
A COMPARISON OF QUANTUM MECHANICAL AND 

QUASICLASSICAL REACTION DYNAMICS 

FOR AN ASYMMETRIC A+ BC 

EXCHANGE REACTION 

By 

GLEN EDWARD KELLERHALS ., 
Bachelor of Science 

Upper Iowa College 

Fayette, Iowa 

1967 

Submitted to the Faculty of the Graduate College 
of the Oklahoma State University 

in partial fulfillment of the requirements 
for the Degree of 

DOCTOR OF PHILOSOPHY 
July, 1974 



A COMPARISON OF QUANTUM MECHANICAL AND 

QUASICLASSICAL REACTION DYNAMICS 

FOR AN ASYMMETRIC A+ BC 

EXCHANGE REACTION 

Thesis Approved: 

Dean of the Graduate College 

902119 
ii 

U I\ l/S r"J/V\1"' 

STATE Ut-4:VERSITY 
LIBRARY 

MAR 13 1975 



ACKNOWLEDGEMENTS ..... 

The author would like to express his sincere gratitude to Dr. 

Lionel M. Raff, Research Adviser, for his patience and guidance through

out this investigation and in particular thank him for initially 

suggesting the research problem. 

Thanks are extended to Drs. J, Paul Devlin, Paul Westhaus, and 

T. M. Wilson for serving as my advisory committee. 

Financial assistance consisting of a National Aeronautics and Space 

Administration Traineeship, various teaching assistantships in the 

Department of Chemistry, and support from a National Science Foundation 

research grant, NSF-GP-35869X, is acknowledged. Without monetary 

support the pursuit of an advanced degree would not have been possible. 

I am indebted to the very capable University Computer Center staff 

for their computing assistance and thank the Research Foundation for 

making available generous amounts of computer time for calculational 

purposes. 

Special thanks go to Dr. Ron Oines of the Research Foundation for 

providing the perspective plotting subroutine and for assisting me in 

its use. 

I am especially grateful for Shirley's loving care and patient 

endurance during the latter part of my graduate tenure and also 

recognize the camaraderie of fellow graduate students during my graduate 

years. 

iii 



Chapter 

I. 

TABLE OF CONTENTS 

INTRODUCTION 

Historical and Background Material. 
The Born-Oppenheimer Approximation: Potential 

Energy Surfaces ........ . 
Mechanics and Dynamics .....•.. 
Selected Studies of Chemical Dynamics 
The Present Investigation 

II. FORMULATION OF THE PROBLEM. 

The Equations of Motion .. 
The Potential-Energy Surface. 
Quantum Dynamics ......• 
Selection of Numerical Method 

of Numerical Equations .•. 
Initial Conditions ... 

and Derivation 

Calculational Procedure and Parameters. 

III. RESULTS ... 

Quantum Probability Density. 
Reaction Probability .• 
Classical Dynamics •. 

IV, DISCUSSION AND CONCLUSION. 

Discussion of Results 
Conclusion, Summary, and Suggestions for 

Future Work .••. 

A SELECTED BIBLIOGRAPHY. 

iv 

Page 

1 

1 

3 
5 

11 
13 

16 

16 
19 
23 

. . . . 30 
39 
44 

50 

50 
118 
119 

125 

125 

135 

139 



LIST OF TABLES 

Table Page 

I. Parameters Used in Constructing the Extended LEPS 
Surface 

II. Molecular Units 

III. Initial Values for Quantum Calculations 

IV. Quantum and Classical Reaction Probabilities. 

v 

23 

39 

45 

123 



LIST OF FIGURES 

Figure 

1. 

2. 

Linear Model, A+ BC •. 

Contour Map of Potential Energy Surfa,ce in ;(r 1, r 2) 
Coordinate Space .••••.•..••••..• 

3. Contour Map of Potential Energy Surface in (q 1,q2) 
Coordinate Space ..•••.•.• , •••••••.. 

4. Region in Which Solution of [36] Is Desired. 

5. Calculation A, t == 0 flt, FAC = 1. 25 

6. Calculation A, t = 32. 5 At 

7. Calculation A, t = 52.5flt . . . . 
8. Calculation A, t = 72.5 flt . . . . 
9. Calculation A, t 92.5flt . . . . . . . . 

10. Calculation A, t = 112.5flt. . . . . . . 
11. Calculation A, t = 132.5 flt. . . . . 
12. Calculation A, t = 152.Sflt. . . . . . . 
13. Calculation A, t = 172.5flt. 

Calculs.tion A, t = 192. 5 flt . . • 14. 

Calculatiob. B, t = O At. . . . . . . . . . . . 15. 

Calculatio:h B, t = 45 flt, FAC = 3. 00. . . . . . . 16. 

Calculation B, t = 60 flt, FAC = 3. 00. . . . . . . . 17. 

18. Calculation B, t 75 flt, FAC = 0. 75. 

19. Calculatio~ B, t 90 flt, FAC = o. 40. 

20. Calculation B, t 105 flt • 

21. Calculation B, t = 10~ flt, FAG = 0.50. 

vi 

Page 

17 

24 

25 

33 

52 

53 

54 

55 

56 

. . . 57 

58 

. . 59 

60 

61 

. 62 

. . . 63 

. 64 

65 

66 

67 

68 



LIST OF FIGURES (continued) 

Figure Page 

22. Calculation B, t = 120 lit . 69 

23. Calculation B, t = 120 Lit, FAC = 0.75. 70 

24. Calculation B, t = 127. 5 Lit, FAC = 0.82. 71 

25. Calculation B~ t = 135 Lit. 72 

26. Calculation B, t = 135 Lit, FAC 0.867 73 

27. Calculation B, t 165 Lit • 74 

28. Calculation B, t = 165 .6t • 75 

29. Calculation B, t = 172. 5 Lit • . . . . 76 

30. Calculation B, t = 172.5 Lit, FAC = 2. 77. 77 

31. Calculatioh B, t = 187.5 Lit. • . . 78 

32. Calculation B, t 197.5.6t. . . . . 79 

33. Calculation B, t = 217.5 lit. 80 

34. Calculation c, t = O tit, FAC 1.25. 81 

35. Calculation C, t = 45 Lit . . . . . . . . . 82 

36. Calculation c, t = 60 Lit 83 

37. Calculation C, t = 67.5.6t . . . 84 

38. Calculat:ioh C, t = 80 .6t 85 

39. Calculation c, t 90 .6t 86 

40, Calculation c, t = 110 lit • . . . . 87 

41. Calculation C, t 130 Lit • 88 

42. Calculation c, t = 150 .6t. 89 

43. Calculation c, t 162. 5 .6 t . . . . . 90 

44. Calculation c, t = 175.6t. . 91 

45. Calculation C, t = 187. 5 Lit • . . . . . 92 

vii 



LIST OF FIGURES (continued) 

Figure Page 

46. Calculation C, t = 212.5 At. . . . . . . . . . 93 

47. Calculation D, t = O At, FAC = 1.25. 94 

48. Calculation D, t = 25 At . . . . 95 

49. Calculation D, t = 45 At 96 

so. Calculati.on D, t = 65 At 97 

51. Calculation D, t = 85 At 98 

52. Calculation D, t = 105 At • . . . . . . 99 

53. Calculation D, t = 125 At. 100 

54. Calculation D, t = 145 At • 101 

SS. Calculation E, t = O At. . . . . . . . . . 102 

56. CaJculation E, t = 32.5 At . . . . . . . . 103 

57. Calculation E; t = 52. 5 At 104 

58. Calculation E, t = 62. 5 At . . . . . . . . 105 

59. Calculation E; t = 72. 5 At . . . . . . . . • 106 

60. Calculation E, t = 92.S At . . . 107 

61. Calculation E, t = 112.5At. 108 

62. Calculatidn E~ t = 132.SAt. . • . 109 

63. Calculation E, t = 152.SAt. 110 

64. Calculation E, t = 162.SAt. • . 111 

65. Calculation E, t 172.SAt. . . . . . . . . . . 112 

66. Calculation E, t = 192.5 At. . . . . . 113 

67. Calculation E, t = 202.S At. . . . . . . • . . . . 114 

68. Reaction Probability Versus Relative Translational 
Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 

viii 



CHAPTER.I 

INTRODUCTION 

Hi.storical and Ba.ckg:i::.o.un.d Mat.e.:r.ial. 

One of the first attempts to mathematically describe chemical 

exchange reactions of the type 

A+ BC-+ AB+ C, [1] 

where A represents an atom and BC represents a diatomic molecule, was by 

Eyring (1). He used the idea of London (2) that the possible course of 

a chemical reaction is that of an adiabatic interaction in which the 

energy of the system varies as a continuous function of the interatomic 

distances. 

Since this early calculation theoretical, chemical kinetics has 

undergone revolutionary progress. Probably more than any other single 

innovation, the electronic computer has revolutionized the number and 

varieties of calculations that can be performed. Within thi.s realm of 

theoretical computations are elastic, inelastic, and reactive scattering 

calculations. 

In many cases the complete detailed description of the molecular 

dynamics of exchange reactions such as [1] would enable one to calculate 

the rates of laboratory reactions as well as to determine the energy 

partitioning, scattering behavior, and reaction mechanism. Experimental 

techniques are now refined to such a degree that chemical reactions are 
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accessible to direct examination on the molecular level. Studies of 

infrared chemiluminescence and of reactions in crossed molecular beams 

provide detailed information about the way in which reactive collisions 

occur and about the way in which the energy released in reaction is 

distributed among the products. A complete three-dimensional, ab 

initio calculation has not been published for the Schrodinger (3) wave 

equation describing the simplest exchange reaction. 

2 

An approach to this computationally difficult problem is to 

simplify the problem and/or simplify the computation. In practice both 

simplifications are made, and models in chemistry and physics are thus 

formed to approximate and mimic the actual state of affairs. However, 

not all is lost by any means, as the solution of the simplified problem 

may provide valuable insights into the nature of the exact description 

of the complete problem. The insights may suggest approximate schemes 

to be utilized to reduce the computational labor of the complete problem. 

At the molecular level the symbolic equation [l] cannot be regarded 

as a chemical process involving two single entities, atom A and molecule 

BC. Rather, atom A can only be understood in terms of the nucleus and 

electrons of which it is comprised. Analogously molecule BC cannot be 

treated as atom Band C, that is, the molecular properties of BC are 

vastly different from the properties of the individual atoms. Molecules 

themselves are properly considered as quantum mechanical systems and 

normally exist in a variety of rotational; vibrational, and electronic 

states. In this sense, a transition in the vibration or electronic 

state of a molecule is the simplest type of chemical reaction. Further

more, it is expected that the reactivity of atoms and molecul~s in 

different internal energy states will be different and therefore it is 



necessary to treat each possible state individually, if such a proce

dure is computationally tractable. Accordingly, the treatment of 

Elaison and Hirschfelder (4) treats molecules in different internal 

quantum states as though they were distinct species and takes into 

account transitions between these internal states. 

3 

Even one of the simplest atom-molecule chemical reac.tions, H + H2 -+ 

H2 + H, consisting of three nuclei and three electrons, cannot be com

pletely treated dynamically (5). Radical simplifications are therefore 

needed to reduce even the most elementary chemical reaction problems to 

levels suitable for computation. One such simplification is the Born

Oppenheimer (6) approximation. 

The Born-Oppenheimer Approximation: 

Potential Energy Surfaces 

In general the motion of the electrons of the colliding atom and 

molecule may be considered very fast in comparison with the motion of 

the nuclei. A Born-Oppenheimer separation of the nuclear and electronic 

wavefunctions may therefore be made, and the Schrodinger equation for 

the electronic motion in the field of a clamped or fixed nuclear con

figuration may be considered. The solutions of the' time independent 

wave equation form an infinite set of electronic states which may be 

labeled by a set of quantum numbers. The lowest state of the set is 

referred to as the ground electronic state. Solutions of the electronic 

Schrodinger equation may, in principle, be obtained for every possible 

fixed nuclear configuration. The energy associated with a particular 

electronic state will vary as the relative nuclear separations are 

changed. Stated another way, the Born-Oppenheimer approximation consists 
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of first determining the electronic wavefunction for various values of 

the fixed nuclear coordinates and then using this electronic energy 

(usually just the ground state electronic energy is used) as apotential

energy function in describing the motion of the nuclei (7). If the 

reaction takes place on more than one electronic surface, the process is 

said to be "nonadiabatic" and the theoretical investigation of the dyna

mics becomes considerably more difficult. 

Provided that the Born-Oppenheimer approximation holds and provided 

also that the electrons remain in one state (the adiabatic assumption), 

a single potential-energy surface or hypersurface for more than two 

independent variables may be constructed to give the potential energy 

for all fixed nuclear configurations for an assembly of atoms. As 

Levine (8) points out, transitions of atom A in the internal (electronic) 

state i to the internal state j, cannot take place in the adiabatic 

approximation. Mortensen (9) has stated that for energies less than one 

electron volt, the Born-Oppenheimer approximation is applicable and the 

nuclear and electronic motions can be separated. He does not substan

tiate his claim. One should remember that the very existence of an 

electronic energy depends on the Born-Oppenheimer separation, an approx

imation which may or may not be valid in certain cases. At high enough 

energies the separation will surely fall. The mathematical development 

leading to the Born-Oppenheimer approximation for a diatomic molecule 

can be found in several standard textbooks (10). 

The calculation of the electronic energy poses a formidable problem 

in stationary-state quantum mechanics. The computations are extremely 

expensive for the large number of nuclear configurations required for 

the calculation of a reaction potential-energy surface. One of the most 
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severe mathematical difficulties in the computations is the evaluation 

of the integrals which arise. Accordingly, in semiempirical calculations 

the integral evaluations are performed by systematically approximating 

the integrals with experimental information about the atoms or molecules 

involved. In addition, calculations on many-electron atoms and mole

cules frequently restrict consideration to valence electrons. Models 

which take into account only a few valence electrons for complex systems 

are discussed by Hoppe~ (11). 

The approximate schemes for obtaining the potential energy are 

grouped by Laidler (12) as: a) purely quantum mechanical, which 

includes treatments based on the work by London (2) and variational cal

culations, b) semiempirical treatments, and c) empirical procedures. He 

presents a good discussion of each category and gives extensive refer

ences. Computational approaches to chemical kinetics can be divided 

into two classes (12): (I) theories not related to potential-energy 

surfaces and (II) theories based on passage over potential-energy sur

faces. Category (I) includes nonequilibrium statistical mechanics, 

hard-sphere collision theory, and stochastic (13) theories; theories 

based on the principles of probability. Classification (II) contains 

a) activated-complex theory (14) or transition-state theory, in which 

activated complexes are assumed to be in equilibrium with reactants and 

b) classical and quantum mechanical treatments with no equilibrium 

assumption. In summary, calculations can proceed in one of several 

directions; a choice must be made as to the direction to be taken. 

Mechanics and Dynamics 

The subject of molecular dynamics (15) is concerned with theories 
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of the movement of systems over potential-energy surfaces. The nuclear

dynamics problem may be stated as follows: Among all possible motions 

of the chemical system we seek to accurately determine which motion will 

actually take place in any given case, that is, under the action of 

given forces. Physics supplies two systems of mechanics which are avail

able for the description of the nuclear motion, classical mechanics and 

quantum mechanics. 

Rigorously, classical mechanics is not applicable on the micro

scopic scale, that is, the atomic or subatomic domain where the unit of 

length is the angstrom. Nevertheless, several criteria indicate that 

classical mechanics may be able to give a worthwhile account of the 

nuclear dynamics of a reacting system (16). The criteria, however, do 

not provide a good quantitative estimate of the error that will be in

curred, if classical mechanics is employed. Two main sources of error 

are inherent in a purely classical mechanical calculation. The first of 

these is energy quantization; the second is quantum mechanical tunnel

ing. The importance of these quantal phenomena in a dynamical calcula

tion should be a measure of the extent of the success (or failure) of 

classical mechanics. 

The first classical calculations of the motion over a potential 

energy surface were performed by Eyring and Polanyi (I) for the H + H2 

system. Further investigations were carried out by Hirschfelder, Eyring, 

and Tapley (17) and later by Hirschfelder and Wigner (18). In these 

pioneering calculations point-by-point computations had to be made by 

hand for the successive coordinates of the system. The results of these 

calculations are discussed in reference (19). The earliest studies on 

any reaction more complex than the H2 + H exchange were the calculations 
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on.the hydrogen-halogen reactions by Eyring and Polanyi (1), Eyring (20), 

and Wheeler, Tapley, and Eyring (21). These calculations employing 

transition-state theory showed that the combination of hydrbgen and 

iodine would not involve the atoms since this would require an activa

tion energy (22) greater than if the reaction involved only molecules. 

Wall, Hiller, and }fazur (23) performed the first computer calculations 

of reaction dynamics. Since this work several such classical calcula

tions (classical trajectory calculations) have been carried out on a 

variety of reactions using many different kinds of potential-energy 

surfaces (24-78). The majority of these calculations is quasiclassical 

(the vibrational energy of the reactant molecule is quantized) rather 

than classical. Summaries of the techniques and methods employed in 

these calculations and assessments of the results may be found in 

several sources (79). At present, the absolute accuracy of these calcu

lations is not known. Two major difficulties arise when direct compar

isons with experiment are attempted: 1) agreement or disagreement with 

e~eriment may result due to unknown errors in the potential surface 

used in the calculation, and 2) the experimentally observed properties 

involve averaging over molecular properties and hence the observed pro

perties may be quite insensitive to the fine details of the molecular 

dynamics. The most fruitful comparisons would seem to be between 

classical and quantal calculations using the same potential surface. A 

few comparison studies utilizing several different computational 

approaches have been made (9) (39) (63) (80) (81) (82) (83). 

The fundamental theory of reactive collision processes is well 

understood quantum mechanically (and classically) but many approxima

tions, simplifications, and models have been utilized in order to obtain 



results (84). The procedures used vary greatly and no single approach 

has been outstandingly successful. The quantum mechanical approaches 

can be divided into three general sections. (The division could also 

consist of two categories, time-independent and time-dependent quantum 

mechanics.) These are briefly described below. 
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Calculations of reaction systems on highly simplified potential

energy surfaces using formal theories: Perturbation theory may be 

applied to the reactive scattering problem, if an approximate wave

function for the reactant state is available. If the approximate wave

function consists of the product of the distorted initial translational 

wave and a wavefunction describing the initial internal state, the 

approximation is called the distorted wave Born approximation. Calcula

tions performed using the distortion of waves method have been done by 

Micha (85), Karplus and Tang (86)(87), and Walker and Wyatt (88). The 

latter calculation was performed on a realistic semiempirical potential 

surface. Analytic solutions to the wave equation may be found for 

collinear systems if a simple model potential is used. The partial 

wave formalism (89) of time-independent quantum mechanics provides the 

exact solution to the atom-atom scattering problem (90). The same 

approach can be applied to inelastic scattering without rearrangements 

(91). In 1943 Hulbert and Hirschfelder (92) and later Tang, Kleinman, 

an4 Karplus (93)(94)performed calculations using a square channel pot

ential for three atoms on a line. 

Detailed numerical calculations on more realistic potential energy 

surfaces: In maµy of these calculations it is only the dimensionality 

of the problem which precludes a direct comparison between the results 

and experi~ental findings. The numerical methods for the solution of 
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the Schrodinger equation for ~hree atoms constrained to the collinear 

case can be classed into two categories. The first method consists of 

writing the Schrodinger equation as a set of finite difference equations 

on a two dimensional (each dimension is related to the relative distance 

between two atoms) grid of points. These equations are then solved by 

some numerical technique subject to the appropriate asymptotic boundary 

conditions. Secondly, the wavefunction may be expanded in terms of a 

complete basis set for one of the variables. The resulting coupled 

differential equations may then be solved by a numerical technique. 

Mortensen and Pitzer (95) first used numerical techniques to solve the 

time-independent Schrodinger equation. They applied a finite difference 

method to the collinear reactive H + H2 system. More recently other 

calculations employing finite difference methods have been performed 

(96-104). 

In the second approach the problem of the different basis sets for 

reactants and products has been resolved to a large degree by Marcus 

(105)(106)who introduced reaction coordinates in a mathematical fashion. 

He used the reaction path (107) to define a new coordinate system. 

Using this method Light and co-workers (108-110) have found it advanta

geous to define the reaction coordinates independently of the reaction 

path and have used this procedure on the H + c12 system. in this calcu

lation it was found that the vibrational excitation of the products was 

increased by a combination of moving the col (111) toward the reactant 

side and by making the reaction path sharply curved. Duff and Truhlar 

(78) have recently noted the same effect in a quasiclassical calculation. 

Recently, Diestler (112), studying a different reaction having a very 

different potential surface, drew similar conclusions. The method 



was also applied by Wyatt (113) who studied the effects of several 

approximations. 
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One alternative approach is the variational technique used by 

Mortensen and Gucwa (98) and Crawford (114) on the H .+ H2 collinear 

system. As in many other methods, the problems encountered when appli

cation to higher dimension is attempted seem formidable. Another 

approach is the formulation of the problem in terms of an equivalent 

(or optical) component in the potential. The effective component repre

sents the disappearance of amplitude from the elastic scattering channel 

into inelastic channels not directly considered. 

Miller and co-workers (47) (50) (51) (115) have shown how exact 

classical mechanics (i.e. numerically computed classical trajectories) 

for a collision system can be used semiclassically to construct the 

classical limit of the quantum mechanical S matrix. A very intriguing 

aspect of this classical S matrix theory is the possibility of using 

classical trajectories to obtain transition probabilities for classically 

forbidden processes. One example of a classically forbidden process 

that may be extremely important is reactive tunneling. 

In spite of the idea that a chemical reaction suggests a time

dependent phenomenon, time-dependent quantum mechanics has been almost 

neglected in reaction dynamics calculations. The approach possesses 

some unique assets as demonstrated by a few investigators. The results 

of Goldberg, et al. (116) on the penetration of one-dimensional poten

tial barriers by wavepackets were displayed graphically in the form of a 

movie. Wilson and co-workers (102) have performed calculations on the 

time evolution of anharmonic oscillators. 

McCullough and Wyatt (80) solved the time-dependent Schrodinger 
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equation and followed the motion in time and space of an initial wave 

packet, The Hamiltonian operator was approximated by a finite differ

ence expression and the method applied to the H + H2 collinear reaction 

using the potential-energy surface developed by Porter and Karplus (117). 

Very recently Truhlar and Kuppermann (82) presented numerical quantum 

mechanical scattering calculations for the collinear H + n2 system. 

Extensive comparisons with other methods of treating the problem are 

made and 76 references are cited. 

Selected Studies of Chemical .Dynamics . 

Several quasiclassical trajectory studies have been made by Raff, 

Porter, et al. (40) (41) (60) (118) on the hydrogen-halogen exchange 

reqctions using semiempirical potential-energy surfaces. Their results 

for the hydrogen molecule-iodine atom exchange reaction (40) indicate 

that virtually all of the reaction product is produced from vibration

ally excited hydrogen molecules. The requirement of vibrational excita

tion for reaction is in accord with the experimental measurements of 

Sullivan (119). In the case of H2 + X (X = Br or I) exchange reactions 

in which H2 ha, initial vibrational energy corresponding to the ground 

state, calculated reaction probabilities exhibit translational thres

hold energies in considerable excess of the potential-energy barrier 

(40) (41) (118). The authors attribute the excess as resulting from the 

imposed dynamic constraints (41) (120) and varies from a maximum of 35 

kcal/mole for H2 + I down to a few kilocalories per mole for H2 + Br. 

In contrast, dynamic constraints appear to play a relatively minor role 

in determining the reaction mechanism in the H2 + Cl reaction. The 

results indicate that dynamic effects increase as the saddle point 
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shifts toward the exit or retreat valley. 

One dynamical property playing an important role in the A+ BC 

exchange reaction is linear momentum. The two (Band C) atoms can be 

accelerated during interaction with an attacking A atom but their 

response may be relatively slow. Thus, as the velocity of the A atom 

increases (momentum increases), the Band C atoms have less time to re

spond, and the A atom tends to move into and out of the interaction 

region before the B-C distance can be increased enough to "turn the 

corner" into the product region. Noyes (121) in his discussion of the 

H2-r2 reaction has suggested the important role played by momentum in 

the dynamics of certain reactions. The significance of momentum may be 

expressed qualitatively by realizing that a) any chemical reaction 

requires momentum transfer between the colliding species, b) the time 

required for momentum transfer is finite, and c) a momentum transfer 

time less than or equal to the collision time is required for successful 

passage from reactants to products. In summary, for those cases where 

the collision time is much larger than the time required for momentum 

transfer, dynamic effects will not be particularly crucial. On the 

other hand when the collision time becomes less than the time for mom

entum transfer or when these two characteristic times become more 

nearly equal, then momentum is a significant variable and its importance 

is evident in a lower reaction probability. 

A few investigators (24) (34) (37) (122-126) have explicitly 

studied the effects of variations of the potential-energy surface on 

attributes of exchange reactions using classical mechanics. Variations 

include total energy, translational energy, vibrational energy~ barrier 

position, barrier height, masses of the reacting atoms, curvature of the 
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reaction path, and rotational energy in the reactants. Interests are 

centered on reaction probability, threshold for reaction, and the dis

tribution of internal energies for both reactants and products. Polanyi 

(122) examined the effects on the dynamics of a shi.ft in the energy 

barrier from the entrance valley of the potential energy surface to the 

exit valley. The most apparent effect of the change was to replace 

relative translation of the reagent as the form of energy required for 

barrier crossing by vibration in the molecule under attack. 

The position of the energy barrier and its height have been corre

lated by Mok and Polanyi (123). They found that for substantially exo

thermic reactions the barrier is in the entrance valley and for sub

stantially endothermic reactions the barrier is in the exit valley. In 

addition, with increasing barrier height for exothermic reactions the 

barrier shifts to a later position along the reaction coordinate. In 

exact analogy there is also a shift in the barrier to a later position 

along the reaction coordinate with increasing barrier height for endo

thermic reactions. 

An attempt has been made to present a somewhat general but yet 

concise survey of the rapidly expanding field of theoretical chemical 

kinetics. The reference list is certainly not complete but hopefully 

many of the most active workers in the field have been mentioned. 

The Present Investigation 

A comparison of the results of a three-dimensional quasi.classical 

calculation with corresponding three-dimensional quantum mechanical ones 

is very desirable to establish the importance of quantum effects. Such 

a comparison supplies an assessment of the usefulness of classical 
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mechanics to treat the dynamics of a chemical reactive scattering 

system. The present investigation is limited to a study of the collinear 

A+ BC reaction [l]. The assumption that reaction [l] proceeds on a 

single potential energy surface which is defined in terms of the Born-

Oppenheimer approximation is made. The nuclear dynamics of the reaction 

on this surface are examined using time-dependent quantum mechanics. 

Accordingly the study consists of a hypothetical chemical reaction which 

occurs in one dimensional space. The formulation and details are re-

served for the following chapters. 

Not surprisingly, the most extensively studied exchange reaction is 

the H + H2 reaction and isotopically related reactions. The potential

energy surface for this thermoneutral reaction is obviously symmetrical. 

As stated earlier, quasiclassical three-dimensional trajectory calcula-

tions carried out on unsymmetrical surfaces, whose barriers lie in the 

exit channel, characteristically exhibit dynamic effects. A quantum 

calculation on such an unsymmetrical surface should be fruitful and 

provide valuable insights into the quantum and classical dynamics of 

exchange reactions. 

Potential surfaces which retain thermoneutrality but which are 

non-symmetric with respect to energy barrier location have been con-

structed by Polanyi, et al. (34) (122). The thermoneutrality of the 

exchange process should be an especially desirable characteristic when 

comparisons of this investigation are made with previous work on the 

thermoneutral H + H2 reaction. The present study investigates the 

particular case of equation [l] in which the masses of the atoms m, 
a 

~' and me are all equal to the mass of hydrogen but a purely hypothe

tical potential-energy surface is used. 
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In particular, the impetus for such a study dictates the investiga

tion be undertaken to clarify and promote explanation of: a) discrep

ancies, if any, between classical reaction probabilities and the corr

esponding quantum probabilities, which seem to be dependent on the 

asymmetry of the potential-energy surface (63), b) differences between 

the dependence of the classical and quantum reaction probabilities on 

the translational energy of the reactants, c) evidence, if any, for the 

formation of long-lived intermediates, and d) the overall effects of the 

position of the energy barrier on the classical and quantum dynamics. 

The quantum calculation by McCullough and Wyatt (80) was carried 

out on a semiempirical, symmetric potential-energy surface corresponding 

to the thermoneutral H + H2 reaction. The study reveals classical 

mechanics to give a fairly good account of the reaction dynamics. 

Kuppermann and co-workers (63) (82) have performed quantum mechanical 

calculations on the collinear F + H2 and H + H2 systems. The potential

energy surface employed to study the exothermic F + H2 reaction was a 

nonsymmetric, semiempirical one published by Muckerman (44). At low 

energy, reaction probabilities calculated in the case of F + H2 

utilizing quasiclassical mechanics are 2.5 times greater than for the 

quantum calculation. 

In recapitulation, a very high degree of understanding of the exact 

computationally intractable problem is not yet available. A massive 

effort is currently being directed toward remedying this situation. The 

present investigation is intended to provide a small contribution to 

that campaign. 



CHAPTER II 

FORMULATION OF THE PROBLEM 

The Equations of Moti.on 

In the reactive collinear atom-diatomic collision, Equation [l] in 

which the atoms are represented by spinless point masses, let the atoms 

lie on the axis with xa, xb, and xc denoting their respective positions. 

Furthermore define r 1 as equal to the difference, xa - ~ and let r 2 

equal xb -

Figure 1. 

x . 
c 

This is indicated schematically in the upper half of 

If m, m., and m denote the masses of atoms A, B, and C 
a b c 

respectively, then the classical kinetic energy, T, of the three atom 

system is 

[2] 

where the dots represent time derivatives. The kinetic energy terms of 

the three particle system are not separable when expressed in terms of 

the interparticle coordinates, r 1, r 2 (127). A coordinate transforma

tion is applied to explicitly show the center of mass dependence and 

simultaneously make the kinetic energy diagonal. That is, the kinetic 

energy, when expressed in terms of the transformed coordinates, is the 

sum of two square terms with no cross terms. The coordinate transforma-

tion is given by 

16 
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, .. r 2 --· ·~1~.-1------- r 1-. ----o-i ... l 

Xe. Xb Xa 

.----------q, -------. 

s = 

Figure 1. Linear Model, A+ BC 



X = (m x + m. x. + m x ) /M 
a a b b c c 
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ql = xa - (~xb + mcxc)/(~ + me) [3] 

2 ~ 
q2 = (~ - xc)[~mcM/(~ + me) ma] 

where Mis the total mass of the system (m + m. + m ). The lower half 
a b c 

of Figure 1 illustrates these coordinates. Xis the position of the 

center of mass of the system; q1 locates atom A relative to the center 

of mass of the molecule BC; and q2 is simply a mass-scaled internuclear 

BC distance. The task now is to invert the equations, that is express 

xa' ~' and xc each as a function of x, 41 , 42 and the masses of the 

system. These expressions are then substituted into equation [2] to 

yield, 

2T = MX2 + (.2 + .2) µ ql q2 

whereµ is the reduced mass, m (m. + m )/M. With the following usual 
a b c 

definitions, 

L = T - v' pi = oL/ aqi' H 

we have, 

H 

The center of mass dependence can be dropped from [6] in both quantum 

and classical mechanics since the potential energy of the system does 

not depend on the location of the center of mass of the system. The 

classical Hamiltonian function for the internal motion of the system 

becomes, 

[4] 

[5] 

[6] 

[7] 

In terms of the conjugate momenta defined by Equation [5], we can write, 
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[8] 

Since the coordinates q are cartesian coordinates, the correspondence 

operation (128) can be carried out and the quantum mechanical Hamilton-

ian operator constructed with the form, 

-i\2 
H =--_. 2µ 

2 
+-a-) 

2 
aq2 

[9] 

where _Y.(q 1, q2) is the potential energy operator within the framework of 

the Born-Oppenheimer approximation. Attention is now directed toward 

the speci.fication of the potential-energy surface, V(q1, q2). 

The Potential-Energy Surface 

Our present inability to compute accurate a priori multi-electron 

potential-energy surfaces with a reasonable amount of computer time pre-

eludes the use of such surfaces for dynamic studies. Recourse must be 

made to empirical or semiempirical methods. Unsymmetrical potential-

energy surfaces which d·isplay dynamic effects and correspond to known 

chemical reactions have been published. An attempt to carry out a 

quanta! study on a surface descriptive of one such chemical system 

(I+ H2) proved unsuccessful. This study will be discussed in more 

detail later. 

In 1929, using the simplest valence-bond treatment, London (2) 

demonstrated that the potential energy of a system of three H atoms, A, 

B, and C could be expressed as 

where r 1, r 2 , and r 3 are the internuclear separations for AB, BC, and 
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AC respectively. Q1 , Q2 , and Q3 are the coulomb integrals, J 1 , J 2 , and 

J 3 are the exchange integrals. Neglecting overlap the required coulomb 

and exchange integrals can be obtained in terms of the singlet and tri-

plet state energies of the diatomic systems by use of the Heitler-

London energy expression: 

1 E. = (Q. + J.)/S. and 
1 1 1 1 

3 E. = (Q. - J.)/S. 
1 1 1 1 

[11] 

where 1E. and 3E. are the binding energies of the ground electronic state 
l l 

(singlet) and the first repulsive state (triplet) for the i-th diatomic 

pair. The overlap for the i-th diatomic pair is represented by S .. The 
l 

three sets of two equations like [11] can be solved for each Q. and J. 
l 1 

for the three two-body interactions in terms of their 1E. and 3E. only 
1 1 

if the singlet and triplet energies are known. A method of evaluating 

the London equation using spectroscopic information was proposed by 

Eyring and Polanyi (1) who used the Morse equation (129) to obtain 

singlet state energies. In order to have an analytic expression for 

3E(r), Sato (130) modified the Morse equation by changing the sign 

between the two exponential terms from minus to plus, and divided by two 

since he found that for H2 this gave fairly good agreement with the shape 

of the triplet curve. His proposed form has been called the "anti-

Morse" function. The singlet and triplet energy expressions are 

[12] 

and 

where Dis the dissociation energy plus .zero-point energy of AB, R the 
e 

equilibrium separation between A and B, and a is a constant derived from 
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spectroscopic data, a= ,rv (2µ/D)~. The experimental value of the fund
o 

amental vibration frequency is v. 
0 

Sato (130) introduced an adjustable constant, which bears a formal 

resemblance to the square of the overlap integral, into the original 

London equation [10] and used the form, 

1 
[14] 

1 + s2 

The author prefers to write K instead of s2 and simply regard Kasa 

single adjustable parameter and make no resemblance to an overlap inte-

gral. It appears that there is no theoretical basis for equation [14] 

containing the s2 term. The LEPS (London-Eyring-Polanyi-Sato) formula-

tion must therefore be justified empirically. The LEPS potential and 

an empirical extension of the LEPS formulation are used in the present 

work. The extended LEPS surface is described by Polanyi (34). Three 

constants which provide flexibility in the shape of the energy surface 

are introduced. The s2 term in the Sato modification is replaced by an 

2 S for each atomic pair, symbolized a, b, and c: 

Ql Q2 Q3 
= (l+a) + (l+b) + (l+c) 

[15] 

(l+a) (l+b) (l+b) (l+c) 

The extended LEPS equation with the three extra empirical parameters is 

semitheoretically justified for triatomic systems composed of three 

hydrogen atoms (56). But systems containing more valence electrons 

require more configurations in their treatment by the valence-bond 

method. Hence, the secular equation is not solved analytically for a 
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simple energy expression. For systems with more than three valence 

electrons and with valence p electrons the LEPS and extended LEPS equa-

tions can more readily be interpreted as analytical interpolation devices 

rather than as semiempirical valence-bond calculations. It should be -

noted that in using this extended LEPS equation the expressions for the 

coulomb integrals and the exchange integrals are 

Ql ~ [lE(rl) +ti-a) 3E(r 1 )] = 
(l+a) l+a [16] 

and 
Jl 

= ', [IE ( r 1) -( t ~:) 3E ( r I) J (l+a) [17] 

with similar expressions for Q2 (Q3) and J 2 (J3) where a is replaced by 

b (or c) and r 1 by r 2 (or r 3). 

The constants, a, b, and c for this investigation were chosen so as 

to obtain an asymmetric location for the crest of the energy barrier. 

It has been found (122) that for b = c < a the barrier lies in the exit 

valley. The parameters used in constructing the surface are listed in 

Table I. The parameter AA, represents the a, b, and c values for AB, BC, 

and AC respectively. In this work the equilibrium internuclear distance 

for the ground electronic state R, the Morse constant a, for each pair 
e 

of atoms, and the bond dissociation energies for AB and BC are the con-

stants for H2• The parameters correspond to those used by Polanyi and 

co-workers (122) to construct what they refer to as "surface II." In 

Figure 2 a contour map of the potential surface is shown. The contour 

values are in kilocalories per mole relative to molecule AB and atom C 

separated at infinity taken as zero. The classical barrier height 

(discounting zero point energy) was determined to be 7.05 ± 0.03 kcal/mole. 



Parameter 

D 

R 
e 

AA 

TABLE I 

PARAMETERS USED IN CONSTRUCTING 
THE EXTENDED LEPS SURFACE 

AB 

4.7466 eV 
-1 1.027 a.u. 

1,402 a.u. 

0.30 

BC 

4,7466 eV 
-1 1.027 a.u. 

1.402 a.u. 

0.05 

AC 

3.4447 eV 
-1 1.027 a.u. 

1.402 a.u. 

o.os 
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A contour map of the potential surface in q-space (q 1, q2 used as coor

dinates) is displayed in Figure 3. 

The potential-energy surface employed in this study displays char-

acteristics of the H + H2 reaction since it is thermoneutral, the dia

tomic limits yield the correct H2 fundamental vibration frequency and 

the barrier height is close to the experimental value of 8-10 kcal/mole 

(131) for the H + H2 system. However, as Figures 2 and 3 show, the 

surface is asymmetric in contrast to the normal situation for the H +H2 

~change. The representation is therefore ideally suited to determine 

t~e effects of surface asymmetry upon the adequacy of approximate 

sc~ttering theories. The surface has an analytic representation in terms 

of elementary functions which allows the surface and its derivatives to 

be evaluated rather easily and quickly by a computer. 

Quantum Dynamics 

.. 
According to the Schrodinger postulate, the wavefunction of our 
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. ( 8.0,0.Q).....----...,......,..,.....,...-----------------. 

(0.0,0.0) 

1 KCAL/MOLE 

5 KCAL/MOLE · 
9 KCAL/MOLE 

13 KCAL/MOLE 
17 KCAL/MOLE 

(8.0,0.0) 

Figure 2. Contour Map of Potential Energy Surface in (r1,r2) Coordinate 
Space 



q2 /a.u. 

1 . KCAL/MOLE 
5 KCAL/MOLE 
9 KCAL/MOLE 

·. 13 KCAL/MOLE 

17 KCAL/MOLE 
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( 1.79,0.60) ( 8.00,0.60) 

q 1 /a.u. 

Figure 3. Contour Map of Potential Energy Surface in (q1 ,q2) Coo1-
dinate Space 
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model system is parameterized by time (tis not a dynamical observable) 

and develops in time according to the time-dependent Schrodinger e~~a-

tion 

[18] 

where His the Schrodinger Hamiltonian operator equation [9], and 

'¥(q 1,q2,t) is the system wavefunction in coordinate space. 

the initial condition for [18] may be represented as 

At t = t 
0 

[19] 

Henceworth the explicit dependence of'¥ on (q 1,q2) will be surpressed in 

the notation to place emphasis on the time dependence of the wavefunc-

tion. However, it should be remembered that'¥ does depend on the 

variables q1 and q2 describing the positions of the nuclei of our 

system. 

Recalling the definition of a derivative, it is apparent that for 

small t:.t, 'i'(t+t:.t) is obtained from 'i'(t) by means of a linear operator 

(132). For a finite time interval t-t, successive application on'¥ 
0 0 

by an infinite number of infinitestimal time translational operators 

yields 'i'(t) (132). Formally we write 

'i'(t) = U(t t ) 1V 
- ' 0 0 

[20] 

where U(t,t) is called the evolution operator and describes the time 
- 0 

dependence of the system completely. Equation [20] shows that'¥ 
0 

changes (or evolves) as time passes in a well defined way. From the 

definition [20] follows the relation 

[21] 
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where t 
0 

Furthermore, at t=t 
0 

the initial condition is 

U(t , t ) = 1. 
- 0 0 

[22] 

Since the Hamiltonian operator is hermitian, the evolution operator can 

be shown to be a Unitary operator (133). Substitution of the relation 

'P(t) = U(t,t )If into [18] gives 
- 0 0 

Hi 2_ (Ulfl ) = H(U'P ) at - o - - o 
[23] 

in+u<t,t ) = H u(t,t ) 
ot- 0 -- 0 

To obtain the explicit form for the evolution operator, the solution to 

the partial 4ifferential equation [23] with the initial condition given 

by [22] is required. Three different cases may be considered in the 

solution to [23] (134). For this particular study, only one example is 

investigated, that being the case where the Hamiltonian does not contain 

the time explicitly. Under this restriction one can immediately solve 

[23] and represent the evolution operator in the form 

U(t,t) = exp[-iH(t-t )] 
- 0 -fi- 0 

[24] 

where the e:x;ponential of the operator.!:!. is defined by series expansion 

of the'exponeatial function. The solution of [20] may then be written 

as 

'¥ ( t) [25] 

In this case the evolution operator is translationally invariant (134) 

with respect to the time axis, that is, 

u(t+ot, t +ct)= u(t,t). 
- 0 - 0 

[26] 

( 
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This is in contrast to the general case in which the evolution. operator 

U(t,t0 ) is parameterized by time and at each instant, a different 

_!!(t,t0 ) is required to transform the wavefunction. In this study U(t.t) 

is time invariant since His independent of time. If the total time 

span t-t is divided into n intervals of equal size, we may write 
0 

'¥(t + t.t) = U(t.t)'¥ 
0 - 0 

'¥(t + 2t.t) = U(t.t)'¥(t + t.t) = U(t.t) U(t.t)'¥ 
0 - 0 - - 0 

'¥(t + 3t.t) = U(t.t)'¥(t + 2t.t) = U(t.t) U(t.t) U(llt)'¥ 
0 - 0 - - - 0 

(t + nt.t) 
0 

n 
[.!!(t.t)] '¥ • 

0 

[27] 

When the Hamilto~ian does not contain the time explicitly, the resul~ of 

operating on'¥ with U(t,t) can be found quite easily. The normalized 
0 - 0 

eigenfunctions of !!,satisfying the relation 

[28] 

may be introduced as a basis, aµd since the basis forms a complete set 

{~k}, the expansion of '¥ 0 in terms of this set can be made 

[29] 

(it.t) 3 HRH + ) ,1, 

1i 3 ! ''' 'l'k 
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[30] 

The result is simply the expansion of the solution into stationary 

states with the time dependence contained within the phase terms 

exp[-it,tE:/fl]. 

In the case of a free particle in which all values of the momentum 

are allowed, the summation index in the expansion [29] may assume con-

tinuous values. In carrying out the above expansion progress toward the 

solution of the scattering problem, has been nil. Indeed the task has 

simply been amended to one of finding the eigenfunctions and the expan-

sion coefficients. Wilson, et al. (135) have used the expansion method 

to calculate the time evolution of anharmonic oscillators. Since the 

time and effort involved in finding the eigenfunctions and expansion 

coefficients would be large~ the present problem is studied by an 

alternate procedure. 

The effect of operating by th~ evolution operator directly on o/ is 
0 

sought. An approximate]. ... (~t) to the time evolution operator is required 

since the infinite series expansion [24] of]. is not computationally 

suitable. Once ]. ... (~t) is chosen the calculation proceeds in the manner 

suggested by [27]; the evolution of o/ in finite time steps is carried 
0 

out by repeated application of Q ... (~t). Successive application of 

]. ... (~t) n times on the initial wavefunction advances the wavefunction 

through n time steps. 
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Selection of Numerical Method and 

Derivation of Numerical Equations 

Equation [18] belongs to the class of partial differential equa-

tions referred to as parabolic partial differential equations. Varga 

(136) has shown that the solution of parabolic partial differential 

equations can be reduced to one of approximating an "exponential" matrix 

of the form exp(-S) where S represents a matrix. In analogy, solution 

of equation [18] requires an approximation to the exponential expansion 

representing the time evolution operator, 

!!"(At) = exp[-i_!!At/1i] . (31] 

Possible approximations to the exponential expansion are discussed by 

Varga (136) and McCullough (5) and include a) the first-order and b) 

second-order forward difference methods, c) the first-order backward 

difference method, and d) the Crank-Nicholson (137) method. These are 

listed below in the aforementioned order. 

,!!(M) - I - (iAt/n)H [32] 

!!(flt) - I - (iM/n)_!! - Yi(At/n) 2 _!!2 [33] 

_Q_(L'it) ::: [!_ + (iflt/n)_!!r 1 [34] 

_!!(At) - [l + (iAt/2n)_!!r1 [!_ - (iAt/2n)_!!] (35] 

Since.!! is Hermitian, the exact evolution operator is unitary. The 

unitarity of the evolution operator implies that probability is con-

served and therefore the approximate method used for _!!(At) should also 

be unitary. The approximation used should be computationally stable. 

That is, errors (roundoff, for instance) introduced during the 
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calculation do not become so large that they overwhelm the true solution. 

A third and very important requirement of the approximate operator is 

that it should be as accurate an approximation as possible to the exact 

evolution operator. The highest order term in the series expansion for 

the exact operator that is correctly reproduced by the approximate oper-

ator may be taken as the order of accuracy. Since the Crank-Nicholson 

method is unitary, accurate to second order, stable (136) (138) and 

relatively easy to use, we follow the procedure used by McCullough and 

Wyatt (80) in selecting form [35] as the basic approximate method for 

our numerical scheme. More complete descriptions of the above approxi-

mate methods are available (5) (136) and in general all of the methods 

may be generated or described in terms of Pade matrix approximations 

(136). 

Substituting [35] into [27] yields 

[I+ (itt/21i)H]f(t + tt) = [I - (itt/21'i)H]f . 
- - 0 - - 0 

[36] 

The time development of W is carried out by solving for W(t + tt), 
0 0 

substituting this result back into the right hand side of [36] generat-

ing ~(t + 2tt), and continuing this process to develop the wavefunction 
0 

in time. Equation [36] does not represent an applicable numerical 

shceme since the Hamiltonian operator contains the second partial deri-

vatives of the wavefunction with respect to the spatial variables q1 

and q2 . Discretizing the spatial variables requires the values of~ be 

calculated at a set of points in the q1,q2-plane given by q1 = (j-l)tq1 

+ q~, q2 = (i-l)tq2 + q~ where j = 1,2, ... J, and i = 1,2, ..• I, called a 

grid (or net or mesh) and q~ and q~ are convenient starting values for 

q1 and q2 respectively. tq1 and tq2 are small increments and determine 
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the mesh size. Since~ is defined throughout (q 1,q2) configuration 

space, the exact grid is of infinite area (I and J are infinite). The 

calculation is made feasible by reducing the grid size to finite dimen-

sion and imposing the boundary condition that the wavefunction is zero 

in all space not encompassed by the mesh. Chemically, the most 

interesting region of q~space is that region displayed by the contour 

map (Figure 3). Accordingly, we choose to superimpose an L-shaped grid 

on this region. (See Figure 4). 

The replacement of derivatives and partial derivatives by finite 

difference quotients can be found in most standard numerical analysis 

texts (138). Second partial derivatives of functions of several vari-

ables can be expressed by a difference formula simply by holding all but 

one of the variables constant. Ralston (139) derives the necessary 

equations required to make the standard replacement for a partial 

derivative (138). Referring to Figure 4 the second partial derivative 

of some function u(q 1,q2) with respect to q1 is sought at the point 

q1 = x, q2 = y. Application of the standard finite difference formula 

gives 

2 
[u(x0 ,y) - 2u(x,y) + u(x1,y)] /(tx) 

where tx and ~y are the grid spacings in the x and y directions. In 

[37] 

[38] 

this investigation equal horizontal and vertical grid spacings are used, 



( 1.79,5.24) , . (530 524} 

(8.00, 2 .13) 
I 

( 1.79, 1.86) ----- ____________ ...) 

( I. 79 ,0.60) 
(8.00,0.60} -

Figure 4. Region in Which Solution of [36] Is Desired 



that is, /:,.x = /:,.y = !:,.ql = /:,.q 2 = /:,.q, Substituting'¥ for u and inserting 

q1 and q2 into [37] and [38] yields 
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[39] 

Recalling that q1 = (j-1)1:,.ql + q~ and q2 = (i-l)1:,.q2 + q~ Equation (39] 

can be rewritten as 

::: ['¥ • • 1-2'¥ .. + '¥. ·+1 + \!1, 1 . -2'¥. j + llf.·+1 .] /(!:,.q)2 [40] 1,J- 1,J 1.,J 1- ,J 1, l ,J 

Application of [40] transforms [18] into a useable numerical pro-

cedure in the form of a matrix equation. The region of q-space of 

Figure 4 is covered by a grid or mesh produced by the intersection 

points of m vertical and n horizontal lines. Any convenient numbering 

scheme can be used to assign a number or set of numbers to each point in 

the region. If the address consists of one number then the values of a 

function at the grid points of the region can be represented by a vector, 

each component referring to a function value at a given point of the 

grid, On the other hand if each point is addressed by a set of two 

numbers, the first referring to a particular horizontal line and the 

second to a specific vertical line, then function values at grid points 

in the region can be conveniently stored in a two dimensional matrix. 

The right hand side of our matrix equation contains the matrix (or 

vector) '¥ which contains values of the wavefunction at all points on 
--0 

the grid at time t · the unknowns consist of values of the wavefunction o' 

at all points on the grid at time, t + !:,.t, represented by the matrix 
0 

(vector)'¥ (t + !:,.t). 
- 0 
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Substitution of [40] into [36] yields 

~2 2 
ljl. · + (il.lt/ 2-f'i) [-2 (ljl .. 1-4 \jl •• + ljl_ ·+1 + ljl. 1 . + ljl·+1 .)/(6.q) l,J µ l,J- l,J l,J 1- ,J 1 ,J 

+ v .. iv •• ] = 
l,J l,J 

0 ~ 2 0 0 0 0 0 2 
q,_ • - (Ht/21'1) [-2 (q,. • l-4 q,. • +'¥. ·+1+'!1. 1 '+qi·+1 .)/(6.q) 1,J µ 1,J- 1,J 1,J 1- ,J 1 ,J 

+ v .. ljl~ .] 
l,J l,J 

[ 41] 

where vi,j is the potential energy at the point (q1 ,q2) with q 1 and q2 

expressed in terms of i and j as above, All ljl values on the left hand 

0 side (LHS) are at time t + 6.t, and all'¥ values on the right hand side 
0 

"' < 

(RHS) are for time t. Introduction of the definitions, 
0 

2 r = 116.t/2µ (6.q) 

allows [41] to be written as 

and 
2 2 u .. = [2µ(6.q) /-fl ]v .. 

1,J 1,J 
[42] 

'¥ . . + ir/2 [4qi .. -'¥.+l . -'¥. l . -ljl. ·+1 -qi .. l + U . . '¥ • • ] =K .. [43] 
l,J l,J l ,J 1- ,J 1,J 1,J- l,J l,J l,J 

where K .. represents the RHS of [41]. The requirement that'¥ vanish at 
1,J 

all times outside the L-shaped region dictates the boundary conditions, 

qi = '¥ + '¥ = '¥ = 0 
i, 0 i, m+ 1 @, j n+ 1 , j [44] 

Equation [43] may be multiplied by -2i/r to give 

(4 + U. . -2i/r) 1¥_. • - 1¥ '+l . - '¥. l ." - '¥.. ·+l - '¥. • l = B. . l,J l,J 1 ,J 1- ,J l,J 1,J- l,J 
[45] 

where B .. = -2iK .. /r. Assuming for the moment that the RHS of [45] is 
1,J l,J 

known, then the values of qi. . (t + t.t) on the LHS for all i and j are 
l,J O 

sought. 

Two general matrix methods are available for the solution of [45], 

the point iterative method and the line iterative method. In applying 



the point method to [45], an initial 1 matrix is obtained (perhaps by 

guess) and then [45] is solved for each 1 .. (t + ~t) by using the 
1,J O 
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assumed values of the other elements of~ that are needed. The solution 

~f [45] for all i and j gives a new estimate of~. The process is 

repeated to refine~ and when successive estimates off differ by less 

than some allowed tolerance, the resulting matrix is the desired solu-

tion of [36] and gives the valt,Jes of ~ i,j (t0 + ~t) at each point on the 

grid. 

The point iterative methods often converge slowly (5) to the 

desired solution and hence the line Gauss-Seidel method (140) is used in 

this work. This line-iterative method attempts to speed up the converg-

ence by solving for all~- . on a row or line (fixed i) simultaneously. 
1,J 

For the i-th row of ~ the following definitions are·made, 

ail -1 0 0 ~il 

-1 ai2 -1 0 ~i2 

D. = ~- = 
-i -1 

0 0 -1 a. ~. 1m 1m 

[46] 

Bil 

Bi2 

B. 
-i 

B. 1m 

where a. j = [4+U .. -2i/r], and the line method converts [45] to 
1, 1,J 
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D . .!..: - 'l' ·+1 - 'l'. 1 = B. . . --i -.L -i· --i- --i 
[47] 

The solution or [45] is obtained by assuming a value for each element of 

!, and then solving [47] for each row of 'l'. The solution of [47] for 

each row gives the values of the wavefunction at each point on the grid 

for time t + b.t. The Line Gauss-Seidel method utilizes each new row or 
0 

line of points in the. iteration procedure just as soon as it is avail-

able. The solution of the points on the i-th row, for instance, is 

obtained by using the values of the points just calculated for the (i-1) 

row. Accordingly, the Line Gauss-Seidel method presents a distinct 

advantage over other line methods which do not use the new values for a 

row at such an early stage. Rearranging [47] the Line Gauss-Seidel 

method may be explicitely expressed as 

D 'l'(k+l) = B + 'l'(k+l) + 'l'(k) [4S] 
-i -=-f. .=.j_ --i -1 -=-f + 1 

where the superscript represents the iteration 'cycle. For the first 

iteration cycle it is necessary to have a guess or approximation for 'l'. 

The Line Gauss-Seidel method will converge for any starting.! if the 

Vi. (or equivalently U .. ) are all non-negative (5). In practice, ,J i,J 

however, since one attempts to minimize the computation time (or 

computing bill) a good choice for the initial.! is needed. Given the 

values for 'l' .. for the entire grid at time t, an initial guess for 
~J O 

'l'. j at time t +b.t, is obtained by ap~ing approximation [33]. 
i, 0 

The 

iterative computation becomes much more efficient since the starting! 

is a reasonable approximation to the correct answer. An unreasonable 

initial guess for! can cause the number of operations to become 

depressingly large. Applying the initial guess procedure outlined 

above, the r~te of convergence was found to depend on the time step size 
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6t used. If the time step size is halved, the number of iteration~ 

required for convergence is reduced almost exactly to one-half of its 

previous amount. The solution of [48] for each line or row of the, 

matrix yields the results for the (k+l) iteration. When successive 

cycles give values of, .. which differ by less than a small amount; e:, 
1,J 

the desired solution to [36] has been obtained. It was found that the 

real and imaginary parts of the wavefunction converged simultaneously 

and hence the following convergence criteria was sufficient. 

[49] 

where the vertical bars represent the absolute value. The desired 

solution was assumed when the above condition was satisfied for all grid 

points (all i and j). The value of e: used was 1.0 X 10-5• The solution 

to [48] was obtained directly by using a well known algorithm (141) 

applicable to matrix equations like [48] where the D. are tridiagonal 
--]_ 

matrices. 

In practice, .. values for each point of the L-shaped grid were 
1,J 

stored in two matrices, one matrix contained values for all, .. on the 1,J 

lower part of the L, another matrix was used to store values for all 

, .. on the upper portion of the L. The dimensions of the "lower" 
1,J 

matrix were 35 rows and 139 columns; for the "upper" matrix, 69 rows 

and 79 columns. Therefore the grid contained (consisted of) 35 X 139 + 

69 X 79 = 10,316 points. The grid spacing used in each direction was 

6q = 0.045 a.u., which is slightly smaller than the value of 1/22 used 

in case c of Mazur and Rubin's paper (101). 

Numerical values for distance, time, mass, and energy used in this 

work are in so called "molecular units" described in reference 118 and 
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are defined in Table II 

TABLE II 

MOLECULAR UNITS 

Quantity 

Mass 1 atomic mass unit = 1 a.m.u. :: 1.6604345 X 10-24g 

Distance 1 atomic unit 1 -8 = a.u. = 0.529167 X 10 cm 

Energy 1 Electron Volt 1 eV -12 
= = 1.60210 X 10 erg 

Time 1 time unit 1 t.u. -14 = = 0.53871469 X 10 sec 

Initial Conditions 

Formal time-dependent qtlaatum tnechanics does not directly giv'e the 

exact initial wavefunction for a complex system but rather describes the 

evolution of some chosen'¥. For the chemical reaction being studied, 
0 

an initial wavefunction '¥ is sought to describe·a free (or unbound) A 
Q 

atom far removed from the bound BC molecule. Evolution of 1:1' should 
0 

result in the approach of A toward BC and eventually result in a 

collision ~ith BC. In choosing 1:1' one is limited to a large degree 
. 0 

by the computing machinery and computing time presently available. 

For example, all of the possible energy states of the BC molecule 

cannot be accurately represented in a computationally usable 
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wavefunction. When A is far from BC the initiql wavefunction can be 

written as a product of two functions; one a func.tion of q1 only and the 

other a function of q2 alone: .... 

[50] 

As described earlier the potential-energy surface uses Morse potentials 
! 

to describe the bound molecules, BC and AB, Accordingly Morse wave-

functions are used for x(q2). In all calculation~ to be described later 

except one, the ground state Morse wavefunction is used. In order to 

assess the importance of vibrational energy in the quanta! dynamics of 

the A+ BC system the first excited vibrational Morse wavefunction was 

also utilized. 

The Morse potential given by equation [12] can be substituted into 

the time-independent Schrodinger equation and the Morse wavefunctions 

can be obtained in closed form (129) (142). The grounµ state Morse 

wavefunction is given by 

where N is the no.rmalization cqnstant for the ground vibrational state 
0 

. ~ 

given below, b = (8µD) /a~-1, µ is the reduced mass of BC, D and a are 

the values defined in Table I for BC, and q is the q-space value for 
0 . 

the equilibrium internµclear distance, namely q = s-1R where Sis 
o e 

defined in Figure 1 and R for BC is given in Table I. The normaliza. e 

tion constant for then-th vibrational state M&;rse wavefunction is 

N = (TN) n n 
1 

(1/M )~ 
·n [52] 

where TN is simply the normalization constant variable name used in the 

computer program. Following equqtion [9] of reference (142) M for the 



n-th vibr~tional function is defined as 

M 
n (A-2n-l) 

aA 

n 
I: 

s=O 
r (A-2n+s-1) 

s! 
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[53] 

where a is defined as above, A = b+l, and r represents the gamma function. 

The first vibrational state Morse wavefunction can be expressed as 

[54] 

((A-2n-1)/2) n (n-1) where F1 = exp(-DF); F2 = F ; F3 = z -(A-n-l)nz · ; z = AF; 

D == A/2; F = exp[-a(q2-q0 )]; and N1 is the normalizing constant for the 

first vibrational state. As will be apparent later, the first vibra-

tional state wavefunction has one node located at the point q2 = q0 • 

A brief digression seems appropriate and hopefully will be fruitful 

before explicitly stating the functional form of ~(q1) used. In 

accounting for experimental obse1:vations our theoretical intuition must 

guide us in tinding t(q1) which describes, at least approximately, the 

classical motion of a particle which has both reasonably definite 

momentum and reasonably definite position . 

..-'>. 

By defining a vector k which points in the direction of wave propa-

gation and has magnitude 2rr/11., one may write the de Broglie relation as 

~ ~ . 

p = .fik. A plane wave propagating in the x-direction with wavelength 

11. == 21r/k and frequency E/-ri can be associated with the motion of a free 

particle moving in the x-direction with momentum p =-nk. A plane wave 

propagatj_ng toward increasing x may be written as 

~1(x,t) == Aexp[i(kx-wt)] [55] 

and a wave propagating toward decreasing xis 

~2(x,t) = Aexp[-i(kx+wt)] . [56] 



42 

The above plane waves correspond to particle motions with momenta which 

is precisely defined by p = -i'ik but have absolute squares of the ampli-

tudes which are constant for all x and t and hence these plane waves 

leave the position of the particle entirely unspecified. However, a 

degree of localization can,be obtained by superposition of several 
.I . 

different plane waves of ,8ifferent wave number. 

The formation of localized compact wave packets by the superposi-

tion of plane waves of differing wave numbers is possible by Fourier 

' analysis (143). One can choose any number of 1'everal example functions, 

for instance, an approximately symmetric distribution of k about some 
x 

mean value k and form a function called a wave packet. The function or 
x 

wave disturbance is obtained by superimposing an infinite number of 

plane waves. If the example function chosen is a Gaussian distribution 

of k values, then the resulting wavepacket formed is also a Gaussian 
x 

distribution in coordinate space. The interpretation made is that the 

particle is most likely to be found at a position where the magnitude of 

the wavepacket function is appreciable. Thus the description of a 

particle which is localized within a distance, say ~x, of a convenient 

origin can be accomplished at the expense of combining waves of wave 

numbers in a range ~k about K. The value of the product ~x~k is 
x x x 

dictated by the Heisenberg Uncertainty Principle which limits the 

accuracy with which position and momentum can be simultaneously ascribed 

to the particle. 

For the somewhat arbitrary choice of <l>(q 1) the normalized Gaussian 

wavepacket is chosen. 

[57] 
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The packet is centered symmetrically in q-space about the point q10 and 

has a root-mean-square width a. For a Gaussian curve the amplitude is 

down to 1//"e" of its maximum at one standard deviation. In the case of 

the above Gaussian packet whose shape is determined by o, the standard 

deviation a is given simply by off. The complex exponential term 

furnishes the wavepacket with an initial velocity in toward the inter-

action region (region of small q1) with momentum p =iik0 • As is gener

ally the case. for wavepackets, the Gaussian wavepacket consists of a 

product of two terms, one of which is an envelope and the other is a 

rapidly oscillating term (complex exponential) within the envelope. In 

addition the Gaussian distribution results in the minimum value.for the 

product 6x6k, allowed by the uncertainty principle. The spread in 
x 

coordinate space, bx, is the standard deviation a and the range of k 
x 

values is ak. It can be shown that for a Gaussian distribution at 

time t=O, a a =~or a a =-fi./2. The particular Gaussian represented xx xp 

by [57] has ax= 012 and therefore ak = (~)(1/a) = 1/(2of2). 
x 

In all 

calculations performed o = 0.25 a.u. and thus the numerical values of 

ax and crk are crx = 12/4 and crk = 12". The above wavepacket is used to 

represent, describe, or mimic atom A initially localized about the 

point q10 • A,nother form of $(q1) has been used by other investigators 

(80) (101). 

As time proceeds the width of the wavepacket in configuration space 

increases and at time tan uncertainty in the position of the particle 

results over and beyond the initial uncertainty. A simple physical 

interpretation is that two segments of a wavepacket differing in momen-

tum will differ in distance traveled at time t. When this distance 

becomes comparable with the width of the·initial packet, the packet will 
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begin to spread. 

Calculational Procedure and Parameters 

The translational packet possesses an average kinetic energy con-

sisting of two sources. The exponential driving term produces a contri

bution of -112k~/2µ and the "shape" kinetic energy (80) is ~ 2 /21l) (1/4i). 

The average translational energy is therefore 

Et= -fl.2 (k~ + 1/402)/(2µ). [58] 

Various k0 values were used in the quantum calculations and are given in 

Table III. Each calculation has been assigned an arbitrary label A, B, 

C, D, or E, merely for convenience. This label is used when reference 

is made to a particular calculation. 

The total energy of the atom-molecule system is the sum of the 

translational energy of the packet given above plus the vibrational 

energy of molecule BC in then-th vibrational level. The vibrational 

energy of a "Morse oscillator" in then-th vibrational level is given 

by Morse (129) and relative to the "bottom of the well" is 

2 2 2 
E(~ = hw(n~) - (h w /4D) (n~) [59] 

where w = (a/2~)(2D/µ)~. D and a are defined as before for molecule BC 

and are given in Table I. The reduced mass of BC is µ. The parameter 

values used for the quantum calculations are given in Table III. The 

translationa:1.. energies Et, are calculated using equation [58] and the 

vibrational energies E are obtained from [59]. 
v 

Irt the earlier stages of a calculation a time step size, tt = 2.155 

X 10-16 sec was normally used. As the wavepacket moved closer to and 

into the interaction region, the time step was reduced, usually by a 



TABl.-E III 

INITIAL VALUES FOR QUANTUM CALCULATIONS 

Calculation k 0 

A 

B 

c 

D 

E 

* 

-1 
(a. u. ) 

3.1086 

5.7500 

7.3864 

8.9038 

5 .• 7500 

qlO 

(a. u.) 

5.50 

6.50-

5.50 

5.50 

5.50 

Et 

kcal/mole 

3.5000 

9~4937 

15.000 

21:3319 

9.4937 

n denotes the vibrational quantum.number. 

·** 

eV 

(0.1518) 

(O. 4117) 

(0.6505) 

(0.9251) 

(0.4117) 

The total average system energy ET= Et+ Ev. 

* n 

0 

0 

0 

0 

1 

E 
v 

kcal/mole 

6.1893 

6.1893 

6.1893 

6.1893 

18.0283 

** ET 

eV kcal/mole 

(0.2684) 9.6893 

(0.2684) 15.6830 

(0.2684) 21. 1893 

(0.2684) 27.5212 

(0.7818) 27.5220 
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factor of one-half. The numerical procedures presented in this chapter 

were implemented with a computer program written in Fortran IV and com-

piled and executed on the Oklahoma State University IBM 360/65 computer 

in Fortran H language using optimization level 2. The program was com-

piled and stored on private on-line disk storage and hence execution 

was initiated simply by "reading in" a deck consisting of the proper 

Job Control Language cards and approximately 10-12 data cards. Execu-

tion of the program compiled in Fortran H level, optimization 2, re-

duced computation time approximately 10% compared to Fortran G level. 

A complete calculation required about 5.4 hours of computer time depend-

ing somewhat upon the average translational energy of the wavepacket. 

The storage requirement·of the program is quite large and is a 

common problem when the solution of a partial differential equati0n is 

soti&_ht at various. points in configuration space. Execution required 

approximately 395 K bytes of core storage where lK bytes= 1024 bytes 

and one si,ngle precision variable in Fortran requires four bytes of 

storage on t~e IBM. machine. For a single precision complex variable 

(a + bi where pf 0) eight bytes of storage are required. Because of 

the large stor~ge ~equirement, execution of the program in double pre-

cision on the IBM machine with the presently available core storage was 

not possible. However, a comparison program consisting of only the 

variables needed to study the reactive system on the lower part of the 

L-shaped grid was written in double precision and executed. There .were 

no deviations between the values of IJI •• computed by the double preci-
1., J 

sion version and the values produced by an identical single precision 

program. 

The essential computational procedure of the program is briefly 
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summarized below. 

1. Read in the initial conditions and other required data such 

as the grid dimensions, the grid spacing, the minimum q2 value, 

the maximum q1 value, the potential energy surface parameters, 

the variables necessary to specify the shape and energy of the 

wavepacket, the time step size, and an integer which is the 

time step number k, which serves to terminate the particular 

batch run when the wavefunction has been evolved up to and 

including k steps. 

2. Calculate the potential energy values for all points on the 

grid. 

3. If the time step number is zero, generate the values of'¥, . at 
]_' J 

time step zero for all points on the grid. 

4. If the time step number is not zero, read the values of'¥ .. 
]_ 'J 

for time step n (typically k has a numerical value 20 greater 

than n) from on-line disk storage. 

5. Calculate the values B .. for all points on the grid. 
]_' J 

6. Obtain a first guess or first approximation for'¥ .. 
]_' J 

[t + (n+l)6t] for all points on the grid using approximation 
0 

[34]. 

7. Solve for '¥ • • [t + (n+l)6t] using the line Gauss-Seidel method. 
].,J O 

8. Check on convergence by applying equation [50]. If '!' •• for 
l,J 

time step n+l for all points on the grid have not converged, 

repeat step 7. If the convergence criteria has been met by all 

points on the grid, continue to step 9. 

9. Compute the value of the integral <'¥1'¥>, integrated (summed) 

over the entire grid, and calculate the quantum reaction 
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probability. 

10. If the time step number of the present calculation is equal to 

k, then the values of W .. at all points on the grid are 
1,J 

written onto on-line disk storage, otherwise return to step 5 

and use the converged values of W .. [t + (n+l)~t] just com-
1,J O 

puted and carry out steps 5 thru 9 to obtain W. . [t + (n+2)~t]. 
1,J O 

Continue the process until the time step number of the calcula-

tion is equal to k. 

In step 9 above the numerical quadrature method employed to perform 

the integration and determine <WIW> and the reaction probability was a 

standard technique employing Simpson's one-third rule (144). The 

quantum reaction probability will be defined later. The value of the 

integral should be equal to one and remain constant-during an entire 

calculation. Therefore computation of <WIW> at each time step serves 

somewhat as a check on the accura~y of the calculation. The value of 

the integral changed only slightly during a calculation and showed the 

greatest deviation from unity when the main bulk of the wavepacket 

encountered the .. interaction region. The accuracy of the integration 

technique was checked by determining the volume under a surface pro

duced by setting lw .. 12 equal to a constant for all i and j. The 
1,J 

value of the integral (volume) computed by the integration subroutine 

agreed almost exactly (exact agreement is impossible for this case 

where the volume is formed by perpendicular planes) with the value 

calculated by hand. 

The numerical error produced by applying the finite difference 

formula, Equation [37], to a plane wave is given by Hannning (145). The 

relevant equation indicates that errors ranging from a few tenths of a 
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percent to a few percent are to be expected for the most probable plane 

wave components of the initial packets. The values of L.\q and At used in 

the calculations were arrived at largely through trial and error. One 

can evolve the wavefunction back in time from time, t + nAt, to time, t, 

by substituting in -At for the time increment. The difference between 

these "back evolved"'¥ .. values and the values at hand serves as a 
1,J 

measure of the accuracy of the calculation. As an example, for 

Calculation A the values of'¥ .. at time= 32.5 lt (see Figure 6) were 
1,J 

-16 evolved back 20 time steps with At = -1. 0775 X 10 sec. and compared to 

available values of'¥ ..• Considering all of the grid points, the 
1,J 

largest difference between thetwo calculated values at a grid point for 

the real part of the wavefunction was 5.7 X 10-3 , the average difference 

for all of the grid points was 1.3 X 10-5 . The largest difference 

found for the imaginary part was 6.9 X 10-3 (average difference of 1,3 

4.0 X 10-4 (average -5 * X 10 ), and for'¥ . . '¥. , the largest difference was 
1,J 1,J 

difference of 5.5 X 10-6). An identical back evolution process from 

time= 92.5 At (see Figure 9) yielded the following values: largest 

real part difference= 2.6 X 10-4 (average= 4.5 X 10-6), largest ima-

4 -6 ginary part difference= 1.8 X 10- (average= 4.3 X 10 ), largest 

* -5 -6 difference for'¥ . . '¥ • • = 7.9 X 10 and average= 3.2 X 10 . Most 
1,J 1,J 

books on numerical methods state that an important factor in integrating 

partial differential equations is the ratio, (Aq/At) and not Aq or At 

alone. Accordingly, the ratio of L'iq and At was adjusted and the rough-

ness of the plots and the deviation of the integral <\jll\\1> from unity 

were closely followed. In the final choice, of course, the values 

chosen.for Aq and At must be commensurate with the computer time and 

computer storage available. 



CHAPTER III 

RESULTS 

Quantum Probability Density 

The solution of equation [36] at a given time yields a complex 

number'¥ .. for each grid point. The quantum probability density, 
l,J 

(60] 

Since the numerical solution gives '¥(q 1,q2,t) only at the grid points, 

the probability density consists of tables of real numbers, approxi-

4 mately 10 for each time step. A more meaningful and instructive way 

of presenting pis given below. 

In order to evaluate pat any arbitrary point in (q1,q2) configura

tion space an interpolation procedure was used. Any arbitrary point in 

q-space can be envisioned as being surrounded by four grid points. The 

value of p was determined by adding the values of pat a pair of the 

surrounding points, taking the average of the two points, and weighting 

the average value inversely to the distance from the arbitrary point at 

which pis desired. In this weighting procedure two pairs are weighted 

in the q1 - direction from the arbitrary point and two pairs in the q2 -

direction, 

The time evolution of pin (q 1 ,q2) configuration space shown in 

Figure 4 is represented by three-dimensional perspective plots given in 

50 
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Figures 5-67. The height above the (q1 ,q2) plane represents the value 

of p. The labels A, B, C, D, or E refer to the initial conditions given 

in Table III. 

A plot data set for each perspective plot was created by a computer 

program written in FORTRAN IV by the author and utilizing a perspective 

plotting subroutine written by Dr. Ronald K. Oines, Research Foundation, 

Oklahoma State University. The data sets were plotted by the CALCOMP 

plotter at the University Computer Center, Oklahoma State University. 

The generation of a perspective plot data set consumed on the average 

about 20 seconds of execution time (GO step). Approximately 33 minutes 

was required for the CALCOMP 565 plotter to physically produce a plot. 

This very versatile subroutine allows the user to choose the line of 

sight up or down (equivalently tilt the (q1,q2) plane) by an angle and 

to rotate the line of sight to the left or right by any amount and 

hence enables one to "look" completely around a figure projecting from 

the (q1,q2) plane. Figures 5-67 display the (q 1,q2) plane shown in 

Figure 4 with the line of sight 45 degrees up from the (q 1,q2) plane 

(equivalently the plane of Figure 4 is tilted down at an angle of 45 

degrees) and rotated 135 degrees counterclockwise (equivalently the 

plane of Figure 4 is rotated 135 degrees clockwise). The line of sight 

therefore lies along the diagonal which runs from the point of inter

section of the upper and lower parts of the L back to the corner where 

q1 and q2 have their minimum values. A complete description of the sub

routine is available at the University Computer Center, Oklahoma State 

University. 

Since the figures serve primarily in a qualitative way and provide 

a means of observing the qualitative characteristics of the reaction 
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( 1.79,5.24) 

Figure S. Calculation A, t = OAt, FAC = 1.25 



Figure 6. 
. on A, 1at1-Calcu 

== 32.5 b,t t 
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Figure 7. Calculation A, t = 52.5/lt 



Figure 8. = 72.5L1t Calculation A, t 

55 
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Figure 9. Calculation A, t 92.5 tit 
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Figure 10. 
Calculation A, t = 112, 5 tit 
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Figure 11. Calculation A, t 132.St.t 
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Figure 12. Calculation A, t 152. 5 M 
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Figure 13. Calculation A, t = 172.5 bt 
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Figure 14. Calculation A, t = 192. 5 6 t 
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(1.79,5.24) 

Figure 15. Calculation B, t = 0 lit 
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Figure 16. Calculation B, t = 45 ~t, FAC = 3.00 
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Figure 17. Calculation B, t = 60~t, FAC = 3.00 
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Figure 18. Calculation B, t 75 lit, FAC 0.75 
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Figure 19. Calculation B, t = 90 lit, FAC 0.40 
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If 
1. 

'l 

Figure 20. Calculation B, t 105 flt 
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Figure 21. calculation B, t " 105 M, FAC " 0.50 
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Figure 22. Calculation B, t 
120 L\ t 
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Figure 23· calculation B, t ~ 120 it, ~AC ~ Q. 75 
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Figure 24. Calculation B, t = 127.5 ~t, FAC = 0.82 
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Figure 25. Calculation B, t 135 M 
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Figure 26. Calculation B, t = 135 8t, FAC = 0.867 
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Figure 27. Calculation B, t = 165 ~t 
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Figure 29. Calculation B, t = 172.5 ~t 
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Figure 30. Calculation B, t = 172.S~t, FAC 2.77 
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Figure 31. Calculation B, t 187. 5 lit 



79 

Figure 32. Calculation B, t 197.SLit 
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Figure 33. Calculation B, t = 217. 5 tit 
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( 1.79,5.24) 

Figure 34. Calculation C, t = O fl.t, FAC = 1.25 
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Figure 35. Calculation C, t 45 lit 
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Figure 36. Calculation C, t = 60~t 
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Figure 37. Calculation C, t = 67.5 ~t 
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Figure 38. Calculation C, t 80 lit 
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Figure 39. Calculation C, t = 90 Lit 
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Figure 40. Calculation C, t = llO~t 
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Figure 41. Calculation C, t 130 l',t 
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Figure 42. Calculation C, t 150 .6t 
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Figure 43. Calculation C, t 162.5 flt 
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Figure 44. Calculation C, t 175llt 
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Figure 45, Calculation C, t 
187. 5 M 
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Figure 46· calculation C, t ~ 212.5 1't 
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( 1.79,5.24) 

Figure 47. Calculation D, t O ~t, FAC 1.25 
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Figure 48. Calculation D, t 25 L'lt 
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Figure 49. Calculation D, t - 45 lt 
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Figure SO. Calculation D, t 65 t.t 
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Figure 51. Calculation D, t 85 M 
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~••~ 52. Calculation D, t. los
1

, 
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Figure 53. Calculation D, t = 125 ~t 
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Figure 54. Calculation D, t ~ 145 ~t 
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( 1.79, 0.60} 

Figure 55. Calculation E, t = O t.t 
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Pigure 56. Calculation E, t == 32.5 £\t 
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Figure 5 7. Calculation E, t = 52. 5 flt 
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Figure 58. Calculation E, t = 62.5 L'lt 



106 

Figure 59. Calculation E, t 72.5 lit 
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Figure 60. Caiculation E, t = 92. 5 ~t 
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Figure 61. Calculation E, t 112.5 L',.t 
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Figure 62. Calculation E, t 132.Stit 
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Figure 63. Calculation E, t 152.5 ~t 
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Figure 64. Calculation E, t = 162.5 At 
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Figure 65. Calculation E, t 172.SM 
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Figure 66. Calculation E, t = 192.5 L'lt 
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Figure 67. Calculation E, t 202.5 M 
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dynamics, no vertical scale i~ provided for the figures, However, the 

perspective plotting routine does scale the z axis (height above the (x,y) 

or (q 1,q2) plane \;:!Xactly the same as the x axis (q1 axis). For example, if 

6 a.u. are represented by seven inches along the x axis (q 1 axis) then 

this same ratio prevails for the z direction. In order to produce a plot of 

more reasonable, eye pleasingproportions, it was necessary to change the 

height in the z direction by multiplying all z values by an appropriate 

factor. This factor is denoted by FAC and is equal to 2.00 for each 

figure unless otherwise stated. The time, t, given by nllt for each cal

culation is also given below each plot. The numerical value of L\t in each 

figure is 2.155 X 10- 16 sec. even though the actual time step size used 

in carrying out the numerical procedures of Chapter II and obtain values 

of p displayed by the plot is quite often different from this value. 

Figures 18, 19, 21, 23, 24, 26, 28, and 30 encompass only the inter

action region, that part of the entire q-space grid i~ the vicinity of 

the saddle point. For these figures q1 max (maximum q1 value plotted)= 

3.185 a.u., q 1 min (minimum ql value plotted)= 1. 79 a.u., q2 max (maximumq 2 

value plotted) = 2.13 a. u., and q2 min (minimum q2 value plotted)= 1. 005 a. u. 

As in the case of the other perspective plots the "tilt"angle is 45 

degrees and the rotation angle is 135 degrees. 

The perspective plots provide an excellent means of displaying the 

quantum probability density obtained directly from the numerical 

solution of the two-mathematical-dimension (q 1 and q2) problem. The 

transient motion of the specially prepared wavepackets is vividly obser

vable. In their subsequent motion the wavepackets spread and move 

toward the region of q-space where ql and q2 are small (for example, 

see Figures 6-8). Along the path the potential energy is gradually 
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increasing but as yet the variation of the potential surface has had 

little observable effect. Eventually the wavepacket encounters a region 

of high potential, that is, a hard potential wall (Figures 9 and 10) and 

drastic changes occur. Large maxima rapidly form throughout the entire 

packet and extend back into the reactant region (Figure 11). These 

distrubance peaks result from the reflection of 1 by the potential wall; 

the reflected portion is superimposed on the incoming packet giving rise 

to interference minima and maxima. The collision of the wavepacket with 

the potential wall is shown most dramatically in Figures 37 and 50. The 

large maximum remains almost stationary in a region of high potential 

(compare Figures 10, 11, and 12) but the decaying edge of the maximum 

clearly increases with time that is, the wavepacket partially negotiates 

the potential surface barrier, either passing over or tunneling through 

the barrier, and moves into the product (AB, C) region (Figures 12, 13, 

and 14), In each calculation the wavepacket eventually divides into 

two parts, one of which is reflected back into the reactant region and 

another part which moves out into the product region (reactive scatter

ing). After a sufficient time has passed, the reflected and transmitted 

waves have died down in the neighborhood of the barrier, and the prob

ability flow from reactants to products is essentially over. The 

presence of the interference peaks which propagate back into the (A, BC) 

region indicate that the reaction is not compatible with the idea that 

the packet passes smoothly around the corner. Comparing Figures 14 and 

54, it is apparent qualitatively that an increase in the average rela

tive translational energy is not an efficient means of increasing the 

probability density in the product region. The Figures indicate that 

the packet must remain in the interaction region a sufficient length of 
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time to enable probability density to round the corner, move to and 

surmount the barrier, and pass out into the product region, In essence, 

if the packet does not remain in the interaction region a long enough 

time, the packet is largely reflected back into the reactant region 

resulting in a small product probability density. Qualitatively the 

calculations indicate that the amount of vibrational energy in the 

reactant molecule is of utmost importance in determining how much 

probability density ends up in the product region. In both calculations 

D and E, the three atom system possesses the same total energy, but in 

calculation Ethe first excited Morse wavefunction was used to initially 

describe the molecule BC (see Table III). A comparison of Figures 54 

and 67 reveals that an extraordinary larger amount of probability density 

reaches the product region in calculation Ethan for calculation D. In 

the vibrationally excited case, the probability density is much more 

spread out in the reaction valley (Figure 60) and an exceedingly large 

amount of probability density negotiates the barrier and eventually 

reaches the product region. This broad probability density prevails 

throughout the entire time of interaction. Scanning the two sets of 

figures representing calculations Band E allows comparison of two 

systems with the same average translational energy but which differ in 

the vibrational energy initially present in molecule BC. 

The result of truncating the region of q-space considered by clos

ing off the asymptotic reactant and product channels (setting the wave

function to zero outside the L-shaped grid) is to produce nonphysical 

reflecting barriers which tend to reflect f back toward the interaction 

region. Figures 31-33, 41-46, 53-54, and 63-67 clearly illustrate this 

reflection process. In fact the calculation represented by Figure 46 
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has been carried out to a time such that portions of the wave reflected 

from the closed off reactant channel have moved back into the interac-

tion region. In general it is not necessary to carry out a calculation 

to such a long time and hence no problems are encountered since the 

reaction is essentially over before interference from reflected compo-

nents occurs. 

Reaction Probability 

In order to quantitatively discuss the probability that the system 

which originated in the reactant (A, BC) region ends up in the product 

(AB, C) region, a dividing line is required between the two regions. In 

the saddle-point region the concept of reactants and products is ill-

defined; a line drawn through the saddle-point region may be crossed 

several times by the system. Accordingly the reaction probability is a 

property of the system determined as t -+ 00 , The dotted line in Figure 4 

which passes through the saddle-point was used to divide reactants and 

products. The probability of finding the system on the (AB, C) side .of 

this line after a sufficiently long time will be denoted P . Determina
r 

tion of P simply involves summing (integrating) the probability density 
r 

on the product side of the dividing line. In the actual calculation 

(step 9 of the computer program description) the probability density on 

the reactant side of the line was summed and P obtained by subtracting 
r 

this value from the value of the integral <'¥j'¥>, The numerical values 

of P obtained for each calculation will be presented after a classical 
r 

mechanical treatment of the (A, BC) system is given. 



Classical Dynamics 

Classically, the motion of particles obeys Hamilton's equations, 

aH . 
= qi ap. 

1 

aH 
= -p. 

aqi 1 

where His the classical Hamiltonian function of the system given by 

equation [5] and q., p. {i = 1 or 2) are the conjugate positions and 
1 1 
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[61] 

momenta. Given the initial positions and initial momenta, the solution 

of the simultaneous, first-order equations (specification of p. and q. 
1 1 

for all i) for all time of interest defines a trajectory. 

Dropping the center of mass motion, the separation of atoms Band C 

for the general three-dimensional case can be represented by a vector 

(pointing toward C) with components Q1, Q2 , and Q3• The distance from 

atom A to the center of mass of BC is described by a vector (pointing 

toward A) with components Q4, Q5 , and Q6 . For the collinear study one 

can write (referring to Figure 1) 

[62] 

and for the (H, H2) system, 

Q6 = rl + r2/2. [63] 

The BC internuclear separation is given by 

o. [64] 
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Carrying out the process described in Chapter II yields 

. 2 • 2 
2T = µ A, BC Q6 + ~BC Q3 [65] 

where µA, BC is the reduced mass of the (A, BC) system given after 

Equation [4] and µBC is the reduced mass of the BC molecule, ~m/(~ + 

m ). The classical Hamiltonian function for the internal motion is 
c 

2 2 
H = (llA, BC / 2 }Q6 + (µB/ 2 ) c\ + V(Q6, Q3) • 

In terms of the conjugate momenta we have, 

[66] 

[67] 

The equations of motion were integrated from the initial to the final 

state by means of a computer program obtained from Dr. Lionel M. Raff, 

Department of Chemistry, Oklahoma State University. The program was 

modified to study the one-dimensional (A, BC) system. The potential 

energy subroutine was changed to correspond exactly to the extended LEPS 

surface described in Chapter II and used in the quantum claculations. 

In the initial configuration for each collision, the atom A, is far 

removed from BC, a distance at which the interaction between the atom 

and molecule is negligible. A value of 10 a.u. was assumed for the 

initial separation (initial Q6) of atom and molecule. The atom and 

molecule approach each other along their line of centers at a chosen 

relative translational energy. The relative translational energies 

used were identical to those of the quantum calculations given in 

Table III. The initial vibrational energy of BC was chosen to be the 

quantum mechanically allowed value corresponding to the ground or first 

vibrational excited state. The initial Q3 value corresponded to the 

separation of atoms Band C to the classical turning points (points at 
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which the total energy is equal to the potential energy). The vibra-

tional energy also corresponded to the values in Table III. Since the 

molecular energy is quantized, these calculations are more properly 

referred to as quasiclassical trajectory calculations rather than 

classical in which all values of vibrational energy are allowed. The 

reaction probability for the particular initial conditions is simply the 

number of collisions which result in the formation of AB divided by the 

total number of trajectories computed. 

An additional variable was utilized to average over the vibrational 

phase of BC. This was accomplished by 

starting separation (10 a.u.) a number 

adding to the preselected minimum 

Ax = v1/N, for each trajectory 
r 

computed. V is the relative velocity, N is the total 
r 

trajectories to be computed in a particular batch run, 

number of 

andrf is the 

vibrational period of BC calculated using the harmonic oscillator 

approximation to the Morse function, 

1 = (2µ/D)~ (,r/a) 

whereµ is the reduced mass of BC, and D and a are given for BC in 

Table I, Another method of selecting the vibrational phase of the 

[68] 

molecule has recently been used (146). In this study the two methods of 

selection proved to give equivalent averages. 

Approximately 200 calculations (trajectories) were run for each of 

the initial conditions in Table III. The integration time step size was 

-16 -16 varied from 1.0775 X 10 sec on the higher-energy runs to 2.155 X 10 

sec on the low-energy trajectories. The integration technique employed 

was the Runge-Kutta-Gill procedure (147) with the accuracy of the inte-

gration tested by changes in the step size and by integration backwards 
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along selected trajectories. As an additional verification of numerical 

accuracy, trajectories were checked for conservation of total energy. 

Computation time for a single trajectory was dependent on the initial 

conditions but was on the average about 8 seconds per trajectory on the 

IBM 360/65. The classical and quantum reaction probabilities are given 

in Table IV. P (Q) represents the quantum probability as defi.ned pre
r 

viously and P (C) the classical reaction probability. One additional 
r 

classical calculation corresponding to initial conditions different from 

any of the quantum calculations was performed. This batch had relative 

translational energy of 2.00 kcal/mole and BC in the ground vibrational 

state. The resulting reaction probability was 0.36. Figure 68 is a 

plot of reaction probability versus relative translational energy. The 

upper curve corresponds to the classical results; the lower curve the 

quantum results. The 6 and O represent respectively the quantum and 

classical results for calculation E. Straight lines were drawn between 

points to distinguish the classical and quantum results. Values of the 

reaction probability for energies between the plotted points are not 

given by the present calculations. 

An estimation of the reaction time for the quantum calculations 

can be obtained from Figures 5-67 (and from the computer output). For 

Calculation A the packet is entering the interaction region at about 

time, t = 50 6t . At approximately time, t = 165 lit, the interaction is 

essentially over. The reaction time is therefore about 115 L'it"' 2.5 X 

-14 
10 sec. Classical interaction times of 1-3 X 10- 14 sec. were found 

on the Porter-Karplus potential surface (117) by Karplus, et al. (29). 

The following reaction times are estimated for the other quantum calcu

lations: Calculation B: 2.7 X 10-14 sec., Calculation C: 2.0 X 10-14 
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sec., Calculation D: 1. 8 X 10-14 sec., and Calculation E: 2.6 X 10-14 

sec. These times are of the same order of magnitude as the time required 

for a free a~om to pass the reactant molecule in the absence of inter-

action (80). The results support the conjecture that the reaction pro-

ceeds by way of a direct interaction mechanism. 

Calculation 

A 

B 

c 
D 

E 

* n denotes 

** The total 

* n 

0 

0 

0 

0 

1 

TABLE IV 

QUANTUM AND CLASSICAL REACTION 
PROBABILITIES 

** ET p (Q) 
r 

kcal/moJ .. e. 

9.689 0.092 

15.683 0.188 

21.189 0.152 

27.521 0.082 

27.522 0.493 

the vibrational quantum number. 

system energy. 

p (C) 
r 

0.470 

0.380 

0.110 

0.000 

0.585 
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Figure 68. Reaction Probability Versus Relative Translational Energy 



CHAPTER IV 

DISCUSSION AND CONCLUSION 

Discussion of Results 

The results of this study, as displayed by Figure 68, clearly show 

a large discrepancy between the two methods of calculation. No previous 

comparison studies between classical and quantum mechanical treatments 

of the (H, H2) system on symmetrical potential-energy surfaces have 

exhibited such a large discrepancy. 

The calculation by McCullough and Wyatt (80), whose calculational 

procedure was followed in this quantum study, showed classical mechanics 

to give a good description of the reaction dynamics. They studied the 

(H, H2) system using the Porter-Karplus (117) potential-energy surface, 

hereafter referred to as PK surface. This surface has a barrier height 

of 0.396 eV (9.132 kcal/mole). Initial translational energies of 0.32, 

0.38, 0.44, and 0.51 eV were used and, they found the classical reaction 

probability to be lower than their quantum counterparts by amounts 

ranging from 23% at 0.32 eV to 15% at 0.51 eV. The author estimates 

from their figures the following reaction probabilities: 0.32 eV: 

P (C) = 0.45, P (Q) = 0.58, 0.38 eV: P (C) = 0.53, P (Q) = 0.66, r r r r 

O. 44 eV: P (C) = O. 59, P (Q) = 0. 70, and O. 51 eV: P (C) 
r . r r 

0.62, 

Pr(Q) = o.n where C and Q represent classical and quantum mechanically 

calculated results, respectively. Although energies of this study do 

not correspond exactly to their calculations, it is apparent that both 

125 
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the classical and quantum reaction probabilities lie below their values. 

At an everage translational energy of 0.4117 eV (Calculation B) P (C) is r 

0.38. Interpolating one might guess their classical probability at this 

energy to be 0.56, a considerable difference. The corresponding inter-

polated P (Q) is 0.68 opposed to the present calculated value of 0.188. 
r 

Obviously one expects differences between the two calculations due to 

the difference in barrier heights of the two surfaces but intuitively 

the difference between the classical and quantum reaction probabilities 

is expected to be approximately the same. The classical reaction 

probability is about 68% of their value: the quantum probability 

approximately 28% of their value. Even calculation E, where molecule BC 

is initially in the first excited vibrational level, results in a 

quantum reaction probability much lower than any of the values obtained 

when the PK surface is used. However, the striking difference between 

the two calculations is that their quantum values are larger than their 

corresponding classical values whereas the reverse is true in this 

study. 

The literature contains other values for the collinear quasi-

classical reaction probabilities using the same PK surface. Morokuma 

and Karplus (148) in their Table II give P (C) = 0.65 for an initial 
r 

relative translational energy of 0.32 eV and P (C) = 0.71 for 0.38 eV. 
r 

Values for the classical reaction probabilities on the PK surface at 

higher relative translational energy can be estimated from the work by 

Wu and Marcus (149), who carried out collinear calculations up to about 

23.8 kcal/mole initial relative translational energy (!RTE). From their 

Figure 15 the author estimates that P (C) = 1.0 at 0.44 eV !RTE and 
r 

P (C) = 0.85 at 0.51 eV !RTE. These P (C) values at 0.32, 0.38, 0.44, 
r r 
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and 0~51 eV IRTE all lie above the corresponding quantum reaction 

probabilities calculated by McCullough and Wyatt. Furthermore the 

results of the above references are in qualitative agreement with the 

findings of Mortensen (9) who studied the collinear (H, H2) system using 

the potential surface of Weston (150). 

The reason for the differences in the classical reaction probabil

ities using the same potential surface is due to the different calcula

tional procedures used to obtain the reported values. McCullough and 

Wyatt followed the motion of an ensemble consisting of 3000 phase 

points by solving Hamilton's equations to find the trajectory of each 

phase point. The initial quantum conditions state that the vibrational 

energy of the reactant molecule is quantized. They abandoned strict 

quantization and chose a four-dimensional phase space probability density 

function and generated an ensemble of phase points having this density 

function. Morokuma and Karplus and Wu and Marcus, on the other hand, 

carried out their classical calculations as described in Chapter III of 

this work. The important point is that the choice of the classical 

mechanical initial conditions may result in quite different results for 

the classical reaction probability. Comparing the above classical 

reaction probabilities calculated by Morokuma, Karplus, Wu, and Marcus 

to the quantum probabilities of McCullough and Wyatt shows the classical 

reaction probability curve for the PK surface to lie above the quantum 

curve. This result is similar to the findings of this study. Further

more, in this study both curves lie below the values for the symmetrical 

PK surface. These data lead one to conclude that the position of the 

barrier occurring late in the reaction coordinate is responsible for the 

smaller reaction probabilities. Perplexing, however, is the fact that 
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the quantum reaction probabilities are lowered by a larger amount than 

the classical reaction probabilities (for IRTE up to 0.51 eV) as the 

barrier shifts to the exit channel. At higher initial relative transla-

tional energies the quantum reaction probabilities are larger (see 

Calculation C) than the corresponding classical probabilities. It is 

certainly desirable to have quantum reaction probabilities for higher 

IRTE for the PK surface than those available from the McCullough and 

Wyatt study. Their largest IRTE is 0.1139 eV above the barrier height 

of the PK surface. An IRTE of 0.1139 eV above the barrier on our 

asymmetric surface corresponds to an IRTE of 0.4196 eV (9.67 kcal/mole) 

which lies in the region where the quantum curve has reached a maximum. 

At higher IRTE it is possible that the quantum curve would exhibit a 

similar crossing of the classical curve for the PK surface. 

For the energies considered in this study, both the classical and 

quantum calculations appear to exhibit an upper-energy bound for 

reaction. That is, P (C) is equal to zero for Calculation D and the 
r 

corresponding P (Q) has decreased from 0.188 for calculation B down to 
r 

0.082. The existence of an upper-energy bound for the classical calcu-

lation is not new and has been reported by Wall, et al. (23) (24) in 

their early collinear-classical trajectory studies. The upper-energy 

bound seems to indicate that high-energy systems encounter a virtually 

vertical wall in the interaction region and are reflected back out into 

the reactant valley. For systems which have upper bounds it is expected 

that the bound is so high that it would not be experimentally detected 

in thermal reactions unless the temperature were so high as to cause 

considerable electronic excitation of the reacting species. In this 

case the adiabatic assumption of a single potential-energy surface for 



a given reaction would be invalid. Furthermore, the aforementioned 

argument is presented under the assumption of a collinear reaction. 
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Morokuma and Karplus (148) compared transition-state theory results 

with collinear-quasiclassical trajectory calculations for the same 

potential surface. In the study of one of their systems they employed 

an extended LEPS potential surface identical to the one employed in the 

present calculations. They list surface parameters in their Table VII 

and give reaction probabilities in Table VIII. At a total system energy 

of O. 5064 eV (11. 677 kcal/mole) they obtained a reaction probability of 

0.43. This total system energy corresponds to an initial relative 

translational energy of 5.488 kcal/mole. Their reaction probability at 

this energy appears to correspond exactly with the classical result of 

Figure 68. Morokuma and Karplus found that displacement of the well

defined barrier from its symmetric position to an asymmetric position in 

the exit channel was the dominant factor in deviations between 

transition-state theory and the classical-trajectory technique. The 

deviations support the findings of Polanyi and Wong (122) that vibra

tional energy is more effective than translational energy in increasing 

the reaction probability when the barrier lies in the exit channel. The 

results of quantum and classical calculations D and E of this work 

clearly support these findings. 

Previous studies have exhibited large discrepancies between quantum 

mechanics and classical mechanics but in these instances the calcula

tions were performed on model potential surfaces that were aphysical in 

nature. Mazur and Rubin (101) applied time-dependent quantum mechanics 

and classical mechanics to the infinite-walled square corner potential 

surface and concluded that classical mechanics was grossly inadequate 



for reactions on this surface. Their classical reaction probability 

was about a factor of five larger than the quantum probability. 
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Kleinman and Tang (94) also reported serious discrepancies between time

independent quantum reaction probabilities and exact classical probabil

ities on a similar surface. One is led to conclude that this type of 

surface and others with sharp edges accentuate the discrepancy between 

quantum and classical mechanics. These types of surfaces seem perhaps 

to have dynamic ec-centricities which cannot be extrapolated safely to 

smooth surfaces. Hence the model calculations are probably not helpful 

in explaining the present results which were carried out on a more 

realistic potential surface. 

Recently (1969 to present), time-independent quantum mechanical 

studies on the (H, H2), (F, H2), (Cl, H2), and (H, cl2) systems have been 

reported in the literature. Most of these studies have employed one of 

two independent methods applicable to a collinear, electronically 

adiabatic model: the finite-difference boundary-value method (FDBVM), 

developed by Diestler and McKay (97) or a close-coupling method (CCM), 

first presented by Diestler (99). 

Since these two methods have been extensively used, a brief outline 

of the methods will be attempted. Both the FDBVM and CCM involve the 

solution of the time-independent Schrodinger equation describing the 

collision. By requiring the asymptotic form of the collision wave~ 

function to satisfy the proper scattering boundary conditions, namely 

an incident wave in one channel plus outgoing waves in all open channels 

and decaying exponentials in the included closed channels, one obtains 

the scattering matrix and subsequently the matrices of nonreactive and 

reactive probabilities. In these matrices the first row (or column) is 
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labelled O and corresponds to the ground final (or initial) vibrational 

state, and the second row (or column) is labelled 1 and corresponds to 

the first excited final (or initial) vibrational state. In both the 

FDBVM and CCM the wavefunction is expressed as a linear combination of 

members of a set of linearly independent solutions of the full 

Schrodinger equation. The difference between the two techniques is the 

manner in which the set of linearly independent solutions (lis) is 

determined. In the FDBVM the lis's are generated by solving the finite

difference analogue of the Schrodinger equation with a set of physically 

motivated linearly independent boundary conditions specified on channel 

surfaces in the asymptotic regions. The boundary conditions label the 

lis's. The accuracy of the FDBVM depends primarily on the number of 

lis's included in the expansion of the wavefunction (or equivalently 

the number of channels taken into account) and also on the mesh size of 

the finite-difference grid. In practice the matrices of scattering 

probabilities are obtained for a series of mesh sizes h, and then extra

polated to h = O. In the CCM, on the other hand, each linear solution 

itself is further expanded as a sum (over internal states of both 

arrangements) of products of internal wavefunctions (of the diatomic) 

and translational wavefunctions (f's). Substitution of the expansion 

into the Schrodinger equation and subsequent projection with each 

internal state leads to a set of coupled differential equations for the 

f's. Specification of a set of linearly independent initial conditions 

on the f's allows one to generate a set of lis's by integrating the 

close-coupled equations. The lis's are now labelled by the initial 

conditions and their accuracy is determined by the number of states 

included in the expansion of each lis (or equivalently the number of 
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channels taken into account) and by the integration step size. The 

FDBVM is described by Truhlar (151) and a computer program which per

forms calculations by this method is available from Quantum Chemistry 

Program Exchange (Program No. 203). The finite difference approximation 

for the second derivative of the Hamiltonian operator used in this 

program is the same as the one employed in the quantum calculations 

reported here. 

Some of the numerous studies on the aforementi.oned reactive systems 

will now be mentioned. The purpose is three-fold: a) present evidence 

of the large amount of research being done in the field of chemical 

dynamics, and in particular, the large number of applications of FDBVM 

and CCM to reactive systems, b) supplement the introductory chapter with 

more recent references for the interested reader, and c) present results 

of another calculation performed on an unsymmetrical potential-energy 

surface and compare with this work. Of these goals, the third is the 

most relevant and if so desired, the reader can simply move ahead to 

the last paragraph on page 134. 

Employing the FDBVM, Truhlar and Kuppermann (82) (152) obtained 

quantum reaction probabilities for H + H2 on the parameterized 

potential surface of Wall and Porter (24). Classical reaction probabil

ities for the collinear (H, H2) system on the same potential surface 

were determined by Bowman a'nd Kuppermann (48). They compared their 

classical results to the quantum results of Truhlar and Kuppermann (82). 

Diestler (112) (126) applied his CCM to a series of parameterized Wall 

and Porter potential surfaces and obtained quantum reaction probabili

ties for the collinear (H, H2) system. Diestler and Karplus (81) used 

the CCM on the H + H2 reaction using the PK surface. It has been 
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published (153) that the FDBVM and CCM yield quantum reaction probabil

ities in very good agreement. Levine and Wu (154) studied the collinear 

(H, H2) system on the PK surface using the CCM. The collinear H + H2 

reaction on the PK surface in the energy range 0-1.5 eV was studied by 

Johnson (155) using the CCM along a reaction coordinate of unique 

computational simplicity. Russell and Light (156) studied the collinear 

H + H2 reaction by transforming the two-mathematically dimensional 

problem into an equivalent one-dimensional problem. Saxon and Light ( 157) 

investigated the (H + H2) reactive scattering system using as their 

potential an analytic fit to the quantum mechanical surface obtained by 

Shavitt, et al. (158). Quantum reaction probabilities for the collinear 

H + H2 reaction on the PK surface using the FDBVM were recently reported 

by Duff and Truhlar (159). Mortensen and Gucwa (98) investigated the 

collinear (H, H2) system using the Sato potential-energy surface as 

described by Weston (150). Truhlar and Kuppermann (82) found good 

agreement between their results and the Mortensen and Gucwa results 

even though the potential surfaces used were different but similar 

(both were symmetrical). Truhlar, et al. (160) have carried out calcu

lations on the isotopically substituted H + H2 reactions. Recently 

Wolken and Karplus (83) applied the CCM in three dimensions to study 

the H + H2 reactive scattering problem. They used the PK surface. 

Schatz, Bowman, and Kuppermann (63) used the CCM to obtain quantum 

mechanical reaction probabilities for the collinear (F, H2) reaction 

using the semiempirical (1EPS) potential surface of Muckerman (44). 

For the (F, H2) potential surface the barrier lies in the reactant valley. 

Koeppl (161) compared Transition State Theory and quantum mechanical 

reaction probabilities for the H2 + F reaction on the Muckerman surface. 



Baer (162) used CCM to study the collinear (Cl, H2) and (H, Cl2) 

reactive systems. The unsymmetrical potential surface used in the 

calculations was a LEPS type. Light and co-workers (108) (109) had 

previousiy studied the (H, Cl2) system using a different calculational 

procedure. The above studies have recently been reviewed by Porter 

(163). 
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Truhlar and Kuppermann (82) (152) obtained good agreement in their 

comparison of quantum and quasiclassical reaction probabilities for the 

H + H2 reaction. However, using the same calculational method, the 

quasiclassical reaction probabilities differed considerably from the 

quantum reaction probabilities for the (F, H2) system (as mentioned in 

Chapter I) where the potential is unsymmetrical. The barrier is 

located in the reactant valley. They studied the system for the range 

of initial relative translational energies from 0.0-0.4 eV. In the 

relative translational energy range 0.025-0.075 eV, the quasiclassical 

reaction probability is more than 2.5 times greater than the quantum 

probability. The barrier height on the Muckerman (44) F + H2 surface 

is 0. 04 71 eV (1. 086 kcal/mole). Hence, the range of energies where the 

large disagreement between their quantum and classical mechanical reac

tion probabilities occurs is at relative translational energies ranging 

from 0.022 eV below the barrier to 0.028 eV above the barrier. Their 

results are in agreement (both show a large disagreement) with those 

reported here. The present studies indicate a large discrepancy between 

the two reaction probabilities in a range of initial relative transla

tional energies from O.Q86 eV (2 kcal/mole), 0.2197 eV below the barrier 

to about 0.564 eV (13 kcal/mole), 0.258 eV above the barrier. Their 

results are quite interesting since the quantum and classical curves 
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agreed quite well for the (H, H2) reaction which would be expected to 

show greater quantum effects. Due to the good agreement between 

classical and quantum reaction probabilities found (160) on the isotopi

cally substituted H + H2 reactions, one cannot attribute all of their 

large disagreement to the effects of the larger F-atom mass. In 

summary both studies display a large discrepancy in the relative trans

lational energy range.approximately centered about the barrier height. 

Comparing their two quantum calculations, the quantum reaction probabil

ities were lower for the (F, H2) system than for the (H, H2) system where 

the potential surface is symmetrical. This is in exact accord with the 

results obtained here when a comparison is made with the McCullough and 

Wyatt study using the symmetrical PK surface. Reference (63) is the 

only comparison study (other than this work) between classical and 

quantum mechanical methods carried out an asymmetric potential surface 

known to the author. 

Conclusion, Summary, and Suggestions 

for Future Work 

A large amount of time (human and computer) and effort was 

expended on applying the equations of Chapter II on the reaction repre

sented by Equation [1] where the mass of A is equal to the mass of an 

iodine atom and BC represents the hydrogen molecule. As mentioned 

earlier, the (I, H2) system exhibits dynamic effects when studied by 

classical trajectory techniques. A semiempirical potential-energy 

surface (164) with a barrier height of 35.87 kcal/mole was used. A 

skewed grid (angle between q1 and q2 axes was 45 degrees) was used to 

more aptly cover the region of q-space appropriate for the (I, H2) 
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system. A broad spectrum of problems was encountered for this system. 

Since this barrier height is approximately five times larger than for 

the (A, BC) system studied, the potential changes much more rapidly as 

the atoms approach one another. Accordingly, the second derivative of 

the wavefunction with respect to coordinate space, which is contained 

in the Hamiltonian operator, can be expected to vary rapidly. Further

more for a given time increment the (I, H2) system wavefunction is 

expected to exhibit a more drastic change than the (A, BC) system wave

function. In order to nmnerically describe accurately the more ?ompli

cated system, more grid points and a smaller time step are required. 

The availability of computer time and computer storage liinit the extent 

to which these two quantities can be refined. In sunnnary the author 

feels that if a much larger number of grid points were used (perhaps 

40,000-50,000) and a quite small time step that a quantum calculation 

as outlined could be performed on realistic and more difficult systems 

such as (I, H2) • 

An analysis of the results of this comparison study leads to the 

conclusion that the nature of the potential-energy surface is of great 

importance in determining the details of reaction dynamics. The effects 

of the asymmetric potential-energy surface are evident from the lower 

quantum and classical reaction probabilities than for similar symmetric 

potential surfaces. Quite peculiar is the fact that the quantum probab

ilities are lowered a larger degree than the classical reaction probabi

lities as the barrier of the potential surface moves to an asymmetric 

location. In a mysterious fashion the asymmetric potential surfaces 

possess inherent dynamic features producing unexpected, strange, 

presently unexplainable results. As revealed by calculation E, 



vibrational excitation of the molecule under attack enhances the 

quantum probability as in the case of quasiclassical studies when the 

barrier lies in the product valley. 

Tow possible future calculations immediately come to mind. One 

could carry out a comparison study identical to this investigation on 
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1) a symmetric extended LEPS potential surface and 2) an asymmetric 

extended LEPS surface whose barrier lies in the entrance valley. The 

first study would allow a direct comparison using the same calculational 

procedure on potential surfaces with identical barrier heights and 

differing only in the location of the barrier. These two calculations 

in conjunction with this study would reveal the effects on the classical 

and quantum reaction probabilities as the barrier location is changed on 

otherwise identical potential surfaces. Perhaps a rule could be formu

lated relating the results to the barrier location. 

Application of the FDBVM or CCM to determine quantum reaction 

probabilities on the surface used in this study would serve to expose 

differences, if any, between the different computational approaches. As 

mentioned above a computer program (QCPE No. 203) employing the FDBVM is 

available. It would be relatively easy to order this program (it's 

only 1000 cards) and perform calculations on the present surface and the 

two previously mentioned surfaces. The results would be interesting. 

(The calculations mentioned would probably consume the computer time 

allocation for the next 2 or 3 years also). Attention could be focused 

on quantum calculations of the first order as defined by Dr. Hirschfelder 

(165) and attempt to calculate an ab initio potential surface for a 

chemical system of interest and study the dynamics. 

Biological developments have shown that DNA (deoxyribonucleic acid) 
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is the hereditary substance which carries the genetic message in the cell. 

These giant organic molecules (DNA) govern the cell duplication and protein 

synthesis and are important in the problem of normal growth and aging. The 

method of calculation described in this thesis could possibly be used to 

study the proton transfer process between the base pairs in DNA (165). 

It has been proposed (166) that the proton may tunnel from one base pair 

to another altering the genetic code and give rise to a mutation. A 

similar tunneling effect in a multi-cellular organism may lead to a loss 

of genetic information which may be the primary cause of aging (166). 

Potential curves to describe the interaction of the proton as it 

moves from one base pair to another, include 1) the superposition (167) 

of two equivalent single Morse potentials with their original minima a 

chosen distance apart, 2) the double-well potentials according to Ladik 

(168), 3) the double-well potential curve given by Rein and Harris (169), 

and 4) the elaborate (8 days of computer time) calculation by Clementi, 

et al. (170). The latter calculation did not yield a double-well poten

tial. The choice of potentials would be limited to one which is reason

able and compatible with the facilities available (8 days is too long). 

The initial conditions could consist of a well-prepared wavepacket (with 

average translational energy less tha.n the barrier height) located in one 

of the double-well potentials. The calculations would consist of the 

evolution of the wavepacket in one dimensional coordinate space (one 

mathematical dimension also). Part of the wavepacket is transmitted 

(tunneling) and part reflected from the potential barrier. One could com

pute the portion of the packet which reaches the second well and hence the 

probability of tunneling. Various average translational energies could 

be used. 
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