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CHAPTER I
INTRODUCTION
Background

The development of laser action in crystals doped with magnetic ions
has brought a great interest to the fileld of solid state spectroscopy.
The knowledge of the energy levels and transitions of a fluorescent sys-—
tem can be expanded by spectroscopic research. Also the presence of lat-
tice vibrations gives rise to temperature dependent effects in the ob-
served spectra. Interpretation of these effects caﬁ yield information
concerning the interaction of host'lattice phonons with the electrons on
the impurity ions. .

An 1solated impurity ion in an excited_eléctronic state can decay
by three kinds of processes: (1) radiative decay through an electronic
transition giving rise to the emission of a photon; (2) radiationless.
decay through a vibrational transition giving rise to the emission of
phonons; and (3) vibronic decay through a coupled vibrational-electronic
transition giving rise to the absorption or emission of a phonon with
the emission of a photon. The inverse .of the fluorescence decay time of
the excited state will be the sum of the decay probabilities of these
three processes., Analogous processes occur in the absorption of light
by the impurity ion. Electronic transitions provide information on the

energy levels of the iImpurity ion while radiationlesé and vibronic tran-

sitions provide information on the electron-phonon interaction.



Radiative and vibronic transitions can be observed directly in opti-
cal spectra whereas radiationless transitions are observed only indirect-
ly through the temperature dependence of spectroscopic data. Figure 1
shows a diagram of vibronic and radiative transitions in both absorption
and emission. The radiative transitions give rise to zero-—phonon lines
in the spéctra. Vibronic sidebands will appear on both the low energy
and high energy side of these lines. In absorption spéctra the low
energy vibronics are due to the concurrent absorption of a photon and a
phonon whereas in the fluorescence spectra the low energy vibronics are
due to the concurrent emission of a photon and a phonon. Similarly, the
high energy vibronics in absorption are due to the simultaneous absorp-
tion of a photon and emission of a phonon while in the fluorescence
spectra they are due to the simultaneous emission of a photon and absorp-
tion of a phonon. Thus, the absorption and emission spectra should ap-
pear as mirror images on either side of the zero-phonon line. However,
since the intensity of these sidebands is proportional to the probability
of absorption or emission of phonons, the low energy absorption vibronics
and high energy emission vibronics are generally not-observed at low tem-
peratures where few phonons are available for absorption.

Three types of spectral profiles can be observed depending on the
strength of the electron-phonon interaction: These are shown in Figure
2 for typical fluorescence spectra. For weak electron-phonon interaction
most of the emission occurs purel§ radiatively. This gives rise to a
very intense zero-phonon line with a weak, structured vibronic sideband
consisting mostly of one-phonon emission transitions. As the strength
of the electron-phonon interaction increases more emission occurs in the

vibronic sideband and less in the zero-phonon line. The vibronic bands
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Figure 1. Diagrams of Vibronic and Radiative Transitions for Both Ab-
sorption (a) and in Emission (b) of Photons
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Electron-Phonon Interactions



can be much broader and less structured when multi-phonon transitions
are important and in some cases the zero-~phonon line is not.observed at
all. As temperature is increased the relative intensities and shape of
the vibronic sidebands change due to the change in the probability of
absorbing and emitting phonons. .Phonon scattering and radiationless
transitions also cause a change in the width and position of the zero-
phonon line with temperature. -

There are two purposes for stﬁdying the spectra of impurities in
solids: to characterize and understand the optical properties of the
system; and to obtain information on the phonons of the host crystal and
how they interact with the electrons on the impurity. This work is con-
cerned mainly with the latter purpose. This information on the lattice
dynamics is interesting because of the important roll played by phonons
in the thermal, electrical, and optical properties of solids.

The most powerful -technique currently used for studying lattice vi-
brations is neutron scattering. Despite the wealth of information which
hes been obtained from this.technique, it does have some limitations
such as the need for expensive equipment, a relatively low resolution,
and the fact some materials cannot be investigated because they have a
low scattering cross section or high absorption cross section for neu-
trons. Infrared absorption and Raman and Brillouin light scattering pro-
vide complimentary techniques for investigating lattice vibrations.
These methods have higher resolution than neutron scattering but first
order phonon processes are limited to the center of Brillouin zone by
momentum conservation. Second order processes are not subject to this
restriction but it is usually quite difficult to unfold the combined

density of phonon states. These techniques are also limited by rigorous



selection rules.

Perhaps the most attractive feature of vibronic spectroscopy for
investigating lattice vibrations is that, compared with the other meth-
ods, it is a very simple, inexpensive experimental technique. It :also
has been shown that information on phonon eigenvectors as well as eigen-
frequencies can be obtained from vibronic studies which is not available
by other methods (1). Phonons from all parts of the Brillouin zone may
be active in vibronic transitions although they are subjeét to certain
selection rules. These phonons éan be identified even though it is
sometimes quite complicated to do so. One of the major problems in using
vibronic spectra is that the presence of an impurity.center may perturbe
the lattice modes or introduce local vibrational modes which must be
distingﬁished from the normal lattice modes.

It is important to note that the structure observed in vibronie¢
spectra represents an effective phonon distribution (weighted by the
electron-phonon interaction) and not the actual phonon density of states
of the crystal. This information is useful itself in understanding the
absorption and luminescence properties of the systems and how they change
with temperature. It is also possible to use this data to obtain infor-
mation concerning the lattice dynamics of the host crystal. However,
this involves determining the frequency dependerice of the electron-phonon
coupling parameters, Two methods have been used to do this: One 1s to
assume a simple model for the coupling parameters and use the long wave-
length limit of their frequency dependence (2). This factor can then be
divided out of the measured efféctive phonon distribution leaving the.
phonon density of states of the pure crystal. The second method is to

formulate from first principles a lattice dynamic model for the crystal



with an impurity and from this calculate the predicted shape of the vi-
bronic sidebands (1). This is by far the most elegant’technique for in-
terpreting vibronic spectra and using it makes vibronic spectroscopy the
most powerful method for studying lattice dynamics. However, this is a
very complicated procedure and to avoid the use of many adjustable para-
meters in the model it 1s necessary to have a significant amount of
other experimental data available on the crystal. 1In many cases the
first, simpler method gives a good approximation to the true phonon den-
sity of states. It should be noted that all of the information on lat-
tice phonons is contained in the one-phonon sideband and in both tech-
niques this must first be projected out of the total observed vibronic

spectra.
Chromium Doped Strontium Titanate

This thesis deals with measuring the vibronic spectra of chromium
doped strontium titanate and interpreting the results in terms of the
host lattice phonons and their .interaction with the electrons on the im-
purity atoms. SrTiO3 was chosen as a host crystal because of its‘intef-
esting structural, acoustical and eléctrical properties in which the
lattice vibrations play an important -roll. Chromium was chosen as the
impurity ion because it is known to give rise to very .distinct, struc-
tured vibronic bands.

SrTi0, is generally considered to have octahedral symmetry at room

3
temperature although x-ray analysis in&icates that it 'is not a perfect
cubic perovskite structure (3). It has 0% symmetry with one molecule
per unit cell as shown in Figure 3 (4). A second (or higher) order phase

transition takes places around 110°K and the symmetry becomes tetragonal.






Below 35°K the symmetry is rhombohedral and there may be an intermediate
orthorhombic phase between 65°k and 35°k (3). The 110%k phase transi-
tion is thought to be precipitated by the P25 soft transverse optic mode
at the corner (R-point) of the Brillouin zone and the 350K phase transi-
tion is associated with the PlS soft transverse optic mode at the center
of the Brillouin zone (5). Several of the branches of the lowest TO
mode in different symmetry directions have been found to be temperature
dependent (6,7) and this makes it difficult to compare data on phonon
frequencies obtained at different temperatures.

The lattice dynamics of strontium éitanate have been extensively
investigated both experimentally and theoretically (5-17). The lattice
vibration theory of ferroelectricity (18,19) has been successfully ap-
plied to strontium titanate even though it never becomes truely ferro-
electric. The soft modes have been the subject of numerous studies and
have been found to account for most of the interesting acoustical and
dielectric properties as well as giving rise to the structural phase
transitions.

The phase transitions in SrTiO3 have been Investigated by measure-
ments of electron and nuclear magnetic resonance (20,21), ultrasonic at-
tenuation (22), elastic constants (23), dielectric constants (24), x-ray
diffraction (3), thermal conductivity (25), plezoresistivity (26), opf&—
cal birefringence (3), light scattering (5,6,17,27), infrared absorption
(8-12), neutron scattering (6.7), and vibronic spectra (28-32). In the
current model for the 110°K structural transition the octahedra of oxygen
atoms are thought to rotate in alternating directions about the cubic
crystal axes, This leads to Dii symmetry as shown in two dimensions in

Figure 4 (21). This doubles the size of the unit cell and causes the



Figure 4. Rotation of the Oxygen Octahedra in SrTiO

Giving Rise to the Cubic to Tetragonal
Phase Transition Shown in a Two Dimen-
sional Cross Section Perpendicular to

3

the Tetragonal Axis (21).; St, s Ti,-

and <:>' 0.
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R~point of the cubic Brillouin zone to become the new zone center.
Becéuse of size similarities, Cr3+ ions probably go into the_SrTiO3
lattice substitutionally for Ti4+ ions. " This requires some charge com-
pensating mechanism such as an oxygen vacancy which probably takes place
non-locally since room temperature electron-spin resonance measurements
show the chromium ion to occupy a site of cubic symmetry (20). At high
‘temperatures the fluorescence spectrum exhibits a strong zero-~phonon
line (R-line) arising from a magnetic dipole transition from the 2Eg ex—

cited state to the 4A2g ground.state. This is accompanied by weak,

structured vibronic sidebands (30). Below 110°K the R-line splits into

an Rl’ R, doublet and more structures are showed up in vibronic side-

2
bands. Another feature which appears in the spectrum is a strong, sharp
vibronic peak which cannot be associated with any normal lattice mode of
SrTiO3 (30). It does not appear in the spectra of other impurity ions

in strontium titanate and thus is attributed to a local vibrational mode
induced by the chromium impurities. Since Cr3+ is only slightly heavier

than Ti4+ the local mode is probably induced by force constant changes

due to the charge difference and not to mass differences.,
Summary of Thesis Work

The' continuous fluorescence sﬁectra and the fluorescence decay times
of chromium doped strontium titanate were measured at numerous tempera-
tures between about 8°K and 200°K. From this data we obtained the tem-
perature dependence of the vibronic spectra, fluorescence decay time,
the widths and positions of the zero-phonon lines, and the width, posi-
tion, and intensity of the impurity induced local vibrational mode.

The frequency dependence of the low energy vibronic spectra near
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3W'hich is indicative of an

the zero~-phonon lines 1s found to vary‘aS(nq
allowed electric dipole transition without the necessity of vibrational
induced mixing of states of opposite parity. The vibronic selection
rules for phonons at all part of the Brillouin zone were determined and
the peaks observed in the vibronic spectra at low temperatures were com-
pared to the results of neutron scattering, Raman scattering, and infra-
red absorption. Most of ‘the vibronic peaks can be identified and the
high energy vibronic sideband was found to be useful in observing the

low frequency soft modes of SrTiO,. Using an iteration process, a com-

3
puter analysis of the data was used to obtain the oneephonoﬁ and multi~
phonon contributions to the observed vibronic sideband. In order to
predict a good fit to the observed spectra it is necessary to include
quadratic coupling between the local mode and the lattice phonons. The
contribution of other multiphonon processes is very small.

The effective phonon distribution reflected by the one-phonon vi-
bronic sideband was used to theoretically predict the temperature depend-
ence of the width and position of the zero-phonon lines and the width,
position, and intensity of the local moede. Thé predictions for both
cases do agree fairly well with experimental data. Comparisons are made
with the theoretical predictions obtained using a Debye phonon distribu-~
tion and with predictions involving coupling only to the soft modes.

The discrepancies between theory and experiment are discussed in terms
of anharmonic interactions and different phonon coupling strengths for
different physical processes.

The temperature dependence of the fluorescence decay time is found
to compare favorably with the temperature dependence of the ratio of the

integrated fluorescence intensity of the zero-phonon line to that of the
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total spectrum. This implies that the quenching of the decay time at
high temperatures is due to the increased probability of radiationless
and vibronic processes-and not due to the change in the electronic tran-
sition probability due to the structural phase transition.

A simple model is assumed for the frequency dependence of the elec-
tron~phonon coupling parametefs and by dividing this out of the effec-
tive phonon distribution obtained from the vibroni¢ spectra an estimate
is obtained for the true phonon distribution of the pure crystal. This
is compared to the phonon density of states obtained from neutron scat-

tering data and found to agree reasonably well.



CHAPTER II
THEORY

The éystem we are dealing with consists of the electronic states of
the impurity ions, the electromagnetic radiation, and the thermal vibra-
tions of the lattice. The ion interacts with the electromagnetic fiéld
by absorbing or emitting photons resulting in transitions to'higher or
lower electronic states. It interacts with the vibrational field by the
absorption or emission of phonons which may or may not result in transi-
tions between the electronic states. Standard second quantization for-
malism and the semi-classical theory of electromagnetic radiation is
used to treat these interactions. In the following sections we derive
expression for the vibronic transition raté, the selection rules predict-—
ed through symmetry considerations, and the expressions describing the

spectral profile.
Derivation of Vibronic Transition Rate

The transition probability per unit time can be predicted in the
usual way using Fermi's Golden Rule of time dependent perturbation

theory,

2
= %Tl v m,  Je>]" o B, = B . (1)

where Wi and Wf are the wave functions of the initial and final states,

14
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Hint is the interaction Hamiltonian causing the transition, and pf(Ef=Ei)

is the density of final states. The matrix elements for vibronic tran-
sitions can be represented by the diagrams shown in Figure 5. The two
interaction verticies in each of these diagrams indicate that Hin can

t

be expressed- as the sum of the ion-photon interaction Hi;i and the ion-

i-v

honon i ract H .
phonon interaction 1nt

The Hamiltonian for the total system can be expressed as

i-e i-v
= + H +
H Hion em + Hvib Hint + Hint

= H + Hint’ (2)

where Hion is the Hamiltonian for the ion in a static crystal‘fie;d, Hem

and HVib are Hamiltonians for the photen and phonon fields, respectively,

and the last two terms are the interaction Hamiltonians of interest here,
Using the semi-classical treatment, the ion-photon interaction

Hamiltonian can be expressed in terms of photon creation and annihila-

tion operators in the usual way (33),

where m, r and p are the mass, positien and momentum of an electron, re-
sepctively, and k and A represent the wave vector and polarization of

A
the photon. The operator ak
Iarization A while ai annihilates such a photon.

creates a photon of wave vector k and po-

The ion—phonon interaction takes place through the modulation of
the crystal field at the site of the ion due to the wvibration of the

surrounding atoms. This can be written as a Taylor's expansion of the



EMISSION

ABSORPTION

HIGH ENERGY LOW ENERGY
Flgure 5. Feyman Diagrams of the Vibronic Process.

The two interaction vertices in each
of these diagrams indicate that H

int
can be expressed as the sum of the

. i-e
ion-photon interaction (Hint) and the
ion-pho interactio gi-vy,
ion-phonon erac n ( 1nt)
-+ electron;~iis-photon Cﬁwk); and

--at phonon (hwq).

16
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crystal field V in terms of the normal coordinates of the lattice vibra-

tions,
3V i 1 82V un'
= + v v 2 e— s en
V=V T dusgn % T @' g | % Ygr T )
q 3Q_3Q +|°q
Quzo q q ul
q Q" ,=o0

where Q: is the normal coordinate for a phonon of wave vector g and po-
larization u. The normal coordinates can be expressed in terms of crea-

tion and annihilation operators as (33)

uo 4 B, okt
o /quu (b + vk, (5)

where b:+ creates a phonon of wave vector q and polarization u while b:

annihilates a similar phonon. Using this in Equation (4), the first

order and second order ion-phonon interaction Hamiltonians can be expres-

sed as

L
AT S 5 SN AL
int qsH g ¥ q q
qu

(2) l v !
i1-v 4 TV N R T
H - z T,V ! 7w S b"-b b",~b 6
int 7q,u C[',U' quq'u qu q'u' ( q g ) ( qv ql )s (6)
where
u oV
v =
q 3Q 1 ’
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v M TR BZV
qq' !
3 3
Qqu Qq' Q:=0

'
Q:|=°

. (7

Next we need the wave functions for the system. These can be written in

second quantized form as

el
|‘yi> = |‘yi ; nl,nz,at-,rlk)\,-u-;nl',nz,na.,nqu,tu->,
l‘y > = l‘yel'n ,n g e X i'l,.-.;‘n ,n ,...,n il,coe>,
£ A Ry AR I\ 172 qu

where Wel is the wave function for the electronic state, while oy and
nqu represent the occupation numbers for specific photon and phonon

states, respectively. By making use of the Born-Oppenheimer approxima-

tion these can be written in product formas

=
v
|

= }W:l>|nl>|n2>.a. nk>\>.aq,|nl>|n2>.,.n

T e
qu ’

(8)

=
v
|

1
£ = l?; >lnl>ln2>...|nkkil>... nl>|n2>7°,|n 1>0ee

qH

Now let us consider the probability per unit time for a specific
vibronic transition using the above equations.: Since low energy emission
vibronics are of greatest interest in this thesis, consider the rate for
emiséion of a photon of wave vector k and polarization A and the concur-

rent emission of a phonon of wave vector q and polarization u. Substi-

tuting Equations (3), (6), and (8) into Equation (1) gives "

i-e i-v i-e i-v
2
: <YelH o+ Hint|wj><wj|Hint +Hnt W1>I
3 Ei - Ej

pf(Ef = Ei)
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el

_ Zﬂlz ’nkA+l 0 +lm I ,nkk,n +l><W ’nkA’nq,+l!H |Wi ’nkx’ngu
T A el el
] Ei (E J +-ﬁwqu)
i-v), el el i-e el
‘P + . - . - .
' s ’nkA+l n -+HH l nkA 1,nqu><‘{’J ’nkA+l’nqu,Hint Wi ’nkk’nqu> |2
j el _ el
Ei (Ej + ﬁwkk)
x pg(Bg = Ey)
1 1 el
o <¥g ;nkA+l]H lw ,nkk><\ye |v“|‘¥i L L
= 3T~| L ) (n_ +1)*®/20_)7*
i g% - % s me ) a a
i J qu
el i-e . el el . .u; el
<Y +lIH. |W 5 IV |W > 1 5
= e ) _ine 1 ) Q"] <nqu+l)2°ﬁ/2“qu)2l2 0 (B, = E,)
B - (Ej +'ﬁ“kx)
—1k.
or 2rh - §1|§e S leel el|vulw 2
2 () () (B )
% <m )<2w >< = <nk +1)<nqu+1)[j. T el T ]
i ] qu
xvpf(Ef = Ei), (9)

where we have assumed that w >> W .
kA qu

Equation (9) describes the contribution made by a specific phonon
to the vibronic sideband. The total sideband reflects the addition of
such contriButions for all phonons of the system. The selection rules
determining whether or not a specific phonon is allowed to take part in
a vibronic transition are contained in the matrix elements and discussed
in the next section. The density of phonon states of the host crystal
is contained in the last factor in Equation (9). The observed vibronic

spectral profile represents an effective density of phonon states which
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is the true density of states modified by the vibronic selection rules,
the explicit phonon frequency dependence shown in Equation (9), and the
frequency dependence contained in the electron-phonon coupling para-

meters. The latter point is discussed further in section three of this
chapter. The temﬁerature dependence of the vibronic transition rate is

contained in the phonon occupation number,

1
n = . (10)
qu éﬁwqu/kT -1

It should be noted that for vibronic transitions involving the absorp-
tion of a phonon the factor (nqu + 1) in Equation (9) is replaced by

just n_ .
J qu
Selection Rules

As shown in the last section, the selection rules for vibronic-

transitions are contalned in the matrix elements,

ell iker_ - 1 e

. el 1i.,u),,el
<¥.[e"= =P wklleJ><Wj |vq|wi > (11)

The -exponential may be expanded in the usual way since the wavelength of
the incident radiation i1s large compared with the linear dimensions of

the absorbing system,

= 14+ dker+ . 0 4 \ (12)

For electric dipole selection rules only the first term in the expansion
is retained., Since the electronic wave functions are eigenstates of the
ion, the matrix element of the electron momentum operator can be changed

to a matrix element of the electron position operator (34),
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<y Ier > = <y ]PIW > (13)

£'=17 el _el £'=1]
(Ef Ej )
and the vibronic matrix elements become
., m el el el . Shpygel el uy el
1g (B - B | wkle ><Y, [vq]wi > (14)

Instead of using explicit expressions for the wave functions and
electron-phonon interaction operator, it is simpler to use group theory
and determine the selection rules by showing that the matrix elements
will be zero or non-zero. In order to do this it is necessary to ex-
press the electronic wave functions and interaction operators in terms
of the irreducible representations according to which they transform in
the symmetry group of the system. Since the impurity ion destroys trans-
lational symmetry the important groﬁp is the point group of the site
symmetry of the impurity ion. The electronic¢ wave functlions can be ex-
representations of this group and E-ﬁx

f k

will transform according to the same representations as x, y, or z de-

pressed as the Pi, rj’ and T

pending on the polarization of the incident light. Since V exhibits the

symmetry of the point group, V: = (BV/BQ:) y will transform according
Q=0
q

to the same irreducible representation as Qqu. Thus the criteria for an

allowed transition is that reduction of the direct product representa-

tion ', x ' xT_ contains T_or I', xT_xT
i v r £ i r f

fr are the representations of the vibrational modes and radiation opera-

contains Pv, where Pv and

tor, respectively.
The above procedure can now be applied to the case*of.SrTiOB:Cr3+.

At ‘high temperatures (and to a first approximation at low temperatures)
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the chromium ion occupies a site of O, symmetry. We will find the vi-

h
bronic selection rules for this.situation and then discuss how these

will be modified by lowering the site symmetry to DZS Vibronic 'selec-

he
tion rules for europium doped strontium titanate have been derived pre-
viously assuming cubic symmetry (29). Since a rare earth ion goes into
the lattice substitutionally for the Sr ion and involves‘4f—4f transi=-
tions, the selection rules may be different than in chromium doped
strontium titanate.

In Oh symmetry all three components of the electric dipole moment

operator transforms as the Pr-= Tlu irreducible representation. The
irreducible representations for the initial and final electronic states
are Pi = Eg and Pf = A2g‘ respectively. The direct product of these

three irreducible representations can be reduced as

Eg X Tlu X A2g = Tlu + T2u . (15)

The vibronic transition is allowed only for phonon modes which transform
as one of the irreducible representations that appear in the reduction of
this product representation., Thus it is necessafy to determine the sym-
metry representations of the phonon modes .at -all parts of the Brillouin

zone., These are determined using space group theory with basis functions

of the Block form,

E® = u ® 9T, (16)

where Eq(g) is a vector displacement of the atom at R from the equilibri-
un position due to a symmetry operation. When an impurity ion is placed
in the lattice, translational symmetry is destroyed and only the opera-

tions which leave the impurity site invariant are included in the group.
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The basis functions of interest are then those of Equation (16) with-

g = 0 and the site group is the point group at the center of the Bril-
louin zone. The symmetry representations of phonons at all parts of the
Brillouin zone.can then be expressed in terms of the symmetry represen-
tations at the zone center.

Figure 6 shows the unit‘cell of strontium titanate-and the first
Brillouin zone with the points of high symmetry labeled. With five
atoms per unit cell there should be fifteen phonon modes at each point
in the Brillouin zone. For a symmorphic space group we can factor out
the rotational and translational operations and treat them separately.
To obtain the symmetry of the phonon modes we work with the group of the
wave vector at each point in the Brillouin zone. Operations of this
group Go(g) either leave g invariant or transform it into ¢ + Q where Q
is a primitive vector of reciprocal space. Thus an operation (C) in
Go(g) will leave the basis function in Equation (16) invariant or trans-
form it into another basis function in the same set (i.e., with the same

q vector).

{clo} u(R) elaR

]

feu@) 12 (R o gy (L(eDR

= E(Bl) ei(g‘l‘g) ‘R

The character of the group operator will be the trace of the matrix that.
operates on E(E)eiﬂ.g multiplied by the factor.elgmg. The former can be
obtained easily by noting that only those ions whose position remains

unchanged or which transform into an equivalent ion in a neighboring

unit cell contribute to the character (X) of the transformation matrix,



Figure 6.

(a) (b)

Unit Cell (a) and First Brillouin Zone of Strontium Titanate With Flve Atoms
of Which Coordinates are Sr(0,0,0)? (:} Ti(%,%,%), (:)01( 0,5)’\v/302(1,2,2)
(:>and 4] (4,2,0) (‘)and the First Brillouin Zone (b) With the Points of High
‘Symmetry Labeled

72



cos ¢ -sin ¢ o <:> (:) RN

sin ¢ cos ¢ o
o o 1
cos ¢ -sin ¢ o
<:> sin ¢ cos ¢ o <:> S
o o 1
' . *

O o

where ¢ is the angle of rotation and the + and - signs refer to proper
and improper rotations, respectively. The trace of this matrix is just

the character for the operation within the Brillouin zone
X(¢) = Nu (2 cos ¢ £ 1), (19)

where Nu is the number of ions contributing to the trace. On the sur~
face of the zone this becomes

1Q'R
X($,R) = I (2 cos ¢ £1) e = O, (20)
u

Characters of this type can be determined for each symmetry operation
and the resulting representation can.be reduced in terms of the irreduci-
ble representations of the group of the q vector at that point. The
irreducible representations appearing in this reduction represent the
symmetry modes of the phonons at this point in the Brillouin zone.

Table I lists the components of the g vector, the symmetry elements
which leave it invariant, and the resulting point group for the special

points in the Brillouin zone which can be determined by inspection of

Figure 6. Inside the Brillouin zone the exponential factor in Equation



TABLE I

SPACTIAL SYMMETRY OF THE VARIOUS POINTS IN THE BRILLOUIN ZONE OF
SrTiO3 AT ROOM TEMPERATURE AND IRREDUCIBLE REPRESENTATIONS
OF THE VIBRATIONAL MODES OF SrTiOs; AT VARIOUS

POINTS OF THE BRILLOUIN ZONE

Points in Point Irreducible Representations of
the B. Z, qx’qy’qz Elements of Symmetry Group the Vibration Modes

r (0,0,0) E,8c3,9cz,6c;,i,ss6,90,6s4 o, T+ T,

A (0,0,q) E,2C, ,C,,40 c,, 4Ay + B + SE

X (0,0,%) E,2C,,5C, 520 25,0, 51,0 D, 200+ By OB+ 2, 2B

) (q4,9,0) E,C,,20 Coy 54, + A, + 5B, + 4B,

M (%,%,0) E,2C,,5C5,20 1,28, ,0, ;0 D,y Ay gHho ¥B) ¥B, FE A, 428 43E

A (q,9,9) E,2C3,30v C3v 4Al + A2 + 5E

R (5,%,%) E,9C,,8C,,6C, ,1,68,,85,90 o Tyg ¥ Agy + By + 2T+ T

K (9,59,544) E Cy 15A

9¢
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(20) will be equal to 1 since g is too small to transform into even a
primitive vector of reciprocal space and thus Q = 0. It 1s possible for
Q to be non-zero for points on the surface of the Brillouin zone and
these are shown in Table II along with the explicit form of the charac-
ter for each relevant type operation.

Now let us consider each special point in the Brillouin zone.
I Point: The symmetry of the wave vector af the center of the Brillouin
zone is Oh. Table II1I shows the characters of the irreducible represen-
tations of this group and the characters obtained for the total vibra--
tional representation (Fv) using Equation (20). Note that since g = 0
at this point Q will also be zero and the exponential factors in Equa-

tion (20) will all be equal to one. The reduction of the vibrational

representation is

(21)

so there are four triply degenerate Tlu phonon modes and one triply de-

generate T, modes at the zone center. Since the three acoustical modes

2u

transform like a vector they will belong to the T, representation and

1u

the other three T u modes and the T, mode will be optical phonon

1 2u
branches., Actually the three Tlu'optical modes each will be split into
doubly degenerate transverse modes and non-degenerate longitudinal modes
due to the macroscopic electrostatic field but the symmetries involved
have not been determined and the cubic .mode designations are generally
used to determine selection rules,

For other points inside fhe Brillouin zone the group of the g vec-

tor will be subgroups of 0, and the easiest way to obtain the vibration-

h

al mode representations is through compatability relationships. These



TABLE II

MODIFIED PART OF THE CHARACTER OF VARIOUS OPERATOR AT THE SURFACE OF THE BRILLOUIN ZONE

Atoms Contributing to the Modified Factor

Modified Character

of the Character and Their Vector 5 iQ-R
Operators Change After the Applying Operator Ny €
Ti; R = ai iQ_ a
c,, sr; R=0, 1+ 2 *
03; E = ai
Ti; R = 2ai + 2a§
Sr; R =0 i2(Q HQ )a, iQ a, iQ a
sz 01; R = aj 1+2e 7 +e % +e J
0,5 R = ai
033 R = 2af + 2a]
' ) Ti; R = ak iQ a
C 9 (457 to x Sr; R = 0 24 o 2
and y axis) 03; E =0
Ti3 R = a(I+j+k) 1(Q_+Q +Q )a, i(Q_+Q)a
Sr; E =0 e X ¥ 2 F Ty 2+
i 0,3 R = a(j+k) . .
0Li K - aGktD) HQ,40)a, 130 e
03; R = a(i+j)

8¢



TABLE IT (Continued)

Atoms Contributing to the Modified Factor Modified Character
of the Character and Their Vector 5 iQ°R
Operators Nu Change After the Applying Operator Nu €
Ti; R = ak
Sr; R =0 ina
°h 5 0,5 R =ak 2+ 3e
1" - N
xy ' 02; R = ak
03;I_(=0
Ti; R=0
Od 3 Sr; R=0 3
03; R=0
Ti; R = aitak , i(Qx-+Qz)a+ iQxa
S 3 Sr; R=20 1+e e
42 - ~
.03; B = ai

62



TABLE III
CHARACTER TABLE OF oh AND THE VIBRATIONAL MODES AT I' POINT
2 .
Oh E 8C3 602 6C4 3C2(C4 ) i 6S4 856 3oh 60
A 1 1 1 1 1 1 1 1 1 1
1lg
A 1 1 -1 -1 1 1 -1 1 1 -1
2g
Eg 2 -1 0 0 "2 "2 0 -1 2 0
T 3 0 -1 1 -1 3 1 0 -1 -1
1g
3 0 1 -1 -1 3 -1 0 -1 1
2g
A 1 1 1 1 1 -1 -1 -1 -1 -1
1u
A 1 1 -1 -1 1 -1 1 -1 -1 1
2u
Eu 2 -1 0 0 2 ~2 0 1 -2 0
T 3 0 -1 1 -1 -3 -1 0 1 1
lu :
T 3 0 1 -1 -1 ~3 1 0 1 -1
2u
Nu 5 2 3 3 5 5 3 2 5 3
2cos ¢ 1 3 0 -1 1 -1 -3 -1 0 1 1
X(Pv) 15 0 -3 3 -5 -15 -3 0 5 3

o€
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are found by determining how the representations of the vibrations at
the I'-point reduce in terms of the representations.of the subgroups at
the A, Z, and A points shown in Figure 6 and at a general point in the
zone designated by ,q. Table IV shows the correlation among the_élements
of the OH symmetry group and its relevant subgroups along with the com~
patibility relationships for their irreducible representations. This
gives ‘the symmetry designations of all phonon modes inside the Brillouin
zone as summarized in Table I.

Finally we have to consider the points.on the surface of the Bril-
louin zone. For these points Q is mnot necessarily zero and must be de-
termined for each operation as described in Table II. Table V shows
this along with the characters of the total -vibrational representations
and their reductions for the three special points on the surface of the
zone shown in Figure 6. The phonon symmetries obtained in this way are
summarized in Table I,

To obtain the vibronic selection rules for an impurity ion in
SrTiO3 it is necessary to express the vibrational representations of
phonons at all points in the Brillouin zone in terms of the representa-
tions of the O, group at.the zone center. The representations of the

h

Oh group in which each subgroup répresentation appears are listed in

Table IV. If the representation in O, symmetry is contained in the re-

h
duction of the direct product representation in Equation (15) then pho-
nons whose space . group representations are contained in this point group
representation give allowed vibronic transitions. Other phonons do not
contribute to vibronic processes. These considerations lead to the vi-

bronic selection rules for SrTiOB:Cr3+ shown in Table VI.

The final point to consider 1s the effect of the phase transition



TABLE 1V

CORRELATION AMONG ELEMENTS OF 0h
PRESENTED BY AN IMPURITY ION

AND ITS SUBGROUP

._!). Badurticn Ia Tarms of Subgroup Repressatatises
o ac, | sc,| e, :cz'(c“‘) 1| oG] dmg 30, buy O Cv Cyy €3y LY
Ay 1| ! L (SN T B 1 1 g A A ™ a
Aoy 1 -1 -1 1 1 -1 i 1 ~} '™ L 4 L 13
l' -k L] o H 2 ol - H L] u]' oy, H A4y L
L 0ol 1 -1 [ . -1 1, e apx A, n
o ol 1] -1 3fal e -1 1 Bay, " A Ay, »
Ay LR ! R e e R Il W & L 4 o
Ay S IS T Y 1 sl a -1 i 3 4 N A
x, A oe o 2 20 0] 1 -2 \ e, z vy u
T ] -1 1 -1 -3 -1 o 1 L [ A IR u
Tae o 1 -1 -1 -3 1 ¢ ) -1 By, (R Ay Aty u
P4n w0, | ]: G s % I{ o | e 0, Represmmtetioss 1a Wkich Each Subgroup Reprassatation Appears
Aty ' v ] : [ AU Y v : i oA
g R A Y : TR I Y 1 }-x al o,
b, BT R R U N I [ S RS Y X
1. 1] o |a , A 1 :-1 %
2 ] o fo 2 2|0 -2 | o o ey
A i [ ISR O - s
Ay 2 v ' [ a 1] T
L al : [ O Y - :-l 1] oA
5 1 -1 |- : 1 |- 1 - - L |
e, 0 o o | -2 -2 [] 2 l 0 'y Ty
$ 1 N
Ay €, [ zuv ’q‘
A ' 1 1 I
Ay 1 1 -1 -1
X - s 1 Y
», -1 1 - 1 i
] o -2 ] [ :
y % e,
M ! ' [ PR P ML
A2 ! - ATty
] - . oo
- - = i LML
o 2 o e
Ay 1 1 1 . _*’..
A 1 -4 -1 g 'l-"’h
N - 1 - LI
s, -1 -1 1 1 Sota
[ XL
TieeTae
’1;"10":“'
= Rty
A
] rll"lu"lu"u'
T
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TABLE V

TOTAL REPRESENTATIONS AND THEIR REDUCTIONS ON THE SURFACE OF THE BRILLOUIN ZONE

. 2 . .
Point Oh E 8C 6C2 6C4 3C2(C4 y i GS4 856 3crh 60 Reductions
2 cos ¢ * 3 0 -1 1 -1 -3 -1
R ST s 1 -1 1 31 -1
X (rv) 15 0 -1 -1 -1 -9 -1 -1 T 2g+A 2u+Eu+2T 1u+".|: o4
- 1 ] 1 o .
Point D4h E 2C2 2C4 2C C2 i 254 Gh cv 20 Reductions
2 cos ¢ * 3 -1 1 -1 -1 -3 -1 1 1
X .
Ni IR 5 1 3 1 5 -1 1 105
X(T ) 15 -1 3 1 -5 3 -1 -1 5 2A. +B. +3FE +2A_ +2E
v lg "1g " g 2u Tu
2 cos ¢ * 3 -1 1 -1 -1 -3 -1 1 1
M ,
Ni SR 5 3 1 -1 1 1 -1 5 -1
X(rv) 15 -3 -1 1 -1 -3 1 5 -1 Alg+A2g+Blg+B2g+Eg+A2u+2Blu+3Eu

139



TABLE VI

ALLOWED VIBRATIONAL MODES FROM 2E BY ELECTRIC DIPOLE TRANSITION

Fr(Tlu) IN VARIOUS POINT IN THE BRILLOUIN ZONE

Final states
allowed

Possible A A E T
vibrational modes le 28 g g
2g
2u X
E X
R u
0h Tlu X X X X
T2u X X X x
T X X X X
r lu
T2u X X X X
Alg
AZg
Blg
B2g
E
g
y A2u X X X X
D Blu X
4h E x X X X
u
Alg
Blg
E
g
A X X X X
< 2u
E X X X X
u
Al X X X X
C4v A Bl X X X X X
E X X X X X
Al X X X X X
C3V A A2 X X X X X
E X X X X X
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TABLE VI (Continued)

Final states
allowed A

Possible A2 E Tl T2
vibrational modes g g g g
Al X X X X X
A X X X X X

2

C Z

2v B X X X X X

1
B2 X X X X X
C K A X X X X X
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to lower symmetry below 110°K. - This acts as only a small perturbation
on the cubic symmetry of the system. Since the great majority of phonon
modes are allowed to take part in vibronic transitions in cubic symmetry,
the most important effect of this transition will be to split some of

the degenerate modes. The distortioh accompanying the rotation of the

oxygen octahedra can be represented By B, in Diﬁ symmetry. Thus all

2u

phonon symmetry designations in the O, group can be reduced in terms of

h
the new Dig point symmetry and the reduction of the direct product of
these representations with BZu gives the new phonon symmetry designa-
tions. These are summarized in Table VII and show the splittings of
some of the doubly and triply degenerate modes.

The results of these symmetry considerations will be discussed fur-

ther in the interpretation of the vibronic spectra in Chapter 1IV.

Derivation of the Equation for the

Spectral Profile

The transition probability per unit time for a vibronic transition
involving a specific photon and phonon was derived in Section 1 of this
chapter. Now we would like to derive an expression to describe the
whole vibronic band made up of transitions involving phonons and photons
of many different frequencies. To do this we begin by using the formal
expression for the transition rate instead of the Golden Rule

d 2 |
Py = a—;%lcb(t)] . (22)

The development of the amplitude function in the interaction picture can

be found in standard quantum mechanics texts (34). It is convenient to
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TABLE VII

SPLITTINGS OF THE VIBRATIONAL MODES OF CUBIC SYMMETRY UNDER
THE DISTORTION (Blu) INTO TETRAGONAL SYMMETRY (6)

. Splittings of the Vibrational
Vibrational Mode in Reduction in Mode in Tetragonal

”Cubic Symmetry (Oh) D4h‘Symmetry Symmetry (D4h)

A2u Blu A2g

ng Eg + B2g Eu
Alu

Tlu | Eu + A2uv : ng
By

Eu Alu + Blu ‘B2g

2g

T2uv :Eu +.B2u ' Eg
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express it in terms of the time translation operator given by

il t/A -iH(t-t )M -iH t /A
UCt,t ) = e ° e °© e °° (23)

This obeys the differential equation

if dU(t,to)/dt = V(t)U(t,to) (24)

where V(t) is the interaction potential in the interaction picture which

is related to the Schroedinger interaction potential by

iH t/A -H t/4
V() = e ° ve ° . (25)

The differential equation for U(t,to) can be rewritten as an integral

equation and expanded as a power series in terms of V(t)

it ! 1
U(t,to) = 1 - ft V(t")U(t ,to)dt'
° (26)
- i t 1 iz t 1 1 t 1 " "
=1-z/ 0 vlehdt" + ()7 S V(eDde' fO vI(e)de" + ...

o o o

Using the time ordering operator this can be written in the form

© 1 ,—-i.n.t .t t
U(t,to) =1+ 21 oT (—ﬁ-) ftofto'“ftodtldtz”dtnT[V(tl)V(tz)“"V(tn)]
it 1 1
=T exp [~ 7 /¢ V(thadt 1. (27)
(o]

The time translation operator has the following useful properties:

U(t,t") = U(t,t")Uu(t',t"), (28)
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U(t,to)|wcto)> = |[¥(t)> , (29)
Lin u,e )|y > = v >, | (30)
(o]

+

where |Wa> is an eigenstate of HO and lWa > is an eigenstate of

H =vHO + V(t). In the limit of tO + —» the matrix element of U(t,to) is
just the transition amplitude cb(t).

Thus the transition rate to an eigenstate b in Equation (22) can be

rewritten in terms of the time development operator as

Lim 4 2
Fab ~ toiTm el ¥ [UCE e ¥ |
(31)
= Mmoo 4y ue, e x|y s<v [UCe, e ) ¥ >
t >—o dt a 'ty b b %o a

where IWb> is an eigenstate of Ho. Equation (24) can be used to evalu-

ate the time derivative

_ 2 lim %
P, = xIm ¢ oo <wa|U(t,to) [wb><wblv(t)U(t,to)|wa>. (32)

In order to evaluate the matrix element we can use Equation (28) to make

the substitution
U(t,to) = U(t,O)U(O,to),

so that Equation (30) can then be applied

- 2, lim * * e 0y v >
Py = % Imrto+_m <walU (0,t U (t,O)lWb><WblV(t)U(t,O)U(O,tOﬂW5>
5 4, iHt/A -iH t/f i tMA  -iHCA
= S 1Im <Y |e e °  |yo><t e Ve ¥y ">
4 a b b a
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= 2im<y Ty
a

+
7 <y vly ">, (33)

b

where the expressions for U(t,to) and V(t) in Equations' (23) and (25)
have been used, Next we can use an lteration expansion to write the

wave function (34)

- 1lim 1 +
'Wa > |Wa> + e>0 E - H + ific VI\ya R (34)
a o
Thus,
_ 2 lim + v
Pab = 7 Im [<\ya|lyb> + €+0 <\ya Ea - Ho - i‘ﬁel \yb>:|
x [<y |v]y > + lim <y |v - Vv, "]
b a e*0 b E -H + ifie a
*
_ 2 - lim “ba
_‘ﬁIm[S(ba)"‘E_,o E - E —i'ﬁs]
a b .
lim v ' *
% I:Vba T oo & Y IEa -—E ¢+ iﬁel wc><wc|V|Wa>]
R,
. 2 - lim 28
7 Im [8(b-a) + 1M E, - E - iﬁs][Rba]
2
2 - 2 lim ina‘
= g ImR § (b-a) tZ Im ero E_ - Eb - ifie °* (33)
where
+ bcvca
R'ba = <\¥b|Vl‘Pa > = <‘Pblvl‘ya> + E E - E <+ iﬁe + e
a c
= V, +32 Tbelea + >
ba cEa-Ec'*'i‘ﬁE "t
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which is called the "reaction matrix".

Since for our case b # a the first term in Equation (35) is zero.
The limiting value of the second term can be expresséd in terms of
Cauchey's principal value plus a delta function (34)

lim Y = 1y -
ero x t ifie P(x) + 16 (x) (37)

Substituting this into Equation (35) gives
27 2
Pab T A lea| G(Ea - Eb) ' (38)

It is usually necessary to retain only the first term in the expansion

of the reaction matrix in Equation (36) leaving us with

L 2 -
P = X lvbal §(E, - E

ab (39)

b) }

which is the transition rate in the first Born approximation.

Using the integral representation of the delta function we have

- 1(H_ - H)t/h
P, o= S [V Tace =P

ab %2 - |‘ybx‘yblvl‘y; ) (40)

To obtain the total transition rate this expression must be averaged

over Initial states and summed over final states

P, = —=AvzI<¥ |v* " dte
ab ﬁ2 ap a -

i(Ha—Hb)tﬁﬁ v
: lwb> <Wb|V|Wa>. (41)
This general expression must now be specialized to the case of a

vibronic transition. Using the Born-Oppenheimer approximation the wave

functions of the initial and final states can be written as products of

electronic and vibrational wave functions and the Hamiltonians for a
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vibronic emission transition are sums of electronic and phonon Hamil-

tonian

H = 8 = u°%4+gPh (42)
a e e e
el ph

H = H = H - +8 +40w+M 43

where fiw is the energy of the emitted photon and M is the electromagne-
tic multipole moment operator causing the transition. The initial state

phonon configuration is taken to be in equilibrium so
H = Z-hwq (b b +%), (44)

while the final state phonon configuration includes the interaction be-

tween electrons and phonons

+
H = 4 (b b +% +V, 45
. z q(q q 3) (45)

The electron phonon interaction Hamiltonian is given in Equation (6).

Thus

-iwt i(Hel—Hel)t//ﬁ i(th-—th)t/'ﬁ
e g e e g

<o M<e®llofy s Tdte e
q,"' a -

1
Pb =3 ﬁf

3
#

x [¢e5 (o, Bein, <t u[eS [tn > .
Assuming that the Franck-Condon approximation is valid so the electron
transition is independent of the nuclear coordinates, the electronic

matrix elements can be evaluated
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-iut i(Eel—Eel)tﬁﬁ i(th—th)tﬁh
e

1 © %
P . =-<AvI/ dte e & <{n_}M* e
ab 62 a b - q, ab
x [{n_ Jo<{n_ }M b]{n }>
9, g, ' abl g,
1w ~iot i t inht/fﬁ -18PPe /4
==/ dte e Av <{n_ }e e & | {n }>lMab|
& : a q, 9
-1(w-w )t
1 2 = o)
-3 M7/, dte (00>, (46)

where the definition of U(t,to) in Equation (23) has been used with the
phonon Hamiltonian substituted for H and Ho'

If we treat explicitly an electric dipole emission transifion and
account for the density of final photon states and the effective electro-

magnetic field in the crystal this becomes (35)

n3 Ee 2 8 3 ed, 2
Pab(ed) = [j; ) ] (%zg) w |Mab| G(abjw)
3 d, 2
= Cuw leb] G(abjw), (47)
where
o ~lwt
G(abjw) = [ _dt e G(abst), (48)
iw t
G(abst) = <U(t,0)> e ° (49)

and C is constant. G(abjw) 1s called the spectral distribution function.

To evaluate the average value in the spectral distribution function
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it is helpful to use the expression for U(t,0) in Equation (27) and
group the expansion products as a cumulant average using the generating

function (2)

tX ®
In <e > = nél (tn/nl) <Xn>c, (50)
so
<X> = <X>
c
<X2>c = <X2>—<X>2 (51)
<X3>c = _<X3> - 3<X2><X> + 2 <X>3
Thus,
iw t
-i.n. 1 t t o
G(ab;t) = exp[ngl G GEP S, dtyeen S de <T V(tl)"°'v(tn)>ca]e
where
t iw t
-i .t 1 .t 1 o)
g(t) = {»h . dtl<v(tl)>ca -5/, dr ,fo dt, <TV(tl)V(t2)>ca+-n}e .

4
(53)
The averages in this expansion can be evaluated term by term using
the Equation (25) for V(t) and the Hamiltonian in Equation (6). For the
first term
..ph _+uPh
1He tl/ﬁve 1He tlﬁﬁ

<V(t1)>ca = <V(tl)>a = <{nqa}|e |{nqa}>
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o Mrowb +v* o4y
qq q q)

+ +
Z.v b +b b ,+b {n b
qa g 1 qql( q q )( q' qi)l nq

aq a

[}
[ty

™
=
—
P
=}
+
'—l
N
(¢
+
=}
o
T

]
&

v (2Eq+1) . (54)

Since this is independent of time the integral over time is just

t = L =
fo dtl <V(tl)>ca 5 g qu (2nq+l)t . (55)

Using Equation (51) the next term in the expansion is
<TV(tl)V(t2)>ca = <TV(tl)V(t2)> - <V(tl)><V(t2)> . (56)

The second term is just the product of two terms like Equation (54)

t 2
t 1 L = 2 t
fo dt, fO dt, <V(tl)><V(t2)> = [4 g qu (2nq+l)] 5 (57)
The first term can be calculated as
‘ inhtlﬁh —thtlﬁﬁ inhtzﬁh iHthzﬁﬁ
<TV(t )V(t,)> = <{n }Ie e Ve e Ve i{n 1>
1 2 q q
a a
inhtl/ﬁ . N
=<{n }e © [ql(v b +V¥b )+ k% \
4y 40 97 91 44 419, 9199
_euPh . PR
+ + iHe tlﬁﬁ 1H2 tzﬁﬁ
(b +b ) b +b° )] e e
1 91 9 9
) x .+ +
¢, (V. b +V*b )+L31 V (b +b )
3 743945 43 44 439, 939, 93 95

,.ph
iHT 't A
® +1b )]e © ? |{n b
Q4 Q4 qa
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inhti/ﬁ . . 1thtl/ﬁ
<{n_}e € [z (v b +V¥b )+%1 Vv {(b +b e ©
9 99 9% Y9 919 919 U 9
—iHPhtl/fﬁ s
xe ¢ (b + b )}
LY LY)

inhtlﬁﬁ inhtzﬁﬁ N
xe °© e © Y+ LT v {(b +b7)

2
3 4343 459, 439, 939, 43 93

—iHPhtzﬁﬁ —inhtzﬁﬁ . —1tht2ﬁﬁ
xe °© e ¢ (b +bq )} e ]|{n }>

4 4 9

—lwg t, dwg . t
r [v v o 1193 2'<{n }!b b [{n b> + VF v

9193 93 93 9 91 93 94 9 93

x<tn ¥p'b [{n Bl+% = v v
qa ql q3 qa q1q2CI3q4 qlqz q3q4

-1 (w - +w )tl 1i(w +w )t

i o9y 93 9" 2

x Le <{n }lb b b Hn >
a 9 99 3 4
i - t - t
(wa W 2) 1 (wq3 wqa) 9
+ e e <{n }|b b b b [{n_ 1>
g 9 9293 9% 9,
t -3 t
He q1 qz) He 3 ¢ 4) 2
+ e e <{n }lb by b by [{n_}>
4 91 92 939 9,
i(wa—w 2)tl —1(wq3—w 4)t2

+e e <{ {ng Hbo" b b b {n_ 1>
9 91 9939% 9,
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1 1w —w .)t

q 9, q, 2
+ e 172 7, T3 4 <{n 3o, b b b, ln B>

a 91999 9,

-i{w =-w )t

—i(mq -0 Jt, =i(w =~w_ )t

q 4, 9
+e T 2 7 3 74 <{n_ }b SN | tng b

94 91 92 93 9 a

i +w t -1 +w t

1(wql qz) 1 1(wq3 q4) 9 |

+ e e <{n_ }Ib b by b o 31 . (58)
. 9, 91 93 93 9 9,

For Equation (58) we used the facts that-

PP —imPPe/a ~dw t
<nje b e °© |n> =e ¢ <n|b |n>
q q
(59)
imPPem . ~1uPPe/m 1w t
+ e q +
<nfe bq e |n> = e <nlbq !n> ’

and only terms which contain same number of creation (bq+) and annihila-
tion (bq) operators are non-zero. Temporarily ignoring the time depend-
ent exponents, further computation of the Equation (58), each of eight

matrix elements of the Equation (58) should be calculated as follows:

dn b b Tlin o= @ +1)6 (60)
9 9193 9, 9 919

<o }bpTb |t B =3 8 (61)
9% 9193 9, 93 9193

For the next six calculations it 1s necessary to consider all the possi-

ble combinations of the operator b+ bq because of the summation over
h|
all q;. For <{n_}|b b b |{n }> there are two possible combina-
qa 9, 9, 3 4 9,
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tions of b+ b  namely b b s b bf and b b s b b+ + For the first

a4 qj 1 93 5 9y q q4 Q5 94
combination,
<{n }lb b b I{n > = <{n }[b b b l{n 3>

Qda 91 92 3 9 g 929 3 9 94
+
= <{n }lb (b +6 )b |{n }>
9a 92 93 q1 4193 94 9,

- <{n_ 3o b b, b Ho 1> + 6 <{n_}b_ b ln}>
99 929391 9% 9, 93 95 929 Y

= 2. <in b [{a" P<{a” }bT b [{n' Is<in' b [{n ¥
n_n q q q q q, 4 q q q q

q a 2 a a 371 a a 4 a
a a
8 s (n +1)
=n (n +1) § S + 6 s (n +1)
41 9, 4193 9,9, 4193 959, 4
= (o +1)(n +1) & 8 62
( 4 ) ( a, ) aya5 0,9, (62)

where the commutation relation [bq,bz,] = 5qq' has been used.
For the second combination

<{n, M b b bt o Ha > =<l 3 R wh o b

a 919 939, 9, 9% 91 939 qzqs Qb 9,

= 2, <{n_ 3¥b [{n' ¥><in' }bT B |{n" }><{n” }[pT |{n_ P
nqanqa qa ql qa qa q3 qz qa qa q4 q%
+(n +1) § )
qq 419, 9993
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(a +1)n  § 8 + (n +1) § 8
qq qy Qo453 999, qq 919, 9,43

(n +1) (n +1) 6 8 . (63)
ql qz qlq4 q2q3

So we may write the third term as

<{n }Hb b b T lin b = (n +1)(n_ +1) 6 8 +
3 91 9 3 q,' 4, 9 9, 9193 99,

(n +1)(n +1) §
9 LY) 979, 9293

= (n +1)(n +1)( ) + & ) ) . 64

In similar fashion we have values of the other five terms as

<{n }Ib by b b, {n }>=n n_ § 8 +n (o +1)8 8 ,
9, 9192939 9, 9 93 949 q3q4 9 92 939, 995
' (65)
<{n }lb by by b Flia 1> =3 (B +1)s 6 +n (G +1)6 6,
9 91 92939 9, 91 93 99 9394 93 9y 9193 99,
(66)
<{n_1}bb ot l{n }> = (n +l)n 6 S + (n_ +1)n ,
9 9439 95 q4 9 97 93 999 4939, 9 q2 4193 99,4
(67)
<{n b b b b |n }> = (B, +D) (B +1)8 +(a_ +1)a
92 91499 439, 9, 93 93 qlq2 3% 99 9
s s , (68)
919, 993
+ _+ - -
<fn_}b b b b |{n I =1 n (6 8 +35 s ) . (69)

a9y 95 93 9, 9" 4 95 99, 993 9393 99,
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Using Equations (56) - (58), (60), (61) and (64) - (69), the second term

of Equation (53) becomes

& 1 - 2 2
J'o dt2 <’.['V(tl)V(t2)>ca = =5 {z v q (2nq+1)} t

—-;L-J't dt
o} Sh q q

ﬁ2 1

—i(wq +uw )tl i(w +w )t2

) : 1 92 43 94 - -
+ 4 I v \Y {e e (n +1)(n +1)

x (8 8 + & S )
4193 959, 479, 9,94

i(w =-w e, i(w =-w )t
9 4," 1 . B 2 _ . - .

+ n n § 8 +n (n +1)§ 8
91 93 9192 939, 9y 4y T 439, 9994
1w -» dt; =-i(e -w )t
q; 4y 1 ( dq q4) 2 . o -
+ e e (n (n +1) 6§ § n (o +1)
qq g 4195 939, 97 9
S $ )
~i(w ~w )t i(w =-w t
( q; 45" 1 ( 45 q4) 2 - - -
+ e e’ ((n +1) n_ 6 $ + (n +1)n
9 93 9395 939, 11 9

8 8 )
9195 959,
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-i(w -0 )t -i(w =-w )t
( 43 qz) 1 35 49, 2 _ - - -
+ e e ((n +1)(n +1) & § + (n +1)n
9 43 992 4939, D)

) § )
419, 9995

i(w 4w t -i +w t
( qq qz) 1 (wq3 q4) 2 _ .
+ e e n n (8 8 + 8 8 )1]
474y 939, 9,93 9395 959,

- 1
= =5

TV  (2n +1)}2t2
8% q qq q

2 . - t t
- TV ) {(n +1) s dtl fo dt
nd1 4 9 © 9

—ilw +w )t
I G +1) (G +1) sCoae ftl dt 1%
2 n ' nq o 170

{ v
w? 49 99 Q9 9 2 2

+ilw +w Dt
4 9" 2
e

_ ) . tl -i(wa+wq2)tl
+V \Y (n +)(n +1) f  dt. [ dt, e
99 99 9 4 o 170 2
+i(w +w )t

( 4 9 2}

t ty
Soodey ST de, + TV v a
° © 999 99 Y 4

+ Z Vv Vv
qlq3 qlql Q3q3 ql q3

i(w -0 dt, -i(w -w_ )t
(n +1) ft dt ftl dt,” e %2 ' e 1% 2
q 0 o) 2

2 1
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tl _

+ 35V v a0 G+ f; de, f Tt + IV v a
4193 9393 9393 97 93 © 119 119 419 9
i(w ~w t -i(w ~-w t
- t & ( 93 qz) 2 7 9 qz) 2
(n +1) [f~  dt, S ~ dt, e e
q o 170 2

2

t

+ 3V v G +Da rfae. s tat+ 3oV v
4993 919 9393 9 43 o 170 2 919, 99, 99,
" -ilw -w )t1 i( - )t2

w ("]
- - q q q q
(a +1)m Pae, rtoae 172 7, 172
q o] 170

- - t 1
(n_ +1)(n_+1) fo dt, S T de. + ¢

+ I A" v 9 v v
9193 919 9393 9 3 ° 99, 919 9%

-1 w ~w )tl i(w -w )t2

- - t q, q q, 4q
(n +1l)n ft dt., [ 1 dt, e 1 2 e 1 2
1 q, o) 170 2
o £ 1(w l+wq2)tl -i(w l+wq2)t2
A n n J dt, [ dt,. e
995 949 99 Y U 1 2
o . £ 1w l+wq2)tl -1 (w l+wq2)t2]
+ I \Y v Soode, S dt, e
- Loy @ -5 v )G, ) - e
sn” 9 91 4 -9 U i@ q
qq 1
—iwq t iw t
- _%_ e L1y Loy Lo Lo 1y
q 2 2
W 1 W

W q
9 | q 1 qq
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1 1

1_r - -
-1z Vv v (n +)(n +1) { - it
ot %2 9% 9% 9 92 W +w )2 g T
q q 1 2
1 9
-1(w +w )t
. 9 9
- 5 )}
(w +w )
9 9
~i(w +w_ )t
q; q )
- - 1 1 e 1 72
+ I Vv \' (n +1)(n +1){ 5~ T it- 5 }
919 949 99 94 4 (w +w ) q; °q (0 +w )
9 9 L =2 a9
— p— t2 — -
+ I Vv Y 5 + %V \Y n (n +1)
9192 9191 9995 97 9 9199 919 9% 91 9
ilw -w t
( 1. % )
_ L L 1 92
B e
x { + it - 1
(w -w )2 (wq —wq ) w -w )2
910 9 1 72 4 9
- - t2 — -—
+ ¥ Vv v n(n+1)—-2-+ZV \Y n (n +1)
9199 9193 929 91 9 919 919 9419 9 9
i(w -w )t
9 9
x { 1 + L it - 2 }
0 -u )2 (wq —wq) @ -u )2
4 9 1 =2 4 9
2

+ %V Vi (2 +1)n =+ % V v (a +L)a
9995 9997 9995 97 9y 2 919 919 49 91 9
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2
R (n +1)(a +1) EE'+ R v (a +1)a
99 919 9% 9 9 992 919 991 93 9
~-1(w -w t
9 qz)
1 1 e
x { - it - }
2 (w -0 ) 2
(w -w ) a4 9, (w -w )
4 4, a9,
iw 4w )t
- - 1 1 e 1 q2
nn { 5 + ) it - 5 }
q1q2 qlq2 qqu 99 9 (W +u ) q, g (w +w )
9 93 1 2 9 93
i(w +w Dt
- - 1 1 e 1 %2
1q2 qlqz q1q2 999 w +w ) q; q, (w 4w )
1 92 1 92
(70)

We changed dummy variable 49 to d5 in Equation (70). Since t2 terms are
cancelled each other, all the terms of Equations (70) and (55) can be

collected and Equation (53) can be expressed as

g(t) = -8 - 1itQ + iwot + gl(t) + gz(t) , (71)
where
w_ )2
qy _
5 = I ——> (2n  +1) , (72)
9 e ) 9
9
1 1 1
QO = = 2n +1) - = I (V —
ﬁ ( f ) ﬁz & ( ql) -

9
Eq +Eq +1 Eq —Eq
1 2 1 % 2 4
e (v ) + 1,

Z
q4q W W W W
- 419 1-2 4 4, q; 4y

(73)
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g (£) = (74)

(v ) -i{w +w )t

, i} q; g,
T —-—————-—E-{(n +)(n +1)(1 - e
919 (u +wq ) 9 &Y)

g, (t)

- _%. P (nq +1) Eq (1 -e ) . (75)

Notice that since q; and q, are arbitrary subscripts we used following

relation:
i -—
(wa qu)
- - 1 e
TV v n (n +1) { 5 - 5 }
9192 919 99 91 9 w -w ) (w ~-w )
9 9 9 9
-1 - t
(wa qu)
- - 1 e
= £ V v (n +)n. { 5 - 5 } . (76)
99 919 D% Y 99 (W -w ) (W -w_ )
9 9 9 9

Therefore, we can rewrite the emission probability of Equation (47) as

3 2
P, = Cw lMabI G(abjw),

where
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-]

G(absw) =/ _ dt o lut eg(t), an
and
g(t) = -8 -1itQ + lw t + gl(t) + gz(t),

where S, @, gl(t) and éz(t) are given in Equations (72) - (75).

In general the quadratic coupling term gz(t) is important only in
the contribution it makes to the temperature dependence of the zero-
phonon line and we will discuss it further in Chapter V. The linear
coupling term gl(t) is important in analyzing vibronic sidebands. Since
the structure in the experimentally observed sidebands is sharpest at
very low temperatures this is the most interesting data to consider.
Thus the theoretical expressions can be used in the limit T=0. In this
limit only phonon emission occurs since Eq(wq) equals zero. The expres-
sions describing the spectral distribution function from Equations (71)

through (74) and (77) are then

qu
S = I = IS, (78)
2 q
q #w ) q
q
8 = o, (79)
—iwqt
gl(t) = g Sq € ’ (80)

GB(ab;w) = e_S S ® dt e

-0

~1i(w-w )t g, (t)
el Ta]. (81)

Multiphonon processes will.simply be represented by the product of

terms such as that appearing in Equation (8l). This can be expressed by
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g, (t)
expanding (e -1) in a power series
e oS -1 )t [g, (©)]"
GB(ab;w) = ngl [e J_.dt e T

= I Gn(ab;w), (82)
where
s e ~tew )t [g (0]7
Gn(ab;w) = e [ _ dte —r (83)
One-phonon processes are then given by
5 e -i(w-wo)t
G,(abjw) = e” f dte g. (t)
1 e 1
-1i(w=w +w )t
= eSzs rare ° 4
qQ 9 -°
= 2'n‘e_S 28 S(uw -w-w) , (84)
qg 4 o q
and the n-phonon contribution to the spectrum becomes
~i(w-w )t -iw t
Gn(ab,w) e/ _dte = (é Sq e )
e—S\ - -1(w-w )t -iw t -iw t 4
=& dt e ° s e 9 @xs e %)
n. -« q 4 qQ 4
-S e5g (abjw,) eSG (abjw_)
_21Te fwdw on-dw l ,l 6 e l ’n
~ nl! ~e 1 n 21 21

n
6[(wo—w) - mgl (wo-wm)] . (85)



58

This can be written in a simpler form which can be understood by looking

explicitly at the first two terms n =1, and n = 2,

S
-S e"G,(abjw,)
) = 2Me @ D R o) - (& —
Gl(ab,w) = =17 I dwl 5 6[(wo w) (wo wl)]
_ 2re e . = -5 .4 ) =
=33 o Gl(ab,w) 21e g T 6[(wo w) wq] .
' S S
Zwe—s o e G(ab;wl) e Gl(ab;wz)
Gz(ab;w)'= =T U dwl dw2 5 > 6(w1+w2 - wo—w)
= EEE:— TS S dw S[(w ~w,)~w ] Ei G, (abiw +w-w,)
2T g Tq '=e 1 0 W17 2 T1MEPNTYTY
S S 1
-S q q
= 2re qg"IT 7 6[(wo—w) - (wq+wq,)] .

Thus, for an nth order process this can be generalized to

n
q

1 6[(wo—w) —‘g nqwq]- (86)

5 3
Gn(ab,w) = 27me {nqzo} Gn,g nq (g

Note that the ratio of the integrated intensity of the n-phonon

spectrum to that of the total broad band spectrum can be expressed as

n
-1 (0w )t [gl(t)]

o oo -8 o
S, dw Gn(ab;w)= S dwe S _dte — 2ﬂe_s (s%/n!)
7 dw G (abjw) -1(w-w )t [g (t)]n ﬁmfs E (Sn/n!)
— B o oo o -8 0 1 n=1
nE1l— do S dt e " e —_—

n
_ S
n!

(87)
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Although we have been neglecting the zero-phonon line for simplicity
this expression also holds for n=0. Thus the area under the zero~phonon
line divided by the area of the total spectra can be used to determine

the Huang-Rhys factor at T=0,
Computer Analysis of the Vibronic Sideband

The first step in understanding an observed vibronic sideband is to
separate it into its one-phonon, tﬁo—phonon, and all other n-phonon con-
tributions. For this purpose some type of iterative procedure is re~
quired since Gl(ab;wq) is needed to geﬁerate the other Gn(ab;wq) contri~
butions. To do this one assumes a trial one-phonon spectrum which can
be obtained in several ways such as from the density of states obtained
from neutron scattering data. For the case of interest here the majority
of the structure observed in the low temperature vibronic sideband is
divided into 1023 equally spaced ''phonon modes' with individual mode
Huang-Rhys factors proportional to the spectral intensitf at that fre-
quency. The sideband is then represented by a series .of equally spaced

delta functions normalized to the total Huang-Rhys factor
S(w) = 8 8 ~qhd) . (88)
( q qg 4 q q

Thus the experimental values for the Sq's and the frequency inter-
val A are the only important inputs for the computer calculations. The
one-phonon spectrum is then given by Equation (84) and the next few
higher order spectra are obtained from the convolution of this spectrum
according to Equation (85). The total sfectral profile is then just.the
sum of the Gn(ab;w) for all n-phonon processes which make non-negligible

contributions to the results. The computer predicted band GB(ab;wq) is
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then compared with the experimental data and if the fit is not satis-
factory an iteration process is employed to obtain a more accurate pre-

dicted sideband. This is done with the equations.

new - L[qCXP old _
G, () 1{GB (wq) + AGy (wq)} for q; < q 2 2q;-1,
™V (w) = %P (u ) + ac®Td (uw )} - {1+ 172 (A - 1)}
1 i B g 4y ~ 2qq
old old
{GB (wq) - G (wq)} for 2ql <qsq,, (89)
where

GE*P (4 4+ 1)

B q
A o1d 2
G (w + 1)
B q2

and q and q, are the lowest and highest frequency countings of the one-

new
(

phonon side band., Equation (89) gives a new trial function Gl=

wq) to
be used as the one-phonon spectrum in the convolution process. The
iteration process is repeated until a suitable fit is obtained and the
computer then plots the final prediéted spectral profile and each of the
n-phonon contributions to the total spectrum. The results are plotted
by connecting consecutive points with straight lines. Even though the
convolution process is good enough to get.the reasonable fit to the ex-
perimental data in our case, other cases may need to use moment analysis
to get the higher n-phonon emission spectra at T=0. In our program we
use this moment analysis only to calculate the parameters for comparison

with experiment. A discussion of moment analysis is given in the

Appendix.
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The computer program for the above procedure was developed by
Mostoller, et al. (36) and the flow diagram for the program is shown in
Figure 7.

The program starts to read the necessary control factors such as
lowest and highest one-phonon frequencies, Huang-Rhys factors, number of
phonons included, number of iterations desired, number of temperature
steps for the zero-phonon line widths and positions, several plot con-
trol factors, and criterion factors whether to go to moment analysis
or convolution processes or not. Then the X-axis (wave length) is set.
Once the wave length is set the program reads the measured spectral
function (GgXP (ab;wq)) which is derived from measured spectral inten-
sity divided by w3 because of the frequency factor in Equation (47).

The main program then calls subroutine GMOMIS which normalizes

exp

Gy

(ab;wq) and calculates average frequency distribution and the root

mean square phonon frequency distribution and other characteristic con-

exp

stants of GB

(ab;wq) such as skewness (Yl), excess (Y2) and fifth cum-
mulants (YB) by using Equations (A-3) - (A-12). These are only used for
comparison with the calculations. Then the main program points out the
normalized GiXP (ab;wq). For this fitting program we have to estimate
the one-phonon side bands for which we simply use the experimental data-
out to 0,1397 ev. TFor the best fit we also need some consideration about
the local mode which we will describe in detail later in local mode
chapter.

Now the main program is actually in one.part of the iteration loop.
It prepares the iteration parameters (IFSHOW). Then the subroutine

MOMENT is called. MOMENT calculates Y and Yl(n), Yz(n) and

10 Y0 V3
Y3(n) at T=0 for all phonons for a given Gi(ab;wq) and computes the



Figure 7.
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PLOTG2:
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Flow Chart of the Computer Program
Used. The subroutines used in the
main program do the following:

Calculates the skewness, excess, and the
fifth cumulants from the experimental
spectral function.

For given one-phonon side band, calcu-
lates the characteristic constants

such as skewness, etc. and temperature
dependence of the line width, position
and intensity of the zero-phonon line.

Generates n-phonon spectrum by convolut-~
ing one and (n-1l) phonon spectrum,

Calculates skewgaussian spectral func-
tion from the given constants (Yl,YZ,Y3

and the normalization factor).

Renormalizes the skewgaussian spectral
function and Wpeak’ Wwidth’ Wplus’

Wminus'

Plots the calculated n-phonon band and
the broad bands.

Plots one-phonon band as effective one-
phonon and quadratic contribution part
separately.

Plots calculated and experimental broad
band.
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temperature dependence of the zero-phonon line positions, widths and

the intensity for each iteration as we will describe later. After
printing out the number of iterations the main program calls the sub-
routine CONVOL which generates G(I,J) = Gn(ab;wq) by convolutiong one
and (n-1) phonon spectrum by Equation (85). Then the Gn(ab;wq) is com-
pared with the skewgaussian of Equation (A-8) which is calculated by
subroutine GAUSKW to decide whether the moment analysis is to be used or
not. However, in our case we never go to the moment analysis because of
the structured side bands. After the completion of the convolution the
main program continues to calculate GB(ab;wq) = Gl(ab;mq) + G2(ab;mq)

+ G3(ab;wq) except the first and the last iteration processes which print
out the last convoluted spectrum comparison with the calculated skew-
gaussian. Once the spectral function is readjusted by the Huang-Rhys
factor the skewgaussian recalculated by the GAUSKW and is renormalized

by the subroutine GBLOOP and calculates wpeak’ wwidth’ wplus’ and wminus
for the later comparison. This means Gn(ab;wq) once again needs to re-

normalization because of the maximum value was changed. It is done by

calling the GBLOOP which also recomputes W

peak’ "wideh® "plus® 279

W » Except the first and the last processes in which the G _(abjw ),
minus n q
GIOT(J) = GB(ab;mq) and Gl(ab;wq) = Gll(ab;wq) + Glz(ab;wq), GB(ab;wq)

= ngP (ab;wq) are plotted, then G?ew(J) will be calculated by the

Equation (89) for the better fit to the measured spectrum. Actually

this is the main part of this program. Once G?eW(J) is generated, sub~-
routine GMOMIS again calculates the moments parameters to compare with
the experimental values before renormalizing the new calculated each
Huang-Rhys factor. The program then prints out all the needed calculated

and experimental values. It also sets the new Huang-Rhys factor for the
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next iteration processes. The main program also prints out the wave-
length, calculated Gn(ab;wq), skewgaussian, and the total spectrum along

with the temperature dependence of W after

peak’ wWidth’ wplus{ ¥oinus
calling GAUSKW and GBLOOP by setting the new individual Huang-Rhys fac-
tor.

This is the whole first iteration process. This iteration process
will continue up to the satisfied fitting level which may be estimated
by the outputs. After the whole iteration the main program will punch

the newly calculated individual Huang-Rhys factors and complete the

program execution.



CHAPTER III
EXPERIMENTAL EQUIPMENTS AND SAMPLES

The SrTiO3 crystal doped with Cr3+ used in these experiments was
grown at the National Lead Company. It contained 0.02% of Cr203 by
weight. A sample was cut and polished with dimensions of 10.70 x 7,30 x
0.80 mm3.

The apparatus used for the measurement of absorption spectra was a
Cary Model 14 spectrophotometer. In the visible region a tungsten lamp
was used as a source and a 1P28 photomultiplier tube as a detector. In
the ultraviolet region (from 3500 K down to 2500 X) the source was chang-
ed to a hydrogen lamp. For the infrared region the tungsten lamp was
the source and a lead sulfide cell was used as a detector. The spectro-
éhotometer records the optical density as a function of wavelength.

The-block diagram of the continuous fluorescence apparatus is shown
in Figure 8. The monochrometer shown between the source and the sample
is used only for excitation experiments. For studying continuous fluo-
rescence spectra, the sample was illuminated with white light from a
water cooled PEK AH-6 1000 W high pressure mercury arc lamp filtered
through 4 cm of saturated CuSO4 solution. The fluorescence emission was
chopped at 2000 Hz and focused on to the entrance slit of a Spex Model
1704.one-meter écanning monochrometer. The monochrometer has a Czerny-—
Turner mount with the grating blazed at 5000 X having a ruling of 1200

lines/mm. The signal was detected by an RCA C31034 photomultiplier tube
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which was thermoelectrically cooled. The modulated signal was amplified
by a Princeton Applied Research Model 128 lock-in amplifier tuned to the
reference signal from the chopper. The amplified signal was displayed
on the Heath Model EU-205-11 strip chart recorder. Absolute calibration
of the detection system was accomplished with a quartz-iodine 'standard
lamp. The response factor of the system detérmined from the calibration
is shown in Figure 9.

For low temperature measurements the sample was mounted in an Air
Products Displex Helium Refrigeratot Model CS~202, By balancing the
heat from a small electric heater installed on. the cold finger of the
cryostat against the removal of heat by the refrigerator, temperatures
between 8°K and room temperature could be obtained and held accurately
for the needed periods of time. The temperature on the sample was
measured with a gold-chrominel wires.

The time dependence of the fluorescence was monitored using the
multichannel scaling technique shown in Figure 10, The sample was ex-
cited by a Xenon Corporation Model 457 Nanopulser with a repetition rate
of approximately 40 Hz and a pulse width about :10.0 nsec. The exciting
light was passed through a Schoeffel Instrument Corporation GM 100
grating monochrometer and the fluorescence light was passed through a
Corning 2-64 color filter before being detected by a cooled RCA C31034
photomultiplier tube. Signals from the: 1light pulser and phototube were
sent to the start and counter terminals of a Nuclear Data 256 channel
multichannel analyzer. The signal taken from the ninth stage dynode of
the phototube was passed through a scintillation preamplifier, spectro-
scopic amplifier and a single channel analyzer set to pass only single

photon-events. The signal which was built up in the multichannel



WAVE LENGTH (nm)

790 820 850 880

[T T T | —
%: —
"EIOB: =
o — -
l= E :
> — —
-3 L —

)

R RALLLL T TTTTI

LI il LN 1

I

=]
)

TTTTT

SPECTRAL IRRADIANCE (77.25
Q

[EEI

|

i f 1 { !

1.573

Figure 9.

1.543 1.513 1.483 1.453 1.423 1.393
PHOTON ENERGY (ev)

Response of Luminescence Detection System as a Function of
Photon Energy

TL



APARTURE CONTROLER

TFILTER
° -7~ —CRYOSTAT
CA ; \
c31034 -\
|_PMT LT sampLE
L
['Y
v [ O
SCINTILL'N e MIN SCOPE
PRE.AMP.
A SUPPLY CHROMATOR
] FREQUENCY MULTI-
S'L?,v;fs -+ DIS- »| CHANNEL —>RECORDER
CRIMINAT ANALYZER
\ NANO PULSER l 3
TIMING CONSTANT puaL |
FILTERING -»| FRACTION ———| COUNTER
AMPLIFIER DIS. . - TIMER
SPECTRO- TIMING
SCOPY +(SINGLE CHA.
AMPLIFIER ANALYZER

Figure 10. Block Diagram of the Fluorescence Decay Time Measurement Apparatus

(44



73

analyzer was recorded on a strip chart recorder., For the decay time

measurements at low temperatures the sample .was mounted in the same re-
frigerator as for the continuous fluorescence spectrum for the excita-

tion by the Xenon Corporation Model 457 nanopulser.



CHAPTER IV
RESULTS AND INTERPRETATION-~VIBRONIC SPECTRA

Figure 11 shows the fluorescence spectrum of SrTiOB:Cr3+’at about.

8°K and 150°K. At low temperatures the sharp zero-phonon lines (Rl and
R2) are split by about 4.08 x 10'—4 eV whereas in the high temperature
cubic phase only one R line appears. The low energy vibronic sideband
appears as a series of peaks spread over 0.1530 eV from the R lines. The
intense, sharp peaks at 1.4913 eV and 1.4203 eV are due to a local vibra-

tional mode and its harmonic as discussed in the following chapter. The

other structure can be associdted with lattice phonons.
Low Energy Vibronics

Table VIII lists the energies for phonon modes in strontium titan-
ate détermined experimentally through infrared absorption, Raman scatter-
ing, neutron scattering, and vibronic spectroscopy. Since no structure
is observed in the low energy vibronic sideband below 0.0124 eV only
modes of this energy or greater are listed and modes of lower energy are
discussed in the next section. Figure 12 shows the low energy vibronic
spectra at 8%k 1in comparison with neutron scattering dispersion curves
of SrTiOs:Cr3+ and Raman and infrared data. The complete dispersion
curves have been obtained only up to 0.0621 eV; however, a neutron

scattering peak at the T-point has been observed at about 0.1023 eV.

This mode is also seen in infrared spectra along with the four other
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VIBRATIONAL MODES OF SxTiO

TABLE VIII

APPEARING IN SPECTRA OF VIBRONIC, INFRARED

3
ABSORPTION AND RAMAN SPECTRA, AND NEUTRON SCATTERING (UNIT ev X 10—2)
Vibronics (°K) (Ref.) Pure (OK) (Ref.) Assignment
ce3t Mh4+ Eu3t Infrared Raman* Neutron Mode . (Point)

1.30(4) (31)
1.368(8.4) 1.327(20.4) (30) 1.428(297) (6) TOl(X)
1.346(20.4) (30)
1.50(4) (31)
1.315(20.4) (30) 1.470(297) (6) TA(X)
1.483(8.4)
1.485(20.4) (30) 1-486(20.4)(30) 1.491(297) (6) LA (M)
1:23;526?2)(30) 1.564(20.4) (30)
1.65(4) (31) 1.639(20.4) (30) 1.651(296) (6) TOl(A)
1.50(4) (31)
1.869(8.4) TOl(R)
1.688(20.4) (30) 1.805(297) (6) LOl(R)

1.787(20.4) (30) 1.862(296)(6) LA(X)
2.11(4) (31)
2.310(8.4) 2.115(300) (37) 2.073(296) (6) L0 (T)
2.197(20.4) (30) 2.234(20.4)(30) 2.110(77) (29) 2.210(300)(9) 2.110(297) (6) 1

2:296(300) (12)

LL



TABLE VIII (Continued)

Pure (OK) (Ref.)

Vibronics (OK) (Ref.)

NN

ceot wn ol Infrared Neutron Mﬁiii‘%{sfiﬁﬁ )

.28(4)(31)

Conia0 Ay (30y  2334(20.4) (30)
§:§géﬁgf2§) 2185600 6D 2.321(296) (6) 100
2.38(4)31 2.434(297)(6) T, (X)
2.730(8.4)
3:22%226?2)(30) 2.855(20.4) (30) 2.855(296) (6) 2TA(X) 210, (X)
3.10(4) (31)
3 0783000y 30y 3-041(20.4) (30) 3.103(300) (16) 10, (T)
2:222226?2)(30) 3.265(20.4) (30)
3.10(4) (31) 3.116(300) (17)  3.289(297)(6) LO,(I),T0,(T)
3.30(4) (31)
2:232226?1)(30) 3.426(20.4) (30) 3.395(297)(6) 10, (%)

3.478(297)(6) L0, (M)

3.50(4) (31) 3.602(297)(6) L0, (X)



TABLE VIII (Continued)

Vibronics (OK) (Ref.) Pure (OK) (Ref.)

Cr3+ Mn4+ Eu3+ Infrared Raman#*

Neutron

Assignment
Mode (Point)

w W

(@)W e))

o O

.459(8.4)
.430(20.4) (30)

3.823(300) (17)
3.848(300) (16)

.95(4) (31)
.899(8.4)
.923(20.4) (30)

4.580(300) (17)
4,469(300) (16)
4.717(300) (16)

.70(4) (31) 4,791(20.4) (30) 5.710(77) (29) 5.871(300) (37)

5.524(4) (16)

.40(4) (31)
.260(8.4)
.219(20.4) (30)

6.356(20.4) (30)

.079(297) (6)

.120(297) (6)

.549(297) (6)

«590(297) (6)

.673(297) (6)

+809(297) (6)

.880(297) (6)

TO,(X)

TO (M)

TO,(R)
10, (R),10, (R)

LOS(F)

LOZ(M)

LOB(R)

LOZ(X)

6L



TABLE VIII (Continued)

o o [s) (o]
- Vibronics (45) (Ref.) - Pure (CK) (Ref,) Assignment
Cr Mn Eu Infrared Raman* Neutron Mode (Point)

6.78(4) (31) ,
6.622(8.4) 6.827(77)(29) 6.778(300) (9) 6.790(297) (6) 10, (1)
6.616(204) (30) 6.889(300) (12)

7.696(300) (16)

7.808(300) (17)
7.054(8.4)
7.044(20.4) (30) Local Mode
7.20(4) (31) 10, (X)

6.827(300) (10)

8.379(300) (16)
8.391(20.4) (30) 8.342(20.4) (30) 8. 491(300) (17) B8-143(296)(6) 210, (X)
9.319(8.4) 8.937(300) (16)
9.260(20.4) (30) 9.024(300) (17)
11.60(4) (31) 9.186(300) (16) L0, (X)
10.0(4) (31)
9.926(8.4) 10.377(20.4) (30) 9.806(77) (29) 9.980(300) (37) 10.227(297)(6) 10, (T)
9.881(20.4) (30) . . . . . 4

10.664(8.4)
11.430(8.4)

11.445(20.4) (30)

10.799(20.4) (30)

08



TABLE VIIT (Continued)

Vibronics

(°K) (Ref.)

Pure (°K) (Ref.)

Cr3+

Mn4+ - 3+

Infrared

Raman*

Neutron'

Assignment
Mode - (Point)

13.252(8.4) 12
13.195(20.4) (30)
14.203(8.4)

15.417(20.4) (30) 1%

-438(20.4) (30)

.114(20.4) (30)

12.786(300) (16)
12.885(300) (17)

16.447(300) (17)

20.085(300) (17)

2(Local Mode)

*Second-order.

I8
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modes indicated by circles on . the I'-point axis. The T2u mode is inactive
in infrared absorption as are all of the longitudinal optic modes and all
acoustic modes. All phonon modes are inactive in first order Raman
scattering in the cubic phase and most of the data listed in Table VIII
can be attributed to second order scattering processes. Some first order
low energy peaks have been observed at . low temperatures as discussed in
the next section.,

Peaks in the vibronic spectra should occur at frequencies of phonon
modes having a high density of states and being allowed in vibronic tran-
sitions. The density of phonon states is proportional to l/|qu| which
is just the reciprocal of the slope of the phonon dispersion c:;veso
Thus, when the dispersion curves have zero slope there will be a high
density of states region. This may occur at the high symmetry points on
the zone boundary and along some of the lines of high symmetry as shown
in Figure 12, It might also occur at other points of lower symmetry
where dispersion curves have not been obtained. The dashed lines near
the vibronic spectra in Figure 12 indicate the high density of states
regions for the dispersion curves of the phonon modes shown, Their posi-
tions at special points in the Brillouin zone are listed in Table IX.

The selection rules given in Table VI indicate that certain phonons will
not contribute to the observed vibronic spectrum and these are identified
(marked *) in Table IX. A reasonable correlatién can be seen between the
other vibronic peaks and high density of states regions between about
0.0100 and 0.0621 eV. The lower energy region is discussed in the next
section.  The vibfonic peaks at 0.0661 eV and 0.0994 eV correspond to

the I'-point modes observed in infrared absorption. The other vibronic

structure at high energies can be attributed to two-phonon processes as



TABLE IX

VIBRATIONAL NORMAL MODES AT 297°K FOR THE PRINCIPAL SYMMETRY POINTS DETERMINED

FROM NEUTRON SCATTERING AND BY A RIGID SHELL MODEL

Points Modes (x lO_2 eVv)
Irreducible
R i T
ansverse epresentation 1u Tlu Tlu T2u Tlu
Experiment 0 1.14+0.04 2,10+0.04 3,.29%0,06 6.78+0.04
T Theory 0 1.06 2.14 3.42 6.93
(0,0,0 i
,0,0) Irreduc1ble. T T T T T
Representation 1u 1lu 2u 1lu 1u
Longitudinal Experiment 0 2.10+0.04 3.29+0.06 5.67£0.21 10.21+0,12
Theory 0 2,11 3.42 6.10 9,06
Irreducible E * Eu E * Eu
Representation 8 &
Transverse Experiment 1.47+0.02 1.47£0,02 2.43%£0.03 4.09+0.08
X ) Theory 1.48 1.51 2.49 3.85
(0,0,% Irreducible A2u Al * Bl *
Representation & &
Longitudinal Experiment 1.43+0.06 3.39+x0,08 3.60+0.06
Theory 1.68 3.72 3.81
Irreducible * % %
Representation Blg Blu A2u Eg
Transverse Experiment 1.09+0.02 1.38+0.,05 1.38x0.,05 4,11+0.08
M Theory 0.83 1.34 1.50 3.78
R
(3,%3,0) Irreducible
. E E A, *
Representation u u 1g
Longitudinal Experiment 1.49x0,06 3.47£0.08 5.81+0.10
Theory 1.35 3.70

€8



TABLE IX (Continued)

Points Modes (x 10»-2 eV)
Irreduciblee T B % T
Representation 2u lu. u 1lu

) Transverse Experiment 0.64+0,02 1.80+0,05 5.58%£0.08 5.54x0.17
R Theory 0.73. 1.54 5.14 5.23

(5,4,
Irreducible T T T T, *
Representationwum..29, ,vlg lu 28

Longitudinal Experiment 0.64+0.02 1.80£0.05 5.58+0,08 5,87+0.21

Theory 0.73... . .1.54 5.23 5.99

*Forbidden by vibronic selection rules.

¥8
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discussed below.

The computer program described in Chapter II can be used to separate
the one-phonon and multi-phonon contributions to the observed low energy
vibronic sideband. For G;xP(ab;wq) the observed intensity of the vi-
bronic spectrum divided by w3 at every 0,000497 eV was used (see Equation
(47)). Since the structure in the vibronic spectrum closely resembles
that predicted from phonon dispersion curves up to 0.1243 eV as discussed
above, the first estimate for Gl(ab;wq) was ‘taken as the observed shape
divided by w3 of the sideband up to and including the local mode at
0.0706 eV, The initial value we tried for the Huang-Rhys - factor was
0.766 which was the value bbtained from finding the ratio of the area of
the zero-phonon lines to that of the estimated one-phonon sideband at
8%k (see Equation (87)). The results of this are shown in Figure 13,
Part (b) of the figure shows the one-phonon, two-phonon, and three-phonon
‘contribution to the vibronic spectra predicted by the computer after
going through the iteration process described in Chapter II. This re~
' sults in the good fit to the data shown in part (a) of the figure. 1In
this case three-phonon. and higher order processes are predicted to make
negligible contributions to the spectra. The two~-phonon processes are
predicted to make almost no contfibution to the structure observed in
the sideband but they do make a significant contribution to the spectral
intensity between about 0.0500 and 0.1500 eV. The one~phonon contribu-
tion predicted by the computer is similar to the initial estimate used
as input for Gl(ab;mq) below 0,0800 eV but in addition it includes much
of the sideband and structure greater than 0,0900 eV. This is not ex~-
pected in comparison with neutron scattering results as seen in Figure

12,
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Band Spectrum Using Huang-Rhys Factor S = 0.766
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phonon contribution to the vibronic broad band
(vrsreo-2es) with S = 0.766.
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In an attempt to account for this apparent discrepancy in the pre-
dicted one~phonon vibronic sideband we explicitly included the interac-
tion between the local mode and the lattice modes by including the quad-
ratic term in Equation (75). To do this we assume that the coupling
strength represented by the parameter a is the same for all lattice modes
with energies less than the local mode. In the simplest approximation

the quadratic coupling coefficients can be written as

V2 = (aV V )2 = a2V2V2 = azs S wzwz ﬁ4 . (90)
qqlm q qlm q Um q Q1 q Ay
Thus,
2,2 “q’q w:w: ~lughe, It
gz(t) - aéﬁ 5 1m lg (e 1m ~1) . (91)
(w + w )
qlm

Then the n-phonon spectrum predicted in Equation (83) becomes-

o i)t {g () + g (0"
Gn(ab;w) = e_S S dt e ° 1 - Z R (92)

-0 Ne

and the one-phonon spectrum with this quadratic coupling will be approxi-

mately

..-S
! . = - —
Gl(ab,w) 2re [E'Sq,é{(wo w) wq,}

2 2
2, 2 quq “0“q
+ & ? g Im lg {6([wo—w] - +u D
Tw +0 ) 4 Qnm
q qlm

+ 6 (wo—w>}] . (93)
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Now the spectrum can be considered in three distinct regions. For
w_ < 0,0706 (w ) ev ,
q U
or
w 2 0.,1476 (w + w ) ev ,
4 Um nax
the predicted one-phonon spectrum is the same as with no quadratic coupl-

ing,

' _ -5 =
Gl(wq) = 27 e Sq = Gl(wq) . (94)

For

0.0706 eV < wq < 0.1476 eV

2 2
2,2 Sq-q Sq “g-q; “q
Glw) = 2m e {s_+ “‘1;1 R el (95)
1 1 (w _ + w )
1 qlm qlm

An estimate for the quadratic coupling parameter o can be obtained from
comparing the intensity of the local mode peak with that of its first

harmonic

2
G (2w ) = ﬂ%—=e's 02 5% 2 (96)

Um qlqulm o
This gives a = 255 1/eV.
The results of this fitting procedure are shown in Figure 14, Part
(a) of the figure shows the best fit between the observed and predicted
results which was obtained with o = 350 1/eV. The fit is excellent for
energies less than 0.0800 eV. Above this energy all of the observed

structure is predicted but the intensities are not always exactly cor=-
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rect. Part (b) of the figure shows that most of the structure in the
spectrum is due to the one-phonon contributions with quadratic coupling
while two-phonon processes contribute significantly to the intensity of
the spectrum only between about 0.0500 and 0.1100 eV and higher order
processes are negligible. Figure 14(c) shows the predicted one-phonon
sideband and the contribution due to quadratic coupling with the local
mode. The one-phonon spectrum extends up to 0.0800 eV with two small
peaks occurring at higher energies. The quadratic coupling accounts for
most of the spectrum above 0.0800 eV, This shows the importance of quad-
ratic coupling in the vibronic spectrum of this system. The discrepan-
cies between the observed and predicted sideband can probably be attri-
buted to the fact that the coupling constant can be different for dif-
ferent phonon modes.

The structure in the one-phonon sideband shown in Figure 14(c)
compares well with what would be predicted from other data as shown in
Figure 12. All of the observed structure in the vibronic sideband at
lower energies than the local mode is part of the one-phonon contribu-
tion. The only significant structure predicted at higher energies occurs
at 0,1000 eV which is also a peak in the one-phonon sideband. The very
small peak at 0.1148 eV is insignificant:

The one-phonon sideband can be considered an effective phonon den-

sity of states for the host crystal. ' This can be written explicitly as

2
Vv
= . = —] ) - = _-g_s - -
p (w) Gl(ab,w) g Sq S(wo ) wq) geﬁw 5 G(wo ) wq)n 97)
q

Using this and Equations (47), (78) and (84) the vibronic transition

probability at low temperatures becomes
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L ()
ab ~ Fab

3 2
Cw IMabl Gl(ab;w)

3 2 -§ .
= 2nCw” M, | e LS, 8 (wy=w-u)
o 0(,)
= 2% Cw3IMab|2 e S g R (98)
4 W
q
where
o p(w,)
s = L% —2 (99)
270 2
4 wq

This shows how the effective density of states is obtained from the ex-
perimentally observed one—phonon vibronic¢c sideband. This p(wq) can then
be used to obtain theoretical predictions for the temperature dependences
of the widths and positions of the zero-phonon line as described in the
next chapter.

In order to obtain the real density of phonon states for the crys-
tal from the effective density of states observed in vibronic spectra it
is necessary to explicitly express the phonon frequency and wave vector
dependences of the electron-phonon coupling parameter for each phonon
mode. This is quite complicated to do and has been done in only a very
few cases on crystals with simple structures (1). Approximations for
these expressions in the limit of long wavelength phonons have given
reasonable results in some cases (2). Such approximations have been
shown to be especially good in the spectral region very close to the

zero-phonon line (37,38). We outline here the long wavelength phonon
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model and analyze our results for SrTiO et in terms of this model.

3

In order to keep the calculations as simple as possible we neglect
difference in masses of the impurity ion and the ion it replaces in the
lattice. Also the phonon modes of the crystal with impurities are as-
sumed to be the same as the phonon modes of the perfect crystal. Final-~
ly, only nearest neighbor vibrations are assumed to make important con-
tributions to the electron-phonon interaction at the impurity ion.,

The electron-phonon interaction Hamiltonian developed in Chapter II
must be rewritten using an exact expression for the crystal field in the
expansion given in Equation (4) and using the exact expression for the
strain tensor instead of its average value given in Equation (7). The
position of the nuclei of the ions in the lattice is designated by the
vector R with the impurity nucleus located at the origin of the coordin-
ate system, R = 0. The coordinate of the transition electron on the
impurity ion is r. The effective charge and the displacement from
equilibrium of the atom at position R are given by z(R) and u(R), re-
spectively. The crystal field at the transition electron can then be

written as

ez (R) (100)

\' = L .
® 7w R+ {u@® - u@? -z

In the usual case of localized impurity electron states and small appli-
tude lattice vibrations,
|lu® - w(@| << |B| and || << [R], (101)

the crystal field can be expanded in terms of the relative displacements

u@® - ulo),
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V@ = 2 TZ.EB)I -T-E%%g ®, - r )l ® - u @}-... (102)

As was done in Equation (4) the first ‘term in this expansion is consider-
ed ‘part of the Hamiltonian for the static crystal and the second term is
used as the electron-phonon interaction Hamiltonian. Because of the
second condition in Equation (101) this term can bé expanded in a Taylor

series in r, then the electron-phonon interaction Hamiltonian becomes

i-v ez(R)
By o = - Rﬁo E |R—r|3 (Ru r ){u (R) - u (o)}
ez(R)

= - Rio z —I—T3— Ru{uu(_f_{_) - uu(g)}

T ez (B.) .
B%_ E |R|5 (BRU.E.E -r |R| ) {u [®R) - u (@} . (103)

Note that the first term is independent of the electron coordinate r and
therefore has non-zero matrix elements between the same electronic
states. This is not true for the second term. Thus when oniy the first
term is used to determine the matrix elements for vibronic transitions

given in Equation (9) the only term left in the sum over intermediate
el el
TR

electronic part of the vibronic transition will be the same as that of

electronic states is VY . Thus the multipole character of the

the zero-phonon line. If the second term in Equation (103) is used as
the interaction Hamiltonian in Equatien (9) the intermediate states will
be different than the initial state and the electronic :part of the

vibronic¢ transition may be electric dipole for either electric dipole
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or magnetic dipole zero-phonon lines. This is especially important for
crystal structures with a center of symmetry where electric dipole tran-
sitions are forbidden for the zero-phonon line.

Next we want to express the displacements in terms of the local

strain tensor.  To do this we expand the ionic displacements

'()uu (R) auu R)
- = R S 1 RIS
G @+ AR - u ®) = F AR, v R TR 3R 3R, AR BRgy  (104)

which is valid for long wavelength phonons. For our case this expansion

becomes
du (o) Buu(g)
-u (0) = 1 L . (
u o+ R -u @) I R R, +% L% R, OF, R R, (105)
The strain tensor at r = 0 can be written as
@ Bu (@
= LY (= —r—
Euv(g) = 2{ BR\) + BRU } . (106)

At this point we must consider specific lattice structures. Since
strontium titanate is a very complicated structure we will assume a simp-
ler structure to try to obtain approximate results. Rocksalt and zinc
blende are the only two structures which have been treated in detail
(39), The former is centrosymmetric while the latter does not have a
center of symmetry. Since strontium titanate does not have a center of
symmetry at low temperatures it should be more closely analogous to zinc
blende and we will outline Vredevoe's treatment of this structure.

Figure 15 shows the nearest neighbor configuration of zinc blende.

Both terms in Equation (103) must be evaluated for this structure.

Using Equation (109) and the values of the nearest neighbor coordinates
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shown in Figure 15 the summation over R can be evaluated. The first

term is
4 8 ez : Buu(g)
- & ze R { R) - 0)} = - —— L = R R
Mo 5N @ T u @ = - eGSR,
Bzuu(_Q_)
FIEE A, WS R
oe_ (0)

8ez 2ez g1 __uV T
3Y/3 a M Pp(g) 3/3 HVE aRg (107)

The second term becomes

2
(3R _R'r - ru|5| ) fu, ® - u (©)

32 4 382 du (@ 2% (Q)
-2 ez (32 XRR. T - r)(Z——L——R\)+1/2ZE——E-—-RR)
v

—_— I
/3 a5 Rég_ WE HWEE TR VA BRv £ BRv BRg v E

o Aez oL (0, (108)

where Z' implies that all summation subscripts are different.

Combining Equations (107) and (108) gives

. e (0
i-v _ _ _8ez ) 2ez 1 ?Hy(") 16 ez ! 0 . (109

: 5 0) - - re
int 3/3 a M euu — 3/3 uvg BRE 3/3 82 Wvg v g =

The displacements can be written in terms of the phonon creation

and annihilation operators using Equation (5),

1 o u ut
R) = — (— b"™ +b I — 110
’..I.Ll (S__,_) ,..._Nm (zwq ( q q ) e ’ ( )
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A

where N is the number of unit cells, each of which has mass m, and Hqu

is the polarization vector. Thus,

2
i-v 16 ez 1\ b u ut, Suora a” 3!
Hipe =~ 7 O v E (bq + bq ) IIq [2 9@+ F vd WYy
3V3 a q
g#u
Z'
+ ok, rvqg] . (111)

£#u

To simplify this expression let us assume that the non-diagonal term is
much more important than the two diagonal terms. The validity of this
assumption will be discussed later. Also let us restrict ourselves to
the limit of long wavelengths where the surfaces of constant energy are

approximately spherical and q = wq/v0 Then Equation (111) becomes

. A, L .
BV - - ez A%y M+ MH o T, (112)
3v3 a“ 2Nmv 4 4 4 H
This can be expressed as
MR ST R T R T
int T q VFUL Vi g q q

2 U U Ut :
= V I b + b o
qu q ( q q ) V;U v’

where
1
V = o B (113)

where D is a constant. Using this the effective phonon density of states

can be written as .
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D2 g(wo—w)
pw) = Zq‘ﬁzw 6(w0~w—wq) = —;;:;——, = g(wq)/mg), (114)

q

where g(wq) is the real density of phonon states of the with impurities
with the approximations made above.

The phonon frequency distribution for strontium titanate can be ob-
tained from our experimental data using Equations (98) and (114). The
results are shown in Figure 16. They were obtained by multiplying the
projected one-phonon vibronic sideband shown in Figure 1l4(c) by wq. The
results are compared to the phonon density of states obtained by Stirling
(6) from theoretically fitting his neutron scattering data. The peak
positions in the two curves are in excellent agreement, The two peaks
appearing in the neutron scattering data at 0.0380 eV and 0.0455 eV
which are not present in the vibronic data are forbidden by symmetry
selection rules as discussed in .Chapter II. The theoretically predicted
high energy peak at 0.0902 in the neutron scattering data does not agree
well with experimental results. As seen in Figure 12 the I'-point neutron
scattering peak is observed at 0.1021 eV which agrees well with the vi-
bronic data. The peak at 0.0154 eV is due to contributions from phonons
at several different points in the Brillouin zone. Several of these are
forbidden in vibronic spectra (see Table VI) which may account for the
relative low intensity in the vibronic density of states. Also these
phonons are not near the center of the zone so the approximation of Equa-
tion (113) may not be good in this region. The fact that good agreement
exists between the densities of states obtained from neutron scattering

data and vibronic spectra implies that the presence of impurities does
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not greatly effect the perfect lattice phonon frequency distribution and
that no significant contributions to the structure in the density of
states are made by general points in the Brillouin zone. Notice that,
even though better density of phonon states to the Stirling's results
can be obtained by multiplying one or w;l to the effective one-phonon
density of states, by now we couldn't find out the physical reason.

In order to check the vaiidity of the above assumptions the expres-
sion for the transition rate can be obtained. This can be accomplished
using Equation (1) and the expression Equation (112) for the ion-phonon
interaction Hamiltonian, If we write the components of q explicitly in-

stead of replacing them with wq/v this becomes

el 3 o el ?l. lyel- >
16 ez 2 OtV Y <rp Errlyyo<rfimgrln ¥ ng
Pab = ( 2) 2w Nm-) u é E I qE x el el
3V3 a q Vas 4 ] ES - EST + 4w
J a q
el 41)r [v8Lin ><v®l|pop|vels |2 1(E -E)t/A 2
b ’q v''] q 3 '=='"a e -1
* el _ _el F—=—= ] (115)
Ej - Ea + fw a b

This is similar to Equation (9) except that we have now included the time
dependence which was previously neglécted and we have not expressed the
ion-photon interaction Hamiltonian explicitly since at this point we are
only interested in the phonon frequency dependence. For the low tempera-
ture region of interest here the phonon population number can be set
equal to zero. The sum over the components of g.and the polarization
vectors can be simplified by noting that under a symmetry transformation

of the crystal §

f=5
=
Tamy
non
W
e’
i}

LU
IS, (g - (116)
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The typical terms appearing in Equation (115) can be written as

The transformation matricies for the zinc blende structure predict that

only terms with u=f and £=v are non-zero. Also in the long wavelength

limit treated here [Z ﬁqu]z = 1 so [ﬁqu]z can be given the approximate
u

value of 1/3. With these approximations the transition rate is

i(Ea - Eb)tﬁﬁ 2

12 & L @

(16 ez )2 (6‘ﬁ ) ' 2

P r'. q. " |M -
ab 3/3 a2 qum UaV,E & ab E E

a b

The square of the exponential can be expressed as a delta function inte-

gral over q. Performing this integration gives

2, 2
_ /16 ez (2 4 ' 2 . cos ¢9 _ _ _
Pab - (3/5 a2) (6 Nm) u%& |M3bl d vq G(Ea Eb B ﬁmq) dg
16 ez 2, A ' 2 .2t v m/a 3 2
= v et §[#A(w -w)-vq]dq sinddbcos”d dd
(3/5 a2) (6va) UVE abl o o0°0 9 0 4
3
(0 ~w)
- (ST 61:Iﬁmv) 3t M2 =5 'zsl"
3V3 a H Av
16 ez .2 4w 3 2
= ( ¢ ) ol Il [T, (118)
3Y3 a2 18 ﬁz v4mN 4 wvg ' ab

Where w 1s the photon frequency, W, is the frequency of the zero-phonon
line and the relation wq = vq has been used.

This expression predicts that the vibronic spectrum should exhibit
an intensity proportional to the cube of the frequency difference from

the zero-phonon line in the long wavelength limit. This limit should be
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a good approximation near the zero-phonon line. Figure 17 shows a plot
of the intensity of the vibronic sideband near the R lines of

SrTiO3:Cr3+. This is seen to vary as

2.9

I = A+ Bwq° (119)

which is excellent agreement with the above predictions. The additive
constant may be due to the R2 line vibronics or the effects of micro-

scopic strains. A similar factor was found for A1203:Cr3+ (40). The
good agreement in this region indicates that the approximations made in
deriving Equation (113) are not unreasonable. Specifically, it indicates
that neglecting the diagonal terms in Equation (111) is justified since
they predict a vibronic intensity proportional to the first power of the
phonon frequency (39). Similarly, crystal structures with a center of
symmetry predict an intensity of the vibronic spectrum near the zero-
phonon line proportional to the fifth power of the phonon frequency (40).
Finally, it should be emphasized again that the phonon density of states
as obtained above from the vibronic spectrum is really a good approxima-
tion only in the long wavelength limit. A more exact treatment requires
a lattice dynamics model for the frequency dependence of the phonon wave
vectors at different symmetry poilnts away from the center of the Bril-
louin zone., Some attempt has been made to justify the extrapolation of
predictions of the long wavelength limit into the short wavelength re-
gions (2) but the validity of this is better demonstrated by the good
agreement with other results in specific systems such as the one dis-

cussed here.



103

100 [T T T LI A B B B B | T ]

50 n

> 20 |- ~
F
»
2

w0} -

'— - -

z X ]

. = -

> °T ]

- — -
- ¢

-4 L -
w
o

2 + -

| -

L1 L L1 1 L1t 1 7

| 2 5 10 20
RELATIVE PHOTON ENERGY
(x 10-3eV)

Figure 17. Intensity Change of the Vibronic Sideband Close to
the Zero-Phonon Lines at 8°K., Curve shows the
measured intensity and straight line is after
subtracting a constant A=3.,0 to fit the equation
IS=A+B(wO-w)n, where B = 0.22 and n = 2.9.
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High Energy Vibronics

The most interesting phonon modes in strontium titanate are the low
frequency transverse optic soft modes responsible for the dielectric
properties and the phase transition. These lie within about 0.0155 eV
of the zero-phonon lines in the vibronic spectra. Although some faint
structure is observed in this region in the low energy vibronic sideband
of Cr3+ shown in Figure 11, it appears on the side of the very broad,
intense band peaking near 0.0149 eV whose tail extends throughout this
region. In an attempt to observe these low frequency modes more dis-
tinctly, we observed the vibronic sideband on the high energy side R
lines in the fluorescence spectrum. At low temperatures the high energy
vibronic transitions are less intense than the corresponding low energy
transitions due to the lack of phonons available for absorption., How~
ever, the transition probability varies with temperature as

1

n(w ) = —g—7Fmr—
q éﬁwq/kT _1

(120)

and this predicts that the vibronics due to high frequency phonons will
show a greater intensity decrease at low temperatures than those due to
low frequency phonons.

Figure 18 shows the high energy vibronic sideband at several tem—
peratures with a resolution of about 0.4A. The band peaking near 0,0149
eV is much less intense relative to the low frequency peaks than it was
in the low energy sideband and a great amount of structure can be easily
seen in this region. There are more than twenty peaks that can be seen
in the spectra within 0.0155 eV of the zero-phonon lines. The positions

of these peaks respect to the Rl line at 40°K are listed in Table X. As
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temperature is increased the whole spectrum, R-lines plus vibronics,
shifts to higher energies. The vibronic peaks broaden and much of the
structure is lost. The lowest temperature at which the most important
peaks become prominent is indicated in the table,

Table X lists phonon frequencies observed by Raman scattering and
neutron scattering in the same range as the vibronic peaks listed. No
infrared results are listed because measurements have not been done at
temperatures as low as 40°K and the only infrared active mode reported
in this frequency range is the temperature dependent zero wave vector
lowest transverse optic mode (8,12). Thus infrared absorption peaks re-
ported in.the literature occur at higher energies although they would be
consistent with the vibronic peak at 0.0036 eV if extrapolated to low
temperatures. The same statement is true for work done on the vibronic
spectra of europium doped strontium titanate; data is reported at 77°K
or above and the only peak seen in this frequency range is shifted to
higher frequencies at these temperatures (28,29). For chromium and man-
ganese doped samples low energy vibronic peaks have been reported (30)
between 0.0124 eV and 0.0155 eV at low temperatures and the results are
consistent with the three highest frequency high energy vibronic peaks
listed in Table X.

It appears that all the peaks reported in Raman and neutron scatter-
ing data can also be observed in the vibronic spectra shown in Figure
18. Some differences in exact peak positions might be expected due to
the effects of impurity ions in the crystal. In the octahedral phase
all phonon modes are inactive in Raman scattering and observed peaks in
the spectra must be due to two-phonon processes. In the tetragonal phase

several first order peaks are observed. First order Raman scattering is



TABLE X

LOW FREQUENCY VIBRATIONAL MODES  (eV FROM ZERO-PHONON-LINES) OF STRONTIUM TITANATE:

Vibronic (40°K)

Raman (T°K) (Ref.)

Neutron (TOK)(Ref.)

Assignment

0.0015
0.0021 (big at 8°K)

0.0022
0.0027
0.0031

0.0034

0.0036 (big at 8°K)

0.0038
0.0046

0.0051

0.0019 (40) (5)

0.0027 (40) (5)
0.0035 (40) (13)

0.0035 (8) (5)

0.0037 (79) (17)

0.019 (60) (6)
0.0019 (40) (7)

0.0027
0.005

(40) (7)
(90) (6)

FZS(R), Eg (lowest TO mode)

PlS(F), (lowest TO mode)

Broad, Raman peak, probably
second order

Impurity induced local mode

L0T



TABLE X (Continued)

Vibronic (40°K) Raman (T K) (Ref.) Neutron (TOK) (Ref.) Assignment
0.0041 (78) (15)
. o 0.0055 (77) (13)
0.0055 (big at 20°K) 0.0055 (40) (5) 8'8822 228; E?; rs(R), A (lowest TO mode)
0.0056 (20) (17) ) 8
0.0061 (4) (16)
0.0062 (125) (14)
0.0060
0.0065
0.0071
0.0081 (120) (7)
0.0081 0.0082 (125) (14) 0.0087 (78) (6) M3 (lowest TA mode)
0.0084
0.0088
0.0091 (78) (15)
. o 0.0093 (78) (16)
0.0093 (big at 40°K) 0.0097 (77) (13)
0.0101 (79) (17)

0.0107

0.0113

0.0125

(big at 40°K)

(big at 40°K)

Probably second order

80T



TABLE X (Continued)

Vibronic (40°K)

Raman (T°K) (Ref,)

Neutron (TOK)(Refc)

Assignment

0.0129 (big at 40°K)

0.0140 (big at 40°K)

0.0151

0.0145 (125) (14)

0.0130
0.0134

0.0133

0.0138
0.0143

0,0145

0.0145

0.0149

(120)
(297)

(7)
(6)

(90) (6)

(297)
(297)

(297)
(120)

(297)

(297)
(120)

(6)
(6)

(6)
(7)

(6)

(6)
(7

23(lowest,TA mode)

by
M3
My
%y

Mg

i S I
= W v uun

(lowest
(lowest
(lowest

(lowest

(lowest

(lowest

(lowest

(lowest
(lowest

(lowest

LA
TA
TO
LA

TO

TO
TA

TA

mode)
mode
mode)

mode)

mode)

mode)

mode)

mode)

mode)

‘mode)

60T
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limited to phonons with zero wave vector in order to conserve momentum
and in the current model for the 110°K phase transition (5), the unit
cell doubles causing the corner of the Brillouin zone (R-point) to be-
come the zone center and thus permitting R-point phonons to be allowed
in Raman scattering. Two of the observed first order peaks at low tem-—
perature are attributed to the F25(R) phonon mode whose degeneracy has
been partially lifted by the lower. symmetry.

The phonon frequencies listed in Table X from neutron scattering
data were obtained from the zero-slope regions of the published disper-
sion curves.

The last column of Table X lists the suggested assignment of these
lines. Most of these were determined from the dispersion curves obtain-
ed from neutron scattering. The type of branch and polarization at the
center of the Brillouin zZone are listed in parenthesis, Both neutron
scattering (7) and Raman scattering (5) measurements have identified the.

splitting of the R~point TI',. phonon mode at low temperatures and the

25
symmetry designations of the two components are also listed. There are
two possible second order peaks and one impurity induced local mode sug-
gested by Raman data. The Raman peaks reported at 0,0082 eV and 0.0145
eV are probably second order processes since the M-point phonons which
can appear in neutron scattering and vibronic spectra and not allowed in
light scattering. Vibronic selection rules derived in Chapter II allow
all of the suggested assigmments., The rest of the unidentified vibronic
peaks might be attributed to several sources; further symmetry splittings,
impurity induced local modes or vibronics of the R2 line. The 0.0093 eV

peak which appears in both vibronic and Raman spectra but not neutron

scattering may be due to a second order process.,
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It is interesting to note that the most prominent peaks in the vi-
bronic spectra do not increase with temperature proportionally to the
concentration of phonons given by Equation (120) as expected for high .
energy vibronics. Instead they increase to a maximum intensity at about
40°K and then decrease. Yamada and Shirane (7) report a similar tempera-
ture dependence of the intensity of the neutron scattering peak for the
lowest TO mode with zero wave vector. They attribute this dependence to
the temperature variation of the phonon frequency which appears in the
denominator of the scattering cross section. A similar dependence ap-
pears in the vibronic transition probability as discussed in the previous
section. The frequencies of the FlS(P) mode and the two'components of
the T25(R) mode have also been shown to vary with temperature (6,7,5).
Unfortunately, the tail of -the zero-phonon line broadens and increases
in intensity to the extent that the temperature dependence of the posi-

tions of the low-lying vibronic peaks can not be accurately determined.



CHAPTER V

RESULTS AND INTERPRETATION--ZERO-PHONON

LINES AND THE LOCAL MODE

The interaction of lattice phonons with the transition electrons on
the impurity ions gives rise to a temperature dependence of the zero-
phonon lines. As temperature is raised they change in intensity, shift
in positidn, and broaden, and the fluorescence lifetime decreases. Local
vibrational modes shows a similar change in width, position and intensity
with temperature due to their interaction with lattice modes. 1In this
chapter we report the experimental data obtained for these temperature
dependences in SrTiO3:Cr3+ and discuss possible interpretations using a

Debye phonon distribution and using the effective phonon distribution ob-

tained from the vibronic spectra as described in the previous chapter.

Temperature Dependences of the Width, Position,

and Lifetime of the Zero-Phonon Lines

As mentioned in Section 3 of Chapter II the temperature dependence
of the zero-phonon line comes from the quadratic coupling function gz(t)
in Equation (75). In the region of the zero—phonoﬁ line in the limit of
-long times the linear coupling term gl(t) vanishes and using the asymp-
totic relation

lim (1_eixt) :
Lt | = m|t] 8(x) +1 7 sin t & (x)

X
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the quadratic term becomes
g, (t) = - rl;{ + 0(t), : (121)
where

T v Y@ +Dn s@ -uw ). (122)

z
72 419 49, 91 9 94 9

Thus the zero-phonon spectral function 1s gilven by

5 iut e—(-iwot + 8 + 10t + T'|t})

dt e

It
[

Go(ab;w)
(123)

-S 2T
2
(wo -w - +7T

2 .

This describes a Lorentzian line centered abeut the frequency w = w, - Q
and having a full width at half maximum equal to 2I'. Both ‘the Iine width
and line position have a temperature dependence centained in -the phonon
frequencies as seen in Equations (122) and (73). The line intensity
varies with temperature through the phonon occupation numbers in S as
given in Equation (72).

Using the definition of the ceupling ceefficient ‘in terms of the
individual mode Huang-Rhys facters given in Equation (78), the ‘tempera—

ture dependence of the line width and line position are given by

2
s ) nq(nq + 1), (124)

SE = Q(T) - Q(T=0) = o' T o 2 . (125)

Sn
q 4 949



114

where @ and o' are coupling constants.
Let us first consider the temperature dependence of the Line width.
The most general expression for this can be written as the 'sum of con-—

tributions from three physical processes (33)

AE(eV) = AEO + a f: [g(w)]z’wzn(w) [n(w) + 1] do

‘ *oply Byp wgp nluyp) Blug) + R Bypw .
X [n(wif) + 1] g(wif) . (126)

The second term is just the expression given in Equation (124) where the
summation has been changed to an integral. It describes the broadening
due to the continual absorption and emission of virtual phonons of dif-
ferent frequencies by the impurity ilon (i.e., the Raman scattering of
phonons). The first term represents the broadening due to the slightly
different crystal -field at the site of -each impurity ion. It 1s general-
1y considered to be independent of temperature., The last two terms are
lifetime broadening contributions due to direect transitions to other
electronic states through the absorption or emission of a real phonon,
respectively, The temperature dependence of the width of a zero-phonon
line 1is contained in the last three terms of Equation (126), These pho-
non processes predict a Lorentzian lineshape whereas the random strains
described by the first term given a Gaussian shape. However, we approxi-
mate the combination of Gaussian and Lorentzian terms with a simple sum
in Equation (1265.

For chromium doped strontium titanate at low temperatures the R

1

Iine fluorescence will be broadened by direct phonon absorption transi-
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tions to the level from which the R, fluorescence line originates where-

2
as the R2 line will be broadened by the phonon emission process between
these two levels. The strain broadening can be taken as the width of the
Rl line extrapolated to 0°K. The remaining question is what to take for
the phonon density of states g(w) in Equation (126). Here we consider
three possibilities : a Debye distribution, the effective density of
states obtained from vibronic spectra, and a delta functi&n describing

coupling to only one of the soft phonon modes.

For a Debye distribution (41,42)

2
3V w
glw) = =53 W < wy
21 v
(127)
g(w) = 0 w >
Using this in Equation (126) gives (33)
T./T 6 x
AE(eV) = AE + o (T/T )7 S D X_e dx
o} D D X 2
(e”-1)

3 =D 3 -p
+ g8y wip Bip nluge) + o wie Byp [ ) + 1], (128)

where
el el 2
- 9h kT, 7 [<¥ vy ¥ el el -2
o = T3 710 (R0 Ly s e <Yy IVl T
215 M/V) 2y By - E
and
D 3h geli yel. |2
Big = 5 <Y vy ¥ (129)

2 (M/V)va
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This expression has been used to interpret data obtained on the tempera-
ture dependence of the linewidth of the Cr3+IR lines in several differ-

ent hosts (41-43). T, a

D and E?} are treated as adjustable parameters.

D
The value obtained for the Debye temperature is generally not the value
obtained from specifig heat measurements since phonons of different fre-

“quency may contribute differently to the different types of physical
processes.

For using the effective density of phonon states obtained from
vibronic spectra the integral in the second term of Equation (126) can

be re-written as a summation over the individual mode Huang-Rhys factors

as in Equation (124)

W = G, (w = 271 e TS w §(w -w- . 129
g (w) g l( ) IS ( o wq) (129)
AE(eV) = AE +a I (w 2s ) n, (n +1) + % n(,.) w2 S
) eq q g £84 1f MWir’ CigPis
+ f<i if [n(wif) + 1] wif i (130)

The values used for Sq are those obtained from the one-phonon contribu-
tion to the vibronic sideband through the computer iteration process de-
scribed in Chapter II. Ee and E:f are coupling constants which again
are treated as adjustable parameters. The second term in this expres-
sion has been used to interpret the temperature dependence of the width
of the zero-phonon line of the M-center in MgF, (44).

The final method of treating the Raman scattering term is to con-
sider coupling to only one specific phonon mode. This may be important
in strontium titanate where specific transverse optic phonons play such

an important role in other physical properties of the material. 1In this
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case the phonon density of states can be written as a delta function

glw) = 6(wo-w-ws) , (131)
so the linewidth contribution is given by

AE(eV) = AE + &s “’sz n(ws,)[.__n(ws) + 1] . (132)

This type of expression has been used to interpret the temperature de-
pendence of the width of one of the zero—phoﬁon lines of europium in
strontium titantate (45).

Similar phonon processes cause the positions of zero—-phonon lines
to shift with temperature. The change in position from the extrapolated

energy of the line at 0°K 1is given by (33)

SE(eV)

a'fo n(wq) wqg(wq)dwq

IEel ell
+ 28 P nw) w glw) L Ej dw
j<i P13 "o ¢’ q "¢ (Eil - Eil)2 - (f_lwq)2 4
b8 T nw) u ) oul (133)
- nw ) w glw “q *
j*i "ij o 9 49 49 (Ezl - E?l)2 - (ﬁwq)z

where o' and Bij,are again treated as adjustable parameters., The first
term is just Equation (125) with the summation replaced by an integral.
It describes the effect of the impurity ion continually absorbing and
emitting virtual phonons of the same frequency. The other two terms are
for the emission or absorption of real phonons causing transitions to

lower or higher electronic states, respectively.
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For SrTiOB:Cr3+ the Rl line 1s effected by phonon absorption proc-

esses and the R2 line by phonon emission processes as described above.
' The density of states in the phonon scattering term can again be repre-
sented by a Debye distribution, the effective density of states obtained

from the one-phonon vibronic sideband, or a delta function for coupling

to a single phonon mode:

A TD/T_ 3 9 TD/T
- 5 gD
SE (eV) ab (T/T)" S o dx + I, 81D (T/aB )R S
3 T /T 3
— 2E dx - 2, 8D (T/AEij)z P -
-1 2 Tugy? 37513 ° e*-1
KT
: 1 5 dx (134)
x°~ - (AE, /KkT)
13
2 AE, 4

' 2
SE(eV) = o' Zw " S n + .2, B8'®328Suw " nlw) -
€q 9 49 4 <1 "ij q q4'°¢ q AEj’_jz _ (ﬁwq)z

AE
~ I gers 02 nw) ki (135)
3>1 "1 qQ q q 2y \2
AEij : (ﬁwq)
SE (eV) = a; Wy n(ws) , (136)
where
el el |2
: 3h KLy & [yl [y L)y |yel
an = z g L T e T <Y IVlY T
L M/V)v J E~ -
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Bi? is given above and aé, a; and Bie are similar constants. P denotes
the principal part of the integral.
Taple XI and XII list the experimental data obtained on the widths

and positions of the R lines of SrTiO :Cr3+ at different temperatures

3
and gives fheir changes in widths and positions from their values at 0°K.
These data were obtained using the monochromator in second order to
achieve a resolution of 0.4A. The estimated accuracy of these measure-
ments is about 2% for the line widths and 0.01% for the line positions.
These data are plotted in Figures 19 and 20 along with the best fits ob-
tained from the thgories discussed above. It was found that changes of
2.5% in the assumed 0°K valdes did not affect the theoretical fitting of
the data and changed the values of the adjustable fifting parameters by
less than 7.9%. Note that only a small discontinuity occurs these tem-—
perature dependences near the phase transition at 110°k. No discontinu-
ity can be detected near 35°K.

The solid lines in Figures 19 and 20 represent the prédictions of
Equations (128) and (134) where the virtual phonon terms have been
written in termé of the Debye distribution. The adjustable parameters
used in obtaining these fits are listed in Table XIII. They have an
accuracy about 4.3%. The values obtained for the coupling parameters of
the virtual phohon‘processes are significantly less than those needed
for Cr3+ in A1203 and those for the real phonon processes are signifi-
cantly greater than in rqby (46). Also the line shift parameter uﬁ is
pdsitive in this case whereas it was.negative for{ruby. The effective
Debye temperature needed to fit the data is less than the value of 400°K

obtained from specific heat measurethents which implies that the lower

frequency phonons make greater contributions to the broadening and shift-



WIDTHS OF THE ZERO-PHONON LINES-OF SrTil

TABLE XI

0, :Cr

3

3 (0.02% WEIGHT) AT VARIOUS TEMPERATURES

widths : Width Changes Frem T = O°K*
: T(OK) -4 - - A i -4 . Y
S : AER‘ (eV x 10 ) AER (ev x 10 ) v AER (ev x 10 ) - AEK (eV x 10 )
1 2 10 20
8.0 1.41588 1.17990 0.02588 0.02990
20.0 1.47798 1.27926 0.08798 0.12926
40.0 2.62062 1.67670 1.23062 0.52670
60.0 4.14828 3.15468 2.74828 2.00468
80.0 5.82498 5.82498 4.43498 4.67498
100.0 7.50168 7.50168 6.11168 6.35168
110.0 7.99848 7.99848 6.60848 6.84848
120.0 8.89272 8.89272 7.70272 7.74272
200.0 26.57880 26.57880 25,18880 25.42880
% - —_
Exploted line width at T = O; AER (T=0) = 1,39000 x 10 4 ev; AER (T=0) = 1.15000 x 10 4 eV.
10 20

0cT



TABLE XI1

POSITIONS OF THE ZERO-PHONON LINES OF S¥Ti0

Cr%+ (0.027% WELGHT) AT VARIOUS TEMPERATURES

33
T(OK) Positions (eV) Shifts4From‘the fositions at T=OQK* .
Ep Eg § Ep (X 10 eV) § E, (X 10 eV)
1 2 1 2
8 1.561709 1.562141 0.09 0.01
20 1.561783 1.562151 0.83 0.11
40 1.562106 ~ 1.562472 4.06 3.32
60 1.562576 1.562791 8.76 6.51
80 1.563116 1.563116 14,16 9.76
100 1.563443 1.563443 17.43 13.03
110 1.563727 1.563727 20.27 15.87
120 1.564260 1.564260 25,60 21.20
200 1.567642 1.567642 59.42 55.02

. ,
Expleted line positiens at T=0; ER (T=0) = 1.561700 eV; ER
: . 1 2

(T=0) = 1.562140 eV.

11



TABLE XIII

122

ADJUSTIBLE PARAMETERS FQR THE FITS OF THE® ZERO-PHONON

LINES WIDTH§+AND LINE SHIFTS OF

SrT10,:Cr>" (0.02% WEIGHT)
Parameters Rl Line.\‘- R2 Line
T, 115°K \ 115°K ;
a, 3.3950 x 107> eV 4,0050 x 107> ev
Bo. 1.7902 x 10° (ev) > 4,3887 x 10% (ev)
Line Width & 2.8562 x 107 ev 2.9355 x 107 ev
G 2,6536 x 102 (ev) ™ 1.5653 x 102 (ev) ™
ai 7.0876 x 10° eV 7.2534 x 1057 ev
BSL 1.9315 x 10% eyt 8.6905. x.10 (ev)
&s '7.8192 ev 7.8192 eV
T, 115°%K 115%K
o 9,7660 x 10° eV 9.7660 x 10° eV
80 1.0910 x 1077 ev 1.0910 x 107/ ev
Line Shift ol% 2.8660 x 10%" (ev)> 2.8660 x 10% (ev)>
h 1,0910 x 107 v 1.0910 x 1077 ev
alf 1.0411 x 10° ev 1,0385 x 10% &V
pref 11,0910 x 107 eV 1.0910 x 1077 ev
o 2.4061 x 1071 ev 2.4061 x 1070 ev
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Figure 19, Line Widths of the Zero-Phonon Lines of SrTiOB:Cr3+

(0.02% Weight). Circles are measured ones. Solid
line ( § shows the best fit of Deby Approxima-
tion to the data, Dashed lines are the best fits

of the theories: —+-.—; taken only the 1lst peak
of the computer output ds its effective one-phonen

density of states, : ----; whole bands as its effec~
tive one-phonon density of states and -..-; zone-
center soft phonon mode only taken as its effec-
tive one phonon density of states. All constants
used to fit are shown in Table XIIT,.
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Figure 20, Line Shifts of the Zero-Phonon Lines of SrTiO :Cr3+ (0.02% wt). Circles show measured
ones, Various densities of states were useg to fit the data. Solid line shows Deby
Approximation. Other lines show the best fit to the data with the first band (-.-.-),
whole bands (:-++:) of the computed effective one-phonon sideband, and zone-center soft
mode (--—==) only as their density of states. All parameters used for these fits are
listed in Table XIII.
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ing processes than high frequency phonons do. WNote that due to the
phase transition Wy e will not be a constant but decrease to zero at

110°K. Assuming no frequency dependence for V., in the Debye approxima-

1
tion, the direct process terms for the line broadening should vary ap-
proximately as the third power of the splitting of the Rl and R2 lines
which is shown explicitly in Equation (128) to be reasonably correct.

If the one-phonon vibronic sideband is used as an effective density
of states in Equations (130) and (135) the dotted lines in Figures 19
and 20 are.obtained which do not fit the data well at high temperatures.
If only the first few peaks of the sideband are considered as the effec-
tive density of states (say out to 0.0467 eV) then a good fit to the
data can be obtained. The dotted-and-dashed lines in Figures 19 and 20
are obtained using the parameters listed in Table XIII and including only
the first vibronic peak (out to 0,0303 eV) in the density of phonon.
states. This again indicates that low frequency phonons are more impor-
tant than high frequency phonons in causing the broadening and shifting
of zero-phonon lines with temperature.

The thermal expansion of the lattice can also contribute to the
temperature dependence of the line position. The change in lattice con-
stant i1s due to the anharmonicity of lattice modes which in turn leads
to a change in force constants. Thils can cause either a positive or neg-
ative shift in frequency depending on the overlapping of wavefunctions.
By analogy to hydrostatic pressure measurements on ruby, Stokowski and
Schawlow (32) determined that this should cause the R line of SrTiO3:Cr3+

to exhibit a shift to higher energies proportional to the change in lat-.

tice constant

Aa

O —
a

o
ClCz

°
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Using the x~ray diffraction data of Lytle (3) and the elastic compliances
obtained from the results of Rupprecht and Winter (47), they conclude
that the effects of this mechanism are an order of magnitude too smail
to explain the observed results. Calculations by Slonczewski (48) indi-
cate that the tetragonal distortion of the crystal field makes the dom—
inant contribution to the shift of the R lines at .low tenperatures. This
causes a discontinuity in the slope of the lineshift versus temperature
near the 110°K phase transition. 8ince this discontinuity also appears
in thé“slope of the average position of the Rl and R2 lines it can not
be attributed to the effects of direct process mechanisms. It may, how-
ever, be accounted for by a change in the coupling parameter aﬁ, as the
crystal field changes from tetragonal to cubic. This is reasonable
since ab depends on the matrix element of the electron~phonon coupling
constant as shown in Equation (134).

The third method of attempting to fit the data is to assume coupl-
ing to only one of the soft phonon modes. This seems like a reasonable
model since the other two approaches both indicate that low frequency
phonons make the dominent contribution to the thermal broadening and
shifting of the zero-phonon lines. The predictions of this model for
both the T-point and the two components of the R-point soft modes are
shown as dashed lines in Figures 19 and 20. The temperature dependences
of the soft mode frequencies are taken from references (6) and (7).
These thecretical curves show large discontinuities in their temperature
dependencies which are obviously inconsistent with the experimental data.
Such discontindities were observed in the.data obtained on SrTiO3:Eu3+
45).

"Stokowski and Schawlow (32) also reported -data on the temperature
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dependence of the position of the R lines in chromium doped strontium
titanate and our daté is consistent with theirs. They show that the
line—-shift 1s not directly proportional to the total heat of the host
crystal as predicted by the first term in Equation (134). Instead the
line-shift is found to be proportional to the reciprocal of the dielec-
tric constant which in turn 1s proportional to the square of the soft
mode frequency. They conclude that the anharmonic phonon interaction
parameters must be similar to the electron-phonon coupling pafameterse
However, this does not predict the slight discontinuity in the line-
shift near 110°K.

Figure 21 shows the variatien of the fluorescence-decay time as a
function of temperature. These data are alse listed in Table XIV. The
ratio of the integrated flueorescence intensity of the R lines to that
of the total spectrum is also listed‘in the table at different tempera-

tures. Theoretically this ratio can be expressed as

I1/1, = WR/(WR + WVIB) (137)

o ' R T

where WR and WVIB represent the radiative and vibroniec transition rates,

respectively. The measured fluorescence decay time can be expressed as

2

-1

F

W ' (138)

= W T Wt Wg

where WNR represents the non-radiative transition rate. If radiation-—
less processes are not important, the intensity ratie and fluerescence

lifetime are related by

I /I = Wt (139)

. where the radiative transition rate is generally independent of tempera—

¥
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TABLE XIV

TEMPERATURE DEPENDENCE OF FLUORESCENCE DECAY TIME OF THE ZERO-PHONON
LINE OF SrTiOB:Cr3+ (0.02% WEIGHT) AND RATIO OF INTEGRATED
INTENSITY WITH RESPECT TO THAT OF TOTAL SIDEBAND

T (°K) Decay Time (msec) Intensity Ratio (IR/IT)
8 0.38783
10 17.751 '

20 0.36317
40 17.817 0.34517
60 0.33941
77 0.28861
80 16.168

100 14.629 0.28741

110 0.28012

120 13.294 0.22340

150 11.767 0.15614

200 | 0.05604
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Figure 21. Temperature Dependence of the Decay Time of

Cr3+ in SrTi0,. Circles show measured de-
cay times. Integrated intensity ratio of
the zero-phonon on line to that of total-
sideband was compared with fitting para-
meter WR = 18.345 secfl.
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ture, The solid line in Figure 21 is & plet-of the imtensity ratio ad-
justed to fit the decay tiﬁe'at low temperatures with WR = 18.4 secfl.
The fact that it falls below the lifetime data above 100°K indicates the
increasing importance of radiationless preoeesses-in this temperature.

range.

Temperature Dependences-of the Widths, Positions,

and Intensities of the Local Mode

Impurity ions in crystals-may have different wibratiomal character-
istics than the pure lattice phoneons:depending en ‘their mass and force
constant differences with respeet to the nermal host iens. For impuri-

“ties with-lighter masses or smaller force constants, nenpropagating vi-
brational medes of the impuritiy ion and its-immediate surroundings can
occur ‘at frequeneies where normal lattiee vibrations may net occur.
These are called local modes if they are at higher frequencies than the
highest frequency phonon mode, gap medes-if-they occur in a forbidden
gap between phenen branches, and band or resenant modes if they fall
within an allowed frequency band of lattice phenens. The term "local
mode" is generally applied to all three cases. There has been much ex-
perimental and theoretical work deme in studying local modes in alkali
halid§3'andtthiS“is reviewed in references- (50)- and (5%). - ‘The interest
in these studies has been twofold: -to understand the intrinsic vibra-
tional properties of defects in crystalg and to elucidate the interac-
tions between the local modes and the lattice phomons. Experimentally
nearly all of the work has been done with infrared spectroscopy. The
temperature dependences of the widths, positions, and intensities of

local mode absorption in the infrared spectra have been investigated
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along with the appearance of structured sidebands with some of the local
modes.

We have investigated the temperature dependence of the width, posi-
tion, and intensity of the local mode vibronic peak induced by the pres-
ence of chromium impurities in strontium titanate, Although local modes
have previously been identified in vibronic spectra, this is the first
investigation of the temperature dependenée'of local modes using vibronic
spectroscopy. The results are interpreted in terms of the anharmonic
interactions between the local mode and lattice phonons and are compared
with the earlier infrared work on alkali halides,

Because of size similarities, Cr3+ probably goes into the strontium
titanate lattice substitutionally for Ti4+ ions. This requires some
charge compensating mechanism such as an oxygen vacancy which probably
takes plaée non-locally since room temperature electron spin resonance
measurements show the chromium ion to occupy a site of cubic symmetry
(52). Stokowski and Schawlow (30) were the first to study the vibronic
spectrum of SrTiOB:Cr3+ and they attributed the peak at 0.0706 eV to.a
local mode induced by the chromium ion since it did not appear in the
vibronic spectrum of manganese doped strontium titanate and could not be
correlated with any of the known lattice phonon frequencles. Because
Cr3+'and Mn4+ are both heavier than T14+ the local mode is probably in-
duced by force constant changes. These may be associated with the charge
defect which is not present in manganese doped samples. Since the normal
mode phonon frequencies extend to about (6,7) 0.0943 eV the observed
sharp peak in the spectrum is not a local mode in the strict definition.
It lies on the high energy side of an unresolved band containing contri-

butions from TO4(F) and LOB(A) phonons among others as shown in Figure
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23 at two temperatures. It appears to be more like a gap mode at low
temperatures and a band resonant mode at high temperatures. However,

for simplicity's sake we will continue to use the general term of "local
mode'. As temperature is raised the whole spectrum shifts to higher
energies and the local mode broadens and decreases in intensity. It
should also be mentioned that the two-phonon emission peak for this .local
mode appears .in the spectrum at 0.1420 eV from the Rl line.

Figures 23-25 shows the variation of the local mode line width,
position and intensity with temperature. These data are listed in Tables .
XV-XVII. The full width at half maximum is constant at low temperatures
and increases approximately as T2 at high temperatures. The peak posi-

tion relative to the R, line exhibits a slightly greater than linear

1
shift to higher energy with increasing temperature. The Integrated in-
tensity of the local mode peak is constant at low temperatures and de-
creases sharply at higher temperatures. The accuracy in these experi-
mental points is estimated to be about *10% for the line Qidth, +20% for
the integrated intemsity, and *1.24 x 10-'_‘4 eV for the line shift. The
largest source of error arises from having to separate the local mode
from the nearby vibronic band (see Figure 22).

The temperature dependent characterlstics of the local mode are due
to its interaction with the lattlce phonons which takes place through
anharmonic terms in the lattice potential, The local mode is treated as
an Einstein oscillator and a Debye distribution is generally assumed for
the normal modes of the lattice. The temperature dependence is contain-
ed in the phonon occupation numbers given by Equation (120). The mathe-

matical descriptions of the important multiphonon processes were origi-

nally developed to explain results of Mossbauer or zero-phonon line
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TABLE XV

LINE WIDTHS OF THE LOCAL MODE IN SrTiOB:Cr3+

(0,02% WEIGHT) AT VARIOUS TEMPERATURES

Widths (x 10~% ev)

T Zero-Phonon AE—AEz
Local Mode Lines (Average) Differences (AE)
8 16.950 = 7% 1.298 15.652
20 17.940 1.329 16.611 0.311
40 18.670 1.849 16.823 0.523
60 21,180 3,651 17,529 1.229
80 23.370 5.825 17,545 1.245
100 25.160 7.502 17.658 1.358
110 26.970 7.998 18.972 2,672
120 30.585 8.893 ... . 21.692 5.392
170 66.690 = 15% 26.910 39.780 23,480

*AEO = 16.3 x 1074 ev.



134

TABLE XVI

LINE SHIFTS OF THE LOCAL MODE IN SrTiOB:Cr3+

(0.02% WEIGHT) AT VARIOUS TEMPERATURES

Shifts From thei

T : Position Position at T=OK¥
(°Kr) (eV) (x 10~4 ev)
8 1.4913090 0.090
20 ' 1.4913497 0.497
40 1.4913124 0.124
50 1.4914738 1,738
60 1.4916600 3.600
80 1.4915483 2,235
100 1.4915483 2,483
110 1.4914862 | 1.862
120 14916104 3,104
150 1.4920076 7.076
170 1.4918214 5.214

200 1.4922931 9,931

*6E (T=0°K) = 1.4913000 eV,



TABLE XVII

RATIO OF THE INTEGRATED INTENSITY OF THE LOCAL
MODE WITH RESPECT. TO. THAT. QF SIDEBANDS OF

SrTiO3:Cr3+ (0.02% WEIGHT) AT

VARIOUS TEMPERATURES

T(°K) Ratio (I;/1)
8.4 0.05372
20 0.05367
40 0.05081
60 10,04382
77 0.03710
100 0.03074
110 0.02915
120 0.02715
150 0.00235
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Figure 22, Vibronic Spectrum of'SrTiG3:Cr3+
(0.02% Weight) in the Region o
of the Local Mode at 8 and 150°K
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(0.02% Weight). Circles show measured line width., Dashed line shows the direct term
contribution to the width and solid and dotted lines show the best fit to the data
using Debye Approximation and the computed effective one-phonon sideband as their
phonon density of states. Fitting parameters are listed in Table XVIII.
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optical spectra (41,47,54). The local mode is treated as a zero-band
phonon line. Although these theories are probably very reasonable for
true local modes, their applicability to resonant band modes is question-
able since they are based on the adiabatic and Born-Oppenheimer approxi-
mations which may not be valid (51). However, they appear to be the

best theories currently available and we therefore make use of them in
interpreting our data.

Two types of mechanisms contribute to the width of ‘a local mode
peak: decay processes and scattering processes. The first of these is
simply the decomposition of the local mode into two or more-lattice pho-
nons. Since this shortens the lifetime of the local mode it broadens
its energy level through the uncertainty principle. For local modes -
whosefrequency is less than the maximum lattice vibration frequency the
most probable mode of decay will involve two lattice phonons and is

described by the following equation (54,55)

2
v
AE = ——= 1L ————————— +n._-+n, w,+Hw,— 140
2‘ﬁz qy19g Y we, 172 172
1 72
where VQ o is the interaction potential for the local mode (wave
1479, -

vector Q) and phonons with wave vectors 9 and pe The delta function
expresses the necessary conservation of energy. - Substituting into Equa-
tion (140) for the phononnbccupatiqn numbers, the linewidth variation

should have the form,

~1

AE = ED {1 + [exp (hw, /KT) - 1j|‘l + [exp (fuw,,/KT) -1]'1} (141)

This predicts a constant value at low temperatures and a linear depend-
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ence at high temperatures.

From the phonon dispersion curves for SrTiO, in Figure 12, these

3
data can be seen that many different combinations of phonons satisfy the
conservation of energy requirement for taking part in the decomposition
broadening process. However, the only pairs which make a significant
contribution to the broadening in the temperature range';f interest are
those involving phonons of different frequencies (such as the TOl(Fls)

and_LO3(T15) phonons with frequencies of 2,8 x 1012 sec—1 and 13.7 x 1012

sec 7). Using Equation (140), such phonon pairs pfedict the temperature
» dependent broadening shown by the dashed line in Figure 23.

The second type of line broadening mechanism is the'inelastic (or
"Raman') scattering of phonons by the local mode. In the Debye approxi-
mation this is described by the second term in Equation (128) where the
coupling constant will reflect local mode-phonon interactions instead of
the electron-phonon interaction. The valués of ED and TD needed to fit
the data are listed in Table XVIII.

The relative shift in position of the local mode to higher energies
with increasing temperature can be attributed to an increase in the self-
energy due to the elastilc scattering of phonons as described by the first
term in Equation (134) of the last section. The best fit to the data
shown in Figure 24 was obtained using values for the coupling coefficient
and‘effective Debye temperature listed in Table XVIII.

The thermal expansion of the lattice can also contribute to the
temperature dependence of the local mode frequency (56). The change in
lattice constant is due as described in the last section for the zero-

phonon lines. As discussed there, this mechanism probably does not make

a significant contribution to the thermal line shift. The effects of
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TABLE XVIII

ADJUSTIBLE PARAMETERS-FOR-FITS OF-LINE-WEDTHS-AND POSITIONS -OF-
THE LOCAL MODE, AND INTEGRATED RATIO OF THE LOCAL MODE WITH

RESPECT TO TOTAL SIDEBANDS IN SrT103:cr3+ (0.02% WEIGHT)

- Variables Parameters Values
o
TD. 800K
o 7.2206 x 107" ev
Line Width E; 3.0060 x 10--5 eV
a 3.1664 x 10° ev
=ew . -5
Bif 3f0060 x 10 eV
)
TD 115K
o 1.9016 x 107> ev
. . D
Line Shift Bif 0
a;w 5,7158 eV
1ew
Bif 0
1] [o}
SD 650K
Integrated Intensity ] 2,946
Ratio C 5,1164 x 1072

*
Two phonon energies used for calculations are:

: AEl

AEZ

1.1579 x 10”2 ev,

5.6657 x 1072 eV,

1
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the trigonal crystal field distortion found by Slonczewski (48) to con-
tribute the zero-phonon line position might also contribute to the ther-
mal shift of the local mode. This should cause a discontinuity in the
slope of the data at 110°K which is not observed. However, due to the
large error bars on the data the importance of this mechanism cannot be
definitely established.

The integrated intensity of the zero-band phonon line will decrease
with increasing temperature due to the increased probability of multi-
phonon emission (53). This leads to the growth of vibrational sidebands
at the expense of the central line emission,  For the local mode in the
vibronic spectra of SrTiO3:Cr3+ it is not possible to distinguish these

broad, weak sidebands due to other vibronic emission in the same spectral

region. The decrease in the local modé integrated intensity I. relative

L
to the total emission intensity IT can .be expressed as (53)
e"/T
T
/1, = exp (s[4 Gl D EE ©(141)

D e -1

where OB is an effective Debye temperaturevand S is the.Huang-Rhys fac-
tor.  The solid line in Figure 25 is predicted by Equation (141) with
the values of S and OB listed in Table XVIII.

The estimated accuracy of the various adjustable fitting parameters
is_ilO%.

The effective Debye temperatures represent an upper limit to a
Debye type distribution of phonons which take part in the mechanism
being considered. Since all lattice modes do not contribute in. the same
degree to all of the different types of interactions there is no reason

to expect the effective Debye temperatures to be the same for all proc~-
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esses or the same as that determined by specific heat measurements. The
latter type experiments yield a value of eD ~ 400°K (57) . This result
must be dominated by contributions from acoustic phonons since optic
modes range up to three times this "cut-off" value (6,7). The similar
effective Debye temperatures needed to fit the line width and intensity
data imply similar phonon distributions active in the contributing physi~
cal processes.: The value of ~800°K indicates a cut-off frequency for
the distribution which falls approximately in a gap in the observed pho-
non frequency distribution for SrTiO3 (6,7). The highest density of
phonon states lies below this region. The much lower effective Debye
temperature obtained in analyzing the line shift data implies coupling
to only acoustic and the lowest optic phonon modes. This is interesting
because of the importance of 'soft modes' in the lattice dynamics of
strontium titanate.

The most complete temperature dependence investigations have been
on the U-center in alkali halides (50,51,53,57). The decrease in the
local mode intensity at high temperatures shown in Figure 25 is around
an order of magnitude greater than that reported for infrared absorption .
on these other systems. The Huang-Rhys factors needed to fit the data
obtained on U-centers in six different host crystals range from 0.05 to
0.32, The much larger value of S = 2.9 needed to fit our data implies
a significantly stronger coupiing to the lattice phonons for the local
mode in SrTiO3:Cr3+ than for the U~centers in alkali halides. This may
be due to the fact that the local mode in the former case is probably
due only to force constant changes whereas 'in the latter case a large
mass defect is present as well as any possible deviations in force con-

stants. Also, it may be that gap or band modes can couple more strongly.
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to the lattice phonons than true local modes that lie significantly
above the normal mode frequency distribution of the crystal. The effec-
tive Debye temperatures needed to fit infrared intensity data vary 9%k
for KI:Agl+ up to 220°k for‘KCl:Dl_ an Can:Hl_ which are less than the
specific heat Debye temperafures (53). Thus high frequency phonons ap-
pear to contribute more to the intgnsity decrease of the local mede in
SrTiOS:Cr3+ than they do in the other systems investigated.

The low temperature residual line width shown in Figure 23 is sig-
nificantly greater than those measured previously for local modes in in-
frared spectra and the broadening at higher temperatuyres is less
(53,54,56) , The decomposition mechanism dominates at low temperatures
and predicts a smaller temperature dependence than the Raman scattering
mechanism at high temperatures. This implies that the former mechanism
is relatively more important than the latter in contributing to the
broadening of the local mode in the vibronic spectrums of SrTiOS:Cr
as compared to the infrared absorption data obtained previously on im~-
purities in alkali halides and similar systems. This may be because the
importance of .the scattering mechanism is. independent of the frequency
of the local mode with respect to the phonon frequency distribution
whereas the importance of the decomposition mechanism increases the
closer the local mode frequency 1s to the phonon frequencies. For this
case the local mode frequency is within the frequency distribution of
lattice vibrations of strontium titanate whereas most of the local modes
whose temperature dependence have been investigated in detail previously
lie above the phonon cutoff frequency of the host lattice. However, the
thermal broadening of the resonant band mode in NaCl:Cul+ is closer to

the U-center data than to the SrTiO :Cr3+ data (58). Thus the coupling

3
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coefficients for the different processes must .be taken into account for
each system as well as the relative position of .the local mode frequency.

The thermal lineshift 1s similar in magnitude and direction te
several of the previously studied alkali halide systems (53,54,56). How-
ever, in some cases such as KCl:Hl- the peak shift is in the opposite
direction (56). This has been attributed to the effects of thermal ex-
pansion. Since the small values of the coupling coefficient and effec-
tive Debye temperature needed to fit the data shown in Figure 24 imply
much smaller effects from phonon scattering than implied by the line
broadening data, it may be that some negative contributions from thermal
expansion are present.

Little can be said about the magnitudes.of the coupling parameters
o and B since their values cannot be theoretically predicted. A wide
range of values covering these used here have been found when the same
theories are applied to zero-phonon line optical tramsitions. (41,49,60).

Although the comparisons discussed in the preceeding paragraphs are
very ‘qualitative, they imply that the same physical processes contribute
to the thermal characteristics of both the local mode studied here with
vibronic spectroscopy and those studied previously in other systems
using infrared spectroscopy. The quantitative differences appear -to be
consistent with the different characteristics of local modes such as the
mass defect, charge defect, and vibration frequency with respect to the
phonon frequency distribution of the host crystal. Thus it appears that
vibronic spectroscopy is a complimentary technique to infrared . absorp-
tion in studying the characteristics of local modes. For the case re-
ported here the accuracy of the data is leés than that of similar infra-

red absorption studies but this is due to overlapping of local mode with -
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a nearby vibronic band and is not a limitation of experimental apparatus.
Which technique.is better depends mainly on the specific system under
investigation. Vibronic and infrared absorption.trgnsitions are subject
to different selection rules. The intensity of a vibronic peak also de~-
pends on the strength.of the electron-vibration interaction whereas the
intensity of an infrared absorption peak depends on the local electric
dipole moment. Therefore, in some cases.a local mode will be more easily
observed in vibronic spectra and in othexr cases it will be seen easier
in infrared spectra.

The virtual phonon scattering contribution to the lineshift of .the
local mode.is similar to that of the zero-phonon lines in that it in-
volves a low Debye temperature and a small value for the coupling para-
meter. However, Raman scattering of phonons appears to play a more im-
portant role in broadening the local mode than it did the R lines.

The data in Figures 23-25 can also be fit using the one-phonon den-
sity of states obtained from the vibronic spectyum as shown by the dash-
ed or dotted lines., These fits were obtainéd using the density of phonon.
states given in Equation (129) and the parameters in Table XVIIL. The
predict a fit to the linewidth and lineshift data which is equivalent to
the prediction obtained using the Debye approximation.’ However,-no_good‘
fit to the intensity quenching data can be obtained using .the vibronic

effective density of states.



CHAPTER VI
SUMMARY AND CONCLUSIONS

A spectroscopic investigation was -conducted on lightly doped stron-
tium titanate with Cr3+. Continuous fluorescence measurements were made
both of low frequency and high frequency vibronic bands at numerous tem-
peratures from 8%k up to room temperature. By assuming that all the
phonon modes were coupled linearly except the local mode which was cou-
pled quadratically, the effective one-phonon side band was computed by
an iteration processes.

The effective one—phonon‘side band was then used to study tempera-
ture dependences of the line widths and shifts sf the zero-phonon lines
(Rl, R2) and the results compared with those predicted by the Debye ap-
proximation and by coupling to only a soft transverse optic phonon mode.
Measurements of the widths, positions and the integrated intensities of
the local mode were also made. The results of these experiments are
summarized and conclusions from these results are discussed. Several

suggestions for further work are finally mentioned.
Summary of Results

The various investigations discussed in Chapter IV and V led to the
following results:
1. By comparison with infrared absorption data, Raman scattering

results, and the dispersion curves of the neutron scattering data the
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peaks observed in the low energy vibronic sideband were identified with
phonons at various points of the Brillouin zone. Restrictions from vi-
bronic selection rules explain the absence of several peaks which appear
in neutron scattering. The sharp peak at about 0,0706 eV can not be
associated with any known lattice vibration and-is thought to be a local
mode.

2. A great deal of structure was observed in the high energy side-
band near the R lines. Much of this structure has not been reported
previously. By comparison with Raman scattering, infrared absorption,
and the dispersion curves of the neutron scattering twe peaks at 0.0021
and 0.0055 eV are attributed to the,l“25 (R point) soft phonon mode which
has been split by the lower symmetry. The peak at 0.0036 eV is the TlS
transverse optic soft mode at the center of the Brillouin zone,

The intensities of the main peaks in this region do not increase
continuously with temperature as is usually seen with high energy vi-
bronics. Instead they increase to a maximum at about:40°K'and then de-
crease which can be accounted for by the temperature dependences of the
soft mode frequencies. - |

3. The effective one-phonon side band was computed by an iteration
processes, - By convolution processes with estimated one-phonon side bands,
multiphonon sidebands were generated. Quadratic coupling was included
for the interaction of local mode and-lattice phonons with the impurity.

4. The measured temperature dependences of the line widths and
line positions of the zero-phonon lines were fitted by using the effec-
tive one-phonon density of states which was computed from the vibronic
spectrum. = A fit equivalent to that found using a Debye distribution

could be obtained only if the high frequency part of the effective one-
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phonon density of states was neglected.

5. The temperature dependence of the decay time of the zero-phonon
line was measured at various temperatures from 8%k to room temperature
and found to be consistent with the changes .of the ratio of the inte-~
grated intensity of the zero-phonon line to the total integrated inten-
sity of the side bands and the zero-phonoen line.

6. The temperature dependence of the widths, positions, and inte~-
grated intensities of the local mode were measured at various tempera-
tures from 8°K up to room temperature. A Debye approximation was used
" to fit these temperature dependences. Using the vibronic effective den-
sity of states gives an equivalent fit to the data on line widths and

position but no fit to the intensity quenching data could be obtained.
Conclusions.and Implicatipons for Further Work

This investigation demonstrates the usefulness of vibronic spectro-
scopy in obtaining information on phonon frequency distributions. High
energy vibronics were shown to be especially important in observing low
frequency soft modes. The use of vibronic spectra in investigatiﬁg local
modes was also demonstrated,

The results obtained in this study suggest several interesting
toplcs which may be the subject of further work:

1, A precise calculation of the selection rules in tetragonal
symmetry is needed to successfully explain all the observed vibrational
modes,

2, Materials should be investigated which have much lower phase
transition temperatures so the soft mode frequencies can be monitored as

a function of temperature without being obscured by the broadening of
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the zero-phonon lines.
3. A more rigorous lattice dynamics model should be developed to

treat the electron-phonon coupling.
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APPENDIX

The moment analysis approach can be used to approximate the higher.
n-phonon emission spectra at T = O. In order to obtain a desired range
of application one can include the needed nth moments in his analysis.

For a function f(w) defined by

f(w) = J__ dt Ut £(ry, (A-1)

the area under f(w) and the nth moment about the origin are given by

F = /o dof() = 2nf(t=0), (A-2)
n -1l . = n -1 d.n
<w> = F -/ _dwow f() = [[£(1)] () £ ()] o (a-3)

Moments about the mean are defined by

<) = <o - <), (A=4)

and the mean frequency (<w>), and the mean square width are also found

as

ws = [ 10 £(0] o, (A-5)
<’ = eI @H? el . (4-6)

In terms of the dimensionless variable x,
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- W =<w>
x =

E ————r (A-7)
[<(Aw)2>]%

an asymtotic expansion for f(w) is (35)

2 -k —x2/2‘ 2
f(w) = F[2m<(lw)>] e {1+ Ylfll(x) + YZfZl(x) + Yl f22(x)]

+ [7 x) + Y, Y £..(x) + Y13f33(x)] + ceee}, (A-8)

3t 17232

where Yl and Y2 are the coefficients of skewness and excess, and Y3 is

the coefficient for the fifth moment. Yi and fij are given (36) as

follows:
it ‘
v, <) - 3£<%w)2>]2} . (Ae1D)
[<(aw)“>]
v, - [<<Aw)5>[:,<zz);><z]x§>2> <n®] (A-12)
2,0 = £x & -3, (A-13)
£,00 = 2 G- 6x” 43, (A=14)
£,,00 = 2= 68 - 1sx* + 45" - 15, (A-15)
£,0 = 1o x (* - 10 + 15), (A-16)
£, = I%Z x (x® - 21x* + 105x% - 105), (A-17)



f33(x) = IE%E X (x8 - 36x6 + 378x4 - 1260x2 + 945),
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(A-18)

Using Equations (A-2) - (A-6), the moments of the individual n-phonon

spectra at T = O are found as follows:

n
Fo= 2me S S, (A-19)
n.
<p> = NI S A=-20)
w q wq q’ ( )
where N = _rgx_ .
<) = Niw s - w/a. (A-21)
q 9 4
2 43/2 3 3<‘(Aw)2> <w> <w>3
Y, [ <Caw) “>] = NIuw7'§ - - . (A-22)
1 q 49 4 2 2
n n
: 3 2.2
Yz[ <(Aw)2>]2 - NI 45 _ fA<(Aw)” <w> + 3[‘<(Aw) >]%)
q 49 4 n .
(A-23)
_ 6<(Aw)2><w>2 _ <4,3>4
2. 3 °
n n
4 2 12 ~ 3 2
Y3[<(Aw)2>]5/2 SN W Ss _ 5<(Aw) > - 3[<(Awl > 1< > _ 10 <) > <) >
q 4 «q n n
_ 10<(Aw)3>< w>3+ 15[<(Aw)2>]2<w> _ 10<(Aw)2><w>3
n2 n3
<w>
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