
THE USE OF PRIME IDEALS IN THE CHARACTERIZATIONS 

OF COMMUTATIVE RINGS 

By 

CHARLES BOYCE MCCAMANT 
•• 

Bachelor of Scie~ce 
State College of Arkansas 

Conway, Arkansas 
1968 

Master of Science 
New Mexico State University 

Las Cruces, New Mexico 
1970 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

ill' partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF .EDUCATION 
May, 1974 



ffiesis 
191lt-D 
M lllU 
C..op. :2. 



THE USE OF PRIME IDEALS IN THE CHARACTERIZATIONS 

OF COMMUTATIVE RINGS 

Thesis Approved: 

nnlJ~ 
Dean of the Graduate College 

902145 
ii 

0! .~~./.\!·t\.>t,, ·, 1.i 

STATE UNJVER~ITY 
LIBRARY 

MAR 1. 3 1975 



ACKNOWLEDGMENTS 

To my thesis adviser, Dr. Craig A. Wood, I am deeply indebted. He 

contributed immense time and effort toward the completion of this thesis 

and his advice in other areas .has been excellent, The .other members of 

my committee, Professor Jeanne Agnew:, Professor Dennis Bertholf, and 

Professor Doug Aichele have been most helpful and cooperative. Also, I· 

wish to thank Professor Gerald Goff for his friendship and for sharing 

his years of educational and clas;sroom·experience with me during my stay 

at Oklahoma.State University. 

To my, family, I owe the greatest gratitude, . My parents have given 

me . support and encouragement for many years. My brother and.sister, Hal 

and Margaret, have also contrihuted in many ways toward the completion 

of this degree. For her patience and encouragement, my sincerest thanks 

~o to my wife, Linda,. 

iii 



TABLE OF CONTENTS 

Chapter 

I. INTRODUCTION 

II. PRELIMINARY RESULTS. 

III. INTEGRAL DOMAINS SATISFYING PROPERTY C •. 

IV. GENERAL Z.P.I.-RINGS. , 

V. ALMOST DEDEKIND DOMAINS. 

VI. MULTIPLICATION RINGS. 

VII. SUMMARY ...• 

SELECTED BIBLIOGRAPHY. 

' . . . 

. . . ~ . 

iv 

Page. 

1 

6 

16 

35 

62 

72 

87 

90 



LIST OF FIGURES 

Figure 

1. Summary of Interrelationships. e • • • • • • • • • . • • o • • • • 

v 

Page 

89 



CHAPTER I 

INTRODUCTION 

This thesis is con.cerned with a part of the ,subject in conuµutative 

ring theory us4ally referred to as multiplicative ideal theory. In his. 

book, entitled Multiplicative Ideal Theory [91, Robert. Gilmer makes the 

following s~atement; 

Mq.ltiplicative ideal theory .has its roots in the _works of 
Richard Dedekind, in algebraic number theory, and ultimately, 
in Fermat's Last Theore~. But much credit must be given to 
Emmy Noether and Wolfgang Kr4ll for the origin and applica­
tion of the axiomatic method in the subject. 

Other eminent mathematicians have contributed much to the advancement of 

knowledge in this area as well. As we discuss some highlights of each 

succeeding chapter in this thesis, we include the names.of some of .the 

major contributors.to this field of study. 

All classes of rings, we consider in this dissertation have. at least 

one property in common. Each has one characterization in terms of its 

set of prime ideals. The purpose.of this thesis is to make.these charac-

terizations and many other facts readily accessible to the student 

interested in this part of multiplicative ideal theory. We have also 

tried to demonstrate the close.relationships which e~ist among these 

classes of rings and to include sevei-al e~amples which illustrate the 

qistinctions among them. Included in Chapters III and IV is a study of 

two types of rings without identity. These are not considered in such 

standard references as [9], [13], or [22]. 

1 



The rei;i.der of this work should have a background in commutative 

algebra roughly equivalent to the material contained in Chapters 1, 3, 

and 4 of Zariski and Samuel's book [22]. Also, a limited acquaintance 

with field theory, Chapter 2 of [22]~ will help. However; every attempt 

has been made to make this work self contained. In. Chapter II, we have 

included several results which are.used in later chapters. As most of 

these facts are contained in [22] or [23], they are simply listed and no 

proofs are given, A few things are referenced individually, as they may 

be a bit more difficult to find. We use the material contained in 

Chapter II as the need arises. 

Chapter III begins the main body of the thesis. This chapter con­

siders integral domains D which satisfy what we refer to as.property C: 

2 

Every ideal of D has a representation as a finite product of prime ideals 

of D, In the first part of this chapter we give a brief historical 

account of the basic ideas which were present in algebraic number theory 

in the mid-nineteenth century that inspired Dedekind and others to 

develop the tools necessary to study rings of algebraic integers more 

thoroughly, Eventually this led to the concept of a Dedekind domain, 

which is an integral domain D with identity such that D satisfies 

property C, We develop some of the basic properties possessed by 

Dedekind domains in this chapter, In fact, Theorem 3.7 contains a list 

of several equivalent conditions on an integral domain with identity, 

each of which is equivalent to D being a Dedekind domain. Many authors 

have contributed to the advancement of the ideal theory of Dedekind 

domains., Among these are_W. Krull, E, Noether, M. Sono, Keizi Kubo, 

Kameo Matusita, Noburu Nakano, and I. S. Cohen. 

The re~ainder of Chapter III is concerned with integral domains 
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without identity which satisfy property C. A characterization of these 

domains, due to Gilmer [11], is developed. Theorem 3.17 shows such a 

domain J is the maximal ideal of a rank one discrete valuation ring V 

having the property that Vis generated over J by the identity element e 

of V, Several examples are included which are intended to illustrate 

some of the basic ideas of the chapter. 

In a more general setting a commutative ring R is called a general 

Z,P,I,-ring if R satisfies property C, This class of rings is the topic 

of study in Chapter ry, General Z,P,I,-rings arise in a natural way, as 

Examples 4, 1 and 4, 2 show, . Some properties of .the ideals of a. general 

Z,P,I,-ring Rare discus$ed, A proof that R is Noetherian, due to Craig 

Wood in [21], is given, Shinziro Mori was.the first to prove this result 

in [16], but the proof by Wood is shorter and more straightforward. 

Several relationships are established as we develop the tools necessary 

to prove the direct.sum decomposition theorem for general Z,P.I.-rings. 

We show that a coJ1U11utative ring Risa general Z,P,I,-ring if and only if 

R has the following structure: 

(1) If R = R2, then R = R1 @ @ R where.each R. is a Dedekind 
n l. 

domain or a special primary ring, 

(2) 
2 If R 1 R, then R = F@ Tor R = T where Fis a field and Tis 

a ring without identity such tbat each nonzero ideal of Tis a power of 

T, This theorem was also originally proved by Mori [16], but, in this 

revised.form, (1) appears in [1] by Keizo Asano and (2) appears in Wood 

[21] 0 

In [15] Kathleen Levitz gives the following characterization of a 

general Z,P,I,-ring: A commutative ring Risa general Z,P,I.-ring if 

and only if every ideal of R generated by at most two elements is the 



4 

finite product of prime ideals of .R. The remainder of Chapter IV is pri­

marily concerned with establishing this result. Some examples illus­

trating various properties of general Z.P. !.-rings are also given. 

Chapter V is·concerned with another generalization of Dedekind 

domains. This is the class of integral domains D with identity having 

the property that every quotient ring OM.with respect to a maximal i~eal 

M of D is a Dedekind domain. Gilmer [12] call~ such domains .almost 

Dedekind domains, Several characterizations of almost Dedekinq domains, 

which are results of Gilmer [12] and:H. S. Butts and R. C. Phillips in 

[4], are given in this chapter. As the name suggests, a Dedekind domain 

is an almost Dedekind domain. We.also show that.a Noetherian almost 

Dedekind domain is Dedekind and offer an example of an almost.Dedekind 

domain which is not Dedekind. 

A conunutative ring R with identity is said to be a multiplication 

ri~g if whenever A and Bare ideals of R such that AS B, then there is 

an ideal C of R such that.A= BC. The term multtplication ring appears 

in the literature as early as 1925 and much of the early theory.was 

developed by W. Krull, S. Mori, and ;Yasuo Akizuki. In Chapter VI we 

classify all integral domains and Noetherian rings which are multiplica­

tion rings. These are shown to be the classes of Dedekind domains and 

general Z.P.I.-rings, respectively, which we studied in Chapters III and. 

IV, An example of a non-Noetherian multiplication ring is also given. 

In the.remainder of t11.e chapter, a characterization o~ a multiplication 

ring in terms of its prime ideal structure is given. This result of Joe 

Mott is given in [17] and, states that a commutative ring R with identity 

is a multtplication ring if.and only if whenever P·is a prime ideal of R 

containing an ideal A, then there is an ideal C such .. that A = PC. 
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In the last chapter we summarize the interrelationships which exist 

among several classes of rings considered in this work, Included in this 

summary are several examples and results from the body of this thesis 

which indicate the similarities and differences which exist among these 

classes of rings. The overall picture is displayed in a chart. 



CHAPTER II 

PRELIMINARY RESULTS 

This chapter is devoted to listing some definitions and results that 

will be used in the succeeding chapters. It is not intended to be an 

exhaustive study of any topic nor is it a complete list of all of the 

facts which will be used in later chapters. Instead, it is intend~d to 

be a collection of tllose results which play important roles in what fol-. 

lows~ We simply list these in.the form of propositions and.no prqofs,are 

included. This chapter is divided into several sections with a brief 

description at the beginning of most.sections of the types of things to 

be found within that section, The· section on notation and terminology 

should be read before proceeding into the main body of the thesis. The 

remaining sections may be omitt~d by those who feel well~acquainted with 

these areas. For the reader intere~ted in seeing the proofs of t~ese 

results, most.can be found in either [22] or [23]. 

Notation and Terminology 

Since we are only concerned in this thesis with commutative rings, 

"ring" will always mean "commutative ring", The notation and terminology 

of this thesis is that of [22] with two exceptions: (1) c will denote 

proper containment while s_means contained in or equal to and (2) we do 

not assume a Noetherian ring contains an identity. Since it is impera-. . . 

tive that the reader distinguish between proper and genuine ideals, w.e 

6 



include,these definitions here~ 

2.1 Definitions: Let R be a ring and let A be an ideal of R. 

(a) A is said to be genuine if (0) c: A 'C R. , 

(b) A is said. to be ,proper if. (O) ·c A.(; R. · 

General Remarks 

2.2 Definitioll,s: Let A be an ideal-of a ring R. 

(a) A is said to be regular if A contains a regular e~emel!t of.R. 

(b) A is said to be .irreducible if A is -not a.finite inters~ction 

of .ideals ·properly containing A. 

2;3 Defin,ition:. Let R be .a ring wit~ identity and,_let 

co co 
i 

co 
i R [ [x]] { l i I e: . R for e1:1,ch i}. Define }: ·· r.x l = r.x r. + s.x = 

i=O l l i"1'0 l. i=O l. 

co co co co 

l (r. s. )x i and ( l r.xi)•( l i l i where + s.x) = t.x 
i=O 

l ' l 
i=O l . 0 l i=O l 1= 

t,.. = l r ~ s.: , Then R [ [x]] is cal led the formal power series rin2 in . 

7 



prime ideals and include here,some,facts which possibly are not.so well-

known .. 

2.5 n Proposition:. Let A be an ideal of a ring Rand let {P.}. 1 be 
- 1 l.= 

a finite collection of ideals of R such that at most two of the P. are 
]. 

n 
not prime. If A c. ,LJi P . • th A c- P f . J. = 1 , • en ·-· J. or some J, , 

i;,;,1 1 
n. 

[2; Proposition 2, p. 52]. 

2.6 Definition: Let A be an ideal of a ring R. The prime ideal P 

of R is called a minimal prime divisor of A (minimal prime of~ if 

(a) AC P and 

(b) If P1 is a prime ideal such that AC P1 c P, then P1 =,P, 

2.7 Proposition: Let R be.a ring with identity, If an ideal A of 

R is contained in a prime ideal P of R, then P contains a minimal prime 

of A. 

8 

2.8 Definition: Let R be a ring. If .Po c P1 c · · · c Pn is a chain 

of n + 1 genuine prime ideals of R, we Sl;l,Y this chain has length!!.· If R 

has a chain. of.genuine primes of length n but no such chain.of length 

n + 1, we say that R has dimension ~ or R is n-dimensional. · If 

contains no genuine prime ideal, we say that R has dimension -1. The 

dimension of a ring R is sometimes denoted dim R. 

Pairw:ise Comaximal Ideals 

These results offer a way of expressing a.ring as-a finite direct 

s-qm.of rings if the id~al (0) can·be represented as.a finite intersection 

of ideals which are pairwise comaximal. We use this-method in Chapter IV. 



2, 9 Definition: Let. R be a ring and let A1, • • •, An be a collec"". 

tion of ideals of R. If Ai+ Aj = R for eacll. i and j, i # j, then the 

collection is said to be pairwise comaximal. 

2.1.0 · Proposition: Let R be a r~ng with identity and let 

, A be a collection of ideals of R. 
n 

9 

(a) 

(b) 

(c) 

The A. are pairwise comaximal if and only if their.radicals are. 
1 

A1 n • · • n A = A1 • • • A if the A. are pairwise comaximal. n n · 1 · · · 

R/ (A1 n • · • n An) = R/A1 @ • • • @ R/An if the Ai are pairwise 

comaximal, 

Ideals_ of .Finite Direct _Sums. 

Included here_are several properties possessed, by ideals of a.ring 

which is a finite di:i:-ect.sum of rings. Throughout the remainc;ler of this 

section, we will assume that R = R1 @ •••@ Rn where_at m?~t on~ of the 

ril)gs Ri does n_ot have_ an identity. 

2 .11 Proposition~ If A is an ideal of R, then A = A1 @ • • • @ An 

where, for i = .1, • • ·, n, Ai is an ic;leal of Ri, In parti~ular, · 

a. ' . J, 
a ) e: A for some a. e: R. , j # i}. 
n J J 

2.12 Proposition: If A= (a1, ···, am) is an ideal of R where aj 

is the n-tuple (r1 ., • • ·, r .) , then the .. ideal A1. of Proposi~ion 2.11 is 
. J nJ 

2 .• 13 Proposition: An ideal P of R is prime if and only if 

p =Al@ ... @ An where Ai= Ri for each i_# j and Aj is a prime ideal of 

R •• 
J 
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Finitely Generated Ideals·a,nd Noethel'.ian Rings 

The ideal theory of Noetherian rings, which are rings in which every 

ideal is finitely generated, is basic to.what we do in later chapters. 

The classes of rings which constitute much of our study, Chapters III and 

IV, are Noetherian rings. The first two propositions we include in this 

section, though true in Noetherian rings, are stated in a more general 

setting. 

2.14 Proposition:. Let A be a finitely generated ideal of the ring 

Rand suppose A= AB for some ideal B of R. 

(a) Then there exists an element b.of B such that a= ab for each a 

in A,· 

(b) If A is a regular ideal, then R has an identity and B =. R. 

Therefore, if A= A2 , then A= R, 

2.15 Propo~ition: Let A and B be ideals of the ring R such that 

Ac Band A is finitely generated. If B/A is finitely generated in R/A, 

then Bis finitely generated in R. 

2,16 PropQsition: Let R be a ring. The following statements are 

equivalent, 

(a) R is Noetherian. 

(b) There is no infinite strictly ascending chain of ideals of R. 

(c) Each prime ideal of R is finitely generated. [5; Theorem 2, 

p, 29J.. 

2.17 Proposition: Let A be an ideal of a.Noetherian ring R. If 

00 

n i B = A, then AB= B. [21; Lemma 4, p. 843]. 
i=1 



2,18 Proposition:. If A is a genuine ideal of a Noetherian domain 

00 

D, then () Ai = (0), [21; Lemma 5, p. 843], 
i=l 

11 

2,19 · Definition: Let A be an ideal of a ring R, A representation 

A = Q1 () • • • () ~, where Qi is Pi -primary for i = 1, • • •, n, is called an 

irredundant (shortest) representation if it satisfies the following 

conditioJ1.s: 

(a) 

(b) 

No Q. contains the intersection of the other Q. 's. J . 1 

P. + P. for i + j, 
1 J 

2,20 Proposition: In a Noetherian ring R, every ideal has an 

irredundant representat;:ion, 

Extension and Contraction of Ideals 

2,21 Definition: Let Rand S be rings with identities and let f be 

a homomorphism of R into S su.ch that. f (IR) = ls. If B is an ideal of 

s, the ideal Bc = f- 1 (B) is called the contraction of B, If A is an 

ideal of R, the ideal Ae = f(A)S generated by f(A) in Sis called the 

extension of A, 

2,22 Proposition: Let R, S, and f be as in Definition 2,21 and le1;: 

A and B be ideals of Rand S, respectively, Then Aec =>A and Bee c B. 

2,23 Remark: When Risa subring of S such.that the identity of S 

is in R, then the identity map is a homomorphism of R into S. In this 

case, R and A e = AS and we use the notation B n R and AS. 

In most inst.ances we are concerned. with the extension and contrac-

tion of ideals in the following setting: Risa ring with identity and 

S =~={~I a e: R, me: M where RM is the quotient ring of R with 



respect to the regular multiplicative system_M of R. 

2.24 Proposition: Let R be a ring with identity and let M be a 

regular multiplicative system in R, 

(a) For an ideal A of R, ARM n R = A if and only if A: (m) = A for 

each me M, 

(b) For each ideal B of~' (BnR)~ = B. 

12 

2,25 Remark: Let R be a ring with identity and let P be a proper 

prime ideal of R, Whenever M = R - Pis a regular multiplicative system 

in R, we can consider the quotient ring~ of R with respect to M. We 

denote this ring by·RP and say that it is the quotient ring of R with 

respect.to the prime ideal P, 

2,26 Definition: Let R be a ring and let T be the total quotient 

ring of R, If R' is any ring between Rand T, R' is called an averring 

of R, 

The Ring* 

Let_R and S be rings:such that RCS and S has an identity, If in 

addition R has an identity, then we also insist that the identities be 

the same, In this section we consider some relationships between Rand 

R* which we define below, 

2,27 Definition: Let Rand S be as above, The smallest subring of 

S containing Rand the identity of Sis denoted by~*, 

2,28 Proposition: If A is an ideal of R*, then A is an ideal of 

R if and only if AC R, 
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2,29 Proposition: If R is Noetherian, then R* is Noetherian. 

2.30 · Proposition: Let D be an integral domain and let K be the 

quotient field of D, If D* is the. smallest. subring of K · containing D and 

the identity of K, then K is also the quotient field of D*, 

Fractional and Invertible Ideals 

·These concepts are usually introduced within the setting of an 

integral domain and its quotient field. In this section we consider a 

more general setting, Throughout this discussion, R will denote a ring 

containing a regular element and having total quoteint ring T. Proofs of 

the results which follow may be found in [20], 

2,31 Definition: An R-module M contained in Tis called a 

fractional ideal of R if there exists a regular element a in R such that 

aM.= {am me: M} c R, F(R) denotes the collection of fractional ideals 

of R, 

Let R* be the smallest subring of.T containing Rand the identity of 

T, We note that every idea.1 of R is a fractional ideal of R, 

2, 32 Definition: L.et F 1 e: F (R) , F 1 is said to be invertible if 

there.exists an F2 e: F(R) such that F1F2 = R*, 

-1 call F1 the inverse of F1 , 

-1 We denote F2 by F1 and 

2,33 Proposition:. Let.A be a nonzero ideal of R. If there exists 

an ideal B of R such that_AB = (r) where r is regular in R, then A is 

invertible, 

2,34 

unique and 

-1 
Proposition:. If A is an invertible ideal of R, then A is 

A-l = [R*:A]T = {t e: T I tA CR*}, 



2.35 Proposition: If A is an invertible ideal of R, then A is a 

finitely generated ideal of R. 

2.36 Proposition: If r is a regular element of R, then (r) is 

invertible. 

2;37 Proposition: Let F1, ···, Fn & F(R). Then F1 ••• Fn is 

invertible if and only if each F. is invertible. 
1 

2.38 Proposition: If .A1, A are ideals of R such that 
n 

A = (r) where r is regular in R, then each A; is invertible. 
n 1 

14 

2.39 Proposition: If A is an invertible ideal of Rand if Bis an 

ideal such that B c R, then ABC AR. 

2.40 Proposition: Let F1, F2, and F3 be fractional ideals of R 

such that Fi is invertible. If F1F2 = F1F3, then F2 = F3. 

Valuation Rings 

The class of valuation rings is an important class of rings in the·. 

study of multiplicative ideal theory. We need only a few facts about 

the~e rings for our purposes. 

2.41 Definition: Let V be an integral domain with identity. If 

Ac B or B c: A for every pair of ideals .A and B of V, then V is called a 

vaiuation ring. 

2.42 Proposition: An integral domain V with identity is a valua­

tion ring if and only if for each x in the quotient field of V, either 

-1 x & V or x e.V. 
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2.43 Definition: A valll.ation ring Vis discrete if.primary ideals 

of V are prime ,powers. 

2.44 Definition: Let V be a valuation ring. Then the ord.inal trpe. 

of the set of proper prime idea~s of V is called the rank of V. 

2.45 Proposition: Let V be a valuation ring.· Then V is Noetherian 

if and only if Vis rank one and.discrete~ 

2.46 Proposition: If Vis a rank one valuation ring and Mis the 

unique maximal ideal of V, then (0) = 
00 

rn Mi. 
i=l 



CHAPTER III 

INTEGRAL DOMAINS SATISFYING PROPERTY C 

In this chapter; our overall objective is to investigate integral 

domains D satisfying property _g_: Every ideal of D can be represented as 

a finite product of prime ideals of D. To do this, it ,will be necessary 

to consider domains with identity separately from domains without. 

identity, 

An integral domain with identity satisfying property C is called a 

Dedekind domaino Included in our study of Dedekind domains is a brief 

description of some basic ideas that led a few mathematicians into this 

area of study, Also, we investigate some of the properties and charac­

terizations of Dedekind domains. These include a proof of the.Unique 

Factorization Theorem: Each proper i_deal of a Dedekind domain has a 

unique representation as a finite product of proper prime ideals. There. 

are many i_deal-theoretic charac~erizations of Dedekind domains and a 

summary of these is given, 

Our last objective of this chapter is to classify an integral domain 

J without idenqty having property C, This result is due to Robert 

Gilmer [11], He proved that J is the maximal ideal of a rank one dis­

crete valuation ring V such that Vis generated-over J by the identity 

element e of V, and conversely, We prove this and some other results 

related to domains wit;hout identity having property C, 

The topics we consider. throughout th.is chapter and in succeeding 

16 
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chapters come under that part of commutative ring theory called multipli-:­

cative ideal theory, Ultimately, multiplicative ideal theory has.its 

roots in the works of Kummer and Dedekind in algebraic number theory. It 

grew out of a mistake.made by Kummer in the nineteenth century when he 

was trying to solve Fermat's.Last Theorem, a famous problem in number 

theory, He assumed the rings of algebraic integers were unique factori­

zation domains ·(UFD's), That this .actually was a mistake can be shown by 

the following example, 

3,1 Example: Let F = Q(lfo) = {a + bno I a, be Q} where Q de-

notes the field of rational numbers, Then F is a finite algebraic exten-. 

sion of Q, Let D = z (/fo) = {t E F I t is an algebraic integer in F} 

{t e F tis a root .of a polynomial of the form 2 + ex +.d for = x some c 

and din Z} where Z denotes the ring of integers, In the terminology of 

the.algebraic number theorist, the integral domain Dis a ring of 

algebraic integers when considered as a subring of the algebraic number 

field F, Some of the properties possessed by D and Fare summarized 

below:, We define N(x + ylio) = x2 - 10/ where x, y e Q, 

(a) An element t ~a+ blio of Fis an algebraic integer if and 

only if a and bare integers, Thus Z(lio) = {a+ blfo I a, be Z}. 

(b) An element u =a+ b/Io of Dis a unit if and only if 

N(u) 
2 

= a 10b2 is equal to+ l, 

(c) Lett£ D, t f O and not a unit, Then tis prime in D if and 

only if whenever t = t 1t 2 where t 1 and t 2 are in D, then either t 1 or t 2 

is a unit of.D, 

(d) Z(ill) is the integral clo!:iure of Z in Q(v'Io), 

(e) If t e Z(II'o), the N(t) is an integer, 
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Now consider the element 6 of D, We have 

6 = 2 • 3 =.(4 + lio)(4 - lio), We show that 2, 3, 4 + lio, and 4 - lio 

are all prime in D and neither of 2 nor 3 is an associate.of 4 + lio or 

4 - lio. 

Suppose.that for some nonunits t 1 and t 2 of D, 2 

t 1 = a1 + b1 lio and t 2 = a2 + b21io for some integers 

2 2 2 2 Then N(2) = 4 = N(t1)N(t2) =· (a1 - 10b1)(a2 - 10b2), · 

2 2 2 a -·lOb = a 1. 1 · 2 nor t 2 is, a unit, we must have ei the.r 

= t 1 t 2 . where 

al, a2, bl' b2. 

Since neither t 1 

- 10b2 = 2 
2 or 

2 2 2 2 a1 - 10b1 = a2 - 10b2 = -2, We claim there are no integers x and y such 

that 

2 lOy 2 =.2 (2.1.1) x· -

or 

2 lOy 2 
-2 (2.1.2) x - = 

If there are such integers, we may assume·. x to be a natural number, since 

2 2 
x = (-x) , For some. integers .q and. r, 0 ~ r ~ 9 ~ x = lOq + r. Then. 

x2 = 100q2 + 20qr + r 2 and substitution into 2.1.1 and 2.1.2 yields 

r 2 - 2 = 10(y2 - 1oq2 - 2qr) and r 2 + .2 = 10(:y2 - 1oq2 - 2qr). Since r 

can only take integer values from Oto 9, .we have the following table. 

r 0 l 2 3 4 5 6 7 8 9 

2 
r -2 -2 -1 2 7 14 23 34 47 62 79 

2 
r +2 2 3 6 11 18 27 38 51 66 83 

Thus, neither r2 - 2 nor r 2 + 2 is divisible by 10 for any of t~e values 

of rq It follows that neither x2 - 10y2 =.2 nor x2 1Qy2 = -2 has a 

solution in integers,. We may conclµde if. 2 = t 1 t 2 , then at least one of 
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t 1 or t 2 is a unit in D. Therefore, 2 is prime in D. 

The proof that 3 is prime in Dis very similar to the above argument. 

The assumption that 3 = t 1t 2, where neither t 1 nor t 2 is a unit, leads to 

the consideration of the solutions of the equations x2 - 10y2 = 3 and 

2 
x 10y2 = -3 for some integers x and y. Setting x = lOq + r as before, 

2 2 2 2 we haver - 3 = lO(y - lOq - 2qr) or r 2 2 
+ 3 = lO(y - lOq - 2qr) for 

some r, 0 < r < 9. 
2 2 Thus, r - 3 or r + 3 would have to be divisible by 

10, However, the table below shows no such r exists, 

r 0 1 2 3 4 5 6 7 8 9 

2 r -3 -3 -2 1 6 13 22 33 46 61 78 

2 r +3 3 4 7 12 19 28 39 52 67 

Now consider 4 + lio, If for some nonunits ti and t 2 of D, 

4 + /Io = tlt2 = (a1 + b1 lio) (a2 + b21io), then we must have 

6 2 2 2 2 2 - lObi must be either + 2 or = (al 10b1)(a2 - 10b2). Therefore, a1 

+ 3 and we have already seen that none of these four possibilities can 

occur, This proves 4 + lio is prime in D. Similarly, 4 - lio is prime 

in D, 

84 

The only thing left to show is that neither 2 nor 3 is an associate 

of 4 + lio or 4 - /io, Suppose 4 + IIo = 2y where y s Z(lio). Then 

N(4 + lio) = N(2)N(y) implies that 6 = 4N(y) and hence N(y) = 3/2. This 

shows y i Z(lio) since N(y) ~ Z, Therefore, 2 and 4 + lio are not asso-

ciates. Similarly, 2 is not an associate of 4 lio and 3 is not an 

associate of 4 + lio or 4 - /fcf, Hence, we .have 6 represented as a 

product of prime elements of Din two distinct ways. This proves Dis 

not a UFD. A 



The concept . of an. ideal 1. which was introduced. by Dedekind 1 was 

eventually .used in the study of algebra:i,c numqer theory. The notion of 

a prime ideal can be used to introduce a unique factorization property 
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into the rings of .algebraic integers. This is accomplished by represent-

ing ideals as finite products of prime ideals; In particular Remark 3.8 

shows every ideal of Z(lio) has a unique representation as a finite prod­

uct of prime .ideals of .Z(vT'o). The use of prime ideals in cha~acterizing 

rings has become an extensive area of·study. 

In the definition of a.Dedekind domain 1 it is not required that the 

represe~tation o:f; ideals as finite products of prime ideals.be unique, 

To prove.that this factorization is unique for certain ideals of a, 

Dedekind domain 1 Theorem 3.5 1 is our next objective., The proof of this 

result is a direct consequence of the three lemmas which ilIDilediately 

follow this discussion. 

3.2 Lemma: Let D be an integr~l domain with identity. If an ideal 

A of D has a representation as a finite product of invertible proper 

prime ideals .of D, then.the representation is unique to within the.order 

of the factors. 

Proof:. Suppose A = P1 • • • Pk = ,Q1 Qt where P. and Q. are 
1 J 

invertible proper prime ideals of D for i = 1, 2, ···, k.and j = 1, 2, 

t. Assume P1 is minimal among P1 , ···, Pk' Sin~e Q1 ••• ~ S P1 , 

some Qj :~ P1 , say Q1 c: P 1 . Since P 1 • • • Pk £ Q1 , some· Pi. is contained in 

Q1 . The minimality of P 1 implies that i = 1, and so Q1 = . P 1 , By the ·. 

cancellat~on property for inver.tible icleals, Proposition ,2.40 1 P2 • •• Pk 

= · Q2 • • • Qt, and we can. repeat the argument. · Since each Pi and. each. Qj 

is a proper ideal : of D ,. we must have · k = t. 



3,3 Lemma: Let D be a Dedekind domain.· Then every invertible 

proper prime ideal of D is,a maximal.ideal.· 

Proof:,, Let P be an invertible proper prime ideal of D and let 

a e: D - P. Consider the ideals P + (a) and P + (a2) of D. Then 

n m 
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(a2) p + (a) = IT P. and P + = IT Qj' where the P. and the Q. are prime 
1 1 J 

ideals 

ca2) = 

of 

m 
IT 

j=l 

i=l j=l 
n 

D. Let R= R/P and a= a + P. We have ca) = IT 
i=l 

(Q./P) where the ideals P./P andQ./P are prime, J . 1 . J 

(P. /PL 
1 

Proposition 

2,38 implies these prime ideals are invertible. -2 Since (a)= 
n 
II 

i=l 

2 
(P. /P) , 

1 

Lemma 3,2 shows the .ideals ·Q1/P, •• ·, ~/P are the ideals .P/P, •• ·, 

P n/P, each repeated twice,. Consequ~i:itly, we have m = 2n, and we can re­

number the Q. 'sin such a way that Q2./P = Q2. 1/P = P./P, Thus, 
J 1 · 1- 1 

Q2i = Q2i-l = Pi and P + (a2) = [P + (a)] 2. Hence, Pc [P + (a)] 2 s_ p2 

+ (a), Thus, if x e: P, x = '>': + da where ye: P2 and de: D. Therefore, 

da e: P and since a~ P, de: P; that is, Pc::: P2 + P(a). As the inclusion 

P2 + P (a) ':::. P always holds, we have P = P2 + P (a) ... Since P is invertible, 

it follows .that D = P + (a). Therefore, Pis a maximal ideal of .D. A 

3.4 Lemma: Every nonzero prime ideal of a Dedekind domain Dis 

invertible, 

Proof: Let P be a nonzero prime ideal of D. If P = D, then Pis 

invertible, We can assume that P + D. Let a e: P, a+ 0. Then 

(a) = P 1 • • • Pk, where each Pi is a proper prime ideal : of D. Since (a) 

is invertible, each Pi is invertible by Proposition 2.37 and maximal by 

Lemma 3.3, Since P • • • P c: P. P. c P for some i. Hen .. ce .. P. = P and 1 k - • 1 - ' 1 
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Pis invertible. 

3, 5 Theorem:. Let D be· a Dedekind domain, Then every proper ideal . 

of D has·a unique representation as a finite product of proper prime 

ideals, 

Proof: !£ A is a proper ideal of D, then A has a representation as 

a finite product of proper prime ideals. By Lenuna 3.4 these pr~mes are 

invertible, It follQws from Lenuna 3.3 that the representation for A is 

unique, , 

This establishes the unique factorization property for proper ideals 

of a.Dedekind domain, Three more well known properties of Dedekind 

domains are given in the next theorem. 

3,6 Theorem: If Dis a Dedekind domain, then (1) D is,Noetherian, 

(2) the dimension of Dis less than two, and (3) every nonzero ideal of 

Dis invertible, 

Proof: .. Proposition 2. 37 st!:ites that the product of invertible 

ideals is invertible and Propositiqn 2,35 shows invertible ideals are 

finitely generated. Thus, the _first and third properties hold. Lenunas 

3,3 and 3,4 imply.the dimension of Dis less than two, 

As we mentioned earlier, there are many ideal-theoretic characteri-

zations of Dedekind domains, We prese~t here a list of some of these 
,' ' ', ' 

without proofs, For the reader who wishes to see these proofs or to 

study Dedekind domains in depth, several books are available. For ex-

ample, [22], [13], and [9] all contain one or more chapters on Dedekind 

domains, 



3.7 Theorem: Let D be an integral domain with identity, {M} the 
r 
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set of maximal ideals of D, and F(D) the set of nonzero fractional ideals 

of D. The following are equivalent. 

(l} D is a Dedekind domain. 

(2) Each proper ideal of Dis uniquely expressible as a finite 

product of proper prime ideals of D. 

(3) Dis Noetherian, integrally closed, and.has dimension less than 

two, 

(4) F(D) is a group with respect to multiplication. 

(5) Each proper ideal of Dis invertible. 

(6) Each proper prime ideal of Dis invertible, 

(7) Each ideal of D has a basis of at most.two elements. 

(8) Each proper homomorphic image of Dis a principal ideal ring. 

(9) If A and C are ideals of D. and if A s_ C, then there is an ideal 

B of D such that A= BC. 

For (10) - (24) let .D be a Noet}:lerian integral domain with identity. 

(10) Each nonzero ideal of D generated by two elements is invertible. 

(11) Whenever AB= AC for ideals A, B, and C of D with A+ (0), 

then B = C, 

(12) A(B n C) = AB n AC for all ideals A, B, and C of D. 

(13) (A + B) (An B) = AB for all ideals A and B of D. 

(A+ B}:C = (A:C) + (B :C) for all ideals A, B, and 

C: (An B) = (C :A) + (C: B) for all ideals A, B, and 

C of D. 

c of D. 

A+ (B nc) = (A + B) ('\ (A + C) for all ideals A, B; and C of D. 

(14) 

(15) 

(16) 

(17) 

(18) 

A('\ (B + C) = (An B) + (A('\ C) for all ideals A, Band C of D. 

If a., b E D, then [(a): (b)] + [ (b) : (a)] = D. 

(19) DP is a valuation ring for each proper prime ideal P of D. 



(20) DM is a valuation ring for each maximal ideal M of D. 

For each M, there are no ideals properly between M 
r r 

2 and M. 
r 

(21) 

(22) For each M, the set of M -primary ideals of Dis linearly 
r r 

ordered under c. 

(23) For each M, M -primary ideals are powers of M. r r r 

(24) For each M, M -primary ideals are irreducible. r r 

(25) For each M, M2 is irreducible. r r 

(26) Primary ideals of D are prime powers. 

(27) Primary ideals of D are irreducible. 
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In example 3.1 we saw that the ring of algebraic integers Z(IIo) of 

the algebraic number field Q(IIo) was not a UFO. However, Z(IIo) is a 

Dedekind domain, We show this and exhibit the prime ideal factorization 

of the ideal (6) in the remark which follows. 

3,8 Remark: Let D be a Dedekind domain and let L be a finite 

algebraic extension of its quotient field. Then the integral closure of 

Din Lis also a Dedekind domain. A proof of this result may be found in 

[22; Theorem 19, p. 281]. In particular since the ring of integers Z is 

a Dedekind domain and since Z(lfo) is the integral closure of Zin 

Q(vT5), we may conclude Z(lfo) is a Dedekind domain. Previously, we ob­

served that Z(lfo) is not a UFO. We proved the element 6 of Z(v'lO) has 

at least two distinct factorizations into prime elements. Now we inves-

tigate the prime ideal representation of the ideal (6) in Z (!Io). 

Consider the three ideals P1 = (2, /Io), P2 = (3, 4 + !Io) and 

P3 = (3, 4 - lio) of Z(l10J. We show (6) = PiP/3 and P1 , P2 and P3 are 

all prime ideals of Z (ill), 

We first observe the equality Pi= (4, 2110), 10). We claim 

Pi= (2), Since 2J4, 2J2/io, and 2J10, Pi c (2). But 2 = 10 - 2•4 and 
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2 2 
so (2) s; P1 • He11ce, P1 = (2). 

Next, we show P2·P3 =,(3). We have·P2 ·P3 = (3, 4 + lfo)(3, 4 - lfo) 

= (9, 12 - 31io, 12 + 3/io, 6). Since 3 divides all of the elemeJ).ts of 

the .basis of P2·P3 , it follows that P2·P3 S. (3). Also, 3 = 9 - 6 and so 

(3) t P2·P3 • Hen,ce, P2·P3 = (3) and PiP2P3 = (2) (3) = (6). 

We now sl:i.ow the ideals • P 1 , P 2 and P 3 are prime. Since P 1 = (2, lfo) , 

any number t = 2a + lio b where .a, b e: Z belongs to P1 •. We claim every 

element of P1 c~n be writ~en in this form. For if t e: P1 , then 

t = 2r1 + lfo r 2 where ,r1 , r 2 e:. Z(lio). Then r 1 = c1 + lio d1 and 

r 2 = c2 + lio d2 where c1 , c2 , d1 , d2 e: Z. Substituting these expressions 

for r 1 and r 2 into t = 2r1 + lio r 2 , we obtain t = 2(c1 + .lio d1) 

+ lio (c2 + /fo d2) = 2c1 + 10d2 + lio (2d1 + c 2). Since 2c1 + 10d2 is 

an eyen integer, P1 = {t e: Z(lio) I t = 2a + liob where a, be: Z}. Let 

t 1 =-a1 + lio b1 and t 2 = a2 + lio b2 and suppose t 1 Ef P1 and t 2 Ef P1 • 

Then a1 and a 2 are odd integers as is a1a 2 + 10b1b2 • However, 

t 1t 2 = (a1a2 + 10b1b2) +.lio (a1b2 _+.b1a 2) and we conclude t 1t 2 Ef P1 • 

Thus, P1 is prime. 

Now consider the ideal P3 = (~, 4 - lio), and let t =a+ liob be 

any element of Z(lio). We show t e: P3 if and only if a+ b is:divisible 

by 3, 

First, suppose 3 I a.+ b, Then a+ b = 3k for some.k e: Z. Thus, 

t = a + ill b = 3k - b + lio b = 3 (k + b) - ( 4 - lio) b and. we can con-

elude that t e: P3. 

Now suppose.t e:.P3 •. Then k = 3r1 + (4 - lio)r2 where 

r 1 = .a1 + lio b1 , r 2 = a 2 + lio b2 for some a1 , a 2 , b1 , b2 e: Z. Hence, 

t = (3a1 + 4a2 - 10b2) + lio (3b1 - a2 + 4b2). Comparing this with the 

expression t = -a +. lio b, we .see that a.+ b = 3 (a1 + b1 + a 2 - 2b2) , 
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Hence, 3 I a+ band P3 = {t e Z(lio) I t =a+ /Io b where a, be Zand 

3 I a + bL 

Now consider the product t 1 t 2 = (a1 a2 + 10b1 b2) + lio (a1 b2 + b1 a2) 

of the elements t 1 = ,a1 + lio b1 and t 2 = a2 + lio b2 where a1 , a2 , b1, 

b2 e Z. Letting t 1t 2 =a+ lfo b where a, be Z, we see that 

a= a1a2 + 10b1b2 , b = .a1b2 + b1a2 , and a+ b = a1a2 + 10b1b2 + a1b2 

+ b1a.2 = a1a2 + a1b2 + b1a2 + b1b2 + 9b1b2 = (a1 + b1)(a2 + b2) + 9b1b2 • 

Then a + b is divisible by 3. if and only if 3 I (a1 + b1) (a2 + b2). If 

neither t 1 nor t 2 belongs.to P3, then neither a1 + b1 nor.a2 + b2 is 

divisible by 3. Therefore, (a1 + b1)(a2 + b2) and hence a+ bare not 

divisible by 3. We conclude that t 1t 2 ~ P3 which s}:tows P3 is prime. 

A similar argume:nt pre>ves that P 2 is pri111:e. · One can. show 

p2 = {t e Z(lio) I t =a+ bill.where a, be Zand 3 I a - b}, and 

t 1 t 2 e P 2 if and only if 3 I (a1 - b1) (a2 - b2) wher~ t 1 = _a1 + lio b1 

and t 2 = a2 + lio b2 for some a1, a2 , b1, b2 e Z. If neither t 1 nor t 2 

belongs to P3 ,, then;neither a1 - b1 nor a2 - b2 is divisible by 3. Thus, 

if t 1 ~ P3 and t 2 ~ P3, then t 1t 2 ~ P3 and P3 is prime. Therefore, the 

equality (6) = PiP2P3 repres.e~ts the factorization of the-ideal (6) into 

prime ideals. • 

When studying rin~ (integral domain, field) theory the student 

usually encounters t~e id.~a of a polynomial ring in one. indeterminate 

ove:r; a ring (integral domain, field). It is well known that if Dis an 

int~gral domain with identity, then D[x] is an integral ,domain with 

identity. From tQ.is qbservation a question arises: If in addition Dis 

a Dedekind domain, the~ is D[x] a Dedekind domain? The an~wer is no, 

unless Dis a fi~ld,, and the next remark proves this. 



3. 9 Remark: If D is a Dedekind domain which is not a field, then 

D[x] is not a Dedekind domain, Let P be a proper prime ideal of D. We 

show the dimension of D[x] is greater than one .. By Proposition 2.4, 

D[x]/PD[x] = (D/P) [x]. Since.(D/P) [x] is an integral domain, 

D[x]/PD[x] is an integral domain. Thus;, PD[x] is prim~ in D[x]. 
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From part (7) of Theorem 3.7, P = (a,b) for some elements a, be: D. 

Consider the ideal (a,b,x) of D[x] and the mapping f:D[x] ~ D/(a,b) where 

n 
f ( l 

i=O 

i a.x) = 
1 

It is straightforward to show that f is an epimorphism. 

n i I Also, ker f = { l aix · e: D[x] a0 e: (a,b)} = (a,b,x). 
i=O 

Therefore, 

D[x]/(a,b,x) - D/(a,b). Since (~,b) is maximal in D, D/(a,b) is a field. 

Thus, D[x]/(a,b,x) is a field and so (a,b,x) is a maximal prime of D[x]. 

Hence, (0) c PD[x] c (a,b,x) is a chain of three genuine primes of D[x] .. 

This proves that the dimension of D[x] is greater than one and, conse-

sequently, is not a Dedekind domain. 

However, if Dis a field, then D[x] is a principal ideal domain with 

identity and henc~ a Dedekind domain, 

In the definition of a Dedekind domain D, we require that D have an 

identity, Gilmer, in [11], has investigated integral domains J without 

identity satisfying property C. In the remainder of this chapter, we 

consider Gilmer's results. Henc~forth in this chapter, J denotes an 

integral d9main without identity satisfying property C. Also, if Dis a 

domain with quotient field K, then D* denotes.the subring of K generated 

by D and• the identity el.ement e of K. 

It seems that Gilmer. originally set out to prove an analog to cha:r-

acterization (3) of Theorem 3.7: An integral domain with identity is a 
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Dedekind domain if and only if.Dis Noetherian, integrally closed, and 

has dimension less than two. This·particular result is essentially due 

to E. Noether [18]. Gilmer did prove.that J satisfies Noether's three. 

conditions~ However, an integral domain without identity satisfying 

Noether's three conditions need not have.property C. The even integers 

Eis an example of such a domain and this is prove4 in Example 3.10, In 

[11] Gilmer states that while an.analog to Noether's result is obtain-

able, the.following characterization of J seems more desirable: J is the 

maximal ideal of a.rank one discrete valuation ring V such that: Vis· 

generated over J by the identity e .of V, and conversely. After we 

establish some basic properties of J, we prove this characterization. 

3,10 Example: The domain of even integers Eis Noetherian, 

integrally closed, and has dimension less than two bu~ does not.have. 

property C, The fact that Eis Noetherian is clear. The set of proper 

prime ideals of E is .A!= { (2p) I p is an odd prime in Z}. Thus, no cha~n 

P 1 c P 2 c P 3 of three genuine prime ideals exists in E and hence the 

dimension of E is less than two. To see that,E is integrally closed, we 

must prove every rational number x which satisfies n+l d x n x + + ... 
n 

+ d1x + d0 = o, where d0 , •• ~ J d n are in E and n is .a nonnega~ive . 

integer, must be an. even integer, If x = p/q where p and q are integers .. 

then p d0 and q I 1~ Therefore, x.is an integer. In addition 

n n+l dnx + ••• + d0 is an even integer and so x must be an even integer. 

This proves that x e: E and hen~e Eis integrally closed. 

Next we show E does not have.property.C. Consider the ideal (18) in 

E, It is not prime since 6•6 e: (18) but 6 i (18). If we assume that 

(18) = pl P , where P. is a proper prime for i = 1, 2, ···, n and. n 1 

n .:::._ 2~ then the character~zation of the proper prime ideals of E shows 
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that 4 I 18. Thus; (18) is notthe finite product,of proper prime idea:ls 

of E. Therefore, E does not have property C. 

The. proof of ,the fqllowing le~, which generalizes the unique 

factorization property we proved in Lenuna 3.2, is very simi,lar to the 

proof of Lenuna 3.2. For this reason, the proof is omitted. 

3.11 Lenuna: Suppose A is a proper ideal ,of the domain D such.that 

A can be expressed as a produ~t of invertible prime id~als .of D. This 

representation is .unique if ,D c D* and unique to within factors of D if 

D = D*, 

The maximality and invertibility of.the proper prime ideals of J is 

established next. Putting these two properties together, in conjunction 

with Lenuna 3.11, gives us the unique factorization propertr for proper 

ideals of J. A.slight modification of .the proof ,of Lenuna 3.3, t}J.e 

analogous result for Dedekind domatns, is used to. prove Theorem 3 .12 •. 

The proof of Theor~m 3 .13, ~i th "proper" replacing "nonzero'.', is _identi-

cal to the proof.of Lenuna 3.4. 

3 .12 · Theorem~ Every invertiQle proper prime id~al of J is a 

maximal, ideal. 

Proof: Let P be an invertible.proper prime ideal of J and choose. 

ae J - P. We express P + (a) and P + (a2) as products of prime ideals:. 

P + (a)= JkP1 ••• Pr• P + (a2) = J*Q1 ••• Qs where each Pi and each Qj 

is a proper ideal of J. - - -de- -In J = J/P.we have, (a)= J P1 ••• Pr and 

- 2 - -
(a) = J* Ql ••• Qs. By Lenuna 3.11, s = 2r and by proper labeling 

Pi =,Q2i-l = Q2i for.i = 1, •••, r. If J does not contain an identity, 
2 2 Lenuna 3 .11 implies that t = 2k and thus P + (a ) = [P + (a)] . Next 
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- - - -2 -asswne .J does ·c9ntain an ident~ty •. If (a) = J, then (a)· = J and 

[P + (a)] 2 = P + (a) 2 , If (a) c J, then r 
-2 . 

(a) = Q1 ••• Q, and it follows that (P + s . 
2 Therefore, in each case we have P + (a) 

i~ positive, (a)= P1 ••• Pr' 

(a)]2 = Pf ••• P! = P + (a2). 

2 = [P + (a)] , As in the proof 

2 of Lemrna-3.3, we can sl?,ow tl).at P = P +,P(a) = P[P + (a)]. Mu.ltiplyin& 

-1 both sides of .this expression by ,JP gives us J. = J [P + (a)] SP + (a).: 

Therefore, J = P + (a) and P is a maximal ideal . of J. 

3.13 Theorem: Every proper prime ideal of J is invertible. 

Theorems 3.12 and 3.13 imply J satisfies the seco:Qd of Noetber's 

three conditions; that is, the dimenl?ion of J is less than two. Theorem 

·3.14, together with Cohen's Theorem (Proposition 2.16(c)), show J is 

Noetl)eria,n. 

3 •. 14 Theorem: Every prime .ideal bf J.is finitely genera~ed. Thus, 

J is Noetherian. 

Proof: Since proper prime i().eals of J are invertible, they are 

finitely generated by Proposition 2,35. Thus, we need only show J is 

finit~ly generated. If J contains a.proper prime ideal.P, then 

p =' (pl' ... Ps) is maximal by Theorem 3.12. Hence, if d € J - P, then 

J = (pl' ·I Ps'· d). If J does.not contain a proper prime ideal, then. 

given d E J - '(0), (d) =.Jk for some inte.ger .k > 1. Since J is an 

integral domain., Proposition 2 .36 shows that (d) is invertible. There-

fore 1 J is invertible by PropQsitiQn 2.38, anc;l thus finitely generated. 

Since. every prime id,eal Qf J is, fini t.ely ,generated, Cohen's Theorem 

implies J is·Noethe~ian. 

We have seen that if D is,a Dedekind dom~in then every.ideal of Dis 



31 

generated by at.most.two elemeI?,ts. We can now establish a similar result 

for J. 

3 .15 Theorem: . Every nonzei;o ideal of J is a power of J and, in 

fact, J is a principal ideal domain_ (PID). · 

Proof: , Sin:ce J is· Noethei;ian and J .c J*, J 2 c J by. Proposition 

2.14(b). · ChoosEl x e: J - J 2 . Then (x) = P1 ••• .Pn where.Pi is _a prime 

ideal of J for i '= 1.,, 2, • • •, n. Since x J .J2 , we must have n = 1. 

Therefore; (x) is a prime iqeal of J. We will show that (x) = J. We 

suppose, (x) c J. Since (x) is invertible and J c J*, (x) :::::> (x)J ::> (x2). 

If A is any ideal such that (x) :::::>A::> (x2) and.if Pis a prime factor of 

A, then P :::::> (x). · Theorem 3. 12 implies P = (x) or P = J. Because 

(x) :::::> A :::::> (x2), A = (x)Jk for some k ~ 1. Bu'!: x ~ J 2 so that x2 ~ (x)Jk 

for. k > 2. Therefore, k = 1 and (x)J is· the unique ideal properly 

betweEln (x). and (x2). 

We next show (x2) is a primary ideal. Suppose a, be: J su~h that 

ah e: (x2) and a,~ (x). . Now b . e: . (x) so that (x2) ~ (x2 , b) S (x). Since 

(x) is maximal and prime in J, J/(x) contains an identity element u. 
Thus, ux q: (x~, b) since 

' 2 
Because a i (x), ua ~ (x). so that u~x q: (x ). 

' . . . 

2 2 (x , ab) = (x ) • Hen,ce, (x2 , b) ~ (x)J and we, conclude (x2 , b) = (x2) by 

the preceding paragraph~ Therefore, be: (x?) and (x2) is primary. 

. . . 1 2 
Now ua - a e: (x) so that (ua - a) e: (x J . If z e: J, then , 

z(ua -.a) 3 = a 3 (tz - z) e: (x2) where tis a fixed element of J.independ"'.' 

ent, of z. Since a3 q: (x} and (Je2) is (x)-primary, tz - z e: (x2) for each 

z e: J; that is, J/ (x2) contains. an identity. This means, however, that 

V = (x)/ (x2J is a vector space of the _field J/ (x). · There is a one-to-one 

correspondence between thEl collection of subspac~s of V and the set of 
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ideals of J between (x) and (x2). Thus; V has exactly one nonzero proper 

subspace; which is impossible. We conclude that J = (x). 

Let P be a proper prime ideal of J. We have seen that Pi~ not 

properly contained between 2 (x ) and (x). If P ci. (x2) then there exists 

an element y,E P such that 1 2 2 y ti- (x ) = J • Th~ argument above shows 

Cy)= Jc P which contradicts the fact that Pis a proper ideal of J. 

Thus, we must have P cJ2 2 = (x ) . Since (x2) is an invertible ideal of 

J*, there exists an ideal B of J* such that P = (x2)B = (x)[(x)B] = (x)A 

where A = (x) B. Since (x) i P we must have ASP and thus A = P. Now· 

(x) =Jc J* so that Pis not invertible and hence P = (0). Consequent~ 

ly, J is the onJy nonzero prime ideal of J, Therefore, if A is a nonzero 

ideal of J, A= Jk = (xk) for some positive integer k. 

Having established these preliminaries, we are now ready to prove 

Gilmer's characterization of J, 

3.16 Theorem: [11; Theorem 4, p. 581]. J* is a rank one discrete 

valuation ring and J is the maximal ideal of J*, Conversely, if Dis a 

rank·one discrete valuation ring with maximal ideal Mand if D = M*, then 

Mis a domain without identi~y having property C. 

Proof: Since J is NoetheJ'.'.ian, J* is. Noetherian by Proposition 2.29 .. 

Since a Noetherian valuation ring is.necessarily discrete and of.rank one 

(Proposition 2.45), we need only show that J* is a valuation. ring. Let 

y € K, the qu9tient field of J*, We need to show either y or y-l is in 

J*. By Proposition 2.30, K is ~lso the quotient field of J, Thus; 

y = a/b for some elements a and b of J. By Theorem 3.15 the ideals.(a) 

and (b) of J compare; that is, .,(a) S (b) c Jc J* or (b) S (a) SJ c J*, 

Therefore, either.alb€ J* orb/a E J*. This proves that J* is a 
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Noetherian valuation ring and hence discrete.and of rank one. 

If Mis the maximal ideal of J*, then J =.Mr for some positive 

. t s· M J* d M . . 'bl Mr+l Mr J Th in eger. r, 1nce c an is 1nvert1. e, c = . eorem 

3,15 asserts that Mr+l = Js = (Mr)s for some integers. Consequently, 

r + 1 = rs, Hencet r = 1 and J = M, 

To prove the converse, we recall that a subset B of the maximal 

ideal M.of Dis an ideal of M* = D if and only if Bis an ideal of M 

(Proposition 2.28), Since D is·a rank one discrete.valuation ring, every 

proper ideal of Dis a power of M, Therefore, if A is an ideal of M, 

A= Mk for some int;eger k. This prove~ M isa domain without identity 

having property C, A 

L S, Cohen in [6] has classified all rank one discrete valuation 

rings D whh ma~imal ideal M such that D = M*, Indeed, he proved 

D = TI [[x]] and M =.(x) where TI [[x]] is the formal power series ring p p 

over .a prime field of characteristic p for some prime integer p. 

3, 17 Remark: Gilmer s"t:ates that the ,proof of the converse of. 

Theorem 3,16 is an immediate consyquence of the relationship between the 

ideals of Mand M* = D and the fact that a rank one.discrete.valuation 

ring is a Dedekind domain, This observation is certainly tr~e but.could 

be misleading if the reader interprets the statement incorr~ctly. It. 

seem~ to suggest, at first glance, that if His a Dedekind domain and N 

is a maximal ideal.of H such that H =·N*, then N is an integral domain 

without identity having property C, The maximal ideal (2) of the Dedekind 

domain Z has the property that (2)* = Z but does not have property C 

(Example 3 ,10), Referring to. the proof of the converse of Theorem 3 .17, 

we see the proof depends on the fact that Mis the unique maximal ideal 
\ 
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of D so that.every proper ideal of Dis a power of M. However, an ideal 

of N may not be a power of N if N is any maximal ideal of the Dedekind 

domain H, · 



CHAPTER· IV 

GENERAL Z. P. I, -RINGS 

A natural question arises from the study of Dedekind 'domains and 

domains without identity satisfying property C. What properties are 

possessed by rings satisfying property.C? Such a ring is called a 

general Z~P.I.-ring. 

We begin this chapter by considering two examples. These exam,ples 

show general Z.P.I.-rings are very natural generalizations of integral 

domains satisfying property C. 

4.1 Example: Let R = Z@ Z where Z is the ring of.integers. If A 

is an ideal of R, then Proposition 2.11 shows A= B@ C for some ideals 

Band C of.Z. Since Z is a Dedekind domain, there exist prime ideals 

Thus, A= .P1 

~ such that B = P1 ••• Pn and C = Q1 

~= (P 1 @z) ••• (Pn@Z)•(Z@Q1) 

(Z @ O ) and Propositi<;m 2,13 shows each of P. @ Z and Z @ Q., 
'Ill 1 J 

1 .::, i .::, n and 1 .::, j .::, m, is a prime ideal of R. Therefore, R is a 

general Z.P.I.-ring with identity. 

~· 

4. 2 Example: Let R = Q @ (x) where Q is the field of rational 

numbers and (x) is the maximal ideal of the rank one discrete valuation 

ring Zp[[x]], where Zp represents the integers modulo p for a prime 

integer p. If A is an id~al of R, then A= B@ C where Band Care 

ideals.of Q and (x), respectively. 
k Then B = Q or B = (0) and C = (x) 

35 



36 

for some positive integer k. k Thus; A = (B @ x) • (Q ©. (x) ) = (B © (x)) 

k 
• R where B © (x) and Rare prime ideals of R. Hence, Risa general 

Z,P.I,-ring without identity. ! 

The above two exainples are chosen out of the two main classes of 

general Z,P,L-rings. The firs1, Z © Z, has an identity whil.e Q © (X) 

does.not have an identity. 1 

In this·. chapter we are concerned with the properties and character-

izations of general Z.P,I,-rings. Our first main objective is to prove a 

general Z,P,I,-ring is Noetherian. Together with this and several other 

result~,. we can prove the direct sum decomposition theorem for general 

Z.P,I.-rings. In fact, we .prove a general Z.P.I.-ring R with identity 

has the following structure: R is the finite direct sum of Dedekind 

domains and special primary rings. For the structure of a general 

Z,P,I,-ring S without identity, we show·that S = .F ©Tor S = T where F 

is a field and Tis a ring without identity having the property that each 

nonzero ideal of Tis a power of T. These results are originally due to 

Mori [16], but appear in the above revised forms in papers by Asano [l] 

and Wood [21]. Henceforth, whenever we refer to the structure theorem 

for general Z.P,I.-rings, we are alluding to the direct sum decomposition 

of general Z.P,L-rings. With this structure theorem at hand, we can 

d~velop several ideal-theoretic _char11cterizations of general Z.P.I.-rings. 

Our last main objective is to focus on one of these characterizations. We 

show Risa general Z,P,I,-ring if and only if every ideal of R gener-

a1;.ed by at most two elements is the finite product of prime ideals of R. 

This characterization is due to Levitz [15]. 

Mori.was the first.to prove that a general Z,P.I,-ring R is· 

Noetherian in [16], However, the proof given here is due to Wood [21] 
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since it is shorter .and more straightforward than the proof given by 

Mori. Through a series of lenunas concerning the minimal prime ideals of 

~ R, we eventually prove.every prime ideal of R is finitely generated. The 

,application of Cohen's Theorem, Proposition 2.16(c), then gives us our 

first main result. 

4,3 Lemma: If Risa general Z,P.I,-ring, R contains only finitely 

n.any minimal prime ideals and dim R < 1. 

Proof: If .R contains no proper prime ideal, then the lemma is 

clearly true, Therefore, we assume R contains a proper prime ideal P and 

we show R contains a minimal prime ideal. If Pis not a minimal prime of 

R, there exists a prime ideal P 1 such that P 1 c:: P c R. It follows that 

R/P1 is a domain satisfying property C and containing a proper prime 

ideal P/P 1 , We conclude from Theorem 3.15 that R/P1 is a Dedekind 

domain, Since the dimension of a.Dedekind domain is one, P1 is a minimal 

prime ideal of R. Therefore, dim R < 1. 

Since R is ,a general Z,P,I.-ring, there exist prime ideals 

Q1 , ···,~in Rand positive integers e1 , ···, en such that 

(0) 

el 
CO) = Q . 1 

If Mis any minimal prime ideal of R, th~n we have 

e 
~n SM, This implies Q. CM for some i since Mis prime. 

1 -

Hence, M = Q. since Mis minimal and it follows that the collection 
. 1 

{Q1, •••,~}contains all the minimal prime ideals of R. Therefore, R 

contains only fi.ni tely many minimal prime ideals, A 

Next we prove every minimal prime ideal P of R is finitely gener-

ated by showing how to select a finite number of elements in P which 

generate P, 



4~4 Lenuna: If Risa general Z.P.I.'"".ring containing a genuine 

prime ideal, th~n each minimal prime ideal of R is-finitely generated. 

Proof:. Let P be a minimal prime ideal of Rand.let {P1 , ••• , p } 
n 

be the collection of minimal primes of R distinct from P. . If P = (0), 

we are done. Assume· (0) c P. We divide the _proof into three ca~es. 
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Case 1. P = P2• Then P - P2 c RP c P implies P.= RP. Since P 9: Pi 

n n 
for 1 ::_ i ::_n, P t.U Pi by Proposition 2.5. 

i=l 
So let _x1 e: P - ( U P. ) ., 

i=l l. 

Then there exist prime ideals M1, • • • ,. Ms, positive integers e0 , e1 , 

es and a nonnegative. integer es+l such that 

e e 
= p OM 1 

1 
... e e 

M SR s+l = 
s . 

e 
PM l 

1 

P.= RP. 
s 

Let q = l 
i=l 

e .• 
l. 

If P 

e e 
M SR s+l 

s 

e 
= PM l 

1 

(x1) , we are done. 

e 
Ms since 

s 

the _choice of x1 each Mi is a maximal prime ideal of R. By Prqposition 

n n 
2.5, P 9: { (xl) U ( U P ·)}. Choose x e:: p - { (xl) U C:U Pi)}. Then 

i=l l. 
2. 1.=l 

f f f g gt f f g gt 
(x2) = PM l M SR s~lQ 1 Qt = PM l M SQ 1 Qt where,, for .. 1 s 1 1 s 1 

1 ::_ j ::_ t, QJ' is a maximal prime _ideal of R, gj is a positive intege:r;- and 

for 1 < i < s + 1, fi is a nonnegative integer. Since (x2) 9: (x1) we 

have e. > f. for some i 0 , 1 ::.. io ::.. s. Thus, 
1.0 1.0 

e e f f g gt 
(xl ,x2) = PM l . . . M s + PM l ... M SQ 1 . .. 

~ 1 s 1 s 1 

m m e -m e ..:.m fl-ml f -m S gl 
= PM l Ms(Ml 1 Ms s M s . . . . . . + Ml ... Ql 1 s 1 s s 

m. = min{e., f.} for 1 < i < s. We note that if e. - m. 
l. l. l. l. l. 

f. - m. = 0 .. and __ if f. - m. 1 .o, th.en e1. - m. =-0. Also, l. l. • . l. l. T . . 1 

- m. 1 o. . 1 T 
0 

. .. e -m. 
M 5 5 and 
'S 

gt 
Qt) where 

+ O then 
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f -m g 
Ms SQ 1 

s 1 
... We will show A+ Bis contained in,nq 

maximal prime ideal of R; If M is·a maximal prime ideal of R containtng 

A, then M a maximal prime implies there exists a k, 1 _::. k _::. s, such that 

ek - mk f O and.Mk SM, Thus, M = Mk. Since ek - mk f O, fk - mk =O 

and it , follows that B i Mk = M. Th~refore, if M is a maximal prime ideal 

of R containing A, M does not contain Band, thus; cannot contain A+ B. 

JI, 
We conclude A+ B = R for some·positive int;:eger Jl and 

m 
Cxl' x2) = PM11 . 

m m 
M SCA+ B) = PM l s · 1 

choice of m., e. > m. for 1 < i < s. 
1 1. - 1 

s 
q - 1 > l 

i=l 
m. > o. 

1 

Bute. 
1.0 

m 
PM l 

1 

> f. implies 
1.0 

Assume we have chosen, as described above, xl, Xz, 

v v s 
that Cxl' . •,. x ) = PM l M s and q - Cu - 1) > l v . u ' 1 s i=l 1 

m 
Ms. 

s 

x u 

> 0, 

the above m~thod, either P = Cx1 , x) or there exists an 
u 

n 

xu) U Ciljl Pi)} such that 

w 

By our 

in p such 

Then by 

w 
Cxp • •• , xu+l) = PMl 1 Ms where each w. is a nonnegative integer and 

S 1 

s 
q - Cu+ 1 - 1) > l 

i=l 
w. > o. 
1-

Since q is.a finite positive number, there 

exists a positive integer band x1 , xb e: P such that 

P = (xl, xb), 

Case 2, P2 c P and P = RP. Again, by Proposition 2.5, 

2 n . • 2 n Pt {P U CU P.)} so let x1 e: P - {P U CU P.)L Then there exist 
' . 1 1 . 1 1 

1.=' 1= 

prime ideals M1, , Ms of R, positive integers e1, 
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e e e e e 
nonnegative integer such that (xl) PM l M SR s+l PM l e 1 = ... = ... M . . ' . s+ 1 s 1 s 
since P = RP.· If P = (xl) we are done. If (x1) c P, then.we· can choose 

2 n 
x2 € .P · - { (x1) UP . U (_U Pi)}. We .now consider (x1, x2) and the. 

1.=l 

remainder of tq.e proof of Case 2 is the same as the-proof of Case 1. 

Therefore, Pis a finitely generated ideal of R. 

Case 3. P2 .c P and RP c P. Let x e P - RP . Then· there are prime 

ideals M1, •••, Ms of Rand nonnegative integers e1, •••, es+l such.that. 

e1 e e 
(x} = PM1 • • • Ms sR s+ l t RP. 

P =, (x) •. 

Thus, e. = O for 1 < i < s + 1 and so 
1 

4. 5 Lemma:. Each prime ideal of .a general Z. P. I. -ring is finitely 

~enerated. 

Pr-oof: Let R be a general Z.-P. I. -ring. We consi4er two cases. 

Case 1. R contains no proper prime ideals. 2 
If R = R ·, let 

x ·€ R - (0). Since R is ·a general Z.P. I. --ring, there exists .. a positive 

integer n such th~t (x} = Rn = R. If R2 c:: R; let x € R - R2• It _then 

fc;>llows that (x) = R. 

Case 2. R contains a proper prime idea.1 M. If M is· a minimal. prime 

ideal of R, Mis finitely generated bythe previous lemma. If Mis not a 

minimal prime, t4e proof of Lemma 3.2 implies ,there exists a.minimal 

prime ideal P of R such that P c:: M. Thus; R/P is Noethe~ian whic~ 

implies M/P is finitely generated in R/P. Since P is a minimal prime 

ideal of R, P ·.is finitely generated in R. It follows from Proposition 

2,15 that Mis a finitely gener~ted ideal of R .. ' 
4.6 Theorem:. A general Z.P.I.-ring is Noetherian. 

s 
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Proof: This is an immediate.conseque}lce of Lemma 4,5 and CoheI).'s 

Theorem, Proposition 2.16(c). A 

4.7 Remark: We could have proved Theorem 4.6 without using Cohen's· 

The.or em. For if A is an ideal of a general Z ~ P. I. -ring R, then A is a 

finite product of; prime ideals of R. Each.,of these prime ideals is.··. 

finitely.generated by Lemma 4.5. Since a finite product of finitely 

generated ideals is. finitely genera~ed, A is finitely generated, This 

shows R is Noetherian. 

As menti.oned earlier,, our next main objective _is to prove the 

structure theorem for general Z.P.I.~rings. To accomplish this we need 

to develop several more properties o:f general Z.P.I.-rings and tQ estab-

1:l,.sh various rel.ationships among.these properties. Before doing this, we 

look more closely at the approach·we.intend to.use to prove th~ structure 

theorem. 

On~ method which is sometimes used to prove that a ring Rwith 

iden~ity is.the finite direct sum of rings is outlined below. 

Step .!.•. Show that (0) = A1 (') • • • n ~ where A1, ~ are ideals 

of R, 

Step ~: Show that A1, • • •, Ak are pairwise comaximal ideals of R. 

Step 2.,: Use the fact that R/(A1 n .. • n Ak) = .R/A1 @ .. • @ R/Ak. 

This is the method we use when we eventually prove the structure theorem 

for general Z,P,I.-rings 11ith identity. The first step.is already acces­

sj,ble to us.since a ge11eral Z.P.I.-ring is Noetherian. Thus, we need. 

only develop the tools necessary.to apply Step 2. 
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For rings without identity, we .use th.e following result of Butts.and 

Gilmer. The proqf is not inclu.ded h~re but it. should be pointed out that·. 

they use modified versions of tbe three steps outlined above in their 

proof of this fact, , 

4.8 Pr;oposition: If R is a ring such th~t R + .R2 an_d i:f every. 

ideal of R is an intersection of a finite num9er of prime po\ier ideal~, 

then R =.F1 @ ···@ Fk@ T where each Fi is a field and Tis-a nonzero. 

ring without identiy in which every nonzero ideal is a power of T 

[3; Theorem 14, p. 1195]. 

We _precede our quest for the necessary results to use the ideas out-

lined al:>ove.with several definitions. Th,ese definitio.ns s~ngle out,some. 

of the more important properties that.are related to general Z~P.I.-rings; 

4.9 Definitions~ Let R be a rtng. 

(a) We say R has property (a) [3] if each primary ideal of R is-a 

power of its (;prime) radical, 

(b) If each.ideal of R is an intersection of a finite number of 

prime power ideals, we say R has property(!) [3]. 

(c) If R is a ring without identity such that ea~h nonzero ideal of. 

R is a power of R., we say R satisfies property (!) [21] . 

(d) A ring R with id~ntity having a unique maximal ideal M .such. 

that each genuine ideal of Risa power of Mis called a special primary 

(e) Let_A be an ideal of a ring R. We say.A is simple if there 

exist no ideals properly between A and A2~ To avoid conflicts with other 

definitions of a.simple ri"Q.g, we say, in case A= R, that R satisfies 

property §.., 
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Relationships between properties (ex.) and (c) defined aoove. have been. 

considered by Butts and Gilmer in [3]. We need some of these to obtain 

the.structure theorem for general Z,P,I.-rings and we consider them next. 

4.10 Theorem: If Risa ring satisfying property (c), then (a) 

also holds in R, 

Proof: Suppc:>se Q is primary for the prime .ideal P. Let 

n e. 
Q = 

i=l 
P. 1. be a representation of Q as an inter.section of powers .of 

l. 

distinct prime ideals, We have p =IQ= /cA p~i) 
i=l l. 

n 0· = n (P .1.) 
i=l l. 

n 
= n P. c P. for each. J0

• 1 < J0 < n. Since P is prime and 
l ;....., J • -

i=l 
e. 

Pii' we must have P ::::>Pj for some j and therefore, 

n e. 
say, P = Pl'. Then PI c Pi for i .::._ 2, so n P / is not contained in Pl .. 

i=2 
e1 n e. . e1 

Since Pl ( n Pi i) S Q and Q is P 1-primary, Pl S Q. It follows that 
i=2 

el 
Q = P1 and Q is a prime power, 

4,11 Theorem: Let R be a Noetherian ring satisfying property.Ca), 

Then R has property (o), 

Proof:. Let A be ,an ideal of R, Since R is Noetherian, A has a 

shortest representation in R, say, A = QI n · · • n ~ where Qi is 

P. -primary, 
l 

e. 
Then Q. = P. 1 since (a) holds in R, 

l l 

(c) holds in R, 

n 
Thus, A = n 

i=l 

e. 
P. 1 and 

l 

4, 12 . Theorem: . Let R be a ring with identity, If R satisfies · 
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property (a), then each maximal ideal of R is,simpl~. 

Proof; 2. 
Let M be a ma:ximal ideal of Rand A an ideal between.M al)d 

M. · Then 

A= Mk. 

IA = M implies that A is M.-primary. since R has propertr (a), 

But M~ c A s_M implies k = 1 or k = 2. Therefore, each m~ximal 

ideal of R is,simple. A 

The ne;t result is a well known.fact.concerning simple ideals; For 

the reader interested in seeing a proof, .we refer )!OU to. [20; Lemma 

4.13 Proposition: Let A be a .simple ideal of a ring R .. Then for 

i i+l e1:1,ch positive integer i there are no ideals properly between A. and.A • 
. n 

Further for each positive integer.n, th~ only ideals betwe~n A and A are 

2 n A, A, ···,A .. 

The preceding discussion gives some interesting relationships among. 

properties (a) and (o) and simple ideals .. The·next.theorem allows us to 

use.these results .when we are working with gene~al Z~P.I.-rings. 

4.14 Theorem: If Q is a P-primary ideal of a general Z.P.I.-ring 

R, then Q is a power of P; that is, R has property (a). 

Proof: 

integers el' 

There exist d,istinct prime idea~s P • • • P and positive 
l' ' n 

e 
n p • 

n 

e 
P n 
n 

c P and P is prime,, Pi SP for some i; say i = .1. Now, 

p = .v'c! = (Pel • • • /n.) = ~ n • • • n r;;;:; =. p n • • • n p 1 · n / ll'' 1 J / ll:'n J ·· 1 n 

e 
c P. for each i. 
- 1 

Therefore, P .P n where 
n 



e e 
P P. fc;>r 2 < i < n. Since .Q = P 1 (P 2 

1 2 

e 
_t P; it follows. that P l c::: Q since Q i~ primarr. 

el 
Hen.ce,; Q = P 
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We have now est.ablished that a general Z.P.I.-ring witho.ut identity 

satisfies the hypotheses of Theorem 4.8. This gives us some information 

concerning the finite direct sum decomposition of such a ring. The next 

three results are used when we consider general Z.P.I.-rings·with 

identity. Lemma 4.15 allows us to concluq.e that the ideals which consti-

tute an irredundant representation of, (O) are pa~rwise comaximal ideals, 

Th_e ot~er t~o result~ pertain. to the summands of our eventual decomposi-

tion of a general Z.P.I.~ring with'identity. 

4,15 Lemma:. Let A.be a proper simple ideal of a Noetherian ring R. 

If' there ex~sts a prime ideal P of R such that (0) c P c Ac R, P is 

unique and. ·P Also, if Q is.a P-primary ideal of R, Q = P. 
i=l 

Proof: We first show by an inductive argument that PC Ai for each 

k 
positive integer i. By hypc;,thesis P C A, Assume Pc::: A for some 

positive integer k. Since A/Pis a proper ideal of R/P, a Noetherian 

integral domaiJl., Ak/P :::> (Ak/P) (A/P) = (Ak+l + P)/P :::> P/P by Proposition . ' ' , ' . 

2 14 (b) Th .. 1 . Ak Ak+l P Ak+l , , is imp 1es :::> · + ::> • h .f Ak+l . P Ak+l T ere ore, . + = 

since A is a simple ideal. Since A k+ 1 + P ::> P, it follows that P c::: A k+ 1 , 

Thus, Pc Ai for each positive intege~ i. 

co 

We now show P = ('\ Ai. Since A/Pis a proper ideal of a Noetherian 
i=l 

· dqmain, P /P 

co 

('\ (A/P) i 
i=l 

= 

= 

co 

n {A/P}i by Proposition 2.18, Also,, sin_ce 
i=l 
co 

n 
co co 

( (Ai ·+ P) /P) = ('\ (A i/P) = ( n Ai}/P, it follows . that 
i=l i~l i=l 
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Finally, we show· that if. Q is a P~primary ideal of .R, then Q =. P •. 

c,o 

Bf Proposition 2.17 P = A( n Ai) = AP. Thus, there ~xists. an a e: A such 
h=l 

that ap = p for each p e: P by Proposition 2 .14 (a). · If x e: R - A,. then 

p (ax ·- x) = apx - px= O e: Q for each p e: p. Since x (A, ax - x tfA=>P. 

Thus, p e: .Q for each p e: p sine~ p(~ - x) e: Q, ax - x If p' and Q is a 

p-prima:ry.ideal of P. Thus, P SQ which shows P.= Q. 

4.16 Lemma: If a ring Risa finite di;ect sum of general Z.P.I.­

dngs with.identity, the~ R is·a general Z.P.I.-ring with identity •. 

Proof:. Let R = R1 G · • • • ~ R where each R. is a general Z.P.I."'.'ring n · · · 1 . 

with identity. Then R has an identity since eac~ summand.has an identity. 

Let A be a:n ideal of R. Then by Proposition 2.11, A= A1 G ••• @ An 

where, for l ::_ i ::_ n, Ai is an ideal of Ri. · Since each summand is. a 

general Z. P. I .-ring, we have A. = P . 1 • • • P. where P. . is a prime ideal 
1 1 . 1mi · lJ 

... 

p 
nm 

n 

(R1 G ••• G Rn-l (9 Pn1) • • • (R1 (9 • • • @ Rn-l (9 Pnm ) and for each i 
n 

and j., 1 < i < n and 1 < j < m., R ~ • • • G P .. (9 • .. (9 R is a prime 
- - · - .· - 1 · 1 lJ n 

· ideal of R by Proposition 2.13. · Hence, Risa general Z.P.I.-ring with 

identity.· 

4 .17 Remark: If R is a ring with ident~ ty and M is a silllple .maxi"'.' 

mal ideal of R, then R/Mn is a special primary ring for each positive 
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integer n, For if A/Mn is a genuine ideal of R/Mn, then Mn SA SM, 

k Proposition 4.13 shows that A= M for some integer k, 1.::_k .::_n, Thus, 

A/Mn= Mk/Mn= (M/Mn)k and R/Mn is a special primary ring. It is clel:l,r 

that a special primary ring is a general Z.P.I.-ring. · • 

4,18 Theorem: [Structure Theorem of a General Z.P.I.-Ring.] A 

ring R is a general Z, P. I. -'ring if and only if R has the following 

structure: 

(a) If R = R2 , then R = R @ • • • @ R where R. is either a Dedekind · 1 n 1 

domain or a special primary ring for 1 < i < n. 

(b) If R 'f R2 , then either R = F (9 T or R = T where F is a field 

and T.is a ring satisfying property(#), 

Proof: (+) If Risa general Z.P.I.-ring, then Risa Noetherian 

ring having property (a) by Theorem 4.6and Theorem 4.14, respectively. 

Th1.1s, R has property (c) by Theorem 4, 11. Also, dim R .::,;. 1 by Lemma 4. 3. 

We consider two cases, 

Case 1. 2 R = R. Then by Proposition 2,14, R has.an identity. 

Theorem 4, 12 implies. each maximal ideal of R is simple. We consider an 

irredundant representation of (0), (0) = Ql n · · · n ~, where Qi is 

Pi ... primary for each i. Theorem 4 .• 14 shows there exist positive integers 

r and s such that Qi = Pr and Qj =. Pj, Since Q1 n · · · n ~ is an 

irredundant representation of (0), P. 'f P. for if: j. 
1 J 

We.claim 

P 1 , • • •., P n are pairwise coJ11aximaL For if Pi + Pj R then 

P. + .p. c M R for some maximal ideal M of R. Lemma 4 .15 shows that 
1 J. -

00 

Po = n Mi = 
1 i=l 

P., a contradiction, 
J 

Thus, P1 , 

co.maximal and Proposition 2 .10 (a) states that Q1, 

P are pairwise 
n 

~ are pairwise . 



comaximal. By Proposition 2 .10 (c) R = R/ (0) = R/ (Q1 n • • • n ~) 
= R/Q1 © • • • .. © R/~. Either Pi is maximal, in which case Qi is a power 

of Pi since (a) holds in R, or Pi is nonma.x:imal, in which cas{;l Qi= Pi 
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by Lenuna 4 .15. Remark.4.17 shows that R/Q. is a special primary ring if 
l 

P. is maximal, and if P. is nonmaximal, R/Q. is a Dedekind domain. 
1 1 l · · 

Case 2~ R = R2. Since R h9:s property (a), Theorem 4.8 implies 

R = F © ••• © F © T where each F. is a field and Tis a nonzero ring 1 u 1 

satisfying property (#). Using a contrapositive argument, we show 

Assume u > 2. We now. show R is not a general Z. P. I. -ring. Since 

u.> 2, Tis an ideal of R that is not prime. The prime ideals of R con-

taining Tare Rand Pi= F1 © ···.@ Fi-l © (0) © Fi+l@ ···©Fu © T for 

1 < i < u where Tc P. for each i. Now P.P. = F1 @ 
' l l J © Fi-1 @ (0) 
i 

© Fi+l © ••• © Fj-l © (0) Fj~l ©•••©Fu@ T2~ RPi =Fl© © F. 1 l-

© (O} © F © • • • @ F © T2 , and R2 = F1 © • • • © F © T2. i+l u u Since T2 c T, 

it follows that T t P/ j, T t RP i, and T t R2 for 1 ~ i ~ j < u. Thus, T 

cannot.be represented as a finite product of prime .ideals of R; that is, 

R is not a.general Z.P.I;-ring, Therefore, if Risa general Z.P.I.-ring, 

u i 2; that is, R = F 1 @ T or R = T where F 1 is a field and T is a ring 

satisfying property(#), 

(+) If Risa direct sum of finitely many Dedekind domains and 

sp_ecial primary rings, R is a general Z. P. I. -:ring by Lenuna. 4 .16. If 

R = T where Tis a ring satisfying property(#), then R is clearly a 

general Z.P.I.-ring. If R = F © T where Fis a field and Tis a ring 

satisfying property (#), th~n {F @ Ti, Ti, F, (0): where i is any posi­

tive integer} is the coliectton of ideals of R. It follows. that each 

idea,1 of R is a finite product, of prime ideals. Therefore, if R 
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satisfies either (a) or (b), Risa general Z,P.I.-ring. 

At times it may be difficult to use the definitions or the structure 

theorem to prove that a ring is.a general Z.P.I,-ring. The next two 

theorems give us.some equivalent ideal-theoretic conditions which at 

times may be easier to apply. For the first of these results, we concern 

ourselves wHh rings with identity and use the.method of.proof outlined 

previously. The second theorem. handles the case when R. is a ring without 

identity, 

4,19 Theorem: Let R be a ring with identity. The following condi-

tions are equivalent,in R. 

(1) R is a general Z.P.I.-ring. 

(2) R is Noetherian and property (ct) holds in R. 

(3) R is Noetherian and each maximal ideal of R is :simple. 

Proof: (1) + (2) This is Theorems 4.6 and 4,14. 

(2) + (3) This is Theorem 4.12, 

(3} + (1) We make the following observations: 

(i) dim R < 1 For.if Mis a maximal ideal properly containing the 

co 

prime ideal P, then Lemma 4 .15 shows that P = n Mi. 
i=l 

(ii} If Q is P-primary for the nonmaximal prime ideal P of R, then 

Q = P by Lemma 4,15, 

(iii) The set of.M-primary ideals for the maximal.ideal Mis 

i co i 
{M }i=l' For each M is M-primary since Mis. maximal and R has an 

identity, Further, if Q is M-primary, then Mk SQ for some positive 

integer.k since R is Noetherian, Proposition 4.13 shows .that Q = Mj for 

some positive integer j, 



so 

Ha.ving made these observations, we consider a shortest representa, 

tion of (0) , (0) = Q1 n · • • n ~, where Qi is Pi -primary, The rest of 

the ._proof is identical to the proof of Theorem 4 .18 (a) wh:i,ch shows ,that. 

R = R1 ~•••@.Rn where Riis either a Dedeki11,d domain or a SP.ecial 

primary ring, . Therefore, R is a general Z, P. I , -ring, 

4.20 · TheC>rem: Let R be a ring without identity. 

(a) If _R contains a proper prime ideal, then R .is a general Z .P, I. -

ring if and only if R satisfies the following four conditions:. 

(1) R is Noetherian. · 

(2) R satisfies property S. 

(3) Each maximal prime ideal of R. is ·simple~ 

co • 

(4) n R1 is 1;1 field. 
i=l 

(b) If R does . not cc;mtain a proper prime ideal I then R is a general 

Z.P.I,-ring if and only if R satisfies tQe following two conditions; 

(1) R is Noetherian. 

(2) R satisfies property S. 

Proof of (a):. (-+) Assume R is·a general _Z.P.L--ring •. Then.R is 

No.etherian by Theorem 4. 6. Since R contijins .a proper prime ideal,. 

The_ore111 4. 18 shows R = . F '9 T where F is :a field and T ·is· a ring satisfy-, 

ins property ·. (#). Hence, R satisfies property . S since R2 · = F (ii T2 and 

there are no ideals of T between T_and T2~ If.Tis a domain, then F and 

T are the ma~imal pri111e ideals of R •. If T is not .• a domain, then T is the 

ma~imal prime ideal o:f R. It follows.that each.maximal prime ideal of R, 

00 • CO a 

is simple. Finally, n· R1 = n (F 19.T) 1 = F, a field, 
i=l i=l 
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(+) Assume cond:j.tions · (1), (2), (3), and (4) hold.~ 
'' ·.' 

Let Q be a. 

P-primary ideal of .R. If .P = R or if P .is a maximal prime iq.eal,of R, 

there exists an integer,n such that; Pn c Q since R is Noetherian. Thus; _.. ' . .. ' . ~ 

Proposition 4 .13 implies Q = Pk for some integer k. If P is !a proper 

nonma;imal prime ideal c;,f R, Lennna 4.15 shows that Q = P, Thus, R is 

Noetherian and satisfies property (a) which shows prope);'ty (o) holds in 
' ' . ' . . ·'-.· ' 

R by Theorem 4.11. Therefore, by Theorem 4.8,, R = F1 @: • • {il Fm.@ T 

where each Fi is _a field and Tis a ring satisfying property(#). Since 

R. cont~ins .a proper prime ideal, m .::_ L Condition (4) implies. that 

m t L Thus R = F 1 @ T and by . Theorem 4. 18, R is a gene];'.al Z. P. I.-rin~. · 

Proof.of (b): (+) If. R .is a general Z.P.I.-:,ring ccmtaining no 

proper prime ideal, then R = ,T whei;e T i~. a r~ng satisfying property.(#). 

Thus, R is Noeth.erian and• s~tisfies property S. 

(+) Assume conditions (1) .and (~)·hold. Since R is Noeth.erian and 

R is the only nonzero prime ideal of R; R has property (a). Thµs, (o) 

holds and Theorem 4, ~ shows th.at R = ,F1 @ .@ F n @ T wb.ere. Fi is a 

field an_d T is a ring satisfying property (#) . If n .::_ 1 ~· then 

•••@ Fn@ T·is·a proper prime ideal of R. Thus, R = T 

and R is a general Z, P, I. -:ring. 

We are now ready .to t~e on. our last main objective of this chapter, 

the characterization of general Z.P.I.-rings due to Levitz; [15]. In 

prov~ng this result, we arrive at a similar characterizat.ion ,of Dedekind 

domain.~. Be~ause they are .so similar and sine~ the -,proc;,fs overlap, both· 

are pr~sent~d he:r;e ,. Hqwever, hefo:re attempting these ,proofs we. need. some , 

knowledge of the properties ,possessed by Krull. domains and ,r (1)-domains •. 
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These two concepts are defined immediately following this discussion. 

Some relationships among,Krull domains, Dedekind domains, and 'IT(l)-doma:j.ns 

will also be needed, Probably the most important .of these, for our 

purposes, is the equivalence of Dedekind d.omains and one-dimensional 

Krull domains, · To include . the proofs of this fact and many of. the others 

would require a lengthy deviation to areas outside of our primary topic 

of discussion,· For this reason,.only references are given. A detailed 

study of Krull domains may be founq in [9] while 'IT(l)-domains are 

considered in [20]. 

4,21 Definition: An.integral domain D with identity is a Krull 

domain if there is a set of rank one discrete valuation rings {V} such 
Cl. 

that D = n V and such that each nonzero element of D is a non-unit in 
Cl. Cl. 

only finitely many of the Va., . 

4,22 Definition: Let R be a ring and n a positive integer. If 

each ideal of R generated by nor fewer elements can be expressed as a 

finite product of prime ideals of R, R is called a 'IT(n)-ring. If, in .. 

addition, R is an integr1;l.l domain, we say Risa 'IT(n)-domain. 

4,23 Example: Let D be a UFO and let {p} A be a complete set of 
Cl. Cl.8 

nonassociate, nonunit prime elements of D. Then Dis a Krull domain, In 

fact, the set of quotient rings {D(p )} is a set of rank one discrete 
Cl. 

valuation rings satisfying the conditions of Definition 4.21. A proof of 

this can be found in [9, Proposition 43.2, p. 525]. A 

From the definition of R being a 'IT(n)-ring, it is clear that R is.a 

'IT (k) -ring for k < n, Z [x] is an example of a 'IT (1) -domain which is not a 

'IT(2)-domain and this is proved in Example 4.40, Very soon we will see 
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there are no 'If (2) ..,rings which are not 'If (k)-rings for k > 2. 

4.24 Proposition: Let D be an integral domain with ~dentity. Then 

D is a Dedekind domain if and only if. D is a one-dimensional Krull domain 

[9; Theorem 43,16, p, 536]. 

4.2.5 Proposition: Let D be a Krull domain. Then each nonzero 

prime ideal P of D contains a minimal prime ideal of D . [9; Corollary 

43. 10 J p O 529] . 

4.26 Proposition: Let D be an integral domain with identity. Dis 

a TI(l)-domain if and only if Dis a Krull domain in which each minimal 

prime ideal is invertible [14; Theorem 1. 2, p. 377]. 

4.27 Proposition:. If D is a 'lf(l)-domain,. then each proper princi-. 

pal ideal of D can be represented as a finite product of minimal prime 

ideals of D [20; Theorem 1,1,8, p, 18], 

4,28 Proposition: Let D be a TI(2)-domain. Then each minimal prime 

ideal of D is a principal ideal. In addition, if D has a unique minimal 

prime ideaL(p), then R =-(p) [15; Theorem 2.4, p, 149]. 

4,29 Proposition: Let D be a TI(2)-domain with identity, P1 and Q 

distinct minimal prime ideals of D, and a e: P1 - Q. Suppose 

n 
b e: Q - U Po , where (a) 

i=l l 

e 
Pnn and each Pi is a minimal prime 

ideal of R, If bt e: (a) for some t. e: .R, then t e: (a) [15; Lemma 2. 2, 

p O 148]. 

As noted earlier, the definition of a.Dedekind domain does not 

require .that the representation of ideals as finite products of prime 
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ideals be unique, · However, it was shown that .the represent~tion was 

unique, E~ample 4,37 shows the factorization is not necessarily unique 

in a general Z.P.L-ring. In order that the representation be unique, it 

is sufficient for the ideal to satisfy the . conditions of the following 

proposition. 

4.30 Proposition: Let B be a proper, finitely generated, regular 

ideal of a ring R such that Bis a finite product o:f proper prime ideals 

of R, Then the representation of Bis unique [8; Theorem.2, p. 72]. 

Now we are ready to prove a lemma which leads to our characteriza-

tion of Dedekind domains. 

4.31 Lemma: Let R be a 1r(2)-domain with identity, Then R is·a 

Krul.1 domain in which each minimal prime ideal is invertible. Moreover, 

the minimal prime idea)s are pa~rwise comaximal. 

Proof: If Risa TI(2)-domain, Risa TI(l)-domain, It follows from 

Proposition 4,26 that Risa Krull domain in which eaGh minimal prime 

ideal is invertible, Let P1 and Q be distinct minimal prime ideals of R 

e 
and let a E P1 - Q, 

el 
Then (a) = P1 . P n where, for each i, e. _> 1, 

n 1 

Pi+ Q, and Pi is a minimal prime ideal by Proposition 4.27, Let 

n s 
b E Q - U P,, 

i=l 1 
Then (a, b) = 

m 
II 

j =1 

2 
A. and (a, b ) = 

J 
II Bk where, for 

k=l 

each j and k, A. and ·Bk are prime ideals of R. 
J 

Consid.er R = R/ (a) and b, the image of b in R, Suppose bt= 0 

some t e: R, Then bt e: (a) and by Proposition 4.29, t e: (a}. Thus, b 

m 
a regular element in R, We have in R, (b} = II (A./(a)) and 

j=l . J . . 

for 

is 



-2 m 2 
Also, Cl? ) = n CA./ (a)) · • 

j=l .. J' . 
By PrqpositiQil 4~30 

the. factorization of the id~al (b2) is unique. up to .. factors of R; It 

fol lows that s = 2m,. and we can index the ideals Bk, 1 ~ k ~ s ,. so that 

2 Hence, (a, b) = 
m 
n 

j=l 
Thus, 

2 2 2 2 (a) c (a, b ) = (a, b) c (a , b). Now if x e: (a) c;::: (a , b), then 

2 
x = ,ra +. sb where r,. s e: R, This implies sl? e: .(a), and,. consequently,. 

SS 

s e: · (a) by Proposition 4. 29, Thus; we can concluq.e (a) c (a) (a~ b). But 

we ._always have (al ;? (a) (a, b) and so (a) = (a) (a, b) •. Since a + 0 and R. 

is an integral domain, (~) is invertible, Therefore, by the cancel\ation 

prG>perty for invertible ideals R = (a, b) c P1 + Q c R. Henc~, 

R = .P 1 + Q ·and the mi~imal prime ideals .. of R are pairwise comaximal. . A.. 

4.32 Theorem·: Let R be an integral domai~ with identity. Then R 

is a DedekiJJ.d domain. if and only if R. is a 'II' (2}-domain. 

Proof:., (+) By the definition of a Dedeki11:d domain, R is a 

'II' (2) -,domain. 

(+) By Lenuna 4. 31 R is a Krull domain, in which the miqimal prime 

id~als are invertible. To .conclude.that.Risa Dede~ind dotnain, it 

suffices by Proposition 4.24 to show-dim R = 1; that is, proper·prime 

ideals are maximal. · Fi~st -we note that every non-,unit of -R is contained 

in so111e miJJ.imal. prime ideal of R. For if .a is a non-1.,mit in R, then 

(a) 
n e. 

1 - n P. c P. w.here, for each. i, P. is a m:i,nimal prime of R by· 
1. -'- 1 1 i=l . 

Proposition 4 •. 27. We now consider two cases. 

Case 1, R has a unique minimal prime ideal P. Then Pis also the 



UIJ,ique. maximal ideal of R, For if there exists a maximal ideal M of R 

such that M + P, then for any d e: M, (d) = Pk S P for some positiv1e 

integer k, This follows from Proposition 4 ;27. Therefore, d e: P and 

MS P, which implies M = P. We conclude that Pis the unique maximal 

ideal of Rand hence dim R = l; 

Case 2, R has more than one minimal prime ideal. Let P be any 

proper prime ideal of R., By Proposition 4.25, there exists a m:i,niml;l.l 

prime ideal Q of R such that Q SP. If Q + P, there exists b s P - Q. 
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Then (b) = 
r 
n 

i=l 
B. where, for each i, B. is a minimal prime ideal of Rand 

i i 

B. f Q for any i, 
i 

1 < i < r. Since b s P, 
r 
n 

i=l 
B. c P. 

i -
Th~s B. c P .for 

J 

some j, 1 .::_ j .::_ r, since Pis prime. By Lenuna 4.31 the minimal prime 

idea)s c;,f R are pairwisEl comaximal, But this· implies R = Q + Bj c P, 

contradicting the choice of P, Hence Q = P and each proper prime ideal 

of R is maximal. Thus, dim R = 1. 

Th,e following theorem cqmpletes the characteriztion. of 7f (2)-domains. 

4,33 Theorem: Let R be a 1r(2)-domain without identity. Then Risa 

general Z,P,I.~ring,. 

Proof:. By Proposition 4. 28 each minimal prime ideal of R is a 

principal ideal and if R has a unique minimal prime ideal (p), then 

R = (p),. We assUll).e R contains two distinct minimal prime ideals, (p) and 

(q). Using the same argument we did.in Lenuna 4.31, we can show that 

(p) = (p)(p, q), Since (p) is a regular idea+, Proposition 2.14(b) 

implies R must have an id~ntity. Since.R has no identity, it must be the 

case that R is the only nonzero prime ideal of itself. 
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Let A.be a nonzero ideal of R sueh that R2 c Ac R. 2 . 
Suppose. R c A 

and choose,a e A - R2• Since Risa 1r(2)-domain and R = (p) is the only­

nonzero pr~e ideal of itself~ (a)= Rk for some positive inte,ger.k. 

Since a.~.R2, we must have k = 1. Thus, (a).= Rand R has property S. 

Now let B be any nonzero ideal;of R. For be B, Rj = (b) SB for 

some positive integer.j. Since R.has property S; Proposition 4.13 shows 

that B = Rn for some positive integer n~ We may conclude each ideal of R 

is a power of .R. By .Theorem 4 .. 18, R is a gene:r,-al Z.P.L-ring. 

Having characte~ize<l: 1r(2)-domains, we are now read,y to consider 

1r(2)-rings, With the structure th~orem for general Z.P.I.-r~ngs avai~-

able to.us, we would hope to be ab.le to prove so~ething pertaining to a 

direct sum decomposition of 1T (:0-rings. The next. two results give us two 

ways of considering the decomposition .of 1r(2)-rings. Proposition 4'.34 is 

due.to Mori·and a proof m~y be found in [15; Theorem 3.2, p. 150]. 

4. 34 Proposition: Let R be a 1T (2) -ring. 

(a) If R has an identity, then R.is a direct sum of finite~y many 

1r(l)-domains and special primary rings,. 

(b) If R does not have an i4entity, then R = F@ Tor R = T where 

Fis a field and Tis a ring satisfying property(#), 

4~35 Lemma:. Suppose R, is.a ring wit4 identity such that R is,a 

finite direct; sum of·· rings~ R = R1 @ • • • @. Rk, Then R .. is a 1T (n) -ring if 

and only.if.each summand Riis also a 1r(n)-rin~. Thus, Risa 1r(2)-~ing 

if.and only if each summand R. is a 1r(2)-ring. 
l. 

Proof:. (+) Suppose R is ,a 1r(n)-ring and. let Rj be a .direct summand 

of R, Let .A.= (a1 ., a2 ., ···, a .) be an ideal of R. generated by n. 
. J . J . J . nJ J 
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elelllents, Let ei denote the _identity of the direct SlJ.lllliland Ri' 

1 < i < k, Then if A is .the ideal. of R generated by the n elements· 

t 
( l e.) + al'' ( l e.) + a2j' 

... (t e o) + a . , A. = II p where for , 
i=j 1 J . i=j 1. i=j l. nJ r=l r 

each r, 1 < r < t, p is a prime ideal of R. Th Em r 

t t 
A.= AR.= ( IT P )R. = II (PR.). Since for each r, PR. is a prime 

J J · r= l r · J r= 1 r J r J · 

ideal of R., A. can be expressed as a finite product of prime ideals. 
J . J 

Therefore, R. is a 'JT'(n)-ring, 
J 

(-+-) Suppose each s~mmand R. is a '1T'(n)-ring and let A be an ideal of 
J . 

R generated by n elements, Then for each i, 1 < i < k, ARO is an ideal 
- 1 

of Ri and A = AR1 © • • • @ ARk by Proposition 2 .11. In addition Proposi­

tion 2,12.states that ARi is generated by n elements,. Thus, ARi has a. 

representation as a finite produ~t of prime ideals of Ri' The remainder 

of the proof is very.similar to the proof of Lemma 4,16, Hence, Risa 

71' (n)-ring, • · 

4,36 Theorem: Let R be a ring. Then Risa general Z.P;L-ring if 

and only if Risa '11'(2)-ring [15; T~eorem 3.2, p. 150]. 

Proof: (~) By the definition of a general Z,P,I.--ring, Risa 

71' (2)-ring, 

(-+-) If R has an identity, then by Proposition 4.34, Risa finite 

direct sum of '11'(1)-domatns with identity and specia+ primary rings, 

Using Theorem 4.18, we can conclude Risa general Z.P.I.-ring if any 

summand of R which is.a domain is a Dedekind domaini From Lemma 4,35 it 

follows that each summand of Risa '11'(2)-ring. Hence, if the summand is 

a domain, it is a Dedekind domain by Theorem 4.32. Thus, a 71'(2)-ring 



with identity is, a general Z. P. I. -:ring. 

If .R is a ring without identity, but with zero-divis.ors, then 

Proposition 4.34 shows R = F,@ Tor R = T where Fis a field and Tis a 

ring with property(#). Therefo~e, Risa general Z.P.I.-ring by 

Theorem 4.18(b), 
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Levitz [15] comments that this result is surprising,· She notes that 

Mori characterized 1T(l)-domains and that Wood [20] generalized these 

results. It is then easy to construct a 1T (1) "'.'domain which is not a 

TI(:2)-domain. It is shown at the end of this chapter.that.Z[x] is a 

TI(l)-domain but is not a·1T(2)-domain 1 However, in another sense, this 

result is not so surprising, Recap one part;icular characterization of a 

Dedekind domain: An integral domain D with iden.ti ty is Dedekind if and 

only if every.ideal of D has a basis consisting of two elements. In this 

way it woulli seem natural that one need only consiq,er ideals generated by 

two elements. 

We conclude this chapter with four examples which illustrate.some.of 

the concepts we have discussed, The first of these,shows that in a 

general Z. P, L-ring R, the factorization of an ideal into a finite pro­

duct of prime ,ideals may not be unique, Property(#) and property (a) 

are considered in the n(;)xt two examples. The final example shows that it 

is not difficult to construct a TI(l)-domain which is not a . .r(2)-domain as, 

mentioned in the previous paragraph., 

4.37 Example:. Th~s example shows the representation of ideals of a 

geIJ,era.l Z, P. I, -ring as a finite procjuct of prime i.deals is not necess~rily 

unique,, Let R = Z@ Z, Then by Theorem 4,18, Risa general Z.P,I.-ring. 

If P = Z@ (O), then Pis a prime ideal of R by Proposition 2.13. But 
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P = Pn· for eacl} positive integer.n and so the represel).tation Qf P is,nC?t 

UI).ique. · 

4.38 Example:, This. is an example (?f a ring with property (#). Let 

R be a ring witb. identity and.let M be a stmple maximal,idea~ of R. Then 

M/~ is a _ring with propertf (#) for eaqh positive in~eger n. For if 

A/Mn is an ideal of M/Mn ,. then · -J1 c A c M. k 
Since .M is simple,_ A = M for 

some k, 1 ,::_ k < n, Thus, A/~ = Mk/~ = (M/~) \ Hence, M/~ is a r~I}S 

without identity such that eac4, ideal of M/~ ·is a power .. of M/Mn, For a 
. 

specific example, let R =Zand M = (p) where pis a prime integer. ! 

4.39 Example: This is an ex~ple of a ring which does.not slil,tisfy 

property (a.). Let E be the ring of. even integers.. Then .J. = { (2p): p is 

an odd prime _in Z} is the set of proper prime Jdeals of .E. Consider the 

ideal (18) in E. · We _clatm (18) is ,(6).,.primary but is ._not a.powe:i;- of Ct3). 

v'(18) = n P where {P } is the set of prime ideals .of E containing (18). 
Ct Ct Qt; Cl 

Th4s. v'(l8) = (2) n (6) = (6). Now we,need _tq show that if x, ye: E, 

x•y_ e: · (18) and y ~ (6), then x e (18). Since x·y. e: (18), xy = 18m + 18j 

\'{here. m e: E, j . e: Z. . Thus · xy = 18n . for si;,me n e: Z. · Since x, y e: E 1 

x = 2t and y.= 2s for some t,. _s e:.z •. Since y f (6) and ye: E, y = 6k + 2 

or y = 6k + 4 for some integer.k. If y = 6k + 2,.then xy = _x(6k ,+ 2) 

= 4t(3k + 1) = 18n. NoiJ; 32 l4~(3k + 1) and (3,4(3k + 1)) = 1. Since Z 

is a UFD, we col).clude·that-32 tt. Hence, t = 9u for some u e: Z. There.,. 

fore, x = 2t = 18u; that is~ x e: (18}. I~ y = 6k + 4 ,. a similar argument. 

shows that x e:. (18). Consequently, (18) is (6)-primary anq. is not a 

power of (6) • 

. Also, we note,(~6) = (6) 2 is not (6)-:-primary since 2·1~ e: (36), 

18 i (36) an_d 2k i (6) fQr a.J)Y positive integer k. Thus, powers of prime 

or m~ximal ideals.are not neqessarily primary. ·, 



4.40 Example: This is an example of a TI(l)-domain which is not a 

TI (2)-domaino Consider Z [x] and let . (a) be a principal ideal of Z [x]. 

Since Z[x] is a UFD, a can be written as a finite product of prime 

e 
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elements of Z[x], a n 
Pn. 

e 
n (p ) and . each 

n 

(p.), 1 < i < n, is a prime ideal of Z[x], To see that,Z[x] is not a 
1 - -

TI(2)-domain, we note that Z[x] is not a Dedekind domain since 

dim Z [x] > L In particular, (0) c (3) c (3, x) is a chain of three 

genuine prime ideals of Z[x], Thus, Z[x] is a TI(l)-domain but is not a 

TI(2)-domain, A 



CHAPTER V 

ALMOST DEDEKIND DOMAINS 

Let D be an integral domain with identity and let P be a proper 

prime ideal of D. In Chapter. I I we introduced the quotient ring DP of D 

with respect to the prime ideal P of D~ Some aut~ors choose to call DP 

the localization of D.at P •. If one is interested in some aspect of the 

ideal t~eory of D, then in some instance~ it is possible to gain insight 

into this by considering the loc:alization of D and P for some. prime ided 

P of D. Due to.the "nice" relatiqnships between the.P-primary ideals of 

D and the _PDP-primary ideals of DP (Proposition 5 .1), this method of 

study is.especially useful if the prime or primary ideals of Dor DP play 

an important rqle in the .topic under consideration •. This is one reason 

it is important to study the structure of the quotient.rings of cornmuta-

tive rings. 

In this chapter we consider integral domains D with identity which 

have the following property: DM is a Dedekind domain .for each maximal 

ideal M of D. Such. a domain is called an almost Dedekind domain [12]. 

We prove several characterizations of almost Dedekind domains, making 

heavy.use of the.ideas discussed in the previous paragraph. These prq-

vide us with the tools,necessary to classify the almost.Dedekind domains 

among the classes of Dedekind domatns and Priifer domains. Most.of these 

results are due.to Gilmer in [12] and Butts and Phillips in [4]. We also 

present an outline of an exalI,lple due to Nakano and given in [9; Example 
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42.6, p. 516] of an almost Dedekind domain which is not a Dedekind domain 

(Example 5. 4). Finally, we cons:i,.der, overrings of Dedekind domains, 

almost Dedekind domains, and.general Z.P.I,-rings. Before proceeding 

with these things, we state the import~nt relations4ips we alluded to in 

the previous paragraph and we give references where proofs of these well 

known facts can be found.· 

5,1 Proposition: Let D be an integral domain with identity and let 

P be a proper prime ideal of D, 

(1) PDP is the unique maximal ideal of DP [22; Theorem 19, p, 228], 

(2) QDP() D = Q for eac~ P-primary ideal Q of D [22; Theorem 19, 

po 228], 

(3) If J= {P-primary ideal~ of D} and,= {PDP-primary ideals of 

Dp}, then there is a one-to-one correspondence between .J.and, [22; 

Theorem 19, po 228], 

(4) If B and C are ideals of D, then B = C if and only if 

BDM = CDM for each maximal ideal M of D [13; Proposition 3.13, p. 70]. 

()0 

(5) If DP is a valuation ring, then (1 PnDP is a prime ideal of DP 
n=l 

which contains every prime ideal of DP which is properly contained in PDP 

[13; Theorem 5,10, p, 105], 

The foUowi.ng lemma provides .us with a useful result pertaining to 

the cancellation law for ideals, We use this in proving Theorem 5,3 and, 

together with condition (5) of Theorem 5,3, this lemma gives us another 

character~zation of almbst Dedekind domains. 

5,2 Lemma: Let D be an integral domain with identity having 

quotient field Kand let A, B, and C be ideals of D with At (0), The 



following are equivalent, · 

(1) The cancellation law for ideals of D, 

(2) If AB c: AC, th.en B c;: C. 

Proof: (2) + (1) This implication is clear. 

(1) + (2) Assume ABC AC, It is straightforward to show that 

A[CA:A]K = AC where [CA:A]K = {k EK I kA c;: GA}.· Since (1) holds in D, 

we may conclude [CA:A]K = C, By assumption AB ·5: AC, so we must have 

BC [CA:A]K. Thus., B c C and (2) holds in D, 

We are now prepared t~ proceed with our discussion of almost 

Dedekind domains, Theorem 5. 3 gives us six cornii tions on an integral 

domain D with identity each of which is equivalent to D being almost 

Dedekind, After the .statement; of this theorem and before its proof, we 

include some general remarks about.these equivalent conditions. 

5.3 Theorem: Let, D be an integral domain with identity which is 

not a field, The following statements are equivalent, 

(1) Dis an almost Dedekind domain, 
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(2) OM is a Noet}:ierian valuation ring for each maximal ideal M of 

D; that is, DM is a rank one discrete valuation ring {Proposition 2.45). 

(3) Dis one-dimensional and primary ideals of Dare.prime powers; 

that. is., D is a one-dimensional domain satisfying property (ct). 

(4) Each ideal of D which has prime radical is a power of its 

radical, 

(5) The cancellation law for ideals of D holds. 

(6) Dis a one-dimensional Priifer domain and D contains no 

idempotent maximal ideals, 
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(7) D is·. a Prufer domain and (\ An = (0) for each genuine ideal. 
n=l 

A of D. 
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Condition (2) offers a characterization of an almost Dedekind domain 

D in terms of the localization at a maximal ideal. of D •. The next three 

characterizations are related to the ideal structure of D. These also 

give us another result that classifies .the Dedekind domains within the 

class of almost Dedekind domains, Referring to Theorem 3.7 (11), we see 

that in a Noetherian domain D condition (5) is equivalent to D being 

Dedekind. Thus, a Noetherian almost Dedekind domain is a Dedekind domain. 

The final two conditions classify the almost.Dedekind domains within 

the .class of Priifer domains. A Priifer domain is an integral domain D 

with identity such that DM is a valuation ring for each maximal ideal M 

of D, Priifer dom~ins occupy a central role in the study of multiplica-

tive ideal theory, There ar~ several characterizations of Priifer domains. 

In fact, many of these are·contained in Theorem 3.7. Without the 

Noetherian assumption, cqnditions (10}, (12), (13}, (14), (15), (16), 

(17), and (19) on an integral domain D with identity are all equivalent 

to D being Priifer, Therefore, a Noetherian Priifer domain is a Dedekind 

domain and· the above theorem shows th.at the class of almost Dedekind 

domain~ lies. between Priifer domains and Dedekind domains. A detailed 

study of Priifer domains may be found in [9; Chapter IV] or [13; Chapter 

VII I] , 

To show the conditions of Theorem 5.3 are equivalent, we prove the 

fallowing implications. · 
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(7)< (2) 

/ ·~ 

(6)~)< ill 
(4)~(3) 

Proof of Theorem 5.3: (1) + (2). Suppose D is,almost Dedekind and 

let .M be a maximal ideal.of D. Since DM is Dedekin~, Theorem 3,6(1) 

shows_DM is Noetherian. If A and Bare proper ideals of DM' then th~ 

radical of both A and B is MDM since DM is one":"dimensional. Thus, A and 

B are·both MOM-primary and hence are.powers of MOM by Theorem 3.7(26). 

Thus; either A ~ B or B C A which proves DM is a yaluation ring. There­

fore, DM is . a Noet_herian valuation ring. 

(2) .+ (1) Let M be a ma~imal idea:l of .D. By assumption DM is a 

Noetherian valuati<;m ring and hen<?e · a rank one discrete valuation ring by 

Proposition 2.45. Thus, DM is a PID and a PID with identity is a 

Dedekind domain. This proves that (1) holds. 

(l} + (3) Assume_D is almost Dedekind. Then DM is a Dedekind 

domain for each maximal ideal_M of D. Since a Dedekind domain is bne-

d:imensional, DM is one .. d:imensional. If the. dimension of D were greater 

tqan one, then we could find a chain P 1 c P 2 c M of genuine prime ideals 

of D such.that Mis maximal. This would.imply the _existence of the chain 

P 1DM c P 2oM c MDM of genutne primes of DM' a contradiction. Consequ~nt­

ly, Dis one-dimensional, 

Now suppose.Q is primary for the.prime ideal P of D. Then QDP is, 

PDP-primary in the ._Dedekind doma:in DP and is therefore a power of PDP; 

that is~ QDP = (PDp)n = PnDP for some integer n. Since Pis maximal in 

D, Pn is P-primary. Consequently, Q = QDP (\ D = PnDP () D = Pn by 

PropositioniiS.1(2), and (3) holds. 
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(3) + (1) Let M be a maximal ideal of D and let Q be a proper ideal 

of OM' Since D is one-dimensional OM is also and this implies the .radi-

cal of Q is MOM, Hence, Q is MOM-primary and it follows that Q (\ D is 

M-primary, By hypothesis Q () D = Mn for some integer n and thus 

n Q =MOM, Therefore, the proper ideals of OM are powers of MOM and this 

proves OM is Dedekind. 

(3) + (4) Let A. be an ideal of D and suppo~e the radical,of A is P 

for some prime ideal P of D. Since D is·one-dimensional, Pis maximal 

and hence A is P-primary, Consequently, A= Pn for some integer n and 

(4) holds, 

(4) + (3) Let P be a proper prime ideal .of D. We want to prove P 

is maximal, We first assume Pis.a minimal prime of a principal ideal 

(p). In the domain DP PDP is .maximal and there are no prime ideals 

properly between (p)Dp and PDP sin.ce P is a minimal prime of (p) ... Hence, 

the radical of (p)Dp is the maximal ideal PDP and it follows that (p)Dp 

is PDP-primary, Consequently, (p)Dp n D is P-primary in D. 

hypothesis (p)Dp n D = Pn for some integer n and (p)Dp = 

By 

Since the ideal (p)Dp is invertible in Op, PDP is invertible, Therefore, 

Proposition 2 .14 (b) implies that P2Dp C PDP and thus P ::::> P2Dp n D ~ P2 by 

2 Proposition 2, 22, We conclude that P DP n D has radical P and so is a 

power of P; that is, P2Dp n D = P2 . Since P2Dp D is P-primary, P2 is 

· P-primary, We next choose x e P - P2, and let y be any element in D - P. 

Then P :::> P2 + (xy) ::::> P2 and so P2 + (xy) has radical P, By hypothesis 

P2 + (xy) is a power of P and hence is equal either to P.or P2• However, 

xy ~ P2, for P2 is P-primary and x ~ P2, y ~ P. Therefore, P2 + (xy) = P 

and x e P2 + (xy), Thus, x = t + dxy for some t E P2 and d ED. Then 

x(l - dy) E P2 and x ~ P2 implies that 1 - dy E P and so 1 E P + (y), 
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It follows that Pis .maximal in D if Pis a minimal prime of a principal 

ideal. 

In .the general case, we let x be a.non-zero element of P. Then P. 

contains a minimal prime P1 of (x) by Proposition 2.7, and we have just 

shown P1 is maximal in D. Therefore, P1 = P, Pis maximal, and O is 

one-dimensionai, By hypothesis, primary ideals of Oare prime powers 

and (3) holds. 

(2) + (7) If (2) holds in 0, then it is clear that O is a Priifer 

domain. Let A be any genuine ideal _of D and let M be a maximal ideal of 

D containing A. Since OM is a rank one discrete valuation ring, the 

powers of MOM descend to (O). Thus, 

()() ()() ()() 00 

(\ An C n Mn = 
n=l - n=l 

() (MnDM n O) = n (MnDM) n O = 
n=l n=l 

(0) and (7) is 

established. 

(7) + (6) Let M be a maximal ideal of O. Then OM is a valuation 

ring since O is Priifer. By hypothesis 

()() 00 00 ()() 

(0) n (MnOM (\ 0) = (\ (MnDM) (\ D, 
n=l n=l 

Thus, n 
n=l 

and by Proposition 5.1(6) we may conclude there is no prime ideal 

properly between (0) and MOM, This implies DM is one-dimensional. 

Hence, by a previous resu~t we may conclude Dis one-dimensional. Next, 

assuming Mis an idempotent maximal ideal of D, it follows that 

()() 

= (\ MnOM which contradicts our assumption. . Therefore, M2 + M and 
n=l 

(6) is proved. 

(1) + (5) Let A, B and C be ideals of O such that A + ·. (O) and 

AB= AC, If Mis a maximal ideal of D, then (ADM)(BDM) = (AOM)(CDM) by 
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well known properties of extended ideals. Since DM is a Dedekind domain, 

the cancellation law for ideals holds in OM' Thus, BDM = CDM and since 

this is true for every maximal ideal M of D, Proposition 5;1(5) sl).ows 

that B = e, 

(5)-+ (6) ThE: cancellation law for i<leals of D implies Dis Prilfer 

since the .cancellation law for finitely generated ideals of D is equiva-

lent to D being a Prufer domain [9; Theorem 24.3, p. 299], Also, if we 

assume M2 = M = MD for some maximal ideal M of D, then (5) states that 

M = D. Thus, there are no idempotent maximal ideal~ of D. It remains to 

be shown that Dis one-dimensional. Let P be a proper prime .ideal of D 

and choose x s D - P. Since [P + (x)] 3 = [P 2 + 

(5) holds, [P + (x)] 2 = P2 + P(x) + (x2) = p2 + 

(x2)] [P + (x)] and since 

2 2 (x ). Hence, P(x) «:: P 

+ (x2) and if ts P, then there exists q s P2, d s D such that tx.= q 

2 2 
+ dx. Thus, dx s P .and it follows,that d s P since P .is prime and 

x2 i P. Therefore, P(x) SP2 + (x2) SP2 + P(x2) = P[P + (x2)]. It 

2 follows from condition (5) and Lemma.5.2 that (x) <.::_ P + (x) and so 

2 x = p + rx. for some.p s P and rs D. This implies x(l - rx) s.P and 

since xi P, 1 - rx s P. Ther~fore, 1 s P + (x) and Pis a maximal 

ideal of D. This proves that (5)-+ (6). 

(6)-+ (3) Let Q be a P-primary ideal of D. If P = (0), then 

Q = (0) and hence Q is a power of P. Thus, we may assume Q and Pare 

proper iqeals of D. Since Dis one~dimensional, DP is one-dimensional. 

Since Dis Priifer and DP is one dimensional, DP is a rank one valuation 

00 

ring. By Pr9position 2.46 (0) = () (PDP)n. Since QDP is PDP-primary 
n=l 

QDP is not.contained in every power of PDP. Therefore, ther:e exists a 

0 0 • h h m+ 1 d m . 0 . positive integer m sue tat P DP~ QDP an PDP:::::, QDP since pis a 
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valuation ring. Let x E: P~p - QDP •. Then (x) ~ QDP s:i,.nce DP is a 

val~ation ring. Proposition 2.36 implies the.ideal (x) is invert~ble and 

-1 -1 -1 we have QDP = (x) ((x) . QDp) = (x)A. Since (x) QDP ~ (x) (x) = D,A 
-1 . = (x) QDP is an ideal of DP. Furthemore, since QDp is PDP-primary, 

x i QDP, and (x) A = _QDP, we have A C PDP. Therefore, QDP = (x) A ~ (x) PDP 
m+l m+l m+l 

SP DP. We conclude that QDP = P. DP and hence Q = P· by Proposi~ 

tion 5.1(2). This proves (3) holds in D. 

This completes the proof of Theorem 5.2 

The following example of.an almost.Dedekind domain Z' which is not-

Ded,ekiJ!,d is due to Nakano, We present a brief outline of. the construc­

tion of Z' [ 4] and some indication as · to how one can prove Z' has these .. 

properties. For the reader interested, in seeing a·detailed discussion of 

this example, we refer you to [9; Example 42.6, p. 516]. 

5. 4 .. Example: Let K be th~ field obtained by. the ad junction, to the 

field of rational numbers, of the pth roots of unity for eve~y prime pin 

the set of integers Z. Let Z' be the integral closure of Zin K. Nakano 

proved Z' has·no idempotent proper prime ideals. In view of [4; 

Coronary. 1. 4 ~ p. 271], this is sufficient to imply that Z' is an almost 

Dedeki~d domain. He also proved Z' contains a proper prime .ideal which 

is not finitelY: generated. Hence, Z'- is not Noetl,-erian and so cannot be 

Dedekind, A · 

In this chapte~ we have investigated sqme special overrings of an 

integral d9main with identity. In.some.instances the algebraist studies 

overrings of integral domains in a more general setting than what we have 

done.· On~ question which is :usually of interest is the following: Given 

an integral domain D with certain properties, which. of these properties 
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are inherited by an overring D' of D? Before we consid,er this question 

for the three main classes of rings and domains we have studied so far 

we consider a.specific.example. 

5,5 Example: Let Z be the ring of integers and let Z' be any over-

ring of Z. We will show Z' is a Dedekind domain, First .we prove Z' is a 

quotient ring of Z. Let M = {b e: Z I ~ e: Z' for some a e: Z, (a, b) = l}. 

It is clear that M is a multiplicative system. of Z and Z' c ZM. If~ 
y 

a is any element of ZM' then there exists an integer a such that ye: Z' and 

(a, y) = 1. Since a and y are relatively prime we can find integers n 

and m such that na + .my = 1, Multiplying this equality by ~we get nx ~ y y 
. x 

+ mx = -. But nx ~ + mx e: Z' and hence ~ e: Z' , , y y Thus , ZM ~ Z ' and it y 

follows that ZM = Z' . 

Using the above, we show each ideal of ZM can be represented as a 

fi,nite product of prime ideals. If ,B is an ideal of ZM' then B = AZM for 

some ideal A of Z by Proposition 2.24(b). 

ideals P , ···, P of Z. · 1 · n 
Therefore, B = 

PiZM is a prime ideal of ZM, 

This proves Z' is a Dedekind domain, 

n 
Then A= rr 

i=l 

e. 
P" 1 for prime 

1 

e. 
1 

where each 

The above e~ample shows every overring of Z is also a Dedekind 

domain. In fact, every overring of a Dede~ind domain is a Dedekind 

domain [12; Theorem 4, p. 815], If we replacef'Dedekind domain" with 

"almost Dedekind domain", then the statement is still true [12; Theorem 

4, p. 815]. A similar result.holds for.general Z.P.I.-rings with 

identity; that is, every ov~rring of a general Z.P.I.-ring with identity 

is a general Z.P.I.-ring [9; p. 489]. 



CHAPTER VI 

MULTIPLICATION RINGS 

Theorem 3.7 of Chapter III contains several equivalent conditions on 

an integrijl domain .D with identity, each· of which is equivalen~ to D ·. 

being Dedekind. Several of these conditions have been studied in the 

more general setting of a ring with identity. In this chapter we study 

condition (9) of Theore~ 3.7 in this manner. 

Let A and B be ideals of a.ring R with identity such that Ac B. If 
' -

there exists _an ideal C of R such t~at A= BC, then Bis said to be a 

mul t:i,.plicatic;m ideal. If ·every ideal of. R is a multiplication ideal~ 

then R is called a,multiplicatiQn ring. Multiplic~tion rings have.been 

studie4 extensively by W, Krull, S. Mori, as well as other noted 

mathematicians .. 

We cons id.er mul ti:plicatiol;l rings in three settings. First, we prove · 

that in an integral domain.with identity the c9ncepts of multiplication 

ring and Dedekind domain are equivalent. We then con~ider N:oetheri.an 

multiplication rings, We prove these are precisely t~e ge11eral Z. P. L ... 

rings which we ,studied in Chapter. IV. The infinite direct sum of the , 

integers.modulo two provides us with an exaJI).ple.of a non-Noetherian 

multiplication ring. Thus, this is also an exa.I{lple of a multiplication 

ring which is not a.general Z.P.I.-ring. 

Our final objective is to prove that a multiplication ring R can.be 

characterized in te~s of.the prime ideals of R. Specifically, we show 
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show that Risa multiplication ring if and only if every prime ideal of 

R is a multiplic~tion ideal. This is accomplished through:a sequence of 

steps.which als~ establishes another c~aracterization of multiplication 

rings. These final two result!?. are due tQ Mott in [17]. 

We begin our study by considering integral domains which are multi-

plication rings. 

6.1 Theorem: Let D be an integral domain with identity. Then Dis 

a multiplication ring if and only if Dis a Dedekind domain, 

Proof; (+} Assume D.is·a multiplication ring and let A be a non­

zero ideal of D. We prqve that A is invertible. Choose a EA, a f O. 

Since (a)~ A, there exists an ideal B.such,that (a) = .AB. It follows. 

that A is invertible since (a) is invertible. Therefore, Dis a Dedekind 

domain by Theorem 3.7(5). 

(+) Suppose Dis a Dedekind domain and let A and B be ideals of D 

such that Ac B. Since Dis Dedekind, Bis invertible and.we have 

-1 -1 -1 -1 A= B(B A). Since B Ac B B = D, B A is an ideal of D. Therefore, 

Dis a multiplicatiQn ring. 

The next result classifies a multiplication ring which is a finite 

direct sum of rings. Together with Lemma 6.3 and the Structure Theorem 

for General Z.P.I.-Rings, we have the tools neces~ary to characterize 

alt Noetherian mul tipliaation rings. 

6.2 Lemma: Let R be a ring with identity. If R is,a finite 

direct sum of rings, then Risa multiplication ring if.and only if each 

summand is a mµltip1ication ring. 

Proof: (+) Suppose R is-a multiplication ring such that 
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R = R @ ... IB R where each R. is a ring with identity. Let A. and B. 1 n l 1. J. 

be ideals of R. such that A. B., Consider the ideals 
J. J. l 

A = Rl © Ii) R. 1 @ A. @ R. 1 Ii) @ R and 
J.- l J.+ n 

B = Rl @ G3 R. 1 @ B. @ ·R. l ID Ii) R . It is clear that A~ B and 
1- J. J.+ n 

since Risa multiplication ring there is an ideal C of R such that 

A= BC. By the choice of A and B, we must have 

@ R. 1 @ C. © R. 1 © •••@ R for some ideal C. of R .. It 
J.- 1 1+ n 1 1 

follows that A. = B.C. and R. is a multiplication ring, 
J. l J. l 

(+) Now let A and B be ideals of R = R1 © • • • ffi Rn such that Ac B. 

Then A= A1 ID © A and B = B1 @ ···@ B where, for eac~ i, A. and B. n n 1 1 

are ideals of R .. Then A. c B. for each i and since each R. is a multi-
1 J. - J. J. 

plication ring, there exists an ideal Ci of Ri such that Ai= BiCi. 

Letting C = C @ •••@ C it follows that A= BC. Thus, Risa 
1 n 

multiplication ring,. 

6.3 Lemma: If Risa special primary ring, then Risa multiplica­

tion ring. \ , 

P:to'Of: Let A and B be ideals of R with Ac B. If A or Bis not a 

proper ideal of R, then it is clear that A= BC for some ideal C of R. 

If A and Bare both proper ideals, then A= Mi and B = Mj for some 

positive integers i and j where Mis.the unique maximal ideal of Rand 

i ~ j. It follows. that A = BMi-j and hence R is a multi plication ring. 

6.4 Theorem: Let R be.a ring with identity. Then Risa general 

Z. P, I. -ring if and only if R is a Noetherian multiplication ring. 

Proof: (+) Let R be a general Z.P.I.-ring. Then R is Noetherian 
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by Theorem 4.6 and Risa finite direct sum of Dedekind domains and 

special .prim~ry rings by Theorem 4.18(a). Since each summand of R.is a 

multiplica.tion ring, Lell!11la 6.2 shows R is also a multiplication ring. 

(+) Let R be a Noetherian multiplication ring. We shqw Risa 

general Z;P,I,,-ring by showing eac4 maximal ideal of R is simple. Let M 

2 be a maximal ideal of R and let A be an ideal such t4at M . c Ac M. By 

hypothesis, there exi~ts an ideal B s~ch that A.= MB. If BC M, then 

2 2 -+ A =.MB CM, and A= M, If B"±M, then R = M +Band M =RM= (M + B)M 

= M2 +MB= A since M2 C MB= A. Therefore, A 2 =Mor A= M and by. 

Theorem 4.19(3) Risa general Z.P.I.-ring. 

The previous, theorem implies we must consider rings which are not·. 

finite direct sums·,of rings if we are to find a non-Noetherian multipli-

cation ring. It is not difficult to prove that an infinite direct sum of 

rings. is not Noetherian. Thus, it se,ems natural to look in such a 

setting to find a non-Noetherian multiplication ring. 

00 

6.5 Ex11mple: Let R = l Fi where each Fi= z2, the integers 
i=l 

00 00 

modulo two, Then Fl @ l ( 0) c Fl @ F 2 @ l (0) c •••CF @ •••@ F 1 k i~2 i=3 
00 

@ l (0) c ••• is an infinite strictly ascending chain of ideals of R. 
i=k+l 

Thus, R. is not Noetqerian by.Proposition 2.16(b). 

Every._ element of R is , idempotent. Th,erefore, if A is an ideal of 

R, A= A2• Let A and B be,idea:j.s of R such that AC B. Then A= A2 CAB 

= A. Hence, A= AB and Risa multiplication ring. 

This example is.a special case.of a result of Krull as stated in 

(4]. He ,proved every multiplicatio~ ring is a subring of a direct sum of 

Dedekind domains and special primary rings. 
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The classes of.rings we have studied so far have at least one 

characteristic in common; namely, various conditions on their sets of 

prime ideals characteri.ze them. Mott. [17] uses the prime ideals of a 

ring with identity to characteriz.e multiplication rings. Our next 

objective is to prove.this equivalence. This result is-.contained in the 

statement of the following theorem. 

6,6 Theorem: Let R be a ring with identity, The _following state-

ments are equivalent. 

(1) R is.a multiplication ring, 

(2) Each prime ideal of Risa multiplication ideal, 

(3) Risa ring in which the following three conditions are valid: 

(a) Each ideal of R is equal to its kernel. 

(b) Each primary ideal of Risa power of its radical. 

(c) If Pis a minimal prime ideal of an ideal Band n is the 

least positive integer such that Pn is an isola~ed primary component of 

Band if Pn + Pn+l, then P does not contain the intersection of the 

remaining isolated primary components of B. 

It is _clear condition (1) implies condition (2). We proceed to show 

condition (2) implies condition (3), This is accomplished through a 

sequence_of steps as we establish several characteristics of a ring which 

satisfies con.dition (2), Temporarily, we call a ring with identity which 

satisfies Theorem 6,6(2) a weak multiplication ring. We now define the 

concepts we need as we pursue the goal outlined above. 

6.7 Definition: If A is an ideal of a ring R with identity and P 

is a minimal prime ideal of A; then the intersection of all P-priipary 

ideals containing A is calleq an isolated P-primary component of A. The 



intersection of·all isolated primary.components of.A is called the 

kerm~l of A. 

Several o~ the properties of rings which have appeared in.the 

previous chapters are also possessed.by weak multiplication rings. The 

next lemma gives some of these,. 

6. 8 Lemma:. Let R be a weak multi plication ring. 

(1) R/A is a weak multiplication ring for each ideal A of R. 

(2) If R is an integral domain, then R is.a Dedekind domain. 

(3) There. is no prime ideal chain P 1 c P 2 c P 3 c R in R. · 

(4) Each maximal ideal of R is-simple. 
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Proof: (1) This.follows directly from properties of the ideals of 

R/A, 

(2) Let P be a nonzero prime ideal of R and let p e: P ,. The11 

(p) c P and hence there is an ideal B such that (p) = PB. Since (p) is 

invert~ble, P is. invertible, By Thee.rem 3. 7 (6) R is a Dedekind domain. 

(3) If a chain P 1 c P 2 c P 3 c R of prime ideals exists in R, then 

in. the Dedekind domain R/P 1 we have the chain P 1 / P 1 c P / P 1 c P /P 1 of 

genuine prime ideais of R/P1. However, a Dedekind domain.is one­

dimensional and.hence no such chain exists. 

(4) The second half of the -proof of Theorem 6.4 also proves this 

result. • 

The next result is_ useful when we prove a weak mul tiplicatio11, ring 

satisfies cond.ition 3(a) of Theorem 6.6, It establishes a relationship 

between the intersection of-the powers of a.maximal ideal Mand the prime 

.ideals contained in M. 
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6;9 Lemma: Let R be a weak multiplication ring. If Mis a maximal 

ideal of R. which properly contains a ·prime ideal .P, then·· 

co 

P = . (\. Mn and P = MP. 
n=l 

co 

Proof: Consider the-Dede~ind domain R = R/P. Then (0) = P = (\. ~ 
n=l 

co 

and, consequently, P :::> (\ M11. · Since PS M, there is an ideal C such 
·· -n=l 

that P = MC c C. Using th.e fact that P is a prime ideal and since M 9: P, 

it follows that Cc P. Therefore; C_= P and P =MP= M2P = Thus, 

co co 

P c (\ Mn and we. have. the desired equality, P = (\ Mn. 
n=l n=l 

6.10 Theorem: If Risa weak multiplication ring, then every ideal 

is equal to its kernel. 

Proof: Let A be an ideal _of Rand suppose A+ A* wheJ,'e A* denotes 

tl).e kernel of A. Let a. e: A* - A, and consider the ideal A' = A: (a). Let 

M be a minimal prime ideal of A'. By a known result of Krull and stated 

in [17; (vi), p. 430], A' properly contains a minimal prime ideal P of A. 

co 

Thus, Lemma 6.8(3) i~plies M is a ma~imal ideal. By Lemma Q.9, P = (\ M11 
n=l 

and P = MP. Since A' S M, there is an ideal C su~h that A' = MC. If 

C £A', then A'. = MC C MA' c A' and hence A' = MA' = M2A1 = Thus, 

00 

A' c (\ Mn = P and this implies M is not a. minimal prime ideal of A' • 
n=l 

Therefore, C Cf A' and hence (a)•C ~ A, Howeve.r, (a)•C C (a) SP since 

a e: A*. Consequently, there.is an icleal B such that (a)•C =PB= MPB 

= M(a)C = (a)A' £ A. This is a contradiction and prove~ A = A*. A 



Before.we consider condition 3(b) of Theorem 6.6, we need two 

results about the powers of the maximal ideal~ of a.weak multiplication 
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ring. Lemma.6.11 shows the poweJ;"S of proper maximal ideals are multipli-

cation ide~ls while Lemma 6.12 shows the interse~tion of the powers.of a 

m.aximal ideal is a prime ideal under certain restrictions .. on the maximal 

ideals of a wea~ multiplication ring. 

6, 11 Lemma: If M is a proper .maximal ideal of a weak multiplication 

ring Rand if A is an ideal contained in Mn for some integer n, then 

there is an ideal C such that A = MnC. Furthf;!nnore, if A ci Mn+l, then 

Proof: The proof is by induction. It is clear the st~tement is 

true for n = 1. Suppose A 5: Mk implies k . k+l k A= MC. Then if A CM ~M, 

A = Mk.C. If Mk+l = Mk k+l , then A= M C. k+l l k Suppose.M f M, Since Mis 

. 1 Mk+l . M . . . d 1 . . A MkC maxima, is an -primary i ea containing = , S. Mk -+- Mk+l ince ::t:: - , 

it follows .that Cc:: M. Hence., C = MC' and'·A =.Mk(MC') = Mk+lc'. This 

completes the proof of the first part of.the lemma. 

n ~ n+l n -+-If AC:: M and A~M , t~en A= MC by the above. However, C '±:M 

. n n+l because if CC:: M, then,C = MB and this would imply that A= MC= M B 

Mn+l c . 

complete. 

Since this can I t occu:r;, we conclude, that C ~ M and the proof is 

6.12 Lemma: Let R be a weak multiplication ring. If Mis a 

n l n+l maximal ideal :and M TM · for eac~ positive integer.n, then 

co 

P n Mn is a prime ideal. 
n=l 

Proof: Suppose·x ~ P.and Y-~ P. The.n there are positive integers k 

and n such that x € Mk and y € M11; but.x ~ Mk+l and y ~ Mn+l. Thµs, 



k there exist ideals Band C, not contained in M, such th~t (x) =MB and 

(y) = MnC. Therefore, (xy) = Mn+kBC and BC c:tM since B 9: M and C t M. 

Then (xy) '3:_ Mn+k+l, for if it were this would imply that Mn+k c Mn+k+l 

since BC 9: M and Mn+k+l is M-primary •. Consequently, xy J P and P is a 
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prime ideal , , 

The following useful result of S; Mori will shorten our work in 

proving the next theorem: If Pis a non-maximal prime ideal and Q is 

P-primary in a ring with identity in which every ideal is equal to its 

kernel, then P = P2 and Q = P [17; (ix), p, 431]. Thus, to establish 

condition 3(b) of Theorem 6.6, we need.only consider the maximal ideals 

of a weak multiplication ring, 

6.13 Theorem: If Q is P-primary in the weak multiplication ring R, 

then Q is a power of P, 

Proof: By the result of Mori mentioned above, we need only consider 

maximal ideals of R. Assume Pis a maximal ideal of R. The following 

two cases will be considered: (a) Pn + Pn+l for every positive integer 

n and (b) n n+l P = P · for some,positive integer n, 

00 . 

(a) By Lenuna 6,12, P' = (\ Pn is a prime ideal of R. Since Q is 
n=l 

P-primary and P' C P, Q is. not contained in P', Therefore, there .. is an 

0 . k ,l- k+l k 1.nteger k such that Q ~ P but Q '± P , By Lemma 6 .11, Q = P C and 

. Q ..l- pk+ l 1 d h C ..l- P since '::t we may cone u et at '::t. • We now show C = R. If C is a 

proper ideal, any proper prime P1 containing C must contain Q and hence 

must contain the maximal ideal P. This would imply that P = _P1 and 

therefore Cc P, This contradiction shows C =Rand Q = Pk. 

(b) If Pn = Pn+l for some positive intege~ n, t~en let k be the 
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. k k+l least positive integer such that P = P • We consider the following 

two possibilities separately: (i) QC Pk and (ii) QS:, Pk. 

(i) If QC Pk= P2k~ then for each a e: Pk there is an ideal C sqch 

that (a) = Pkc = P2kc = Pk(a). Since (a) is finitely generated, Proposi­

k tion 2.14(a) implies there exists an element p e: P ~ P such that a= pa 

= p2a = •••, Since the radical of Q is P, ps e: Q for some integers. 

k k Consequently, a e: Q, P c Q and hence Q = P . 

(ii) If Q ci Pk, then the radical of Q + Pk is P and hence Q + Pk 

is a P-primary ideal which properly contains Pk Since Pis.maximal, P 

is simple by Lenuna 6,8(4), By Proposition 4.13 the only ideals between P 

and Pk are powers of P, Therefore, Q +Pk= Pt for some integer t < k. 

Since Q c;: Pt and Q ci Pk, there is a positive intege~ m such that t < m 

< k and Q C Pm but Q 1. Pm+l. As before, there is an ideal C such that 

Q = · PmC and C <± P. Repeat~ng the argument used in (a), we see that C = R 

and Q = Pm. 

Thus, each primary ideal of Risa power of its radical. 

To complete the proof that theorem 6.6(2) implies Theorem 6,6(3), we 

need only establish condition 3(c). This is the content of the next 

theorem as we again use Lenuna 6.11 and Theorem 6.10. 

6.14 Theorem: Let R be a weak multiplication ring. If Pis a 

minimal·prime ideal of an ideal Band n is the least positive integer 

n . n l n+l such that P is an isolated primary component of Band if P r P , then 

P does not contain the intersection of the remaining isolated primary 

components of B. 

Proof: Since R has property (a), the set of isolated primary 
n 

components of B is a set of prime power ideals. Let BI = n p r ·where 
r r 
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n 
{Pr} is the set of isolated primary components of B except Pn. Since B 

r 

is equ~l to its kernel, B = .B' n Pn. Also, since P~ + Pn+l, P + p2• By 

the result to Mori cited earlier, we may conc;lude that Pis.a maximal 

ideal sin.ce P f P2• The definition of an. isolated primary component _of B 

and,the fact that P-primary ideals are powers of P, implies n is the 

largest integer.such that BC Pn. Since Pis maximal, Pn+l is P-primary 

,1- n+l and we conclude B :r.·P . Lemma 3.11 implies there exists an ideal C 

such that B = PnC and C 1 P. 
n 

Since BC B', PnC is contained in the - . . 

P -primary ideal Pr for each r. r r Since P is,maximal, Pn ..!- P and we . ::t. r 

conclude that C <:: Pr for each r. Therefore, C (! B' and B' ~ P since 

C .~ P. This completes. the .proof. 

Summarizing our.progress,towar4 proving.Theorem 6.6, we observe that 

we have shown.condition (1) implies conditioll (2) and condition (2) 

implies condition (3). It rem1:1.ins to be shown, that .condition (3) implies 

condition (1). We will prove this by showing how to select an ideal C 

such t4at A.= BC whenever A.CB. The de~ired equality will follow by 

showing the kernel of A equals·the kernel of BC. 

6.15 Theorem:. Let R be ·.a ring with identity satisfying condition 

(3) of Theorem 6.6. Then R:is a multiplication ring. 

Proof: Let A and B be ideals of R . such . that A C B. Let {P} be the 
r 

set of prime ideals of R, which are minimal primes of A and B, {P'} be the s 

set of minimal. primes of B but not A, and {Pt} .be the set of minimal 

primes of, A but not B. Since primary ideals.of Rare prime powers,. the 

isolate4 primary:components of A and Bare intersections of powers of the 

prime ideal!? of t4ese .· three sets. Since every , ideal is equal to it!? 

kernel we have 
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and 

where the exponElnts nr, mr, ts, and kt denote the least positive integers 

n 't m "k 
such that Prr' Ps s are isolated primary components of Band Prr' Pt t 

m n 
are isolated primary components of A. Since Ac B, Pr c Pr and hence r ..;.. r 

m -n "k 
n < m for each r. Let C = ( (] P r r) n ( ('\ P t). 

r - r r r t t 

It is clear that ACC. Next we show BC c A. For x E BC, 

n 
X·= I 

i=l 
b.c., where b. EB and C; EC for each i. 

1 1 1 1 

m -n "k r r and p t for each and i. Consequently, c. E p c. E: r, t, 
1 r 1 t 

m "k 
b.c. E P r and b.c. E p t for each r, t, and i. We conclude that 

1 1 r 1 1 t 

X E A, and, as a.result, BC c A. 

We now proced to show every minimal prime of BC is a minimal prime 

of A. Let P be any minimal prime of BC. Then P contains B or C. If 

B ~ P, then P. is a minimal prime of B since BC ~ B. By assumption, 

A C B and hence BC c AC P, Thus, P is a minimal prime of A. Therefore, 

Pis a minimal prime of A and Band hence P = P for some r. If B <1 P, 
r 

then C C P and. since BC C A C C, P is a minimal prime of A and C. In 

this case P = P" for some t. In particular, any minimal prime ideal of 
t 

BC must be a.minimal prime ideal of A, Therefore, let 



be the kernel of BC where m; and kt are the minimal exponents such that 

m I "k I 
P and Pt tare isolated primary components of BC. r 

To finish the proof we need to show that m; = mr and kt= kt fo~ 

each r and t. Since BC c;: A we must have m < m' and k < k' for each r 
r - r t - t 
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"k 
and t. Furthermore, for eac~ t, Pt tis an isolated primary component of 

"k "k 
C, since Ac Cc: Pt t and Pt tis an isolated primary component of A. 

"k I "k I "k I 
Since B <f Pt and BC c Pt t, it follows that C ~ Pt t since Pt t is 

Pt -primary, 
"k 11k I 

Thus, P t c P t and we may conclude k > k' for each t; 
t - t t - t 

This being the case, one c9ncludes kt= kt for each t. 

m 
ro 

For a particular isolated primary component of A, say P , we 
ro 

consider the two possibilities: (i) 

m 
ro 

If (i) holds, then P 
ro 

jr 
= p O 
,r 

0 

and (ii) 

for each j > m 
ro - ro 

Since 

Since m' is the least positive integer 
ro 

such that is an isolated primary component·, of BC and since 

ro 
m < m' we may conclude m0 r - r ' 

0 0 

r' 
0 = mo . Now assume (i~) holds for the ideals 

Since every ideal is equal to its kernel, every non-

maximal prime ideal is idempotent,by Mori's result cited earlier. Since 

(ii) holds, P + P2 and, consequently, P is a maximal ideal. Let 
ro ro ro 



and 

m -n "9. 
C' = en P r r) (\ (OP t) 

r+r0 
r t 

n I 9., 

B' = en p r) n ( [\ p s) 
rtr0 

r s 

m "k 
A I = ( (.\ p r) n ( 0 p t) 

1 r t t 
rtro 

Then by condition 3(c) of Theorem 6.6, P :EA', and since P is 
ro ro 

m 
r 

maximal, P + A' = R, 
ro 

Since P O is P -primary, Proposition 2.lO(a) 
ro ro 

m 
ro 

shows that P + A' = R, 
ro 

Thus, A 

m 
r 

= P O (\ A' = 
'r 

m 
r 

p 0 -A' by Proposition 
ro 0 

n 
ro 

2olO(b), · Similarly~ B' 1 P. , P. + B' = 
ro ro 

R, and B Also, 

C' <J: P since A' c C' and A' ~ P , 
ro ro 

As a consequence, BC 

m -n 
ro ro· 

Th f P + Cl --ere ore, 
ro 

Rand 

m 
r 

= P OB'C' where B'C' <£ P , 
ro ro 

r' m 
ro 

Th~s, P is an isolated primary component of BC. 
ro 

S . 0 . h 1nce m0 is t e 
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least positive integer such that is an isolated primary.component of 

ro ro 
BC, we may conclude m < m 

ro - ro 
This implies m 

ro 
= m' and consequently, 

ro 

m = m' for each r, We have shown the kernels of BC and A are equal and 
r r 

hence by:condit;ion 3(a) of Theorem 6.6, BC= A. Therefore, Risa 

nrultiplication ring. 
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The results of Theorems 6.10, 6.13, 6.14, and 6.15 imply the three 

condition~ of Theorem 6.6 are equivalent. Hence, we have a characteriza­

tion of a.multiplication ring R in terms of the prime ideals of R. 



CHAPTER VII 

SUMMARY 

This thesis has centered around the discussion of several closely 

related classes of rings, This chapter presents a summary which will 

clarify the interrelationships among these classes of rings and, in 

addition, the relation of these to PID's and UFD's. As a means of 

studying these similarities and differences more effectively, the reader 

is encouraged to use the chart which appears at the end of this chapter 

in conjunction with the discussion below. All rings and integral domains 

considered in this chapter are assumed to contain.an identity. 

It is well known that a PIO is a UFO, However, Z[x] is an example 

of a UFD which is not a PID. Since each element of a PIO has a repre­

sentation as a finite product of prime elements and since these prime 

elements generate prime ideals, a PID is a Dedekind domain. The reverse 

implication is not true as the domain Z(lfo) illustrates, 

The class of Dedekind domains is closely related, both historically 

and conceptually, to the class of UFD's. However, they are distinct 

en~ities. Z[x] is a UFO which is not a Dedekind domain (Remark 3.9, page 

27) and Z(lio) is a Dedekind domain which is not a UFO (Example 3.1, page 

17 and Rem~rk 3.8, page 24), 

As a natural generalization of Dedekind domains, we study the class. 

of general Z.P.I.-rings. From the definitions it is clear that a general 

Z.-P.I.-ring which is also an integral domain is a Dedekind domain while 
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z @ Z is an example of a general Z. P. I. -ring with proper zero-divisors 

(Example 4.1, page 35). Simiarly, the classes of multiplication rings 

and Dedekind domains coincide in an integral domain (Theorem 6.1, page 

73). 

Th~ Structure Theorem for General Z.P.I.-Rings (Theorem 4.18, page 

4 7) shows that a general Z. P. I. -ring is a finite direct sum of Dedekind 
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domains and special primary rings. Since these two classes of ringsare 

multiplication rings (Theorem 6.1, page 73 and Lemma 6.3, page 74), Lemma 

6.2 shows that a general Z.P.I.-ring is a multiplication ring. In a 

Noetherian ring these two classes of rings are equivalent (Theorem 6.4, 

"" 
page 74) while l z2 is an example of a.non-Noetherian multiplication 

i=l 

ring which is not a general Z.P.I.~ring (Example 6,5, page 75). 

Another generalization of Dedekind domains is the class of almost 

Dedekind domains, As the name suggests a Dedekind domain is an almost 

Dedekind domain while a Noetherian almost Dedekind domain is Dedekind 

(Theorem 5,3(5), page 64). If.T = {t I tis a pth root of unity for some 

prime integer p}, then·the integral closure Z' of Zin the field Q(T) is 

an example of an almost Dedekind domain which is not Dedekind (Example 

SA, page 70). 

The following chart illustrates tI1e interrelationships alluded to 

above. A.solid arrow between two classes of rings A and B (A-+ B) indi-

cates that A c B. A broken arrow of the form C-- - EX---+ D implies that 

C '±. D and EX is an example of a ring which is in class C and not in class 

D. A curved arc connecting two classes of rings E and F 

CONDITION 
(E ~F) indicates E c;::: F if the condition written on the arc is 

assumed to hold for rings in class E. 
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