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CHAPTER I 

INTRODUCTION 

Many aerospace and hydrospace structures, which are basically 

shells of revolution, are often complicated by the presence of cutouts. 

Cutouts may be introduced for purposes of access and visibility (for 

exam.ple, cabin doors and windows in an airplane). An entirely dif

ferent physical situation is the case of flying aircraft fuselage sec

tions penetrated by projectiles from a nearby explosion, subsequently 

hit by the air- blast emanating from the center of explosion. The 

projectiles penetrating the fuselage, which is basically a shell 

stiffened with stringers and rings, would render certain panels and 

stiffening elements structurally ineffective. One may rationally 

idealize the structure so as to give rise to cutouts bounded. by lines 

of curvature of the reference surface of the shell. The response of 

this structure to the transient pressure wave is a typical case indi

cating the importance of dynamic analysis of stiffened cylindrical 

shells with cutouts. 

The free vibration problem of stiffened or unstiffened cylindrical 

shells has been well-studied and reported in the literature. However, 

the available literature on transient responses of cylindrical shells is 

1 
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limi.ted. Moreover, these investigations have been confined; for· 

the most part, to complete shells. No publishe~ resu~ts appear to 

be available in the literature for determining the dynamic: response 

of a stiffened shell with cutouts, subjected to blast loads, although 

this is a problem of considerable importance in the design of air-

craft and missile structures. 

Brogan, Forsberg and Smith (1) appear to be the first to have 

studied the effect of a cutout on the naturalfrequencies and mode 

shapes of an otherwise uniform shell with integral end rings. The 

analytic:al part consisted of a two-dimensional finite difference re-

presentation of the potential and kinetic energies of the shell, re-

sulting in an algebraic eigenvalue problem. by the application of the 

principle of minimum total energy. Later Malinin (Z) applied the 

Ritz method to the free vibration analysis of shells of revolution 

with hinged ends containing one or more holes with unconstrained 

edges. 

Forced vibration studies of shell structures have been investi-

. gated by the classical method of spectral representation (3, 4, 5). 

Sheng (6) applied the William's method to find the response of a thin 

. cylindrical shell to transient surface loading. The ·former approach 

was employed by Bushnell to unstiffened and ring- stiffened cylindri-
. . . 

cal shells (7, 8). An approximate method for unstiffened ovals was 

developed by Klosner (9). 



The method of spectral representation can be s.uccessfully 

applied to a shell provided the free-vibration solution is available. 

Consequently, it is the availability of free. vibration s.olution which 

limits the applicability of this method. This limitation becomes · 

much more pronounced for stiffened shells and even more so when 

cutouts are present. 

3 

A slight variation of the above method was formulated by 

Basdekas and applied to determine the dynamic response of plates 

with cutouts (10). He applied the energy method expanding the de

flection in terms of the normal modes of the reference plate (i.e. , 

plate without the cutout) and solved the resulting system of simultan

eous differential equations by neglecting partially or wholly the 

coupling terms due to the cutout. 

This thesis presents an approximate method based on an energy 

approach, for determining the dynamic response of ring and stringer. · 

stiffened shells with cutouts and with a variety of boundary conditions. 

The classical Rayleigh-Ritz method is used to obtain the equations of 

motion in terms of generalized coordinates which are functions of 

time. It is well known that the assumed series for the displacements 

are required to satisfy the kinematic boundary conditions (but not 

necessarily the kinetic ones). Thus, it is very easy to simulate the 

free edge conditions at cutouts in the shell. 

The resulting equations of motion constitute a system of coupled, 

linear, second order, ordinary, nonhomogeneous, differential equa-
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tions with constant· coefficients. These are reduced to a system of 

first order equations, which are solved numerically in the time do

main by means of a computationally efficient Fourth Order Runge

Kutta method with automatic. step- size control (U). 

Boyd and Rao (12) solved the free vibration problem of stiffened 

noncircular cylindrical shells treating the stiffeners as discrete 

elements. The suitability of a smearing technique to solve the same 

problem in order to reduce the complexity of analysis by reducing 

the order of the mass and stiffness matrices, has been discussed in 

( 13). Brugh (14) studied the free vibration problem of stiffened 

cylindrical shells by both discrete and smearing approaches. The 

present effort extends his work to include the effects of cutouts and 

response to transient loads. 

It appears appropriate to mention here some of the facto rs 

which favored adherence to the Rayleigh-Ritz method for analysing 

the problem under consideration, in· preference to other methods 

(e.g., the finite element and the finite difference methods). The in

creasing need for analysing complex structures has set in motion a 

massive trend towards developing computer programs based on the 

finite element method. This is largely due to the general notion 

that the conventional Rayleigh-Ritz method is limited to relatively 

simple geometrical shapes of. the total region. But, in reality, this 

method has been successfully applied, with relatively less effort, to 

the analysis of shells with significant complications (e, g., non-



5 

circularity, stringer and ring stiffening). In addition, it has certain 

definite advantages over the finite element and the finite difference 

methods. For a given problem, the finite element method usually re

quires a larger number of degrees of freedom to describ.e accurately 

the behavior of the shell. Also, the preparation of input data is 

tedious and time- consuming, especially if one has to test convergence 

of the solution by refining the element mesh size~ Further, if a new 

kind of finite element is to be developed to achieve better convergence 

one has to reformulate the mass and stiffness properties of the 

element. Very fine meshes in the finite difference methods result 

in large round-off errors in addition to large computer storage re

quirements and running times. 

The Rayleigh-Ritz method is devoid of many of the difficulties 

associated with the finite element and finite difference methods. It 

is a simple matter to study convergence of the solution either by in

creasing the number of terms or by choosing various combinations 

of terms in the assumed displacement series. Besides, the struc

tural geometric and material parameters can be easiiy varied, thus 

facilitating e.xte~sive para·metric studies to gather physical insight 

into the problem. Even refinements in the theory used ·can be in

corporated as a side effort without the need to restart the whole 

programing procedure. The admissible functions are not required 

to satisfy the kinetic boundary conditions, which simplifies the 

handling of cutouts with unrestrained edges. The cumulative effect of 
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all these features is to give the user a physical insight into, and a 

control over the computer program. Such a feeling of being at home 

with the program is normally absent in programs based on finite 

element and finite difference methods, which involve a fair amount 

of tedious bookkeeping. 

The purpose of the above discussion is not to obscure the fact 

that the finite element method is capable of handling a large class of 

structures of various degrees of complexities, but to bring out the 

idea that the Rayleigh-Ritz method is capable of efficiently analysing, 

with relatively smaller man-hours and computer costs, at least 

fairly complex structures such as the one under consideration. 

Moreover, it can be used to obtain solutions with which to compare 

those obtained by 9ther methods of analysis. To this end, the 

method is applied for analysing the present problem. 

The objectives of this study are as follows: 

1. To develop a computer program, bas.ed on the proposed 

method, to determine the response of noncircular ring and/or 

stringer stiffened cylindrical shells with rectangular cutouts to 

arbitrary time-dependent surface loads. For the boundary conditions 

at the ends of the shell, only four types, namely (a) freely supported, 

(b) clamped-clamped, (c) clamped-free, and (d) free-free will be 

considered. 

2. To test the method by comparing with known solutions. 

3, To study the effects, on the frequencies and mode shapes of 
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an unstiffened shell, of size and locations of cutouts. 

4. To study the effect of cutouts on the response of an unstiffen

ed shell to time-dependent loads typical of air- blasts. 



CHAPTER II 

METHOD OF ANALYSIS 

Hamilton's principle may be mathematically stated as 

oA = ofi~ (T- U+W)dt = 0 
tl 

(2. 1) 

where A is the action integral, T and U a re the kinetic and st rain 

energies, respectively, of the system, W is the work done by the 

external forces on the system, and t 1 and t 2 are two arbitrary points 

in time. The variation is associated with virtual displacements which 

are required to satisfy the kinematic boundary conditions of the sys-

tern, but are arbitrary otherwise. 

Assuming that the operations of time-wise integration and var-

iation are commutative in Equation (2. 1), it may be written as 

(2. 2) 

The structural system under study is a combination of the 

shell, stringers and rings, with cutouts in any of these elements. 

Thus: 6 T = 6 T + 6 T + 6 T 
o s r (2. 3) 

and 

6U=6U +cu +6U 
o s r (2. 4) 

8 



where the subscripts o, s, and r refer to shell, stringer and ring, 

respectively. 

9 

The external loading consists of both distributed and 

concentrated surface loads. No edge loadings are considered in the 

analysis. Also the spatial and temporal variations of the loading are 

assumed to be separable. Thus, 

6W=6Wdt6Wcf (2. 5) 

where the subscript d refers to distributed forces and the subscript 

cf refers to cone ent rated forces. 

Geometry 

The geometry of a typical noncircular shell with a single cut-

out bounded and intersected by stiffeners is shown in Figure 1. Only 

the bounding and intersecting stringers and parts of the bounding and 

intersecting rings are shown in thick dotted lines to avoid cluttering 

the figure. The middle surface of the shell is taken as the reference 

surface of the shell. The coordinate lines x and 8 are the parametric 

lines of the reference surface of the shell and coincide with the ortho-

gonal lines of principal curvature. The coordinate line z is normal 

to the reference surface of the shell at the point (x, 8). Also shown 

in the figure is the adopted convention for the positive directions of 

these coordinate lines. The variable radius of curvature of the shell 

cross section defining the nonci re ula rity is expressed as a function 

of the 8 coordinate. The location and the size of cutout are specified 
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ATTACHMENT 

Figure 2. Geometry of a Typical Stringer 

11 



LINE OF 
ATTACHMENT 

Figure 3. Geometry of a Typical Ring 
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by the coordinates of its four corners (x1 ,. e1), (x2 , e1), (x2 ~ e2) and 

(x1, e2h The geometries of a. typical stringer and ring as well as 

their lo.cal coordinate systems with tpeir 9rigins located at their 

respective centroids·are shown in Figures 2 and 3, respectively. 

The local coordinl;l.tes x~, y', z'. of the stiffeners are measured along . . . 

their local axes from the centroids of the stiffeners and are positive 

in the directions shown. The stiffeners may be lo~ated internal or 

. external to the shell. 

· Stiffen.er-Shell Compatibility Relations 

By the term. 1stiffener-shell compatibility relations' is meant 

not the strain .compatibility relations inte.rnalto the stiffeners, but 

.the compatibiiity relations that signify the mode of ~ttachment of the 

stiffeners.to the shell. The stiffeners ·are assumed to be uniform 

along their length and have an arbitrary cross ·section. The stiffeners 
. . . 

are assumed to be _attached to the shell along a single line of attach-

ment. · It is also assumed that th.e cross sectional planes do not warp. · 
. . 

The stiffener:.. shell compatibility relations," relating the displacements 

of the stiffeners to those of the middle surface of the shell are pre-

s·ented in ·Appendix A. 

These compatibility relations are concisely expressed by 

{ f J . = [ c J {f} 
.s . S O (2. 6.a.) 

I f I = · [ C ] { f.}. · . 
fr r . o (2~ 6b) 
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where 

:t {f} = 
s 

(2. 6c) 

{ f} r = I: Ir (2.6d) 

1 
- 0 

-(y + y' )-
s s ox 

- 0 
-(z +z' )--

s s ox 

[C] = O 
s 

1 -l+-(z +z') 
R s s 

1· - o 
--(z tz' )--

R s s o e 

0 
1 - r.;,y + y' ) - R \Ys s 

and 

1 

1 - o [C] = - - (x + x' ) --
r R r r ~e 

0 

1 + l ( Y + y' ) _o_ 
R s s o e 

0 

1 -I+-(z +z') 
R r r 

0 

0 
-{z + z')-

r r ox 

(2. 6e) 

1 - o 
- -(z + z' ) --

R r r ~ 9 

0 
1 + (x + x' )

r r ox 
(2. 6£) 

Shell Strain-Displacement Relations 

The shell strain-displacement relations used in this study 

reflect the postulates of Love's First Approximation Theory for thin 

elastic shells. Accordingly, the strain-displacement relations may 

be expressed conveniently in matrix form as 

(2. 7a) 



where 

[B] = 
0 

0 
ox 

0 

J _g_ 
·Roe 

0 

0 

0 

= {e ' ee. ' t e' ')( • x.e ' ,. }T X. X "XZ · Z O 

u 

.W 

0 

1 o 
Roe 

0 

1 a --Rox 

0 

1 
R 

0 

z 
?I x 

15 

(Z. 7b) 

(Z.7c) 

(Z. 7d) 

and u, v, ware the axial, circumferential and normal displacement 

components of a point in the .middle surface of the shell. 

Stiffener Strain-Displacement Relations 

The strain-displacement. relations for the stiffeners are based 

on the Bernoulli theory of bending. The centroidal axis is chosen as 

the reference axis for the stiffeners. Thus for the stringer 

(Z. 8a) 
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where 

e ' y e ' ·x ' X. .'T'·}Ts xy xz xy' (2. Sb) 

..L c? 02 
ys--2 - z ox 

ox 
s 

ox 

0 0 0 

[BJ = 0 0 0 (2. Sc) s 

2 
0 0 

d 
2 

ox 

2 
0 

a 
0. --2 

~x 

·I a I 
2 

0 0 - -
R ox R ax o e 

Likewise for the ring 

(2. 9a) 

The matrix (B]r is given by Equation (2. 9b). on the following page. 

Strain and Kinetic Energies 

The variation of the strain energy of the shell, stringer and 

ring can each be expressed in terms of the middle surface strain com-

ponents and stress resultants as 

(2. iOa) 



0 

x x 2 ro 1 o r o 
-R o e (R) ~ - R R-2 

c c oe 

0 

0 

[BJ = 
r 

0 

0 

0 

0 

0 

0 

2 
0 

2 
08 

(2. 9b) 



where 

{crR } = { N , N , N , M , M , M } T 
O X 9 xe 9 X xe O 

= {N , N , N , M , M , M }T 
x y xy y z x s 

= {N , N , N , M , M , M }T 
x y xy x z y r 

= 1::\ 
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(2. lOb) 

(2. lOc) 

(2. lOd) 

(2. lOe) 

(2. lOf) 

(2. lOg) 

(2. lOh) 

The stress resultants can be expressed in terms of the middle 

surface strain components as 

ment. 

(2.lOi) 

where [DJ. is the mat,rix of elastic constants for the ith ele-
1 

After substituting Equations (2. lOb) to (2. lOi) in Equation 

(2. 1 Oa) the variation of the, strain energy is 

.£ T T 
oU-= {oft. [B], (D].[B]. {f}, dS. 

1 s. f 1 1 1 . 1 1 1 (2. lOj) 
l 

The variation of the kinetic energy of the shell, stringer or 

ring can each be expressed in terms of the middle surface displace-

ment components as (neglecting the contribution from the rotatory 

inertia terms) 
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T 
o T 1. = ( m. J5 fl. { f}. dS. 

Js. 1 l r 1 1 1 (2. l la) 
1 

where m. is the mass per unit area/length for the /h element. Inte
l 

grating Equation (2. lla) by parts between the limits t 1 and t 2 , 

t=t 
!taoT.dt=J; [m. {of}:{£}. ]t_t2 ds.-J:2 r m. {of}~{"i}.ds.dt 

t 1 1 s. 1 1 1 - 1 1. t 1 Js. 1 1 1 1 
1 1 . (2. llb) 

Since the virtual displacements {6f} i are arbitrary they may 

be prescribed to vanish at the end points of the interval t 1 :5t:5t2 . 

This gives 

i.e., oT = -
i ~ 

i 

{ }T{••} m. of . f . dS.dt 
1 · 1 1 1 

m. {of}: { f}. dS. 
·1 1 1 1 

Substituting Equations (2. 6a) and (2. 6b) in Equation (2. l ld) 

oT.= -1 
1 s. 

T T {'" l m. { o f } [ c J. [ c J. £ r 
1 0 1 1 0 

1 

where [CJ. = [I] for the case i = O. 
1 

Shell Energies 

dS. 
1 

(2. 11 c) 

(2. l ld) 

(2. l le) 

The first variation of the shell strain energy, obtained by 

specializing Equation (2. lOj) for the shell, is expressed as 

oU = f {of} T [BJT [DJ [BJ {f} R de dx 
o~ o o o o o 

(2. 12a) 

0 
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Here 

J: (2. 12b) 

0 

For the case of orthotropic material, the matrix (DJ is 
. . 0 

0 
Eh v Eh 

x ex e 

l- \)xe \)ex l- \)xe \)ex 
0 0 0 

v 8E h 
x x 

E 8h 
0 0 0 0 

1-v v 
xe ex l- \)xe "ex 

[DJ = 0 0 G h 0 0 0 
0 xe 

E h 3 3 

0 vexE eh 0 0 0 x 

12 ( 1- v x e v eJ • 12 ( 1- "x e "e~ 

0 0 0 v E h 3 E h 3 0 
xe x e 

12.(1-v v J 
xe e 12 ( 1- v x e "eJ 

0 0 0 0 0 G h 3 
xe 

12 

(2. 12c) 

The first variation of the kinetic energy of shell is given by 

specializing Equation (2. I le) for the shell 

o T = - f 
O s 

T .. 
p Oh { of } 0 { f } 0 R de dx (2.13) 

0 
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Expanded forms of Equations (2. 12a) and (2. 13) are given by 

Equations (2. 11) and (2. 13) respectively of Reference (14) after the 

following modifications: 

1. The double integral operator 

N 

[ a £21T _ ~ replaced by L.J 
i.=l 

equations. 

must be 

in both the 

2. 

3. 

Equation (2. 13) must be preceded by a minus sign(-). 

2 
The parameter 'w ' must be omitted in Equation (2. 13). 

4. The displacements u, v, and win Equation (2. 13) must 

be replaced by their double derivatives with.respect to time ii, v, 

and w, respectively. The variational terms associated with the 

displacements remain unchanged. 

Stringer Energies 

The first variation of the strain energy for the ..eth stringer 

(located at e ..e) is expressed as 

8U = ( [ {of}T [BJT [DJ [BJ. {f} J dx 
st J., o st sR, s..e o 

st e = e 
R, (2. 14a) 

where 

1 = foa 
s i, 

i=l 

(2. 14b) 



and 

E A 
s.t ·sJ, 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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0 0 0 0 

0 0 0 0 

0 0 0 0 

0 O E I . 
. s .t yys .t 

0 0 -E I E I 
s .t yzs·n s .t zz 

x, s .t 

0 0 0 (GJ) 
s .t 

(2. 14c) 

The symbol 6. == 1 if the .tth stringer intersects the ith cutout; other-
. 1.t 

wise it is zero. 

Since the stringers are treated as discrete elements, the 

total first varic!,tion of.the strain energy of all the stringers is given 

by 

au = s 

N r 
.t==l 

6Us1, (2. 14d) 

The first variation of the kinetic energy for the .e,th stringer, 

located at e.1,' is expressed as 

6TsJ, ==- ;;, [msl, {of}~ [C]:.e, [C]s_ef£l 0 ] dx 
. . ·. s£ 

e == e . .t 
(2. 15a) 

The total contribution to the first variation of the kinetic 

energy of stringers is, for a discrete analysis 
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6T 
s (2. I Sb) 

Expanded forms ,l)f Equations (2. 14a) and (Z. !Sa) are given in 

Appendix B of Reference ( 14) after the following modifications: 

L 

2. 

3. 

4. 

N 

The integral operator .[ :.ust be replaced by.[":_ t, 8\ t .£x2i 
i=l xli 

The expression for 6T must be preceded by a minus sign(-). . st · 

The parameter 1w21 in the expression for 6 T must be omitted. 
s R. 

The displacements u, v, w and their spatial derivatives, v, , 
x 

w, , w, in the expression for 6T must be replaced by their 
x e st 

double derivatives w. r. t. time, i.e., ii, v, w and v, , w, , w, 9• 
x x 

The variational terms associated with the displacements and 

their spatial derivatives remain unchanged. 

Ring Energies 

The first variation of the strain energy for the kth ring located 

6U =1 rk · 
8 rk 

[[ of? [B]Tk [DJ k [BJ k [f} JR k d9 o r r r o cg 

x = :x; 
k 

(2. 16a) 



where 

N 
c 

I: ~k 
i=l 
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(2. l 6b) 

The symbol oik = I if the kth ring intersects the ith cutout; 

otherwise, it is zero. 

The matrix [D]rk is given by 

0 0 0 0 0 0 

0 A E 
rk rk 

0 0 0 0 

0 0 0 0 0 0 
[D\k -

0 0 0 E I -E I 0 rk xx rk xzrk rk 
0 0 0 -E I 

rk xzrk 
E I 
· rkzzrk 

0 

0 0 0 0 0 (GJ) rk 

(2. 16c) 

The total contribution of all the rings to the first variation of 

their strain energy is, for a discrete analysis. 

oU = 
r 

N. 

t 
k=l (2. 16d) 

The first variation of the kinetic energy for the kth ring 

( located at xk) is 

oT =[[mkiof}T[CJTk[CJk{f•} JR kde rk S r l o . r · r o cg 
rk 

x=x 
k (2. 17a) 
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The total contribution of all the rings to the first variation of 

their kinetic energy is, for a discrete analysis, 

oT = 
r 

N 

t 
k=l 

5T 
rk (2. l 7b) 

Expanded forms of Equations (2. 16a) and (2. 1 7a) are given in 

Appendix C of Reference (14) after the following modifications: 

1. 
12~ . 

Thie i;;egra~p:rat~i O must be replaced by 

0 - i=l ik 191.i 
2. The expression for oT rk must be preceded by a minus sign 

(-). 

3. The parameter 1c}1 must be omitted from the expression 

for 5T rk· 

4. The displacments u, v, w and their spatial derivatives 

w, , w, 9, u, in the expression for 5T k must be replaced by their 
x e . r 

double derivatives with respect to time:, i.e., ii, v, w and w, ·, 
x 

w, 0, ii, 9 • The variational terms associated with the displacements 

and their spatial derivatives remain unchanged. 

5. The term R must be interpreted as the radius of curva
c 

ture at the centroid of the kth ring .. 
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Virtual Work of External Forces 

The variation of the work done by the distributed surface 

forces is given by 

where 

oW d = {of}! {F} d Rd x d e (2. 18a) 

0 

p (x, e) f (t) 
x x 

p (x, e) f (t) e e 

p (x, e) f (t) 
. z z (2. 18b) 

In Equation (2. 18b) the functions p , p , p represent the 
x e z 

spatial variation of the loading, where as the functions fx, f 6, fz 

represent the temporal variation. 

Similarly the variation of the work done by the concentrated 

surface forces is given by 

where 

oW = 
cf t 

i=l 

j of. l T 
1 1 f O 

ou(x., e.) 
1 1 

ov(x., e.) 
1 1 

ow (x., e.) 
1 1 

(2.18c) 

(2.18d) 
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and 

F (x., 8.) f (t) 
X 1 1 X 

F (x.,9.)f (t) 
Z 1 1 Z (2. 18e) 

Displacement Functions 

Using Hamilton's principle as a basis, an approximate solu-

tion of the problem is sought by the application of the Rayleigh-Ritz 

method. The displacements u, v, and w defining the deflected surface 

of the shell are expressed in the form 

u(x, e, t)= L L 
m n 

[ qus (t) @us (9) + qua (t) 8ua(e)J Xu (x) 
mnn mnn m 

· (2.19a) 

v(x, 9, t)= L L q (t) (BJ (9) + q (t) (BJ (9) X (x) [ vs vs va va ~ v 
mnn mnn m 

m n (2.19b) 

w(x, e, t)=L L 
m n 

[ ws ws · wa . wa J w 
q (t) 8 (9) + q (t) 8 (9) X (x) 

mn n mn n m 
(2. 19c) 

Periodic functions are used for the circumferential direction 

h .f . us vs 
since the shell is closed in that direction. T e unctions q , q , 

mn mn 

ws 
q are the time-dependent generalized coordinates associated with 

mn 

tne 9- symmetric modes for the displacements u, v, and w, 

respectively. 
ua va wa 

Similarly, the functions q , q q are those 
mn mn' mn 

·associated with the 8-antisymmetric modes. 
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The axial mode functions for the present analysis are chosen 

as 

u d 
X (x) = -d <I> (x) 

m x m (2.19d) 

v 
X (x) = ff (x) 

m m (2. 19e) 

w 
X (x) = ¢ (x) 

m m (2. 19f) 

where the functions cp (x) are the characteristic functions represent
m 

ing the normal modes of vibration of a uniform beam. The boundary 

conditions provided for in this analysis and the longitudinal functions 

that are used for each are shown in Tab le I. 

The circumferential mode functions for the present analysis 

are chosen as 

us ua 
sin ne ® ( e) = cos ne ® ( e) = n n 

(2.19g) 

® vs ( e) = sin ne (8) va ( 9) - - cos ne 
n n 

(2. 19h) 

® ws( e) = cos ne (8) wa ( e) = sin.n e 
n n 

(2. 19i) 

In terms of the assumed displacement functions the shell dis-

placement vector may be expressed as 

' u 

v 
(2. 20a) 

w 



TABLE I 

KINEMATIC BOUNDARY CONDITIONS AND LONGITUDINAL FUNCTIONS 

IN THE ASSUMED DISPLACEMENT SERIES 

Boundary Condition 

Freely supported 

Clamped-clamped 

· Clamped-free 

Free-Free 

x=O: l 
x=a: { 

x=O: l 
x=a: { 

v=w=O 

. ow 
u=v=w=-- =0 . ax 

ow 
x=O: · u=v=w=- =0 

~x 
x=a: None 

x=O:! None 
x=a: 

¢ (x) 
m 

er . (x) 
m 

Longitudinal Functions, 4 · (x) 
m 

• r-;-- . mnx =vc. sin-
a 

= mth natural vibration mode function of a 
clamped- c lampe4 beam~) · · 

th . . 
q,m(x) = m natural vibratioJ.)mode function of a 

clamped-free beam. 

qi (x) = 1 
0 

x 1. 
ip· (x) = - - - . 

1 a 2 

q,m(x) = (m- l)th natural 1\bration mode function of a 
free-free beam, (~2). 

a)The 'i>'~am mode functions are give·n in Appendix B. 
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where 

{Nus}T {Nua}T 0 0 0 0 

[NJ = 0 0 {Nvs}T { Nva} T 0 0 

0 0 0 0 {Nws} T {Nwa}T 

(2. 20b) 

is a (3 x N) rectangular matrix of displacement functions, N being 
t t 

the total number of terms in the assumed displacement series, 

and 

{ q us} 

{qua} 

{q} = 

{ q vs} 

{qva} 

{q ws} 

{qwa} 
(2. 20c) 

is an (Nt x 1) column matrix of time-dependent generalized coordi-

nates. 

Using Equation (2. 20a) all the variations of the strain and 

kinetic energies as well as the virtual work of external forces can be 

expressed in terms of the time-dependent generalized coordinates. 

Further, substitution in Equation (2. 2) leads to a system of coupled 

second order ordinary nonhomogeneous differential equations with 

constant coefficients. This may be written in matrix form as 
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(2.21) 

where [M) and [K) are the generalized mass and stiffness matrices 

and { P} is the matrix of time-dependent generalized forces. Excluded 

details of steps leading to Equation (2. 21) are given in Appendix C. 

Equations (2. 20a) to(2. 20c) indicate that in the equations of 

motion defined by Equation (2. 21) the 'q's associated with the 9-syrn-

metric modes and the e- antisymmetric modes occur alternately. 

However, for the sake of convenience Equation (2. 21) can be 

rearranged to result in the following form: 

In Equation (2. 22) the off-diagonal submatrices of both the 

stiffness and mass matrices vanish if the cross- section of the stiffened 

shell is symmetric with respect to the e = 0 axis. Thus, the above 

equation is uncoupled into two matrix equations-- one for the sym-

metric, and the other for the antisymmetric modes. The equation for 

the symmetric modes may be written as 

Mll M12 M13 
.. u 

{q} Kll K12 K13 {q} u {Pl}u 

M12T M22 M23 Fi }v + T 
K22 K23 {q} v {P2}v Kl2 = 

Ml3T M23T M33 {q }w Kl3T K23T K33 {q} w P3}w 

(2.23) 
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Similar equations can be written for the antisym.rnetric modes. 

The elements of the mass and stiffness matrices in Equation 

(2. 23) are obtainable from the basic forms available in Appendix D 

of Reference ( 14) by the following procedure: 

· 1. Calculate the elements for the complete shell from the ex

pressions of Appendix D (14) as described therein with the exception 

that for the longitudinal functions in the ring integrals the expressions 

given in Appendix D of the present work are to be used. 

2. Calculate the corresponding elements for each cutout (in 

the region O :5 0 :5 TT because of symmetry) from the expressions of 

Appendix D ( 14) 

(a) by changing the limits of integration of the drcumferential 

integrals given in Appendix E ( 14) from '0 to rr' to I eli to e2i, i 

(b) by using Appendix E of the present work for the longitudi

nal integrals over the cutouts. 

3. Sum up the values of each element over the number of cut

outs and subtract from the value of the co·rresponding element, calcu-. 

lated in Step· 1. 

The elements of the fot'ce matrix in Equation (2. 23) are pre

sented in Appendix F. 



CHAPTER Ill 

SOLUTION OF THE EQUATIONS OF MOTION 

Static Loading 

The static response of the stiffened shell with cutouts may be 

obtained as a special case of Equation (2. 21) by putting the accelera-

tions equal to zero,. i.e. , 

(K] {q} = {P} (3. la) 

where P is a time-independent column matrix of generalized forces. 

The response in terms of the generalized coordinates is 

obtained as 

(3.lb). 

Free Vibrations 

The natural frequencies and mode shapes are obtained as 

another special case of Equation (2. 21) by putting the force matrix 

{P} = {o} (3. 2a) 

~nd 

for harmonic motion. Thus we have 

([K] - u? [ M] ) {q} = {o} (3. 2c) 

33 
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which results in an eigenvalue problem. 

Time-Dependent Loading 

The system of Nt second- order equations (2. 21) may be 

reduced to a system of 2Nt first-order equations as follows. Pre-

multiplying Equation (2. 21) by [Mf 1 we get 

{q ~ + [Mf l [K] {q} = [Mf 1 {P} (3. 3a) 

Introducing th~ new variables defined by 

(3. 3b) 

and 



we reduce Equation (3. 3a) to 

and 

yl = YN +l 
t 

. 
Yz = YN +2 

t 

a - t 
j=l 

N 

YN +z = -t 
t . 1 . J= 

• 

N 

[ [Mr 1 [K] J 2j yj + t [Mr !j 

j=l 

(3.3c) 

YzN 
t 

t [ [Mf l [K] JN . 
t, J 

y, + 
J 

[M]~ {p} .. 
t . J 

, J j=l j=l 

35 

Equation (3. 3c) represent a system of ZNt first-order equations 

and can be represented conveniently as 
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( 3. 3d) 

(3. 3e) 

where 

. T 
........•....•...... ,yNt}. ( 3. 3f) 

and 

( 3. 3g) 

The system of first- order equations has been solved by means 

of fourth- order Runge-Kutta method with automatic step- size con-

trol(ll). 

Once the generalized coordinates (q's) are obtained, the 

various physical quantities of interest, namely displacements, 

strains, etc. , can be calculated by tracing backwards, the analysis 

developed in the preceding chapter. 

The displacement components of a point on the middle surface 

of the shell are given by 

u 

v = 

w 
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The displacement components of a point on the stiffener are 

given by 

u 

v 

w 
i 

i = s L for. tth stringer 

i = rk for kth ring 

The components of strain for the ith element are given by 

i = 0, s J,,, rk 

The components of the stress- resultant vector for the ith 

element are given by 

The· strain energy stored in the ith element is given by 

i = 0, sJ,,, rk 

. The kinetic energy of the ith element is given by 

Some of the above quantities are expanded and presented in 

Appendix G. 

Computer Program 

A computer program was developed to determine the dynamic 

response of a ring and I or stringer stiffened noncircular cylindrical 

shell with rectangular cutouts, subjected to time-dependent loads .. 
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The structure should be symmetric about a 9 = 0 axis of the shell. 

Longitudinal asymmetry is permitted. No edge loadings are per

mitted in the analysis. Only surface loads distributed symmetrically 

or antisymmetricallywith respect to 9 = 0 axis are allowed. The 

loads should be specified by analytical functions such that their 

spatial and temporal variations are separable. 

The p·rogram is written in FORTRAN- IV language and is 

adapted to th_e Oklahoma State University IBM Model 360/ 65 com

puter. The program has options to perform static and free vibration 

analysis as special cases of the transient response analysis. All the 

four boundary conditions of Table I are aHowed. An arbitrary choice 

of terms is permitted in each of the displacement series. Efficient. 

use is made of computer storage by storing only the upper triangular 

part of the symmetric matrices. 

Computational procedures used for the three different cases 

are described in Appendix H. 



CHAPTER IV 

NUMERICAL RESULTS 

Int reduction 

The feasibility of the method of approach described in this dis

sertation was first studied by making comparisons of the results of 

this study with known solutions which correspond to special or limit

ing cases of the problem under consideration. This was followed by 

several studies to examine the effect of cutout parameters on the nat

ural frequencies and mode shapes, as well as on the transient dis

placem.ent and stress responses of the shell. The results of these 

studies a re presented in this chapter. 

The vibration problem of a complete shell with prescribed edge 

conditions can be studied by varying three independent parameters- -

the thickness-to- radius ratio, the length-to- radius ratio, and 

Poisson's ratio. In the presence of a cutout three additional para-

. meters can be independently varied--the ratio of the span of the cut

out to the length of the shell, the arc of cutout, and the location of. 

cutout. Because of the large number of variables involved, it appear

ed necessary to limit the scope of the present investigation. Thus, 

the parametric study is restricted only to the cutout parameters. 

39 
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Only unstiffened shells with freely supported boundary conditions are 

considered. In the case of transient analysis a time-dependent load

ing typical of an air- blast is considered. The pressure distribution is 

described by a sinusoidal variation along the longitudinal direct-

ion, a cosinusoidal variation around half the periphery and a quasi

exponential decay with time. 

Comparison with Known Solutions 

The computer program of the present work was developed frorn 

that of Reference (14) by extending the latter to include the effects of 

cutouts and dynamic loads. Besides, some program refinements 

were done and are partly detailed below. 

1. The ranges over which the indices m and n vary in the dis

placement series could be prescribed arbitrarily. 

2. A modified representation for the longitudinal mode functions 

was used because of their better numerical accuracy (See Appendix 

B). 

3. More efficient sub routines for performing matrix operations, 

we re incorporated in the computer program. 

The results from the present program, on free vibrations of ring 

and/ or stringer stiffened circular cylindrical shells without cutouts 

were found to be in close agreement with those of Reference (14). 

The little literature published on the dynamic response of shells 

with cutouts did not facilitate a comparison promising enough to 
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establish the correctness of the computer program as to its capacity 

to handle cutouts. Brogan's model _(l) has boundary conditions which 

do not correspond to any of the four boundary conditions considered 

here. Malinin (2) presented three frequencies and the corresponding 

mode shapes for a freely supported shell with a symmetric cutout of 

0 
span = 6/lOth the length of shell and arc = 90 . But the .value of 

Poisson's ratio used in computation was not given in the paper. His 

calculations showed that the presence of the cutout dee reased the low-

er frequencies by 2 - 3%. The present analysis (using v = . 3) showed 

that the lowest frequency decreased by more than 50%. A substantial 

reduction is reasonably expected in the lowest frequency for such a 

large cutout. He used the same series for the displacements as in the 

present analysis except that, as indicated by Equation (9) of (2) the 

axisymmetric term (n = 0) is not included. By intentionally excluding 

the axisymmetric term, the present analysis gave results which were 

not too far from his results. The closest agreement in mode shape 

was obtained for the mode with m>:~ = 1, n* = 6. No information was 

given in the paper as to the axial coordinate at which the ci rcumf e rent-

ial wave forms we re plotted. Consequently,. there appeared no dis-

tinct possibilities of bringing into clearer light the sources of 

discrepancy. However, there was ample scope for testing the com-

puter program by considering special cases for the general problem. 

Several of these test studies are presented next. 
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Static Response 

Table II shows a comparison of the static response of a freely 

supported circulcfr cylindrical shell subjected to a uniform internal 

pressure, with the exact solution given by Timoshenko (15). The re-

sponse quantities were calculated by using Equations ( .t) and (n) on 

p. 477 of (15) .. The following physical constants were used: E = 10 7 

psi; p = 0. 0002588 tb-sec 2 /in\ v = 0. 3, h = 0.1"; R = 10"; a= 20"; 

Pz = lOOpsi. The number of terms used for each of u and w was 20, 

with n = 0 and m = 1, 3, ... , 39. The comparison shows excellent 

agreement for the normal displacement and the circumferential mid-

. 0 
plane stress (cr 8 ). As regards the bending moment (Mx), the values 

are accurate to one digit at least in the regions where considerable 

bending takes place. The fact that the membrane stresses have con-

verged far better than the bending stresses may be attributed to the 

fact that the former does not involve any derivatives of w whereas the 

latter involves the second derivatives of w. Differentiation of a con-

ve rgent series tends to worsen the rate of convergence. However, 

the accuracy of results obtained in this case suffices practical pur-

poses, since one is interested in peak stresses and the overall stress 

field rather than small local variations. 

Step Response 

Figure 4 shows the displacement (w) and bending moment (Mx) 

responses for the same shell of Table II, but the pressure applied as 



x 
(in) 

10. 0 

11. 0 

12. 0 ·• 

13. 0 

14. 0 

15. 0 

16. O 

111. 0 
I 

I 18. 0 

TABLE II 

COMPARISON OF STATIC RESPONSE OF A FREELY SUPPORTED 
· SHELL TO UNIFORM INTERNAL PRESSURE 

w X 10+2 cro x 10-4 
Mx 

(in) 
e . . . 

(psi) (lb-in/in) 

Present Present Present 
Ref. (15) .. Analysis Ref. ( 15) Analysis Ref. (15) Analysis 

1. 0 0.999 1. 0 0.999 4.492-5 -3.970-2 

1. 0 1. 0 1. 0 1. 0 -2. 186-4 -4. 070-2 

1. 0 o.·9999 1. 0 0.9999 -7.816-4 -4. 250-2 

1. 0 1. 004 1. 0 1. 004 1. 548- 3 -4. 330:-2 

0.9999 0.9998 0.9999 0.9998 1. 340-2 · - 3. 540-2 

0.9984 0.999 0.9984 0.999 7. 016-3 -4.930-2 

0.9976 0.9933 0.9976 0.9933 -1.609-1 -2.276-1 

1. 016 1. 016 1. 016 1. 016 - 4. 194-1 -5.052-1 

1. 064 1. 064 1. 064 1. 064 I 1. 250 1. 129 
I 
I 



TABLE II (Continued) 

w X 10+2 a; x 10- 4 I 
Mx 

(in) (psi) (lb- in/in) 

x Present Present Present 
(in) Ref. (15) Analysis Ref. (15) Analysis Ref. (15) Analysis 

19. 0 0.9221 0. 9217 0.9221 o. 9217 8.030 7.823 

19. 1 0.8735 0.8733 0.8735 0.8733 8. 713 8.592 

19. 2 o. 8154 0. 8156 o. 8154 0. 8156. 9.268 9.309 

19. 3 o. 7471 0.7477 o. 7471 0.7477 9.638 9.855 

19. 4 0.6684 0.6691 0.6684 0.6691 9. 754 10. 08 

19. 5 0. 5 791 0.5795 0.5791 0.5795 9.538 9.833 

19. 6 0.4793 0.4793 0.4793 0.4793 8.900 8.993 

19. 7 0.3699 0.3693 0.3699 0.3693 7.740 7.503 

119. 8 0.2521 0.2511 o. 2521 0. 2511 

I 
5.95 5.406 



TABLE II (Continued) 

w X 10+2 0 X 10- 4 oe Mx 
(in) {psi) (lb- in/ in) 

x Present Present Present 

( in) Ref. ( 15) Analysis Ref. (15) Analysis Ref. (15) Analysis 

19. 9 0. 12 79 0. 12 71 0.12 79 0. 12 71 3. 411 2.833 

20.0 0.0 0.0 0.0 0. 0 0.0 0.0 

I 
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a step function of time. Thew plotted corresponds to the maximum 

(spatially) displacement, occurring at mid- span; the Mx plotted 

corresponds to the maximum (spatially) bending moment, occurring at 

~ 0. 97 span. · The same number of terms as for the static case were 

used here. The corresponding static solutions are also shown in the 

figure as horizontal lines. These also form the mean positions about 

which the oscillations take place, as is to be expected. The displace

ment response of Figure 4 is quite different from that of a simple 

spring-mass system to a step excitation. In the latter case the mass 

will oscillate between zero displacement and a maximum displacement 

equal to twice the static displacement. The difference is seen from 

the fact that in the series summation of Equations (2. 19a) to (2. 19c), 

generally speaking, each term is out of phase from the others and the 

final result is not characterized by any single mode but rather by the 

diffusion of all modes. The figure also indicates the presence of high

er modes in Mx. Unlike the expression for w, the expression for~ 

has the time-dependent generalized coordinates multiplied by the deri

vatives of w. This would result in the higher modes weighed heavily 

for Mx. · This explains the difference in the frequency spectra between 

the two plots. 

Figure 4 also reveals that the radial displacement response plot 

contains a predominant oscillation whose period is approximately 0. 33 

milliseconds. It was found from a free vibration analysis of the same 

shell that the frequency of the lowest axisymmetric mode was 3044 



48 

Hz. This was a transverse mode with one axial wave. This fre-

quency corresponds to a period of 0. 328 milliseconds and thus agrees 

closely with the period of the predominant wave shape in the radial 

response plot. 

Com_earison with Sheng's Example 

Using William.'s method Sheng (6) presented the response of a 

freely supported circular cylindrical shell to a semisinusoidal pulse 

of uniform pressure given by 

pz(x, 9, t) = pz (t) = -1000 sin 1003t 0 :'St :'S 3. 133 msec. 

p ( X, 9, t) = p (t) = 0 
z z 

t > 3.133 msec. 

The same problem was studied by the present method using 5 and 

10 terms in each of the u- and w-displacement series and a time step 

= 1/200 th of the period of the pulse. Halving the time step did not 

change the results. To ascertain that the results have converged 

sufficiently, a third set of results were obtained using 20 terms and a 

time step = 1/ 400 th of the period of the pulse. The maximum radial 

displacement (20 terms solution) at the midpoint of the shell attained 

was w = 0. 2006 in. at t = 2. 444 msec. as compared tow = O. 21 in. at 

t = 2. 5 msec. presented by Sheng. A comparison of the responses is 

shown in Figure 5. Sheng's curve is reproduced here without convert-

ing to the present scale, but inverted to conform to the adopted con-

vention for w. The times at which the radial displacement first 
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becomes zero after reaching the peak value, as calculated from 

Sheng's figure and the present analysis agree very well. The re-

sponse patterns agree very well in general except that Sheng's figure 

indicates the presence of a higher mode of vibration in the response. 

The pulse frequency was 160 Hz. , and the lowest two natural fre-

quencies of the shell were found to be 156 Hz. and 248 Hz. It is rea-

sonable to expect, in this case, a negligible participation of higher 

modes in the response and the results of the present analysis conform 

to this point of view. 

No comparative study of the results on transient response of 

stiffened shells was possible due to lack of availability of published re-

sults with which results from the present program could be compared. 

Special Cases of Cutouts 

The capability of the program to handle cutouts was tested in the 

following ways. 

1. A shell with one cutout may be treated as an equivalent shell 

with a number of smaller cutouts (see Figure 6). 

2. A clamped-free shell fixed at X. = 0 and free at X = a may be 

treated as an equivalent shell with a length = a + t>,a terminating in a 

0 
6,a X 360 cutout at the free end (see Figure 6). 

3, A clamped-free shell of length 'a' may be treated as an equiva...; 

lent clamped- clamped shell of length· '2a + 6a' with a centrally located 

0 . 
/;.a X 360 cutout (see Figure 6). 



ACTUAL 
MODEL 

ONE CUTOUT 

C - CLAMPED 
F - FREE 

FS - FREELY SUPPORTED 

Figure 6. 

( 1) 

EQUIVALENT 
MODEL 

FOUR CUTOUTS 

mx 360"CUTOUT ----:,M 
~-~v~ 
c~ ( 3) 

( 4) and ( 5) 

Special Cases of Cutouts 
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4. An open circular cylindrical shell of length a and included 

angle 0 with all edges freely supported may be treated as an equiva
o 

lent closed shell of length a with the ends freely supported and a cutout 

of span a and included angle 211 - 00 , the edges of the cutout being 

freely supported. In particular, for the special case where e O is 11 

divided by an interger i, the freely supported boundary conditions. 

along the straight edges of the ·cutout are satisfied by choosing terms 

with n = i, 3i, Si, 7i, ... for symmetric modes (see Figure 6) . 

. 5. An open circular cylindrical shell of length a and included 

angle e with the curved edges freely supported and straight edges 
0 . . 

free may be treated as an equivalent closed shell of length a with 

the ends freely supported and a cutout of span a and included angle 

211 - 0 0 , the edges of the cutout being free. The free edge boundary · 

" conditions may be satisfied in a limiting sense by using an appropriate 

linear combination. of terms from the general series (see Figure 6). 

For sake of clarity all the above special cases are illustrated in 

the same order in Figure 6. 

Using typical configurations free vibration studies were perform-

ed for the equivalent models in all the five cases mentioned above. 

The agreement among the results was exact in Cases l, 2, 3, and 4. 

In Case 5, the maximum discrepancy was found to be less than So/o. 

·This may be attributed to the fact that the numerical results used for 

comparison were based on Donnell's theory with tangential inertia. 

neglected. 
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Convergence Study 

ln the application of the Rayleigh- Ritz method, the problem of 

estimating the accuracy of the results is usually encountered. The 

accuracy of the results depends to an appreciable extent on the cap-

ability of the employed admissible functions to approximate the true 

shape of the deflected surface to the required degree. An increase in 

the number. of terms tends to improve the accuracy of the results in 

general, but the resulting increase in the size of the matrices, round-

off errors and computer costs often limits the accuracy of the results. 

Table III shows a convergence study of the frequencies of vibra-

tion of a freely supported shell with a cutout of length a/10 and arc 

30° located symmetrically about e = 0° and x = a/2. The frequencies 

0 
correspond to modes which are symmetric about e = 0 and x. = a/2. 

The number of terms were increased from m = 1 to 7 (odd only) in the 

axial direction and from n = 0 to 9 in the circumferential direction. 

The frequencies show a trend towards convergence. The results 

appear to have sufficiently converged. The effect of the cutout on the 

frequencies was quite small for this configuration. 

Another convergence study was performed for a freely supported 

shell with a cutout having a span of 1/3 rd the length of the shell and 

0 
an included angle of 90 . The results are presented in Table IV for 

the lowest four frequencies corresponding to modes passes sing both 

axial and peripheral symmetry. Several combinations of terms were 
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TABLE III 

CONVERGENCE STUDY .I: FREQUENCIES FOR A SHELL a) 
WITH A SYMMETRIC CUTOUT (SPAN = . la, ARC = 30°) 

~. 

Frequencies (hz) of Several Symmetric Modes (m* = 1) 

No M=l M=2 M=3 M=3 M=3 M=3 M=4 
n* Cutout N=l N=2 N=4 N=6 N=8 N=lO N=lO 

0 2537 2535 2535 2535 2535 2535 2536 2~34 

1 1565 1575 1574 1576 1576 1576 1573 

2 894. 1 898.2 897. 6 897.4 897.4 895.0 

3 529.8 530.8 530.2 529.9 529.7 52 7. 7 

4 338.6 338. 1 337. 8 337. 7 336.2 

5 235.6 235.1 ·234.8 234.7 233.7 

6 182. 1 181. 7 181. 6 181. 0 

7 162.2 162. 0 161. 9 161. 6 

8 166. 9 166. 9 166. 7 

9 188. 6 188. 6 188. 6 

a) The geometry of the shell is the same as Model 1 of (16) except for· 
the cutout. 

M = number of terms in the longitudinal direction (odd only). 

N = number of terms in the circumferential direction. 
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TABLE IV 

CONVERGENCE STUD.Y II: FREQUENCIES FOR A SHELL a) 
WITH A SYMMETRIC CUTOUT (S:J?AN = la, ARC = 90°) 

Frequencies (Hz.) of the Lowest Four Symmetric Mode (m* = 1) 

No M=l M=2 M=3 M=4 M=4 ·M=5 M=6 
Cutout N=8 N=8 N=ll N=8 N=lO N=8 N=7 

307.0 309.3 298.4 251. 1 170. 3 168. 2 146. 9 144. 8 

334.5 335.8 331. 2 296.7 296.0 .290.5 295.5 301. 4 

362.1 372. 3 349.6 32·9, 7 331. 3 329.0 330,9 333,l 

412. 8 420.2 416. 3 407. 0 401. 5 399,2· 399.9 402.5 

a) The parameters of the shell are: R = 12 in., E = 10 7 psi., v = 0. 3, 

. 2 4 
p = O. 0002588 lb- sec /in , a = 24 in., h = 0. 12 in. 



56 

used in the displacement series in order to arrive at a good upper 

bound for the lowest frequency. 

Subsequent calculations will be performed by limiting the number 

of degrees of freedom to a maximum of 126. Different combinations 

of terms will be tried to arrive at better upper bounds for configura-

tions with large size cutouts such as the one considered above. 

Effect of Varying the Size of Cutout on 

the Modes and Frequencies 

This section presents the natural frequencies and mode shapes of 

vibration of a freely supported cylinder with two rectangular cutouts 

symmetrically located with respect to the length of the cylinder and a 

diameter. This gives rise to an additional plane of symmetry thereby 

doubling the maximum number of terms in the displacement series for 

the same computer storage. 

Tables V, VI, and VII present the frequencies of the above shell 

with various size cutouts. The frequencies correspond to modes which 

are symmetric with respect to x = a/2 plane and e = 0° plane, the 

latter passing through the centre of cutouts. The cutout sizes con-

sidered include all combinations of cutout angles of 15°, 30°, 45°, 60°, 

0 0 
75 , 90 and cutout spans of 0. la, 0. 2a, 0. 3a. Different combinations 

of terms were considered to obtain better upper bounds for the frequen-

cies. With regard to the lowest frequency, the best possible estimate 

for the upper bound was obtained in general with 7 axial terms and 6 



No Cutout 

307. 0 (1, 5) 

334. 5 (1, 6) 

362. 1 (1, 4) 

412. 8 (1, 7) 

521. 1 (1, 8) 

535. 1 (1, 3) 

650. 9 (1, 9) 

798. 8 (1, 10) 

894. 9 (1, 2) 

942. 4 (3, 8) 

TABLE V 

EFFECT OF CUTOUT SIZE ON THE FREQUENCIES OF A SHELL a) 
(CUTOUT SPAN= O. 1 a, CUTOUT ANGLE VARIES) 

. la X 15 
0 

. la X 30 
0 

. la X 45 
0 

. la X 60 
0 

. la :X 7 5 
0 

304.5 (1,5) 296.0(1,5) 292. 2 (1, 5) 292. 7 (1, 5) 290. 6 (1, 5) 

333. 4 (1, 6) 327.4 (1,6) 322.0(1,6) 322.6(1,6) 321. 6 (1, 6) 

359.0(1,4) 347.2 (1,4) 341.6 (1,4) 338. 1 (1, 4) 337. 8 (1, 4) 

412. 1 (1, 7) 411.4 (1,7) 410. 8 (1, 7) 409. 6 ( 1, 7) 408. 8 (1, 7) 

520. 8 (1, 8) 512. 1 ( 1, 3) 494.3 (1,3) 482.5 (1,3) 480.1(1,3) 

531.7(1,3) 520. 9 (1, 8) 520. 9 (1, 8) 520.3(1,8) 519. 9 (1, 8) 

651.0(1,9) 650. 3 (1, 9) 650. 3 (1, 9) 650. 8 (1, 9) 650. 1 (1, 9) 

797. 9 (1, 10) 797. 6 (1, 10) 798. 2 (1, 10) 798. 1 (1, 10) 798. 0 ( 1, 10) 

896. 1 (1, 2) 875. 9 ( 1, 2) 850. 6 (1, 2) 827. 8 (1, 2) 809. 3 (1, 2) 

943.8(3,8) 941.0 (3,8) 947. 8 (3, 8) 946.5(3,8) 944. 3 (3, 8) 

. la X 90 
0 

282. 3" (l~ 5) 

315. 0 (1, 6) 

337.4 (1,4) 

408. 5 (1, 7) 

482.7(1,3) 

519.0(1.8) 

649. 9 (1, 9) 

798. 1 (IR) 

801. 5 (IR) 

950. 0 (3, 8) 

a) The parameters of the shell are given in Table IV. The two cutouts are located diametrically 
opposite and centered at midspan. 

u, 
--J 



No Cutout 

307.0 (1,5) 

334. 5 (1, 6) 

362. 1 (1, 4) 

412. 8 (1, 7) 

521. 1 (1, 8) 

535. 1 (1, 3) 

650. 9 (1, 9) 

798. 8 ( 1, 10) 

894. 9 (1, 2) 

942. 4 (3, 8) 

TABLE VI 

EFFECT OF CUTOUT SIZE ON THE FREQUENCIES OF A SHELL a) 
(CUTOUT SPAN= O. 2a, CUTOUT ANGLE VARIES) 

. Za X 15 
0 

. 2 a X 30 
0 

. 2a X 45 
0 

. ZaX 60 
0 

. 2a X 75 
0 

301.5(1,5) 279. 8 (1, 5) 245. 5 (1, 5) 209. 6 (1, 4) 177.6 (1,4) 

330.6 ( 1, 6) 307.7 (IR) 255. 4 (1, 4) 211.0 (1,5) 186. 1 (IR) 

356. 2 ( 1, 4) 340.5 (IR) 281. 4 (1, 6) 328. 7 (1, 6) 320. 4 (1, 6) 

410. 1 (1, 7) 408.2 ( 1, 7) 406. 0 (1, 7) 383.4(1,3) 330.8 ( 1, 5) 

519. 5 (1, 8) 492.2(1,3) 440.6 (1,3) 406. 6 (1, 7) 407.0 ( 1, 7) 

530. 4 (1, 3) 516. 9 (1, 8) 515. 4 ( l, 8) 518. 8 ( 1, 8) 516. 6 ( 1, 8) 

650. 6 (1, 9) 645. 2 (1, 9) 646. 4 (1, 9) 648. 4 (1, 9) 605. 3 (1, 2) 

793. 9 (1, 10) 791. 6 ( 1, 10) 791.2 (1,2) 704.8(1,2) 648. 7 (1, 9) 

898. 3 (1, 2) 866.3 (1,2) 800. 4 (1, 10) 793. 1 (1, 10) 793. 0 (1, 10) 

946. 5 (3, 8) 935. 3 (3, 8) 940. 2 ( 1, 11) 946. 8 ( 1, 11) 947.9 (1,11) 

. 2a X 90 
0 

162. 0 ( 1, 4) 

169. 7 (1, 3) 

281. 4 (1, 5) 

308. 6 (1, 6) 

. 404. 1 (1, 7) 

501. 7 (1, 2) 

518. 5 (1, 8) 

648. 4 ( 1, 9) 

794. 8 ( 1, 10) 

945. 7 (1, 11) 

a) The parameters of the shell are given in Table IV. The two cutouts are located diametrically 
opposite and centered at midspan. 

U1 
00 



No Cutout 

307. 0 (1, 5) 

334. 5 (1, 6) 

362~ 1 (1, 4) 

412. 8 (1, 7) 

521. 1 (1, 8) 

535. 1 (1, 3) 

650. 9 (1, 9) 

798. 8 (1, 10) 

894. 9 (1, 2) 

942. 4 (3, 8) 

TABLE VII 

EFFECT OF CUTOUT SIZE ON THE FREQUENCIES OF A SHELL a) 
(CUTOUT SPAN = 0. 3a, CUTOUT ANGLE VARIES) 

0 
. 3a X 15 . . 3a X 30 

0 . 0 
. 3a X 45 . 3a X 60 

0 
. 3a X 75 

0 

300. 5 (1, 5) 277.5 (1,5) 239. 6 (1, 5). 199. 2 (1, 4) 159. 7 (1, 4) 

329. 5 (1, 6) 304. 1 (1, 6) 250. 5 (1, 4) 200. 8 (1, 5) 168. 3 (IR) 

356.2 (1,4) 338. 6 (1, 4) 329. 7 (1, 6) 323. 8 (1, 6) 319. 6 (1, 6) 

408. 5 (1, 7) 401. 2 (1, 7) 395. 5 (1, 7) 380. 2 (1, 3) 324. 9 (1, 5) 

518. 4 (1, 8) 497. 0 (1, 3) 440.1(1,3) 404. 1 (1, 7) 406. 0 (1, 7) 

531. 4 (1, 3) 506. 5 (1, 8) 506. 0 (1, 8) 518. 5 (1, 8) 507. 2 (1, 8) 

651. 1 (1, 9) 630. O (1, 9) 640. 3 (1, 9) 632. 5 (1, 9) 604. 6 (1, 2) 

786. 7 ( 1, 10) 771. 2 (1, 10) 784. 6 ( 1, 10) 708. 8 (1, 2) 627.6(1,9) 

902. 3 (1, 2) 881. 1 (1, 2) 809. 5 (1, 2) 757. 7 (1, 10) 785. 4 (1, 10) 

946. 1 (1, 11) 914. 2 (3, 8) 868. 5 (IR) 857. 6 (IR) 890. 5 (IR) 

. 3a X 90 
0 

132. 1 n. 4) 

139.1(1,3) 

276.2(1,5) 

307. 0 (1, 6) 

396. 0 (1, 7) 

492. 8 (1, 2) 

508. 0 (1, 8) 

647.3(1,9) 

765.·6 (1, 10) 

838. 7 (IR) 
a) The parameters of the shell are given in Table IV. The two cutouts are located diametrically 

opposite and centered at midspan. u, 

'° 
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circumierential terms. The author hopes that possible inaccuracies 

iri the numerical results d·.1e to poor convergence would not be fatal 

enough to prevent making parametric observations. 

The frequencies have simply been arranged in ascending numerical 

order, with the appropriate mode shape noted after the value for the 

frequency wherever possible. For the complete shell, the motion is 

sinusoidal in the circumferential as well as in the axial directions, 

and there is no difficulty in identifying the mode shapes. For the 

shell with cutouts, the eigenvectors associated with many of the fre-

quencies revealed the presence of a dominant wave form in the mode 

shape. However, there were many other frequencies for which the 

eigenvectors revealed either a strong coupling of two distinct wave 

forms or a combination of several different wave forms in varying de-

grees. In Tables V, VI, and VII, the dominant wave form in the mode 

shape is identified wherever possible by the notation (m':', n':') after the 

value for the frequency. Irregular mode shapes have been denoted by 

the notation (IR) after the values for the corresponding frequencies. 

A decrease in the frequency for a given dominant wave form was 

observed in general. Increasing the cutout size to 0. 3a X 90° had an 

effect of reducing the lowest frequency by about 53%. In reference (1), 

Brogan has given a value of less than 7% for the reduction in the mini-

0 
mum natural frequency for a 0. 3a X 120 cutout. His shell model had 

boundary conditions close to clamped- clamped ones. This results in 

the stiffer parts being located near the boundaries and thus away from 
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the cutout. In the present case, the central part of the shell is the 
. . I 

major load carrying member and is weakened by two cutouts of size 

O. 3a X 90°, thus resulting in a substantial reduction in the lowest 

natural frequency. 

Figure 7 shows how the frequencies vary as a function of the 

dominant circumferential wave number for different size cutouts. In 

the case of a complete shell or a shell with the two cutouts of either 

a small span or a small angle the frequencies vary as a smooth func-

· tion of the circumferential wave number. But with increase in the 

size of the cutouts these curves do no longe.r behave, as may be seen 

in the figure. A possible explanation for this behavior lies in the 

fact that, with increase in the size of cutouts, the circumferential 

wave number becomes less and less capable of defining the mode 

shape and merely represents the wave form that has the largest am-

plitude in the analytically obtained eigenvector. Nevertheless, this 

form of presenting shell vibration data conveys useful information. 

For instance, the curves for large siz~ cutouts appear to break up 

into two distinct parts, one confined to the region of circumferential 

wave forms substantially affected by the cutout and the other vice 

versa. 

A study of the mode shapes was made in many cases. Figures 

8, 9, 10, and 11 show some representative wave forms. The notation 

'SSS' refers to mode shapes which are symmetric about all the three 

. . 0 
planes of symmetry, namely the X = a/2 plane, the e = 0 plane and 
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1.0 

-1.0 
132.7 Hz 798.1 Hz 

0.3a X 90°, X = 8.4 in. 0.1 a X 9 0 °, X = IO. 8 in . 

(a) ( b) 

'"'EDGE OF CUTOUT 

1.0 

340.5 Hz 492.8 Hz 
0.2a X 30°, X = 9.6 in. 0.3a X 90°, X =8.4 in. 

(c) (d) 

Figure 80 SSS Modes: Circumferential Wave Forms 
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Figure 9. SSA Modes: Circumferential Wave Forms 
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Figure 10: SSS Modes: Axial Wave Forms 

65 



-1.0 

1.0 

0 

-1.0 

186.1 Hz 
0.2a x 75°, e =· 37.5° 

(a) 

' ..... EDGE 

T 
I 
I 
I 
I 
I 
I 

838.7 Hz 
0.3a x 90°, e = 45° 

-1.0 
396.0 Hz 

0.3a x 90°, e = 45° 

( b) 

OF CUTOUT 

1.0 

' I ~ 
I / 1_., 

I 
I 

a. 0 I 

T 

-1.0 
838. 7 Hz 

0.3a x 90°, e = 0° 

(c) (d) 

Figure 11. SSA Modes: Axial Wave Forms 
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0 
the 9 = 90 plane. The notation 'SSA' refers to mode shapes which 

0 . 
are antisymmetric about the 9 = 90 plane and symmetric about the 

other two planes. The circumferential wave forms are, in general, 

sinusoidal in appearance with varying amplitude. Some showed a 

sinusoidal variation on which a linear variation is superimposed, for 

example, see (b) in Figure 8. 

Figures 10- (a), 11.., (a), and ll-(b) show typical axial wave forms 

in which the displacement varies linearly with the axial coordinate 

for the most part and then bends inward or outward near the region of 

the cutout. In Figures 10-(c) and 10- (d) the axial variation of dis-

placement along two generators of the shell are shown for the same 

frequency. Along the generator 9 = 45° the displacement is small 

until the cutout is reached and then increases rapidly along the edge 

of cutout. Along the generator e = 0°, the displacement increases 

initially and then becomes constant till the edge of cutout. This is 

an example of how the wave forms depend on the axial or circumfer-

ential station at which they a re plotted. 

It is interesting to note that maximum amplitudes were reached 

not only near the region of the cutouts, but also in regions away from 

the cutouts. Figure 8-(c) shows a circumferential wave form in 

which the amplitude reaches a minimum near the cutout and reaches 

a maximum midway between the two cutouts. Such an observation 

was also made in Reference (1). 
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Effect of Varying the Location of Cutout 

on the Modes and Frequencies 

This section presents a study made of the influence of cutout on the 

modes and frequencies as the location of cutout is varied along the 

length of the cylinder. The same cylinder model as ih the previous 

section will be considered, that is,· a cylinder with two identical rec-

tangular cutouts located diametrically opposite. The dimensions of the 

0 
cutouts are kept constant at a span of 0. 2a and an angle of 90 . When 

the cutouts are displaced from their centrally located positions, the 

shell loses its axial symmetry. Thus both even and odd terms have to 

be considered for the longitudinal terms in the displacement series. 

This naturally li.mited the accuracy of the results obtainable for a 

given size of the matricies. The numerical values obtained for the 

lowest ten frequencies for different locations of the cutouts are present-

ed in Table VIII. The frequencies have been simply arranged in 

ascending numerical order along with their dominant wave forms given 

by the notation (m*, n':'), The results presented here for the case of 

centrally located.cutouts (ac/a = 0) are less accurate than those pre-

sented in Table VI, but are consistent with the rest of the results 

presented in Table VIII. 

It is interesting to note that displacing the cutouts from the center 

of shell in the axial direction had a small influence on most of the 

frequencies including the fundamental frequency. Also, the dominant 



o.o 

272. 2 (1, 5) 

300. 8 (1, 4) 

323. 2 (1, 6) 

403. 2 (1, 7) 

422. 0 (1, 3) 

518. 7 (1, 8) 

587. 2 (2, 7) 

598. 4 (2, 6) 

651. 4 (1, 9) 

654. 2 (2, 8) 

TABLE VIII 

EFFECT OF CUTOUT LOCATION ON THE 
FREQUENCIES OF A SHELL a) 

·(CUTOUT.SIZE= 0. 2a X 90°) 

Frequencies (Hz.) of a-Symmetric Modes 

Location of Cutout, ac/a 

o. 1 0.2 0.3 

276.8(1,5) 282. 6 (1, 5) 282. 7 (1, 5) 

309. 0 (1, 4) 315. 6 (1, 6) 312. 0 (1, 6) 

326. 8 (1, 6) 331.9 (1,4) 332. 3 (1, 6) 

406. 3 (1, 7) 407. 3 (1, 7) .406. 3' (l, 7) 

441. 2 (1, 3) 461. 3 (1. 3) 455. 7 (1, 3) 

518. 6 (1, 8) 517. 8 (1, 8) 517. 0 (1, 8) 

594. 8 (2, 7) 616. 3 (2, 7) 614. 2 (2, 7) 

608. 5 (2, 6) 640. 4 (2, 6) 633. 3 (2, 6) 

652. 5 (1, 9) 654. 9 (1, 9) 648. 9 (1, 9) 

656. 6 (2, 8) 670.6 (2,8) 666. 6 (2, 8) 
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0.4 

279.4 (1,5) 

302. 3 (1, 4) 

330. 4 (1, 6) 

404. 0 (1, 7) 

435. 4 (1, 3) 

514. 7 (1, 8) 

577.5(2,7) 

588. 2 (2, 6) 

646. 5 (1, 9) 

653. 2 (2, 8) 

a) The parameters of the shell are g.iven in Table IV. The two 
cutouts are located diametrically opposite. 
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wave forms in the mode shapes were preserved in general. Maximum 

coupling was found between the wave forms with m* = 1, n>.'< = 4 and 

m* = l, n>:• = 6 in the second and third frequencies. The location of the 

cutouts has a maximum influence on the frequencies with wave numbers 

(1, l), (2, 7), and (2, 6). The variation of the frequencies do not exhibit 

any monotonically jncreasing or decreasing tendency with increase in 

the axial location of cutouts from the center of shell. On the other-

hand, most of the frequencies seem to increase initially and then de-. 

crease with increase in the axial location of the cutouts from the center 

of shell. 

Figure 12 shows the effect of location of the cutouts on the mode 

shapes. The spanwise variation of the no·rmal displacement is plotted 

along the e = 45° generator which is collinear with an edge of the cut-

out. The wave forms display how the region of la·rge amplitudes of 

displacement shifts in the same direction in which the cutouts a re 

moved. The maximum effect of cutout location is found to be on the 

modes which are axially antisymmetric. 

Effect of Cutout on the Shell Response to a 

Quasi- exponential Type of Air- blast 

This section presents the results. of a study ·made on the effect of 

cutout on the displacement and stress responses of a shell subjected to 

a time-dependent load. Two shells of the same geometry, one without 

. - 0 
cutout and another with a doubly symmetric O. 2.a X 45 cutout, are 
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323.2 Hz 330.4 Hz 
0.2a X 90°, 9 = 45°, acla = 0 0.2a X 90°, 9 = 45°, acla = .I 

(a) ( b) 

' .... EDGE OF CUTOUT 

598.4 Hz 
-1.0 

633.3 Hz 
0.2a x 90°, e:: 45°, acla = 0 

( c) 

0.2a X 90° 1 9 = 45° 1 Oc/0 = .3 

(d) 

Figure 12. Axial Wave Forms Showing the Effect of Cutout 
Location on the Mode Shapes 
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subjected to a quasi- exponential type of air- blast with a sinusoidal 

variation along the span and a cosinusoidal variation around half the 

periphery. Figure 13 describes all the structural and loading data con-

side red for the transient analysis. In the displacement series, seven 

successive terms (odd) were includedinthe spanwise direction and six 

successive terms in the peripheral direction. The numerical integra-

tion was performed using two different values, namely O. 001 and 0. 01 

for the error bounds on the truncation error associated with each of 

the variables. This corresponds to a maximum time step of about 2. 5 

µ. secs. in the former case and about 5 µ. secs. in the latter case. The 

two sets of results agreed within nearly four significant digits for the 

normal displacement as well as stresses. The ttme domain solution is 

performed up to 0. 22 m secs., which is less than 20% of the blast dura-

tion. The computational tirne involved is about 20 minutes for this 

solution time interval. 

Figures 14, 15, 16 and 17 show plots of various quantities along the 

. 0 . 
generator at e = 0 for both the shell without cutout and the shell with 

the cutout, at t = O. 22 m secs. These figures display how the response 

of the shell with the cutout differs significantly from that of the com-

plete shell. In the case of the shell without the cutout the normal dis-

placement, the membrane and bending stresses vary as a single half 

sine wave along the axis, thus closely following the axial pressure pro-

file. The cutout effects a marked deviation from this smooth behavior. 

For example, the normal displacement is inward initially and then be-
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gins to increase outward rapidly in an almost straight-line fashion to-

wards the edge of cutout (Figure 14). Thus the displacement in the 

neighborhood of the cutout is out of phase with the pressure. The rea-

son for this is better understood by refer ring to Figure 18 which shows 

a comparison between the normal displacement-time variations of the 

two shells at a point "A II near the edge of cutout. During a period of 

O. 22 m sets. the normal displacement has hardly completed one-

quarter of a cycle for the complete shell, where as it has completed 

one-half cycle for the sheUwith cutout. Physically this means that 

the cutout causes an increased participation of higher modes in the re-

spans e. 

Figures 14 and 15 indicate that the axial membrane stress resultant 

(N ) and the axial bending stress resultant (M ) do not satisfy the x . x 

stress-free boundary conditions at the edge of cuto11t. On the other-

hancl they tend to increase rapidly in the neighborhood of the cutout. 

The admissible functions used in this study do not, of course, satisfy 

the kinetic boundary conditions at the free edges of the cuto.ut. These 

are to be satisfied in a limiting sense as a by-.product of minimizing 

the action integral with respect to the undetermined time-dependent 

generalized coordinates in the displacement series. The degree of 

success to which this is achieved is, in general, hard to predict. In 

the present case, the shell is discontinuous at each point along the con-

tour of the cutout; but the displacement functions are continuous in the 

whole domain: 0 :S xs a, -TT s 8 s TT. This appears to be rather a 
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tight situation for the Rayleigh- Ritz method to handle. 

The above discussion points towards the fact that the results of the 

present analysis are to be interpreted carefully in the region very 

close to the cutout. The displacement functions are continuous across 

and defined in the region of the cutout, and the analysis does give dis-

placements and stresses in this region as well. These results, al-

though not usable for the present study, reflect the fact that the 

analysis treats the region of the cutout as being covered by a mem-

brane of zero thickness. However, the truncated displacement series 

is not strong enough to account for the sudden reduction in thickness at 

the edges of the cutout. It may be said that the solution at hand corre-

spends roughly to a case in which the thickness of the shell is brought 

to zero gradually in a region which extends beyond the edges of the cut-

out. Thus the present analysis is inadequate to determine the response 

in this region. Another significant factor is that the shell theory used 

does not take into account the effect of the transverse shear stresses on 

the deformation. As in the case of plates with holes, the transverse 

shear stresses may be large in the vicinity of the cutout. 

In Figures 14, 15, 16 and 17 this region is roughly identified as 

"shell theory inadequate" for want of further insight and is treated 

accordingly in making general observations. A basis for isolating this 

region is found in Figure 14, where the curve for N appears to 
x 

approach zero before increasing near the edge of cutout. Also the 

curve is modified as shown to bring it back to zero at the edge of cutout. 
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A similar thing is done in Figure 16 for the curves representing the 

axial membrane and bending stresses. This modification, although 

s·omewhat artificial, forces the curves to conform to a physically mean

ingful behavior, 

Figure 16 indicates that for the complete shell a peak axial mem

brane stress of about -4 ksi is reached at the center of shell. For the 

shell with cutout it is about -2 ksi occur ring at about one-fifth span, 

thus indicating about fifty percent reduction. This is because, in the 

latter case in addition to the ends of the shell the edges of the cutout 

are also free to move in the axial direction. The situation is reversed 

for the peripheral membrane stress resultant (N 8 ) as may be seen in 

Figure 17. This is not surprising because the shell is closed in that 

direction. 

The amount of bending which the two shells undergo is shown in 

Figure 15. The complete shell undergoes little bending relative to the 

shell with the cutout. In the latter case a large peak is reached in the 

axial bending moment. Figure 16 shows how the axial stress in the 

outer fiber for the shell with the cutout, is significantly affected by 

this bending. 



CHAPTER V 

SUMMARY, CONCLUSIONS AND 

RECOMMENDATIONS 

A method of analysis has been presented to determine the static 

response, free vibration characteristics and transient response of 

noncircular stiffened cylindrical shells with rectangular cutouts .. The 

stiffeners we re treated as discretely located. This method was based 

on the Rayleigh- Ritz technique using Love's first approximation 

theory for the shell portion and the Bernoulli theory of bending for the 

stiffeners. Beam characteristic (axially) and trigonometric (circum

ferentially) functions were used in the displacement series. The re

sulting equations of motion were solved numerically by Fourth Order 

Runge-Kutta method with automatic step- size control. 

The specific items of study made using this method are as 

follows: 

1. The results on free vibrations of stiffened circular cylindri

cal shells without cutouts were compared and found to be in good 

agreement with those of the preceding work, of which the present 

work is an extension. 

2.. The results obtained from the present method of analysis on 
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static and dynamic response of unstiffened freely supported shells 

were found to be in satisfactory agreement with those obtained by 

other investigators using other methods. 
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3. Several special cases of shells with cutouts equivalent to 

complete shells or curved panels, were studied with success with re

gard to free vibration characteristics because of scarcity of published 

results on the dynamic response of shells with cutouts. 

4. The influence of size of cutout on the natural frequencies and 

mode shapes of freely supported unstiffened shells was investigated. 

5. A study was made to determine the effect of cutout location 

on the natural frequencies and mode shapes of an unstiffened freely 

supported shell. 

6. A transient response analysis was performed on two freely 

supported unstiffened shells, one without cutout and the other with a 

cutout to study the effect of cutout on the displace·ment and stress re

sponses to a quasi- exponential type of air- blast. 

The major observations and conclusions from this study are 

listed below. 

1. In general, the cutouts tend to decreas.e the frequencies. 

This effect increases with increase in the size of cutout. The largest 

effect is found to be on the fundamental frequency. Physically this 

means that introducing a cutout in a shell reduces the stiffness to a 

greater extent than does mass. 
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2. The cutout has an effect of coupling the distinct axial and cir

cumferential wave fo't'ms of an othel'wise complete shell. This effect 

is more predominant on the circumferential wave forms. In some 

cases, as a result of this, identification of the mode shape by the wave 

numbers becomes difficult and, even if done it is only nominal and 

just for the sake of convenience. 

3. The maximum amplitudes in the mode shapes were reached 

not only at points near the edges of cutout but also at points away from 

them. 

4. The location of cutout is found to have a less significant 

effect on the frequencies. Axially antisymmetric mode shapes are the 

ones significantly affected by the location of cutout, 

5. The presence of cutout results in an increased participation 

of higher modes in the response of a shell subjected to an air- blast 

type of transient load. 

6. The introduction of cutout causes the shell to undergo signifi

cant flexure under an air- blast type of transient load. 

7. The Rayleigh- Ritz method as applied to a shell with cutout, 

with no improvement in the displacement functions to handle discontin

uities is a more convenient analytical tool for estimating the ave rall 

behavior of the shell than one for obtaining the stress behavior in the 

region very close to the cutout. 

8. A shell theory which neglects the effects of transverse shear 

stresses on the shell deformation is inadequate to predict the shear 
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distribution in the region very close to the cutout. 

The following recommendations for further study are made: 

1. The results using this method of analysis should be compared 

with those obtainable by finite element and finite difference methods to 

establish the relative computational efficiencies. 

2. Experiments or a search for experimental data should be con

ducted for verifying the results of this study. 

3. The possibility of increasing the capability of the Rayleigh

Ritz method to deal with cutouts should be explored by developing 

displacement functions which allow for singular behavior in the 

neighborhood of cutouts. 

4. The present method of analysis should be profitably extended 

to include the effects of transverse shear stresses on the shell de-

formation. 
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APPENDIX A 

DERIVATION OF THE STIFFENER SHELL 

COMPATIBILITY RELATIONS 

The derivation of the stiffener- shell compatibility relations are 

based on the following assumptions: 

1. The stiffeners are attached to the shell along a single line 

of attachment. 

2. A stiffener cross section normal to the line of attachment 

before deformation remains normal to the line of attachment after 

deformation. 

3. The components of rotation transferred from the shell mid-

dle surface to stiffeners at any point of attachment are small. 

As a result of the first two assumptions, it follows that each 

cross-section of a stiffener is translated and rotated as a rigid body 

and is not subjected to warp. 

According to the third assumption, the. displacement vector of 

. . h . f th .th t'ff b 'tt any point 1n t e cross- section o e 1 s 1 ener can e wr1 en as 

0 - cp cpe z 

{ q} i = {q} ci + cpz 0 - cpx x {n} .1 . 
1 Cl (A. 1) 

-a, ~x 0 
e i/ci 

89 



where 

90 

i = { s for the stringer 

r for the ring, 

{q} i = the displacement vector of an arbitrary point in the 

cross section of the stiffener, 

{q} - the displacement vector of the centroid of the cross ci -

section of the stiffener, 

(cpx, cp8 , cp ) = the components of the rotation-vector {cp}i/ci 
z i/ci 

at an arbitrary point in the cross section with 

respect to axes through the centroid of the 

stiffener, 

{n} i/ci = the position vector of an arbitrary point in the cross 

section relative to the centroid of the cross section 

of the stiffener. 

These vectors may be expanded as follows: 

u 

{q} i = v 

w 
i 

u 
c 

{q} ci = v 
c 

w 
c 

i 
(A. 2) 
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cpx 

{ ci>} i/ct ci>e 

cpz 
i/ci 

0 

{n} s/cs = y' 
s 

(See Figure 2) 
{A •. 2) 

z' s 

x' 
r 

{0}r/cr= 0 {See Figure 3) 

z' r 

The displacement vector of the centroid .of the /h stiffener can 

be written as 

where 

0 

- cp e 

- cp z 

0 

cpe 

- cp x 

0 
c;.i/o 

x {n} . 1· , 
·c1 o 

{A. 3) 

{q} 0 = . the displacement vector of an arbitrary point on the 

middle· surface of the shell lying on the line of attach-

ment., 

{cpx' ~e· cp ) z ., 
Cl O 

= .the components of the rotation-vector {cp}ci/o 

at the centroid of the cross section of the 

/h stiffener relative to the point of attach-

ment, 
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Jn} . = the position vector of the centr.oid of the cross sec-
l ci/o 

tion of the ith stiffener relative to the point of 

attachment. 

These vectors may be expanded as follows: 

u 

{q} 0 = v 

w 
0 

cpx 

{ cp} ci/ o = cp e (A. 4) 

cpz 
ci/o 

0 

f n} cs/o 
. -

= ys (See Figure 2) 

z 
s 

x 
r 

·{o}cr/o=. 0 (See Figure 3) 

z r 

After equation (A. 3) is substituted into Equation (A. 1), the 

fo Bowing compatibility relations can. be written: 
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0 - cp Cl'9 z 

{q} i = {q} 0 + 'tlz 0 - tp x {O}ci/o x 

- q, tpx 0 e ci/o 

0 .,. tpz cp e (A. 5) 

+ cpz 0 -cpx x {o}i/ci 

- cp tpx 0 e i/ci 

From the second assumption, it follows that 

= (A. 6) 

where 

{ cp} 0 = the angle of rotation vector of the middle surface of 

the she 11 at the point of attachment. 

where 

This vectot' may be expanded as: 

= 

w, e 
rp = 

x R 

= -w, 
x 

-u, e 
R 

v, 
x 

cpx 

cpz 

v 
R 

0 

for rings 

for stringers 

(A. 7) 
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After Equations (A. 2), A. 4) and (A. 7) are substituted into Equa-

tion (A. 5), the stringer- shell compatibility relations can be written in 

terms of displacements of the she 11 as follows: 

u - (z +z')w, - (y + y' )v, 
s s x s s x 

{q} s (z f z I ) ( w, e ;) (A. 8) = v - -
s s R 

w + (y + y's) ( 
w, e ;) R -

s 

Likewise, the ring- shell compatibility relations can be written as: 

u - (z + z 1 )w, 
r r x 

v - (x + x') 
r r 

u, e 
R 

w + (x + x' )w, r · r x 

- ;) 

(A. 9) 



APPENDIX B 

BEAM MODE FUNCTIONS 

The characteristic modes of vibration of a uniform beam are 

used for the longitudinal functions in the assumed displacement series. 

These functions are listed below. 

1. Both ends freely supported 

q, (x) = V2 sin 
m 

2. Both ends clamped 

m TT.X 

a 

- cos a x + a. sin a x 
m m m 

3. One end clamped, other end free 

4. Both ends free 

CD (x) = 1 
·o 

x 
cpl(x) = -. a 

1 
2 

The numerical values of the parameters a. , a , y , and 
m m m 

6 are given in Reference (18). 
m 
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APPENDIX C 

EQUATIONS OF MOTION 

The expressions for the variations of the strain and kinetic 

energies as well as the virtual work of external forces, developed in 

Chapter II were expressed in terms of the displacement vector {f}. 

The introduction of the assumed series for {f} and the detailed steps 

leading to the equations of motion are presented here. The assumed 

displacement functions are given by Equations (2. l 9a) to (2. 19c) and 

are expressed concisely in Equation (2. 20a). 

Substituting Equation (2. ZOa) in Equation (2. lZa) 

8Uo = 1 {oq} T [N]T [BJ! [D]o [B]o [NJ {q} R de dx (C, la) 

0 

where [K] = [ 
O s 

0 

[N]T [B]T (D] [B] [N] Rde dx 
0 0 0 

Substituting Equation (2. 20a) in Equation (Z. 13) 

6T 0 =-fs p0 h {8q} T [N]T [N] fq'} R de dx 

0 
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(C. 1 b) 

(C • le) 

( C. Za) 

(.C. 2b) 



where[M]0 = fs p0 h[N]T[N]Rd0dx 
0 

Substituting Equation (2, 20a) in Equation (2, 14a) 

where [K] = 
s [K]s J, 

Substituting Equation (2. 20a) in Equation (2. 15a) 

6T = 
s 

N 
s 

I: 
J, = 1 

where [MJ = 
s 

[N]T [CJ! [C]s [N] {q0

}. ] dx 

N 
s 

L [M]si, 
J, = 1 

e = et 

Substituting Equation (2. 20a) in Equation (2, 16a) 

97 

(C. 2c) 

( C. 3 a) 

(C. 3b) 

(C. 3c) 

(C, 3d) 

(C. 3e) 

(C. 4a). 

(C. 4b) 

(C. 4c) 

(C. 4d) 

(C. 4e) 



x=x 

where [K]rk = Is rk ( [N? [BJ;'k [D]rk [BJ rk [NJ) 1:!: de 

k 
N 

r 

o Ur= L 6 Urk = {oqi T (K]r {q} 

where (KJ = 
r 

k=l 

N 
r 

L 
k=l 

Substituting Equation (2. 20a) in Equation (2. 17a) 

k 
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(C. Sa) 

(C. Sb) 

(C. Sc) 

(C. Sd) 

(C. Se) 

6 T rk = Is rk . (-mrk jaqf T[N]T [CJ:k (C]rk [NJ {Ci°}) Rcgk de 

T •• 
= {6<l} (M]rk {q } 

where (M]rk = fsrk(mrk [N]T [CJ! (C]rk [N]) 

oT = 
r 

where (M] = 
r 

N r 

I: 
k=l 

N 
r 

~ 
k=l 

x=x 
k (C. 6a) 

(C. 6b) 

R de 
cgk 

x="k (C. 6c) 

(C. 6d) 

(C. 6e) 

Substituting Equation (2. 20a) in Equation (2. 18a) and Equation 

(2.18c) 



&W = 
d 

where {P} d = 

6W = 
c 

fs 
0 

Ncf 

I: 
i= 1 

T 
= { &q} . 

Ncf 

where {P} cf = L 
1= 1 
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(C. 7a) 

(C. 7b) 

(N]T {F} d R dx de (C.7c) 

{&q} T (N.]T {F,} 
l 1 0 

(C. 7d) 

{ P}cf (C. 7e) 

(N.]T 
1 {Fd o ( C. 7£) 

Substituting Equations ( C. 1 b), ( C. 3d) and ( C. Sd) in Equation 

(Z. 4) · 

( C. Sa) 

where (K] = (K] + [K] + [K] o . s r (C. Sb) 

Substituting Equations ( C. Zb), ( C. 4d) and ( C. 6d) in Equation 

(Z. 3) 

8T = - {aq} T (M] {q 0

} 

where [M] = [M] + [M] + [M] o s r 

(C. 9a) · 

(C. 9b) 

Substituting Equations (C. 7b) and (C. 7e) in Equation (2. 5) 

6 W = {6q} T {Pl 

where {P} = {P} d + { P} cf 

(C.lOa) 

(C. l·Ob) 
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Substituting Equations (C. Ba), (C. 9a) and (C. IOa) in Equation 

(2. 2) 

tl 

{ (- {oq} T[M] {~°} - {6q} T [K] fq} + {oq} T {P}) dt = 0 
0 

which may be rewritten as 
t . 

~ 1 {o q} T (-(MJ f,i} - (Kl{q} +{PI )dt • o 
0 

(c. Ila) 

(C.llb) 

Since the 'q's are independent and the 1 6 q' are arbitrary, it 

follows that 

(C • 12) 



APPENDIX D 

RING FUNCTIONS 

The ring longitudinal functions ( occurring in the mass and stiff-

ness matrices) used in the present work differ from those given in 

Appendix E (14) in view of the modified representation of beam mode 

functions as taken from Chang and Kreig (18) for boundary conditions 

other than the freely supported one. The original representation as 

given by Felgar (19) were found to be in error for modes above the 

fifth (18). The modified ring longitudinal functions are presented here 

using the same notation as in Reference ( 14). 

In all the following expressions the functions '4>' for the corres-

spending boundary condition are presented in Appendix B. 

case. 

For freely supported cylinders: 

RF 1, k = ci>'m 

RF 2, k = cpm 

RF 3, k = cf?' m 

RF 4, k = cpm 

<f·' m 

cp 
m 

. cp I 

m 

For clamped-free cylinders: 

The expressions are similar to those for the freely supported 
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case. 

m=O 

m=l 
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For clamped-clamped cylinders: 

The expressions are similar to those for the freely supported 

For free-free cylinders: 

RF l 
I 

k = RF 3 1 
k = RF 4 1 

k = 0 

RF 21 k = I 

RF l, k = RF 4 , k = 0 

1 
RF 2 k = xk/a .,. 2 

' 

RF = 1 /a . 3, k 

RF l k = RF 4 k = 0 
' ' 

RF 3, k = 4>'m 

RF I ' k = RF 3 ' k = 0 

1 
RF 2 k = xk I a - 2 , 

RF = 1 /a . 4, k 

RF = l/a2 
1, k 

2 2 1 
RF 2 , k = xk/ a + 4 - ~Ia 

RF = RF = x I a 2 - _!a 
3, k 4, k k 2 

} m = o 

m = 1 

m= o 

m = 1 



m;;::2 

1 
If?' -= -RF 1, k a m 

RF2,k = 
1 

(x/a - 2 ) cf m 

1 
RF 3, k = (x/a -z:) <P'm 

RF4,k 
1 

¢_ = 
a m 

RF l k = RF 3 k = 0 
' , 

RF 2, k = <Pm 

RF = cf:· 1 
4, k - m 

1 
RF = - q, 1 

1, k a m 

( x 1) q") 
RF 2, k = ~ - 2 m 

RF =..!q. 
3,k a m 

103 

ni.;;::2 

m = 0 

m = 1 

Form;;:: 2, m;;:: 2, the expressions are similar to those for the 

freely supported case. 



APPENDIX E 

LONGITUDINAL CUTOUT INTEGRALS 

The longitudinal integrals over the region of the cutouts are 

presented here using the same notation of Appendix E of Reference (14). 

In all the following expressions the functions q> for the corre-

sponding boundary condition are presented in Appendix B. 

IX = 
I 

IX = 
2 

For the freely supported case (for the 'i' the cutout) 

} 11 I II Z I 11 I 

4 [ 3 q> ct + x( q> ) - Zx W CR -
mm. m mm 

q> tp"' + xl34 q;Z tzi 
mm mm 

xli 

form= m 

[ 
4 I 

13_. q>_ mm 
er," - 13 4 <P1 tp"_ - 13 ~ 

m mm m m· 

II I 
q>_ tp 

m m 
I 

13 4 - 134 
m m 

form-/: in 

1 [ 1 1 z II I . 11 Ill 
3cf. cp + x(q> ) -Zx<P q> - - 4 cI> ff· + 

4 m m m m m 13. · m m 
m 

x "' z] - (q; ) 
134 m 

m 

form= m 
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IX = 
2 

IX = 
3 

IX = 
4 

1 [ 4 . I 4 I II Ill II 111] s- tt,_ .«I? - 6 <t cI?- - <I; er- + <fJ_ cp 
6~ _ 64 m m m m m m m m m m 

m .m 

form# m 

1 [ I I 2 . II 1 II 111 
cp cI? - x( <p ) +2x«I? Cf + -· <p cI? -

4 mm m mm 64 mm 
m 

x Ill 2]· -(cp ) 
64 m 

m 

form= m 

x2. ·1 

[ 
4 .· I 

6 ( cI> cfi1- - t- er ) 
'.In m .m m m 

II 111 II Ill] 
cp_ (p + cp ~-

m m mm 

xli 

I 

[34 _ [34 
m m 

form I: m 

x2i 
[ 

4 I I II II II Ill] 
6~ ('P- <t -<P q;_) -er, <Jt_ +cfL 4' 
mmmmm mrnmm 

xli 

form# m 

tf cf? - x( <f, ) + 2x cf, <P · + 1 [ I . I 2 ·1 I 1 

4 m m m mm 6!i 

form= m 
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I II 
1 ~ 3 II '. . 2 2X I . I II 1 -- 4' .cp + x If - -- cp cp - --
4 134 m m m 134 m m . 134 

m . m m 

e cp 
·ID m 

IX = 
5 

+ 

1 

( ~·:u)j 
x2i 

x form= m 
134 
m 

xli 

[
tp. cpl I I - cl,_ cpl I I 

mm mm 
q, q,_ + cp __ cp I 111. I II] 
mm mm 

form =/:::.m. 

x.1· . 1 

For both the clamped-free and the clamped-clamped case the 

integrals rx 1 to IX 5 are identical to those for the freely supported 

case noting of course, that the corresponding '4'', s are to be used. 

For the free-free case (for the 'i'th cutout) 

m = 0 

IX =IX =IX =IX =O 
1 2 3 4 } m = 0 

IX =IX =IX =IX =O 
1 2 3 4 

x2. 
1 1 

rx5 = Za (x(x-a)] 
m = 1 

xli 



m = 1 

IX ='IX =IX =O 
1 2 3 

IX =IX =IX =IX =O 
1 2 3 4 

X2, 
·1 . 1 

IX 5 = 2~ [x(x- a)] 

x2i 
1 IX = - · [x]· 

2 · 2 
a 

Xl, 
. 1 

3 2 x2i 

IX = 
5 

x x x· 
[---·-+-] 

3a2 2a 4 

IX =IX =O 
· 1 3 

1 · x2i 
IX = - [ q,_ ] 

2 a m 

xli 

X2, 
I I 1 

IX4 = [ ( x q, - - q,_ )" I a- er:_ I 2 ] 
m m m 

xli 

Ill II Ill 4 
IX 5 = [(x'P_- 'P-) I a-IP-/ (2a_)] 

m m m m 
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m;;::2 

m = 0 

m = 1 

x2i 

xli 



m~2 

= 1 [ cpl I I J 
134. m 
·m 

IX = IX = 0 
1 4 . 

X2. . 1 

::::..!. [<P J 
a m 

xli 

x2i 

x2. 
I I 1 

= [ (x cp - <I> ) I a- if? I 2 J 
mm m 

x 
li 

x2. 
1 111 rr 111 1 

= - 4 [ ( x qi . - 4' ) I a- <Ii / 2 J 
S m m m 

m 
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m = 0 

m = 1 

The integrals· IX 1 to IX 5 form ~2 and m~ 2 are identical to 

those for the freely supported case, noting of course that the corre-

sponding <r's are to be used. 



APPENDIX F. 

ELEMENTS OF THE FORCE MATRIX 

P 1 =[ fa /,. Zn p (x, e) cos ne ;p' (x) Rdxde 
mn Jo o x m · . 

. . 

P2 = 
mn 

N 
c 

F (x , 0 )cos ne. cp1 (x. )] 
Xii. lIDl 

f (t) 
x 

N 
c 

foa _r
0
2n . 

Jc p 9(x, 9)sin ri0 cpm(x) Rdxde 

92. ·f 1 p (x, 0) sin ne cp (x) Rdxd9 e e . m 
Ii . . 

N 
cf 

F 0(x., 9.) sin ne. IP (x.) 
1 1 1 m 1 

i=l 
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(F .1) 

(F .2) 



P3 = 
mn 

N 
c 

a 

fo p (x, e) cosne cp . (x) Rdxd0 z . IIl 

. . a 
. fo ·· f z,,. . 

p (x, e)cosneqi (x) Rdxde 
z IIl 

0 

· F (x,, 0.). cos ne.iJ? (x.)Rdxde 
Z 1 1 1 IIl 1 

The functions qi· (x) are given in Appendix B. 
IIl . . . 
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(F 3) 



APPENDIX G 

STRESSES AND STRAINS 

This Appendix presents the expressions fo·r the st·resses and 

strains in terms of the generalized coordinates obtained by solving the 

equations of motion represented by Equation (2. 21). The symbol e in 

the expressions must be interpreted as the circumferential mode 

function @l. 

Shell 

The normal and shearing strains, the changes in curvature and 

twist of the middle surface during deformation are given by 

0 
e = x LL 

m n 

w w w'' q e x 
mn n m 
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(I: 
n m n 

L q:ne:x:)~2(E 
n · m n 

The normal and shearing strains of a surface layer of shell 

at a distance z from the middle surface are given by 

0 e = e + z x x x . xz 

0 
\ = ee + z Xez 

0 
y X0= y X0 + Z T 

The stress resultants are given by 

m n 

·~ v ev'xv) 
LJ qmn n m 
·n 

112 

No=K[~ {L L v ev'xv) 
qmn n m +(I: E w 0wxw )} 

qmn n m 

m n. m n 

+ \I (I: I: u 0u xu' )] 
qmn n m 

m n 
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L q:ma:x:) + ~(LZ:q::ma:'x:)} 
n m n 

[ - I: I: w w w") M =D q a x 
x mn n m 

m n 

+~ { ([ I: q v av' xv) 
R2 .mn n m 

m n 

- (I: I: w aw'.'xw) } ] qmn n m 
m n 

M 9 = n [!z{ (~ L v av'xv ) - ( I: I: w 0w•xw )} 
qmn n m qmn n m 

n m n 

- \) (2: I: w 9w xw") J qmn n m 
m n 

M = Gh3 {( I: I: v av xv' ) 
xe 12R qmn n m 

m n 

-2 (I: I: w 0w'xw')} 
qmn n m 

m n 

The normal and .s.hearing stresses are given by 

N M 
x 

12 
x z (] --- + x h h3 

Ne M 
·+ 12 e (] = 

h h3 
z e 

Nxe 
+ 12 

Mxe ,. = 
h h3 

z 
xe 
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Stringer 

The centroidal strain components at a cross section of an tth 

stringer a.re given by 

n m n· 

- Ysl ( I: I: q e x · v v. v")} 
mn·n m 

m n 

')(. -E I: w ew w" x . = xz 

x = xy 

m n 

qmn n m 
m n 

v v v'' 
q e x 

mn n m 
m ·n 

w .. w' w') q e x -
mn n m (1: 

m· n 

The stringer stress resultants are given by 

N =EAe: 
x x 
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The stringer normal stress is given by 

N 
x 

cr =-
x A 

I M +I 
zz y yz 

I I 
yy zz 

r2 
yz 

Ring 

M 
z 

J 

h dl . £. kth T e centroi a strain components at a cross section o a 

ring are given by 

R k R cg 

z 

+ ; ( 1 + 
rk 

R cgk 

z rk 

( I: R k R cg 
m 

1 (L + R 
cgk m 

xrk 

(I: + R 
cgk m 

n 

)(L L qv ev'xv) 
mn n m 

m n 

w w'' 
x:) I: q e 

n 
mn 

n 

I: 
w 

ew xw) q 
n m 

mn n 

I: 
w ew 

x~) qmn n 
n 

115 



x. = 
yz 

x = yx 

'i = 

1 

RR k cg 

1 
+RR 

cgk 

. 1 

2 ·. 
R· · cgk 

+ R. 
1 

cgk 

z 
rk 

+ 
R2 

.cgk 

1 

.( - 1 
+ R. 

cgk 

m 

( I: 
m 

( L 
m 

(L 
m 

z k 
+ r 

R2 
cgk 

n 

n 

n· 

I: 
n 

L. 
n 

n 

. v. ev'xv ) 
qmn n m 

w w'' w) q e x · 
mn n m 

u u" u ) q · e x 
mn. n m 

w. ew xw') 
qmn .n m 

· w w'' w') q e x · mn n m 

116 

w w' w') · q e x 
mn n m 

n 



The ring stress resultants are giv~n by 

N =EA 11: 
y y 

M =EI X -EI x 
x xx yz xz yx 

M 
z E I x + E I 'Xyx xz yz zz 

My= (GJ) T 

The ring normal stress is given by 
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APPENDIX H 

METHOD OF SOLUTION 

Static Solution 

· The ·static analysis problem is of the form 

= 

which represents a non.homogeneous linear system of algebraic 

equations •. 

(H. 1) 

The solution vector { q}. is obtained by the following method, 

which requres that [K] be a symmetric positive-definite matrix. 

A triangular decomposition is performed on the matrix [K] by 

the square root method of Cholesky: 

[K] = [ U]T[UJ where [UJ is an upper triangular matrix. 

Therefore, from Equation (H. 1) 

= {P\ 

This represents two triangular systems. 

[U] T {r} = { 1?} and [Ul {q} = {r} 

The first system is solved for { r} by forward elimination and 

the second system is then solved for { q} by back substitution. 

Library Subroutines (ZO) were used in the above steps. 
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Free Vibrations 

The eigenvalue problem is of the form 

[K] { q} = ). [ M] { q} (H ~ 2) 

where ),, is an eigenvalue, and {q} an eigenvector. 

The following method for solving Equation (H. 2) for eigenvalues 

and eigenvectors of the system requires [M] to be symm.etric posi-

tive definite and [K] to be symmetric (2i). 

A triangular decomposition is performed on the matrix [M] by 

the sq"Q.are root method of Cholesky: 

[M] = [L} [L] T where [L] is a lower triangular matrix. 

Therefore, from Equation ( H, 2): 

Thi's can be. expressed as 

(:H, 3) 

-1 T -1 
By defining [SJ = [L] [K] [L ] (H. 4) 

(H .5) 

Equation (H. 3) becomes 

[S] {Y} = i.. (H,6) 

which is an eigenvalue problem, where [S] is a symm.etric matrix with 

eigenvalues >,, which are the same as the original problem. The eigen-

vectors of the original system, { q} , are found from the eigenvectors 

of Equation (H. 6), {Y} , by Equation (H, 5). 
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Because the transformation of Equation (H. 4) involves triang

ular matrices, the matrix [Lf 1 need not be found to determine [SJ. 

Thus, no matrix inversions are required. · The sequence of operations 

is as follows: 

T 
1. Decompose [M): [MJ = [L] [L J 

2. Perform a forward substitution through 

[LJ ([Lf 1[K]) = [K] 

-1 
to solve for each column of [L] [K]. 

3. Perform a forward substituion through 

L([Ll-l[KJ[LTfl) = ([Lfl[K])T 

-1 . T -1 
to solve for each column of [L] [KJ(L J = [SJ. 

4, Find the eigenvalues, "- and eigenvectors { y} of [SJ. 

A Householder's method (22) was used in this analysis, 

5. Determine the eigenvectors {q} from {Y} by a back sub-

stitution through 

The subroutine that was used to carry out this procedure was 

reproduced from that of Reference (23) with the exception of Step 4. 

Transient Response 

The problem is to solve the system of ordinary second order 

nonhomogeneous differential equations with constant coefficients, 

represented by 

= {P} ( H. 7) 



121 

The adopted procedure to solve the system is given below. 

Reduction to a First Order System 

The matrix [M] being sym.metric and positive definite perform 

a triangular decomposition on it by the square root method of 

Cholesky: 

[M] = [L] [LT] where [L] is a lower triangular matrix. 

Perform a forward substitution through 

T -1 
to solve for each column of [ L ] [M] = [R], say. 

Perform a back substitution through 

[LT] [Mf l = [R] 

- 1 
to solve for each column of [M] . 

- 1 
Premultiply the matrix [K] by [M] and also the column 

matrix {P} by [Mf 1. 

Now the Equation (M. 7) is transformed into 

Defining new variables 

the following first order system is obtained 

{Y} I= {Y}u 
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Solution of the First Order System 

The solution is obtained by a Fourth Order Runge-Kutta 

method with automatic step size control. Based on the work of 

Earnest (11) a subroutine was written by Chandler (22). It was 

adopted to the computer program of the present work. Its superior

ity over the standard available subroutines (20) is attributed to the fol

lowing features. 

(1) Reduction in computational time involved. 

(2) The truncation error is calculated for each dependent 

variable whereas it is calculated in an average sense for 

the whole system in (20). 

(3) The step size control is achieved by the requirement that 

the truncation error satisfies either a relative error 

bound or an absolute error bound whereas in (20) it has 

to satisfy an absolute error bound, the specification of 

which may often need a prior knowledge of the magnitude 

of the variables. 
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