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Regenerative medicine: an analysis of origins, trends and potential 

therapeutic applications, with a focus on hematopoietic stem cells 

 

1. Origins of regenerative medicine 

Regenerative medicine, or the concept of creating fully functioning tissues to repair or 

replace tissue or organ function (NIH Fact Sheets 2018), has drawn the attention of scientists for 

the better part of a century. However, a specific definition is difficult to isolate. The realm of 

regenerative medicine includes conceptions such as tissue engineering and cell therapy, all the 

while employing a bench-to-bedside approach that is characteristic of translational medicine. 

Essentially any treatment that involves stem cells will be considered a sect of regenerative 

medicine, and although there are different types of stem cells, the idea behind infusing these cells 

is essentially the same between the distinct types—to replenish the levels of cells that are either 

depleted or to replace cells that are not functioning properly. The term “regenerative medicine” 

was ostensibly coined by Leland Kaiser, in his 1992 article over hospital administration (Kaiser 

1992). Although the term itself is in its relative infancy, the concept of tissue regeneration is 

nothing new. In the 18th century, Lazzaro Spallanzini and Charles Bonnet observed regeneration 

of limbs in salamanders (Towle 1901). After substantial research on the phenomenon of animal 

regeneration, the possibility of constructing artificial organs was mentioned as early as the 

1930s, in the book The culture of organs (Carrel 1938). However, the technology required for 

these kinds of procedures was not in the scientific community’s arsenal at the time. There were 

many obstacles these scientists had to overcome.  
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When discussing regenerative medicine, quite possibly the most developed and widely 

implemented procedure in this realm is the infusion of stem cells. Regarding stem cell 

transplants, it is important to note that the two most common types of transplants are autologous 

and allogeneic. Autologous transplants involve the transfer of stem cells from within the 

patient’s own body, whereas allogeneic transplants involve the transfer of stem cells from one 

individual to another. As one could imagine, allogeneic transplants present more of a challenge. 

More specifically, the most pervasive hurdle in allogeneic stem cell transplants is the body’s 

innate immunological response to the introduction of these foreign cells. The body, in many 

cases, views these newly introduced cells as harmful pathogens, resulting in an immunological 

onslaught on the transplanted stem cells. Throughout the history of regenerative medicine, many 

bright researchers have made tremendous strides in overcoming the difficulties of allogeneic 

stem cell transplants.  

In 1939, the first human bone marrow transfusion was given, performed in an attempt to 

treat a patient with aplastic anemia (a condition in which there are not enough new blood cells in 

the body) (Osgood, Riddle, and Mathews 1939). Although unsuccessful, this experiment was a 

milestone in the study and development of regenerative medicine. Four years later, P.B. 

Medawar and T. Gibson observed the human body’s reaction to sets of autografts and 

homografts (tissue grafts taken from same species of recipient). Throughout the study, they 

demonstrated that the homografts began to degenerate within days, in stark contrast to the 

autografts (which were extremely successful) (Medawar and Gibson 1943). This experiment 

marked the advent of the study of immunological responses to foreign, regenerative cells. At the 

culmination of scientists’ endeavors to conceive solutions to this problem, a group of researchers 

discovered the benefits of inoculating animal fetuses with allogeneic spleen cells. Once the 
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fetuses were exposed to these foreign cells, they acquired a tolerance to cells originating from the 

same donor. This discovery allowed the researchers to successfully perform allografts when the 

animals were adults (Billingham, Brent and Medawar 1953). In addition to allogeneic and 

autologous stem cell transplants, there also exists syngeneic transplants. Syngeneic transplants 

involve the transfer of cells that are genetically similar/identical (the transplant of cells from one 

identical twin to another).  

In 1956, Dr. E. Donnall Thomas accomplished the first successful syngeneic bone 

marrow transplant between two humans, implementing stem cell infusion in order to treat 

leukemia. The patient’s tissues utilized the donated bone marrow to make new, functioning 

blood and immune cells (Encyclopaedia Britannica). Just one year later, Dr. Thomas performed 

the first allogeneic hematopoietic stem cell transplantation (Thomas et al. 1957). In this 

particular study, six patients received radiation and chemotherapy before receiving an 

intravenous infusion of bone marrow from a normal donor. However, within 100 days of the 

infusion, all six of the patients had died. At the time of this procedure, little was known about 

histocompatibility, and the concept of matching a donor to a recipient had not yet taken root.  

In 1968, decades after The culture of organs was published, the first successful allogeneic 

bone marrow transplantation was performed in humans (Starzl 2000). The procedure 

implemented human leukocyte antigen (HLA) matching and was completed by Dr. Robert Good. 

The transplant, performed to treat a 5-month-old boy with an immune deficiency disease, used 

bone marrow donated from the patient’s 8-year-old sister (Wright 2003). In the latter half of the 

20th century, medical breakthroughs such as blood banks and bone marrow registries began to 

completely revolutionize blood/tissue typing and matching. The introduction of these 

organizations marked the beginning of a sharp increase in accessibility to bone marrow and 
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blood cell donations. In 1973, the first unrelated donor bone marrow transplant was carried out in 

New York at Memorial Sloan-Kettering Cancer Center on a 5-year-old boy with severe 

combined immunodeficiency syndrome. The bone marrow donor was found through the blood 

bank at Rigshospitalet in Copenhagen, Denmark (Thomas 1999). The patient received seven 

infusions of bone marrow, and engraftment eventually occurred, returning blood cell function to 

normal (ASBMT and CBMTG 2018).  

However, in the past few decades, new routes of obtaining hematopoietic stem cells have 

been discovered and implemented. One widely-used alternative to bone marrow transplantation 

is peripheral blood stem cell transplantation (PBSCT). In this method, the stem cells come 

directly from the bloodstream via a process called apheresis, in which the stem cells are isolated 

and collected for storage. In the 1950s, dividing, nonleukemic DNA-synthesizing cells were 

discovered in peripheral blood. Implicit in this discovery was the possibility of the existence of 

circulating multipotent cells (Bond et al. 1958). Decades later, the first blood stem cell infusion 

was attempted in 1981 at Hammersmith Hospital in London (Goldman et al. 1981). That very 

year, a similar operation was conducted at Johns Hopkins Hospital in Baltimore, Maryland. 

However, long-term engraftment was not achieved (Körbling et al. 1981). The procedure of 

autologous peripheral blood stem cell transplantation was first successfully utilized in 1986, 

when a patient with Burkitt lymphoma underwent myeloablative radio- and chemotherapy, 

followed by PBSCT at Heidelberg University Hospital in Germany (Körbling and Freireich 

2011). As of 2011, the patient was alive without any evidence of disease. Until the last decade of 

the 20th century, allogeneic PBSCT was not considered a viable option because of the high 

possibility for severe graft-versus-host disease (GVHD), due to the much higher donor T cell 

content contained in peripheral blood allografts. In 1989, physicians at the University of 
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Nebraska Medical Center attempted the first allogeneic, HLA-matched donor PBSCT. However, 

long-term engraftment was not achieved, because the patient died of an infection 32 days after 

the procedure (Kessinger et al. 1989). In 1995, however, the first successful allogeneic PBSCTs 

were performed at M.D. Anderson Cancer Center (Körbling et al. 1995), Fred Hutchinson 

Cancer Research Center (Bensinger et al. 1996), and Kiel University Hospital in Germany 

(Schmitz et al. 1995). The prevalence of acute GVHD resulting from these trials was relatively 

comparable to that of allogeneic bone marrow transplantation. In the years since its conception, 

PBSCT has overtaken bone marrow transplantation as the preferred method of hematopoietic 

stem cell transplantation, due in no small part to its ease of the procedure.  

 Another newer method of harvesting hematopoietic stem cells is that of umbilical cord 

transplantation. The utilization of cord blood in stem cell transplantation has become much more 

commonplace for a variety of clinical reasons. Umbilical cord blood is extremely rich in HSCs, 

containing a higher concentration of these stem cells than is normally found in adult blood. In 

addition to the high concentration of HSCs in cord blood, another substantial advantage that cord 

blood offers as an alternative source of HSCs is that of lower rates of graft-versus-host disease 

than those of bone marrow transplants (Kurtzberg 2017). Also, with the emergence of cord blood 

banks, umbilical cord blood transplantation (UCBT) offers relatively quick accessibility to stem 

cell transplants (Gluckman 2009). UCBT was first implemented in 1988 at Hôpital Saint-Louis 

in Paris (Gluckman et al. 1989). In the years to come, the concept of UCBT would rapidly evolve 

and develop. A multitude of new studies began to expand the potential offered by the use of cord 

blood in regenerative medicine. In the 1990s, the feasibility and possible efficacy of HLA-

matched unrelated-donor transplants was demonstrated (Rubinstein et al. 1995). This discovery 

was a defining point in the development of cord blood transplantation, because it exhibited the 
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possibilities of UCBT availability throughout the world, made realistic partially because of cord 

blood banks. More recently, Claudio Brunstein and others carried out a study indicating that the 

patient outcomes from UCBT between groups of varying levels of HLA-matching were similar, 

denoting the vast possibility of mismatched UCBTs (Brunstein et al. 2016). In light of 

discoveries such as this, umbilical cord blood has started to become a more widely-implemented 

technique, especially due to the fact that it is a commonly discarded substance—further 

cementing its importance in the treatment of many life-threatening afflictions.  

2. Stem cells—what they are 

For an organism with the complexity of a human, there is a stringent necessity for cells 

that serve a variety of different functions—for example, neurons to coordinate sensation and 

motor function, red blood cells to facilitate the transport of oxygen, and for lymphocytes to 

conduct the adaptive immune response. As a human matures, cells begin to differentiate into 

particular lineages, thereby reducing the potential functions of these cells. If this process does not 

result in sufficient reservoirs of every individual type of cell, serious, potentially deleterious 

effects can take place. Herein lies the importance of stem cells, or unspecialized cells that 

become any one of a number of different cell types. Stem cells have immense possibilities in the 

realm of medicine, because of their capacity for differentiation. This differentiation can replenish 

reserves of specific cell classes that have been depleted. This is essentially the mechanism 

behind stem cell transplantation—the replacement of lost cell types. 

In addition to the concept of differentiation into many distinct cell types, another 

important element of stem cells is that of self-renewal. Self-renewal is the division of stem cells 

to create more stem cells. This event bolsters the pool of stem cells within the body throughout 

life. The key aspect of this concept is that it ends in stem cells that still have not differentiated 
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into a specific cell type (He, Nakada, and Morrison 2009). The process of self-renewal is 

tantamount to differentiation in its importance regarding survival, because it is vital to retain 

ample numbers of stem cells in the body (Seita and Weissman 2011). Within the concept of self-

renewal, there are two distinct mechanisms: that of obligatory asymmetric replication and that of 

symmetric differentiation (Shahriyari and Komarova 2013). In asymmetric replication, the 

division of the stem cell results in one derivative stem cell and on differentiated cell. In 

symmetric replication, the stem cell divides into either two derivative stem cells or two new 

differentiated cells. Both symmetric and asymmetric replication are thought to function in 

maintaining adult homeostasis, and when these processes are disrupted, there can be cancerous 

growth of undifferentiated cells (Shahriyari and Komarova 2013).  

Within the concept of stem cells, there is a variety of different subclasses—most notably 

embryonic, fetal and adult (also 

called somatic) stem cells (NIH 

Stem Cell Basics 2018). These 

different divisions of stem cells are 

unique in their inherent potency, 

meaning these distinct types have 

contrasting levels of capacity for 

differentiation. The three 

predominant potency categories of 

stem cells are totipotent, 

pluripotent and multipotent 

(Schöler 2007). In essence, 

Figure 1 (NHL Cyberfamily) 
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totipotent cells can differentiate into any cell within the organism itself or the placenta, whereas 

pluripotent cells can differentiate into any of the cells found within the organism, and 

multipotent cells differentiate into any cell types within a particular lineage (Binder et al. 2009). 

There are interesting possibilities with embryonic and fetal stem cells, but there are tremendous 

ethical concerns about the manner in which these cells are obtained. In human embryonic stem 

cell research, a moral dilemma arises, because hESC research involves the destruction of an 

embryo, which has the potential to be a fully-formed human being. Another potential problem 

that comes to light with hESC research is the possibility of human embryos being created for the 

sole purpose of stem cell donation. When stem cells are harvested from fetal tissue, they are done 

so in the aftermath of an abortion, which also raises significant ethical questions (Lo and Parham 

2009). In addition to these concerns, there is also a significant safety component in hESC 

research, because there are risks of bleeding, infection and/or complications of anesthesia as a 

result of the oocyte retrieval procedures (Giudice, Santa, and Pool 2007). However, the 

controversy surrounding embryonic stem cell research is not completely at the forefront of 

scientific debate. This is mainly due to the immense number of lives that have already been 

saved by utilizing adult stem cells, and the promising future in the realm of ASCs, which has 

ameliorated the ethical discourse over hESC transplantation methods. 

The aforementioned hematopoietic stem cell treatments primarily utilize multipotent 

cells, because HSCs can differentiate into all of the distinct types of cells found within the blood, 

through the process of hematopoiesis (Birbrair and Frenette 2016). This category subsumes cells 

from both myeloid lineages (including macrophages, neutrophils, eosinophils, basophils, 

erythrocytes and platelets) and lymphoid lineages (including T cells, B cells and natural killer 

cells). Hematopoiesis is what allows this sect of regenerative medicine to work—bone marrow, 
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peripheral blood and 

umbilical cord blood 

stem cell transplants 

replenish the depleted 

levels of specific 

blood cells in the 

recipient. For 

example, when a 

patient with leukemia 

is experiencing the 

harmful consequences 

of low functional leukocyte numbers, the rationale for stem cell infusions is the restoration of 

these leukocytes as a direct result of hematopoietic stem cell differentiation. However, one key 

component of human stem cell research that has not been mentioned is the concept of inducing 

adult cells to become pluripotent cells, thereby broadening the possibilities offered by 

regenerative medicine. These induced pluripotent stem cells (iPSCs) can be generated by the 

reprogramming of adult cells (through the introduction of certain transcription factors), and are 

similar to embryonic stem cells in morphology, proliferation, surface antigens and a variety of 

other factors (Takahashi et al. 2007). These newly discovered iPSCs present a possible method 

of producing patient- and disease-specific stem cells, presumably increasing the efficacy of 

future stem cell treatments, while decreasing the prevalence of graft-versus-host disease. In 

addition to these possibilities, the further development of iPSCs would circumvent the moral and 

ethical controversy that is ubiquitous in the concept of embryonic stem cell therapy.  

Figure 2 (R&D Systems) 
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Although it was initially suspected that all hematopoietic stem cells were extremely 

similar in their differentiation capabilities, there is fairly recent evidence that suggests this is not 

the case. In the 21st century, researchers have confirmed that the behavior of HSCs found in adult 

bone marrow are largely predetermined, implying that HSCs are preprogrammed to function in a 

certain manner (differentiate into more specific lineages) and that self-renewal unequivocally 

does not cause stem cells to become more heterogeneous (Müller-Sieburg et al. 2002). In this 

study, it was discovered that certain HSCs would be skewed in their differentiation toward either 

lymphoid or myeloid progenitor cell lineages, indicating that different hematopoietic stem cells 

within the body function in different ways. In other words, HSCs that tend to differentiate into 

lymphoid progenitor cells should be more useful if one’s innate immune system is compromised, 

whereas HSCs that tend to differentiate into myeloid progenitor cells should be more useful if 

one has a certain type of anemia or dysfunction in the clotting of blood.  

3. Disorders managed with hematopoietic stem cells and mechanisms of treatment 

As one can imagine, multipotent hematopoietic stem cells have an extremely diverse 

range of possibilities regarding treatment due to the fact that they can differentiate into anything 

from red blood cells to T cells. HSCs can be incredibly useful in treating malignancies such as 

different types of leukemia and lymphoma (broad cancers which both involve dysfunction in 

leukocytes), while also presenting options for the treatment of aplastic anemia (decreased 

production of all blood cells in the body due to bone marrow damage), metabolic disorders, and 

even human immunodeficiency virus (Hütter et al. 2009) and types of solid tumor cancers such 

as neuroblastoma (a cancer formed in nerve tissue). It is quite remarkable that the range of 

conditions and diseases treated by HSCs expands to those that occur outside of the blood, and the 

full potential of hematopoietic stem cell transplantation has not even been realized yet. 
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Researchers have only recently begun to investigate the therapeutic possibilities of stem cells for 

disorders occurring outside the blood (Chagastelles and Nardi 2011). In the past couple decades, 

for example, over 600 studies have been conducted on stem cell therapy for individuals living 

with multiple sclerosis (MS), an autoimmune disease that causes nerve cells to be damaged 

(which can cause muscle weakness and impaired coordination) (Atkins and Freedman 2013). 

One mechanism behind the treatment of MS with stem cell therapy is that of the recipient’s 

faulty T cells being essentially wiped out by the conditioning and the new stem cell graft. 

Another vital component in MS research in addition to stem cell therapy is that of induced 

remyelination, a concept which has been demonstrated in very recent studies dealing with mice 

(Saha et al. 2015). It is important to note that the cells used to cause remyelination, although 

isolated from umbilical cord blood, are not stem cells, but rather derived from monocytes. 

Overall, HSC transplantation is usually exclusively reserved to treat life-threatening conditions, 

because of the risks associated with the procedure. Although the stem cell treatment regimens 

differ across distinct hematological (and even some non-hematological) disorders, it is necessary 

to realize that these diseases can all be treated with the same type of stem cells (HSCs). When 

malignancies such as leukemia and lymphoma are mentioned, the notion that these diseases can 

be treated with more blood cells being introduced into the body may sound counterintuitive, but 

the replacement of these dysfunctional blood cells helps to equilibrate the immune system and 

the blood. However, it is imperative to delineate that in these treatment regimens, other therapies 

are administered in conjunction with stem cell transplants to address the over-proliferation of 

blood cells. 

 With pre-transplantation procedures, there are essentially two main approaches for the 

treatment: myeloablative and non-myeloablative conditioning. These conditioning regimens that 
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are given before the administration of a stem cell transplant involve chemotherapy and/or 

irradiation. In either autologous or allogeneic transplants, a major function of this conditioning 

regimen is to eradicate the disease in the body. With allogeneic transplants, an additional 

component of this pre-transplant process is that it serves the purpose of immunosuppression. As 

discussed earlier, a patient’s immunological response to foreign cells (GVHD) is a significant 

obstacle that must be overcome in order for any allogeneic stem cell transplant to be successful, 

and the chemotherapy given beforehand takes steps to prevent this negative reaction to the 

transplant. The two categories of conditioning, myeloablative and non-myeloablative, differ in 

the intensity of the treatment. Myeloablative (MA) conditioning essentially involves the 

destruction of all the existing cells in the bone marrow, while non-myeloablative (NMA) 

conditioning uses lower dose chemotherapy/radiation that does not wipe out all of these cells. 

This lower-intensity approach can be beneficial in the sense that it has been associated with 

lower regimen-related toxicity levels and lower risk of infection post-procedure (Alyea et al. 

2006). However, there is an associated higher risk of relapse in cancer that has been treated with 

reduced intensity (non-myeloablative) conditioning than that of cancer treated with MA 

conditioning (Wahid and Aqilah 2012). Reduced-intensity conditioning relies almost exclusively 

on the graft-versus-malignancy (GVM) effect to prevent relapse, because donor T cells help to 

eliminate the rest of the recipient’s hematopoietic stem cells, whereas MA conditioning’s high 

dose chemotherapy and/or radiation functions to help prevent cancer relapse. In essence, the two 

effects (regarding toxicity levels and risk of relapse) are similar in magnitude, meaning they have 

negligible impact overall. This results in similarities in overall survival rates between MA 

conditioning transplants and NMA conditioning transplants (Wahid et al. 2014). For these 
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specific reasons, non-myeloablative treatment regimens have gained popularity since their 

inception in the last decade of the 20th century.  

 As new discoveries are made about successful HSC transplantation and procedures 

improve, there is a greater emphasis placed on reserves of bone marrow, peripheral blood and 

umbilical cord blood. The presence of banks for these commodities represent a significant 

constituent of the realm of stem cell treatment. In 1992, the first public cord blood bank was 

established at New York Blood Center, just a few years after the first successful cord blood 

transplantation took place (Harvath 2012). Since this cord blood bank was established, dozens of 

new public cord blood banks have been created (Petersdorf 2010). If mismatched cord blood 

units are accounted for in estimates of UCB availability, there are more than 700,000 units in 

public banks worldwide—meaning that over 95% of patients will have access to stem cell 

treatment (Kurtzberg 2016). Factoring in private banks, there are more than 5 million units 

worldwide (Kurtzberg 2017). With resources such as these stem cell source banks, the future of 

hematopoietic stem cell therapy is extremely bright. 

4. The future of regenerative medicine 

Although the diseases previously mentioned have impacted countless numbers of people 

across the globe, HSC therapy has several other tremendous capabilities that are only now being 

discovered. Now that scientists know that HSCs can treat conditions that are not hematological 

in nature, they are beginning to test the limits of stem cell transplantation. One example of stem 

cell therapy possibilities on the horizon lies in the realm of dermatological treatment. 

Mesenchymal stem cells, or stem cells capable of differentiating into bone, muscle, cartilage or 

fat cells, have shown promise in wound healing (partially due to their differentiation into 

fibroblasts) (Sasaki et al. 2008), and in immunological responses such as graft-versus-host 
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disease and rheumatoid arthritis (Farini et al. 2014). Now, stem cell transplantation as a means of 

treating neurological conditions such as stroke, Parkinson’s disease or autism is on the horizon. 

In one recent study, the use of cord blood stem cell transplantation (CBSCT) with rehabilitation 

therapy was compared to rehabilitation therapy alone, and the results suggested a correlation 

(albeit a weak one) between the addition of CBSCT to rehab therapy and lower scores on tests 

for autism (Lv et al. 2013). A lot of this may be due to the ability of the stem cells to promote 

angiogenesis (the growth of new blood vessels), which helps to counteract the hypoxia in people 

living with autism (Wilcox et al. 2002). This would alleviate some of the neural dysfunction in 

these patients, and stem cells also would help with some of the immune dysfunction that is 

strongly correlated with autism. However, there is much more to learn about autism, and more 

comprehensive studies must be conducted to further develop stem cell transplantation as a 

method of treatment for autism spectrum disorders.  

Because stem cells can have a significant impact on replacing faulty immune cells and 

reestablishing healthy immunological function, there has been a substantial amount of research 

done with many autoimmune disorders (including HIV, mentioned earlier), but one specific point 

of emphasis with stem cell therapy lies in the treatment of rheumatoid arthritis (RA). RA is a 

degenerative chronic disease that most commonly affects one’s joints, leading to severe 

inflammation and swelling. The stem cell research on RA involves the use of adipose-derived 

mesenchymal stem cells (ADSCs) to aid in chondrogenesis (the formation of cartilage from 

mesenchyme tissue), which holds serious promise in alleviating the symptoms of RA, 

specifically the swelling and diminished amount of cartilage in the joints. In one particular study, 

ADSCs were taken from adipose tissue in human subjects with RA and the chondrogenic 

potential of the ADSCs was studied in vitro (Skalska et al. 2012). However, there is not a 
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sufficient amount of evidence to conclude that mesenchymal stem cells repair cartilage in areas 

that are severely inflamed. This is why more studies must be conducted regarding RA in order to 

discover a feasible and effective method of using stem cells to combat the progression and 

symptoms of the disease.  

Parkinson’s disease, a severe long-term degenerative disorder of the central nervous 

system, currently has no cure, but patients with the disease are usually fairly receptive to 

treatment. That said, the average patient life expectancy is between 7 and 14 years after 

diagnosis (Sveinbjornsdottir 2016). Furthermore, levodopa, the main route of treatment of 

Parkinson’s disease, has serious side effects that can markedly reduce quality of life for patients. 

Stem cells provide a possible alternative with significant potential to be more efficacious than 

any present remedies. The idea behind the treatment of Parkinson’s disease with stem cells is the 

possibility that these stem cells may replenish the nerve cells in the brain that produce dopamine, 

thereby alleviating some of the significant symptoms of the disease, such as involuntary motor 

movements. Studies conducted on rodents and monkeys have already demonstrated that stem 

cells transplanted can survive and even mitigate behavioral abnormalities (Obeso et al. 2010). 

Research such as this has brought many important discussions to light about the future of 

regenerative medicine (and more specifically, stem cell transplantation). For example, it has 

caused us to realize that diseases previously regarded as a life-shattering are firmly included in 

the range of possibilities of stem cell transplantation. Also, research on stem cell therapy 

emboldens researchers from across the world to try novel approaches to old diseases.  
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