A COMPARISON OF QUANTUM MECHANICAL AND
QUASICLASSICAL REACTION DYNAMICS
FOR AN ASYMMETRIC A + BC

EXCHANGE REACTION

By

GLEN EDWARD KELLERHALS
Y

Bachelor of Science
Upper Iowa College
Fayette, Iowa

1967

Submitted to the Faculty of the Graduate College
of the Oklahoma State University
in partial fulfillment of the requirements
for the Degree of
DOCTOR OF PHILOSOPHY
July, 1974



URLATR A
STATE URUVERSITY
LIBRARY

MAR 13 1975

A COMPARISON OF QUANTUM MECHANICAL AND
QUASICLASSICAL. REACTION DYNAMICS
FOR AN ASYMMETRIC A + BC

EXCHANGE REACTION

Thesis Approved:

il %//

Thesis Advisd?

& Bl At s

[
034%( %[wﬁ/ﬂu )

/) /) Lk

Dean of the Graduate College

902119

ii



ACKNOWLEDGEMENTS..

The author would like to express his sincere gratitude to Dr.
Lionel M, Raff, Research Adviser, for his patience and guidance through-
out this investigation and in particular thank him for initially
suggesting the research problem.

Thanks are extended to Drs. J. Paul Devlin, Paul Westhaus, and
T. M. Wilson for serving as my advisory committee.

Financial assistance consisting of a National Aeronautics and Space
Administration Traineeship, various teaching assistantships in the
Department of Chemistry, and support from a National Science Foundation
research grant, NSF-GP-35869X, is acknowledged. Without monetary
support the pursuit of an advanced degree would not have been possible.

I am indebted to the very capable University Computer Center staff
for their computing assistance and thank the Research Foundation for
making available generous amounts of computer time for calculational
purposes.

Special thanks go to Dr. Ron Oines of the Research Foundation for
providing the perspective plotting subroutine and for assisting me in
its use.

I am especially grateful for Shirley's loving care and patient
endurance during the latter part of my graduate tenure and also
recogﬁize the camaraderie of fellow graduate students during my graduate

years.

iii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION . . . & & o & o o o o o o« o o o »
Historical and Background Material. .
The Born-Oppenheimer Approximation: Potential
Energy Surfaces . . . . « « + + + . .
Mechanics and Dynamics. . . . . . . « + .« . .
Selected Studies of Chemical Dynamics . .
The Present Investigation . . . . . . . .+ . .
IT. TFORMULATION OF THE PROBLEM . . . . . « « « « o + &
The Equations of Motion . . . . . « « « + « .
The Potential~Fnergy Surface. . . . . . . .
Quantum Dynamics. . . . . . . . e e e e e s
Selection of Numerical Method and Derivation
of Numerical Equations. . . . . . . . . .
Initial Conditions. . . . . . . . . e oe
Calculational Procedure and Parameters.
IIT. RESULTS. . ¢ ¢ ¢ o o o ¢ o o o o o o o o o« o o o =
Quantum Probability Density . . . . . . . . .
Reaction Probability. . . . . . . . . . .
Classical Dynamics. . . . . + « v ¢ ¢ & & + &
IV. DISCUSSION AND CONCLUSION. . « & « o « o o « o o
Discussion of Results . . . . . . . . ..
Conclusion, Summary, and Suggestions for
Future Work . . . . . . . . « . « « « . .
A SELECTED BIBLIOGRAPHY . . . . . & & &+ ¢ o s o o o « o &

iv

Page

11
13

16
16
19
23
30
39
44
50
50
118
119
125
125
135

139



Table

II.

I1T.

Iv.

LIST OF TABLES

Page

Parameters Used in Constructing the Extended LEPS
Surface o ¢« v v v 4 i b h e e e e e e e e e e e e 23
Molecular Units . o v v ¢ v s« v e s o 4 o o« o o 4w u e 39
Initial Values for Quantum Calculations . . . . . . . . . . 45
Quantum and Classical Reaction Probabilities. . . . . . . . 123



LIST OF FIGURES

Figure Page
1. Linear Model, A + BC . . v v ¢ v 4 v ¢ o o o 2 o o o o o o o 17

2. Contour Map of Potential Energy Surface inl(rl,rz)
Coordinate Space . .+ v v « o o o & o & 4 o+ 4w e 4 e e 24

3. Contour Map of Potential Energy Surface in (q,,q,)
. ) 1’72
Coordinate SpPace . + « ¢ o« o v v o 4 ¢ s o v o 4 e s e e e 25

4. Region in Which Solution of [36] Is Desired. . . . . . . . . . 33

5. Calculation A, t OAt, FAC = 1.25 . . . . v v ¢« « v « « o o & 52
6. Calculation A, t = 32.5At ¢ v v ¢ v v v ¢ 4 e e e e e e e e 53
7. Calculation A, t = 52.5‘At e e e s e e e e e e e e e e e e 54
8. Calculation A, t = 72.5A8t ¢ ¢« v v ¢ v v ¢« o o + o o o v o o 4 55
9. Calculation A, t = 92.5At . ¢« v v 4 ¢ v 4 4 e e e e e e e e 56

10. Calculation A, t = 112.5At . v v v v v o ¢« v o o o o« o o o « & 57

11. Calculation A, t = 132.5At. + + ¢« v « ¢ « v & o o« o o o o o 58

12. Calculation A, t = 152.5 At . . ¢ ¢« ¢ v ¢ v 4 ¢ o ¢« o e « o o 59

13. Calculation A, t = 172.5At . v v v v « & v « « o o o s+ o « o o 60

14. Caldulatioﬁ A, £ = 1925 At . & v o v v v i e e e e e e e e e . 61

15. célculaéioﬁs,t=0At......‘.............. 62

16. Calculatich B, £ = 45 AE, FAC = 3.00. « « « « o o v o v o o v 63

17. Calculation B, t = 60 At, FAC = 3.00. . . . . . . « « « & . . . 64

18. Calculation B, t = 75At, FAC = 0.75. . . .+ « « « ¢« + « v v v . 65

19. Calculation B, t = 90At, FAC = 0.40. + « + « o « « o« + « « . . 66

20. Calculation B, t = 105AC. . ¢ « ¢« v v ¢ 4 ¢ o o o o o o o o 67

21. Calculation B, t = 105 At, FAGC 0.50. . . . . o .0 ... 68

vi



LIST OF FIGURES (continued)

Figure Page
22, Calculation B, t = 120At . . ¢ ¢« ¢ v & o ¢« o o + o« o o+ o . 69
23, Calculation B, t = 120At, FAC = 0.75. . . . « « « « « « « . . 70

24, Calculation B, t = 127.5 At, FAC 0.82. . . v ¢« v ¢ v v e v 71

25. Calculation B, t = I35At. + v ¢« v & v ¢ « v o e o o e e e 0 72
26, Calculation B, t = 135At, FAC = 0.867 . . . « ¢« « ¢« v ¢« « « . 73
27. Calculation B, t = 165At. . . . . + « « ¢« v ¢ v e 4 e e e e 74
28. Calculation B, t = 165 At . « . ¢« v« v v ¢ v ¢ 4 v 4 e 4 4 & . 75

29, Calculatien B, t = 172.5At . v v v v « ¢« v ¢ « 4 o s « o o 4 76

30. Calculation B, t = 172.5At, FAC = 2.77. + « « v v v v « o« o . 17
31. Calculation B, t = 187.5At. v o v v v v v v o v s o+ o o o . 18
32. Calculation B, t = 197.5At . ¢« v ¢« v ¢« &« o & o o o o o o o o 79
33. Calculation B, £ = 217.5At . « « & + & v o« « ¢« « « « « « « « . 80
34. Calculation C, t = OAt, FAC = 1.25. + v v « v o o v+ « o » . 81
35. Calculation C, £ = 45AE « o v v v v b e e e e e e e . 82
36. Calculation C, t = 60 At « v ¢« ¢« v v ¢ ¢ 4 o o o v+ o o o o 83

37. Calculation C, t = 67.5 At .+ ¢« ¢ « v ¢ o« v 4 o o o o o« o o o & 84

38. Calculation C, t = 80AL = + v « v v o v o 4 e o s e e e v o . 85
39. Calculation C, t= 90 N 86
40, Calculation C, £ = 1I0At . . v v v ¢ ¢ v o ¢« o « o v & o o o 87

41. Calculation Cy, t = 130At . v v v ¢ &« & o o o s o o s o o o o 88
42. Calculation C, t = 150At. . ¢ v v v 4 « 4 & o v 4 o o o o o 89
43. Calculation C, t = 162.5 N 2O 10
44, Calculation C, £ = 175At . . v v v v ¢ v v v v v o v o v o o s 91

45, Calculation C, t = 187.5At. . « « .+ +« ¢ v v v v 0 @ o o« o & 92

vii



Figure

46. Calculation
47. Calculation
48. Calculation
49, Calculation
50. Calculation
51. Calculation
52. Calculation
53. Calculation
54. Calculaﬁion
55. Calculétion
56. Calculation
57. Calculation
58. Calculation
59. Calculatién
60. Calculation
61. Calculation
62. Calculation
63. Calculation
64. Calculation
65. Calculation
66. Calculation

67. Calculation

t

t

LIST OF FIGURES (continued)

212.5 At .

0At, FAC = 1.25.
25 At

45 At

65 At

85 At

105 At .

125 At .

145 At .

Obt. « v . . .
32.5 At

52.5 At

62.5 At

72.5 At

92.5 At

112.5 At .
132,58t e « v v v e e e
152.5 At .
162.5 At .
172.5 At .
192.5 At .

202.5 At .

68. Reaction Probability Versus Relative Translational

Energy .

viii

Page
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

124



CHAPTER..T
INTRODUCTION
Historical and Background Material

One of the first attempts to mathematically describe chemical

exchange reactions of the type

A+BC—>AB+C,“ [1]
where A represents an atom and BC represents a diatomic molecule, was by
Eyring (1). He used the idea of London (2) that the possible course of
a chemical reaction is that of an adiabatic interaction in which the
energy of the system varies as a continuous function of the interatomic
distances.

Since this early calculation theoretical, chemical kinetics has
undergone revolutionary progress. Probably more than any other single
innovation, the electronic computer has revolutionized the number and
varieties of calculations that can be performed. Within this realm of
theoretical computations are elastic, inelastic, and reactive scattering
calculations.

In many cases the complete detailed description of the molecular
dynamics of exchange reactions such as [1] would enable one to calculate
the rates of laboratory reactions as well as to determine the energy
partitioning, scattering behavior, and reaction mechanism. Experimental

techniques are now refined to such a degree that chemical reactions are



accessible to direct examination on the molecular level. Studies of
infrared chemiluminescence and of reactions in crossed molecular beams
provide detailed information about the way in which reactive collisions
occur and about the way in which the energy released in reaction is
distributed among the products. A complete three-dimensional, ab
initio calculation has not been published for the Schrédinger (3) wave
equation describing the simplest exchange reaction.

An approach to this computationally difficult problem is to
simplify the problem and/or simplify the computation. In practice both
simplifications are made, and models in chemistry and physics are thus
formed to approximate and mimic the actual state of affairs. However,
not all is lost by any means, as the solution of the simplified problem
may provide valuable insights into the nature of the exact description
of the complete problem. The insights may suggest approximate schemes
to be utilized to reduce the computational labor of the complete problem.

At the molecular level the symbolic equation [l] cannot be regarded
as a chemical process involving two single entities, atom A and molecule
BC. Rather, atom A can only be understood in terms of the nucleus and
electrons of which it is comprised. Analogously molecule BC cannot be
treated as atom B and C, that is, the molecular properties of BC are
vastly different from the properties of the individual atoms. Molecules
themselves are properly considered as quantum mechanical systems and
normally exist in a variety of rotational, vibrational, and electronic
states. In this sense, a transition in the vibration or electronic
state of a molecule is the simplest type of chemical reaction. Further-
more, it is expected that the reactivity of atoms and molecules in

different internal energy states will be different and therefore it is



necessary to treat each possible state individually, if such a proce-
dure is computationally tractable. Accordingly, the treatment of
Elaison and Hirschfelder (4) treats molecules in different internal
quantum states as though they were distinct species and takes into
account transitions between these internal states.

Even one of the simplest atom—molecule chemical reactions, H + H2-+
H2 + H, consisting of three nuclei and three electrons, cannot be com-
pletely treated dynamically (5). Radical simplifications are therefore
needed to reduce even the most elementary chemical reaction problems to

levels suitable for computation. One such simplification is the Born-

Oppenheimer (6) approximation.

The Born-Oppenheimer Approximation:

Potential Energy Surfaces

In general the motion of the electrons of the colliding atom and
molecule may be considered very fast in comparison with the motion of
the nuclei. A Born-Oppenheimer separation of the nuclear and electronic
wavefunctions may therefore be made, and the Schrodinger equation for
the electronic motion in the field of a clamped or fixed nuclear con-
figuration may be considered. The solutions of the time independent
wave equation form an infinite set of electronic states which may be
labeled by a set of quantum numbers. The lowest state of the set is
referred to as the ground electronic state. Solutions of the electronic
Schrodinger equation may, in principle, be obtained for every possible
fixed nuclear configuration. The energy associated with a particular
electronic state will vary as the relative nuclear separations are

changed. Stated another way, the Born-Oppenheimer approximation consists



of first determining the electronic wavefunction for various values of
the fixed nuclear coordinates and then using this electronic energy
(usually just the ground state electronic energy is used) as a potential-
energy function in describing the motion of the nuclei (7). 1If the
reaction takes place on more than one electronic surface, the process is
said to be "nonadiabatic" and the theoretical investigation of the dyna-
mics becomes considerably more difficult.

Provided that the Born-Oppenheimer approximation holds and provided
also that the electrons remain in one state (the adiabatic assumption),
a single potential-energy surface or hypersurface for more than two
independent variables may be constructed to give the potential enérgy
for all fixed nuclear configurations for an assembly of atoms. As
Levine (8) points out, transitions of atom A in the internal (electronic)
state i to the internal state j, cannot take place in the adiabatic
approximation. Mortensen (9) has stated that for energies less than one
electron volt, the Born-Oppenheimer approximation is applicable and the
nuclear and electronic motions can be separated. He does not substan-
tiate his claim. One should remember that the very existence of an
electronic energy depends on the Born-Oppenheimer separation, an approx-
imation which may or may not be valid in certain cases. At high enough
energies the separation will surely fall. The mathematical development
leading to the Born-Oppenheimer approximation for a diatomic molecule
can be found in several standard textbooks (10).

The calculation of the electronic energy poses a formidable problem
in stationary-state quantum mechanics. The computations are extremely
expensive for the large number of nuclear configurations required for

the calculation of a reaction potential-energy surface. One of the most



severe mathematical difficulties in the computations is the evaluation

of the integrals which arise. Accordingly, in semiempirical calculations
the integral evaluations are performed by systematically approximating
the integrals with experimental information about the atoms or molecules
involved. 1In addition, calculations on many-electron atoms and mole-
cules frequeﬁtly restrict consideration to valence electrons. Models
which take into account only a few valence electrons for complex systems
are discussed by Hopper (11).

The approximate schemes for obtaining the potential energy are
grouped by Laidler (12) as: a) purely quantum mechanical, which
includes treatments based on the work by London (2) and variational cal-
culations, b) semiempirical treatments, and c) empirical procedures. He
presents a good discussion of each category and gives extensive refer-
ences., Computational approaches to chemical kinetics can be divided
into two classes (12): (I) theories not related to potential-energy
surfaces and (II) theories based on passage over potential-energy sur-
faces. Category (I) includes nonequilibrium statistical mechanics,
hard-sphere collision theory, and stochastic (13) theories; theories
based on the principles of probability. Classification (II) contains
a) activated-complex theory (l4) or transition-state theory, in which
activated complexes are assumed to be in equilibrium with reactants and
b) elassical and quantum mechanical treatments with no equilibrium
assumption. In summary, calculations can proceed in one of several

directions; a choice must be made as to the direction to be taken.
Mechanics and Dynamics

The subject of molecular dynamics (15) is concerned with theories



of the movement of systems over potential-energy surfaces. The nuclear-
dynamics problem may be stated as follows: Among all possible motions
of the chemical system we seek to accurately determine which motion will
actually take place in any given case, that is, under the action of
given forces. Physics supplies two systems of mechanics which are avail-
able for the description of the nuclear motion, classical mechanics and
quantum.mechanics.

Rigorously, classical mechanics is not applicable on the micro-—
scopic scale, that is, the atomic or subatomic domain where the unit of
length is the angstrom. Nevertheless, several criteria indicate that
classical mechanics may be able to give a worthwhile account of the
nuclear dynamics of a reacting system (16). The criteria, however, do
not provide a good quantitative estimate of the error that will be in-
curred, if classical mechanics is employed. Two main sources of error
are inherent in a purely classical mechanical calculation. The first of
these is energy quantization; the second is quantum mechanical tunnel-
ing. The importance of these quantal phenomena in a dynamical calcula-
tion should be a measure of the extent of the success (or failure) of
classical mechanics.

The first classical calculations of the motion over a potential
energy surface were performed by Eyring and Polanyi (1) for the H + H2
system. Further investigations were carried out by Hirschfelder, Eyring,
and Topley (17) and later by Hirschfelder and Wigner (18). In these
pioneering calculations point-by-point computations had to be made by
hand for the successive coordinates of the system. The results of these
calculations are discussed in reference (19). The earliest studies on

any reaction more complex than the H, + H exchange were the calculations

2



on the hydrogen-halogen reactions by Eyring and Polanyi (1), Eyring (20),
and Wheeler, Topley, and Eyring (21). These calculations employing
transition-state theory showed that the combination of hydrogen and
iodine would not involve the atoms since this would require an activa-
tion energy (22) greater than if the reaction involved only molecules.
Wall, Hiller, and Mazur (23) performed the first computer calculations
of reaction dynamics. Since this work several such classical calcula-
tions (classical trajectory calculations) have been carried out on a
variety of reactions using many different kinds of potential-energy
surfaces (24-78). The majority of these calculations is quasiclassical
(the vibrational energy of the reactant molecule is quantized) rather
than classical. Summaries of the techniques and methods employed in
these calculations and assessments of the results may be found in
several sources (79). At present, the absolute accuracy of these calcu-
lations is not known. Two major difficulties arise when direct compar-
isons with experiment are attempted: 1) agreement or disagreement with
experiment may result due to unknown errors in the potential surface
used in the calculation, and 2) the experimentally observed properties
involve averaging over molecular properties and hence the observed pro-
perties may be quite insensitive to the fine details of the molecular
dynamics. The most fruitful comparisons would seem to be between
classical and quantal calculations using the same potential surface. A
few comparison studies utilizing several different computational
approaches have been made (9) (39) (63) (80) (81) (82) (83).

The fundamental theory of reactive collision processes is well
understood quantum mechanically (and classically) but many approxima-

tions, simplifications, and models have been utilized in order to obtain



results (84), The procedures used vary greatly and no single approach
has been outstandingly successful. The quantum mechanical approaches
can be divided into three general sections. (The division could also
consist of two categories, time-independent and time-dependent quantum
mechanics.) These are briefly described below.

Calculations of reaction systems on highly simplified potential-
energy surfaces using formal theories: Perturbation theory may be
applied to the reactive scattering problem, if an approximate wave-
function for the reactant state is available. If the approximate wave-
function consists of the product of the distorted initial translational
wave and a wavefunction describing the initial internal state, the
approximation is called the distorted wave Born approximation. Calcula-
tions performed using the distortion of waves method have been done by
Micha (85), Karplus and Tang (86) (87), and Walker and Wyatt (88). The
latter calculation was performed on a realistic semiempirical potential
surface. Analytic solutions to the wave equation may be found for
collinear systems if a simple model potential is used. The partial
wave formalism (89) of time-independent quantum mechanics provides the
exact solution to the atom-atom scattering problem (90). The same
approach can be applied to inelastic scattering without rearrangements
(91). In 1943 Hulbert and Hirschfelder (92) and later Tang, Kleinman,
and Karplus (93) (94) performed calculations using a square channel pot-
ential for three atoms on a line.

Detailed numerical calculations on more realistic potential energy
surfaces: In many of these calculations it is only the dimensionality
of the problem which precludes a direct comparison between the results

and experimental findings. The numerical methods for the solution of



the Schrodinger equation for three atoms constrained to the collinear
case can be classed into two categories. The first method consists of
writing the Schrodinger equation as a set of finite difference equations
on a two dimensional (each dimension is related to the relative distance
between two atoms) grid of points. These equations are then solved by
some numerical technique subject to the appropriate asymptotic boundary
conditions. Secondly, the wavefunction may be expanded in terms of a
complete basis set for one of the variables. The resulting coupled
differential equations may then be solved by a numerical technique.
Mortensen and Pitzer (95) first used numerical techniques to solve the
time~independent Schrodinger equation. They applied a finite difference
method to the collinear reactive H + H2 system. More recently other
calculations employing finite difference methods have been performed
(96-104).

In the second approach the problem of the different basis sets for
reactants and products has been resolved to a large degree by Marcus
(105) (106) who introduced reaction coordinates in a mathematical fashion.
He used the reaction path (107) to define a new coordinate system.

Using this method Light and co~workers (108-110) have found it advanta-
geous to define the reaction coordinates independently of the reaction

path and have used this procedure on the H + Cl, system. In this calcu-

2
lation it was found that the vibrational excitation of the products was
increased by a combination of moving the col (111) toward the reactant
side and by making the reaction path sharply curved. Duff and Truhlar
(78) have recently noted the'saﬁe effect in a quasiclassical calculation.

Recently, Diestler (112), studying a different reaction having a very

different potential surface, drew similar conclusions. The method
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was also applied by Wyatt (113) who studied the effects of several
approximations.

One alternative approach is the variational technique used by
Mortensen and Gucwa (98) and Crawford (114) on the H + H2 collinear
system. As in many other methods, the problems encountered when appli-
cation to higher dimension is attempted seem formidable. Another
approach is the formulation of the problem in terms of an equivalent
(or optical) component in the potential. The effective component repre-
sents the disappearance of amplitude from the elastic scattering channel
into inelastic channels not directly considered.

Miller and co-workers (47) (50) (51) (115) have shown how exact
classical mechanics (i.e. numerically computed classical trajectories)
for a collision system can be used semiclassically to construct the
classical limit of the quantum mechanical S matrix. A very intriguing
aspect of this classical S matrix theory is the possibility of using
classical trajectories to obtain transition probabilities for classically
forbidden processes. One example of a classically forbidden process
that may be extremely important is reactive tunneling.

In spite of the idea that a chemical reaction suggests a time-
dependent phenomenon, time-dependent quantum mechanics has been almost
neglected in reaction dynamics calculations. The approach possesses
some unique assets as demonstrated by a few investigators. The results
of Goldberg, et al. (116) on the penetration of one-dimensional poten-
tial barriers by wavepackets were displayed graphically in the form of a
movie. Wilson and co~workers (102) have performed calculations on the
time evolution of anharmonic oscillators.

McCullough and Wyatt (80) solved the time-dependent Schradinger
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equation and followed the motion in time and space of an initial wave
packet. The Hamiltonian operator was approximated by a finite differ-
ence expression and the method applied to the H + H2 collinear reaction
using the potential-energy surface developed by Porter and Karplus (117).
Very recently Truhlar and Kuppermann (82) presented numerical quantum

mechanical scattering calculations for the collinear H + H, system.

2
Extensive comparisons with other methods of treating the problem are

made and 76 references are cited.

Selected Studies of Chemical Dynamics...

Several quasiclassical trajectory studies have been made by Raff,
Porter, et al. (40) (41) (60) (118) on the hydrogen-halogen exchange
reactions using semiempirical potential-energy surfaces. Their results
for the hydrogen molecule~-iodine atom exchange reaction (40) indicate
that virtually all of the reaction product is produced from vibration-
ally excited hydrogen molecules. The requirement of vibrational excita-
tion for reaction is in accord with the experimental measurements of
Sullivan (119). 1In the case of H, + X (X = Br or I) exchange reactions

2

in which H2 hag initial vibrational energy corresponding to the ground

state, calculated reaction probabilities exhibit translational thres-—
hold energies in considerable excess of the potential-energy barrier
(40) (41) (118). The authors attribute the excess as resulting from the
imposed dynamic constraints (41) (120) and varies from a maximum of 35

kcal/mole for H, + T down to a few kilocalories per mole for H, + Br.

2

In contrast, dynamic constraints appear to play a relatively minor role

2

in determining the reaction mechanism in the H2 + Cl reaction. The

results indicate that dynamic effects increase as the saddle point
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shifts toward the exit or retreat valley.

One dynamical property playing an important role in the A + BC
exchange reaction is linear momentum. The two (B and C) atoms can be
accelerated during interaction with an attacking A atom but their
response may be relatively slow. Thus, as the velocity of the A atom
increases (momentum increases), the B and C atoms have less time to re-
spond, and the A atom tends to move into and out of the interaction
region before the B-C distance can be increased enough to "turn the
corner" into the product region. Noyes (121) in his discussion of the
HZ—I2 reaction has suggested the important role played by momentum in
the dynamics of certain reactions. The significance of momentum may be
expressed qualitatively by realizing that a) any chemical reaction
requires momentum transfer between the colliding species, b) the time
required for momentum transfer is finite, and c) a momentum transfer
time less than or equal to the collision time is required for successful
passage from reactants to products. 1In summary, for those cases where
the collision time is much larger than the time required for momentum
transfer, dynamic effects will not be particularly crucial. On the
other hand when the collision time becomes less than the time for mom—
entum transfer or when these two characteristic times become more
nearly equal, then momentum is a significant variable and its importance
is evident in a lower reaction probability.

A few investigators (24) (34) (37) (122-126) have explicitly
studied the effects of variations of the potential-energy surface on
attributes of exchange reactions using classical mechanics. Variations
include total energy, translational energy, vibrational energy, barrier

position, barrier height, masses of the reacting atoms, curvature of the



13

reaction path, and rotational energy in the reactants. Interests are
centered on reaction probability, threshold for reaction, and the dis-
tribution of internal energies for both reactants and products. Polanyi
(122) examined the effects on the dynamics of a shift in the energy
barrier from the entrance valley of the potential energy surface to the
exit valley. The most apparent effect of the change was to replace
relative translation of the reagent as the form of energy required for
barrier crossing by vibration in the molecule undgr attack.

The position of the energy barrier and its height have been corre-
lated by Mok and Polanyi (123). They found that for substantially exo-
thermic reactions the barrier is in the entrance valley and for sub-
stantially endothermic reactions the barrier is in the exit valley. 1In
addition, with increasing barrier height for exothermic reactions the
barrier shifts to a later position along the reaction coordinate. 1In
exact analogy there is also a shift in the barrier to a later position
along the reaction coordinate with increasing barrier height for endo-
thermic reactions.

An attempt has been made to present a somewhat general but yet
concise survey of the rapidly expanding field of theoretical chemical
kinetics. The reference list is certainly not complete but hopefully

many of the most active workers in the field have been mentioned.
The Present Investigation

A comparison of the results of a three~dimensional quasiclassical
calculation with corresponding three-~dimensional quantum mechanical ones
is very desirable to establish the importance of quantum effects. Such

a comparison supplies an assessment of the usefulness of classical
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mechanics to treat the dynamics of a chemical reactive scattering

system. The present investigation is limited to a study of the collinear
A + BC reaction [l1]. The assumption that reaction [l] proceeds on a
single potential energy surface which is defined in terms of the Born-
Oppenheimer approximation is made. The nuclear dynamics of the reaction
on this surface are examined using time~dependent quantum mechanics.
Accordingly the study consists of a hypothetical chemical reaction which
occurs in one dimensional space. The formulation and details are re-
served for the following chapters.

Not surprisingly, the most extensively studied exchange reaction is
the H + HZ reaction and isotopically related reactions. The potential-
energy surface for this thermoneutral reaction is obviously symmetrical.
As stated earlier, quasiclassical three-dimensional trajectory calcula-
tions carried out on unsymmetrical surfaces, whose barriers lie in the
exit channel, characteristically exhibit dynamic effects. A quantum
calculation on such an unsymmetrical surface should be fruitful and
provide valuable insights into the quantum and classical dynamics of
exchange reactions.

Potential surfaces which retain thermoneutrality but which are
non~-symmetric with respect to energy barrier location have been con-
structed by Polanyi, et al. (34) (122). The thermoneutrality of the
exchange process should be an especially desirable characteristic when
comparisons of this investigation are made with previous work on the

i

thermoneutral H + H2 reaction. The present study investigates the
particular case of equation [1] in which the masses of the atoms m_ s

m s and m_ are all equal to the mass of hydrogen but a purely hypothe-

tical potential-energy surface is used.
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In particular, the impetus for such a study dictates the investiga-
tion be undertaken to clarify and promote explanation of: a) discrep-
ancies, if any, between classical reaction probabilities and the corr-
esponding quantum probébilities, which seem to be dependent on the
asymmetry of the potential-energy surface (63), b) differences between
the dependence of the classical and quantum reaction probabilities on
the translational energy of the reactants, c¢) evidence, if any, for the
formation of long-lived intermediates, and d) the overall effects of the
position of the energy barrier on the classical and quantum dynamics.

The quantum calculation by McCullough and Wyatt (80) was carried
out on a semiempirical, symmetric potential-energy surface corresponding
to the thermoneutral H + H2 reaction. The study reveals classical
mechanics to give a fairly good account of the reaction dynamics.
Kuppermann and co-workers (63) (82) have performed quantum mechanical
calculations on the collinear F + H, and H + H, systems. The potential-

2 2

energy surface employed to study the exothermic F + H2 reaction was a
nonsymmetric, semiempirical one published by Muckerman (44). At low
energy, reaction probabilities calculated in the case of F + H2
utilizing quasiclassical mechanics are 2.5 times greater than for the
quantum calculation.

In recapitulation, a very high degree of understanding of the exact
computationally intractable problem is not yet available. A massive
effort is currently being directed toward remedying this situation. The

present investigation is intended to provide a small contribution to

that campaign.



CHAPTER IT
FORMULATION OF THE PROBLEM
The Equations of Motion

In the reactive collinear atom-diatomic collision, Equation [1] in
which the atoms are represented by spinless point masses, let the atoms

lie on the axis with X X

b? and X denoting their respective positionms.
Furthermore define r, as equal to the difference, I and let T,
equal Xy~ X, This is indicated schematically in the upper half of

Figure 1. 1If mos M, and m, denote the masses of atoms A, B, and C
respectively, then the classical kinetic energy, T, of the three atom

system is
.2 .2 .2
= + +
2T mx +tmx o +omx [2]
where the dots represent time derivatives. The kinetic energy terms of
the three particle system are not separable when expressed in terms of

the interparticle coordinates, r r, (127). A coordinate transforma-

1’
tion is applied to explicitly show the center of mass dependence and

simultaneously make the kinetic energy diagonal. That is, the kinetic
energy, when expressed in terms of the transformed coordinates, is the

sum of two square terms with no cross terms. The coordinate transforma-

tion is given by

16
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q,

-1/2
S _ mb mc M
[(mb+mc)2ma]

Figure 1. Linear Model, A + BC
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>
It

+ +
(maxa mbxb mcxc)/M

q; = x_ - (mbxb + mcxc)/(mb + mc) [3]

1.
q2 - (Xb - xc)[mbmcM/(mb + mc)zma]2

where M is the total mass of the system (ma + m + mc). The lower half
of Figure 1 i1llustrates these coordinates. X is the position of the
center of mass of the system; 9 locates atom A relative to the center
of mass of the molecule BC; and 1, is simply a mass-scaled internuclear
BC distance. The task now is to invert the equations, that is express
ia, ib’ and ic each as a function of x, dl, qz and the masses of the
system. These expressions are then substituted into equation [2] to
yield,

2

. 20,2
2T = MX” + u(q] + 4,) [4]

where y is the reduced mass, ma(mb + mc)/M' With the following usual

definitions,

L=T-V, p, =38L/3q,, H=12Zpq, -L [5]
1

we have,

H= /DX + u/26 + &) + V(aps ap)- [6]

The center of mass dependence can be dropped from [6] in both quantum
and classical mechanics since the potential energy of the system does
not depend on the location of the center of mass of the system. The
classical Hamiltonian function for the internal motion of the system

becomes,

H o= u/2(8 + &) + V(ap» a,). [7]

In terms of the conjugate momenta defined by Equation [5], we can write,
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H = (pi + pg)/Zu + V(g5 q,). (8]

Since the coordinates q are cartesian coordinates, the correspondence
operation (128) can be carried out and the quantum mechanical Hamilton-

ian operator constructed with the form,

2 2 2
-4 3 ?
Bql 3q2

where X(ql, q2) is the potential energy operator within the framework of
the Born~Oppenheimer approximation. Attention is now directed toward

the specification of the potential~energy surface, V(ql, q2).
The Potential-Energy Surface

Qur present inability to compute accurate a priori multi-electron
potential-energy surfaces with a reasonable amount of computer time pre-
cludes the use of such surfaces for dynamic studies. Recourse must be
made to empirical or semiempirical methods. Unsymmetrical potential-
energy surfaces which display dynamic effects and correspond to known
chemical reactions have been published. An attempt to carry out a
quantal study on a surface descriptive of one such chemical system
(L + H2) proved unsuccessful. This study will be discussed in more
detail later.

In 1929, using the simplest valence-bond treatment, London (2)
demonstrated that the potential energy of a system of three H atoms, A,

B, and C could be expressed as

_ 2 2 2 %
V(rl,rz,r3) = Q1 + Q2 + Q3 (J1 + J2 + J3 le J23 J13) [10]
where rl, r2, and r3 are the internuclear separations for AB, BC, and
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AC respectively. Ql’ Q2’ and Q3 are the coulomb integrals, Jl’ JZ’ and
J3 are the exchange integrals. Neglecting overlap the required coulomb
and exchange integrals can be obtained in terms of the singlet and tri-
plet state energies of the diatomic systems by use of the Heitler-
London energy expression:

1Ei = (Qi + Ji)/Si and 3Ei = (Qi - Ji)/si [11]

where 1Ei and 3Ei are the binding energies of the ground electronic state
(singlet) and the first repulsive state (triplet) for the i-th diatomic
pair. The overlap for the i-th diatomic pair is represented by Si' The
three sets of two equations like [l1] can be solved for each Qi and Ji
for the three two-body interactions in terms of their 1Ei and 3Ei only
if the singlet and triplet energies are known. A method of evaluating
the London equation using spectroscopic information was proposed by
Eyring and Polanyi (1) who used the Morse equation (129) to obtain
singlet state energies. In order to have an analytic expression for
3E(r), Sato (130) modified the Morse equation by changing the sign
between the two exponential terms from minus to plus, and divided by two
since he found that for H2 this gave fairly good agreement with the shape

of the triplet curve. His proposed form has been called the "anti-

Morse" function. The singlet and triplet energy expressions are
1 = — —-— — - -—
E(rl) = D[exp{ Zu(r1 Re)} 2exp{ a(rl Re)}] [12]
and
3 =1 - - - -
E(rl) 1D [exp{ 2a(r, Re)}-+ 2exp{ a(r, Re)}] [13]

where D is the dissociation energy plus zero-point energy of AB, Re the

equilibrium separation between A and B, and o is a constant derived from
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spectroscopic data, o = nvo(Zu/D)%. The experimental value of the fund-
amental vibration frequency is-vo.

Sato (130) introduced an adjustable constant, which bears a formal
resemblance to the square of the overlap integral, into the original
London equation [10] and used the form,

1 1

_ 2 .2 2_ _ _ s
—= [Q1+Q2+Q3 (J1+J2+J3 le J23 Jm) 7. [14]

V(r.,r, ,r,) =
17273 1+ S

The author prefers to write K instead of S2 and siwply regard X as a
single adjustable parameter and make no resemblance to an overlap inte-
gral. It appears that there is ﬁo theoretical basis for equation [14]
containing the S2 term. The LEPS (London-Eyring~Polanyi-Sato) formula-
tion must therefore be justified empirically. The LEPS potential and
an empirical extension of the LEPS formulation are used in the present
work. The extended LEPS surface is described by Polanyi (34). Three
constants which provide flexibility in the shape of the energy surface
are introduced. The S2 term in the Sato modification is replaced by an

S2 for each atomic pair, symbolized a, b, and c:

2 2 2
3
V(rl,rz,r)=‘ 1(_2}_1 + lcizb + 1(1_3 [ le + T2 5 + 32 -
3 a) D) re) Lgeay?  (un)? (o)

[15]

0 Sy T Yt W ]]/2
(1+a) (1+b) (1+b) (1+c) (1+a) (l4c)

The extended LEPS equation with the three extra empirical parameters is

semitheoretically justified for triatomic systems composed of three

hydrogen atoms (56). But systems containing more valence electrons

require more configurations in their treatment by the valence-bond

method. Hence, the secular equation is not solved analytically for a
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simple energy expression. For systems with more than three valence
electrons and with valence p electrons the LEPS and extended LEPS equa-
tions can more readily be interpreted as analytical interpolation devices
rather than as semiempirical valence-bond calculations. It should be
noted that in using this extended LEPS equation the expressions for the

coulomb integrals and the exchange integrals are

Q [~ -
Ty 7 LR e BE(rl)] [16]
and
’ J o
(1+la) =% blE(rl) - ‘E‘i’ BE(rl)-} [17]

with similar expressions for Q2 (Q3) and J (JB) where a is replaced by

2
b (or ¢) and r, by r, (or r3).

The constants, a, b, and ¢ for this investigation were chosen so as
to obtain an asymmetric location for the crest of the energy barrier.
It has been found (122) that for b = ¢ < a the barrier lies in the exit
valley. The parameters used in constructing the surface are listed in
Table I. The parameter AA, represents the a, b, and ¢ values for AB, BC,
and AC respectively. 1In this work the equilibrium internuclear distance
for the ground electronic state Re’ the Morse constant o, for each pair
of atoms, and the bond dissociation energies for AB and BC are the con-
stants for H2' The parameters correspond to those used by Polanyi and
co-workers (122) to construct what they refer to as 'surface II." 1In
FigureVZ a contour map of the potential surface is shown. The contour
values are in kilocalories per mole relative to molecule AB and atom C

separated at infinity taken as zero. The classical barrier height

(discounting zero point energy) was determined to be 7.05 +0.03 kcal/mole.
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TABLE I

PARAMETERS USED IN CONSTRUCTING
THE EXTENDED LEPS SURFACE

Parameter AB BC AC
D 4.7466 eV 4.7466 eV 3.4447 eV
o 1.027 a.u.”1 1.027 a.u. L 1.027 a.u. L
. 1.402 a.u. 1.402 a.u. 1.402 a.u.
AA 0.30 0.05 0.05

A contour map of the potential surface in g-space (ql, q, used as coor-
dinates) is displayed in Figure 3.

The potential-energy surface employed in this study displays char-
acteristics of the H + H, reaction since it is thermoneutral, the dia-

2

tomic limits yield the correct H, fundamental vibration frequency and

2
the barrier height is close to the experimental value of 8-10 kcal/mole

(131) for the H + H, system. However, as Figures 2 and 3 show, the

2
surface is asymmetric in contrast to the normal situation for the H +~H2
exchange. The representation is therefore ideally suited to determine
the effects of surface asymmetry upon the adequacy of approximate
scattering theories. The surface has ananalytic representation in terms

of elementary functions which allows the surface and its derivatives to

be evaluated rather easily and quickly by a computer.
Quantum Dynamics

According to the Schrgdinger postulate, the wavefunction of our
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model system is parameterized by time (t is not a dynamical observable)
and develops in time according to the time-dependent SchrSdinger equa-
tion

s oY
B_w(ql,ngt) = ih 3t (qlsqzyt) [18]

where H is the Schrodinger Hamiltonian operator equation [9], and
W(ql,qz,t) is the system wavefunction in coordinate space. At t = to

the initial condition for [18] may be represented as
¥(q;59,,t ) = ¥ (4,59, - (19]

Henceworth the explicit dependence of ¥ on (ql,qz) will be surpressed in
the notation to place emphasis on the time dependence of the wavefunc-
tion. However, it should be remembered that ¥ does depend on the
variables 9 and q, describing the positions of the nuclei of our
system.

Recalling the definition of a derivative, it is apparent that for
small At, ¥Y(t+At) is obtained from ¥(t) by means of a linear operator
(132). For a finite time interval t~to, succéssive application on Wo
by an infinite number of infinitestimal time translational operators

yields ¥(t) (132). Formally we write
¥Y(t) = _I_I_(t,to)“c’o [20]

where.g(t,to) is called the evolution operator and describes the time
dependence of the system completely. Equation [20] shows that WO
changes (or evolves) as time passes in a well defined way. From the

definition [20] follows the relation

U(tgst) = Ultgst,) U(t,,t,) Ut ,t ) [21]
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~ where to < t1 < t2 < t3. Furthermore, at t=to the initial condition is
ut, t) = 1. [22]

Since the Hamiltonian operator is hermitian, the evolution operator can
be shown to be a Unitary operator (133). Substitution of the relation

Y(t) = y_(t,to)\yo into [18] gives

!

2
#Ho— (UY ) = H(UY )

(23]

i O
if at_I.l(t,to) Eg(t,to) .

To obtain the explicit form for the evolution operator, the solution to
the partial differential equation [23] with the initial condition given
by [22] is required. Three different cases may be considered in the
solution to [23] (134). For this particular study, only one example is
investigated, that being the case where the Hamiltonian does not contain
the time explicitly. Under this restriction one can immediately solve

[23] and represent the evolution operator in the form
U(t,t ) = exp[-iH (t-t )] [24]
- (o} ,ﬁ"— (o}

where the exponential of the operator H is defined by series expansion
of thefexponential function. The solution of [20] may then be written
as

"'i__].'!._(t—to)

¥ (t) = exp —~ ¥ [25]

In this case the evolution operator is translationally invariant (134)

with respect to the time axis, that is,

U(t +6t, t0+ §t) = g_(t,to) . [26]

LT
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This is in contrast to the general case in which the evolution operator
.H(t,to) is parameterized by time and at each instant, a different
H(t,to) is required to transform the wavefunction. 1In this study U(At)
is time invariant since H is independent of time. If the total time

span t—t0 is divided into n intervals of equal size, we may write

‘P(to + At) = g(At)\Po
‘1’(t0+2At) = _g(At)\P(to + At) = U(At) E(At)‘i’o
‘P(to+3At) = _Q(At)\i’(to + 2At) = U(At) U(At) E(At)‘i’o
[27]
) n
(t_+nit) = [uee)] Yoo

When the Hamiltonian does not contain the time explicitly, the result of
operating on Wo with'g(t,to) can be found quite easily. The normalized

eigenfunctions of H .satisfying the relation

Ho, = F

may be introduced as a basis, and since the basis forms a complete set

{¢k}, the expansion of WO in terms of this set can be made

¥oo= i by [29]
¥o = UE o)

= Zc, Ud

LN
. -iit H
—}Z(ck[exp( 5 1o
~ irt B, doe,? B iac,d HEH |
Sla W-gr— Y G o1 &) 3Tt 0%
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) ) a3 ‘
iAt € ilt., €k iAt eﬁ
- _ iAt A48t - = %k + ...
= ﬁckexp[—iAt/ﬁek]¢k [30]

The result is simply the expansion of the solution into stationary
states with the time dependence contained within the phase terms
exp[—iAﬁek/ﬁ}.

In the case of a free éatticle in which 211 values of the momentum
are allowed, the summation index in the expansion [29] may assume con-
tinuous Values: In carrying out the above expansion progress toward the
solution of the scattering problem, has been nil. Indeed the task has
simply been amended to one of finding the eigenfunctions and the expan-
sion coefficients. Wilson, et al. (135) have used the expansion method
to calculate the time evolution of anharmonic oscillators. Since the
time and effort involved in finding the eigenfunctions and expansion
coefficients would be large;, the present problem is studied by an
alternate procedure.

The effect of operating by thé evolution operator directly on Wo is
sought. An approximate U”(At) to the time evolution operator is required
since the infinite series expansioﬁ‘{24] of U is not computationally
suitable. Once U”(At) is cﬁosen the calculation proceeds in the manner
suggested by [27]; the evolution of WO in finite time steps is carried
out by repeated application of U”(At). Successive application of
U”(At) n times on the initial wavefunction advances the wavefunction

through n time steps.
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Selection of Numerical Method and

Derivation of Numerical Equations

Equation [18] belongs to the class of partial differential equa-
tions referred to as parabolic partial differential equations. Varga
(136) has shown that the solution of parabolic partial differential
equations can be reduced to one of approximating an "exponential" matrix
of the form exp(~S) where S represents a matrix. Ia analogy, solution
of equation [18] requires an approximation to the exponential expansion

representing the time evolution operator,

U~ (At) = exp[-iHAt/A] . [31]

Possible approximations to the exponential expansion are discussed by
Varga (136) and McCullough (5) and include a) the first—-order and b)
second-order forward difference methods, c¢) the first-order backward
difference method, and d) the Crank-Nicholson (137) method. These are

listed below in the aforementioned order.

u(at) * I - (iAt/H)H [32]
UAt) T I - (iAt/R)H - Y(at/m)% B [33]
ust) = [1+ (iae/a)u]? [34]

[ X3

u(at) = [I + (iAt/Zﬁ)g]"1 [1 - @dat/28)H]  [35]

Since H is Hermitian, the exact evolution operator is unitary. The
unitarity of the evolution operator implies that probability is con-
served and therefore the approximate method used for U(At) should also
be unitary. The approximation used should be computationally stable.

That is, errors (roundoff, for instance) introduced during the
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calculation do not become so large that they overwhelm the true solution.
A third and very important requirement of the approximate operator is
that it should be as accurate an approximation as possible to the exact
evolution operator. The highest order term in the series expansion for
the exact operator that is correctly reproduced by the approximate oper-
ator may be taken as the order of accuracy. Since the Crank-Nicholson
method is unitary, accurate to second order, stable (136) (138) and
relatively easy to use, we follow the procedure used by McCullough and
Wyatt (80) in selecting form [35] as the basic approximate method for
our numerical scheme. More complete descriptions of the above approxi-
mate methods are available (5) (136) and in general all of the methods
may be generated or described in terms of Padé matfix approximations
(136).

Substituting [35] into [27] yields
[+ (iAt/zﬁ)EJW(to + at) = [I - (iAt/zﬁ)g]wo . [36]

The time development of Wo is carried out by solving for ‘i’(t0 + At),
substituting this result back into the right hand side of [36] generat-
ing ‘P(tO + 2At), and continuing this process to develop the wavefunction
in time. Equation [36] does not represent an applicable numerical
shceme since the Hamiltonian operator contains the second partial deri-
vatives of the wavefunction with respect to the spatial variables 9

and qy- Discretizing the spatial variables requires the values of V¥ be
calculated at a set of points in the ql,qz—plane given by q; = (j—l)Aq1
+ q?, 1, = (i-1)Aq, + qg where j = 1,2,...J, and 1 = 1,2,...1, called a
grid (or net or mesh) and q? and qg are convenient starting values for

q1 and 4, respectively. Aq, and qu are small increments and determine

1
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the mesh size. Since ¥ is defined throughout (ql,qz) configuration
space, the exact grid is of infinite area (I and J are infinite). The
calculation is made feasible by reducing the grid size to finite dimen-
sion and imposing the boundary condition that the wavefunction is zero
in all space not encompassed by the mesh. Chemically, the most
interesting region of q-space is that region displayed by the contour
map (Figure 3). Accordingly, we choose to superimpose an IL-shaped grid
on this region. (See Figure 4).

The replacement of derivatives and partial derivatives by finite
difference quotients can be found in most standard numerical analysis
texts (138). Second partial derivatives of functions of several vari-
ables can be expressed by a difference formula simply by holding all but
one of the variables constant. Ralston (139) derives the necessary
equations required to make the standard replacement for a partial
derivative (138). Referring to Figure 4 the second partial derivative
of some function u(ql,qz) with respect to 4 is sought at the point
q1 =%, 9, = V. Application of the standard finite difference formula
gives

2
28l s TuGe,y) - 2u6y) + uGey)] /00 [37]
Bql q,=x

5=y

2

20l 5 Ly - 206y) + uGoy)] /Gy’ [38]
qu q,=x

q4,=y
where Ax and Ay are the grid spacings in the x and y directions. 1In

this investigation equal horizontal and vertical grid spacings are used,
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that is, Ax = Ay = Aq, = qu = Aq. Substituting ¥ for u and inserting

1
q, and d, into [37] and [38] yields

[¥(a; - 29,9,)-2¥(q;,q,) + ¥(q; + Aq,q,) + ¥(q,q,~8q)~
2+32

(s3]
&
5]

|
|

aq

QL
Nal
- N
NN

20(q),q,) + ¥(a ,q, + 8] /(aq)? [39]

Recalling that q, = (j—l)Aq1 + q? and q, = (i—l)Aq2 + qg Equation [39]
can be rewritten as

2 2
o ¥ o ¥ . [v

: : 29, .+ ¥ + oy, 29, .+ V¥ ]/(Aq)2[40]
aql qu

1,51 “Ti,3 0 Ti,3+1 0 i~1,3 Ti,i 0 i+l,]

Application of [40] transforms [18] into a useable numerical pro-
cedure in the form of a matrix equation. The region of gq-space of
Figure 4 is covered by a grid or mesh produced by the intersection
points of m vertical and n horizontal lines. Any convenient numbering
scheme can be used to assign a number or set of numbers to each point in
the region. If fhe address consists of one ﬁumber then the values of a
function at the grid points of the region can be represented by a vector,
each component referring to a function value at a given point of the
grid. On the other hand if each point is addressed by a set of two
numbers, the first referring to a particular horizontal line and the
second to a specific vertical line, then function values at grid point;
in the region can be conveniently stored in a twe dimensional matrix.
The right hand side of our matrix equation contains the matrix (or
vector) Eo which contains values of the wavefunction at all points on
the grid at time to; the unknowns consist of values of the wavefunction
at all points on the grid at time, tO + At, represented by the matrix

(vector) Y (tO + At).
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Substitution of [40] into [36] yields
2

. -4 5
+ —h -
Yo (iAt/2%) [2u S wi,j Y Y T Y ) )
+ =
i,j i,j]
0 %2 0 0 0 0 0 2
- 1 —— - \
i3 (iAt/2h) [2u (Y] -1 wi’j Y Yt ‘P1,+1’j)/(Aq)
‘ 0
t V5%, [41]

where V, i is the potential energy at the point (ql,qz) with 4 and 1,

’

expressed in terms of i and j as above, All ¥ values on the left hand
side (LHS) are at time to + At, and all WO values on the right‘hand side

»7 .
(RHS) are for time to. Introduction of the definitions,

r=qe/200)”  and U = e’ ATy [42]

1,]
allows [41] to be written as

+ i -
Yo, ir/2 [4wi’j ¥

L]

. .=V, L =Y, ., -¥, . + U, ¥, 1=K, . [43
i+1,] i-1,] i,j+1 i,j-1 1,] 1:3] 1,] [ ]

where Ki i represents the RHS of [41]. The requirement that ¥ vanish at
5
all times outside the L-shaped region dictates the boundary conditions,

Y50 Yimr1 T ¥0,5 T Y1, O [44]

Equation [43] may be multiplied by -2i/r to give

Gr Uy 72 ¥ Y5 7,5 L T Y5 T P 3]

where B, j = —2iKi j/r. Assuming for the moment that the RHS of [45] is

b ’
known, then the values of Wi j(t0 + At) on the LHS for all i and j are
3
sought.

Two general matrix methods are available for the solution of [45],

the point iterative method and the line iterative method. 1In applying
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the point method to [45], an initial ¥ matrix is obtained (perhaps by

guess) and then [45] is solved for each Wi j(tO + At) by using the

s
assumed values of the other elements of ¥ that are needed. The solution
of [45] for all i and j gives a new estimate of ¥. The process is
repeated to refine ¥ and when successive estimates of ¥ differ by less
than some allowed tolerance, the resulting matrix is the desired solu-

tion of [36] and gives the values of Wi j(to+At) at each point on the

s
grid.

The point iterative methods often converge slowly (5) to the
desired solution and hence the line Gauss-Seidel method (140) is used in
this work. This line-iterative method attempts to speed up the converg-
ence by solving for all Wi , on a row or line (fixed i) simultaneously.

b

For the i-th row of ¥ the following definitions are made,

— -
ail -1 0 .o 0 Wil
-1 oa, -l ... 0 Y.,
D.= . L] \y = .
=i -1
0 0 .o -1 a, v,
im im
[46]
- -
Biy
Bio
257 )
B,
im

where a, i = [4-+Ui j-Zi/r], and the line method converts [45] to
b

’
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D, Y. - Y. =B, . [47]

=i =il —i-l =i

The solution of [45] is obtained by assuming a value for each element of
¥, and then solving [47] for each row of ¥. The solution of [47] for
each row gives the values of the wavefunction at each point on the grid
for time tO-FAt. The Line Gauss-Seidel method utilizes each new row or
line of points in the iteration procedure just as soon as it is avail-
able. The solution of the points on the i-th row, for instance, is
obtained by using the values of the points just calculated for the (i-1)
row. Accordingly, the Line Gauss~Seidel method presents a distinct
advantage over other line methods which do not use the new values for a
row at such an early stage. Rearranging [47] the Line Gauss-Seidel
method may be explicitely expressed as

p, y &L _ Bi+wfk+1) 4y

~i=i =i —i-1 =i+l

(48]

where the superscript represents the iteration cycle. For the first
iteration cycle it is necessary to have a guess or approximation for Y .
The Line Gauss-Seidel method will converge for any starting ¥ if the
Vi,j (or equivalently Ui,j) are all non-negative (5). In practice,
however, since one attempts to minimize the computation time (or
computing bill) a good choice for the initial ¥ is needed. Given the
values for Wi i for the entire grid at time t,» an initial guess for

s
Wi,j at time to~+At, is obtained by applying approximation [33]. The
iterative computation becomes much mofe efficient since the starting ¥
is a reasonable approximation to the correct answer. An unreasonable
initial guess for ¥ can cause the number of operations to become

depressingly large. Applying the initial guess procedure outlined

above, the rate of convergence was found to depend on the time step size



38

At used. If the time step size is halved, the number of iterations
required for convergence is reducéd almost exactly to one~half of its
previous amount. The solution of [48] for each line or row of the ¥
matrix yields the results for the (k+1) iteration. When successive
cycles give values of wi,j which differ by less than a small amount, e,
the desired solution to [36] has been obtained. It was found that the

real and imaginary parts of the wavefunction converged simultaneously

and hence the following convergence criteria was sufficient.

Real (ngfl) - ?gk?
1,] 1,]

)| < e [49]
where the vertical bars represent the absolute value. The desired
solution was assumed when the above condition was satisfied for all grid
points (all i and j). The value of £ used was 1.0 X 10_5. The solution
to [48] was obtained directly by using a well known algorithm (141)
applicable to matrix equations like [48] where the Ei are tridiagonal
matrices.

In practice Wi . values for each point of the L-shaped grid were

b

stored in two matrices, one matrix contained values for all Wi’. on the
lower part of the L, another matrix was used to store values for all
¥, . on the upper portion of the L, The dimensicns of the "lower"

s
matrix were 35 rows and 139 columns; for the "upper" matrix, 69 rows
and 79 columns. Therefore the grid contained {(consisted of) 35 X 139 +
69 X 79 = 10,316 points. The grid spacing used in each direction was
Aq = 0.045 a.u., which is slightly smaller than the value of 1/22 used
in case ¢ of Mazur and Rubin's paper (101).

Numerical values for distance, time, mass, and energy used in this

work are in so called "molecular units" described in reference 118 and
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are defined in Table II

TABLE 11

MOLECULAR UNITS

Quantity

Mass 1 atomic mass unit = 1 a.m.u. = 1.6604345 X 10—24g
Distance 1 atomic unit = 1 a.u = 0.529167 X 10_80m
Energy 1 Electron Volt =1 eV = 1.60210 X 10_12erg
Time 1 time unit = I t.u. = 0.53871469 X 10 *sec

Initial Conditions

Formal time-~dependent qﬁantum mechanics does not directly give the
exact initial wavefunction for a complex system but rather describes the
evolution of some chosen WO. For the chemical reaction being studied,
an initial WaVefﬁnction WO is sought to describe a free (or unbound) A
atom far removed from the beund BC molecule. Evolution of WO should
result in the approach of A toward BC and eventually result in a
collision with BC. In choosing Wo one is limited to a large degree
by the computing machinery and computing time presently available.

For example, all of the possible energy states of the BC molecule

cannot be accurately represented in a computationally usable
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wavefunction. When A is far from BC the initial wavefunction can be
written as a product of two functions; one a function of a4, only and the

other a function of a4, alone: ~
Y= b)) x(ay) - [50]

As described e§rlier the potential-energy surface uses Morse potentials
to describe the bound molecules, BC and AB. Accordingly Morse wave-
functions are used for x(qz). In all calculations to be described later
except one, the ground state Morse wavefunction is used., 1In order to
assess the importance of vibrational energy in the quantal dynamics of
the A + BC system the first excited vibrational Morse wavefunction was
also utilized.

The Morse potential given by equation [12] can be substituted into
the time-independent Schrodinger equation and. the Morse wavefunctioﬁé
can be obtained in closed form (129) (142). The ground state Morse

wavefunction is given by

X, (1)) = N, exp[.ﬂizf_ll exp [—a(qz-q())j]; {(bﬂ) exp [—a<q2~qo>]}b/ 2 [51]

where NO is the nqrmalization constant for the ground vibrational state
given below, b = (8uD)%/wﬁ-1, U is the reduced mass of BC, D and o are
the values defined in Table I for B(C, and 4, is the q-space value for
the equilibrium internuclear distance, namely q, = S-'lRe where S is
defined in Figure 1 and Re for BC is given in Table I. The no;malizau

tion constant for the n-~th vibrational state Merse wavefunction is
N - (TN) = (1/M 2 o 52
n ( )n - -'n) [52]

where TN is simply the normalization constant variable name used in the

computer program. Following equation [9] of reference (142) M for the
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n—th vibrational function is defined as

2 n
_ (n!) I (A-2n+s-1)
Mn 0LA(A—Zn—l) Sio s! ; [53]

where o is defined as above, A = bt+l, and I' represents the gamma function.

The first vibrational state Morse wavefunction can be expressed as

Xp(dp) = Ny FiFoFy [54]

(n-1)

= F((A—Zn—l)/2); F3 = znw(A—n—l)nz ;s z = AF;

where F1 = exp(éDF); F2

D= A/2; F = exp[—a(qz—qo)]; and N, is the normalizing constant for the

1
first vibrational state. As will be apparent later, the first vibra-
tional state wavefun;tion has one node located at the point q2==qo.

A brief digression seems appropriate and hopefully will be fruitful
before explicitly stating the functional form of‘¢(q1) used. In
accounting for experimental observations our theoretical intuition must
guide us inlfinding ?(ql) which describes, at least approximately, the
classical motion of é particle which has both reasonably definite
momentum and reasonably definite position. |

—
By defining a vector k which points in the direction of wave propa-

gation and has magnitude 27/A, one may write the de Broglie relation as

P =-ﬁi. A plane wave propagating in the x-direction with wavelength
A = 2n/k and frequency E/A can be associated with the motion of a free

particle moving in the x~direction with momentum p =4k. A plane wave

propagating toward increasing x may be written as
¢1(x,t) = Aexp [i(kx-wt)] [55]

and a wave propagating toward decreasing x is

¢2(x,t) = Aexp [-i(kxtwt)] . [56]



42

The above plane waves correspond to particle motions with momenta which
is precisely defined by'ﬁ = KK but have absolute squares of the gmpli-
tudes which are constant for all x and t and hence these plane waves
leave the position of the particle entirely unspecified. However, a
degree of localization caq/be obtained by superposition of several
different plane waves ofx&ifferent wave number.

The formation of localized compact wave packets by the superposi-
tion of plane waves of differing wave numbers is possible by Fourier
analysis (143). One can choose any number of %everal example functions,
for instance, an approximately symmetric distribution of kx about some
mean valueui; and form a function called a wave packet. The function or
wave disturbance is obtained by superimposing an infinite number of
plane waves. If the example function chosen is a Gaussian distribution
of kx values, then the resulting wavepacket formed is also a Gaussian
distribution in coordinate space. The interpretation made is that the
particle is most likely to be found at a position where the magnitude of
the wavepacket function is appreciable. Thus the description of a
particle which is localized within a distance, say Ax, of a convenient
origin can be accomplished at the expense of combining waves of wave
numbers in a range Akx about E%. The value of the product AxAkX is
dictated by the Heisenberg Uncertainty Principle which limits the
accuracy with which position and momentum can be simultaneously ascribed
to the particle.

For the somewhat arbitrary choice of ¢(q1) the normalized Gaussian

wavepacket is chosen.

1
~4

dlap) = (216%) 7% exp[-(a,~q,) /467 exp[-ika, ] [57]
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The packet is centered symmetrically in ¢-space about the point q10 and
has a root-mean-square width 8. For a Gaussian curve the amplitude is
down to 1//e of its maximum at one standard deviation. In the case of
the above Gaussian packet whose shape is determined by §, the standard
deviation ¢ is given simply by §¥V2. The complex exponential term
furnishes the wavepacket with an initial velocity in toward the inter-
action region (region of small ql) with momentum p==ﬁk0. As is gener-
ally the case for wavepackets, the Gaussian wavepacket consists of a
product of two terms, one of which is an envelope and the other is a
rapidly oscillating term (complex exponential) within the envelope. In
addition the Gaussian distribution results in the minimum value for the
product AxAkx, allowed by the uncertainty principle. The spread in
coordinate space, Ax, is the standard deviation O and the range of k

values is ok. It can be shown that for a Gaussian distribution at

time t=0, 0.0 % or Oxcp = 4/2., The particular Gaussian represented

]

by [57] has o §/2 and therefore o, = %)(1/0X) = 1/(26vV2). 1In all

k

calculations performed 6§ = 0.25 a.u. and thus the numgrical values of
Oy and o) are o = /2/4 and Op = Y2 . The above wavepacket is used to
represent, describe, or mimic atom A initially localized about the
point 90 Another form of ¢(q1) has been used by other investigators
(80) (101).

As time proceeds the width of the wavepacket in configuration space
increases and at time t an uncertainty in the position of the particle
results over and beyond the initial uncertainty. A simple physical
interpretation is that two segments of a wavepacket differing in momen-

tum will differ in distance traveled at time t. When this distance

becomes comparable with the width of the-initial packet, the packet will
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begin to spread.
Calculational Procedure and Parameters

The translational packet possesses an average kinetic energy con-
sisting of two sources. The exponential driving term produces a contri-
bution of'ﬁzkg/Zu and the "shape" kinetic energy (80) is €ﬁ2/2u)(1/462).

The average translational energy is therefore

E, = % (k(z) + 1/462)/(2u). [58]

Various kO values were used in the quantum calculations and are given in
Table III. Each calculation has been assigned an arbitrary label A, B,
C, D, or E, merely for convenience. This label is used when reference
is made to a particular calculation.

The total energy of the atom-molecule system is the sum of the
translational energy of the packet giyen above plus the vibrational
energy of molecule BC in the n-th vibrational level. The vibrational

energy of a '"Morse oscillator" in the n-th vibrational level is given

by Morse (129) and relative to the "bottom of the well" is
22 2
E(m) = hu(nts) - (h"w /4D) (n+s) [59]

where w = (a/2ﬂ)(2D/u)%. D and o are defined as before for molecule BC
and are given in Table I. The reduced mass of BC is p. The parameter
values used for the quantum calculations are given in Table III. The
translational energies Et’ are calculated using equation [58] and the
vibrational energies Ev are obtained from [59].

In the earlier stages of a calculation a time step size, At = 2.155

X 10 1 sec was normally used. As the wavepacket moved closer to and

into the interaction region, the time step was reduced, usually by a



TABLE III

INTITIAL VALUES FOR QUANTUM CALCULATIONS

**

Calculation ko 90 Et Ev ET
(a.u.-l) (a.u.) kcal/mole eV kecal/mole eV kcal/mole
A 3.1086 5.50 3.5000 (0.1518) 6.1893 (0.2684) 9.6893
B 5.7500 6.50 9.4937 (0.4117) 6.1893 (0.2684) 15.6830
o 7.3864 5.50 15,000 (0.6505) 6.1893 (0.2684) 21.1893
D 8.9038 5.50 21.3319 (0.9251) 6.1893 (0.2684) 27.5212
E 5.7500 5.50 9.4937 (0.4117) 18.0283 (0.7818) 27.5220

*
n denotes the vibrational quantum number.

*

*
The total average system energy E

= + .
T Et Ev

Gy
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factor of one-half. The numerical procedures presented in this chapter
were implemented with a computer program written in Fortran IV and com-
piled and executed on the Oklahoma State University IBM 360/65 computer
in Fortran H language using optimization level 2. The program was com-
piled and stored on private on-line disk storage and hence execution
was initiated simply by '"reading in" a deck consisting of the proper
Job Control Language cardé and approximately 10-12 data cards. Execu-
tion of the program compiled in Fortran H level, optimization 2, re-
duced computation time approximately 10% compared to Fortran G level,
A complete calculation required about 5.4 hours of computer time depend-
ing somewhat upon the average translational energy of the wavepacket.
The storage requirement of the program is quite large and is a
common problem when the solution of a partial differential equation is
sought at various points in configuration space. Execution required
approximately 395 K bytes of core storage where 1K bytes = 1024 bytes
and one single precision variable in F¥ortran requires four bytes of
storage on the IBM machine. For a single precision complex variable
(a + bi where b#0) eight bytes of storage are required. Because of
the large storége requirement, execution of the program in double pre-
cision on the IBM machine with the presently available core storage was
not possible.  However, a comparison program consisting of only the
variables needed to study the reactive system on the lower part of the
L-shaped grid was written in double precision and executed. There were
no deviations. between the values of Wi,j computed by the double preci-
sion version and the values produced by an identical single precision
program.

The essential computational procedure of the program is briefly
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summarized below.

1.

Read in the initial conditions and other required data such

as the grid dimensions, the grid spacing, the minimum dy value,
the maximum 94 value, the potential energy surface parameters,
the variables necessary to specify the shape and energy of the
wavepacket, the time step size, and an integer which is the
time step number k, which serves to terminate the particular
batch run when the wavefunction has been evolved up to and
including k steps.

Calculate the potential energy values for all points on the
grid.

If the time step number is zero, generate the values of Wi’. at
time step zero for all points on the grid.

If the time step number is not zero, read the values of wi,j
for time step n (typically k has a numerical value 20 greater
than n) from on-line disk storage.

Calculate the values Bi j for all points on the grid.

>

Obtain a first guess or first approximation for wi,j
[to + (n+l1)At] for all points on the grid using approximation
[34].

Solve for ‘Pi,j[t0 + (nt+1)At] using the line Gauss-Seidel method.
Check on convergence by applying equation [50]. If Yi,j for
time step nt+l for all points on the grid have not converged,
repeat step 7. If the convergence criteria has been met by all
points on the grid, continue to step 9.

Compute the value of the integral <W|W>, integrated (summed)

over the entire grid, and calculate the quantum reaction
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probability.
10. 1If the time step number of the present calculation is equal to
k, then the values of wi,j at all points on the grid are
written onto on-line disk storage, otherwise return to step 5
and use the converged values of ‘Pi,j[to + (nt+l)At] just com~
puted and carry out steps 5 thru 9 to obtain Wi’j[to-k(n+2)At].
Continue the process until the time step number of the calcula-
tion is equal to k.
In step 9 above the numerical quadrature method employed to perform
the integration and determine <W|W> and the reaction probability was a
standard technique employing Simpson's one-third rule (1l44). The
quantum reaction probability will be defined later. The value of the
integral should be equal to one and remain constant during an entire
calculation, Therefore computation of <¥|¥> at each time step serves
somewhat as a check on the accuracy of the calculation. The value of
the integral changed only slightly during a calculation and showed the
greatest deviation from unity when the main bulk of the wavepacket
encountered the.interaction region. The accuracy of the integration
technique was checked by determining the volume under a surface pro-
duced by setting Iwi’jlz equal to a constant for all i and j. The
value of the integral (volume) computed by the integration subroutine
agreed almost exactly (exact agreement is impossible for this case
where the volume is formed by perpendicular planes) with the value
calculated by hand.
The numerical error produced by applying the finite difference
formula, Equation [37], to a plane wave is given by Hamming (145). The

relevant equation indicates that errors ranging from a few tenths of a
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percent to a few percent are to be expected for the most probable plane
wave components of the initial packets. The values of Aq and At used in
the calculations were arrived at largely through trial and error. One
can evolve the wavefunction back in time from time, t + nAt, to time, t,
by substituting in -At for the time increment. The difference between
these "back evolved" Wi,j values and the values at hand serves as a
measure of the accuracy of the calculation. As an example, for
Calculation A the values of Wi,' at time = 32.5 At (see Figure 6) were
evolved back 20 time steps with At = ~1.0775 X 10—16sec. and compared to
available values of Wi .. Considering all of the grid points, the

b

largest difference between the two calculated values at a grid point for

the real part of the wavefunction was 5.7 X 10—3, the average difference

for all of the grid points was 1.3 X 10_5. The largest difference

found for the imaginary part was 6.9 X 10—3 (average difference of 1.3
X 10-5), and for wf,jwi,j the largest difference was 4.0 X 10—4 (average
difference of 5.5 X 10_6). An identical back evolution process from
time = 92.5 At (see Figure 9) yielded the following values: largest
real part difference = 2.6 X 10_4 (average = 4.5 X 10—6), largest ima- -
ginary part difference = 1.8 X 10—4 (average = 4.3 X 10~6), largest
difference for w:,jwi,j = 7.9X 10—5 and average = 3.2 X 10—6. Most
books on numerical methods state that an important factor in integrating
partial differential equations is the ratio, (Aq/At) and not Aq or At
alone. Accordingly, the ratio of Aq and At was adjusted and the rough-
ness of the plots and the deviation of the integral <W|W> from unity
were closely followed. 1In the final choice, of course, the values

chosen for Aq and At must be commensurate with the computer time and

computer storage available.



CHAPTER III
RESULTS
Quantum Probability Density

The solution of equation [36] at a given time yields a complex
number Wi j for each grid point. The quantum probability density,

b

(q]’qz’ ) (q]’qz, )Y(q]sq29 ) . [ ]

Since the numerical solution gives W(ql,qz,t) only at the grid points,
the probability density consists of tables of real numbers, approxi-
mately 104 for each time step. A more meaningful and instructive way
of presenting p 1is given below.

In order to evaluate p at any arbitrary point in (ql,qz) configura~
tion space an interpolation procedure was used. Any arbitrary point in
q—-space can -be envisioned as being surrounded by four grid points. The
value of p was determined by adding the values of p at a pair of the
surrounding points, taking the average of the two points, and weighting
the average value inversely to the distance from the arbitrary point at
which p is desired. In this weighting procedure two pairs are weighted
in the 9 - direction from the arbitrary point and two pairs in the q2—
direction.

The time evolution of p in (ql,qz) configuration space shown in

Figure 4 is represented by three-dimensional perspective plots given in

50
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Figures 5-67. The height above the (ql,qz) plane represents the value
of p. The labels A, B, C, D, or E refer to the initial conditions given
in Table IYI.

A plot data set for each perspective plot was created by a computer
program written in FORTRAN IV by the author and utilizing a perspective
plotting subroutine written by Dr. Ronald K. Oines, Research Foundation,
Oklahoma State University. The data sets were plotted by the CALCOMP
plotter atkthe University Computer Center, Oklahoma State University.
The generation of a perspective plot data set consumed on the average
about 20 seconds of execution time (GO step). Approximately 33 minutes
was required for the CALCOMP 565 plotter to physically produce a plot.
This very versatile subroutine allows the user to choose the line of
sight up or down (equivalently tilt the (ql,qz) plane) by an angle and
to rotate the line of sight to the left or right by any amount and
hence enables one to "look" completely around a figure projecting from
the (ql,qz) plane. Figures 5-67 display the (ql,qz) plane shown in
Figure 4 with the line of sight 45 degrees up from the (ql,qz) plane
(equivalently the plane of Figure 4 is tilted down at an angle of 45
degrees) and rotated 135 degrees cqunterclockwise (equivalently the
Plane of Figure 4 is rotated 135 degrees clockwise). The line of sight
therefore lies along the diagonal which runs from the point of inter-
section of the upper and lower parts of the L back to the corner where
q1 and q2 have their minimum values. A complete description of the sub-
routine is available at the University Computer Center, Oklahoma State
University.

Since the figures serve primarily in a qualitative way and provide

a means of observing the qualitative characteristics of the reaction
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Calculation A, t = 52.5 At

Figure 7.
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Calculation A, t = 72.5 At
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Calculation A, © % 112.5 At

Figure 10.
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Figure 24. Calculation B, t = 127.5At, FAC = (.82
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Figure 31.
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nC, t= 187.5 At

Figure 45. Calculatio
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dynamics, no vertical scale is provided for the figures, However, the
perspective plotting routine does scale the z axis (height above the (x,y)
or (ql,qz) plane exactly the same as the x axis (q1 axis). For example, if
6 a.u. are represented by seven inches along the x axis(q1 axis) then
this same ratio prevails for the z direction. In order to produce a plot of
more reasonable, eye pleasing proportions, it was necessary to change the
height in the zdirection by multiplying all z values by an appropriate
factor. This factor is denofed by FAC and 1is equal to 2.00 for each
figure unless otherwise stated. The time, t, given by nAt for each cal-
culation is also given below each plot. The numerical value of At in each
figure is 2.155 X 10~16 sec. even though the actual time step size used
in carrying out the numerical procedures of Chapter II and obtain values
of p displayed by the plot is quite often different from this value.

Figures 18, 19, 21, 23, 24, 26, 28, and 30 encompass only the inter-
action region, that part of the entire q-space grid in the vicinity of
the saddle point. For these figures qlmax(maximum qlvalueplotted)=
3.185 a.u.,qlmin(minimum qlvalueplotted)==1.793.u.,qzmax(maximumq2
value plotted) = 2.13a.u., and d, min (minimum q, value plotted) = 1.005 a.u.
As in the case of the other perspective plots the "tilt" angle is 45
degrees and the rotation angle is 135 degrees.

The perspective plots provide an excellent means of displaying the
quantum probability density obtained directly from the numerical
solution of the two-mathematical-dimension (q1 and q2) problem. The
transient motion of the specially prepared wavepackets is vividly obser~
vable. In their subsequent motion the wavepackets spread and move
toward the region of g-space where q1 and q2 are small (for example,

see Figures 6-8). Along the path the potential energy is gradually
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increasing but as yet the variation of the potential surface has had
little observable effect. Eventually the wavepacket encounters a region
of high potential, that ié, a hard potential wall (Figures 9 and 10) and
drastic changes occur. Large maxima rapidly form throughout the entire
packet and extend back into the reactant region (Figure 11). These
distrubance peaks result from the reflection of ¥ by the potential wall;
the reflected portion is superimposed on the incoming packet giving rise
to interference minima and maiima. The collision of the wavepacket with
the potential wall is shown most dramatically in Figures 37 and 50. The
large maximum remains almost stationary in a region of high potential
(compare Figures 10, 11, and 12) but the decaying edge of the maximum
clearly increases with time that is, the wavepacket partially negotiates
the potential surface barrier, either passing over or tunneling through
the barrier, and moves into the product (AB, C) region (Figures 12, 13,
and 14). 1In each calculation the wavepacket eventually divides into

two parts, one of which is reflected back into the reactant region and
another part which moves out into the product region (reactive scatter-
ing). After a sufficient time has passed, the reflected and transmitted
waves have died down in the neighborhood of the barrier, and the prob-
ability flow from reactants to products is essentially over. The
presence of the interference peaks which propagate back into the (A, BC)
region indicate that the reaction is not compatible with the idea that
the packet passes smoothly around the corner. Comparing Figures 14 and
54, it is apparent qualitatively that an increase in the average rela-
tive translational energy is not an efficient means of increasing the
probability density in the product region. The Figures indicate that

the packet must remain in the interaction region a sufficient length of
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time to enable probability density to round the corner, move to and
surmount the barrier, and pass out into the product region. In essence,
if the packet does not remain in the interaction region a long enough
time, the packet is largely reflected back into the reactant region
resulting in a small product probability density. Qualitatively the
calculations indicate that the amount of vibrational energy in the
reactant molecule is of utmost importance in determining how much
probability density ends up in the product region. In both calculations
D and E, the three atom system possesses the same total energy, but in
calculation E the first excited Morse wavefunction was used to initially
describe the molecule BC (see Table III). A comparison of Figures 54
and 67 reveals that an extraordinary larger amount of probability density
reaches the product region in calculation E than for calculation D. In
the vibrationally excited case, the probability density is much more
spread out in the reaction valley (Figure 60) and an exceedingly large
amount of probability density negotiates the barrier and eventually
reaches the product region. This broad probability density prevails
throughout the entire time of interaction. Scanning the two sets of
figures representing calculations B and E allows comparison of two
systems with the same average translational energy but which differ in
the vibrational energy initially present in molecule BC.

The result of truncating the region of q-space considered by clos-
ing off the asymptotic reactant and product channels (setting the wave-
function to zero outside the L-shaped grid) is to produce nonphysical
reflecting barriers which tend to reflect ¥ back toward the interaction
region. Figures 31-33, 41-46, 53-54, and 63-67 clearly illustrate this

reflection process. In fact the calculation represented by Figure 46
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has been carried out to a time such that portions of the wave reflected
from the closed off reactant channel have moved back into the interac-
tion region. In general it is not necessary to carry out a calculation
to such a long time and hence no problems are encountered since the
reaction is essentially over before interference from reflected compo-

nents occurs.
Reaction Probability

In order to quantitatively discuss the probability that the system
which originated in the reactant (A, BC) region ends up in the product
(AB, C) region, a dividing line is required between the two regions. 1In
the saddle—~point region the concept of reactants and products is ill-
defined; a line drawn through the saddle-point region may be crossed
several times by the system. Accordingly the reaction probability is a
property of the system determined as t+«., The dotted line in Figure 4
which passes through the saddle-point Was.used fo divide reactants and
products. The probability of finding the system on éhe (AB, C) side of
this line after a sufficiently long time will be denoted Pr. Determina-
tion of Pr simply involves summingl(integrating) the probability density
on the product side of the dividing line. 1In the actual calculation
(step 9 of the computer program description) the probability density on
the reactant side of the line was summed and Pr obtained by subtracting
this value from the value of the integral <¥|¥>. The numerical values
of Pr obtained for each calculation will be presented after a classical

mechanical treatment of the (A, BC) system is given.
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Classical Dynamics

Classically, the motion of particles obeys Hamilton's equations,

dH - é
api i
[61]
dH - _I-)
aqi i

where H is the classical Hamiltonian function of the system given by
equation [5] and qy pi(i.=1 or 2) are the conjugate positions and
momenta. Given the initial positions and initial momenta, the solution
of the simultaneous, first-order equations (specification of 1 and 9
for all i) for all time of interest defines a trajectory.‘

Dropping the center of mass motion, the separation of atoms B and C
for the general three-dimensional case can be represented by a wvector
(pointing toward C) with components Ql’ QZ’ and Q3. The distance from
atom A to the center of mass of BC is described by a vector (pointing
toward A) with components Q4’ QS’ and Q6. For the collinear study one

can write (referring to Figure 1)

Q6 - * [mc/(mb + mc)]r2
[62]
Q4 = Q5 =0
and for the (H, Hz) system,
Q = r) + r2/2 . [63]

The BC internuclear separation is given by

Q3 =1, and Q1 = Q2 = 0. [64]
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Carrying out the process described in Chapter II yields

2 2
2T =1y pc% * ¥pc [65]

where HA. BC is the reduced mass of the (A, BC) system given after
>

Equation [4] and Hpe 1s the reduced mass of the BC molecule, mbmc/(mb +

C
mc). The classical Hamiltonian function for the internal motion is

l2 '2
i =(s, 50 /23 + (pe/2 Gy + V(g 0y [66]

In terms of the conjugate momenta we have,

_ o2 2
H = P6/2 Ma, BC + P3/2 Mgt V(Qg, Q) - [67]

The equations of motion were integrated from the initial to the final
state by means of a computer program obtained from Dr. Lionel M. Raff,
Department of Chemistry, Oklahoma State University. The program was
modified to study the one-dimensional (A, BC) system. The potential
energy subroutine was changed to correspond exactly to the extended LEPS
surface described in Chapter II and used in the quantum claculations.
In the initial configuration for each collision, the atom A, is far
removed from BC, a distance at which the interaction between the atom
and molecule is negligible. A value of 10 a.u. was assumed for the
initial separation (initial Q6) of atom and molecule. The atom and
molecule approach each other along their line of centers at a chosen
relative translational energy. The relative translational energies
used were identical to those of the quantum calculations given in

Table III. The initial vibrational energy of BC was chosen to be the
quantum mechanically allowed value corresponding to the ground or first
vibrational excited state. The initial Q3 value corresponded to the

separation of atoms B and C to the classical turning points (points at
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which the total energy is equal to the potential energy). The vibra-
tional energy also corresponded to the values in Table III. Since the
molecular energy is quantized, these calculations are more properly
referred to as quasiclassical trajectory calculations rather than
classical in which all values of vibrational energy are allowed. The
reaction probability for the particular initial conditions is simply the
number of collisions which result in the formation of AB divided by the
total number of trajectories computed.

An additional variable was utilized to average over the vibrational
phase of BC. This was accomplished by adding to the preselected minimum
starting separation (10 a.u.) a number Ax = V;T?N, for each trajectory
computed. Vr is the relative velocity, N is the total number of
trajectories to be computed in a particular batch run, andrf is the
vibrational period of BC calculated using the harmonic oscillater

approximation to the Morse function,

T = @un® (/) [68]

where p is the reduced mass of BC, and D and o are given for BC in

Table I. Another method of selecting the vibrational phase of the
molecule has recently been used (146). 1In this study the two methods of
selection proved to give equivalent averages.

Approximately 200 calculations (trajectories) were run for each of
the initial conditions in Table IIT. The integration time step size was
varied from 1.0775 X 10_16 sec on the higher-energy runs to 2.155 X 1616
sec on the low-energy trajectories. The integration technique employed
was the Runge-Kutta-Gill procedure (147) with the accuracy of the inte-

gration tested by changes in the step size and by integration backwards
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along selected trajectories. As an additional verification of numerical
accuracy, trajectories were checked for conservation of total energy.
Computation time for a single trajectory was dependent on the initial
conditions but was on the average about 8 seconds per trajectory on the
IBM 360/65. The classical and quantum reaction probabilities are given
in Table IV. Pr(Q) represents the quantum probability as defined pre-
viously and Pr(C) the classical reaction probability. One additional
classical calculation corresponding to initial conditions different from
any of the quantum calculations was performed. This batch had relative
translational energy of 2.00 kcal/mole and BC in the ground vibrational
state. The resulting reaction probability was 0.36. Figure 68 is a
plot of reaction probability versus relative translational energy. The
upper curve corresponds to the classical results; the lower curve the
quantum results. The A and O represent respectively the quantum and
classical results for calculation E. Straight lines were drawn between
points to distinguish the classical and quantum results. Values of the
reaction probability for energies between the plotted points are not
given by the present calculations.

An estimation of the reaction time for the quantum calculations
can be obtained from Figures 5-67 (and from the computer output). For
Calculation A the packet is entering the interaction region at about
time, t = 50 At . At approximately time, t = 165 At, the interaction is
essentially over. The reaction time is therefore about 115 At= 2.5 X
10—14 sec. Classical interaction times of 1-3 X 10”14 sec. were found
on the Porter-Karplus potential surface (117) by Karplus, et al. (29).
The following reaction times are estimated for the other quantum calcu-

lations: Calculation B: 2.7 X 10_14 sec., Calculation C: 2.0 X 10_14



123

sec., Calculation D: 1.8 X 10-14 sec., and Calculation E: 2.6 X 1014
sec. These times are of the same order of magnitude as thé time required
for a free atom to pass the reactant molecule in the absence of inter—~
action (80). The results éupport the conjecture that the reaction pro-

ceeds by way of a direct interaction mechanism.

TABLE 1V

QUANTUM AND CLASSTCAL REACTION

PROBABILITIES
Calculati * E** P
alculation n T r(Q) Pr(C)
kcal/mole

A 0 9.689 0.092 0.470
B 0 15.683 0.188 0.380
C 0 21.189 0.152 0.110
D 0 27.521 0.082 0.000
E 1 27.522 0.493 0.585

n denotes the vibrational quantum number.

*
The total system energy.
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CHAPTER IV
DISCUSSION AND CONCLUSION
Discussion of Results

The results of this study, as displayed by Figure 68, clearly show
a large discrepancy between the two methods of calculation. No previous
comparison studies between classical and quantum mechanical treatments
of the (H, Hz) system on symmetrical potential-energy surfaces have
exhibited such a large discrepancy.

The calculation by McCullough and Wyatt (80), whose calculational
procedure was followed in this quantum study, showed classical mechanics
to give a good description of the reaction dynamics. They studied the
(4, Hz)system using the Porter-Karplus (117) potential-energy surface,
hereafter referred to as PK surface. This surface has a barrier height
of 0.396 eV (9.132 kcal/mole). Initial translational energies of 0.32,
0.38, 0.44, and 0.5]1 eV were used and, they found the classical reaction
probability to be lower than their quantum counterparts by amounts
ranging from 23% at 0.32 eV to 15% at 0.51 eV. The author estimates

from their figures the following reaction probabilities: 0.32 eV:

]

Pr(C) = 0.45, Pr(Q) = 0.58, 0.38 eV: Pr(C) = (.53, Pr(Q) 0.66,

0.44 eV: Pr(C) = 0.59, Pr(Q) = 0.70, and 0.51 eV: Pr(C) 0.62,
Pr(Q) = 0.73 where C and Q represent classical and quantum mechanically

calculated results, respectively. Although energies of this study do

not correspond exactly to their calculations, it is apparent that both

125
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. the classical and quantum reaction probabilities lie below their values.
At an everage translational energy of 0.4117 eV (Calculation B) Pr(C) is
0.38. 1Interpolating one might guess their classical probability at this
energy to be 0.56, a considerable difference. The corresponding inter-
polated Pr(Q) is 0.68 opposed to the present calculated value of 0.188.
Obviously one expects differences between the two calculations due to
the difference in barrier heights of the two surfaces but intuitively
the difference between the classical and quantum reaction probabilities
is expected to be approximately the same. The classical reaction
probability is about 687 of their value: the quantum probability
approximately 28% of their value. Even calculation E, where molecule BC
is initially in the first excited vibrational level, results in a
quantum reaction probability much lower than any of the values obtained
when the PK surface is used. However, the striking difference between
the two calculations is that their quantum values are larger than their
corresponding classical values whereas the reverse is true in this
study.

The literature contains other values for the collinear quasi-
classical reaction probabilities using the same PK surface. Morokuma
and Karplus (148) in their Table II give Pr(C) = 0.65 for an initial
relative translational energy of 0.32 eV and Pr(C) = 0.71 for 0.38 ev.
Values for the classical reaction probabiiities on the PK surface at
higher relative translational energy can be estimated from the work by
Wu and Marcus (149), who carried out collinear calculations up to about
23.8 kcal/mole initial relative translational energy (IRTE). From their
Figure 15 the author estimates that Pr(C) = 1.0 at 0.44 eV IRTE and

Pr(C) = (0.85 at 0.51 eV IRTE. These Pr(C) values at 0.32, 0.38, 0.44,
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and 0.51 eV IRTE all 1ie above the corresponding quantum reaction
probabilities calculated by McCullough and Wyatt. Furthermore the
results of the above references are in qualitative agreement with the
findings of Mortensen (9) who studied the collinear (H,Hz)system using
the potential surface of Weston (150).

The reason for the differences in the classical reaction probabil-
ities using the same potential surface is due to the different calcula-
tional procedures used to obtain the reported values. McCullough and
Wyatt followed the motion of an ensemble consisting of 3000 phase
points by solving Hamilton's equations to find the trajectory of each
phase point. The initial quantum conditions state that the vibrational
energy of the reactant molecule is quantized. They abandoned strict
quantization and chose a four-dimensional phase space probability density
function and generated an ensemble of phase points having this density
function. Morokuma and Karplus and Wu and Marcus, on the other hand,
carried out their classical calculations as described in Chapter III of
this work. The important point is that the choice of the classical
mechanical initial conditions may result in quite different results for
the classical reaction probability. Comparing the above classical
reaction probabilities calculated by Morckuma, Karplus, Wu, and Marcus
to the quantum probabilities of McCullough and Wyatt shows the classical
reaction probability curve for the PK surface to lie above the quantum
curve. This result is similar to the findings of this study. Further-
more, in this study both curves lie below the values for the symmetrical
PK surface. These data lead one to conclude that the position of the
barrier occurring late in the reaction coordinate is responsible for the

smaller reaction probabilities. Perplexing, however, is the fact that
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the quantum reaction probabilities are lowered by a larger amount than
the classical reaction probabilities (for IRTE up to 0.51 eV) as the
barrier shifts to the exit channel, At higher initial relative transla-
tional energies the quantum reaction probabilities are larger (see
Calculation C) than the corresponding classical probabilities. It is
certainly desirable to have quantum reaction probabilities for higher
IRTE for the PK surface than those available from the McCullough and
Wyatt study. Their iargest IRTE is 0.1139 eV above the barrier height
of the PK surface. An IRTE of 0.1139 eV above the barrier on our
asymmetric surface corresponds to an IRTE of 0.4196 eV (9.67 kcal/mole)
which lies in the region where the quantum curve has reached a maximum.
At higher IRTE it is possible that the quantum curve would exhibit a
similar crossing of the classical curve for the PK surface.

For the energies considered in this study, both the classical and
quantum calculations appear to exhibit an upper-energy bound for
reaction. That is, Pr(C) is equal to zero for Calculation D and the
corresponding Pr(Q) has decreased from 0.188 for calculation B down to
0.082. The existence of an upper-energy bound for the classical calcu-
lation is not new and has been reported by Wall, et al. (23) (24) in
their early collinear-classical trajectory studies. The upper-energy
bound seems to indicate that high-energy systems encounter a virtually
vertical wall in the interaction region and are reflected back out into
the reactant valley. For systems which have upper bounds it is expected
that the bound is so high that it would not be experimentally detected
in thermal reactions unless the temperature were so high as to cause
considerable electronic excitation of the reacting species. 1In this

case the adiabatic assumption of a single potential-energy surface for
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a given reaction would be invalid. Furthermore, the aforementioned
argument is presented under the assumption of a collinear reactiom.

Morokuma and Karplus (148) compared transition-state theory results
with collinear-quasiclassical trajectory calculations for the same
potential surface. 1In the study of one of their systems they employed
an extended LEPS potential surface identical to the one employed in the
present calculations. They list surface parameters in their Table VII
and give reaction probabilities in Table VIIL. At a total system energy
of 0.5064 eV (11.677 kcal/mole) they obtained a reaction probability of
0.43. This total system energy corresponds to an initial relative
translational energy of 5.488 kcal/mole. Their reaction probability at
this energy appears to correspond exactly with the classical result of
Figure 68. Morokuma and Karplus found that displacement of the well-
defined barrier from its symmetric position to an asymmetric position in
the exit channel was the dominant factor in deviations between
transition-state theory and the classical-trajectory technique. The
deviations support the findings of Polanyi and Wong (122) that vibra-
tional energy is more effective than translational energy in increasing
the reaction probability when the barrier lies in the exit channel. The
results of quantum and classical calculations D and E of this work
clearly support these findings.

Previous studies have exhibited large discrepancies between quantum
mechanics and classical mechanics but in these instances the calcula-
tions were performed on model potential surfaces that were aphysical in
nature. Mazur and Rubin (101) applied time-dependent quantum mechanics
and classical mechanics to the infinite-walled square corner potential

surface and concluded that classical mechanics was grossly inadequate
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for reactions on this surface. Their classical reaction probability

was about a factor of five larger than the quantum probability.

Kleinman and Tang (94) also reported serious discrepancies between time-
independent quantum reaction probabilities and exact classical probabil-
ities on a similar surface. One is led to conclude that this type of
surface and others with sharp edges accentuate the discrepancy between
quantum and classical mechanics. These types of surfaces seem perhaps
to have dynamic eccentricities which cannot be extrapolated safely to
smooth surfaces. Hence the model calculations are probably not helpful
in explaining the present results which were carried out on a more
realistic potential surface.

Recently (1969 to present), time-independent quantum mechanical
studies on the (H, H2), (F, HZ)’ (C1, HZ)’ and (H, Clz) systems have been
reported in the literature. Most of these studies have employed one of
two independent methods applicable to a collinear, electronically
adiabatic model: the finite-difference boundary-value method (FDBVM),
developed by Diestler and McKoy (97) or a close-coupling method (CCM),
first presented by Diestler (99).

Since these two methods have been extensively used, a brief outline
of the methods will be attempted. Both the FDBVM and CCM involve the
solution of the time~independent Schrsdinger equation describing the
collision. By requiring the asymptotic form of the collision wave-
function to satisfy the proper scattering boundary conditions, namely
an incident wave in one channel plus outgoing waves in all open channels
and decaying exponentials in the included closed channels, one obtains
the scattering matrix and subsequently the matrices of nonreactive and

reactive probabilities. In these matrices the first row (or column) is
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 labelled O and corresponds to the ground final (or initial) vibrational
state, and the second row (or column) is labelled 1 and corresponds to
the first excited final (or initial) vibrational state. In both the
FDBVM and CCM the wavefunction is expressed as a linear combination of
members of a set of linearly independent solutions of the full
SchrSdinger equation. The difference between the two techniques is the
manner in which the set of linearly independent solutions (lis) is
determined. In the FDBVM the lis's are generated by solving the finite-
difference analogue of the Schrodinger equation with a set of physically
motivated linearly independent boundary conditions specified on channel
surfaces in the asymptotic regions. The boundary conditions label the
lis's. The accuracy of the FDBVM depends primarily on the number of
lis's included in the expansion of the wavefunction (or equivalently

the number of channels taken into account) and also on the mesh size of
the finite-difference grid. 1In practice the matrices of séattering
probabilities are obtained for a series of mesh sizes h, and then extra-
polated to h = 0. In the CCM, on the other hand, each linear solution
itself is further expanded as a sum (over internal states of both
arrangements) of products of internal wavefunctions (of the diatomic)
and translational wavefunctions (f£'s). Substitution of the expansion
into the Schrodinger equation and subsequent projection with each
internal state leads to a set of coupled differential equatiomns for the
f's. Specification of a set of linearly independent initial conditions
on the f's allows one to generate a set of lis's by integrating the
close~coupled equations. The lis's are now labelled by the initial
conditions and their accuracy is determined by the number of states

included in the expansion of each lis (or equivalently the number of
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channels taken into account) and by the integration step size. The
FDBVM is described by Truhlar (151) and a computer program which per-
forms calculations by this method is available from Quantum Chemistry
Program Exchange (Program No. 203). The finite difference approximation
for the second derivative of the Hamiltonian operator used in this
program is the same as the one employed in the quantum calculations
reported here.

Some of the numerous studies on the aforementioned reactive systems
will now be mentioned. The purpose is three-fold: a) present evidence
of the large amount of research being done in the field of chemical
dynamics, and in particular, the large number of applications of FDBVM
and CCM to reactive systems, b) supplement the introductory chapter with
more recent references for the interested reader, and c) present results
of another calculation performed on an unsymmetrical potential-energy
surface and compare with this work. Of these goals, the third is the
most relevant and if so desired, the reader can simply move ahead to
the last paragraph on page 134.

Employing the FDBVM, Truhlar and Kuppermann (82) (152) obtained

quantum reaction probabilities for H + H, on the parameterized

2
potential surface of Wall and Porter (24). Classical reaction probabil-
ities for the collinear (H, Hz)system on the same potential surface
were determined by Bowman and Kuppermann (48). They compared their
classical results to the quantum results of Truhlar and Kuppermann (82).
Diestler (112) (126) applied his CCM to a series of parameterized Wall
and Porter potential surfaces and obtained quantum reaction probabili-

ties for the collinear (H, H2) system. Diestler and Karplus (81) used

the CCM on the H + H2 reaction using the PK surface. It has been
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PUbliSLGd (153) that the FDBVM and CCM yield quantum reaction probabil-
ities in very good agreement. Levine and Wu (154) studied the collinear
(H, Hz)system on the PK surface using the CCM. The collinear H + H2
reaction on the PK surface in the energy range 0-1.5 eV was studied by
Johnson (155) using the CCM along a reaction coordinate of unique
computational simplicity. Russell and Light (156) studied the collinear
H + H2 reaction by transforming the two-mathematically dimensional
problem into an equivalent one-dimensicnal problem. Saxon and Light (157)
investigated the (H + HZ) reactive scattering system using as their
potential an analytic fit to the quantum mechanical surface obtained by
Shavitt, et al. (158). Quantum reaction probabilities for the collinear
H + H2 reaction on the PK surface using the FDBVM were recently reported
by Duff and Truhlar (159). Mortensen and Gucwa (98) investigated the
collinear (H, HZ) system using the Sato potential-energy surface as
described by Weston (150). Truhlar and Kuppermann (82) found good
agreement between their results and the Mortensen and Gucwa results
even though the potential surfaces used were different but similar
(both were symmetrical). Truhlar, et al. (160) have carried out calcu-
lations on the isotopically substituted H + H2 reactions. Recently
Wolken and Karplus (83) applied the CCM in three dimensions to study
the H + H2 reactive scattering problem. They used the PK surface.
Schatz, Bowman, and Kuppermann (63) used the CCM to obtain quantum
mechanical reaction probabilities for the collinear (F, Hz)reaction
using the semiempirical (LEPS) potential surface of Muckerman (44).
For the (F, Hz)potential surface the barrier lies in the reactant valley.
Koeppl (161) compared Transition State Theory and quantum mechanical

reaction probabilities for the H, + F reaction on the Muckerman surface.

2
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Baer (162) used CCM to study the collinear (Cl, H2) and (H, Clz)
reactive systems. The unsymmetrical potential surface used in the
calculations was a LEPS type. Light and co-workers (108) (109) had
previously studied the (H, Clz) system using a different calculational
procedure. The above studies have recently been reviewed by Porter
(163).

Truhlar and Kuppermann (82) (152) obtained good agreement in their
comparison of quantum and quasiclassical reaction probabilities for the
H + H2 reaction. However, using the same calculational method, the
quasiclassical reaction probabilities differed considerably from the
quantum reaction probabilities for the (F, Hz)system (as mentioned in
Chapter I) where the potential is unsymmetrical. The barrier is
located in the reactant valley. They studied the system for the range
of initial relative translational energies from 0.0-0.4 eV. 1In the
relative translational energy range 0.025-0.075 eV, the quasiclassical
reaction probability is more than 2.5 times greater than the quantum
probability. The barrier height on the Muckerman (44) F + H2 surface
is 0.0471 eV (1.086 kcal/mole). Hence, the range of energies where the
large disagreement between their quantum and classical mechanical reac~
tion probabilities occurs is at relative translational energies ranging
from 0.022 eV below the barrier to 0.028 eV above the barrier. Their
results are in agreement (both show a large disagreement) with those
reported here. The present studies indicate a large discrepancy between
the two reaction probabilities in a range of initial relative transla-
tional energies from 0.086 eV (2 kcal/mole), 0.2197 eV below the barrier

to about 0.564 eV (13 kcal/mole), 0.258 eV above the barrier. Their

results are quite interesting since the quantum and classical curves
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agreed quite well for the (H, H2) reaction which would be expected to
show greater quantum effects. Due to the good agreement between
classical and quantum reaction probabilities found (160) on the isotopi-

cally substituted H + H, reactions, one cannot attribute all of their

2
large disagreement to the effects of the larger F-atom mass. In

summary both studies display a large discrepancy in the relative trans-
lational energy range approximately centered about the barrier height.
Comparing their two quantum calculations, the quantum reaction probabil-
ities were lower for the (F,Hz)system than for the (H,Hz)system where
the potential surface is symmetrical. This is in exact accord with the
results obtained here when a comparison is made with the McCullough and
Wyatt study using the symmetrical PK surface. Reference (63) is the
only comparison study (other than this work) between classical and

quantum mechanical methods carried out an asymmetric potential surface

known to the author.

Conclusion, Summary, and Suggestions

for Future Work

A large amount of time (human and computer) and effort was
expended on applying the equations of Chapter II on the reaction repre-
sented by Equation {1] where the mass of A is equal to the mass of an
iodine atom and BC represents the hydrogen molecule. As mentioned
earlier, the (I, H2) system exhibits dynamic effects when studied by
classical trajectory techniques. A semiempirical potential-energy
surface (164) with a barrier height of 35,87 kcal/mole was used. A
skewed grid (angle between q1 and q2 axes was 45 degrees) was used to

more aptly cover the region of q-space appropriate for the (I, H2)
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system. A broad spectrum of problems was encountered for this system.
Since this barrier height is approximately five times larger than for
the (A, BC) system studied, the potential changes much more rapidly as
the atoms approach one another. Accordingly, the second derivative of
the wavefunction with respect to coordinate space, which is contained
in the Hamiltonian operator, can be expected to vary rapidly. Further-
more for a given time increment the (I, Hz)system wavefunction is
expected to exhibit a more drastic change than the (A, BC) system wave-—
function. 1In order to numerically describe accurately the more compli-
cated system, more grid points and a smaller time step are required.
The availability of computer time and computer storage limit the extent
to which these two qudntities can be refined. In summary the author
feels that if a much larger number of grid points were used (perhaps
40,000-50,000) and a quite small time step that a quantum calculation
as outlined could be performed on realistic and more difficult systems
such as (I, HZ)'

An analysis of the results of this comparison study leads to the
conclusion that the nature of the potential-energy surface is of great
importance in determining the details of feaction dynamics. The effects
of the asymmetric potential-energy surface are evident from the lower
quantum and classical reaction probabilities than for similar symmetric
potential surfaces. Quite peculiar is the fact that the quantum probab-
ilities are lowered a larger degree than the classical reaction probabi-
lities as the barrier of the potential surface moves to an asymmetric
location. 1In a mysterious fashion the asymmetric potential surfaces
possess inherent dynamic features producing unexpected, strange,

presently unexplainable results. As revealed by calculation E,
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vibrational excitation of the molecule under attack enhances the
quantum probability as in the case of quasiclassical studies when the
barrier lies in the product valley.

Tow possible future calculations immediately come to mind. One
could carry out a comparison study identical to this investigation on
1) a symmetric extended LEPS potential surface and 2) an asymmetric
extended LEPS surface whose barrier lies in the entrance valley. The
first study would allow a direct comparison using the same calculational
procedure on potential surfaces with identical barrier heights and
differing only in the location of the barrier. These two calculations
in conjunction with this study would reveal the effects on the classical
and quantum reaction probabilities as the barrier location is changed on
otherwise identical potential surfaces. Perhaps a rule could be formu-
lated relating the results to the barrier location.

Application of the FDBVM or CCM to determine quantum reaction
probabilities on the surface used in this study would serve to expose
differences, if any, between the different computational approaches. As
mentioned above a computer program (QCPE No. 203) employing the FDBVM is
available. It would be relatively easy to order this program (it's
only 1000 cards) and perform calculations on the present surface and the
two previously mentioned surfaces. The results would be interesting.
(The calculations mentioned would probably consume the computer time
allocation for the next 2 or 3 years also). Attention could be focused
on quantum calculations of the first order as defined by Dr. Hirschfelder
(165) and attempt to calculate an ab initio potential surface for a
chemical system of interest and study the dynamics.

Biological developments have shown that DNA (deoxyribonucleic acid)
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is the hereditary substance which carries the genetic message in the cell,
These giant organic molecules (DNA) govern the cell duplication and protein
synthesis and are important in the problem of normal growth and aging. The
method of calculation described in this thesis could possibly be used to
study the proton transfer process between the base pairs in DNA (165).
It has been proposed (166) that the proton may tunnel from one base pair
to another altering the genetic code and give rise to a mutation. A
similar tunneling effect in a multi-cellular organism may lead to a loss
of genetic information which may be the primary cause of aging (166).
Potential curves to descfibe the interaction of the proton as it
moves from one base pair to another, include 1) the superposition (167)
of two equivalent single Morse potentials with their original minima a
chosen distance apart, 2) the double-well potentials according to Ladik
(168), 3) the double~well potential curve given by Rein and Harrisv(169),
and 4) the elaborate (8 days of computer time) calculation by Clementi,
et al. (170). The latter calculation did not yield a double-~well poten-
tial. The choice of potentials would be limited to one which is reason-
able and compatible with the facilities available (8 days is too long).
The initial conditions could consist of a well—prepared wavepacket (with
average translational energy less than the barrier height) located in one
of the double-well potentials. The calculations would consist of the
evolution of the wavepacket in one dimensional coordinate space (one
mathematical dimension also). Part of the wavepacket is transmitted
(tunneling) and part reflected from the potential barrier. One could com-
pute the portion of the packet which reaches the second well and hence the
probability of tunneling. Various average translational energies could

be used.
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