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CHAPTER I 

INTRODUCTION 

Information on the. properties of defects in solids is important in 

practical work, especially in the semi-conductor industry. In recent 

years, however, there is some demand for special materials with known 

electrical, optical, and mechanical properties. Areas requiring these 

special materials include electro-optical devices, computer memory 

st9rage, high temperature applications in space, and radiation :damage in 

the nuclear industry. 

Many.techniques are available for characterizing these properties 

of solids. Among these are thermoluminescence (TL), Electron Para­

magnetic Resonance (EPR), and Optical Absorption (OA). Thermolumines­

cence, perhaps more correctly called Thermally Stimulated Luminescence 

(TSL), has been used as a basis for a radiation dosimeter ~echnique 

widely applied in measuring exposures in nuclear reactor personnel and 

in cancer treatment (1). 

Thermoluminescence has been known for many years ·and occurs in a 

wide variety of organic and inorganic materials. For a long time, the 

only type of work done was descriptive; and no attempt was made to 

understand the mechanism involve~. In recent years, increasing 

emphasis has been placed by Dutton and Maurer (2) and Merz and Pershan 

(3) on combining .EPR and optical absorption to probe radiation damage, 

electron trapping, and recombination processes, especially in the 

alkali halides. 

1. 



In the work to be described here, the three techniqueEi mentioned 

above and a less well known.one, Thermally Stimulated Charge Emission 

(TSCE) are applied together in order to understand electrical and opti­

cal processes in.the material Potassium Magnesium Fluoride, KMgF 3• 

2 

In the present work the modus operandi is the following: Initially 

experiments were carried out to understand, as far as possible, the 

mechanism of the TSL. From this knowledge, an attempt was made to con­

struct a preliminary model for the TSCE. The work was carried out in 

this order since experiments on TSL are easier to do and a greater 

variety of them appeared possible. Auxiliary information was obtained 

from standard optical absorption and electron paramagnetic resonance 

experiments. 

Chapter II describes the material studied--KMgF3, the processes of 

thermally stimulated luminescence and exo-electron emission, past work 

on these topics, and the present work. Some theoretical considerations 

of trapping and recombination are treated. Elements of the theory of 

resonant transfer of energy, which occurs in sensitization of lumines­

cence, are given. This may be the mechanism operating in manganese­

doped KMgF3• Chapter III describes the experimental techniques and 

equipment used. In Chapter IV the various kinds of experiments performed 

and the resulting data are presented. In Chapter V the conclusions are 

given and a model is proposed to explain certain aspects of the thermo­

luminescence. Suggestions for further study are given. 



CHAPTER II 

BACKGROUND IDEAS AND PREVIOUS WORK 

A. Potassium Magnesium Fluoride 

Potassium magnesium fluoride, KMgF3, is an insulator with the cubic 

perovskite structure (4). Figure, 1 shows two unit,.-,~ls of KMgF3 • The 

band gap is about 11 eV (5). Like the alkali halides, unirradiated 

KMgF3 .is transparent from the .far ultraviolet to"the far infrared. 

When irradiated by electrons or gamma-rays, F center~ are formed 

(6). The F center in KMgF 3 consists of an electr.on trapped at a 

fluoride ion vacancy and gives rise to the observed 275 nm optical 

absorption. F2 (M) and F3 (R) centers are also formed in the irradia­

tion process. The F3 center consists of three adjacent F centers (7,8) 

in the form of an equilateral triangle,(Figure 2). The dose rate for 

the 60co source used in the present work is about 1. 8 x 1013 MeV I cm3 sec 

(5). The number of F centers formed may be estimated by Smakula's 

formula (9). A value of about 1016 F centers per cm3 is typically 

obtained for several hours gamma irradiation. 

If the material is irradiated with gannna.rays or electrons at 

sufficiently low temperatures, stable VK centers are formed. The first 

step in the formation of this defect. if:I the loss of an electron from a 

normal fluoride ion (4). 'l;he resulting electrostatic forces cause a 

neighboring anion to move closer, thus trapping a hole at the site. 

This is equivalent to a self-trapped hole. 

3 
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In general the radiation damage process is believed to follow the 

Pooley-Hersh mechanism (10, 11). In this scheme, a photon excites a 

halide ion: 

This in turn can combine with another halide ion forming an excited 

halogen molecule ion: 

x-* + x- ~ x=* 
2 

The x2* can then dissociate into an atomic halogen which moves to an 

interstitial position leaving behind a vacancy (shown by D>, a normal· 

halide ion, and an electron: 

If this electron is trapped at a halide ion vacancy, an F center is 

formed. Of the several fates possible for the x2* molecule, one can 

lead to the formation of a VK center: 

-* Xz ---? Xz + e 

B. Thermally Stimulated Luminescence 

Thermally Stimulated Luminescence (TSL) or thermoluminesc~nce is a 

6 

common technique for investigating certain aspects of defects in solids. 

Many materials, when irradiated at or below room temperature by ionizing 

radiation, undergo a redistribution of charge which results in the trap-

ping of electrons and holes at defects; these may be visualized as. 

providing localized levels in the forbidden energy band. When the 

material is subsequently heated, these trapped charge carriers may make 

radiative transitions to luminescence centers within the gap, emitting 

photons. Transitions can take place either directly or via the con-

duction band. If the intensity of the emitted radiation is plotted 



against the temperature (a "glow curve"), peaks are 9btained. In · 

principle, one may calculate activation energies of the defects, 
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measured from the bottom of the conduction band. However, approxima­

tions are made since the activation energy depends on other parameters 

such as the fraction of filled traps, heating rate, as well as the 

temperature, and the number of trapped charges. The spectral dis tr.ibution 

of the emitted radiation may be obtained using emission spectroscopy 

apparatus. This gives information con~erning the location of the lumin­

escence.centers below the conduction band edge if the transition is 

directly from the conduction band. In many cases, however, excited 

states complicate this simple picture. 

An electron in a trap can be regarded as being in a potential well 

(12) with an associated activation.energy E an4 frequency factor S. For 

no retrapping, Sis the "attempt to escape" frequency of the.trapped 

electrons or holes. The value of Sis usually in the range 108 - 1012 

per sec. There are many analyses employing different models, all 

designed to compute these and sometimes other.trapping parameters. A. 

simple method often used is the "initial rise" method (13). This metho4 

is probably the simplest to use but not always the most accurate (14). 

Nich9las and Woods (15) have given a critical review of the methods 

using the maximum temperature and half .width. (16-21), the method using 

the variation of the heating rate (18-24) and the initial risemethpd. 

Later reviews _are given by Braunlich (25) in 1966 and by Saunders (26) 

in 1969. A method worthy of attention is that due to De Muer (27). He· 

takes ac:,count of the cross sections for trapping and·retrapping and 

gives a graphical method for computing activation energy, frequency 

factor, and degree of retrapping. The limited value of allphenomeno-
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logical models is pointed out in a recent paper (28). Activation energy 

calculations involve many param~ters, some of which are uncertain.so 

that analyses can be meaningful only when the defect structure of the 

solid is known. The "initial rise" method is probably most useful for 

values of activation energy which might be ob.tained by different workers. 

C. Thermally Stimulated Charge Emission: 

A sensitive but less common method for probing defects in solids is 

by studying their exo-electron emission, first discovered by Kramer (29). 

The technique is often designated as Thermally Stimulated Exoelectron 

Emission (TSEE). To consider the generalized possibility of positive 

charge emission, we shall here refer· to Thermally Stimulated Charge 

Emission (TSCE). 

As in.TSL, the processes occurring involve electrons and/or ions 

thermally emitted from traps located either in the bulk or at the sur­

face. This is a "cold emission" since it can occur at very low tempera­

ture and has also been observed to have a peak structure. Since fi.rst 

observed in GM counteri;, TSCE has been attributed to be due to many 

processes: mechanical deformation, irradiation, phase changes, surface 

adsorption reactions (30), and chemical reactions (31, 32). 

TSCE curves are plotted as counts/sec or current vs. temperature. 

As in TSL, TSCE peaks are obtained at characteristic temperatures and 

from these may be computed activation energies, which have the same 

limited validity. A TSL peak may, coincide in temperature with a TSCE 

peak since the same defect may be.responsible for both processes. In 

contrast to TSL, which is a bulk effect, TSCE probably arises from a 

thin surface layer of the material. Exo-electron emission is possibJ,.e 
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also by optical stimulation (OSEE), using ultraviolet or visible light, 

depending on the trap depth (33). Two types of OSEE are distinguishable 

and different mechanisms have been proposed (34). 

The energy distribution of exo-electrons may be measured using a 

retarding field technique (35). Electrons are usually emitted, but from 

ZnO and in the dehydration of CuS04.5H2o ions have been reported (36). 

A recurring question in TSCE work is: Where do the exo-electrons get 

their energy? One explanation is that high energy electrons in the 

"Maxwell" tail of the free electron distribution do have energy to 

escape. Since there is a greater number of more energetic electrons at 

higher temperatures, this theory would be more applicable in that region. 

The Auger recombination mechanism is capable of explaining low 

temperature peaks (37). An example of this in an insulator is the 

thermal excitation of a bound hole which then recombines with a nega­

tively charged center, transfer of this energy to another electron in 

the same or neighboring center, with subsequent ejection of this 

electron (Figure 3). 

Various other factors, such as disturbances in the work function,. 

potentials between surface and deeper layers, and direct emission from 

traps without involving the conduction band, are also invoked to explain 

how the electrons leave a material with high efficiency and energy. 

TSCE has been investigated in many materials, especially in the alkali 

halides, alkaline earth halides, and metal oxides. In this laboratory, 

Mollenkopf (38) has conducted a study of TSL and TSCE in MgO. Brotzen 

(39) reviews the work done on metals, oxide layers, and the effects in 

ultra high vacuum. Bohun (40) discusses the different mechanisms of 

TSCE in ionic crystals. 
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As expected, peaks obtained in a given material vary with 

impurities, thermal history, surface structure, type of irradiation, 

etc. Becker (41), in his review article, discusses these and other 

factors in more detail. He also describes various types of apparatus 

and points out how this can affect the .data. Becker also outlines 

applications of TSCE. Methods used to compute activation energies of 

TSL peaks have also been used on TSCE peaks. The method of Balarin and 

Zetzsche (42) is often used specifically for TSCE peaks. 

In general, when a material is irradiated and warmed, the processes 

TSL, TSCE, as well as Thermally Stimulated Conductivity (which has not 

been included in this study) can result. Agreement between TSL and 

TSCE is not necessarily observed since: 

(a) an electron may be ejected in a non-radiative transition 

(no TSL) 

(b) an electron trap may be wholly within the bulk of the 

material (no TSCE) 

(c) an electron trap on the surface may produce only TSCE. 

Kelly (43), in his phenomenological theory, finds that TSCE has a 

sizeable effect on the other two effects, especially in thin.films. 

D. Previous Work by Others on KMgF3 

Some work has been done on the thermoluminescence of potassium 

magnesium fluoride (6, 44, 45). A literature survey indicates that there 

have been no charge emission studies made, except for the preliminary 

work by Mollenkopf (38) in .thfs laboratory. As part of a .wider study of 

color centers in KMgF 3 and KMnF3 , Riley (44) observed .TSL from 7 to 300 K 

in KMgF 3, electron-irradiated at 7° (Figure 4). From thermally 



.,, 
Q. 

E 
0 

LLJ 
u z 
LLJ 
u 

5 

2 

5 

m 2 
z 
~ 
::, 
..J 10-8 

5 

2 

ORNL-DWG 69·10140 - . :==_-= !_ _____ : K.Mg~~-~~-iR;o~u-~iN-Es-c~N1CE 
- - t ---- - - ! 

·----·~·-- ---r-- ELECTRON IRRADIATED 
----- -·· --------

(' 
---- -· --

/\ /\ 
I I 

\ 
_j 

I 

---l- i 
I ---

I .~ 14 -

I 
i -1~------ :~ --+ I 
I \ + -

" \ 
I ! \ I ..... l--v ! \ I I I i 

! 

I 
I \ I I I ---. -

, 

' IV 7 
\ I \ 1 

' I I '\. 7 
\ I ......... / 

-
l I I 

\ I 
\ I J I 

'-J i I 
I ! I 

I I · 1 I 
10-9'--~---'---~--'-~~-~'-----~~~~-'-I ___ __,I 

0 50 100 150 200 250 300 

TEMPERATURE (°K) 

Figure 4. Thennoluminescence in KMgF3 Gannna Irradiated at 7K (44) 

12 



13 

annealing studies, he concluded that the glow peaks at 120 and 160 Kare 

related to annealing stages of the VK center and that the 215 K peak 

corresponds to an annealing stage of 1;:he.F center. From his data on 

the spectral distribution of the glow peaks, he suggests that the 600 nm 

emission is due to Mn2+ impurity in the as-grown crystal. Later work 

(46) supports this last statement. 

Altshuler and co-workers (45) obtained four TSL peaks from 100 to 

300 Kin pure and rare earth (RE)-doped KMgF3• They conclude that the. 

RE 3+ ion (substituting for the Mg 2+) first captures an electron in the 

irradiation process. Then the thermally liberated VK center approaches 

the ion, recombining with the trapped electron, producing luminescence 

characteristic of the ion. They attribute the different peaks as being 

due to different defects (impurity, dislocation, etc.) perturbing the 

RE ion. 

E. Additional Considerations on Thermo-

luminescence Mechanism 

In a study of thermolumine~cence of CaF2 X-irradiated at 77 K, 

Merz and Pershan (3) ascribe the 330 K peak to the diffusion of inter-

stitial fluorine atoms through the lattice. For this process they 

estimate an activation energy in,the range of 0.9 - 1.2 eV. 

Altshuler and co-workers base their interpretatio.n of the low 

temperature TSL behavior in KMgF3 on the .ideas of Merz and Pershan (3), 

who investigated TSL·in pure and rare earth doped CaF2 • They found glow 

peak temperatures to be independent of ·the doping, implying an.associa:-

tion with VK centers in common with all the RE ions. They exp~ain·their 

330 K glow peak as due to diffusion.of interstitial fluorine atoms (F0 ) 



through the lattice. This is in contrast to the low temperature hole 

diffusion, a motion requiring less energy. Thus the 330 K g,low peak 

activation energy would be a measure of the energy. to free an F0 for 

diffusion through the ,CaF2 lattice. No details are given on the · 

recombination process. 

A similar mechanism is cited by Ausin and Alvarez Rivas (47). In 

their study of TSL and F center annealing in room temperature gamma­

irradiated KCl, they find: 

1. An annealing step in the F center optical absorption for each 

TSL peak, and 

2. The area under the TSL curve is proportional to the,concen-

tration of F centers measured before heating. 

These authot::s state that the idea of the F centers acting as traps for 

electrons or recombinati<:>n centers for holes does not explain .. the 

observed data. Their model is that interstitial chlorine at<;>ms become 

mobile as the temperature is raised and recombine with F centers, with 

14 

the electron-hole recombination 1emitting. the same luminescence fo.r each 

of the TSL peaks. This model explains the. vanishing of peaks I, II, 

III as being due to aggregation of interstitials at high F center con-

centratio1l,. In .their calculations, of frequency factors using various, 

methocls; they get abnormally large val-qes; .this again casts doubt 9n 

the idea.of·F centers acting as electron traps. 

The kinetic model of the,annealing of defects is based on that due 

to Damask and. D.ienes (48). The time rate of change of defect concen-

tration n is given by: 

where :t<o is the pre-exponential factor and· f:i is the kinetic order. 
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There is an analogy here with the usual equations of thermoluminescence 

( 8 = 1,2); however, the physical meaning is different: E is the acti­

vation energy of the process rather than the trap depth, while Sands'. 

correspond to K0 • In a simple case, the intensity of recombination is 

expected to increase with concentration of diffusing centers and with 

the concentration of recombination centers. 

A recurring problem in the thermoluminescence and radiation damage 

of alkali halides is the role of F centers. Some (49, 50) claim that 

the growth of F centers can be divided into two or more stages, these 

being due to the anion vacancies present in the crystal before irradia­

tion and those created in the radiation damage process itself. Thus 

attempts are made to connect certain above room temperature glow peaks 

with observed F center annealing stages. Others (51) find no connection, 

although both effects occur in the same temperature range. To sununarize, 

the following topics were discussed: the mechanism of the low tempera­

ture TSL in CaF2 , the role of manganese in the recombination process, 

and the connection if any between the F center annealing and the TSL 

above room temperature. It was felt that these questions required con­

sideration in the case of KMgF3:Mn. 

F. Elements of the Theory of Sensitized 

Llunines cence 

Many phosphors incorporate manganese as the luminescent ion since 

it exhibits visible emission in a wide variety of host lattices. An 

important problem here is the mechanism of th.e luminescence and the 

transfer of energy in these phosphors. According to Goldberg (52) 

there are four known mechanisms for the transport of excitation energy 



in inorganic solids: radiative transfer, charge transport mechanism, 

exciton mechanism, and resonance transfer. The last named best des­

cribes the situation in many of the manganese-doped phosphors (53). 

When phosphors containing impurities for visible emission .have no 

absorption bands in the region 200~400nm, it is impossible to excite 

them with UV. Often, however, a second impurity can be introduced in 

the above spectral region and usually having its own fluorescence 

emission at longer wavelengths. Thus the sensitizer will give rise to 

emission from the activator or emitter. A well studied example is 
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ZnS: Pb: Mn, the sensitizer being Pb (54). The sensitization effect is 

important in practice, also, since in most fluorescent lamp phosphors 

it affects the efficient conversion of energy from the 254nm radiation 

of the low pressure mercury discharge into visible radiation of suitable 

spectral content. 

A review of the different theories has been given by Botden (55~ and 

Dexter (56) has given the quantum mechanical resonance theory. This 

mechanism may operate in Mn doped KMgF 3• 

The transfer of energy between ions in a crystal may be accom­

plished in two possible ways without the transfer of charge: 

1. A "cascade" mechanism which is a radiative transfer of energy 

through the emission and reabsorption of photons. 

2. Long range resonant interaction (LRRI, also called Forster­

Dexter interaction). Here an ion which has absorbed a photon 

interacts via a multipole-multipole or exchange interaction 

with another ion and subsequently transfers the excitation. It 

is this mechanism that is believed to operate in many of .the 

manganese-activated phosphors. 
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We will now consider the process of sensitization of luminescence 

in KCl: Pb: Mn (54). Here the Mn2+ is called the activator (A) and has 

no appreciable absorption band in the UV or visible spectrum. The Pb, 

which is the sensitizer (S) can absorb in this region and transfers 

radiation of longer wavelength to the Mn2+, which then emits its 

characteristic radiation. 

The entire transfer process consists of five stages: 

1. Absorption of a photon of energy E0 by the sensitizer, 

2. Relaxation of the lattice surrounding the sensitizer by an 

amount such that the available electronic energy in a radiative 

transition from the sensitizer is E1 ( E0 , 

3. Transfer of energy E1 to the activator, 

4. Relaxation around the activator such that the available elec­

tronic energy in a radiative transition is E2 < E1 , 

5. Relaxation around the sensitizer to a state similar (but not 

necessarily identical) to its original unexcited state, 

6. Emission of energy E2• 

The energy transfer is regarded as a quantum mechanical resonant 

process. The difference in the energies E0 and E1 corresponds to 

Stokes's shift of wavelength. 

Dexter calculates a critical impurity concentration of 3 x 10-4 per. 

cm3 for appreciable S-A transfer to occur. For this concentration, Sis 

able to sensitize 2,900 sites in NaCl, an ionic crystal with an inter­

atomic spacing similar to KMgF 3 . A literature survey indicates fair 

agreement of the theory with experiment from the meager data available. 
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G. Scope and Method of Study 

In the low temperature region, doped and undoped samples of KMgF3 

were irradiated with electrons, gamma rays, or ultraviolet radiation •. 

One purpose of these experiments was to study the creation and filling 

of the low temperature traps. This helped to see if a different mechan­

ism operated here compared to the above room temperature region. 

These experiments and relevant EPR experiments help (1) to identify 

the traps created by UV at the low temperature and (2) the connection 

between their recombination (as the temperature is increased) and 

valence changes in manganese or other impurities. 

In the above room temperature region, the following experiments 

were carried out. 

(1) Effect of gamma ray and UV irradiations. The objective here 

was to see if the gamma rays create the traps and if UV fills 

them as usually occurs in the alkali halides. 

(2). Effect of gamma ray dose on the concentration of F centers and 

on the TSL peak spectrum. Thi,s is to see if certa.in TSL peaks 

grew preferentially with gamma ray irradiation time. 

(3) Correlation of thermal annealing of F centers and optical 

absorption changes. This may be additional evidence for 

relating F center concentration changes and TSL pea~s. 

(4) Effect of F band illumination upon the glow peak structure. To 

observe which TSL peaks have a positive correlation with F 

centers and which have a negative correlation. 

(5) Spectral composition of·the glow peaks. To see if different 

luminescent centers are associated with each TSL peak. 
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(6) EPR experiments to detect valence changes in impurities, 

particularly manganese. To observe any concomitant changes in. 

hole centers (if present) or F center concentrations. 

From the information obtained above it is hoped to make a model of 

the thermoluminescence process. In particular the role of VK centers·, 

F centers, and manganese are of interest. In addition some under­

standing of the TSCE mechanism may be gained because .of the similarity 

with the TSL peak spectrum. 



CHAPTER III 

EXPERIMENTAL EQUIPMENT 

A. Samples 

Several undoped and two manganese doped samples of KMgF 3 were used. 

They were grown by Riley (3) at Oak Ridge National Laboratory; this· 

reference also gives the impurity analyses. 

For TSL and TSCE measurements, samples with as-grown faces were used 

where possible. In fact, little difference in data was observed between 

these and polished samples. For optical absorption measurements, 

samples were cut with approximately parallel sides using a Metals 

Research Ltd. diamond saw. The samples were then polished with a 

Syntron lapper-polisher using Linde A 0.3,Mmo<.•Al2o3• After repeated 

TSL and TSCE runs, the sample surface that.was used showed some deterio­

ration and was repolished slightly in order to obtain consistent 

optical absorption measurements. This surface deterioration did no.t · 

alter the reproducibility of TSL runs. Of course, even very slight 

surface changes affected the TSCE. But reproducibility of the TSCE was 

found difficult to achieve even with the greatest precautions. 

Prior to any measurement, samples were washed in acetone in an 

ultrasonic cleaner. More elaborate cleaning prior to TSL and TSCE runs 

did not produce significant differences. 

Samples were irradiated with 60co gamma-rays and then kept in. 

darkness prior to measurement~ The typical dose rate was 1.8 x 1013 

20 
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MeV/cm3 sec (2). For some experim,ents samples were also irradiated by 

1.5 MeV electrons. from a Van de Graaff accelerator. The UV light source 

was a Cenco Hg light, Model 87298. 

B. The Combined TSL and TSCE Apparatus 

The sample is mounted on the bottom of a cold-hot finger .which also 

permits cooling of the sample to near liquid nitrogen temperature 

(Figure 5). The sapphire viewport underneath permits irradiation by 

ultraviolet light and luminescence detection by photomultiplier tube. 

The detector for charge emission is attached to the front of the 

apparatus as are copper-constantan thermocouple leads. 

The charge emission detector is a gas flow counter (Geiger-type). 

It has its central anode at -1000 volts, which is provided by a Hamner· 

Model N-4035 power supply. The exo-electrons are detected indirectly 

by the positive ions which are formed in equal numbers. These ions 

travel to the outer cylinder, which is connected to a Model 610B 

Keithley Electrometer. Thus is the charge emission meaimred. More 

detail on the gas flow counter is available in the thesis by Mollenkopf 

(38). The electrometer output is fed into the Y axis of an XY recorder 

(Omnigraphic Model HR-96), operated in the "time" mode. 

A 1P28 photomultiplier tube (S-5 response) operated at -850 volts, 

with an associated voltage divider network, detects the luminescence. 

The output of the photomultiplier tube is fed into a 602 solid state 

Keithley Electrometer. The Y axis of a Moseley 135 XY Recorder graphs 

this output while the X axis indicates the sample thermocouple 

voltage. 
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In a typical experiment; a.sample which has been gam~a-irradiat~d 

is .mounted. The system is pressurized to ·about 7 · cm Hg with a ~O 

percent Argon--10 percent Methane counting gas. The gas pressure is 

measured with a manometer containing n-butyl phthal~te, a low vapor 

pressure oil, before and· after charge emission. An Edwards high vacut,mt 

variable leak controls gas flow to within O. 05 cm Hg on th.e average. 

Starting from room temperature, the sample is heated rheoe,tati~ 

cally in .a reproducible way, the TSL and TSCE being recorded simul-

taneously. To re-excite the low temperature peaks, the,sample . 

temperature is lowered to near . 77 K. Then. the sample is e~ci ted using . 

unfiltered ultraviolet light; from a Cenco mercury lamp, followed by 

heating. The heating rates below and above room temperat:ure.are about, 

0.3 K/sec and 0.15 K/sec.respectively~ Both heating rates. are approxi-

mately linear. 

C. Emission Spectroscc;,py Equipment 

The sample is held on an.aluminum slide whi~h fits into the heating 

bloc~ (Figure 6). The heating rate was 0.06 K/sec and kept approxi-

mately linear. by a motor driven rheostat. A cqpper constant;an thermo:-

couple is embedded in this block near the sample. The side of .the . 

sample, is opposite the 1P28 photomultiplier tube. The large flat sur-

face.of the sample faces the monochromator. l'he Monochromator was.a 

Bausch and Lomq 0.5 meter Model 33-86-40 with its wavelength drive 
I . . 

connected to the X axis of a .Moseley Model, 7000A recorder. · At the 

monochromator exit is a C31034 Photomulti,plier ttibe (GaAs photoc~thode) 

operated at -1000 volts at room temperatµre by a Fluke Model 412A 

supply. 
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The output of the PMT was fed to a Model 202 E-H Research Labs 

Electrometer Amplifier and then to the Y axis of the Model 7000A 

recorder. Thus a plot of luminescence intensity versus wavelength is 

obtained. To measure the total spectral emission, the 1P28 output is 

connected to a 610B Keithley Electrometer and then to a Moseley Model 

135 recorder. Typically, a wavelength scan from 300nm to 950nrn is made 

through the maximum of a glow peak. Scans were made in increasing and 

in decreasing wavelength, and the mean was taken. 

D. Optical Absorption Equipment 

The existance of defects which absorb optically may be detected by 

a Spectrophotometer. 

The Cary 14 Spectrophotometer is a double beam instrument and was 

used to measure the optical density (O.D.) of the samples. A peak in 

the O.D. versus wavelength graph means a certain type of center has its 

first excited state at that particular wavelength; e.g., 275nm (4.5 eV) 

for the F center in KMgF3 • 

The optical density is defined as: 

O.D. = loglO (I0/I) 

where Io= Intensity of light beam entering sample and 

I= Intensity of light beam leaving sample 

It can be shown (9) that under certain conditions the concentration 

of centers is proportional to their optical density. 

E. Electron Paramagnetic Resonance 

The EPR technique can be very helpful for obtaining local informa­

tion on defects in crystals. Thus valence changes of impurity ions can 
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be detected, which may help in making a model for the thermolumines-

cence. 

The microwave system was an X-band homodyne type with 16KHz magne­

tic field modulation. A Varian V-4531 reflection cavity was used. 

Horizontal slots in the side of the cavity permitted excitation of the 

sample with light. The maximum sensitivity of the system was approxi­

mately 2 x 1012 spins/cm3 at 77 K. 

EPR runs at around 125 K to 570 K were effected by flowing nitrogen 

gas through stainless steel tubing submerged in liquid nitrogen. An 

alternative method was a variable temperature control heating element 

for both low and high temperatures. A copper cons.tan tan thermocouple 

near the sample monitored its temperature. Temperatures could be con­

trolled to within 5-10 K permitting heating runs similar to the TSL 

experiments. 



CHAPTER IV 

EXPERIMENTS AND OBSERVATIONS 

This chapter describes the various kinds of experiments that were 

performed in order to collect information about the role o.f F centers 

and possible valence changes in Mn2+ related to the thermoluminescence 

in KMgF3• The various sections relating to these experiments are 

described as follow: 

Effect of UV and Gamma Irradiation: Here are described tqe effect 

on TSL and TSCE of irradiating the sample at room temperature with gamma­

rays and the LN temperature with UV. 

Variation of Gamma-Ray Dose: These runs show the effect of 

varying the gamma-ray dose. 

Emission Spectroscopy Experiments: These experiments show the 

spectral distribution of some of the TSL peaks and their re-excitation 

capability with UV light. 

Illumination into the F Band: This series of experiments shows the. 

effect of illuminating the sample with light of wavelength approximating 

the F center absorption wavelen~th (275 nm). 

Thermal Annealing and Optical Absorption Correlation: This series 

of experiments shows the correlation between thermal annealing and 

optical density of the F centers. 

EPR Experiments: These experiments describe attempts to detect 

Mn2+ valence changes and the possible formation of VK centers produced 

by UV light at low temperatures. 
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A. Effect of UV and Gamma Ray 

Irradiations 

In the following "Gamma Run" will refer to the result of first 

irradiating the samples with gamma rays (Figures 8, 11). The term 

"UV Run" will refer to the result of exciting a sample with UV after 

a "Gamma Run." Note that the peak temperature will vary a few degrees 

Kelvin in different runs. 

1, Undoped Samples 
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First annealed samples were cooled to near 77 Kand irradiated with 

UV light for two hours. No thermoluminescence resulted, but very small 

TSCE peaks at about 240, 340, and 452 K were produced (Figure 7). Then 

the sample was taken out of the system, gamma-irradiated for 50 minutes 

and remounted. The run (subsequently called a "Gamma Run") was started 

again from near 77 K so as to obtain a consistent heating rate. 

Sizeable TSL peaks appeared at about 342, 369, 415, 444, 476, and 523 K. 

Large TSCE peaks were observed at 340, 420, 450, and 570 K (Figure 8). 

In the next run, shown in Figure 9, the sample was irradiated with UV 

light for 1,000 seconds without removing it from the system. Low 

temperature TSL peaks occurred at 182 and 239 K, while TSCE peaks 

occurred at 186 and 241 K. These TSL and TSCE peaks occurred uaually at 

almost the same temperature, Above 273 K, the TSL peaks of Figure 8 

were present but very small. These re-excited peaks were also more 

separated than in the Gamma Run of Figure 8. In subsequent runs, the 

TSL peaks had decreased to practically zero, but the TSCE peaks had 

decreased only slightly (Figure 10). 
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2. Doped Samples 

The same sequence of experiments was carried out on the doped 

samples as on.the undoped samples. 

On irradiating annealed samples with UV light even for two hours, 

only one small TSCE peak at 330 K was produced. Again, as in the 

undoped samples, no TSL peaks appeared. When the sample was gamma­

irradiated, very large TSL peaks appeared at 339, 408, 464, 540, and 

574 K (Figure 11). 
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When the sample was re-excited with UV without removal from the 

system, low temperature TSL and TSCE peaks again appeared, and small, 

well-separated peaks above room temperature also appeared {Figure 12). 

It is seen that the 337 and 540 K peaks recur. All these peaks were 

re-excited in a subsequent run {Figure 13), except the 540 K peak, which 

is probably overshadowed by the increasing black body radiation. 

3. TSL Summary 

The TSL summary is as follows: 

1. For both the undoped and doped samples, no TSL peaks are 

apparent after two hours UV excitation. 

2. The heights of the peaks obtained by re-exciting the samples 

with UV after initial gamma-irradiation (l'UV Run") are much 

smaller but more accentuated than those obtained in the Gamma 

Run. 

3. For the undoped sample, each TSL peak (except the 370 and 570 K 

peaks) is pres.ent in. the "Gamma Run" and in the "UV Run." In 

the doped sample the 290, 408, and 570 K peaks of the "Gamma 

Run" are not apparent in .the fo,llowing "UV Run." 
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4. For both samples TSL peaks at 150, 184, and 240 Kare produced 

by UV at 77 K only after initial gamma-irradiation. The 184 

and 240 K peaks are more consistent in height and temperature 

than the above-room temperature peaks. 

4. TSCE Summary 

The TSCE summary is as follows: 

1. In both samples, one or more small peaks appeared after two 

hours UV excitation, and these were very much enhanced by 

gamma-irradiation. 

2. In repeated UV Runs, all the peaks are capable of re-excitation 

in contrast to the TSL peaks, which die out within two UV Runs 

after the initial Gamma Run. 

3. The levels of the TSCE peaks in the doped sample were 

generally lower than the TSL peaks in the doped sample whereas 

the opposite was true for the undoped samples. 

4. In general, there is usually a TSCE peak corresponding to each 

TSL peak. 

5. Summary 

The data can be interpreted by saying that apparently the gamma~ 

rays create and fill the traps and that the UV only fills them. It is 

apparent that the UV is not capable of creating the traps initially. 

Since gamma-rays also produce F centers, it is appropriate to ask what 

is the connection, if any, between them and the peaks of TSL and TSCE. 
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B, Variation of Dose 

One indicator of how the TSL peak heights vary with F center con­

centration is to irradiate.samples for various lengths of time and 

monitor the F center optical density. Thus thermoluminescence runs 

similar to those in Section A were carried out by simply varying the 

gamma ray irradiation time and monitoring the optical absorption before 

each TSL Run. In this way th.e variation of TSL peak height with F 

center optical density is investigated (Figures 14 and 15), 

Figure 14 is a collection of the results typical of the undoped 

samples. This consists of the peak heights of each of the TSL peaks 

(where present) plotted against the irradiation time. In going from 

short to long irradiation times·a peak tends to be "lost" or over":' 

shadowed, perhaps by the width of a higher temperature peak. Thus the 

340 K peak is seen only as a shoulder in the three-hour Gamma Run. At 

longer irradiation times this peak seemed to occur at higher tempera­

tures. 

Figure 15 shows the data typical of the doped samples. The 440 and 

460 K peaks of the doped samples are taken as corresponding to the 430 

and 450 K peaks of the undoped samples, respectively. At very long 

gamma irradiations only the 420 and 540 K peaks are observed. The,340 

and 460 K peaks are not observed for irradiation times longer than three 

hours. 

A significant feature is that the TSL peak spectrum of a lightly 

irradiated doped sample has similar intensity levels as the TSL peak 

spectrum of a heavily irradiated undoped sample,, This implies that the 

net TSL of all the samples increases with the F center concentration and 

with the manganese concentration. This means a joint probability of 
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recombination depending on these two concentrations, which will be dis­

cussed in the model outlined later. 

For both the undoped and doped samples the general trend of the 

variation of the TSL peak height is the same. A rapid rise in peak 

height at short irradiation time and saturation at long irradiation time 

are observed. The saturation level for the doped sample is higher than 

in the undoped sample. 

If the.F center optical density is plotted against TSL peak height, 

similar trends are observed. Thus the first peak 360/340 K stops 

growing although the F center concentration still increases. Thus it is 

reasonable to say that this peak is not related to F centers. 

C. Emission Spectroscopy Data 

The data here will assist in determining the type of recombination 

processes related to the light output of the samples. The experiments 

carried out on the emission spectroscopy of the samples may be divided 

in to two par ts : 

(1) A simultaneous theJ;"molt.nninescence run and wavelength scan of 

the peaks 

(2) A simultaneous thermoluminescence run and intensity variation 

of the 590 nm or 750 nm peaks obtained in (1) 

For experiments dealing with the simultaneous thermoluminescence 

run and wavelength scan of the peaks, the sample was gamma-irradiated 

for 13 hours at room temperature while it was in the sample holder. 

Then the sample holder with sample was inserted in the heating block and 

heating commenced. One recorder plotted the total thermoluminescence 

against the temperature. As the first TSL peak above room temperature 



(360 K peak) was approached, the emisa,ion spectroscopy scanning was. 

commenced. Wavelength scans of the lower temperature side, the peak, 
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and the higher temperature side of the TSL peaks near 360, 430, and 450 

K were made. Note these three TSL peaks· are taken to corr~spond to the 

peaks 340, 430, and 450 K, respectively, of Sections A and B, Wavelength 

scans were also made between these TSL peaks. The highest attainable 

temperature with the heating apparatus was about 540 K. In general only 

two wavelength peaks centered at 590 nm and 750 nm were obtained. Some 

emission also occurred around 820 nm; this was prior to the onset of the 

340 K peak. Figure 16 shows the wavelength scans typical of the undoped 

samples. Similar scans were obtained for the first three peaks above 

room temperature for the doped samples. These are shown in.Figure 17. 

The first three TSL peaks oc~urring here above room temperature are 

again 340, 440, and 460 K. No emission bands other than the 590 nm and 

750 nm bands were evident. 

For the second class of emission spectroscopy experi~ents--a 

simultaneous thermoluminescence run and intensity variation of the 590 

nm or 750 nm peaks obtained in the previous experiments--samples were 

gamma-irradiated for 13 hours as in the previous experiments, replaced 

in the heating block and heating commenced. Here again one recorder 

plotted the total TSL as in the previous experiments, but now the mono­

chromator was set at 590 nm and a second recorder plotted the variation 

in the intensity of.this band with time. Both the total TSL and the 

590 run emission are shown in Figure 18a for the undoped samples. Note 

that the relative TSL and 590 or 750 nm is plotted; no corrections, have 

been made for the difference irt photomultiplier tube or changes .in 

spectral sensitivity of tub~ with wavelength. After the Gamma Run 

• 
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above, the holder with the sample in position was taken out of the 

heating block, irradiated with UV light for one hour, and replaced. 
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Then the monochromator was set at 750 nm and the total TSL and variation 

with time of the 750 nm emission were both monitored simultaneously. 

This result in shown in Figure 18b. 

Again, the sample was gamma-irradiated ·for 13 hours, the total TSL 

and the variation with the 750 nm emiss~on monitored simultaneously 

(Figure 19a). Finally, the sample and holder were removed from the 

heating block, irradiated with UV light for one hour, and replaced. The 

total TSL and time variation of the 590 nm intensity. were monitored 

(Figure 19b). 

The four experiments described above on the undoped samples and 

shown in Figures 18 and 19 were also carried out on the doped samples. 

The corresponding results are shown in Figures 20 and 21. 

The results of the spectral composition of the TSL peaks may be 

sunnnarized as follows. Where a double temperature is given for a peak, 

the first and second temperatures refer to the temperatures of oc.cur­

rence in the undoped and manganese-doped samples, respectively. 

1. In both samples the main spectral emission for the 360/340 K, 

430/440 K, and 450/460 K·peaks examined is in the 590 nm or 

750 nm bands. 

2. Except for the 360 K peak, there is a peak in the 590 nm 

emission spectrum corresponding to each TSL peak, and this 

emission is proportionately greater in the undoped sample. 

3. There is a 750 nm emission only in the first two TSL peaks 

(360/340 and 430/440 K) above room temperature and this appears 

to be.larger in the undoped sample. 
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Thus for all the samples the main luminescenc~ centers are the 

590 nm (Mn2+) and the unknown 750 nm emission. 

D. Illumination Into the F Band and 

Correlation With Optical 

Absorption 

50 

Undoped samples, on the slide used in Section C, were.illuminated 

with the Cenco UV light using a 254 band pass filter. This approximates 

the F band (275 nm) in KMgF3. In this and in all the illuminations 

described below~ the distance from the exit slit of source to sample was 

kept constant at 6~ inches. 

For the data'in this section the sequence of events was as follows: 

First the sample was gamma-irradiated for eight hours, an optical 

absorption run made, the TSL Run followed, and a final optical absorp­

tion (O.A.) run made. The results of the O.D. runs before.and after.the 

TSL Run are shown by the points A (O.D. = 1.59) and B (O.D. = O. 76), 

respectively, in Figure 22. Note that the O.A. is plotted on the 

ordinate on the right-hand side. The TSL peak heights (left ordinate) 

of the first four peaks above room temperature are shown by the.symbols 

O , D , ~ , • in Ff.gur:e 22 on the vertical line correspond·ing to 

the treatments undertaken. This gamma-run just described forms the 

b~seline for the treatments which follow. · 

Samples were annealed in the usual way before being ganuµa­

irradiated for eight hours. Then an O.A. run was made, and the 254 nm 

light shone on the sample. for 40 minutes as described above. This 

treatment is designated (gamma+ 40). A TSL Run was made, and finally 

an.a.A. run again made. The points C and D of Figure 22 represent the 
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NOTE: In each case, the four points plotted on the 
vertical line represent (on the left ordinate) 
the TSL peak heights subsequent to the treat­
ment specified. Thus the "Gamma Run" is a 
baseline. The points A and B, C and D, etc. 
represent (on the right ordinate) the optical 
densities before and after each TSL run. 
Specifically the point C is the F center O.D. 
after an F band illumination of 40 minutes, 
subsequent to the same initial gamma dose. 

51 



initial O.A., after UV illumination,and final O.A. after the TSL run, 

respectively. 

52 

Similarly point E represents the O.A. after eight hours gamma­

irradiation and a subsequent 220 minutes 254 nm illumination. Po.int F 

is the final O.A. after the TSL run. In the third and final treatment 

(gamma+ 570), represented by GH, the l~ngth of 254 nm illumination was 

570 minutes. The baseline and the three treatments just described are 

designated gamma-run, gamma+ 40, gamma+ 220, and gamma+ 570, 

respectively. No similar treatments were undertaken on the doped 

samples. 

It is observed that when undoped samples are excited with 254 nm 

radiation (approximating the F band of 275 nm) following an initial 

gamma dose, the F center optical density is markedly decreased; in 

addition, the TSL peak heights, obtained subsequently, except the 362 K 

peak, are all smaller. These two trends are repeated when the length of 

F band illumination is increased from 40 to 570 minutes following the 

usual gannna dose. 

E. Correlation of Thermal Annealing of 

F Centers and Optical Absorption 

The series of experiments described below were designed to see how 

the concentration of F centers decreased as the temperature is increased. 

Thus annealing stages of the F center opt:(.cal density may correlate with 

TSL peak temperatures. 

One way to do this is to place the sample in a specially designed 

cell with heater in the compartment of the.Cary 14 spectrophotometer and 

heat the sample while observing the F center absorption band. An 



unknown effect here, however, is the broadening of ;he band with 

increase in temperature. 
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To circumvent this difficulty, the following procedure was 

followed: The sample was gamma-irradiated for three hours, run on the 

Cary 14, placed in the TSL system, and heated to the desired annealing 

temperature. Then the sample was cooled, and a Cary 14 run again made. 

This entire process was repeated for a,series of annealing temperatures 

from about 370 to 670 K. Each of these experiments gave a value for 

the O.A. of the F center band at different temperatures. These are 

plotted in Figure 23 against the temperature. The point A on the 

extreme left of the figure is the (O.D.)F after an eight hour gamma~ 

irradiation and no subsequent bleaching. The point Bis the (O.D.)F 

after a~ eight hour gamma-irradiation and subsequent heating to 377 K 

and so on. 

As the temperature increases.the F .center optical dens:i.ty decreases 

slightly from room temperature to about 380 K. There is a marked 

decrease in.O.D. in the temperature range 110-180 Kand a significant 

decrease in the region arou~d 570 K. Throughout the temperature region 

273-550 K the F2 center optical density at first increases slightly up 

to around 450 Kand afterwards decreases. 

F. EPR Experiments 

(l) Undoped samples were gamma-irradiated at room temperature, and 

the Mn2+ signal level noted at 77 ~ both, before and after. 

irradiation. The sample was then heated to 560 Kand the Mn2+ 

signal level again monitored. 
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In gamma or electron irradiated samples, comparison of 

signal levels indicated no significant change in the Mn2+ con­

centration occurred. 

(2) Undoped samples were gamma-irradiated at room temperature, and 

ESR signals similar to VK signals were observed. When samples 

were then excited at 77 K with unfiltered UV light, no signals 

similar to VK signals were observed, but signals indicating 

the presence of other paramagnetic centers were seen. The 

origin of the latter signals is unknown at this time but is 

considered an important area for future work. 

The main results of the EPR data are that any valence changes in 

Mn2+ occurred in amounts too small for gross observation and no VK 

signals were seen,upon excitation with UV at 77 K. Thus, the low 

temperature TSL peaks are not related to hole centers of the VK type. 



CHAPTER V 

CONCLUSION AND DISCUSSION 

A. Summary of Results 

A summary of the observations of the previous chapter leads to 

certain general conclusions: 

1. No TSL is produced by UV excitation except when the sample is 

given a prior dose of gamma-rays. This implies that F centers 

are necessary, perhaps indirectly, in the TSL process. 

2. Generally speaking, the same TSL peaks seem to occur in both 

Mn2+ doped and undoped KMgF 3 samples, implying that the peak 

temperature is independent of the manganese doping. Except 

for the 360/340 K TSL peak, the peak heights increase with the 

Mn2+ doping and with the F center concentration, suggesting 

that the TSL output is dependent on both these quantities. 

3. The peak heights of the first four TSL peaks, except the 360 K 

peak, above room temperature obtained after gamma irradiation 

followed by increasing F band illumination are successively 

smaller than those obtained in a regular "Gamma Run." This 

implies that these, except for the 360 K peak, are associated 

in some way with F centers. 

4. The emission spectroscopy data shows that the same 590 nm 

emission occurs in the first four TSL peaks above room tempera­

ture. It should be noted that the first peak has significant 
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750 nm emission associated with it. 

So One result of the EPR work indicates that the low temperature 

TSL peaks are not related to any of the known types of VK 

centers. Another result is any valence changes in Mn2+ 

occurred in amounts too small for gross observation. 

B. Proposed Model 
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The results summarized above on the TSL of gannna and UV irradiated 

KMgF 3 are, of course, capable of many explanations. It is the purpose 

here to suggest certain simple elements of one tentative model which 

would seem to form a reasonable basis for further investigation of TSL 

and TSCE phenomena in comparable systems. 

This model combines the ideas of Ausin and Alvarez Rivas (47) and 

Merz and Pershan (3) who investigated TSL in alkali halides above and 

below room temperature, respectively. The model is thus conveniently 

divided into two parts corresponding to these two temperature regions, 

1. TSL Above Room Temperature 

When KMgF 3 is gamma-irradiated at room temperature, F centers and 

their aggregates, as well as single and aggregated interstitials, are the 

main defect products (57). Unstable VK centers may also be formed. 

Apparently no lattice defects are formed by UV irradiat:ion of the 

sample at room temperature, although ionization of existing defects can 

occur. 

When the sample is heated, the interstitials become increasingly 

mobile and move towards F centers. The interstitial fluorine atoms can 

recombine with the F centers leaving fluoride ions and an undetermined 
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amount of recombination energy. The released energy is transferreq in 

such a way as to excite a nearby Mn2+ ion which on decay emits a 590 nm 

photon. A survey of manganese-dqped alkali halide1:3 indicates that Mn2+ 

is the dominant luminescent center, and in I<MgF3 this ion emits in the 

590 nm region (46). The following general reaction scheme gives the 

suggested chain of events. 

Fo + F center 

(interstitial (trapped 
atom) electron 

in 
vacancy) 

+ Mn2+ 
~ (F-)* + 

(excited 
fluoride 
lattice 
ion) 

+ 

(normal 
lattice 
fluoride 
ion)· 

Mn2+ 

(590 nm) 

The first stage is.assumed to be the formation of an excited fluoride· 

ion in a regular lattice position; the excitation then goes to the. Mn2+ 

and finally appears as a 590 nm photon. In this picture, the F centers 

play· the role of fixed recombination centers, the interstitials being 

mobile. entities which move towards the recombination centers. 

In an alternative process, the lattice recombination .energy may be 

transferred to a non-radiative r.ecombination center resulting in '.the 

ejection of an electron (TSCE) from the crystal by an Auger.mechanism. 

The proposed model requires the manganese and is consistent with (1) the 

larger TSL and smaller. TSCE observed in the heavily mang~nese-d.oped 

samples and (2) the smaller TSL and larger TSCE in the undoped samples. 
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The origin of the 750 nm emission is not known,at this time. It 

may well be the result of the transfer of the ab9ve~described lattice 

recombination energy .to an.F-aggregate or non-manganese impurity center •. 

When undoped and Mn.2+ doped KMgF:3 samples were gannna-irradiated at 77 K 

and allowed to warm up, another red emission was observed visually 

before the yellow-orange emission (presumably 590 nm) was seen. It has 

been suggested that. this red emission may be due to perturbed Mn2+ (58). 

The general rise and fall of the glow curve between 290 and 520 K 

is assumed to be explained by the interstitial-F center recombination 

and subsequent Mn2+ excitation. It ·remains to explain the origin of 

the small peaks superimposed on.the glow curve and which are also 

obtained in successive UV re-excitations near 77 K. That they are not 

due to F center annealing is supported by the absence of annealing steps 

in the F center optical density, curve. A possible me.chanism could be. 

the excitation by the UV at 77 K of an F center electron converting 

some of the Mn.2+ to Mn1+, the recombination of a hole (as yet unidenti­

fied) with the Mn1+ and subsequent_Mn2+ excitation giving the.charac-

teristic manganese luminescence. 

2. TSL Below Room Temperature 

Again, it is important .to realize that no low temperature TSL is 

seen unless the specimen has been pre-irradiated with gannna rays (or 

MeV electrons) at room temperature. A plausible explanation .for the 

observed phenomena is that subsequent UV irradiation at 77 K causes 

electrons to be excited out of F centers. These electrons may combine 

with Mn.2+ ions., converting them to Mn1+, and they may also be trapped 

by other impurities. As the sample warms up, holes other tha~ VK type 
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centers may be thermally excited from traps recombining with Mnl+, 

thus regenerating Mn2+ and providing the characteristic luminescence. 

The amount of Mn1+ may well be in too small concentration to be readily 

detected by EPR. 

A corresponding mechanism here for the TSCE would be the recombina-

tion of a bound hole with a non-radiative recombination center other 

than a Mnl+ ion with ultimate transfer of energy to an electron in a 

neighboring center and subsequent ejection of this electron from the 

crystal. 

Unfortunately, a great deal more work must be done before appro-

priate hole centers and Auger recombination centers can be identified 

to confirm this hypothesis. It .is considered significant, however, that 

TSCE can be obtained with UV irradiation alone while TSL apparently 

depends upon the presence of F centers. 

C. Discussion 

Some additional arguments exist to support the. model outlined 

above. 

One important feature is the apparent similarity in TSL peak 

temperature of both the undoped and Mn2+ doped KMgF3 samples. This was 

apparent also in lightly irradiated Mn2+ doped samples and undoped 

samples which were heavily irradiated. Another supporting feature is 

that the 590 nm emission follows very closely the total TSL. A third 

aspect is that in the "Gamma Runs" and "UV Runs" the former had barely 

separated peaks with a high interpeak background whereas the· latter 

generally had a more sep~rated appearance. This would be expected from 

the gradually increasing mobility of interstitials in contrast to the 



sharper peak ·structure expected of electrons and holes released from 

traps. 
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Again, if electrons were released from F centers, this would imply 

as many different F centers as TSL peaks. Furthermore, F center elec­

trons are tightly bound and are not expected to become freed by 

increasing temperature alone. 

In this work is was found that no VK centers were observed after UV 

irradiation subsequent to 295 K gamma irradiation. Both Riley (44), 

using electron irradiation at 7 K, and Altshuler and co-workers (45), 

using X-irradiation at 77 K, obtained low temperature TSL peaks, all of 

which agree well in temperature except for Riley's peaks below 77 K. 

It now seems reasonable to say, because of recent work on intrinsic and 

perturbed VK centers in KZnF3 (59), that the TSL peaks in the region 

77 - 300 K of these authors are related to these hole centers. Although 

the 160 K peak observed in the work agrees well in temperature to that 

of the above-mentioned authors, this is probably coincidental, and no 

significance should be attached thereto. 

D. Suggestions for Further Study 

The following experiments would be most helpful in order to either 

support or disprove the model outlines. 

1. It would be desirable to determine more exactly the association 

between steps (if any) of the thermal annealing curve and 

changes in the F center conc.entration. This can be done by 

observing the F center optical density at a greater number of 

temperatures from room temperature to 600 K. · 
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2. The TSL peak structure and emission spectroscopy of compounds 

such as NaMgF3, KZnF3, and KMgF3 doped with other impurities 

should be investigated. This data will show the dependence of 

peak temperature and spectral emission on cation and dopant. 

3. The variation of TSL peak height and F center optical density 

with gamma-ray dose for both samples deserves more careful 

measurement. In particular the.relationship between the inte­

grated TSL intensity. (as measured by the area under the TSL 

intensity versus temperature curve) and F .center optical 

density would assist in challenging the proposed model for the 

thermoluminescence above room .temperature. 

4. It is important to. find out if the TSL peaks produced by gannna­

rays or electron irradiation at 77 Kare the same as those 

obtained by gamma irradiation at room temperature followed by 

UV at 77 K. Equipment has been designed for this study and 

will soon be operational. 

5, Experiments on TSC could be carried out by adapting the gas 

flow counter apparatus. The existance of TSC would indicate 

a charge carrying mechanism in contrast to the recombination of. 

interstitials with F centers as suggested in the model outlined. 



SELECTED BIBLIOGRAPHY 

1. Cameron, J. R., et al, Thermoluminescent Dosimetry, University of 
Wisconsin Press (1968). 

2. Dutton, D., and R. Maurer, Phys. Rev., 90, 126 (1953). 

3. Merz, J. L., and P. S. Pershan, Phys. Rev., 162, 217 (1967). 

4. Wyckoff, R. W. G., Crystal Structures, 2nd ed., Vol. 2 (Inter­
science, New York, 1964), p. 392. 

5. Yun, S. I., private connnunication. 

6. Riley, C. R., and W. A. Sibley, Phys. Rev., fil, 2789 (1970). 

7. Hall, T. P~ P., Brit. J, Appl. Phys., 17, 1011 (1966). 

8. Hall, T. P. P., and A. Leggeat, Solid State Comm.,]_, 1657 (1969). 

9. Di Bartolo, B., Optical Interactions in Solids, Ed. W. B. Fowler 
(Academic Press, New York, 1968). 

10. Pooley, D., Solid State Conun., 1, 241 (1965); Proc. Phys. Soc. 
(London) , fil, 245 (1966) , 

11. Hersh, H. N., Phys. Rev., 148, 928 (1966). 

12. Mott, N. F., and R. W, Gurney, Electronic Processes in Ionic 
Crystals, Oxford University Press (1940). 

13. Garlick, G. F. J., and A. F. Gibson, Proc. Roy, Soc., .§Q, 574 
(1948). 

14. Braunlich, P., J. Appl. Phys.,~ (6), 2516 (1967). 

15. Nicholas, K, H., and J, Woods, Brit. J. Appl. Phys., 15, 783 
(1964). 

16. Randall, J. T., and M. H. F. Wilkins, Proc. Roy. Soc., A184, 366 
(1945). 

17. Grossveiner, L. J,, J. Appl. Phys., 24, 1306 (1953). 

18. Lushchik, Ch. B., Dokl. Akad. Nauk. SSSR, 101, 641 (1955). 

63 



19. Haering, R.R., and E. N. Adams, Phys. Rev., 117, 451 (1960). 

20. Halperin, A., et al, Phys. Rev., 117, 416 (1960). 

21. Braunlich, P., Ann. Phys. (Germ.), g, 262 (1963). 

22. Booth, A.H., Canad. J. Chem.,11,, 214 (1954). 

23. Bahun, A., Czech. J. Phys., i, 91 (1954). 

24. Hoogenstraaten, W., Phillips Res. Rep., 13, 515 (1958). 

25. Braunlich, P., Proc. Conf. "Application of Thermoluminescence-to 
Geological Problems," Spoleto, Italy (1966). 

26. Saunders, I. J., J. Phys. c. (Solid State), l (2), 2181 (1969). 

27. De Muer, D., Physica, 48, 1 (1970). 

28. Kelly, Paul, et al, Phys. Rev. B., (3), 4 (6), 1960 (1971). 

29. Kramer, J., Z. Phys., l]l, 629 (1952). 

30. Delchar, J. A. , J. Appl. Phys. , ~' 2403 (196 7) • 

31. Fintelmann, K., Proc. 4th Czech. Conf. Electronic Vac. Phys., 
Prague (1968), p. 395. 

32. Gess ell, T. F. , et al, Sqrf. Sci., 19_, 174 (1970). 

33. Holzapfel, G., Phys. Stat. Sol., 12,, 325 (1969). 

34. Bahun, A., Czech J. Phys., i, 89 (1954). 

35. Kreigseis, W. , and A. Schamann, Phys. Stat. Sol. , 33, K41 (1969). 

36. Holzapfel, G., and J. Kramer, PTB-Mitt., 80 (5), 318-354 (1970). 

37. Tolpygo, E. I., et al, Izv. Akad, Naqk. SSSR, Ser. Fiz, 30, 1980 
(1966). 

38. Mollenkopf, H. C., Ph.D. disseration, __ Oklahoma State University 
(1973). 

39. - Brotzen, F. R., Phys. Stat. SoL, 11, 9 (1967). 

40. Bahun, A., PTB-Mitt., 80 (5), 320-329 (1970). 

41. Becker, K., CRC Critical Reviews in Solid State Sciences, l (1), 
39-81 (1972). 

42. Balarin, M., and A. Zetzsche, Phys. Stat. Sol., 1_, 1760 (1962). 

64 



65 

43. Kelly, Paul, Phys. Rev. (3), i (2), 749 (1972). 

44. Riley, C.R., Ph.D. dissertation, University of Tennessee (1970). 

45. Altshuler, N. A., et al, Optika Spectroscopiya, 33 (2), 207 (1972). 

46. Riley, C.R., et al, Phys. Rev. B., 1 (8), 3285 (1972). 

47. Ausin, V., and J, L. Alvarez-Rivas, J, Phys. "C" (Solid State), 1, 
82 (1972). 

48. Damask, A. c., and G. J, Dienes, Point Defects in Metals (Gordon 
and Breach, New York, 1963). 

49. Jain, S. C., and P. C. Mehendru, Phys. Rev., Al40, 957 (1965). 

50. Radhakrishna, S., and R. Narayanan, Phys. Stat. Sol. (a), 19, 103 
(1973). 

51. Sonder, E., et al, Phys. Rev., 159 (3), 755 (1967). 

52. Goldberg, P., Luminescence of Inorganic Solids, Academic Press 
(1966). 

53. Shvarts, K. K., and G. K. Vale, Izv. Akad. Nauk. SSSR, Ser. Fiz, 
25, 333 (1961). 

54. Osiko, V. V., Opt. i Spektr. Suppl., 1:., 135 (1967). 

55. Botden, T. P. J., Phillips Res. Rep., l, 197 (1952). 

56. Dexter, D. L., J. Chem. Phys., 21,836 (1953). 

57. Sonder, E., and W. A. Sibley, Point Defects in Solids, Vol. 1, 
Ed. J. H. Crawford (JR) and L. M. Slifkin, Chap. 4 (New Yor~: 
Plenum Press, 1972). 

58. Sibley, W. A., private conununication. 

59. Kappers, L. A., and L. E. Halliburton, J. Phys. C. (Solid State), 
l, 589 (1974). 



VITA 

James Anthony Macifierney 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: A STUDY OF THERMALLY STIMULATED LUMINESCENCE AND THERMALLY 
STIMULATED CHARGE EMISSION IN KMgF3 

Maj or Field: Physics· 

Biographical: 

Personal Data: Born in Dublin, Ireland, July 16, J,.940, the son.of 
Eric P. and Annie Macinerney. 

Education: Graduated from Gormonston College, County Meath, 
Ireland, in June, 1958~ received the Bachelor of. Science 
(General) degree from University College, Dublin, Ireland, in 
1962; received the Master of Science degree.from Oklahoma 
State University, July, 1969, with a major in Physics; 
completed requirements for· the Doctor of Philosophy deg~ee in 
July, 1974. 

Professional Experience: Assistant Chemist with Samuel Jones and· 
Co., Ltd., London S.E. 15 England, 1962-1963; Physics 
Instructor at the Col,.lege of Technology, Kevin Street, Dublin, 
J,.963-1966 and 1969-1970; Graduate Teaching Assistant,. 1966-
1969 and 1970-1972 Oklahoma State University; Graduate 
Teaching A1:3soc.iate, 1972-1973 in the Department of Physics, 
Oklahoma State University; Teaching Master at Seneca College . 
of Applied Arts and· Technology, Willowdale, Ontario, 1973-1974. . . ' . 


