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TOXICITY AND BIOCONCENTRATION OF CADMIUM, CHROMIUM, AND 
SILVER IN MICROPTERUS SALMOIDES AND LEPOMIS MACROCHIRUS

CHAPTER I 

INTRODUCTION

At one time, streams, rivers, and lakes were "cleaned" or 
"purified" by natural processes, keeping the chemical, physical, and bio

logical characteristics in equilibrium (1), In the past, man has depend
ed upon these natural processes, i.e., dilution, mixing, and sedimentation, 
for the treatment of many industrial and municipal wastes; however, as the 
volume and complexity of wastes increased, most of the natural waters were 

no longer able to adequately assimilate and/or degrade these wastes dis
charges. The release of these complex wastes continued until no major 

water course in the United States was free of pollution problems.
Many of the potential pollutants have been designated as 

"residual" pollutants, because of their ability to retain their active 
state for long periods of time in natural waters (2). Many of the metal 
ions which are slowly degraded when in solution, belong to this group of 
residual pollutants. These metals, occurring in the mg/1 range, are gene
rally referred to as "trace metals". There has been a great surge of in
terest in trace metals in recent years (3). The knowledge of their pres
ence and the definition of the range of concentrations of the various me
tals in natural waters had to await the relatively recent development of

1
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analytical methods of sufficient sensitivity and precision.

The metals have been placed in a classification based on their 

existance as potential pollutants (4).
a) Very high potential pollutants: Ag, Au, Cd, Cr, Cu, Hg, Pb, 

Sb, Sn, Tl, Zn.

b) High potential pollutants: Ba, Bi, Ca, Fe, Mn, Mo, P, Ti, U.
c) Moderate potential pollutants: Al, As, B, Be, Br, Cl, Co, F, 

Ge, K, Li, Na, Ni, Rb, V, W.
d) Low potential pollutants: Ga, 1, La, Mg, Nb, Si, Sr, Ta, Zr.
The basis for determining what designates a particular metal as

a potential pollutant has been the consideration of what would happen if 
the annual industrial production of the metal was dissolved and released 
into the rivers (4).

Three of the metals (cadmium, chromium, and silver) classified 
as "very high potential pollutants", were utilized in the present study. A 
brief description of these metals is presented below with information on 
their commercial production and consun^tion for the year 1968,

Cadmium
The apparent commercial consumption of cadmium in the United 

States in 1968 (production, in^orts, government shipments, and known stored 

changes) was 13.3 million lbs (5). This was a 15 per cent increase over 
the consumption figure for 1967. The total output of cadmium for 1968 was 
10.7 million lbs, which was exceeded by shipments of 11.2 million lbs of 

the metal stockpile. The Blackwell Zinc Company in Blackwell, Oklahoma was 
one of the eleven plants in the United States producing cadmium in 1968.
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Chromium

Although domestic mine production of chromite ceased in 1961, 
the United States remained the free world's leading chromite consumer in 
1968, producing chromium alloys, refractories, and chemicals (5). The 
commercial production of chromium ferroalloys and chromium metals totaled 
234,894 tons as chromium, supplemented with shipments of 364,812 tons from 

the metal stockpile.
The total consumption in 1968 of chromite and tenor of ore by 

the primary consumer groups in the United States (metallurgical, refractory, 
and chemical industry) was 1,316,000 tons containing approximately 407,000 
tons as chromium. The consumption of chromium ferroalloys and metals in 
1968 was 229,581 tons as contained weight.

Silver
In 1968 the mine production of recoverable silver increased 

slightly, but was below normal (5). This was due primarily to the copper 

strike which continued through the first quarter. The silver production in 
the United States was 32,728,979 troy oz, whereas, the industrial consump
tion was 182,126,000 troy oz.

The discarge of these and other metals into natural waters has 
become a serious water pollution problem because of their toxic properties 
and other adverse effects on water quality (6). The existance of :race: 
metals in drinking water as potential toxic agents has stimulated the 

United States Public Health Service to set, for several metals, suggested 
limits and rejection values for drinking water. Six of these metals have 
rejection values ranging from 0.01 to 0.05 mg/1. For example, the rejec

tion values are 0.05 mg/1 for hexavalent chromium and silver, and 0.01 mg/1
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for cadmium.

The health of man has been endangered not only by the consumption 

of toxic metals in drinking water, but also by the consumption of aquatic 

organisms that concentrate certain toxic metals. An enoromous number of 
aquatic organisms have shown this unique ability to concentrate metals to 

a level that can made them potentially toxic as a food source for humans. 
Even when the metal concentrations of the water have been below the toxic 
level for humans and aquatic organisms, certain aquatic forms have still 
been able to concentrate metals to a level that makes them unsafe for hu

man consun^tion (7).
There have been many areas of natural waters where fishes and 

other aquatic organisms have been unable to escape exposure to the dis

charges of potentially toxic substances (8). In this situation, the or
ganisms must either acclimate to these sublethal levels or die. Although 
those concentrations of toxic materials that have been shown to be lethal 
to the organisms are of vital importance, the effects produced by sublethal 

levels, e.g., changes in metabolism, mutation of genes, are probably more 
important since the survival of aquatic species is based on its ability to 
reproduce, grow, and mature. Even a slight change in the normal function 
of one of the vital processes could have detrimental effects on a species.

Recently, chronic exposure systems have been used in an attempt 
to determine the long-term effects of sublethal concentrations or metals 
(occurring in industrial wastes) on aquatic life. The effects of these 
chronic exposures have not clearly been determined. The most meaningful 
data on the biological effects of trace metals upon aquatic organisms in 
the laboratory have been determined by use of the "laboratory fish pro
duction index" (9). The investigators incorporated the effects on growth.
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spawning behavior, reproduction, egg viability, and fry survival. 's‘>i 
example, metal concentrations that produce no effect on maturation ot 
growth of the adults, may be deleterious to some other stage of the iii.a 
cycle. Brungs (10) reported that sublethal levels of zinc had no effecl 
on the growth of fish- but significantly limited reproduction.

A review of the recent literature has indicated that the ciûpha- 
sis on the effects of water pollution on aquatic life has shifted from a- 
cute, high-level exposure effects, to long term, low-level exposure effects• 
Yearly increases in the volume and complexity of residual pollutants in 

natural waters have made evident the need for expansion of chronic studies 
of fish production, including the extent of bioconcentration, and the syn
ergistic and antagonistic interactions of trace metals.



CHAPTER II

LITERATURE REVIEW

There has been a enoromous number of Investigations published 
which deal with the effects of various pollutants on aquatic life; how
ever, the recent literature appears lacking in the evaluation of metals as 
potential water pollutants. The majority of the studies have been on acute 
toxicities and effects, while the chronic studies have been initiated only 

recently. Most of the earlier works, as well as some more recent ones, 

have been of little value for comparative purposes due to the wide varia
tions in such aspects as the species of the test animal, treatment of the 
test animal prior to exposure, temperature, dissolved oxygen, hardness, 

alkalinity, and other chemical properties of the experimental water. This 
partially explains why so many of the studies have not been comparable as 
to the toxic level of the same substance. For the reasons stated above, 
many of the existing references have not been cited in the present work.

In addition, there have been few, if any, publications that dealt with the 
sub-acute or chronic effects of cadmium, chromium, or silver on the large
mouth bass and/or bluegill.

There has been some disagreement as to the main route by which a 
substance enters an organism, i.e., adsorption to the exposed surface area, 
absorption through the skin and/or gill membrane, and assimilation of in

gested material. No matter which route is more important, the length of

6
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time a particular element is retained in the body, and the tissue in which 
it is stored, largely determines the effects produced by that element.

Adsorption and absorption are believed to be the principal mech
anisms of accumulation for the algae and higher aquatic plants, and some 
of the aquatic invertebrates. Adsorption does not appear to play a major 
role in the uptake of an element by fishes, since the surface area is cover
ed by a mucus layer which is continually secreted and shed. In this capa
city, the mucus serves as a means of precipitating metal ions in the water 
(11). However, certain chemical elements, such as the heavy metals, tend 
to coagulate the mucus, forming an impermeable layer around the gills (12). 
The gills then become clogged and the fish dies of suffocation.

It has been generally accepted that the outer surface area of 

fishes is inçermeable to ions (4), while the gill and gut membranes serve 
as the main sites of ion uptake. There has been some question as to whether 
a fish is capable of concentrating an element to higher levels by these ab
sorption processes, or from assimilation of food. Practically all of the 

investigations in this area have utilized radionuclides. The radioecologists 
are divided into two groups as to which is the main source of uptake and 
accumulation - through the food chain or the surrounding water (13). The 
question is complicated in that both groups have shown their respective mode 

of uptake and accumulation to be dominent over the other (14, 15). No matter 
which is the major route, it has been shown that both mechanisms are involved 
and that fishes and other aquatic life are able to accumulate the various 
elements to such a degree that their survival is endangered and/or they be

come hazardous as a human food item.

The ability of organisms to concentrate various materials from the
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environment is a very complex process. There are many factors that deter
mine the uptake of an element and its retention time in the organism (16). 

Due to the Interaction of these factors, it is almost impossible to predict 
the extent to which an element will be concentrated in an organism. Sev
eral of the more important factors influencing concentration of elements 
are presented below.

a) The species, age, size, sex, physiological condition, and its 
role in the food chain are some of the more important bio
logical factors affecting metal uptake and accumulation.

Intra- and interspecies variation in metal uptake and accu
mulation always exists because of such factors. For example, 
the young and more active forms accumulate elements more ra

pidly because of their higher metabolic rate.
b) The physical and chemical properties of the element, the con

centration of the element, and the presence of other elements 
in sufficient concentrations will reduce or enhance metal up
take and accumulation. The concentration of the element aff

ects the rate of uptake by an organism. The organism accu
mulates the material rapidly at first, but the rate of uptake 
decreases as the concentration in the organism approaches that 
of the external environment (17). Elements with similar pro
perties, such as cadmium and zinc, may substitute for each 
other, whereas some elements may exhibit synergistic or an
tagonistic effects on others. Brungs (18) reported that 
strontium uptake was reduced as the calcium concentration was 
increased. Increases in the concentration of calcium has been 

demonstrated to reduce the toxicity of the very toxic heavy
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metals (19), such as lead, zinc, and copper (20). A mixture 
of zinc and copper salts has been shown to exhibit a syner

gistic effect on the toxicity of several freshwater fishes 

( 20 , 21).

c) The various physical and chemical characteristics of natural 
waters have a great effect on metal uptake. For example, 

the rate of uptake, metabolic rate, and the rate of excre
tion of the poikilothermic organisms are governed by temper
ature (22). An insufficient dissolved oxygen content may in
crease the respiratory flow so that the rate at which a toxi
cant reaches the gill surface is increased, thereby increasing 

the susceptibility of the fish to the toxic material.
In general, the metabolic reaction and interaction of trace me

tals in living organisms, especially in fish, is not well known. It has 
not been demonstrated whether the toxic effect occurs at the cellular or 

subcellular level, or both. The disruption of the membrane permeability 
could explain a toxic effect at the cellular level, which would eventually 

affect the subcellular components by inhibition of certain enzymatic func
tions. If either one or both of these presumptions are correct, the in
toxicated organism may show syn̂ )toms of behavioral, physiological, and 

biochemical changes.
The literature is lacking when it comes to the discussion of 

the potential mechanisms in toxicity of metals to vertebrates, especially 
fish. For this reason, the following discussion was largely taken from 

Bowen (4), who presented an excellent review of modes of toxic action by 

metals.
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The poisoning of enzyme systems is thought to be the most impor
tant mechanism of a toxic agent. The metals possessing higher electron

egativities, such as copper, silver, and mercury, exhibit a great affinity 
for the amino, imino, and sulphydryl groups. These groups are considered 

as reactive sites on many enzymes and are chelated by organic molecules.
On the basis of these observations, attençts have been made to relate the 

toxicity of various metals with their electronegativities (23), formation 
of insoluble sulphides (24), and/or the order of stability of their che
lated derivatives (25).

It appears that all the divalent metals, as well as the other 
electronegative metals that form insoluble sulphides, are toxic by means 
of their reactivity with proteins, and especially with enzymes. The vari
ations in toxicity between and among the species can easily be understood 

when the enoromous number of enzymes in living cells are considered. Some 
other potential modes of toxic action are presented below.

a) Stable precipitates or chelates form between the essential 
metabolites and the element in question. For example, alu
minum and beryllium react with phosphate, barium with sul

phate, and iron with ATP (adenosine triphosphate).
b) Elements, such as arsenate, act as antimetabolites by occu

pying sites for phosphate.
c) Elements catalyze the decomposition of essential metabolites,

+3such as La decomposing ATP.
d) Certain substances, such as cadmium, copper, mercury, and 

lead combine with the cell membrane and affect its perme
ability (26). The elements may cause the membrane to rupture
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and may disrupt the transport of sodium, potassium, or or

ganic molecules across the membranes.
e) The membranes of the lysosomes rupture in the cells exposed 

to various cellular poisons, resulting in the digestion of 
the cell by the released enzymes (27).

Special mechanisms have been developed by all cells for the trans

location of various substances across the cell membrane (27). There have 
been numerous hypotheses presented to explain the passage of ions across the 

membrane against an electrochemical gradient, but the membrane carrier hy

pothesis (active transport) has been one of the most attractive. This par
ticular transport system can lead to the concentrating of a substance on one 

side of the membrane.
The active transport system has been shown to be selectively 

poisoned, just as enzymes may be poisoned (28). For example, if each sub
stances actively transported requires its own specific carrier system and 
specific enzymes (29), then it may be assumed that each metal may be spe

cific in its toxic action for a particular transport system.
Metabolic poisons, such as the heavy metals, may inhibit ion 

transport by affecting one or more of the following:
a) The energy supply of the cells.
b) The transport mechanism and not the energy supply.

Cadmium

Cadmium has not been shown to be an essential dietary element for 
animals, although it has been found in trace amounts in many plant and ani
mal tissues. The metal has been reported to be present in animal and plant 
tissues on the order of 1.0 ug/g or less (30). Cadmium uptake from the en-
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vironment has been detected in the human blood, urine, and various tissues 
(31, 32). The liver and kidneys tend to accumulate cadmium to much higher 

levels than other tissues, the latter being the highest (33). A detectable 

amount of cadmium has not been shown to occur in the kidney and other tiss
ues of infants (34), but it has been demonstrated to occur in detectable 
amounts later in life (35). This suggests that the metal is acquired and 
accumulated as an environmental contaminant. Its presence may only reflect 
the contact of the organism with the environment. This theory is supported 
by the fact there is a quantitative variation of cadmium with age and geo
graphical location (35).

It should be pointed out that cadmium=protein complexes have been 
isolated from the muHusk Pecten (36), horse brain (37), and mammalian kid

neys (38), all of which suggests some biological role. The functional role 
of the metallo-protein complex (metallothionate) in the horse brain has not 
yet been determined, nor has the mode of occurrence of cadmium in the various 
organs been elucidated.

The increased interest in cadmium in recent years was not so much 

because of its potential as an essential element, but because of its highly 
toxic properties (39), its common occurrence in industrial discharges (40), 

and its existance in natural waters as a very high potential pollutant (4). 
Cadmium and its salts are considered to possess more toxic potentialities 
as toxic elements than any of the other metals (41).

Cadmium wastes are found in the effluents of various electroplat
ing plants, pigment works, textile printing, lead mines, and chemical in
dustries (42). The cadmium salts have often been utilized as insecticides 

and antihelminthes (43).
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Workers exposed to cadmium dust for several years developed liver 
and renal damage accompanied by excretion of low molecular weight proteins 

in the urine (44) s Cadmium salts have been shown to induce fragmentation 
of normal albumin into small subunits (minialbumins) (43). These proteins 
are excreted in the urine (44) because of the inçairaè renal tubular func
tion, which often develops after chronic exposure. Cadmium exposure has 
also been shown to produce atrophy of the testes (46) and damage to the 

sensory ganglia (47).
Many of the trace metals, such as copper, cobalt, and zinc are 

considered to be cofactors for various enzyme systems. Cadmium may exert 
its toxic effect by the inhibition of enzymatic functions dependent on these 
metals (35). This theory has been supported by such factors as the inhibi

tion by cadmium of enzymes containing sulphydryl groups (48), and because 
of the inhibition or prevention by zinc and selenium of certain effects 
produced by cadmium, e.g., necrosis of the testis (49). Hiltibran (50) re
ported that low levels of cadmium may exert its toxic action on bluegill 
by inhibiting oxygen uptake within the cells, thus disrupting cellular re

spiration.
Although large quantities of cadmium wastes have been discharged 

into natural waters for many years, there have been only a few studies 
(acute or chronic) on the toxicity of cadmium to aquatic life (51). Based 
on previous investigations of cadmium toxicity, concentrations from about 
0.01 to 10.0 mg/1 are considered toxic to fish, depending on the species, 
temperature, water type, and length of exposure (42). |

In addition to the direct toxicity of cadmium to aquatic life, 
another and possibly more serious threat exists through the ability of aqu
atic organisms to concentrate this metal. For example, an adult organism
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may accumulate a quantity of metal that does not cause death, but may be 
deleterious to some other stage in the life cycle. The literature is 
extremely lacking in the investigation of cadmium uptake and accumula
tion in the tissues of fish, and in the chronic effects of exposure.
Mount and Stephan (40) reported that bluegill and brown bull-heads 
significantly accumulated cadmium in the kidney, liver, gill, and gut, 
with lesser accumulations in the bone or muscle. The concentrations in 

the kidney, gut, and spleen did not correlate with the cadmium exposure; 
whereas, the concentrations in the gill and liver did.

Chromium

Several investigators have recently suggested that chromium 
has an essential function in human metabolism (52, 53, 54). A reduced 

glucose tolerance has been found in approximately 80 per cent of the 

people over 70 years of age (55). In addition, it has been reported 
that the chromium tissue levels decline with increasing age (56). El
derly people with less severely impaired glucose tolerances (53, 54), as 

well as some diabetics (57) , have been shown to respond to oral admini
stration of chromium. On the basis of these data, it has been suggested 
that chromium is an essential element, and is required for normal carbo

hydrate metabolism (58).
The chromâtes and dichromates belong to a group of compounds 

that significantly differ chemically and toxicologically from the typi
cal heavy metal salts (20). The toxicity of these Cr”*̂  salts may not 

be related to simple chromium ions. Schiffman and Fromm (59) found 
that the hematocrit of rainbow trout exposed to potassium chloride ex

hibited the same degree of deviation from the controls as did the Cr- 
exposed fish. This suggested that the K ion, in addition to the chrpmium.
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may play a role in the effects of potassium chromate, especially at higher 
concentrations. It was also suggested that this may partially explain why 

potassium chromate is thought to be more toxic than sodium chromate.
Both hexavalent and trivalent chromium salts occur in a variety 

of industrial effluents entering natural bodies of water. The hexavalent 

chromium salts are used much more extensively in industry than are the 
trivalent salts. For exairçle, these salts have been reported to be used 
mainly in metal pickling and plating processes, in anodizing aluminum, and 

in the manufacture of paints, dyes, explosives, ceramics, and paper (42).
The toxic effect of chromium salts to various forms of aquatic 

life has been reported to vary according to the valence, species, tençera- 
ture, pH, synergistic and antagonistic effects, and hardness (42). The 
effect of the hydrogen ion concentration in soft water on hexavalent chr
omium toxicity to bluegill was investigated by Trama and Benoit (60). The 
96-hour TL^ (median tolerance limit) for potassium dichromate was 113 mg/1 
and 170 mg/1 for potassium chromate. It was suggested that the hydrochro
ma te ion was more toxic than the chromate ion. This was based on the ob
servation that the major portion of the hexavalent chromium in solution was 
in the form of the univalent hydrochromate ion, which was probably absorbed 

at a greater rate than the divalent chromate ion.
Chromium has been found to be the least toxic of seven different 

metals in soft water (39). According to these investigators, the 96-hour 

TLm of hexavalent chromium in soft water was lower for the fathead minnow 
(17 mg/1) than for the bluegill (118 mg/1). The 96-hour TL^ for both of 

these species of fish was significantly lower in hard water than in soft 
water. Trama and Benoit (60) suggested the values of 175 mg/1 of potassium
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dichromate and 225 mg/1 of potassium chromate for bluegill. Abegg (61) 
suggested the 24-hour TLm of 300 mg/1 of chromium for bluegills in hard 
water. Fromm and Schiffman (62) estimated a TI^ of 200 mg/1 of chromium 
for largemouth bass in hard water. On the basis of these findings, it was 
suggested that the 24-hour TLm values for bluegill decreased as the hard
ness increased. In addition, the bass appeared to be more sensitive to 
chromium than the bluegills, since a greater degree of hardness did not 

provide the same amount of protection for the bass as for the bluegills 
(60).

Several investigators have attempted to determine the mechanisms 
involved in the uptake, transport, and excretion of chromium in fish. One 

generally accepted theory is that chromium uptake is mainly via the gills 
(63). These investigators found that the uptake of chromium by rainbow 

trout with esophageal occlusions was not significantly different from the 
"normal" fish exposed to the same concentration of chromium. Also fish 
administered hexavalent chromium directly into the stomach accumulated only 

very low concentrations of the metal in any of the tissues. They concluded 

that even though the skin could not be ruled out entirely as a possible 
source of uptake, it appeared to be minor since the muscle tissue adjacent 
to the skin only contained low concentrations. One tissue that has not 
received much attention as a potential source of uptake is the membrane 
lining the oral and buccal cavity. Unlike the membranous tissue of the 
gastrointestinal tract, this tissue is in continual contact with the aqua
tic environment.

The greatest amount of chromium uptake by rainbow trout was 
found in the organs capable of excretion (posterior gut, pyloric caeca.
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stomach, and kidney) and in the spleen (63). This suggested that a rela
tionship existed between the uptake by these organs and excretion.

There is little known about the metabolism of chromium in fish.
Some work has been done on the physiological effect?) of chromium on large
mouth bass and rainbow trout (62, 63), The major pathological condition in 
largemouth bass exposed to hexavalent chromium was an inçairment or complete 
loss of their digestive function. Based on the assumption that freshwater 

fishes drink little water, it was postulated that gut damage to these large
mouth bass exposed to chromium was due to the chromium being excreted by the 

liver via the bile (62). In gut segments of rainbow trout, chromium was
found to have a greater effect on glucose absorption than on other metabolic

functions (64). The investigators suggested that the inhibition of glucose 

entrance into the epithelial cells as the major toxic effect of chromium 
of fish. It was shown that chromium did not have a significant effect on 
oxidative respiration and glycolysis. Therefore, it was postulated that 
the decrease in the glucose level of the tissues may have been due to a 
reduction in the transport of glucose. Chromium may exert this effect by 

binding active sites of proteins that are involved in active glucose trans
port.

Investigations of the toxic action of chromium in mammals have 
demonstrated that both hexavalent and trivalent chromium caused precipita
tion of nucleic acids (65), inhibition of urease activity (66), and dénatu
ration of proteins at high concentrations and low pH values (67).

Silver
Silver is not considered to be an essential dietary element, al

though it has been found in trace amounts in many plant and animal tissues
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(30). Although certain ions have been found to be considered as essential 

for the activity of various enzymes, silver has been reported to be extreme

ly toxic to practically all enzymes (68), probably by the formation of in
soluble sulphides (4), However, diphosphoglycerate phosphatese has been 
found to be an exception, in that it was activated by low concentrations of 

silver (69),
Silver is used in the manufacture of jewelry, tableware, coins, 

and dental amalgams (70). It is also used in alloys, electroplating pro
cesses, photography, coloring porcelain, ink manufacture, and in food and 

beverage processes (42).
Silver is one of the most toxic, but least studied, of the heavy 

metals in aquatic ecosystems. This is based primarily on the fact that it 
has not been considered to be present in the environment in sufficient con
centrations to produce any adverse effects on aquatic life. However, only 
recently has the development of analytical techniques reached a point where 
low levels of silver can be detected. The sensitivity and precision of the 

instruments used today are still not completely adequate for detection of 
concentrations in the ppb range. The presence of low levels of silver may 
not be noticeably toxic to the adult species, but a chronic exposure could 

eventually affect some other stage of the life cycle. For example, silver 
nitrate concentrations, varying from 10 to 100 ug/1 of silver, have inhibi
ted or caused abnormalities of the eggs of Paracentrotus (71). The adults 
did not appear to be affected by this exposure level.

Silver toxicity to aquatic life has been based entirely on acute 

studies. Silver nitrate has been shown to be toxic to sticklebacks in soft 
water at concentrations around 0.004 mg/1 of silver (72). The majority of
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salmon fry were killed in 48 hours in tap water containing 0.04 mg/1 of 

silver nitrate (73). Jones (74) reported that sticklebacks survived 
only 1 day at 0.1 mg/1 Ag 4 days at 0.01 mg/1 Ag, and 1 week at 0.004 

mg/1 Ag.
In reviewing the literature, only one reference has been found 

that dealth with the accumulation of silver in fish tissues. In this in
vestigation the radioisotope Ag-203 was found to accumulate in large 
amounts in the kidney and liver of the goldfish (75). This suggests 
that a relationship may exists between the uptake and accumulation by 
these organs and excretion.



CHAPTER III

PURPOSE AND SCOPE

The discharge of toxic wastes into natural waters has caused 
hundreds of fish-kills annually in the United States (76). However, these 
were generally localized incidences, and the losses accounted for only a 

small percentage of the total number of fishes in natural waters. These 

acute effects of toxic wastes, such as the heavy metals and their salts, are 
considered as very important areas of investigation with respect to their 
direct or indirect toxic action. However, probably even more important, 
are the long-term effects of sublethal concentrations on such processes 

as:
a) rate of growth, reproduction, behavior, and the various stages 

of the life cycle, and
b) the accumulation of these elements by those species which 

are used as food by predators and by humans.
The purpose of this study was to detect and evaluate the effects 

of chronic exposure to cadmium, chromium, and silver in the largemouth bass 
and bludglll. The modes of toxicity of these metals in fish are either in
adequately understood or totally unknown. The evaluation of toxicological 

effects was based on observations of behavioral effects, rate of growth, 
survival, and tissue and organ metallic bioconcentration (Cd, Cr, Ag) and 
translocation (Cu, Zn). These parameters were determined following dura-
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tions of static exposure up to 6-months to selected metal concentrations 
in laboratory aquaria.

Cadmium, chromium, and silver were chosen for this study because 
of their toxicity, frequent occurrence in industrial and municipal wastes, 
and their very high potential as pollutants. Zinc and copper were chosen 

as the translocation metals because they are essential metals to fish and 
participate directly or indirectly in many biochemical reactions. Inter
relationships were anticipated between the exposure metals and transloca
tion metals, i.e., enhancement or suppresion of zinc and copper levels in 
the tissues. This relationship could suggest a more probable biochemical 
method of approach for evaluating the mode of toxicity. Also the possi
bility exists of using the ratio of zinc or copper concentrations in the 

gill (or other tissues) to the concentrations of cadmium, chromium, or 
silver in the gill (or other tissue) as an autopsy technique for the acute 

toxicity of one of these metals to fish.
The two fish species belong to the sunfish family Centrarchidae, 

and as a group of sport fishes, this family is the most popular in North 
America (77). The largemouth bass is considered as among the top fresh
water game fishes, and the bluegill as the most popular panfish in the 
United States (78).



CHAPTER IV

MATERIALS AND METHODS

Biological Testing Techniques 
The two species utilized for experimental purposes were the 

bluegill (Lepomis macrochirus, Rafinesque) and the largemouth bass (Micro- 
pterus salmoides, Lacepede). Both species were obtained from the National 
Fish Hatchery, Farlington, Kansas. These small young-of-the-year fishes 
were acclimitized to the laboratory conditions for 5 months prior to ini
tiation of the test exposures. In order to prevent any potential infections, 
the fishes were treated with a 1:4000 dilution of formalin and 25 mg/1 of 
tetracycline hydrochloride 1 and 2 months prior to testing.

The bass were fed a diet of Oregon Moist Fish Pellet (R.V. Moore 
Co., La Conner, Washington) every other day and the bluegill were fed New 
Age Fish Food (J.R. Clark Co., Salt Lake City, Utah) every other day, sup

plemented with chopped liver once a week. The food pellets not consumed by 

the fish were siphoned off the bottom of the tanks after each feeding. A 
total quantity of 2 1 of water was sufficient for removal of the unconsumed 
pellets and wastes. Two liters of the designated concentration of experi

mental water was then replaced.

All fish were weighed on the first day of exposure and every 
4 weeks until termination of the exposure level. Both species were mea
sured for total length and weighed at the time they were either sacrificed
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or at the time of death.
After the acclimation period, ten bass and ten bluegill were 

sacrificed and designated as "zero exposure time" controls. The remaining 

bass were randomally divided into three subgroups of five fish for each 
exposure level. Three subgroups of five bass each were used as controls 
for all three metal exposure levels. The bluegill were randomly divided in
to groups of 16 fish for each exposure level. One group of 16 bluegill was 
used as controls for all three metal exposure levels. The bass and bluegill 
exposure protocol is depicted in Table 1.

In an attempt not to exceed the recommended fish weight/liquid 

volume ratio (79), it was necessary to redestribute the bass at the end 

of 2 months.
The investigation was designed for sacrifices of five fish from 

each exposure level at 2 and 4 months, and termination at 6-months, This 
protocol was maintained for all of the bluegill, with the exception of the 
groups exposed to 50.0 mg/1 Cr and 1.0 rag/1 Cd. These levels were toxic 

to the bluegill within a short period of time. In addition, the exposure 
levels of 50.0 mg/1 Cr, 0.1 mg/1 Ag and 0.1 and 1.0 mg/1 Cd were toxic to 
the bass in a relatively short period of time. It was necessary to ter
minate the remainder of the bass at the end of 4 months exposure. This 

was due to an apparent aggressive courtship behavior (chasing, nipping, 
mouthing, butting, and fighting).
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TABLE 1
EXPOSURE PROTOCOL FOR BASS AND BLUEGILL

Number/Exposure GroupExposure Levels (mg/1)Metals
Bass
45Chromium
45Cadmium
450.001, 0.01, 0.1Silver
15Control

Physical Testing Technique:
A static bio-assay, utilizing controlled artificial oxygenation 

of test solutions, was conducted to evaluate the subacute toxicity and bio
concentration of three levels of cadmium, chromium, and silver to two spe
cies of fish (Table 1). Renewal of test solutions was employed to avoid a 
significant change in metal concentration of the test media, and for removal 

of accumulated wastes.
The laboratory, illuminated during daylight hours by fluorescent 

ceiling light fixtures fitted with cool white tubes, was thermostatically 
controlled for maintaining prescribed test tençeratures (Table 3, Appendix). 

Each of the experimental and holding tanks was continously supplied with 
oil-free compressed air.

The holding tanks consisted of 55-gallon steel drums lined with 
polyethylene liners, which were replaced every 2 weeks. The test containers 

consisted of rectangular stainless steel tanks (23 x 14 x 8 inches) with 
polytheylene liners. New liners were installed in each tank every 7 days
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when the test solutions were renewed. Each container was supplied with 35

1 of experimental water; the depth of the water in each tank was never less
than 7 inches.

Tap water used for the study was supplied by the OV.l''horo;j City 
Public Water Supply. The water was placed in the holding tanks, aerated, 

and "aged" for 6 days prior to use.

Analytical Techniques
Stock solutions of cadmium, chromium, and silver were prepared

by dissolving an appropriate amount of SCdSO^ • 8 HgO, K2Cr20^, and AgNO^,
respectively, in deionized water. Certified Atomic Absorption Standard 
Metal Reference Solutions of zinc, copper, calcium, and magnesium were used 
for preparation of all standards.

The standards for water analyses were prepared by serial dilution 
with tap water used as the diluent. The standards for tissue analyses were 

serially diluted with deionized water. Standard curves were prepared for 
each metal analysis.

The fish were sacrificed by being placed in liquid nitrogen until 

frozen. The specimens were then put in "Whirl Pac" polyethyelene bags and 
stored at 15 to 20'c until sample preparation could be initiated. Those 
fish dying at times other than at the prescribed sacrifice periods were 
suspended from a plastic hook in the refrigerator until the mucus layer 
had frozen. The fish were then transferred to "Whirl Pac" bags. Prior to 

freezing, all fish specimens, i.e., external surface, buccal cavity, and 

gills, were thoroughly rinsed with deionized water.
Each of the bass was divided into three samples for analysis; 

the gills (gill rakers, arches, and filaments), internal organs (liver, kid
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ney, heart, gall bladder, spleen, and digestive system), and the remainder 
of the total body. Due to the small size of the bluegill, the total body 
was utilized for metal analysis.

At necropsy, the tissues were placed in pyrex sample boats and a 
wet weight obtained. The samples were then dried 24 hours at 110 'i' 3*C and 
a dry weight was then calculated. The dried tissues were ashed in a Tracer- 
lab Model 600L Low Temperature Asher (LTA) for 24 hours, at which time, the 
samples were treated with 0.4N nitric acid. The tissues were again dried 
for 24 hours, then returned to the LTA for an additional 24 hours. The in
ternal organs and gills of the bass and the whole bluegill were ashed for a 
total of 48 hours. The above procedure was continued until the remainder of 

the total body of the bass had been ashed for 72 hours. Ashed weights were 
obtained for all samples. Calculation of all dry and ash weights were pre
ceded by dessicating sangles overnight at room temperature.

Ashed samples were transferred from the sample boats to 25-ml 
polyethylene vials. The samples were evaporated to dryness at 37 C and 
then stored. All sangles were reconstituted with 10-ral of deionized water 

and stored overnight. Two hours prior to analysis or extraction, the sam
ples were agitated and warmed to insure that the metals were in solution.

Water samples (100 ml) were taken from each experimental tank on 
the first and seventh day of each week. Daily satrçles were taken every 
fourth week. In addition, a 100-ml tap water sample was taken each week 
and analyzed for cadmium, chromium, and silver. The samples were acidified 
on the basis of 0.2 ml of concentrated nitric acid per lOO ml.

The methylisobutyl ketone extraction method outlined in the 1969 
edition of the FWPCA Methods for Chemical Analysis of Water and Wastes (80) 
was utilized for extraction of all fish samples, tap water sançles, and
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and samples of the silver exposure levels. A total volume of 10 ml was uti
lized for extraction of all fish samples. For the analyses of tap water and 
samples of silver exposures, 100 ml samples were used for extraction.

All metal determinations (Cd, Cr, Ag, Cu, Zn, Mg, and Ca) for 
tissue and water samples were performed on a Jarrell-Ash Atomic Absorption 
Spectrophotometer Model 82-362. A Beckman Model 1005 10-inch Recorder and 
Scale Expander (1-lOX expansion) were used for the read-out of percentage 
absorption. A Hetco burner, using air and hydrogen as the energy source, 
was used for the cadmium and silver determinations. A Tri-Flame, 10-cm 
laminar flow burner, using acetylene and air, was used for detecting copper, 
zinc, chromium, calcium, and magnesium. The flame conditions for all ana

lyses were optimized for maximum sensitivity.

The analytical procedures for the water analyses (Table 2) were 
conducted according to the procedures described in the 1965 edition of 
Standard Methods for the Examination of Water and Wastewater (79) and/or 

the 1969 edition of Hach Water and Wastewater Analysis Procedures (81).
The data were subjected to analyses of variance, and the Duncan's 

New Multiple Range Test was used for comparison of various parameters and 
treatment groups. The Monroe Model 1665 Programmable Printing Calculator 
was used for all statistical analyses.
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TABLE 2 
WATER ANALYSES PROTOCOL

Chemical and Physical Day of Analysis
Examination Aged Water 

1
Experimental Water 
1 2 3 4 5 6 7

"p" Alkalinity^ - — — " X — “ —

Total Alkalinity^ - _ _ - X - - -

Carbonate Hardness^ -

Bicarbonate Hardness^ -

Total Hardness^ -

pH^ -
Dissolved Oxygenf - X - - X - - X

Chloride* -

Calcium^ X

Magnesium* X

Fluoride* X

Nitrate* X

Sulfate* X

Total Phosphate* X

Silica* X
Temperature^ 1 X - - X - - X

^Procedures according to Hach Methods. 

^Procedures according to Standard Methods. 

^Atomic Absorption.



CHAPTER V 

OBSERVATIONS AND DISCUSSIONS 

Water Analayses
The routine water analyses of dissolved oxygen, pH, alkalinity, 

chloride, and temperature were conducted weekly on each test container 

for the confiete exposure period (Table 3, Appendix). Additional water 
analyses were performed on the "aged" water supply each day the test solu

tions were renewed (Table 4, Appendix). The mean values of the exposure 
metal concentrations for all test chambers are presented in Table 5 in 
the Appendix.

The results of the chemical analyses indicated that the test 
solutions were moderately hard, with a range of 157.2 to 201.8 mg/1 as 
CaCOg. The dissolved oxygen was near solutions. The test temperatures 

ranged from 23.1 to 24.7*C, well within the suggested range (20 to 28 C) 

for test solutions when using warmwater fishes (79). The pH values were 
relatively constant (ranging from 7.2 to 7.7) for all of the test chambers, 
except for the 50 mg/1 Cr exposure level. The pH values were lower (rang

ing from 6.5 to 6.9), apparently due to the formation of dichromic acid 
The test solutions were relatively low in alkalinity, nitrates, phosphates, 
and silica, and relatively high in sulfates and chlorides. The values of 
the above chemical characteristics were typical of the surface waters of 
this portion of Oklahoma. There were little variation in all of the chemi-
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cal characteristics throughout the exposure system, and these relatively 
constant values suggested that the exposure metals were the major vari
ables responsible for the toxic effects on the fish. In addition, no 
appreciable differences were noted in the metal concentrations between 
any of the bass and bluegill test containers of the same exposure level.

Toxicity
In the 50-mg/l Cr exposure level, the median tolerance limit 

(Tim) was 28 days for the bass and 49 days for the bluefish (Figure 1).
The bass and bluegill exposed to 0.5 and 5.0 mg/1 Cr survived until ter

mination of the study at 4 months.
The bass exposed to cadmium had a TL^ of 56 days for the 1.0 mg/1 

Cd exposure, and a 82-day TL^ for the 0.1 mg/1 Cd exposure. The bass ex
posed to 0.01 mg/1 Cd had only two deaths due to toxicity. The bluegill 
exposed to 1.0 mg/1 Cd had a 138-day TI^; whereas, those exposed to 0.1 
and 0.01 mg/1 Cd survived for the entire 6 months study. The percentage 

survival for both species is depicted in Figure 2.
The 0.1 mg/1 Ag exposure level was toxic to the bass within 24 

hours; whereas, the bluegill tolerated this level for 6 montais. The sur
vival of both species in the 0.01 and 0.001 mg/1 Ag levels was comparable 

to the controls for the complete exposure period.
On the basis of the TLm values, the bass appeared more sensitive 

to the exposure metals than did the bluegill.
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Figure 1— Survival of bass and bluegill exposed to chromium.
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Figure 1— Survival of bass and bluegill exposed to cadmium.
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Growth
The rate of weight gains of the bass and bluegill exposed to 

cadmium and chromium were not statistically different from the controls; 

however, the rate of weight gains of the bluegill, but not the bass, tended 
to be lower as the concentration increased, especially during the last two 

months of exposure. Although not statistically significant, the rate of 
weight gains of both species exposed to silver decreased as the concentra
tion increased. The weights are depicted in Tables 6 and 7 in the Appendix.

The above findings suggested that although several levels were 
not toxic, they appeared to have had a possible effect on growth of some

I

fishes. It should be mentioned that the metal concentrations that produced 

little or no effect on the growth of the fishes, may be deleterious later 
on in life to other physiological functions, such as reproduction, egg 
viability, and fry survival. Brungs (10) reported that sublethal levels of 
zinc, had no effect on the growth of fishes, but significantly limited re
production, In addition, the findings of the present study further demon

strate the importance and need for the shift of emphasis on the effects of 
water pollutants from acute, high-level exposure effects, to long term, low- 
level effects.

Metal Uptake
The present data suggested that the main site on metal uptake 

was via the gills and/or oral membranes. For example, this theory was 
supported by the fact that the cadmium and silver levels of the controls 

(bass and bluegill) were statistically lower than the levels of the ex
posure groups (Tables 9 through 11, Appendix). This suggested that the
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digestive system was not the main site of metal uptake, since the fish 
food contained appreciable quantities of the exposure metals (Table 8, 
Appendix), and both the experimental and control groups were fed the same 
diet. In addition, the control water contained quantities of cadmium and 
silver in the ppb range (Table 5, Appendix), which could have accounted for 
metal uptake and accumulation in the control fish via the gill and/or oral 
membrane. This potential mode of uptake, as discussed in the literature 
review, was supported by earlier investigators who reported that the di
gestive tract was not the major site of uptake of chromium (62), and it 
was suggested that the skin appeared to be a minor source of uptake (62). 
Other investigators have also eliminated the gut as the major site of up
take for cadmium (82).

Site of Metal Accumulation
In the present study, the metals had the greatest accumulation 

in the internal organs of the bass, as compared to the gills and remainder 
of the body, (Table 9 and 10, Appendix). This suggested that a relation

ship existed between the accumulation by these tissues and excretion.

Metal accumulation of cadmium (40), chromium (63), and silver 
(75) have been reported to accumulate mainly in the kidney, liver, gut, gill, 
and to lesser degree in the spleen. No significant accumulations have been 
reported in the bone or muscle tissues. All of these organs with signifi
cant accumulations, except the spleen, are capable of excretion. These 
findings tend to support the results reported in the present study. It is 
probable that metals enter the bloodstream through the gills, and are trans

ported through the circulatory system where they are removed by the organs 
of the digestive, excretory, and reticuloendothelial systems (63).
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Metal Accumulation Values
In the present Investigation, the accumulation of cadmium and 

silver increased in both species as the concentration increased (Tables 9 
through 11, Appendix, Figure 3). In addition, the bass and bluegill exposed 
to sublethal and nonlethal concentrations of cadmium and silver showed a 

statistically significant accumulation of these metals by the end of 2 
months of exposure. The data indicate that from time 0 to 2 months of ex
posure, an equilibrium developed between the concentrations of the metals 

in the water and ia the tissues (Tables 9 through 11, Appendix, Figure 4). 

This was based on the absence of statistically significant additional up
take and accumulation by the tissues or organisms for the remainder of the 
study. Mount and Stephan (40) reported that in cadmium exposed bluegills 
an equilibrium was established between the concentrations of cadmium in 
the water and in the gills and liver. It was suggested that there was a 
threshold concentration of cadmium in the gill and that death occurred when 

the gill concentration was exceeded.
Although there was not a significant accumulation after the se

cond month of exposure, there was a trend in a small but continual increase 
in accumulation. This trend, although less pronounced, was also observed 
in the controls, which did not show a significant increase in cadmium or 
silver accumulation for the entire study. The presence of cadmium and 
silver in the food must be considered as a potential contributing source 

of additional accumulation. In addition this may be partially explained,by 
the fact younger and more rapidly growing fishes accumulate more of an ele
ment than do mature, slowly growing individuals. The fishes in the present 
study were fingerlings at the initiation of the study and were in a period
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of rapid growth throughout the study. It is presumed that the more rapid 

uptake and accumulation by younger fish is due to their more rapid meta

bolism. The gradual changes in metabolism of maturing fishes have been 
shown to be important in determining the amount of retention and accumu
lation of the elements present (83, 84). Smaller, younger fish have been 
reported to have had a greater quantity of metal per gram of tissue than 
the larger, more mature forms (84).

The mechanisms involved in the suppression of metal deposition 
in the tissues are unknown. As mentioned earlier, an equilibrium did de

velop between the concentrations in the water and in the tissues. These 
data indicate that the accumulation of cadmium and silver were related to 

those mechanisms which affect uptake and elimination; therefore, the 
cessation of significant accumulation of these metals may be due to an 
effect produced by the metal concentrations on those mechanisms. In the 
present study, metal accumulation increased with both time and metal con
centration. It may be proposed that at first the uptake of metals ex
ceeded their elimination, and accumulation occurred; however, at some point 

in time within the first 2 months of exposure, the mechanisms affecting 
elimination may have been stimulated so that the uptake rate approximated 

elimination. Those levels that are lethal to fishes may be toxic due to 
the stimulation of the uptake mechanism, and/or inhibition of the elimina
tion mechanism, to such an extent that the rapid rate of uptake and accu

mulation causes death.
One mechanism that may possibly explain the accumulation of the 

metals to only a certain level in the tissues is that of active transport, 

the system believed to be responsible for concentrating various elements
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(85). Inhibition of the enzymes controlling the carrier system of active 

transport may result in an enhancement of the transport of the element out 
of the cell and/or suppression of the elemental transport into the cell. 
This enhancement and/or suppression of the transport system may lead to an 
equilibrium so that additional metal accumulation is prevented or signifi
cantly reduced. This theory is supported by the Self-Regulating Model of 
active transport proposed by Kotyk and Janacek (86), who specified that 
the carrier system of the cell membrane possesses a self-regulating mech
anism which pumps a solute out of the cell when certain high solute con
centrations within the cell are attained.

Effects of Metals on Fish Physiology and Behavior Cadmium 

The first symptoms (abnormal behavioral patterns) of a toxic 
reaction were observed in the bass exposed to 1.0 mg/l Cd during the third 
week of exposure. The same symptoms (in bass) were first observed at 7 
weeks in the 0.1 mg/l Cd level, and at 12 weeks in the 0.01 mg/l Cd level. 
These identical behavioral patterns were observed in the bluefish only in 
the 1.0 mg/l Cd exposure level; the syn^toms first appeared during the 
thirteenth week of exposure.

Hypersensitive reactions by the fish were common behavioral 
abnormalities, which were induced by a sudden external disturbance and/or 

increased exertion. For example, the sudden appearance of laboratory per
sonnel, switching on the overhead lights, or the accidental jarring of the 

test containers induced this abnormal behavior. In addition, exertion in 
feeding and being chased by other fish caused this reaction.

The bass and bluegill, which died from cadmium toxicity, exhibited 
erratic, uncoordinated swimming movements, muscle spasms and c'^nvulsions, 
followed by loss of equilibrium, with periods of quiescence (apparent coma)
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until respiratory movements ceased. The body was always strongly arched 

laterally in the area between the base of the pectoral fins and middle 
of the dorsal fin. Opercular movement completely ceased for several 
seconds, and then gradually returned. The opercular rhythm eventually 
increased to a very rapid rate for several minutes, and then gradually 
returned to its initial rate. In several bass the caudal peduncle turn
ed black, and the swimming movements were impaired for some time due to 
an apparent paralysis of the caudal region. These fish swam slowly and 
awkwardly at the surface of the water with the body at about a 30 to 40 

angle. The fish affected in this manner never completely regained their 

previous swimming ability; the majority died within 24 hours.
The toxic reaction was always repeaded 2 to 3 times before re

sulting in death; however, after the first reaction, the fish usually did 
not survive more than a week before the second or third toxic reaction 
terminated in death. At death, the fins were fully spread, the branchio- 
stegals and opercula were greatly expanded, and the body was arched later

ally and quite rigid.
The feeding behavior of the bass and bluegill exposed to cadmium 

was comparable to the controls, except after a toxic reaction to the cadmium. 
The fish would continue to feed but consumed less food; also the aggressive
ness in feeding was greatly reduced.

The abnormal behavior by both the bass and bluegill suggested 
that the nervous system was a site of damage. The toxic reactions may have 
been due to the inhibition of the enzyme acetylcholinesterase, causing 
death by paralysis of the muscles of respiration and/or depression of the 

respiratory center.
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Chromium

The activity of both species was greatly reduced by the second 

week of exposure to 50.0 mg/1 Or. The fishes were characterized by a lack 
of inclination to exertion, swimming very slowly along the surface of the 
water. They tended to float at the surface, and swam only if disturbed.

Many of the bass, whereas only a few bluegill, rested on the bottom of the 
tank. Although the majority of the bass remained in an upright position on 
the bottom of the tank, others lay on their sides. By the fourth week of 

exposure several of the bass were unable to maintain their equilibrium. A 
few seconds prior to death both species exhibited an erratic and rapid 

swimming movement.
Exposure to 50.0 mg/1 Cr also caused significant changes in the 

feeding behavior of both the bass and bluegill. Both species were first 
observed to be less aggressive in their feeding behavior on the foui'h day 
of exposure. By the second week of exposure, several of the bass and blue

gill did not feed at all; the remaining fishes were very sluggish when feed
ing. All of the fishes eventually refused food 4 to 7 days prior to death.

In addition, coagulated mucus was observed on the tank bottom, 

and protruding from the anus of several fishes, particularly the bass, a 
few hours prior to death. Microscopic examination of the section of the 
intestine just below the pyloric caeca revealed signs of damage to the 
intestinal epithelium. These same observations have been made by other 

investigators studying largemouth bass exposed to chromium (62). On the 
basis of histological examination, they also reported extensive damage to 

the intestinal epithelium and that the size of the intestinal folds was 

greatly reduced.
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On the basis of the findings of the present study, it may be 
suggested that the digestive function was impaired or completely lost in 
both bluegill and largemouth bass exposed to 50.0 mg/1 Cr. This was based 
on the observations of damage to the intestinal tissue, refusal to feed, 
gradual decrease in metabolism and weight, and the emission of coagulated 

mucus from the anus prior to death. The possibility of gill damage by the 
chromium was considered as a possible source of toxicity, but no damage or 
changes were noted in any of the fishes. It has been previously shown by 
the histological examination of gill tissues that chromium exposure did 
not cause any significant alterations of the tissues (62).

In this present study, the reduction in general metabolism, loss 
of weight, refusal to feed, and gut damage may be correlated with inçaired 
nutrient absorption as a possible mode of toxicity.

Silver
The bass that died from exposure to 0,1 mg/1 Ag showed symptoms 

which suggested that respiration of the fish was affected; at death the 
bass had widely opened mouths, fully expanded fins, greatly expanded branch- 
iostegals, and their opercula were raised. There was some body tremors and 

erratic swimming prior to death, but no other symptoms of possible nervous 
disturbances were noted. It was observed that the gills appeared to be a 
brighter red color than the gills of the controls. This may have been 
due to changes in the condition of the arterial blood brought about by the 
inactivation of certain respiratory enzymes. There was no mucus observed 
on the gills, so it did not appear that death was due to suffocation be
cause of mucus precipitation. However, gill damage could not be ruled out 
as a possible mechanism contributing to death. In addition, central ner

vous systems involvement could not be eliminated as a possible cause of
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death, because of the tremors and erratic swimming behavior, however; these 
symptoms would be expected in an organism during respiratory failure.

Theortical Modes of Toxicity
Cadmium

The abnormal behavior of the fishes (erratic, uncoordinated 

swimming movements, muscle spasms, convulsions, loss of equilibrium, and 
apparent coma) suggested the nervous system was the site of damage. The 
toxic reactions may have been due to the inhibition of acetylcholinester
ase, cuasing death by paralysis of the muscles of respiration and/or depre
ssion of the respiratory center. Acetylcholinesterase is present in almost 
all forms of animals, including bluegill and channel catfish (87), and it 
has been shovm. to possess an affinity for metallic salts (88). Acetylcho

linesterase is thought to be the mediator of nerve impulses, including all 
of the motor neurons, all of the preganglionic neurons of the autonomic 
nervous system, and the postganglionic neurons of the parasympathetic sys

tem (85). Inhibition of the acetylcholinesterase has been shown to re

sult in the accumulation of acetylcholine, a substance that is responsible 
for the transmission of the nerve impusles (89). The quantity of acetyl

choline accumulates to such a level that everytime the tissue is repolar
ized, it is immediately depolarized again. This results in a succession 
of inpulses causing a continual stimulation of the tissues. The resyn
thesis of new acetylcholinesterase may eventually eliminate these symptoms, 
although severe or continual inhibition may result in death. In addition, 
the dissipation of acetylcholine by diffusion is another means that may 

contribute to tissue recovery (90).
Inhibition of acetylcholinesterase by organophosphates has been
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reported to produce symptoms similar to those observed in the present 
study (91). The organophosphates produce effects on the central nervous 
system such as tremors, convulsions, coma, tension, giddiness, and confusion. 
Typical systemic effects are muscle spasms and fasciculation with increased 
fatigability and generalized weakness which is increased by exertion. Death 
caused by exposure to organophosphates can generally be attributed to re
spiratory failure, which may be due to bronchial constriction, weakness, or 

paralysis of the muscles of respiration and depression of the respiratory 
center.
Chromium

The mechanisms involved in chromium toxicity to fish at the sub- 

cellular or cellular level are unknown. In the present investigation, the 

reduction in general metabolism loss of weight, refusal to feed, and gut 
damage may be correlated with impaired nutrient absorption as a possible 

mode of toxicity.
Stokes and Fromm (64) reported that in gut segments of rainbow 

trout, chromium was found to have a greater effect on glucose absorption 
than on other metabolic functions. This suggested the inhibition of glu
cose entrance into the epithelial cells as the major toxic effect of 
chromium on fish. It was also shown that the chromium did not have a 
significant effect on oxidative respiration and glycolysis; therefore, 
the decrease in the glucose level of the tissues may have been due to a 
reduction in the transport of glucose. Chromium may have exerted this 
effect by binding active sites of proteins that are involved in active 

transport of glucose.

Silver
The gills of the bass dying from silver toxicity appeared to have
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a brighter red coloration than the gills of the controls. This may have 

been due to changes in the condition of the arterial blood brought about 
by the inactivation of certain respiratory enzymes. In addition, central 
nervous system involvement could not be eliminated as a possible cause of 
death, because of the tremors and erratic, swimming behavior. However, these 
symptoms would be expected in an organism during respiratory failure.

On the basis of these observations, it may be postulated that the 
inhibition of respiratory enzymes by silver was so rapid that the detoxi
fication mechanism was overtaxed, causing death; or, the central nervous 
system was paralyzed, arresting the respiratory movements, the beating of 
the heart, and other vital functions.

The loss in weight of the bluegill exposed to 0.1 mg/1 Ag in the 
last month of exposure suggested that another toxic mechanism may be opera
tive for this species. The silver may have caused degenerative effects of 
the tissues after a period of exposure.

Effects of Metals on Reproductive Potentials 
An aggressive behavior of the bass, but not the bluegill, was 

noted in the tenth week of exposure in several of the exposure levels (0.01 

and 0.1 mg/1 Cd, 0.001 and 0.01 mg/1 Ag, and 0.5 and 5.0 mg/1 Cr). This 
behavior continued until the fish were sacrificed at the end of 4 months. 
Aggressive actions of mouthing, nipping, butting, chasing, and fighting 
were observed. These aggressive actions may have been the early stages 
of the reproductive processes, steming from the formation of territories 
and social organization (12). Several behavioral patterns observed in 
this study were similar to the reproductive actions of largemouth bass 
observed at the Water Quality Research Laboratory, Environmental Protection
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Agency, Duluth, Minnesota. Although this aggressive behavior may interrupt 
sexual activities, it may also stimulate and coordinate courtship and spawn

ing under other conditions (92). The bass in the present study were too 
crowded for these reproductive actions, and the sex ratios were not ideal. 

The significance of these observations was that the sublethal and nonlethal 
levels of cadmium, chromium, and silver apparently did not significantly 

interfere with the early stages or reproductive behavior; however, these 
findings did not rule out the possibility thât these metal concentrations 

would have inhibited spawning or egg hatchability.

Interactions of Metals
At the initiation of the present study, it was anticipated that 

interrelationships between the exposure metals (Cd, Cr, and Ag) and the 
metals of translocation (Cu and Zn) might furnish additional information as 
to the possible modes of toxicity. Copper and zinc were chosen because 
tL :e two metals which participate directly or indirectly in many bio
chemical reactions, and, of course, are essential metals to the fish. Det
ermination of a trace metal concentration shift of either copper or zinc 

would suggest that the exposure metal had affected an alteration in the 
metabilism involving these metals.

The values for copper and zinc are presented in Tables 12 through 
17, although interpretation or discussion of these results are not included 

in this paper. No conclusions could be drawn from the data because the 

zinc values, and to a lesser extent, copper, fluctuated widely within and 
between the various exposure levels; however, there were trends in the data 

which may be useful eventually with additional data. The wide variations 
of the zinc and copper concentrations may be attributed to small sample
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size, types of tissues analyzed, and individual variations. It should be 
mentioned that Mount (93) did not report actual zinc cincentrations in 
fish tissues because they varied widely, depending on the species and 

locality.



CHAPTER VI

SUMMARY AND CONCLUSIONS

A static 6-month bio-assay, utilizing controlled artificial 

oxygenation of test solutions in laboratory aquaria, was conducted to 
evaluate the subacute toxicity and bioconcentration of 50.0, 5.0, and 

0.5 mg/1 Cr, 1.0, 0.1, and 0.01 mg/1 Cd, and 0.10, 0.01, and 0.001 mg/1 
Ag to 150 juvenile largemouth bass and 160 juvenile bluegill. Evaluation 

of toxicological effects was based on tissue and organ metallic biocon

centrations of the exposure metals, observations of behavioral effects, 
rate of growth and survival. In addition, copper and zinc were used for 
the evaluation of metal trfnslocation in the tissues.

The following conclusions were based on the results and obser
vations of the present study.

1. The largemouth bass and bluegill both accumulated
cadmium and silver in concentrations greater than those of 
the water. The quantity of metal accumulated increased as 
the exposure concentration increased. The maximum total body 

accumulation of cadmium by the bass was 8-fold (0.01 mg/1 Cd 
exposure) to 15-fold (0.1 mg/1 Cd exposure) greater than the 
controls; whereas, the maximum accumulation by the bluegill was 
6-fold (0.01 mg/1 Cd exposure), 20-fold (0.1 mg/1 Cd exposure), 
and 210-fold (1.0 mg/1 Cd exposure) greater than the controls.

48
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Maximum total body silver accumulation by the bass was Unfold 
(0.001 mg/1 Ag) to 19-fold (0.01 mg/1 Ag) greater than the con
trols; whereas, the maximum accumulation by the bluegill was 
fold (0.001 mg/i Ag exposure), 15-fold (0.01 mg/1 Ag exposure), 
and 150-fold (0.10 mg/1 Ag) greater than the controls.

2. An equilibrium developed between the concentrations of the 
metals in the water and in the tissues. This was based on 
the absence of significant additional accumulation by the 
tissues or organisms after the second month of exposure. It 
was hypothesized that an enhancement and/or suppression of an 
active transport system may have led to an equilibrium, so 

that additionul netal accumulation was prevented or signifi

cantly reduced.
3. Metal accumulations in the bass tissues were higher in the 

internal organs, followed by the gills and the remainder of 
the body. This suggested that a relationship may have existed 
between the accumulation by these tissues and excretion.

4. The exposure level of 50.0 mg/1 Cr was toxic to the bass (28-
day TLm) and bluegill (49-day TL^), the bass being somewhat
more sensitive. The 5.0 and 0.5 mg/1 Cr exposure levels were 
not demonstrated to be toxic to either species. The reduction 
in general metabolism, loss of weight, refusal to feed, and 
gut damage in both species exposed to 50.0 mg/1 Cr may be 

correlated with impaired nutrient absorption as a possible 

mode of toxicity.
5. All three levels of the cadmium exposure system (1.0, 0.1,

and 0.01 mg/1 Cd) were toxic to the bass; the mortality in-
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creased with increased concentration of the metal. The bass 
had a 56-day TL^ for 1.0 mg/1 Cd exposure, and a 82-day TL^.

The 1.0 mg/1 Cd level was toxic to the bluegill (138-day TL^) 
whereas, the 0.1 and 0.01 mg/1 Cd levels were not toxic. The 

bass appeared to be more sensitive than the bluegill to cad
mium toxicity. Cadmium may have inhibited the enzyme acety- 
cholinesterase, and caused death by paralysis of the muscles 
of respiration and/or depression of the respiratory center.

6. The 0.1 mg/1 Ag exposure level was toxic to the bass in less 
than 24 hours; whereas, the bass exposed to 0.01 and 0.001 
mg/1 Ag tolerated these levels. The three exposure levels 
were not toxic to the bluegill; however, those exposed to
0.1 mg/1 Ag showed a weight loss in the last month of exposure. 
Silver may have exerted its toxic action by the inhibition 

of respiratory enzymes at such a rapid rate that the detoxi
fication mechanism was overtaxed, causing death; or, the cen
tral nervous system was paralyzed, arresting the respiratory 
movements, the beating of the heart, and other vital functions.

7. Several of the exposure levels of cadmium, chromium, and sil

ver were not toxic to the fishes, but a weight loss in some 
of the fishes was observed. This suggested the possibility 
of the existence of another mechanism of toxicity. The me
tals at these levels may have caused degeneration of various 
tissues after a period of exposure. Over an extended period 

of time, these degenerative effects may have caused the death 

of the organisms.
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8. Further investigations should be carried out on the inter
relationships between exposure metals and the metals of 
translocation. A trace metal concentration shift in a 
specific organ or tissue suggests that the exposure metal 
has affected an alteration in metabolism involving the 

translocation metal.
9. Further investigations should be carried out on the long- 

teirm effects of sublethal concentrations of potential 
metal pollutants on the spawning behavior, reproduction, 
egg viability, and fry survival of fishes. For example, 
metal concentrations that produce no effect on maturation 
or growth of the adults may be deleterious to some other 

stage of the life cycle.
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TABLE 3

ROUTINELY DETERMINED WATER CHARACTERISTICS FOR EXPOSURE SYSTEMS

Water Characteristics Mean ̂  Standard Deviation
sn.n IT10-/Î c.r 5.0 mp/1 Cr 0.5 mcr/1 Cr

Total Alkalinity (mg/1 as CaCOg) 52.4^ b10.7 48.2a 12.0^ 49.5* 13.3b
pH 6.7* 0.2^ 7.4* 0.2b 7.5* 0.2b
Dissolved Oxygen (mg/1) 6.3* 0.4^ 6.3* 0.5b 6.5* 0.4b
Chloride (mg/1) 191.6*

b
19.6 192.4* 29.4b 191.4* 26.5b

Temperature ( C) a23.7 0.6^ 23.9* 0.8b 23.7* 0.9b
1.0 mg/l Cd 0.1 mg/l Cd 0.01 mg/l Cd

Total Alkalinity (mg/1 as CaCO]) 49.9& 13.lb 49.2* 12.2b 48.9* 12.7b
pH 7.5* 0.1^ 7.5* 0.2b 7.5* 0.2^
Dissolved Oxygen (mg/1) 6.7* 0.1^ 6.5* 0.4b 6.6* 0.4b
Chloride (mg/l) a193.6 25.9b 195.7* 22.sb 189.4* 29. lb

Temperature 23.9* o.eb 23.9* 0,7b 23.9* 0.7b
0.1 mg/l Ag 0.01 mg/l Ag 0.001 mg/l Ag

Total Alkalinity (mg/l as CaCOg) 55.3* 4.7b 48.8* 11.6* 47. ea 13.3b
pH 7.6* 0.1^ 7.5* 0.2b 7.5* 0.2b
Dissolved Oxygen (mg/l) 6.3* 0.2^ 6.4* 0.3^ 6.4* 0.4*’
Chloride (mg/l) a156.3 4.5b 189.6* 29.lb a190.2 b30.7
Temperature ( C) 23.9* O.sb 23.8* 0.8* 23.9* O.sb

o\o

&mean
^standard deviation
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TABLE 4
ADDITIONAL CHEMICAL CHARACTERISTICS OF THE 

EXPERIMENTAL WATER

Characteristic Concentration (mg/l)

Total Hardness (as CaCOg) 179.5* 22.3b
Calcium Hardness (as CaCOg) 103.2* 15.8^
Magnesium Hardness (as CaCOg) 76.3* 13.5b

a bCalcium 40.5 11.7
Magnesium 19.4& 6.4b
Fluoride 0.97* O.lpb

Nitrate 0.53* 0.15b
Sulfate 133.3* 17.lb

Total Phosphate 1.3* 0.2b
Silica 2.6* 0.6b

*mean
^standard deviation
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TABLE 5

N O M i m  AND MEASURED CONCENTRATIONS OF EXPOSURE METALS

Nominal Metal 
Concentration 

(mg/l)
Measured Concentrations (mg/l) Precent of 

Nominal

Cadmium
1.0 0.85* 0.19b 85.0
0.1 0.08» 0.01b 80.0

0.01 0.008» O.OOlb 80.0
Control 0.0005» 0.0002b -

Chromium

50.0 49.49» 2.69b 99.0
5.0 4.58» 0.06b 91.6
0.5 0.48» 0.02% 96.0
Control <0.02C - -

Silver
0.1 0.07» 0.03b 70.0
0.01 0.007* 0.002% 70.0

0.001 0.0009» 0.0002% 90.0
Control 0.0003» 0.0001% -

- amean
^standard deviation 
^detection limit



TABLE 6

WEIGHT v\ND LENGTH GAINS OF BASS EXPOSED TO CADMIUM, CHROMIUM, AND SILVER

Metal Day 1 1 Month 2 Months
(mg/l) Weight

(gm)
Length
(cm)

N*̂ Weight
(gm)

7o Gain N^ Weight
(gm)

7, Gain NG Length
(cm)

7o Gain N^

;
s 0.50 11.6a

1.9b
10.3a
0.5b 15 18.3a

4.7b
0.58. 15 23.2a

5.8b
Cl. 27a 14 13.0a

1.0b
0.26 4

o
g 5.00 10.1a

1.6b
9.9a
0.5b

15 14.9a
4.8b

0.48 15 17.4a
6.5b

0.17 15 11.8a
1.3b

0.19 5

0.01 10.1a
1.9b

9.8a
0.5b

15 15.2a
3.6b

0.50 15 18.0a
5.1b

0.18 15 11.3a 
0.7 b

0.14 5

1
1

0.10 10.4a
2.2b

9.9a
0.6b

15 14.7a
4.0b

0.41 15 17.4a
6.0b

0.18 14 11.6a
0.7b

0.17 4
cd 'a

1.00 11.3a
1.4b

10.2a
0.5b

15 16.7a
2.7b

0.48 15 21.3a
4.1b

0.28 6 12.1a
0.3b

0.19 5

%
>

0.01 9.3a
2.0b

9.7a
0.6b

15 12.3a
3.6b

0.32 15 14.4a
4.9b

0.17 15 10.8a
1.1b

0.11 5
i-H•HC/3 0.001 9.6a

2.0b
9.7a
0.5b

15 12.9a
3.0b

0.34 15 16.0a
4.4b

0.24 14 11.1a
0.7b

0.14 5

Control
10.0a
2.3b

9.8a
0.7b

15 13.5a
3.5b

0.35 15 16.6a
4.8b

0.23 15 11.7a
0.7b

0.19 5

<T>
W

a-mean
t>-standard deviation
c-numtfci of fish



TABLE 6--— Continued

Metal 3 Months 4 Months
(mg/l)

Weight 7, Gain Weight 7o Gain Length 7o Gain
6 0.5 25.5a 0.10 10 29.0a 0.19 10 13.1a 0.008 109•d 8.0b 10.9b 1.5b
W

5.0 20.2a 0.16 10 26.5a 0.31 8 12.5a 0.06 8ÇJ 6.6b 11.8b 1.6b
0.01 23.0a 0.22 8 33.0a 0.43 5 14i0a 0.24 5

w 7.6b 3.2b 1.1b
s'U 0,10 22.7a 0.30 5 26.6a 0.17 2 12.5a 0.08 2
O 10.9b 8.0b 0.8b

0.01 18.3a 0.27 10 23.5a 0.36 9 12.3a 0,14 9
M 6.8b 10.2b 1.6bu
•f-lco 0.001 21.2a

5.5b
0.33 7 26.6a

9.0b
0.25 7 12.3a

1.3b
0.15 7

Control 22.7a 0.32 9 29.8a 0.36 9 12.9a 0.10 9
7.8b 10.7b 1.5b

a-mean
b-standard deviation 
c-number of fish



TABLE 7

WEIGHT AND LENGTH GAINS OF BLUEGILL EXPOSED TO CADMIUM, CHROMIUM, TIM) SILVER

Metal Day 1 2 Months 3 Months
(mg/I)

Weight
(sm)

Length
(cm)

N̂ ^ Weight
(gm)

7. Gain Length
(cm)

7o Gain N̂ ^ Weight
(gm)

7oGain Length 7.Gain

1 0.5 2.81a
0.64b

5.81a
0.48b

5 4.72a
1.99b

53 6.50a
0.92b

40 5 5.80a
2.71b

51 7.30a
0.89b

52 5

i

5 5.0 2.77a
0.80b

5., 73a 
0.34b

5 4.49a
1.76b

48 6.39a
0.84b

38 5 5.68a
2.52b

53 7.24a
0.98b

54 5

0.01 3.58a
0.98b

5.73a
0.49b

5 5.47a
3.24b

67 6,76a
0.92b

59 5 5.89a
2.74b

23 7.34a
0.92b

39 5

;
1

0.10 3.25a
0.63b

5.77a
0.47b

5 5.04a
1.60b

58 6.72a
0.59b

55 5 5.53a
3.19b

25 7.26a
0.86b

36 5

o
1.0 2.95a

0.89b
5.94a
0.37b

5 4.52a
2.40b

46 6.45a
0.98b

30 5. 5.32a
2.56b

36 6.92a
0.98b

30 5

0.001 3.02a
0.97b

5.86a
0.53b

5 5.18a
3.51b

65 6.74a
0.63b

52 5 5.94a 
3.30b

39 7.28a
1.08b

36 5
<u>
•HCO 0.01 2.78a

0.77b
5.78a
0.62b

5 4.20a
2.73b

39 6.26a
0.69b

28 5 5.32a
2.56b

47 6.98a
1.09b

45 5

0.10 2.76a
0.64b

5.82a
0.57b

5 4.46a
3.12b

47 6.32a
0.81b

29 5 5.48a
1.91b

45 7.12a
0.77b

51 5

Control 3.21a
0.83b

5.74a
0.63b

5 5.49a
3.12b

73 6.81a
0.77b

61 5
____

6.60a 
3.66b -

61 7.52a
1.12b

48 5

O'

a-mean
b-standard deviation
c-number of fish



TABLE 7— -Continued

Metal
(mg/1)

6 Months

Weight 7a Gain Length 7o Gain

I 0.5 7.73a 110 7.72a 31 5
B 3.72 1.22b
u
é 5.0 6.95a 72 7.63a 28 5

3.27b 1.00b

0.01 7.46a 92 7.59a 18 5
3.49b 1.04b

§
B 0.10 5.75a 12 7.48a 16. 5
T3(Q 2.34b 0.83b
u

1.0 —

0.001 6.67a 43 7.52 18 5
3.69b 1.38b

u 0.01 5.76a 23 7.17a 13 5
? 1.97b 0.77bT—4
CO 0.10 4.55a - 7.18a 4 5

1.64b 0.86b

Control 8.66a 149 7.80a 21 5
1 4.69b 0.92b

CTiO

a-mean
b-standard deviation
c-number of fish
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TABLE 8

QUANTITE OF METALS IN FISH FOOD

METAL
(ug/g)

Oregon Moist 
Fish Pellets

Clark's New Age 
Fish Feed Fresh Liver

Cadmium 9.20*
5.13%

15.60*
0.10%

51.81*
17.91°

Silver 0.613
0.34b

1.00*
0.13b 0.011*

0.004%

Chromium 0.19*
O.lob

0.323
0.02%

0.09*
0.03%

Zinc 34.14*17.44b 1 :::
354.86*
160.86°

Copper 18.75*12.45b 77.38*
9.92%

277.10*
124.82°

Mean
^standard deviation
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TABLE 9

ACCUMULATION OF CADMIUM IN THE GILLS, INTERNAL ORGANS, 
AND BODY REMAINDER OF LARGEMOUTH BASS

Cadmium (ug/g Ash)
Exposure
Groups
(mg/1)

Time 0

Exposure Time 
(Months)

2 4

Controls 0.00102&
0.00092

Body Remainder 
0.00193* 
0.00133°

0.00348*
0.00153°

0.01 0.00102*
0.00092^

0.01424*
0.00273°

0.01609*
0.00473°

0.10 0.00102*
0.00092*

0.03294*
0.00912°

0.03720*
0.00957°

Controls 0.00092*
0.00031^

Gills
0.001692
0.00124°

0.00187*
0.00130°

0.01 0.00092*
0.00031*

0.14850*
0.05264°

0.16079*
0.04276°

0.10 0.00092*
0.00031°

0.29597?
0.08256°

0.32498*
0.09465°

Controls 0.20339*
0.13751°

Internal Organs 
0.24254* 
0.11433°

0.28756*
0.13294°

0.01 0.20339g
0.13751

2.00822*
0.55246°

2.30869*
0.57111°

0.10 0.20339*
0.13751°

4.20179*
0.93764°

4.46919*
0.68872°

®mean
-standard deviation
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TABLE 10

ACCUMULATION OF SILVER IN THE GILLS, INTERNAL ORGANS. 
AND BODY REMAINDER OF LARGEMOUTH BASS

Silver (ug/g Ash)
Exposure
Groups
(mg/1)

Exposure Time 
(Months)

Time 0 2 4

Controls 0.00089^
0.00031°

Body Remainder 
0.001583 
0.00098%

0.00194*
0.00093%

0.01 0.00089&
0.00031^

0.01578&
0.00215°

0.01693*
0.00224%

0.001 0.00089*
0.00031°

0.008233
0.00183°

0.00947*
0.00231%

Controls 0.00090*
0.00046°

Gills
0.00121*
0.00086°

0.00189*
0.00098°

0.01 0.00090&
0.00046

0.34056*
0.06303°

0.36440*
0.06843%

0.001 0.00090*
0.00046°

0.18771*
0.04676°

0.221543
0.07566°

Controls 0.02367&
0.00200°

Internal Organs 
0.03906* 
0.01347°

0.05174*
0.01349°

0.01 0.02367*
0.00200°

0.58750*
0.11434°

0.60136*
0.19143°

0.001 0.02367&
0.00200°

0.27437*
0.04207°

0.30132*
0.07274%

mean
standard deviation



TABLE 11

ACCUMULATION OF CADMIUM AND SILVER IN BLUEGILL

Exposure
Groups Cadmium (ug/g Ash) Silver (ug/g Ash)
(mg/1) Exposure Time (months)

Cd Ap Time 0 2 4 6 Time 0 2. 4 6

Controls 0.00321& 0.00528* 0.00598* 0.00627* 0.00137* 0.00204* 0.00315* 0.00397*
0.00243^ 0.00209b 0.00249b 0.00312^ 0.00094b 0.00138b b0.00104 0.00140b

0.01 0.001 0.00321* 0.04197* 0.04487* 0.04706* 0.00137* 0.00743* 0.00779* 0.00801*
0.00243^ 0.01324b 0.01039b 0.01478b 0.00094b 0.00219b 0.00220b 0.0034lb

0.10 0.010 0.00321® 0.14392* 0.15785* 0.16974* 0.00137* 0.04164a 0.04340* 0.04510*
0.00243b 0.04275^ 0.08325b 0.07908^ 0.00094b 0.01749b 0.01327b 0.01415b

1.0 0.10 0.00321* 1.10093* 1.61891* - 0.00137* 0.24688* 0., 27608* 0.29024*

0.00243^ 0.54771b 0.58488b - 0.00094b 0.14074b 0.13614b 0.17745b

o

&mean

^standard deviation
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TABLE 12

COPPER CONCENTRATIONS IN THE GILLS, INTERNAL ORGANS
AND BODY REMAINDER OF LARGEMOUTH BASS

EXPOSED TO CADMIUM

Length of Copper (ug/g Ash)
Exposure 
(Months)

Control
Exposure Groups (mg/l) 

0.01 0.1

0 0.33918*
Body Remainder 

0.33918* 0.33918*
0.17382% 0.17392% 0.17392%

2 0,23541* 0.29276* 0.26431*
0.08954° 0.04189% 0.09401%

4 0.32447* 0.31451* 0.34217*
0.15160% 0.11847° 0.19432%

0 1.69711*
Gills

1.69711* 1.69711*
0.52003° 0.52003% 0.52003%

2 2.18913§ 2.04735* 2.68456*
0.73261 0.61492% 1.85291%

4 2.81365* 1.90247* 2.43433*
0.57134% 0.81244% 0.25591%

0 19.04827*
Internal Organs 
19.048273 19.04827*

4.01226% 4.01226% 4.01226%

2 11.66721* 10.812983 8.44990*
2.64165% 3.68185% 3.99889°

4 14.72521* 11.97371* 13.41831*
3.38713% 4.96121% 3.27399%

®mean
^standard deviation
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TABLE 13

COPPER CONCENTRATIONS IN lilt, GILLS, INTERNAL ORGANS,
AND BODY REMAINDER OF LARGEMOUTH BASS

EXPOSED TO SILVER

Length of Copper (ug/g Ash)
Exposure
(Months)

Control
Excosure Groups (mg/I) 

0.001 0.01

0 0.33918&
0.17382°

Body Remainder 
0.33918" 
0.17382°

0.33918®
0.17382%

2 0.21446*
0.02859°

0.23541*
0.08954%

0.30799*
0.10642

4 0.32447?
0.15160

0.29707*
0.09125%

0.28507*
0.08953%

0 1.69711*
0.52003°

Gills
1.69711a
0.52003%

1.69711*
0.52003%

2 2.18912*
0.73261°

1.81790*
0.54514%

1.69863*
0.30346%

4 2.81365*
0.57134°

1.63504*
0.26454%

1.32126*
0.20785%

0 19.04827*
4.01226

Internal Organs 
19.04827" 
4.01226%

19.04827*
4.01226%

2 11.66694*
2.64232

10.94727*
3.33964%

12.09684*
2.27235%

4 13.10947*
3.10742°

11.86348a
4.53132%

9.94746*
3.22335%

=‘means
^standard deviation
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TABLE 14

COPPER CONCENTRAT];ONS IN BLUEGILL EXPOSED TO CADMIUM AND SILVER

Length of Copper (ug/g Ash)
Exposure
(Months) Cd Exposure Groups (mg/l) Ag Exposure Groups (mg/1)

Control 0.01 0.1 1.0 Control 0.001 0.01 0.1
0 0.29371*

0.12073°
0.29371*
0.12073°

0.29371®
0.12073%

0.29371*
0.12073%

0.29371^
0.12073%

0.29371®
0.12073°

0.29371®
0.12073%

0.29371®
0.12073%

2 0.36199*
0.14565°

0.29930?
0.11941

0.25287*
0.09875%

0.43336*
0.18505%

0.35991*
0.14565%

0.35991*
0.07480%

0.52112*
0.12243%

0.52284
0.09587%

4 0.30343*
0.14268%

0.30343*
0.08909%

0.30363*
0.14250%

1.13614*
0.69339%

0.30343?
0.14268

0.33209*
0.07593%

0.35458^
0.18034

0.37812® 
0,.13146%

6 0.29476*
0.13285

0.33714*
0.13425%

0.36333*
0.16271%

- 0.29476®
0.13285°

0.31092*
0.05781%

0.34478*
0.09745%

0.39189*
0.14437°

w

^standard deviation
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TABLE 15

ZINC CONCENTRATIONS IN THE GILLS, INTERNAL ORGANS,
AND BODY REMAINDER OF LARGEMOUTH BASS

EXPOSED TO CADMIUM

length of Zinc (ug/g Ash)
Exposure
(Months) Exposure Groups (mg/1 cd)

Control 0.01 0.1
0 1.398228

0.42788°
Body Remainder 

1.39822a
0.42788%

1.398228
0.42788%

2 3.02248
1.3815°

0.9233a
0.9132%

I.88O58
1.6423%

4 2.8463*
1.6332%

1.5545*
0.9388%

1.74398
1.1908%

0 15.37652*
12.27133^

Gills
15.37652a
12.27133%

15.37652%
12.27133%

2 18.54998
10.7755%

4.8695a
6.1109%

1.03128
0.5005%

4 18.7020*
9.5584%

13.3639*
10.2637%

10.31198
10.1362%

0 92.67962%
51.33549

Internal Organs 
92.67962% 
51.33549%

92.67962%
51.33549%

2 67.4968®
34.4518%

28.6117*
24.0174%

13.84718
11.1394%

4 80.63068
47.0307%

39.8937§
17.1149

38.11598
4.0303%

“means
^standard deviation
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TABLE 16

ZINC CONCENTRATIONS IN THE GILLS, INTERNAL ORGANS,
AND BODY REMAINDER OF LARGEMOUTH BASS

EXPOSED TO SILVER

Length of Zinc (ug/g Ash)
Exposure
(Months) Exposure Groups (mg/1 Ag)

Control 0.001 0.01

0 1.39822a
Body Remainder 

1.39822a 1.39822a
0.42788b 0.42788b 0.42788b

2 3.0224a 2.5841a 1.6385a
1.3815b 1.0492b 1.2735b

4 2.8463a 1.7487a 1.5438a
1.6332b 1.2385b 1.0179b

0 15.37652a
Gills
15.37652a 15.37652a

12.27133b 12.27133b 12.27133b

2 18.5499a 15.8624a 17.6676a
10.7755b 15.2421b 11.4089b

4 18.7020a 18.5487a 22.3352a
9.5584b 10.7778b 18.3649b

0 92.67962a
Internal Organs 

92.67962a 92.67962a
51.33549b 51.33549b 51.33549b

2 67.4968a 32.3318a 60.0657a
34.4518b 16.6122b 16.0861b

4 80.6306a 42.2360a 56.3934a
47.0307b 16.5122b 16.0861b

a-means
b-standard deviation



TABLE 17

ZINC CONCENTRATIONS IN BLUEGILL EXPOSED TO CADMIUM AND SILVER

Length of
Exposure
(Months)

Zinc (ug/g Ash)

Control
Cd Exposure Groups (mg/I) 

0.01 0.1 1.0 Control
Ag Exposure Groups (mg/l) 
0.001 0.01 0.1

0 4.01375a 4.01375a 4.01375a 4.01375a 4.01375a 4.01375a 4.01375a 4.01375a
3.89617b 3,89617b 3.89617b 3.89617b 3.89617b 3.89617b 3.89617b 3.89617b

2 4.2835a 4.0669a 3.8476a 3.5142a 4.2835a 2.2317a 1.2279a 0.7714a
4.2158b 4.0127b 3.2743b 2.4483b 4.2158b 1.0911b 0.5127b 0.4697b

4 4.4829a 4.3821a 4.1298a 5.2491a 4.4829a 3.8063a 2.2714a 0.6652a
3.2576b 4.0178b 4.1176b 2.4187b 3.2576b 3.1134b 1.7752b 0.7783b

6 4.8279a 3.2517a 3.05176a 4.8279a 4.1056a 1.8027a 0.6221a
3.4517b 2.9858b 2.9943b — 3.4517b 2.5838b 1.4964b 0.2207b

O'

a - mean
b - standard deviation


