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CHAPTER! 

INTRODUCTION 

The Problem: High Petroleum Content Sludge 

For years one of the waste byproducts of the oil industry has been separator and 

waste pit sludges consisting mainly of crude oils. In the field, these waste oils and blow­

down condensates have been conveniently disposed into unlined earthen pits. Over time 

these waste oils have seeped into the pit bottoms and surrounding soils and achieved high 

saturations. Other than volatilization of the lighter ends, there often has been little 

reduction in the mass of hydrocarbons impregnating these soils, even over decades. 

Amoco Production Company has over 900 waste oil pits in the area of the San 

Juan Basin of northwestern New Mexico. Due to the remote location of pits in this 

region, removal and transportation to reclamation or incineration facilities were considered 

to be too costly. Amoco recognized that composting of the oily waste pit sludges offered 

a potentially economical and permanent means of remediation. Other major oil companies 

had already run pilot composting projects on oily sludges with reported good success 

(Fyock, et al. 1991, McMillen, et al. 1992) 

Composting as a Bioremedial Solution 

Over 200 species of hydrocarbon degrading microorganisms are known to exist. 

They are found in soils and sediments throughout the world and comprise between one 

and ten percent of microbial populations in uncontaminated soils. They are capable of 

using hydrocarbons as their sole source of carbon and energy (Rosenberg and Gutnick, 

1 



2 

1981 ). They are represented in many genera, including Pseudomonas, Acinetohacter, 

Flavobacterium, Arthrohacter, and others. Soil microbes are typically limited in activity 

by a lack of adequate moisture, nutrients, and source of carbon. When soils become 

contaminated with oil, the carbon source can be abundant to the point of physically 

limiting the accessibility of air, moisture, and nutrients, most acutely in soils of low natural 

permeability. The activity of indigenous oil degrading microorganisms can be greatly 

enhanced in a composting process by amendment of the limiting factors and physical 

enhancement of the soil permeability. 

Composting is defined as the enhanced natural degradation by microorganisms of 

an undesirable substance by means of material amendments. Water and nutrients are 

added to provide an environment for increased microbial growth rates. A bulking material 

or agent is employed to increase porosity and thus oxygen availability to the 

microorganisms. 

Composting of oily soils and sludges has only recently become documented as a 

result of feasibility testing in laboratory experiments and pilot projects. Chevron and 

Exxon, among major oil companies, have conducted research into the composting of oily 

sludges and have experienced encouraging results. Nordrum, et al. ( 1992) reported a 

successful project design for a Chevron facility located in Red Wash, Utah. Composting 

of a sludge with 8% total petroleum hydrocarbons (TPH) resulted in a 97% reduction of 

hydrocarbons over 41 days. Researchers with Exxon (McMillen, et al. 1992) reported a 

laboratory scale composting experiment that reduced a 10.8% TPH sludge by 92% over 

four weeks. 

Composting offers promise as a viable treatment alternative because it requires 

relatively low level technology and common materials and is therefore less costly than 

alternative methods of remediation. Aside from its low cost ($50/yd3 sludge, according to 

Nordrum, et al. 1992), two other aspects of composting make it a desirable treatment 

alternative: I) it is a natural environmental process which is simply enhanced, and 2) it 



permanently destroys the offending substrate on site, converting it chiefly to water and 

carbon dioxide. 

A Method for the Application of Composting 

3 

The optimum conditions for composting have been difficult to know because of 

the complex nature of the materials. In some cases composting has failed to degrade the 

substrate. The heterogeneous makeup of microbial populations and oil contaminants have 

made for a very complex system of substrate metabolism and growth cycles. Other 

factors, such as moisture and bulking agent (liquid and solid phase factors) have further 

complicated the issue. It has not been well understood what relationships exist among 

various parameters, or even whether the effects among parameters are functionally related 

or independent of one another. On the other hand, composting may be a fairly forgiving 

process in that optimal conditions may need not be precisely achieved for composting to 

proceed. In other words, biodegradation may always proceed over fairly broad ranges 

within some environmental parameters and maybe very narrow ranges in others. 

A means of evaluating the varying effects of environmental parameters on the 

composting process is desirable. Measurement of oxygen uptake, or respirometry, 

provides a means of quantitatively measuring the microbial activity in compost. Oxygen 

uptake rate is proportional to microbial activity and population size and therefore to the 

rate of substrate utilization. Respirometry can provide a measure of the suitability of 

conditions for microbial degradation of hydrocarbons. 

In order to observe the effects of variation in environmental conditions on compost 

microbial activity, the parameters of hydrocarbon concentration, bulking agent to sludge 

ratio, moisture content, nutrient concentration, temperature, and compaction were 

investigated. This was done through a series of tests which were designed to isolate and 

vary each parameter individually. These tests were conducted on small masses of compost 

with specific compositions designed to provide data across the practical range of a given 
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parameter. Samples were tested in pneumatic respirometers where microbial activity was 

measured and recorded as oxygen uptake data. Tests within a series were compared by 

two methods: 1) by means of their "steady state" oxygen uptake (respiration) rates and 2) 

by comparison of growth rates inferred from the early periods of exponential increase in 

oxygen uptake. 

The motive in employing growth and respiration rates to determining the optimal 

conditions for composting is that microbial rates have singular importance in determining 

the efficacy of the process. If resulting substrate utilization rates are not sufficient, the 

duration of time necessary for achieving the desired endpoint may be too great to be 

practical. (The capability of the composting process to achieve the desired endpoint in 

terms of final hydrocarbon concentration is an important issue, but not one addressed by 

this study.) Microbial populations in an environment without limitations in food, nutrient, 

and other environmental factors will proliferate at exponential rates of growth until 

something in the environment limits the size of the population. At this point, ideally, the 

population maintains itself at a steady state and continues to metabolize substrate at some 

constant rate until the substrate is exhausted (assuming maintenance of other necessary 

environmental conditions). The level at which the population stabilizes may be dictated by 

rate limitations in the transfer of oxygen, the availability of moisture, the production of 

toxic by-products, the exposed surface area of hydrocarbon, etc. 

Conceptually, it is desirable to establish and maintain as high a population as 

practical in as short a time as possible. Aside from objective limits, economic and 

operational constraints may limit the degree to which this can be achieved. For example, it 

may not be practical to add moisture and nutrients to a static compost pile on a daily basis 

to maintain a very narrow window of the most optimum conditions. 

Knowledge of the conditions most favorable for hydrocarbon degradation in a 

composting process should ensure a greater degree of success in achieving remediation 

objectives. This knowlege further can aid in determining maintenance requirements 



(moisture and nutrient addition, mixing schedule) and timeliness for completion of the 

process. In order to gain this knowledge, a methodology for investigation of composting 

process parameters needs to exist. 

Thesis Topic: Suitability of Respirometry for Optimization 

5 

The motivation behind this study was to determine whether respirometry is a 

method suitable for identifying the ranges of environmental parameters which most favor 

microbial activity in an oily sludge compost. The three main concerns were: 1) whether 

microbial activity in compost would be sufficient to be measurable as oxygen uptake, 2) 

whether oxygen uptake would be consistent enough among replicate tests to provide a 

reasonable level of confidence in their accuracy, and 3) whether oxygen uptake results 

could be quantified in a way which could provide meaningful comparisons among varying 

tests. These issues together comprise the topic of this thesis. 



CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

A literature search was conducted to learn of earlier research into composting and 

respirometry. The results of those efforts provided background and insight into the 

composting process and gave indications of accepted values for environmental parameters. 

A literature review of respirometry provided background on how oxygen uptake data has 

been interpreted. That knowledge was of critical importance in devising methods for 

interpretation of the data and for the formulation of new ideas. 

Composting 

Composting of municipal wastewater treatment plant sludge has been practiced for 

many years as an alternative to landfarming and landfill disposal. The objectives of 

sewage sludge composting are: 1) reduction of sludge volume, 2) pathogen eradication, 

and 3) formation of an odor free, stabilized end product suitable for land application and 

soil amendment. In 1978 the U.S. E.P.A. developed a forced aeration process employing 

static compost piles, well known as the "Beltsville" process, which succeeded in achieving 

the objectives (Nell and Ross, 1987). Since then, the use of various types of composting 

processes has spread throughout the nation, not only for treatment of sewage sludge, but 

for other types of municipal refuse and organic industrial wastes. 

Application of composting as a means for biologically degrading hydrocarbons has 

only been documented over the last few years. Taddeo, et al. ( 1989) first demonstrated 

an in-vessel composting process which degraded 94% of total hydrocarbons present in 

coal tar, including 84% of priority pollutant polyaromatic hydrocarbons (P AH). Nordrum, 
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et al. ( 1992) first documented the field scale composting of a high petroleum content (8%) 

oil tank bottom sludge, reporting a 97% reduction in 27 major petroleum hydrocarbons 

(TPH) over 41 days. Kamnikar ( 1992) reported the successful elimination of low level 

concentrations (up to 1300 ppm) of gasoline, fuel oil, and diesel from contaminated soils 

by composting with a mixture of wood chips and manure. 

Researchers have investigated some of the individual environmental parameters 

affecting composting to determine what values or ranges most favor microbial activity. 

Some of the more commonly investigated parameters have been: 1) bulking agent 

requirements, both as to type of material and proportion used in relation to soil or sludge, 

2) moisture content of compost, 3) temperature, 4) nutrient requirements, particularly as 

to nitrogen and phosphorus, and 5) porosity and permeability as it is related to type of 

bulking agent and degree of compaction. 

Bulking Agent 

Bulking agent to sludge or soil ratio (BA/S) has been perhaps the most commonly 

considered aspect of compost design. Nell and Ross ( 1987) reported the use of wood 

chips in a 2: 1 volume ratio to sewage sludge as most effective in a forced ventilation 

design. Kamnikar (I 992) employed a I: 1 mixture of wood chips and manure in a ratio of 

1 :4 with hydrocarbon contaminated soil in a static, passively ventilated pile. Chevron 

conducted pilot static pile composting with wood chips at BA/S volume ratios of 4: I, 

2.3: 1, and 1.5: I (Fyock, et al. 1991 ). Analytical results were only reported for the 4: I 

case which indicated an approximate 90% reduction in TPH. Subsequent field scale up of 

that operation employed a BA/S ratio of only 1. 7: 1, perhaps because the sludge was 8% 

TPH versus 30% in the pilot project (Nordrum, et al. 1992 and Martinson, et al. 1993). 

Using bioreactors and respirometers, Stegmann, et al. ( 1991 ), investigated BA/S ratios 

ranging from I :2 to I: 16 ( dwt). Aged biowaste compost was used as bulking agent for 

diesel contaminated soil. They reported the 1 :2 ratio as most favorable for microbial 



activity and TPH reduction. 

Among these and other studies (McMillen, et al. 1992, MacGregor, et al. 1981 ), 

wood chips were the most commonly employed bulking agent. Taddeo, et al. (1989), 

investigated different materials as bulking agents, including wood chips, wood shavings, 

peat moss, sand, vermiculite, sawdust, and cocoa shells. Biodegradability tests showed 

that, regardless of material, all tests experienced a 90% reduction of coal tar over an 80 

day period. Based upon permeability measurements of compacted compost samples, 

Taddeo and co-workers selected wood chips as the bulking agent. 

Moisture Content 
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Most studies of the composting process have indicated an optimal value or range 

of moisture content, as a weight percentage (wt%), considered most favorable for activity. 

Nell and Ross ( 1987) suggest a minimum moisture content of 40% for sewage sludge 

co~post and conclude the range of 50% to 60% is optimal. MacGregor, et al. ( 1981) 

used an initial moisture content of 76% in their sludge composting investigation. Both 

these research teams indicated that 90% of microbially generated heat is lost through the 

vaporization of water and suggested the importance of maintaining a water content 

sufficient to meet that need. Chevron employed a minimum 40% moisture content (MC) 

in the Red Wash pilot project whereas a minimum of 25% was used in the follow-up field 

scale operation (Fyock, et al. 1991, Nordrum, et al. 1992). For an Exxon project, 

McMillen, et al. (1992) used 39% moisture content, described as being 87% of compost 

"saturation". Stegmann, et al. ( 1992) conducted a series of respirometry tests with diesel 

contaminated soil compost and identified 60% of "total water capacity" (gm H20/gm dry 

weight compost) as optimal with 50% to 80% as an acceptable range. The notions of 

"saturation" and "total water capacity" are similar to "container capacity" (CC) as 

employed later in this thesis. Among these studies, overall moisture contents range from 

25 wt% to 76 wt%. Among the researchers, only Stegmann, et al. ( 1992) demonstrated a 



method for determining an optimal water content. That work is described later in this 

chapter within the discussions on respirometry. 

Temperature 

9 

Temperature is well known to affect microbial activity. Microbial heat output and 

concurrent air circulation are the primary causes of compost dehydration. None the less, 

forced air ventilation may be necessary to maintain compost temperatures below a certain 

incapacitating limit (<60°C) (Hogan, et al. (1989). Temperatures in excess of 60°C are 

necessary for pathogen eradication in sewage sludge compost, but are liable to extinguish 

hydrocarbon degrading organisms in an oily sludge compost. 

Chevron limited temperatures in their pilot scale compost piles by mixing when 

135°F (57°C) was reached (Fyock, et al. 1991). The pile with a BNS of4:l exceeded 

l 10°F (43°C) whereas the two with lower ratios exceeded 130°F (54°C). TPH reduction 

was reported for the 4: I pile at approximately 90%, but was not reported for the other 

two, leaving open the question of whether the 4: 1 pile with the lower temperature 

threshold achieved the best results. The follow-up field scale compost project also 

intended to limit temperatures by mixing when they reached 135°F (Nordrum et al. 1992). 

In fact, pile temperature briefly reached I 40°F ( 60°C) and resulted in a 97% reduction in 

the total of 27 major petroleum constituents. 

Taddeo, et al. (1989) maintained a temperature of 65 to 85°F (18 to 29°C) within 

an in-vessel composting system for coal tar. Operating entirely within the mesophilic 

temperature range, this compost achieved a 94% reduction in TPH over 80 days. 

Stegmann, et al. ( 1992) conducted respirometry and bioreactor tests on oily compost at 

temperatures no greater than 3 0°C and observed significant microbial activity and 

concurrent reduction in hydrocarbons. 

Hogan, et al. ( 1989) conducted bench scale composting experiments at 35°C and 

50°C with six specific hydrocarbon compounds, including phenanthrene., fluoranthene, and 
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pyrene, all amended into a sewage sludge cake and composted for 3 5 days. Greater 

hydrocarbon losses were experienced at 35°C than at 50°C, and ranged from 75.1% to 

99. 7% disappeared. The researchers attributed the result to the greater microbial diversity 

extant at mesophilic temperatures compared to the thermophilic range. 

The three previous studies documented significant hydrocarbon degradation within 

the mesophilic temperature range of 20°C - 45 °C. Two of them reported greater than 

90% removal, suggesting that higher temperatures are not required for degradation to 

occur within a reasonable time frame. 

Nutrient Addition 

Traditional sewage sludge composting requires the presence of nutrients on the 

basis of a stoichiometric determination for the conversion of substrate carbon to biomass 

and CO2. Nell and Ross, et al. (1987) recommend a carbon to nitrogen (C:N) ratio of 30 

to 40: I. Haug (I 980) favors a C:N ratio of 30: I or less. In Chevron's pilot scale 

composting of hydrocarbon contaminated soil an initial nitrogen concentration of 500 ppm 

was used (0.089 M nitrogen at 40% moisture content). Subsequent additions were made 

to maintain minimum concentrations of 50 ppm nitrogen and 20 ppm phosphorus (Fyock, 

et al. 1991). The follow up field scale project used an initial dose of230 ppm nitrogen 

(0.066 M nitrogen at 25% MC) but also employed manure for 15% of the bulking agent 

volume. Minimum levels of 50 ppm nitrogen and 20 ppm phosphorus were desired but 

were difficult to maintain, requiring the addition of up to 230 ppm nitrogen and 160 ppm 

phosphorus twice weekly. For the composting of a 10.8% TPH sludge, Exxon used an 

initial nitrogen concentration of300 ppm urea (0.110 M nitrogen at 39% MC) and 217 

ppm phosphate with subsequent maintenance at unspecified levels. Manure was also 

employed for 14% of the bulking agent volume (McMillen, et al. 1992). The manure 

added to each of the two previously cited examples would have served as an additional 

source of nitrogen, phosphorus, and other nutrients, as well as serving as an inoculum. 
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Hydrocarbon Concentration 

Sludge and soil hydrocarbon concentrations are factors influencing what BA/S 

ratio will be employed in a compost. A high TPH sludge has a consistency at room 

temperature like that of mud or paste and very limited permeability to air. A bulking 

material or agent is required to effectively increase its air permeability. A lightly 

contaminated soil has a texture like that of uncontaminated soil and allows some 

permeability to air. It does not require as much bulking agent to effect an increase in 

permeability. The quantity of bulking agent employed effectively determines the 

hydrocarbon concentration in the resulting mixture. Among the all previously cited cases, 

original soil or sludge TPH concentrations have ranged from a low of around 50 ppm to a 

high of 300,000 ppm (30%) (Kamnikar, 1992 and Martinson, et al. 1993). The 30% TPH 

sludge employed the highest compost BA/S ratio among the cited studies (4: I). In no 

study was the hydrocarbon concentration of the resulting compost more than 10% (wt). 

Respirometry 

Description of Respirometry 

Respirometry is the measurement of oxygen consumption by living organisms. In 

the case of microbial populations, oxygen consumption can be taken as a measure of the 

population's growth or level of metabolic activity through time and provides an indication 

of its viability under varying environmental conditions. The most common application of 

respirometry has been in measuring the five day biochemical oxygen demand (BOD) of 

wastewaters. The purpose was to provide a measure of the concentration of 

biodegradable organic material and the microbial culture's ability to consume it. More 

recently respirometry has been used to measure the biodegradability of specific substances, 

often to rank them relative to other compounds (Brown, et al. 1990; Desai, et al. 1990). 

Respirometry has recently been applied to solid phase materials, such as soils and 



composts, to determine conditions which most favorably influence the rate of microbial 

activity on organic contaminants contained within them (Stegmann, et al. 1991 ). 

Theory of Respirometry 

12 

An initial premise for use of respirometry as a measure of microbial activity is that 

a microbial population's size and rate of metabolic activity is proportional to its rate of 

oxygen consumption. Even when a microbial population is not actively increasing in size 

it consumes oxygen at some baseline or steady-state level of respiration. A change in the 

environment, such as in temperature, can act to change that rate of metabolism and thus 

the rate of oxygen uptake. Oxygen consumption rates also will increase in proportion to 

the size of a microbial population. A record of oxygen consumption over time can reveal: 

1) the rate of initial exponential growth in the microbial population before it becomes 

growth limited, and 2) the "steady-state" respiration rate which follows a growth limitation 

and is representative of a population's size and degree of metabolic activity. This "steady­

state" rate can be reflective of the severity of an environmental limitation imposed on the 

microbial community. For example, when all other conditions are constant, a higher 

"steady-state" oxygen uptake rate observed for one water content compared to another 

indicates the first water content imposes less restriction on microbial activity. 

Exponential Growth Phase. Under conditions of abundant substrate, nutrients, 

oxygen, and other growth factors, a small starting population of microbes will grow in size 

at an exponential rate until something in the environment halts its growth. A limitation is 

not necessarily the depletion of a growth factor, but may be a limitation in the mass 

transfer rate at which a factor becomes available to the microorganisms. A growth 

limitation may also be caused by accumulation of toxic byproducts or a lack of available 

space. 

The exponential growth rate of a population is defined by specific growth rate (µ). 

Specific growth rate is the fractional increase in population or cell concentration (X) per 



unit time with respect to its starting size or concentration, expressed in units of r I as 

dX/dt 
µ=--. 

X 

In general, the kinetics governing biodegradation of a non-inhibitory substrate can be 

characterized by the Monad equation (Metcalf & Eddy, 1979): 

" Ss µ=µ---
Ks+Ss 

where fi = maximum specific growth rate (time-1), 

S5 = substrate concentration (mass/unit volume), 
K 5 = half saturation coefficient (mass/unit volume). 

Grady, et al. ( 1989) presented a methodology for evaluation of the kinetic 

parameters describing biodegradation in a liquid media by use of respirometry and 

utilization of oxygen uptake (Ou)as a surrogate measure of microbial growth. He and 

other researchers recognized oxygen consumption as an energy balance, shown as 

Equation 3, whereby all the available electrons of a consumed substrate (Sso - Ss) had to 

have been transferred to oxygen ( 0
11

) to form carbon dioxide, incorporated into new 

biomass (X - X 0 ), or ended up in metabolic products (Sp - Sp0 ). 
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(I) 

(2) 

(3) 

where Ss = concentration of soluble substrate (mass/unit volume), 
X = biomass concentration ( cells/unit volume), 
S = soluble product concentration (mass/unit volume), p . . 
subscript "o" means starting concentration. 

Equation 3 can be rearranged to form an expression for oxygen uptake: 

Grady and co-workers recognized that during exponential growth, rates of 

(4) 
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substrate removal (dS/dt), biomass growth (dX/dt), and metabolic product formation 

(dS,J'dt) are all proportional to biomass concentration (X), as shown by the following set 

of differential equations based on the Monod equation (Dang, et al. 1989, Grady, et al. 

1989): 

dX 
dt 

dSp =Yp(_dSs)= Yp fJ·Ss X 
dt dt Y Ks+Ss 

(rate of substrate removal), 

(rate of cell growth), 

(rate of product formation), 

where b = biomass decay coefficient ( time-1 ), 
YP = product yield coefficient (mass products/mass substrate consumed). 

(5) 

(6) 

(7) 

Since the three preceding rate expressions are all dependent upon existing biomass 

concentration, an equation relating those rates would be useful. This is done first by 

differentiation of Equation 4 with respect to time and results in an expression for rate of 

oxygen uptake (dOuldt), 

Substitution of Equations 5-7 for the rate terms in the right side of Equation 8 results in 

the following expression: 

(8) 

dO 11 =(-1 µ·S.\. x)-( µ·,S's X- h·Ss x)-(Yp µ·Ss x). (9) 
dt Y Ks+Ss Ks+Ss Ks+Ss y Ks+Ss 

Biomass concentration (X) can be factored out to result in 

dOu =[(-_!_ µ·Ss )-( µ·Ss _ h·Ss )-(Yp Jl·Ss )]x. {IO) 
dt Y Ks+Ss Ks+Ss Ks+Ss Y Ks+Ss 
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Thus, it can be concluded that oxygen uptake rate is directly proportional to biomass 

concentration ( dO ,/dt oc: ~ through the period of exponential growth. Exponential 

growth occurs only when substrate concentration greatly exceeds biomass concentration 

(Ss > > X) because substrate must be abundantly available to the cells. 

Biomass concentration (X) has previously been shown to be proportional to 

cumulative oxygen consumption ( 0 u), and likewise dOuldt proportional to d.Xldt (Brown, 

et al. 1990). In fact, during exponential growth, oxygen uptake (Ou), oxygen uptake rate 

(dOufdt), biomass concentration (X) and biomass growth rate (dX/dt) are all proportional. 

This results from the definition of exponential growth, where a change in size is in 

reference to the starting size (dXdt = µX). Thus, when dXldt oc: X, and dX/dt oc: dOufdt, 

then X oc: dOi/dt. This reasoning simply verifies that oxygen uptake rate is proportional to 

the size of a microbial population and can seive as a surrogate for measurement of its 

growth. It further permits oxygen uptake data to be used for estimation of the kinetic 

parameters describing a culture's growth. 

Precise knowledge of initial substrate (Ss0 ) and biomass (X0 ) concentrations is 

required for the kinetic parameters y and Ks to be estimated. For solid phase mixtures, 

such as compost, these values are not easily determined. One parameter, however, can be 

evaluated from oxygen uptake data alone. Aichinger, et al. ( 1992) mentioned a technique 

for graphically determining a culture's specific growth rate (µ). This was done by plotting 

its instantaneous oxygen uptake rate against its cumulative uptake, as a continuous 

function. Instantaneous uptake rate is determined from adjacent cumulative uptake values 

and is expressed mathematically as: 

d02 02(1 n+I)- 02(tn) --- (11) 
di ln+i - tn 

Aichinger and co-workers used the slope of the initial, linear portion of the uptake 

rate versus cumulative uptake plot as an approximation of a culture's maximum specific 

growth rate. In fact, it can be shown that this slope in general is equal to a culture's 



specific growth rate. This reasoning can be demonstrated by use of Equation I and 

substitution of k(dO,ldt) for X (where k is a constant of proportionality): 

dX/dt d(k(dOuldt))/dt d(dOuldt) 
µ - --- - ------- - -----

- X - k(dOu ldt) - dOu 
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(12) 

Equation 12 illustrates two important points: I) because the proportionality constants 

cancel out, the resulting oxygen uptake based rate expression is actually equal to a 

culture's specific growth rate, and 2) a change in oxygen uptake rate with respect to a 

change in cumulative uptake actually is an expression for the slope of a plot of oxygen 

uptake rate against cumulative uptake. On this type of plot, the exponential growth phase 

of a culture's life cycle appears linear. The slope of a trend line fitted to that interval is the 

specific growth rate of the culture (further details are provided in Chapter 3). Recognition 

of the above two points allows an easy determination ofµ for comparisons of culture 

performance and the biodegradability of various compounds under similar conditions. 

Constant Respiration Phase. Aerobic respiration is the oxidation of substrate by 

living organisms to obtain energy for cell maintenance and growth by use of molecular 

oxygen as an electron receptor, and which results in the formation of water and carbon 

dioxide. The period of oxygen uptake following a logarithmic increase to a maximum can 

be evaluated for its average rate over the interval for which it can be construed to be 

relatively constant. A constant oxygen uptake rate implies a constant biomass and a 

constant rate of substrate utilization. Conditions resulting in higher constant respiration 

(BOD) rates are desirable. Thus, constant BOD rate can be used to compare activities 

among tests which vary a parameter to determine what values most favor microbial 

activity. An equation showing the stoichiometry of respiration as utilized by Stegmann, et 

al. ( 1991) is shown below: 

CxHy + n-O2 ~ x·CO2 + y/2·H2O + energy, 

where n = x + y/4. 

{13) 



"Steady-state", constant BOD rate can also be used to determine the rate of 

substrate utilization and estimate the required time to achieve an endpoint. For this 

purpose the ratio at which oxygen combines with hydrocarbon is required and may be 

determined from the above stoichiometry for the oxidation of a selected hydrocarbon 

(Stegmann, et al. 1991). 
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Cumulative BOD. Five day BOD is too short a time frame to provide meaningful 

results because compost samples often take up to five days just to initiate measurable 

exponential growth in a respirometer. Cumulative BOD over the life of a longer term test 

{approx. 14 days) can provide an indication of the amount of hydrocarbons degraded. 

Brief History of Respirometry 

The notion of employing oxygen uptake to measure microbial growth is not a new 

one. In 1890 W. E. Adney reported an effort to measure volumetric changes in the head 

space over wastewater in a vessel (Jenkins, 1960). Over the years a series of 

"manometric" instruments have been devised to measure the decrease in pressure in 

constant volume reactors. By the mid-I 930's two designs, the Warburg and Barcroft 

respirometers, began to see extensive use for wastewater analysis. Both designs were 

similar, except that the Barcroft respirometer was a reaction vessel connected via a 

mercury-filled U-tube manometer to an identical compensation flask containing only an 

equal volume of water. The intent was to isolate the system from nominal temperature 

and barometric changes. The Warburg respirometer was not connected to another flask 

but was open to the atmosphere on the far end of the U-tube and thus was subject to 

barometric fluctuations. As in present day respirometers, both these designs required the 

use of a potassium hydroxide (KOH) solution to scavenge produced carbon dioxide. The 

main limitation of these designs was not the fact that there was no mechanism for 

providing additional oxygen beyond what existed in the reactor head space. Rather, it was 

that volumes of sewage tested were limited to a few ml of inoculum in small, 15 ml 
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reactors because larger amounts would exert a BOD that would exceed the 30 cm range 

of the manometer (Jenkins, 1964). 

By the early l 960's a new type of respirometer had been developed which could 

deliver oxygen in proportion to its uptake by a culture. The electrolytic respirometer was 

designed primarily to overcome the limitations of the Warburg and Barcroft types. It was 

built around a I liter reaction vessel connected to a U-tube style chamber of electrolyte. 

As CO2 was evolved and absorbed by the KOH in the reactor, it caused the level of 

electrolyte in its chamber to rise, causing contact between two electrodes, one of which 

generated oxygen. The oxygen would rise in the head space connected to the reactor and 

diffuse downwards to the sample fluid. The quantity of oxygen consumed was measured 

as the time the current was on multiplied by the electrode's known rate of oxygen 

generation. 

The latest development, a computerized pneumatic ( or piezometric) respirometer, 

is significant in its improvements over electrolytic methods. Pressure depletion in the 

reactors is detected by sensitive computer monitored piezometers connected via tubing to 

individual air filled reference chambers in a temperature controlled water bath with the 

reactors. Oxygen delivery is through computer actuated valves and occurs in response to 

relative pressure depletion in the reactors. Computer recorded uptake data can be 

gathered at frequent intervals around the clock over extended periods of time. The 

resulting data are amenable to spreadsheet analysis. 

Biodegradability Testing Using Respirometry 

A number of researchers have conducted biodegradability studies of individual 

compounds dissolved in water using respirometry. Respirometry has been used 

extensively by the U.S. E.P.A. in Cincinnati (Desai, et al. 1990) to characterize the 

biodegradability of compounds in aqueous solutions. This was done by use of estimations 

of kinetic parameters from oxygen uptake and other data. Dang, et al. ( 1989) estimated 
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kinetic parameters from oxygen uptake data resulting from the biodegradation of various 

individual aromatic compounds in solution. Brown, et al. (1990) presented kinetic 

parameter estimates, also derived from oxygen uptake data, for heterogeneous cultures 

growing on various substituted phenolics. They employed estimates of specific growth 

rate to rank the compounds in order of their biodegradability. Aichinger, et al. (I 993) 

conducted investigations into the biodegradability of low solubility compounds, including 

four polyaromatic hydrocarbons. They concluded that all kinetic parameters could not be 

estimated for compounds present above their limit of solubility, with the exception of 

when the rate of solubilization exceeded the rate of biodegradation. In any case, an 

estimate of specific growth rate could be made from exponential growth phase oxygen 

uptake data. This is pertinent because in a wetted, oily compost the solubility and the rate 

of solubilization of the hydrocarbons into the water phase could place a mass transfer 

limitation on microbial growth. 

The principal efforts of these researchers were directed towards: I) determining 

whether their techniques for estimation of kinetic rate constants were valid, and 2) 

obtaining kinetic rate constant estimates which would allow ranking of the tested 

compounds in order of their ease of biodegradability. Among the researchers, Dang, et al. 

( 1989) alone validated their kinetic parameter estimates by comparison to actual measured 

rates of substrate removal and biomass growth, demonstrating a favorable comparison 

with the oxygen surrogate derived kinetic parameter estimates. 

Within all studies, specific growth rate (µ) was deemed the easiest kinetic 

parameter to obtain. This was principally because µ was obtained from early oxygen 

uptake data, where exponential growth was occurring and no factors were limiting. 

Specific growth rate was the basis used to rank the compounds in terms of their ease of 

biodegradability. Cross correlation of the rankings between studies on a relative basis 

showed a similar, but not identical, ordering. Numerical values for µ were widely 

dispersed when compared between studies. The discrepancies were attributed to 
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differences in a microbial community's ability to attack a given substrate (i.e. acclimation). 

For example, the Brown and Dang groups used acclimated and individually enriched 

cultures as inoculum, whereas Desai, et al. ( 1990) employed sewage sludge inoculum not 

acclimated to the presence of the compound of interest. This was reflected in lower 

overall µ estimates compared to the values determined for the identical compounds 

analyzed by Brown, et al. ( 1990). 

Conditions Necessary for Growth . Based upon these research groups' reports, 

four requirements emerged as necessary for exponential growth to occur and for the 

resulting oxygen uptake data to be valid for making kinetic parameter estimations. These 

requirements are: I) biomass growth and associated substrate consumption must be the 

only activities contributing to oxygen uptake, i.e., the biomass must be free of nitrifying 

bacteria and have a low population of protozoa, 2) all of the biomass must be capable of 

metabolizing the substrate of interest, thereby eliminating oxygen demand due to 

endogenous metabolism (Grady, et al. 1989), 3) starting microbial populations should be 

relatively small, thus ensuring that exponential growth can occur, and 4) all factors 

necessary for growth, such as substrate, nutrients, oxygen, space, etc., must be initially 

present in abundance. For these points to be realized in some of the forgoing studies, a 

cultured, acclimated inoculum was used (Brown, et al. 1990, Dang, et al. 1989). It is 

believed that microbes indigenous to waste pit sludges meet the first three of the above 

requirements by virtue of natural selection and acclimatization during their long exposure 

to sludge, and by their low population counts as measured for this study ( 100 to I 000 

microorganisms per gram). 

These studies focused exclusively on the estimation of the kinetic parameters of 

growth. None of them addressed the possibility of employing an established constant rate 

of respiration as an evaluatory tool. The nature and design of sample media in 

continuously stirred batch reactors naturally limits the variety and potential for mass 

transfer limitations. Only the limited presence of a growth factor in a reactor could result 
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in an imposed constant respiration rate. Design criteria common to all the previously cited 

studies required that no single factor be growth limiting. All growth factors were supplied 

in abundance to ensure maximum exponential rates. In contrast, the abundance of 

potentially rate limiting factors in compost (water content, surface area, permeability, 

nutrients, solubility, etc.) provide great opportunity for growth to be restricted and 

constant rate respiration to result. 

Respirometry Testing of Compost. Stegmann, et al. ( 1991) reported on 

biodegradability testing of diesel-contaminated soil by means of respirometry. Tests were 

conducted in Sapromat electrolytic respirometers and investigated the parameters of 

moisture content, bulking agent to soil ratio (BA/S), age of bulking agent and nitrogen 

addition. The soil was spiked with diesel fuel to 1 % by weight. The bulking agent was 

compost derived from agricultural "biowaste". 

Tests varying water content were performed on compost with a BA/S ratio of I :8, 

dry weight basis (dwt), for each level of water content. Cumulative oxygen uptake was 

measured over a four day period and comparisons were based on those values. Maximum 

uptake occurred at 60% of maximum water capacity. The results suggested to the 

researchers that 50% to 80% might be an acceptable range. 

To evaluate the effect of using biowaste compost of different ages as bulking 

agent, they were separately mixed with 1 wt% diesel-contaminated soil in a ratio of 1 :2 

( dwt). The ages of the compost bulking agent were 2, 4, and 6 months. Over a 300 hour 

period, on a per unit hydrocarbon basis, the six month old compost achieved cumulative 

oxygen uptake nearly twice that of the four month old compost, which itself was over 

twice that of the two month old compost. The best result from the oldest compost was 

attributed to natural selection of microorganisms over time for ability to metabolize humic 

material, which presumably enables them to better digest hydrocarbons. 

In Germany, a commonly used compost (as bulking agent) to soil ratio is 1:9 

(dwt). Stegmann and co-workers investigated microbial activity for the ratios 1: 16, 1:8, 
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I :4, and 1:2 (dwt) by respirometry. Soil mass was held constant at 25 g and contained I% 

(wt) diesel. Oxygen uptake results showed a clear trend of increasing cumulative uptake 

with increasing BNS ratio. The I :2 ratio incurred the highest cumulative uptake on a per 

gram hydrocarbon basis. 

The above BNS ratio tests were run in parallel with tests supplemented with 25 

mg KNOrN. Nitrogen was added on the basis of 1 mg N/gm soil and was also present in 

the compost used for bulking agent at 0.6 mg N/gm. The tests with added nitrogen 

exhibited lower cumulative uptakes compared to their counterparts without added 

nitrogen, except for the 0.5: 1 BNS case. Both series exhibited a trend of increasing 

cumulative uptake with increasing bulking agent proportion, but the rate of increase was 

greatest in the series with added nutrients. 



CHAPTER III 

MATERIALS, METHODS, AND EXPERirvIBNTAL DESIGNS 

This chapter presents descriptions of the equipment employed in this research, the 

methods employed to characterize the experimental materials, those materials' character­

izations, and the specific compost designs used to evaluate each of the parameters. The 

compost design which incorporated the optimal conditions obtained from each of the 

parameter evaluations is presented and is followed by the procedure used to measure the 

hydrocarbons remaining in finished tests. 

N-Con Respirometers 

Principles of Operation 

All of the parameter optimization tests were performed in N-Con Systems, Inc. 

pneumatic respirometers. A respirometer system consists of a computer and a 

respirometer. The respirometer is an enclosed, temperature controlled water bath 

containing 12 reactor bays and 12 pressure reference chambers, a pressure differential 

detection system, and an oxygen delivery system. The computer detects pressure 

differentials between the reactors and their reference chambers and responds with oxygen 

deliveries to maintain an equilibrium. 

Each reactor has a pressure interface with a reference chamber through external 

tubing connections and a piezometer. The piezometers detect pressure differentials as 

little as 0.02" H 20. When pressure depletion occurs in a reactor relative to its reference 

chamber, the piezometer signals the computer, which in turn responds with a signal to 

trigger the reactor's oxygen delivery valve. The delivery valves are solenoid-actuated and 

23 
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open only momentarily (<I second). The valves are mounted to a manifold regulated to 

10 psi which is connected to a supply of bottled oxygen. Upon respirometer set-up, the 

delivery valves are individually calibrated to within I% repeat variability according to a 

procedure outlined in Appendix A. Valve calibrations overall range from 200 to 250 µg 

oxygen per delivery. 

The reactor vessels are Schott-Duran 500 ml bottles. Each bottle is equipped with 

an airtight cap, seal and norprene tubing for oxygen delivery. The tubing from each bottle 

is connected to its respective delivery valve in the manifold. Oxygen delivery results from 

pressure depletion within a reactor and is caused when carbon dioxide is absorbed by a 

potassium hydroxide (KOH) solution. The KOH is contained in a small cup suspended in 

the head space of the reactor. As CO2 is evolved by microorganisms, it is absorbed by the 

KOH, causing a pressure decrease in the reactor relative to the reference chamber. The 

piezometer signals the computer which in turn triggers the solenoid valve, delivering a 

pulse of oxygen into the supply line of the reactor. This continues as necessary to 

maintain reactor pressure equivalent to that in the reference. 

The computer, operating through N-Con's proprietary software program, Comput­

Ox, maintains a simple record of cumulative oxygen consumption. Cumulative uptake 

throughout this experiment was recorded on an hourly basis. Following the completion of 

tests, the oxygen uptake records were transferred to another computer for manipulation 

and analysis. 

Special Problems with the Respirometers 

A great deal of time was spent troubleshooting and learning about the 

idiosyncrasies of the respirometers. While most procedures such as calibrations and 

reactor test preparation were quite straightforward, other operational problems caused 

much concern and required many hours of attention. 

During the course of some early preparatory investigations, it was observed that in 
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the cumulative oxygen uptake plots there were periodic, simultaneous plateaus occurring 

within groups of triplicate reactors. Plateaus were also occurring concurrently in other 

groups of tests within the same respirometer. Each plateau was followed by a brief but 

greatly accelerated period of oxygen uptake. Even sterile controls were affected, though 

the degree of the effect was proportional to the activity level of the tests. It became 

evident that there were leaks in the respirometer system. 

In fact, leaks were found to be a significant problem with one respirometer. They 

were primarily in the reference chamber connections, which were all loose. The effect of 

reference chambers being in communication with the atmosphere caused the computer to 

sense a pressure deficit in the reactors whenever barometric pressure increased. The result 

was a period of accelerated oxygen deliveries as the system responded to achieve 

equilibrium. This problem was overcome when fittings and connections throughout the 

respirometer were reset with a thread sealing compound and tested to maintain pressure. 

A second significant problem which was never resolved involved the software 

program designed to run the respirometer tests (Comput-Ox). A frequently recurring 

memory limitation caused by the program's allocation of internal memory would cause the 

program to abort and exit to DOS, thereby interrupting all tests taking place in the 

respirometer. A provision within the program allowed resumption of tests once the 

program was restarted. An unfortunate consequence of the interruption was a zeroing or 

reduction of the current cumulative uptake values and the addition of 18 to 22 hours of 

time to actual elapsed time. Figure I shows an example of interrupted data. 
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These events occurred at one time or another in nearly every run, sometimes twice. 

The memory limitation also caused the program to exit during test start up procedures. 

This frustrating problem was dealt with using a spreadsheet where data recorded 

subsequent to a discontinuity could be adjusted to correct values. The Figure 2 shows the 

same interrupted data set in its restored form. The software failure's impact on the results 

obtained from restored data was minimal. 
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Materials Characterizations 

Farmington Sludge 

The oily sludge obtained for this work was from waste pits located in the area of 

Farmington, New Mexico. The sludge had originated as a condensate from gas wells 

which through years of evaporation had lost most of its lighter-end hydrocarbons. Its 

appearance was like that of a brown paste. The sludge brought to the lab from the field 

was mixed thoroughly in a tub, divided up into subsamples and sealed. Analysis of sludge 

content was performed according to the following methods. 

Moisture Content. The moisture content of the sludge was measured in a Denver 

Instruments Company, Inc. moisture balance. The temperature was set to I 05°C and the 

minimum rate of mass loss cut off at 0.05% per minute. Five samples were measured 

which resulted in a mean moisture mass content of 19.8% ± 0.5%. For the sake of 

simplicity, the rounded value of 20% was used for design calculations. 

Hydrocarbon Content: Total petroleum hydrocarbon (TPH) was determined by 

two gravimetric methods. In one, the dried sludge remaining from the moisture content 

analysis was incinerated in ceramic crucibles at 550°C for three hours. The resulting 

average mass loss of three samples from their original wet weight was 24.2% ± 0.5%. 

The second method was incineration of three fresh sludge samples for total volatiles 

content (ave= 43.2 ± 1.3%). Average moisture content was subtracted and resulted in an 

average TPH of23.6%. The combined average of both methods was 23.9% and was 

assumed to be totally due to hydrocarbons. The rounded value of 24% was used for 

parameter test design, again for the sake of simplicity. 

Hydrocarbons were also extracted from sludge with methylene chloride and 

analyzed by gas chromatography (GC) for a type analysis. The sludge was initially mixed 

with diatomaceous earth (DE) at a mass ratio of 4: I to bind available moisture. The 

mixture was ground to a very fine texture and extracted with solvent according to a 
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procedure described at the end of this chapter. Figure 3 depicts the carbon number 

distribution and mass percentages of the resulting extract as determined by GC. Carbon-

23 represents the median hydrocarbon size in terms of carbon number; approximately 

47.3% of the molecules had lower carbon numbers, and 47.8% were higher in carbon 

number. No hydrocarbons less than carbon-9 were detected. More than half (52.4%) of 

the hydrocarbon molecules present were included in the range of carbon-16 to carbon-25. 

8.00 

7.00 

6.00 
3 

5.00 ~ 
c..-. 
0 4.00 -C 

~ 3.00 
0 

i:i.. 
2.00 

1.00 

0.00 

0 10 20 30 

Carbon Number 

40 50 

igher) 

• Weight% 

-o-- Mole% 

60 

Figure 3. Distribution of Sludge Hydrocarbons by GC 

Inert Material. The remaining inert material constituted 56% of the sludge's wet 

mass. It was comprised of fine to very fine grained quartz sand and clay material. 

Microbial Population. Bacterial counts performed by another investigator found 

bacterial populations in the sludge to be very low, in the range of 100 to 1000 

microorganism per gram. However, preliminary tests for sludge activity done in the 

respirometer were encouraging enough to al1ow the ensuing experimental work to rely 

exclusively upon the sludge's indigenous population for hydrocarbon degrading activity. 

Low starting bacterial populations almost ensure an exponential growth period. 
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Bulking Agent 

The selection of a bulking agent material was a matter of some concern. It was 

reasoned that it should have all the physical characteristics of a natural material as would 

be employed in the field (texture, compressibility, size distribution). Chips made from I II x 

2 11 x 8' long white pine wood strips processed through a chipper were selected for the 

reason of maintaining consistency in the material. 

Wood chips which had been subjected to solvent extraction (described below) 

contained 0.33% inert material and thus were 99. 7% volatile. This was determined by 

incineration of samples in a furnace at 600°C for three hours. The density of the raw 

wood chips was determined to be 0.20 grn/cm3 by measurement of the mass of one liter of 

loosely compacted chips. Solvent-extracted chips were measured in a likewise fashion 

with a resulting density of 0. 17 gm/cm3. This value included an average background 

moisture content of 12%. Moisture contents of the extracted chips were measured before 

use in a Denver Instruments, Inc. moisture balance and varied from 6 to I 0%. The size 

distribution of the wood chips is depicted in Figure 4 and was determined from the sorting 

of 300 grams of chips for 20 minutes in a Ro-Tap sorter. The container capacity of the 

solvent extracted chips was 2.96 gm H 2O/gm dwt. (see Appendix A for method). 
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Preliminary tests in the respirometer with an inoculum derived from the sludge 

showed that a great deal of microbial activity occurred on raw wood chips. As a 

consequence, chips were subjected to solvent extraction in I. 75 liter capacity Soxlhet 

vessels to remove oils which could serve as substrate for microorganisms. Two solvents 

were used in sequence for 24 hours each, first methanol (polar) and secondly chloroform 

(non-polar). The resulting chips were termed "double extracted". After extraction the 

chips were spread and air dried beneath a lab hood for 24 hours and next packed into 250 

ml containers and sealed with foil (see Appendix A for details). 

Twenty-four hours prior to respirometry testing the chips were sterilized in a 

Harvard/L TE Benchtop 90 autoclave with a sterilization cycle of 3 0 minutes at a minimum 

of 120°C. Fast cooling in the autoclave was desirable to achieve a consistent moisture 

content in the range of 6% to I 0%. On one occasion, inadvertent use of slow cycle 

cooling resulted in a moisture content of 18%. Figure 5 shows the activity of a sludge 

derived inoculum on the double extracted chips versus that on the non-extracted chips. 

Extraction delayed the initiation of significant activity from 25 hours to 70 hours and 

sharply reduced the initial rates of oxygen uptake. Additional discussion of microbial 

activity on wood chips compared to sludge hydrocarbons can be found in Appendix A. 
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Figure 5. Microbial Activity on Wood Chips 



31 

Nutrient Salts Solution 

Mineral nutrient supplements are commonly employed to instigate higher rates of 

bacterial growth than might otherwise be realized in their absence. To ensure that tests 

were not totally devoid of nutrients a minimal salts medium in the form of a liquid 

supplement was added to all series of tests. 

The nutrient supplement was a combination of a mineral salts media (Evans, 1965) 

and a trace element solution (Drews, 1974). Evans' mineral salts media had originally 

been concocted for culturing Pse11do111011as strains of hydrocarbon-degrading soil bacteria 

on anthracene and phenanthrene. It consisted of salts containing the most important 

growth requirements: nitrogen, phosphorus, sulfur, magnesium, and iron. Drews' trace 

element solution contained a host of trace metals and nutrients necessary for growth. 

Both Evans' and Drews' formulations are shown in Appendix A. 

A standard solution of Evans" media contains nitrogen as ammonium in a 

concentration of 0.01515 moles/ liter. Since nitrogen is the element among nutrients which 

is required in greatest amounts, its concentration in the form of ammonium was used as a 

"yardstick" measure for the entire nutrient solution. All stoichiometric requirements were 

calculated solely on the basis of the nitrogen requirement. Phosphorus is commonly 

acknowledged to be required at about 20% of the mass of nitrogen (Metcalf and Eddy, 

1979, Grady and Lim, 1980). In Evan's solution, phosphorus is present at 84% of the 

mass of nitrogen. All other elements remained in constant proportion to the amount of 

ammonium added to a test . 

In some series of tests, such as the one investigating the effect of increased nutrient 

concentration on growth rates, it was necessary to add more standard nutrient solution 

than could be added as r1qu·1a due to tne oonstraint of a 11mifin g w at er content . Two 

concentrated solutions of the nutrient media were prepared to circumvent that problem, 

one at 0. 758 molar ammonium (SOX standard) and the other at 2.41 molar ( l 59X 

standard). All other constituents were propo11ionally present as in the standard solution. 
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These two solutions were supersaturated and had to be stirred to suspend the precipitate. 

In most cases, precipitate dissolved when added to whatever makeup water was being 

used for a batch preparation. 

Oxygen Supply 

Commercial available bottled oxygen was used for the respirometer supply. It was 

high purity (HP) grade, being 99. 6% pure. Industrial grade oxygen was not suitable for 

this research. 

Test Preparation 

Sterilization measures were taken to ensure the only microbes introduced into the 

reactor bottles were the ones indigenous to the sludge. All cleaned reactor bottles were 

sterilized in an Harvard/L TE Benchtop 90 autoclave at I 20°C for 15 minutes and were 

stored with regular bottle caps on. Other mix containers and implements were covered or 

wrapped in foil and sterilized in like fashion. Wood chips were sterilized at 120°C for 30 

minutes to assure heat penetration to the core of the foil covered 250 ml containers. The 

one liter nutrient solution and de-ionized make up water bottles were also sterilized in the 

same way. Both these liquids were normally issued from repipet dispensers which had 

been first flushed and purged with sterile solution. All implements used to load sludge and 

mix compost were foil wrapped and sterilized in preparation for use. 

A particular order was followed in the make up and mixing of compost batches for 

respirometer tests. A typical compost batch consisted of sufficient material for three 

replicate reactors and was prepared in an 800 ml disposable plastic container. First the 

nutrient media and supplemental water were added and mixed to ensure dissolution of any 

undissolved solids in the nutrient. This was followed secondly by the addition and mixing 

of the chips to ensure they would absorb the available water (sludge coated chips have 

difficulty absorbing high amounts of water). Sludge was added last of all to the mixture. 
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A complete and thorough mixing was considered very important and took three to four 

minutes to achieve. Once well mixed, the compost was loaded into reactor bottles one at 

a time and the resulting net mass in each recorded. Masses were usually within a few 

grams (±5%) of being equal. 

Potassium hydroxide (KOH) pellets placed in small cups suspended in the head 

space of the reactors were used as the CO2 scavenger. Because they were strongly 

hygroscopic, the pellets were wetted with 2 ml of de-ionized water to eliminate drying of 

the samples. Some preliminary respirometry tests done with dry KOH dried 10.0 gram 

samples of flattened sludge to a crust after a week's time. Subsequent tests with 10.0 

grams water in each of twelve reactors, half with dry KOH and half wetted with 2 ml 

water, proved that dry KOH absorbed twice as much water as the wetted over a 44 hour 

period (1.3 vs. 0.65 gm). As a result of this, all further tests employed KOH wetted with 

2 ml of de-ionized (DI) water. In addition, another KOH cup containing only DI water 

was suspended beneath the first to serve as a supplemental source of head space moisture. 

In later tests, the second cup was also dedicated to KOH to allow longer run times 

Generally, on the basis of a one-for-one evolution of CO2 from biologically consumed o2, 

4.0 grams of 88% purity KOH are required for each gram of total oxygen consumption 

( see Appendix A for details on the stoichiometry of the KOH reaction with CO2). 

Tests run at elevated temperatures were found to also affect the amount of 

moisture absorbed by the wetted KOH. Among identical tests, those run at 40°C had their 

KOH cups filled to capacity after two weeks run time compared to half full cups for those 

run at 25°C. Both groups of tests had consumed nearly identical amounts of oxygen and 

therefore evolved equivalent amounts of CO2. 

Run times for tests initially were on the order of 180 hours. Later it became 

apparent, especially for tests run with elevated concentrations of nutrient, that longer 

periods of time were required to observe peaking of oxygen uptake rates and the 

following periods of constant rate oxygen uptake. Most later tests were run for two 
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weeks (3 3 6 hours). This seemed to coincide also with the cup capacity limit for water and 

CO2 absorption by KOH. 

Hydrocarbon Concentration Tests 

The first matter for investigation was that of how overall hydrocarbon (HC) 

concentration in compost material affects microbial rates. For hydrocarbon concentration 

to be variable through a series of tests, its mass in the compost mixture samples had to 

change from test to test while all other constituents remained constant. A base condition 

was established at a bulking agent to sludge ratio of2.86 to I on the basis of dried weight 

of wood chips to mass of sludge inert solids. Sludge inert solids were used as the 

denominator since hydrocarbon mass had to vary throughout the tests. The 2. 86/1 ratio 

was equivalent to a 2/ I mass ratio when hydrocarbons were included. Since the 

concentration of hydrocarbons in the sludge was 24%, the resulting concentration in the 

base condition compost mixture was 10% on a dry weight basis (dwt). Higher 

concentrations were achieved by amendment with hydrocarbons obtained by Soxhlet 

extraction of sludge ( described at end of chapter). Lower concentrations were achieved 

by amendment with inert material derived from incineration of sludge at 600°C. 

In addition to maintaining the masses of inert sludge material (5.60 gm) and 

bulking agent (16.00 gm dwt) constant, the nutrient and moisture contents were also held 

constant throughout the tests. Moisture content was arbitrarily chosen to be 62% with 

respect to the mass of inert and chip material. These were used since they were constant 

masses, whereas the mass of hydrocarbons varied from test to test. The partial 

composition of individual tests is shown in Table 1. A complete test make-up is shown in 

Appendix B. 
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TABLE I 

PARTIAL MAKE-UP OF HC CONCENTRATION TESTS 
(in grams) 

TEST Sludge Added Added Total %HC 
# Inerts HC HC (dwt)a 

Series I 337p72 0.00 5.60 0.00 0.00 0.0% 
337p82 2.31 4.30 0.00 0.55 2.5% 
337p73 4.74 2.95 0.00 1.14 5.0% 
337p83 7.30 1.51 0.00 1.75 7.5% 

JJ71>70C 10.00 0.00 0.00 2.40 10.0% 
337p74 10.00 0.00 1.41 3.81 15.0% 
337p71 10.00 0.00 3.00 5.40 20.0% 

Series 2 337pl04 0.00 5.63 0.00 0.00 0.0% 
337p94 0.45 5.34 0.00 0.11 0.5% 
337p93 0.91 5.08 0.00 0.22 1.0% 
337p92 2.31 4.30 0.00 0.55 2.5% 
337p91 4.74 2.94 0.00 1.14 5.0% 

a % HC dwt is with respect to HC~ inert solids and chips (dn1). 
b % HC in Inerts is w.r.t. HC and inert solids only. 
c Base condition 

The term "volatile solids" (VS) includes the mass of chips (dwt) and the mass of 

hydrocarbons in the sludge; essentially the total mass of potentially biodegradable material. 

Volatile solids was defined and used in this way because the actual mass ofHC in this 

series is very small at low concentrations. Considering the backgound level of activity on 

wood chips and its large presence compared to hydrocarbons, oxygen uptake would 

appear artificially high if measured on a per unit mass HC basis alone. Oxygen uptake 

throughout the parameter tests was measured on the basis of uptake per unit mass VS. 

Bulking Agent to Sludge Ratio Tests 

The intent of this series of tests initially was to investigate the effect of varying the 

bulking agent to sludge (BA/S) ratio on rates of microbial growth and respiration. 

Knowing that a certain level of activity would occur on whatever mass of wood chips was 
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present, the design was based on the employment of a constant mass of chips through the 

series. Thus, only the amount of sludge was varied to achieve different BA/S ratios. 

Since oxygen consumption in the respirometers was expressed on the basis of 

concentration (mg O2/gm VS) rather than simply as total oxygen consumed, differences 

between the rates could be attributed to changes in the amount of sludge relative to chips. 

The range of the first series of tests bracketed the base condition BA/S ratio used 

in the previous HC concentration tests, that is, 2.86 to I on the basis of dry weight to inert 

solids. This basis was used to be consistent with the previous series. The dry mass of 

wood chips used was 16.00 grams, except for the last two tests of the third series where 

the compost volume became a limiting factor. In those tests, the mass of chips was 

reduced relative to the mass of sludge. 

In the previous concentration series, moisture content was related to sludge inert 

solids and chip mass, both of which were held constant. In this series, sludge inert solids 

varied with sludge mass so moisture content was tied to the mass of chips, the only solid 

held constant through the series. Thus, added moisture was chosen near the midrange 

(50%) of wood chip container capacity (CCc)- Container capacity is defined as the ratio 

of the mass of water retained by a material against gravity drainage to the dried mass of 

the material present (Cassel & Nielsen, 1986). See Appendix A for details on its 

determination. 

The only added liquid was Evans' media which was constant at 23.67 gm of the 

standard solution (0.0152 M ammonia). Since the "sludge only" case had no chips, 0.95 

grams of 0.379 M (25X) Evans' concentrate was used to achieve the same stoichiometric 

amount of nutrient addition. All tests were run in triplicate. Table 2 shows the make up 

of the variable portion of the BA/S ratio tests. Following the first series of tests, two 

additional series extended the range of the tests both above and below the original range. 

More detailed makeup data can be found in Appendix B. 

The second series was designed specifically to investigate very low hydrocarbon 



concentrations. It overlapped into the range of the first series and repeated the 5% HC 

concentration test. The third series investigated very low bulking agent to sludge ratios 

and repeated the 20% HC test. 

TABLE2 

MAKE-UP OF BULKING AGENT TO SLUDGE RATIO TESTS 

Series 1 

Series 2 

Series 3 

(in grams) 

Test Mass Sludge Mass %HC Total Moisture BA/S 
# Chips (,n,1) HC (d\\1 Moisture Content Ratio (dwt/ 

(d\\1) basis) (%) inert basis) 

337p97 16.00 -J.00 0.96 5.0 25.67 57% 7.14 
337p98 16.00 10.00 2.-10 10.0 26.87 53% 2.86 
337p99 16.00 20.00 4.80 15.0 28.87 47% 1.43 
337pl00 16.00 40.00 9.60 20.0 32.87 41% 0.71 
337pl02 0 176.23b 42.30 30.0 36.20 20% 0/1 

361p22 16.00 0.69 0.17 1.0 25.01 60% 41.0 
36lp21 16.00 1.82 o .. u 2.5 25.23 59% 15.7 
36lp20 16.00 .J.()0 0.96 5.0 25.67 57% 7.14 
36lpl9 16.00 6.67 1.60 7.5 26.20 55% 4.28 

36Ip40 16.00 40.00 9.60 20.0 32.87 41% 0.71 
36lp41 16.00 60.79 14.59 22.6 37.03 36% 0.47 
36lp42 16.00 119.0-1- 28.57 25.7 48.68 30% 0.24 
36lp44 12.ooa ll9.04 28.57 26.6 48.38 31% 0.18 
36Ip45 8.ooa 119.04 28.57 27.7 48.08 32% 0.12 

a had decreased mass of chips rather than increased mass of sludge due to 
volume constraints. 

b to approximate the volume of other tests in the series. 

Water Content Tests 

BA/S 
Ratio 

(vol/vol) 

32.9 
13.2 
6.6 
3.3 
0/1 

191 
72.4 
32.9 
19.8 

3.3 
2.2 
1.1 

0.83 
0.55 

37 

To evaluate the effect of moisture content on the microbial activity of a compost 

mixture, a practical range of moisture contents had to be tested. In the absence of any 

added water, compost is a mixture of just two materials, the bulking agent and the sludge. 

The natural moisture content of each could provide a convenient starting point for 

moisture content investigations. 
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To determine the practical high end limit for moisture content, the concept of 

container capacity (CC) was employed as outlined in Methods of Soil Analysis (Klute, 

1986). Briefly, container capacity of a material is determined by placing it into a container 

with a perforated bottom and known mass. The container is set in a shallow pan of water 

and allowed to wet by capillary rise for 12 hours, during which time it is gradually 

immersed to its top to saturation. After immersion the container is covered and allowed 

to drain by gravity for six hours. The resulting mass of the material and held water is 

determined . Next, the container is oven dried for 24 hours at 105°C, after which the dried 

mass of the material is dete rmined. The net loss in weight represents the previously held 

water. This water mass divided by the mass of the dried material is its container capacity 

(gm H2O/gm dwt material) . Thus, container capacity represents the amount of water that 

a material can retain after gravity drainage for six hours. Appendix A contains a more 

detailed description of the procedure. 

Initially, container capacity was measured for both the sludge and the wood chips 

individually. The sludge exhibited negligible drainage with a CCs = 0.22 (nearly its 

moisture content, 20%), whereas the double extracted pine wood chips retained a high 

mass of water with CCc = 2.96. In comparison, raw, non-extracted wood chips had a 

container capacity of 0.69. 

The BNS ratio employed for the moisture content series of tests was 2.86/1 on a 

dry weight to inert solids basis (as employed in the HC concentration series). The 

container capacity for this compost mixture was measured at 1.58, significantly less than 

the chips by themselves. The base condition of the mixture then became the natural 

moisture contents of the sludge and chips, equated to percentage of compost container 

capacity. The range of moisture levels up to l 00% of chip container capacity was tested. 

This resulted in some tests actua\\y exceeding compost conta\ner capac\ty. In these tests, 

water present in excess of compost container capacity was present as free water at the 

bottom of the container and represents that water which would drain away from an overly 
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wetted compost pile. Moisture test make up is shown in Table 3. 

TABLE 3 

MAKE-UP OF MOISTURE TESTS 
(in grams) 

TEST %CC %CC % Moisture Sludge %HC Chips Evans' Add'l 
# Chips Compost Content (dwt) (\V\\1)a Conc.h Water 

36lp2 5.3 12 16 10.00 10.0 17.52 1.00 0.00 
36lp3 33 46 43 10.00 10.0 17.52 1.00 13.28 
36lp4 50 67 52 10.00 10.0 17.52 1.00 21.20 
36Ip5 67 88 58 10.00 10.0 17.52 1.00 29.12 
36lp6 83 108 63 10.00 10.0 17.52 1.00 36.99 
36lp7 100 129 67 10.00 10.0 17.52 1.00 44.91 

a Chip dry weight equals 16.00 gm 
b Evans' concentrate is 0.758 molar (SOX standard) 

As can be seen from the preceding table, amounts of sludge, chips and nutrient all 

remain constant. Only the water content varies. The mass of de-ionized water (Xw) to 

add to achieve a certain moisture content was determined by use of the equation: 

ms(Mc -MCs)+mAMc -Mee) Xw = ______ l ___ M_C _____ _ 

where: ms= mass sludge 
me= wet mass chips 
MCs = moisture content sludge 
MCc = moisture content chips 

(14) 

MC= desired overall moisture content (all MCs in decimal form) 

Nutrient Addition Tests 

The amount of nutrient elements available to a microbial community certainly 

affects its rate of growth. This series of tests was designed to observe the degree to which 

growth rates could be influenced by different levels of nutrient availability. Since microbes 
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live in the aqueous phase, nutrient availability was defined in terms of its concentration in 

the total available water. 

The principal nutrient necessary for bacterial synthesis in terms of its relatively high 

stoichiometric requirement is nitrogen, principally in the form of ammonia. Nitrogen's 

importance is obvious by its presence in the empirical formula for bacteria, C5H7O2N. 

Next in importance is phosphorus, which is commonly present in a ratio of one 

phosphorus to twelve nitrogen on a stoichiometric basis. A host of other minerals and 

trace elements are necessary for optimal growth. A combined solution of Evans' mineral 

salts media and Drews' trace element solution was employed for this series of tests (see 

Appendix A for the formulations of Evans' and Drews' solutions). 

The basis for determining the quantity of nutrient addition was the stoichiometric 

requirement for nitrogen necessary to completely convert the available hydrocarbon 

carbon to biomass. This calculation was dependent first upon an assumed 85% carbon 

mass content for the hydrocarbons in the sludge. Complete conversion of the carbon to 

biomass was of course a gross assumption representing the absolute upper limit. 

Stegmann, et al. (1991) employed a C:N:P ratio of 73.2:9.2: I for their experiments with 

composting of oil-contaminated soil in bioreactors. This ratio was employed here in 

initially determining what the stoichiometric requirement for nitrogen and phosphorus 

would be for the 2.40 grams of hydrocarbon contained in ten grams of sludge. The 

quantity of standard Evans' media necessary to provide the requirement was 1.410 liters 

for nitrogen versus 0.405 liters for phosphorus. For this reason a SOX concentrate was 

prepared. Nitrogen in the form of ammonium was used as the "yardstick" for determining 

levels of nutrient addition. Addition was scaled over the range of none to full addition of 

the stoichiometric requirement for nitrogen based on Stegmann's C: N ratio ( -8: I) for 

conversion to biomass. 

The design of these tests employed constant amounts of sludge and wood chips at 

the usual BA/S ratio of 2.86/1 (dwt to inert). The requisite amount of nutrient 



concentrate was supplemented by sufficient sterile, de-ionized water to bring the overall 

moisture content to 58% by weight. Initially, four tests equally divided the full range of 

nutrient investigation. Foil owing results of that group, four additional tests were run 

bracketing the lower one third of the range. Triplicates for all tests were assembled as 

shown in Table 4. 

TABLE4 

MAKE-UP OF NUTRIENT ADDITION TESTS 
(in grams) 
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Test# Added NH4+ Sludge Chips Added Added Total Resulting 
Nutrientb (% Steich. Mass (W\\1)3 Water Water'= NH4+ 

Reg.) Cone. (M) 

Series I: 337p87 0.00 10.00 17.35 0.00 30.30 33.65 0.000 
337p88 33.30 10.00 17.35 10.03 20.90 33.71 0.225 
337p89 66.60 10.00 17.35 20.06 11.50 33.77 0.450 
337p90 100.00 10.00 17.35 30.09 2.10 33.84 0.674 

Series 2: 337pl05 8.30 10.00 17.69 2.51 27.61 33.67 0.056 
337pl06 16.60 10.00 17.69 5.02 25.26 33.69 0.113 
337pl07 25.00 10.00 17.69 7.52 22.91 33.69 0.169 
337pl08 33.30 10.00 17.69 10.03 20.56 33.71 0.225 

Series 3: 361p08 0.00 10.00 17.40 0.00 30.24 33.64 0.000 
(repeat 36lp09 33.30 10.00 17.40 10.03 20.84 33.70 0.225 
of I) 36Ipl0 66.70 10.00 17.40 20.06 11.44 33.76 0.450 

36lpll 100.00 10.00 17.-10 30.09 2.04 33.83 0.674 

a Dried weight wood chips is 16.00 gm 
b Evans' concentrate density is 1.06 gm/ml 
c Total moisture= sludge water (2.00 gm). chip water ( 1.40 to 1.69 gm), nutrient 

concentratc/1.06. and added water. 

Temperature Tests 

Temperature is well known to effect rates of microbial growth. In general, two 

temperature intervals, the mesophilic and the thermophilic ranges, foster the highest rates 

of bacterial growth. Certain bacteria are viable only in one particular temperature range or 

the other. The mesophilic range extends broadly from 10° to 45°C. The optimal segment 
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of that range is between 25° and 40°C. The thermophilic range of elevated growth rates 

exists broadly from 45° to 75°C. The optimal interval is from 55° to 65°C (Metcalf and 

Eddy, 1979). All previous series of tests for this project were run at 25°C. Since 

composting activity generally generates an excess of heat and increased microbial rates 

could be expected to occur at elevated temperatures, a series of tests was designed to 

measure activities at temperatures above 25°C. 

A practical limit was placed on the high end of the range of investigation by a 

design flaw in the water bath hood of the respirometer itself At 45° and 50°c 

temperatures large volumes of condensation on the interior of the hood became a concern. 

In the absence of guttering to direct condensation back into the bath, water trickled over 

the side, into the control panel and onto the floor. 

Another problem which became common at the higher operating temperatures was 

caused anytime the hoods were raised, even for as little as 10 seconds. The cooling 

effected by the 20°C ambient room air set off a flurry of oxygen deliveries as the gas in the 

reactor hoses contracted. 

For each temperature, two tests were run, each at a different level of nutrient 

addition. One was with standard Evans' media supplied as the sole moisture supplement 

to the compost mixture. This resulted in an overall 0.014 molar ammonia concentration 

for the batch. A higher level of ammonia concentration was chosen in the optimum 

specific growth rate range observed in the nutrient addition series of tests. That amount 

(17% of the stoichiometric requirement for nitrogen) resulted in a molar ammonia 

concentration of o. 112 for the batch. The intent of the design was to maintain moisture 

content at SS¾ by weight (67% of CCc) as in the nutrient series. However, a mistake was 

made and moisture content was set to 67%. Tests for each temperature were set up as 

shown below in Table 5. Sets of sterile controls were run to ensure that chemical 

oxidation was not responsible for oxygen demand. 



% Stoich. Rcq. 

Nitrogen 

3.2% 
25% 

Sterile Control 

TABLES 

MAKE-UP OF TEMPERATURE TESTS 
(in grams) 

Sludgca Chips (w\\1) Standard Evans' Added 

Evans•b Conc.c Water 

10.00 17.58 -14.49 0 0 
10.00 17.58 0 7.52 37.40 
10.00 17.58 0 7.52 37.40 

a Sludge contains 20% water. 
b Standard Evans' media is 0.0152 M ammonium. 
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Resulting NH4 + 
Molar Cone. 

0.014 
0.112 
0.112 

c Evans' Concentrate is 0. 758 M ammonium and has a density of 1.06 gm/ml 

Temperature tests were run at 35, 40, 45 and 50 degrees Centigrade. Results from 

tests run in other series at 25° C were used for comparison. The high nutrient test from 

the nutrient investigation series (337p I 06) could not be employed for comparison because 

of its different moisture content of 5 8% . One of the low nutrient tests was from the 

moisture content series (36 I p7). It used 1.00 ml of a concentrate for nutrient amendment 

rather than a dilute form which resulted in ammonium being at 3.55% rather than at 3.2% 

of the stoichiometric requirement. 36 I p7 was later repeated as 361 p53 and employed the 

dilute nutrient media instead. 

Compaction Tests 

Compaction was investigated for its impact on microbial rates. It was anticipated 

that the principle result of compaction would be a lessening of the porosity and 

permeability of the compost matrix and a reduction in the availability of oxygen to the 

microbial community. Compaction is a real consideration in the design of compost piles 

and places limitations on the height to which they can be built. 

In order to conduct these tests, a different style of respirometer reactor vessel was 

required. One liter, straight sided, wide mouthed bottles were used. Compaction was 



44 

achieved by compressing different measured masses of compost to one particular volume. 

In order to compress the compost, rigid stainless steel screens were set on top of the 

compost, then 5" spacers cut from 2 1/2" diameter PVC pipe were placed on top of the 

screens and pressed down by the caps as they were screwed into place. 

Make up of the tests is shown in Table 6. The constant volume achieved through 

compaction was 250 ml. This volume was selected on the basis of maintaining the average 

height of compost material observed in the bulking agent to sludge ratio tests. (Those 

tests were used for 0% compaction base cases.) A sufficiently large batch of compost 

material was prepared for three reactors each at two levels of compaction, I 0% and 20%. 

This was done by use of a specific volumetric BA/S ratio, the densities of the chips and 

sludge, and addition of the appropriate percentages of additional mass for each test. I 0% 

compaction was achieved by simply filling the reactor to the 250 ml level, noting the mass, 

adding 10% more, and compression with the screen and spacer; 20% compaction was 

achieved in a similar fashion. Tests were done at two different bulking agent to sludge 

ratios, I. 1/1 and 3 .3/1, volumetrically. 

Test# 

36lp42a 
36lp50 
36lp5l 

36lp403 

36lp48 
36lp49 

TABLE 6 

MAKE UP OF COMPACTION TESTS 
(in grams) 

BAJS Compac- Total Chips %HC 
Ratio tion Sludge (\\'\\1)b (d\\1) 

(vol/vol) (\\'\\1) 

I. 1/1 0% 119.04 17.28 26% 
I. 1/1 10% 184.50 26.78 26% 
I. Ill 20% 199.99 29.03 26% 

3.3/1 0% 40.00 17.28 20% 
3.3/1 10% 88.00 38.02 20% 
3.3/1 2ocvo 96.00 41.47 20% 

a p40 and 42 were nm as tests in the BNS ratio series. 
b Wood chips averaged 7% moisture content. 

Added Overall 
Water MC 

0 30% 
13.00 30% 
16.00 30% 

0 41% 
28.00 40% 
32.60 40% 
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Optimal Conditions Tests 

Following the completion and interpretation of all the previous parameter tests, 

optimal ranges or values from each were incorporated in one test to determine if the 

combined effects were cumulative. For reasons detailed in Chapter 5, simple comparison 

of constant respiration rates was the best method for determining optimums. 

Permutations from the optimum test were made by individually varying each of the 

parameter values away from its optimum. This method resulted in seven different 

combinations for tests. The anticipation of this approach was to reveal whether the 

combined set of optimal conditions was truly a global optimum. 

Due to time and space limitations, the number of replicates for each test was 

reduced to two. One respirometer was set to 40°C, the temperature optimum, and the 

other at 25°C. The parameter values selected for the optimal conditions test and its 

permutations are shown in Table 7. 

TABLE 7 

OPTIMAL TEST COMBINATIONS 

Parameter Optimal Pemmted ParameterC 

Conditions %HC BA/S %CC Nutr. Temp. Comp. 
Test Ratio Chi Cone. 

% HC (dwt) 26% 17% 26% 26% 26% 26% 26% 
BA/S Ratio3 I.Ill 1.1/1 3.3/l 1.1/1 I.I/I 1.1/1 1.1/1 

% of Chip CC 33% 33% 33% 83% 33% 33% 33% 
Nutrient Conch 0.5M 0.5M 0.5 M 0.5M I.OM 0.5M 0.5M 

Temperature 40 C 40 C 40 C 40 C 40C 25 C 40C 
Compaction 0% 0% 0% 0% 0% 0% 20% 

a vol/vol basis 
b as ammonium concentration 
c underlined \'alues indicate the change from the best combination 

To lower the concentration of oil into the favorable range of 2 - 8% HC, 20 

volumes of chips would have been required per volume of sludge. This seemed 
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impractical for field application, so HC concentration was subjugated to that which 

resulted from the selection of the BA/S ratio. The BA/S ratio chosen was I. I/I and 

resulted in a lowering of the dry weight HC concentration from 30% to 26%. The HC 

concentration permutation employed inert sludge solids material to further dilute the oil 

concentration to 15%, actually a step towards more favorable conditions. 

Initially, the selection of the optimal value for overall moisture content was the 

basis for this selection. The result of this choice was a compost mixture that had the 

consistency of soup. It was then realized that 43% moisture content in a compost with a 

volumetric BA/S ratio of 13 .2/1 was vastly different than 43% moisture content for a 

BA/S ratio of 1.1/1. The water content optimum was then re-defined in terms of wood 

chip container capacity. The water amendment became a function of the wood chip 

amendment and was 33% of CCc. The permuted case was 83% of CCc. 

Nutrient test results showed that the highest constant respiration rates could be 

achieved at concentrations of 0.4 moles/liter ammonium and above. The permutation was 

run at twice the concentration of the optimum test (1.0 versus 0.5 M ammonium). 

No clear indication resulted from the compaction series of tests but common sense 

dictated that the less compacted a mixture was, the better oxygen would be able to 

penetrate the matrix. Zero compaction was used as the optimum and 20% as the 

permutation. A consideration not taken for this design was that of which BA/S ratio best 

resists the results of compaction. If this aspect had been a design consideration, a ratio of 

3.3/1 would have been employed rather than 1.1/1. 

Table 8 shows the make-up constituents for the optimal conditions series of tests. 

The mass of sludge is held constant throughout the series, except for the compaction 

permutation, wherein a larger mass is necessary for the compaction vessel. In this series 

the "best combination" test is the base condition case. The resulting base condition dry 

weight hydrocarbon concentration is 26%. Additions of either chips and/or inert material 

serve to dilute the concentration. The physical quantity of added nutrient solution varies 
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broadly due to large variance in added water. More nutrient must be added to the larger 

volumes of water to achieve a constant concentration. More water also was necessary to 

fulfill the container capacity requirement for increased masses of chips. 

TABLE 8 

MAKE-UP OF OPTIMAL CONDITIONS TESTS 
(in grams) 

Conditions of Test Test# BA/S Sludge Chips HC Nutr. Make- Overall 
Constant Rate BOD (vol. Mass Mass Cone. Soln.a up Moisture 

Based: basis) (d\\1)C (dwt) Water Content 

Best Combination 36lp57 1.1 59.02 8.00 26% 4.21 4.29 27% 
15% HC w.r.t. Inerts 36lp62 1.1 59.02 14.ood 15% 8.20 19.68 29% 
BA/S Ratio of 3. 3/ l 36lp61 3.3 59.02 24.00 20% 7.73 17.05 34% 
83% Chip CC Test 36lp60 1.1 59.02 8.00 26% 6.67 14.03 36% 

1.0 Molar Ammonia 36lp59 1.1 59.02 8.00 26% 8.42 0.69 26% 
25°C Temperature 36lp63 1.1 59.02 8.00 26% 4.21 4.29 27% 
20% Compaction 36lp58 1.1 194.77b 26.40 26% 13.89 14.15 27% 

Specific Growth Rate Based: 
Optimum (35°C) 

Permutation (25°C) 
36lp67 2.0 59.02 14.00 23% 2.74 32.05 
36lp65 2.0 59.02 14.00 23% 2.74 32.05 

a Nutrient solution was 2.41 Molar w.r.t. ammonia and had approximate 
density of I . 1 7 gm/ml. 

b Compaction test had to have 250 ml + 20% volume. 
c chip moisture content was 10%. 
d Added inerts test required added bulking agent to maintain 1.1/1 ratio. 

43% 
43% 

Two separate, additional tests were run and were based upon the conditions which 

could be identified by specific growth rate analysis to be optimal for rapid microbial 

growth. These conditions were; a water content of 83% of CCchips, an Evans' nutrient 

concentration of 0. 14 M ammonium~ a temperature of 35°C, no compaction, and an 

arbitrarily chosen BA/S volume ratio of 2: I (resulting in an HC concentration of23%). 

One permutation was run at a temperature of 25°C. 
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Extraction of Hydrocarbons 

Three finished tests were selected for extraction of their hydrocarbons from among 

the optimal conditions tests. The basis for selection was the three which attained the 

highest cumulative level of BOD (mg O2/gm VS). A control sample was prepared as 

would normally be done for duplicate tests in this series. It was then frozen until the time 

of extraction. At the conclusion of their respirometer runs, the selected tests were frozen 

until the time they could be extracted. 

Extraction was performed in Tecator brand Soxtec HT2 I 045 extraction units 

using a Soxlhet extraction process with methylene chloride. Frozen compost samples 

were broken up with an implement and transferred to an 800 ml plastic mix container. 

The reactor was twice rinsed with a minimal amount of methylene chloride, the rinsate 

being added to the mix container. Diatomaceous earth (DE) was added in an approximate 

one to one volume ratio to the compost and mixed well. The resulting volume of compost 

and DE mixture from one reactor required the use of three 3 0 mm X 65 mm extraction 

thimbles. The mix container was twice rinsed with methylene chloride, the rinsate being 

added into the top of the thimbles. 

Thimbles were lowered into glass extraction cups containing 50 ml of methylene 

chloride and were boiled at a temperature of 130°C for 1 hour. After boiling, thimbles 

were raised and rinsed for two hours. At the conclusion of rinsing, the return valve was 

closed and solvent was boiled off for one half hour before the temperature was reduced to 

I oo0 c for half an hour, then lastly to 60°C for another half hour. This gradual reduction 

in temperature ends up below the boiling point of hexane ( 69°C) and was done to avoid 

boiling off lighter hydrocarbons. Extraction cups were removed and air dried under a 

hood for 12 hours, following which mass determinations were made. 



CHAPTERIV 

C01\1POST BIODEGRADABILITY TESTING 

Means of Evaluation and Comparison Among Tests in a Series 

A typical oxygen uptake curve consists of several distinct intervals which can be 

named according to the type of microbial activity which is dominant through them. Figure 

6 shows ideal cumulative oxygen uptake and instantaneous rate curves. A lag period 

generally precedes the beginning of microbial activity. It represents a time of 

acclimatization. In the case of the sludge employed in this study, which had microbial 

populations on the order of I 00 to 1,000 per gram, it may represent uptake below the limit 

of pressure loss detection in the respirometer. The exponential phase represents rapid 

microbial growth taking place in the presence of an abundance of substrate, nutrients, 

oxygen, space, and other factors. The rate of exponential growth can be limited by 

excessive substrate or nutrient concentrations, or by other factors such as the temperature 

or moisture content of the compost. Exponential growth cannot proceed indefinitely. 

Eventually, something in the environment will become limiting. An example would be the 

finite area of exposed hydrocarbons which would limit both direct microbial contact with 

the hydrocarbons and its rate of solubilization into water. Another example is restricted 

permeability of the compost to air which would limit the availability of oxygen to the 

microbes. An imposed growth limitation commonly results in a period of constant 

respiration. Idea11y, the rate limitation which terminates growth and results in constant 

respiration is caused by the parameter under investigation. Constant respiration can be 

ultimately terminated by either oxygen starvation due to KOH exhaustion or poisoning by 
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metabolic products, which results in the decay phase. Culture death due to anoxia can be 

suspected when the total BOD exerted over the span of a test exceeds approximately three 

times the stoichiometric amount allowed by the available KOH, or approximately 0. 75 gm 

0 2/gm KOH (see Appendix A for details). 
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Several other explanations are possible for the onset of the decay phase, though 

during short term respirometry, some are not likely to result. In tests of compost with 

high concentrations of hydrocarbons, it is unlikely that the carbon food source would 

become exhausted. It is not likely that all species of a heterogeneous microbial population 

would exhaust their preferred hydrocarbon substrates simultaneously. When an oxygen 

uptake curve breaks over from exponential growth into a plateau of constant rate 

respiration, the population as a whole has been affected by a growth limitation. Though 

nutrients could become growth limiting in their availability once they are all incorporated 

into biomass, it is not possible for them to become exhausted since they are confined to 

the system and are always available through endogenous respiration. 

Figure 7 shows an examp\e of an uptake rate curve which drops off rapidly from 

its peak rate . There is no obvious subsequent interval of constant rate respiration. A 

possible explanation is that oxygen starvation or poisoning of the culture has occurred, 
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thus precluding the development of a constant rate plateau. Since starvation or poisoning 

cannot be positively concluded as the cause, uptake curves of this nature were analyzed 

for a constant rate across a 50 hour interval straddling the peak rate. The result is a 

conservative value for constant rate BOD compared to what might result in the absence of 

a rapid decay phase. In other words, a plateau may have been initiated beginning at the 

peak rate (212 mg 0 2/gm VS) but for the influence of something fatal to the culture. 
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Figure 7. Example of Possible Oxygen Starved or Poisoned Culture 

Constant Rate BOD 

Constant uptake rate respiration ( constant rate BOD) generally results when 

exponential growth expires as was shown in Figure 6. The level to which this rate rises is 

a function of the specific conditions of the test. The constant rate level of respiration is 

determined by inspection of a plot of a test's "instantaneous rate" of oxygen uptake. 

Instantaneous rate is determined simply as the difference of each pair of adjacent points on 

the cumulative uptake record, as shown in equation 8. This is accomplished quickly in a 

spreadsheet and when the values are multiplied by I 00, they can be plotted on the same 

scale as the cumulative oxygen uptake data. The resulting curve is a first derivative that 

indicates the rate of change at any point in the cumulative uptake curve. Most commonly 
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the constant rate interval is chosen following the end of the exponential growth phase and 

before the beginning of the decay phase. Sometimes it is not clear, as in the case shown in 

Figure 8, which interval best represents constant rate uptake. In this case, an intetval was 

chosen across both plateaus, whose average rate was deemed best representative of 

"constant rate". The difference between the two plateaus is evident as an inflection in the 

cumulative BOD curve. This appearance is common to tests in this experiment which 

greatly exceed a "minimal salts" concentration of nutrients. It is not understood why this 

is so, but may represent the separate growth cycles of two species dominating the 

microbial community. 

50 
0 

.o o-
V)~ 40 
>-.:" 
8~ 
~ v., 30 
e> -e o ~ 20 
Ocib 
co e 
e ~ 10 = ..... u~ 

0 

... ----· ----... ------· 

f ·:.:22 .. --
I ~ .-
1 ~ .... ,.-·· ~-- -,.~·- _..-FF-7- 0,2-1 ~ 

i -· tt \,.:. / .. ~ ~, 
... .,~ ... 

l _ .. - l\--~ 

J>i 
. 

~.M.."'--
. -.JI~~ ..... 
0 50 100 150 200 250 300 350 

Hours 

- Cumulative BOD 

Uptake Rate (XIOO) 

Const. Rate 
Interval 

Figure 8. Average Constant Rate BOD Interval Across Plateaus 

Another common appearance among oxygen uptake rate curves is one shown in 

Figure 9. It is characterized by a very rapid escalation in uptake rate to a peak, followed 

by equally rapid decline to a plateau of constant respiration. 
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Another pattern of oxygen uptake prevailed in certain tests with low levels of 

microbial activity. These low uptake rates always coincided with tests devoid of a nutrient 

supplement. The pattern was in cycles consisting of spurts of oxygen deliveries followed 

by extended periods without a delivery. These cycles were common to tests with very low 

oxygen demands and which were run in a respirometer later discovered to have leaks in its 

piping. The leaks were not to the reactors but were in connections to the reference 

chambers. Leaking occurred during periods of barometric change, causing the computer 

to deliver excess oxygen, beyond BOD, to reactors when atmospheric pressure increased. 

A decrease in barometric pressure would result in extended periods without oxygen 

deliveries, below BOD. The ending cumulative BOD was believed to be minimally 

affected. Therefore, for this type of uptake data, a constant rate was taken as the slope of 

a trend line fitted by method of least squares to the cumulative BOD curve. Figure 1 o is 

an example of a test with episodic oxygen delivery. 

Scaling for x and y axes for a series of tests was determined by the maximum range 

of values experienced within that series. Later tests which commonly employed nutrient 

supplements ran for 336 hours and experienced BOD of nearly 100 mg oxygen/gm volatile 

solids (VS). Some tests experienced such low oxygen consumption that they would not 
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be discernible on a chart so scaled. The test portrayed in Figure IO barely exceeded I mg 

oxygen/gm VS . 
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Figure I 0. Erratic Uptake Data from Marginally Active Tests 

Specific Growth Rate Estimation 

Another basis for quantifying and comparing activities among tests is by estimation 

of specific growth rates. Specific growth rate(µ) is the rate of change in a population per 

unit of existing biomass over time, as shown in Equation I. Higher values ofµ reflect 

more rapid growth and viability of the culture for the given set of conditions. Among a set 

of tests which varies a single parameter, the highest specific growth rate indicates the 

value of the parameter most favorable fo r rapid growth. 

A graphical technique for determiningµ ca ll s for plotting instantaneous oxygen 

uptake rate as a fu nction of cumulative uptake (Figure I I ). The early portion of the plot 

shows a linear interval which begins at zero and represents the exponential growth phase 

of the culture. The slope of a trend line fitted by method of least squares to this interval is 

an estimate of the spec, fic growth rate of the cu\ture . Thi.s technique is 3ustified through 

Equation 12 in Chap te r II and demonstrated in the following Equat ion 15, where the last 

expression is one which determines the slope of the trend line. 
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d0112 _ d0111 

µ = dX/dt = d(Oul dt) = dt dt 
X dOu 0 112 -0111 

(15) 

Figure 11 shows an ideal example of uptake rate versus cumulative oxygen uptake, the 

fitted trend line, and the slope estimate for µ. 
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Sometimes the uptake rate plot levels gradually to a constant rate, as seen in 

Figure 12. It is useful in this case to also examine the test's corresponding average 

cumulative uptake and rate plot (Figure 7) for help in selecting the appropriate interval for 

trend line analysis. In this case, the interval selected for a trend line fit does not include 

the peak uptake rates incurred in the test. Initial exponential growth ends around 50 

mg/gm VS cumulative uptake. The termination of exponential growth is not always a 

clear-cut event. 
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Total BOD can be so low that uptake data do not extend far from zero (Figure 

13). In some extreme cases, particularly those tests lacking any nutrient amendment, the 

erratic character of the plot is not suitable for making a trend line fit or slope estimate. In 

those cases specific growth rate is not estimated. 
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CHAPTER V 

RESULTS AND DISCUSSION 

General Discussion 

Results from all series of tests consisted first of raw oxygen uptake data recorded 

on an hourly basis in the form of accumulative values. Uptake was recorded as mass of 

oxygen delivered per unit mass volatile solids or mass total solids in the sample. Tests in 

all series, except the optimal series, were run as triplicates. 

Every set of tests had three types of graphs created from it's uptake data. The first 

graph is a composite of the individual cumulative oxygen uptake curves from each reactor 

in the set. This type of graph provides a visual indication of the variability within a set. A 

second type of graph displays the average cumulative BOD of the three series of data from 

one set along with their average instantaneous rate of uptake (XIOO). This graph also 

shows the interval selected for constant respiration rate and the value of that average rate. 

The third type of graph depicts average oxygen uptake rate plotted against average 

cumulative BOD. This graph shows a least squares fitted trend line for the early linear 

segment of the rate curve. The slope of the trend line is representative of the specific 

growth rate(µ) of the microbial culture. 

This research was designed without regard for the special requirements necessary 

for obtaining valid specific growth rate data. One requirement was that all factors 

contributing to microbial growth be present in abundance except for the one whose 

limitation is under investigation. Initially, it was not known that the low concentrations of 

nutrients in Evan's media could be growth limiting. Consequently, specific growth rate 
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results for some series of tests were from conditions Jess than ideal. Three experimental 

series which did meet the requirements for valid specific growth rate determinations were 

the nutrient, part of the temperature, and the optimal conditions experiments. 

Hydrocarbon Concentration Test Results 

A summary of constant respiration and specific growth rates is shown in Table 9. 

Two series were run with hydrocarbon concentrations of0%, 2.5%, and 5.0% common to 

both sets. The resulting uptake cutves on the whole were erratic. Since nutrients were 

present only at the low concentrations available in standard Evans' media, it is suspected 

that microbial activity suffered as a consequence. The maximum deviations among 

replicate tests from their average are shown in absolute terms and as a percentage of their 

average constant rate BOD. These maximum deviations can be taken as a conservative 

estimate of data variability. 

TABLE 9 

HYDROCARBON CONCENTRATION TEST RESULTS 

Test# HC Cone. Constant Rate BOD Specific 
(d\\1) Average3 Max. Dev.3 Growth Rate 

Series 1 337p72 0.0% 0.011 0.006 (60%) 0.009 
337p82 2.5% 0.082 0.018 (22%) 0.046 
337p73 5.0% 0.049 0.025 (50%) 0.020 
337p83 7.5% 0.096 0.020 (20%) 0.033 
337p70 10% 0.045 0.012 (26%) 0.021 
337p74 15% 0.031 0.005 (17%) 0.047 
337p71 20% 0.025 0.002 (7%) 0.046 

Series 2 337p104 0.0% 0.019 0.002 (10%) 0.000 
337p94 0.5% 0.053 0.004 (8%) 0.090 
337p93 1.0% 0.036 0.006 (16%) 0.162 
337p92 2.5% 0.078 0.003 (4%) 0.066 
337p91 5.0% 0.070 0.007 (10%) 0.049 

a mg 0:\1'gen/(gm VS x hr) 
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Constant Rate Analysis 

The summary graph depicting how average constant rate respiration varied with 

hydrocarbon concentration is shown in Figure 14. Individual rates between the two series 

at the repeated concentrations of0% and 2.5% HC were similar. One anomalously low 

rate at 5.0% concentration lowered the series 1 average significantly, whereas the five 

other individual rates at that concentration were all close as a group. In series 1, 

variability gradually attenuated in the direction of increasing HC amendment and 

concentration (> 10% ). Overall, series 2 exhibited less variability than series I. There is 

an unexplainable decrease in rates from the O. 5% to the 1. 0% HC tests, both of which are 

in the same series. 
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There are many ways to explain variability among individual tests and between 

series. Heterogeneities in the sludge may introduce variations in hydrocarbon substrate or 
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microbial population. Populations may change with shelf time and vary between storage 

containers. Inconsistencies in the size distribution of wood chips may result in different 

surface areas among tests. Through the course of filling reactors, and despite efforts to 

assure uniformity, invariably the last reactor filled received the "dregs" of a mixture. This 

last material generally was of finer size and contained extra liquid if there was much free 

water in the batch mixture. Though an uncommon occurence, the accidental spilling of 

KOH solution within a reactor can toxify a portion of its contents. 

The 0% concentration tests averaged 0.015 mg oxygen/(gm VS x hr). This value 

can also be taken to represent the background level of activity on the chips themselves. 

The highest average rates occurred in tests with between 2% and 8% HC concentration. 

The highest uptake rate, at 7.5% HC, was 6.4 times higher than the rate on wood chips 

alone. 

An interesting point about the constant rate results is that to achieve a HC 

concentration within the optimal range of2% to 8% (dwt), 24% TPH sludge would have 

to be diluted considerably with bulking agent. An example is one of the experimental tests 

itself, #337p70, the "base condition" for this series. The volume of chips necessary to 

reduce the 24% TPH sludge to 10% (dwt compost) was 13.2 times the volume of the 

sludge itself High volume bulking agent dilution of sludge may not be a feasible option 

for field operations, so an alternative method of sludge dilution may be considered. Such 

an alternative might be dilution by means of added low level HC contaminated soil in place 

of a portion of the bulking agent. The effect could be the same as adding bulking agent by 

lowering the dry weight concentration of hydrocarbons into a favorable range. This 

argument can be supported by observing that, with a decreasing ratio of sludge to total 

inert material below 10% HC, an increase in constant BOD results. This approach was 

used as a permutation within the "optimal conditions" series of tests. 



61 

Specific Rate Analysis 

Specific growth rates determined graphically from oxygen uptake data show the 

highest growth rates occur at 0.5% and 1% hydrocarbons concentrations (Figure 15). For 

most tests, particularly those of series 2, the uptake data were of good quality and 

amenable to specific growth rate estimation. Ammonium concentration through the HC 

series was about 0.014 M, well below the range fostering the highest growth rates in the 

nutrient addition series of tests. Despite this, µ 's for both 0. 5% and 1. 0% HC 

concentrations were higher than the highest rate observed in the later nutrient addition 

experiment (0.090 hr1and 0.0162 hr1 versus 0.068 hr-1). The nutrient experiment 

employed a I 0% HC concentration and experienced highest growth rates at O. 11 M to 

O. 17 M ammonium, a C :N ratio of from 3 2: I to 4 7: 1. The highest rate in this HC 

concentration series was at 1.0% HC and 0.014 M ammonium, a C:N ratio of 38: 1. This 

suggests the possibility that there may be a hydrocarbon/nutrient ratio effect wherein 

highest growth rates are associated with a certain range of ratios. Otherwise, it can be 

concluded that at low nutrient levels, hydrocarbon concentrations have little affect on 

initial rates of growth until they drop below 2.5%. 
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Bulking Agent/Sludge Ratio Test Results 

Table 10 presents the rate results for this series of tests. In the previous series of 

hydrocarbon concentration tests, a base condition had been chosen at a bulking agent to 

sludge ratio of 2: I, on a dry mass basis. Those proportions resulted in a 13 .2 to 1 ratio on 

the basis of volume. Series 2 investigated very high BA/S ratios and extended coverage to 

the extreme of 191 volumes of chips per volume sludge. Series 3 investigated very low 

BA/S ratios. 

TABLEl0 

BULKING AGENT/SLUDGE RATIO TEST RESULTS 

Test# BA/S %HC Constant Rate BOD µ 
Ratio Average Max. Dev. 

(vol/vol) (d\\1) mg/(gm VS x hr) mg/(gm VS x hr) (11hr) 

Series I 337p97 32.9 5.0 0.047 0.007 (14%) 0.025 
337p98 13.2 10.0 0.062 0.005 (8%) 0.049 
337p99 6.6 15.0 0.056 0.013 (24%) 0.053 

337pl00 3.3 20.0 0.045 0.007 (15%) 0.080 
337pl02 0.0 30.0 0.012 0.0003 (3%) 0.027 

Series 2 361p22 191 1.0 0.050 0.002 (4%) 0.009 
36lp21 72 2.5 0.047 0.005 (10%) 0.012 
36lp20 33 5.0 0.059 0.003 (5%) 0.007 
36lpl9 20 7.5 0.053 0.011 (20%) 0.006 

Series 3 36lp40 3.3 20.0 0.061 0.011 (18%) 0.011 
36lp41 2.2 22.6 0.062 0.006 (9%) 0.033 
36lp42 I.I 25.7 0.061 0.011 (17%) 0.034 
36lp44 0.8 26.6 0.042 0.002 (6%) 0.022 
36lp45 0.6 27.7 0.036 0.007 (20%) 0.005 

Constant Rate Analysis 

The results show the quality of the data to be only fair within each separate series, 

and between series, the repeatability was poor. The average rates of tests repeated in 



63 

different series (at 3 .3/1 and 33/1 BA/S ratios) showed discrepancies of up to 24%. Their 

variability can be attributed to the same factors presented in the discussion of HC 

concentration constant rate results (different containers of sludge, etc.). Figure 16 shows 

the average and individual constant BOD rate results. 
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Figure 16. Constant BOD Rates versus Bulking Agent/Sludge Ratio 

Constant BOD rates fell off rapidly below the ratio of 1.1/1 in series 3. Those low 

rates were only nominally lower than some low rates of series 1, but were still substantially 

above the rates for the "sludge only" triplicates (2.4X greater). This indicates that even 

low bulking agent/sludge ratios, down to 0.6/1, are beneficial to microbial activity. Above 

a 1/1 ratio the rates are widely distributed in the range of0.04 to 0.07 mg oxygen/(gm VS 

x hr). The range gradually attenuates with increased bulking agent proportion. Overall, 

these results suggest that there is some critical BA/S ratio, in this case about 1 /1, above 

which microbial rates are consistently higher. It is also apparent that there is no advantage 

in exceeding that critical ratio, unless it is for other considerations (i.e. compaction, water 

holding capacity). 



It should be noted that what is really being varied in this series is the accessibility 

of the sludge microorganisms to air (permeability). This results from increases in the 

exposed surface area of sludge from addition of ever greater proportions of wood chips. 

Soils or sludges of different consistency and texture may require more or less bulking 

agent to achieve the same results, so the indication that a BA/S of 1/1 or greater is most 

favorable for activity should be regarded as unique to this particular sludge and bulking 

agent. 

Specific Rate Analysis 
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The erratic distribution of the rates shown in Figure 1 7 indicate the BA/S oxygen 

uptake data did not lend itself well to specific growth rate interpretation. Series 3 in 

particular was characterized by rapidly fluctuating uptake rates for which it was difficult to 

assess the period of exponential increase. The erratic rate results are speculated to be due 

to: I) low nutrient concentrations in standard Evans' media (0.014 M ammonium), and 2) 

inconsistent nature of the substrate as a varying proportion of hydrocarbons to wood 

chips. 
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Moisture Content Test Results 

The overall quality of the data was considered fair. Several reactors exhibited 

fluctuations and periodic swings in uptake rate. In general, the higher the water content, 

the smoother the appearance of the uptake curves. Less erratic uptake could have been 

the result of a more continuous and uniform surficial fluid environment for microbial 

activity. Table 11 shows the average rate values from the series and maximum deviation 

of individual replicates from their average. 

TABLE 11 

MOISTURE CONTENT TEST RESULTS 

%of %of Moisture Constant Rate BOD µ 
Wood Chip Compost Content Average Max. Dev. (I/hr) 

cc cc (%) (mg/(gm VS x hr) (mg/(gm VS x hr) 

5 12 16 0.005 0.001 (22%) undefined 
33 46 43 0.073 0.016 (22%) 0.023 
50 67 52 0.051 0.001 (3%) 0.022 
67 88 58 0.044 0.009 (20%) 0.070 
83 108 63 0.034 0.004 (12%) 0.182 
100 129 67 0.029 0.002 (7%) 0.132 

The design for the moisture content series was based upon independent variation 

of moisture levels as percentages of the water holding capacity of the wood chips. The 

sludge in its natural state was already water saturated and was measured to be slightly 

over its container capacity (CCsludge = 0.22 gm H2O/gm dry material), or nearly 

equivalent to its moisture content. The container capacity of the extracted chips was 

nearly three times their dry mass. Since the moisture content of the sludge was constant, 

it was decided to make the moisture content of the compost mixture a function of wood 

chip container capacity and vary CCchips across the range of 0% to 100%. 
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Subsequent measurement of the container capacity of the resulting compost 

mixture revealed that it was not equal to the sum of the individual container capacities of 

the sludge and wood chips. The container capacity of the compost was 1.56 g H2O/g dry 

material. Thus, the CCcompost was 79% of the sum ofCCchips and CCstudge· This was 

explained by sludge hydrocarbons being spread over the surface of the chips during mixing 

which preventing complete absorption of the added water. This also explained why there 

was free water in the bottom of the reactors run at chip container capacities above 79%. 

Figures 18 shows average constant BOD rates and individual test rates with respect to 

chip container capacity. 
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Figure 18. Constant BOD Rates vs. Wood Chip Container Capacities 

Figure 19 shows the same rates with respect to compost container capacity. The 

range of free water obsetved in the reactors is indicated by the length of the arrow. 
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Constant Rate Analysis 

Constant rate uptake is maximum at 46% of the compost container capacity (33% 

of chip CC). This water content also shows the greatest variability with a maximum 

deviation of0.016 mg 0 2/(gm VS x hr) from its average (or 22%). Between 12% and 

46% CCcompost., there apparently is a threshold moisture level above which microbial 

activity was greatly enhanced compared to that of the base condition ( 12% CC compost), to 

which no water was added. Unfortunately, the range of these tests did not sufficiently 

cover that interval. None-the-less, the interval most conducive to microbial activity is the 

range from about 40% to 90% of CCcompost· Practically, any water content above 40% 

cc t is preferable over the nearly dry state of the base condition test In terms of compos . 

CC h" the most favorable range is from about 30% to 70%. 
C tp, 
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Specific Rate Analysis 

Specific growth rate increased dramatically above a water content of88% of 

CCcompost (Figure 20). This appears to have been associated with the occurrence of free 

water in reactors above that water content. A possible explanation is that the standing 

water provided an environment conducive to exponential growth (readily available 

nutrients, high rate ofHC solubilization, etc.). The specific growth rates in these tests 

were the second highest (0.181hr max) observed throughout the entire experiment, though 

they were of very short duration (8 to IO hr). Within this series the maximum rate was 

nearly eight times greater than the lowest measurable rate. The level of activity was so 

low and erratic in the base condition test that µ could not be reliably determined. 
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Figure 20. Specific Growth Rates vs. Compost Container Capacities 

Nutrient Concentration Test Results 

This series was unusual among the parameter tests because of the high rates that 

were associated with elevated concentrations of nutrients. Exponential growth was 
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sustained for longer periods of time than in any other tests (45 to 100 hours) to this point. 

Cumulative BODs all plateaued in the high range of 40 to 47 mg oxygen/gm VS, which is 

approximately 10% of the stoichiometric requirement for oxygen based on 3.48 gm 0 2/gm 

HC. The indication is a possible across the board exhaustion of KOH. The levels of total 

BOD achieved ranged from 3.0 to 3.6 times the allowable oxygen due to KOH (see 

Appendix A for discussion on KOH capacity). 

The rate results for this series follow in Table 12. Series 3 was a repeat of series I, 

but was run for a longer period of time. The two higher concentration tests of series I 

terminated before a constant rate of oxygen uptake had been achieved, so no values 

appear for them. It was possible, however, to obtain specific growth rate estimates from 

the abbreviated data that were recorded. 

TABLE12 

NUTRIENT ADDITION TEST RESULTS 

Test Ammonium. Constant BOD Rate Specific 
Number Concentration Average Max. Dev. Growth Rate 

(mole/L) (mg/(gm VS x hr)) (mg/(gm VS x hr)) (11hr) 

Series 1: 337p87 0.000 0.006 0.000 (0%) 0.005 
337p88 0.225 0.261 0.040 (15%) 0.034 
337p89 0.450 n/a n/a 0.025 
337p90 0.674 n/a n/a 0.025 

Series 2: 337pl05 0.056 0.226 0.045 (20%) 0.012 
337pl06 0.113 0.181 0.039 (22%) 0.068 
337pl07 0.169 0.221 0.038 (17%) 0.067 
337pl08 0.225 0.252 0.027 (11%) 0.050 

Series 3: 36lp08 0.000 0.010 0.001 (11%) 0.004 
36lp09 0.225 0.356 0.105 (29%) 0.043 
36lpl0 0.450 0.444 0.025 (6%) 0.031 
361pll 0.674 0.535 0.290 (5%) 0.033 
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Constant Rate Analysis 

Series 3 constant BOD rates followed a trend of increasing rates with increasing 

ammonium concentration. Series 2 results also followed an increasing trend, except for 

test 337pl05, which on the whole showed anomalously high constant BOD rates. The 

variability among test replicates was low, except for 36lp09, where one deviant replicate 

fell 29% below the test average. lnterestly, it fell within the narrow range of deviation of 

two previous tests of the same nutrient concentration. Figure 21 is a summary graph 

showing average and individual constant BOD rates for each test set. Series I consists of 

only two sets of points, one at OM. NH4+ and the other at 0.225 M. NH4+. The three 

individual rates at O M. NH4 + for series 1 are hidden beneath another set of points from 

series 3. The repeatability of results from series I and 2 was good as shown by the close 

clustering of their individual rates at 0.225 M. NH4 +. Series 3, however, defied this 

repeatability when two of its individual rates jumped significantly higher. 
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It is evident that any Evans' formulation based nutrient amendment of at )east 

0.056 M ammonium is better than no nutrient amendment at alJ for improving respiration 

rates. Apparently, the higher the concentration, the higher the resulting respiration rate. 

Unfortunately, no tests with higher concentrations of nutrients were run in this nutrient 

experiment. However, one of the permutations within the later optimal series of tests was 

run at a concentration of I. 0 M ammonium and exhibited a greatly reduced rate compared 

to an similar test with 0. 5 M ammonium concentration. That result suggests ammonium 

inhibition occurs at some concentration above 0. 7 M. Inhibition of respiration rates with 

increasing ammonium concentration is documented and has been observed to reduce 

respiration rates to less than 20% of the maximum rate (Edwards, 1970). These results, as 

they stand, indicate the most favorable range for high constant respiration rates is 

approximately from 0.40 to 0.70 moles/liter ammonium. 

Specific Rate Analysis 

This series of tests, more so than any other to this point, provided the best 

conditions for the determination of specific growth rates. The addition of nutrients 

produced lengthy periods of exponential growth. Specific growth rate estimates for the 

various nutrient additions are shown in Figure 22. 
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These results suggest growth inhibition begins where ammonium concentrations 

exceed 0.17 moles/liter. The optimal range for growth (0. I to 0.2 M) is not the same 

range that is optimal for high constant respiration rates. In fact, ammonium 

concentrations favoring high constant BOD rates are relatively inhibitory to specific 

growth rate. Specific growth rate inhibition is a phenomenon that was also observed by 

Goel and Gaudy (1969). It also is evident from these results that optimization based on 

specific growth rates would create conditions favoring rapid growth but not necessarily 

the conditions which favor sustained growth to the point where highest constant rate 

respiration results. Constant rate over a long term is what is responsible for the bulk of 

substrate degradation. Thus, it appears that nutrient levels which contribute most to high, 

sustainable rates of constant respiration are most desirable for composting. 

Temperature Test Results 

The temperature study was set up as two sets of tests, one at the standard 

concentration of Evans' nutrient medium (low nutrient), the other at a nutrient 

concentration eight times higher (high nutrient) corresponding to the ammonium 

concentration with the highest observed µ in the previous nutrient experiment. Table 13 

shows the rate results of this series. 



TABLE 13 

TEMPERATURE TEST RESULTS FOR 
TWO CONCENTRATIONS OF AMMONIUM 

Test# Temp. Low Nutrients3 High Nutrients6 

(C) Constant BOD Rate µ Constant BOD Rate µ 
AverageC Max. Dev.c (I/hr) AverageC Max. Dev.c (I/hr) 

36lp7 25 0.028 0.002 (7%) 0.132 
36lp53 25 0.041 0.013 (31%) 0.013 

36lp25-26 35 0.178 0.016 (9%) 0.013 0.153 0.022 (14%) 0.220 
36lp28-29 40 0.060 0.012 (20%) 0.008 0.128 0.010 (8%) 0.126 
36lp31-32 45 0.025 0.016 (65%) 0.002 0.044 0.022 (51%) 0.016 
36lp34-35 50 0.033 0.003 (11%) 0.011 0.028 0.006 (20%) 0.047 

a 0.014 M ammonium 
b 0.112 M ammonium 
c mg o2t(gm VS x hr) 

The effect that temperature had on microbial rates was significant. As may have 

been expected, the effect was most significant in the high nutrient set where specific 

growth rates were most dramatically affected. There were only small differences in 

constant BOD rates. 
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Controls which were sterilized ultimately developed a small measure of oxygen 

uptake, up to a maximum of 5 mg/gm VS in the 50 °C test, in contrast to active tests 

which ranged up to 67 mg/gm VS total BOD. The purpose of the sterile controls, which 

was realized, was to demonstrate that BOD in non-sterile reactors was not substantially a 

result of chemical oxidation. 

An interesting point about the tests run at the temperatures of 45°and 50°C was 

that they began experiencing uptake about I 00 hours before they terminated. This 

suggests that, since 50°C is near the beginning of the thermophilic range, a few 

thermophilic bacteria indigenous to the sludge may have gradually grown in population 

and finally exerted a measurable BOD. Because the tests terminated, it is not determinable 



whether their respiration rates would have continued to improve with time. In a static 

compost pile, if temperatures were unregulated and allowed to rise into the thermophilic 

range, the mesophiles would gradually give way and be supplanted by the thermophiles. 

The results of this study are not sufficient to conclude that the mesophilic range is 

preferable over the thermophilic range for the biodegradation of hydrocarbons. 

Constant Rate Analysis 
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Figure 23 shows the respiration rate profile for temperature for compost with a 

low level of nutrients (0.014 M NH4 +). The first low nutrient constant respiration rate at 

25°C was repeated because of the test's short duration (361p7 came out of the moisture 

content series) so a second test was run which resulted in a similar rate. Average rates are 

highest at 0.178 mg oxygen/(gm VS x hr) and drop precipitously above 40°C. 40°C is the 

upper end of the mesophilic range. The singular optimal temperature from these results 

for low nutrient levels is 35°C. Unfortunately, a test was not run at 30°C to indicate 

whether that temperature is as favorable for growth. Interestingly, the rates at 25°C were 

not high, despite being within the mesophilic range. 
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A test from the nutrient series was the design model for the temperature series 

with high nutrient levels. That test's rates were to be used at the 25°C temperature. 

15 

However, a mistake was made in this series and an incorrect moisture content was 

employed in the make-up of these tests {67% MC was mistakenly employed for 67% 

CCchips). As a result, comparison of these results with the 25°C nutrient test was not 

deemed appropriate so it was omitted from Figure 24. For the high nutrient level (0.112 

M NH4+), 35°C was the temperature most favorable to microbial activity. Whereas 40°c 

was limiting in the case of low nutrients, it appears to favor it the higher nutrient level. 

Perhaps the plenitude of nutrients allowed a rapid establishment of species adapted to 400 

C, which may not have occurred under conditions of low nutrients. In both the low and 

high nutrient series, temperatures above 40°C appear inhibitory to microbial activity. 
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Figure 24. Constant Rate BOD vs. Temperature: High Nutrients 

Specific Rate Analysis 

Temperature had a dramatic effect on microbial growth rates in tests with high 

concentrations of nutrients. High nutrient levels also caused the data to be very amenable 
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to analysis forµ. The maximum value for specific growth rate was 0.22/hr in the high 

nutrient, 35°C test and was the highest observedµ among all series of tests. It was almost 

twice the value of any other growth rate in the series. Specific growth rates were sharply 

limited by temperature as they approached 45°C. 

Two vastly disparate growth rates were obtained at 25 °C in the low nutrient series. 

The test with the higher growth rate, 36lp7, was from the moisture content series. The 

method of nutrient addition to the test may have been responsible for that high rate. 

3 61 p 7 received I . 00 ml of Evans' concentrate which often contained suspended, 

undissolved salts. 361 p53 received the standard dilute Evans' media. Both were 

calculated to receive the same stoichiometric amount of nutrient. Possibly too much 

nutrient was added to 361 p7 as suspended salts. Its higher growth rate lasted less than Io 

hours, and following the growth phase, its constant respiration rate was consistent with 

that observed in the repeat test. Figure 25 is a summary graph of the specific rate results. 
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Compaction Test Results 

Compaction tests were run in triplicate for two different BA/S ratios, each at two 

degrees of compaction, I 0% and 20%. The compaction tests for each BA/S ratio were 

compared to uncompacted tests of the same ratios from the BA/S series. Three sets of 

tests were limited to the results of two reactors each because leaks occurred during the 

course of the tests. Interpretation of the data was further complicated by two software 

interruptions, one of which occurred during the period of exponential growth. Never the 

less, following restoration of the data, rate determinations were obtained. Table 14 shows 

the those results. 

TABLEl4 

COMP ACTION TEST RESULTS 

BA/S Ratio Test# Compaction Constant Rate BOD µ 
(voVvol) (%) Averagea Max. Dev.3 (11hr) 

1.1/1 36lp42b 0% 0.061 0.011 (17%) 0.034 
36lp50 10% 0.050 0.007 (15%) 0.027 
361p51 20% 0.047 0.011 (24%) 0.025 

3.3/1 36lp40b 0% 0.061 0.01 I (18%) 0.011 
36lp48 10% 0.048 0.004 (9%) 0.050 
361p49 20% 0.051 0.001 (2%) 0.050 

a mg ox-ygen/(gm VS x hr) 
b test from BA/S series 

Constant Rate Analysis 

These tests generally showed small differences in the magnitude of their average 

constant BOD rates, but were essentially the same within the ranges of variability in 

individual rates. Based on observations of previous series, there may have been a great 
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advantage in utilizing higher nutrient concentrations to stimulate activity to greater levels 

to better ensure that compaction (restricted permeability) would be the rate limiting factor. 

At a BA/S ratio of I. I/I, there appears to be a slight downward trend in average 

constant rate BOD with compaction, shown in Figure 26. However, considering the 

different source of sludge used for the previously performed uncompacted {0%) tests, 

their rates may not be repeatable using the same sludge employed in the compacted tests. 

A variance in rate repeatability, possibly due to use of different containers for sludge, has 

been observed previously in the results of both the hydrocarbon compaction and BA/S 

ratio experiments. At these low levels of nutrient concentration {<0.07 M ammonium), 

20% compaction cannot be absolutely concluded to be more restrictive to microbial 

activity than 10% compaction. 
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Figure 26. Constant Rate BOD vs. Compaction at BA/S = 1. 1/1 

At a BAIS ratio of 3 .3/1, constant rate BOD averages were also nearly within the 

ranges of rate variability, as shown in Figure 27. The same concern holds true here as 

with the previous compaction set regarding variability in rates and possible differences in 

sludge source containers. Constant BOD rates are essentially the same between I 0% and 
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20% compaction. It cannot be concluded on the basis of these results that a BA/S ratio of 

3.3/1 is superior to 1.1/1 for resisting the effects of compaction. 
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Figure 27. Constant Rate BOD vs. Compaction at BA/S = 3.3/1 

Specific Rate Analysis 

The specific growth rate results for the BA/S ratio tests are shown in Figure 28. 

The average specific growth rates for the 1.1/1 ratio tests display a very slight declining 

trend. The averages at the 3.3/1 ratio display no obvious trend. In view of these results it 

can only be concluded that increasing compaction has no discernible effect on growth 

rates under these conditions. One of those conditions was a low concentration of 

nutrients (- 0.01 M NH4+), which may have limited the extent of exponential growth 

before compaction did. 
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Figure 28. Specific Growth Rate vs. Compaction 

Optimal Conditions Test Results 

Oxygen uptake results from the optimal conditions test and its permutations were 

initially measured on the basisi of the total mass of volatile solids present in the sample 

(hydrocarbons and wood chips). The mass of sludge and hydrocarbons was held constant 

(except the compaction permutation). The proportion of volatile solids to hydrocarbons 

(VS/HC) was constant through four of the seven permutations. There were two 

additional tests based on specific growth rates which had a VS/HC ratio different from the 

optimal test. The effect of a greater mass of wood chips in one test compared to another 

was to dilute the actual BOD, resulting is lower BOD per unit mass VS. 

Since the purpose of permutations was for comparison to a base condition (best 

combination) test, a means of normalizing BODs to a common mass was required. Since 

the mass of hydrocarbons was constant through all the tests but one (compaction), 

hydrocarbon mass seemed an appropriate basis on which to compare oxygen demand. 

That basis was predicated on the assumption that microbial activity on the bulking agent 

was minimal compared to that on hydrocarbons. This is demonstrated to be reasonable by 
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the low constant rate BOD for 0% HC in the earlier hydrocarbon concentration 

experiment (Figure 14). The graphs contained within this section are all in terms of 

oxygen uptake per mass hydrocarbon. 

The results for the optimal conditions series of tests are shown in Table 15. One 

column shows the obseIVed constant respiration rates, another shows the VS/HC 

normalization factor, and a third the resulting constant rate BOD per gram HC. The 

VS/HC normalization factor is simply the ratio of volatile solids mass to hydrocarbon mass 

in each respective test. Upon inspection, it becomes apparent that the "best conditions" 

test did not result in the highest constant rate of respiration. In fact, its rate was exceeded 

by no less than four tests on the basis of BOD/gm HC. The balance of the following 

discussion seeks to explain these apparent departures from expectations. 

TABLE15 

RESULTS OF OPTIMAL CONDITIONS TESTS 

Conditions of Test Test# Constant Normaliza- Constant Specific Duration 
Showing Value of RateBooa tion Factor Rate Booa Growth Ratcb ofµ 

Permuted Parameter (mg/(gm VS (VS/HC) (mg/(gm (11hr) (hr) 
X hr)) HC x hr)) 

Best Combination 36lp57 0.64 1.56 1.00 0.016 170 
1.0 Molar Ammonia 36lp59 0.11 1.56 0.16 0.020 60 
83% Chip CC Test 36lp60 0.58 1.56 0.90 0.015 220 
25°C Temperature 36lp63 1.1SC 1.56 1.80 0.034 100 
20% Compaction 36lp58 0.20 1.56 0.31 0.012 180 

15%HC (dwt) 36lp62 0.6JC 1.99 1.26 0.019 150 
BA/S Ratio of 0.37/1 36lp66 0.28 1.19 0.34 0.036 70 
BA/S Ratio of 3.3/1 36lp61 0.53 2.69 1.41 0.019 180 

Specific Rate Opt. (35°C) 36lp67 0.89'= 1.99 1.78 0.035 90 
Sp. Rate Perm. (25°C) 36lp65 0.44 1.99 0.88 0.022 150 

a Underlined figures exceed rate of best combination test. 
b Comparisons only valid among series with same HC normalization factor. 
c Tests selected for HC extraction. 
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Constant Rate Analysis 

The constant respiration rate achieved by the "best combination" optimal 

conditions test was 0.64 mg oxygen/(gm VS x hr), 1.00 mg/(gm HC x hr). By use of the 

mineralization stoichiometry of3.37 gm 0 2/gm HC (Stegmann, et al. 1991), that 

constant rate, if maintained for 140 days, would result in the complete consumption of the 

available hydrocarbons. Some permutations, however, achieved higher rates. Figure 29 is 

the rate and cumulative uptake graph for the "best combination" test. 
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Figure 29. Best Combination Test: Rate and Cumulative Uptake 

Nutrient. The 1.0 M ammonium permutation (Figure 30) attained only 16% of the 

rate of the "best combination" test, which was 0. 5 M. The highest level of constant rate 

respiration in the earlier nutrient addition series was at an ammonium concentration of 

0.674 M. Somewhere between 0.674 Mand 1.0 M, ammonium concentration appears to 

become very inhibitory to microbial growth. 
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Figure 30. 1.0 M Ammonium Permutation: Rate and Cumulative Uptake 
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Moisture Content. The moisture content permutation (Figure 31) was 83% of 

chip container capacity (CCc) versus 33% of CCc in the best combination test. The 

constant BOD rate in the moisture permutation was 90% as high as in the optimum test. 

83% CCc was in the range of reduced constant BOD rates (47% of the highest rate) in the 

moisture content series (see Figure 18). This present result suggests that a viable moisture 

content range may extend from 3 0% to above 80% of CCc. 
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Figure 31. 83% Chip CC Permutation: Rate and Cumulative Uptake 
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Temperature. The high constant respiration rate at 25 °C was a surprise (Figure 

32). It was 80% higher than that of the "best combination" run at 40°C. The high 

nutrient (0.112 M NH4+) level temperature parameter test had been previously discounted 

from the results due to its water content being at variance with the series. There was no 

valid experimental result that suggested 25°C would favor high rates. At low nutrient 

concentration (0.014 M NH4+) the 25°C results were very low (earlier Figure 23). In 

view of those results, this test is not easily explainable. Its oxygen uptake rate peaked out 

at 2.42 mg/gm HC. Uptake never achieved a clearly defined constant rate, but fell off 

rapidly after achieving its peak. Some factor in the environment became totally expended 

( e.g. KOH) or waste product toxicity set in. This test suggests the strong possibility that 

at high (0.5 M) nutrient concentrations, the optimal temperature window extends down to 

25°C. More comments concerning this test occur later in the discussion of the specific 

growth rate based 25°C permutation (361p65). 
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Figure 32. 25°C Permutation: Rate and Cumulative Uptake 

Compaction. The 20% compaction permutation (Figure 33) attained a constant 

respiration rate only 31 % of that of the "best combination" (0% compaction). Even so, 

the rate, 0.20 mg/(gm VS x hr), was 4 to 5 times greater than rates observed through the 
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compaction series of tests at identical BA/S ratio, due to the higher concentration of 

nutrients. The large reduction in rate from the optimal conditions test strongly supports a 

trend of decreased respiration rates with increased compaction at a BA/S ratio of 1.1/1. 
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Figure 33. 20% Compaction Permutation: Rate and Cumulative Uptake 

HC Concentration. Shown in Figure 34, the 15% hydrocarbon permutation 

showed a constant rate BOD of 1.26 mg/(gm HC x hr) and was 26% higher than the "best 

combination" test at 26% HC concentration. This result was expected for the reason that 

the "best combination" test utilized sludge at its original concentration, undiluted by 

anything but the bulking agent. The resulting 26% HC concentration was well above the 

optimal range (2% to 8%) identified in the HC concentration experiment. The addition of 

sludge inert material to the permutation served to dilute the hydrocarbon concentration in 

a direction favoring biodegradation. Beyond the addition of wood chips, dilution of 

sludge with soils can prove favorable for microbial activity. 
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Figure 34. 15% HC Permutation: Rate and Cumulative Uptake 

BA/S Ratio. Two permutations of bulking agent to sludge ratio were run. The 

permutation ratio of 0.37/1 (vol) was one third the ratio of the "best combination" test 

(1. 1/1) and experienced a constant respiration rate only 34% of the "best combination" 

rate. It was clearly out of the optimal range of ratios and is shown in Figure 3 5. 
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Figure 35. 0.37/1 BA/S Permutation: Rate and Cumulative Uptake 
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The other BA/S permutation was 3.3/1 (vol) and is shown in Figure 36, was three 

times the ratio of the "best combination". It resulted in a constant BOD rate 41 % higher 
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than the "best combination" rate when normalized to hydrocarbon mass. One possible 

explanation for this has significance. The greater mass of chips in this test (3X) required 

three times as much make up liquid to maintain the 33% CCc moisture requirement. The 

additional water required additional nutrients to maintain ammonia concentration at the 

desired constant 0.5 M. There was 54% more total moisture and nutrients available 

compared to the "best conditions" test. This additional liquid and nutrient constituted a 

"reservoir" for the microbes to draw from. Another contributing factor was the 

hydrocarbon dilution caused by the additional chips. HC concentration was 20% versus 

26% in the "best combination". This result occurred because sludge mass was held 

constant in this series rather than chip mass, which was constant in the BA/S ratio series. 
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Figure 36. 3.3/1 BA/S Permutation: Rate and Cumulative Uptake 

Specific Growth Rate Optimal Combination. An optimal growth conditions test 

was run based on the parameter values that had resulted in the highest specific growth 

rates, as outlined on page 4 7. The cumulative oxygen uptake plot for the optimal 

combination of specific growth rates is shown in Figure 3 7. The µ resulting from this test 

(0.038 hrl) was significantly less than some µ'sin the parameter tests (e.g. 0.22 hr-1 for 

temperature, 0. 18 hr 1 for water content) but was virtually equal to the best µ observed in 
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the constant rate BOD based optimal series. Interestingly, the constant rate BOD of this 

3 5 °C test was virtually equal to the highest from among those of the constant rate BOD 

based optimal series (see Table 15). 
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Figure 37. Specific Growth Rate Optimum: Rate and Cumulative Uptake 

One µ permutation was run at 25°C (Figure 38). It resulted in aµ only 61 % of 

that in the optimum test and is about what could have been expected based on the 

temperature results presented previously in Figure 25. The constant BOD rate was less 

than 50% of the constant rate in the optimal µ test. This was consistent with results 

observed in the low nutrient temperature parameter tests (earlier Figure 23). There was 

not a valid rate at 25°C in the high nutrient set to compare results to. 
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Figure 38. 25°C Sp. Rate Permutation: Rate and Cumulative Uptake 
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Optimization based on conditions favoring rapid growth were not successful in 

achieving a higher rate of growth, but was successful in achieving a high level of constant 

rate respiration. The constant BOD rate achieved was as high as any among the constant 

rate based optimal tests. This result was not entirely expected and begs the question of 

what caused this result. The answer may lie in the fact that the test was conducted at a 

temperature of 35°C. The overall results of these optimal tests and their permutations 

caused a re-evaluation of the temperature parameter data. This resulted in new maximum 

constant BOD rates at 35°C (as is currently reflected in Figures 23 and 24). Previously, 

40°C had been believed to be optimum and was the value used for the optimal conditions 

constant BOD based test design. 

Considering constant BOD rates among the constant BOD based optimal series 

tests, the "best combination" at 40°C was exceeded by the 25°C permutation. Among the 

specific growth rate based combinations, the 35°C test exceeded the 25°C permutation. 

Each pair of tests was identical in compostion, so it may be concluded that 3 5 °C is the 

most favorable temperature of all, as shown by the results of the temperature experiment 

(Figures 23 and 24). 
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Extraction Results 

Two tests and a control sample from the optimal conditions series were 

successfully extracted for hydrocarbons. The two tests were the "best conditions" and the 

specific growth rate based "optimal conditions" test. These selections were those which 

had achieved the highest cumulative BOD on a per mass volatile solids basis. Only later 

was it determined to compare rate results on a BOD/mass HC basis. Table 16 compares 

cumulative BODs for each test on the basis of both volatile solids and hydrocarbons. 

Different HC normalization factors are representative of different mass ratios of bulking 

agent to hydrocarbon. 

TABLE16 

OPTIMAL TESTS CUMULATIVE BOD 

Conditions of Test Test# Cumulative BOD Normali:zation Cumulative BOD 
(mg/gm VS) Factor (mg/gm HC) 

(g VS/gHC) 

Best Combination 36lp57 101 1.56 158 
1.0 Molar Ammonia 36lp59 21 1.56 33 
83% Chip CC Test 36lp60 72 1.56 112 
25°C Temperature 36lp63 9./ 1.56 147 
20% Compaction 36lp58 29 1.56 45 

15%HC (dwt) 361p62 77 1.99 153 
BA/S Ratio of 0.37/1 36lp66 43 1.19 51 
BA/S Ratio of 3.3/1 361p61 67 2.69 180 

Specific Rate Opt. (35°C) 36lp67 105 1.99 209 
Specific Rate Perm. (25°C) 36lp65 66 1.99 131 

Tests with underlines selected for extraction. 

The "best combination" tests lost 19. 7% of their hydrocarbons over 14 days ( end 

of test). The specific rate optimum tests lost 21.8% over 10 days (cessation of BOD 

exertion). The measured losses in mass of hydrocarbons from the extractions were 
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compared to oxygen delivered during respirometry. Stegmann, et al. ( 1991) used a 

formula for determining the oxygen requirement for the complete mineralization of a 

hydrocarbon to carbon dioxide and water (Equation 10), or theoretical oxygen demand. 

The formula assumes the hydrocarbons are all straight chain alkanes. Stegmann applied it 

to a diesel fuel and obtained the ratio 3.37 gm 02/gm HC. The formula was applied in this 

work to the mole percentages of the 48 carbon numbers identified by GC type analysis of 

the sludge hydrocarbons. The result was a calculated oxygen requirement of 3 .48 gm/gm 

HC. This ratio was used to calculate the theoretical oxygen demand of the removed 

compost hydrocarbons. These data are shown in Table 17. The data in the right most 

column reflect measured BOD as a percentage of the removed hydrocarbon's theoretical 

oxygen demand. They show there was a great deal more hydrocarbon missing from the 

samples than could be attributed to mineralization by measured BOD. For example, the 

average loss for the constant respiration rate "best combination" tests was 2.68 grams HC. 

According to the mineralization ratio, this amounts to 9.33 grams oxygen. In fact, the 

average oxygen delivered was only 2.09 grams, or 23% of the requirement. The 

discrepancy could easily be attributed to physical loss of HC during transfer and extraction 

or simply to the mineralization ratio being incorrect for this suite of hydrocarbons. 

Stegmann, et al. ( 1991) elaborated on similar discrepancies in the results of their work. 

They attributed the unaccounted loss of hydrocarbons to absorption by organic material 

within the compost and to incomplete solvent extraction. The range of BOD as a 

percentage of theoretical oxygen demand in their work was 3 7% to 48%. In this work it 

is 22% to 23%. Another reasonable explanation is that much of the hydrocarbon is not 

being mineralized. Rather than being oxidized by oxygen to form CO2, a large proportion 

of carbon was incorporated into biomass. This was most significant during the 

exponential growth phase. This biomass carbon escaped extraction and contributed to the 

observed loss in hydrocarbons, but was not reflected as oxygen consumption. Cell 

synthesis during exponential growth certainly must contribute to the high hydrocarbon 



removal rates observed for these tests. Because cell synthesis occurs predominantly 

through the period of short term exponential growth, these high hydrocarbon removal 

rates (0.17 to 0.27 gm HC/day) are not necessarily applicable for extended periods of 

constant rate BOD respiration. 

TABLE17 

CO1\1PARISON OF HC LOSS AND OXYGEN UPTAKE 

Conditions Test# Average Percent 0 2 Consumed BODas%of 
Net Loss Reduction pergramHC Theoretical. 
(gmHC)a Removed O.,Demandb 

Best Combination 361p57 -2.68 -19.7% 0.79 23% 
Sp. Rate Optimum 361p67 -3.00 -21.8% 0.75 21% 

a Does not talce into account the possibility of head space 0 2 utilization 
b Mineralization ratio of 3.48 gm O2'gm HC 

Discussion of Results 

Defining Moisture Content 
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Many researchers have discussed compost moisture content in terms of mass 

percentage. Stegmann, et al. ( 1991) employed the notion of "total water capacity", 

defined as the mass of water held per unit mass dry material. This is essentially equivalent 

to the notion of container capacity. The use of overall moisture content on a mass basis 

for compost must be questioned. The problem Hes in the fact that an oily sludge compost 

is composed of at least three distinct substances having greatly varying densities. The 

masses of hydrocarbon, inert material, and bulking agent each enter into the expression for 

moisture content. Any number of mixtures of these substances can be made to total a 

constant mass by simply varying the proportions, i.e., one compost can consist of a low 

mass of BA, a high mass of soil, and be saturated with a specific amount of water. 
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Another compost of identical total dry mass may consist of a high mass of BA, a low mass 

of soil, have the same mass of water added, and yet be far from saturation. These two 

composts would still have the same mass percentage moisture content, yet totally different 

distributions of water within their matix. As is suggested by the constant BOD rate 

results, the degree of saturation can be responsible for large differences in levels of 

microbial activity. Thus, mass percentage moisture content does not represent the water 

content of a compost in a way which can be correleted well with its effect on microbial 

activity. It is suggested that container capacity be employed in compost research and 

design as the measure of water content. Container capacity depends on the relative 

proportions of the materials in the mixture and their own water holding abilities. Each 

compost, and each BA/S variation of a compost, has its own unique container capacity. 

Growth Rate Versus Constant Rate Respiration 

Water Content. One thing evident from the results presented in this chapter is that 

environmental conditions which favor high rates of microbial growth do not necessarily 

favor high rates of constant respiration. This is true for both the parameters of water 

content and nutrient concentration. A water content of I 00% of CCchip, while perhaps 

best for rapid microbial growth, is not in the best range (30%-83%) for sustaining high 

constant rate BOD. With this in mind, the initial stage of a compost process might benefit 

from a I 00% CC compost water content to facilitate rapid growth of biomass. As water 

content drops with evaporation, it will descend into the range favoring higher constant 

respiration rates. 

Nutrients. The case of nutrient concentrations is opposite that of water content. 

Ammonium concentrations favoring rapid growth rates are lower than those which favor 

the attainment of high constant levels of respiration. This implies that nutrient 

concentrations favoring rapid growth are not sufficient to sustain growth beyond a certain 
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point. At that point, additional nutrients could cause growth to continue at the same high 

rate. 

Since the nitrogen which is required by bacteria is incorporated into biomass, it 

follows that it will be consumed most during the exponential growth phase. Once a steady 

state ( constant rate respiring or rate limited) population is achieved, the requirement for 

supplemental nitrogen drops significantly. Whatever nitrogen is required to replenish and 

maintain the cell population is available through endogenous respiration or from other 

substrate (bulking agent). Nitrogen (and other nutrient) availability then is mainly critical 

during the growth phase and once a population has established itself to the limitations of 

its environment, less supplemental nutrients are needed. From this discussion it appears 

that for composting, nutrients are initially necessary only in a quantity sufficient to 

establish the population to the point where its growth becomes unavoidably limited by 

some other mass transfer rate (oxygen, HC surface area). On the other hand, the speed at 

which this growth occurs is a function of the resulting concentration of added nutrients, 

and excessive concentrations appear to greatly retard growth. Respirometry tests can 

determine the limit of microbial growth for a particular compost design, and nutrient 

supplements for bench or field scale tests can be tailored to that limit to avoid excessive, 

rate-inhibiting applications of ammonium. To further avoid inhibition of growth and to 

maximize constant rate BOD, nutrient supplements can be added in increments through 

the exponential growth period to maintain that window of concentrations most favorable 

for growth, or at least to keep the concentration below that (I. 0 M) which becomes 

inhibitory to high respiration rates. 

Beyond this, traditional nitrogen determinations made on the basis of a C:N ratio 

of 25: I would result in inhibitory concentrations of ammonium when hydrocarbons 

become a significant percentage of the compost mass, such as would result from high TPH 

sludge (e.g., ammonium added to the "best combination" test on the basis of C:N = 25: 1 

would result in a concentration of nearly 2.0 M). 
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Overall, environmental conditions identified by constant rate BOD evaluations are 

recommended over those identified by use of specific growth rate. The exponential 

growth phase is of short term duration whereas constant rate, "steady-state" respiration 

ideally persists (with appropriate amendments) until substrate is depleted. This "steady­

state" oxygen uptake rate is what is ultimately sought to be maximized and maintained 

because it is the long term "workhorse" rate which accomplishes the bulk of hydrocarbon 

degradation over time. It is proportional to the substrate utilization rate, in this case 3.48 

gm 0 2/gm HC utilized, which in turn can be used to predict the time required to degrade 

the hydrocarbon substrate. 

Suggestions for Further Research 

While this project resulted in some definitive determinations with respect to 

respirometry and composting, it opened up several issues for investigation which may have 

interesting possibilities. 

Specific Growth Rate and Growth Duration Maximization 

An issue of special interest to the author was the possibility of specific growth rate 

based optimization. It turned out that in series with nutrient supplements, there was an 

inverse relationship between specific growth rate and the duration of exponential growth. 

Simply put, the greater the growth rate, the shorter its duration, the lesser the growth rate, 

the longer its duration. The combination of the two, growth rate and the time of its 

duration, resulted in the constant rates of respiration which followed exponential growth. 

To illustrate this point the logarithmic population equation describing exponential growth 

is utilized: 

/n(NINoJ = µt so that when N0 = 1, N = eµt (16) 
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NO is the original microbial population in the sludge. It is set to unity (I) and is presumed 

the same for tests made up with equal amounts of sludge from one container. Utilizing the 

observed durations (t) of exponential growth from tests and their corresponding 

graphically estimated specific growth rates(µ), the population sizes at the end of their 

exponential growth phases can be estimated. The resulting N is nothing more than a 

factor than indicates how many times the population has increased over its starting size, 

considered as unity. Figure 39 shows a graph of the resulting Ns, herein termed biomass 

factors, versus their corresponding constant BOD rate results from the series of optimal 

conditions tests. 
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Figure 39. Constant Respiration Rate versus Calculated Biomass Size: 
Optimal Series of Tests 

This graph makes it apparent that there is a strong correlation between size of 

microbial population (biomass concentration) and the resulting constant BOD rate that 

occurs at the end of exponential growth, as there should be according to Equation IO. 

Further, it can be concluded that any factor or physical change in a parameter which 

increases a growth rate and/or extends its duration would naturaUy result in a larger 
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biomass concentration and therefore a higher constant BOD rate. This is desirable for the 

concurrent increased rate of substrate utilization (hydrocarbon degradation). 

It is believed that optimization based upon maximization of specific growth rates 

and extension of the duration of exponential growth can result in earlier, more rapid 

increases of biomass to concentrations higher than what might be ordinarily realized. This 

in tum could result in very high respiration and degradation rates. It is conceivable that a 

"high rate" composting process may be designed whose time to substrate depletion would 

be only a matter of weeks. This process could be tested using respirometry and a series of 

successive parameter evaluation tests. The parameter value for the test which results in 

the highest calculated biomass factor (from µ and it's duration, t) would be incorporated in 

the next parameter series, and so on through all parameters. 

Long Term Respirometry 

Long term studies could be done if much more KOH could be suspended in the 

reactors. This could be done with wide mouthed reactors and larger KOH cups. The 

purpose of extended duration tests would be to assess the longer term viability of compost 

cultures and see if highly optimized constant respiration rates can be maintained through 

to hydrocarbon depletion. 

Incremental Nutrient Addition 

It would be interesting to investigate whether incremental additions of nutrients, 

designed to maintain the narrow window of0.10 to 0.23 M ammonium concentration, 

would result in sustaining the duration of highest exponential growth rates beyond that 

which results from a single dose. This idea could be tested using respirometry to monitor 

exponential growth. When growth rates stop increasing, additional moisture and nutrients 

could be added through a septum in the reactors. It would also be of interest to attempt 

to maintain the highest uptake rates therein achieved as constant levels of respiration. 
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Container Capacity Studies 

Container capacity measurements could be made for all sorts of field materials and 

crop residues in order to determine those which might be best suited for composting. It 

would also be of interest to see how container capacity varies across the spectrum from 

I 00% sludge to I 00% bulking agent. Indications from this study are that the two 

individual container capacities are not simply additive. 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Summary 

The problem addressed by this study was whether respirometry was a suitable 

method for optimizing the environmental parameters affecting biodegradation of 

hydrocarbons in an oily sludge compost. A series of compost formulations were designed 

to test the effects of individually varying parameters on microbial activities as measured by 

oxygen uptake rates. The parameters investigated included hydrocarbon concentration, 

bulking agent to sludge ratio, moisture content, nutrient concentration, temperature, and 

compaction. Oxygen uptake was analyzed in two ways, on the basis of specific growth 

rates equated to uptake and on the basis of "steady state" or constant rate BOD 

respiration. Constant rate BOD generally was easier to determine and more significant an 

indication of process efficacy, and was employed as the basis for optimal range selection. 

The optimal parameter values indicated by the results of the parameter tests were 

combined in one test as a "proof case". The high concentration of oil in the sludge 

resulted in compost with a I 8. 7% hydrocarbon concentration on a wet weight basis. 

Permutations of the "proof case" were run and varied parameters individually away from 

their optimum values. Several additional permutations separately varied parameters 

towards more favorable conditions (lower HC%). Analysis of oxygen uptake from the 

"proof case" and permutations showed the "proof case" exhibited the highest level of 

constant rate BOD compared to negative permutations, with the exception of the 

temperature permutation. Subsequent re-analysis of the original temperature data yielded 
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an optimal temperature different than was employed in the "proof case", suggesting the 

permutation was actually in a favorable direction. The positive permutations resulted in 

the highest constant BOD rates, indicating the highest degree of microbial activity. The 

results of the "proof case" and it's permutations validate the use of respirometry as a 

evaluatory tool for optimization of the environmental parameters affecting composting. 

General Conclusions Concerning Respirometry 

Overall, the results demonstrate that respirometry, under the proper conditions, is 

a sensitive and reliable method for measurement of compost oxygen uptake rates and is 

well suited for parameter optimization. This is concluded from the following general 

points. 

I. Compost samples, relying solely on microbial populations indigenous to oily 

sludge, when adequately amended with nutrients, were sufficiently active to 

produce consistent patterns of oxygen uptake among replicate tests. 

2. Addition of nutrients significantly increased the degree of microbial activity, 

though excessively high concentrations were inhibitory. 

3. The generation of repeatable oxygen uptake data was adversely affected by use of 

sludge from different containers and shelf ages. Sludge should be kept in sealed, 

refrigerated containers to preserve its original numbers and distribution of 

microbial species. 

4. Constant rate BOD analysis is a viable method for evaluating the effects of a 

varying environmental parameter and can be used as the basis for optimization. 

5. Respirometry is well suited for optimizing the process of composting an oily 

sludge. 
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General Conclusions for Composting an OiJy Sludge 

I. High petroleum content sludge is capable of being biodegraded by means of 

composting without requiring significant dilution of hydrocarbons ( compost TPH 

was 18.7%). 

2. The optimum water content for specific compost is best measured as a percentage 

of its saturated condition, or container capacity. Each particular bulking agent to 

sludge ratio has a unique container capacity. 

3. Nutrients are essential for high rates, and amendments are best made on the basis 

of target nitrogen or ammonium concentrations for the total water available in the 

compost. The most favorable range is 0.4 M to 0. 7 M ammonium. 

4. An important consideration for selection of a bulking agent, in addition to its 

ability to resist compaction, is its capacity for holding water. 

5. Substantial and rapid degradation of hydrocarbons occurs at temperatures within 

the mesophilic range, specifically 25°C to 40°C. 

Specific Conclusions for Farmington Sludge 

I. On a wet weight basis, the Farmington sludge is comprised of approximately 24% 

hydrocarbons, 20% moisture, and 56% inert material. 

2. 100 to 1000 bacteria per gram were indigenous to the sludge. 

3. Gravimetrically determined losses of hydrocarbon from compost in two "proof 

case" optimized tests were 19. 7% over 14 days and 21. 8% over 10 days. 

4. The parameter ranges determined by respirometry to be most favorable for the 

composting of Farmington sludge are described as follows: 
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a. For wood chips as bulking agent, the favored bulking agent to sludge ratio is I : I 

by volume or higher. The actual ratio employed can be determined by the 

requirement to resist the effects of compaction (restricted permeability) due to pile 

height or the need for additional water content, and may be 3: 1. 

b. Hydrocarbon concentration can be subjugated to that which results from addition 

of bulking agent. High hydrocarbon concentrations are not prohibitive to 

microbial activity, though lower concentrations in the range of 2% to 8% favor it. 

Sludge with high hydrocarbon concentrations can be diluted with soils of low 

concentrations with a beneficial impact on activity. 

c. The optimal moisture content range is from 30% to 83% of wood chip container 

capacity, though higher levels of water content may be desirable to help control 

pile temperature and provide larger amounts of nutrients without exceeding a 

specific concentration. Water content of up to I 00% of wood chip container 

capacity is not prohibitive to microbial activity. Through evaporation, moisture 

content will gradual1y diminish to more favorable levels. 

d. A complete nutrient amendment may be added on the basis of ammonium 

concentration. 0.4 M to 0.7 M ammonium is the most favorable range of 

concentrations. The mass of nutrient amendment to be added should be 

determined on the basis of concentration in the total water available in the compost 

(compost container capacity). Ammonium concentrations approaching 1.0 Mare 

inhibitory to growth and high levels of respiration. To increase the available 

nutrients in compost without exceeding a limiting ammonium concentration, 

additional water may be required. This can be done by employing a higher 

percentage of CCcompost for water content and/or the use of a higher BA/S ratio 

(additional bulking agent) maintained at an equivalent or higher percentage of 

container capacity. 
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e. Among the temperatures investigated in this study, the mesophilic range of25°C 

to 40°C is most favorable for hydrocarbon degradation. This is not an indication 

that higher thermophilic temperature are unfavorable. Temperatures above 50°C 

were not tested in this experiment. 

f. There was no significant effect on microbial activity resulting from up to 20% 

compaction on compost with a either a 1.1/1 or 3 .3: 1 BNS (vol) ratio at low 

concentrations of nutrients (<0.01 M ammonium). At high concentrations of 

nutrients (0.5 M ammonium), a significant reduction in uptake rates (-70%) was 

experienced with 20% compaction. 

A summary of the most favorable ranges for the composting of Farmington sludge 

as determined by both constant rate BOD and specific growth rate analysis is presented in 

Table 18. 

TABLE18 

OPTIMAL CONDITIONS FOR CO1\.1POSTING 
FARMINGTON OILY SLUDGE 

Compost Parameter 

BA/S Ratio 
HC Concentration 

Water Content 
Nutrient Cone. b 

Temperaturec 
Compactiond 

Constant Rate BOD 
Basis 

Best Range 

1/1 and higher 
2.0% to 8.0% 
30% to 83%3 

0.4 to 0.7 M 
25°C to 40°C 
less than 20% 

Specific Growth Rate 
Basis 

Best Range 

Inconclusive 
Inconclusive 

100%3 

0.1 to 0.23 M 
35°C to 40°C 
Inconclusive 

a as wood chip container capacity for solvent extracted chips 
bas NH4 + concentration (moles/liter) 
c based on 25°C permutation in optimal series 
d for BA/S of 3.3/1 and <0.01 M NH4 + 
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CONTAINER CAPACITY 

Container Capacity (CC) is defined as the ratio of the mass of water retained against 
gravity to the dry mass of the material tested. The following steps detailing the 
determination of container capacity are adapted from Cassel & Nielson. 

1) The subject material is loaded and shaken down loosely into a 15 cm. tall container with 
a perforated bottom and known mass. 

2) The container is placed in a deep pan of shallow water and allowed to wet through 
capillary action. Over the next 12 hours the pan is gradually filled to submerge the 
container to saturation. 

3) Once saturated, the container is set atop another to allow free drainage of water to air. 
The top is loosely covered to prevent evaporation. 

4) Following six hours of drainage, the container and material are weighed. 

5) The container is then placed in a drying oven at 105°C for 24 hours. 

6) The container and dried mass are weighed to determine the mass of water which was 
previously held by the material. The dried material mass is determined by subtraction 
of the original container weight. 

7) Container capacity is the ratio of the mass of water held to the mass of dried material 
and has units of g H20/g dwt material. 

EV ANS' MINERAL SAL TS MEDIA 

(Rosenberg and Gutnick, 1981) 

Compound g/Iiter 

{NH4)iSO4 1.00 

K2HPO4 1.00 

MgSO4 · 7H2O 0.30 

CaCl2 0.10 

FeSO4 · 7H2O 0.02 

Adjust to pH 7.0 



DREWS' TRACE ELEMENT SOLUTION* 
{lOX concentration) 

Compound mg/liter 

MnCl2 · 4H20 100 

CoCl2 20 

CuSO4 10 

Na2MoO4 · 2H2O 10 

ZnCI2 20 

LiCI 5 

SnCl2 · 2H2O 5 

H3BO3 10 

KBr 20 

BaCl2 5 

EDTA 8,000 

Add 1 ml per liter of mineral salts media. 

*The above formulation is for 1 liter of solution. It is a tenfold concentration, 
as set fo~h in Reichenbach and Dworkin ( 1981 ), of the original ?rew's 
formulation. The tenfold concentration was used throughout this study. 

MICROBIAL ACTIVITY ON WOOD CHIPS VERSUS HYDROCARBONS 
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The design of this compost respirometry experiment was predicated on minimi~ing 
microbial activity on the bulking agent. Preliminary respirometry tests employing a sludge 
derived inoculum and natural wood chips in stirred Evans' media showed oxygen uptake 
activity of 0.11 m~gm chips/hr. The activity of nutrient amended sludge flatte?e~ across 
the bottom of resp1rometer bottles was 0.10 mg/gm/hr. In view of these very similar rates, 
solvent extraction of the wood chip resins and oils was employed to reduce their potential 
for microbial activity. 

Wood chips were extracted for 24 hours in a 1.75 liter Soxhlet vessel with a 50/50 
mixture of methanol and chloroform. Following extraction, the chips were spread in a pan 
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beneath a lab hood and air dried for 24 hours. They were next packed into 250 ml 
containers and sealed with foil. 24 hours prior to use, these containers were sterilized in 
an autoclave at I 20°C for 30 minutes. 

When tested in the same way as the natural chips for microbial activity, the 50/50 solvent 
extracted chips showed a constant oxygen uptake rate of0.022 mg oxygen/(gm x hr); 
about an 80% reduction in activity, shown in Figure 40. 

20 ,----r-----...--------.-------r-----T"""------------.---~ 
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Figure 40. Average Microbial Activity on Natural and 50/50 Extracted Wood Chips 

In order to more effectively remove the degradable substances in the chips a sequential 
extraction was performed employing first methanol and then chloroform, each for 24 
hours. The resulting chips were termed "double extracted". Activity on these chips is 
shown in Figure 41 and was measured at 0.037 mg oxygen/(gm x hr), actually higher than 
before. No reduction of microbial rates were achieved by sequential extraction of the 
chips. However, there was approximately 50 hours of Jag time before the inception of 
measurable oxygen uptake on the double extracted chips. The increased total time of 
extraction did reduce substances which were initially available in the 50/50 extracted 
chips. As a result of this effort, all chips employed in subsequent respirometry tests were 
double extracted. 
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Figure 41. Average Microbial Activity on Natural and Double 
Extracted Wood Chips 
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160 

Another set of tests were done to allow a better comparison of activities on wood chips 
and sludge hydrocarbons. The previously described chip tests were performed in 150 ml 
of stirred Evans' media. The chips gave the mixture the consistency of a coarse slurry. 
Uptake rates were controlled, but not necessarily limited, by mass transfer of oxygen into 
the aqueous phase. Bacteria were widely distributed in the mixture and should have had 
ample room for growth on the large surface area of the wood chips. In comparison, the 
earlier test on sludge exposed only a single flat surface to the reactor head space and was 
not continuo_usly mi~ed. To provide a more equal footing for comparison of ~ctivi~ies, a 
test was devised which used centrifuged sludge hydrocarbons in stirred Evans media. In 
this test the hydrocarbons, which had the appearance and viscosity of a grease, mostly 
adhered to the stir bar with some free floating globs. Despite this, the a~erag~ ~xygen 
uptake rate '":as ~.8_ mg/(gm HC x hr), indicating that in a liquid, microbial act1v1ty_on pure 
hydrocarbon 1s s1gmficantly (> l 60X) higher on a mass basis compared to wood chips. 

This comparison indicated that in a liquid media the degradability of the sludge 
hydrocarbons was significantly greater, 130 times more than that of the extracted chips 
(Figure 42). This was in spite of limited surface area compared to the chips. More rapid 
dissolution of hydrocarbons into the aqueous phase in the stirred reactors, and thus greater 
bioavailability, could have influenced the uptake rate. It appeared that most of the solid 
hydrocarbons were covered by a scum of bacteria. What effect this had on the rate of 
dissolution is unknown. 
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Figure 42. Microbial Activity on Sludge Hydrocarbons and Extracted 
Wood Chips in Stirred Evans' Media 
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Another test run later in conjunction with a series evaluating the effect of hydrocarbon 
concentration on microbial rates provides another useful point. The 0% HC concentration 
test was run with 16.00 gms of chips and 5.60 gms. of sludge derived inert material at a 
moisture content of 62%. This had 2.0 ml of sludge derived "bacterial seed" supernatant 
added to it and was essentially a wetted chip mixture in an air environment. The resulting 
activity was at a constant oxygen uptake rate of0.015 mg/(gm x hr). This value falls 
below the two previous values for microbial activity on extracted chips in a liquid 
environment, 0.022 and 0.037 mg/(gm x hr). Mass transfer of oxygen into the aqueous 
phase must not be a limiting factor at these low levels of uptake. 

An implication of the forgoing comparison of activies in liquid versus air is that a 
microbial population, subsisting on pure hydrocarbons on a matrix surrounded by air 
(compost), wetted with a thin film of moisture containing enough nutrients and room for 
growth, would support the same high levels of activity as seen in submerged, stirred 
conditions. Though this argument is by no means conclusive, it does give an indication 
that the activity of bacteria on hydrocarbons in test sample compost may be significantly 
higher than on the extracted wood chips used for bulking agent. 

What is not known is the nature of the interplay between hydrocarbons and wood chips 
when they are in intimate contact with one another. The presence of hydrocarbons may 
further minimize the activity on wood chips by covering their surface. On the other hand, 
co metabolism of wood constituents may take place, or rapid growth on hydrocarbons may 
engender further colonization on wood chips. 

For these reasons, oxygen uptake throughout this experiment was evaluated on the basis 
of total volatile solids (VS) in the compost sample. Volatile solids included the mass of 
hydrocarbons, always calculated as 24% of the mass of sludge employed, and the dry mass 
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of wood chips, which were 99. 7% volatile. The masses of wood chips employed 
throughout the parameter test series' were the same (i.e. 16.00 gm. dwt) and for each 
series, came from one batch extraction. Only in the optimal conditions series of tests were 
wood chip masses varied from the regimen described above, and those were made to meet 
the design conditions of the series, while the mass of sludge hydrocarbons remained 
constant. 

POTASSIUM HYDROXIDE C02I02 DEMAND 

Wetted potassium hydroxide pellets are used as a CO2 absorbent in the respirometer 
bottles. The CO2 absorption capacity of the KOH is important because it determines the 
amount of oxygen which can be delivered to the reactors. The absorption reaction is: 

The measured mass of 50 KOH pellets was 4.81 grams. The purity of the KOH was 
87.8% and its molecular weight was 56.1 gm/mole. A standard reactor load through early 
series of tests consisted often pellets equaling 0.845 grams or 0.0151 moles KOH. 
According to the stochiometry, 0.00755 moles of carbon dioxide could be absorbed by 
that amount of KOH. This indicated, since oxygen and carbon dioxide have identical 
molar volumes, that 0.00755 moles, or 0.242 grams of oxygen would be delivered to the 
reactor over the same period to replace the co2. Thus, the oxygen delivery ratio for 
87.8% purity KOH was 0.242 gm 0 2110 pellets or 0.251 gm O2/gm KOH. 

The important consideration is that KOH should be present in sufficient quantity so as not 
to preclude or inhibit the clear development of a constant respiration rate plateau on 
cumulative oxygen uptake curves. This is simply to ensure that the gro~h and/o~ rate 
limiting influence of the parameter variable under investigation will manifest. Dunng the 
cell synthesis reaction, not all molecular oxygen is oxidized to co2, but ends up as. 
produced H 2O. Thus, oxygen can be delivered to a reactor beyond the amount which can 
be attributed to the KOH reaction with co2. In the nutrient series of tests, delivered 
oxygen exceeded KOH allowable oxygen by a factor of from 3.0 to 3.6. Since the highest 
observed total BOD through this experiment was 3,000 mg, KOH quantity should be 
sufficient to allow for up to, say, 1/3 that amount, or 1.00 gm o2. The required amount of 
KOH can be calculated as follows: 

# KOH bl I KOH pellet 
ta ets = 1.00 gm o

2 
x -----=----=41.3 

0.0242 gm 02 

The practical capacity limit for double suspended KOH cups is not much above 30 pellets 
total due to production and absorption of water, particularly at elevated temperatures. 
This limit places a constraint on the amount of compost material that can be utilized for a 
test In general, most tests will get by suitably with 30 pellets of KOH. Any time that 
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oxygen uptake rates peak, drop precipitously and approach zero, oxygen starvation due to 
KOH depletion must be considered as a possible cause. 

The respirometer maintains a constant amount of oxygen in the headspace of the reactor 
(20.9% by volume). When the KOH is exhausted, respiration may well continue until 
head space oxygen, calculated to be 0.139 grams 02 for a 500 ml reactor at STP, is near 
or at depletion. During this stage, instead of being absorbed, evolving CO2 merely 
replaces the oxygen in the headspace as the 0 2 is taken up. This amount of oxygen usage 
is unrecorded by the respirometer's computer. It can have an impact on cumulative BOD 
based evaluations because it may provide up to 19% more oxygen than the KOH allowed 
amount for 3 0 pellets. In other words, biodegradation of hydrocarbons can continue 
beyond the cessation of oxygen deliveries to the reactor. 

CALIBRATION OF THE RESPIROMETER 

In order for the amount of oxygen delivered to a reactor to be accurately measured, the 
delivery valve has to be calibrated to a known volume of oxygen This is accomplished by 
the draining of a measured volume of water from a I 00 ml buret connected via tubing to a 
respirometer port. N-Con Systems, Inc. proprietary respirometer software program, C­
Tox, has a step by step procedure which facilitates valve calibration and saves the resulting 
valve coefficient for use in the mass determination of delivered oxygen. Each oxygen 
delivery valve of the respirometer is individually calibrated to obtain a unique valve 
coefficient. 

Several items of data are necessary to be known for accurate determination of valve 
coefficients. These include: I) elevation, 2) barometric pressure, 3) _ambient room 
temperature, 4) regulator or line pressure. These values are entered mto the computer 
when requested by the software. 

Ideally, a portable barometer located in the same room is best used for determination of 
barometric pressure. On occasion, such as during stormy weather, it may be necessary to 
re-enter barometric pressure due to change over the course of the calibration procedure. 

Oxygen line pressure is regulated to Io psi. If calibration is done too rapidly, such as by 
running a steady stream of water from the buret, line pressure can drop ~y more than I 
psi, thus reducing the amount of oxygen which fills the valve. When dehve~ed t? the 
buret, that mass of oxygen will occupy less than 90% of the volume a 10 psi delivery 
would have, so too rapid of delivery results in too large a number of deliveries ~nd too 
small a calculated mass of oxygen per delivery. Line pressure drop is best !11omtored by 
use of a mercury manometer attached to the delivery line. Be sure to provide an overflow 
apparatus to capture mercury in case of regulator failure. 

The calibration procedure is to fill a calibration buret with water to the zero line. The 
buret top valve is closed and a respirometer port connection is made. The software 
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program is instructed to accuate the appropriate valve circuit whereupon the bottom valve 
of the buret is opened to allow drainage of water as discrete droplets. As water drains 
from the buret it exerts a partial vacuum on that port's piezometer. When sensed by the 
computer it responds with an oxygen delivery to the buret. Deliveries continue until 200 
are made, whereupon the computer software issues a prompt to close the buret. The 
resulting volume reduction of water in the buret is noted (usu. 30-45 ml) and entered into 
the computer. The software, by means of the ideal gas law, calculates 1) an average mass 
for the oxygen contained by a valve's single delivery and, 2) a unique valve coefficient 
which is utilized for all subsequent oxygen mass determinations for tests on that port. 
Each port is re-calibrated until three sequential mass measurements agree to within 1 % 
(typically two to three µg, oxygen mass usually ranges from 220 to 250 µg per delivery, 
depending on the valve). 

OXYGEN DELIVERABILITY TESTS WITH SODIUM SULFITE 

Anhydrous sodium sulfite is readily soluble in water and the sulfite ion quickly is soon 
oxidized to sulfate in the presence of oxygen. This compound offers an excellent means 
for checking the calibration of the respirometer's oxygen delivery system. 

Approximately one gram ofNa2so3 should be added to 100 ml of de-ionized water in a 
reactor with a stir bar. One gram will suffice for about 25 hours of oxygen uptake at a 
bath temperature of25°C. Longer periods of uptake may be desirable as in the example 
below. The rate of oxidation is controlled by the rate of mass transfer of oxygen across 
the air/water interface in the reactor and is greatly affected by temperature. 

Figure 43 shows oxygen uptake histories for identical masses of 4. 73 grams sodium 
sulfite, one at 25°C and one at 35°C. Na2so3 had a molecular weight of 126.0 and was 
virtually 100.0% pure. The stochiometric requirement for oxygen was calculated to be 
127 mg/gm sodium sulfite. The 25°C test consumed oxygen to within 5% of the 
stochiometric requirement and the test at 350c was within 2%. The rate of delivery at 35° 
c was 3. 25 times higher than at 25 °C. A higher temperature has increased the rate of 
oxygen mass trasfer from air to water. This may have had an influence on the greater 
microbial rates observed in this experiment at a temperature of 35°C. 
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An 30 hour calibration check can be run for all reactors simultaneously by using 
approximately one gram of sodium sulfite per reactor. The Comput-Ox program requires 
a minimum input value of 20, so use of 100 times the actual mass is convenient, but it 
must not be forgotten to multiply the results by 100. Ideally, all uptake plots should 
plateau at the same level. 
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MAKE-UP OF HYDROCARBON CONCENTRATION TESTS 
(in grams) 

% HC TEST# Mass B.A. M.C. Mass Sludge Added Total Sludge Added Total HC %HC Added 
(dwt) Chips Sludge Inerts Inerts Inerts HC HC (Inert Evans 

Basis) 

Series 1 0.0% 337p72 16.00 8% 0.00 0.00 5.60 5.60 0.00 0.00 0.00 0% 32.38 
2.5% 337p82 18.00 8% 2.31 1.29 4.30 5.59 0.55 0.00 0.55 9% 32.38 
5.0% 337p73 16.00 8% 4.74 2.66 2.95 5.60 1.14 0.00 1.14 17% 32.38 
7.5% 337p83 16.00 8% 7.30 4.09 1.51 5.60 1.75 0.00 1.75 24% 32.38 

10% (d) 337p70 16.00 8% 10.00 5.60 0.00 5.60 2.40 0.00 2.40 30% 32.36 
15.0% 337p74 16.00 8% 10.00 5.60 0.00 5.60 2.40 1.41 3.81 40% 32.36 
20.0% 337p71 16.00 8% 10.00 5.60 0.00 5.60 2.40 3.00 5.40 49% 32.36 

Series 2 0.0% 337p104 16.00 1% 0.00 0.00 5.63 5.63 0.00 0.00 0.00 0% 31.96 
0.5% 337p94 16.00 15% 0.45 0.25 5.34 5.59 0.11 0.00 0.11 2% 32.16 
1.0% 337p93 16.00 15% 0.91 0.61 5.08 6.59 0.22 0.00 0.22 4% 32.16 
2.5% 337p92 16.00 15% 2.31 1.29 4.30 5.59 0.55 0.00 0.56 9% 32.16 
6.0% 337p91 16.00 15% 4.74 2.65 2.94 5.59 1.14 0.00 1.14 17% 32.16 

(a) Total water includes moisture content of chips, sludge wet.er, added water and Evans' solution. 
(b) does not include sludge moisture 
(c) seed inoculum 
(d) 10% HC is base bondition 

Added Total %M.C. 
Wat.er Water (w/o HC) 

(for inerts) (a) 

2.0 (c) 35.85 82% 
1.55 35.88 82% 
1.05 35.85 62% 
0.65 35.85 62% 

0 35.85 62% 
0 35.85 62% 
0 35.85 62% 

2.0 (c) 35.16 62% 
1.91 37.06 63% 
1.81 37.04 63% 
1.54 37.05 83% 
1.06 37.06 63% 

% of CC Nutrient 
Chips Cone. 

(b) (NH4M.) 

71% 0.014 
71% 0.014 
71% 0.014 
71% 0.014 
71% 0.014 
71% 0.014 
71% 0.014 

70% 0.014 
74% 0.013 
74% 0.013 
74% 0.013 
74% 0.013 
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MAKE-UP OF BULKING AGENT TO SLUDGE RA TIO TESTS 
(in grams} 

Test# % HC Mass Chips Sludge Mass Sludge Evans' Total Moisture %CC Nutrient 
(dwt basis} (dwt) (wwt) HC Inerts Media Moisture Content Chips Cone. (M,) 

(a) (b) 

Series 1 337p97 5.0 16.00 4.00 0.96 2.24 23.67 25.67 57% 53% 0.014 
337p98 10.0 16.00 10.00 2.40 5.60 23.67 26.87 53% 53% 0.013 
337p99 15.0 16.00 20.00 4.80 11.20 23.67 28.87 47% 53% 0.012 

337p100 20.0 16.00 40.00 9.60 22.40 23.67 32.87 41% 53% 0.011 
337p102 30.0 0 176.23 (c) 42.30 98.69 0.95 (d) 36.20 20% (no chips) 0.010 

Series 2 361p22 1.0 16.00 0.69 0.17 0.39 23.67 25.01 60% 53% 0.014 
361p21 2.5 16.00 1.82 0.44 1.02 23.67 25.23 59% 53% 0.014 
361p20 5.0 16.00 4.00 0.96 2.24 23.67 25.67 57% 63% 0.014 
361p19 7.5 16.00 6.67 1.60 3.74 23.67 26.20 56% 63% 0.014 

Series 3 361p40 20.0 16.00 40.00 9.60 22.40 23.67 32.87 41% 53% 0.011 
361p41 22.6 16.00 60.79 14.59 34.04 23.67 37.03 36% 53% 0.010 
361p42 25.7 16.00 119.04 28.57 66.66 23.67 48.68 30% 63% 0.007 
361p44 26.6 12.00 (e) 119.04 28.67 66.66 23.67 48.38 31% 69% 0.007 
361p45 27.7 8.00 (e) 119.04 28.57 66.66 23.67 48.08 32% 102% 0.007 

(a) equal to 50% of chip CC 
(b) Does not include sludge moisture 
(c) to approximate the volume of other tests 
(d) Sludge only case used 25X concentrated Evan's Media 
(e) had decreased mass of chips rather than increased mass sludge due to volume constraints 

8.A./S. Ratio 8.A./S. Ratio 
(dwt to inert (dwt basis) 

basis) (Incl. HC) 

7.14 5.0 
2.86 2.0 
1.43 1.0 
0.71 0.5 
0/1 0/1 

41.00 29 
15.70 11 
7.14 5.0 
4.28 3.0 

0.71 0.60 
0.47 0.33 
0.24 0.17 
0.18 0.13 
0.12 0.08 

8.A./S. Ratio 
(vol./vol.) 

32.9 
13.2 
6.6 
3.3 
0/1 

191.0 
72.4 
32.9 
19.8 

3.3 
2.2 
1.1 

0.83 
0.65 
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TEST# 

361p2 
361p3 
361p4 
361p5 
361p6 
361p7 

MAKE-UP OF MOISTURE CONTENT TESTS 
(in grams) 

Sludge %HC Chips Evans' Added Total % cc %CC % Overall Ammonia 
Mass (dwt) (wwt) Cone. Water Water Chips Compost Moisture Cone. (M.) 

(a) (b) (c) (d) Content 

10.00 10% 17.52 1.00 0 2.52 5.3% 12% 16 0.168 
10.00 10% 17.52 1.00 13.28 15.8 33% 46% 43 0.043 
10.00 10% 17.52 1.00 21.20 23.72 50% 67% 52 0.029 
10.00 10% 17.52 1.00 29.12 31.64 67% 88% 58 0.023 
10.00 10% 17.52 1.00 36.99 39.51 83% 108% 63 0.018 
10.00 10% 17.52 1.00 44.91 47.43 100% 129% 67 0.015 

(a) Chip dry weight equals 16.00 gms. 
(b) Evans' 50X concentrate is 0.758 Molar w.r.t. ammonia 
(c) Total water includes chip moisture, nutrient, and added water. 
(d) 100% compost CC = 1.58 X dry mass chips, HC, and inert solids. For B.A./S. of 13.2/1 only. 
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MAKE-UP OF NUTRIENT ADDITION TESTS 
(in grams) 

Test# Nutrient Load: Mass Mass o/oHC Chips Mass of Added Total %CC Overall Resulting 
% Stoch. Req. Sludge HC (dwt) (wwt) Nutrient Water Water Chips Moisture NH4 Concentr. 

(a) (b) Cone. (c) (d) (e) Content (mole/L) 

Series 1: 337p87 0% 10.00 2.40 10% 17.35 0.00 30.30 33.65 67% 58% 0.00 
337p88 33% 10.00 2.40 10% 17.35 10.03 20.90 33.71 67% 58% 0.225 
337p89 67% 10.00 2.40 10% 17.35 20.06 11.50 33.77 67% 58% 0.450 
337p90 100% 10.00 2.40 10% 17.35 30.09 2.10 33.84 67% 59% 0.674 

Series 2: 337p105 8.3% 10.00 2.40 10% 17.69 2.51 27.61 33.67 67% 58% 0.056 
337p106 17% 10.00 2.40 10% 17.69 5.02 25.26 33.69 67% 58% 0.113 
337p107 25% 10.00 2.40 10% 17.69 7.52 22.91 33.69 67% 58% 0.169 
337p108 33% 10.00 2.40 10% 17.69 10.03 20.56 33.71 67% 58% 0.225 

Series 3: 361p08 0% 10.00 2.40 10% 17.40 0.00 30.24 33.64 67% 58% 0.000 
(repeat of 1 ) 361p09 33% 10.00 2.40 10% 17.40 10.03 20.84 33.70 67% 58% 0.225 

361p10 67% 10.00 2.40 10% 17.40 20.06 11.44 33.76 67% 58% 0.450 
361p11 100% 10.00 2.40 10% 17.40 30.09 2.04 33.83 67% 58% 0.674 

(a) Based upon 100% conversion of HC to biomass 
(a) Dried weight wood chips is 16.00 gm. 
(c) Evans' SOX concentrate is 0. 758 M. and has a density of 1.06 gm./ml. 
(d) Total Moisture = Sludge water (2.00 gm), chip water (1.40 - 1.69 gm), nutrient concentrate/1.06, and added water. 
(e) Does not include sludge water 
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Type Test# 
of 

Test 

High Nutrient 337p107 (a) 
Low Nutrient 361 p7 (b) 
Low Nutrient 361p53 

Low Nutrient 361p25 
High Nutrient 361p26 

Sterile 361p27 

Low Nutrient 361p28 
High Nutrient 361p29 

Sterile 361p30 

Low Nutrient 361p31 
High Nutrient 361p32 

Sterile 361p33 

Low Nutrient 361p34 
High Nutrient 361p35 

Sterile 361p36 

MAKE-UP OF TEMPERATURE TESTS 

Temp. Sludge %HC 
(C) Mass (dwt) 

25 10.00 10% 
25 10.00 10% 
25 10.00 10% 

35 10.00 10% 
35 10.00 10% 
35 10.00 10% 

40 10.00 10% 
40 10.00 10% 
40 10.00 10% 

45 10.00 10% 
45 10.00 10% 
45 10.00 10% 

50 10.00 10% 
50 10.00 10% 
50 10.00 10% 

(a) from nutrient series 
(b) from moisture series 

(in grams) 

Chips Evans' 
(wwt) Soln. 

(standard)_ 

17.69 0 
17.52 0 
17.58 44.49 

17.58 44.49 
17.58 0 
17.58 0 

17.58 44.49 
17.58 0 
17.58 0 

17.20 44.87 
17.20 0 
17.20 0 

17.20 44.87 
17.20 0 
17.20 0 

(c) CC chips = 3.0 X dryweight chips 

Evans' Added 
SOX Water 

Cone. 

7.52 22.91 
1.00 44.91 

0 0 

0 0 
7.52 37.40 
7.52 37.40 

0 0 
7.52 37.40 
7.52 37.40 

0 0 
7.52 37.78 
7.52 37.78 

0 0 
7.52 37.78 
7.52 37.78 

Total Overall 
Water M.C. 

33.63 58% 
49.37 67% 
48.07 67% 

48.07 67% 
48.07 66% 
48.07 66% 

48.07 67% 
48.07 66% 
48.07 66% 

48.07 67% 
48.07 66% 
48.07 66% 

48.07 67% 
48.07 66% 
48.07 66% 

M.C. as 
%CC 
Chips 

70% 
103% 
100% 

100% 
100% 
100% 

100% 
100% 
100% 

100% 
100% 
100% 

100% 
100% 
100% 

Nutrient 
Cone. 

(as NH4) 

0.158 
0.014 
0.014 

0.014 
0.112 
0.112 

0.014 
0.112 
0.112 

0.014 
0.112 
0.112 

0.014 
0.112 
0.112 
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MAKE-UP OF COMPACTION TESTS 
(in grams) 

Test# B.A./S. B.A./S. Compac- Total % HC Chips Evans' Added Total %CC 
Ratio Ratio tion Sludge (dwt) (wwt) Soln. Water Water Chips 

(vol./vol.) (dwt/inert) (stand.) (b) 

361p42 (a) 1.1/1 0.24/1 0% 119.04 26% 17.28 23.67 0 49 158% 
361p50 1.1 /1 0.24/1 10% 184.50 26% 26.78 23.67 13.00 76 158% 
361p51 1.1/1 0.24/1 20% 199.99 26% 29.03 23.67 16.00 82 157% 

361 p40 (a) 3.3./1 0.71/1 0% 40.00 20% 17.28 23.67 0 33 158% 
361p48 3.3./1 0.71/1 10% 88.00 20% 38.02 23.67 28.00 72 156% 
361p49 3.3./1 0.71/1 20% 96.00 20% 41.47 23.67 32.60 79 156% 

(a) tests from B.A./S. series run in normal reactors, others run in special oversized reactors 
(b) Use of constant % chip CC results in equivalent moisture distributions between chips and sludge 

Overall 
M.C. 

31% 
31% 
31% 

41% 
41% 
41% 

Resulting 
Nutrient 

Cone. (M.) 

0.007 
0.005 
0.004 

0.011 
0.005 
0.005 
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Conditions of Test 
or Permutation 

Best Combination: 
1 .0 Molar Ammonia: 
83% Chip CC Test: 
25C Temperature: 

20% Compaction: (d) 
15% HC (dwtl: (e) 

B.A./S. Ratio of 0.37/1: (fl 
B.A./S. Ratio of 3.3/1: 

Specific Rate Opt. (35CI 
Specific Rate Perm. (25CI 

MAKE-UP OF OPTIMAL CONDITIONS TESTS 
(in grams> 

Test# B.A./S. Sludge Chips Sludge Added HC %HC HC Cone. Nutr. Soln. Make-up Total Tota! % cc Overall Resulting 
(vol./vol.> Mass (dwt) Inert Inert Mass (dwt) w.r.t. Inert to add Wat.er Make-up Compost Chips M.C. Nutrient 

(a) Solids Solids Solids (b> Liguid Wat.er (c) (%) Cone. (M.) 

361p57 1.1 59.02 8.00 33.05 0.00 14.16 26% 30% 4.21 4.29 7.89 20.58 33% 27% 0.49 
361p59 1.1 59.02 8.00 33.05 0.00 14.16 26% 30% 8.42 0.69 7.89 20.58 33% 27% 0.99 
361p60 1.1 59.02 8.00 33.05 0.00 14.16 26% 30% 6.67 14.03 19.73 32.42 83% 37% 0.60 
361p63 1.1 59.02 8.00 33.05 0.00 14.16 26% 30% 4.21 4.29 7.89 20.58 33% 27% 0.49 
361p58 1.1 194.8 26.40 109.07 0.00 46.74 26% 30% 13.89 14.16 26.02 67.91 33% 27% 0.49 
361p62 1.1 59.02 14.00 33.05 36.11 14.16 15% 17% 8.20 19.68 26.69 40.05 33% 29% 0.49 
361p66 0.37 59.02 2.67 33.05 0.00 14.16 28% 30% 1.08 5.64 6.56 18.66 83% 27% 0.14 
361p61 3.3 59.02 24.00 33.05 0.00 14.16 20% 30% 7.73 17.05 23.66 38.13 33% 35% 0.49 

361p67 2.0 59.02 14.00 33.05 0.00 14.16 23% 30% 2.74 32.05 34.40 47.75 83% 44% 0.14 
361p65 2.0 59.02 14.00 33.05 0.00 14.16 23% 30% 2.74 32.05 34.40 47.76 83% 44% 0.14 

(a) Wood chip moisture content is 10% 
(b> 79X Evans' concentrate is 2.41 Molar w .r .t. ammonia and has a density of 1.17 gm/ml. 
(c> does not include sludge water 
(di Oversized reactor requires 250 ml + 20% volume. 
(e) Added inerts required additional bulking agent to maintain 1 .1 /1 ratio. Also % CC Chip ignores additional moisture added for inert solids amendment. 
(f) employed incorrect CC chips (83% instead of 33%). Difference is 27% over intended total moisture; 3.95 gm. over 14.61 gm. 
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