-bonded systems such as amines or alcohols (1-3%) In organic 

solvents or In gas; furthermore» with these other systems» there are most 

probably several types of polymers» not just dimers.

Presently» many of the most Impressive scientific advances are 

occurring In the general area of the chemistry and biology of macromole

cules such as DNÂ» BNÂ» and proteins. A molecular understanding of 

genetics and heredity appears to be within our grasp» although Information 

about the exact molecular changes and structures Involved Is far from 

complete. There Is a need for exact thermodynamic Information about macro

molecules which are Important In life processes. We believe that studies 

of molecular complexes and Interactions » performed In this laboratory and 

elsewhere» will provide the basis for a better understanding of these 

complicated subjects. Studies of assoclatloh In solution» particularly 

In the dilute region» have been carried out more extensively than those
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In vapor phase. In spite of the inherent problems of solvation effects 

and the need to know more about vapor phase systems. The major reason 

for this is the difficulty of obtaining data which are accurate enough 

to provide information about specific vapor phase complexes. Recently, 

techniques developed in this laboratory have been applied in several 

studies of molecular complexes in the vapor phase.

This research deals mainly with the self-association and hetero

association of polar molecules in the vapor phase for systems of imme

diate interest; i.e., the ones that could clarify the results of related 

systems and shed some new light on the behavior of more complicated 

systems in condensed phases. Different systems chosen for study were: 

methanol self-association; methanol-water; trimethylamine-sulfur dioxide; 

self-association of trifluoroacetic acid; trifluoroacetic acid-water; 

ammonia-water; self-association of triethylamine; triethylamine-vater; 

pyridine-water; pyridine-methanol; pyridine-2,2,2-trifluoroethanol.

Shorthand notations for these compounds are given in Appendix II and they 

will be used at convenient places. Each of the following sections gives 

a brie^ pertinent literature survey concerning the above systems; work 

on chemically similar systems is also summarized.

Association of Methanol and Water Vapors
13Recently in this laboratory, Famham has investigated the methanol

system fairly extensively in vapor phase to almost 95% saturation, using
othe PVT expansion technique of Burnett at 3 tenq>eratures : 15 , 25 , 35 C.

Tucker, Famham, and Christian^^ proposed the 1-3-8 self-association model 

for methanol in the vapor phase and in n-hexadecane. This model has been
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9successfully used to explain Fletcher and Heller's IR data of 1-octanol

14in n-decane in the overtone region, and those of Liddel and Becker on 

methyl-, ethyl-, and t-butyl alcohol in CCl^ in the 0-H stretching funda

mental region; the model is also applied satisfactorily to NMR data of 

ethanol in CCl^ by Becker and colleagues^^ and Davis et al.^*

Evidence of trimers was also reported by Kudchadker^^ who used 

his smoothed values of compressibility factors to obtain formation con

stants and enthalpies of formation of dimers, trimers and tetramers
18using Wooley's model. A PVT method using a Bumett-type apparatus was

employed to obtain raw compressibility factors of MeOH vapor in the

range 25°-200°C at 25° intervals and at corresponding pressures below

saturation; a graphical smoothing procedure was then used to get smoothed

internally consistent values of compressibility factors. The values of

2nd virial coefficients^^ are published in Reference 19; these values
20agree very well with those of Kretschmer and Wiebe and those of Russel 

21and Maass^ who also reported average molecular weights in terms of F

(up to 1 atm) and T (75°-200°C).
22Kell and McLaurin have determined 2nd and 3rd virial coeffici

ents of MeOH in the range of temperature 150-300°C; their PVT measurements 

indicated that trimers were definitely more important than tetramers, 

hence the 1-2-3 model, an equilibrium mixture of moncmers-dimers-trimers, 

was proposed for MeOH vapor.
23Bottomley and Spurling measured the temperature variation of 

virial coefficients of some polar gases and their mixtures, using an 

unconventional apparatus, where absolute pressure determinations were 

avoided by working differentially;^^ to obtain absolute values of the
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virial coefficients, they used In addition a differential compressibl

esllty apparatus. Their data Indicated that the 3rd virial coefficient 

contributes substantially to the total non-ldeallty of MeOH vapor. 

Absolute values of B and C, 2nd and 3rd virial coefficients, were given

In the temperature range 50^-150°C.^^
26Foz Gazulla et al. found their data for ethanol, propanol and

butanol follow the monomer-dlmer model; but for MeOH, the 1-2 model was

not adequate to explain their data without Including the trlmer terms.
27However, Foz Gazulla and colleagues later concluded that MeOH vapor 

dimerlzes, as Indicated by the magnitude of 2nd virial coefficients ob

tained from observed apparent molecular weights; the enthalpy of dimer

formation, AH^, was found to be -6 kcal/mole.
28In 1962 Scott and Dunlap stressed the difficulties In the

numerical analysis of subatmospherlc PVT data when the 3rd virial coef-
29flclents cannot properly be neglected. Moreland, et al., found their

compressibility data fit best with the moncmer-dlmer-trlmer model.
20Kretschmer and Wiebe could not distinguish between trimers and tetra

mers as the larger polymers If they only used their vapor density data 

for methanol, ethanol, and propanol; however, when their data were 

combined with those of DeVries and C o l l i n s a n d  Slnke and DeVries, 

the 1-2-4 model (the equilibrium mixture of monmaers-dlmers-tetramers) 

came out best.
32Lambert, Staines and Woods reported thermal conductivity data 

on organic vapors, which showed the existence of polymers higher than 

dimers In case of MeOH and acetone by the curved plots of thermal con

ductivity against pressure. This view was later supported by Lambert's
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33curved Van't Hoff plots for dimerization constants of MeOH, EtOH,

and acetone. The heat capaclty-temperature plot for MeOH vapor of
30DeVries and Collins showed a flat minimum In the temperature range 

110-150°C; the explanation for this was the assumption that dimers and 

possibly trimers were present. DeVries and Collins also reported the 

average molecular weights at different températures (20-160°C) and 

pressures.

So far In this section, we have reviewed Important studies of 

methanol vapor, that either propose or suggest the presence of trimers.

We will now consider other work that seems to favor the presence of 

dimers only as associated species, or the more commonly assumed combi

nation of monomers-dlmers-tetramers, proposed In 1951 by Weltner and

Pltzer.34
35Lambert, Roberts, Rowllnson, and Wilkinson used compressibility 

data to obtain 2nd virial coefficients of organic vapors, which they 

divided Into two classes: a) those having observed 2nd virial coeffi

cients agreeing with those calculated from Berthelot's critical data

equation for vapors of ethane, ethylene, n-hexane, cyclohexane, benzene,
35ethyl ether, ethyl chloride, chloroform, and CCl^, and trimethylamlne 

36and triethylamlne; and b) those possessing 2nd virial coefficients

larger than those predicted by the Berthelot equation: acetaldehyde,

acetone, acetonltrlte, and methanol. They concluded that the vapors

of polar substances for which the energy of attraction between molecules,

due to dipole Interaction or to hydrogen bonding. Is larger than kT

undergo dimerization. It may be noted In passing that this concept of
37 67dimerization Is somewhat different from that of Rice * or Christian 

and coworkers^®*®^®^*®^ in that the latter workers do not exclude, for
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example, contributions from van der Waals forces to the value of the 

dimerization constant.
35 38“A3 21Lambert et al. and many authors * analyzed their data

using the state equation PV/RT ■ 1 +  B/V where all deviation from

38et al. determined the heat of dimerization of MeOH in the temperature

ideality is Incorporated into B» the 2nd virial coefficient. Claque 

* detem

range 60*-200°C and the concentration range 0.03-0.12 mole/liter.

Curtiss and Hlrschfelder^^ obtained B for MeOH» EtOH» water» NH^» HgS,

and many nonpolar molecules from heat of vaporization and vapor pressures;
42also, in the saturation region» Ingle and Cady used an Improved Dumas 

method to determine molecular weights of MeOH» EtOH» PrOH, BuOH» HgO» 

and DgO at the boiling points. (For example, the average molecular 

weight of methanol was found to be 33.82 gm/mole.) Dunken and Winde^^ 

thought that methanol dimers are cyclic since the value of AH^ they 

determined from their IR data of MeOH vapor (20-40^0 was equal to -15 

kcal/mole, a value too large for a single hydrogen-bond.

Their heat capacity data of MeOH vapor at 3 4 6 ^  (at 755, 500» 

260mm, and at the ideal gas state) convinced Weltner and Pitzer^^ that 

they had the monomer-dimer-tetramer mixture» since inclusion of a term 

involving pressure to the 4th power (in addition to the dimer term) 

gave them a better fit than any other model tested. By coidblning nec

essary data from References 30 and 41 with their own, they were able 

to obtain AH and A$ for dimers and tetramers. The 1-2-4 model was 

therefore postulated to represent methanol vapor— an equilibrium mix

ture of monomers, dimers and tetramers (cyclic tetramers^6kcal/bond).

This model has been more "popular" than any others for various
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alcohols, and It has been supported by the work of several Investi

gators including F l e t c h e r , B e r m a n , B a r r o w , a n d  others^^ 51,20,31 

employing diverse techniques such as heat capacity, IR, mass spectrometry, 

PVT, and ultrasonic dispersion.

Berman^^ concluded after reviewing the published results on heat 

capacities, viscosity, and entropy of vaporization that the 1-2-4 model 

is quite accurate in describing the alcohol vapors or solutes in dilute 

solutions, the tetramers being cyclic and very stable, as evident for 

six alcohols MeOH, EtOH, n-PrOH, 2-PrOH, 2-BuOH, and 2-methyl 2-propanol; 

also he concluded that in liquids the dimers are linear or cyclic and

that the higher polymers are cyclic so that a limiting degree of associ-
44ation is reached at low temperatures. Fletcher concluded from his IR

study of MeOH vapor (40-120°) that the 1-2-4 representation adequately

accounts for the non-ideality of this alcohol in vapor state.
51aInskeep and Colleagues investigated the infrared spectra of 

MeOH vapor at 305°K and 335°K; their data were best fit with the 1-2-4 

model. The tetramers were presumed to be cyclic and the trimers were 

not thought to be important at all. Deuterated methanol was also 

studied^^^ and the same model seemed to be the best. Barrow's ethanol 

heat capacity data,*^ too, were consistent with the 1-2-4 model.

Table 1 sums up briefly what has been discussed in this section 

about MeOH vapor. It is clear that there is a wide variation in re

sults, even where the same model has been used. However, there seems 

to be a general agreement in that the average value of the association 

enthalpy per hydrogen bond is greater for the higher polymers than for 

dimers or trimers; this is probably due to the "cooperative effects" 

which will be discussed in Chapter V.
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TABLE 1

POLYMERS OF MeOH VAPOR AND THEIR ENTHALPIES OF FORMATION, AH^*

-AHg -AHg -AHj, -AHg Miethod Ref.

12.5+0.1 6 7. 8±0.3 PVT-Bumett type 10

3.3 4.59 PVT 22

3.5+0.1 ** Differential thermal 
expansion 23

4.3 15.1 26.0 PVT-Bumett type 17

6.0 Compressibility 27

7.1 Thermal Conductivity 26

3.2-7.3 Compressibility 35

4.1+.5 NMR 38

15.15±2.8 IR 40

3.2 24.2 Heat Capacity and PVT 34

4.0 22.1 VD, Heat Capacity 20

2.9+0.2 17+5 IR 51a

4.9+.2 14+1 IR (deuterated 
methanol) 51b

*AH In Kcal/mole; the subscript n stands for number of monomers in a 
polymer.

**Was not computed because their 3rd virial coefficients were probably 
in error according to Ref. 22 p. 4351.
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The non-ldeallty of water vapor has not been studied as extensively

as that of Its counterpart methanol. Recently Christian et al»^ reviewed

the complexity of water in gas and In solution; It Is evident that vapor
52phase studies of water are rare compared to those of solutions. Eucken 

Inferred the presence of relatively large aggregates of HgO or DgO from
53an examination of his Isothermal compressibility data. Kell and McLaurin

Interpreted their PVT studies of steam (150-450°C) In terms of the 2nd
54and 3rd virial coefficients. Luck and Dltter observed the nonideality 

of steam up to T/T^~l.l by Infrared spectroscopy, while Kebarle and 

colleagues^^ examined the reactions of hydrogen Ions with water mole

cules and calculated all the corresponding thermodynamic parameters. 

Rowllnson^^ employed the method of Stockmayer to calculate the 2nd virial 

coefficient of water, and used this value In calculating the lattice 

energy of Ice. Van Thiel, Becker, and Plmentel^^ suggested the presence 

of cyclic water dimers In a nitrogen matrix at 20°K.

As far as the methanol-water reaction In gas Is concerned, no
13previous work has been done to our knowledge. Famham obtained scattered 

data of 2 systems of water-alcohol : W-TFE and W-HFP at 25°C by Isothermal

expansion method. The respective 1:1 complex formation constants are 

(4 ± 2) X 10 ^ torr ^ and (6 ± 1)10”^ torr There Is, however, compara

tively more Information about water and water-alcohol Interactions In 

organic solvents.̂

Chargê-Transfer Complex Formation In Gas between 

Trlmethylattlile ahd Sulfur Dioxide 

Vapor phase studies of charge-transfer complexes are equally scarce 

compared to condensed phase studies. In the particular case of TMA-SO^,
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58the only previous vapor phase studies were those by Burg and Grundnes 

and C h r i s t i a n . B u r g  obtained PVT properties of this system In the 

temperature range 65-100°C, from which equilibrium constants and the energy 

of formation for the 1-1 coiqilex could be deduced. Grundnes and

Christian employed ÜV (276 mp) absorption spectroscopy to determine 

at 39.7°C and enthalpy of formation  ̂by measuring the absorbance 

variations with temperatures (39-60®C) at a constant composition of the 

gas mixture In the cell: = -9.7 kcal/mole. This value agrees

extremely well with that obtained from the treatment of Burg's data com

bined with those from this laboratory by Grundnes, Christian, Cheam and 
61 62Famham * using Isothermal expansion of Bumett type and vapor density 

techniques.

This system has been studied In heptane s o l u t i o n . A n  Important

conclusion, which Is different from all other CT systems In this solvent

known. Is that the extinction coefficient and oscillator strength of the

charge-transfer (CT) band of TMA-SO^ are nearly the same In the gas phase

as In heptane. The system has also been studied In chloroform and dlchloro-

methane solutions.Chllds^^*^^ obtained the crystal structure of the

TMA-SOg complex; he also did solution work on weak complexes of Ig with

some aromatic hydrocarbons, pyridine, and diethyl ether In the solvent

heptane, using two different methods: a conventional technique of the

Benesl-Hlldebrand type (UV-vlslble region) and a new solubility method

Involving tetramethyl ammonium polylodlde, which maintains a constant Ig
61activity. In the vapor phase, Christian et al. developed a new vapor 

phase Isoplestlc technique to study Et 2 0 -l2  system, for which was 

found to be 4.310.3 1/mole. This method was employed by Christian and
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Grundnes^^ to investigate hexane-Ig complex, which is thought to be stabi

lized solely by polarizability-polarizability interaction (K^_^»3.4 1/mole); 

also in this paper an attempt was made to separate the effects of the dif

ferent types of interaction (polarizability, CT) that might give rise to 

formation of complexes of with benzene, EtgO and COg.

Rice^^ had previously attempted to distinguish between the effects 

of true charge-transfer forces and those attributable to simple van der 

Waals forces. The vapor phase complex benzene*I2  was thought to be almost 

entirely held together by van der Waals forces; Christian, et al. con

sider that the force stabilizing the complex is composed of about 25% CT

and 75% dispersion forces. For the EtgO'Ig complex, although there is
67undoubtedly some CT contribution. Rice thought the binding force was 

largely of van der Waals type, while Christian considers it to be ~50% CT 

and 50% dispersion. And for Et2 S*l2 , Rice took it as largely CT contri

bution, whereas Christian attributes almost all the binding force to dis

persion in the case of the very weak complex C0 2 *l2 * Rice also compared 

the stability of different complexes in gas and solution. For weak com

plexes, equilibrium constants and extinction coefficients generally 

decrease in going from vapor to solution; however, in the case of strong 

complexes these constants are frequently roughly the same in both phases.
go

Recently Tamres and Bhat characterized the blue-shifted iodine

band in the vapor phase of diethyl sulfide-l2  conq>lex for the first time.

Previous vapor phase studies of d  reactions often involved use of the

acceptor, %2 , complexing with donors benzene, Et2 0 , Et2 S, p-xylene,
6Q—73 73mesitylene, MegS, or tetrahydrothipphem; Kroll also used the 

acceptor tetracyanoethylene reacting with p-xylene, o-xylene, mesitylene.
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and durene, while Prochorow^^ studied carboxyl cyanide-common donor com

plexes. Spectroscopy was used in all cases, except Reference 69 where 

the PVT method was employed. Extensive references on solution studies 

can be found in Childs' dissertation.^^ Moede and Curran^^ used dielec

tric measurements, UV absorption and density measurements to obtain 

different properties of addition compounds of SOg and SOg with trialkyl- 

amines and pyridine in solutions of benzene, CCl^, chloroform, etc.; they 

obtained N-S bond moments, electric moments, and equilibrium constants, 

which reveal the following order of decreasing stability: TMA'SO^ >

TEA'SOg > t-BuA'SOg > Pyr'SOg. The very strong complexes TMA'SOg and 

TEA'SOg appear to be undissociated in benzene and chloroform.

TFA Self-association and Hetero-association with Water in Gas

Most of the studies of carboxylic acids in vapor phase have been 

single component systems; PVT-titration and vapor density techniques

have been used^^"®^ as well as electron diffraction,®^ dielectric polari-
86 86—93zation and IR and Raman spectroscopy.

83Lundin, Harris and Nash studied TFA vapor, at 150-560 Torr

pressure in the temperature range 80-130°C; a new vapor density method
79using a magnetically operated silica balance was employed. CCl^ was 

used as the calibrating gas, since its density is well known. Then the 

densities of the gases of interest were determined as a function of the 

restoring current. The apparent molecular weights were determined at 

different temperatures and pressures, and thereby equilibrium constants 

were deduced. Although the dimers were predominant in all the acids 

studied, there was strong evidence that trimers, not tetramers, were
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present as higher polymers in the case of acetic, trimethylacetic, butyric,

79 82 83and heptanoic acids. * Lundin, Harris and Nash were able to obtain

the subsequent thermodynamic parameters, and suggested that at particular 

temperature there is a small but significant correlation of the magnitude 

of K ’s with the nature of carboxyl substituents, and that the correlation 

is an entropy, rather than an enthalpy, effect as indicated by the follow

ing Table.

TABLE 2

DIMER DISSOCIATION OF ALIPHATIC ACID VAPORS*

Acid
Dissociation Constants 

at 160°C, in atm. AHrt, Kcal/mole

TFA 7.4 14.0, 14.06^,(13.7±.4)^,14.01®

Formic 5.5 14.1^

Acetic 1.8 13.8
Butyric 1.6 13.9

Heptanoic 1.65 13.3

Trimethyl-
acetic 1.1 14.0

*A11 data are from Ref. 83 except a = Ref. 84, b = Ref. 89, c = this work, 
d = Ref. 76.

This trend in the dissociation free energies was also observed in
94benzene solutions by Maryott, Hobbs, and Gross, who generalized as 

follows: "In going through the aliphatic series from formic acid to

stearic acid there is a progressive . . . increase in the tendency to 

associate."

PVT studies of light and heavy TFA were carried out by Taylor and
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Templeman^^ in the temperature range 30-150°C up to 150 Torr pressure.

They also observed in studies of a series of acids the same trend as that 

noted above; namely, that the stronger the carboxylic acid, the greater 

the dissociation constant (see Table 2) i.e., the smaller the value of 

association constant, and that the enthalpies of dissociation are practi

cally invariant for different carboxylic acids. The deuterium bond was

found to be a bit weaker than the hydrogen bond (by 100 cal in AH).
91Fuson, Josien, Jones and Lawson used IR and Raman spectroscopy 

to study light and heavy TFA in the gas phase (which was shown to con

sist of a mixture of monomers and associated species), also in CCl^ and 

in the liquid state at 25°C. They were able to assign different bands 

to the various bonding groups; the principal bands corresponding to 

vibrations of the COOH and GOOD groups have been assigned for both the

monomers and the associated species by means of a comparative study of
89the two acids in the three states. Kagarise also obtained IR spectra 

of TFA vapor in the temperature range 20-100°C; he was able to calcu

late the dimer dissociation enthalpy from the temperature dependence of 

0-H stretching bands. His spectra, in the range 400-5000 cm showed 

that at room temperature both monomers and dimers are present, but at

100°C the dimers are almost completely dissociated. His band assignments
91generally agreed with those of Fuson and colleagues.

95Affsprung and Lin obtained an equation relating Rg T of TFA 

vapor, by which dimerization constants were obtained for use in several 

studies of h e t e r o s y s t e m s . S t e v e n s , w h o  needed the vapor phase 

monomer absorptivity of TFA for his solution studies, obtained as a by

product a value of the dimerization constant equal to (0.3(Hr.02)mm ^ at 25°C,
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which agrees with the value calculated from Aff sprung and Lin's equation.

Dunken and Marx^^^ interpreted IR data on acetic acid and TFA vapors in

terms of monomer-dimer equilibrium also, but their AHg (-17 Kcal) is

somewhat large in magnitude compared to that obtained from other studies.
85Karle and Brockway obtained some Information on TFA using electron 

diffraction; they found the lengths of OH-0 bonds for formic, acetic, and 

trifluoroacetic acids to be the same; this may well be, as Mathews and Sheets 

suggested, an indication that the dimer enthalpies of formation of car

boxylic acids are nearly the same.
99Stevens carried out extensive solution studies of TFA in cyclo- 

hexane, CCl^, benzene, and dichloroethane ; he obtained the dimer thermo

dynamic constants by studying the 0-H stretching region at 3 temperatures ; 

also the dimerization enthalpies were obtained by studying the C=0 ab

sorbances at different temperatures. The AHg's from the two studies agree 

very well. Also, Stevens used a vapor-solution method to get Henry's Law 

constants in all the four solvents. Solvation effects on the association 

parameters were interpreted in terms of the a-model proposed by Christian 

et al.^^^ and a simple lattice theory of group or site interactions.

The enthalpies of formation for the dimers predicted by the a-model and 

lattice calculations compared well with the experimental values in cyclo- 

hexane, CCl^ and dichloroe thane. TFA dimers in the vapor as well as in

these solvents were believed to be cyclic as previously reported in the
102 103literature. However, Murty and Pitzer ’ recently presented IR

spectral evidence for linear dimers in nonpolar solvents; this inference

was rebutted by Kirszenbaum, Corset, and J o s i e n , a n d  it is not supported
99by the work of Stevens.

93
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Apparently, the only vapor phase study of TFA-water interaction 

is that by Chii Lin et They studied this system at 20°C and

suggested that up to the mixture pressure of 'v> 12mm, where x^ ~ .5, the 

only hetero-complex species is the cyclic acid monomer dihydrate - namely

Other vapor complexes studied were the reaction of TFA with acetic acid
96 97 98and dioxane, * and with acetone and cyclopentanone; thermodynamic

constants for most of these reactions were obtained.

Villepin, Lauté, and Josien^^^ used infrared spectroscopy to

study this reaction in CCl^; they found that there are two heterospecies

present, TFA-W and (TFAjg-W. Both the carbonyl stretching region and

that of the three fundamental vibrations of water were analysed.

Amine Self-Association and Hetero-Association with

Water and Alcohol in Gas

Rowlinson^^ used statistical mechanical calculations (method of

Stockmayer) to obtain 2nd virial coefficients of nine polar substances

including ammonia, water, and methanol. His results on ammonia agreed
36reasonably well with observed values of Lambert and Strong, who sug

gested that ammonia self-associates through hydrogen bonding rather 

than simple interactions between dipoles, in accordance with the evidence 

from crystal structure data that NH^ forms hydrogen b o n d s . T h e i r ^ ^

second virial coefficients of ammonia, obtained in the range of tempera

ture 20-130°C by the compressibility method, agreed very well with 

Stockmayer's^^® and Hirschfelder's^®^ values. Pimentel, et al.
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obtained infrared spectra of NH^ suspended in a solid nitrogen matrix at

20°K; there was evidence of hydrogen bonding in ammonia dimers. Lowder^^^

also employed infrared spectroscopy in the 3u region, to study hydrogen

bonding in ammonia, and obtained among other things the energy of forma-
112tion of dimers. Kollman and Allen used a quantum-mechanical method

(CNDO/2 MO) to calculate dimerization energies of three different forms

of ammonia dimers— linear, cyclic and bifurcated— the value for the

linear dimer being in excellent agreement with experimental values of
36Lambert and Strong.

Kollman and Allen also obtained the formation energies of the 

cross-dimers NHg-HgO, NHg-HF and HgO-HF; the values of these energies 

are, however, somewhat high: 10-13 kcal/mole. Experimentally, no one

to our knowledge has studied this interaction of water with ammonia.
113The low temperature studies of heat capacity led Hildebrand and Glauque

to regard the crystalline hydrates of ammonia as ammonium salts = (NH^)OH

and (NH^)2 Û. However, Waldron and Homig^^^ showed spectroscopically,

by infrared spectra of crystals of the water-NH^ system at -195°C, that

the above ionic structures didn't really exist as such but rather as

bimolecular (NH^'H^O) and trimolecular (2 NH2 *H2 0 ) crystals of ammonia

hydrates; they then concluded that two types of hydrogen bonds were

involved in the crystal, NH 0 and OH N. The vapor system NH^-MeOH

was studied by Millen and Zabicky;^^^ the 0-H frequency shift of MeOH

was reported to be 170 cm .

Apparently the only self-association study of trie thy lamine (TEA)
36in vapor phase is that by Lambert and Strong; their 2nd virial coef

ficients agreed with those predicted by the Berthelot equation using the
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crltical constants. And to our knowledge the system TEA-water in vapor 

phase has not been studied by anyone. Hirano and Kozima^^^ studied the 

hydrogen bonding interactions between TEA and MeOH in both vapor and con

densed phase, by observing the 0-H stretching band. The 1-1 enthalpy of 

formation, -8 . 2  kcal/mole, was obtained without getting the values of 

equilibrium constants. Three solvents of different dielectric constants 

were shown to affect the Av. „ and AH, ,. The Av^ „ value in CCI. comparedU-fi 1—1. u—n 4
well with that obtained by Arnett et al.,̂ ^̂  430 to 410 cm

Pyridine 2nd virial coefficients have been reported by various
118 119workers, including Cox and Andon, Andon, Cox, Herington, and Martin,

120and McCullough and colleagues. The coefficients determined by the

latter group were converted into equilibrium constants, from which the

constant at 25°C was obtained by extrapolation for use in this research.
121Hussein and Millen observed the 0-H stretching band of the

1:1 pyridine-water complex at approximately 3480 cm compared to 3390 cm
122the corresponding value in CCl^ obtained by Mohr, Wilk, and Barrow.

Yarym-Agaev, et al.^^^^ obtained a value (0.00900 torr ^ at 40°C) 

for the pyridine-water complex in the vapor phase; they used a differential 

equation for the dependence of pressure of a saturated vapor on the compo

sition of the mixture. This K value is probably too large because at 

saturation pressures polymers higher than dimers most probably exist (as 

shown by this research, see Chapter V) and this will lead to an anomalously 

large value of ^ if corrections are not made for the larger. aggregates.

Studies of pyridine-alcohol systems in the vapor phase are also very rare;
123apparently the only work done was by Reece and Werner who obtained the 

hydroxyl frequency shifts, Av, and the approximate half-intensity band- 

widths (v%) of complexes with methanol, 2 ,2 ,2 -trifluoroethanol and
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2,2,3,3-tetrafluoropropan-l-ol.

Other vapor phase hetero-association studies include that of

trimethylamine-MeOH by Fild, Swiniarski and H o l m e s , w h o  used infrared

and vapor pressure techniques to obtain 1 - 1  equilibrium constants and

enthalpy of formation, 6 H^_^ = -7.3 kcal/mole; experiments were performed

at several temperatures in the range 'v»10-50°C. Also, this system was
38studied by Claque, Govil and Bernstein, employing NMR methods; these

115workers report = (-5.81.7) kcal/mole. Millen and Zabicky ob

tained „ and AVrt „ for methanol-ammonia and ammonia derivatives.0-H 0-D
Ginn and Wood^^^ and Carlson et al.^^^ used far IR to study the TMA-MeOH

system among others; apparently no information was obtained about the
127vibration frequency of the bond OH N. Tucker obtained -AH^_^^ =

(7.31±0.02) kcal/mole for diethylamine-methanol complexes, while Cracco 
128and Huyskens gave AH^_^^ = -8.9 kcal/mole for the formation of aggre

gate n-butanol"tri-n-butyl amine; both investigations employed vapor
127density methods. Tucker also reported the formation enthalpy of the 

diethylamine-water complex: AH^ ^ =» -6.6310.05 kcal/mole. Lin^^^ re

ported the equilibrium constants for 1 - 1  and 2 - 2  complexes between 

ethylenediamine and water at 20°C. Hussein, Millen and Mines^^^ also 

reported the bonded hydroxyl-stretching frequency of water hydrogen-

bonded to trime thy lamine, 2-methylpyridine and HFP.
129Inskeep et al. obtained AUg_g and AH^_^ of MeOH reacted with 

diethyl ether in the vapor phase; respectively they are 124 cm ^ and 

(-4.710.7) kcal/mole. The dimethyl ether-hydrogen chloride complex
130formation reaction was investigated by Govil, Claque, and Bernstein; 

they reported AH^^_^ = (-7.110.8) kcal/mole, from measurement of the
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temperature and pressure dependence of the proton NMR signals. The en

thalpies of formation for this reaction (MegO-HCl) were also reported;
131 132-7.6 and -5.6 kcal/mole from pressure measurements and IR studies, 

respectively.
13Famham studied the systems MeOH-TFE (2,2,2-trifluoroethanol) 

and MeOH-HFP (l,l,l,3,3,3-hexafluoro-2-propanol) using an isothermal ex

pansion technique; the enthalpies of formation for the 1 - 1  complexes were 

given, C-7.3±0.2) and (-10.5±0.3) kcal/mole. Millen and Colleagues^^^ 

reported the infrared frequency shifts of several vapor hetero-systems
123involving HF, HCl, HNO^, ethers, carbonyl compounds. Reece and Werner

also gave values of different alcohols with several organic vapors.
137Lambert and colleagues used a Boyle's law apparatus to obtain thermo

dynamic constants for the chloroform-ether and chloroform-diethylamine 

systems. Tables 3 and 4 show some constants related to the discussion of 

this section.
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TABLE 3

ENTHALPY OF FORMATION OF AMINE DIMERS*

Gas Dipole Moment y, Debye** -AHg (kcal/mole)**

Ammonia 1.46 4.4, 3.7*, 4.5±.4^, 4.3®

Ethylamine 1.37 3.6

Methylamine 1.32 3.4

Diethylamine 1 . 1 0 3.3, 3.8*

Dimethylamine 1 . 0 2 3.1

Triethylamine 0.74 1.89+0.03^, 1.88+0.08®

Trimethy lamine 0.65 1.94+0.03^

Pyridine 2 .2 ^ 2.4+0.2^

*Data taken from Ref. 36 except a «= Ref. 56, b = Ref. Ill, c ■= Ref. 127 

d = calculated from an equation by Lambert and Strong Ref. 36, e = this 

work, f = Ref. 120, g = Ref. 112, h = Ref. 138.

**There seems to be a general relation between y and AHg (or AU) for ammonia
e 3and its derivatives: AU = 2y /r where r is the distance between the di-

poles. It is reasonable to assume that similar relations exist with 

other families of compounds, such as benzene, pyridine, etc.



TABLE 4
CONSTANTS OF SOME MIXED POLAR VAPORS*

Binary Mixture -AH, kcal/mole - 1Av, cm - 1K, mm Method Reference

HgO-NHg (linear) 1 1 . 1 MO 1 1 2

HgO-HF (linear) 11.3 MO 1 1 2

H^O-Pyridine 3480 IR 1 2 1

HgO-Diethylamine 6.63±0.05 4.2x10*4/25° VD 127

HgO-Ethylenediamine 0.08/20° VD 105

BgO-TMA 3375 IR 1 2 1

HgO-HFP HFP 0-H) 188 IR 1 2 1

MeOH-NHg 0-H 170 IR 115

MeOH-TMA 0-H 330 IR 115

MeOH-TMA 5.8+0.7 NMR 38

MeOH-TMA 7.3 0-H 302 9.4x10*4/27° IR,VP 124

MeOH-TEA 8 . 2 0-H 370 IR 116

MeOH-Pyridine 0-H 210 IR 123

MeOH-Diethylamine 7.3±0.02 7.3x10*4/25° VD 127

IMWI



TABLE 4-Cont’d

Binary Mixture -AH, kcal/mole - 1Av, cm - 1K, mm Method Reference

MeOH-EtgO 4.7±0.7 0-H 124 IR 129

MeOH-EtgO 0-H 133 IR 123

MeOH-Tetrahydrofuran 0-H 124 IR 123

MeOH-HF H-F 420 IR 135

MeOH-TFE 7.310.2 10.9xl0“^/25° PVT 13
MeOH-HFP 10.510.3 41xl0"^/25° PVT 13

TFE-Pyridine 0-H 370 IR 123

n-BuOH-(n-Bu) 8.9 VD 128

EtgO-CHClg 6 . 0 2 PVT 137

Me^O-HCl 7.110.8 NMR 130

Me^O-HCl 7.6 VP 131

MegO-HCl 5.6 IR 132

Diethylamine-CHClg 4.19 PVT 137

NH--HF 14.4 NO 1 1 2

I
to

t

*A11 values are for 1-1 complexes 
VD = vapor density 
VP = vapor pressure
0-H = frequency of the bonded O—H, not Av values



CHAPTER II 

OBJECTIVES AND METHODS

This research was performed with a primary objective in mind—  

to determine the most probable stoichiometries of complex species and 

the thermodynamic constants for association reactions in several sys

tems of interest in the field of gas molecular interactions. To achieve 

this end, three kinds of classical methods were used: vapor density

measurements using microbalance (buoyancy) and micropipette (volumetric 

addition) methods, and an isothermal expansion method of the Burnett 

type.

Reliable values of thermodynamic constants for molecular com

plexes in the vapor phase are scarce; and, in view of the importance 

of such information in the development of theories of weak molecular 

interactions, it is essential that accurate experimental results be 

obtained for numerous systems of associating vapors. The classical 

techniques to be employed here are in many cases capable of considerably 

greater accuracy than the conventional spectral methods for studying 

complexes. Â combination of spectral and classical techniques should 

ultimately provide much more useful chemical information than any one 

type of method alone.
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CHAPTER III

EXPERIMENTAL

Chemicals

All liquid chemicals were generally of reagent grade high purity 

as specified by different companies, distilled shortly before use to 

remove as much as posslble^^^’̂ ^^ water and impurities and kept In desic

cators above drlerlte (anhydrous CaSO^) and/or anhydrous barium oxide 

with Indicating CaSO^.

Methanol, reagent grade purity higher than 99% sold by Mallnkrodt 

Chemical Company, was fractionally distilled from magnesium methoxlde In 

a 30-plate bubble-cap column at a reflux ratio 30:1 and stored with drl

erlte. The forerun and the residue were 300-500 ml each.

Trimethylamlne (TMA) , sulfur dioxide, and ammonia were bought 

from Matheson Gas Products of respective purity > 99%, 99.8%, 99.99%.

SO^ and NH^ were anhydrous grade while TMA was not specified by the 

company. When used, the gases were passed through a column of drlerlte 

or barium oxide.

Trifluoroacetic acid (TFA) was purchased from Matheson Coleman 

and Bell. PgOg was used In the distilling pot to help remove water and 

columns of drlerlte were used at the openings of the 30-plate bubble-cap 

column; the reflux ratio was 30:1. Out of about 500 ml, only 200 ml was

— 26—
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collected, 150 ml being for the forerun and 150 ml for the residue. The 

distillate was then stored as in the case of methanol.

Triethy lamlne and pyridine were heated to reflux for several hours 

with and distilled from barium oxide, using a reflux ratio 30:1. Since 

pyridine is hygroscopic, it was allowed to stand over potassium hydroxide 

for 2-3 weeks before distillation; the main part of the distillate was 

collected in a flask containing KOH and stored this way in a desiccator 

with barium oxide and the indicating anhydrous CaSO^. Again the forerun 

and the residue were about 400 ml. The quality was Pyridine Merck pur

chased from Merck and Company, Inc. Triethy lamlne was treated essentially 

the same way as pyridine except KOH was not used; it was obtained from 

Matheson Coleman and Bell.

2,2,2-Trifluoroethanol (TEE) was purified and distilled by 
13Dr. S. B. Famham.

Apparatus, Pressure Measurement and Temperature Control

The main apparatus used in this research is shown in Figure 1, 

which gives a general view from the front and the side and an illustration 

of the longitudinal section. As Figure lb shows, the apparatus is es

sentially composed of 3 Pyrex bulbs, L, S^, and S^, and a silica micro

balance MB supported by a Teflon stand. The large bulb L has a volume 

of about 3.5 1, while Vg^ ~ 65 cc and Vg^ ''' 250 cc. Vapor density studies 

can be done by adding substances quantitatively through the mercury- 

covered, sintered-glass disk D or by using the microbalance; the isothermal 

expansion study was carried out using L and while adsorption studies 

used L and S^. Necessary specifications will be given in the following 

sections, where each experiment is described separately.
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Figure la. General view of the apparatus; Top - photographed 
from the front; Bottom - from the side.



Vacuum Line
XI Pressure Gage

Water Level

Figure lb. Longitudinal Section of Apparatus for Vapor Density, PVT, Adsorption Studies. 

Different sizes aren't in proportion to each other.
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In all types of experiments« however, the evacuation, the pressure

measurement and the temperature control were done essentially the same

way. The whole apparatus is connected to the vacuum line by a Rataflo

stopcock, C^, TF 6/13, Quickfit Inc. The pressures were read on a Fused
13 127Quartz Precision Pressure Gage, ’ model 140, obtained from Texas 

Instruments, Inc. The Gage Bourdon Tube is connected to the bulb L by 

a 1 mm i.d. Pyrex capillary tube, T, carefully wrapped around with a 

heating tape; this helps maintain the capillary tube at a temperature 

somewhat above 45°C, the temperature at which the gage was calibrated.

The reference side of the Gage Bourdon Tube was continuously evacuated. 

When a gas exerts some pressure on the Bourdon Tube, the mirror rotates 

and the reflected light beam is detected by a photoelectric nulling 

mechanism. The pressure could be read to within 10~^ torr, but the re

producibility is approximately ±0.003 torr. A closed-end mercury mano

meter, instead of the TI Gage, was employed to study the self-association 

of methanol; for this a cathetometer was used to read the pressures to 

within ±0.025 mm.

The apparatus was submerged in a constant temperature bath— an 

aquarium containing about 20 gallons of water. The temperature control 

was achieved basically by using the thermoregulator-relay-light bulb 

system, a cooling coil in the bath if necessary, and the constant stirring 

of the bath. The mercury contact type thermoregulators were made by
I

Precision Thermometers and Instruments Co. A Manostat Electronic Relay, 

Model 4, was used; two 200-300 watt bulbs, painted in black and/or 

wrapped around with aluminum foil served as heaters. A small refrigera

tion unit, outside the bath, provided and circulated the cold solution
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through the copper cooling coil; this was necessary when the experiments 

were performed at 25°C. The stirring was vigorous enough to provide a 

fairly uniform temperature, but not so vigorous as to cause vibration 

of the microbalance and make It difficult to read the pointer R; a cir

culating pump. Model CP-5000 purchased from Little Giant Pump Co. was 

satisfactory for all experiments.

The studies were made at 25°, 35°, and 45°. Thermometers were 

made by Brooklyn Thermometer Co., Inc.; for 25° and 35° experiments a 

one degree thermometer was employed, while a ten degree thermometer 

was used at 45°C.

Vapbr Density - Buoyancy 

One of the earliest vapor density studies using a microbalance 

was by E d w a r d s . D r y  air was used as calibrating gas; the determina

tion of molecular weight of different gases was accomplished by bringing
79the pointer to a known position and known pressure. Johnson and Nash 

used a magnetically operated silica balance to obtain vapor densities
143and thermodynamic constants of acetic and trimethylacetlc acids. Bradley 

144and Carmichael extensively described the operation, performance, and 

theory of various slllca-balances.

Torsion-type silica microbalances have been used In this laboratory *  

to determine activity coefficients of components In binary liquid mix

tures, vapor phase hetero-assoclatlon constants by a new Isoplestlc 
61 66technique, * and thermodynamic constants for vapor phase self- and

X2 61 62hetero-assoclatlon from buoyancy measurements, * * which concern us

here. These last three references Include details of balance construction, 

data collection, and data analysis.
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So briefly (see Figure lb) the balance beam— connected to the

143balance frame, F, through two horizontal quartz fibers — was about

30 cm long; the middle part of the beam (silica) was graded-sealed to 

Pyrex ends so that the two Pyrex bulbs could be easily connected to 

the beam. The closed bulb was 15-23 cc; the open bulb was made in such 

a way so that its total area nearly equalled the external area of the 

closed bulb. The areas were made as closely the same as possible to 

minimize adsorption effects. The weight of the whole balance was 

about 4.5 gm. The Teflon support, S, was grooved so that the balance 

base fitted in nicely; the support was inserted first into the large 

bulb L through E (open), then the balance was very carefully introduced 

and supported on S. The end E was then sealed with a torch, so that the 

entire apparatus was grease-free ; vapors were in contact only with Pyrex and 

Teflon. With stopcocks Cg and Cg closed, the vapor density apparatus 

is ready for use.

After flushing and evacuating L with pure nitrogen Ng, the cali

brating ideal gas, a series of pressures, P„ , and corresponding scale 

readings, R, was taken; these data were fit by linear least squares 

analysis in the form

R » a + bP„ + cP^ + dP^ . . . . (1)
^2 ^2 "2

The empirical constants a, b, c, and d obtained were related to the force 

constant and rest position of the balance. Next, the system was evacu

ated and bulb L was flushed with the vapor of interest; the steps described 

above were repeated, i.e., a series of pairs of values of P and R was ob

tained in the same r^ge of scale readings as that used with the N^ gas.
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Correspondlng to each measured value of R, it was possible to calculate

P' (the pressure of N„ required to give the same density as that of the 
2

unknown vapor) by numerical interpolation of equation (1). This series

of calculated PA values was then used to compute the densities or to 
“ 2

calculate apparent molecular weights

<M> = P' /P
“2 “2

and formal pressures

Either <M> or it could be analyzed for equilibrium constants and species 

but the analysis involving tt was more convenient; treatment of data will 

be discussed in Chpater IV. This method was used to study the MeOH, 

TMA-SOg and TFA systems. The limiting molecular weights used were 

Ng = 28.02, MeOH = 32.04, TMA = 59.11, SO^ = 64.07, TFA = 114.02.

MeOH and TFA were added through the disk D from a micropipette 

previously stored in a desiccator over drierite. In the case of TMA-SO^

system, however, a different procedure was used as described in detail
62by Grundnes, Christian, Cheam and Famham. Briefly, the 1:1 solid 

adduct of TMA and SOg was prepared and stored in a bulb connected by a 

Teflon-bore stopcock to the main apparatus (not shown in Fig. lb).

After removing any excess of either component from the solid adduct (which 

is a white, readily sublimable compound) the stopcock connecting the 

storage bulb and L was opened and the total pressure in the main system 

was brought to a desired value. Measurements were limited to pressures 

less than 60-70% of saturation. All the changes in density were detected
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by reading the height of the blackened pointer tr? tO.OOl mm with a pre

cision cathetometer purchased from Gaertner Scientific Corporation.

PVT Studies - Isothermal Expansion

This technique has been used successfully in this laboratory by 
13 127Famham and Tucker for single-component and binary mixture systems.

The apparatus is of the modified Burnett type; unique features of their

method were that it was unnecessary to evacuate either bulb to a very

low pressure at the start of a run^^^ and that elaborate corrections were

made to correct for the time-dependent adsorption processes occurring

in the two bulbs.

In this research the large bulb, L, and the smaller one, S^,

were connected by a Fisher and Porter stopcock, C^, (cat. no. 795-609-

0004) see Fig. lb; the respective volumes were about 3500 and 250 cc,

S being closed; the volume ratio V, /(V. + V„ ) was determined verya L j.
accurately using dry nittogen (up to about 30 mm) as the ideal calibra

tion gas. This ratio, was needed along with three pressures P^,

Pg , and P, to calculate equilibrium constants. P., the pressure in
h  ^ L

the large bulb, was always greater than that of the small bulb, P^; Pp

is the final equilibrium pressure after the stopcock has been opened.

The three pressures are obtained as follows: After the two

chambers are well flushed with the material of interest and pumped out

to a convenient low pressure, the pumping is cut off by closing C^; after

a few minutes equilibration the pressure Pg is determined. Then stop-
%

cock Cg is closed and a sample of volatile material is added to a desired 

pressure P^, which is measured after a brief period of equilibration.

Next Cg is opened and the final equilibrium pressure, Pp, is measured.
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Both bulbs are evacuated and the cycle is repeated. We will relate these 

observables quantitatively in Chapter IV. TEA systems at three tempera

tures were studied this way.

Vapor Density - Volumetric Addition Method

Methods involving the accurate volumetric addition of liquid 

samples by means of a micropipette have been employed frequently in this 

laboratory, for example by Lin,^^^ Taha,^^^ and Tucker^^^ for vapor pres

sure or vapor density studies. The volumetric addition technique is one 

of the simplest and most direct means for getting information about mole

cular interactions in the vapor phase or in solution. In several respects, 

it is superior to the method employing the microbalance.

Micropipettes— built around a Swiss made micrometer and put out 

by Roger Gilmont Instruments, Inc., Model S3100A (0.25 ml, smallest divi

sion 0.0001 ml)— were employed to add liquids volumetrically. The pipettes, 

containing pure liquids ready to deliver, were stored in convenient cylin

drical "desiccators" over drierite, and kept at a constant temperature in 

a thermos tatted bath. To calibrate a pipette, a known volume of a sub

stance A (to be later added quantitatively) is delivered into the evacu

ated bulb L through the mercury-covered, sintered-glass disk, D, of fine
147or mediumrfine porosity; then one reads the corresponding pressure, 

which should be in the ideal range. This is done several times and the 

average value of the ratio of the change in pressure to change in volume 

is determined.

Next, L is evacuated and flushed 3-4 times with another substance 

B; B is added to a certain desired pressure, using in this case a con

venient plastic Roger Gilmont pipette, S1200A-2 ml. A is now added in
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the same way as during the calibration run. At equilibrium any defi

ciency is pressure is attributed to the formation of complexes. In 

analyzing results (see Cahpter IV) the observed equilibrium pressure 

is compared to that predicted from assumed constants and the known 

values of ir̂  and Vg.

In this type of experiment, it is necessary to know in advance 

the pressure-mole fraction phase diagrams to avoid condensation of 

vapors. This information was usually found in Reference 148.

Adsorption studies for correcting vapor phase data are discussed 

in the Appendix section; the adsorption balance and adsorption bulb are 

described in detail.



CHAPTER IV 

DATA: ANALYSIS AND RESULTS

Vapor Density - Buoyancy

As stated in the preceding chapter, a numerical interpolation 

technique can be used to obtain the equivalent nitrogen pressure, F' ; 

in turn, knowledge of this pressure permits the calculation of the formal 

pressure, ir, of a vapor A. Now, having the 2 known values of ir and P, 

total pressure, one can in principle use least squares analysis to deter

mine the stoichiometry of the most probable complex species and their 

equilibrium constants.

Assuming that all deviations from ideality are due to the forma

tion of specific complexes and that each species behaves ideally one 

can write:

P = P. + P. + P. + . . . (1)
3

TT - P. + 2P. +  3P. + . . . (2)A A 2  A3

where P^, P ^ ,  and P^ are the partial pressures of the monomers, dimers, 

and trimers respectively; and ir is the pressure the same molar amount of 

vapor would exert if it behaved ideally. These assumptions are made 

throughout this research.

-37-
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The equilibrium constant for formation of a complex by the 

reaction:

nA + A n
Is defined as

where n stands for the number of monomers In the complex A^.

Equations (1) and (2) can then be rewritten In terms of as:

ir » + 2KgP^ + SKgP^ + . . . (5)

Equations (4) and (5) will be treated by a non-llnear least squares 

procedure, using an optimumrseeklng p r o c e s s . T r i a l  values of Kg,

Kg, etc., are Introduced Into equation (4), which can now be solved 

linearly to give values of P^. These monomer pressures are then used 

along with assumed values of K's to calculate ir according to equation (5). 

The root mean square deviation In ir, BMSD (ir), Is then

BMSD(ir) 1=1 ^
N - p

where N Is the number of ir values and p Is the number of parameters, K^.

The K values are systematically changed until BMSD Is minimized; these 

values of equilibrium constants at minimum BMSD are taken as the most 

probable ones for a particular set of trial species; the constants derived 

In this way constitute a fit for that set. The fit with the lowest minimum
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BMSD Is usually taken as best representing a system, unless the correspond

ing constants are chemically or physically meaningless.

Data for the methanol system, obtained in regions of pressure 

where adsorption studies have shown that adsorption is not important (see 

Appendix), were treated as described above. Table 5 gives BMSD for various 

choices of assumed associated species and corresponding values of associ

ation constants for MeOH vapor, inferred from data up to 90 Torr total 

pressure. Table 6  gives similar results for MeOH-water system at 25°.

Data are tabulated at the end of this Chapter along with those of the re

maining systems.

For the system trifluoroacetic acid, which was Investigated during

the early part of this research, an adsorption study was not performed;

however, apparently adsorption occurs even at very low pressures in TFA

vapors. To avoid such systematic errors, in computations, a difference
62technique was employed where Air values are compared instead of ir as in 

MeOH case. Air°^® was defined as:

obs obs obs
“ ^initial " ^final

where was chosen to take the highest value of ir in a data set,

and took on each of the remaining ir values in the set. The calcu

lated values of ir were computed exactly the same way as explained above 

from equation (4) and (5), so that it was possible to write

. calcd calcd calcd
‘”1 ■ "initial ■ "final

and

BMSD (Air) 1=1
N — P
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TABLE 5

BMSD AND EQUILIBRIUM CONSTANT VALUES FOR VARIOUS SETS OF ASSUMED 

METHANOL SPECIES AT 25°C AND UP TO 90 TORR TOTAL PRESSURE

Species Equilibrium Constants* RMSD, Torr

1 - 2 ^ 2 “ (7.46 ± 0.17) lO"^ torr"^ 0.0621

1-3 ^ 3 “ (4.61 ± 0.08) 10"^ torr"^ 0.0470

1-4 ^ 4 “ (3.69 ± 0.08) 10"® torr"3 0.0592

1-2-3 ^ 2 “ (3.8 ± 11.5) 10"^ torr"! 0.0474

(4.38 ± 0.71) 10"^ torr"2

1-3-4 ^ 3 “ (5.09 ± 0.94) 10"? torr"2 0.0473

^ 4 “ negative

1-2-4 (3.52 ± 0.69) 10"5 torr"^ 0.0482

^ 4 “ (1.99 ± 0.33) 10"® torr"3

1—3—6 ^ 3 “ (4.84 ± 0.31) 10"^ torr"2 0.0473

negative

1-3-8 (4.8 ± 0.3) 10"7 torr"2 0.0472

negative

1-3-9 (4.77 ± 0.22) 10"? torr"^ 0.0472

^ 9 " negative

1 —2 —3—4 ^ 2 “ negative 0.0477

^ 3 - (8.9 ± 1.4) 10"7 torr"2

^ 4 “ negative

Uncertainties in equilibrium constant values are standard errors.
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TABLE 6

RMSD AND EQUILIBRIUM CONSTANT VALUES FOR VARIOUS SETS OF 

ASSUMED METHANOL-WATER COMPLEXES AT 25°C

M-W K RMSD

One-Parameter Fits
1 - 1 (2 .7+0.3) 1 0 "^ torr'l 0.0774
1 - 2 (1.11±0.09) lO'S torr"^ .0636
2 - 1 (2 .8 +0 .2 ) 1 0 "* torr" 2 .0628
2 - 2 (1.56±0.07) 10"^ torr'3 .0406
3-1 (3.5+0.2) 10"® torr"® .0580
1-3 (5.6±0.4) 10"? torr”® .0617
3-2 (2.24±0.07) 10"® torr"* .0292
2-3 (8.9±0.4) 10”® torr* .0362
3-3 (1.36+0.03) 10"10 torr”® .0209
4-1 (4.8±0.3) 10”1* torr”* .0600
1-4 (3.0+0.2) 10”® torr”* .0641
4-2 (3.3+0.1) 10”^^ torr”® .0316
2-4 (5.2+0.2) 10”^® torr”® .0397
4-3 (2.06±0.05) 10”1® torr”* .0234
3-4 (8.3±0.2) 10”12 torr"* .0259

Two-Parameter Fits
1 -1 , 2 - 1 (-2.5+1.1) lO"* torr”! 

(5.2+1.0) 10”* torr”2
.0588

1 - 1 , 1 - 2 negative
(1.7±0.4) 10”® torr"®

.0621

1 - 1 , 2 - 2 negative
(2 .8 +0 .1 ) 1 0 "^ torr"®

.0223

1-1, 3-2 negative
(2 .8 +0 .2 ) 1 0 ”® torr"*

.0246
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TABLE 6 cont'd

M-W K RMSD

1-1, 2-3 negative 
(1.06+0.09) 10"®

.0345

1-1, 3-3 negative
(1.43+0.07) 10"1° torr"5

.0208

1 — 2 , 2 — 1 (5.4+2.8 ) 10"* torr"^ 
(1.5+0.7) 10"* torr"2

.0602

2 - 2 , 2 - 1 (2.4+0.3) 10"^ torr"® 
negative

.0364

2 - 2 , 1 - 2 (3.0+0.3) 10"^ torr"® 
negative

.0301

2-2, 3-1 (1.5±0.3) 10"? torr"® 
(5±63) 10"10 torr"®

.0412

2-2, 1-3 (2 .0 +0 .3) 10"7 torr"® 
negative

.0397

2-2, 3-2 negative
(2 .7+0.5) 1 0 "® torr"®

.0292

2-2, 2-3 (2+5) 10"® torr"® 
(7.6+2.7) 10"® torr"*

.0367

2-2, 3-3 negative
(1.5±0.2) 10"^® torr"®

.0209

2 -2 , 4-4 (5.5+1.1) 10"® torr"® 
(8.7±0.9) 10"1* torr"?

. 0 2 1 1

3-3, 2-1 (1.39+0.09) 10"1® torr"® . 0 2 1 2

3-3, 1-2
negative
(1.48±0.09) 10"^® torr"® .0205

3-3, 3-1
negative
(1.31+0.09) 10"11 torr"® 
(1.4±2.5) 10"® torr"®

. 0 2 1 1

3-3, 1-3 (1.49+0.09) 10"^® torr"® 
negative

.0205



-43-

TABLE 6  cont'd

M-W K RMSD

3-3, 3-2 (1 .2 +0 .2 ) 1 0 "^° torr"^ . 0 2 1 2

(4±4) 10 torr"*
3-3, 2-3 (1.7±0.2) lO'lO torr'5 .0203

negative
3-3, 4-4 (1 .1 +0 .2 ) 1 0 ”^° torr'5 .0209

(2 +2 ) 1 0 "1 * torr"?
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From here on the optimizing process Is exactly the same as above. 

The TEA results are given In Tables 7 and 8  and in Figure 2. The 1-2 

fit was definitely better than any other one, by about a factor of 2  In 

BMSD, and when another parameter was Included along with the dimerlzatlon 

constant, that parameter was found to be negative.

In the case of the trlmethylamlne-sulfur dioxide system, which 

consisted of a 50-50 mixture, was Inferred directly from P^jj^tial

and Pfinal» and P^, using an assumed value, without calculating

the monomer pressures by equation (4). was derived to be

= 2(P, - Pj) - + 1 - 1 >
1—1

and the error function was just

BMSD (Air) ~ N - 1

where p was set equal to 1. The TMA-SO^ results are also given in Tables 

7 and 8  along with those of MeOH and TFA.

Temperature dependence studies of equilibrium constants permitted 

calculation of enthalpy and entropy changes of the formation reactions 

through the usual thermodynamic relations

A6° « -RT t a  K P

- AH° - TAS°

and
d An K . ,„o

where Is the pressure equilibrium constant. The Van't Hoff plot for
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TABLE 7

FORMATION CONSTANTS OF METHANOL, METHANOL-WATER, TRIFLUOROACETIC 

ACID, TRIFLUOROACETIC ACID-WATER, AND TRIMETHYLAMINE-

SULFUR DIOXIDE SYSTEMS

T°C System Equilibrium Constant BMSD, torr

25 MeOH Kg » (4.61+0.08) 10"^ torr”^ 0.0470

25 MeOH-W Kg_g = (1.36+0.03) 10”^° torr'5 .0209

25 Kg = (0.25610.003) torr"! . 0 1 1

35 TFA Kg = (0.11910.001) torr"! .017

44 Kg » (0.0621+0.0006) torr"! . 0 2 1

25 ^1-1 “ (0.04910.001) torr"! .032

35 TFA-W ^ 1 - 1  “ (0 .0 2 0 1 0 .0 0 1 ) torr"! .045

44 K ^ - 1  = (0.014710.0004) torr"! .034

35 TMA-SOg K^_^ = (0.010610.0019) torr"! .035
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r4I

1.5

1.0

Bottom - (TFA)

0.5

3.1 3.43.2 3.3
1000/T

Figure 2. Van't Hoff Plots of the Temperature Dependence of the Dimer 

Association Constants for TFA, and TFA-Water Systems.
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TABLE 8
THERMODYNAMIC PARAMETERS FOR TRIFLUOROACETIC ACID, TRIFLUOROACETIC 

ACID-WATER, AND TRIMETHYLAMINE-SULFUR DIOXIDE SYSTEMS

Complexes Parameters Reference

(TFA) 2 AH® = (-14.01+0.02) Kcal/mole 

AS® = (-49.70+0.06) e.u.

This Work

(TFA) 2 log Kg (torr"^) = •5 — 2  _ iQ.860

= -52^ - 10.800

= •—  - 10.869 

= — - 10.053

This Work

83

84 

95

TFA'W AH°_^ = (-12.0+2.6) Kcal/mole 

AS^_^ = (-46.4±8.6) e.u.

1 Torr standard state was used.

This Work

TMA'SOg AE°-i = (-9.1+0.3) Kcal/mole 

AS°-i - (-20.9+0.8) e.u.

1  mole/liter standard state was used.

62
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Kp's yields AH° and AS°. Recall that if the equilibrium constants are 

expressed in terms of concentration units, then the plot InK^ vs. 1/T 

will yield as the slope -AE°/R, the internal energy change/R, rather than 

-AH°/R. Throughout this research K^'s are used unless other units are 

specified. Usually the standard state of ITorr is used.

Isothermal Expansion 

As mentioned in the preceding chapter there are 4 observed quan

tities to be analyzed in this type of experiment— 3 pressures Pg, 

and Pp and the volume ratio, In a one-component system, one can

write

\  \  + ^ 2  + ^3 • • •

"■s = %  + ‘=2 "=3 •

+ K? rip + *3 Pf, +  - - '
and the corresponding formal pressures are

’'l “ \ + 2 K j P ^ + 3 K 3 p| ^ +  . . .
’S - %  +  P ^  + 3Kj Pj^ + . . .

ir_ = P. + 2K- P^ + 3K. p3 + . . . (7)F Ap 2 Ap 3 Ap

Having assumed that each species behaves ideally, one can then write 

the following mass balance equation
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To get values of equilibrium constants out of these equations, 

one seeks again to minimize BMSD as a function of the K's. With assumed 

values of K's, P. and P. are calculated from equation (6 ); these mono- 

mer pressures are used along with assumed K values to compute ir̂  and iTg 

according to equation (7). In turn these formal pressures permit calcu

lation of TTp from equation (8 ); Is then used along with assumed K 

values to solve linearly for P. according to equation (7). Finally with

P ^  one can calculate In equation (6 ). Next, this predicted final
c&lcd ol) 8pressure, P^ , Is compared with P^ and the error function Is written as

? (pjbB . pcalcd)2
KMSD - N - p

This technique led to the determination of equilibrium constant values 

for trlethylamlne, needed In treating data for cross-association systems. 

The results are shown In Tables 9 and 10. The 1-2 fits were sufficient 

to represent the data at the three temperatures; Figure 3 Illustrates the 

temperature dependence studies for TEA along with those of the TEÂ-W 

system, studied by the volumetrld addition vapor density method to be 

discussed next.

Vapor Density - Volumetric Addition 

Recall that there are 3 observed quantities to be treated— ir̂ , ir̂ , 

and P. Usually It is desirable to restrict the pressures of both compon

ents to ranges In which they do not self-associate, so that the computa

tions are a bit simpler. To simplify, assume that In a mixture A self

associates but B doesn't, and the hetero-complexes are only of one kind;
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TABLE 9

FORMATION CONSTANTS OF TRIETHYLAMINE, TRIEIHYLAMINE-WATER,

AND AMMONIA-WATER SYSTEMS

T°C Kg (Torr'l) CTorr"^)

(TEA) 2 TEA'W NHg'W

25 (8.83±1.23)xl0“^ (5.11±0.22)xl0"^

35 C8 .0 2 ±0 .6 6 )xl0 "^ (3.08+0.03)xl0"^ (7.54±0.38)xl0"^

43.5 (7.33±0.48)xl0"^ (2.23±0.03)xl0”^



-51-
4.20

4.10

4.00

3.90 Top - TEA

Bottom - TEA'W

3.80

3.60

3.50

3.40

3.30

3,20
3.43.33.2

1000/T

Figure 3. Van't Hoff Plot of the Temperature Dependence of the Dimer Associ

ation Constants for TEA, and TEA-Water Systems.
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TABLE 10

THERMODYNAMIC PARAMETERS FOR TRIETHYLAMINE, AND 

TRIETHYLAMINE-WATER SYSTEMS

(TEA) 2

AH° = (-1.88 ± 0.08) Kcal/mole

AS° = (-24.9 ± 0.3) e.u.

TEA'W

AH°_^ = (-8.4 ± 0.4) Kcal/mole

AS°_^ = (-43 ± 2) e.u.

Standard state = 1 Torr
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and also

With
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Pa

" ̂ AaBb> Kab ' ̂
A B

’a  ” '■a  ■*• + a K ^ p ÿ l  (9)

’b = 'b + “ ab^B

P - ?A + ?B + V 2  + V ? B

a reasonable trial value of and Pg may be inferred

from values of and Vg, with equation (9), using a numerical, Newton- 

Raphson method for 2 equations in two u n k n o w n s . T h e s e  monomer pres

sures together with the assumed value in turn permit calculation of 

P according to the P equation of (9). Finally this predicted P value, 

pCalcd^ is compared to the observed P value, and the error function is 

obtained and minimized as in the preceding sections. (In the earlier 

treatment values were compared instead of P.) The above treatment 

can be extended to cases where there are two or more cross-species 

and where B also self-associates. (In cases where a mixture is added 

volumetrically, the treatment of data is also the same; the only system 

studied this way was triethylamine-water at 25°C.) Systems studied by 

this method were TFA-W (Tables 7 and 8  and Figure 2), TEA-W (Tables 9 

and 10, and Figure 3), NHg-W (Table 9), MeOH-W (Table 7), Pyr-W, MeOH, 

TFE (Table 11). Data are tabulated in Tables 12-34.
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TABLE 11

FORMATION CONSTANTS OF PYRIDINE-WATER, PYRIDINE-METHANOL, AND 

PYRIDINE-2,2,2-TRIFLUOROETHANOL SYSTEMS AT 25°C

Complexes Equilibrium Constant RMSD(P), torr

Pyr • W = (7.6 ± 0.2) X lO”^ torr”^ 0.0149

Pyr • M = (9.33 ± 0.21) X 10”^ torr"^ 0 . 0 2 1 2

Pyr • TFE Ki-i = (7.7 ± 0.2) X 10"3 torr”^ 0.0118
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Observed and Calculated Data 

The data treated in this Chapter are presented in the following 

tables. Sometimes a table is appended with die data which were not used 

in the calculations; in that case a star * indicates that only the data 

from the top of the page on down to the starred values (included) were 

used in the calculations; necessary explanations can be found in Chapter V.

All pressures are in torr units. P and u are total and formal 

pressures. P^, and P^ are the monomer pressures of methanol, water,

and amine or acid or alcohol, depending on the systems.
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TABLE 12

OBSERVED BUOYANCY DATA FOR METHANOL SYSTEM AT 25 C

p . ir <M>

10.70 10.73 32.14
12.35 12.35 32.03
14.30 14.26 31.94
16.25 16.21 31.97
18.40 18.42 32.08
20.35 20.39 32.10
21.85 2 1 . 8 8 32.08
24.15 24.13 32.02
27.40 27.43 32.07
30.00 30.08 32.13
32.70 32.74 32.08
34.55 34.56 32.05
37.05 37.04 32.04
39.50 39.59 32.11
42.80 42.82 32.06
49.05 49.13 32.09
52.20 52.40 32.16
54.75 54.90 32.13
57.35 57.49 32.12
60.70 60.94 32.17
64.40 64.68 32.18
67.15 67.47 32.19
67.85 6 8 . 2 1 32.21
69.30 69.57 32.16
69.80 70.05 32.16
70.90 71.13 32.14
72.01 72.36 32.20
72.30 72.66 32.20
73.75 74.18 32.23
77.50 77.92 32.22
77.65 78.02 32.19
79.05 79.41 32.18
79.80 80.35 32.26
80.50 81.03 32.25
80.90 81.45 32.26
81.85 82.37 32.25
82.15 82.58 32.21
82.75 83.27 32.24
82.90 83.48 32.26
83.05 83.60 32.25
83.95 84.49 32.25
84.25 84.86 32.27
84.75 85.25 32.23
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TABLE 12 cont'd

P ir <M>

85.45 8 6 . 0 1 32.25
85.60 86.16 32.25
85.85 86.38 32.24
87.90 88.52 32.27
88.15 88.80 32.28
88.65 89.35 32.29
89.40 90.00 32.25

* 90.80 91.42 32.26
91.35 92.00 32.27
91.45 92.09 32.26
93.35 94.13 32.31
93.40 94.06 32.27
94.50 95.25 32.29
94.60 95.44 32.32
96.35 97.08 32.28
98.30 99.12 32.32

1 0 0 . 1 0 100.97 32.32
100.85 101.67 32.30
101.80 102.74 32.34
104.10 105.02 32.33
104.25 105.21 32.33
104.45 105.50 32.36
105.70 106.77 32.36
106.85 108.01 32.39
108.20 109.44 32.41
109.10 110.29 32.39
110.05 111.34 32.42
110.65 111.80 32.37
112.15 113.55 32.44
112.65 113.91 32.40
115.01 116.46 32.45

* 116.55 118.02 32.45
117.25 119.24 32.58
117.40 118.89 32.49
118.50 120.16 32.49
119.25 1 2 1 . 0 1 32.51
119.45 122.15 32.76
120.95 123.44 32.70
121.35 123.60 32.63
121.55 125.28 33.02
122.47 126.01 33.00
123.05 126.34 32.90
123.33 127.02 33.00
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TABLE 13

OBSERVED AND CALCULATED BUOYANCY DATA FOR METHANOL SYSTEM 

UP TO 90 TORR TOTAL PRESSURE AT 25°C

p ?M V calcdÏÏ

10.70 10.70 10.73 10.70
12.35 12.35 12.34 12.35
14.30 14.30 14.26 14.30
16.25 16.25 16.21 16.25
18.40 18.40 18.42 18.41
20.35 20.35 20.39 20.36
21.85 21.85 2 1 . 8 8 2 1 . 8 6

24.15 24.14 24.13 24.16
27.40 27.39 27.43 27.42
30.00 30.00 30.08 30.02
32.70 32.68 32.74 32.73
34.55 34.53 34.56 34.59
37.05 37.03 37.04 37.10
39.50 39.47 39.59 39.56
42.80 42.76 42.82 42.87
49.05 49.00 49.13 49.16
52.20 52.13 52.40 52.33
54.75 54.67 54.90 54.90
57.35 57.26 57.49 57.52
60.70 60.60 60.94 60.90
64.40 64.28 64.68 64.64
67.15 67.01 67.47 67.43
67.85 67.71 6 8 . 2 1 68.14
69.30 69.15 69.57 69.60
69.80 69.64 70.05 70.11
70.90 70.74 71.13 71.22
72.01 71.84 72.36 72.35
72.30 72.13 72.66 72.65
73.75 73.57 74.18 74.12
77.50 77.29 77.92 77.93
77.65 77.44 78.01 78.08
79.05 78.82 79.41 79.50
79.80 79.57 80.35 80.26
80.50 80.26 81.03 80.98
80.90 80.66 81.47 81.38
81.85 81.60 82.37 82.35
82.15 81.90 82.58 82.66
82.75 82.49 83.27 83.27
82.90 82.64 83.47 83.42
83.05 82.79 83.60 83.57
83.95 83.68 84.49 84.49
84.25 83.98 84.85 84.80



-59-

TABLE 13 cont'd

p ir calcdIT

84.75 84.47 85.25 85.31
85.45 85.17 8 6 . 0 1 8 6 . 0 2

85.60 85.31 86.16 86.17
85.85 85.56 86.38 86.43
87.90 87.59 88.52 88.52
88.15 87.84 88.80 88.77
88.65 88.33 89.35 89.28
89.40 89.07 90.00 90.05
90.80 90.46 91.42 91.48
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TABLE 14
VOLUMETRIC ADDITION DATA FOR METHANOL-WATER SYSTEM AT 25°C

p *M
calcd

"w ’̂W

57.996 50.388 7.792 7.795
64.024 50.383 14.012 14.006
56.913 49.292 7.793 7.798
62.926 49.288 13.984 13.988
38.188 30.380 7.849 7.833
44.328 30.378 14.034 14.042
69.428 62.043 7.724 7.788
68.113 60.612 7.819 7.809
73.961 60.605 13.985 14.009
65.619 58.069 7.831 7.817
71.553 58.056 14.059 14.027
38.855 31.044 7.855 7.821
44.995 31.042 14.042 14.026
48.793 41.104 7.790 7.794
54.902 41.100 14.006 14.009
49.352 41.623 7.834 7.820
55.468 41.621 14.061 14.043
48.226 40.474 7.848 7.834
54.349 40.472 14.074 14.039
47.745 40.010 7.828 7.809
53.861 40.007 14.043 14.011
40.058 32.277 7.830 7.829
46.205 32.275 14.029 14,047
38.617 30.820 7.839 7.820
44.758 30.818 14.027 14.033
65.128 57.580 7.823 7.811
71.045 57.567 14.024 14.018
66.449 58.927 7.815 7.814
72.334 58.920 13.995 14.027
55.636 48.007 7.788 7.805
61.675 48.002 x3.9?4 14.013
56.999 49.335 7.833 7.835
63.052 49.330 14.073 14.057
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TABLE 15

VOLUMETRIC ADDITION DATA FOR METHANOL-WATER SYSTEM AT 35°C

p T̂ M
„calcd
^W *W

112.213 104.933 8.056 8.063
118.535 104.933 14.558 14.533
99.165 91.610 8.095 8.065

105.539 91.610 14.602 14.564
111.853 91.610 21.091 21.039
100.487 92.999 8.049 8.074
106.863 92.999 14.562 14.593
113.149 92.999 21.028 21.049
104.999 97.613 8.026 8.038
111.380 97.613 14.559 14.540
117.664 97.613 21.044 21.009
54.241 46.241 8.097 8.094
60.659 46.241 14.554 14.586
67.092 46.241 21.033 21.069
56.309 48.274 8.144 8.133
62.773 48.274 14.649 14.641
69.177 48.274 2 1 . 1 0 2 21.107

108.646 94.835 14.546 14.572
114.957 94.835 21.046 21.062
63.616 49.148 14.624 14.605
70.056 49.148 21.114 21.086
75.484 54.721 21.019 21.018

118.121 98.184 20.940 20.988
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TABLE 16
VOLUMETRIC ADDITION DATA FOR METHANOL-WATER SYSTEM AT 45 G

P %
_calcd
*w

125.164 114.232 11.497 11.476
135.045 114.221 21.485 21.504
116.874 105.873 11.459 11.424
126.813 105.862 21.491 21.455
121.225 110.433 11.305 11.383
131.141 110.422 21.321 21.443
121.848 110.960 11.408 11.395
131.749 110.949 21.411 21.428
122.262 111.358 11.430 11.395
132.179 111.348 21.448 21.432
124.787 114.025 11.322 11.343
134.680 114.014 21.322 21.377
124.022 112.794 11.776 11.740
133=946 112.783 21.805 21.778
123.533 112.374 11.701 11.702
133.443 112.364 21.714 21.723
122.728 111.505 11.754 11.699
132.660 111.494 21.789 21.730
123.945 112.623 11.869 11.860
133.882 112.612 21.910 21.928
123.026 111.823 11.737 11.710
132.960 111.813 21.775 21.765
91.878 80.377 11.718 11.733

101.875 80.369 21.771 21.778
96.678 85.194 11.738 11.738

106.633 85.185 21.755 21.778
90.186 78.675 11.715 11.718

100.145 78.668 21.728 21.747
101.916 90.508 11.707 11.689
111.284 90.500 21.140 21.126
87.285 75.712 11.757 31.739
93.948 75.703 18.457 18.437
63.675 52.072 11.671 11.728
73.699 52.068 21.719 21.769
71.537 59.836 11.799 11.744
81.601 59.830 21.896 21.781
70.562 58.934 11.722 11.733
80.547 58.930 21.737 21.791
68.749 57.081 11.754 11.746
78.783 57.077 21.817 21.800
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TABLE 16 cont'd

p calcd

65.722 54.043 11.753 11.744
75.778 54.039 21.836 21.810
66.659 55.059 11.679 11.725
76.668 55.055 21.714 21.748
64.842 53.143 11.770 11.746
74.878 53.139 21.832 21.803
64.649 52.967 11.753 11.742
74.663 52.963 21.792 21.774
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t a b l e 17

BUOYANCY DATA FOR TRIFLUOROACETIC ACID SYSTEM AT 25°C

p ^A
. calcd Au Au

2.217 1.578 0 0

2 . 2 1 2 1.575 0.008 0 . 0 2 1

2.136 1.533 0.118 0.125
2.043 1.481 0.250 0.267
2.036 1.477 0.260 0.262
1.913 1.406 0.436 0.441
1 . 8 8 6 1.391 0.474 0.486
1.862 1.376 0.508 0.532
1.774 1.324 0.632 0.623
1.693 1.276 0.745 0.758
1.632 1.239 0.830 0.818
1.617 1.230 0.851 0.861
1.484 1.147 1.034 1.023
1.475 1.141 1.047 1.065
1.379 1.080 1.178 1.184
1.332 1.050 1.241 1.227
1.318 1.040 1.261 1.271
1 . 2 0 1 0.963 1.418 1.423
1.165 0.939 1.464 1.457
1 . 0 1 1 0.833 1 . 6 6 6 1.669
1 . 0 0 2 0.827 1.679 1.671
0.857 0.723 1.864 1.853
0.803 0.683 1.934 1.942
0.722 0.623 2.034 2.027
0.575 0.509 2.214 2.206
0.566 0.501 2.226 2.234
0.442 0.401 2.373 2.379
0.424 0.386 2.394 2.385
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TABLE 18

BUOYANCY DATA FOR TRIFLUOROACETIC ACID SYSTEM AT 35 C

p ?A
A^calcd Ait

2.806 2 . 2 2 0 0 0

2.804 2.219 0 . 0 0 2 0.040
2.719 2.163 0.117 0 . 1 2 1

2.656 2 . 1 2 1 0 . 2 0 1 0.208
2.622 2.099 0.246 0.287
2.613 2.093 0.258 0.268
2.531 2.037 0.367 0.371
2.465 1.993 0.455 0.465
2.460 1.990 0.460 0.496
2.395 1.945 0.547 0.550
2.371 1.929 0.579 0.591
2.280 1 . 8 6 6 0.698 0.731
2.279 1.865 0.699 0.708
2.209 1.817 0.790 0.803
2.194 1.806 0.810 0.814
2.109 1.746 0.920 0.952
2.089 1.732 0.946 0.957
2.033 1.692 1.018 1.030
2.009 1.676 1.048 1.049
1.908 1.603 1.178 1.187
1.862 1.569 1.236 1.270
1.834 1.549 1.272 1.261
1.822 1.540 1.288 1.303
1.697 1.448 1.445 1.470
1 . 6 6 6 1.425 1.484 1.483
1.642 1.406 1.515 1.503
1.627 1.396 1.533 1.541
1.503 1.301 1.687 1.713
1.426 1.243 1.782 1.781
1.401 1.223 1.813 1.794
1.335 1.172 1.893 1.896
1.294 1.139 1.943 1.961
1.234 1.092 2.016 2.016
1.209 1,072 2.046 2.028
1.149 1.024 2.118 2 . 1 2 2

1.090 0.977 2.188 2 . 2 0 1

1.031 0.928 2.258 2.242
1.005 0.907 2.289 2.280
0.895 0.816 2.417 2.429
0.872 0.797 2.444 2.445
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TABLE 18 coat'd

p ^^calcd Air

0.831 0.762 2.491 2.465
0.829 0.760 2.494 2.479
0.693 0.644 2.649 2.644
0.655 0.611 2.692 2.697
0.636 0.594 2.714 2.684
0.629 0.588 2.722 2.712
0.483 0.458 2.884 2 . 8 8 8

0.463 0.440 2.906 2.902
0.428 0.408 2.944 2.914
0.275 0.267 3.108 3.107
0.268 0.260 3.116 3.125
0.268 0.260 3.116 3.113
0.246 0.240 3.138 3.140
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TABLE 19

BUOYANCY DATA FOR TRIFLUOROACETIC ACID SYSTEM AT 44°C

p ?A
^^calcd Att

3.594 3.025 0 0
3.389 2.876 0.259 0.291
3.358 2.853 0.299 0.263
3.335 2.836 0.328 0.323
3.273 2.789 0.406 0.424
3.179 2.720 0.524 0.557
3.155 2.702 0.554 0.521
3.143 2.693 0.569 0.564
3.081 2.646 0.646 0.662
2.967 2.560 0.789 0.828
2.932 2.533 0.832 0.803
2.914 2.520 0.854 0.846
2.765 2.405 1.038 1.043
2.759 2.401 1.045 1.082
2.717 2.368 1.098 1.089
2.715 2.367 1 . 1 0 0 1.071
2.589 2.269 1.253 1.259
2.563 2.249 1.285 1.321
2.515 2 . 2 1 1 1.344 1.322
2.508 2.205 1.353 1.342
2.394 2.115 1.491 1.498
2.348 2.079 1.546 1.575
2.300 2.041 1.604 1.592
2.236 1.990 1.681 1.654
2.180 1.945 1.747 1.752
2.148 1.919 1.785 1.819
2.104 1.884 1.838 1.834
2.064 1.851 1.885 1.857
1.982 1.784 1.983 1.987
1.920 1.733 2.056 2.092
1.909 1.725 2.068 2.058
1.819 1.650 2.174 2.147
1.712 1.561 2.299 2.295
1.707 1.557 2.305 2.296
1.680 1.534 2.336 2.369
1.613 1.477 2.414 2.388
1.511 1.391 2.531 2.521
1.458 1.346 2.592 2.622
1.461 1.348 2.589 2.579
1.399 1.295 2.659 2.633
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TABLE 19 cont'd

p . calcd Att Air

1.316 1.223 2.754 2.741
1.281 1.193 2.793 2.788
1.233 1.151 2.847 2.870
1.151 1.079 2.939 2.916
1.081 1.017 3.017 3.013
1.073 1 . 0 1 0 3.026 3.014
1.005 0.949 3.101 3.134
0.940 0.891 3.173 3.155
0.858 0.817 3.263 3.256
0.851 0.810 3.271 3.267
0.767 0.734 3.362 3.388
0.746 0.714 3.385 3.371
0.653 0.629 3.485 3.483
0.601 0.580 3.541 3.540
0.543 0.526 3.602 3.593
0.476 0.462 3.674 3.700
0.367 0.359 3.787 3.791
0.304 0.299 3.853 3.862
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TABLE 20

VOLUMETRIC ADDITION DATA FOR TFA-WATER SYSTEM AT 25*C

P calcd

3.639 2.751 1.570 1.549
5.147 2.751 3.150 3.116
6.660 2.751 4.732 4.686
8.138 2.751 6.274 6.257
9.623 2.751 7.819 7.828
3.709 2.860 1.565 1.541
5.201 2.860 3.131 3.112
6.681 2.860 4.679 4.682
8.158 2.860 6 . 2 2 2 6.252
9.623 2.860 7.748 7.823
3.736 2.856 1.596 1.582
5.253 2.856 3.187 3.152
6.756 2.856 4.760 4.719
8.239 2.856 6.310 6.287
9.275 2.856 7.858 7.858
3.721 2.874 1.568 1.565
5.223 2.874 3.144 3.134
6.719 2.874 4.710 4.702
8.214 2.814 6.271 6.282
9.696 2.874 7.817 7.860
3.745 2.894 1.579 1.593
5.254 2.894 3.163 3.184
6.767 2.894 4.746 4.778
3.692 2.803 1.587 1.580
5.211 2.803 3.180 3.160
6.736 2.803 4.775 4.739
8.225 2.803 6.329 6.313
9.707 2.803 7.873 7.885
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TABLE 21

VOLUMETRIC ADDITION DATA FOR TFA-WATER SYSTEM AT 35°C

p "A
calcd
*W "w

4.556 3.617 1.640 1.595
6.163 3.617 3.297 3.236
7.744 3.617 4.929 4.880
9.330 3.617 6.564 6.524
10.922 3.617 8.205 8.167
12.530 3.617 9.860 9.811
4.582 3.643 1,644 1.589
6.161 3.643 3.276 3.232
7.716 3.643 4.881 4.875
9.269 3.643 6.483 6.519
10.829 3.643 8.090 8.166
12.402 3.643 9.710 9.816
4.368 3.391 1.613 1.582
5.934 3.391 3.229 3.222
7.516 3.391 4.860 4.865
9.100 3.391 6.492 6.507
10.685 3.391 8.123 8.148
12.252 3.391 9.734 9.794
4.420 3.438 1.631 1.590
6 . 0 2 2 3.438 3.285 3.233
7.599 3.438 4.910 4.871
9.182 3.438 6.541 6.515
10.775 3.438 8.181 8.159
12.355 3.438 9.806 9.797
13.934 3.438 11.430 11.442
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TABLE 22

VOLUMETRIC ADDITION DATA FOR TFA-WATER SYSTEM AT 44°C

P *A
calcd

5.117 4.023 1 . 6 8 8 1 . 6 6 6

6.766 4.023 3.390 3.358
8.393 4.023 5.069 5.060

10.030 4.023 6.757 6.765
11.671 4.023 8.448 8.469
13.353 4.023 10.179 10.186
14.989 4.023 11.862 11.889
5.106 3.989 1.703 1.662
6.790 3.989 3.442 3.389
8.430 3.989 5.134 5.094
10.095 3.989 6.850 6.803
11.725 3.989 8.530 8.505
13.362 3.989 10.215 10.206
15.072 3.989 11.973 11.988
4.969 3.832 1.689 1.661
6.622 3.832 3.394 3.356
8.244 3.832 5.066 5.054
9.898 3.832 6.770 6.756
11.576 3.832 8.497 8.461
13.254 3.832 10.223 10.174
14.948 3.832 11.964 11.903
5.226 4.167 1.684 1.663
6.858 4.167 3.371 3.367
8.489 4.167 5.055 5.077
10.124 4.167 6.742 6.782
11.769 4.167 8.438 8.491
13.402 4.167 1 0 . 1 2 0 10.189
15.044 4.167 11.811 11.894
4.967 3.841 1.680 1.659
6.611 3.841 3.376 3.358
8.254 3.841 5.069 5.063
9.901 3.841 6.766 6.766
11.563 3.841 8.477 8.475
13.214 3.841 10.175 10.178
14.871 3.841 11.878 11.876
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TABLE 23

BUOYANCY DATA FOR TRIMETHYLAMINE-SULFÜR DIOXIDE SYSTEM AT 35°C

"l Air

6.175 5.604 0.630 0.589
5.604 5.009 0.641 0.611
5.009 4.637 0.356 0.381
4.637 4.227 0.417 0.419
4.227 3.756 0.462 0.481
5.654 5.181 0.464 0.486
5.181 4.790 0.382 0.401
4.790 4.281 0.534 0.521
4.281 3.675 0.606 0.618
3.675 3.172 0.516 0.513
3.172 2.816 0.349 0.361
2.816 1.648 1 . 2 2 1 1.181
6.175 5.604 0.636 0.589
5.604 5.009 0.637 0.611
5.009 4.637 0.351 0.381
4.637 4.227 0.410 0.419
4.227 3.756 0.452 0.481
5.654 5.181 0.458 0.486
5.181 4.790 0.378 0.410
4.790 4.281 0.525 0.521
4.281 3.675 0.593 0.618
3.675 3.172 0.501 0.513
3.172 2.816 0.336 0.361
2.816 1.648 1.154 1.181
6.175 5.604 0.629 0.589
5.604 5.009 0.642 0.611
5.009 4.637 0.356 0.381
4.637 4.227 0.416 0.419
4.227 3.756 0.459 0.481
5.654 5.181 0.461 0.486
5.181 4.790 0.382 0.410
4.790 4.281 0.533 0.521
4.281 3.675 0.602 0.618
3.675 3.172 0.507 0.513
3.172 2.816 0.339 0.361
2.816 1.648 1.159 1.181
5.589 5.151 0.474 0.449
5.151 4.817 0.406 0.343
4.817 4.491 0.336 0.334
4.491 3.677 0.831 0.832
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TABLE 23 cont'd

Air

3.677 2.411 1.299 1.285
2.411 1.515 0.883 0.905
1.515 0.862 0.637 0.657
0.862 0.286 0.479 0.577
6 . 1 0 2 5.589 0.604 0.529
5.589 5.151 0.467 0.449
5.151 4.817 0.394 0.343
4.817 4.491 0.324 ' 0.334
4.491 3.677 0.795 0.832
3.677 2.411 1.245 1.285
2.411 1.515 0 . 8 6 8 0.905
1.515 0.862 0.651 0.657
0.862 0.286 0.481 0.577
0.862 0.286 0.510 0.577
6 . 1 0 2 5.589 0.586 0.529
5.589 5.151 0.463 0.449
5.151 4.817 0.397 0.343
4.817 4.491 0.329 0.334
4.491 3.677 0.817 0.832
3.677 2.411 1.284 1.285
2.411 1.515 0.878 0.905
1.515 0.862 0.636 0.657
7.788 6.773 1.079 1.053
6.773 5.735 1.078 1.070
5.735 4.614 1.149 1.151
4.614 3.665 0.972 0.969
7.649 6.375 1.339 1.319
6.375 5.400 1.028 1.004
5.400 4.318 1 . 1 1 1 1.109
4.318 3.154 1.197 1.186
3.154 1.943 1.243 1.227
7.888 1.943 6.113 6.094
7.888 6.751 1.152 1.178
5.654 3.756 1.821 1.944
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TABLE 24

PVT DATA FOR TRIETHYLAMINE SYSTEM AT 25°C

?! ?S Pp
-calcd
F

8.048 1.879 7.642 7.643
12.133 2.042 11.469 11.471
13.824 0 . 8 6 8 12.969 12.973
19.506 2.418 18.388 18.384
23.091 4.710 21.883 21.885
28.374 1.925 26.634 26.640
33.020 2.081 30.992 30.992
34.571 2.923 32.493 32.497
36.036 0.295 33.685 33.694
39.067 4.528 36.799 36.804
40.621 6.954 38.424 38.415
42.829 8.548 40.583 40.583
46.295 1.687 43.366 43.375
46.627 7.642 44.063 44.073
48.717 0.510 45.562 45.562
49.373 4.563 46.446 46.439
52.404 7.972 49.495 49.495
53.585 8.740 50.644 50.649
55.813 7.512 52.661 52.652
55.816 4.236 52.445 52.441
56.031 1.472 52.461 52.462
56.335 7.444 53.140 53.135
59.408 19.192 56.783 56.774
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TABLE 25

PVT DATA FOR TRIETHYLAMINE SYSTEM AT 35°C

Ps
pcalcd
F

92.819 0.968 86.839 86.824
88.034 23.764 83.856 83.831
85.941 1.526 80.422 80.429
82.201 0.178 76.845 76.844
80.998 2.035 75.839 75.839
77.983 0.830 72.933 72.943
75.962 0.897 71.055 71.057
72.599 10.453 68.536 68.534
68.207 9.644 63.746 63.754
66.462 0.542 62.154 62.152
62.650 0.407 58.580 58.579
60.898 1.037 56.973 56.982
57.240 1.176 53.566 53.572
51.365 1.773 48.116 48.118
49.230 1.136 46.077 46.081
46.904 0.842 43.880 43.888
43.962 0.940 41.147 41.144
39.070 0.501 36.543 36.543
35.974 1.279 33.694 33.701
32.940 0.944 30.842 30.843
25.214 3.020 23.764 23.758
23.062 1.006 21.608 21.615
18.932 0.432 17.717 17.718
17.763 1.143 16.677 16.672
14.441 1.080 13.563 13.564
11.109 1.124 10.453 10.454
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TABLE 26

PVT DATA FOR TRIETHYLAMINE SYSTEM AT 43.5°C

?S Pp
-calcd
F

11.206 2.994 10.667 10.667
16.679 2.908 15.774 15.775
22.591 1.584 21.209 2 1 . 2 1 2

28.112 1.811 26.385 26.387
29.701 3.992 28.009 28.015
34.148 3.581 32.143 32.143
40.836 2.901 38.347 38.350
43.393 3.564 40.778 40.783
48.530 4.063 45.613 45.617
49.394 2 . 2 2 0 46.306 46.304
50.430 4.207 47.401 47.403
51.372 4.078 48.269 48.275
53.950 3.520 50.635 50.648
58.098 2.594 54.466 54.465
59.083 3.585 55.439 55.450
60.297 0.433 56.373 56.380
63.495 11.580 60.091 60.096
64.314 3.710 60.338 60.349
65.025 10.667 61.473 61.466
65.847 2.087 61.676 61.676
70.096 2.883 65.690 65.700
73.799 2 . 0 0 0 69.101 69.104
74.741 15.774 70.886 70.882
78.354 4.357 73.503 73.516
80.726 2.481 75.609 75.612
84.342 2.975 79.024 79.025
85.531 3.172 80.144 80.150
89.258 2.168 83.568 83.569
95.728 3.249 89.690 89.689
103.176 4.244 96.723 96.718
114.203 1.024 106.846 106.822
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TABLE 27

VOLUMETRIC ADDITION DA.^ FOR TRIETHYLAMINE-WATER SYSTEM AT 25°C 

(MIXTURE ADDED VOLUMETRICALLY, X ^ ^  = 0.887)

calcdp

0.343 0.305 0.039 0.039
2.763 2.466 0.299 0.303
5.191 4.615 0.580 0.588
7.600 6.748 0.859 0.859

12.422 11.035 1.405 1.405
0.378 0.335 0.043 0.043
5.198 4.614 0.588 0.588

1 0 . 0 2 0 8.894 1.138 1.133
11.909 10.558 1.368 1.345
0.861 0.764 0.097 0.097
5.694 5.043 0.656 0.642

10.513 9.321 1.206 1.187
12.939 11.467 1.493 1.460
17.710 15.735 2.013 2.004
22.522 20.003 2.581 2.547
24.940 22.166 2.848 2.822
29.727 26.437 3.396 3.365
34.498 30.707 3.933 3.909
36.922 32.871 4.214 4.184
41.686 37.153 4.740 4.728
46.475 41.433 5.299 5.272
48.852 43.584 5.552 5.546
53.603 47.869 6.076 6.090
58.351 52.159 6.596 6.635
60.734 54.299 6.872 6.907
0.340 0.302 0.039 0.039
5.181 4.577 0.608 0.583

10.003 8.854 1.161 • 1.128
5.948 5.260 0.693 0.670

10.781 9.532 1.264 1.214
13.190 11.677 1.535 1.487
5.456 4.828 0.632 0.615

10.265 9.092 1.186 1.158
12.677 11.235 1.461 1.431
6.255 5.537 0.722 0.705

11.056 9.807 1.264 1.249
13.472 11.948 1.545 1.521
18.265 16.224 2.081 2.066
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TABLE 27 cont’d

P „calcd
W

23.054 20.488 2.630 2.609
25.450 22.632 2.896 2.881
30.238 26.900 3.448 3.424
34.983 31.144 3.985 3.964
37.396 33.296 4.266 4.238
42.191 37.597 4.806 4.785
46.984 41.881 5.367 5.329
49.363 44.030 5.624 5.602
54.138 48.324 6.163 6.148
58.892 52.621 6.683 6.694
61.262 54.768 6.939 6.967
5.868 5.197 0.675 0.622

10.693 9.477 1.230 1.207
13.107 11.607 1.520 1.478
5.528 4.876 0.656 0.621

10.351 9.149 1.215 1.165
5.012 4.453 0.562 0.567
9.808 8.719 1 . 1 0 0 1 . 1 1 0

14.626 13.001 1.651 1.656
19.448 17.261 2.233 2.198
24.259 21.560 2.770 2.745
29.062 25.852 3.312 3.291
31.486 28.013 3.592 3.566
36.279 32.307 4.129 4.112
41.057 36.598 4.659 4.658
43.449 38.751 4.924 4.931
48.239 43.054 5.462 5.478
52.972 47.312 5.993 6 . 0 2 0

55.359 49.480 6.243 6.295
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TABLE 28

VOLUMETRIC ADDITION DATA FOR TRIETHYLAMINE-WATER SYSTEM AT 25°C

*A *W
pcalcd P

37.252 8.959 45.926 45.932

39.054 8.761 47.514 47.530

49.690 8.683 57.948 57.922

20.801 8.718 29.391 29.403

21.841 8.719 30.423 30.415

25.381 8.829 34.042 34.046

15.358 8.832 24.101 24.090

30.586 8.584 38.958 38.932

30.379 8.674 38.842 38.834

40.301 9.010 48.992 49.046

44.905 8.576 53.118 53.114

12.892 8.855 21.675 21.655
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TABLE 29

VOLUMETRIC ADDITION DATA FOR TRIETHYLAMINE-WATER SYSTEM AT 35°C

"a
pcalcd P

63.636 7.776 70.948 70.954
63.636 11.386 74.490 74.498
63.636 15.188 78.221 78.232
63.636 18.838 81.802 81.792
75.632 7.287 82.309 82.312
75.632 1 1 . 1 2 2 86.059 86.061
75.632 14.993 89.845 89.852
76.842 7.998 84.198 84.213
76.842 1 1 . 8 8 6 87.999 88.026
76.842 15.486 91.518 91.518
77.904 7.373 84.634 84.635
77.904 11.028 88.206 88.214
77.904 15.229 92.311 92.299
78.591 7.241 85.182 85.198
78.591 14.264 92.044 92.048
80.813 3.639 83.856 83.856
80.813 7.326 87.456 87.461
80.813 14.502 94.462 94.454
80.813 18.077 97.954 97.942
82.915 7.193 89.396 89.409
82.915 11.046 93.156 93.156
82.915 14.998 97.013 96.965
83.042 7.529 89.850 89.859
83.042 11.504 93.728 93.747
83.042 15.568 97.694 97.676
83.198 7.012 89.500 89.509
83.198 10.598 92.998 93.010
83.198 14.083 96.399 96.398
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TABLE 30
VOLUMETRIC ADDITION DATA FOR TRIETHYLAMINE-WATER SYSTEM AT 43.5 C

"A *W
pCalcd P

90.084 7.630 96.988 96.996
90.084 11.480 100.765 100.769
90.084 15.363 104.574 104.556
90.084 19.305 108.440 108.398
90.084 23.035 112.099 112.073
97.984 4.020 101.236 101.245
97.984 8.157 105.287 105.301
97.984 12.172 109.219 109.224
97.984 15.898 1 1 2 . 8 6 8 112.871
97.984 19.741 116.632 116.619
97.984 23.822 120.628 120.590
104.597 7.728 111.376 111.395
104.597 1 1 . 8 6 8 115.425 115.441
104.597 15.801 119.272 119.298
104.597 19.682 123.067 123.076
104.597 23.439 126.742 126.744
114.275 3.816 117.073 117.071
114.275 7.576 120.743 120.749
114.275 11.299 124.377 124.408
114.275 15.190 128.174 128.186
114.275 19.024 131.917 131.927
114.275 22.648 135.455 135.473
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TABLE 31
VOLUMETRIC ADDITION DATA FOR AMMONIA-WATER SYSTEM AT 35 C

p *A
calcd

120.104 108.795 11.431 11.423
131.945 123.839 8 . 2 2 0 8.183
138.410 123.839 14.746 14.710
144.834 123.839 21.229 21.213
131.583 123.879 7.815 7.818
138.017 123.879 14.308 14.303
144.446 123.879 20.797 20.795
116.993 108.920 8.168 8.127
123.423 108.920 14.651 14.603
129.855 108.920 21.136 21.073
145.196 134.102 11.251 11.205
154.825 134.102 20.977 20.921
139.105 131.448 7.776 7.766
145.522 131.448 14.256 14.246
152.200 131.448 2 1 . 0 0 0 21.015
137.120 129.091 8.148 8.107
143.553 129.091 14.644 14.588
149.930 129.091 21.082 21.043
136.202 128.576 7.740 7.763
142.616 128.576 14.217 14.250
148.993 128.576 20.655 20.706
137.619 129.912 7.824 7.801
144.028 129.912 14.296 14.283
150.403 129.912 20.734 20.744
40.375 35.481 4.910 4.931
43.651 35.481 8.196 8.216
46.911 35.481 11.464 11.494
50.164 35.481 14.726 14.784
53.470 35.481 18.041 18.109
56.727 35.481 21.307 21.395
41.512 35.788 5.743 5.729
44.785 35.788 9.025 9.011
48.062 35.788 12.311 12.299
51.350 35.788 15.607 15.587
54.606 35.788 18.873 18.875
57.849 35.788 22.124 22.168

128.690 123.757 5.017 5.028
131.936 123.757 8.293 8.314
135.182 123.757 11.569 11.593
138.422 123.757 14.840 14.920
141.650 123.757 18.097 18.237
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TABLE 31 cont’d

p "A
calcd

111.734 108.538 3.252 3.243
113.344 108.538 4.874 4.881
115.004 108.538 6.548 6.539
116.645 108.538 8.203 8.185
118.276 108.538 9.847 9.833
119.916 108.538 11.500 11.484
121.512 108.538 13.109 13.126
123.142 108.538 14.752 14.770
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TABLE 32
VOLUMETRIC ADDITION DATA FOR PYRIDINE-WATER SYSTEM AT 25°C

*pyr
pcalcd P

8.142 10.145 18.219 18.239
9.044 10.032 19.000 18.996
9.974 10.052 19.942 19.925
9.973 10.056 19.943 19.945
9.932 10.089 19.936 19.959

10.656 6.780 17.370 17.381
10.791 8.507 19.217 19.214
10.982 8.522 19.421 19.417
10.845 8.540 19.304 19.312
10.980 8.607 19.503 19.524
10.877 8.650 19.445 19.462
10.075 9.995 19.985 19.985
10.165 10.007 20.086 20.084
10.069 10.009 19.992 19.970
10.123 10.035 20.072 20.062
10.082 10.049 20.045 2 0 . 0 2 1
1 0 . 0 2 1 10.059 19.994 19.971
10.098 10.062 20.074 20.087
10.052 10.069 20.035 20.051
10.067 10.072 20.053 20.054
10.105 10.116 20.133 2 0 . 1 2 2
10.055 10.139 20.107 20.129
10.116 10.142 20.171 20.189
10.085 10.152 20.150 20.152
10.067 10.165 20.146 20.170
10.379 10.225 20.514 20.500
11.660 6.728 18.315 18.327
11.498 8.387 19.800 19.819
11.751 8.417 20.080 20.065
11.900 8.473 20.283 20.298
12.286 6.912 19.118 19.129
12.055 8.374 20.338 20.317
12.054 8.387 20.351 20.331
12.132 8.417 20.458 20.460
12.063 8.454 20.425 20.431
12.197 8.477 20.581 20.575
12.170 8.480 20.557 20.563
12.167 8.484 20.558 20.550
12.191 8.484 20.582 20.595
12.233 8.533 20.673 20.654
12.285 8.554 20.745 20.731
12.247 8.557 20.710 20.689
16.041 7.708 23.629 23.604
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TABLE 32 cont’d

ITpyr
pcalcd P

13.534 6.783 20.229 20.228
13.686 6.808 20.405 20.412
13.598 6.875 20.384 20.384

* 13.628 6.892 20.430 20.446
15.020 10.312 25.062
15.018 10.295 25.009
15.316 10.225 25.228
15.537 10.139 25.357
15.007 10.059 24.781
15.887 10.125 25.556
15.001 10.025 24.734
15.106 8.617 23.556
15.134 8.560 23.508
15.122 8.503 23.436
15.052 8.462 23.333
15.107 8.387 23.337
15.095 7.012 21.985
15.107 6.928 21.910
15.025 6.778 21.681
14.848 10.335 24.923
14.879 10.215 24.814
14.103 10.076 23.944
14.042 8.580 22.492
14.058 8.444 22.368
14.541 8.415 22.808
14.415 8.380 22.630
14.107 8.360 22.328
14.122 8.344 22.353
13.971 1 0 . 2 2 2 23.980
13.474 10.035 23.306
13.372 8.637 21.880
13.362 8.390 21.627
12.744 10.352 22.918
12.759 10.349 22.951
12.765 10.302 22.927
1 2 . 6 6 8 10.269 22.781
12.796 10.205 22.844
12.740 10.071 22.650
12.769 10.059 22.652
12.926 83.437 21.162
11.592 10.094 21.572
11.732 10.049 21.625
10,126 9.989 19.988
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table 33

VOLUMETRIC ADDITION DATA FOR PYRIDINE-METHANOL SYSTEM AT 25°C

ITpyr
pcalcd P

5.792 18.494 24.188 24.189
11.703 18.494 30.001 30.000
5.824 20.780 26.493 26.51511.690 20.780 32.250 32.281
5.771 19.501 25.170 25.194

11.530 19.501 30.827 30.803
5.924 17.729 23.557 23.595
11.519 17.729 29.062 29.083
7.503 22.727 30.075 30.074

11.261 22.727 33.756 33.736
7.530 18.954 26.354 26.354
11.508 18.954 30.264 30.267
7.835 17.818 25.526 25.532

11.712 17.818 29.340 29.325
5.863 17.459 23.228 23.224
11.600 17.459 28.875 28.868
4.667 17.778 22.368 22.382
9.246 17.778 26.874 26.909
6.064 17.803 23.768 23.801
11.412 17.803 29.030 29.054
5.224 18.524 23.659 23.666
10.491 18.524 28.839 28.853
5.232 19.364 24.504 24.513
10.547 19.364 29.725 29.771
5.270 19.495 24.672 24.668
10.488 19.495 29.798 29.747
5.288 20.670 25.858 25.825

10.617 20.670 31.087 31.067
5.286 20.582 25.768 25.750
10.567 20.582 30.951 30.940
5.327 20.551 25.778 25.776
10.712 20.551 31.063 31.052
5.361 22.872 28.122 28.117
10.725 22.872 33.374 33.347
5.467 17.811 23.189 23.186
10.813 17.811 28.449 28.433
10.632 17.516 27.978 27.977
5.423 17.504 22.840 22.853
10.712 17.504 28.045 28.066
5.313 17.492 22.721 22.729
10.644 17.492 27.967 27.939
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TABLE 34
VOLUMETRIC ADDITION DATA FOR PYRIDINE-TFE SYSTEM AT 25°C

irpyr ■̂tfe
pcalcd P

5.434 0.835 6.236 6.247
5.434 1.674 7.041 7.040
5.434 2.096 7.447 7.443
6.779 0.835 7.573 7.572
6.779 1.670 8.367 8.360
6.779 2.567 9.221 9.202
5.451 0.839 6.256 6.258
5.451 1.675 7.059 7.058
5.451 2.118 7.484 7.483
5.604 0.833 6.402 6.419
5.604 1.667 7.203 7.211
5.604 2.510 8 . 0 1 2 8.014
5.594 0.833 6.392 6.394
5.594 1 . 6 6 6 7.191 7.183
5.594 2.503 7.995 7.986
4.106 0.838 4.919 4.926
4.106 1.671 5.727 5.716
4.106 2.540 6.570 6.548
4.099 0.837 4.911 4.920
4.099 1.670 5.718 5.729
4.099 2.503 6.527 6.540
4.174 0.810 4.959 4.965
4.174 1.651 5.774 5.790
4.174 2.488 6.586 6.611
4.217 0.836 5.026 5.035
4.217 1.707 5.870 5.884
4.217 2.187 6.336 6.355
4.220 0.849 5.042 5.030
4.220 1.726 5.892 5.878
4.220 2.566 6.706 6.682
4.235 0.842 5.051 5.061
4.235 1.676 5.859 5.866
4.235 2.514 6.671 6.690
4.258 0.831 5.063 5.060
4.258 1 . 6 6 6 5.872 5.875
4.258 2.506 6 . 6 8 6 6.694
5.513 0.834 6.313 6.312
5.513 1.673 7.118 7.111
5.513 2.515 7.927 7.917



CHAPTER V 

DISCUSSION AND CONCLUSIONS

Association of Methanol and Water Vapors 

Methanol vapor has been the subject of extensive investigations 

for at least three decades now as is evident by the numerous works cited 

in the introductory Chapter (References 10-51). Yet the reported stoi

chiometry and the thermodynamic constants for association reactions of 

methanol vary from author to author (see Table 1). Recently, in this 

laboratory, Famham, et al.^^ reported some new data on methanol vapor 

and we thought it might be worthwhile to study this problem by our 

buoyancy technique also.

Let us first recall how Weltner and Fitzer^^ decided that the 

methanol vapor can be adequately represented by a mixture of monomers, 

dimers, and tetramers. Their heat capacity equation (Cp = C^ +  aP +  cP” 

was "clearly fitted better by n = 4 than any other Integral value, con

sequently the higher polymer was assumed to be a tetramer"; however, this 

was true only for data at 345.6° K and the importance of the dimer as 

the first associated species was assumed. However, this 1-2-4 fit was 

not any better than the 1-2-3-4 or 1-2-3-5 fits, and as Weltner and Pitzer 

noted, "Actually our data do not distinguish between the formation of 

tetramers and the formation of an appropriate mixture of trimer, tetramer,
— 88—
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pentamer, etc. . . . "  Having so determined n, Weltner and Pitzer used

values of AH^ and ASg of Reference 41, partial heat capacity data of

Reference 30 and their own Cp values (both at about one atmosphere) to

compute the changes in enthalpy and entropy of dimers and tetramers. A

successive approximation method involving their equations (4), (5), and

(6 ) was employed in fitting data.
> 44Fletcher has argued that the 1-2-4 representation is entirely

adequate for treating non-ideality in methanol vapor, and that infrared

spectra reveal the presence of no other polymers than the dimer and
44tetramer. But Figure 6  in his paper obviously does not exclude the 

1-3 model for MeOH at 25° C up to 90 Torr or even 110 Torr (this Figure 

is the plot of average molecular weights vs. P for MeOH data found in 

this research and published in Reference 12; in the Figure, curves which 

represent the 1-3, 1-2-4, and 1-3-8 fits arc drawn.) Actually the curve 

representing the 1-3 fit is somewhat better than the 1-2-4 fit up to 110 

Torr. Since 1-2-3-4 fit gives negative values for Kg and K^ and a some

what high value of Kg (Table 5) we suggest that 1-3 fit quite adequately 

describes the MeOH vapor at 25°C up to 90 Torr where adsorption is not 

a problem (see Appendix I). Higher temperature studies tend to favor 

the amount of dimers, thereby the 1-2-3 or 1-2-4 models might be superior 

to the 1-3 model.

The preponderance of trimers over tetramers has been demonstrated 
22by Kell and McLaurln studying the PVT behavior of MeOH vapor in the 

temperature range 150 - 300° C. Famham^^ has also argued that the 

trimers are predominant relative to the dimers or tetramers. Perhaps 

the best question up to this point, thougjh, concerns not the presence
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but the quantity of the dimers, "How much does it dimerize?" The answer

is "not much, at most Kg = 5 x 10 ^ Torr as it can be shown from the

plot of the average molecular weight, <M>, vs. P (Fig. 4). Since

^ “ ''m  + V m  + V m  + • • • • “  +3
SKgP^^ + . . , )/P, where is the molecular weight of the monomer.

Then, 21 + 2K»P_ + 3K-P;: + . . .
<M> - ^ --------------)

1  + %  + %  + - • •

- «m + %  + «Kj - K̂ ) pj + . . .) .

The derivative of <M> with respect to P may be written

d<M> \  «=2 +  • •>
{1 + 2KgPjj + 3K^P^ + . . .}

but in the limit as P^ and P both go to zero, d<M>/dP ■ M^Kg .

Consequently, the limiting slope of a plot of <M> vs. P, divided by M^,

will equal Kg. It is difficult to see how the upper limit of the limiting

slope of the plot <M> vs. P could be greater than about 0.15/100; then

the dimerization constant could not be more than about 5 x 10**̂  Torr~^.

We therefore suggest that, for MeOH vapor at 25°C, Kg 3 5 x 10 ^ Torr”^

(or Kg i 1  1 /mole).
30In passing, Devries and Collins also reported the average mole

cular weights of methanol vapor in the temperature range 20-160°C. <M>

at 20° and at 96.0 Torr was reported equal to 32.3, which compares well 

with <M> values found in this study: 32.28 and 32.32 at pressures

96.35 and 98.30 Torr, respectively.
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Figure 4. Molecular weight of methanol vapor as a function 

of pressure at 25°.
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The MeOH data up to 116 Torr, where adsorption might have played 

some role (Appendix I), were also fitted and given in Table 35. Notice 

that the value for the 1-3 fit is exactly the same as that in Table 5 

(total pressure up to 90 Torr only); also, the 1-3 fit is definitely 

better than the 1-2 or 1-4 fits and certainly comparable to any of the 

two constant fits. Furthermore, the value is practically invariant 

in all the fits. Therefore, assuming that the adsorption effects on 

both bulbs of the balance cancel each other out, the trimer is inter

preted to be the major associated species present throughout a wide 

range of pressures. Data above 116 Torr were not used in the calculations 

because adsorption probably played a definite role in leading to systematic 

errors in the values of observed densities.

The study of hetero-association between methanol and water in the 

gas phase is the first one reported to our knowledge. Table 6  presents 

the standard deviations and corresponding equilibrium constants of several 

fits at 25°. The choice of the 3-3 fit is definitely the best and simplest. 

The BMSD is not improved even if we go to the two-parameter fits; further

more in the latter case, the value comes out basically invariant (as 

in the case of Kg for MeOH data) while the other constant is either nega

tive or the standard error is the same order of magnitude as the constant 

itself. We therefore suggest that in this particular binary mixture 

(Yj^OH ~ 0.7 - 0.9, and the total pressures ~ 0.65 - 0.85 of saturation 

pressures; see Figure 5) the aggregate composed of three molecules of 

water and three of methanol is quite sufficient to account for the non

ideality of the mixture. Figure 6  relates the 3-3 calculated lines and
Wthe experimental points ; AF is the pressure deficiency when water is
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TABLE 35

BMSD AND EQUILIBRIUM CONSTANT VALUES FOR VARIOUS SETS OF ASSUMED 

METHANOL SPECIES AT 25°C AND UP TO 116 TORR TOTAL PRESSURE

Species Equilibrium Constaats BMSD (ir), Torr

1-2 ^2 a (8.97 ± 0.18) 10”  ̂Torr"^ 0.1140
1-3 a (4.61 ± 0.04) 10~7 Torr'2 .0537
1-4 ^4 (3.00 ± 0.05) 10"* Torr'3 .0899
1-2-3 ^2 negative .0538

*̂3 (4.88 ± 0.30) 10"7 Torr'2
1-2-4 (3.81 ± 0.32) 10’* Torr’l .0529

^4 (1.79 ± 0.11) 10’* Torr"*
1-3-4 ^3 (4.16 ± 0.36) 10’  ̂Torr"* .0535

^4 “ (2.95 ± 2.35) lO’lG Torr"*

1—3—6 ^3 a (4.40 ± 0.14) 10’  ̂Torr"* .0532

^6 m (7.75 ± 5.03) lO’l* Torr"*

1—3—8 ^3 (4.45 ± 0.10) 10’7 Torr"* .0530

^8 (3.84 ± 2.16) lO’l* Torr"?

1-3-9 ^3 a (4.46 ± 0.09) 10’  ̂Torr"* .0528
(2.91 ± 1.55) 10’*1 Torr’®
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Figure 5. Pressure-Mole Fraction Phase Diagram for 
Methanol-Water System at 25° (Ref. 148)
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added volumetrlcally to methanol. I.e., the difference between the pressure 

predicted assuming no association and the actual observed pressure. At 

35° and particularly at 45° C where the total pressures are around one 

half of saturation pressures, smaller aggregates seem to be more favored. 

For all practical purposes the species M^'W quite accurately represents 

the cross-polymers of methanol-water system at 45°C and up to half satu

ration pressures where ~ 0.7 - 0.9 (Table 36). At 35°, where

^MeOH ~ ” 0.9, and at total pressures up to about 0.6 - 0.8 satura

tion pressures, the choice is a bit harder to make (Table 37). The fit 

(1-1, 3-2) seems to be the best with the smallest RMSD « 0.0274; it is 

definitely an improvement over the 2-2 fit (BMSD « 0.0395) whlth is the 

best among one-constant fits. Also the fits (1-1, 3-3) and (2-2, 2-1) 

are very good. Regardless of the choices, it appears that a cross

complex bigger than the trimer is present; for the sake of simplicity 

the 2-2 fit has been chosen to represent the non-ideality at 35° (this 

is very reasonable as far as the size of the aggregate is concerned).

Then it is clear that the polymers of smaller size become more important 

as the temperature increases from 25° to 45° at total pressures ranging 

from (0.65 - 0.85) + 0.5 of saturation. Since the range of pressures 

extend to a greater per cent of saturation at 25° than at the higher 

temperatures, it is expected that higher-order species will be relatively 

more important for the 25° C data. However, the data at 35° and 45° are 

not as consistent as those at 25°, as is indicated by the following plot 

(Figure 7); systematic errors may lead to difficulties in interpreting 

the nature of polymeric species. Had these points (35° and 45°) not been 

so scattered, it might have been possible to obtain thermodynamic results
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TABLE 36
BMSD AND EQUILIBRIUM CONSTANT VALUES FOR VARIOUS SETS OF 

ASSUMED METHANOL-WATER COMPLEXES AT 45°

M—W K RMSD, Torr

One-parameter fits

1 - 1 (7.52 ± 0.45) 10"5 Torr'l 0.0475

1 - 2 (1 . 8 8  ± 0 .1 2 ) 1 0 "* Torr" 2 .0509

2 - 1 (3.81 ± 0.18) 10"? Torr"^ .0395

2 - 2 (1.27 ± 0.07) 10"® Torr"® .0434

3-2 (8.91 ± 0.50) 10"11 Torr"* .0449

2-3 (4.44 ± 0.29) 10"10 Torr"* .0518

3-3 (3.31 ± 0.22) 10"^^ Torr"® .0529

Two-parameter fits

1 - 1 , 2 - 1 negative .0398

(4.25 ± 0.93) 10"? Torr"®

1 — 1 , 1 - 2 (5.89 ± 2.13) 10"® Torr"! .0477

(4.24 ± 5.41) 10"? Torr"®

1 - 1 , 2 - 2 (2.66 ± 1.38) 10"® Torr"! .0422

(8.50 ± 2.30) 10"* Torr"®

1-1, 3-2 (3.48 ± 1.00) 10"® Torr"! .0404

(5.14 ± 1.17) 10"!!
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TABLE 36 cont'd

M-W K RMSD, Torr

1 -1 , 2-3 (4.66 ± 1.09) 

(1.87 ± 0.65)

10"^ Torr”^ 

lOT^O Torr"*

.0442

1 -1 , 3-3 (4.64 ± 0.88) 

(1.46 ± 0.39)

10"5 Torr'l 
1 0 " 1 2  Torr"^

.0422

2 -2 , 2 - 1 (3.18 ± 2.95) 

(2.89 ± 0.87)

10"* Torr"^ 

1 0 "^ Torr" 2

.0394

2 -2 , 1 - 2 (1.44 ± 0.35) 

negative

10"® Torr"® .0438

2 -2 , 3-2 (1.00 ± 0.53) 

(1.92 ± 3.73)

10"® Torr"® 

1 0 " H  Torr"*

.0438

2 -2 , 2-3 (2.88 ± 0.48) 

negative

10"® Torr"® .0393

2 -2 , 3-3 (1.92 ± 0.37) 

negative

1 0 "® .0425
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TABLE 37
RMSD AND EQUILIBRIUM CONSTANT VALUES FOR VARIOUS SETS OF 

ASSUMED METHANOL-WATER COMPLEXES AT 35°C

M-W K RMSD, Torr

One-parameter fits

1 - 1 (2 . 0 1 ± 0 .1 0 ) 10-4 Torr- 1 0.0566

1 - 2 (5.43 ± 0.27) 1 0 -* Torr- 2 .0601

2 - 1 (1.13 ± 0.04) 10-* Torr"^ .0425

2 - 2 (4.13 ± 0.13) 1 0 -* Torr-* .0395

3-2 (3.29 ± 0.14) 1 0 -^° Torr-4 .0523

2-3 (1.55 + 0.09) 1 0 -* Torr-4 .0701

3-3 (1.32 ± 0.08) I Q - H  Torr”* .0767

Two-paràmetér fits

1 -1 , 2 - 1 (4.76 ± 3.54) 1 0 -* Torr'l .0417

(8.73 ± 1.97) 10-7 Torr”*

1 -1 , 1 - 2 (1.15 ± 0.41) 10-4 T^ ^ ^ - 1 .0524

(2.39 ± 1 .1 0 ) 1 0 -* Torr-*

1 -1 , 2 - 2 (7.12 ± 1.85) 10-* Torr"^ .0309

(2.75 + 0.37) 1 0 -® Torr-*

1-1, 3-2 (9.83 ± 1.28) 1 0 -* Torr-^ .0274

(1.81 ± 0 .2 1 ) 1 0 “^* Torr-4
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TABLE 37 cont'd

M-W K RMSD, Torr

1 -1 , 2-3 (1.21 ± 0.17) 10-4 To^-l .0382

(6.85 ± 1.30) 1 0 “^° Torr-4

1 -1 , 3-3 (1.25 ± 0.12) 10-4 Torr- 1 .0314

(5.77 ± 0.80) 1 0 - 1 2  Torp-S

2 -2 , 2 - 1 (2.24 ± 0.45) 10-® Torr“® .0295

(5.32 ± 1.24) 10-7 Torp- 2

2 -2 . 1 - 2 (3.63 ± 0.68) 1 0 -® Torr-® .0399

(6.80 ± 9.02) 10-7 Torr- 2

2 -2 , 3-2 (4.69 ± 1.16) 1 0 -® .0402

negative

2 -2 , 2-3 (6 . 8 8  ± 0.71) 1Q-® Torr"® .0307

negative

2 -2 , 3-3 (6 . 2 2  ± 0.61) 1 0 -® .0322

negative
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from the temperature dependence of using the Isoplectic enthalpy

concept Introduced by Famham (see Ref. 13, page 50ff).

Perhaps the single important thing we leam from the methanol-

water system is that the cross-polymers higher than dimers do exist.
152Roach and Christian showed from their infrared data that indeed polymers

higher than 1-1 exist. Possibly this ease of high polymer formation can
153be explained by the "cooperative effect" proposed by Frank and Wen in

discussing hydrogen-bonding In liquid water. Because of the cooperative

inductive effect, the water dimer is thought to be capable of forming a

more stable hydrogen bond than the starting monomers. Similarly, Bellamy

and Pace^^^ found in studying the hydrogen-bonding of alcohols and

phenols that : " . . .  the free OH groups of these dimers are able to
127form stronger hydrogen bonds than the original monomers. " Tucker did 

actually find experimentally values of the ratio, <̂ 2̂ -l^^^l-l' signifi
cantly greater than 2  for the methanol-diethylamine system in different 

solvents. These three authors, then, agree that the sites (on the dimers) 

capable of forming a new hydrogen bond are more reactive than the corre

sponding sites on the monomers. In our case it may be illustrated as 

follows :

S-

so that, on the dimer the oxygen a becomes more basic and the hydrogen 

b ’ more acidic, thereby increasing the energy of interaction between the 

dimer and a monomer bonding at either end position.

Bellamy and Pace also suggested that the dimers are linear where 

the lone bond is of ordinary hydrogen bond strength while the higher
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polymers are cyclic with stronger average bond strength for alcohols and 

phenols. It seems reasonable that the larger mixed polymers of methanol 

and water are also cyclic; nearly linear hydrogen bonds could be formed 

In cyclic species containing four or more monomer units. The reactive 

end groups would tend to add additional monomer units or join to close 

the cycle. Recall that Berman^^ concluded that In liquid alcohols the 

polymers larger than dimers are cyclic so that a limiting degree of associ

ation Is reached. The hexamer may possibly be a 12-membered ring with 

alternating molecules of water and methanol, although direct evidence for 

such a species Is lacking.

CT Reaction between TMA and SO. In Gas 

The TMA-SOg complex Is a relatively strong charge-transfer complex, 

and Is In fact one of the strongest for ̂ I c h  reliable gas phase thermo

dynamic and spectral data are available. In the gas phase the energy of 

formation of TM'SO^ Is -9.1 Kcal/mole (Table 8 ). The dipole moment of 

the complex was concluded^^*^^ to be much larger than the vector sum of 

dipole moments of the Individual monomers (5D to 2.5D). An additional 

Indication of the polarity and strength of the TMA-SOg Interaction Is given 

by the large value of a (» 1 .2 ) for the transfer processes of each species 

from vapor to heptane. The a value was calculated by Grundnes and 

Christlan,^^ using the o-model proposed by Christian, et al.^^^ They 

defined a as the ratio of transfer energy of a conçlex species to the sum 

of Individual transfer energies of the monomers making up the above comr 

plex species, all these transfer processes going from a reference medium 

(vapor In this case) to another solvent (here heptane).
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Childs""' has determined the crystal structure of this complex and 

found that the CT bond N—   S makes an angle of 22° with the perpendicu

lar to the plane of SOg molecule, as pictured below. It is assumed that 

the vapor phase conq>lex has the same configuration.

An interesting conclusion made by Grundnes and Christian^^ regard

ing the TMA-SOg system was that the extinction coefficient and oscillator 

strength of the CT band are nearly the same in the gas phase as in the 

solvent heptane; this is different from all other CT complexes known, 

where much lower intensities for the CT band are observed in gas as com

pared to s o l u t i o n . H o w e v e r  Grundnes and Christian reported 

the gas phase results at only one temperature 39.7°C; in spite of the re

liability of the reported value of product K^e (e is extinction coeffi

cient), each individual value of and e might be questionable due to the 

inherent problem of separating these two values in any type of vapor phase 

spectral studies. So if it were possible to obtain reliable values of 

from an independent experiment (for example using classical techniques) 

then from the known value of the product R^e it would be feasible to com

pute G and to compare this value with the spectrally determined e value.
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All this led us to investigate the TMA-SOg system classically by the buoy

ancy technique, for which results are reported in Tables 7, 8  and 23. Also 

to this end, an isothermal expansion technique of the Burnett type was used
f%0 C Oby Grundnes, et al; to attack the problem. The Van*t Hoff plot, InK^

vs. 1/T, of the results from these two classical techniques combined with 
58those of Burg do definitely show that the spectral reported by 

Grundnes and Christian^^ is reliable and therefore that their e value was 

also correctly determined. The present work therefore supports their con

clusions regarding the near-equivalence of properties of the CT-band 

in the vapor phase and in solution.

TFA Self- and Cross- Association with Water in Gas 

Apparently up to total pressures of 2-4 Torr of TFA, self-associated 

polymers other than dimers are not present in significant concentrations. 

The dimers (as shown below) are most probably cyclic for several reasons:

...y
1. Costain and Srivastava^^^ presented microwave spectral evidence 

that the hetero-dimers— TFA-HCOOH, TFA'CH^COOH, TFA" CHgFCOOH— are cyclic. 

Making necessary assumptions concerning various structural parameters of 

the monomers published in the literature, and the planarity of the cyclic 

dimers, they were able to calculate rotational constants uhich agree ex

tremely well with the observed constants (from microwave spectra). These 

constants are related to each of the two 0 — 0  distances in the 0 — H— 0  

bonds. There is no reason why the TFA molecules should behave differently 

from those of HCOOH, CH^COOH and CH^FCOOH as far as the ability of forming
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mixed or tuunixed cyclic dimers is concerned. In other words if one were 

to replace HCOOH in the cyclic bimolecules TFA'HCOOH by TFA, these new 

unmixed dimers TFA»TFA would very likely be cyclic. Besides, the very 

fact that the self-associated dimers cannot be studied by microwave 

methods strongly suggest that the dipole moments of these dimers are 0  

(hence they must be cyclic; if they were linear they would almost certainly 

be polar.)

2. The enthalpy of formation of carboxylic acid dimers (-14.01

Kcal/mole) would be too large for a single hydrogen bond.
99 1013. Stevens, using the a-model to study solvation effects on

the TFA system, found values of a approximately equal to 0.5 for the four 

solvents cyclohexane, CCl^, benzene, and dichloroethane. A value of a = 0.5 

indicates that the energy of solvation of the dimer is only half that of 

two isolated monomer molecules. This a-value is among the lowest so far 

determined and this supports the view that the TFA dimer is cyclic in both 

vapor and condensed phases. If the dimers in solutions were open-chain, 

one would expect the active sites on these dimers (C=0 and 0-H) more re

active than the corresponding sites on the monomers by virtue of induc

tive effects ; therefore these open-chain dimers would be much more easily

solvated than the monomers, and this should give a high a-value. Since a
99was determined to be only ~ 0.5, the active sites on the dimers (C=0 and 

0-H) could not be freely solvated but would interact to give cyclic dimers. 

So cyclization essentially reduces both the number of active sites and the 

dipole moment.

The value of enthalpy changes obtained here agree very well with 

that reported by most workers (Table 2): -14 Kcal/mole. This AHg value

possibly holds for most, if not all, carboxylic acids to within 1 Kcal/mole
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If proper adsorption corrections are taken care of as did Mathews and 

93Sheets. The entropy change value of -49.70 e.u. (standard state 1 mm) 

compares very well with those calculated from References 83 and 84 using 

the same standard state: -49.42 and -49.74 e.u.. The excellent agree

ment of these thermodynamic constants with those cited In the literature 

Indicates that our difference technique discussed In Chapter III and used 

to analyze the TFA and TMA-SO^ buoyancy data Is quite reliable. The 

values of self-assoclatlon constants of TFA are needed for the hetero

study of TFA-water system. Needless to say, these constants must be 

used to correct for the non-ideality of TFA In this hetero-system where 

water Is vclumetrically added. (On the other hand, we will see In the 

next section that the self-assoclatlon constant of an amine could be 

neglected If water Is added quantitatively to the amine, because both 

self- and hetero-association constants are small.)

It appears that the only vapor phase work on the TFA-water system 

Is that by Ling, at al.y^^ who report the results at only one temperature, 

20°. We thought It m l ^ t  be worthwhile to pursue this study further to 

other temperatures, 25°, 35°, and 44°. The temperature dependence study 

of this system In gas apparently Is the first one to be reported. Although 

the accuracy of the data leaves something to be desired (see Fig. 2 and 

Table 8 ), there Is good evidence that It Is one of the strongest hydrogen- 

bonding reactions Involving water. Ling, et al.^^ reported a value of 

^AW " O'Ol Torr"^ at 20°C, which Is Indeed a large constant; these authors 

observed that when water is added to an Infrared cell containing anhydrous 

TFA, both the carbonyl and the hydroxyl monomer stretching frequencies are 

shifted to lower values. This and the fact that the value Is quite
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large suggest that the TFA'W complex might be cyclic as shown below. The

X) H'

hydrogen atom of the acid woüld probably attack the water oxygen first; 

then the cooperative effects would render the water hydrogen acidic enough 

to react with carbonyl oxygen.

Table 38 indicates that the choice of the 1-1 complex is the best;

however the BMSD's of the 2-1 parameter fit are close to the 1-1 standard

deviations. Since the partial pressures of TFA are very low (2-4 Torr)

at all three temperatures, 2 - 1  conq>lexes wouldn't be expected to be imr

portant anyway. The 1-2 fits for the species TFA'Wg are not very good at

all conq>ared to others. An a value obtained from the a-model coupled

with dipole moment measurements would be very helpful in deciding whether
105this suggested dimer structure is correct. Lin reportëd a constant for 

the 1-1 complex of the ethylenediamine^ater system at 20°C, ■ 0.08

Torr ; it is interesting to note the order of magnitude agreement between 

this value and the constant obtained here for the TFA-W reaction: =

0.049 Torr'l at 25°C.

Amine Self-Association and Hetero-Association with

Water and Alcohol in the Vapbr Phase 
127Tucker has recently investigated the systems diethylamine and 

diethylamine-water at 25°, 35°, and 45°. One expects triethylamine to be 

a bit more basic, and therefore to form stronger hydrogen-bond with water.
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TABLE 38
BMSD AND EQUILIBRIUM CONSTANT VALUES FOR 

TRIFLUOROACETIC ACID-WATER SYSTEM

T°C TFA-W Equilibrium Constant BMSD, Torr

25 1 - 1 (0.049 ± 0.001) Torr'l 0.0280

1 - 2 (0.0030 ± 0.0001) Torr'2 .0522

2 - 1 (0.0168 ± 0.0005) Torr"^ .0310

2 - 2 (0.00148 ± 0.00007) Torr"^ .0479

1-3 (0.00026 ± 0.00002) Torr"^ .0863

35 1 - 1 (0.020 ± 0.001) Torr"^ .0454

1 - 2 (O.OOICG .i. O.CC005) Torr“^ .0510

2 - 1 (0.0046 ± 0.0002) Torr"^ .0478

2 - 2 (0.00032 ± 0.00002) Torr"^ .0478

1-3 (0.000065 ± 0.000006) Torr"^ .0810

44 1 - 1 (0.0147 ± 0.0004) Torr"^ .0340

1 - 2 (0.00065 ± 0.00003) Torr"^ .0576

2 - 1 (0.00266 + 0.00007) Torr"^ .0330

2 - 2 (0.000163 ± 0.000007) Torr"^ .0525

1-3 (0.000038 ± 0.000003) Torr”^ .0910
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than diethylamine because of the additional ethyl group. We thought It 

might be Interesting to compare these two amines by their self- and 

hetero-assoclatlon with water. Most probably the force holding the two 

molecules of triethylamlne together Is of the van der Waals type. The 

enthalpy change determined here Is -1.88 Kcal/mole, which agrees very

well with that calculated from the 2 nd vlrlal coefficient equation ob-
36talned by Lambert and Strong (-1.89 Kcal/mole). The corresponding

Internal energy change Is then -AE ~ 1.3 Kcal/mole. Recall that the

benzene'Ig complex Is thought to be held together almost entirely by

van der Waals forces the -AE value In this case was determined to be

also 1.3 Kcal/mole (see Ref. 67, Table I). For diethylamine, -AE was
127determined to be 3.2 Kcal/mole; the force stabilizing the dimers must

be a combination of van der Waals and hydrogen-bonding.

The cross-association of triethylamlne and water Is best described

by an equilibrium of monomers and dimers. Most likely the cross-dimers

are held together by one hydrogen of water bonded to the nitrogen of the

amine: Et^N— HOH'AH^_^^ Is determined to be -8.4 Kcal/mole, a value
127somewhat high compared to that obtained by Tucker for the complex 

die thy lamlne » water (-6 . 6  Kcal/mole). As already mentioned, at 25° a mix

ture (X^ = 0.887) was also added volumetrlcally ; an unexpected problem 

came up: the calculated hetero-constant K^ ^ was very sensitive to the

chosen value of the self-association constant (Kg) of the amine (Fig. 8 ). 

(Such a problem does not arise in the method where only one component is 

added quantitatively.) Actually, it was only after realizing that the K̂  ̂

value was unreasonably high (12 x 10 ^ Torr ^ when Kg was neglected) that 

we decided to determine the self-association constants of the amine for 

use in treating data obtained with the mixture technique. Adding a mixture
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has the advantage that the equilibrium is reached almost instantaneously. 

However, if the virial coefficients of each component are determined inde

pendently by the volumetric addition technique, then adding a mixture of 

those components volumetrically is an excellent method for obtaining

cross-virial coefficients.
112Kollman and Allen used a quantum-mechanical method to calculate 

the formation energy of cross dimer ammonia*water; they obtained a value 

which is probably somewhat high, AE^^^-lOKcal/mole, compared to those 

obtained experimentally for the systems discussed above: -7.8 Kcal/mole

for triethy lamine «water and -6.0 Kcal/mole for diethylamine «water com

plexes. It seemed to us therefore appropriate to investigate this system, 

NHg-water, experimentally to see if the reported AE vàlue is of reasonable 

order of magnitude.

It wasn't necessary for us to determine the self-association con

stant for NHg since its partial pressures were relatively low in any case, 

and as mentioned above adding water to pure does not present special 

problems as in the mixture experiments. The virial coefficient of
36was obtained by extrapolating the values reported by Lambert and Strong 

and converted to proper units at 35°. The value calculated was Kg <■ 2.455 x 

10  ̂Torr a very small constant which could have been ignored completely 

without influencing the final results. The 1-1 equilibrium constant be

tween NHg and water (7.5 x 10“  ̂Torr”^ at 35° vs. 31 x lO”^ Torr ^ for 

the trie thy lamine «water complex) is also small; and although this doesn't 

directly indicate the strength of the hydrogen bridge N-— -H it does make

it unlikely that the value AE^_^ - -10 Kcal/mole calculated by Kollman 
112and Allen is correct. These authors now think (private communication) 

that AE^_^ is of the order of -5 Kcal, a reasonable value indeed.
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There has been considerable recent interest in the pyridine-water

system, as is indicated by some of the numerous papers on this

The approaches vary from spectroscopy

(IR, M R ,  Raman, UV) to diffusion, partition-solute isopiestic-water

titration and even theoretical prediction. Host research, however, per-
121 121btains to condensed phase and only two authors * have reported limited

data for the gas phase. Johnson, Kilpatrick, Christian, and Âffsprung^^^^

studied the hydration of pyridine in organic solvents cyclohexane, CCl^,

toluene, benzene, and 1,2-dichloroethane at 25°, using UV (251 my) and

partition-solute isopiestic-water titration method. These authors obtained

values for the 1 - 1  complex formation constants in these solvents, which in

turn allow them to calculate a (=0.71) by using appropriate distribution

constants relative to cyclohexane. Had they determined value in

vapor phase, they could have used vapor state as reference phase. There

seemed a clear need for the studies of the pyridine-vater system in gas.

To our knowledge, the only reported research on the pyridine^ater

system in the gas phase resulted in an unreasonably large value of K^_^;

Yarym-Agaev, et al.^^^^ gave the value K^ ^ = 0.00900 Torr ^ at 40°C. A

differential equation for the dependence of pressure of saturated vapor

on the composition was derived for a binary mixture where the components

interact to form a 1-1 conq>lex in the vapor phase. The composition of both

liquid and vapor phases was determined at 40°, and the value of the forma-
121tion constant, was calculated. Hussein, et al. reported a hydro

gen bonded 0-H stretching frequency at 3480 cm which results in a value

of 4Vq_jj in the neighborhood of 2 2 0  cm 
99Stevens developed a lattice model of group interaction energies.
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which allowed him to calculate the transfer energies of the species 

pyridine, water, and pyridine «water from vapor to solvents. These 

energies were then used to calculate a according to its definition by 

Christian, et al.^^^ (a « 0.75, in excellent agreement with 0.71 deter

mined by Johnson, et al.^^^^) With all these results, coupled with the 

AE - AG correlation proposed by Christian, et al.,^^^ we should be able 

to predict the formation energies of the 1 - 1  complex in vapor phase.

We thought it would be worthwhile to investigate this system using our 

vapor density technique, so that the comparison between the observed and 

predicted value of this constant could be readily made.

The following equation was derived by Johnson, et al.^^^^ where 

eadi Kg is the distribution constant for an individual species between

vapor (v) and solvent (s), and the subscript PW refers to complex pyridine* 

water. Assume CCl^ to be the solvent; then at 25°

Kg ^ = 0.0087/0.00128 where 0.0087 is the solubility of water

in CCl^ and 0.00128 is approximately equal 

to the formal concentration of water in

vapor state (= Py/RT)

6.797

Kg p is calculated from the free energy of transfer, which in turn 

can be obtained from the AE - AG correlation:^*^ AG° = 0.64 A^° + 300 cal.
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Since AEp is equal to 9.1 Kcal (Reference 165), then AG° _ = 0.64 (-9100) + 
s-^ b S *

300 = -5524 cal. = -RT In p, and p can be calculated.

Kjj p = 1.1185 X 10*.

The ratio of the 1-1 constants is now

^s)
= (11,185 X 6.797)*"!

If we omit the subscript, FW, and take the logarithm of both sides, we 

have

log K^/K® = 4.881 (1 -a)

With different values of a, the ratio of the constants can be calculated. 

These values are listed below.

1 /molea K^/K® (predicted)*
0 . 8 9.467 27.2
0.84 6.039 17.3
0.85 5.397 15.5

0 . 8 6 4.823 13.8
0.87 4.310 12.4
0 . 8 8 3.852 1 1 . 1

0.9 3.082 8 . 8

Johnson, et al.^^!^ reported values of (2.87 1/mole), K^®^

and K^®^ for the pyridine-water reaction in CCl^ at 25°. From this

(or K®) value reported, we can predict values, which are listed 

above in the 3rd column. Comparing these with the observed constant.
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= 14.1 ± 0.4 1/mole, it is seen that a must be equal to 0.86 ± 0.02 in 

order to have the predicted and observed values of within reasonable 

range of agreement (within about 20%). The value of a = 0.85 is a bit 

higher than that calculated by Stevens (0.75). This discrepancy can 

probably be explained by the additional interaction energy between the 

large value of the dimer dipole moment and the solvent CCl^, which 

Stevens didn't take into account in his lattice model treatment. Similar 

complex dipole-solvent interaction effects have been observed with TMA'SOg
7and aliphatic amlne'HgO complexes.

122 157 158Several authors * * have reported spectral evidence for

2 - 1  complexes where both water hydrogens are involved in complexing, as 

pictured below. If such a structure exists, then the water oxygen must

be so basic by virtue of inductive effects that another water molecule 

should readily attach to it through hydrogen bonding so that the 2 - 2  com

plex, if it exists, might look like

-HOH
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Although the 2-1 and 2-2 fits (K. “ 3.3 x 10 ^ Torr K. =
-6 -3 2^ 4*22.55 X 10 Torr ) are comparable to that of the 1-1 case, it is unlikely 

that the two species are physically favored over the dimers at these low 

pressures, which are well below saturation. We therefore suggest that 

the 1 - 1  complexes are the major cross-associated species at these pres

sures, although possibly higher polymers also exist to a small extent.

Table 32 (pyridine-water data) is appended with data taken gener

ally at higher activities of pyridine and higher total pressures; these 

data were taken some time after the first set of data was analyzed.

Since the saturation curve at 25° is not well defined, these higher 

pressures data were not used as the primary set. When combining these 

with the original set, different fits seem to indicate that higher poly

mers like 3-3, may become important at high pressures ^ = 1.58 x 

10 ^ Torr . This is not too surprising, since it is generally expected 

that as the saturation line is approached, higher species become more 

important, and cyclization probably occurs so that a limiting degree of 

polymerization is reached.

We thought it might be of interest to compare the acidity of 

methamol with that of water by studying the similar system pyridine- 

methanol. And for curiosity we also made an investigation on the hetero

association reaction between pyridine and 2,2,2-trifluoroethanol (TF£). 

The cross-association constants for the systems pyridine-methanol and 

pyridine-TFE at 25° appear to be the first ones reported. The 1-1 fits

in both cases are sufficiently good to account for the nonideality of
123the mixtures. Reece and Wemer reported the hydroxyl frequency shifts 

for both systems: Av(Pyr-M) = 210 cm”^ and Av(Pyr-TFE) = 370 cm”^. The
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-4 - 1value = 9.3 x 10 Torr for pyridine-methanol system is in the 

order of magnitude of the 1-1 constant for TFE-MeOH system reported by 

Famham^^ (10.9 x 10 ^ Torr ^). Methanol in this respect behaves simi

larly to water, as a proton donor or acceptor.

Siace Kpy^_TFE “ ~ ^^eOH-TFE’ tempting
to say that pyridine is considerably more basic than methanol in terms of

—1proton acceptor ability. Recall that Kpyj._y is equal 7.6 x 10 Torr

at 25°; this is somewhat less than K_ ^  __ = 9.3 x 10 * Torr Tucker^^^ryr-Meun
also observed the same trend with diethylamine associating with water and 

methanol. It appears then that in spite of the electron donating ability 

of the methyl group methanol is a better proton donor than water in terms 

of K and also AH in gas. Methanol also seems to be a better proton ac

ceptor than water; ~ 4 x lO”^ and = 10.9 x lOT* at 25°

(Ref. 13). However, the relative strength of proton-donating ability of
127water and methanol seems to be reversed in solutions.

Summary and Suggested Extension of this Research 

Stoichiometry of molecular complexes and thermodynamic constants 

for their formation have been reported for several vapor phase systems 

of polar substances. The present results for methanol vapor at 25° (up 

to 70 or possibly 85% of the saturation pressure) are well explained by 

using the monomer-trimer model, which is the simplest of the models 

commonly used in accounting for the association of alcohols. For the 

methanol-water system, it is demonstrated that higher-order hetero-polymers 

(such as the 3-3 complex) are the predominant associated species at 25°, 

and in the range of mixtures studied: 0.7 - 0.9, P “ 65 - 85% of£ l 6 0 a
saturation. Even though such aggregates are apparently not as important
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at 35 and 45°, it is clear that the cross-polymers larger than dimers do 

exist; e.g., NgW^ at 35°, and MgW at 45°. At the lower temperatures, 

where the measured range of pressures extended nearly to the saturation 

pressure, higher aggregates become more important through the coopera

tive inductive effects. Raising the temperature leads to extensive 

dissociation of the strongest complexes, and in the pressure ranges 

studied, leads to formation of relatively large fractions of the lower- 

molecular weight aggregates.

Thermodynamic constants have also been obtained for the following 

systems : pyridine-water ; pyridine-methanol; pyridine-TFE; triethy lamine,

triethylamine-water, ammonia-water; TFA, TFA-water; TMA-SOg. The 1:1 

mixed dimers in these systems are found to be sufficient to account for 

the observed non-ideality. Finally it appears that in the vapor phase, 

methanol is better than water both as a proton donor and acceptor.

The techniques developed here should be applicable in studies 

of a wide range of molecular complex systems. It would be desirable 

to extend measurements over wide ranges of temperature and pressure 

for some of the systems reported here (e.g. pyridine-water, TFA-W).

If each component of a mixture can be added accurately through the disk 

and virial coefficients are determined for each, then adding a mixture 

volumetrically should be a very good method to use in obtaining accurate 

stoichiometries for molecular complexes. Deviations due to adsorption 

can be taken care of quite satisfactorily (see Appendix I). Selective 

adsorption (by one or the other component) is not considered in this 

research but the techniques used here could be modified to study the 

specific adsorption of the molecules of interest. Spectral studies
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should be undertaken In conjunction with the PVT and vapor density experi

ments.

Condensed phases studies of those systems investigated in the 

gas phase would he very useful in elucidating solvation effects. In this 

connection, values of the energy and free energy of transfer of donor, 

acceptor and complex molecules Into solvents of interest are badly needed.



APPENDIX I

ADSORPTION STUDIES

Even though many authors have neglected adsorption effects on 

their virial coefficient measurements, a few others^^’̂ ^^ have at

tempted to determine the amount of the vapor of interest adsorbed on 

the apparatus surface in contact with the vapor. Bottomley and co- 

workers^^^’ determined the amounts of several vapors adsorbed on 

glass surfaces which were trapped by an ascending mercury surface and 

released later after the mercury was withdrawn. It is questionable 

that this method works very well when the vapors react or adsorb on 

Hg surface, as was specifically observed by these authors in the CCl^ 

vapor case.
13Farnham developed an elaborate "adsorption-time extrapolation" 

technique to obtain necessary corrections for his PVT experiments on 

alcohol vapors. It is clear from the work of Razouk and Salem^^® that 

the amount of a vapor adsorbed on a surface varies widely as experi

mental conditions are modified; in the case of water vapor the thickness 

of the adsorbed film near saturation ranges from a few monolayers to 

several hundred layers. Apparently one of the main problems is that the 

actual surface area can be many times larger than the geometric area, 

depending on how the cleaning is done. Essentially, the studies reported
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here can do away with the necessity of knowing absolute values of actual 

areas, so long as the surfaces are clean.

Adsorption Microbalance 

Basically the balance was constructed the same way as the one 

used for buoyancy experiments, except that the closed bulb was not 

attached (see below). Details of experimentation are essentially the

Pointer, R

Cathetometer I— — i ............ ..........
Counterweight I

same as explained in Chapter III, but a closed-end mercury manometer was

used instead of the TI Gage. The cathetometer, read to within 0.025 mm,

detected the change of pointer readings, AR.

The open bulb, B, was cleaned with distilled acetone and dried

in the 110°C oven overnight the same way as the bulbs used in the buoyancy
2experiments. The geometric area of the bulb B was estimated to be 'v>70 cm , 

and the sensitivity of the balance > 10 mm/1 mg. Although the actual area 

of the bulb is not known, an estimation of the number of monolayers at 

a certain pressure might give us a rough but informative, indication of 

the approximate magnitude of the amount of vapor adsorbed. Data for 

water adsorption experiment at 25° are given in Table 39 and plotted in 

Figure 9.

At 15 Torr of water, AR is about 0.15 mm. Then the weight of

water adsorbed on the bulb B is (1 mg) (0.15)/10 mm « 0.015 mg. One
2monolayer of water on 70 cm weighs roughly

7.P.„.̂  _ 0 . 0 0 2  mg/monolayer
6 X  l O r ^  X  l O A ' ^
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TABLE 39
ADSORPTION OP WATER VAPOR ON PYREX BULB AT 25°

P w ' M
AR
MM'

0.45 0

1.35 0

1.65 0

6.75 0

7.25 0.05
11.65 0.05
12.50 0 . 1 0

13.45 0 . 1 0

14.80 0.15
15.60 0.25
16.30 0 . 2 0

17.00 0.30
17.55 0.45
17.90 0.50
18.85 0.90
19.40 0.65
19.45 0.65
19.95 0.80
19.95 0.80
2 0 . 1 0 1.25
2 0 . 0 0 0.75
2 0 . 1 0 0.70
20.25 1 . 1 0

20.40 0.90
21.25 1 . 0 0

21.70 1.05
21.95 1.25
2 2 . 1 0 1.45



1.0

O O

0.5

oo
0 -o œ

2015105
^water*

Figure 9.
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Then the number of monolayers is 0.015/0.002 = 7.5. (Since the actual

2  168 area is expected to be larger than 70 cm , 2-3 times or possibly more,

the number of monolayers probably is less than 7.) Roughly then, at

pressures 15-16 Torr of water at 25°, the effective number of monolayers

is ~5-10. Then at water activities 20-22 Torr, the number of monolayers

would be around 50, and go up very fast just below saturation.

It might be interesting to compare this estimation of the number 

of monolayers to that obtained from adsorption bulb experiment (see the 

next section). At pressures 15-16 Torr of water, the amount of water 

adsorbed on the adsorbent corresponds to roughly 0.11 Torr pressure in 

the total system volume (V^ +  Vg^), see Tabic 41.- This corresponds to 

the weight of 0.337 mgm. One monolayer would weigh

(3500 X . 10.5 lo'^ Wmonolayer
6 X 10^^ X lOA^

Then the number of monolayers on the adsorbent is about 3.3. To this 

number should be added 1  or 2  monolayers that "stick" well on the ad

sorbent (see next section); however, with the microbalance there is no 

need to add these extra layers since they already contribute to changes 

of the readings of the pointer. The fact that the adsorbent was not 

cleaned and dried as the bulbs on the microbalance were, might cause the 

adsorbent to adsorb less than the bulbs do. In any case, the two experi

ments lead to adsorption results which agree reasonably well: at pres

sures 15-16 Torr of water at 25° the number of monolayers is smaller 

than 10, probably in the neighborhood of 5.

These observations basically agree with those of McHaffie and 

Lenher^^^ who concluded that only very slight adsorption of water occurs



“126—

below 60% activity, but that the thickness of layers sharply increases 

thereafter, to ~ 200 monolayers just below saturation. So in PVT 

studies at 25°, adsorption of water could be neglected at activities 

in the vicinity of 50-60% or less.

Methanol adsorption experiments were also performed with the 

microbalance apparatus. These observations were useful in determining 

the region of pressure where adsorption is not important (Table 40 and 

Figure 10). As this Figure shows, adsorption of methanol vapor at 25° 

begins at around 100 Torr total pressure. Slight adsorption could have 

occurred before reaching 100 Torr; however, since in the buoyancy experi

ment the open bulb serves as a counterbalance for the adsorption effect 

the error in observed densities due to adsorption should be extremely 

small. Therefore the choice of 90 Torr as the limit of non-adsorption 

is justified. Besides, the buoyancy results for methanol appear to indi

cate that adsorption is balanced out up to around 110 Torr (see dis

cussions in Chapter V)

Adsorption Bulb

The adsorption bulb, S^, (refer to Fig. lb) is very small com

pared to the large bulb, L; in this case the ratio of volumes V%/Vg^ ~ 60; 

this ratio could be made conveniently bigger than 60 so that when expand

ing a gas or a mixture of gases from to L, one does not need to worry 

about the excess of pressure due to dissociation of gases; then the excess 

in pressure at equilibrium is set equal to desorption processes. Note 

that in most of this research where the amount associated is very small 

compared to that of the monomers, this excess in pressure is then just
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TABLE 40

ADSORPTION OF METHANOL VAPOR ON PYREX BULB AT 25°C

^MeOH’ AR, MM

0.45 0

4.80 0

11.55 0.05
17.20 0

17.80 0.05
37.90 -0.05
59.25 0

77.90 0

85.70 0

95.50 0

1 0 1 . 2 0 0

108.80 0.05
114.45 0.15
118.60 0.50
120.70 0.95
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^  o oDo O O O O O O

IH»
K )
00I

50 100 150

Figure 10. Change of Pointer Reading as a Function of Pressure of Methanol at 25
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set equal to the amount desorbed. In strong interaction cases, the dis

sociation can be taken into account, of course.

To obtain the Pyrex adsorbent, about 40-50 bulbs of (150 50) cc 

were blown from Pyrex tubes drawn into convenient sizes easy to handle.

The total area inside and outside the bulbs were estimated to be 3 or 4 

times that of L. The bulbs were then broken into small pieces of about 

2  mm on a side, and then transferred into S^, which was then carefully 

connected to L by Mr. Ronald Stermer, the University glassblower. A 

Fisher and Porter stopcock, Cg, cat. no. 795-005-0004, was used to 

separate or connect the two chambers and L. This quick opening type 

stopcock is preferred over the needle type because the equilibrium of 

pressures is reached faster and manipulation of vapor samples is easier.

Now water stored at 25°C is added quantitatively into L through 

the disk up to 15 or 16 Torr at 25°C using the micropipette, 53100A.

Any deviation from ideality is assumed to be due to adsorption on L and 

dimerization of water. It was considered prudent to restrict measure

ments to pressures less than about 16 Torr to avoid the possibility that 

larger aggregates of water molecules might be present. The dimerization

constant of water at 25°C was obtained by extrapolating the results at
53high temperature given by Kell, et al. Their second virial coefficients- 

obtained from latent heat and vapor pressure data (100-200°C)— were used 

along with their covolume b^ ■ 22.1 cc/mole to get corresponding Kp*s.

The extrapolated value to 25°C was Kp = 6.7 x 10 ^ Torr The latter 

value allows us to calculate the pressure deficit due to dimerization of 

water vapor; this pressure must be subtracted from the total pressure 

deficit, AP. This difference is the pressure adsorbed on L, d \  If we
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Sânow know the adsorption pressure on S^, 6 ^ , we can get the ratio

Sâ L/6 ^, which is equal to the ratio of the two corresponding areas. 

It is not difficult to obtain 5^^. Water is added quickly

to a desired pressure in both bulbs L and S^. Note that this pres

sure, Pg^, should be in the range where we obtained above. Next 

the stopcock is closed and L is pumped down to a convenient low pres

sure, P^. The pumping is stopped, the stopcock is opened, and the 

pressure is allowed to reach an equilibrium value P^. The difference 

Pp - (]^P^ + Xg^Pg^) is set equal to pressure change due to desorption 

of S^. Note here that some dissociation occurs in this process S -> L; 

however, the excess pressure due to dissociation is equal to only about 

(.0155 Torr) (.01747) = 2.7 x lO”^ Torr = .0001 gu which is certainly 

negligible, as mentioned above. The value 0.0155 Torr is the pressure 

due to dimer of water at 15 Torr, and X„ = 0.01747. We thus obtained 

6 ^^; in the apparatus used, “ 2.99 =•• 3, which agrees well with

the estimation by geometry to be 3-4 times. Table 41 gives the necessary 

data that led to obtaining the ratio equal to 3.

The pressure deficiency due to adsorption in L can in this way 

be determined; it will be added to the observed equilibrium pressure, 

and the sum is called P, as reported in Chapter IV. Note that 5^^ was 

determined during about the same time period required for a corresponding 

density run.

Note that at 15-16 Torr of water at 25°C, if Eucken^^ were correct 

in that there are higher polymers than dimers, the ratio Ag^/A^ might 

actually be somewhat higher than 3, because P_ would be higher. On thej *
other hand, if there were no association at all in this pressure range.
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TABLE 41

DATA FOR THE DETERMINATION OF RELATIVE AREAS BETWEEN 

THE BULBS L AND Sa

P, Torr P^, Torr Px* gu ApÎ gu
**

«a» 8 * gSs/gL 
a a

16.10 0.0174 0.0065 0.0208 0.0143 0.0415 2.90

15.61 0.0163 0.0061 0.0143 0.0082 0.0350 4.27

15.52 0.0161 0.0060 0 . 0 2 0 1 0.0141 0.0340 2.41

15.77 0.0167 0.0062 0.0182 0 . 0 1 2 0 0.0380 3.17

16.02 0.0172 0.0064 0.0248 0.0184 0.0413 2.24

15.89 0.0169 0.0063 0.0194 0.0131 0.0385 2.94

average ratio - 2.99
= 3

is obtained using the extrapolated value to 25°C of water data by Kell 

et al. then the unit Torr of values was changed to unit "Gage Unit," 

gu, through the usual calibrated Bourdon gage formula, P(Torr) = 2.679 

(gu) + 0.000242 (gu)^ - 0.00000077 (gu)^.

$
“ ?ideal - ^observed’ ^ideal expected from the

calibration of pipette.

itic T.5 = AP - P_ - net pressure change due to adsorption on L.

The ratio is assumed to be equal to that of corresponding areas " 3;

then the adsorption on L is equal that on Sa divided by 3.
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the ratio would be lower than 3, and 2 would be nearer the correct value. 

Even with this uncertainty, we feel our way of treating this "sticky" 

problem is the best one so far proposed for correcting gas phase density 

results. The results of previous work, where adsorption was not taken 

care of could easily be off by 1 0 -2 0 % in the observed deviations from 

ideal behavior.

In the expansion process, ->■ L, one might ask what happened 

to the molecules, or layers, that "stick" tightly to the Pyrex surface.

It was observed that indeed under the conditions of the present studies 

about 1/5-1/4 of the amount initially adsorbed does not desorb readily 

and that many hours are required to attain nearly complete desorption.

But this does not detract from the utility of the adsorption studies 

described, which provide infoirmation about the numbers of molecules that 

desorb and adsorb readily within the time it takes to carry out each run. 

After the first 2-3 runs, the "sticky" layers are established, so that 

the following runs become more consistent.

With the Burnett-type experiments, the area of the small bulb 

was estimated relative to that of the large bulb. Recall that the 

expansions were made from L -> S^; in essence we had a built-in balancing 

adsorption (on S^) - desorption (on L) apparatus. Calculations which 

took all these processes into account at 25° did show that adsorption 

corrections can be altogether neglected for the TEA system. In the 

systems studied before the adsorption bulb had been devised (such as 

the MeOH-water system) adsorption-time curves were plotted for each 

component and the sum of individual curves was set equal to the value 

of the mixture.
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We believe that our way of solving adsorption corrections in 

vapor phase experiments is one of the best yet proposed to handle 

this situation.



APPENDIX II

SOME SHOKEHAND AND NOTATIONS USED IN THIS DISSERTATION

M

W

TFA

TFE

HFP

TMA

TEA

Pyr

X

y
X

p

IT

EMSD(P)

Torr

Methanol, methanol monomer, MeOH

Water, water monomer

Trlfluoroacetic Acid

2 ,2 ,2 -trifluoroethanol

1,1,1,3,3,3-hexafluoro-2-propanol

Trimethy lamine

Triethylamine

Pyridine, Pyridine monomer

Mole fraction in solution

Mole fraction in vapor

Volume ratio;

Total pressure

Formal pressure or that pressure a gas would exert if it 

behaved ideally.

= (Formal concentration) (RT)

Standard deviation in P

mm of Hg which has been corrected to 0°C to std. gravity 

980.665 cm/sec.^ At 25°C, (P,mm)(0.9955) = P.torr 

Equilibrium constant for association process, standard state 

1 Torr or 1 atmosphere.
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Note that Kp (association) = 1/Kp (dissociation)

Equilibrium constant, standard state 1 mole/liter 

Kp X RT = Kg for dimerization; Kp (2 x 10*) - at Rm T°.

Mole fraction equilibrium constant.

= K^/Vg for a solution where solvent molar volume is V^;

for CCI, V e 0.1 liter K “ lOK for CCI. as solvent;4 s X c 4
= 7K^ for heptane

K(cc/mole) = b-B where B is 2nd virial coefficient, b covolume (Ref. 34)
3- 2/3ndg - B where d^ is approximately the kinetic theory 
37diameter 

T°K « t°C + 273.16

RT “ 62.3656(T) 1 Torr/deg mole

RT(25°C) » 18,594.93 1 Torr/mole « 2 x 10* 1 Torr/mole

CT Charge-transfer
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