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PREFACE 

This dissertation is a wide-ranging examination of 

the randomization model as applied to the analysis of 

covariance. The focus is on the randomized block design 

with one blocking factor, one treatment factor, and one 

covariate. The study contrasts two sources of randomness, 

the usual source, normally distrib~ted random errors, and 

unit errors arising from the random assigning of treat

ments to experimental units. Examined are two types of 

unit errors, experimen~al unit errors and experimental 

unit-treatment interaction errors. 

We replace the~ Yijk sfj technique with a new 

permutation matrix technique, which is easily adapted to 

other models. We replace the probability of a unit 

receiving a given treatment with the probability of 

selecting a given randomization. This facilitates 

studying unequal selection probabilities. Errors gener

ated for numerical simulations are linearly independent 

of the covariate. The F-distribution analogue of normal 

probability paper facilitates comparison with the case of 

normally distributed random errors. 
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We prove that the randomization distribution of 

several of the usual anova-table terms and estimators 

consists of clusters of values. For experimental unit 

errors, each cluster collapses to a single value for 

several terms and estimators. In the single covariate 

case, the noncentrality parameters for the tests of the 

usual hypoth~ses of adjusted treatment effetts and of 

adjusted covariate are linked. The linkage of the 

noncentrality parameters permits avoiding, for both 

tests, randomizations with low power. 

Also derived is the relationship between the 

Kempthorne and the Neyman definitions of experimental 

unit-treatment interaction errors and the relationship 

required £or two matrices to have identical projectors. 

An open question is the need for, or suitability of, 

the F-distribution as derived from a singular normal 

distribution. Appendix E lists several possible 

extensions. 

A numerical simulation examines the three types of 

error, each with equal and unequal within-block 

variances, and with zero and one nonzero set of treatment 

effects. Computer programs compute all possible 

randomizations for each of the 3x2x2=12 cases. While the 

experimental unit-treatment interaction errors provide 

the F-ratios with a distribution close to the F distribu

tion, the experimental unit errors do not. Nonequality 

of the within-block errors lowers the mean of the 
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F-ratios and their variances. A weighting of the 

selection probabilities appears of little advantage. 

Restricting randomization to the cluster with the largest 

noncentrality parameter for the adjusted covariate proves 

advantageous. For this model, this cluster is the most 

balanced on the covariate. 

This work is designed to rapidly introduce one 

familiar with the general linear model to the terminology 

and topics of the randomization model. To this end, it 

presents concepts from diverse sources in a uniform 

notation, reviews aspects of the general linear model, 

presses the bibliography int6 service as an index to its 

author's cited pages, indexes notation and key terms, 

and has numerous internal references. The trained 

statistician will find the style slow, even verbose and 

repetitious. We hope his/her graduate student will find 

such helpful. 

The discoveries of this dissertation could not have 

been made without the extensive work of others, especially 

Drs. Oscar Kempthorne and S. R. Searle, both of whom 

built up~n the work of many others. Software (SAS 6.07) 

and mainframe (IBM 3090-200S) available in the 1990's 

permitted simulations difficult, if not impossible, 

fifteen or more years ago. My thanks to the anonymous 

doners of the Version 6 SAS manuals. Earlier versions 

of parts of this work have been presented at the Annual 

vi 



Meetings of The American Statistical Assoc.iation of 1988, 

1989, and 1990. 

I thank my parents, Don and Nell Wilson, for their 

support and encouragement. 

I thank the Department and the Graduate College for 

their patience while I financed and completed this work, 

and that outiined in Appendix G. My thanks to Dr. J. 

Leroy Folks for help in securing desk space and for work 

on partial drafts, also to Drs. William D. Warde, Barry 

K. Moser, and Kenneth E. Case for committee work, and to 

John and especially Frances Griffin whose careful 

readings greatly improved the exposition. Being my own 

typist, all errors are my responsibility; Appendix Fis 

an errata page. 

Hypotheses are like nets: 

only he who casts can catch. 

G. R. Dolby 
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CHAPTER I 

INTRODUCTION 

Analysis of covariance combines elements of two 

classical data analysis techniques, analysis of variance, 

and linear regression. The general linear model builds 

from this synthesis. Typically, the errors of such 

models are assumed to be normally distributed, and 

detached from the experimental units used to conduct the 

experiment. Errors attached to the experimental units 

are possible and arise in experimental units which are 

biological in origin. With such errors, the assignment 

of experimental units to treatments becomes important. 

In extreme cases, the assignment chosen may determine the 

outcome of the analysis of the experimental results. 

Some results are known for models without a 

covariate whose errors are attached to the experimental 

units. The randomization test is one example. Another 

is that in the randomized block design, when the treat

ments are zero, the mean of the F-ratio, as averaged 

over all randomizations, equals the first moment of the 

central F distribution. Some asymptotic and simulation 

results are in the literature, as are many papers on 

regression models without a design component. 



Chapter 1.1 Introduction 

R~sults available for models with attached errors 

combining design and regression components, such as the 

analysis of covariance, are few and limited to asymptotic 

results . 

. This work extends what is known about such models 

by examining the randomized block design with a single 

covariate. The work proceeds in three steps. 

The first, Chapter Two, reviews the typical linear 

model, laying out the assumptions, and the estimators and 

tests in matrix and in summation notations. Some new 

results are derived on the noncentrality parameters of 

the hypotheses of interest and on the associated projec

tor matrices. A new proof clarifies the relationship 

between matrices with equal projector matrices. A brief 

review of the origins of the linear model concludes 

Chapter Two. 

The second step develops the model using attached 

errors, the randomization model. Chapter Three derives a 

method to count the number of randomizations flexible 

enough to handle such restrictions as balancing on 

covariates. It replaces the traditional assignment 

probability and delta summation notation with selection 

probability and matrix notation. Two classical types of 

attached error terms are reviewed and related to each 

other. The randomization model, including its probabil

ity space, is developed, then generalized to include 

normally distributed random error. A flexible matrix 

2 
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representation aids this generalization. A section 

expands the definition of the randomization test and 

randomization power computation to include unequal 

selection probabilities. A second matrix notation based 

on permutation matrices is developed. Results are 

derived for projector matrices and noncentrality 

parameters operated on by such permutation matrices. The 

clustering of values of some estimates and of some 

analysis of variance terms under the randomization model 

is proved. A new result links the noncentrality 

parameters of the usual hypotheses of interests for the 

case of a single covariate. 

The final step is the simulation studies of Chapter 

Four. A novel method permits generating the two types of 

attached errors. Means and standard deviations of 

estimators and analysis of variance terms are compared, 

and their histograms are displayed·. The F distribution 

analog of normal probability paper is developed and used 

to contrast the two attached errors with the usual 

normally distributed random error. The effect of unequal 

within-block error variances is investigated. Examined 

is a weighted randomization suggested by D.R. Cox, as is 

restricting randomization to large values of the non

centrality parameter for the adjusted covariate. Graphs 

and displays illustrate results derived in Chapter Three. 

Two conclusions are (1) the usual F-distribution is a 

reasonable approximation to the randomization distribu-

3 
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tion for experimental unit-treatment interaction error, 

but not for experimental unit error and (2) restricting 

randomization to randomizations with the maximum value of 

the noncentrality parameter for the adjusted covariate 

improves estimates and hypothesis tests. 

The permutation matrix techniques, probability 

space, and computer programs herein developed allow 

straightforward investigation of more complicated models, 

for example, models with multiple covariates or factor 

interaction in the design part, models combining types of 

errors, or models with missing values. Easy extensions 

are combining types of errors and examining different 

values for the treatment effects, error variances, and 

covariate. Appendix E collects and discusses the 

extensions mentioned in the.text. Several computer 

programs, written in SAS, and reproduced in Appendix F, 

may be modified for further s_imulation work. 

Principle contributions of this work include a 

compilation of terminology and known results presented in 

a common notation; bibliographies of relevant topics; 

development of new matrix-based methods; new results in 

the clustering of Anova values and estimators, and in the 

relationship between the noncentrality parameters of the 

usual hypotheses, and a new proof of a relationship of 

projector matrices; new methods for numerical simulation 

and analysis of their results; and the results 

themselves. 

4· 
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CHAPTER II 

THE NORMALLY-DISTRIBUTED RANDOM ERRORS MODEL 

Section 2.1 

Introduction 

Chapter Two presents the normally-distributed random 

errors model for the analysis of covariance. Section 2.2 

is an overview of the technique and literature review. 

Sections 2.3 - 2.6 review the model, the estimators, 

tables of sums of squares and tests of hypotheses. A 

numerical example comprises Section 2.7. Section 2.8 

proves a theorem on projectors and has a brief literature 

review of generalized inverses. Section 2.9 is a summary 

of the early concepts of what is today the error term in 

the model equation; it concludes Chapter 2. 

This chapter introduces the notation and develops 

the "Model X", the projectors and the non-centrality 

parameters for the hypotheses of interest. Chapter Three 

builds upon and contrasts the results of this chapter. 

We begin by introducing some terminology in the context 

of two examples. The first appearance of a term, or when 

it is defined, is noted by underscoring the term and, 

when several pages are referenced, underscoring this page 

number in the index. 

5 
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Section 2.2 

Overview of the Analysis of Covariance 

Two hypothetical experimental situations introduce 

the use and terminology of the analysis of covariance in 

a blocked design. Of importance are the two hypotheses 

of interest. A literature review completes this section. 

2.2.1 Two Motivating Examples 

Scientific experiments examine the effects of 

different conditions or variables upon a measurable 

response of a system or outcome of an experiment. When 

the conditions or variables are nominal values labeling 

the types of conditiQns being examined, then the vari

ables are termed factors. When the variables take values 

which may be continuous along the real number line, then 

the variables are termed covariates. The techniques of 

analysis of covariance permit combining both types of 

variables in the same theoretical framework. 

A typical use of analysis of covariance in a design

ed experiment is the study of various feed additives as 

cattle growth promoters. Analysis of covariance 

considers the final weight of the animal as the response 

variable, the various additives as discrete levels of one 

factor and initial animal weight as a continuous covar

iate. Cattle breeds are a second factor, treated as a 

blocking variable, with one level per breed. This 
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designed experiment focuses on the effects of the addi

tives, a factor, upon final animal weight, the response. 

Within ea6h breed or level of the blocking variable, the 

animals are assigned to each feed additive at random. 

The blocking variable and the covariate are not of 

interest, but are included in the analysis to remove 

sources of variation that are costly or impossible to 

remove prior to the experiment. As the assignment of an 

animal to a feed additive is within the control of the 

experimentor, this is a designed experiment. 

An example of an observational study is an exami

nation of wages and job seniority. Within each of 

several cities, the wage earners in designated sectors of 

the economy are sampled at raridom and found to have 

various years of seniority and wages. The analysis of 

covariance considers the wages as the dependent variable, 

sectors of the economy as levels of one factor and 

seniority as a continuous covariate. Each city is a 

level of a second factor, treated as a blocking variable. 

-
This study focuses upon the effect of seniority, the 

covariate, upon wages. The two factors of cities and 

s.ector of economy are not of interest, but are included 

to remove variation in the obtained sample, As the 

assignment of a wage earner to a sector of the economy is 

not under the control of the experimentor, this is an 

observational study, not a designed experiment [Hocking, 

1982, p. 560; Cox and Mccullagh, 1982, p. 541). The term 
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dependent variable, often used in place of response 

variable, gives the impression that the causal variables 

are known to be the blocks, factors and covariates under 

study. Seldom is this the case. For this r~ason, we use 

the term response throughout. 

A treatment is a "combination of stimuli or operations 

[factor levels] imposed by the experimenter" [Wilk, 1957, 

p.220). An example is that of feed additives. When there 

is but one factor, each level of the factor is also a 

treatment. An experimental unit is the largest group of 

experimental material to which a treatment is assigned in 

a single trial of the experiment [Snedecor and Cochran, 

1967, Ed. 6, p. 15). In this example, each animal is an 

experi•ental unit. Observational studies consider the 

discovered "treatment" as h~ving been assigned to their 

randomly selected subjects (experimental units). An 

example is the sector of the economy "assigned" to each 

wage earner. 

A typical designed experiment assigns a discrete 

factor level to the experimental unit, but uses as a 

covariate a continuous variable permanently affixed to 

the experimental unit. However, the reverse may hold; 

the continuous variable may be assigned and the discrete 

factor level may be permanently affixed [Holland, 1986, 

p. 945). Throughout we assume that the continuous vari

ables are permanently affixed to the experimental units 
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and measured without error and that the discrete factor 

levels are assigned at random to the experimental units. 

Technically speaking, a blocking variable is a 

factor; like a factor, it has levels, but for blocking 

variables, the levels typically are termed "blocks." 

Random assigning of treatments to experimental units 

takes place within each block of the blocking variable. 

Hence, the experimental design is termed a completely 

randomized block design, or, equivalently, a randomized 

block design. A second difference between factors and 

levels of the blocking variable is that the experiment 

focuses on the factors, not on the blocking variable(s). 

Blocking variables are intended to isolate sources of 

variation which could not be eliminated from the 

experiment or sampled population. 

«'', 
'The hypothesis of interest in the first example is 

that of the treatments (feed additives) adjusted for the 

mean, blocks and covariate (initial animal weight). The 

hypothesis of interest in the second example is that of 

the covariate (seniority) adjusted for the mean, blocks, 

and treatments (sector of the economy). The term 

"adjusted for the blocks" replaces the more lengthly 

"adjusted for the levels of the blocking variable(s)." 

The more general experimental situation may have multiple 

blocking variables; multiple factors, each with its own 

number of levels; interactions among factors; multiple 
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covariates; interaction among the covariates; covariate 

coefficients differing among the levels of one or more 

factors; and (infrequently) interactions among the fac

tors and the covariates. This work examines, in the main, 

only the most elementary of these cases, that is, one 

blocking variable, one factor and one or more covariates. 

2.2.2 Uses of Analysis of Covariance 

Cochran [1957, p. 262-267 J further discusses this 

list of the most important uses of analysis of covariance 

1. To increase precision in randomized experiments. 

2. To remove the effects of disturbing variables in 

observational studies. 

3. To throw light on the nature of treatment effects. 

4. To fit regressions in multiple classification. 

5. To analyze data when some observations are missing. 

A similar list is in Steel and Torrie [1980, p. 401). The 

two hypotheses of interest discussed in Section 2.2.1 

illustrate, respectively, uses three and two. This paper 

does not discuss uses four or five. Cox and Mccullagh 

[198~, p. 541-5421 offer a more technical list, with com

ponents of covariance and canonical regression analysis. 
. -

2.2.3 Literature Review - Analysis of Covariance 

Most published works on the analysis of covariance 

use the normally-distributed random errors model. This 

model assumes an infinite population of random errors. 

Older textbooks and papers use summation notation. 
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Kempthorne [1952, p. 98-103] shows the derivation of the 

equations, in summation notation, used to analyze a 

rartdomized block design with one factor of interest and 

one covariate. Cochran [1957] provides a clearly-written 

derivation of formulas and review. Ostle's numerical 

examples [1963, Ch. 14, p. 410-465] detail the use of a 

covariate in several experimental designs, including the 

randomized block design with one covariate. Snedecor and 

Cochran [1967, Ch. 14, p. 419-446] detail the numerical 

calculations for one- and two-way classification designs 

with one and two covariates. Wildt and Ahtola [1978, p. 

58-69] provide numerical examples of several designs, 

including the randomized block design with one factor of 

interest and one covariate. Steel and Torrie [1980, Ch. 

17, 401-437] have a good discussion of the uses and 

assumptions of the analysis of covariance. Numerical 

examples show the use of one and two covariates in a 

randomized block design. Ott [1988, Ch. 18, p. 676-681] 

casts the treatment variables as zero-one dummy variables 

and discusses the computer output from such a regression

based analysis. DeLury [1948] provides a real-data 

example of a treatment affecting a covariate measurement. 

More modern and advanced publications use matrix 

notation instead of the older summation notation. The 

introductory text by Neter, Wasserman and Kutner [1990, 

Ch. 23, p. 861-906] includes numerical examples with cal

culations for one- and two-way classifications with one 



Chapter 2.2 Overview 12 

covariate. They present sufficient matrix alqebra for 

the calculations. The.advanced treatment of Searle 

[1987, Ch. 11~ p. 416-4561 is one of, if not the, most 

extensive textbooks on this topic. He compares the sum

mation and matrix notations, centered and noncentered co

variates and various hypotheses. Included are the mean 

model and one- and two-way classifications, both with 

one and two covariates, but without numerical computa

tions. Other chapters discuss unequal cell counts, the 

mean model, interpretation of output from several compu

ter packages and other textbooks [p. 242]. Searle's 

earlier text [19711 provides an extensive theoretical 

development of the general linear model, including the 

overparameterized, non-full-rank case. This earlier work 

discusses the analysis of covariance [p. 240-3611 and 

includes a numerical e~ample of the computations for a 

one-way classification with one covariate. Seber [1977, 

Ch. 101 uses both summation and matrix notation for the 

randomized block design. He discusses the results of Hsu 

[1938] and Atiqullah [1964] applicable to quadratic forms 

with vectors not normally distributed. A second work by 

Seber [1980, p. 61-651 discusses the nested nature of the 

hypotheses of interest. He uses projector matrices and 

intersections of linear spaces for much of his theoreti

cal development, as does Scheffe [1959]. Graybill [19761 

thoroughly develops the general linear model using matrix 

notation, but his discussion of the analysis of covariance 
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is brief [p. 283-297]. c. R. Rao [1973, p. 288-294] has 

a brief discussion of the analysis of covariance using 

matrix notation and a numerical example. Morrison [1983, 

p.122-131] concentrates upon regression, but also 

discusses the noncentrality parameter. He includes an 

example of sample size determination. c. R. Rao [1975, 

p. 475-487] discusses the case of a variance-covariance 

matrix which is not positive definite, as does Searle 

[1971, p. 221-224]. 

Searle [1982] and Graybill [1983] provide matrix 

algebra textbooks designed for students of statistics. 

Either textbook presents a solid foundation for the 

advanced texts mentioned above. 

Beyond such texts there is a vast literature. Two 

entire issues of Bio•etrics [Vol. 13, 1957 and Vol. 38, 

1983] discuss the analysis of covariance. Cox and 

Mccullagh and discussants [19821 provide a review inclu

ding a brief history of the technique. They use matrix 

notation. A comment by Hocking [1982, p. 558-5611 adds 

the use of the hat matrix [Hoaglin and Welsch, 1978] as a 

di~gnostic tool and cautions about the interpretation of 

computer-provided estimated treatment effects. Herein, 

the hat matrix is termed the projector of the matrix X. 
\ 

Henderson [1982] detaili the assumptions of the normally-

distributed random-errors model [p. 623-624] and 

discusses the more realistic case of a mixed model; our 

model equation parameters are assumed to be fixed. 
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Bingham and Fienberg [1982] discuss two numerator sums of 

squares in the F-test for adjusted treatment effects when 

block x treatment interaction terms are considered 

nonsignificant. Their hierarchical method places them in 

the treatment sum of squares. This paper uses the usual 

method and enters this interaction as the, or as part of 

the, error term. When there is but one experimental unit 

per treatment per block, the block x treatment 

interaction is the error term. When there are multiple 

experimental units per treatment per block, the block x 

treatment interaction may be tested for statistical 

significance. This paper does not consider such tests. 

We turn now to the model for the analysis of 

covariance, using both .matrix and summation notation for 

the model equation. 
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Section 2.3 

The General Linear Model for 

the Analysis of Covariance 

This section presents the model, that is, the model 

equation, the assumptions and the probability space, for 

the analysis of covariance. 

The first sub-section begins with the general linear 

model in matrix notation, then restricts it by stages 

until achieving a model similar to the usual summation 

notation model for the case.of one blocking variable, one 

factor and one covariate. The second sub-section 

presents the model equation in summation notation. 

The matrix notation is adopted from Searle [1971, 

p. 340-3611 and Cox and Mccullagh [1982, p.543]. 

Henderson [1982, p. 623-6241 presents a detailed list of 

assumptions, most of which·are. incorporated in 

Assumptions 1 - 8, presented in Section 2.3. 

Of primary importance are the matrix-notation model 

equation and partitioning of (2.3.4) and (2.3.5), (p.17), 

the summation-notation model equation of (2.3.8), (p.23), 

and the discussion ending Section 2.3.2. 
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2.3.1 The Model in Matrix Notation 

Beginning with the general linear model, define 

n the number of experimental units, 

Y then x 1 vector whose elements are 

yields or responses, 

p' the number of columns of x+, p' < n, 

x+ then x p' model matrix whose 

elements are explanatory variables, 

~+ the p' x 1 vector of model equation 

parameters and 

then x 1 vector whose elements are 

random errors. 

The most general model equation is 

(2.3.1) 

At this stage the assumptions are Assumptions 1-4*, 

1. The model equation is correct, that is, 

the model matrix x+ contains the correct 

variables and/or the proper functions of these 

variables, such as logs or squares, 

2. The errors are distributed normally, 

each with mean O, 

3*. The errors have variance-covariance 

matrix v~2 ; with~ unknown, and V (nxn), 

known and positive definite, 
4*. The elements of x+ are known constants, 

measured without error. 
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Assumptions 3* and 4*, marked with an asterisk, are 

modified below. 

The probability space for the random variable Eis 

the triple, C ~, . 'if1, Nn C ID, vcr2 ) ) , ( 2 . 3 . 2 ) 

with Rfl then-dimensional set of real numbers, rEf1 the 

n-dimensional er-field of Borel sets of real numbers and 

Nn(.,.) then-dimensional multivariate normal 

distribution. 

When x+ lacks full column .rank the generalized 

inverse cx+,x+)- is not unique; thus, neither is the 

rank, the unique solution is termed an estimator and 

denoted ;+o. The estimator ;+o, or a solution ,+o, 

"' [Searle, 1971, p. 80 and 169) defines E, the estimator 

for E, which is then x 1 vector of residuals 

E = ( 2 • 3 • 3 ) 

The last equality follows from the discussion below 

"' (2.8.5), (p. 76). The distribution of the residuals, E, 

is the singular normal distribution. The usual 

estimators of E and Yanda result in generalized 

... 
inverses [Searle, 1971, p. 20], shows E to have a form 

which characterizes the singular normal.distribution. 
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The following form characterizes the singular normal 

distribution. For clarity, X temporarily replaces x+. 
A A A 

E - Y - Y = x, + E - x, 

= x, + E - X[ (X'X)-X'Y] 

= x, + E - xcx•x,-x•cx, + El 

=Xii+ E - [X(X'X)-X'Xl, - [X(X'X)-X']E 

= x, + E - XP - [ X( X' X) - X' ] E 

= [J[ - X(X'X)-X']E 

= [l+ [Jt- X(X'X)-X']t 

= [l + ILE, whe·re IL = [ Jt - XC X' X) -x, ] . 

When E has the normal distribution with mean zero and 

variance ~2 Jt, and ILIL' lacks full rank, this form charac

terizes the singular normal distribution, as given by 

Anderson and cited by Searle [1971, p. 66-72]. Since IL 

is idempotent and IL~Jt, IL lacks full rank; thus, so does 

A 

IL'IL. Thus, E has the singular normal distribution here 

with ·mean of zero and· var iance-covar lance matrix of ILIL' ~2. 

To partition the model matrix x+ into an nxp design 

or incidence matrix X, with discrete elements and an nxq 

matrix of covariates z, with continuous elements, replace 

Assumption 4* with 

Assumption 4 

The columns of the design matrix X are causally 

and linearly independent of the columns of the 

matrix of covariates Z; all elements of both 

matrices are known constants, measured without 

error. The matrix Z has full column rank, q. 
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See Henderson [1982, p. 623-6241 for a disc~ssion 

of a mixed model when Assumption 4 does not hold. 

This partitioning gives 

x+ = [ X I Z ] , ~+ = [ ; ] and the model equation 

Y = X7 + Z~ + €. C 2 • 3 • 4 ) 

The randomized block design further partitions X and 7 

as I: = [ ii:_. I l:i, I 1:7 ] and T = [ f ] . C 2 • 3 • 5 ) 

Note the reuse of 7 as the treatments part of the vector 

of design or incident coefficients. The context will 

make clear the meaning of 7. The matrix X~ is then x 1 

column vector of ones, '51.. The matrices ~ and X7 are the 

design or incident matrices for, respectively, the block 

and treatment effects; they are assumed to be constructed 

so as to be orthogonal to each other and to X~. 

This paper considers the treatments as having been 

relabeled into one new factor with a number of levels 

1equal to the number of treatments. Discussion of the 

original factors and their interactions is an extension. 

Much of the following restricts the model to one 

having full column rank in each of the partitions of X, 

Xb and X7 . As discussed in Section 2.8.2, (p. 76), 

below, many such restrictions are possible. For compar

ability with the summation notation and ease of interpre

tation, we select the "usual constraints," which are 

usual and useful only in limited cases such as this 
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balanced design [Searle, 1971, p.209-220]. · Consideration 

of unbalanced models, such as the unbalanced mean model, 

is an extension. Limitation to this effects model gives 

Assumption S, 

Restrict the model so that ~'b = ~1 7 = O, 

and constrain the estimators so that 

~ A A 

~·b = ~ 1 7 = 0. For 7 and 7 these sums 

hold within each block. Require an equal 

number of observations for each treatment 

within each block. 

With b levels of the blocking variable and t treatments, 

Assumption 5 results in Xb being n x (b-1), X7 being n x 

(t-1) and X having rank p = 1 + (b-1) + (t-1). The 

vectors band 7 have dimensions, respectively, (b-1) x 1 

and ( t-1) x 1. Each element of Xb and X7 is one of O, 

1, or -1. The partitions of (2.3.5) are mutually 

orthogonal; in particular, XbX7 = o. These are the 

effects versions of Xt, and X7 , as in the left-hand matrix 

of (2.8.2), (p. 74). 

A further limitation on the models considered is 

Assumption 6: 

The covariate slope coefficient(s) of ~ 

have the same value for each treatment. 

This assumption details Assumption 1 by excluding the 

case of a separate slope for each level of the treatment. 
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The randomized block design adds Assumptions 7 and 8, 

Assumption 7: 

There is no interaction between the blocks 

and the treatments. Any which appears in the 

estimation procedures is considered to be 

residual error. 

This assumption provides an error term when there is but 

one observation per treatment per block. When there are 

multiple observations, the presence of block x treatment 

interaction may be tested, but is not in this paper. If 

the interaction is not statistically significant, it 

typically is considered as part of the residual error. 

See Bingham and Fienberg [1982] for an argument to 

consider it as part of the treatment sum of squares. 

Assumption .8: 

Randomization occurs independently within 

each level of the blocking variable. 

Thornett [1982, p. 138] posits that the assignment of 

experimental units to treatments should be independent of 

the responses. He then proves that a procedure involving 

equally likely (uniform probability) randomization is 

virtually essential-in obtaining such independence [his 

Theorem 3, p. 140]. The only role that randomization 

plays in the normally distributed random errors model is 

that randomization necessarily follows from this sound 

experimental practice. Hooper [1989, p. 578-579] 

suggests an alternative conditional interpretation of the 
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usual hypotheses using a weaker condition. 

The normally distributed random errors model is 

conditioned on the randomization used to conduct the 

experiment. However, this model treats the errors as 

detached from and unaffected by the experimental units 

and/or the treatments they receive. Thus, the condition

al distribution of the errors, given the randomization, 

reduces to the distribution of the errors alone. 

2.3.2 Summation Form of the Model Equation 

The experimental design having one blocking variable, 

one factor, one covariate and one experimental unit per 

treatment has the model equation, in summation form, of 

* J1 

with 

-
+ b i + 7 k + ~ ( z i k - z . . ) + s: i k ( 2 . 3 . 6 ) 

i = 1, •.• , b levels (or blocks) of 

the blocking variable, 

k = 1, ... , t l.evels (or treatments) 

of the single factor, 

* overall J1 = an mean, 

bi = the block effect for block i, 

'Tk = the treatment effect for level k, 

~ = covariate slope coefficient, 
constant for all treatments 'Tk' 

zik = covariate of the experimental unit 
in block i assigned to treatment k, 

b t 
z .. = (1/bt):E :E zik, and 

i k 

s:ik = error for the experimental unit 
of block i and treatment k. 
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Assumption 5, in summation notation, is 

5. Restrict the model so that 

b t 
I: b. = 0 and I: 'Tk = o, 

i=l l k=l 

and constrain the estimators so that 

b .... t .... 
I: b· = 0 and I: 'Tk = o, 

i=l l k=l 

and assign the same number of experimental 

units to each treatment in each block. 

Subsequent numerical examples use one experimental unit 

per treatment per block. 

The standard matrix notation does not center the 

covariate variable about its mean. By redefining the 

mean of the summation model equation as 

* JJ. = JJ. - 13Z ( 2 • 3 • 7 ) 

the model equation of (2.3.6) becomes 

= ( 2 . 3 . 8 ) 

* It is the JJ. of (2.3.8), not the JJ. of (2.3.6), which 

corresponds to the JJ. element of (2.3.5), (p. 19). See 

Searle [1987, p. 438-441] for further discussion of the 

differences between the matrix and summation model 

~quations (2.3.5) and (2.3.6). 

Let ij denote the jth experimental unit in the ith 

block. The covariate values Zij are attached to the ijth 

experimental unit, but, for one experimental unit per 

treatment and after the assignment of treatments, the 

covariate values may be identified by the treatment 
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applied. Thus, the literature and (2.3.8) use Zik 

instead of Zij· For any number of experimental units per 

treatment, the covariates are to be combined on the basis 

of the treatments they receive, thus, the ik subscripting 

is more convenient. (See Section 2.5, (p. 33), and 

(2.4.29), (p. 32).) 

The summation model considers the ~ik to be 

independently distributed with identical variances. For 

this, Assumption 3* becomes 

Assumption 3. The errors have variance 

covariance matrix x~2 with ~2 unknown. 

We adopt this assumption for the matrix model equation. 

Use of the more general variance-covariance matrix Vis 

an extension. 

Note that Assumption 8, independent randomization 

within each level of the blocking variable, is nowhere 

used in the model equation, in the probability space, or 

in other assumptions. Also, the label identifying the 

experimental unit, ij, has everywhere been replaced by 

ik. The identity of the individual experimental unit has 

been lost; only its block and treatment membership is 

retained. These two aspects set off the normally 

distributed random errors model from the model of Chapter 

Three. 

We next examine the matrix and summation formulas 

for the estimators of the model equation parameters. 
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Section 2.4 

Estimators 

Section 2.4 presents the estimators typically of 

interest in the analysis of covariance. The first sub

section sketches their derivation in matrix notation. 

The second develops the "model X". The final sub-section 

displays the estimators in summation notation. 

Of importance are the model X residuals (2.4.10), 

(p. 28), the product of (2.4.13b), (p. 29), the estima

tors of (2.4.19-2.4.22 and 2.4.24), (p. 30-31), and 

their summation versions in ( 2. 4. 27-2. 4. 29), ( p. 32). 

2.4.1 Sketch of Derivation in Matrix Notation 

.One task of the experiment is to estimate functions 

of the elements of the vectors T and, and the statisti

c~l precision of these estimates, which requires 

estimating 2 t:; • Initiated by Legendre [1806], Adrian 

[1808] and Gauss [1809], the method of least squares 

provides the minimum variance unbiased estimators for T 

and , under the normally distributed random errors model. 

These estimators follow from the expectation of (2.3.4), 

(p. 19), 

( 2 . 4 . 1 ) 

by the usual calculus method of minimization. That is, 

one equates the first derivative of the sum of the 

squared errors, s:' s:, &(s:'s:), to zero and shows the 
&[ ; ] 
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second derivative (equal to the leftmost bracketed term 

of (2.4.2)) to be positive definite. Assumptions 4 and 5 

ensure that [XI ZJ is of full column rank, p + q. 

Applying Corollary 1.4.2 (3) of Graybill, [1976, p. 221 

to CX I ZJ proves the second derivative to be positive 

definite. When X does not have full column rank, it is 

only the estimable functions of ~+ which have minimum 

variance for any generalized invers~ of X. See Searle, 

1971, p. 182. The least squares equations corresponding 

to (2.4.1) are 

X'Z 
Z'Z ] [ ;~ ] = 

·f X'Y 1 
l Z'Y J ( 2 . 4 . 2 ) 

Multiplying by the inverse and solving directly for 

T and by substitution for~ gives the solutions of the 

least squares equation (2.4.2), which in the case of a 

full rank X matrix, are also estimators. They are 

( X' X) -x, z~o 

= {Z'~Z}-l {Z'~Y} 

= { [ ~Z] I [ ~Z] } -1 [ ~Z] I y 

= { IRz'IRz }-1 !Rz'Y' 

and, 

where ~ = X - XC X' X) -lx, and 1Rz = IP'XZ. 

( 2 . 4 • 3 ) 

( 2 . 4 . 4 ) 

( 2 . 4 . 5 ) 

( 2 . 4 . 6 ) 

(2.4.7) 

By the symmetry and idempotency of !Rx, Z' 1RxZ = 

( 1RxZ) ' ( 1RxZ), with rank ( Z' ~Z) = rank ( ~Z) [ Graybi 11, 

1976, p. 6, Theorem 1.2.211. Assumption 4, linear 
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independence of X and Z, (p. 18), ensures that fRxZ has 

full column rank q. Hence the rank of the q x q matrix 

Z'fRxZ is q and its inverse exists. Likewise, the full 

column rank of Z ensures the existence of the inverse of 

Z'Z. 
.... 0 .... 

Thus P_, or for short P, is the unique solution, so 

denoted by a hat ("). Under Assumption 5, (p. 20), 

(X'X)-1 exists, making ;o the unique solution . 

.... 0 
By (2.4.5), p is also the least squares estimator 

for pin the model equation 

Y = (fRxZ)P + s: = ( 2 • 4 . 8 ) 

2. 4. 2 The "Model X" 

The "model X" provides an alternative to (2.4.2) and 

is useful for the covariance model. See Searle [1971, p. 

342-3431, Cox and Mccullagh [1982, p. 543-5441 and 

Zyskind, et al. [1964, p.139-141] for discussions of this 

model. From each column of Z, Zg, one obtains the 

"residuals" one would obtain under the "model X" 

2g = X'T' + s: , g = 1, 2, . . . , q. 

For each of the q covariates, first obtain the least 

.... 
squares estimate of Zg, Zg, 

, ( 2 • 4 . 9 ) 
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and then the "residuals" 

... 
!Rz,g = Zg- Zg = Zg- X-rg = Zg- [ X( X' X) -x,] 2g 

= [][ - X(X'X)-X' lZg = ~Zg . (2.4.10) 

Making an n x q matrix from.the q vectors ~Zg gives 

(2.4.11) 

Because of Assumption 4, that the covariates of Z 

are causally unrelated to the treatment variables of X, 

(p. 18), no one would actually compute these "residuals." 

Furthermore, the -r9, differ with each of the g=l,2, ... ,q 

covariates, Zg· The line above equation (2.4.10) has the 

shape or for• of the definition of residuals, as in egua

t i on ( 2 . 3 . 3 ) , ( p . 1 7 ) , when the ~ + 0 or 11 + 0 of ( 2 . 3 . 3 ) is 

written as (X'X)-X'Y. These residuals, !Rz,g' are the 

formal residuals under the "model X". 

Next, to (2.4.1) add and subtract X(X'X)-X'Zt1, 

giving 

E(Y) = X-r + Zt1 + X(X'X) X'Zt1 - X(X'X) X'Zt1 

= X-r + X(X'X) X'Zt1 + ( ][ - X(X'X) X ]Zt1 

= XC -r + ( X' X) X' Zt1 l + ~Zt1 

= [ X I ~z ] [ ;* ] , ( 2. 4. 12) 

* where -r = -r + (X'X)-X'z, (2.4.13a) 
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The least squares equations for (2.4.12) are derived 

as were those of (2.4.1), ( p. 25), and are 

[ X'X X' !R,cZ ] [ * ] [ X'Y ] 'T = 
Z' !R,cX Z' !R,cZ 13 Z' !R,cY 

By the Corollary of p. 20 of Searle (19711, 

X' IR,c = [ X' - X' X( X' X) -X' ] = [ X' - X' l = o, 

as does X' 1P-z and their transposes. (2.4.13b) 

Hence, the least squares equation for (2.4.12) becomes 

[ x~x 0 ] [ ;* ] = [ X'Y ] 
Z' !R,cZ Z' !R,cY . ( 2. 4. 14) 

The solution of (2.4.14) provides another estimate 

for -r. Typically, the analysis of covariance has multiple 

estimators (or solutions) for the model equation para

meters-rand 13 depending upon what other parameters are 

in the model equation used to derive the estimator. To 

distinguish these various estimators, we subscript each 

estimator with the parameters used in the model equation 

which provided the estimation. The estimated parameter 

is always included in this·equation, so the parameter 

being estimated is always repeated as a subscript. 

Under Assumption S, that (X'X)-1 exists, (p. 20), 

the solution is unique and the estimators (in a shorthand 

notation) are 

""* (X'X)-l:g,y, and (2.4.15) 'T 'T = 'T 'T = 
A 

{Z'!R,cZ}-l 13-r,13 = { Z' 1R,c Y} (2.4.16) 

= { IP-z I IP-z }-1 IP-z I y (2.4.17) 

= ""o by (2.4.6). 13 'T, 13 I 
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Substituting into (2.4.3) gives 

""* .,. -.,. ( X' X) -lg, z;o 
I"" 'TI l3 I 

or in brief, 

(2.4.18) 

The estimate for.,. ignoring the covariates is, in the 

.,., .,., 
more brief notation, .,. .,., while .,. .,., 13 adjusts for the 

covariates. 

For the randomized block design using Assumption 5, 

(p. 20), and the partitioning of (2.3.5), (p. 19), the 

brief notation for the above estimators is 

.,., 
(X'X)- 1 X1 Y .,.JJ.,b,.,. = (2.4.19) 

.,., 
{Z' ~Z}-l 13JJ.,b,.,.,13 = { Z' ~ Y} (2.4.20) 

= {!Rz'!Rz}-1 IRz 'Y ( 2. 4. 21) 

.... "' cx•x)-lx,z~JJ.,b,.,.,13 .,. = .,. . (2.4.22) JJ., 13, .,., 13 JJ.,b,'T -

The first, (2.4.19), estimates the treatment effects 

after adjusting for the mean and the blocking variable(s) 

only. The last, (2.4.22), estimates the treatment 

effects after adjusting for the mean, the blocking 

variable(s) and covariate(s). 

A reduced model omitting the treatment parameters, 

the elements of.,., estimates 13 adjusted for the mean and 

blocks but not the treatment effects. This model 

equation is 

Y = [ XJJ. I ~ l [ ~ J + Zl3 + s: • (2.4.23) 



Chapter 2.4 Estimators 31 

As with (2.4.1), (p. 25), one may apply the "model X" to 

this model equation and compute a residual matrix 

corresponding to tRz, denoted~' which adjusts only for 

the mean and the blocks, not the treatments. The least 

squares estimator, ~JJ.,b,~' is found as above and is 

(2.4.24) 

From (2.4.9), (p. 27), we see that (X'X)-X'Zg is the 

matrix with columns of 'T~, one per lg, from the "model 

X". Then x q matrix tRz is the residual from the 

multivariate model 

z = XT + E (2.4.25) 

where T = C 'T , 'T , • • • , 'T l , 

('T repeated q times), p x q, and 

E = the multivariate equivalent of E. 

Each column of Tis estimated separately using one column 

" of z, then recombined to form T, giving 

" !Rz=Z-XT. . (2.4.26) 

2.4.3 Estimators in Summation Notation 

The following equations compare the summation and 

matrix notations for the estimators of interest, 

equations (2.4.21), (p. 30), through (2.4.22), (p. 31). 

See Kempthorne (1952, p. 97-1031 or Cochran (19571 for 

the derivation of these terms using summation notation. 
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The estimate of I=' adjusted for the estimated mean, 

blocks and treatment effects is 

(2.4.27) 

Section 2.5 defines the righthand side of (2.4.27). 

A 

Under Assumption 6, (constant I=' for all treatments), i== is 

the pooled within-class regression estimate. 

The estimate of Tk without adjustment for the 

covariate is 

(2.4.28) 

The estimate of Tk adjusted for the estimated covariate is 

A A A - -

7 k i JL I b 1 'T I I=' = 7 k i JL I b I T - I=' JL I b I T I I=' ( Z • k - Z • • ) ' (2.4.29) 

The SSRyz term of (2.4.27) corresponds to the matrix 

term Z'fR:zY, and the SSRzz term corresponds to the matrix 

term Z'fR:zZ, both of (2.4.20). Equation (2.4.28) 

corresponds to the matrix notation of (2.4.19), (p. 30), 

substituting summation notation for the elements of X'X. 

The diagonal elements of X'X, once inverted, provide the 

divisors of (2.4.28). The product X'Y provides the 

summations. Likewise, the product of X'Z of (2.4.22) 

- -
provides the summations for zk. and z •. of (2.4.29), 

while the (X'X)-1 provides the divisors. 

Next we examine the sums of squares tables. 
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section 2.5 

Sums of Squares Tables 

Section 2.5.3 presents analysis of variance tables, 

one in matrix nota,tion, the other in summation notation. 

The first sub-sections discuss the notation used in 

the tables. 

The analysis of covariance typically presents two 

analysis of variance tables, one for the treatments 

adjusted for the covariates, and one for the covariates 

adjusted for the treatments. Table 2.5.1 combines these 

two tables and shows in matrix notation the formulas 

used to compute the_sums of squares column. Table 2.5.2 

does the same for the summation notation. Both tables 

use the R (. 1.) notation discussed in Appendix B, ( p. 384). 

Table 2.5.1 follows Searle (1971, Tables 8.3a and 8.3b, 

p. 344-345]. Table 2.5.2 follows Searle (1971, Tables 

8.4a and 8.4b, p. 351-3521; both tables use Ostle (1954, 

p. 394]. The two tables provide identical numerical 

values for the example of Section 2.7 and the simulations 

of Chapter 4. 

2.5.1 Matrix Notation 

The sum of squares due to treatments, plus the sum 

of squares due to covariates adjusted for the treatments 

(both adjusted for the mean and the blocks) is R(tlp,b) + 

R(~IP,b,t). This sum equals the sum of squares due to 

covariates, plus the sum of squares due to treatments 
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adjusted for the covariates (both adjusted for the mean 

and blocks), RC,lp,b) + R(tlp,b,,), so the two pairs have 

the same sum. Typically, one finds the numerical value 

of the term R(tlp,b,,) by the subtraction 

R(tlp,b,~) = [ R(tlp,b) + R(~lp,b,t) l - R(~lp,b). 

The matrix notation, Table 2.5.1, shows two methods 

of deriving the sums of squares for the adjusted 

covariate terms. One uses the projector tRzCIR.z'IR.z)-Rz'; 

the other uses the R( • t·) notation. Similarly, two 

methods are shown for the unadjusted covariate term. 

Examination of the model X derivation of Rz, (p. 28), 

(and~, (p. 31)), appears to show that the effects of 

the discrete variables are removed before computing the 

quadratic form. The second method, using R( ·, ·, ···), 

computes _two quadratic forms and then uses the second 

quadratic form to subtract the effect of the discrete 

vi~iables from the first quadratic form. 
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2.5.2 Summation Notation 

The sums of squares and cross products in 

summation notation are (2.5.1) 

total 
SSTot 

mean 

SSM 

blocks 

SSB = 
1 

t 

I 

I 

treatments 

SST = 
1 

b 
and 

residual 

SSR = 

= 

(SSTot - SSM 

-(SST - SSM ) . . . 

SSTot SSB 

- (SSB - SSM 

- SST + SSM .• I 

where each dot C •) is replaced by the appropriate 

subscript, y or z, as shown in Table 2.5.2. Here, the 

dot C •) indicates replacement by y or z, not averaging 

over a subscript. 
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Note that SSRYY of the summation notation does not 

equal the SSR of the matrix notation. The later is 

SSR = total - R(~) - R(bt~) 

- one of { [ R(t 1~,b) + RC Fl~,b,t) or 

[ R(tl~,b,F) + R(Fl~,b) l } 

= Y'Y - R(~,b,7,F) 

( 2 . 5 . 2 ) 

The two terms within braces, {}, are equal. A similar 

subtraction provides the degrees of freedom for the 

residual sum of squares. 

The term R(FIP,b) is more easily understood as 

(2.5.3) 

-irhe numerator is a SSRyz term and the denominator is a 

SSRzz term for a model equation without the treatment 

effects. The form is the same as the sum of squares term 

for the covariate after the mean, blocks and treatments, 

R(FIP,b,7). Both summation forms correspond to the 

respective matrix forms using tRz and~-

In Table 2.5.1, the total uncorrected sum of squares 

is written in a form which emphasizes that it too is a 

quadratic form. 

In the section following the tables, we examine, in 

some detail, the formulas used in hypothesis testing. 
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2.5.3 Tables of Sums of Squares 

TABLE 2.5.1 

COMBINED ANALYSIS OF VARIANCE TABLE -- MATRIX NOTATION 

Source of Variation 

Total corrected 
for the mean ( J.L) 

Blocks after the 
mean (blJ.L) 

Treatments and 
interactions after the 
mean and blocks (tlJ.L,b) 

Covariates after the 
mean, blocks, treatments 
and interactions (131J.L,b,t) 

Covariates after the 
mean and blocks (131J.L,b) 

Treatments and inter
actions after the mean, 
blocks and covariates 
Ct IJ.L,b, 13) 

d.f. Sum of Squares 

n-1 Y'{X (X' X )-1 x 1 }Y 
-Y'{X (X 'X )-lx '}Y 

J,L J,L J,L J,L 

b-1 

t-1 

q 

= total - R(J.L) 

R(J.L,b) - R(J.L) 
= R(blJ.L) 

R(J.L,b,t) - R(J.L,b) 
= R(t IJ.L,b) 

Y' { tRz ( tRz I IP-z) -1 tRz I } y 

or R(J.L,b,t, 13) 
- R(J.L,b,t) 

= R(l31J.L,b,t) 

g Y'{~~(~~·~~)-llP~'}Y 
or R(J.L,b,13)-R(J.L,b) 

= R(l31J.L,b) 

t-1 R(J.L,b,t,~) 
- R(J.L,b, 13) 

= R(tlJ.L,b,13) 

Residual n-p-q SSR 
(by subtraction) 
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TABLE 2.5.2 

COMBINED ANALYSIS OF VARIANCE TABLE - SUMMATION NOTATION 

Source of Variation 

Total corrected 
for the mean (µ) 

Blocks after the 

the mean ( b I_µ) 

Treatments after the 

mean and blocks (71µ,b) 

Covariate after the 
mean, blocks and 
treatments (~lµ,b,7) 

n-1 

b-1 

t-1 

1 

Covariate after the 1 

mean and blocks (~lµ,b) 

Treatments after the t-1 

mean, blocks and 

covariate (7!µ,b,~) 

Residual n-b-t 

Sum of Squares 

SSTotyy - SSMyy 
= total - R(_µ) 

SSBYY - SSMYY 
= R(blµ} 

SSTYY - SSMYY 
= R(71µ) 

[SSTotyz-SSBy2 J 2 / 

[SSTot 2 z-SSB 2 zl 

= R(~l_µ,b) 

SSTyy - SSMyy 
+R(~lµ,b,7) 
-R (i:: !µ, b) 

=R(71µ,b, ~) 

SSRyy - R(~lµ,b,7) 

= SSR of the 
matrix notation 
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Section 2.6 

The F-Ratio and Tests of Hypotheses 

Section 2.6 develops the F-ratio and the noncen

trality parameter for the hypotheses of interest in the 

analysis of covariance. Projectors for three partition

ings of CX I ZJ are derived. They allow disentangling 

the matrix under the control of the experimenter, the 

design matrix, from the other matrices in some F-ratios 

and noncentrality parameters. 

Important results are Theorems 2.6.15, (p. 55), 

and 2.6.19 - 2.6.22, (p. 59-69). Section 3.7 will 

further develop Theorems 2.6.19 - 2.6.22. 

2.6.1 The Test of the Full Model 

For the model with model equation (2.3.1), (p. 16), 

the test statistic for testing the null hypothesis 

is the F-ratio 

F = 

with the non-centrality parameter 

.,_ = 

I 

and n= rank(t'), d= rank(J[ - x+cx+ 1 x+)-t' 1 ). 

( 2 . 6 . 1 ) 

C 2 • 6 • 2 ) 

(2.6.3) 

( 2 • 6 • 4 ) 

Recall,that t'=CX_11IXi,IX.,.IZJ, as in (2.3.4), (p. 19). 
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Equation (2.6.4) follows from (2.6.3) by th~ defini

tion of the generalized inverse (Rl.l of Section 2.8.7, 

p. 83). See Searle [1971, p. 54-641 for a development 

of the distribution of F from the assumptions of the 

model. When ,+=o, the parameters of the F-distribution 

(n, d, ?..=0), are known, and thus the F-ratio is a 

statistic. When ,+~o, known or not, ?.. is not known; as 

by Assumption 3* and 3, (p. 16 and 24), r:s2 is unknown. 

In this case, the F-ratio is not a statistic, since one 

of its parameters, the o-2 of its noncentrality parameter, 

is unknown. However, one may assume value(s) for the 

ratio ,+10-, or assume a range of values for o-2 for given 

value(s) of ,+. Morrison [1983, p. 127-131] does the 

former in determining the.sample size needed to achieve a 

given power. Alternatively, one may compare ratios of?.. 

as computed from different model matrices, x+, and/or 

different,+ vectors. Comparing ratios of two ,•s, such 

as c,t1r:s2)!C,~/r:s2), or of two ?..'s, cancels the unknown 

o-2's. Further investigation of handling an unknown o-2 is 

an extension. 

When the null hypothesis (2.6.1) is true, ,+=o, and 

by (2.6.4), ?..=0. Under Assumptions 4 and 5, x+ has full 

column rank, thus x+,x+ is positive definite [Searle, 

1971, p. 36, Lemma 51. By the definition of positive 

definitiveness, ?..>O except for ,+=o. Thus, the converse 
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holds: when ~=O, ~+ must equal o. This gives the 

equivalence of 

H0 : ~+= O and 

H0 : ~ - O. C 2 . 6 . 5 ) 

The first is ."a set of linear statements" about the 

parameters~+. The second is a statement about a 

quadratic form of the par~meters. See Searl~ [1987, p. 

233-236] for this and additional forms of the hypotheses. 

The general linear hypothesis, H0 : ~~+=mis an extension. 

The power of the test is one minus the probability 

of failing to detect a false null hypothesis, that is, 

Cl-the probability of a Type II error)=l-~II· For any 

given alternative ~+ ~ 0 (equivalently~~ 0), 'the power 

of the test increases with increasing~. By (2.6.4) and 

the shape of the density function of F, increasing the 

power requires 

a. manipulating x+ to maximize those~ corres

ponding to alternative, nonzero ~+•s, or 

b. increasing d, or 

c. decreasing n, (2.6.6a-c) 

while keeping the other two parameters constant [Seber, 

1980, p.351~ Sections 3.7.5, (p. 216) and 4.8, (p. 335), 

examine option (a). 
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2.6.2 · Testing Model Equation Parameters Adjusted 

for Other Model Equation Parameters 

The tests of hypotheses of interest in the analysis 

of covariance are that some elements of ,+, those of the 

hypothesis, are zero after adjusting for the remaining 

elements. Partition the model equation parameters into 

those of the hypotheses (h) and all of those remaining 

(r). The parameter vector and model matrix are 

partitioned conformably, as in 

/ = [~] and 

x+ = C .Xi-t I ~ 1 • ( 2 . 6 • 7 ) 

The columns of x+ and rows of 13+ are reordered to permit 

this partitioning. Denote the parameters of the model 

equation providing the full model by subscripts on H0 , 

and denote the parameters of the model being tested by a 

subscript on 13, as shown below, 

Ho·h r ~h = ID. , , 

The partitioning yielding (2.3.4), (p. 19), is a special 

case of (2.6.7). The R-notation for the sums of squares 

associated with this hypothesis is R(htr)=R(h,r)-R(r). 
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The denominator of (2.6.2) remai~s unchanged, while 

the R-notation gives as the numerator R(htr)=R(h,r)-R(r)= 

(1/2) Y'[ rcx+ 1 x+)-x+ 1 - X'z-(Xz:'Xz:)-Xz:' l Y 

/ { a-2 [ rank ( x+ ) - rank ( Xz: ) . ] } . ( 2 . 6 . 8 ) 

As always, the non-centrality parameter has the same 

center matrix, as in the brackets [] in (2.6.8), as the 

numerator of the associated F ratio, and replaces Y with 

x+,+, where the value of,+ is that of the alternative 

hypothesis. The non-centrality parameter is 

?.. = [ 1/ ( 2 tr2) ]. X 

( xti 'h ) I [ x+ ( x+ I x+ ) - x+ I - Xz: ( Xz: I Xr ) - Xr I ] ( xti 'h ) ( 2 . 6 • 9 ) 

= [1/(2 tr2)] X 

= 

'h' {'.'iti''.'iti - '.'iti'CXrCXz:'Xz:)-Xz:'1'.'iti} 'h 

[ 1/ ( 2 cr2 ) ] X 

'h I xti I { :[ - [ Xz: ( Xz: I Xz:) -Xz: I ] } xti 'h • 

(2.6.10) 

(2.6.11) 

Equation (2.6.10) follows from (2.6.9) by Theorem 2.6.3, 

below, (p. 47). The first term within the braces {•}of 

(2.6.10) is positive definite if '.'iti has full column rank 

and is positive semidefinite if '.'iti has less than full 

column rank. The second term is positive definite if (a) 

Xi-i has full column rank, (b) this rank is less than or 

equal to the rank of Xr, and (c) the columns of the two 

matrices are linearly independent. Otherwise, the second 

term is positive semidefinite, or, as in (2.6.12), zero. 
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[Searle, 1971, p.36, Lemma 5 and p. 37, Lemma 7.] As the 

second term follows a negative sign, its contribution to 

the non-centrality parameter is to lower (the second term 

is greater than zero) or to leave unchanged (the second 

term equals zero) the value of ~ and thus to lower or to 

leave unchanged the power of the hypothesis test, as 

discussed in (2.6.6a), (p. 41). 

As Weisberg [1980, p. 89] points out, when Xh and Xr, 

are orthogonal, (2.6.10) reduces to 

"), : ( 1 / 2 ) jSh I [ ~ I xh ] jSh / 0"2 • ( 2. 6. 12) 

In general, ~ depends upon ish, cr2 , ~'Xh, Xr,CXr,'Xz:)-Xz:', 

and the product Xi;Xz:· Designs with an equal number of 

experimental units receiving each treatment and without a 

covariate may select design matrices Xh and Xz: such that 

X'ti'Xr=ID. In general, a covariate forces X"ti'Xr?!ID. When 

this product is altered by the randomization used to 

conduct the experiment, then the power of the test is 

conditioned on the randomization used. Section 3.7.5 

(p. 216), further discusses this. On the other hand, the 

observed significance level is derived from the null 

hypothesis, which usually assumes ~h=ID. In this case, 

altering the randomization has no effect on the non

centrality parameter, as by assumption the non-centrality 

parameter is zero. 
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See Searle [1971, p. 343-344] for the non-centrality 

parameter (2.6.10) in tRz notation. Morrison [1983, p.122-

124] develops a special case of (2.6.9). In his Equation 

8 [p. 123], j« twice erroneously appears as ocj. Pope and 

Webster [1972, p. 330-331] state without proof the form 

of~ for stepwise regression with a missing parameter. 

2.6.3 Products of Partitioned Matrices 

This section expresses the estimate of ~' (2.4.21), 

(p. 30), the F-ratio (2.6.2), (p. 39), and the 

noncentrality parameter (2.6.10), (p. 43), in an alter

native form. The reexpressions are based upon the main 

results of this section, Theorems 2.6.16, (p. 56), and 

2.6.17, (p. 57). Theorem 2.6.3 is referred to after 

Equation (2.6.11), (p. 43), above. 

Theorem 2.6.1. 

For X= [ ~ I 1B ] , with X nx ( p+q), ~ nxp and 1B nxq, 

[
(~'~)- + (~'~)-(~'IB)ID-(IB'~)(~'~)

-ID-( IB' ~) ( ~' ~) 

ID = ( IB' IB) - ( IB' ~) ( ~' ~) - ( ~' IB) 

- ( ~' ~) - ( ~' IB) [l-] 
ID- I 

= IB' 1B - IB' lWIB = IB' [ ][ - IJ,l ] IB. ( 2. 6. 13) 

Note that ID is the multivariate analogue for the residual 

sum of squares for the multivariate model equation 

IBnxq = 11\ixp ~pxq + Enxq · 
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Proof: r tt=:t' ] 
X' X = l II/ [ tf:I I 1B ] = 

tf:I' 1B l 
IB' 1B • 

J 

The generalized inverse of {X'X) gives the desired result 

[Searle, 1971, p. 27, Equation {49)]. 

Theorem 2.6.2. 

For X = [ tf:I 18 ] , 

- [ 18(tT 1B' ] lW - I.Ll [ 18(9-18' ] + [ 18(9-18' ] , 

a;i = 18 1 18 - 18'lWl8 =.18'[ E - lW ]18. { 2. 6. 14) 

Proof: In partitioned form the projector X{X'X)-X' 

= r 1 r tf:I' t1=l 
tf:I I 1B 

L J l 18' tf:I 

tf:I' 18 1- r tt=l' 1 
18' 18 J l 18' J • 

Inserting {2.6.13) and multiplying gives 

X{ X' X) -x, 

= [ ~{ ~' ~) - ~' l + [ tt=:t{ tt::t' tt::t) - tt::t' ] [ 18(1;1-IB' l [ tt::t{ tt::t' tt::t) - tt::t' l 

- [ 18(1;1- 18 I ] [ tf:I { tf:11 t1i) - tf:11 ] - [ t1i { tf:I' tf:I) - tt:l I ] [ 18(1;1- 18 I ] 

+ [ 18(9-18' l • { 2 • 6 • 1 5 ) 

Defining lW and a;i as in {2.6.14) gives the result. 
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Theorem 2.6.3. 

For X = [ 11='1 I 1B 1 , 

Proof: Substituting (2.6.15) into the bracketed term of 

11='1' [ X( X' X)-X'.111='1 and regrouping terms gives 

Repeated application of Equation 29 and the Corollary, 

both on p. 20 of Searle [19711, gives 

= + 11='1' 11='1 

= 11='1' 11='1. (2.6.16) 

We now develop the projection matrix for three 

partitions of X. For each, the initial step utilizes 

Assumption S, that the matrices Xt, and X7 are the effects 

version of the design matrix, (p. 74). Thus, each 
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partition has full rank and a unique inverse. By Theorem 

2.8.3, (p. 76), the final step, the projector, is the 

same for any matrix which satisfies the conditions of the 

theorem. Thus, each projector holds for a class of 

matrices, not only those satisfying Assumption 5. 

The matrices are defined lor one experimental unit 

per treatment per block, thus p=t. The adjustment to 

multiple experimental units, say r, per treatment per 

block is to repeat each row r times in the initial 

partitioned form and add r as a multiplier or divisor in 

subsequent steps. 

The first partition is X = [ X:Jl I Xt, ] • 

Theorem 2.6.4. 

For X: =[ X:Jl I Xt,] , with t experimental units in 

each of b levels of the blocking factor and where Xt, is 

the effects version of the blocks partition of the 

design matrix, the matrix 

filtxl filtxl 84:xl . 84:xl 

filtxl 84:xl filtxl °txl . . 
X: = 

tltxl 
filtxl 84:xl 84:xl '!txl - - - - - - - - -
'!txl -ll"tx(b-1) (bt)xb (2.6.17) . 

Proof: Apply Assumption 5 and the partitioning of x. 
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Theorem 2.6.5. 

For X = [ XJJ. I ~ ] , with t experimental uni ts in 

each of b levels of the blocking factor and where~ is 

the effects version of the blocks partition of the 

design matrix, the matrix 

Proof: Matrix multiplication of (2.6.17). 

Theorem 2.6.6. 

For X =[ XJJ. I ~] , with t experimental units in 

each of b levels of the blocking factor and where ~- is 

the effects version of the blocks partition of the 

design matrix, the matrix 

(X'X)-1 = 

1( 1 
bt o(b-l)xl 

Proof: Matrix multiplication of (2.6.18) by (2.6.19) 

yields the ident~ty matrix. The inverse is unique since, 

by assumption, X'X has full.rank. 
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Theorem 2.6.7. 

For X = [ XJJ. I ~ ] , with t experimental uni ts in 

each of b levels of the blocking factor and where~ is 

the effects version of the blocks partiti~n of the 

design matrix or one satisfying Theorem 2.8.3, (p. 87), 

the projector 

X( X' X) -x, = 
1 

t 

ll"txt °txt °txt 
ll"txt °txt 

symmetric 

°txt 
°txt . . 
°txt 
ll"txt 

( bt) X ( bt) . ( 2. 6. 20) 

= (1/t){diaglll"txtl}bxb· (Defined as IJ..l below.) 

Proof: Matrix multiplication of (2.6.19) by (2.6.17), 

the latter twice. The projector (2.6.20) may be obtained 

directly from the summation notation by a Kronecker 

product process developed by Craig Jefferson and the 

author. Appendix c, (p. 385), presents this process. 
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The second partition is X = [ X-r ] . 

Theorem 2.6.8. 

For X =[ X'T] , with t experimental units in each of 

b levels of the blocking factor and where X-r is the 

effects version of the treatments partition of the 

design matrix, the matrix 

]:( t-1) X ( t-1) 
-11.lx(t-1) 

- - - - - - - -
:n:(t-l)x(t-1) 

X = -11.1 x ( t -1 ) 

------
:n:( t-1 ) X ( t-1 ) 

-11.lx(t-1) (bt)x(t-1) . ( 2. 6. 21) 

Proof: Apply Assumption 5 and the partitioning of X. 

Theorem 2.6.9. 

For X =[ X'T] , with t experimental units in each of 

b levels of the blocking factor and where X-r is the 

effects version of the treatments partition of the 

design matrix, the matrix 

X'X = b( :n:(t-l)x(t-1) + ll"(t-l)x(t-1)] (t-l)x(t-1). 
( 2. 6. 22) 

Proof: Matrix multiplication of (2.6.21). 
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Theorem 2.6.10. 

For X =[ X7 ] , with t experimental units in each of 

b levels of the blocking factor and where X7 is the 

effects version of the treatments partition of the 

design matrix, the matrix 

(X'X)-1 = ~[ tlrct-l)x(t-1) -
bt 

ll"ct-l)x(t-1) ] 

(t-l)x(t-1) • (2.6.23) 

Proof: Matrix multiplication of (2.6.23) by (2.6.22) 

yields the identity matrix. The inverse is unique since, 

by assumption, X'X has full rank. 

Theorem 2. 6 .11. 

For X =[ X7 ] , with t experimental units in each of 

b levels of the blocking factor and where X7 is the 

effects version of the treatments partition of the design 

matrix, or one satisfying Theorem 2.8.3, (p. 87), the 

projector X(X'X)-X' has bx b identical blocks, each 

t x t. Thus, 

1 
X( X' X)-X' = 

bt 

t][ - ll" I t][ - ll" I I 
+ - - - - - + + -
I t][ - ll" I I 
+ - + + -

I . · · I 
+ - + -

I 
symmetric 

(bt)x(bt) • 

t][ - ll" 

t][ - ll" 

t][ - ll" 

t][ - ll" 

(2.6.24) 

Proof: Matrix multiplication of (2.6.23) by (2.6.21), the 

latter twice. 
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Note that the coding version of X7 does not satisfy 

Theorem 2.8.3 (p. 87) and thus does not yield the 

projector matrix of (2.6.24); see Section 2.8.4 below, 

(p. 79). The coding version yields a projector similar 

to (2.6.24), but the diagonal elements of the diagonal 

blocks are not all equal; one is zero. The projector 

(2.6.24) may be obtained directly from the summation 

notation by the Kronecker product process of Appendix C. 

The third partition is X = [ XJl I ~ I X7 ] • 

Theorem 2.6.12. 

For X = [ XJl I ~ I X7 ] , with t experimental uni ts 

in each of b levels of the blocking factor and where~ 

and X7 are the effects version of the blocks and 

treatments partitions of the design matrix, the matrix 

~xl 11.txl °txl · • · °txl ][(t-l)x(t-1) 

-11..lx(t-1) 

11.txl °txl 11.txl °txl as above 
X = - - - - - - - - - - - - - -. . . 

°txl - - - - - - - - -
11.txl °txl • • · °txl 11.t 
~;1-1- - --it;(~-;:)- - ~1-1- as above 

as above 

CbtJxCl+(b-l)+(t-l)J. (2.6.25) 

Proof: Apply Assumption 5 to the indicated partition. 
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Theorem 2.6.13. 

For X = [ XJL I :it, I XT ] , with t experimental uni ts 

in each of b levels of the blocking factor and where :it, 

and XT are the effects version of the blocks and 

treatments partitions of the design matrix, the matrix 

X' X = 

bt 

[)(b-l)xl 

[)(t-l)xl 

Oix(b-1) 

tir(b-1 )x(b-1) 
+ t][(b-l)x(b-1) 

Oixct-1) 

[)(b-l)x(t-1) 

[)(t-l)x(b-1) bll"ct-l)x(t-1) 
+ b][(t-l)x(t-1) 

(b+t+l)x(b+t+l). (2.6.26) 

Proof: Apply matrix multiplication to (2.6.25). 

Theorem 2.6.14. 

For X = [ XJL I xt,· I XT ], with t experimental units 

in each of b levels of the blocking factor and where :it, 

and XT are the effects version of the blocks and 

treatments partitions of the design matrix, the matrix 

(X'X)-l = 

1 Oix(b-1) [)lx(t-1) 

- - - - - - - - - - - - - - - - - - - - -
1 [)(b-l)xl b][(b-l)x(b-1) [)(b-l)x(t-1) 

bt ll"cb-l)x(b-1) 
- - - - - - - - - - - - - - - - - - - - - - -
[)(t-l)xl [)(t-l)x(b-1) t][ct-l)x(t-1) 

7 ct-l)x(t-1) 
(b+t+l)x(b+t+l) (2.6.27) 

Proof: Matrix multiplication of (2.6.27) by (2.6.26) 

yields the identity matrix. The inverse is unique since, 

by Assumption 5, (p. 20), X'X has full rank. 
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Theorem 2.6.15. 

For X = [ XJl I . ~ I X7 ·], with t experimental unit~ 

in each of b levels of the blocking factor and where~ 

and X7 are the effects versi9n of the blocks and 

treatments partitions of the design matrix or ones 

satisfying Theorem 2.8.3, (p. 87), the projector 

1 

bt 

tx + cb-1 > :ir I 
- - - - - - + 

l 
symmetric 

- :][_-_ir_ -1 1- :][_-_ir_ -
t x + c b-1 > :ir 1 1 t x - :ir 
- - - - - - + + - - - - - -

1 ···I tx - ir 
+ - + - - - - - -

1 tx + cb-1 > :ir 
(bxt) x (bxt) (2.6.28) 

Proof: Matrix multiplication of (2.6.27) by (2.6.25), 

the latter twice. The projector (2.6.28) may be obtained 

directly from the summation notation by the Kronecker 

product. process of Appendix c, (p. 385). 

Note that there are but two types of submatrices in 

the projector matrices of (2.6.20), (p. 50), (2.6.24), 

(p._ 52) and (2.6.28). The submatrices on the diagonal 

are one type. The submatrices off of the diagonal are 

another. In each of the diagonal submatrices, all diago

al-elements have the same value, as do all off-diagonal 

elements. The two sets of diagonal elements may be equal 

as in (2.6.20), or unequal as in (2.6.24) and (2.6.28). 
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In each of the off-diagonal submatrices, again all 

diagonal elements have the same value and all off

diagonal elements have the same value. The two sets of 

elements may be equal as in (2.6.20), or not equal as in 

(2.6.24) and (2.6.28). 

Finally, the diagonal blocks may equal the off

diagonal blocks, as in (2.6.24) or they may be unequal as 

in (2.6.20) and (2.6.28). These structural character

istics have important effects upon the randomization 

model as discussed in Section 3.7.2, (p. 187). 

Theorems 2.6.16 and 2.6.17 decompose projectors 

used in the usual analysis of covariance hypotheses. 

The decomposition separates the treatments part of the 

appropriate model matrix from the other parts. The first 

theorem is a special case of Theorem 2.6.2, (p. 47). 

Theorem 2.6.16. 

For versions of X7 with all columns summing to zero 

within each block, such as the effects version, and 

~ =[ X~l ~I X7 ], the projector 

[ ~ C ~' ~) -~' J = I.LI + X7 ( X7 ' X7 ) -x7 ' , where 

I.LI= (1/t){diagC~txtl}bxb as in (2.6.20). (2.6.29) 

Note that X of (2.4.7), (p. 26), · is, here ~

Proof: Partition ~ as ~ = C~ I IBJ, where ~ = CX~ I ~1 

and 1B = X7 • Theorem 2.6.2, (p. 47), gives~(~'~)-~' as 

I.LI; Theorem 2.6.7, (p. 50), gives the above I.LI. 
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Theorem 2.6.2 splits XrCXr'Xr>-Xr' into five terms. 

The middle three contain IJ.JIB and/or IB'IJ.J'. This product 

sums one block's worth of columns of X7 (=IB). By 

Assumption .5, .(p. 20), each such sum is zero. The fifth 

The first term from 

Theorem 2.6.2 remains unchanged, providing the desired 

result of separating X7 from the other partitions of this 

model matrix. 

Theorem_2.6.17. 

For a treatment matrix X7 orthogonal to both the 

blocks matrix~ and the mean vector XP, as when X7 and 

~ are the effects version, and for _Xr =[ Xpl ~I Z 1, 

1W = (1/t){diagC~txt1lbxb-as in (2.6.20). (2.6.30) 

Proof: Partition Xr as Xr = [ ~ I IB], where ~ = [ XP I xt, 1 

and 1B =Z. Theorem 2.6.2, (p. 47), gives~(~'~)-~' for IJ.J; 

Theorem 2.6.7, (p. 50), gives 1W = (1/t){diagC~txt1lbxb· 
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Theorem 2.6.2 splits ~(~'~) ~· into five 

factors, all except the last beginning and/or ending in 

~- Pre-multiplication by X7 ' or post-multiplication by 

Each of these four factors is zero by the assumed mutual 

orthogonality of [X~I Xi,1 and X7 , as discussed below 

(2.3.5), (p. 127). The last factor of Theorem 2.6.2 is 1B 

a;i-e, = 1B [IB' (lt-~)IB]-IB'. Upon substituting z for IB, this 

provides the desired result of separating X7 from the 

other partitions of this model matrix. 

,., 
2.6.4 Alternative Forms of 13 the F-Ratio and u.. b. 'T. @' 

the Non-centrality Parameter 

The following theorems disentangle the matrix 

under the control of the experimenter, X7 , from the other 

matrices, X~, Xi, and z. In each theorem X7 remains as 

part of a projector matrix having the foim of Equation 

(2.6.25) of Theorem 2.6.12. 
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Theorem 2.6.18. 

For versions of X7 with all columns summing to zero 

for each block, such as the effects version, 

where ~ = (1/t) {diag[ J"txtllbxb· 

as in C 2 • 6 . 2 O ) • (2.6.31) 

Proof: Apply Theorem 2.6.16 to Equation 2.4.7, (p. 26). 

Theorem 2.6.19. 

For versions of X7 with all columns summing to zero 

for each block, such as the effects version, 

where ~ = (1/t){diag[J"txtllbxb 

as in (2.6.20). (2.6.32) 

Proof: Apply Theorem 2.6.18 to Equation 2.4.4, (p. 26). 

This gives the desired result of disentangling the 

treatments matrix from the other submatrices of the model 

matrix. 
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Theorem 2.6.20. 

For versions of X7 with all columns summing to zero 

for each block, such as the effects version, 

F( ~ IJ1,b, T) 

X 

where 

= Y'{IR.z(IR.z'IR.z)-llR.z'}Y /q 
SSR/(n-p-q) 

{ Z' C I - lW - X ( X ' X ) - X ' l Z} -1 T T T T 

lW = (1/t){diaglll'txtl}bxb as in (2.6.20). 

Here, pis the rank of X, q is the rank of z. 

(2.6.33) 

Proof: Apply Theorem 2.6.18 to Table 2.5.1, (p. 37), 

using the idempotency of IR.z· Note that in the numerator 

the treatments matrix is disentangled from the other 

submatrices of the model matrix. The projector of 1R.z in 

the denominator may be similarly reexpressed with X7 

separated from the other submatrices. 
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Theorem 2. 6. 21. 

For versions of X7 with all columns summing to zero 

for each block, such as the effects version, 

= l/(2o-2) X 

{f1'Z' (J[-lW] ZFI 

where lW = (1/t){diag(lftxtllbxb 

as in (2.6.20). 

(2.6.35) 

( 2. 6. 36) 

Proof: From Equation (2.6.10), (p. 43), with Xh=Z and 

( 1 / 2 ) 11 ' { Z' Z - Z' C ~ ( ~ ' ~ ) - ~ ' I Z} Fl / o-2 (2.6.37) 

By Theorem 2.6.16, (p. 56), the projector of this~ is 

ing gives (2.6.35) and (2.6.34). The idempotency of~~ 

gives (2.6.36}. In each of (2.6.34) to (2.6.36), the 

treatments matrix X7 is disentangled from the other 

submatrices of the model matrix. 
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Theorem 2.6.22. 

For treatments matrices X7 orthogonal to both the 

blocks matrix Xb and the mean vector X~, as when X7 and 

Xt, are the effects versions of these matrices, 

(2.6.38) 

where~= (l/t){diag[~txt1}bxb, as in (2.6.20). 

Proof: From Equation (2.6.10), (p. 43), with ~=X7 and 

Application of Theorem 2.6.17, (p. 57), to the second 

term of (2.6.39) and rearranging the T gives the desired 

result. Note that X7 is disentangled from the other 

submatrices of the model matrix. 

2.6.5 Testing Hypotheses of Interest in the Randomized 

Block Design with Covariates. 

The following list of hypotheses and F-tests 

partitions x+ as [XI Z] and expresses the F-test of 

(2.6.2), (p. 39), in R notation. The numerator of the 

F-test is a form of (2.6.8), (p. 43). The denominator 

is that of (2.6.2). Under the assumption of a true null 

hypothesis, the F-statistic yields a p-value, herein 
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termed the observed significance level, OSLF, in this 

case, as computed from the F distribution. 

The hypothesis that the covariates, adjusted for the 

mean, blocks and treatment effects have no effect on the 

response is 

The F-statistic used to test this hypothesis is 

F(~IJ.L,b,-r) = 
R(!SIJ.L,b,-r)/q 

SSR/(n-p-q) 

( 2. 6. 40) 

( 2. 6. 41) 

The associated noncentrality parameter is (2.6.34), 

(p. 61), 

{ ~' Z' [ E-lLl] Z~ 

where IW=(l/t){diagC:B"txt1lbxb as in (2.6.20), (p. 50). 

The hypothesis that the treatments, adjusted for the 

mean and blocks, but without adjustment for the 

covariates, are all equal is 

H0 ;J.L,b 'T = 0. (2.6.42) 

Under Assumption 5, "all treatments equal", (p. 20), 

implies that each element of -r is zero. The F-statistic 

used to test this hypothesis is 

F(-rlJ.L,b) = 
R(-rlJ1,b)/(t-l) 

SSR/(n-p-q) 
( 2. 6. 43) 
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Normally one replaces the above hypothesis with the 

following one which uses the treatment sum of squares 

adjusted also for the covariates. The hypothesis that 

the treatments, adjusted for the mean, blocks and 

covariates, are all equal is 

H 7=[1. o;JJ.,b, is 

The F-statistic used to test this hypothesis is 

F('TIJJ.,b,13) = 
R('TIJJ.,b,is)/(t-1) 

SSR/(n-p-q) 

(2.6.44) 

(2.6.45) 

The associated noncentrality parameter is (2.6.38), 

{'T'X 'X 'T 'T 'T 

where~= (1/t){diag(~txt]}bxb 

as in (2.6.20), (p. 50). 

The hypothesis that the covariates, adjusted for the 

mean and blocks, but without adjustment for the 

treatments, have no effect upon the response is 

The F-statistic used to test this hypothesis is 

F(islJJ.,b) = 
R( is IJJ.,b)/q 

SSR/(n-p-q) 

(2.6.46) 

( 2 • 6 • 4 7 ) 

Normally one replaces this last hypothesis with the one 

first above, H b is= [I, which tests for the effect 
Oi JJ.1 I 'Tr is 

of the covariates after adjusting for treatment effects 

as well as those of the mean and blocks. 

Next, a numerical example illustrates Sections 2.3-2.6. 
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Section 2.7 

Numerical Example 

Section 2.7 uses matrix and summation methods to 

calculate the combined analysis of variance tables, 

Tables 2.5.1 and 2.5.2, (p. 37-38), the estimates, 

A A A A 

,JL,b,13 I f!JL,b,-r,is I 'TJL,b,-r I and 'TJL,b,-r,13' (p. 32), 

and associated F-statistics and noncentrality parameters 

of Equations (2.6.41) - (2.6.47). The artificial data 

represent one random assignment of treatments to 

experimental units. 

For this example, the mean is JL= 10.0, block effects 

are b 1=-b 2=1.5, treatment effects are -rk=O for all k, and 

the covariate is f/=2.0. Table 2.7.1 shows the assigned 

treatment, k, the response, Yik' and the covariate, z1k, 

for each block-plot experimental unit. The plot {j=•) 

and treatment (k=•) identification numbers happen to be 

the same for this example. 

TABLE 2.7.1 

TREATMENTS AND RESPONSES FOR EXAMPLE ONE 

plot j=l 

block 
i = 1 

block 
i = 2 

Totals 
Treat. : 
Covaria 

k=l 
17.3956 
Z11= 5 

k=l 
38.4230 

14 

55.8186 
te: 19 

j=2 

k=2 
29.8077 

9 

k=2 
35.6973 

11 

65.5050 
20 

j=3 

k=3 
34.1529 

17 

k=3 
7.4435 

2 

41.5964 
19 

j=4 
k=4 

52.9714 
19 

k=4 
20.4594 

1 

73.4308 
20 

Block 
Totals 

134.3276 
50 

102.0232 
28 

Grand Tot 
236.3508 

78 

als 
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Examples of calculations, using the matrix notation 

under Assumptions 1 - 8 with X= C X JJ. I ~ I X.,. 1 , are 

1 1 1 0 0 17.3956 5 
1 1 0 1 0 29.8077 9 
1 1 0 0 1 34.1529 17 
1 1 -1 -1 -1 52.9714 19 

X = y = z = 
1 -1 1 0 0 38.4230 14 
1 -1 0 1 0 35.6973 11 
1 -1 0 0 1 7.4435 2 
1 -1 -1 -1 -1 20.4594 1 

0.125 0 0 0 0 
0 .125 0 0 0 

(X'X)-l = 0 0 0.375 -0.125 -0.125 
0 0 -0.125 0.375 -0.125 
0 0 -0.125 -0.125 0.375 

-7.25 -7.50 ,.. 
-3.75 -3.50 isJJ.,b, 13 = 2.0038 

4.75 4.50 ,.. 
6.25 6.50 isJJ.,b,.,.,is = 1.9672 

!Rz= ~ = 
7.25 7. 00 
2.75 4.00 

-4.75 .,.5. 00 
-6.25 -6.00 

,.. ,.. ,. 
The vectors.,.(·)' = [ JJ., b1 , .,-1 , .,-2 , .,.3 ]' are 

.,. o= 
g 

( Model X) 

9.75 
2.75 

-0.25, 
0.25 

-0.25 

By Assumption 5, 

29.54 
4.04 

-1. 63 , 
3.21 

--8. 7 5 

10.35 
-1. 37 
-1.14 . 

2.72 
-8.25 

= 7.17 and.,. = 4;, JJ., b, .,., is 6.68. 



Chapter 2.7 Numerical Example 67 

The summation notation yields the same estimates as 

the matrix notation 

,. 
, = 504.6043/256.5000 = 1.9673, and estimates of 7 

,. 
not corrected for the covariate (7fa,b, 7 ) 

,. 
71= (1/2)(55.8186) - 29.5438 = -1.6345 1 

72= (1/2)(65.5050) - 29.5438 = 3.2086 1 

A 

73= (1/2)(41.5964) 29.5438 = -8.7456 , 
,. 
74= (1/2)(73.4380) - 29.5438 = 7.1716, and 

,. 
estimates of 7 corrected for the.covariate (7~,b, 7,b) 

A 

71= -1. 6345 - 1.9673(9.5 - 9.75) = -1.1427 I 

A 

72= 3.2086 - 1.9673(10 - 9.75) = 2.7168 I 

A 

73= -8.7456 - 1.9673(9.5 - 9.75) = -8.2538 I 

A 

74= 7.1715 - 1.9673(10 - 9.75) = 6.6798 

The first set of summation formulas of Section 2.5.2 

replaces the •• of the summation formulas with yy, 

SSTotyy (17.3956)(17.3956)+ •.. +(20.4594)(20.4594) 

= 8,388.1126, 

SSMyy = 1/(2•4) [ (17.3956 + ... + 20.4594) 

(17.395S + ... + 20.4594) l = 6,982.7126, 

SSByy = (1/4)[(134.3276) 2 + (10:2.0232)2]= 7,113.1594, 

SSTyy = (1/2) [ (55.8186) 2 + (65.5050) 2 + (41.5964) 2 

+ (73.4308)2 l = 7,264.4820, 

SSRyy = 8,388.1126 - 7,113.1594 - 7,264.4820 + 

6,982.7126 = 993.1838 • 

Recall that SSR is the sum of squares for the residual. 
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The sums of squares for terms in Z with subscripts 

zz are 

SSTotzz = (5) (5) + . . . + (1)(1) = 1,078 I 

SSMzz = 1/(2•4)[ (5 + . . . + 1) (5 + . . . + 1) )= 760.5, 

SSBzz = (1/4) C (50) 2 + (28) 2 = 821 I 

SSTzz = (1/2) [ (19) 2 + (20) 2 + (19)2 + (20) 2 ] = 761, 

SSRzz = 1,078 - 821 - 761 + 760.5 = 256.5. 

The sums of YZ crossproducts with subscripts yz are 

SSTotyz= (17.3956)(5) + ••• + (20.4594)(1)=2,908.2419, 

SSMyz = 1/(2•4) [(17.3956 + ••• + 20.4594) (5 + ••• + 1)1 

= 2,304.4303 ., 

SSByz = (1/4) [ (134.3276)(50) + (102.0232)(28) 

: 2,393.2574 I 

SSTyz = (1/2) [ (55.8186)(19) + ••• + (73.4308)(20) ]. 

: 2,314.8005 I 

SSRyz = 2,908.2419 - 2,393.2574 - 2,314.8005 + 

2,304.4203 = 504.6043. 
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The values in Table 2.7.2 correspond to Table 2.5.1, 

as derived by the R( · I·) notation and "the Model X". 

TABLE 2.7.2 

COMBINED ANALYSIS OF VARIANCE TABLE - MATRIX COMPUTATION 

Source of Variation 

Total corrected 

for the mean (JL) 

Blocks after the 
mean (bl.1,1.) 

Treatments and 

interactions after the 

mean and blocks (tlJL,b)" 

Covariates after the 

mean, blocks, treatments 

and interactions <,IJL,b,t) 

Covariates after the 

mean and blocks (,IJL,b) 

Treatments and inter

actions after the mean, 
blocks, and covariates 

(tlJL,b,,> 

n-1 

b-1 

t-1 

Sum of Squares 

8,388.1126 

-6,982.7126 

= 1,405.4000 

7,113.1594 

-6,982.7126 

= 130.4468 

7,394.9288 

-7,113.1594 

= 281.7694 

q 992.6920 

q 

t-1 

or 8,387.6208 
-7,394.9288 

= 992.6920 

1,031.9418 

or 8,145.1011 
-7,113.1594 

= 1,031.9418 

8,387.6208 
-8,145.1011 

= 242.5197 

Residual error n-p-q 0.4918 
(by subtraction) 
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The numerical values of Table 2.7.3 correspond to 

Table 2.5.2 as derived by the summation notation. 

TABLE 2.7.3 

COMBINED ANALYSIS OF VARIANCE TABLE-SUMMATION COMPUTATION 

Source of Variation 

Total corrected 

for the mean (JJ.) 

Blocks after the 

the mean CblJJ.) 

Treatments after the 
mean and blocks (7IJJ.,b) 

Covariate after the 
mean, blocks, and 

treatments (~IJJ.,b,7) 

Covariate after the 

mean and blocks (~IJJ.,b) 

Treatments after the 

mean, blocks, and 

covariate (7IJJ.,b,~) 

Residual error 

8-1 

2-1 

4-1 

1 

1 

4-1 

8-2-4 
= 2 

Sum of Squares 

8,388.1126 
-6,982.7126 
=1,405.4000 

7,113.1594 

-6,982.7126 
= 130.4468 

7,264.4820 

-6,982.7126 
= 281. 7694 

(504.6043) 2 

256.5000 
= 992.6920 

(514.9845) 2 

257.0000 

= 1,031.9418 

281.7694 
+ 992.6920 

- 1,031.9418 

= 242.5196 

993.1838 - 992.6920 
= .4918 
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Tables 2.7.2 and 2.7.3 yield the same following 

F-statistics. In each case, the OSLF is effectively 1.0. 

For the covariate adjusted for the mean, blocks and 

treatments, the F-statistic for testing the null 

hypothesis 

H ~ - 0 OiJl,b, T1 ~ -

is F(~IJl,b,T) = (992.6920/11 / (.4918/21 

= 4,036.9744. 

For ~=2.0 the noncentrality parameter is 

~ = (1/(2~2 ))(1028-2) ~ IJl,b, T, ~ 

= c11c2~2 >1c10261 = c11~21cs131. 

This test properly rejects the null hypothesis. 

For the treatments adjusted for the mean and blocks, 

but not the covariate, the F~statistic for testing the 

null hypothesis 

Ho•ubTT=[l , ,,_, , 

is F(TIJl,b) = (281.7694/31 / (.4918/21 

= 381.9566. 

Since T = o, the noncentrality parameter is zero. 

This test erroneously reject~ the null hypothesis. 
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For the covariate adjusted for the mean and blocks, 

but not the treatments, the F-statistic for testing the 

null hypothesis H0 ." b ~ p = O '.,.., ' ,.. . 

is F(PIJL,b) = Cl,031.9418/11 / (.4918/21 

= 4,196. 59·13. 

For P=2.0, the noncentrality parameter is 

?. = [1/(2a-2 )1[10241 = [1/a-2 1(5121. P IJL,b, P 

Both tests of P, adjusted for the treatments or not 

adjusted, properly reject the null hypothesis. 

The F-statistic for testing the null hypothesis 

H0 :JL,b,T,P T = ID .(adjusted for the covariate) is 

F(TIJL,b,p)=[242.5196/31/[.4918/21=328.7510. 

Since T = ID, the noncentrality parameter, '-, is zero. 

Both tests of T, adjusted for the covariate or not 

adjusted, ertoneously reject the null hypothesis. 

We next prove a characteristic of projection 

matrices and digress a bit to discuss the implications of 

the proof. 
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Section 2.8 

Matrices Producing Identical Projectors 

Two different matrices may have identical projectors, 

X(X'X)-X', if, and only if, they are related by the 

conditions of Theorem 2.8.3, (p. 87). The first section 

introduces effects and coding matrices and the use their 

projectors play in the analysis of variance. The next 

section demonstrates the theorem. Sections 2.8.3 - 2.8.5 

apply the theorem to, respectively, estimable functions, 

"' reductions in the sums of squares, and the estimator 13. 

The theorem is proved in Section 2.8.6. The final section 

is a literature review and a suggested reading list. 

Theorem 2.8.3 gives the conditions for reparamaterizing 

a model equation. 

2.8.1 The Task of The Theorem 

Consider an experiment testing one factor with four 

levels, using two experimental units per level. The 

model equation in matrix notation is 

y = 

with 

X13 + s: ( 2 . 8 . 1 ) 

y an 8 by 1 vector of responses, 

X an 8 by 4 design matrix, 

13 a 4 by 1 vector of parameters, and 

s: an 8 by 1 vector of errors with m~an 

zero and variance-covariance matrix x~2. 
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One possible design matrix is the "effects" matrix, 

~ below, which incorporates the usual constraints of 

Assumption 5, (p. 20). Using~' the resulting elements 

of ;e, the usual least squares estimator of fa'e, equal 

those obtained from the summation notation model, 

A A A A 

~, T1 , T2 and T3 • The estimate for T4 is the negative of 

the sum of the estimates of T1 , T2 and T3. 

Other design matrices are possible, such as the 

dummy or coding matrix, Xe below. The first element of 

A A 

l='c will not equal~, nor will the last three elements 

A A 

equal the Tk, k=l,2,3. The estimates fa'c are familiar to 

users of the SOLUTIONS option in the MODEL statement of 

PROC GLM in the SAS statistical computing package. 

The two design matrices are 

1 1 0 0 1 1 0 0 
1 0 1 0 1 0 1 0 
1 0 0 1 1 0 0 1 

X = e 1 -1 -1 -1 and Xe;,. 1 0 0 0 (2.8.2) 

1 1. 0 0 1 1 0 0 
1 0 1 0 1 ·O 1 0 
1 0 0 1 1 0 0 1 
1 -1 -1 -1 1 0 0 0 

The rank of Xe and of Xe equals the number of their 

columns, giving them full column rank and X'X a true 

inverse. The matrices may be partitioned as 

(2.8.3) 
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The full model sum of squares, due to fitting the 

model equation with both mean and treatment effects, is 

Y' [X(X'X)-lX'] Y. (2.8.4) 

The product within the brackets is the projection matrix 

or projector. Interestingly enough, either Xe or ~ or 

many other forms of the model matrix produce the same 

projector. When X does not have full column rank (2.8.4) 

becomes 

( 2 . 8 • 5 ) 

where the minus sign indicates any member of the set of 

generalized inverses defined in Section 2.8.6. The 

numerical value (2.8.5) is the same for any of the 

(nonunique) generalized inverses (X'X)- of X'X. (See for 

example, Graybill [19831, Theorem 6.6.9, p. 134, or 

Searle [1987], Theorem 7.1(14), p. 218.) 

One would not expect the projector matrices to be 

equal for every pair of matrices. One may ask what 

relationship between two matrices, ~and~' not neces-

sarily design matrices, results in the equality of their 

projectors, and, conversely, what such equality tells us 

about the relationship between arbitrary pairs of 

matrices Xe and ~. While the relationship is well 

known, we find no proof of it in more commonly used 

linear models textbooks. It appears to follow from the 

Corollary of p. 129 of Zyskind, et al. (19641, who state 

it, without proof, on their page 102. Pringle and Rayner 
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[19711 present the relationship under "Reparametrization" 

p. 88-90. Graybill [1976, p. 493-498, Theorem 13.2.7] 

proves equivalent relationships are required for 

reparameterization to hold. Section 2.8.2 states what the 

relationship must be; the proof is deferred until Section 

2.8.6. 

2.8.2 Theorem 2.8.3 and Two Numerical Examples 

Theorem 2.8.3 

For any matrices Xa·. ( nxq), Xt, ( n'xp), and IM ( pxq) 

= 

{ 
Xa = Xt,IM for some IM, and 

<=> 
rank ( Xa ) = rank ( ~ ) • 

(2.8.6) 

( 2 . 8 . 7 ) 

(2.8.8) 

As an example, straightforward multiplication will 

show that the projection matrices are equal for~ and Xe 

of (2.8.2). Their ranks are both equal to four and Xe= 

~IM for 

IM = 1/4 [ j 
-1 

1 
-1 

3 
-1 

1 
-1 
-1 

3 ]· C 2 • 8 . 9 ) 

The matrices need not be design matrices with elements of 

0 and ±1. Multiplication (computer assisted, one hopes) 

will confirm the equality of the projector matrices for 

the pair 
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234 250 311 284 144 234 
290 347 350 333 152 290 
170 175 265 189 101 170 

Xa = 264 297 286 331 170 264 and 
185 229 365 287 161 185 
208 236 337 256 135 208 
218 230 227 . 216 96 218 (8 X 6) 
161 165 174 153 69 161 rank=4 

7 5 8 3 7 5 8 
2 14 9 1 2 14 9 
3 2 7 9 3 2 7 
6 6 11 5 6 6 11 

xb = 5 1 13 5 5 1 13 
3 4 10 8 3 4 10 {2.8.10) 
3 9 4 3 3 9 4 (8 X 7) 
2 6 3 4 2 6 3 rank=4. 

The two matrices have the same number of rows and the 

same rank. They do not have the same number of columns. 

One matrix connecting Xa and ~ of (2.8.10) by 

Xa = ~IM is 

11 1 9 4 4 11 
8 7 5 9 3 8 
2 6 13 6 5 2 

1M = 7 4 8 2 1 7 
3 9 2 10 3 3 
7 9 5 3 1 7 (7 X 6). 
3 5 7 9 4 3 rank=5 

Two others are 

7 5 5.5 7 3.5 7 
7.5 8 5 6 2 7.5 
2.5 5.5 10 7.5 4.5 2.5 

IM = 7 4 8 2 1 7 = ~ +Xa, and 
7 5 5.5 7 3.5 7 
7.5 8 5 6 2 7.5 ( 7 X 6) 
2.5 5.5 10 7.5 4.5 2.5 rank=4 
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14 10 11 14 7 14 
15 16 10 12 4 15 

5 11 20 15 9 5 
IM = 7 4 8 2 1 7 = ~-Xa , 

0 0 0 0 0 0 
0 0 0 0 0 0 (7 X 6) 
0 0 0 0 0 0 rank=4 

where X6 is the Moore-Penrose generalized inverse and 

is a generalized inverse constructed by the method of 

Searle [1982, p.217). Result Rl of Section 2.8.6, 

(p. 83), discusses such inverses. 

~ 

Note that for each of the above five matrices, the 

rank equals neither the number of rows nor the number of 

columns. The rank of~ is five; the rank is four for the 

other four matrices. 

2.8.3 Estimable Functions 

When X does not have full rank, the generalized 

inverse of X'X is not unique, and consequently neither is 

.... 
the estimate of p, p. However, certain linear functions 

.... . 

of the elements of p do yield identical (invariant) 

values for all generalized inverses. Such invariant 

functions are called estimable functions, estimable 

because the estimate is not altered by (is invariant to) 

the choice of the generalized inverse. It is known that 

the linear function Aj3: is estimable if and only if a 

matrix 83 exists such that A = 83X; also, that the "best" 

.... 
(minimum variance, unbiased) linear estimator of Aj3: is Ai=:. 

[See Graybill 1983, p. 134 and the Note ending p. 135, 

or Searle 1987, p. 221 and 287-288.) 
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Such an estimate is also invariant over all pairs of 

matrices satisfying Theorem 2.8.3. Consider the 

... 
estimable function ~~a· It is estimated by ~a~a, where 

Xa is used in the model equation to estimate~. Thus, 

Provided~ satisfies Theorem 2.8.3, one may substitute 

it into the above brackets and obtain 

(2.8.12a) 

Because 11\:, equals E~, the function 11\:,~b is estimable and 

its estimate equals the estimate of the function ~~a' as 

shown in (2.8.12a). 

2.8.4 Reductions in Sums of Squares 

The model equation of (2.8.1) fits to the data both 

the mean and treatment effects. The sum of squares due 

to fitting this model 1s R(J.Li7), and equals (2.8.4) (and 

(2.8.5), (p. 76)). The sum of squares due to the mean 

alone is R(J.L). This sum of squares has the same form as 

(2.8.4), but the X matrix· is a column of l's, as in XJ.L of 

(2.8.3), (p. 74). The reduction in the sum of squares 

due to adding treatments, once the mean is already in the 

model, is R(TIJ.L) = R(J.L1 7) - R(J.L). 

Provided the conditions of Theorem 2.8.3 are met, 

as in (2.8.2), (p. 74), the reduction in the sum of 

squares using the dummy· or coding matrix is equal to the 

reduction using the usual-constraints model matrix. 
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Each of the columns of X7e of (2.8.3), (p. 74), is 

orthogonal to the column of ones of X~. Consequently, 

R(~) + Re(7) - R(~) = Re(7). But this orthogonality is 

not the case.for X7c, the dummy coding matrix, and for it 

Rc(71~) ;o! Rc(7). Theorem 2.8.3 tells us why the sums of 

squares due only to treatments differ in the two model 

matrices, that is, why Re( 7) ;o!Rc( 7). (Removing a row of Xe 

would correspond to one treatment's having fewer 

observations than other treatments. In such an unbalanced 

case, the columns of X7e are not orthogonal to the column 

Examination of the two design matrices shows that no 

matrix IM exists such that X7c = X7elM, as seen in 

1 0 0 1 0 0 
0 1 0 0 1 0 
0 0 1 0 0 1' 

-1 -1 -1 0 0 0 
X7e = and X7C = 1 0 0 1 0 0 

0 1 0 0 1 0 
0 0 1 0 0 1 

-1 -1 -1 0 0 0 (2.8.12b) 

Any matrix 1M capable of transforming the top three rows 

of X7e into the top three rows of X7c is incapable of 

transforming the fourth row of X7e, ( -1 -1 -1 ), into 

the fourth row of X7c, ( O O O ). The columns of X7 c are 

not linear combinations of the columns of X7e. Their 

column spaces differ, thus Theorem 2.8.3 cannot be 
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satisfied and the projector matrices cannot be equal. If 

the column of l's is included, then a~ matrix does exist 

and Theorem 2.8.3 applies •s demonstrated in (2.8.9), 

(p. 76). 

A A 

2.8.5 Converting the Estimator 'c to 'e 

Theorem 2.8.3 provides an easy proof for Theorem 

2.8.1 which is due to Ott [1977, first ed., p. 5241, ·who 

implies the sufficient conditions stated below. It 

,. 
allows one to obtain the estimates c,e> from one design 

,. 
matrix (Xe) directly from the estimates ( ~c) obtained 

from another design matrix (Xe) without computing Xe'Y. 

This theorem of Ott led to Section 3.8. It is a full

rank reparameterization of 'c· 

Theorem 2.8.1 

For matrices Xe nxq, Xe nxp, and IM pxq with 

.Xe = XelM and rank (Xe) = rank (Xe) = P, 

A A 

then Ye = Ye , and (2.8.13) 

A 

(~'~)-lXe'Xc 
,. 

'e = { } 'c , C 2. 8. 14) 

A A 

where Ye•) and,(•) are the usual least squares 

estimators. 
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Proof. 

Since the conditions for Theorem 2.8.3 are satisfied, 

one may replace the projector matrix for Xe with that of 

Xe and obtain 

= 

= (2.8.15) 

" " " 
Then one equates Xe Pe and Xe Pc and solves for Pe. 

The assumption that rank(Xe) = p, its number of columns, 

gives Xe'Xe a true inverse and thus the unique solution 

"' for Pe. 

A use of (2.8.14) is to convert the SAS PROC GLM 

solution vector to the usual-constraints solution. Using 

PROC IML, one constructs Xe and Xe as in (2.8.2) and 

obtains the matrix in the brackets of (2.8.14). Then, 

dropping the elements of Pc which SAS has set to zero, 

" one obtains Pe via (2.8.14). Finally, one equates the 

estimate for the level with the largest subscript, here 

.,.. 
7 4 , to the negative of the sum of the estimates for the 

.,.. " .,.. 
other levels, here -[ 7 1 + 72 + 73 ]. 
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2.8.6 Proof of Theorem 2.8.3 

Results Rl through RS are used to prove Theorem 

2.8.3. All matrices have real elements. 

Rl. For any matrix 1t1 there is a generalized inverse 

matrix, ID, satisfying any one or more of the following 

conditions 

R 1. 1 1t1ID1t1 = 1t1 , 

Rl.2 ID1t16 = ID reflexive, 

Rl.3. (1t1ID)' = 1t1ID symmetric, and 

Rl. 4 ( ID1t1) ' = ID1t1 symmetric. 

[Ben-Israel and Greville 1980, p. 7-22.J 

No notation is standard. We use ltl(l,2,3) to 

indicate membership in the set of generalized inverses ID 

satisfying conditions Rl.l, Rl.2, and Rl.3. Others use 

IDi'r, the letter "1" to indicate the set of least squares 

generalized inverses {ltl(l,3)}, and the "r" to indicate 

the set of reflexive gen•ralized inverses {ltl(l,2)}. We 

drop the set indication { •}; it is implied throughout. 

For ltl(l,2,4) another notation is tu;r, the set of 

minimum-norm reflexive generalized inverses. Only the 

Moore-Penrose generalized inverse, ltl(l,2,3,4) = It!+ is 

unique. A generalized inverse satisfying at least 

condition Rl.l is denoted It!-. The particular matrix 

selected is immaterial provided it is a member of the 

class indicated by the superscript(s). 
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R2. rank[X] = rank[X(X'X) X']. [Graybill 1983, 

Theorem 6.6.8, p. 134.] 

R3. X(X'X)-X' = xx+. For X nxp, all generalized 

inverses, including x+, are pxn; thus the multiplication 

of the right hand side is permitted. When X has full 

column rank X(X'X)- 1 x1 also equals xx+. [Graybill 1983, 

Corollary 6.6.9.3, p. 135, or Searle 1982, p. 221-222.] 

R4. For any matrices~ and 1B of suitable 

dimensions, the Moore-Penrose generalized inverse of 

their product, (~IB)+, can always be expressed as 

( ~IB) + = 1B ( 1 , 2 , 4 ) ~ ( 1 , 2 , 3 ) = ~r ~ r ) . 

[Shinozake and Sibuya 1974, Theorem 3.2, p. 34.1 

RS. For a ~(1,2, 3 ) such that IB(l, 2 , 4 > is a solution 

to (~IB)+ of R4, the form of IB(l,2,4) may be written as 

IB(l,2,4)= IB+ + { (~IB)+~ - [][ - (~IB)+~IB]IB+~(l,2,3)~} 

X { ][ - !BIB+ } 

+ IK{ ][ - [ (lt - IBIB+)~(l, 2 , 3 >1 [ (][ - IBIB+~Cl, 2 , 3 ) ] } 

X { ][ - !BIB+ } , 

where~ is an arbitrary qxp matrix, ~ is nxp, and 1B is 

pxq. [Wibker, Howe, and Gilbert 1979, Theorem 4, 

Equation 17, p. 112.1 That such ~(1,2, 3 ) and IB(l,2,4) 

exist follows from R4. 
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R6. Theorem 2.8~2. 

For ~(l, 2 , 3 ) and IB(l, 2 , 4 > satisfying RS, 

~IBIB(l,2,4)~(1,2,3) = (~IB)(~IB)+~~(l,2,3) • 

The proof proceeds by postmultiplying the equation 

of RS by ~(1,2,3). This leaves the third term equal to 

zero as shown by straightforward multiplication and by 

Wibker, Howe, and Gilbert [19791 on the bottom of their 

page 112. Thus, the third term is dropped. 

Removing the internal grouping in the second term of 

RS gives 

IB( l, 2 ' 4 ) = IB+ + { ( ~IB) + ~ - [ ][ - ( ~IB) + ( ~IB) I IB+ ~( l, 2' 3) ~ } 

X { ][ - IBIB+ } 

= IB+ + {(~IB)+~ - IB+~(l,2,3)~ + (~IB)+(~IB)IB+~(l,2,3)~} 

X f ][ - IBIB+ } 

+ ( ~IB) + ( ~IB) IB+ ~( 1, 2' 3) ~ 

- ( ~IB) + ( ~IB) IB+ 

+ IB+ ~( 1, 2' 3) ( ~IB) IB+ 

- ( ~IB) + ( ~IB) IB+ ~( l, 2' 3 ) ( ~IB) IB+ . 
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Premultiplication by ~83 and postmultiplication by 

~(l, 2 , 3 ) gives 

~1883(1,2,4)~(1,2,3) 

= (~IB)B3+~(1,2,3) + (~IB)(~IB)+~itt{l,2,3) 

( ~83) 83+ [ ~( 1, 2, 3) ~11=1< 1, 2, 3) ] 

+ [ ( ~IB) ( 11=183) + ( ittlB) ] e3+ [ 11=1< 1, 2, 3) 11=111=1< 1, 2, 3) ] 

- [ ( itllB) ( itllB) + ( ittlB) ] 10+ 11=1< l, 2 ' 3 ) 

+ ( ~83) 10+~( 1, 2, 3) ( ~IB) 18+11=1( 1, 2, 3) 

- [ ( ~IB) ( ~IB) + ( ~IB) ] 10+ ~(1, 2 , 3 ) ( ittlB) 10+ ~( 1, 2, 3) • 

Applying Rl.1, or Rl.2 as appropriate, to the terms 

within the brackets gives 

~8383(1,2,4)~(1,2,3) 

= (~IB)IB+itt(l,2,3) + (itl83)(~1B)+~11=1(1,2,3) 

( ~83) 10+ ~( 1, 2, 3) 

+ (~83)18+~(1,2,3) 

( ~IB) 18+ 11=1< 1, 2, 3) 

+ ( ~IB) e3+ ~ ( 1 , 2, 3 ) ( ittlB) 18+ 11=1 ( 1, 2 , 3 ). 

( ~IB) 10+ ~( 1, 2, 3) ( itllB) 18+ 11=1< 1, 2, 3) 

Cancellation of terms gives the result. 

R7. If rank(~83) = rank(itt) => [18(~83)-1 = 11=1-

[Searle 1982, Exercise 39(a), p. 226.] 

RS. For any matrix~, 11=111=1<1,2,3) = ~11=1+. 

(Wibker, Howe, and Gilbert 1979, p. 109.] 
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We now repeat the statement of and prove Theorem 

2.8.3. 

Theorem 2.8.3. 

For any matrices Xs ( nxq), Xa ( nxp), and IM ( pxq) 

~(·~·~)-~' 

<=> 
r X = x. IM for some IM, and 
<l a -o 

rank(Xa) = rank(~) . 

Proof. 

(2.8.16) => (2.8.18) by R2. 

By R3 one may replace (2.8.16) with 

(2.8.16*) => (2.8.17) 

Multiplying (2.8.16*) on the left by Xa 

and using Rl.1 gives 

( 2. 8. 16) 

( 2 • 8 • 1 7 ) 

(2.8.18) 

(2.8.16*) 

* Note that m need not equal m; m need not be 

unique. 

(2.8.17) and (2.8.18) => (2.8.16) 

By assumption (2.8.17), Xa Xa + = ~lt1( Xblt1) + • 

Applying R4 to (~IM) gives 

Xa Xa + = ~ IMIM ( 1 ' 2 ,· 4 ) ~ ( 1 ' 2 ' 3 ) • 
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Applying R6 (Theorem 2.8.2) to the entire right 

hand side of the above gives 

By assumption ( 2. 8 .17) ~lt1 = Xa; assumption 

(2.8.18) adds rank(~lt1) = rank(~), the 

condition for R7, which, applied to the 

term within brackets[] above, gives 

Xaxa+ = ~c~- 1~~(1,2,3) 

Applying Rl.1 to the first three matrices of the 

right hand side gives XaXa+ = ~~(1,2,3) 

Applying RB gives the result XaXa+ = ~~+. 

Finally, R3 permits returning to the desired form 

Xa<Xa'Xa>-Xa' = ~(~'~)-~'. 

Note that Assumption (2.8.18) requires rank(Xa) ! rank(IM) 

( and rank ( ~) ! rank ( lt1) ) , but none of the matrices need 

be of full row or full column rank. The matrix lt1 need 

not be square, in which case p ~ q. 

Proof of Theorem 2.8.3 is straightforward under the 

more restricted cases of 

a) Xa and Xb have full column rank (p=q) and IM has a 

true inverse ltt-1, and 

b) CXalM)+ = ltt+Xa+ and lt1 has a true inverse. 

The difficulty in (b) is to set the minimum restrictions 
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on Xa and 1M such that ( Xa IM)+ = IM+ x!. These restrictions 

must link both the column and null spaces of the two 

matrices. See Greville [19661 for conditions under which 

this equality holds. Shinozake and Sibuya's Theorem 3.2 

[1974] permits the use of the less restrictive inverses 

IM(l,2,4) and Xa(l, 2 ,3), thus avoiding the difficulty. 

The projection matrix for Xa is a projector on the 

range or column space or manifold (equivalent terms) of 

Xa along the null space of Xa, and likewise for the 

projection matrix for xt,. The equality of the two 

projectors is the equality of the column spaces of Xa and 

xt, and the equality of the null spaces of Xa and xt,. 

Postmultiplication of xt, by IM generates a new member in 

the set of all linear combinations of the column vectors 

of xt,. Thus, Xa has the same column space as xt,. 

Conditions (2.8.17) and (2.8.18) of Theorem 2.8.3 imply 

the equality of the column spaces of Xa, xt,, and hence of 

their respective projectors. Thus, their orthogonal 

basis may be chosen to be identical, giving identical 

orthogonal complements and null spaces. (See Graybill 

[19831, Theorem 5.4.3, p. 87 and Corbllary 5.4.4, p. 89.) 
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2. 8. 7 Readings in Generalized Inverses 

The novice to the topic of generalized inverses with 

courses in linear algebra and linear models could begin 

with Chapter 8 of Searle [1982). Several numerical 

examples introduce the topic. Chapter 6 of Graybill 

[1983) covers the Moore-Penrose and generalized inverses. 

Care should be taken with his notation, especially if 

simultaneously reading Searle. Cline [1979) has 

geometric illustrations as well as numerical examples and 

exercises. He focuses on the Moore-Penrose inverse; 

later chapters touch on other generalized inverses and 

introduce the Drazin inverse. 

The first three chapters of Ben-Israel and Greville 

[1980) contain a good introduction to the multi-condition 

generalized inverses, such as ~(1,2,3), used in Theorem 

2.8.3 and in statistical applications. Subsequent 

chapters cover applications in areas of mathematics 

outside of statistics. Boullion and Odell [19711 present 

partitioned matrices and statistical applications 

including sequential least squares, quadratic forms, and 

stochastic matrices. Their Notes and Comments provide 

useful insights and direct the reader to the major and 

more readable early papers. Pringle and Rayner [19711 

bring together many results on generalized inverses. 

They discuss the multi-condition generalized inverses and 
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how to compute them, the over-parameterized linear model 

(X not of full column rank), and the linear model with a 

singular variance-covariance matrix. 

Rao and Mitra [19711 thoroughly cover the statis

tistical applications of generalized inverses, including 

the case of a singular variance-covariance matrix. They 

discuss many additional multi-condition matrices created 

by attaching additional characteristics to those of Rl. 

The novice will find the going there easier after 

grasping the suggested parts of Searle, Graybill, 

Ben-Israel and Greville, and Cline. The specialist 

should consult Nashed [1976] for an annotated bibliog

raphy nearly complete up to 1976. Zielke [1978] and 

Campbell [1982] provide more recent bibliographies. 

We return to the normally distributed random error 

model with a discussion of early understanding of this 

type of error. As Chapter Three will make clear, there 

are types of errors which do not have the characteris

tics discussed in the following section. 
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Section 2.9 

Early Understanding of Random Error 

Section 2.9 illustrates the early understanding of 

random error using citations from Galileo and Gauss. The 

citations are grouped into fourteen categories. The 

chapter ends by introducing two different types of errors 

and contrasting their characteristics with those of the 

errors discussed by Galileo and Gauss. Chapter Three 

investigates these two different types of error. 

The linkage of normally distributed random errors 

with least squares estimation grew out of the expansion 

of global navigation and nationwide surveying, and the 

beginning of modern astronomy in the late 1500's in 

Europe. Workers in these areas made careful and repeated 

measurements of an object assumed to be in a fixed place, 

for example a star. As few, if any, of the measurements 

precisely equaled one another, workers came to realize 

that all measurements erred from the true value. While 

improving their methods and instruments, they also 

realized that errors inevitably remained and described 

these errors. 

The following excerpts illustrate the thinking of 

the times and the understanding of the errors which today 

are addressed by the normal distribution model and least 

squares estimation technique. Providing the excerpts are 

Galileo Galilei [GG] (1564-1642) from his work in stellar 

distances and Karl Friedrich Gauss [KG] (1777-1885) from 
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his work in the determination of orbits. Similar 

perceptions are found in the writings of others 

throughout the two centuries. Maistrov [1974, pages 

30-35 and 148-1571 presents a more extensive review of 

the historical development of the theory of errors. See 

also Sheynin [19661. 

1. A unique true value exists; errors are deviations 

from it. 

Doubtless one must say that [the supernova 

of 15721 was located in a single place at a 

unique and determinate distance from the 

earth. [GG 2811 

Whenever the calculations made from the 

observations . do not agree in putting it 

in the same place, there must be errors in the 

observations [GG 289) 

The quantities s, &', S'', &''', etc. 

will furnish as many different determinations 

of the same quantity. [KG 250) 

2. Errors are measured in units of the observations, 

not in units of values calculated from them. 

The size of the instrumental errors, so 

to speak, must not be reckoned from the 

outcome of the calculation, but according to 

the number of degrees and minutes actually 

counted on the [astronomical] instrument. 

[GG 2931 



Chapter 2.9 Early Understanding of Error 94 

If the astronomical observations and 

other quantities, on which the computation of 

orbits is based1 were absolutely correct .•.. 

[KG 249] 

3. Types of errors form a continuum from systematic to 

random. 

[Systematic errors] may be predicted and 

evaluated since these are either constant or 

vary in a regular manner ..•.. Such a division 

of error into two kinds is relative, and in 

many cases depends upon the problem at hand. 

[KG in Maistrov, page 155) 

4. Both types of error may be reduced by experimental 

technique and measuring devices. 

Tycho Brahe [the astronomer] measured the same 

object under varied conditions for the purpose 

of elimination of errors~ [Maistrov, p. 1521 

What faith can we have in calculations 

· founded upon observations which ••. are made 

with less convenient and more unreliable 

instruments? [GG 310, see also GG 315-3161 

5. · Physically impossible values should be discarded. 

Whenever the calculations imply that the 

two angles [of a triangle] exceed two right 

angles, the observations are to be taken as 
I 

unquestionably mistaken. [GG 289, see also GG 

290-291] 
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6. Random errors remain after systematic errors have 

been removed. 

In the differences between the observed 

and computed places there will remain no trace 

of any law, which it would be possible to 

remove or sensibly diminish. by a correction of 

the elements. [KG 252] 

7. Random errors are inevitable~ 

We know too well that in the taking of only 

one altitude of the pole [Polaris] with the 

same instrument, in the same place, by the same 

observer who has repeated the observation a 

thousand times, there will still be a variance 

of one, or sometimes of many minutes. [GG 290] 

All our measurements and observations are 

nothing more than approximations to the truth. 

[KG 249] 

8. Small random errors are more likely than large 

ones. 

One must believe that they would be more 

likely to err little than much. [GG 2901 

Generally speaking, small errors oftener 

occur than large ones. [KG 2531 
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9. Positive random errors are as likely as negative 

random errors. 

Or must the errors be always of one kind, so 

that when they err they are always mistaken by 

an excess, or always be a defect and never by 

an excess? 

I do not doubt that they are equally prone to 

err in one direction [as] the other. [GG 2911 

[As from the data no reason exists otherwise} 

we must assume, [based] upon the principles of 

probability, that greater or less errors are 

equally possible. [KG 2531 

10. The distribution of random errors is symmetric. 

The probability to be assigned to each 

error o [delta) .•. should be. equal, 

generally, for equal opposite values of o. [KG 2541 

11. The maximum probability of the true value is that 

which gives a zero value for the random error as 

measured from the true value. 

And among the possible places, the actual place 

must be believed to be that in which concur the 

greatest number of distances, calculated on 

the most exact observations. [GG 293] 

The probability to be assigned to each 

error A ••• should be a maximum for o = 0. 

[KG 254] 
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12. For theoretical purposes, positive probability is 

assigned to large random errors. 

The probability to be assigned to each 

error 6 ..• should vanish, if, for 6 is taken 

the greatest error, or value greater than the 

greatest error ... [and the probability must] 

converge to zero on both sides, asymptotically 

as it were from 6 = 0. [KG 254] 

13. Random errors are mutually independent. 

Wherefore, since we are authorized to regard 

all observations as events independent of each 

other .... [KG 255] [The translation, at least, 

is obscure as to the source of the authorization.] 

14. Multiple observations of the same object are to be 

combined by averaging. 

If the degree of accuracy is to be presumed 

in all the observations ... [it] must 

... be considered an axiom with the same 

propriety as the [axiom that the] arithmetical 

mean of several observed values of the same 

quantity is adopted as the most probable value. 

[KG 260] 

But if ... the [astronomical] observations 

are distant from each other by too great an 

interval of time, ... so that it would not be 

admissible to regard their deviations as 

constant for all observations ... [then] the 
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mean deviation .... cannot be regarded as 

common to all the observations. [KG 260) 

Many experimental studies differ in an important 

aspect from the studies in navigation and astronomy which 

lead to the normally distributed random errors theory. 

In these experimental studies the observations, which are 

combined, are no longer made upon the same object. When 

such differing objects or experimental units are organic 

in nature, they are seldom identical in every aspect, 

even when the "same" experimental unit is measured at a 

later date. 

When the experimental units differ, different 

responses, as measured without error, may arise from 

units receiving the same treatment. Such errors are not 

the result of errors in multiple observations of the same 

or physically identical objects. They arise indepen

dently of the error due to inadvertent changes in 

experimental conditions and/or subsequent measurements, 

that is, measurement errors. There is no a priori reason 

to expect the distribution of these errors to fit the 

above descriptions, especially numbers 8, 9, 10, and 12; 

number 11 does not apply. Physically adjacent experi

mental units in agricultural studies, such as fields or 

plots, may not be independent, violating number 13. 
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Some organic experimental units may have a higher or 

lower response regardless of the treatment applied. Such 

units are more robust or less so than others. Such 

deviations from the mean response are experimental unit 

errors. 

An experimental unit may perform like others 

receiving treatment A, but quite differently from those 

receiving treatment B when it also receives treatment B. 

This is experimental unit x treatment interaction error. 

Either type of error causes an instability in the 

combined data not present in the studies of Galileo and 

Gauss or, typically, in studies using inorganic experi

mental units. For example, the outcome may be altered if 

most of the robust experimental units receive treatment A 

while most of the nonrobust units receive treatment B, as 

opposed to the reverse assignment of treatments. Or, 

should the penicillin-allergic experimental units receive 

the placebo, all will go well; not so if the penicillin 

goes to the allergic experimental units. In extreme 

cases, the outcome of the experiment depends upon the 

randomization used to link treatments with experimental 

units. There appears to be no provision within the 

normally distributed random errors theory for this type 

of instability of results. 

If either experimental unit error and/or experimen

tal unit x treatment interaction error is an amalgamation 

of elementary errors, one could employ a central limit 
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theorem to support treating its distribution as approxi

mately normal. For example, compare the three assump

tions of Hagen's Hypothesis [C.R. Rao, 1973, p. 1611 

with, respectively, excerpts 6, 13, and 9 above. But, 

these errors need not be an amalgamation; they may arise 

from a singl~ cause, differertt perhaps for each experi

mental unit. The measurement error is the more likely to 

be an amalgamation of elementary errors satisfying some 

central limit theorem, artd having a dist~ibution 

approximately normal. 

One could argue that such errors arise from extreme 

experimental units which form a different population and, 

hence, should be removed from the experiment. An example 

is inclusion in the study population of only those whose 

skin test shows them not to be. allergic to penicillin. 

However, such a test may not be known and, if known, 

would need be done iri both the experimental material and 

the future applications of the results of the experiment. 

Furthermore, one may need to test for a plethora of 

conditions. 

Chapter Three examines such such errors and the 

implications they have upon the classical analysis of 

covariance. 
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CHAPTER III 

THE RANDOMIZATION MODEL 

Section 3.1 

Introduction 

Suppose every experimental unit of the study is 

assigned, at the same time, to treatment k. Suppose 

further that the responses from all experimental units 

are identical. Yet further, suppose that this holds when 

the same experimental units are assigned en masse to each 

of the other treatments. In such a situation, the 

normally distributed random errors theory of Chapter 2 

would suffice. All errors would be failures to properly 

measure the response, or failures to apply the treatments 

identically, and/or the effects of factors not measured. 

But, in some investigation~, experimental units and 

treatments are such that experimental units receiving the 

same treatment consistently fail to respond identically. 

Some experimental units may respond with higher yields to 

all treatment, others may respond with yields higher to 

some treatments and lower to others. Chapter Three 

examines the analysis of covariance as applied to such 

experimental units. 
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The foundation is the randomization model. This 

model considers the conceptual population of values 

actually obtained if the experiment were conducted anew 

using each of the possible ~ssignments of treatments to 

experimental units. Reassigning all treatments to 

experimental units, each time repeating the experiment, 

is seldom, if ever, possible in practice. At the very 

least the experimental units are older and have been 

exposed to the treatments of pievious experiments. Thus, 

the population of outcomes is conceptual, existing only 

in artificial simulations. 

Subsequent chapter subheadings and topics are 

Section 3.2 Randomization 

Section 3.3 Errors and Their Implications 

Section 3.4 The Randomization Model 

Section 3.5 The Normal-Randomization Model 

Section 3.6 The Randomization Test 

Section 3.7 Randomization, Anova Terms and 

Estimators 

Section 3.8 Expected Value of the F-Ratio 

Section 3.9 Experimental Procedures when Both 

Errors are Present. 
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Section 3.2 

Randomization 

Section 3.2.1 introduces the experimental unit 

assignment probability. Sections 3.2.2 - 3.2.4 discuss 

methods of linking experimental units and treatments. 

Section 3.2.5 links assignment and selection probabil

ities. Sections 3.2.6 and 3.2.7 discusses restricted 

randomization and unequal selection probabilities. The 

final section, 3.2.8, discusses why one randomizes. 

Major results are the N(~) of (3.2.4), (p. 108), the 

selection pro~ess of (3.2.7), (p. 109), and Theorem 

3.2.1, (p. 112), linking the two types of probabilities. 

3.2.1 Definition of Randomization 

Consider one fixed treatment, k. By randomization 

we mean that the experimental ~nit(s) assigned to 

treatment k are not fixed a priori. Instead, the 

experimental unit(s) are assigned by a process which 

makes the treatment to which each unit is assigned a 

random event. _The process must uphold the assumptions of 

the model, here being Assumption 8, (p. 22), that 

randomization occurs independently within each block, and 

Assumption 5, (p. 20), which is satisfied by an equal 

number, r, of experimental units per treatment per block. 

The notation for experimental unit ijl receiving 

treatment k is Uijlk· Within the ith block, r times p 
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experimental units are available, of which rare assigned 

to each treatment. The subscripts 1 (the letter el) and 

j have values of, respectively, 1=1,2, ... ,r, and 

j=l,2, •.• ,p. As before, p=t; the number of treatments. 

When there is but one experim~ntal unit per treatment per 

block, r=l, and the subscript 1 is dropped. 

One way to randomly link experimental units to 

treatments is to select the experimental units at random 

from a larger, perhaps theoretically infinite, popula

tion. For some authors, randomization implies this. 

Here, the experimental units are the finite number in 

hand and awaiting assignment to treatments. The random 

linkage is of these experimental units to the treatments. 

Section 3.5.S, (p. 163), considers these experimental 

units as part of a larger population. 

"Randomization" here.has nothing to do with the survey 

sampling technique also called randomization or randomized 

response used in obtaining probabilistic answers to 

sensitive polling questions, as in Warner [1965]. 

Many randomization processes are possible. All 

begin by uniquely labeling experimental units and 

treatments. Directly or indirectly, all assign to each 

jlth experimental unit of block i, an experimental unit 

assignment probability for each treatment, k. This is 

denoted as p(ijl:k), the probability that experimental 

unit Uijl is assigned to treatment k. Typically, the 

assignment is made "at random," meaning with equal 
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probability. Such a process makes all p(ijl:k) equal. 

3.2.2 A seguential Selection Process 

The random process may be (a) a sequential selection 

process, (b) a mass draw process, or (c) a multi-stage 

process combining aspects of (a) and (b). 

One sequential selection process selects, "at 

random", p of the experimental units and assigns them one 

by one "at random" to each of the t treatments, then 

repeats the process r times. As the two processes of (a) 

selection into group rand (b) assignment to treatment k 

operate independently, 

p(ijl:k Ir) = p(ijl:k, r)/p(r) 

= p(ijl:k)p(r)/p(r) 

= p(ijl:k) , ( 3 . 2 . 1 ) 

where p(r) is the probability that Uijl is in group r. 

3.2.3 A Two-Stage Selection Process 

A process in-between the sequential and mass draw 

processes proceed~ block-wise in two stages per block. 

The first stage lists the set~ of unique, distinguish

able groupings of the pr=tr experimental units of a block 

into t groups of r experimental units each. This set has 

N(~) elements. The example below lists four such group

ings. There are (rt)! ways of ordering; or listing, the 

rt experimental units. However, not all are distinguish

able for purposes of the test statistics and/or 

estimators. For each list, such as (a) below, one 
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divides the rt experimental units into t subgroups of r 

each. The first r comprise subgroup 1, the second r 

comprise subgroup two and so on for each list. The 

parentheses of the example indicate this grouping. Sub

groups with the same experimental units, regardless of 

the order of the experimental units, are indistinguish

able from one another, such as (a) and (b) of the 

example. Each subgroup of the same r experimental units 

may be ordered in r! ways. This holds for each of the t 

subgroups. Thus, the initial (rt)! lists, each of rt 

experimental units, reduce to (rt)!/C(r!)t] lists, each 

oft subgroups of r experimental units each. The 

groupings of the reduced list are distinguishable. 

The t subgroups can.be arranged int! ways which, 

with an assumption, are indistinguishable, as in (a), 

(b) and (c) of the example. The assumption is that the 

fun~tion of the data used ~ubsequently, as in a 

hypothesis test, does not depend upon the order of 

arranging the subgroups, nor on the order of the 

experimental units within each subgroup. In the example, 

this is the ordering of (a) the subgroups bound by 

parentheses and (b) the experimental units within each 

subgroup. This is the case for the usual estimators, 

(p. 30), and F-ratio test statistics, (p. 62). This is 

not the case when t=2 and the test statistic is the one

tailed Student's t-test. In such a case, there are 2N(~) 

unique, distinguishable groupings of the experimental 
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units, half of which differ only in the sign of their 

test statistic from the other half. The example below 

illustrates this by considering only the first two 

columns (t=2). Note that sets (a) and (b) become 

distinguishable from (c). For fully-worked examples 

using the t-test, see Kempthorne [1952, p. 232) or 

Kempthorne and Doerfler [1969, p. 232, Table 1]. For the 

functions used herein, the initial (rt)! lists reduce to 

N(~), the number of unique, distinguishable groupings of 

experimental units per block, 

N ( ~) = { (rt) ! } 
(r! )t t! 

( 3 . 2 . 2 ) 

The first stage ends by selecting, "at random," one of 

the N(~} unique, distinguishable groupings. This stage 

is a mass draw process. 

The example below lists four of the (rt)! orderings 

of the experimental units. The numbers represent the 

experimental units. There are t=3 subgroups of r=2 

experimental units each; N(~) = (6!)/[(2 3 )(3!)] = 

720/C (8) (6) l = 15. Note that (a), (b) and (c) are 

indistinguishable from each other, while each is 

distinguishable from (d). Thus, only two elements of the 

set~ are listed below, 

(a) 

( b) 

(C) 

( d) 

(1, 2) 

(2, 1) 

( 3, 4) 

(4, 1) 

( 3, 4) 

( 4, 3) 

( 1, 2) 

( 2, 5) 

(5, 6) 

(5, 6) 

( 5, 6) 

(3, 6) 
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The second stage begins with the single grouping 

selected at the end of stage one, such as the grouping 

which includes (a), (b) and (c) above. Then one selects 

"at random" one of the t sets (Of r experimental units 

each) to assign to treatment k=l. Repeat this for each 

of the k=2,3, ..• ,t treatments. There are t! ways of 

assigning the t sets of experimental units to the t 

treatments. As described, the second stage is a 

sequential assignment process, but it can be performed as 

a mass draw process. 

The set of all block-wise randomizations is~-

Combining stages one and two gives as the total number of 

unique, block-wise randomizations, 

N ( ~) = { N ( <3) } { t ! } 

= { (rt) ! / [ ( r ! ) tt ! ] }{ t ! } 

= (rt) ! / [ ( r ! ) t] ( 3 . 2 . 3 ) 

This is the multinomial coefficient for distributing rt 

objects into t groups of r objects each. When t=2, 

(3.2.3) reduces to (ft), as in the above cited examples 

of the t-test. When t=3 and r=2, as in the example, 

N(~)=(3•2)!/(2!)3 =720/8 =90. 

The set of all experiment-wise randomizations is~-

For a model which randomizes independently in each of b 

blocks (Assumption 8), there are 

( 3 . 2 . 4 ) 

unique, experiment-wise randomizations. When there is 
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but one experimental unit per treatment per block, r=l, 

N(~)=l and the numbers of unique block- and 

experiment-wise randomizations are, respectively, 

N(B) = (t!) and 
N(~) = (t!)b. 

( 3 . 2 . 5 ) 
( 3 . 2 . 6 ) 

The values of NC~), N(~) and N(~) in (3.2.2) - (3.2.6) 

are the largest consistent with the model assumptions of 

Chapter Two; smaller values may also be consistent, as in 

(3.2.12) and (3.2.13), found below (p. 115). 

The two-stage process permits unequal probabilities 

at each stage. Restricted randomization, discussed in 

Section 3.2.6, (p. 114), is an example of this. 

3.2.4 A Mass Draw Selection Process 

The mass draw process conceptually performs all of 

the possible experiment-wise randomizations. The experi

mental units are not physically assigned all possible 

ways. Rather, the N(~) experiment-wise randomization 

labels are ordered in an arbitrary, but fixed manner, 

say, s= 1,2,3, ... ,N(~). To each label, an experiment-wise· 

randomizatio~ selection probability is attached, p(s). 

These probabilities guide the process of selecting the 

one experiment-wise randomization used for the actual 

experiment. The process is 

(a) select with uniform probability R, 0 < R < 1; 

(b) find the value of 1 ! S ! N(~) satisfying 

S-1 S 
s~Op(s) ! R <s~Op(s), with p(O) = O; then 

(c) select the plan with label s=S. (3.2.7) 
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[Kempthorne and Doerfler, 1969, p. 232, as corrected.] 

Because R is uniform (0,1), the probability of R falling 

into any interval is the length of the interval, p(s). 

Experimental randomizations with larger values of p(s) 

have greater probabilities of capturing R. The selected 

label, s, then directs the actual assignment of experi

mental units to treatments. The mass draw process 

attaches one experiment-wise randomization selection 

probability, p(s), to each of the N(~) experiment-wise 

randomizations. In contrast, the sequential selection 

process attaches t treatment assignment probabilities, 

p(ijl:k), to each of the bpr experimental units. 

3.2.5 Assignment and Selection Probabilities 

Typically, the literature uses "at random" to mean 

equal probability for each of the p(ij:k) assignment and 

p(s) selection probabilities, that is, 

p(s) = 1/N(~) and ( 3 . 2 . 8 ) 

p(ij:k) = 1/t • ( 3 . 2 • 9 ) 

Because equal probability is assigned to p(s), p(s)=l/N 

with N = N(~) or t as indicated in (3.2;8) and (3.2.9). 

We now prove that equality of all p(s) implies the 

equality of all p(ijl:k), that is (3.2.8) => (3.2.9). As 

examples, we use (3.2.2), (p. 107), (3.2.4), (p. 108), 

and the below (3.2.12), (p. 115), (3.2.13), (p. 116). 

Note that (3.2.6), (p. 109), is the special case of r=l 

of (3.2.4) and for r=l, (3.2.2), (p. 102), has N(~)=l. 
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The proof uses inclusion probabilities [Cassel, 

Sarndal, Wretman, 1977, p. 11-12 and 68]. For an 

arbitrary block, define ejl:k as the set of all block-

wise randomizations which assign experimental unit jl to 

treatment k. The number of such randomizations is easily 

found with the two-stage process of Section 3.2.3. At 

the first stage, the number of groupings is N(Gi), as in 

(3.2.2) or the below (3.2.12). At the second stage, the 

set containing experimental unit jl is assigned to 

treatment k. The remaining (t-1) sets may be assigned in 

(t-1)! ways to the remaining t-1 treatments. This 

process is repeated N(Gi) times, once per element of Gi, 

giving as the number of elements in ejl:kr 

N(ejl:k) = {N(Gi)}{(t-1)!}. ( 3. 2. 10) 

For example, using N(Gi) of (3.2.2) and (3.2.12), 

r{(rt)!/[(r!)tt!J}{(t-1)!} for (3.2.2) 

N(ejl:k>=t{(t!)r / t!} {(t-1)!} for (3.2.12) 

f(rt)! / [(r!)tt] for (3.2.2) 
=' L<t!)r / t for (3.2.12) 

There are N(0) block-wise randomizations for each of the 

remaining b-1 blocks, giving 

(3.2.11) 

The first order inclusion probability is the probability 

of assigning Uijl to treatment k, which equals p(ijl:k). 

By definition, this is the total of all selection 
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probabilities summed over only those elements of~ which 

assign experimental unit ijl to treatment k. · 

Theorem 3.2.1 

a) All p(s) are equ~l <=> p(s) = 1/N(~). 

b) All p(ijl:k) equal<=> p(ijl:k) = 1/t. 

c) All p(s) are equal=> all p(ijl:k) are equal. 

Proof: 

Parts (a) and (b) follow directly from the 

definition of a probability set function. For (c), 

P (i j 1 : k ) = er:. P ( s ) = eF [ N ( ~) 1 -1 = __ I: [ N UB) 1 - b 
ijl:k ijl:k ~jl:k 

= {N(eijl:k1} x {[N(~)-l(t!)-l[N(G)]-(b-1)} 

= {N(<=-jl:k> [N(f;B) 1b-l} 

. x { [ N ( ~) -l ( t ! ) -fc N ( G) ] - ( b-1)} 

= { N ( ~) [ ( t-1) ! ] [ N ( G) ] b-1} 

x {[N(~)-l(t!)-l[N(G)]-(b-1)} 

= [(t-1)!]/[t!] 

= ·1/t . 

For the N(~) of (3.2.4) and (3.2.13) the proof is 

p(ijl:k) = r:. p(s) = r:. [N(~)]-l = r:. [N(G)]-b 
e1jl:k eijl:k e1j1:k 



= 

= 

= 
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b-1 
[1/N(IB) l 

b-1 
[1/N(IB)l 

re r l ) t b-1 l 
{N(eijl:k>}l(rt)l [1/N(IB)l 1 

{ 1 b-1} 
{N(eijl:kl} (tl )r [1/N(a:l)] 

for (3.2.4) 

for (3.2.13) 

for (3.2.4) 

for (3.2.13) 

f{ }{ t } (rt)l b-l (rt) 1 b-1 
[ ( r l ) t t l [ N ( ®) l · ( rt ) l fu ( ®) } 

lf Ctl >r [N(IB) 1b-1}{-1- f__1_}b-l} 

for (3.2.4) 

l t C t l ) r l..N C IB) 
for (3.2.13) 

= 1/t 

The second order inclusion probability, within a 

block, is defined as the probability that experimental 

units Ujl and Uj'l'' are both assigned to treatment k. 

The inclusion probability is the summation of p(s) over 

the set ejl,j'l':k defined similarly to ejl:k· This 

probability is prior to the creation of the sets~

Afterward, the second order probability is O if 1 and 1' 

are in different sets j and j'. Two such experimental 

units will not be assigned to the same treatment k. If 1 

and l' are in the same j set, the second order inclusion 

probability is the probability of this set being assigned 

to treatment k. Higher order inclusion probabilities are 

defined likewise up to and including order r, after which 

all are zero. No more than r experimental units may be 

assigned to treatment kin any one block. A conjecture 
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is that the implication reverse to Theorem 3.2.l(c) 

requires equality for all inclusion probabilities for 

orders from 1 through r. 

Bailey [1987, p. 712], discussing an additive design 

(see Section 3.3.7 below) withbut a covariate, defines a 

randomizatiori process as 

a) unbiased if ER[;k-;k' l = 7k-7k' , k~k and as 

b) valid if ER[Treatment Mean Square] 

= ER[Error Mean Square] when H0 :~,b, 77=0. 

A process is unbiased if and only if all p(ijl:k) are 

equal. Thus, by Theorem 3.2.1, biased additive designs 

lacking a covariate must have unequal selection 

probabilities, p(s). "For most common designs validity 

can be characterized in terms of [second order inclusion 

probabilities]" [ibid. p. 712]. See Bailey [1987] for 

references to earlier discussions of these definitions. 

Often "unbiased" is used for (b). 

Two processes, a and b, whose sets of p(s) are 

equal, that is Pa(s) = Pb(s) for each s, are equivalent 

selection processes. The two-stage selection process of 

Section 3.2.3, (p. 105), with equal probability of 

selection at each stage is equivalent to the mass draw 

selection process with p(s)=l/N(~). 

3.2.6 Restricted Randomization 

Randomization may be constrained or restricted by 

adding a condition to the model, or equivalently, 
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assigning a zero value to some selection probabilities. 

For example, in each block one could group the rt 

experimental units to balance the range of the covariate 

"initial height" by assigning one experimental unit of 

the tallest t to each treatment, then one experimental 

unit of the next tallest t to each treatment and so on, 

finally assigning one experimental unit of the shortest t 

to each treatment. This adds a condition to the model by 

restricting the membership of each of the t subgroups of 

~. Alternatively, one could assign zero values of p(s) 

to selected groupings of~. For example, either tactic 

could eliminate (d) from the list in Section 3.2.3. 

We derive N(~) for such a condition on the model. 

Taking the tallest t experimental units, assign them one 

at a time to the t subgroups. There are t ways of 

assigning the first experimental unit, t-1 ways of 

assigning the second and so on. This gives a total of 

t! ways of assigning the tallest t experimental units. 

Repeat this process with the next tallest t experimental 

units, again obtaining t! ways of assigning them. 

Continuing for r such groups gives (t!)r initial lists. 

The t subgroups can be arranged int! ways, making the 

number of distinguishable groups, 

N(~) = (t! )r/t! . ( 3. 2. 12) 
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The number of possible experiment-wise randomizations is 

N ( ~) = { N ((B) } b = { [ N ( (3) 1 [ t ! 1 } b 

= { [ ( t ! ) r /t ! l [ t ! J } b 

= {(t!)r}b. (3.2.13) 

With t=3 and r=2, this restriction gives N(c3)=(3!) 2/(3!) 

=6 and N(~)=(3!)2=36. Without the restriction, N((3)=90, 

as shown below (3.2.3), (p. 108). such a restriction 

helps to equalize the covariate values for each treatment 

within each block, improving the balance of the covariate 

in the design. Verrill [1993) terms this predictor sort 

sampling and discusses the characteristics of experiments 

so conducted. For an example, see Reisch and Webster 

[1969, p. 7051 where N(c3) is that of (3.2.13), (p. 116). 

The serpentine method of balancing ranks the 

experimental units by their single covariate, say from 

high to low, then assigns treatments 1,2, ... ,tin the 

following order (1,2, ... ,t), (t,t-1,t-2, ... ,1), 

(1,2, ... ,t), (etc.). This method so constrains c3 that 

N(c3)=1 for all r. (3.2.14) 

See Finney [1957 p. 374-375, his "objective rule of 

allocation"], who does not recommend it due to the 

unpredictable bias in estimation of experimental error it 

may produce. Various such balancing methods have been 

proposed [Finney, 1946; Lucas, 1950; Greenberg, 1953; 

Finney, 1957; Cox, 1957, Methods III, IV and V; Reisch 

and Webster, 1969, p. 705; Wu, 1981A). 
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3.2.7 Unequal Selection Probabilities 

Instead of restricting randomization with 

zero-valued selection probabilities, one may assign 

unequal or weighted selection probabilities. For 

example, the values of p(s) may be assigned via the 

concomitant variables or functions thereof. A few such 

weighting methods have been proposed and are further 

discussed in Section 4.7, (p. 320). 

When the experimental unit assignment probabilities, 

p(ijl:k), are unequal and/or dependent, it is difficult 

to compute the experiment-wise randomization selection 

probabilities, p(s), from the p(ijl:k). The mass draw 

process sidesteps this difficulty by assigning the p(s) 

directly. The experimental unit assignment probabilities 

are assigned, if at all, via the first order inclusion 

probabilities. The remainder of Chapter 3 considers 

equal probabilities as in Theorem 3.2.1, (p. 112), and 

randomization restrained only by the model assumptions. 

N(~) designates all possible randomizations; zero valued 

p(s) are used to avoid those randomizations eliminated 

by, say, balancing on the covariate. Chapter 4.7, 

(p. 320), examines unequal, nonzero-one, assignment 

probabilities. 
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3.2.8 Why Randomize 

Many reasons have been advanced for including a 

random component i.n the linking of experimental unit to 

treatment in designed experiments. Cox [1958, p. 74-851, 

Bailey [19821 and Folks [19141 provide reviews. Four of 

the more frequently cited benefits follow. The paper by 

Basu [19801 and accompanying discussion touches on each 

of these points. A Bayesian view is in Rubin [1978]. 

1. Randomization (with equal p(s)) provides an equal 

probability that any two first, second, etc. adjacent 

experimental units will be assigned to the same treatment 

or treatment pair, or triplicate etc. This is useful 

when errors in adjacent (physically, temporally, etc.) 

experimental units are of equal magnitude and correlated, 

as happens in field plots in agricultural experiments. 

As the number of experimental units increases, the 

"adjacent to" probabilities, and hence correlations, 

uniformly shrink. Under Assumption 2, that the errors 

are normally distributed, zero correlations implies 

independence of the errors, satisfying Assumption 3, that 

the variance-covariance matrix equals x~2 . Thus, "the 

expected value of the total error for any one treatment 

is independent of that for any other treatment" [Anderson 

and Bancroft, 1952, p. 221]. 

The goal of the experimenter is a randomization 

which appears free of concentrations of adjacent 
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treatments. Of course, the randomization actually 

selected may or may not so appear. 

2. Randomization protects one from favoring a particu

lar treatment and from charges of having done so [Lane, 

1980, p. 589]. Failure to randomize has invalidated 

experiments, for example, the Lanarkshire milk trials of 

1930 [Cox, 1958, p. 77-81]. Randomization is now 

standard practice in medicine and other fields. Recall 

the work by Thornett discussed in Chapter 2.3.1, ( p. 21), 

linking randomization to the independence of 

(a) the assignment of treatments to experimental units 

and ( b) the responses of the experimental units. 

Goals One and Two conflict in that concentrations of 

adjacent or nearby treatments can be detected in all but 

a few randomizations. Should the selected randomization 

have clear concentrations of treatments, the door is open 

to charges of having favored a treatment, even if without 

intention. Yet, failure to utilize the initial randomi

zation opens the door to charges of manipulation. Yates 

[1975, p. 586] claims that Fisher ducked the question of 

what to do when the selected randomization has a 

"systematic" arrangement of treatments. Cox [1958, p. 

85-89] suggests three options, (a) add a condition to the 

model statement, as in Section 3.2.6, (p. 114), 

(b) ignore the suspect randomization and select another, 

or Cc) employ restricted randomization. For designs 

without a covariate, Bailey [1985] presents unbiased and 
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valid, (p. 114), rest+icted randomization processes for 

designs with two or four treatments on eight experimental 

units. A second paper [Bailey, 1987) adds more designs 

and details the permutation group methods involved. Both 

papers specify all suspect randomizations a priori, and 

assign them zero values of p(s). As few unbiased and 

valid restricted randomization are available, in practice 

one follows Cox's suggestion (b) and discards suspect 

randomizations. The probab1lity of a randomization 

actually being used does not, in practice, ~qual 

[N(~)J-1. [Kotz and Johnson, Vol. 7, p. 524-530). 

3. Randomization provides robustness against model 

inadequacies [Hooke, 1958; Royal and Herson, 1973 (for 

survey sampling); Wu, 1981B (for linear models)). As 

Godambe [1966) points out, under equal-probability 

sampling, the likelihood function is flat (uniform), thus 

uninformative. Hence, his argument for abandoning 

probabilistic sampling. His suggestion and manner of 

promoting it [Hartley and Rao, 1971; Godambe, 1975), have 

aroused much discussion [Godambe and Thompson, 1971]. 

Basu's 1980 paper continues the argument. If the model 

equation and assumptions are correct, the optimal design 

approach leads to nonrandom, purposeful, assignment of 

treatments to experimental units [Kiefer, 1959; Fedorov, 

1969]. However, should the model be in error, purposeful 

assignment can lead to biased estimates. 
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4. In several experimental designs, all lacking a 

covariate, randomization provides a basis for statistical 

inference without the necessity for assuming a 

distribution for the residuals [Kempthorne, 1975, p. 326, 

Section 1.15]. Kempthorne [1955, p. 949] points to the 

difficulty of testing the assumptions for the normally 

distributed random errors model of Chapter Two. When the 

errors are additive (Section 3.3.7, p. 134 ) the 

randomization test (Section 3.6, p. 166, ) avoids such 

assumptions. Cochran and Cox [1957, p. 6-91 discuss 

these issues.· 

Assumption 3, that the variance is x:cr2, (p. 24), 

removes randomization Goal (1) from consideration. Goal 

(3) is beyond the scope of this paper, but of importance. 

Section 3.7.5, (p. 216), shows that the presence of a 

single covariate gives some randomizations greater 

statistical power than others, at least for normally 

distributed random error. Section 3.8.2 discusses why a 

covariate makes impossible the closed-form expectations 

helpful in Goal (4). We feel Goal (2) is essential for 

confidence in and adoption of experimental findings when 

the errors discussed in the next section may be present. 
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Section 3.3 

Errors and Their Implications 

The algebraic identity of Section 3.3.1 introduces 

two types of errors which are detailed in Sections 3.3.3 

and 3.3.5. Section 3.3.2 reviews the "technical error". 

An interaction error is presented in Section 3.3.4. 

-Section 3.3.6 connects various definitions of the error 

and interaction terms. Section 3.3.7 discusses additiv

ity. A covariate requires redefining the errors, as 

shown in Section 3.3.8. Section 3.3.9 compares the 

hypotheses with and without additivity. Of major 

interest is (3.3.8), (p. 136), and the discussion of 

(3.3.1) vs (3.3.3), (p. 138). 

3.3.1 Two New Error Terms 

The error term of the model equations of Chapter 

Two, (2.3.1), (2.3.4) and (2.3.6), (p. 16-22), is 

assumed to be due to inaccuracy of experimental 

technique. It is postulated as part of the model, as 

opposed to being defined explicitly. The randomization 

model replaces it with one or more new error terms. 

These new errors require the identifiability of the 

experimental unit and, for one, the treatment assigned to 

it. The label ijk now replaces the ik used in Chapter 

Two. Throughout, we use r=l and drop the subscript 1. A 

superscript distinguishes between similar error terms; 

the notation(·) indicates that any of the similar terms 



Chapter 3.3 Errors _and Implications 123 

applies. When the model lacks a covariate, the terms are 

defined explicitly by a model equation which is an 

algebraic identity, such as (3.3.1) and (3.3.6) below. 

The averaging version of the dot notation simplifies such 

identities. An example of this notation is 

y k = ~ ~ ~ y. "k •• up i=l j=l l) ' 

where Yijk is the unobservable true response when treat

ment k is applied to experimental unit ij. Conceptually, 

treatment k can be applied to all experimental units, and 

experimental unit ij may receive in turn each treatment 

k, as in Yij·· One algebraic 

identity is 

y. "k lJ = Y .•. + (Yi•• - Y .•. ) + (Y .. k - Y ... ) 

+ [(Yijk - yij•) - (Yi•k - Yi •. )], 

= J.L + bi + 7 k + ( bt) i k + e i j + 'O.i j k · ( 3 . 3 . 1 ) 

The second equality supplies symbolic names for the 

respective terms of the first equality. Variations of 

this equation and its last three terms are the subject of 

the following sections. Until Section 3.3.8, the model 

equation has no covariate. 
b t 

Note that r: b· = I: 'Tk = O, 
i=l l k=l 

embodying Assumption 5, (p. 20). 



Chapter 3.3 Errors and Implications 124 

3.3.2 Technical Error 

"Technical error" is the term used by Neyman [1935, 

p. 110, 114 and 145], Wilk [1955, p. 70; 1957, p. 2241, 

and Wilk and Kempthorne [1955, p. 1148] for the normally 

distributed random error term of Chapter Two. The last 

two authors also use the term "measurement errors" [p. 

1148]. Neyman describes the technical error as that "due 

solely to the inaccuracy of experimental technique, the 

vegetative conditions in all out hypothetical [agricul

tural] experiments being exactly the same" [p. 110]. In 

Neyman's description, the vector of technical errors has 

dimension bpt x 1 instead of bt x 1 as in Chapter Two. 

This implies that his technical error may differ with 

each experimental unit-treatment combination, that is, 

with each reassigning of experimental units to 

treatments. 

3.3.3 Experimental Unit Error 

Kempthorne [1952, p. 145-146] defines the 

experimental unit error as 

e~j = Yi j • - Yi • • ' 

a term of the algebraic identity of (3.3.1). He 

( 3 . 3 . 2 ) 

describes it as "the deviation of the jth plot from the 

block mean averaging over all treatments" [p. 146]. It 

is "the difference between (a) the (conceptual) mean of 

the yields of all treatments on unit j of block i and (b) 

the mean over the whole of block i" [Wilk, 1955, p. 71]. 
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Kempthorne uses the term "plot error"; Wilk uses "unit 

error." Roux [1982] uses this experimental unit error in 

a model equation containing a covariate, as discussed 

below in Section 3.3.8, (p. 136). 

Bartlett [1935], Welch [19371, Pitman [1938] and 

Plackett's review of their results (1960, p.152-157], use 

an error term, efj, which is similar to efj in that it is 

not determined by the particular treatment applied to 

experimental unit ij. Instead of defining elj as a term 

in an algebraic identity, they postulate it as an error 

term, say, as "arising from the variability among the 

[experimental units] of a [block]~ errors in measurement, 

and other accidents affecting particular individuals" 

[Pitman, p. 322-323]. Pitman includes technical errors 

in this term; other authors [Kempthorne, Wilk, op. cit.] 

assume the technical errors to be small enough to ignore. 

The efj experimental unit error is not a conceptual 

deviation of the ijth experimental unit as averaged over 

the treatments of the particular experiment; rather, it 

exists independently of any treatment. Thee~- of lJ 

(3.3.2) may be large because the ijth experimental unit 

has a large response (Yijk) for but one treatment. The 

e~- would be large (or small) for all treatments; it is lJ 

the robustness (or lack of) of experimental unit ij to 

all treatments. 
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Kempthorne [1952, p. 137] uses the e~j of (3.3.2), 

but with the model equation 

= Y ••• + (Yi•• - Y ••• ) + (Yijk - yij•) 

+ (Yij• - Yi .. ) 

( 3 • 3 . 3 ) 

In this model, the treatment effect,· 'T~, is assumed to be 

identical for each experimental unit. In (3.3.1), 

(p. 123), 'Tk is the treatment effect as averaged over all 

experimental units. When the e~j are considered as 

random variables, forcing them to sum to zero within each 

block imparts a correlation among them within each block. 

The variance-covariance matrix is not x~2 as in 

Assumption 3, (p. 24), but, rather is v~2 as in 

* Assumption 3, (p. 16)~ 

3.3.4 Block-Treatment Interaction 

Kempthorne [1952, p. 145-146] defines 

( bt ) i k = ( y i . k - y i .. ) - ( y •• k - y • • • ) (3.3.4) 

as "the deviation of the kth treatment from the overall 

mean, averaging over all plots." A term of the identity 

(3.3.1), (p. 123), it is "the difference between (a) the 

effect of treatment k on block i and (b) the treatment 

effect." Thus, "it is a measure of the extent to which 

treatment k and block i interact" [Wilk, 1955, p.71]. It 

is not a random variable unless the blocking factors 

and/or their levels are a random sample from a larger 
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population. Herein, as in Chapter Two, we consider them 

fixed. By Assumption 7, (p. 21), this term is either 

zero or included in the normally distributed random 

error. Roux [1984] applies the multiplicative approach 

of Mandel [1961] to block-unit interaction. 

3.3.5 Experimental Unit-Treatment Interaction 

The classical example of experimental unit-treatment 

interaction is penicillin allergy [Kempthorne, 1975, p. 

324]. Should the penicillin treatment be assigned to 

an allergic experimental unitj the response is quite 

different than if the penicillin had been assigned to a 

nonallergic experimental unit. The conclusion of an 

experiment can be determined by a sufficient number of 

such unfortunate assignments. 

Discussing the response for treatment ·k in block i, 

Neyman [1935, p. 111 and 1451 defines the "soil ~rror" as 

,,..Nl = 
''i jk y. "k - y. k lJ 1· 

(3.3.5) 

It is "the correction for fertility variation within the 

block" [ibid. p. 111]. Neyman's definition is in terms 

of the algebraic identity 

The addition of terms for the mean and block requires 

redefining this interaction term as follows 

Yijk = Y ... + (Yi .. -Y ... ) + (Y .. k-Y ... ) 

+ [Yijk + (Y ... -Yi .. -Y .. k)] 

= (3.3.6) 
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This experimental unit-treatment interaction term 

contrasts (a) the response of experimental unit ij to 

treatment k with (b) the overall mean as adjusted for 

(i) the response of block i averaged over all treatments 

and experimental units and for (ii) the response of 

treatment k averaged over all experimental units. Its 

functional form is similar to the usual estimate for 

factor A by factor B interaction. 

Kempthorne (1952, p. 145-146] defines a different 

experimental unit-treatment interaction, 

( 3 . 3 . 7 ) 

It is a term of the algebraic identity of (3.3.1) and is 

"the deviation of the effect of the kth treatment on the 

jth plot of the ith block from the average effect in the 

ith blockll [p. 146]. Wilk [1955, p. 721 describes it as 

"the difference between (a) the effect of treatment k on 

unit j of block i and (b) the effect of treatment k over 

all of block i. It is a measure of the extent to which 

treatment k and unit j of block i interact." 

Roux [1984] defines an experimental unit-treatment 

interaction for the completely randomized design. It is 

identical to (3.3.7), but lacks the subscript i. 

As with e1j, one may postulate an experimental unit-

treatment interaction, p 
'11.i j k • The following graph 

illustrates this interaction error term. 
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R 
e 
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g 
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s 
e 

Plot j=l 
Block i=l 

2 3 4 

y. "k lJ 

Treatments k and k' 

Graph 3.3.1 

Experimental Unit - Treatment Interaction 'O:ijk 

The graph is that of a factor A by factor B interaction 

as in the normally distributed random error model, except 

here the second "factor" is the experimental unit. Of 

N2 the experimental unit-treatment interaction terms, 'O:ijk, 

most closely resemble~ the ~stimate of the A by B 

interaction. We use it to indicate the meaning of the 

postulated version of the experimental unit-treatment 

interaction term, 'O:ljk· 

Suppose several experimental units receive in turn 

treatments k and k' as in Graph 3.3.2. 
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* D D • D •••••••••••••••••• • ••••••••••• ! •••••••• "Tk 
D* 

'v* 

'v 
• a:;, ••••••••• a:;,* • • • ••••• 

D D* 
. .. ~ ... o ............. "Tk ' 

D* 'v 

block i 1 1 2 2 ... 1 1 2 2 

plot j 1 2 1 2 ••• 3 4 3 4 
D = 'Tk + 'l\i j k 'v = 'Tk I + 'fli j k I k ;s! k I 

Graph 3.3.2 

Error as Experimental Unit-Treatment Interaction 

The experiment proceeds under the assumption that 

the experimental unit-treatment errors are small relative 

to the treatment effects, as shown in the left-hand side 

of Graph 3.2 for plots one and two. The experimental 

unit i=l, j=l has zero interaction under either treatment 

k or k'. Other experimental units respond to treatment k 

(and/or k') but over or under shoot the "true" effect of 

treatment k (and/or k' ). For these·experimental units, 

any assignment of treatments to experimental units, such 

as the points with an asterisk (*), will lead to the 

correct conclusion that -rk>-rk1 In experimental units j 

= 3 or 4 to the right-hand side of Graph 3.2, the plot 

errors are large relative to the treatment effects. The 

conclusion is determined by the assignment made. The 

assignment shown leads to the incorrect conclusion 
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'T"k<~k'. The difference between points assigned to the 

same experimental unit is: 

y i j k - y i j k I : ( 7 k - 7 k I ) + ( 1\i j k - 1\i j k I ) I 

and is a fixed shift due to treatment differences which 

is constant for all experimental units, plus a shift due 

to interaction which may differ with each experimental 

unit. 

Each of the experimental unit-treatment interaction 

error terms is a random variable, dependent upon the plot 

j to which treatment k is applied. Each is independent 

t ' . ) of he technical error ~ and of the 1\ijk of a different 

block [Neyman, 1935, p. 146]. Two 1\!jJ in the same block 

are not statistically independent, as the following joint 

probability of their indices is not factorable, 

{ 
0 for j=j' or k=k' or 

p(IJK=ijk, IJ'K'=ij'k')=. 
t~ 1 ct-11-l otherwise. 

both 

When the entire set of 1\ijk are considered as random 

variables, the entire set of bpt 1\ijk are correlated, but 

the bp 1\ijk appearing in any one randomizatio~ appear not 

to be. They may have a variance-covariance matrix of 

xcs-2, as in Assumption 3, (p. 24). 
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3.3.6 Relationships Among Error Terms 

The various error terms are related as follows 

+ 'l'lf j k 

+ 'l\f j k 

and 

( 3 . 3 • 8 ) 

When algebraic identities define the error terms, the 

model must either (a) use one of the Neyman definitions, 

nf Jk >, without an experimental unit error term or ( b) 

Kempthorne's definition 'l'lfjk and include the experimental 

unit error term, e~j· When (bt)~k is zero, the 

Nl N2 definitions of 1\ijk and 1\ijk' (3.3.5), (p. 127), and 

(3.3.6), (p. 132), are identical, as seen in (3.3.8). 

The error term(s) may be postulated instead of de

fined in terms of an algebraic identity. In this case the 

model equation will include elj and/or 'l'lljk' instead of 

those of (3.3.8). The inter-action term, 'fl.ljk' indicates 

the response by experimental unit ij over and above (a) 

that due to its robustness relative to other experimental 

units, elj and (b) that due to the treatment effect, 7k, 

considered as aver~ged over all experimental units. 

When for several experimental units the effect of 

efj and/or 'l'lljk is large relative to the effect of 7k, 

the effects of 7k will be masked. Comparing subsets of 

the experimental units, say with the bootstrap procedure, 

may permit detection of treatment effects by removing 
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experimental units with large elj and/or ~ljk· The model 

would no longer have the same number of experimental 

units per treatment per block. Such methods are not 

considered here. 

Wilk [1955, p.721 notes that ~k=O for all k does not 

imply (bt) ik=O for all k, nor does (bt) ik=O imply ~fjk=O 

for all i and k. 

Wilk suggests that if blocking has successfully 

grouped experimental units that are homogeneous as to 

their responses to the treatments, then a zero block

treatment interaction effect would imply a zero experi

mental unit-treatment interaction. The converse does not 

hold; small experimental unit-treatment interaction 

effects can coexist with larg~ block-treatment interac

tion effects. An example is animal experimental units 

blocked by parents. Litter mates may differ little in 

their response to any tre.atment. k, making ~Li~ small, but 

litter-to-litter differences may be substantial, making 

(bt)ik large [Kempthorne, 1955, p. 952; Roux, 1984, p. 

144). The consistency of transmission of relevant genes 

to offspring, say by inbreeding, determines the success 

of such blocking. Should one treatment have an unusual 

and equal effect on one experimental unit of each block, 

then ~fj~ would be large for that treatment, but {bt)ik 

would be small. 



Chapter 3.3 Errors and Implications 134 

3.3.7 Additivity 

Model equations lacking interaction are said to be 

additive or to have mutual additivity [Wilk and 

Kempthorne, 1955, p. 1149; Cox, 1958, p. 14-17]. For 

such model equation.s,. 

yijk = J.l + bi + 'Tk + e-. I or (3.3.9) lJ 

yijk = J.l + bi + 'Tk + e-. + € . (3.3.10) lJ 

Those model equations including interaction terms are 

non-additive. The interactions may be those of Section 

3.3.4 [(bt)ikl and/or Section 3.3.5 [~ljkl and/or 

interaction between two factors. Additivity in the 

strict sense excludes all interactions, but permits an 

experimental unit error, ef~>, in the model, as in 

(3.3.9). Additivity in the broad sense also excludes all 

interaction, but permits an experimental unit error, 

ef~>, and a normally distributed random error, € 1 as in 

(3.3.10) [Kempthorne, 1955, p. 952; W. J. Welch, 1990, 

p. 697]. Under broad additivity, it is the expected 

value of the difference between the responses of the same 

experimental unit subjected to two different treatments, 

k and k', which equals 'Tk-'Tk'. The expectation is with 

respect to the normal distribution, 



Chapter 3.3 Errors and Implications 135 

Equation (3.3.11) summarizes these types of additivity, 

for each ij 

expected value (En) 

+ [(bt)ik-(bt)ik'] 

+ [ 'O.i j k - 'O.i j k ' ] 

additive 
strict sense 

additive 
broad sense 

non-additive. 

(3.3.11) 

Treatments may be additive within a block, implying 

that all 'O.fjl=o, but non-additive from block to block, 

implying that (bt)ik~O [Wilk, 1955, p. 72]. Model equa-

tions with the former, all 'O.!jJ=o, have unit treatment 

additivity [Wilk and Kempthorne, 1955, p. 1150], also 

·termed treatment-unit additivity [Wilk, 1955, p. 72]. 

A nonrandom covariate with constant coefficient~ 

does not affect the additivity, or lack thereof, of the 

model equation, as the two treatments, k and k', are 

applied to the same experimental unit, whose covariate 

value is un~hanged. If the coefficient changes with the 

treatment, ~k' then the model equation is non-additive. 

Under additivity (btik = 'O.ijk = 0) and without a 

covariate, Kempthorne points out [1955, page 956], that 

Randomization affects only the [experimen

tal unit] error, this statement indicates the 

fields of application where randomization is 

important. One can envision experimental 

situations where [experimental unit] errors 

are trivial and the additional errors large in 
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comparison to them. In such a situation the lack 

of randomization will not seriously invalidate 

the experimental conclusions. This seems to be 

to be the main reason why the randomization 

ex~eriment has not b~en essential to progress 

in some of the physical and chemical sciences. 

The inanimate "subjects" of the physical scientists are 

homogeneous experimental units which react identically to 

identical changes in treatments. They face no interact

tion between the experimental unit i,j and the treatment 

k; the interaction ~ijk equals zero for all randomiza-

tions. Researchers whose subjects are plants, animals, 

or humans face experimental units closer to the two 

examples of Graph 3.3.2, (p~ 130), hopefully closer to 

those of the left-hand side. Ideally, the ~ijk and eij 

are small enough so that only a small percentage of the 

randomizations will provide incorrect conclusions. 

3.3.8 Errors in the Covariate Model 

The presence of a covariate prevents defining the 

terms of the model equation by an algebraic identity such 

as (3.3.1), (p. 123), or (3.3.3), (p. 124). One way 

around this is to define 

(3.3.12) 

One th~n uses the Wijk in place of the Yijk in (3.3.1) or 

(3.3.3). This method postulates a known covariate slope 

coefficient, 13. 
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A covariate with a constant slope coefficient ~ is 

like experimental unit error in that it is attached to 

the experimental unit and is unaltered by the randomiza

tion. While the bp experimental unit errors are entiiely 

unknown, the bp covariates are. known, up to the unknown 

multiplicative constant ~- When the slope coefficient 

changes with eac~ treatment, ~k' the product ~kzij has 

some aspects of the experimental unit-treatment interac

tion errbr. Like this error, the product changes with 

the treatment as ~k changes to ~k'. Unlike this error, 

this product is known up to the multiplicative constants 

~k, ~k,, etc. Also, the change from ~k to ~k, is 

independent of the experimental unit, thus the ratio 

Roux [1982, p. 4] defines ~ as the term minimizing 

A 

the variance of 7k, when 7k is defined as in (2.4.29), 

(p. 32). His •odel equation is (3.3.3), (p. 124), with 

the covariate entering at the estimation stage. The 

definition of ~ is equal to the usual least squares 

estimator from the m6del equation 

(3.3.13) 

where the dij represents deviation from regression. The 

resulting minimum variance of the estimated value of 7 is 

(3.3.14) 
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More common is to postulate the model equation, as in 

Kempthorne [1952, p. 159]. A price is that "we are 

entirely dependent on the accuracy of the model . for 

the test of the hypotheses that there are no treatment 

effects." [ibid., p. 159]. 

3.3.9 Two Hypotheses: In-Particular and On-Average 

The hypotheses of interest in Chapter Two, (2.6.40), 

(p. 63), and (2.6.44), (p. 64), test at least one 

treatment being nonzero for the response of every 

experimental unit. This is the in-particular version of 

the hypotheses. In the randomization model, when there 

is experimental unit error, with or without normally 

distributed random error, again the hypotheses test a 

nonzero treatment effect for every experimental unit. 

When there is experimental unit-treatment interac

tion, 'l'~ijk, some experimental units may be positively 

affected, others negatively affected, and yet others 

unaffected, by one or more of the t treatments. 

Nevertheless, the treatment effect, averaged over all 

experimental units may be nonzero. In the randomization 

model with experimental unit-treatment interaction, the 

two hypotheses test at least one treatment being nonzero 

for the responses as averaged over all experimental units 

receiving that treatment. This is the on-average version 

of the hypotheses. The truth of the in-particular hypoth

esis implies the truth of the on-average hypothesis, but 

the converse does not hold. 
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The randomization model equation of (3.3.3) lacks 

experimental unit treatment and block treatment interac

tions, but includes experimental unit error. This model 

equation tests the in-particular hypothesis, as the 7~ of 

(3.3.3), (p. 124), suggests. The of 7k of (3.3.1), 

(p. 123), shows it to be averaged over all experimental 

units. It tests the on-average hypothesis. 

The in-particular hypothesis interests the physician 

and his/her patient. They need to know if the treatment 

will work in their particular case. The on-average hy

potheses interests the public health authorities and the 

society supporting them. They need to know if, on aver

age, the society will benefit from the treatment, even if 

some are injured by it. The in-particular version inter

ests the chemist verifying a mechanistic explanation for 

a physical phenomenon, such as generating oxygen and hy

drogen by electrolysis. The on-average version interests 

the entomologist facing a diverse and evolving popula

tion, such as in mosquito control. When there is experi

mental unit~treatment interaction and/or block-treatment 

interaction, the standard analysis of variance of Chapter 

Two (with or without a covariate) gives the appearance of 

testing the in-particular hypothesis, when in fact, it 

only tests the on-average hypothesis. See Neyman [1935, 

p. 111, below (3) and 172-1771, Welch [1937, p. 22-231 

and Kempthorne [1952, p. 132-134; 1975, p. 324-325, 

Section 1.12] for discussions of these two hypotheses. 
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Section 3.4 

The Randomization Model 

Sections 3.4.1 and 3.4.2 present the randomization 

model equation, assumptions and probability space. 

Section 3.4.3 describes the parameter space and shows 

that interest centers in statistics of these parameters. 

Section 3.4.4 contrasts assumptions underlying the 

randomization and normally distributed random errors 

models. Connections between survey sampling and 

randomization model concepts are discussed in sections 

3.4.3 and 3.4.4. The major result is the probability 

space of Section 3.4.2, (p. 142). 

3.4.1 The Model Equation and Assumptions 

The Randomization model equation is identical to 

(2.3.4), (p. 19), or (2.3.6), (p. 22), except the error 

term is eij and/or 'l"lijk in their postulated versions, as 

is necessary with a covariate. For convenience we drop 

the superscript P. As r=l, we drop the subscript 1. 

Assumptions 1 and 3 - 8 of the normally distributed 

random errors model hold. We add Assumption 9, 

p 
I: e- . 

j=l lJ 
= 

p 
I: '(l· "k j=l lJ 

t 
= k~l '11.ijk 

for all blocks i=l,2, ... ,b. 

= o, ( 3 . 4 . 1 ) 

In the unusual cases where these terms may be estimated, 

discussed below in Section 3.9, (p. 232), their 

estimators are similarly constrained. 
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3.4.2 The Probability Space for the Randomization Model 

We follow Cassel, Sarndal and Wretman [1977,p. 1-311 

in defining the probability space for the randomization 

model. They use (~, &, p(s)) to denote the probability 

space as developed for survey sampling, instead of the 

more common notation (Q, ~, p). We adapt their notation 

for the randomization model. 

The randomization model has a finite population of 

bpt block-plot-treatment labels, ijk, which identify 

the responses Yijk· Designate one set of all bpt of the 

labels as ~u = {111, 112, . . . , llt, 121, ... , 112t, 

... , ijk, ... , bpt}, 

where u = 1, 2, ... , bp. 

The ~u are identical for each value of u. Any experiment-

wise randomization draws one label from ~u for each of 

its bp experimental units. That is, there are bp draws 

of ~u· 
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Assume that each draw is independent from all 

others. This gives as~ the Cartesian product 

~ = ~1 X ~2 X • • • X ~bp • 

The set·~ has bptbP elements. For two blocks and one 

experimental unit for each of four treatments, bp=(4)(2) 

=8, and typical elements, ~,of~ are 

(111, 122, 133, 144, 211, 222, 233, 244), or 

(111, 121, 131, 141, 211, 211, 211, 211), or 

(111, 112, 113, 114, 111, 112, 113, 114). 

Each row, not each triplet, is ohe element of~. Elements 

(entire rows), such as the last two, are useless or 

impossible experiment-wise randomizations. In the second 

row only one treatment is used; in the third row the same 

experimental unit is reused. Such randomizations will be 

assigned zero probability. Only elements such as the 

first are possible experiment-wise randomizations. This 

Cartesian product representation is due to Dr. ~ahadeb 

Sarkar with help from Dr. Ignacy Kotlarski and the author. 

Define & as the set of all sets of~, that is, the 

power set of~, plus the null set. 

The probability density or mass (set) function, p(•), 

· is defined on the sets of&. Only those sets permitted 

by the experimental design, such as the N(~) sets of 

(3.2.4), (p. 108), or (3.2.13), (p. 116), have non-zero 

selection probability. Label these sets s=l, 2, 

... ,N(~), N(~)+l, ... , NC&). In these experimental 

designs all sets of & with more than one element of~ are 
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assigned zero selection probability, that is, the 

experiment is performed but once. In designs which reuse 

experimental units, such as crossover designs, only sets 

of ..J2 with two elements of~ may be assigned nonzero 

selection probability. All bther sets, the vast majority 

of the sets in&, are assigned zero selection probability. 

Denote the summation over all elements of ..J2 as EC·). 
For .r=l and p=t, one such p( ~) is ..J2 

{
{p!)-b 

p(s)= 
0 

for the N(~)=(p!)b elements of~ c ..J2 

otherwise, 

with E p{s) = 1. 
..J2 

For the randomization model, the probability space is the 

triple 

( ~ I ...Q, p ( S ) ) • 

In the following we considers 3 {1,2, • • • I 

( 3 . 4 . 2 ) 

N ( ~)}, it 

being understood that p(s)=O for the remaining sets of ...Q. 

The random vector of length bp, Y(~), is a set 

function which assigns each element, ~, of~ to a point 

in !F?P, a bp-dimensional Euclidean space, 

Y( ·t) : ~ -> IRbp . (3.4.3) 

The sets, s, and.their probabilities, p(s), define 

the experimental design, just as they define the sampling 

design in survey sampling. In the terminology of survey 

sampling, the selection probability p(-) is the unordered 

sample design [Cassel, Sarndal and Wretman, 1977, p.10]. 
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3.4.3 Auxiliary Variables and The Data 

To each of the elements of any tu, say ijk, is 

associated a known concomitant or auxiliary variable(s), 

such as the covariate Zij· For each block-plot ij the 

covariate z. · is identical for each treatment and each is lJ 

unaltered by the other. 

-There are bpt possible responses Yijk· The vector Y 

of all of them is the parameter of the finite population. 

- I 
That is, y = (Ylll' Y112, · · ., Y11t 1 Y121, ... , Y12t, 

The parameter space is flPPt, a bpt-dimensional Euclidean 

space; 

The data is the random vector Y, of length bp, 

taking observed values 

Yi j k = { ( i j k , Yi j k ) , i j k E S C t , Yi j k E Y E IF?Pt} . 

A statistic is a function U of the data Y, such as U(Y) = 

F(Tl~,b,,J. In the randomization model, U(Y) depends 

.... 
upon the parameter Y only through (a) those Yijk which 

have been selected by randomizations~ and possibly 

through (b) known auxiliary information provided by the 

labels, ijk. The covariates, Zij's, are such auxiliary 

-information. Recalling that Y is the vector of parame-

ters, we see that no unknown parameters enter into U(Y). 

This definition of a statistic is the same as in the 
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normally distributed random errors model where such 

statistics as the F-ratio under the null hypothesis 

depend upon only known parameters, in this case the 

numerator and denominator degrees of freedom. 

Interest in the randomization model is in such 

-statistics, not the entire set of parameters Y. The 

typical statistics of interest (F-ratios) ignore the plot 

labels in the parameter space ~bpt and replace the plot 

labels in the data space ~p with the treatment labels. 

This treats both spaces as l!Pt. 

The researcher hopes the plots are sufficiently 

alike (small eij) and sufficiently unaffected by the 

treatments (small ~ijk) to permit the lower dimensional 

space to represent the higher dimensional space. The 

parameter space needs to be "thin" in the plot dimension, 

for the statistics to be valid for all randomization. 

Graph 3.4.la shows small values of eij and ~ijk· 

The effect of treatment two reveals itself as positive 

for any randomization. In Graph 3.4.2a the values of 

eij and 'l"tijk are ten times those of Graph 3.4.la. Now 

different randomizations lead to different conclusions. 

One randomization gives (j,k;Yijk) as (l,1;4.5), 

(2,3;4.5), (4,3;-3.5) and (3,4;4.5), erroneously 

suggesting that treatment 3 has a negative effect. The 

base response and treatment effects are identical in both 

graphs. 
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Graphs 3.4.lb and 3.4.2b show th~ range of plot 

responses projected on the treatment axis. In the 

former, the spread of responses, the thickness of the 

plot dimension, is small. In the latter the spread is 

large. Only when the errors are small relative to the 

treatment effects (Graph 3.4.ia) are the conclusions free 

of the randomization used to conduct the experiment. 
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TREATMENTS 

y 

3.4.4 Implications and Inferences 

Being able to fix the probability of selecting any 

particular randomization permits a second approach to 

achieving such desirable attributes in an estimator as 

unbiasedness and minimum variance. The first approach, 

applicable in both models, is to alter the functional 

form of estimators and test statistics. We do not 

attempt this, but instead hold fixed such functions as 
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~ b and F(71~,b,~), as defined in Sections 2.4-2.6. 
~T T ~ 

The second approach, precluded in the normally distribu

ted random errors model, is to alter the selection 

probabilities, the p(s), and hence, the assignment 

probabilities, p(ij:k). This alters the expectation of 

estimators and test statistics in the randomization 

model and hence, their bias and variance. The pair 

{p(s), estimator} is termed a strategy. Sections 4.7 and 

4.8 below discuss alternative strategies, strategies with 

unequal selection probabilities. 

The randomization model treats its population as 

finite and, strictly speaking, must limit its conclusions 

to that population. Invariably, one takes a leap of 

faith and claims that the new population of experimental 

units is sufficiently like the one examined to apply to 

it the results obtained from the previous experiment. 

The leap of faith occurs earlier in the normally distrib

uted random errors model. At the onset, one assumes a 

distribution, the normal one; a covariance structure, V 

or X; identical experimental units (all eij=O); and no 

interaction between experimental unit and treatment (all 

nijk=O). Having assumed that the experimental units 

studied were drawn from an infinite population, the 

researcher is free to apply his/her results to future 

experimental units assumed to come from the same 

population. This model has the advantage of known 
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distributions for statistics of interest. Underlying 

its use is the assumption that the error term in the 

model equation arises not from variations among the 

experimental units, but rather from a sum of many random 

variables. These random variables have unknown distribu

tions but satisfy some central limit theorem. Thus, the 

error term comes to approximate a normal distribution. 

As detailed in Section 3.3.3 (p. 124), the randomization 

model makes quite different assumptions about its errors. 

White (1975] discusses these issues. 

It is possible to combine the two models. We do so 

in the following section. 
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Section 3.5 

The Normal-Randomization Model 

This section develops a matrix notation which allows 

combining the normally distributed random errors model 

and the randomization model. Sections 3.5.3 and 3.5.4 use 

the notation to derive the mean and variance of the 

vector of responses. Section 3.5.5 discusses the super

population approach. The final section discusses 

exchangeability. The main results are (3.5.1), (p. 156), 

(3.5.2), (p. 157) and Theorems 3.5.2(e), (p. 160) and 

3.5.5, (p. 163). 

3.5.1 Introduction 

The notation typically used in the randomization 

model employs a zero-one indicator random variable. It 

has value one if treatment k is assigned to the experi

mental unit under consideration and zero otherwise. This 

notation is suitable when all assignment probabilities, 

p(ij:k), are equal. It is awkward when they are not. 

Use of selection probabilities, p(s), equal or not, calls 

for an alternative notation. The following notation 

permits using p(s) as well as combining the normally dis

tributed random errors model and the randomization model. 

3.5.2 The Model Equation 

This notation builds an alternative model equation 

from several large, partitioned, matrices. We define the 
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matrices Y, X, V, E, m and M. The first two symbols are 

redefined from previous use. Assumptions 1-9 continue to 

hold. We illustrate the model equation using a design 

with two blocks, i=l,2; four treatments, k=l,2,3,4; and 

one experimental unit, j=l,2,3,4, per treatment per 

block. Changes needed to fit other designs appear to be 

straightforward. 

The matrix of responses is Y, with dimension bpr x 

N(E:). Each column, Ys, represents all bpr responses 

arising from one randomization. In the example r=l. 

Each column is identically ordered as to blocks, and 

within blocks as to treatments. By convention, we 

permute the plots starting with the last block. The 

first b-1 blocks begin in the first of the N(®) block

wise randomizations. After building a column for each of 

the N(®) block-wise randomizations in the last block, we 

move to the second permutation in the penultimate block 

and build all N(®) columns for the block-wise randomiza

tions of the last block. Once all N(®) block-wise 

randomization are listed for the penultimate block, we 

set the third-to-last block to the second block-wise 

randomization and repeat the above. This continues until 

the last column has all blocks in their last block-wise 

randomization. The Y matrix for the example has elements 

Yijk· Arrows point to some of the permuted subscripts .. 

Only the plot subscript (j) changes. The matrix is 
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r ylll ylll ylll ylll Y141 
y122 Y122 y122 y122 Y132 
Y133 Y133 Y133 Y143 <- Y123 

y Y144 Y144 Y144 Y134 <- yll4 
= ... . .. 

Y211 Y211 Y241 Y211 Y241 
Y222 Y222 y232 Y222 Y232 
y233<->y243 Y223 ·Y233 y223 
y244<->y234 y214 Y244 y214 

The matrix of model equation parameters, T, has a 

block diagonal form with bpr identical blocks. Each 

block has dimensions 1 x [l+(b-l}+(t-l}+q]. The matrix T 

has dimensions bpr x bpr[l+(b-l}+(t-l}+q]. For the 

example, each block is [~ b1 Tl T2 73 p], giving T 

dimensions [2x4xl] x {[2x4x1][1+(2-1)+(4-l)+ll}, with 

v{ b Tl 72 T3 p zero 

J 
~ b Tl 72 73 p 

zero ~ b Tl 72 T3 

The matrix X.has one column for each of the 

s=l,2, ... ,N(€) experiment-wise randomizations. Each 

column, ~, has one block for each block-treatment 

combination, ik. Each of these blocks, ~ ik resembles , 

one (or more, if r>l) transposed row(s) of the x+ of 

(2.3.1), (p. 16). When r>l experimental units receive 

the same treatment in each block, all r rows of x+ 

receiving treatment k are included in the col.umn Xs, ik. 

The indicators and covariates of each Xs,ik are ordered 

to conform to the structure of the blocks of T. The 

design or incident matrix part of Xs,ik indicates the 
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block and treatment assigned. These rows are constant 

for all columns of X. The covariates are tied to the 

experimental units. They are placed in the Kg to 

correspond to the experimental units receiving treatment 

k. The covariate part, Zij' of X changes in each Kg, In 

general, Xg,ik has dimension r[l+(b-l)+(t-l)+q] x 1 and 

X has dimension bpr[(l+(b-l)+(k-1)+1] x N(€). For the 

example, with s=24, v is the following 2x4=8 v - k -s -s,1 

stacked one upon the other in the same block-treatment 

order as the Ys. 

~4.11=P ] X24, 12= [ ~ ] X24,13= p ] X24 14= [=l ] ' -1 
Z11 Z12 Z13 Z14 

X24, 21 {~ ] ~4,22{i ] X24, 23{~ ] ~4 24= [=l ] ' -1 
Z24 Z23 Z22 Z21 . 

The full X matrix has N ( €) columns of Kg as in 

Xl, 11 X2, 11 ~,11 ~ ( €), 11 
X1, 12 X2, 12 ~ ( €), 12 
X1, 13 X2, 13 

~;lt 
~ ( €), 13 

X1 14 X2, 14 ~ ( €), 14 
X= I 

X1, 21 X2, 21 ~,bl ~ C €), 21 
X1 22 X2, 22 ~ ( €), 22 
X1: 23 X2, 23 

Xg;bt 
~(€), 23 

X1, 24 X2 24 ~ C €), 24 I 

Note that the treatment subscripts for each Xg,ik match 

the corresponding row of Y. For each block, the product 

VX will always select Tl for its first row, T2 for its 

second row, etc. 
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The matrix of experimental unit errors, E, has the 

same form as Y. It has dimensions bpr x NC€) and 

columns Es, each with submatrices Ei,s(B)' where s(B) is 

the block-wise randomization corresponding to the 

experiment-wise randomizations. Each element of Ei,s(B) 

. th . t 1 . t f th . th · is e experimen a uni error, eij' or e J~ experi-

mental unit appropriate for the randomization. For the 

example, the submatrices of E24 are 

The entire E matrix is 

Note that the experimental unit subscripts for the eij of 

each column of Es match those of Ys· The same eij 

reappear in each column permuted differently. For each 

block i, all j=l,2, ... ,p experimental unit errors appear 

an equal number of times in each row. Thus, the first 

equality of (3.4.1), Assumption 9, (p. 140), gives as 

zero the sum of each row of~-

The matrix of experimental unit-treatment interac

tions, ~, has the same form as Y. It has dimensions bpr 

x N(~) and columns ~s' each with submatrices ~i,s(B)' 

where s(B) is the block-wise randomization corresponding 

· to the experiment-wise randomizations. Each element of 



Chapter 3.5 The Normal-Randomization Model 155 

IHi,s(B) is the experimental unit x treatment interaction 

error, ~ijk' appropriate for the randomization. For the 

example, the submatrices of IH24 are 

[
~111] 

1H = "t12 2 and 
1, 1 'rt13 3 

~144 

[
~241] ~232 

= ~223 . 
~214 

1' 

The arrow notes the rearranged units (j) of block 2. 

The entire 1H matrix is 

IH= [IHl , 1 IH1 , 1 
IH2 1 IH2 2 

I I 

1H1,2 ···I·· ·I IH1,s ··· 1H1,s] 
IH2,1 ... 1···1 IH2,1 ... IH2,B. 

Note that the treatment subscripts for each column of 1H 

match the corresponding column of Y. Each row of 1H 

contains the~ values for one treatment of one block. 

All plots appear an equal number of times in each row. 

The center equality of restriction (3.4.1), Assumption 

9, (p. 140), gives a zero sum for each row of IH. 

The matrix ti-J of normally distributed random errors 

has the same form and dimensions as Y. Under Assumption 

3, (p. 24), these errors are identically distributed, so 

they need no subscripts. Every element of~ has the 

identical symbol. As they represent random variables, 

their values differ. * Under Assumption 3, (p. 16), the 

variance-covariance matrix is v~2 • In this case, the 

errors would need subscripts, perhaps block and plot 

subscripts, perhaps only the block subscript, depending 

upon V. While the columns of~ permute identical 
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elements, each column of tN has unique elements. Should 

each column of tN be identical, tN would be equivalent to 

the experimental unit error matrix IE. Section 3.7.3, 

below, (p. 198), also discusses this point. 

Having defined the necessary matrices, the 

normal-randomization model equation is 

Y='U'X +IE+ 1H +tN 

with dimensions for this example of 

'U': bpr x bpr[l+(b-l)+(k-l)+ql , 

X bpr[l+(b-l)+(k-l)+q] x N(~) and 

Y, IE, IH, tN : bpr x N ( ~) . 

( 3 . 5 . 1 ) 

A model may include one or more of IE, 1H and tN. Slightly 

more compact versions of this notation are possible. 

The selection matrix, s, has dimensions N(~) x 1. 

It is a column vector with zeros everywhere except for 

the sth row, which contains a one. By postmultiplying 

the two sides of (3.5.1), it selects (a) the responses 

actually observed from the matrix Y, (b) the assignment 

of treatments to units from the product 'U'X and (c) the 

set of experimental unit x treatment interaction errors 

from matrix IH. The form of the matrices IE and tN permits 

S to carry along the proper arrangement of these errors. 

The value of S selected by (3.2.7), (p. 117), determines 

which row of S has value one. Denote the selected 

randomization as Sg, obtained by the method of (3.2.7). 
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The post-multiplication by Ss is 

YSs=['ll'X +IE +IH +11-lHiis 

Ys = ( 'II' X) s + lf.s + 1Hs + ti% • ( 3 . 5 . 2 ) 

The subscripts identifies the vectors selected from the 

larger matrices. These vectors determine the responses 

observed in the experiment actually conducted. 

Such a model equation was suggested by one for 

regression from finite populations developed by Jonrup 

and Rennermalm [1976]. 

3.5.3 The Combined Probability Space 

When~ is included in the model, the probability 

space for the normal-randomization model combines the 

probability spaces of Sections 2.3, (p. 15) and 3.4, 

(p. 140). It is 

( ( '1.1 X ~) , ( .Q. X [fl) , IP X N n ( ID, ll,1..:,2) ) , 

where n=bpr. (3.5.3) 

Since S is an indicator vector, its expectation is a 

vector, IP, whose elements are the selection probabili

ties, p(s), Ee(S)=IP. As indicated in (3.5.3) the 

probability functions for the two distributions are 

statistically independent. Since Pis a discrete 

probability function, the expectation with respect to the 

normal distribution and the expectation with respect the 

randomization distribution may be interchanged freely, 

that is, E[·l = ENEe[·l = EREN[·]. This follows from a 
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theorem by Tonelli [Royden, 1968, p. 270]. 

In some cases, agricultural studies for example, the 

variance is known to increase with the magnitude of the 

response. Thus, the normally distributed random error 

associated with a large value of bi, Tk, ~Zij, eij, 

and/or 'fl.i jk would have a larger variance than would the 

error associated with smaller values. We do not examine 

this case. As indicated by the above Cartesian products, 

the values of the eij and/or ~ijk do not alter the normal 

distribution part of the probability space. This is 

restated as 

Assumption 10. 

The randomization distribution and the 

distribution of the normally distributed 

random errors are statistically independent. 

3.5.4 Expectations of the Response Vector Ys 

In the matrix notation developed in Section 3.5.2, 

expectations of the terms of (3.5.2), (p. 157), are 

straightforward. For example, Theorems 3.5.2(e) and 

3.5.4 derive the first two moments of Ys; Theorem 3.5.5 

derives the variance. 
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Theorem 3.5.1 Moments of the Distribution 

a. ER [ S] = IP. 

b. 

Proof: Each elements of Sis either O or 1. 

The expectation of a {0,1} indicator variable 

is its probability. 

ER[ SS' l = j{p(s) [SsSs']} = diag(IP). 

Proof: Each matrix SsSs' has dimensions N(~)xN(~) 

with a one on a unique diagonal position and zeros 

elsewhere. The product p(s)~Ss' converts the one 

on the diagonal to p(s). Summing gives the result. 

c. VarR[S] = diag(IP) - IPIP', 

with diagonal elements p(s)-[p{s)]2=p(s)[l-p(s)] 

and off-diagonal elements -p(s)p(s'), s~s'. 

Proof: Apply Var(·)=[E(·) 2 ]-[E(·)l2 to (a) and (b). 

Theorem 3.5.2 First Moments of Equation Parameters 

a. E[(TX)sl = ER[(TX)S] = (TX)ER[S] = TXIP. 

Proof of a - d: Apply Theorem 3.5.l(a). 

When IP has equal elements, IP="31./N(~), the covariate 

is averaged over the pr experimental units in each block. 

For example, the first element of E(TXs) is 

~+b 1 +T1 +~cz 1 .), the second is ~+b 1 +T2 +~cz 1 .), etc. 

b . E [ fEs ] = ER [ IES] = IEIP 

c. E[~sl = ER[~S] = ~IP 
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When IP has equal elements, IP=11./N(~}, IP averages each 

row of IE and IH. · Each label, ij or ijk, appears an equal 

number of times in each row. Under this condition, 

Assumption 9, (p. 140}, gives z.ero as the row sum and 

E[Es ]=E[IHs ]=[). 

Proof: Assumptions 2, (p. 16} and 10, (p. 158}. 

e. E[Ys] = ENER [Y] = ER { [ 'D'X + IE + 1H + EN ( IN} ] S} 

= ER { ( X'D'+IE+IH+[)} S} = ( X'D'+IE+IH) [ER ( S) 1 

r ( 'D'X} + IE + 1H] IP for general p(s} 
= 

( 'D'X) [1l./N (~)] when all p(s) are equal. 

Proof: Combine a - d. 

Theorem 3.5.3 Second Moments of Equation Parameters 

a. E [ Es Es ' ] = ER [ C IES) ( IES) ' ] = ER [ IE( SS' } IE' ] 

= IE[ER(SS') ]IE' = IE[diag(IP) ]IE' • 

Proof of a - f: Apply Theorem 3.5.lb. 

b. E [ IH5 IHs ' 1 = 1H [di ag ( IP} ] 1H' 

c. E[IEslHs' l = IE[diag(IP} ]IH' 

When IP has equal elements, IP=11./N(~) and diag(IP) = 

:ll/N(~). The equalities above become IEIE'/N(~}, IHIH'/N(~}, 

and IEIH'/~(~). Each of these products is block diagonal. 

Each off-diagonal block is product of a row from one 
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block times a column from another block. The randomiza

tion will pair for each block a fixed eij (or ~ijk for 

(b)) subscript of one row with all subscripts of the 

column-block being multiplied. This sums that column

block. By Assumption 9, (p. 140), such a sum over all 

experimental units in a block is zero. Consequently, all 

off-diagonal blocks of the matrix are zero.when IP='51./N(~). 

The same holds for off diagonal elements of the 

diagonal blocks. For (a) the diagonal elements are 

(eij) 2 times p, the number of elements in the block. For 

(b) the diagonal elements are (~ijk)2 times p. For (c) 

the fixed eij is multiplied by all ~ijk for that block. 

This sums the ''lijk' leaving all elements of (c) as zero. 

d. E[ ('D'X)s!Es' l = ER[ ('D'XS) (IES)' l = ('D'X)°[diag(IP) ]IE' 

e. E[('D'X)slHs'l = ER[('D'XS)(IHS)'] = ('D'X)[diag(IP)]IH' 

When IP has equal elements, IP=~/N(~) and diag(IP) = 

]IN(~). Recall that each row of 'D'X is identical except 

for the covariate part. The incident or design parts sum 

the columns of the righthand matrix. By Assumption 9 

each such sum is zero. Thus, the above two equalities 

reduce to the pr6duct of a matrix structured like Y, but 

with elements Z'~, times, respectively, IE or IH. Without 

a covariate these two products would be zero. 

f . E [ ( 'D'X ) s ( 'D'X ) s ' l = ER [ ( 'D'XS) ( 'D'XS ) ' l = ( 'D'X ) [ d i a g ( IP ) ] ( 'D'X) ' 
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g • E [ tl-'s !Ng ' ] . = EN [ tl-'s tl-'s ' ] = ][c;2 

Proof: Assumptions 10, 2 and 3, (p. 158, 16 and 24). 

h. . E { [ ( 'D'X) s + !E's + 1Hs] fNs ' } = ER [ ( 'D'X + IE + 1H) S] EN ( t1-J' ) 

= ER [ ( 'D'X + IE + IH)] [([I']} = ([I, by Assumption 10. 

Theorem 3.5.4 Second Moment of the Response Vector Ys 

E [ Ys YJ l = ( 'U'X + IE + 1H) [ di ag ( IP) ][ ( 'U'X + IE + 1H) s l ' 

+ vcr2 • 

Proof: 

E [ Ys Y~ ] = EN ER [ Ys Y~ ] = EN ER [ ( YS) ( YS) ' } 

=ENER{[('U'X +IE+ 1H + M)S][('U'X +IE+ 1H + M)S]'} 

=ER { [ ( 'U'X + IE + 1H) S] [ ( 'U'X + IE + 1H) S] I } 

+ ER EN { 2 C ( 'U'XS) ( MS ) ' + ( IES) C Ii-JS ) ' + ( 1H s) ( MS ) 1 1 

+ ( l).JS) ( MS) I } 

= ( TX + IE + 1H) [di ag ( IP) ] ( TX + IE + 1H) ' 

+ ER { 2 [ [I + ([I + ([I] + EN ( Ii-JS) ( Ii-JS) ' } 

=(TX+ IE+ IH)[diag(IP)](TX +IE+ IH)' 

+ 2 EN { t1-H d i a g ( IP) ] t1-J' } 

=(TX+ IE+ IH)[diag(IP)]('U'X +IE+ IH)' 

+ {trace[diag(IP)]}Vcr2 • 

The triple of zeros follows from EN[M]=([I. The 

expectation of a quadratic form [Searle, 1971, p. 551 is 

applied to each of the identical bp rows of Mand 

identical bp columns of 11-J'. The trace[diag( IP) l ll,.1,:;2=vcr2, 
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because the elements of F, the p(s), must sum to 1. 

When S=11../N(~), the individual terms simplify as 

discussed above. 

Theorem 3.5.5 Variance of the Response Vector 

Var(Ys) = ('ll'X+ IE+ IH)[diag(F)]('ll'X+ IE+ IH)' + Vcr-2 

- ( 'll'X + IE + 1H )[di ag ( F) 1 2 ( 'll'X + IE + 1H) ' 

= ( 'll'X + IE + 1H ) [ d i a g ( F) - FF' ] ( 'll'X + IE + 1H ) ' 

+ ll-'cr-2 • 

Proof: Apply Theorems 3.5.4 and 3.5.2(e) to the 

variance relationship Var{ ·)=EC( ·) 2 ] - [E( •)] 2 . 

With knowle~ge of the values of eij and ~ijk' one 

perhaps could alter the elements of F, the p(s), to, say, 

minimize the variance of Ys while leaving it unbiased. 

The mechanics of this are an extension. 

3.5.5 Superpopulation Approach 

One may also consider the available experimental 

units, the ij part oft, to be a random sample of a 

larger population, perhaps one now existing, or a 

conceptual one including experimental units that might 

exist in the future. Under this viewpoint, the eij and 

~ijk are themselves random variables. One approach is to 

enter them as population means in the model equation and 

move deviations from these means into the normally 

distributed random error term. This larger population 
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suggests the superpopulation approach of survey sampling 

and focuses on the population to which the inferences of 

the current experiment will be applied. Expectation with 

respect to this superpopulation •ay in fact be what is 

desired from a designed experiment. See Cassel, Sarndal, 

and Wretman [19771 for a discussion of the fixed and 

superpopulation approaches in survey sampling. B. L. 

Welch [1937, p. 47-48] and Kempthorne and Doerfler [1969, 

pages 231-235] touch on this concept. 

3.5.6 Exchangeability 

Random events are exchangeable if and only if their 

joint distribution is unaltered by any permutation of the 

labels identifying the individual events. Independent 

and identically distributed random errors, such as the 

normally distributed random errors of Chapter 2 are 

exchangeable random variables. Under the probability 

space for the randomization model, with p(s)=[N(~)J- 1 , 

the N(~) randomizations are exchangeable. When the p(s) 

are equal within a group of randomizations, the randomi

zations within the group exhibit partial exchangeability. 

In both cases, all joint distributions have zero 

probability for two or more randomizations and constant 

probability of any one randomization within the group. 

When 'fls = ns =~,the functions defined below in 

Theorems 3.7.9, (p. 202), and 3.7.10, (p. 211), have 

identical values for all randomizations within the 
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g-group. When the p(s) within a g-group are equal 

valued, such random variables exhibit partial 

exchangeability. 

In the limit, as the number of observations goes to 

infinity, the joint probability distribution of 

exchangeable random variables is a weighted average of 

independent random variables, even if the original joint 

probability distribution is not independent. This is "de 

Finetti's representation theorem." See de Finetti [1937, 

p. 15-17, 81-83, 99-101; 1970, Vol. 2, p. 215; 1977, p. 

2111, Chow and Teicher [1988, p. 2261, or Cassel, 

Sarndal, Wretman, [1977, p. 72, 85] for this theorem. 

The normal-randomization model embeds each randomi

zation in an infinite sequence of events. Within each 

randomization, the events of the ~equence differ only by 

the normally distributed random error. When "'s=~, the Ys 

of each g-group, (p.197), are so embedded. In this model, 

some version of de Finetti's theorem appears to hold. If 

so, a tool is available for use in applying limit theorems 

to the functions of Theorem 3.7.9, (p. 202). Chow and 

Teicher [1988, p. 33, 223-226 and 309-3111 illustrate 

such uses of exchangeability. Cifarelli, et al.~ discuss 

exchangeability in the experimental setting [1981A], in 

the analysis of variance [1979] and in linear regression 

[1981B]. See also Lindley and Novick. [1981]. 

We next examine.the randomization test with unequal 

selection probabilities, p(s). 
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Section 3.6 

The Randomization Test 

Section 3.6.1 sketches the randomization test for 

treatments. Section 3.6.2 discusses the need for zero 

experimental unit-treatment interaction error. Sections 

3.6.3 and 3.6.4 describe the randomization test and power 

computation for p(s) equal or not. Section 3.6.5 

discusses the randomization test and power computation 

under simulation. Section 3.6.6 shows that the randomi

zation test for the covariate(s) as adjusted for the 

mean, blocks and treatments will have zero power for some 

randomizations when the values of the covariates repeat 

in each block. The final section, 3.6.7, shows the test 

satisfies the requirements of a hypothesis test. Major 

results are the OSL (3.6.2), and power (3.6.6), (p. 170-

173), of the randomization test and of the test under 

simulation (3.6.10), (p. 175). See also Edgington [1987]. 

3.6.1 Overview of the Randomization Test 

While the randomization model is a conceptual frame

work, the randomization test is a statistical test of a 

null hypothesis. In simulations or in rare cases the 

randomization test may be extended to measure the power of 

the test for a given alternative hypothesis. The parameter 

tested is one the experimenter may randomly as~ign to 

experimental uriits. Herein, this is the part of T contain

ing the treatments, as in (2.3.4) and (2.3.5), (p. 19). 
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The basic idea of the randomization test is that if 

the treatments have no effect, then each observed 

response, Yijlk' does not depend upon the treatment k to 

which experimental unit Uijl was assigned. One computes 

the value of the test statistics for the randomization 

actually used to conduct the experiment. One then 

recomputes it as if the experimental units had been 

assigned to different treatments. One repeats this for 

all randomizations and obtains a set of values of the 

test statistic. 

The test statistic is one whose values (a) will tend 

to be similar if all randomization are equal and (b) 

will tend to fall into a specified subset of all values, 

the set§, if the treatments have an effect. Should the 

test statistic provided by the actual experiment fall 

into the set§, then either (i) the null hypothesis is 

false, or (ii) an unusual (unlucky) randomization has 

been used to conduct the experiment. As stated in 

Section 3.4.4, (p. 141), the test statistic is fixed as 

the F-ratios of Chapter Two (2.6.41) and (2.6.45), 

(p. 63 and 64). The set 3 is defined so that (b) will 

tend to occur for the F-ratio, as shown in Section 3.6.7, 

(p. 181). The set 3 may differ for other statistics. 

It is the critical region. 

The terms randomization, rerandomization and 

permutation tests are used with different meanings by 

different authors [Kotz and Johnson, Vol. 7, p. 524 and 
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530; Zyskind, et al., 1964, p. 171-175; Kempthorne and 

Doerfler, 1969, p. 234-235; Gabriel and Hall, 1983; W. 

Welch, 1990, p. 693]. They usually refer to permuting 

the experimental units assigned to the treatments. This 

applies when r=l. But, for r>l, should the set~ be 

constrained ~sin (3.2.12) or (3.2.14), {p. 115), then 

many permutations will violate the constraints. Thus, 

the term randomization appears more appropriate. 

Cox and Hinkley [1974, p. 180 and 196] differentiate 

between the terms permutation and randomization. In 

their usage, the p~rmutation test follows from a physical 

system generating independent and identical values, such 

as conditioning on the order statistics. Their randomi

zation test follows from the randomization in the design 

which makes all permutations equally likely. We use the 

term randomization to emphasizes not only the reassigning 

of experimental units to treatments, but also the 

accompanying changes in experimental unit assignment 

probabilities, the p(ijl:k)'s. The latter is important 

when the assignment probabilities are not all equal. 

3.6.2 Experimental Unit x Treatment Interaction 

When the experimental units are artifically 

reassigned to new treatments, the experimental unit x 

treatment interactions, ~s' are not, and outside of a 

simulation, cannot, be reassigned. The interaction 
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errors of the actual response become assigned to 

treatments not responsible for them. Because of this, 

the randomization test assumes the ~ijk are zero or 

negligible, as in Wilk (1955, p. 78-79, (a) and (b)]. 

This is the assumption of additivity in .the strict or in 

the broad sense of (3.l.11), (p. 135). 

3.6.3 Testing the Null Hypothesis 

The test begins with the randomization actually used 

to conduct the experiment, the experiment conducted under 

("at") randomizations, @s. The process defined in 

(3.2.7), (p. 109), is one method of obtaining the value 

of s. The responses from this randomization provide the 

actual responses, Y@s' read as "the actual responses at 

randomizations." The actual responses and the actual 

randomization provide the actual test statistic t@s,s=@s· 

The next step computes the test statistic for 

another randomization, s-@s, using the data observed in 

the actual experiment, Y@s· One pretends the experi-

mental units were assigned to the treatments as specified 

by randomizations. In matrix notation, the columns of 

the treatments part of the actual design matrix X7 ,@s' 

are rearranged within each block to represent randomi

zations. We denote the rearranged design matrix as~-

The rows of~ and the rows of Y@s remain linked to the 

same experimental units regardless of the randomization. 
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Repeating this for all s~@s produces N(~)-1 artifi

cial experiments and N(~)-1 artificial test statistics, 

t@s,s~@s· These values, plus the actual test statistic, 

t@s,s=@s, form the set 

,@s={t@s,l ,t@s,2 , ... ,t@s,s=@s , ... ,t@s,N(~)}. <3 · 6 · 1 > 

The design, covariates and/or responses may be such that 

some artificial test statistics equal others. Theorem 

3.7.9(3), (p. 202) specifies such a t@s,s· Denoting the 

random value of t@s,s as T@s,s' note that its 

distribution is known; T@s,s is a statistic. 

The final step computes the p-value or the observed 

significance level, the OSL, for the randomized test as 

OSLR @s = i p(s), (3.6.2) 
, .!:) 

g = {s such that t@s,s ! t@s,s=@s} · 

The summation of p(s) is over those s whose artificial 

test statistic is greater than or equal to the actual 

test statistic. Randomizations with values of t@s,s 

larger than t@s,s=@s and whose small values of p(s) make 

them unlikely to be selected contribute less to the 

OSLR,@s than do those randomizations whose large values 

of p(s) make them more likely to be selected. The actual 

test statistic, t@s,@s' is included in S [Kempthorne, 
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1952, p. 130-1311. When all p(s) are equal, one simply 

counts the randomizations with t@s,s greater than or 

equal to t@s,s=@s' obtaining 

OSL = {NCt@s,s~t@s,s=@s>l. 
R,@s N(~) J (3.6.3) 

The selection of one randomization used to conduct the 

actual experiment provides an internal criterion, 

t@s,s=@s' with which to assess the artificial test sta

tistics, the t@s,s· This internal criterion leads to the 

OSLR,@s and the test of the hypothesis. Note that the 

value of OSLR,@s depends upon the randomization used to 

conduct the actual experiment 

The minimum value of the OSLR,@s is p(@s), which 

equals 1/[N(~)l if all p(s) are equal. If the OSLR,@s is 

less than a predetermined« probability of a Type I 

error, or otherwise indicates a sufficiently small proba

bility or cost of error, then the null hypothesis is 

rejected. Either the null hypothesis is false or @sis 

an unusual randomization. 

3.6.4 Computing the Power of the Randomization Test 

Kempthorne [1952, p. 230-2311 details the computa

tion of the sensitivity (power) of the randomization test 

for a known alternative hypothesis. Although his section 

title mentions the infinite model approach, the method 

assumes the presence of experimental unit error. We add 
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unequal p(s) to his description and consider the possi

bility of known IE:, 1H and/or t~J. Term the base responses 

the responses one would obtain if no treatment were 

applied to the experimental units. A uniformity trial 

could supply such values. They are 

base responses=[X~IXblZl [;:J+E., (3.6.4) 

combining the notations of Sections 2.3 and 3.5.2, 

(p. 15 and 157). We use IE:. to represent any of the 

equal column vectors of experimental unit error. 

Step one assigns the experimental units to the 

treatments according to randomization @s=@l. Then, it 

adds the known values of the treatment effects, IH@l and 

t~ 1 to the base responses. This gives the actual 

responses, Y@l' for randomization @s=@l. For each actual 

experiment conducted at randomization @s=@l, one conducts 

artificial experiments at randomization s=l, s=2, ... , 

s~@s, ... , s=N(€). For each s, Y@i,s= Y@l,@s+ (1Hs-lH@1> + 

(~~-tN@1 ). This adjusts the Y@l,s to have the experimen

tal unit x treatment interactions and normally distributed 

random error of the artificial experiment of randomization 

s. Proceed as in the Section 3.6.3 with the test of the 

null hypothesis and compute the set, ;J@l' of N(€) values 

of the artificial test statistic derived from the actual 
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experiment @s=@l. With the elements of ,.@l' compute the 

OSLR,@l by (3.6.2), (p. 168), or (3.6.3), (p. 169). 

Repeat this process, making each randomization the 

actual one. This gives NC!!) sets of '°@s , 

,.@1={t@1,1' 

'°@2={t@2,1' 

, t@l,s, 

't@2,s' ' t@2,N(!!)}, 

( 3 • 6 . 5 ) 

A total of N(!!) x NC!!) test statistics need to be 

computed. For each set '°@s compute the OSLR,@s as in the 

randomization test. The internal criterion for each ,.@s 

is the test statistic t@s,@s· Using a fixed«, note 

those '°@s with OSLR,@s greater than«. These actual 

randomizations improperly accept the false null 

hypothesis. The probability of a Type II error, ~R' is 

the sum of the probabilities of such randomizations, or 

~R = t: p ( @s ) , 
·~ 

~ = {@s such that OSLR,@s > «} · 

( 3 . 6 . 6 ) 

The summation of p(@s) is over those @s whose OSLR,@s is 

greater than« .. The same selection probabilities are 

used within each '°@sand for the set of NC!!) '°@s itself. 

As with the OSLR,@s' randomizations which accept the 

erroneous null hypothesis and have a large probability 

of being selected (large p(s)) contribute more to ~R than 

do randomizations with a small selection probability. 
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When all p(s) are equal, the calculation is 

~ = {N ( ~@s) with OSLR, @s > .x } • 

N(~) 

The power of the randomization test is 1-~R· 

(3.6.7) 

In theory, the randomi.zat'ion test and power computa

tion may be conducted for any simulation~ In practice, 

N(~@s> and the product N(~@s> x N(~@s> are prohibitively 

large. Gabriel and Hall [1983] and others they mention 

have devised methods to obtain significance levels and 

confidence intervals using but a fraction of the 

calculations required for the full randomization test. 

3.6.5 The Randomization Test Under Simulation 

In a simulation, no randomization is privileged as 

the one used to conduct the actual experiment. Instead 

of a set ~@s' one has the set 

( 3 . 6 . 8 ) 

Each t@s is computed as if randomizations had been used 

to conduct the actual experiment, that is, computed like 

the t@s,s=@s of Section 3.6.3. Each randomization 

provides one Y@si all randomizations are used. When 

testing the null hypotheses, there is no privileged t@s 

to use in computing the OSLR,@s as in (3.6.2) or (3.6.3), 

(p. 170). Thus, the set~ must be defined by an external 

criterion. One criterion is the point which would define 

the critical region under the normal distribution theory. 
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For a test of the null hypothesis with a fixed oc, 

this criterion is the value of Fn,d,~=O,(l-oc) such that 

( 3 . 6 . 9 ) 

where t@s is assumed to have the F distributio~ with 

indicated parameters. Such t@s improperly reject a true 

null hypothesis. 

The observed significance level for this test is the 

probability of observing such randomizations, 

OSLR(F) = ~ p(@s), 
:s 

(3.6.10) 

The summation of p(s) is over those s whose test 

statistic t@s is greater than or equal to Fn,d,~=0,(1-oc)" 

When all p(s) are equal the calculation is 

OSL =fNCt@s!Fn,d,~=O. (1-oc) >}. 
R(F) l N(~) 

(3.6.11) 

Strictly speaking, this simulation is not a randomiza

tion test, as it relies upon an external distribution for 

the test criterion. This is indicated by the subscript 

notation R(F), where the F identifies the external 

criterion as the F distribution. 
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The computation of the power of the test, 1-~R(F)' 

may proceed as in Section 3.6.4. One considers in turn 

each randomization as the privileged one and obtains NC€) 

sets of ~@s· For each set the external criterion enters 

via the replacement of (3.6.2), (p. 170), with 

OSLR(F),@s= § p(s), 

S = {s such that t@s,s ~ Fn,d,1=0,(1-oc)} · 

Then obtain the Type II error probability by replacing 

(3.6.6), (p. 173), with 

~(F)= k p(@s), 
-=-

S = {@s such that OSLR(F),@s > oc} . 

A second method uses only the set~ of (3.6.8). One 

defines 

~R(F)=g p(@s), with 

S = {@s such that t@s < Fn,d, 1=0,(1-oc)}. 

Here, Sis the set of s for which t@s erroneously accepts 

a false null hypothesis. 



Chapter 3.6- Randomization Test 177 

A third method includes the magnitude of each Type 

II error. One weights the magnitude of each Type II 

error by the selection probability of the randomization 

committing the error. One defines 

~R ( F) =i P ( @s ) ~, @s with 

g = {@s such that t@s < Fn,d,~=O,(l-~)}, and 

J
~
0

Fn,d,~=0,(1-~) 

d ( F n d ~ ?!0 ) • , , @s , 

The integrand is the noncentral F-distribution for the 

true value of ~ with the noncentrality parameter 

appropriate for randomization @s. One integrates from 

zero to the point at which one would no longer accept 

the erroneous null hypothesis, F d O (l ) The set n, , ~= , -~ • 

g is those randomizations for which one commits a Type 

I I ''e~r'or . . 
While the randomization distribution will have one 

probability of a Type iI error, the F-distribution will 

have one probability for each randomization due to the 

change in its non-centrality parameter from one 

randomization to the next. Examining the characteristics 

of the above three methods is an extension. Graph 3.6.1 

illustrates how the Type II error probabilities differ 

with the randomization. 

·- ~ .. 
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REJ'EC.T H0 ~ 

~, dJ A= o., Ct-ex.) 

Graph 3.6.1 

Type II Error Probabilities 

3.6.6 Randomization Applied to H0 :~,b,T,~~=ID. 

The randomization test is a test of a variable 

under the control of the experimenter. As per Section 

2.2.1, (p. 8), the covariates are herein not subject 

to assignment by the experimenter. Consequently, 

strictly speaking, the randomization test cannot test 

H0 :~,b,T,~~=ID. Nevertheless, F(~l~,b,T) depends upon the 

randomization, thus, so does this hypothesis test. 
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To take an extreme case, suppose Z has but one 

column whose elements, the covariates Zij, differ within 

a block, but repeat exactly in all blocks. An example of 

this is an industrial experiment, blocked on shifts, 

which adjust each experimental unit (a lathe) for a known 

covariate. The covariate, say operating revolutions per 

minute, differs from lathe to lathe, but remains constant 

from shift to shift for each lathe. The treatments could 

be fixed angles of the cutting tool and the responses the 

yield of machined parts. 

We show that in this case, the randomization can 

force the value of the test statistic to be zero, regard

less of the true value of 13. The explanation follows 

from (2.6.10), (p. 52) and (2.6.28), (p. 55). In 

( 2. 6 .10) Xh is Z and ~ ( ~' ~) -~' has the form of 

(2.6.28). For this Z, when the treatments of X repeat in 

the same order in all blocks, the same treatment is 

linked to the same covariate value in each block. Such 

an X provides (2.6.28); in which case, Z'X(X'X)-X'=Z'. 

Straightforward pre-multiplication of (2.6.28) by such a 

Z' will show this. Consequently, the idempotency of 

X(X'X)-X' gives Z'Z= Z'X(X'X)-X'Zfor such a Zand X. 

By (2.6.10), (p. 43), ·j.,, in this case ?..l'SIJJ.,b,.,., 13 , 

equals zero for all is. By Theorem 3.7.6(a), (p. 193), 

the treatments of X will be linked, in each block, with 

the identical covariate values in N(~)t! randomizations. 
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Such randomizations will order the treatments so 

that X7 ,s aligns treatment 1 with the same value of the 

covariate in every block. And, aligns treatment 2 with a 

value of the covariate the same in every block and so on 

for all t treatments. There are N(Gi)t! ways to do this. 

In such randomizations, the model X will perfectly 

predict z1 and (2.4.10), (p. 28), will give a zero 

value for Rz, and hence F(~l~,b,T)=O. Under the normally 

distributed random error model, the observed. significance 

level, OSLF, is one for all values of the covariate slope 

coefficient ~- The null hypothesis is never rejected; in 

fact, «=O .. Even if ~~ID, the riull hypothesis is always 

accepted; thus, ~F=l and the power, 1-~F' is zero for 

these randomizations. 

This is what one would expect, as such a covariate, 

equal in each block, is completely confounded with the 

treatments, and the hypothesis test adjusts for the 

treatment. Cox [1982, p. 200, bottom] notes, without 

proof, that "when the [covariates] identify a system of 

blocking, there may exist a large number of arrangements 

with I 1z1 - z 2 I IQ =O and an exact second moment randomi
"z 

zation theory may hold." When the randomizations align 

the same covariates with the same treatments in each 

block, the covariates identify a system of blocking. In 

such randomizations, for the one factor case, Cox's 

"large number"= N(Gi)t!. 
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If the covariates in each block are similar instead 

of exactly equal, the N{<3)t! randomizations which align 

the treatments and similar covariates identically in each 

block will give the test near zero power. For the same 

covariate, other randomizations will thoroughly mix the 

covariates assigned to each treatment. In this case, the 

model X will poorly predict z1 . The absolute value of 

A 

the difference z1 -z1~ W~ will be large. Since the 

numerator of the F-ratio is a positive definite quadratic 

form, F(~l~,b,T,~) > 0 for such randomizations. 

If the covariates take similar values in each block 

the restriction on randomization of (3.2.13), (p. 116), 

tends to repeat a similar pattern of covariate values in 

each block. With such a restriction, different randomi

zations will greatly differ in their power to detect ~~O. 

Some will approximate the extreme case described above 

and have near-zero power. 

3.6.7 A Requirement of the Test Statistic 

As Kempthorne (1952, p. 128-1291 points out, the 

test statistic "must be such that deviations from the 

null hypothesis tend to place the value of the [actual 

test statistic] in a distinctive set of possible values." 

For any randomizations, the test statistic t@s,s ~ F@s,s 

does this, as we now show. 

Consider the case when the model equation contains 

normally distributed random error. By Assumption 9, the 
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distributions of the normally distributed random errors 

and the randomizations are independent. Consequently, the 

distribution of a £-unction of the normally distributed 

random error alone is independent of the randomization 

distribution. That is, for randomization S=s, 

E[F@s,S IS=sl 

r ~ [ 1+2?../n l 
= l d-2 

F@s,s 

= 

when the model contains 
normal random error, 

otherwise. 
(3.6.12) 

See Appendix A.3, (p. 384), for the mean of the F 

statistic. 

When the model equation has normally distributed 

random err6r?.. enters the expectation. Under the null 

hypothesis ?..=0 and under ~ny alternative hypothesis ?..>O. 

Under any alternative hypothesis each F@s,s has expecta-

tion 2?../[n(d-2)] greater than F@s sunder the null , . 

hypothesis. Thus, the entire distribution of the N(~) 

test statistics F@s,s i~ shifted to the right, if the 

alternative hypothesis is true. This provides the 

required distinctive set Kempthorne [1952, p. 128-129] 

discusses. 

When the model equation lacks normally distributed 

random error 
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Consider the null hypothesis H0 .h r ~h=ID. The elements , , 

of V hypothesized to be zero (h) are set to zero in V0 , 

while in V7 , only those elements of T hypothesized as 

nonzero (r) have nonzero symbolic values; T=T 0 +V7 • Under 

the null hypothesis, V7 =ID. 

Letting X(X'X)-X' =~,the quadratic form 

and bilinear forms in the other terms 

0 + the same quadratic 

and bilinear forms in the other terms. 

positive definite quadratic form. When the alternative 

hypothesis is true, T7 is nonzero. This increases the 

value of R(h,r), while leaving R(r) unchanged, increasing 

the numerator of the F-ratio, R(hlr). The denominator is 

reduced. Together, the F-ratio is increased. Thus, 

under the alternative hypothesis, the N(~) values of the 

F@s,s ara shifted to higher values, again providing the 

required distinctive set. When the model equation 

contains normally distributed random the above two 

arguments act together. 

We next develop a method of obtaining, for all 

randomizations, such values as the model equation 

parameter estimates and analysis of variance terms. 
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Section 3.7 

Randomization, Anova Terms and Estimators 

Section 3.7.1 develops a matrix method which will 

produce the design matrix unique to each randomization. 

Section 3.7.2 applies this method to projectors. Section 

3.7.3 that shows these projectors provide a clustering to 

the distribution of some model equation estimators and 

analysis of variance terms. Section 3.7.4 shows the 

clustering of the noncentrality parameter associated with 

FC,l~,b,7). The final section, 3.7~5, develops, for the 

single covariate case, a relationship between the 

noncentrality parameters associated with FC,l~,b,7) and 

F(71~,b,,). This relationship allows one to improve the 

power of both usual hypothesis tests by restricting 

randomization. The main results are Theorems 3.7.9, 

(p. 202), and 3.7.15, (p. 219). 

3.7.1 Permutation Matrices 

The design matrices for two randomizations, sands', 

differ only in the columns representing the treatments, 

the columns of Xs 7 • Holding constant from one randomi, 

zation to the next the order of the experim~ntal units, 

that is, the rows of X and z, makes the matrices X~, Xi,, 

and Z constant for all randomizations. Within a level of 

the blocking variable, the rows of X~ and Xb, are 

constant. Thus, within a block, one may interchange the 

rows of X to obtain the configuration of zeros and plus 
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or minus ones in X7 corresponding to randomizations. 

Designate an arbitrary design matrix Xs=l as the one for 

randomization number one, s=l. Premultiplication of Xs=l 

by the proper permutation matrix, IMg, interchanges the 

rows of Xs=l to yield the design matrix for randomization 

s, Xs· An illustration for a single block follows, 

lli.=l = [ 
0 0 1 0 ] [ 1 I 1 1 0 0 ] 1 0 0 0 1 I 1 0 1 0 

111s, i=l 0 1 0 0 1 I 1 0 0 1 
0 0 0 1 1 l 1 -1 -1 -1 

u I 1 0 0 1 

]= 
I 1 1 0 0 

= [XJLIXi=llXs,T] = I 1 0 1 0 Xs. 
I 1 -1 -1 -1 

Effect of a Permutation Matrix - One Block 

Example 3.7.1 

The full permutation matrix, II\;, is block diagonal, 

with one block per level of the blocking factor. All 

elements of of £-diagonal blocks of IMg are zero. Each 

block submatr ix, IMg, i, is rt by rt; the entire matrix, 

IMg, is brt by brt. As in Example 3.7.1, each row and 

each column of the block submatr ix, IMg, i, has a single 

element with the value one; all other elements are zero. 
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Example 3.7.2 illustrates the full permutation matrix, 

IMs, for b=2, r=l, t=4 and randomization number s=24. 

Note how block two of ~=l changes to block two of ~= 24 . 

[~=l~ 1:1 _ I ] 
1t'1s=24~=1 = 

1 zero 
+ - - .., - ~=1 

zero : 1t'1s=24, i=2 

1 0 0 01 1 I 1 I 1 0 0 
0 1 0 01 1 I 1 I 0 1 0 
0 0 1 01 zero 1 I 1 I 0 0 1 
0 0 0 11 1 I 1 I -1 -1 -1 

= - - - -+- - - - + + - - - - -
10 0 0 1 1 I -1 I 1 0 0 

zero 10 0 1 0 1 I -1 I 0 1 0 
10 1 0 0 1 I -1 I 0 0 1 
11 0 0 0 1 I -1 I -1 -1 -1 

1 I 1 I 1 0 0 
1 I 1 I 0 1 0 
1 I 1 I 0 0 1 
1 I 1 I -1 -1 -1 

= + + - - - = ~=24 = C XJL I xt, I ~ = 2 4, ,. 1 1 I -1 I -1 -1 -1 
1 I -1 I 0 0 1 
1 I -1 I 0 1 0 
1 I -1 I 1 0 0 ( 3 . 7 . 1 ) 

Effect of A Permutation Matrix - Two Blocks 

Example 3.7.2 

The block diagonal structure of IMs allows each block sub

matrix to switch only the rows of one block of the design 

matrix, ~- The labels is the block-wise randomization 

in IMs,i, and the experiment-wise randomization in IMs. In 

Example 3.7.2 the block-wise randomizations are 1 and 24; 

the experiment-wise randomization is 24. For brevity, we 

shorten ~=l to x1 . 
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3.7.2 Permutation and Projection Matrices 

There are N(~) permutation matrices forming the set 

1r1 = { IMl =lt, IMi, , It\, · · • , lt\-1 ( ~) } • ( 3 • 7 • 2 ) 

Each permutation matrix, except the first, is the product 

of one or more type one elementary matrices, the "row 

switcher" matrix, IR, times the identity matrix, lt. Recall 

th t h 1 t t · th l thus IR-1 a sue e emen ary ma rices are or ogona; 

exists and equals IR'. The product of two row switcher 

matrices is also a row switcher matrix, but not necessar

ily an elementary one, as it may switch more than one 

row. We prove the following theorems. 

Theorem 3.7.1. 

Proof: For m~l and IR a type one elementary matrix or lt, 

= (lt1 . )-1 (3.7.3) 
'S' l 

Therefore, by definition, It\, i is orthogonal. As this 

holds for al 1 blocks, It\ is orthogonal. 
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Theorem 3.7.2. 

When the set Gi is unrestricted, the set fn, (3.7.2), 

and the operation matrix multiplication form a group. 

The set of lt1s, i corresponding to fn and matrix 

multiplication likewise form a group. 

Proof: By writing lt1s as a product of elementary row 

switcher matrices, one may directly verify the conditions 

defining the pair (ffi, matrix multiplication) as a group. 

One list of these conditions is 

a) mis closed under matrix multiplication, 

b) matrix multiplication is associative, 

c) matrix multiplication has an identity element, X, 

and d) each element of 1n, lt1s, has an inverse under the 

operation of matrix multiplication, lt·1s', which is 

also an element of m. 

See, for example, Burton [1971, p. 48-53 and 69-74]. 

Conditions (b) and (c) follow from matrix multipli

cation. Condition (d) follows from (i) the transpose of 

each Wig has the proper form and thus is a member of fn, 

and (ii) by Theorem 3.7.1 the transpose is the inverse. 

Condition (a) follows from the fact that the product of 

any row of one lt1s times the columns of another lt·1s, will 

yield exactly one element of that row of the product, 

lt1s lt1s,, with a nonzero value. This one nonzero value must 

have one as its value. This holds for all rows of the 
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product. The value one is in a different column in each 

row of the premultiplier; consequently, the value one 

will be in a different column of the product W1slt1s,. 

Thus, the product will have the form of a permutation 

matrix and be a member of m. One may fix the labels 

1,2, ... ,NC€) to the elements of min an arbitrary manner. 

This proves Theorem 3.7.2. 

Restricted randomization destroys the group charac

teristic of the pair cm, matrix multiplication). The 

product of two permutation matrices, each included among 

the restricted set, would not necessarily be among the 

restricted set, violating condition Ca) of Theorem 3.7.2. 

One may preserve the group nature of the pair cm, matrix 

multiplication) by including all randomizations and then 

assigning a zero value to the experiment-wise randomiza

tion selection probability, pCs), corresponding to those 

randomizations which would have been restricted. Herein 

NC€) is the number of all possible randomizations. 

Theorem 3.7.3. 

[ Xg 'Xg l and [ Xg' Xg ]-are constant for al 1 

randomizations. 

When needed, the same generalized inverse is assumed for 

all randomizations. 
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by Theorem 3.7.1. ( 3 • 7 . 4 ) 

The assumed uniqueness of the inverse provides the same 

result for CX's'X'sl-. 

Theorem 3.7.4. 

[ X's ( X's I ·Kg ) - Kg I ] = IMg [ X1 ( X1 I X1 ) - X1 I ] IMg I • 

Proof: By Theorem 3. 7. 3 and that X's = IMg x1 , 

c X's c X's ' X's > - X's ' l = rn1s x1 > c x1 ' x1 > - c 'Ms x1 > ' 

= II\ [ X1 ( X1 I X1 ) - X1 I ] lt1s I • 

Theorem 3.7.5. 

( 3 • 7 . 5 ) 

For projectors [ x1 cx1 ' x1 )-x1 '], all of whose 

diagonal blocks have, within each block, identical 

diagonal elements and identical off-diagonal elements, 

the diagonal blocks of [X"s(Xg'Xg)-Xg'l, or equivalently 

of lf'ls [ x1 ( x1 'x1 ) ""'."x1 ' l lf'ls', are constant for all lf'ls in :m, 

i.e., for all ra~domizations. ( 3 • 7 • 6 ) 

Proof: Each diagonal block of x1 ( x1 ' x1 ) x1 ' is pre- and 

post-multiplied by the same block of lf'ls, transposed for 

the post-multiplication. As seen in Example 3.7.3 below, 

for a specific IMg, pre-multiplication by II\ moves a given 
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diagonal element vertically w rows. Post-multiplication 

by the transpose, IMs', moves the element horizontally w 

columns, returning it to the diagonal, albeit in a new 

position. This applies to all di~gonal elements and 

holds for all IMs. Thus, all off-diagonal elements remain 

in off-diagonal locations. By assumption, all diagonal 

elements have the same value; thus the resulting diagonal 

is identical to the original diagonal. By assumption, 

all off-diagonal elements have the same value; thus the 

resulting off-diagonal elements are identical to the 

original off~diagonal elements, albeit also relocated. 

This proves Theorem 3.7.5. 

Section 2.6.3, below {2.6.28),(p. 55), discusses 

this structure in a projector. _ The projectors for 

[X~lxt,1, (2.6.20), (p. 50); the effects version of X7 , 

(2.6.24), (p. 52); and CX~lxt,IX7 ], (2.6.28), (p. 55) 

all have this structure. The projectors for matrices 

related to these three matrices by the conditions of 

Theorem 2.8.3, (p. 87), also have this structure. Note 

that the coding version of X7 is not so related to the 

effects version of X7 ; thus, its projector does not have 

this structure, nor. does the projector for X7 with more 

than one factor. Consideration of the effects of 

randomization upon projectors derived from X7 with 

multiple factors and interactions is an extension. 
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Example 3.7.3 uses distinct elements. Each element is 

its original row, column location. All elements remain 

in their original blocks. 

= 

= 

0 0 1 01 
1 0 0 01 
0 1 O 01 
0 0 0 11 

1 r 
zero 

11 12 13 14 I 15 16 17 181 
2i 22 23 24 I 25 26 27 28 
31 32 33 34 I 35 36 37 38 

_ _ _ il_4~ i3_4~ L i5_4~ i1_4~ 

l 

X 

31 32 
11 12 
21 22 

41 42 
- - -
71 72 
81 82 
61 62 
51 52 

- -+-
10 O 1 O 51 52 53 54 I 55 56 57 58 

zero 10 
10 
I 1 

o o 1 61 62 63 64 I 65 66 67 68 
1 0 0 I I 71 72 73 74 I 75 76 ( ( 78 I 
0 0 OJ L 81 82 83 84 I 85 86 87 ssj 

0 1 0 01 
0 0 1 01 
1 O O 01 
O O O 11 
- - - -+-

10 
zero 10 

11 
10 

33 34 I 
13 14 ·1 
23 24 I 
~3 _ 4~ i 
73 74 I 
83 84 I 
63 64 I 
53 54 I 

35 36 
15 16 
25 26 
45 46 
- - -
75 76 
85 86 
65 66 

55 56 

zero 

- - -
0 0 1 
0 1 0 
0 0 0 
1 0 0 

l 

i; i:1 
27 28 
47 48 

77 78 
8 7 s s 

67 68 I LI 
57 58j 

0 1 0 01 
O O 1 01 
1 0 0 01 
O O O 11 

- -+-

zero l 
10 0 O 1 

zero 10 0 1 0 
11 o o o I 
10 1 0 OJ 

f 33 31 32 34 I 
I 13 11 12 14 I 
j 23 21 22 24 I 

43 41 42 44 I 

37 38 
17 18 
27 28 
47 48 

36 351 
16 15 I 
26 25 I 
~6_4~, 
76 75 
86 851 
66 65J 
56 55 

= - - - - - - + 
73 71 72 74 I 
83 81 82 84 I 
63 61 62 64 I 
53 51 52 54 I 

- - -
77 78 
8 7 ~: s 
67 68 
57 58 

Effect of a Permutation Matrix - Projector Matrix 

Example 3.7.3 
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The diagonal elements of the off-diagonal blocks of 

x1 ( x1 'x1 )-x1 ' are not returned to the diagonal. When the 

off-diagonal blocks have elements with different values 

in their on- and off-diagonal positions, randomization 

alters the projector, as with the projectors for X7 

(effects version) (2.6.24), (p. 52), and for [XJLl~IX7 ], 

(2.6.28), (p. 55). When they are the same, as in the 

projector for [XJLl~l, (2.6.20), (p. 50), randomization 

does not alter the projector. This is as one would 

expect; randomization occurs within the block, affecting 

only the treatments, not the blocks. 

Theorem 3.7.6. 

For projectors 3s ( 3s' 3s) -3s', all of whose diagonal 

blocks have, within each block, identical diagonal 

elements and identical off-diagonal elements (as in 

Theorem 3.7.5), and for a number of randomizations equal 

to [N(G)t!lb, there are 

a) exactly [N(G)t!]b-l groups of randomizations, each 

comprised of exactly [N(G)t!l randomizations. Within 

each group all projectors 3s ( 3s' 3s) -3s' are identical. 

b) at most [N(G)t!]b-l groups of randomizations, each 

having an integer multiple (1, 2, ... ) of [N(~)t!l 

randomizations. That is, having l[N(~)t! 1 or 2[N(G)t!] 

or 3[N(~)t!1, etc. number of randomizations. Within each 
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of these groups all Xs<is'Xs)-Xs'Z are identical. 

Consequently, within each group, all values are identical 

Proof of Part {a): 

By Theorem 3.7.2, {p. 188), each of the following 

b-1 products is a member of m 

{ 3 . 7 . 7 ) 

Replacing each product by the label for the member of m 

which the product equals, yields an ordered sequence of 

labels, 

{ 3 . 7 • 8 ) 

The identical sequence of labels may be obtained for any 

of the other [N{Ga)t!]-1 choices of 11\,l by replacing 

{lt'\,s 3)' , ••• , {lt'\,s b)' 
I I 

with the appropriate 

{1f-1s*,2)', {lf°1s*,3)' , ... , {lf°1s*,b)'. 

For each block, sands* are two necessarily different 

block-wise randomizations. The group nature of cm, 
matrix multiplication) ensures that this can be done. 

There are {[N(Ga)t!lb}/{[N(Ga)t!]} = [N{<3a)t!lb-l such 

sequences of labels, (3.7.8). Label each unique sequence 

of labels of (3.7.8) by g, 

g = 1, 2, .•• , [ N ( Ga) t ! l b-1. (3.7.9) 



Chapter 3.7 Randomization ANOVA 195 

Designate as IP1 , 1 , IP1 , 2 , •.. , IPl,b' the first row of 

the product II\ [ x:1 ( x:1 ' x:1 ) -x:1 ' 1 II\' is 
. . 

11\, 1 IP1, 1 ' ( 11\, 1 ) ' ' II\, l lPl , 2 ' ( 11\, 2 ) 1 
' 

(3.7.10) 

The permutation matrices 11\,l and Cll\, 2 ) 1 only switch, 

not multiply, the rows and columns of IP1 , 2 . Thus, the 

are equal. Being equal, they have the same t label of 

(3.7.8). This holds for all b blocks of row one and 

for all [N(~)t!]b-l sequences (3.7.7) with identical 

sequences oft labels (3.7.8). Thus, all randomizations 

with the same value of g (3.7.9) have the identical first 

We now show that any row of blocks of one 

~(~'~)-~' is identical to the same row of any another 

g-group. Without loss of generality, consider the second 

row of blocks. Two sequences of products are 

II\, 2 ( II\, l ) ' , ::n:, II\, 2 ( II\, 3 ) ' , .•• , lt'ls, 2 ( II\, b ) ' and 

II\*' 2 ( II\* ' 1 ) ' ' ::n:, II\*' 2 ( II\* ' 3 ) I ' ••• ' lt'ls *' 2 ( 1~1s *' b ) I • 
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The assumption that g is the same for both sequences 

gives 

1M.s,1Cl"5,2)' = l"51:,1CIM.s1:,2)'. (3.7.11) 

Premultiplication and Theorem 3.7.1, (p. 187), give 

[IM.s,1 CIMg,2)'] [ 1t1.s,2 (IM.s,3)'] 

= IM.s, 1 ][ ( IM.s, 3 ) ' and 

CIM.s*,1CIM.s*,2)'l C IM.s*,2CIM.s*,3)'l 

= 

(3.7.12) 

(3.7.13) 

By the assumption of equal values of g, the right-hand 

side of (3.7.12) equals the right-hand side of (3.7.13). 

Thus, 

[IM.s,1 (IM.s,2)'] [ IM.s,2 (l"5,3)') 

: [IMg*,1 Clf1.s*,2) I) [ 1f1.s*,2 (lf1.s*,3) I)• (3.7.14) 

Premultiplication by the transpose of CIM.s,iCIM.s, 2 )'), 

which by (3.7.11) equals the transpose of 'M.s*,lCIM.s*,2)', 

gives 

(3.7.15) 

Thus, the third block of row two of the first projector 

matrix (s) equals the same block of the second projector 

matrix Cs*). 

This same argument applies to all blocks of row two 

and all rows of blocks. Thus, all randomizations with 

the same valu~ of g (3.7.9) have identical values of 
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The permutation matrix of Example 3.7.3, (p. 192), 

has block-wise randomizations labeled 13 and 18. The 

experiment-wise randomization is s =(13-l){CN(~)t!]} + 18 

=(12)(24) + 18 = 306, while g=6. The permutation matrix 

with block-wise randomizations 1 and 6, has experiment

wise randomization of 6, also. with g=6. Thus, randomiza-

tions s=306 and s=6 yield identical projector matrices, 

when the initial projector matrix has the special form 

discussed in Theorem 3.7.5. We use the term g-group for 

the groups of randomizations with the same value of gin 

(3.7.9), (p. 194). 

For the Xg of Example 3.7.2, (p. 186), t=4, b=2, 

and r=l, thus N(~)=l, giving CN(~)t!]b-1 = [(1)(4!)12-1 = 

24 possible values for the projector Xg(Xg'Xg)-X"s', not 

(4! )2 = 576, the to.tal number of randomizations. 

Proof of Part (b) of ~heorem 3.7.6: 

By def in it i on IRg , z = IRg , x Z = C J[ - Xg ( X's ' Xg ) - Xg ' ] z, 

(2.4.11), (p. 28). Thus, randomizations with equal 

Xg(X"s'Xg)-X's' also have equal IRs,z· By part (a) each 

equal-valued IRs,z appears in CN{~)t! 1 randomizations, as 

do IRs,z<IRs,z'IF-s,z>-IRg,z' and (IRg,z'IF-s,z>-IRg,z'. However, 

each column of CXg(X"s'Xg)-Xg' ]Z is a weighted sum of the 

elements of a column of Z. For some Z, two or more of 

the g-groups will yield the same sum. The covariate of 
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Table 2.7.1, (p. 69), does this. For that Z there are 

[N(~)t!]b-1 - 1 = [(1)(4!)]2-1 - 1 = 24-1 = 23 

randomizations groups. One value of the projector 

IRs,z<IRs,z'IRs,z>-IRs,z' appears (2)[N(~)t!J = (2)[241 = 48 

times. This proves Part Cb) of Theorem 3.7.6. 

The functions of Part (b) are grouped, but these 

groups may be fewer than [N(~)t!]b-l in number and 

contain an integer multiple of [N((i)t!] randomizations. 

Equality of the X's(X's'X's)-X's' implies equality of the 

IRs,z<IRs,z'IRs,z>-IRs,z' for randomizations within the same 

g-group, but not the converse. Such duplication is 

unlikely with multiple covariates, but will occur when 

multiple observations have the same covariate values. 

Possibly this result can be exploited in the analysis of 

covariance analog of the measurement of pure error. 

3.7.3 Permutation, Anova Terms and an Estimator 

The repetition in multiple randomizations of 

identical values of X's(X's'X's)-X's' and functions with Z 

(Theorem 3.7.6) imparts a cluster pattern to the values 

of those Anova terms in which they appear. Theorem 3.7.9 

presents the clustering and dispersing p~rts of these 

terms. 

The clustering term involves CZ~+ e), where e is 

the nxl vector of experimental unit error. Alone, it is 

constant for all randomizations. The dispersing term 
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involves C'fl.s + n5 ), the sum of the nxl vector for 

experimental unit-treatment interaction errors {'ns) plus 

the nxl vector of normally distributed random errors 

{n5 ). Typically, both of these vectors differ with each 

randomization. In each Anova term, {Z~ + e) is multi

plied by one or more projectors which are constant for 

all randomizations in the same randomization group. The 

product fixes a cluster center for the values of the 

Anova term for those randomizations in the group. Within 

the group, the constant projector multiplies {'fl.s + ns>· 

This product disperses the values about the cluster 

center, providing the 1"l.s and/or ns change with the 

randomizations, as is the typical case. 

The relative magnitude of the elements of CZ~+ e) 

and C'fl.s + ns> determine the degree of intermingling of 

values from different clusters, i.e., from different 

randomization groups. When ~ is near zero, the elements 

of {Z~ + e) may be nearly equal to those of C'fl.s + ns>· 

In this case, the clusters merge one into another. 

Typically, Z~~ID and thus, the elements of CZ~+ e) are 

large relative to those of C'fls + ns>· In this case, 

clusters are distinct with little intermingling of 

values. Under strict additivity (3.3.11), (p. 125), 

e ~ ID, c~~ + ns> = ID and there is no dispersion; each 

cluster collapses to a single value identical for all 

[N(~)t!] randomizations in the group. The randomization 
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test (Section 3.6.3, p. 169), holds constant the value 

of Ys, treating "'sand ns as negligible for all 

randomizations (Section 3.6.2, (p. 170)). Again, each 

cluster collapses to a single value. When the clusters 

are distinct, a continuous distribution is a poor approx

imation to this discrete randomization distribution. 

The clustering imparts a stair step shape to the 

cumulative distribution function when p(s) is constant 

for all randomizations, s. As clusters become less 

distinct, the steps collapse, making the cumulative 

distribution function more like the sigmoid curve of a 

continuous density function, albeit discrete. 

There are at most brt2 distinct elements of "'s, one 

for each experimental unit (with r replications fort 

treatments in b blocks) times one per treatment. They 

are reselected to form ~ach of _the [N(~)t!lb "'s for all 

randomizations. There are (brt)CN(~)t!lb distinct 

elements of the [N(~)t!lb ns. An extension is the 

examination of the different dispersion ef£ects, if any, 

of 'the two error terms 'I\; and ns. Note that should ns be 

constant for all randomizations, it would have the same 

effect as e. Hence, the assumption here and in Section 

3.5.2, (p. 155), that the columns of~ of (3.5.l), 

(p. 156), thens, differ with each randomization. 
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The main resuit follows two preliminary theorems. 

Theorem 3.7.7. 

Z'{IP (IP 1 1P )-IP '} 
'"S I Z "'S, Z "'S, Z "'S, Z 

(3.7.16) 

Proof: By the definition of ~,z (2.4.7), (p. 26), 

and the idempotency and symmetry of fRg X' , 

Z'{IP (IP 'IP . )-IP '} 
"'S,Z "'5 1 Z "'5 1 Z "'5 1 Z 

= 

= ( fRg, X Z) I ( fRg, X Z) [ ( fRg, X Z} I ( fRg, X Z) ] - ( fRg, X Z) I , 

which, by the Corollary of p. 20 of Searle [19711 and the 

definition of fRg Z' becomes , . 

Theorem 3.7.8. 

For full rank fRg,z, CfRs,z'fRg,z>-IRg,z'Z = ][ (3.7.17) 

Proof: By the definition of IRg,z (2.4.7), (p. 26), 

( IP . I IP ) - IP I Z) 
"'S, z "'S, z "'S, z 

= [ ( IP Z) I ( IP .. Z) ] - ( IP Z) I z, 
"'5 1 X "'S,X "'S,X 

which by the idempotency and symmetry of IRg x , 

= 

= [ ( fRg, X Z) I ( IRg , X Z) ] - [ ( fRg, X Z) I ( fRg ' X Z) ] • 

By Assumption 4, (p. 18), IRs,z has full column rank, 
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and thus, so does CCIRg,xZ)'CIRg,xZ)]. Consequently, the 

inverse is a true inverse, giving the result. See 

Section 2.4.1, (p. 25), for details on the rank of fRs,z· 

Theorem 3.7.9. 

When (a) the design matrix X's has the projector 

[Xs(Xs'Xg)-Xs'1, all of whose diagonal blocks have, 

within each block, identical diagonal elements and 

identical off-diagonal elements (as in Theorem 3.7.G(b)), 

and (b) for a number of randomizations equal to 

[N(~)t!]b, there are at most CN(~)t!]b-l clusters of 

numerical values, with each cluster composed of an 

integer multiple of -[N (~) t ! 1 randomizations for 

1. The sum of squares for the covariate(s) as 

adjusted for the mean, blocks and treatments, 

2. The residual sum of squares, SSRs, 

3. The F~ratio, and hence the OSLF, for the 

covariate(s) as adjusted for mean, blocks and 

treatments, Fs(~l~,b,7), 

4. The estimate for the regression slope 

coefficient, as adjusted for the mean, blocks and 

A 

treatments, ~s;~,g, 7,~, when Z has full column rank 

as per Assumption 4, (p. 18), 
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5. The_F-ratio, and hence the OSLF, for the 

treatments as adjusted for the mean, blocks and 

covar1ate(s), Fs(7IP,b,~), and the F-ratio (and OSLF) 

for the entire model equation, when the null 

hypothesis of 7=0 is true. 

Graph 4.5.9, (p. 288), and the points marked "u" in 

Graphs 4.6.5 and 4.6.7, (p. 299-302), illustrate Part 3. 

Graphs 4.5.3 and 4.5.4, (p. 277-278), illustrate Part 4. 

Graphs 4.5.~, (p. 280), and the top left of Display 

4.6.7, (p. 350), illustrate Part 5. 

To begin the proof, write the vector of observations as 

Ys = ~7 + z~ + e + 1l.s + ns . 

Proof of Part 1. 

Rs C ~ IP, b, 7 > = Ys ' { fRs, z ( fRs, z ' fRs, z > -IRs, z ' } Ys 

By (2.4.13b), (p. 194), all terms in~ are zero, 

leaving 

C z~ + e > -, { IRs, z C IP'S, z ' IRs; z > -IRs, z' } C z~ + e) . 

+ 2 ( Z~ + e > ' { IRs, z ( fRs, z ' fRs, z > -IRs, z ' } ( 1l.s + ns > 

(3.7.18) 

+ C % + ns ) ' { fRs, z C fRs, z ' fRs , z ) - IRs, z ' } C 1l.s + ns ) · C 3 · 7 · 19 ) 

By Theorem 3.7.6(b) the first term is constant for all 

[N(~)t!J randomizations having the same value of the g of 

(3.7.9), (p. 194). It sets at most CN(~)t!Jb-l cluster 

centers. Within each g-group, the other two terms of 
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-
(3.7.19) disperse values about each cluster center. When 

('ng+ns)=O for alls, as in strict additivity, or is 

negligible as in the randomization test, .each of the at 

most [N(~)t!]b~l clusters collapses to a single value. 

Otherwise, the relative values of (Z~+e) and ('ng+ns> 

determine the extent of cluster dispersion and overlap. 

Duplication of values for clusters and/or individual 

randomizations may occur via the weighted sum of certain 

(Z~+e) and/or ('ng+ns>, in the manner of Theorem 3.7.6(b) 

or by the addition operation of ( Z13+e) and/or ( 'ns +ns). 

Proof of Part 2: 

From (2.5.2), (p. 36), 

= { ( 7 , X's , + ~, Z' ) + e, + C 'ns, +ns , ) } 

Since][ - ~(X"s'X"s)-X"s' = IRs,x' terms involving X's' are 

zero, by {2.4.13(b)). By Theorem 3.7.7, terms involving 

Z' cancel. The idempotency provides the same 

cancellation on the right for Ys, leaving, 

+ C 'ns +ns > { X-Xs C X's' X's> -X's' -!Rg, z < IRs, z' IRs, z > -~, z' } < 'ns +ns > · 
(3.7.20) 
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Values of the first term are constant for all [N(~)t!] 

randomizations having the same value of g, as in (3.1.9). 

Within each g-group, the last two terms disperse values 

about the value set by the first term. When ("l.g+ns)=ID 

for alls, as in strict additivity, or is negligible as 

in the rand~mization test, each of the [N(~)t!]b-l 

clusters collapses to a single value. Otherwise, the 

relative values of e and ("l.g+ns> determine the extent of 

cluster dispersion and overlap. As with Rs(~IJ.1,b,7), 

clusters and/or individual randomizations may have 

identical values of SSRs. 

Proof of Part 3: 

By Parts 1 and 2, 

Fs(~IJ.1,b,7) = { [1/q] / [1/(n-p-q)] } x 

C ( z~+e) + ( "'s +ns) 1 ' { IRg, z ( IRg, z' IRg, z) -IRg, z' } C ( Z~+e) + ( "'s +ns) 1 
, 

C e + "'s + ns 1 ' {:[-~ ( ~ ~ ) - ~ -iRg, z ( IRg, z ' IRg, z ) - IRg, z ' } C e + "'s + ns 1 

where n=the number of observations, 

p=rank(~) and q=rank(Z). ( 3. 7. 21) 

When ("l.g+ns)=ID for alls, as in strict additivity, or is 

negligible, as in the randomization test, each of the 

[N(~)t!]b-1 clusters collapses to a single value. 

Otherwise, the relative values of (Z~+e) and ("l.g+ns) 

determine the extent of cluster dispersion and overlap. 
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As with Rs(~lp,b,7), clusters and/or individual 

randomizations may have identical values of Fs(~lp,b,7). 

Equation (3.7.21) provides a formula for the t@s,s 

of (3.6.1), (p. 170), and (3.6.5), (p. 173), and the 

t@s of (3.6.8), (p. 174). This result proves the 

assertion in Pitman of (t!)b-l unique values of the test 

statistic and details the conditions under which it 

holds [Pitman, 1937, bottom six lines of p. 3231. (We 

state his assertion in our notation.) His model lacks a 

covariate. Without one, the first projector of 

Rs(7lp,b)=RsCP,b,~)-R(p,b) has the special form giving 

it identical valu~s for randomizations having the same 

value of g, as in (3.7.9), (p. 194), The second projector 

is constant for all randomizations. Thus, one obtains 

Pitman's result. 

Graph 4.5.9, (p. 288); illustrates Part 3 via the 

OSLF's associated with the Fs(~lp,b,7). The automatic 

scaling has grouped clusters with similar values, but in 

each case there are an integral multiple of N(~)t! ~ 

1(4!)=24 randomization per bar of the histogram. The 

points marked "u" on Graphs 4.6.5 and 4.6.6, (p. 299), 

also illustrate Part 3. Each "u" is one cluster of 

N(~)t! = 24 points when "'s=ns=ID. 
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Proof of Part 4: 

By the definition of '"'s;J1,b,.,-,i==, (2.4.17), (p. 29), 

and Theorem 3.7.8, (p. 201), 

" 
'"'s;JJ.,b,.,-,i== 

= ( ~' z ' IP-s' z ) - ~' z ' [ Zi== + e + ( % + ns ) J 

+ C ~ , z ' ff<s , z > - ff<s , z ' [ % + ns l • (3.7.22a) 

The first term, i==, is constant for all randomizations. 

The second term (in e) is constant within each 

randomization group. The third term (in %+ns> differs 

with each randomization and disperses values about the 

[N(~)t!]b-1 cluster centers set by the second term. When 

C'fls+ns)=[I, as in strict additivity, or is negligible as 

in the randomization test, each of the [N(~)t!]b-1 

clusters collapses to a single value. Otherwise, the 

relative values of e and C'fls+ns> determine the extent of 

cluster dispersion and overlap. As with R5 (i==IJJ.,b,.,-), 

clusters and/or individual randomizations may have 

" identical values of '"'s:J1,b,.,-,i==· Equation (3.7.22a) is a 

generalization to multiple covariates and additional 

error types of a result found in Cochran [1957, the 

second to last equation of p. 272]. 
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The last parts of (3.7.22a) are the least squares 

estimator of ~s,E in the model equation 

[e + % + nsl = IRs,z~s,E + error (3.7.22b) 

= CIRs,xZ> ~s, E + error 

= {[X - i's<i's'~)-i's'lZ}~s,E + error. 

This equation should be contrasted with (2.4.8), (p. 27). 

For the one covariate case, a near zero correlation of 

" a small bias of ~S:J1,b,-r,~· 

Graph 4.5.3, (p. 277), illustrates Part 4 when e;a!ID 

and -ns=ns=ID. The automatic scaling has grouped clusters 

with similar values, but in each case, there is an inte

gral multiple of N(~)t!=1(4!)=24 randomizations per group. 

Graph 4.5.4, (p. 278), illustrates Part 4 when e=ns=ID and 

%;,!ID. It is similar to the case e=-ns=ID and ns;a!ID. 

Proof of Part 5: 

When -r=ID, (3.7.18), (p. 203), lacks the Xs-r term. 

Consequently, Rs(71J1,b,~) is 

CZ~ + e)' {~-IB} (Z~ + e) 

+ 2 C z~ + e) ' { ~ -IB} C % + ns) 

(3.7.22c) 

where~ is the projector for [XJ11Xi,1Xs,-r1Zl 

and 1B is the projector for [XJ112blZ]. 
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Equation (3.7.22c) is (3.7.19) for 7=ID. By Theorem 

3.7.6(a), (p. 193), the first term is constant for all 

[N(~)t!] randomizations having the same value of the g of 

(3.7.9), (p. 194). It sets at most [N(Ga)t!]b-l cluster 

centers. Within each g-group, the other two terms of 

(3.7.22c) disperse values about each cluster center. 

When ('ng+ns)=ID for alls, as in strict additivity, or is 

negligible as in the randomization test, each of the at 

most [N(Ga)t!]b-l clusters collapses to a single value. 

Otherwise, the relative values of e and ('ng+ns) determine 

the extent of cluster dispersion and overlap. As with 

RsC~l~,b,7) 1 clusters and/or individual randomizations 

may have identical values of Fs(71~,b,~) when 7=0. As 

the other parts of the sum of squares for the entire 

model are constant or clustered ~ithin a g~group, when 

the 7 part is zero, then the model sum of squares is also 

constant or clustered. 

Graphs 4.5.5, (p. 280), 4.6.7, (p. 302), 4.6.8, (p. 

303) and the top left part of Display 4.8.7, (p.350-351), 

illustrate Part 5. In Graph 4.6.21, 7=ID, and all N(~)t! 

= 1(4!)=24 values of the OSL for Fs(71~,b,~) of this 

g-group have collapsed to the single point marked "X". 

This completes the proof of Theorem 3.7.9. 
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The projector for {X~l~IZ] appearing in the sum of 

squares for the treatments as adjusted for the mean, 

blocks and covariate, lacks the special structure which 

gives multiple randomizations identical values for the 

sum of squares, Rs(Tl~,b,~). When T~ID, its distribution 

has {N(~)t!]b distinct values, as does the corresponding 

F-ratio, even with strict additivity or in the randomiza

tion test. The clustering of values of the denominator, 

(3.7.20), of the F-ratios may impart clustering to the 

ratio itself. Similarly, the estimate of T as adjusted, 

~' will have {N(~)t!]b distinct values. The clustering 

~ 

of the ~ may impart a clustering to the T· In both 

cases, the degree of clustering depends upon the relative 

values of the elements of the involved vectors and 

matrices. As with R5 (~1~,b,T), the sums (Z~+e) and/or 

('flg+ns> may give different randomizations identical 

values. 
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3.7.4 Permutation and the Noncentrality Parameters 

The following two theorems detail the effect 

randomization has upon the noncentrality parameters. 

Theorem 3.7.10. 

For (a) those design matrices Xg= [XJJ.l~IXg, 7 1 with 

projectors [Xg(Xg 'Xg)-Xg' ], all of whose diagonal blocks 

have, within each block, identical diagonal elements and 

identical off-diagonal elements (as in Theorem 3.7.5), 

and (b) a constant variance ~2 and (c) for a number of 

randomizations equal to [N(~)t!]b, there are at most 

[N(~)t!lb-1 unique values for the noncentrality parameter 

?.. s, 13' IJJ.,b, T, 13' (3.7.23) 

= {1/(2~2)} x 13''{Z':Z - :Z'IMg[X1CX1'X1)-X1'l1Mg':Z}l3'. 

Each unique value will occur in an integral multiple of 

[N(~)t!] randomizations for the g-groups of (3.7.9). 

When experimental unit-treatment interaction, %, is 

included in the model equation, one may consider the 

variance to change with the randomization. This will 

disperse the values of this noncentrality parameter 

about the cluster centers provided by a constant 

variance. Note that none of the error terms directly 

enters into the value of the noncentrality parameters. 
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When X7 has all columns summing to zero within each 

block, as in the effects version of x7 , (3.7.23) becomes 

"s,131J.L,b,1",13 = {1/(2cr2 )} x { 13 1 Z' t:n:-tw] Zl3} 

- {1/(2cr2)} 

x {13'Z' "'5CX1, 7 CX1, 7 'X1, 7 )-X1, 7 'l111s' Zl3 }, 

where lW=(l/t){diag[J'txt1}bxb as .in (2.6.20). (3.7.24) 

Proof: Apply Theorem 3.7.6, (p. 193), to (2.6.37), (p. 

42), with Xz:=X's· Use (3.7.5) to obtain (3.7.23). Apply 

Theorem 2.6.16, (p. 56), to (3.7.23), grouping the :n: and 

lW matrices, to obtain (3.7.24). Theorem 3.7.6(b) 

provides the number of groups and the number of randomi

zations within the groups. The values of Z may be such 

that two or more randomizations yield identical values of 

?.. 1 b The covariates of Table 2.7.1, (p. 65), s,111 J.L, 1 7 1 13" 

have but 24-1=23 unique values, one value appearing 

2(24)=48 times. The vertical lines of points of Graph 

4.8.1, (p.338_), illustrate this theorem. This graph led 

to the theorems of Section 3.7. 
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The abbreviated notation used subsequently for 

{3.7.24) is 

·;>.. = s,, IJ1,b, -r, 13 {3.7.25) 

where ').f,, = {l/{2o-2)} x {P'Z' [][-lWJ ZP}, 

which is fixed for all randomizations, and 

where ').g, , = { 1/ { 2 a2)} 

is constant within subgroups, g, of randomiza-

tions having identical ~ { Xs' ~) -~' matrices. 

This abbreviated notation .holds when {a) X gives its 

projector the necessary structure, as discussed in 

Theorem 3.7.5, {p. 190), also below (2.6.28), (p. 55), 

and when {b) the columns of X7 sum to zero within each 

block, as discussed in Theorem (2.6.16), {p. 56). The 

single factor case ~ith ~-r in its effects version 

satisfies these conditions. These conditions are not 

satisfied when X7 is in its coding version. 

Theorem 3.7.11. 

There are at most [N(~)t!]b unique values for the 

noncentrality parameter 

'). I b = { 1 / { 2 cr-2 ) } X 'T" I { X1 .... I X1 .... } 'T" 
Sf 'f" Jl, f 'f" f 13 f I f I 

- { 1 / ( 2 a2 ) } X 'T" I { X1 ' 'T" I If\ I [ Xr ( Xr I Xr ) -1 Xr I ] If\ X1 ' 'T" } 'T"' 

·where Xr = [XJllX't>IZ], constant for alls. (3.7.26) 
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When the treatment matrix X7 is orthogonal to both 

the blocks matrix~ and the mean vector X~, the second 

term of (3.7.26) may be reexpressed giving 

where U=(l/t){diagl~txtl}bxb as in (2.6.20). (3.7.27) 

The vertical spread of the points of Graph 4.8.1, (p.338), 

illustrates this.theorem its form of (3.7.28) below. 

Proof: Applying Theorem 3.7.3, (p. 189), to the first 

term of (2.6.39), (p. 62), gives the first term of 

(3.7.26). The second term follows directly from (2.6.39) 

with ~ 7 = IMgX1 7 • Application of Theorem 2.6.22, , , 

(p. 51), to the second term of (3.7.26) provides the 

second term of (3.7.27). Note that Xr=[X~l~IZl is 

constant for all randomizations. Neither version of the 

projector, lXr<Xr'Xr>-Xr' 1 or [Z(Z' (][-1.LJ)Z)-1 z• ), has the 

.special form of its diagonal blocks which gives identical 

values tog-groups of randomizations. It is possible for 

a given X and Z to have different individual randomi-

zations with identical values for_ 'L The ·-s, 7 I~, b, 7, J3 • 

covariates of Table 2.7.1, (p. 65), do this. This 

appears to regularly occur within some randomization 

groups, but not in others. An extension is to discover 

why~ 
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The abbreviated notation used subsequently for 

(3.7.27) is 

"s -r I 11 b -r .,,,= "f -r - "s -r' I ~I I I~ I . I ( 3. 7. 28) 

where 

which is fixed for all randomizations, 

and "s 7 = { 1/ ( 2 cr-2)} x 
I 

'T I { X1 ' 'T I IMg I [ Xr ( Xr I Xr ) -Xr I ] IMg X1 ' 'T } 'TI 

= {1/(2cr-2)} X 

{ 'T' X1 'TI 
I 

IMg ' [ Z ( Z' ( lI: - I.W) Z) -l Z' l IMg 

which changes with each randomization. 

As in ( 2. 6. 20), I.W= ( 1/t ){diag [ Jl"txt l }bxb 

For each "g,!3 with the same value, there are [N(~)t!] 

"s, 7 • Typically, each "s, 7 has a unique value. 

This abbreviated notation holds for X7 orthogonal to 

both the blocks and mean matrices. This is the case when 

both Xt, and X7 are in their effects version. 

An extension is to derive, if possible, the fixed 

and random parts of the noncentrality parameters with 

fewer restrictions on X7 , such as, multiple factors 

and/or the coding version. 
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Note that the random part of both noncentrality 

parameters can only decrease the value of the entire 

parameter. See the discussion of positive semi-definite 

matrices below (2.6.11), (p. 43). 

3.7.5 Restricting Randomizations to Maximize Power 

Selecting the randomization which maximizes the 

noncentrality parameter maximizes the power of the F-test 

under the normally distributed random errors model, as 

discussed in (2.6.6a), (p. 41). 

When the noncentrality parameters may be divided 

into fixed and random parts, as in Theorems 3.7.10, 

(p. 211), and 3.7.11, (p. 213), and there is but one 

covariate, Theorem 3.7.15, below, allows one to 

simultaneously obtain 

a) a near maximum power for the F-test of alterna

tive, nonzero, values of the treatment effect, as 

adjusted for the mean, blocks and covariate, and 

b) the maximum power for the F-test of an 

alternative, nonzero, univariate, covariate slope 

coefficient, ~' as adjusted for the mean, blocks 

and treatments. 

Furthermore, one retains a degree of randomness in the 

assignment of experimental units to treatments. The 

randomness obtained satisfies goal two of Section 3.2.8, 

protection against favoring a particular treatment, (p. 

118), but not necessarily goal one, freedom from the same 

treatment being applied to adjacent experimental units. 
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Further work is needed on the effect of this restriction 

on goal one and on model equation robustness, goal three. 

For use in the proofs which follow we state the 

result, 

Theorem 3.7.12. 

For 1t1 = IB'IB of full rank, (x'y)2 i (x'~) (y'1t1-ly), 

with equality when x oc 1t1-ly , 

where x and y are column vectors. (3.7.29) 

Citation: C. R. Rao, 1973, p. 54, Section le.l,(ii)(b), 

Equation le.1.4. This is a version of the Cauchy-Schwarz 

inequality. Here, oc designates a constant proportion for 

each element of the vectors x and 1t1-1y. 

Theorem 3.7.13. 

For X7 with full column rank 

(3.7.30) 

Proof: 

Let 
' 

x = [ x1 , 7 ' It\; ' Z] ~ and 

y = 7. 

Theorem 3.7.12 gives the desired result. Only most 

unusual 7, ~ and Z would make the two vectors of Theorem 
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<~> to one another. Thus, equality in (3.7.30) or 

(3.7.31), below, is unlikely. 

In the abbreviated notations of (3.7.25), (p. 213), 

and (3.7.28), (p. 215), and under those conditions, 

(3.7.30) becomes 

Ls ( 2 a-2 ) 2 i ( "g , 13 ) ( "£ , 'T ) , (3.7.31) 

where Ls = (13 1 z 1 1~1sx1 , 7 -r) 2 with the subscripts indicating 

that the left hand side changes with each randomization. 

Theorem 3.7.14. 

For x7 orthogonal to XJl and~, with all columns of 

X7 summing to zero within each block, and with X7 and Z 

having full column rank, 

( 7 , X , IM , Zl3) 2 ! 1,-r ·s 

X {13' [Z1 (][-I.L.l)Z] 13}, where 

I.L.l=(l/t){diag[]"txt1lbxb as in (2.6.20). (3.7.32) 

Proof: 

Let IR = [ Z' ( ][- I.LI) Z] -1 , 

y = 13. 

Theorem 3.7.12 gives the desired result. With but one 

covariate, the two vectors of Theorem 3.7.12, 



Chapter 3.7 Randomization _ANOVA 219 

x={Z'lt\;Xi,sl'T and lii-ly=[Z'(][-1.L,OZJ- 1 is, are scalers and 

thus are always proportional. Therefore, equality holds 

in (3.7.32) and (3.7.33), below. 

In the abbreviated notations of (3.7.25), (p. 213), 

and (3.7.28), (p. 215), and under those conditions, 

(3.7.32) becomes 

Ls ( 2 cr-2 ) 2 ! ( -,.,s , 'T ) ( -,.,f , is ) . (3.7.33) 

where L =(is'Z'IM x1 'T) 2 with the subscripts indicating s ''S ''T , 

that the left hand side changes with each randomization. 

Note that Ls has the same value in Theorems 3.7.13 and 

3.7.14. 

Theorem 3.7.15. 

Consider an arbitrary group, g, of [N(~)t!l 

randomizations, s, with identical values of "g,is· When 

there is only one covariate and the conditions on X'T of 

Theorems 3.7.10, (p. 211), and 3.7.11, (p. 213), hold, 

for any such group, g, 

(3.7.34) 

independently of is, for all 'T and for alls in g. 

Proof: For a single covariate, (3.7.33) becomes L5 (2~2 ) 2 

above inequality. __ 
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Examination of the detailed form of ~g,~ and ~f,~ 

for the single covariate case, shows each to be scalers 

multiplied by ~2. Thus, ~ cancels in (3.7.34) and 

(3.7.36), below. Equality in (3.7.34) holds for only 

those most unusual combinations of 7 1 ~ and Z which give 

equality in (3.7.31). Graph 4.8.1, (p. 338), illustrates 

this theorem. Graph 4.8.2, (p. 339), illustrates the 

case where the variance ;i. changes with each randomi

zations. This disperses the columns of values as seen 

in Graph 4.8.1. 

The end of Section 2.6.1, (p. 41), and of Section 

3.6.7, (p. 181), discuss increasing the power of the 

hypothesis test when using the F-statistic under the 

normally distributed random errors model. For given 

degrees of freedom, one wishes to maximize the non-

centrality parameter. Since ~s 7 can only reduce the ., 

value of ~71 ~,b, 7 ,~, large values of ~s, 7 should be 

avoided. Theorem 3.7.15 shows how to do this. Selecting 

. the randomization set gmin with the minimum value of J,g, ~ 

simultaneously selects the N(~)t! randomizations 

whose theoretical maximum ~s, 7 is the minimum. Larger 

values of ~s, 7 and ~g,~ are thus avoided. One conducts 

the actual experiment using one of the randomizations in 

gmin· This set has [N(~)t!] randomizations from which to 

choose the one used to conduct the actual experiment. 
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Theorem 3.7.15 does not ensure selecting the 

randomization with the minimum ~s,-r, nor selection from 

among a set of randomizations with the smallest ~s,-r· 

Values of ~s,-r smaller than the smallest ~s,-r in the 

group gmin may exist in other groups of larger ~g, is· 

Theorem 3.7.15 merely allows avoiding large values of 

~s, -r· By minimizing the random part, ~s, -r' one maximizes 

~ 1 b Theorem 3.7.15 shows how to avoid s,-r JJ., ,-r,is· 

~s,-rlJJ.,b,-r,is which are far from the maximum. 

The ratio {~f,-r /~f,is} of (3.7.34) approximates the 

regression slope coefficient for the least squa;es line 

fit to the [N(~)t!] points, (X,Y), where X=~g,is and 

Y=observed maximum ~s 'Tin group g. This line is 
I 

(observed maximum ~s,-r>=Cslope)C~g,is>+error. (3.7.35) 

When ~f 7 ~ ~f ~, the approximated slope is near 
I I I" 

horizontal (one) and large reductions in ~g,is are needed 

to appreciably reduce the maximum of the ~s,-r for those 

randomizations in group g. The range of values of ~g,is 

and the ratio ~f -r /~f ~ indicates the sensitivity of the 
I I I" 

maximun withing-group noncentrality parameter, 

different randomizations. 

~s 'T' to 
I 

From (2.6.34) and (2.6.38), 0 ! ~s,-r ! ~f,-r and 

0 ! ~g,is ! ~f, is· Thus, dividing both sides of (3.7.34) 
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by "f 'T 
gives, for all s in a fixed g, 

I 

?..s 'T °Ag' fl' 
0 ! 

I 
! ! 1 (3.7.36) . 

?..f 'T ?,,f I jS I 

For the one-covariate, one-factor case, the noncentrality 

parameters of the F-test for the two usual hypotheses of 

interest are interconnected. 

Theorem 3.7.15 does not hold with multiple 

covariates. None of the noncentrality parameters depend 

upon the data. With sufficient resources, all values of 

"s,-r and ?..g,fl' could be computed and ranked for those 

alternative-rand fl' of interest. Randomization could be 

restricted to those randomizations with low ranks for 

both "s,-r and ?..s,fl'' should such exist. Widely differing 

alternatives of-rand fl' would necessitate recomputing the 

rankings. Scaler multiplic~tion of the -r or fl' would not 

alter the rankings. The randomization group supplying 

9min appears to be the one with the smallest elements of 

to high within each block, gmin occurs in the randomiza

tion in which the unit-valued elements of the off-

diagonal block of XgCXg'Xg>-Xg' are on the upper-right 

to lower-left diagonal. This randomization has the least 

squaring of the elements of Z; it is the most balanced. 

An extension is to consider consider multiple factors, 

interactions, and other such X7 as the coding version. 
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Section 3.8 

Expected Value of the F-Ratio 

Section 3.8.1 reviews known results for the expected 

value of the F-ratio in the randomized block design 

without a covariate. Section 3.8.2 discusses results for 

the design with a covariate. Section 3.8.3 discusses 

possible further work on this expectation. The review 

of literature is the major contribution of this section. 

3.8.1 The Randomized Block Design without a Covariate 

For the balanced randomized block design with b 

blocks and t treatments, but without a covariate, the 

F-ratio has a numerator degrees of freedom n=t-1 and a 

denominator degrees of freedom d=[(number of 

observations-1)-(b-l)-(t-1)] and is 

F = (Sum of Squar~s fbr Treatments)s /n 
s (Sum of Squares for the Residuals)s/d 

( 3 . 8 . 1 ) 

The transformation of Appendix A.4, (p. 384), yields 

R = s 
(Sum of Squares for Treatments)s 

Total Sum of Squares I (3-.8.2) 

which is the coefficient of determination, usually deno

ted as R2. Under the assumption of normally distributed 

random errors, Rs has the non-central Beta distribution, 

as defined in Appendix A.4. 

The advantage of Rs over Fs is, that under the null 

hypothesis of no treatment effects, the denominator of Rs 

is constant for all randomizations. The constant 
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denominator makes possible deriving the moments of Rs 

under the null hypothesis and the randomization model. 

Bartlett [1935] derived the mean and variance of Rs for 

the case of two treat-ents. Plackett [1960, p. 155-156] 

presents a clear proof with discussion. B. L. Welch 

[1937] and Pitman [1937] extend the results to any number 

of treatments. Pitman adds the third and fourth moments. 

All authors consider only experimental unit error; both 

experimental unit-treatment interaction error and 

normally distributed random error are zero. All assign 

equal probability to each randomization and consider only 

the null hypothesis case. Under the alternative 

hypothesis of treatment effects, the denominator of Rs is 

not constant for all randomizations [Atiqullah, 1963, p. 

3371 If the ~2 of the non-centrality parameter is 

considered to change with the randomization, for example, 

when experimental unit-.treatment interaction is present, 

then the non-centrality parameter also changes with the 

randomization. 

When the null hypothesis of no treatment effects is 

true, the first moment is 1/b under both the normally 

distributed errors and the randomization models. That 

is, one obtains the same first moment of the statistic Rs 

when it is averaged over these two quite different proba

bility spaces. This may help explain why the normally 
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distributed random errors model provides a good 

approximation to the randomization model for this design. 

The variance of the central-Beta distribution is 

2(b-l) 2b = 2 ( 3 • 8 • 3 ) 
b2[b(t-1)+2] 

The variance of Rs under the rand~mization model is 

b [ t 2 ]2 E :E eij 
cr;2 = 2(1-Al where A = i=l j=l ( 3 . 8 . 4 ) R 

b 2 (t-1) 
, 

b t ]2 
[ i;=l E eij 2 

j=l 

When the variances of the experimental units are equal 

within each block, A takes its minimum value, 1/b, in 

which case Cl-A) = (b-1)/b and~~~~~- When the 

variances of the eij are zero in all blocks but one, then 

A takes its maximum value of 1. In this case the two 

variances differ. When the number of blocks is large, 

and the block variances approximately equal, then the 

effect of A is minimal and the two variances are near 

equal. Pitman [1937, p. 331-3351 discusses conditions 

yielding near-equality for the third and fourth moments. 

B.L. Welch [1937, p.471 and Pitman [p.3351 conclude that 

the randomization test may be approximated by the normal 

theory test, especially in the upper tail, for the rando

mized block design. This conclusion does not hold for 

all designs, such as the Latin Square [B.L. Welch, p.47]. 

Atiqullah [19631 considers the randomized block 

design with one factor with t' levels. He considers only 

experimental unit error (additivity) and assigns equal 



Chapter 3.8 Expectation of F-Ratio 226 

probability to all randomizations. Instead of the 

F-ratio, he uses Fisher's z transformation of the mean 

squares (MS), 

Z=(l/2)ln(MS-hypothesis/MS-residual). ( 3 . 8 . 5 ) 

Atiqullah uses a Taylor's series expansion and cumulants 

to derive approximate limiting moments for the null and 

non-null distribution of Fisher's Z [Atiqullah, 1963, Eq. 

21, 22, and 35, 361. The limit is taken as the number of 

treatment levels t goes to infinity. 

Atiqullah [1962A] derives similar approximate limit

ing moments for Z under an infinite population model with 

a fixed allocation of treatments to experimental units 

but an unknown distribution of the errors [his equations 

25 and 26]. For the null hypothesis, applying the normal 

distribution to these results gives expressions identical 

to those derived under the randomization model, provided 

the within-block variances of the experimental unit 

errors are equal [See Atiqullah,. 1963, p. 338]. 

Robinson [1973A] shows that the critical value of 

the F-ratio tends to a constant in probability as the 

number of blocks, b, becomes large. Further, as b goes 

to infinity, the sequence of F-ratios, {Fb}, tends in 

distribution to a central chi-square distribution, when 

{Fb} goes to zero, or tends to a non-central chi-square 

distribution, when {Fb} goes to a constant. Thus, the 

randomization test of the null hypothesis of no treatment 

effects, is asymptotically as powerful as the test using 
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the F ratio under the normally distributed random errors 

model as the number of blocks becomes large. Robinson 

includes only experimental unit error in his model and 

assigns equal probability to all randomizations. 

3.8.2 The Randomized Block Design with a Covariate 

When a covariate is included in the randomized block 

design, Robinson [1973B, p. 368] writes, "it is difficult 

to obtain results on the usual test statistic of the 

CF-Ratio]. In fact, is has not been possible to obtain 

moments of this statistic under the randomization model, 

as was done by Pitman [19371 and B. L. Welch [19371 for 

the analysis of variance case. However, it is possible 

to obtain asymptotic results" 

D. R. Cox [1956, p. 1147] explains the source of 

this difficulty, 

If we try to calculate the randomization 

expectations of [the residual and treatment 

mean square, both adjusted for the covariate], 

there is the difficulty that [SSRyzl 2/[SSRzzl 

is a ratio of random variables so that no 

simple exact expression of the form of its 

expectation can be written down. 

Table 2.5.2, (p. 38) and Section 2.5.2, (p. 35) show 

this. Different randomizations tally different covariate 

values to obtain the sums SSTyz and SSTzz· Hence, SSRyz 

and SSRzz differ with each randomization. 
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Atiqullah [1962B] uses a mixed model equation and 

derives moments for the Z of (3.8.5), (p. 226). This Z 

corresponds to the Z of the fixed model for the "random" 

coefficients as adjusted for the fixed coefficients. 

While such results could apply to the analysis of covar

iance, his results are limited to the case where the 

projector for the adjusted sums of squares, such as 

IRg(IRg'IRg)-llRg' of Table 2.5.1, (p. 37.), has identical 

elements along its diagonal. This condition he terms 

quadratic balance [p. 141]. In only unusual cases will 

a continuous covariate be quadratically balanced. 

The 1964 paper by Atiqullah discusses the 

sensitivity of the F-test in the analysis of covariance 

for a design with one factor and an arbitrary number of 

covariates but without blocks. The errors of his model 

resemble those of the normally distributed random errors 

model, but have some non-normal distribution. The model 

is not a randomization model. One finding is that the 

lack of quadr~tic balance in the projector for the 

covariates determines the sensitivity of the F-test to 

non-normality [p. 365]. Another is that non-normality of 

the errors has little effect on the F-test provided the 

covariates are normally distributed [p. 368]. He uses 

Fisher's Z, (3.8.5), for testing the treatments as 

adjusted by the covariate. His last three sections 

present results for random covariates, interaction 
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between slope and treatment and model equation terms 

quadratic in the covariate. 

The model equation of Robinson [1973B] has blocks, 

one factor with t levels (treatments) and one covariate. 

His estimator of the regression slope coefficient is 

within each block, thus, it is invariant to the 

randomization. When the estimator is over all blocks, as 

herein, its value changes with each group of randomi

zations, as proved in Theorem 3.7.9(4), (p. 202). He 

considers only experimental unit error (additivity) and 

assigns equal probability to all randomizations. 

Robinson focuses on the treatments sum of squares as 

adjusted by the covariate. His Theorem 2 proves the 

asymptotic distribution of the associated test statistic, 

S, under the null hypothesis, to be a central chi-square 

with t-1 degrees of freedom as the number of· blocks goes 

to infinity. He constructs an increasing function of the 

usual F-ratio (his Eq~ 3). He then proves that a 

function of the difference between these two test 

statistics goes to zero in probability as the number of 

blocks goes to infinity (his Theorem 3). Thus, [Rao, 

1973, p. 122, (x)(d)], the increasing function of the 

usual F-ratio has the same asymptotic distribution ass, 

the central chi-square with t-1 degrees of freedom. 

Rejecting the null hypothesis using the increasing 

function of the usual F-ratio is equivalent to rejecting 

using the F-ratio itself [Robinson, 1973B, p.372]. 
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Robinson proves (his Theorem 5) that when the null 

hypothesis is false (the treatment effects are not all 

zero) and the sequence of the usual non-centrality 

parameter ~b has a limit as the number of blocks b goes 

to infinity, then a second statistic tends in 

distribution to a non-central chi-square distribution 

with non-centrality parameter the limiting value of ~b. 

As the number of blocks goes to infinity, the usual 

F-ratio, under th~ normally distributed random errors 

model, has the same chi-square limiting distribution. 

Robinson concludes, "at least for a large number of 

blocks, the usual normal theory test is appropriate under 

a randomization model with the quite weak conditions of

Theorem 1" [p. 3721. These conditions are that as the 

number of blocks goes to infinity (i) the sequence of the 

correlation coefficient of the treatments and covariate 

has a limit and (ii) the sequence of a sum of 

{SSTxxlSSTotxx + SSTzzlSSTotzz} goes to zero. 

3.8~3 Possible Approaches 

Hooper [19891 groups nine published articles into 

four categories by the techniques used. These categories 

are (a) real and simulated data, (b) moment calculations, 

(c) Edgeworth expansions and (d) limit theorems. Hooper 

adds (e), assigning a model to the experimental unit 

errors. There appears to be no results for models inclu

ding experimental unit-treatment interaction errors. 
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Consolidation of existing Edgeworth expansion and limit 

theorems Cc and d) may suggest additional results. 

Gayen [1950] presents Edgeworth expansions. Some 

possible approaches to categories (a) and Cb) follow. 

The availability of personal computers appears to 

permit inexpensive calculation of the F-ratio for all 

randomizations for small real-data uniformity trials. 

The Eden and Yates [1933] study computed a sample of 1000 

of the trial's possible 24 8 randomizations. While a bit 

large, multiple personal computers could compute all 

randomizations for this data in otherwise unused 

time over the course of several months. See also 

Center [1982]. 

Hsu's [19381 results on the moments of a quadratic 

form, xiAx', have been simplified for special cases by C. 

R. Rao [19521, Plackett [1960, p. 40-411 and Atiqullah 

[1962A]. These results assume the projector lli is fixed 

and the vector x has a. random, but unknown continuous 

distribution. The permutation matrix can be shifted from 

the projector, here lli, to the vectors Y and Z, making 1:1 

fixed and the vectors random, albeit with discrete 

distributions. More useful would be results on the 

randomization moments of x~x' and [x~x']/[xiBsx'] for x 

a fixed vector and~ and E5 determined by randomization 

sunder a randomization model. 

Atiqullah [19631 uses infinite population cumulants 

to express the randomization moments. Finite population 
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moments are more appropriate, but need development in the 

multivariate, mixed moment case. The tensor techniques 

of Mccullagh [19871 and the finite population results of 

Irwin and Kendall [1943-451 and Boullion, Seaman and 

Young [199~1 appear to be one ~oute to such development. 

Hooper (1989] posits two models [his 1.8 and 2.2] 

for the experimental unit errors. With the second model, 

his Theorem 2.1 proves the power of a randomization test 

converges to the asymptotic normal-theory power, as the 

number of experimental units goes to infinity with the 

number of treatments fixed. · He discusses conditioning on 

the experimental units or on the randomization used to 

conduct the experiment. Several experimental designs are 

presented, all without a covariate. While his proofs 

appear to call for orthogonality of the columns of the 

design matrix, perhaps proofs can be obtained which 

include a covariate. 

Zuskind, et al., [1960, 1964, 1968] and Kempthorne, 

et al., [19671 discuss related topics. See also the 

results of Roux, discussed above on pa~e 127. 

In summary, the expected value of the F-ratio 

under the randomization model has not been, and appears 

never to become, an easy problem. 

We next examine estimating the unit error terms by 

reusing the experimental units. 
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Section 3.9 

Experimental Procedures when Both Errors are Present 

Section 3.9.1 sketches a two-stage procedure capable 

of handling phenomena in which both experimental unit 

and experimental unit-treatment interaction errors are 

present. Section 3.9.2 discusses other experimental 

procedures allowing control of both errors. All proce

dures reuse experimental units, which is not always pos

sible. These sections present some of the difficulties in 

experiments when such errors are large. See Good [19791. 

3.9.1 A Two-Stage Procedure 

This two-stage procedure permits detection of 

treatment effects when the experimental units may exhibit 

both experimental unit and experimental unit-treatment 

interaction errors. This proc¢dure requires experimental 

units capable of repeatedly receiving, in succession, all 

treatments. 

Stage one is a uniformity trial designed to insure 

repeatability of measurement and to estimate the 

experimental unit errors. No treatments are applied. 

The initial model equation is 

( 3 . 9 . 1 ) 

The term r 1 denotes the replication effect; the subscript 

is the letter "l". The dash (_)in two subscripts reserves 

a place for the treatment subscript which enters at stage 
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two. The model parameters may be defined as the least 

squares "estimators" for some conceptual, but finite, 

population of observations fitted to an appropriate model 

matrix [XI Z]. 

Alternatively, one may explicitly define the 

parameters in terms of averages over the conceptual 

population of observations. We use the averaging version 

of the dot notation. First, adjust for the covariate, 

giving vij_l = sij_l - 13Zij.. Then 

JJ. = V • • • ' the overall mean, 

r1 = V • .. 1 - V • • I the replication effect, . -
b- = vi· - V. • I the block effect, 1 . . 

eij = vij_· - vi. . I the experimental unit error, 

'fli j_l = < vij_l- V . . 1> - (V· . - V . . . ) ' the - lJ_· -
experimental unit-replication interaction. 

As 13 is not known, the interpretation of estimates of the 

other model parameters will incorporate an uncertainty 

from the estimate of 13. Note that 'fl is here interaction 

with replication; there are no treatments in Stage One. 

Stage One ends when the experimental technique gives 

r 1 and 'flij_l near zero values for all repetitions and 

reasonably stable estimates for the experimental unit 

errors, eij· If these conditions cannot be achieved, 

then the treatment effects will be confounded. 
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The Stage Two model equation is 

W· "kl= Ji + b- + e- . + ~Z- . + tk+ 'O.· k + 'O.· "k+ :c:· "kl' lJ l . lJ lJ l" lJ lJ 

Adjust the response for the experimental unit errors and 

covariate slope coefficient estimated in Stage One by 

and obtain, 

(3.9.2) 

The analysis of the actual experiment uses (3.9.2). As 

treatments are administered and possibly measured 

separatly within each block, say a hospital, we retain a 

block term in the model equation. The definitions of the 

model equation parameters in terms of averages over a 

conceptual population are 

y • • • • ' the overall mean, 

Yi··· - Y~ ... , the block effect, 

Y .. k. - Y .... , the treatment effect, 

the block-treatment interaction. 

(Yi j k · - Yi j · · ) - (Yi · k · - Yi · · · ) , the 

the within-block experimental unit

treatment interaction and 

Yijkl - Yijk· , the replication effect 

for experimental unit ij when it receives 

treatment k. 
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Estimates of these defined quantities will incorporate 

uncertainty from the estimates of eij and~; Zij is 

assumed known. 

Alternatively, the model parameters may be defined 

as least squares estimates derived from a conceptual 

population of responses. As Stage One showed the 

replication effect Eijkl to be_ small, we assign it an 

error status ~ith a normal distribution, mean zero, 

variance a-2. Here we combine the randomization model 

with the normally distributed random errors model. 

If the experimental units are homogeneous within 

blocks, responding to each treatment similarly, then nijk 

will be near zero. If the experimental units of each 

block respond to treatments similarly, then ni·k will 

also be near zero. 

Zhou, et al. [19891 provide an actual example of 

experimental unit-treatment interaction error. Subjects 

from two racial groups showed differences in response to 

metabolic clearance of the drug propranolol. Heretofore, 

patients had not been blocked on racial heritage for this 

drug, thus the interaction was within the blocks. In 

(3.9.2), had the blocks been hospitals with patients of 

mixed racial heritage and the treatment been propranolol 

vs a placebo, then the.block-treatment interaction action 

(ni•k) would have been zero, while the experimental unit-

treatment interaction (nijk) would have been non-zero. 
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As indicated by the subscripts, each experimental 

unit needs to be subjected to each treatment r 

(replication) times, a total oft x r measurements per 

experimental unit. This provides .the error degrees of 

freedom needed for the statistical analysis. Such a 

design is applicable only in special cases. Possibly an 

incomplete block design would allow estimation of base 

response effects and a sufficiently broad screening of 

the experimental units for treatment interaction effects. 

3.9.2 Other Experimental Procedures 

The crossover experimental design permits one to 

partially separate the experimental unit-treatment 

interaction error from the measurement error. In this 

design, half of the experimental units are given first 

treatment A and later treatment B, perhaps a control. 

The other half o~ the experimental units receive the two 

treatments in the reverse order, B first, then A. If 

this cycle is repeated several times, those experimental 

units unusually susceptible to one or both treatments 

will repeatedly manifest themselves. With sufficient 

cycles one drives quite low the probability of so many 

repeatedly poor (or superior) performances exhibited 

under only one treatment being due to measurement errors 

alone. In the example of penicillin, repeated adverse 

r~actions to the drug would indicate an experimental 

unit-treatment interaction error, not a measurement 

error. Of course, such experimental designs are not 
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always possible, as in the penicillin example, or in 

cases where changes in uncontrollable variables are too 

great between the cycles, such as growing-season-long 

agriculture experiments, or in those resulting in the 

permanent altering or sacrifice of the experimental unit. 

When the experimental unit is reused in different 

experiments, as are plots at an agricultural experiment 

station or panelists in a series of food taste tests, 

information can be accumulated on the experimental unit 

over several different experiments. Some experimental 

units may show consistent superior yields or preferences 

across a single class of treatments (experimental unit

treatment interaction error) or a wide variety of classes 

of treatments (experimental unit error). Such historical 

data can provide an estimate of the experimental unit 

differences. 

Should the same experimental units be available for 

a replication of the experiment, it may be advantageous 

to select a randomization, s', within the same g-group as 

the randomization, s, used in the original experiment. 

If only experimental unit error is present the two 

estimates of the covariate slope coefficient, ~, should 

be equal. Any difference between the two estimates, 

A 

~sand ~s'' suggests the magnitude of other error types. 

Such considerations are an extension. See Richards [1980]. 

We next illustrate the results of of Chapter III 

with numerical simulations. 
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CHAPTER IV 

NUMERICAL SIMULATIONS 

Section 4.1 

Introduction 

Chapter Four presents and discusses numerical 

simulations which provide examples for several of the 

theorems of Chapter Three. The simulations examine the 

three types of errors, experimental unit error, experi

mental unit-treatment interaction error and normally 

distributed random error. For each type of error, the 

simulations examine four cases: the combinations of (a) 

all treatments zero vs one specific set of nonzero 

treatments and (b) equal (1 to 1) vs one set of unequal 

(1 to 4) within-block error variances. The 1 to 1 cases 

have equal error variances in the two blocks; the 1 to 4 

cases have the variance in the second block four times 

that in the first block. The 1 to 1 and 1 to 4 cases 

have, for each randomization, the same error variance 

when computed over all experimental units. Twelve sets 

of randomizations are examined. 
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Attention focuses on bias in estimation, distri

bution of estimators and anova terms, the closeness of 

the F distribution to the distribution of the calculated 

F-ratios, and the use of a ratio and of the noncentrality 

parameter ~,IP,b,T to weight randomizations. 

The randomization test is discussed, but being a 

simulation, no actual experiment was performed. Thus, no 

randomization is privileged as the one against which to 

assess those not performed. The simulation is a pseudo

randomization test employing an external criterion as 

discussed in Section 3.6.5, (p. 174-178). 

Major conclusions are that when the null hypothesis 

for the adjusted treatments, Ho:p,b, 7 ,,T=ID, is true, its 

mean square does not equal that of the error mean square 

for any of the three error types. The two mean sqtiare 

errors are close for the normally distributed random 

ertor. In Bailey's [1987, p. 712] terminology, none of 

these models is valid, (p. 114). Standard deviations of 

the F-ratios exceed their average by a factor of four for 

the two unit errors and a factor of 20 for normally 

distributed random error. For all three error types, non

equality of within-block error variance greatly reduces 

the means and standard deviations of the F-ratios, but 

has little effect upon means and standard deviations of 

parameter estimates. Only the experimental unit errors 

provide unbiased estimates for the adjusted treatments. 

Only this error type estimated each treatment level with 
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the same standard deviation. All error types provide 

biased estimates for the adjusted covariate slope 

parameter, although the experimental unit-treatment 

interaction error's average estimate is close to ~- Only 

this error's estimates for the mean and block parameters 

are close to unbiased. 

Distributions of estimators derived using the 

experimental unit errors do not have the normal 

distribution, nor do the F-ratios for this error type 

have the usual F distributions. Noneguality of the 

within-block error variances affects the F-ratios for 

this error type. The respective distributions for the 

other two errors are closer to the normal and the F 

distribution and are little affected by nonegual 

within-block erroi variances. 

The weighting suggested by D.R. Cox [1956, p. 1148] 

has but modest effect for this simulation. For this 

single covariate case, his ratio is a linear function of 

the noncentrality parameter for the adjusted covariate. 

Restricting randomization to the g~group with the 

maximum value for the noncentrality parameter of the 

adjusted covariate impxoves the power to detect a nonzero 

~ and, modestly, a nonzero 7 for the experimental 

unit-treatment interaction and normally distributed 

random errors. There is little improvement in the cases 

of experimental unit errors. Averaging model equation 

parameters over this g-group yielded means with less bias 
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and smaller standard deviation than did averaging over 

other g-groups. This holds for all three error types. 

The singular normal distribution and related 

F-distribution should be considered more closely as the 

proper source of the degrees of freedom when computing 

the observed significance levels, especially in the 

experimental unit error cases. 

Subsequent chapter subheadings are the following: 

Section 4.2 Construction of Random Errors 

Section 4.3 Method of Simulation 

Section 4.4 Expectation and Standard Deviation 

of Parameter Estimates and Anova Terms 

Section 4.5 Distribution of Estimators and Anova 

Terms 

Section 4.6 F-Distribution Probability Plots 

Section 4.7 Weighted Selection Probabilities 

Section 4.8 G-groups, Noricentrality Parameters, 

and OSL's 
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Section 4.2 

Construction of Random Errors 

Sections 4.2.1-4.2.3 describe the construction of 

simulated values for three types of errors, experimental 

unit error, experimental unit-treatment interaction error 

and normally distributed error. Section 4.2.4 discusses 

combining error types. Of importance is the method of 

constructing the first two types of error so that 

they are orthogonal to the covariate. 

4.2.1 Construction of the Experimental Unit Errors 

The experimental unit errors are attached to the 

experimental units and are unaltered by the treatment 

assigned to the experimental unit and by whatever value 

the assigned treatment has. Thus, only one set of these 

errors need be constructed. The following sketches 

their construction; computer program meu in Appendix 

F.3 provides the details. 

The method of construction is such that the set of 

experimental unit errors, 

{eiji i=l,2, ... , b, j=l,2, ... ,p} 

(a) sums to zero, (b) has variance equal to 30, (c) in 

vector form is orthogonal to the vector of covariates, 

A 

and (d) gives ~ = ~ in (4.2.2) below. Conditions (a) and 

(b) impose Assumptions 2, ER(eij)=O, (p. 16), and 3, 

VarR(eij)= &2 , (p. 24) on each randomization. Condition 
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(a) satisfies a definition of the experimental unit 

error, efj, of (3.3.2) which sums to zero over the exper

imental units for each block and Assumption 9, (p. 140), 

that the eij also sum to zero. For models with a random 

covariate, condition (c} ensures a zero covariance 

between the errors and the covariates, but not 

necessarily statistical independence. Throughout, we 

consider the covariates to be fixed. 

Construction begins in block i=l with the equation 

( 4 . 2 . 1 ) 

The intercept term,~+ bi+ Tk, does not affect the 

errors, so it is omitted. In effect, all experimental 

units receive the same, kth, treatment. To each point of 

(4.2.1) add a random error, elj· These simulations used 

the SAS function UNIFORM to generate the initial values 

A 

of all eij· Compute the initial , using the usual least 

squares method. The steps in the remainder of this 

paragraph are performed repeatedly until the obtained 

slope i differs from the desired slope of ,=2.0 by less 

than 10-8 radians. This was achieved in fewer than 100 

iterations. Compute the errors as the difference ,z 1 j -

A ,z1 j. Center the errors about zero by subtracting their 

mean. This ensures that they will sum to zero, (a) 

above. Center the vector of Y1 j values about zero. Since 
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;.. - -
both ~ and ~ pass through the same point, (Y, Z), here 

(0,0), they may be treated as angles, measured in radians 

in a counter-clockwise man·ner, from the 1 ine Z=O through 

the origin. Compute the usual least squares estimator of 

~ using the model 

( 4 . 2 . 2 ) 

Subtract the arc tangent (in radians) of ~ from that of 

~, tan- 1 (~) - tan- 1 (;). Rotate the set of points 

(Y1 j,Zlj) by a number of radians equal to this difference. 

Rotation is clockwise for positive differences and 

counterclockwise for negative differences. Retain the 

rotated Ylj values, but replace the rotated covariates by 

their original values, Zlj· The least squares estimate 

of the slope of this hybrid set of points is between the 

original estimate and the desired value (2.0). Return to 

recompute the errors. 

Once a slope sufficiently close to~ has been 

obtained, (d) above, multiply the errors by a constant to 

obtain the desired equal within-block variance, (b) above. 

Repeat the iteration for block 2. Notice that these 

errors are the residuals of a least squares estimation of 

a regression parameter. Thus, they are orthogonal to the 

covariates, (c) above. When considered as residuals from 

a model whose error term has the multivariate normal 

distribution, these residuals have the singular normal 

distribution discussed below (2.3.3) (p. 17). 



Chapter 4.2 Error Construction 246 

Multiplication by the appropriate constants, one per 

block, provides a second set of errors having unequal 

within-block variances. The chosen ratio is 1:4; the 

variance of the errors of block two is four times that of 

block one. For all three types of errors the unequal 

within-block· variances are 12 and 48. The large ratio 

makes the effects of unequal within-block variances more 

visible in graphic displays. The variance over all 

blocks is 30 for all sets of errors. Defining the 

variance to have the number of observations as its denom

nator eases the construction of such unequal within-block 

variance errors. 

Table 4.2.1 displays the experimental unit errors. 

The magnitude of these errors is of the order of the 

treatment effects, 7k= {-6.5, -3.5, 2.5 7.5}. The goal 

is to present the simulation with "loud noise." The 

summary statistics are .based upon more decimals than are 

shown in the table. Note that all means are zero, 

satisfying the first equality of Assumption 9, '(p. 140). 

Also, within-block variances are 30, or 12 and. 48, 

while both over-all variances are 30. 
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TABLE 4.2.1 

EXPERIMENTAL UNIT ERRORS 

Block 
( i ) 

1 
1 
1 
1 

Within-Block 
Within-Block 

2 
2 
2 
2 

Within-Block 
Within-Block 

All Units Mean 

Plot 
( j ) 

1 
2 
3 
4 

Mean 
Variance 

1 
2 
3 
4 

Mean 
Variance 

All Units Variance 

Experimental Unit Errors 
Within-Block Variances: 

Equal Not Equal 

5.78 3.66 
-7.44 -4.70 
4.70 2.97 

-3.04 -1.92 
0.00 0.00 

30.00 12.00 

-5.99 -7.57 
8.92 11. 29 

-1. 81 -2.29 
-1.12 -1. 42 

0.00 0.00 
30.00 48.00 
0.00 0.00 

30.00 30.00 

Graph 4.2.1 plots the errors for block 1. ·The letters 

on the line mark the values of Y1 j of (4.2~1), without 

error. The "A" represents j=l, "B" represents j=2, and 

so on. Above or below the line are the Ylj's of (4.2.2) 

with error for the equal (E) and not equal (N) within

block variance cases. The slcipes of the least squares 

fit of the E's and of the N's each equal 2.0, the same 

slope as the line through the letters A through D. The 

variance of the E's is 30, while that of the N's is, for 

this block, only 12. Thus, the N's are closer to the 

line than are the E's. These E's and N's become the 
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eij's of (4.2.2), (p. 245) and the elements of the 

identical columns of~, (3.5.1), (p. 156). Section 

4.6.4, (p. 315), discusses their variance-covariance 

matrix should the errors be considered a random vector. 
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Construction of Experimental Unit Errors - Block One 

Graph 4.2~1 

4.2.2 Construction of the Experimental Unit-Treatment 

Interaction Errors 

These experimental unit errors are altered by the 

treatment assigned to the experimental unit, but not by 

whatever value the assigned treatment has. Thus, one set 

of these errors needs to be constructed for each level of 

the treatment factor. With two exceptions, the process 
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is as described in Section 4.2.1. The conditions (a)-(d)· 

are met for each treatment. Here, condition (a) 

satisfies the identity definitions of the experimental 

unit-treatment interaction err oz:, ~Jk, of (3. 3. 5), 

(p.27), and 'Tl.~jk (3.3.7), (p. 128), both of which sum 

to zero across the experimental units for each treatment. 

Condition (a) also satisfies the second equality of 

Assumption 9, (p. 140). That is, the 'Tl.ijk sum to zero 

over the experimental units (j) for each treatment (k). 

Summation to zero over the treatments for each unit was 

not achieved as discussed below. The computer program 

meuxti in Appendix F.4 provides the details. 

The first exception is to repeat, within each block, 

the pz:ocess of Section 4.2.1 for all except the last 

treatment level. The errors for the last treatment level 

are the negative of the sum of the errors for the first 

t-1 treatment levels. All are then multiplied by a 

constant to obtain the desired variance. This ensured 

that all sums over experimental units, one per treatment 

level, equal zero and that all sums over treatments, one 

per experimental unit, are close to zero, with the two 

exceptions shown in Table 4.2.2 below. The sum over both 

experimental units and treatments is zero. We did not 

find a method to provide zero sums and equal variances 

both over all experimental units and over all treatments. 
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Table 4.2.2 displays the experimental unit

interaction errors for the equal within-block variance 

case. Note that experimental unit l of block 1 lowers 

its response by 2.1 units when treatment 1 is applied, 

but increases its response by 5.24 units when treatment 

4, the far right of row one, is applied. This is the 

interaction effect. The errors are of the magnitude of 

the treatment effects, again with the goal of presenting 

the simulation with "loud noise." For each treatment, 

within each block and over all experimental units, all 

means equal zero and all variances equal 30, all based 

upon more decimals than are shown in the table. 

Block 
( i ) 

1 
1 
1 
1 

2 
2 
2 
2 

TABLE 4.2.2 

EXPERIMENTAL UNIT-TREATMENT 
INTERACTION ERRORS 

Plot 
( j ) 

1 
2 
3 
4 

1 
2 
3 
4 

k=l 

-2.10 
4.27 

-7.98 
5.81 

0.99 
1. 22 

-8.69 
6.48 

Treatments 
k=2 k=3 

-3.44 -1.20 
1. 71 -0.86 
8.07 8.64 

-6.34 -6.58 

-4.18 6.21 
7.68 -8.52 

-6.08 -0.59 
2.58 2.90 

k=4 

5.24 
-3.98 
-6.79 

5.53 

-1. 68 
-0.21 
8.54 

-6.65 
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·-
Unlike the experimental unit err~rs, no column of 

errors will appear in any one randomization. Hence, the 

mean and variance imposed here will not carry over to 

those errors appearing in any one randomization. Within 

each randomization, the mean of the ~ijk will not equal 

zero, nor will the variance equal 30. The variance term 

of the noncentrality parameters will differ for each 

randomization. The imposition of a variance of 30 on the 

columns of Table 4.2.2 is an attempt to maintain a 

similarity of the magnitude of the experimental unit and 

experimental unit-treatment interaction errors. 

Alternatively, one could standardize within each 

randomization those errors which did appear. This would 

force each randomization to have a different set of 

experimental unit-treatment interaction errors, which 

violates their definition, (p. 127). On the other hand 

it would impose Assumptions 2, ER(error)=O, (p. 16), 

and 3, VarR(error)= ~2 , (p. 24), on each randomization. 

Either method gives, for this method of construction, 

ER(errors)=O and VarR(errors)=30 over all randomizations. 

Table 4.2.3 displays the means and variances for 

each experimental unit as summed across all treatments. 

Ideally, each would have zero mean. Across all (16) 

experimental unit-treatment interaction errors of any one 

block, the mean is zero and the variance is 30. 
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TABLE 4.2.3 

EXPERIMENTAL UNIT-TREATMENT 
INTERACTION ERRORS 

SUMMED ACROSS TREATMENTS 

Block Plot Mean Variance 
( i ) ( j ) 

1 1 -1. 50 11.15 
1 2 1.14 9.36 
1 3 1.94 62.11 
1 4 -1. 58 26.77 

2 1 1. 34 14.86 
2 2 0.17 33.28 
2 3 -6.82 43.52 
2 4 5.31 23.56 

For each treatment within each block there is a 

graph corresponding to Graph 4.2.1. Such graphs are 

similar to Graph 4.2.1 and hence are omitted. 

For each treatment, a second set of experimental 

unit-treatment interaction errors was constructed with 

unequal block variances (12 and 48) as computed over all 

experimental units. There errors are multiples of the 

ones shown in Table 4.2.2 and are omitted. 

4.2.3 Construction of the Normally Distributed Random 

Errors 

The normally distributed random errors are attached 

to the experimental units and are unaffected by the 

treatment assigned to the experimental unit and by the 
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value of such treatment. If these errors were identi

cal for each randomization, they would merely add to the 

experimental unit errors. These simulations use a 

different set of normally distributed random errors for 

each randomization. The SAS function RANNOR generates 

the random errors which are then standardized to mean 

zero and variance 30 by the SAS procedure Standardize. 

The standardization is done anew for each randomization. 

As with the other errors, a second set with unequal block 

variances (12 and 48) was constructed. Step Two of the 

computer program cterms in Appendix F.5, provides the 

details. The program computes additional, unused, error 

sets. 

4.2.4 Combination of Errors 

The sets of errors may be added together. The 

overall mean will remain zero while the variance will 

increase. This increase. in variance makes it difficult 

to compare simulations using a single type of error. 

Standardization of the variances is possible, but it 

destroys the definitions of the experimental unit and 

experimental unit-treatment interaction errors. Such 

combined errors are an extension. 

We next describe how these errors are combined to 

form the observed responses for all randomizations. 
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Section 4.3 

Method of Simulation 

Section 4.3.1 describes the generation of twelve 

sets of all possible randomizations. Section 4.3.2 

discusses the generation of analysis of variance terms 

and model equation estimates. 

4.3.1 Generation of Randomizations and Attachment of 

Treatments and Error 

All simulations use two blocks, each with four 

experimental units, one for each of the four levels of 

the single factor, and one covariate. Since there is 

but one factor, each level is also a treatment. As per 

{3.2.6), {p. 109), there are N{~)= {t!)b= {4!) 2= 576 

possible randomizations, each with bt= {2)(4) = 8 

observations, for a total of 4,608 observations. The 

values for the mean, blocks, covariate and, when present, 

the experimental unit errors, are constant for each 

randomization. With each new randomization, at least two 

of the eight experimental unit-treatment interaction 

errors are replaced by others from among the 16. All 

eight normally distributed random errors differ with each 

randomization. When the treatments are not zero, at 

least two experimental units receive different treatments 

as one changes from one randomization to another. 
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In the computer data file, each of the 4,608 obser

vations contains the 11 variables: identification numbers 

for (1) randomizations, (2) block i, and (3) experimen

tal unit j; (4) a value equal to the sum of the effects 

for the mean, block and covariate; (5). a value adding the 

effect of the assigned treatment; and (6-11) values for 

the three types of errors, experimental unit, experimental 

unit-treatment interaction and normally distributed 

random error, each in the two versions (a) equal within

block variances and (b) unequal within-block variances. 

From these, one computes twelve observed Yijk values, one 

for each combination of the six error terms and zero or 

nonzero treatment effects. Thus, twelve simulated Yijk's 

appear in each of the 4,608 observations. These twelve 

Yijk's are the observations for the twelve simulations 

discussed in Section 4.1, (p. 239). The SAS program 

cterms, of Appendix F.5, provides the details. 

Values of the model equation parameters are ~=10, 

b 1=-1.5, b 2=1.5, T1=-6.5, T2=-3.5, T3=2.5, T4=7.5 (or all 

Tk=O.O), and ,=2.0. The covariate values are 

Z'= (1, 2, 11, 14, 5, 9, 16, 19), 

in the order Zij' (i=l,2; (j=l,2,3,4)). 

4.3.2 Generation of Analysis of Variance Terms 

The following process is applied to each of the 

twelve sets of randomizations. The SAS procedure GLM 

reads the eight observations for one randomization, 
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outputting the normally printed analysis of variance 

table to a temporary computer file. This is repeated for 

the remaining 575 randomizations. A SAS program then 

reads the 576 analysis of variance tables, extracting 

numbers of interest. Among them are (a) the mean square 

error for the treatments adjusted for the mean, blocks, 

and covariate, (b) the mean square error for the 

covariate adjusted for the mean, blocks, and treatments, 

(c) the residual mean square error, (d) .the calculated 

F-ratios and observed significance levels (OSL's) or 

p-values for (a) and (b), and (e) the estimated values of 

the adjusted k treatment effects and of the adjusted 

covariate slope coefficient. These estimates use the 

coding form of the X matrix,, (p. 74). A subsequent 

step adds the estimates provided by the usual constraints 

A A 

of Assumption 5, (p.20), 'Tk·J1 b 'T ~ and 13 b ~· The . , , , ,r- J1, ,'T,r-

conversion is by (2.8.14) of Theorem 2.8.1, (p. 81). 

These are the estimates herein discussed. The SAS 

program glm of Appendix F.6 is typical; the other eleven 

differ in the observed Yijk offered, via macros, to the 

GLM procedure as the dependent variable, and a minor 

change for nonzero 'T. 

The following sections discuss these anova terms 

and estimators for the twelve cases, beginning with 

their means and standard deviations. 
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Section 4.4 

Expectation and Standard Deviation 

of Parameter Estimates and Anova Terms 

The first three subsections examine randomizations 

with equal within-block error variances. The first, 

4.4.1, presents expectations of estimates of the model 

equation parameters. Section 4.4.2 presents the associ

ated standard deviations. Section 4.4.3 presents means 

and standard deviations for terms from the analysis of 

variance tables. The final section, 4.4.4, examines 

randomizations with unequal within-block error variances. 

A A ' 

We use the shorter T and~ for the estimated estimators. 

Major findings for this simulation are as follows: 

1. For the randomization expectation, the experimental 

unit errors provide unbiased estimates for the treatment 

effects as adjusted for the mean, blocks, and covariate, 

but not for the adjtisted covariate. The other two error 

types provide nearly unbiased estimates for the adjusted 

covariate, but not for the adjusted treatments effects. 

The expectation is over all randomizations, ER(·). 

2. Only the experimental unit errors provide equal 

randomization variance for the adjusted treatment effects. 

3. The randomization average mean square for the 

adjusted treatments·under the null hypothesis (TIP,b,~=~) 

does not equal the average for the residual mean square. 
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Foi the cases in which the errors have a variance ~2=30 

for all randomizations (experimental unit and normally 

distributed random errors), the average residual mean 

square does not equal 30. 

4. Randomization means and standard deviations for the 

F ratios are smaller when the within-block error 

variances are unequal than when they are equal. The 

means and standard deviations for the mean squares and 

model equation parameter estimates are similar in the 

equal and unequal within-bl~ck error cases. 

4.4.1 Expectation of Parameter Estimates - Equal 

Block-wise Error Variances 

Table 4.4.1 displays each model equation parameter 

value and its expectation over all randomizations. Two 

values are shown for the treatments. To the left of the 

s.lash is the value when the 'Tk equal zero; to the right 

is the value when the 'Tk equal the nonzero values shown 

in the column titled "Value". The values of the treat

ment effects do not affect the value of the estimates of 

other parameters. The selection probability is 

· p(s)=l/576 for all randomizations s. For the cases of 

experimental unit and normally distributed random errors, 

the error variance is 30 for each block of each 

randomization. For the case of experimental unit

treatment interaction error, the error variance differs 

in each block and each randomization. 
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TABLE 4.4.1 

RANDOMIZATION EXPECTED VALUE OF.PARAMETER ESTIMATES 
EQUAL WITl:IIN-BLOCK ERROR VARIANCES 

Three Types of Error: 
Parameter: Experimental 
Name Value Unit Unit-Treat. 

Interaction 

JJ. 10.0 6.05 9.94 

b1 -1. 5 -.42 -1. 48 

b2 1.5 .42 1. 48 

'Tl 0/-6.5 0/-6.5 -.68/-7.18 

'T2 0/-3.5 0/-3.5 .88/-2.62 

1'3 0/ 2.5 0/ 2.5 -.46/ 2.04 

'T 4 0/ 7.5 0/ 7.5 .26/ 7.76 , 2.0 2.41 2.01 

Normally 
Distributed 

9.36 

-1.33 

1.33 

.28/-6.22 

.23/-3.27 

.01/ 2.51 

-.52/ 6.98 

2.07 

For the experimental unit errors, the estimator for 

the adjusted treatments is unbiased, with respect to the 

randomization distribution, both when the treatments are 

zero and when they take the above nonzero values. Esti

mates for all other parameters, JJ., band ,, are biased. 

Relative to the other two types of errors, the biases are 

,.. 
large. The bias of .41 for , equals the randomization 
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expectation of CfRs,z'fRs,z>-IRg,z'CeJ as shown in (3.7.22a) 

of Theorem 3.7.9(4), (p. 202). In this equation, the 

vector e is constant for all randomizations; only the 

fRs,z change. The biases of .01 and .07 for the other two 

types of error also follow (3.7.22a). 

With experimental unit-treatment interaction error, 

the mean estimate for the treatment effects suffers a 

shift, constant for each of treatment k's two values. 

For example, for 71 , the mean of the estimates is too 

small by .68 when 71 =0 and when 71 =-6.S. Similar shifts 

occur for the other 7k. The cause of this shift is 

unknown, but is not believed to be a consequence of the 

location of the errors relative to the line (above or 

below) in Graph 4.4.1, (p. 248). The two reasons for 

this belief are (a) a similar shift occurs with 

experimental unit-treatment interaction errors, which 

differ with each randomization and (b) the shift does not 

occur with experimental unit error. The bias for other 

model equation parameters is quite small, less than .07. 

Tests suggest that even such a small value well exceeds 

the accumulated computer round-off error. 

With normally distributed random error, the mean 

estimate for the treatment effects again suffers a shift, 

constant for each of treatment k's two values. For 

example, for 71 , the mean is too large by .28 when 71=0 

and when 71 =-6. 5. The randomization bi.as for other model 
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equation parameters is small, smaller than with experi

mental unit error, but larger than with experimental 

unit-treatment interaction error. 

Some yet unanswered questions are the following: 

1. Why the normally distributed errors yielded biased 

estimates, 

2. Why one error type yielded unbiased estimates for 

the treatments but not the other model equation 

parameters, while the other error types yielded biased 

estimates for the treatments, but nearly unbiased 

estimates for other parameters and 

3. The origin of the constant shift observed in each 

treatment mean estimates using experimental unit

treatment interaction and normally distributed random 

error. 

4.4.2 Standard Deviation of Parameter Estimates - Equal 

Within-Block Error Variances 

Table 4.4.2 displays the standard deviation of the 

parameter estimates. The standard deviations are 

unaffected by the value of the treatment effects, hence 
-

only one value is shown for each pair of 7k. 

In all cases, the standard deviations are large, 

often larger than the value of the parameter being 

estimated. Such large values suggest that the magnitude 

of the simulation errors is excessive relative to the 

magnitude of the parameter values. It is known that 
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under the normally distributed random errors model, a 

covariate destroys the otherwise spherical variance of 

the estimates of the adjusted treatments. Thus, the 

unequal treatment standard deviations in the normal error 

column are to be expected. Interestingly, spherical, 

equal variance, estimates are provided by the 

experimental unit errors. We suggest that this is due to 

~Zij+eij' for a fixed experimental unit ij, being 

constant for all randomizations, while ~Zij+nijk and 

~Zij+nij differ with each randomization. All three error 

types preserve the spherical variance of the estimates of 

the two levels of the blocking variable. This is 

expected, as the estimates for the bi are not adjusted 

for the covariate, as are the estimates for the Tk. 
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TABLE 4.4.2 

RANDOMIZATION STANDARD DEVIATION OF PARAMETER ESTIMATES 
EQUAL WITHIN-BLOCK ERROR VARIANCES 

Parameter: 
Name Value 

J.L 10.0 

b1 -1. 5 

b2 1. 5 

'Tl 0/-6.5 

'T2 0/-3.5 

'T3 0/ 2.5 

'T 4 0/ 7.5 

f3 2.0 

Three Types of Error 
Experimental: 
Unit Unit-Treat. 

Interaction 

18.6 7.51 

5.07 3.19 

ditto ditto 

11.84 5.18 

ditto 5.23 

ditto 5.01 

ditto 4.83 

1.93 .79 

Normally 
Distributed 

10.86 

2.96 

ditto 

7.55 

7.21 

6.93 

6.90 

1.13 

4,4.3- Expectation and standard Deviation of ANOVA Terms-

Equal Within-Block Error variances 

Table 4.4.3 displays the expectation and standard 

deviation of several ANOVA terms for each of the three 

types of errors. Shown are the cases when all treatment 

effects are (a) zero (-r=ID) and (b) when they are those of 

this simulation as listed in Table 4.4.1 (-r~ID). All 

three types of errors have a variance of 30 within each 

block and randomization. 
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TABLE 4.4.3 

RANDOMIZATION EXPECTATION AND STANDARD DEVIATION 
OF ANOVA TERMS 

EQUAL WITHIN-BLOCK ERROR VARIANCE 

ANOVA Term 
Expectation: 

MS Residual 
MS 7=0 IJL, b, 11 
MS 7;;i![) IJ1, b, 11 
MS p;;i!OIJL,b,7 

F 7=0 IJL, b, 11 
F 7j,1![) IJL, b, p 
F p;;i!O IJL, b, 7 

Three Types of Error 
Experimental: 
Unit Unit-Treat. 

Interaction 

45.01 26.71 
49.99 24.96 

144.99 91.17 
527.5 525.0 

38.93 7.23 
70.41 24.86 

136.77 107.79 

Standard Deviation: 

MS Residual 39.39 22.10 
MS 7=01JL,b, p 26.26 18.20 
MS 7j,1![) IJL, b, 11 71.29 52.19 
MS p;;i!O IJL,b, 7 336.8 379.4 

F 7=[) IJL, b, is 150.6 41.1 
F 7;;i![)IJ1,b, p 320.0 158.0 
F !S;;i!O IJL, b, 7 459.8 479.0 

Normally 
Distributed 

40.03 
39.23 

100.56 
561.1 

52.86 
112.27 
248.83 

32.10 
22.20 
65.01 

400.5 

1081.4 
2292.3 
4172.6 

Under the normally distributed random errors model 

the residual mean square and, under the null hypothesis, 

the mean square for 7 =OIJL,b,7, both divided by ~2, have 

the. x2 di.str ibution with mean equal to 1 and variance 

equal to· 2. (See Appendix A.2, (p. 382) or Searle 

(19711, Corollaries 2.2-2.4, p. 58.) For ~2=30 and the 

randomization expectation, the mean values are 

40. 03/30. O= 1. 33 and 3.9. 23/30. O= 1. 31 for normally 

distributed error. Neither equals 1. Nor are the 
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randomization variances what one would expect; 

(32.10) 2/(30) 2= 1030.41/900= 1.14 and (22.20)2/(30)2= 

492.84/900= .44; neither equals 2. For these two mean 

squares, the randomization mean and variance are both 

smaller than the theoretical mean and variance as derived 

under the normally distributed random errors model. 

Section 4.6.4, (p. 315), discusses a possible reason for 

this. 

Under the normally distributed random errors model, 

the mean, variance, and higher moments of the mean squares 

are defined when the null hypothesis does not hold. All 

involve a constant noncentrality parameter. As shown in 

Theorems 3.7.10 and 3.7.11 (p. 211 and 213), under the 

randomization model, the noncentrality parameters change 

with the randomization. The proper comparison of moments 

and variances obtained under simulation with those 

derived from the normal distribution model involving a 

noncentrality parameter is not clear. Possibly one could 

compute the normally distributed random.errors model 

moments and variance for each randomization using its 

particular noncentrality parameter, average them using 

p(s) and compare the result with simulation values such 

as those above. Such considerations are an extension. 

Comparison with the mean of the F-distribution is 

not possible because the mean is undefined when, as is 

the case here, the denominator degrees of freedom is less 

than or equal to 2. (See Appendix A.3, (p. 383).) 
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When the errors represent experimental unit error or 

experimental unit-treatment interaction error, the 

randomization expectations of the residual and null 

hypothesis mean squares are close, 45.01 - 49.99 and 

26.71 - 24.96, but clearly not equal. For these two 

types of errors, and zero treatment effects, the mean 

square for the adjusted treatments is a (randomization) 

biased estimator for the residual mean square error, at 

least for this simulation. For normally distributed 

random error, the expectations are nearly equal, 40.03 vs 

39.23; the difference exceeds computer roundoff error. 

The randomization expected value of the residual 

mean square does not equal the variance of the errors, 

30, for any of the three error types. In particular, 

they do not equal 30 for the experimental unit and 

normally distributed random errors, both of which are 

standardized to have ~2=30 in each randomization. See 

Sections 4.2.1 and 4.2.3, (p. 243 and 252); in the termi

nology of Bailey, (p.114), these processes are not valid. 

When the treatments are nonzero, the -randomization 

expectation of the mean square for the adjusted treat

ments is at least 2.5 that when the treatments are zero. 

Likewise, the randomization expectation of the F-ratios 

for nonzero treatments is about twice that for zero 

treatments. This suggests that, on average, the F-ratio 

is distinguishing between the null and alternative 

hypotheses, as discussed in Section 3.6.7, (p. 178). 
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The large standard deviation for all F-ratios 

indicates the instability of the F-ratios from one rando

mization to another. The standard deviations exceed the 

randomization means for the F-ratios by a factor of 3 to 

4, even when the treatments are zero. This suggests that 

it is important to condition the conclusions of an 

analysis of covariance upon the randomization actually 

used to conduct the experiment. 
' 

4.4.4 Expectation and Standard Deviation of Anova Terms-

Unequal Within-Block Error Variances 

The cases for unequal within-block error variances 

use a ratio of 1 to 4 for the variance of block one 

(crt=i=l2) to that of block two (crt= 2 =48), with a variance 

of 30 overall. The denominator for the variance is the 

number of observations, not the number of observations 

minus one. These values of the within-block error 

variances hold in each randomization for experimental 

unit error and normally distributed random error, but 

only approximately for experimental unit-treatment 

interaction error. For the last error type see the 

discussion below Table 4.2.2, (p. 250). 
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Unequal within-block variances have little effect on 

the mean or standard deviation of the estimated parameters 

and mean squares. Thus, there is no table for these cases. 

However, the mean and standard deviation of the F-ratio 

are affected. Table 4.4.4 displays values for these 

terms when the within-block error variances are unequal. 

TABLE 4.4.4 

RANDOMIZATION MEAN AND STANDARD DEVIATION 
OF ANOVA TERMS 

UNEQUAL WITHIN-BLOCK ERROR VARIANCES 

Anova Term 

Expectation: 

F -r=[Jl.,1.1,b,~ 
F -r?![J I J1, b, ~ 
F ~?!O IJ1,b,-r 

Three Types of Error 
Experimental: 
Unit Unit-Treat. 

Interaction 

3.39 4.25 
6.48 18.13 

20.84 96.87 

Standard Deviation: 

F -r=[JIJ1,b,~ 4.27 14.23 
F -r?![JIJ1,b, ~ 8.68 63.07 
F ~?!O IJ1, b, -r 20.67 381.69 

Normally 
Distributed 

5.88 
14.84 
62.42 

34.40 
106.52 
323.71 

Both means and standard deviations of the F-ratios 

are smaller than for the equal within-block error 

variance cases. Yet, the means of the numerators and 

denominators of this ratio are similar to those for the 

equal within-block error variances cases, shown in Table 

4.4.3, (p. 264). The implication is that less frequently 
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unequal than in the equal within-block error cases does a 

large numerator appear over a small denominator in the 

F-ratio. 

Note that both means and standard deviations are 

smaller for the experimental unit error case than for the 

other two types of errors. 

We now turn from the moments of these terms to 

their full distributions. 
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Section 4.5 

Distribution of Estimates and Anova Terms 

Section 4.5 discusses the distribution of various 

parameter estimates and analysis of variance terms as 

provided by this simulation. With one observation per 

randomization, these are discrete distributions and are 

presented in histogram form. Histograms for the equal 

and unequal within-block error variance cases are 

similar; only the former are shown. Section 4.5.1 

"' displays the distribution of Ti Section 4.5.2 presents 

"' that of ~- Section 4.5.3 discusses the distribution of 

the OSL's associated with the F-ratio for T = O and T ~ O 

for the experimental unit errors. Section 4.5.4 covers 

the experimental unit-treatment interaction errors. 

Section 4.5.5 describes the OSL's distribution for i===O 

for both unit errors. 

Major findings for experimental unit errors follow: 

" " 1. The distributions of T and I=' are non-normal. 

2 • For H 0 • JJ. b i==·T=O, the actual , , , Type I error rate is 

larger than oc when oc is derived from the central F 

distribution. This suggests the F-distribution does not 

well approximate the randomization distribution of the 

F-ratios for these errors, at least in the upper tail. 

3. For H0 .,. b ~T~O and oc=.05, the Type II error rate is 
r .,.., r r 

high. This suggests that the magnitude of the errors has 

overwhelmed the model equation parameters. 
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For experimental unit-treatment interaction and 

normally distributed random errors major, findings are, 

" " 1. The distributions of~ and 13 are near normal. 

2. For H 0 • 1.1 b ,=,-r=[I, the actual Type I error rate is 
1.r1 I I" 

close to~ as derived from the F distribution. This 

suggests that the F-distribution is a close approximation 

to the randomization distribution of the F-ratios for 

these two error types, at least in the upper tail. 

3. For H0 ;JJ.,b,~-r~[I and H0 ;JJ.,b,-r~~O with ~=.05, the Type 

II error rates are ~igh, as with experimental unit errors 

(3 above). 

Several graphs illustrate parts of Theorem 3.7.9, 

(p. 202); part (3) is illustrated by Graphs 4.5.9 and 

4.5.10, (p. 289). Part (4) is illustrated by Graphs 

4.5.3 and 4.5.4, (p. 277). Part (5) is illustrated by 

Graph 4.5.5, (p. 280). 

" 4.5.1 Distribution of -r1 -71 

The distributions for the four treatment effects, 

the -rk, are each similar; only the diitribution of ; 1 is 

" discussed. Further, the distribution of -rk-7k is identi-

cal, axis values excepted, lor -rk=O or -rk~O. Hence, the 

only distributions presented are those of the differences 

" -r1 --r1 • These discrete distributions are shown in histo-

gram form for the cases of experimental unit error (Graph 

4.5.1) and of experimental unit-treatment interaction 
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error (Graph 4.5.2). The latter histogram is similar to 

the one for normally distributed random error, which is 

omitted. 

Graph 4.5.1 displays the distribution of Tk-Tk for 

treatment k=l, with the values of T1 ={0, -6.5}. 

adjacent to the 8 on the vertical, lefthand, axis 

Points 

represent estimates of Tl in error by a deficit of 

between 4 and 12 units, that is, estimates from -4 to -12 

when T1=o or estimates from -10.5 to -18.5 when T 1 =-6.5. 

The Randolltzatton Model vtth Blocks and a Covariate 
Data set ta easc,111.gH,,002 

s-err tr1heta 
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Graph 4.5.1 

The Distribution of T1 - Tl for 
Experimental Unit Error 

Freq 

0 

6 

0 

0 

6 

0 

0 

0 ... 
270 

162 

• 
0 

6 

0 

0 

0 

6 

0 

0 

Cunt. Cut1. 
Fr•q Percant Percent 

0 0.00 0.00 

6 1.(M 1.(M 

6 o.oo 1.<M 

6 o.oo t.(M 

12 t.(M 2.08 

12 o.oo 2.08 

12 0.00 2.08 

t2 o.oo 2.08 

126 19, 79 21.18 

396 46,88 88.75 ... 28. 13 96.88 

[\f.4 t .04 97 .a, 

564 0.00 97 .92 

570 1.<M 98.96 

570 0.00 98.96 

570 0.00 98.86 

570 0.00 98.96 

576 1.04 100.00 

576 0.00 100.00 

576 0.00 100.00 
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As hinted at by the unbiasedness of 7 1 , (Table 

4.4.1, p. 259), this distribution is centered at zero. 

Each group of six points in the far upper and lower 

tails represents 1.04 percent of the distribution; they 

are five standard deviation units (11.84) from the mean. 

Each of the two groups of six points in the near upper 

and lower tails are another 1.04 percent of the distribu

tion. They are some 3 standard deviation units from the 

mean. This distribution has more probability in its far 

tails than one would find in the normal distribution; it 

is tail heavy relative to the normal distribution. These 

twenty-four randomizations yielded highly erroneous 

estimates of 7, 

From two to three standard deviations, (23.6 to 

35.4) the density is zero, less than a normal distribu

tion. Some 95% of these observations are within one 

standard deviation of the mean, while for a normal 

distribution one would find only 84% of the observations 

in this region. Relative to the normal distribution, 

this distribution is overly peaked, and tail heavy with 

sizeable voids in the shoulders. It is reasonably 

symmetric and unimodal about zero. 

We believe the repetition of six closely related 

values is connected to repetition of certain values 

observed withing-groups of randomizations. These 

repetitions are due to patterns in the projector of Xs· 

See also Graph 4.7.1, (p. 331). The extreme values of 
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both G:raphs 4.5.1 and 4.5.3 (below) occu:r in the g-group 

which assigns to each treatment the covariate with the 

same rank in each block. For example, t:reatment one is 

assigned to the smallest cova:riate in each block. 

Igno:ring the blocking, this g:roup of :randomizations is 

the least balanced on the covariate, as discussed in 

Section 4.7.l, (p. 321). 

... 
Graph 4.5.2 shows the distribution of ~1 -T1 for the 

case of experimental unit-treatment interaction er:ror. 

The case of normally dist:ributed :random er:ror is similar, 

and is omitted. 

s .... ,.,. trth•t• 
MtelpOlnt 

•38 

-:M 

-30 

-26 

-22 

-18 

.,. 
-10 

.. 9 •••••••••••••••••• 

The Randolllzatton Model with Blocks and a Covariate 
Data ••t te eaeg111.gllllOCM 

CUIII, 
Freq FreQ 
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0 

3 5 

7 

9 16 

52 68 

-2 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 186 254 

2 ····················~-·e.•4!••••········································· 200 45. 
6 ••••••••••••••••••••••••••••••• 90 544 

10 ••••••• 21 565 

18 

22 

2& 

30 

34 

38 
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2 • s a ro " ~ 16 16 30 " ~ a a 30 " :w 

Percentaga 

Graph 4.5.2 

6 571 

2 513 

t !SU 

0 974 

2 576 

0 576 

0 576 

c ..... 
Percent Per~t 

0.00 o.oo 
o.oo 0.00 

o.n o.n 
o.oo o. 11 

o. 11 0.'5 

0.92 0.87 

0.35 t .22 

1.58 2.78 

9.03 tt .It 

32.29 44. 10 

34. 72 78.82 

15.63 94.44 

3.65 98.09 

1.04 99. 13 

0.35 99.48 

o. 17 99.69 

0.00 99.69 

0.35 100.00 

0.00 100.00 

o.oo 100.00 

The Distribution of T1 - Tl fo~ 
Expe:rimental Unit-T:reatment Inte:raction Er:ro:r 
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This distribution is also more peaked than the 

normal distribution. Some 67 percent of the observations 

are between -4 and +4 or (+-).77 standard deviation 

units; a normal distribution would have only 56 percent 

of its observations in this region. However, it is not 

tail heavy. Beyond -12 and +12 or (+-)2.32 standard 

deviation units, fall but 1.7 percent of the observa

tions. This is close to the 2 percent found in this 

region under the normal distribution curve. 

Experimental unit-treatment interaction error 

A 

provides a distribution of 71 closer to the normal 

distribution than does experimental unit error. With 

experimental unit error, estimates of 7k are either 

better, closer to 7k, or much worse, farther from 7k, 

than one would expect had the error been normally 

distributed. 

4.5.2 Distribution of.@ - @ 

As per Theorem 3.7.9(4), (p. 202), when the only 

error is experimental unit error, each estimate of p 

repeats itself (t!) = 4! = 24 times. Graph 4.5.3 

displays these clusters of estimates, each subtracted 

from p=2.0. 

As expected from Table 4.4.i, Graph 4.5.3 is centered 

at 2.0 - 2.41 = -.41. The one outlying cluster is 4.2 

percent of the observations and represents an estimate of 

A 

p=ll.3, an error of some magnitude (p=2.0). Randomiza-
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tions in this cluster, or g-group, should be avoided. It 

is the group which assigns each treatment to the covari

ate with the same rank in each block. It is the least 

balanced of all g-groups. The value of the noncentrality 

parameter A,IF,b,, associated with this g-group is 10, 

the minimum of all 24 values of A,IF,b,T' The maximum 

value of this noncentrality parameter is 990. Theorem 

3.7.15, (p. 219), suggests selecting the randomization 

used to condu~t the experiment from among those randomiza

tions with the maximum value of APIF,b,T; doing so would 

avoid estimates in the outlying cluster of Graph 4.5.3. 

An alternate method of creating experimental unit 

errors yielded a set of errors with characteristics of 

both this and experimental unit-treatment interaction 

errors. The mix was some 90% the former and 10% the 

latter. The plot corresponding to Graph 4.5.3 based on 

these errors did not show an outlaying cluster as seen in 

Graph 4.5.3. 

About 95 percent of the observations fall within one 

standard deviation (1.93) of the mean. For a normal 

distribution, one would expect only 68 percent of the 

observations to lie within this region. For this simula-

A 

tion, the distribution of the ,, using experimental unit 

errors, is not the normal distribution. Estimates are 

either better or far worse than one would expect had the 

distribution been normal. 
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.The Randaaltzatton Mode1 w1th B1ocke and • Covartate 
Data set ta aasg111.gllll002 

5 .. err t>etahllt 
M-tc:tpotnt 

-··· -··· -e.1 

-a.1 

-7.5 

-6.9 

-6.3 

-9.7 

-9.1 

...... s 

-3.9 
-3.3 

-2. 7 

-2.1 

-1.s 

-o.• ••••••••••••••••••••••••• 
...C,,3 ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

o.a ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
0.9 ••••••••••••••••••••••••• 

1.9 

.............................................................................................................................................. 
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Percentage 

Graph 4.5.3 

The Distribution of ~ 

Experimental Unit Error 

..... 
0 

24 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

72 

192 

216 

72 

0 

for 

Cua. Cua. 
Freq P9rcent Percent 

0 0.00 o.oo .. 4.17 4.17 

24 o.oo ... 17 

24 0.00 4.17 

24 0.00 4.17 

•• 0.00 4.17 

•• 0.00 4.17 

24 o.oo ... t7 .. 0.00 4.17 

24 0.00 4.17 

•• 0.00 4.17 

•• 0.00 4.17 

•• 0.00 4.17 

24 o.oo 4.17 

24 0.00 4.17 

96 12.$0 16.67 

208 33.33 90.00 

504 37.50 17.50 

576 12.50 100.00 

576 0.00 100.00 

... 
Graph 4.5.4 shows the distribution of ~ using 

experimental unit-treatment interaction errors. The 
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graph using normally distributed random errors is similar 

and, thus, omitted. As per Table 4.4.1, this distribu-

... 
tion is centered at p-~ = 2.0-2.007 = .007. Although not 

always indicated by an asterisk, there are a few 

observations (.5%) five standard deviation units from the 
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mean. Within (+-).75 (one standard deviation) lie 78% of 

the observations. One would expect 66% of the observa-

tions in this region if the distribution were the normal 

distribution. Within (+-)1.50 (two standard deviations) 

lie 95% percent of the observations, about what one would 

expect under the normal distribution. In this simulation, 

both experimental unit-treatment interaction error and 

normally distributed random error yielded a near normal 

,., 
distribution for the ~'s. 

, ... ,.,. betahllt 
Ntdpotnt 

.... 9 

-•.o 
-3.5 

-3.0 

-2.5 

-2.0 

•I.II 

-1.0 

The Randollltzatlon Madel wtth ·a1ocks and a Covarteta 
Data set ta aasg111.gllll004 
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The Distribution of ~ -

CUii. C\1111, 
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3 0.35 0.52 

0 3 0.00 0.112 

2 5 0.35 0.17 

9 •• t .56 2,43 

•• 27 2.26 4.69 

29 58 ti.03 8.72 

'35 191 23.·•• 33.,. 

199 389 34. 38 67.93 

,22 511 21. 18 88. '12 

43 554 7 .47 96. 18 

'2 56~ 2.08 91.26 

5 57' 0.17 99.13 

2 573 0.3! 99.48 

0 973 0.00 99.41 

' 574 0.17 99.89 

0 574 0.00 99.65 

' 579 0.17 99.83 

' 576 o.n 100.00 

for 
Experimental Unit-Treatment Interaction Error 
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Dis~ribution of the OSL for H :7=0 -
0 

Experimental Unit Err-0r 

As proved in Part 5 of Theorem 3.7.9, (p. 203), when 

the null hypothesis T=O is true, the F-ratios, and hence 

the OSL's, for the treatments a~ adjusted for the mean, 

blocks, and covariate(s) are clustered. When the error is 

only experimental unit error, each cluster collapses to a 

single point. Graph 4.5.5 displays the 24 collapsed 

clusters of this discrete distribution, each containing 

24 identical values. The automatic scaling has combined 

clusters with similar values; note that the values of 

the frequency column (Freq) are all multiples of 24. 

By the discrete analogue of the probability integral 

transformation [Mood, Graybill, Boas, 1974, p. 202], if 

the F-ratio has the F-distribution, then the tail area or 

OSL as computed using the .F-distr ibution for these 

F-ratios has the uniform distribution over [0,1]. Graph 

4.5.5 shows excess probability in the tails, near zero 

and near one, relative to what one would observe for the 

uniform distribution. Thus, these F-ratios do not follow 

the usual F-distribution. Graph 4.6.1, (p. 295), will 

show in a more direct manner that these F-ratios do not 

follow the F-distribution with the usual degrees of 

freedom. 
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The Aandolltzatton Moctel wtth 810Clc• and a covartate 
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One consequence of the heavy tails of Graph 4.5.5 

is that the Type I error rate exceeds oc. Since T=O, a 

Type I error is committed when the CSL, computed under 
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the assumption of a central F-distribution, is less than 

oc, say, oc=. 0 7 5. Graph 4.5.5 shows 16.7 percent ("Cum 

Percent" column) of the randomizatio.ns will yield an CSL 

less than or equal to .075 (the category boundry on the 

vertical, lefthand, axis between the midpoints of .05 and 

. 10) . The actual Type I error rate is .167, not .075 . 



Chapter 4.5 Distributions 

Graph 4.5.6 presents the OSL's when the treatments 

take the nonzero values of this simulation. 
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Since 7~ID, Part 5 of Theorem 3.7.9, (p. 203), does 

not apply. Whatever clustering is provided by the 

denominator of this F-ratio is dispersed by the numera-

tor, more specifically, by the changes in the projector 

for X = [X~l~IZ] within each g-group. 

281 
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The visible difference between Graphs 4.5.5 (7=[)) 

and 4.5.6 (7~[)) is a shift to more frequent lower valued 

OSL's (higher valued F-ratios). This suggests that the 

F-ratio is distinguishing between the two cases of 7=[) 

and 7~[). 

By the probability integral transformation, this 

distribution would be the uniform, if the proper 

distribution were used to compute the tail area. These 

OSL's are from the output of SAS's PROC GLM and are 

computed under the assumption of a true null hypothesis 

and a full-rank variance-covariance matrix for the 

errors. Thus, the usual central F-distribution provided 

these OSL's. However, since the null hypothesis is 

false, it is the non-central F-distribution (perhaps 

with adjusted degrees of freedom) which would provide a 

uniform distribution if the F-ratios approximate an 

F-distribution. Section 4.6.4, (p. 315), discusses 

adjusting the degrees of freedom. One would not expect 

this graph to resemble the uniform distribution. 

For this case, one wants to reject the null 

hypothesis that ·T=ID. One commits a Type II error, with 

probability ~II' by accepting the erroneous null hypoth-

esis that 7=[). This occurs when the observed F-ratio is 

less than that tabled F-ratio which provides an OSL equal 

to~, say, .05, for the central F-distribution. Graph 

4.5.6 shows that some 80 percent of the randomizations 

will result in a Type II error for nonzero 7 with a 
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near-zero noncentrality parameter As· The actual power 

(l-~11 ) for the nonzero T of this simulation requires 

using the As corresponding to randomizations. These As 

change with each randomization, as displayed in Graph 

3.6.1, (p. 178). This adjustment appears to give power 

greater than 1-.8=.2, but the power appears to be low 

enough to suggest altering one's strategy, (p.148). 

4.5.4 Distribution of the OSL for H0 :T=0 - Experimental 

Unit-Treatment Interaction Error 

The experimental unit-treatment interaction errors 

change with each randomization, dispersing the clustering 

effect of projectors identical within each of the 

g-groups. (See Theorem 3.7.9(5), p. 203.) The heavy 

tails seen with experimental unit error are not visible 

in Graph 4.5.7. This distribution appears uniform, but 

has not been subjected to a statistical test. As it was 

computed using the central F-distribution, the logic of 

the probability integral transformation suggests that 

these F-ratios take the central F-distribution. The 

graph for normally distributed random error is similar 

and omitted. Graph 4.6.1 below, (p. 295), also 

suggests a close approximation to the F-distribution. 
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The Distribution of OSL'S for F(T=OiT=O) 
Experimental Unit-Treatment Interaction Error 

One consequence of the near uniformity of Graph 

4.5.7 is that the actual (randomization) Type I error 

rate is close to~. Since T=O, a Type I error is 
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committed when the OSL, computed under the assumption of 

a central F-distribution, is less than say, ~=.125. 

Graph 4.5.7 shows 9.55+(5.21/2) = 12.2 percent of the 

randomizations will yield an OSL less than or equal to 
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«=.125. The actual Type I error rate is quite close to 

such stated values of«, for «>.05. 

Graph 4.5.8 displays the distribution of the OSL's 

when the treatments take the nonzero treatment T values 

of this simulation. As in Graph 4.5.7, the errors are 

experimental unit-treatment interaction errors. As with 

Graph 4.5.6, these OSL's are computed assuming a central 

F distribution. Thus, the distribution is not uniform. 

The distribution using normally distributed random error 

is similar to Graph 4.5.8 and is omitted. 

The discussion of power following Graph 4.5.6, 

applies here, except that adjustments to the degrees of 

freedom appear necessary for the normally distributed 

random error case, but not the experimental unit

treatment interaction error case. For a near-zero 

noncentrality parameter and «=.125, Graph 4.5.8 shows 

~ome 100-32.81~ 67 percent of the randomizations will 

result in a Type II error.· 
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G:raph 4.5.9 displays the distribution of the OSL's 

corresponding to FC~,~~b,T), the test of the covariate as 

adjusted for the mean, blocks, and treatments, for the 

case of experimental unit e:r:ro:r. As pe:r Part 4 of Theorem 

3.7.9, (p. 202), these OSL's a:re clustered. Each cluster 

contains N(~)t!=1(24) :randomizations. The automatic 
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scaling has grouped clusters with similar values. 

Graph 4.5.10 displays the same OSL's for the case of 

experimental unit-treatment interaction error. Note the 

change in both scales from Graph 4.5.9. For these 

errors, the clusters remain disperse as per Theorem 

3.7.9(4), (p. 202). Both sets of OSL's are derived under 

the null hypotheses of ~=O, that is, under the central F 

distribution. As ~=2.0, the proper distribution is the 

non-central F distribution, assuming that the experimen

tal unit errors approximate the normal distribution. 

Thus, neither graph is expected to display the uniform 

distribution. 

In the following cases, Graph 4.5.9 and 4.5.10, one 

wants to reject the null hypothesis that ~=O and does so 

when the OSL is larger than, say, ~=.125. One commits a 

Type II error, accepting the erroneous null hypothesis, 

should tne OSL be greater than~, say greater than .125. 

For a near-zero noncentrality parameter and ~=.125, Graph 

4.5.9 (experimental unit error) shows that some 

100-[62.5+(16.67/2)] = 100-70.83 = 30 

percent of the randomizations will result in a Type II 

error. For experimental unit treatment interaction 

error, Graph 4.5.10 shows that some 

100-[73.1+(7.64/2)] = 100-76.9 = 23 

percent of the randomizations will result in a Type II 

error. The graph for normally distributed random error 

resembles Graph 4.5.10 and is omitted. 
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The Distribution of OSL'S for F(~=~I~~~) 

Experimental Unit-Treatment Interaction Error 

The graphs for experimental unit-treatment 

interactidn and normally distributed random errors, 

Graphs 4.5.8 and 4.5.10, resemble, respectively, two 

and one parameter gamma functions. The latter is the 

exponential function. 

investigated. 

Such a relationship has not been 

We next derive the OSL's from the central and 

noncentral F-distributions and display them in 

probability plots. 
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Section 4.6 

F-Distribution Probability Plots 

Section 4.6.1 describes the F-distribution paper 

probability plots. Section 4.6.2 presents plots for the 

three types of errors with equal within-block error vari

ances. Section 4.6.3 presents plots with unequal 

within-block error variances. Section 4.6.4 discusses 

potential problems with these plots. 

Major findings are that the F distribution with the 

usual degrees of freedom is a poor approximation in the 

case of experimental unit error, but is a reasonable 

approximation for the other two error types. Also, the 

case of experimental unit error is sensitive to the 

equality or nonequality of the within-block error 

variances, while the case of experimental unit-treatment 

interaction error is not and the case of normally 

distributed random error is slightly sensitive. 

4.6.1 Display of Results using Probability Paper 

Normal probability paper provides a visual check on 

the normality of a set of data. If the observations are 

from a normal distribution, proper plotting on such 

special paper will yield a straight line. Snedecor and 

Cochran [1980, Ed. 7, p. 59-63] discuss the construction 

and interpretation of such plots. On probability paper 

for the normal distribution, the vertical axis is scaled 

in units of the lower tail probabilities from the normal 
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distribution. The horizontal axis is scaled in standard 

distribution units. 

The graphs presented below are an F-distribution 

analog of normal probability paper, with axis switched 

and rescaled. If the observations are from an F 

distribution, proper plotting on such gr~phs will yield a 

straight line from lower left to upper right along the 

diagonal. For the upper half of the diagonal line, 

points below the diagonal indicate a distribution heavy 

in its upper tail. Points above the diagonal indicate a 

distribution light in its upper tail. For the lower half 

of the diagonal line, points abo~e the line indicate a 

distribution heavy in its lower tail. Points belo~ the 

diagonal indicate a distribution light in its lower tail. 

The remainder of this section details the reading of 

this type of graph. 

The horizontal, bottom, axis is the upper tail 

probability, the OSL, that i~, the area under the 

F-distribution curve to the right of the calculated 

F-ratio. Its values are calculated by assuming that the 

F-ratio follows the F distribution, with known numerator 

and denominator degrees of freedom and known non

centrality parameter. To present the upper tail area 

value in its usual righthand side position, the 

horizontal axis is reversed, the maximum OSL value, 1.0, 

is to the left and the minimum OSL value, 0.0, is to the 

right. The horizontal, bottom, axis of this probability 
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paper corresponds to the vertical axis of the usual 

normal probability paper. 

The vertical, lefthand, axis of this probability 

paper is the rank of the OSL, more properly, the rank 

divided by the number of observations, ranked from the 

smallest (0.0) to the largest (1.0). The smallest OSL 

has a rank of O, the median OSL has a rank of .5 and the 

largest OSL has a rank of 1. The vertical, lefthand, 

scale is also reversed, with 1.0 at the bottom and 0.0 at 

the top. This brings the desired diagonal to the 

positive 45 degree position. 

One way to read the graph is to hold a ruler 

vertically, up and down, along the right-hand side of the 

graph, at the 0.0 mark on the lower, horizontal, axis. 

Move the ruler to the left to, say, the .2 value on the 

horizontal axis. You have covered 20 percent of the 

upper tail area, the OSL, of an F distribution. 

If the plotted values are based upon statistics 

which have the F distribution, then the line connecting 

them should be located in such a position that 20 percent 

of the plotted points, as read on the lefthand, vertical 

axis, are above the 45 degree line. The lefthand scale 

is read to the left of the point where the line crosses 

the ruler. If the line of plotted points is below the 45 

degree line, then there are excessive observations with 

OSL's less than or equal to .2. There are too many large 

calculated F ratios for their distribution to be the F 
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distribution. The actual distribution is tail heavy 

relative to the F distribution. In such a case, in some 

other region, the line of plotted points will be above 

the 45 degree line. This region is usually near the 

other tail, near the left, the 1.0 end of the horizontal 

axis. 

One reason for plotting the OSL's instead of the 

F-ratios is to maintain a common scale for all sets of 

randomizations. The F-ratios vary widely with values 

fro~ near zero to the tens of thousands. Such large 

ranges force most values into an uninformative clump at 

one corner of a graph of the F-ratibs. A second reason 

is that the OSL incorporates the degrees of freedom and 

the noncentrality parameter, permitting ost's computed 

from central and noncentral F distributions, perhaps with 

different degrees of freedom, to be displayed on the same 

graph. Finally, one is usually interested in the OSL, or 

p-value, not the actual value of the statistic. 

When 7=ID, the central F-distribution provides the 

OSL's or upper tail probabilities. For 7~0 and ~~O, the 

noncentral F-distribution provides the OSL's. The 

noncentrality parameter changes with each randomization, 

as per Theorems 3.7.10, (p. 211) and 3.7.11, (p. 213). 

The variance term, ~2, of the noncentrality parameters is 

the variance of the errors for the randomization. It is 

constant for the experimental unit and normally 

distributed random errors. As discussed in Section 4.2, 
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(p. 243-253), the experimental unit errors are constant 

-

for all randomizations; the normally distributed random 

errors are standardized within each randomization to the 

same variance. The variance changes with each randomi

zation for the experimental unit-treatment interaction 

errors. This may allow the F-distribution to adjust for 

differences in the variances of the errors from one 

randomization to the next, thus, in effect, standardizing 

the variances. The effect of changes in ~2 appears to be 

much less than that of the randomization itself, but 

further examination is needed. All OSL's are calculated 

using the usual integer degrees of freedom. Section 

4.6.4 discusses the degrees of freedom as derived from 

the singular-normal distribution. Computer program probp 

of Appendix F.10 details the construction of the 

following graphs. 

4.6.2 F Distribution Plots for Three Error Types 

Graphs 4.6.1 through 4.6.6 come in pairs. The 

three pairs present the F-distribution plots for the 

cases of 7=0, 7~0 and ~~O .. The first of each pair 

shows the entire range of the CSL, (1.0 to 0.0). The 

second zooms in to the 20 percent area of the upper tail, 

with OSL's from 0.2 to 0.0. 

The plots of Graphs 4.6.1 and 4.6.2 are derived from 

the hypothesis H0 ;~,b,~7=0. When 7=0, they suggest that 

the F-ratios, which produced the plotted OSL's, follow 
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the central F distribution, for experimental unit

treatment interaction error Ci) and for normally 

distributed random error (n), but not for experimental 

unit error (u). Points for the experimental unit error 

(u) represent clusters of equal-valued g-groups, as per 
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Theorem 3.7.9(5), (p. 203). Their off-diagonal positions 

indicate excess probability in both tails. Thus, the 

actual Type I error probability is larger than the stated 

~. Note that the points for normally distributed random 

error (n) are not on the diagonal. This is more clearly 

seen in Graph 4.6.2 below. Section 4.6.4 discusses this. 
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The detailed plot, Graph 4.6.2, shows that at the 

point where the F-distribution has 10 percent (.10 on the 

lower, horizontal, axis) of the F-ratios more extreme 

than the point, the actual percentage (on the lefthand, 

vertical, axis) of randomizations with more extreme 

F-ratios is 10 percent in the case of experimental unit

treatment interaction error (i), about 14 percent in the 

case of normally distributed random error (n) and about 

20 percent in the case of experimental unit error (u). 
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The next pair of plots, Graphs 4.6.3 and 4.6.4, uses 

the non-central F distribution to obtain OSL's for the 

nonzero 7 of this simulation. These plots the usual 

degrees of freedom; that is, the variance-covariance 

matrix of each error typi is assumed to be nonsingular. 
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Compare Three Types of E r'ror 
u • experimental untt error 
1 • expert111ental untt-treat111111nt tnteractton error 
n • normat ly dtatrtbuted randorw error 

Plot of RSTN102*STN102. SY111bo1 uaed 111 'u'. 
Plot of RSTN104•STN104. Synb01 used ts 't'. 
Plot of RSTN146•STN146. Symbol used ta 'n'. 
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Graphs 4.6.3 and 4.6.4 suggest that none of the 

types of errors yields an F-ratio which follows the non-

central F distribution. In the detailed plot, Graph 

4.6.4, all three lines are below the diagonal in the 

upper_ half of the plot. This indicates excessive 

probability in the upper tail. The excess is slight for 

experimental unit-treatment interaction error (i), but 

larger for normally distributed random error (n) and 

experimental unit error (u). Also there is a deficiency 
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of probability in the lower tail of the distribution. 

This is indicated by the line's being below the diagonal 

in the lower half of the plot. 

The last two error plots, Graphs 4.6.5 and 4.6.6, 

display the OSL's derived from the F-ratio testing the 

hull hypothesis of ~=O, when the value of ~=2.0. They 

use the non-central F distribution and the usual degrees 

of freedom by assuming that the variance-covariance 

matrix of each error type is nonsingular. 

Compare Three Typea of Error 
u • e,cper t 11anta 1 un t t error 
t • expertfflental untt-treatMnt tnteractton error 
n • norma1 ly dtatrtbuted random error 

Plot of RSZN002•SZN002. Symbol used ts 'u'. 
Plot of RSZN004•SZN004. S)lfflbol used , •• I •. 
Plot of RSZN046*SZN046. Symbol used ts •n•. 

11 I I I I I 
o.o +-+--------------+---.. ----------+--------------+--------... -----+-------------• .. ---

.... u 

'"" I fllnu 
R t•nn u 
a Inn 
n tt•n u 
k . !Inn 

O. 2 +-+--------------+--------------+--------------•--------------+- t t lln- - -u- - --+---
n I !Ion 

0 '""" n 1111,m 

~ . u ..:""I O unlfldi 

s """' L O. 4 +-+-------.. ------+--.. ------.... ---+--------------+----un" t ---- - -+ ..... - -----------+---
1 """'' z umltt 

I UMll 
r nl'lli•t 
• antt 
• nnnttl 
t nn utt 
. o:·e +-+------------- ... +- ... ------------+-----an--- t t --+--------------+------ ... -------+---! nnn tt 
c nna tt 
0 """ tt v u nn ttt 

• u """I" r nn tt 

u """ 11 n 0.8 +-+-------·------+----nnn----111+--------------+- · ------------+------·-------+---• I nan tt 
nnu 11 

0 """ tttt 
nnn dltt 

nn I I It 
nnntttt u 

"'""""' I I u 1.0 +-ll--Mt---------+----------- ---+--------------+----. ---------+--------------+-·-
II I I I I I ... -+--------------+--------------+--------------+--------------+- - - -- - - -------+---
t. o 0.8 0.6 0.4 0.2 0.0 

SZN002 

Graph 4.6.5 

F Dist4ibution Plot: ~~O 

Entire Range 



. ·~ "t 

R 

• n 
k 

.Chapter 4.6 Probability Plots 

Compare Three T\IPas of Error 
u • expertmental untt error 
t • expertmenta1 unit-treatment tnteractton error 
n • normally dtstr1buted randOftl error 

Plot of RSZN002•SZN002. Synlb01 used Is •u•. 
Plot of RSZN004*SZN004. SYft1bo1 ueed 1e 'f'. 
Plot of RSZN046*SZN046. Symbol uaed ts •n•. 

o.oo +-+-----------------+-----------------+-----------------+ . n• * 
mill 

In 
Inn 

tffllln u 
ttnn 
I n 

I nn 
t n 

It n 
n o. os +-+-----------------+-----------------+-----------------+-- t 1 1-nn---------+------
o I ti " n . 1 n 
C 

0 
s 
L 

I n u 
tt nn 

11 t I nn 
11 n n 

t nn 

z I n tt """I ·. I · t1 nn 
r o. 10 +-+-----------------+-----------------+---1---~--nn-----+-----------------+------
• I 11 I n u 

• t 

C 
0 
V 

• 

It nn 
I n 

It n 
t n 

tt nn 
t n 

tt n 
t nn 

r 11 nn u 
o. 19 +-•-----------------+----------- t - t ---n----------·------+-----------------+------

n t t nn 
e t1 nn 

tt nn 
0 t n n 

I n. 
t1 nn 

tt nn 
t1 n n 

1t """ 

u 

t ti n 
o. 20 +-+------------- t 1--+---nn------------+-----------------+-----------------+-----

-·+-----------------+-----------------+-----------------+-----------------+------
0.20 0.15 o. 10 0.05 o.oo 

SZN002 

Graph 4.6.6 

F Distribution Plot: ~~O 
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The points in Graphs 4.6.5 and 4.6.6 for 

experimental unit error (u) show the clustering 
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discussed in Theorem 3.7.9(3), (p. 202). The conclusions 

are the same as those for Graphs 4.6.3 and 4.6.4. The 

tails are heavy in the case of experimental unit error, 

and slightly so in the other two cases. 

In summary, the three pairs of graphs cast doubt on 

the assumption of an F-distribution, central or non

centra{, with the usual degrees of freedom in the case of 
l 

experimental unit errors (u). The other two error types 

yield close approximations to the F-distribution. 
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4.6.3 Equal and Unequal Within-Block Error Variances 

The next seven pairs of F-probability plots compare 

(a) the OSL's from cases with the same (s) error vari

ances in both blocks to (b) the OSL's from cases with 

different (d) error variances in the two blocks. The 

ratio of error variances is 1 to 4, block one vs block 

two. The two unit errors each have three pairs of plots, 

one pair each for the cases of 7=0, 7~0 and ~=O. The 

normally distributed random error has one pair of graphs 

(7=0), as its other two (7~0 and ~~O) resemble the one 

for 7=0. All graphs assume the usual degrees of freedom. 

When the errors are experimental unit errors and 

the treatments are zero, as in Graphs 4.6.7 and 4.6.8, 

the F-ratios and accompanying OSL's display the clusters 

discussed in Theorem 3.7.9(5), (p. 203). The off

diagonality of the u's of Graph 4.6.1, (p. 295), is more 

clearly seen here. Graph 4.6.8 shows that the equal 

within-block variance case (s) has a heavy upper tail, 

while the unequal case (d) has a light upper tail, both 

for ocf.075. For ocf.075 the actual Type I error level 

exceeds oc in the equal within-block variance case (s), 

but is less than oc in the unequal within-block variance 

case (d). For oc>.075 the actual Type I error exceeds oc 

for both cases. 
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Effect of Unequal Within-block Vartances 
s • same block vartance d • different block vartances 

Plot of RSTC002*STC002. Symbol used ts 's'. 
Plot of RSTC003*STC003. Symbol used ts 'd'. 
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Effect of Unequal Wtthtn-block Vartances 
11 • same block vartance d • different block variances 

Plot of RSTC002•STC002, Symbol uaad la 's'. 
Plot of RSTC003•STC003. Symbol used la 'd'. 
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For experimental unit error and nonzero treatments, 

as in Graphs 4.6.9 and 4.6.10, the treatment effects 

disperse the clustering seen in Graphs 4.6.7 and 4.6.8. 

For equal within-block error variances (s), the distribu-

tion is tail-heavy. Where the non-central F-distribution 

would have covered .2 of the F-ratios (.2 on the lower, 

horizontal, axis), the randomization distribution has 

covered some .35 (on the lefthand, vertical, axis) of the 

F-ratios. There are more larger F-ratios than one would 

expect from the usual non-central F-distribution. For 
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unequal within-block error variances (d), the distribu

tion is tail heavy for OSL's > .10 and tail light for 

OSL's < .05. 
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The asymmetry about the center of Graph 4.6.9, 

(.5,.5), is due to the nonzero value of the non

centrality parameter's having a larger effect in the 

upper tail of the F-distribution than in the lower tail. 

Effect of Unequal Wtthln-b1ock .Variances 
s • same block vartance d • dtfferent block variances 

Plot of' RSTN102•STN102. Symbol used ts 'S'. 
Plot of RSTN103•STN103. Symbol used ta 'd'. 
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Effect of Unequal Wtthtn-block Vartances 
·s • same block vartance d • dtfferent block vartances 

Plot of RSTNI02*STNI02, Symbol used .Is ••• , 
Plot of RSTNt'03*51:N103. Synibo~ used ta 'd'. 
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Graph 4.6.10 
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Experimental Unit Error - Upper Tail 20 Percent 

The F-ratios, and hen~e the OSL's, for the cases 

with ~=2.0 display the clustering proved in Theorem 

3.7.9(3), (p. 202). Graphs 4.6.11 and 4.6.12 display 

these OSL's for the case of experimental unit error. 

While the points are near the diagonal for OSL's less 

than .7, the lower tail is light for both equal and 

unequal within-block error variances. In this region, 
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1.0 to .7, the F-ratios do not follow this noncentral 

F-distribution; there are fewer very small F-ratios than 

one would expect. When the errors have the same 
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within-block error variances (s), Graph 4.6.12 shows that 

the randomizati.on distribution of the F-ratios is tail 

heavy for OSL's!.2. For unequal within-block error 

variances. (d), the near diagonal pattern for small OSL's 

suggests a good approximation t-0 this noncentral 

F-distribution within this r~gion. 

Effect of Unequal Wlthtn-b1ock Variances 
s • 11at1e block variance d • different block va,..fances 

Plot· of RSZN002•SZN002. SYllll>OI used Is •s•. 
Plot of RSZN003°SZN003. Sy,wbol used Is 'd'. 
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Eff8Ct of Unequal Wtth1n-block Vartances 
s • same block vartance d • dtfferent block variances 

Plot of RSZN002•SZN002. Symbol used ts 's', 
Plot of RSZN003•SZN003. Symbol used ts 'd', 
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The next six graphs, Graphs 4.6.13 through 4.6.18, 

display the case of experimental unit-treatment interac-

tion errors. The equality or nonequality of within-block 

variances has little affect on the OSL's for this type of 

error. Points for all three pairs are on the diagonal in 

the important upper tail area. The graphs displaying the 

entire range show all points near the diagonal, suggest

ing the F-distribution is a good approximation to the 

randomization distribution- for this error type. The 

detailed graph for the case of T=ID, Graph 4.6.14, shows 

I 
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the equal and unequal cases differing slightly for OSL's 

between .2 and .05. The actual Type I error rate is 

lower than oc in this region for the case of unequal 

within-block error variances (d) and higher than oc for 

the case of equal within~block error variances (s). 

Effect of Unequal Wtth1n-b1ock Variances 
s = same block variance d • different block variances 

P 1 ot of RSTC004 •srcoo•. Synibo 1 used ·1 s • s • . 
Plot of RSTC007•STC007, Syfflbol used ts 'd'. 
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Effect of Unequal W1thtn-block Vartancas 
• • aa111e block vartance d • different block variances 

Plot of RSTC004•STC004, SymbOT used ts 's •. 
Plot of RSTC007•STC007. Symbol used ts 'd'. 
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Graphs 4.6.15 and 4.6.16 are for the experimental 

unit-treatment interaction error cases with T~O. 

Deviation from the diagonal throughout the range 1.0-.85 

suggests this non-central F distribution differs from the 

randomization distribution. The detailed graph, Graph 

4.6.16, suggests a good approximation in the upper tail, 

say, from .15 to zero. 

E.,fect of Unequal w·tthtn-block Vartances 
s • sa11e block vartance d • different block vart~_nc1111 

Plot of RSZN004•SZN004. S\lfflllDl used ts •••. 
Plot of RSZN007•SZN007. Synlb01 ua•d ta 'd'. 
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Effect of Unequal Wtth1n-block vartancas 
• • sanie block variance d • different block variances 

Plot of RSTN104*STN104. Synlbol used ts 's'. 
Plot of RSTN107•STN107. Sylllbol used ta 'd'. 
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For ~~O, Graph 4.6.17, shows a deviation from the 

diagonal suggesting that the randomization distribution 

and the F-distribution differ for this case. 

detailed graph, Graph 4.6.18, suggests a good 

The 

approximation in the upper tail, say from .075 to zero. 

Both graphs are for the experimental unit-treatment 

interaction error case. 

Effect of Unequal Wtthtn-block Vartancea 
• • aaH block variance d • different block vartance~ 

Plot of RSZN004•SZN004. SYfflb01 used ta •••. 
Plot of ASZN007*SZN007. Symbol ueed ts 'd'. 
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Effect of UneQUal Wtth1n-blot:k Vartances 
s • sarne block variance d • d1ff•rent block vartances 

Plot of RSZN004*SZN004. Synlbol used ts 's'. 
Plot of RSZN007*SZN007. Symbol used ts 'd'. 
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For the case of normally distributed random errors, 

the three pairs of graphs for T=ID, T~ID and ,~o, are 

remarkably alike. Only the pair for 7=ID is shown. These 

are Graphs 4.6.19 and 4.6.20. Equality of within-block 

error variances (s) leads to a distribution slightly 

tail-heavy in both tails. At the «=.l level (.10 on the 

lower, horizontal axis) the probability of a Type I error 

is about .14 when the error variances are equal in both 

blocks (s) and is about .075 when the error variances 

differ (d) in the two blocks (.14 and .075 on the left

hand, vertical, axis). 

Effect of Unequal W1th1n-block Vartances 
s • same block vartance d • different block vartances 

Plot of RSTC046•STC046. Symbol used ts •s•. 
Plot of RSTC05S•STC055. Symbol used ts 'd'. 
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Etfect of Unequal W1thtn-b1ock Vartances 
a • same b1ock vartance d • different block variances 

Plot of RSTC046•STC046. Sy11tbol used 11!1 •s•. 
Plot of RSTcoss•srcoss. Symbol used ts 'd'. 
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4.6.4 A Possible Problem with the Graphs 

One possible problem with these graphs is that the 

line of plotted points for those sets of randomizations 

using normally distributed random errors does not fall 

on the 45 degree line, as it should. 

315 
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To make the normally distributed random errors more 

like the experimental unit errors, the normally distribu

ted random errors are forced to sum to zero within each 

randomization. Tests indicate that forcing normally 

distributed random errors to have a mean of (to sum to) 

zero within each randomization costs one degree of 

freedom. That is, the plot of the resulting F-ratios is 

brought to the 45 degree line by reducing the appropriate 

(denominator) degree of freedom by one. Computer program 

test£ of Appendix F.8 details this test. 

For those randomizations using normally distributed 

random error, such a reduction did not bring the plotted 

line of F-ratios to the 45 degree line. A fractional 

reduction, from 2 to 1.75 helped, but no degree of 

freedom, constant for all randomizations, was able to 

bring the entire line of plotted values to the 45 degree 

line. 

One possible reason is that standardizing to zero 

within each randomization gives the errors the singular 

normal distribution. See the discussion following 

(2.3.3), (p. 17). Following Corollary 2s.2 of Searle 

[1971, p. 69], we computed the Chi-square degrees of 

freedom for the denominator quadratic form, x'iru< in 

Searle's notation. The 8 by 1 vector of normally 

distributed random errors provided the x; the 

denominator term within braces of (3.7.21), (p. 205), 

times ~2 provided the matrix~- The errors and center 
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matrix~ both change with each randomization. The 

variance-covariance matrix, V=ILIL'(X~2 ), in Searle's 

notation, for the singular normal is, in this case, block 

diagonal with identical diagonal blocks. The diagonal 

. 2 
blocks are {E4x 4 - (1/4)]"4x 4}~; the off-diagonal blocks 

are ID4x 4 . The standardization transformation subtracts 

the block-wise mean from each original error within each 

block, hence IL=X-(1/t)]". The variance, x~2 , cancels in 

the product ~1.1.-1• 

The resulting degrees of freedom, trace(~V), differ

ed for each randomization, ranging from 1.0 to 1.96 with 

a mean of 1.4. 

Unfortunately, the condition on Searle's Corollary 

2s.2, that 

v~v~v - v~v = ID, (4.6.1) 

appears not to hold for all randomizations. The maximum 

element of the right-hand side of (4.6.1), over all ran

domizations, is not zero, but 1.14, with the mean of the 

maximum elements equalling .39. Furthermore, applying 

these degrees of freedom as the divisor of the residual 

sum of squares and as the denominator degrees of freedom 

in the calculation of the OSL's brought the line of 

. plotted points farther from, not closer to, the diagonal. 

Unable to justify altering the denominator degrees 

of freedom, we use the one provided by the analysis of 

variance table, 2, for all randomizations using normally 
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distributed random error. Thus, the line of plotted 

points remains off of the diagonal line. As the F-ratio 

for each randomization should be an F statistic and the 

ensemble on the diagonal, further investigation is 

suggested. 

One could argue that the experimental unit errors 

have the singular normal distribution. This is because 

our method of construction .forces them to be the 

residuals from a least squares procedure. When the 

errors of the original least squares model are normally 

distributed, the residuals are known to have the singular 

normal distribution. In this case V = LL' = L of the 

discussion follbwing (2.3.3), (p. 22) and~ is as above. 

The condition on Corollary 2s.2 (4.6.1) is more nearly 

~satisfied. The maximum element of the right-hand side of 

(4.6.1), over all randomizations, is .09 and the mean of 

the maximum elements is .02. However, use of trace(~V) 

for the degrees of freedom moved the line of plotted 

points farther from the diagonal. 

Uncertainty of this approach led us to again use the 

original, constant, degrees of freedom (2) for those 

randomizations using experimental unit error. 

Zyskind, Kempthorne, et al., [1968, p. 11], point 

out that forcing the experimental unit errors to sum to 

zero also forces the covariance matrix of the Yijk's (and 

the errors) to be singular. 
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The experimental unit-treatment interaction errors 

for each treatment are also residuals from a least 

squares procedure. However, as each treatment appears 

but once per block, the entirety of any one set of resid

uals never appears in any one randomization. We see no 

argument that they have a singular normal distribution. 

The SAS program snormal in Appendix F.9 details the 

tests of these singular normal distributions. 

We now turn from equal selection ptobability for all 

randomizations to examine one proposed method which has 

all selection probabilities greater than zero, but 

unequal. 
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Section 4.7 

Weighted Selection Probabilities 

Section 4.7.1 reviews Cox's suggested weights for 

the selection probabilities, p(s), for the analysis of 

covariance. Section 4.7.2 presents means and standard 

deviations obtained via his weights for this simulation. 

They should be compared with those in Tables 4.4.1-4.4.4, 

(p. 259-268). Section 4.7.3 displays graphs suggesting 

that the ratio may be used to avoid randomizations with 

large errors in estimation. 

The major findings are that, for this simulation, 

weighting the selection probabilities with Cox's third 

ratio modestly improves the estimates of the model 

equation parameters and/or their standard deviations. 

Weighting has little effect on the expectation and 

standard deviation of the mean squares and F-ratios. A 

second finding is that using the weights to assign zero 

selection probabilities to some randomizations excludes 

from consideration those randomizations with highly 

biased estimates for the adjusted 7 and~-

4.7.1 Review of Cox's Suggested Weights 

Cox [1956, 1957, and 19821 presents several ratios 

useful in the analysi~ of covariance. Our understanding 

of three of these ratios follows. 
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The first, 

[SSTzz- SSMzzll [(SSRzz-SSMzz)/(t-1)], ( 4 . 7 . 1 ) 

is discussed by Finney [1946, p. 54, Eq. 3], Lucas 

[1950], Greenberg [1953, p. 698], Cox [1956, p. 1146, Eq. 

7 (part)], Cox [1957, p. 153, Eq. 6b (part)], and Cox 

[1982, p. 198, Eq. 3 (part)]. See (2.5.1), p. 35, for 

the definition of SSMzz, SSTzz and SSRzz· The term SSTzz 

first sums, over all blocks, those covariate values whose 

experimental unit receives treatment 1, then sums those 

receiving treatment 2, and so on for all k treatments. 

If the randomization is such that all these sums (over 

treatments) are equal, then the numerator of (4.7.1) is 

zero; otherwise it is positive. Equation (4.7.1) follows 

a negative sign in the expectation of the numerator of 

the F-ratio for the treatments [Greenberg, 1953, p. 698, 

Eq._ (A)]. This equation fcillows under the assumption 

that the true mean of the eovariate is identical in each 

of the treatment groups; that is, the design is balanced 

on the covariate.· Under this condition, minimizing 

(4.7.1) maximizes the numerator bf this F-ratio when the 

treatment effects are nonzero [Greenberg, 1953, p. 698]. 

Equation 3 of Cox [1982, p. 198] extends (4.7.1) to the 

multiple covariate case with the trace function reducing 

the dimensionality to one. 



Chapter 4.7 Weighting 322 

The second ratio is 

R(~ 1 b,7) / ER{SSRzzl(d.f. of SSRzz)}. ( 4 . 7 • 2 ) 

The R( ·) notation is detailed in Appendix B, p. 385. 

This reduction in sums of squares, R(~ 1 b,7), is for z and 

has the form Z' .i:-iz, where .i:-i is the projector matrix for 

[X~ I Xb I X7 ]. The residual sum of squares, SSRzz, is 

the matrix version as in Table 2.5.2, (p. 38), for the 

model equation Z=~+bi+7k+error. The expectation is over 

all randomizations. This ratio appears in Cox [1982, p. 

200, the final paragraph]. Cox denotes the denominator 

as~, which he defines on the bottom of his page 198. 

The third ratio is 

( 4 . 7 . 3 ) 

The denominator is as in {4.7.2); the numerator, .ssRzz, 

differs from the numerator of {4.7.2) by terms constant 

over all randomizations. The difference is such that 

ratios two and three are l~nearly and inversely related. 

The third ratio is based upon Cox [1956, p. 1148, Eq. 

141. Cox [1956, p. 1150, iii] states, 

Arrangements with a large value of SSRzz 

will have a small value for SSTzz [better 

balanced on the covariate], and conversely. 

Hence the weighting proportional to SSRzz 

attaches greater chance of selection to those 

arrangements in which the treatment groups are 

balanced with respect to the mean value of Z. 
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Ratio one (4.7.1) did not yield the informative 

graphs of ratio two (equivalently ratio three) and has 

not been examined as closely as the latter two ratios. A 

graph of ratio one vs ratio three resembles the probabil

ity density function for the exponential distribution. 

The SAS program glm of Appendix F.6 details the 

computation of these three ratios. 

4.7.2 Cox's Third Ratio Applied to Simulations 

A step in the SAS program glm uses the third ratio 

as a weighting variable to compute the values of 

Tables 4.7.1 - 4.7.4. These tables should be compared 

with Tables 4.4.1 - 4.4.4, (p. 259 - 268), which display 

the same means and/or standard deviations for parameter 

estimates and analysis of variance terms, but without the 

weights of ratio three. · 

For the case of experimental unit error, Table 4.7.1 

below, weighting with the third tatio improves the expec

tation of the mean, the block effects, and the covariate 

coefficient. All are closer to their true values· than in 

the unweighted case. The expectations of the treatment 

estimators remain equal to their true values because the 

weights are equal within each g-group and, within each 

g-group, the treatment estimators are unbiased. Table 

4.7.2 below shows that the standard deviations for all 

parameter estimates are reduced. Weighting affects these 

terms in a like manner in the unequal within-block 

error variance case; the corresponding table is not shown. 
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The effect upon the expectation of the mean squares 

and F-ratios, Table 4.7.3, is modest and mixed; changes 

are desirable in some cases and undesirable in others. 

The standard deviations are slightly smaller than in the 

unweighted case. This also holds for the unequal 

within-block error variance cases for the experimental 

unit errors, Table 4.7.4. 

For the case of experimental unit-treatment interac

tion error, weighting with the third ratio again improves 

all estimates of model equation parameters and reduces 

the standard deviation of the estimates, as seen in 

Tables 4.7.1 and 4.7.2. The estimates for the blocks and 

covariate parameters are unbiased or almost so. 

The effect of weighting upon the expectation and 

standard deviation of the residual and adjusted treatment 

mean squares and their F-ratios is negligible, for both 

equal and unequal within-block error variance cases, as 

in Tables 4.7.3 and 4.7.4. The weighting increases the 

expectation of the mean square and F-ratio for the 

. adjusted covariate, but has little effect upon their 

standard deviations. This increase occurs in both equal 

and unequal within-block error variance cases for the 

experimental unit-treatment interaction errors. 

For the case of normally distributed random error, 

the weighting has little effect upon the expectations of 

the estimated equation parameters, but does reduce the 

standard deviation of these estimates, Tables 4.7.1-4.7.2. 
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Weighting has little, if any, effect upon the expec

tation and standard deviation of the mean squares for the 

residual and adjusted treatment effects, as seen in Tables 

4.7.3 and 4.7.4. Weighting increases the expectation of 

the mean square for the adjusted covariate, but leaves 

its standard deviation nearly unchanged. The expectation 

and standard deviation of all F-ratios are modestly 

increased in the equal within-block error variance case. 

The effect is mixed in the unequal within-block error 

case for the normally distributed random errors. 

The expected mean square residual differs from the 

expected mean square for T=IDl~,b,~ about as much in the 

weighted as in the unweighted case. See Table 4.7.3. 

Weighting reduces the difference between the two mean 

squares in the case of experimental unit-treatment 

interaction ~rror and experimental unit error, and has 

little effect for the normally distributed random error. 
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TABLE 4.7.1 
WEIGHTED EXPECTED VALUE OF PARAMETER ESTIMATES 

EQUAL WITHIN-BLOCK ERROR VARIANCES 

Parameter: 
Name Value 

JJ. 10.0 

b1 -1. 5 

b2 1. 5 

-r1 0/-6.5 

-r2 0/-3.5 

-r3 0/ 2.5 

'r 4 0/ 7.5 

13 2.0 

Three Types of Error 
Experimental: 
Unit Unit-Treat. 

Interaction 

8.90 9.98 

-1.20 -1. 50 

1. 20 1. 50 

0/-6.5 -.38/-6.88 

0/-3.5 .44/-3.06 

0/ 2.5 -.17/ 2.23 

0/ 7.5 .10/ 7.60 

2.11 2.002 

Normally 
Distributed 

9.46 

-1. 35 

1. 35 

.24/-6.26 

.20/-3.30 

.08/ 2.42 

-.35/ 7.15 

2.056 
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TABLE 4.7.2 
WEIGHTED STANDARD DEVIATION OF PARAMETER ESTIMATES 

EQUAL WITHIN-BLOCK ERROR VARIANCES 

Parameter: 
Name Value 

JI. 10.0 

b1 -1.5 

b2 1. 5 

'Tl 0/-6.5 

'T2 0/-3.5 

'T3 0/ 2.5 

'T4 0/ 7.5 

13 2.0 

Three Types of Error 

Experimental: 
Unit Unit-Treat. 

Interaction 

10.8 5.42 

2.93 2.86 

above above 

7.56 4.13 

above 4.17 

above 4.04 

above 3.70 

1.11 .58 

Normally 
Distributed 

7.27 

1.98 

above 

5.53 

5.38 

5.13 

5.21 

.76 
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TABLE 4.7.3 
WEIGHTED EXPECTATION & STANDARD DEVIATION OF ANOVA TERMS 

EQUAL WITHIN-BLOCK ERROR VARIANCES 

Anova Term 

Expectation: 

MS Residual 

MS 'T=IO IJ.L, b, 13 
MS 'T-FIO I J.L, b; 13 
MS 13;.:o IJ.L,b,'T 

F 'T=IO IJ.L, b, 13 
F 'TFIO IJ.L, b, 13 
F 13;.:0 IJ.L, b, 'T 

Three Types of Error 

Experimental: 
Unit Unit-Treat. 

Interaction 

48.61 25.72 
47.59 25.48 

115.72 94.52 
639.90 646.60 

35.89 7.62 
65.14 26.15 

131. 84 126.03 

Standard Deviation: 

MS Residual 38.51 21.44 
MS 'T= IO I J.L, b, 13 25.67 18.79 

MS 'TFIOIJ.L,b, 13 70.33 52.41 
MS 13;.:0 IJ.L, b, 'T 316.5 380.1 

F 'T= IO I J.L, b, 13 146.92 41. 40 

F 'TP«l I J.L I b, 13 311.87 153.65 
F 13P0 I J.L, b, 'T 447.89 487.87 

Normally 
Distributed 

40.58 
39.31 

103.23 
680.60 

60.28 
129.00 
293.15 

32.60 
23.06 
65.92 

395.75 

1162.8 

2464.9 
4486.5 
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TABLE 4.7.4 
WEIGHTED MEAN AND STANDARD DEVIATION OF ANOVA TERMS 

UNEQUAL WITHIN-BLOCK ERROR VARIANCES 

Anova Term 

Expectation: 

F 'T= ID I J1, b , 11 
F 'T~ID IJ1, b, 11 
F 11~0 IJ1, b, 'T 

Three Types of Error 
Experimental: 
Unit Unit-Treat. 

Interaction 

2.47 4.29 
5.02 18.72 

21.10 111.89 

Standard Deviation: 

F 'T=ID IJ1, b, 11 3.05 14.80 
F 'T~ID IJ1, b, 11 6.53 66.45 
F 11~0 IJ1, b, 'T . 18.95 409.10 

Normally 
Distributed 

5.45 
13.95 
66.79 

31.53 
97.95 

303.65 

4.7.3 Distribution of Parameter Estimates vs cox's 

Second Ratio 

Graphs_4.7.1 - 4.7.4 show the error in estimation, 

A A 

'Tl-'Tl or 11-11, vs the value of Cox's second ratio (4.7.2), 

(p. 322), for the two experimental unit error cases. The 

ratio is on the lower, horizontal, axis; the error in 

estimation is on the lefthand, vertical, axis. The graphs 

for the normally distributed random error case are nearly 

identical to those for the experimental unit-treatment 

interaction error case, and are omitted. Graphs for all 

A 

levels, k, and all values ('T=ID and 'T~ID) of 'T.-'T. are 
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identical; only those for k=l are shown. Graphs for 

unequal within-block error variances are omitted as they 

are nearly identical to those shown, which all have equal 

within-block error variances. Recall that the second 

ratio is linearly and inversely related to the third ratio 

used to weight the randomizations of Tables 4.7.1-4.7.4. 

Each graph indicates that, for this simulation, 

selecting a randomization with a small value of ratio two 

(or equivalently, a large value of ratio three) avoids 

randomizations with large errors in estimating Tl and~-

"' Graphs 4.7.1 and 4.7.2 for T1 -T1 display, respec-

tively, the cases of experimental unit errors and 

experimental unit-treatment interaction errors for the 

case of equal within-block error variances. For 

experimental unit errors, Graph 4.7.1, identical values 

"' of T1 -T1 repeat six times (F=6); adjacent groups of six 

are combined and are represented by (L=l2). The cause of 

this is believed to be related to repetitions of certain 

values withing-groups of randomizations. In both 

graphs, the distribution appears centered about zero and 

appears so for all treatments. Table 4.4.1, (p. 259), 

shows the expectation to be zero for experimental unit 

error, but to be slightly biased for the other two 

errors. Thus, in the latter case, the observations are 

not centered, in the sense of the mean, about zero. 
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The Randonlizatton Model wtth Blocks and a Covariate 
Data set ta sasg1 ... g1nt002 

Plot of STR1•RATI02. Legend: A • 1 Obs. B • 2 obs. etc. 
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The Randoffltzatton Model with Blocks and a Covariate 
Data set ts sasg111.gh1004 

Weighting 

Plot of STR1•RATI02. Legend: A • 1 obs. B • 2 obs. et.c. 
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Graphs 4.7.3 and 4.7.4 for ~-~ display, respectively,

the cases of experimental unit errors and experimental 

unit-treatment interaction errors for the case of equal 

within-block error variances. For experimental unit 

errors, Graph 4.7.3, identical values repeat 24 times 

(X=24), as proved in Theorem 3.7.9(4), (p. 202). The 

... 
highly erroneous estimate of ~ = -8.95 (~ = 2.0) can be 

avoided by assigning a zero selection probability value 
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to p(s) for those randomizations with large ialues of the 

second ratio. As seen along the horizontal line at zero 

in Graphs 4.7.3 and 4.7.4, unbiased estimates of ~ are 

obtained by some randomizations throughout the range of 

the second ratio. This s~ggests searching for an 

alternative function which would better distinguish 

randomizations yielding unbiased estimates. Selecting 

the randomization used to conduct the actual experiment 

on the basis of the second ratio (4.7.2) (or third ratio) 

discards many unbiased or low biased randomizations for 

the gain of avoiding those with large bias. 

The Randoffltzatton Model. wtth B10Cks and a Covariate 
Data sat ts saag1m,glm002 

Plot of SBETA•RATJ02. Legend: A • t obs. B • 2 obs. etc. 
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The RandOffltzatton Model with Blocks and a Covariate 
Data aet 1.s sasglni.glm004 

Weighting 

Plot of 5BETA*RATI02. Lege°nd: A • 1 Obs. B • 2 obs, etc. 

I 
6 + 

4 + 

S 2 + 

e 

A 
D 
A 

BB 
B A DB 

A B AB B CA 
B B B BE BAC A A E DB 
BOE B E CCBC CGHBC H B ED 

b DOI F C CEED AHHGG E B BC 
e O +-------HHP------8-E-HPGA-EJKFC-C-D------cc.------ --
t CF! G H GHEE Ml!HBC B C CD 
a 
h 
a 
t 

-2 + 

-6 + 

DBE E C AGDI CDEC B A CB 
A B CA CBBB A B CD 

BB B BB 

B 
GA 
DA 
BA 
AB 

B 

B 

!+----- '-----+-----------+-----------·---- -------+-
8 9 10 11 12 

R2-for Z: Adj. Treat. ss/E(re111ctua1 rns) 

Graph 4.7.4 
The Distribution of , - , vs Ratio Two 

Experimental Unit-Treatment Error 

334 

The final section considers restricting randomiza

tion. Instead of assigning varing selection probabilities 

as in this section, p(s) is either zero or a constant. 

The noncentrality parameter for the adjusted covariate 

is used to select those randomizations with nonzeru 

selection probabilities. 
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Section 4.8 

G-groups, Noncentrality Parameters, and OSL's 

Section 4.8 discusses the use of the noncentrality 

~arameter for the ~ovariate as adjusted for the mean, 

blocks, and treatment, ~s,~IJ1,b,T' to select those random

izations better able to detect nonzero.values of ~ and T. 

Section 4.8.1 contains examples of Theorem 3.7.15, 

(p. 219), which plays a key role throughout Section 4.8. 

Section 4.8.2 suggests that Cox's second (and third) 

ratio (4.7.2), (p. 322), for a single covariate is a 

linear function of this non-centrality parameter. The 

graphs of Section 4.8.3 show the effect on H0 . ., b 7 ~~=O 
I r1 I I I"' 

of using ~s,~IJl~b,T to select the randomization used to 

test the hypothesis. Section 4.8.4 displays together the 

OSL's for the usual two hypotheses as one moves from the 

lowest to the highest values of ~s,~IJl,b,T· Section 

4.8.5 compairs the means and standard deviations of the 

estimated model equation parameters as computed within 

(a) the lowest and (b) the highest values of ~s,~IJ1,b,T· 

The major result is that for, this simulation, 

selecting the randomization used to conduct the experi

ment from among the g-group with the largest value of 

~ b improves the probability of detecting nonzero s,~IJl, ,~ 

covariates for all error types, but offers only modest 

help in detecting nonzero treatments in the cases of 

experimental unit-treatment interaction and normally 
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distributed random errors and no help in the case of 

experimental unit error. If proper, use of the singular 

normal distribution may improve the situation for 

experimental unit errors. Limiting randomization to 

randomizations within the maximum-valued g-group 

substantially improves the expectations and standard 

deviations of the model parameter estimates for all three 

error types. These randomizations are the most balanced 

on the covariate. 

4.8.1 A Comparison of the Two Noncentralitv Parameters 

Graphs 4.8.1 and 4.8.2 illustrate Theorem 3.7.15, in 

particular equation (3.7.34), (p. 219), for the three 

types of error. The lower, horizontal, axis is the 

noncentrality parameter for the covariate as adjusted for 

the mean, blocks, and treatments. The lefthand, vertical, 

axis is for the noncentrality parameter for the treat

ments as adjusted for the mean, blocks, and covariate. 

The errors enter the noncentrality parameters only 

via the variance. The experimental unit and normally 

distributed random errors have constant and equal-valued 

variances, thus, their graphs are ldentical; both cases 

are represented by Graph 4.8.1. The vertical lines 

display groups with equal values of the noncentrality 

parameter for the covariates as adjusted for the mean, 

blocks, and treatments. These are the g-groups of 

Theorem 3.7.10, (p. 211). The letters on the graphs 

label the g-groups. 
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The variance for the experimental unit-treatment 

interaction errors changes with each randomization, as 

discussed in Section 4.2.3, (p. 252). As shown in Graph 

4.8.2, this disperses the values of each g-group, 

blurring the columns seen in Graph 4.8.1. 

Each graph shows that one can avoid low-valued 

noncentrality parameters for the adjusted treatments by 

restricting randomization tog-groups with large values 

of the_noncentrality parameter for the adjusted covari

ate. The desirable randomizations are those in the top 

righthand corner of the graphs, or at least the 

right-most column~ As discussed in (2.6.6a), (p. 41), 

one thus avoids randomizations having low power to detect 

nonzero model equation parameters. Such lower-powered 

randomizations are to the left and/or bottom of the 

graphs. In the case of a single covariate, the desired 

g-groups may be discovered without knowledge of the true 

value of the covariate slope parameter. The discovered 

g-group(s) will be favorable for all values of the 

treatment effects. 

Consider the twenty-four points (X,Y) of Graph 4.8.1 

to be: X = ~g,~l~,b, 7 , on the horizontal axis and 

Y = min{~5 , 71 ~,b,~} , on the vertical axis. 

A few such points are circled on the graph .. The Y value 

is the bottom point in each of the twenty-four columns 

of numbers. The least squares fit of a straight line 

through these points, as in (3.7.35), (p. 221), 
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estimates the slope parameter as .22. This value is a 

close approximation to the ratio {~f, 7 /~f,~}=.235. This 

ratio is part of (3.7.34), (p. 219). As discussed below 

(3.7.35), (p. 221), one increases the minimum value of 

the noncentrality parameter for the adjusted treatments 

by .22 for each unit increase in the noncentrality 

parameter for the adjusted covariate. Had the slope been 

near zero, no g-group of randomizations would have been 

advantageous in avoiding low-valued, adjusted-treatment, 

noncentrality parameters. 
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Graph 4.8.3 shows the apparent linear relationship 

between Cox's second ratio and the noncentrality 

parameter for the covariate as adjusted for the mean, 

blocks, and treatments. Values for Cox's second ratio 

are on the vertical axis. The horizontal axis shows the 

noncentrality parameter prior to multiplication by .s~2; 

the axis plots 2 .s~ ~s, ,IJ,,b,~· This linear relationship 

suggests Theorem 3.7.5, (p. 190), and (2.6.6a), 
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(p. 41), as rationale for applying Cox's second or third 

ratio for the randomization process. An algebraic proof 

of the relationship of these ratios and the noncentrality 

parameter is an extension. 

4.8.3 
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According to (2.6.6a), (p. 41), the best randomiza

tions for detecting a nonzero covariate slope coefficient 

are the ones with the largest noncentrality parameter for 

the adjusted covariate slope parameter. The graphs of 

this section display the OSL for the hypothesis test 
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H. b ~=O. Since ~=2.0, this hypothesis should be 
01 JJ.1 I 'TI ~ 

rejected. Small values of the OSL, say, less than .10, 

do this; larger values result in accepting a false null 

hypothesis, a Type II error. Each of Graphs 4.8.4-4.8.6 

shows that large values of ~~IJJ.,b,T' to the right on the 

lower, horizontal, axis, avoid large values of the OSL, 

that is, avoid a Type II error for this hypothesis test. 

These are the points below the horizontal dashed line. 

There is one graph for each of the three error types. 

Theorem 3.7.10, (p. 211), proves the clustering of 

noncentrality parameter values seen along the lower, 

horizontal, axis of Graph 4.8.4, for experimental unit 

error, and of Graph 4.8.6, for normally distributed 

random error. When the variance is not constant for each 

randomization, as for the experimental unit-treatment 

interaction error of Graph 4.8.5, those clusters on the 

horizontal axis are dispersed. 

Theorem 3.7.9(3), (p. 202), proves the clustering of 

OSL values along the lefthand, vertical, axis of Graph 

4.8.4 for experimental unit error. This error is constant 

for all randomizations. In contrast, the values of the 

errors 'rig and ns change with each randomization. This 

disperses the clusters on the vertical axis, as discussed 

in Theorem 3.7.9, and as seen in Graph 4.6.5, for 

experimental unit-treatment interaction error 'rig, and in 

Graph 4.6.6, for normally distributed random error ns· 
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Displays 4.8.7 and 4.8.8 present the OSL's for the 

adjusted treatments vs those for the adjusted covariate. 

The randomizations are grouped by equal values of the 

noncentrality parameter for the adjusted covariate. This 

is equivalent to grouping by the g-groups. The value 

used is 2 .Ser ·)·g,~IJ.I.,b,T' with 10 the minimum value 

(Display 4.8.7) and 990 the maximum (Display 4.8.8). The 
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multiplication by .s~2 avoids the changes in ~2 from one 

randomization to the next which occur in the experimental 

unit-treatment interaction errors. 

In the top row of three graphs, the OSL's for the 

adjusted treatments (lefthand scale) use 7=0. The 

central F-distribution provides the OSL's for the top 

row. In the bottom row of three graphs, the OSL's for the 

adjusted treatments use the nonzero 7 of this simuiation. 

The noncentral F-distribution provides the OSL's of the 

bottom row. The noncentrality parameter, ~, is for the 

appropriate randomization and variance. The covariate 

slope coefficient, ,, is always equal to 2.0. The noncen

tral F-distribution provides the OSL's for the adjusted 

covariate (the bottom scale of both rows of graphs). The 

usual degrees of freedom are used in all cases. 

The left-most column of two graphs, one above the 

other, uses experimental unit errors. The center column 

of two graphs uses experimental unit-treatment 

interaction errors, and the right-most column of two 

graphs uses normally distributed random errors. 

Each graph has the OSL for the adjusted treatments 

on the lefthand, vertical, axis and the OSL for the 

adjusted covariates on the lower, horizontal, axis. 

For experimental unit error, the left-most column of 

two graphs of both displays, the covariate values are 

clustered, as per Theorem 3.7.9(3), (p. 202). This 

provides the columns of values seen in these graphs in 
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both displays. When the treatment effects are zero, as 

in the top lefthand graph of both displays, the 

clustering discussed in Theorem 3.7.9(5), (p. 203), also 

operates. Together, the two sources of clustering result 

in the single point of the top, left-most graph of both 

displays. The OSL for the adjusted treatments is the 

same for each of the display's 24 randomizations, as is 

the OSL for the adjusted covariates, hence the single 

point. 

In all plots, the value of , is nonzero. One wants 

to reject this null- hypothesis, H0 :,,JL,b, 7 ,=0. Thus, one 

wants low valued OSL's, OSL's to the left of each graph. 

Note that as one moves from minimum values of the non

centrality parameter (Display 4.8.7) to the maximum value 

(Display 4.8.8), the OSL's shift to the left, to lower 

values, in the center and right-most columns of graphs. 

These two columns represent experimental unit-treatment 

interaction and riormally distributed random errors. 

While most randomizations of these two error types of 

Display 4.8.7 make the Type II error of accepting the 

erroneous null hypothesis H0 .~ JL b 7 ,=o, for ~=.12, none 
· . I FT I I 

of the randomizations of Display 4.8.8 commit a Type 

II error. By restricting randomization to those rando

mizations with the maximum value of the noncentrality 

parameter (Display 4.8.8), the researcher improves 

his/her chance of selecting a randomization which will 

lead to the correct hypothesis test conclusion when ,¢0. 
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In contrast to the experimental unit-treatment 

interaction and normally distributed random errors, the 

experimental unit errors appear to be unaffected by the 

shift in the value of the adjusted covariate's non

centrality parameter. The column of values in the 

left-most column of graphs has the same OSL for the 

adjusted covariate hypothesis in both displays, about 

.05. Increasing the value of this noncentrality parameter 

did not lower OSL's for this error type. The advice of 

(2.6.6a), (p. 41), applys to distributions affected by a 

noncentrality parameter or a function of it. The failure 

to lower the OSL's suggests that the F-distribution is 

no~ applicable for this error type, at least not in the 

upper tail. Recall that the probability plot of Graph 

4.6.12, (p. 219), also suggested a poor fit of the upper 

tail of the F-distribution for experimental unit error. 

Use of the singular normal distribution,- if proper, 

may result in the g-group affecting the OSL for this 

e:r::ror type. 

For the top row of three graphs, the null hypothesis 

of H0 : 7 l~,b,~7=ID is true. One wants to accept this 

hypothesis. Thus, one wants high-valued OSL's, ones 

larger than .10 towards the top of each graph. However, 

in this case, the noncentrality parameter is zero and 

Theorem 3.7.15, (p. 219), does not apply. The OSL's for 

experimental unit error, the top left-most graph, take a 

higher value as one moves from minimum to maximum values 
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of the noncentrality parameter (Display 4.8.7 to 4.8.8). 

Some OSL's for experimental unit-treatment interaction 

error and normally distributed random error take lower 

values, but the effect of the noncentrality parameter 

for the adjusted covariates upon this OSL is small. 

For the bottom row of three graphs, the null 

hypothesis of H0 : 7 ,~,b,~T=0 is false. One wants to 

reject this hypothesis. Thus, one wants low-valued 

OSL's, ones near the bottom of the graphs, ideally below, 

say «=.10. The center and right-most graphs, for 

experimental unit-treatment interaction and normally 

distributed random errors, show a slight improvement at 

the larger value of the adjusted covariate's noncentral

ity parameter (Display 4.8.8). More randomizations have 

adjusted treatment OSL's below .10 in Display 4.8.8 than 

in Display 4.8.7. For experimental unit-treatment 

interaction, the change is fr~m none to four randomiza

tions; for normally distributed random error, the change 

is from six to ten. Again, by restricting randomization 

to those randomizations with the maximum value of the 

noncentrality parameter, the researcher improves his/her 

chance of selecting a randomization which will lead to 

the correct conclusion. 

For experimental unit error, the lower, left-most 

graph, the number of randomizations correctly rejecting 

this null hypothesis decreases as one moves from the 

lowest to the highest noncentrality parameter (Display 
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4.8.7 to 4.8.8}. Again, this contradicts the advice of 

(2.6.6a}, (p. 41), suggesting that the F-distribution is 

not applicable for this error type, at least in the upper 

tail. 

While the effect of the value of the noncentrality 

parameter for the adjusted covariate appears large for 

the hypothesis test of this parameter, the effect upon 

the hypothesis test of the adjusted treatments appears to 

be small, and limited to the cases of experimental 

unit-treatment interaction and normally distributed 

random errors. This may or may not hold in other 

simulations. Possibly, this noncentrality parameter has 

little effect on the tail probabilities for the degrees 

of freedom used to compute the OSL' s for· the adjusted 

treatments. Examination of such is an extension. 
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Treatments are Zero In Top Row. Nonzero In Bottom Row 
Left to Right: experimental unit error. experimental-unit 

treatment Interaction error. normal random error 
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4.8.5 Hypothesis Tests for the Best and Worst Cases 

One method to preserve the value of the stated Type 

I error level, oc, is to first test the entire model 

equation, then test the two usual hypotheses of interest. 

When 7=0 and ~~O, one wants the model (M) and covariate 

(C) to be statistically significant (S), while the 

treatments (T) to be not statistically significant (N). 

Such an outcome is circled in the upper portion of 

Display 4.8.9. There one sees that for experimental unit 

error, 144 or 25% of the randomizations yield this 

correct outcome. For experimental unit-treatment 

interaction error, 47.4% yield the correct outcome; for 

normally distributed random error, 30.6% do so. All other 

randomizations err on one or more of the three hypotheses 

tested. All hypothesis tests use oc=.10 and the central 

F-distribution with the usual degrees of freedom. 

Circled in the lower portion of Display 4.8.9 is the 

proper outcome when 7~0 and ~~O, this is statistical 

significance (S) for the model (M), the treatments (T) 

and covariate (C). Some 30.7% of the randomizations for 

the experimental unit error type yield the correct 

outcome. The other two error types yield the correct 

outcome in, respectively, 24.5% and 23.6% of their 

randomizations. For the error and parameter values of 

this simulation, one is more likely to select a 

randomization leading to erroneous results than one 

leading to the correct result, both for 7=0 and T~O. 
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Counts and Percentages of Randomtzattons wtth Outcomes for 
Hypotheses: Model (M), Adj. Treatments (T), Adj. Covariate (C) 

of: Stgntftcant (S) Reject Null Hypothesis and 
Nonstgniftcant (N) Accept Null Hypothesis 

TABLE 1 OF ERR· TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Zero Treats 

. . 
ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

:~=q~~~cy IM s T s IM s T s 0.s T N M s . T NIM N T NIM N T NI 
C S C N C S C N C S C N 

----------•--------+--------+-- ---+--------+~-------+--------+ 
Exp. Untt I 120 I O I 144 I 48 I 72 I 192 I 

20.83 0.00 25.00 8.33 12.50 33.33 
----------+--------+--------+--------+--------+--------+--------+ 
E. U. T. I. I 54 I 1 I 273 I 55 I 94 I 99 I 

9.38 0.17 47.40 9.55 16.32 17.19 
----------+--------+--------+--------+--------+--------+--------+ 
N.D.R.E. I 75 I 3 I 176 I 38 I 116 I 168 I 

13.02 0.52 30.56 6.60 20.14 29.17 
----~-----+--------+--------+--------+--------+--------+--------+ 
Total 249 4 593 141 282 459 

TABLE 2 OF ERR TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Nonzero Treats 

ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

Frequency~ 
Row Pct M ~ / s M ~/SIM~ ST NIM~ NT NIM~ ST NIM~/ NI 

----------+- ---+--------+------- +--------+--------+--------+ 
Exp. Un 1 t I 177 I 22 I 92 r 31 I 67 I 187 I 

30.73 3.82 15.97 5.38 11.63 32.47 
----------+--------+--------+----- --+--------+--------+--------+ 
E.U.T.I.I 1411 141 2011 531 791 881 

24.48 2.43 34.90 9.20 13.72 15.28 
----------+--------+--------+--------+--------+--------+--------+ 
N.D.R.E. I 136 ,. 10 I 121 I 361 110 I 163 I 

23.61 1.74 21.01 6.25 19.10 28.30 
---------+--------+--------+--------+--------+--------+--------+ 

Total 454 46 414 120 256 438 

Display 4.8.9 
Tests of Model and Parameter Hypotheses 

All Randomizations 

Total 

576 

576 

576 

1728 

Total 

576 

576 

576 

1728 
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Displays 4.8.10 and 4.8.11 detail the previous 

display (Display 4.8.9) for, respectively, the smallest 

value and the largest value of the noncentrality 

parameter for the covariate as adjusted for the mean, 

blocks, and treatments, .s~2 ~9 ,, 1~,b, 7 • These two 

noncentrality values are the same as in Displays 4.8.7 

and 4.8.8; the conclusions are similar. 

354 

For experimental unit error and 7=0, all 24 

randomizations yield the correct conclusions for the 

three hypotheses at both the lowest (Display 4.8.10) and 

the highest (Display 4.8.11) values of the adjusted 

covariate noncentrality parameter. For this error type, 

and 7~0, there are fewer correct conclusions at the 

highest value than at the lowest value of the noncentral

ity parameter, 22 vs 4 or 92% vs 17% (Displays 4.8.10 vs 

4.8.11). As with Displays 4.8.7 and 4.8.8, this suggests 

that the advice of (2.6.2a), (p. 41), does not apply to 

the case of e~perimental unit error. That is, in their 

upper tails, the distribution of the F-rat.ios over all 

randomizations is not approximated by the F-distribution. 

The effect of the singular normal method of computation 

of the degrees of freedom, if appropriate, is an 

extension. 

For experimental unit-treatment interaction and 

normally distributed random errors, more randomizations 

yield the correct conclusion at the higher than at the 

lower noncentrality parameter value, for both 7=0 and 
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T~O. For experimental unit-treatment interaction error, 

no randomization yields the correct conclusions at the 

lower value of the noncentrality parameter, both for T = 

0 and T ~ O. At the higher level of the noncentral- ity 

parameter, 50% of the randomizations lead to correct 

conclusions for T = O and 17% for T ~ O. For normally 

distributed random error, the improvement is from 1/24 to 

9/24 for T = O and from 4/24 to 10/24 for T ~ o. For 

these two error types, restricting randomization to the 

g-group with the largest value of the noncentrality 

parameter for the adjusted covariate is more likely to 

select a randomization which will lead to the correct 

conclusions for these hypotheses. 



Chapter 4.8 G-groups 

Counts and Percentages of Randomizations with Outcomes for 
Hypotheses: Model (M), Adj. T.reatments (T), Adj. Covariate (c: 

of: Stgntftcant (S) Reject Null Hypothesis and 
Nonsigniflcant (N) Accept Null Hypothesis 

----------------- Lamda: covariates given rest=10 ---------------· 

TABLE 1 OF ERR TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Zero Treats 

ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

Frequency I 0 . 
Row Pct MS T SIMS T MS TN MS T NIM N T NI 

C S C N C S C N C N 
--·--------+--------+--------+- -+--------+--------+ 
Exp. Unit I O I. 0 I 24 I O j · 0 j 

0.00 o.oo 100.00 0.00 0.00 
----------+------- +--------+--------+--------+--------+ 
E.U. T.I. I O I O I O I 10 I 14 I 

0.00 0.00 0.00 41.67 58.33 
----------+--------+--------+--------+--------+--------+ 
N.O.R.E. I 3 I O I 1 I 7 I 13 I 

12.50 o.oo 4.17 29.17 54.17 
----------+--------+--------+--------+--------+--------+ 
Total 3 O 25 17 27 

TABLE 2 OF ERR TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Nonzero Treats 

ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

Frequency 0 
Row Pct M ~ ST s M ~ NT SIM~ ST NIM~ NT NIM~ NT NI 

----------+-- --+--------+--------+--------+--------+ 
Exp. Unit I 22 ,. 0 ·, 2 I O I O I 

91.67 0.00 8.33 o,oo 0.00 
----------+--------+--------+--------+------- .+--------+ 
E.U. T.I. I O I 1 I O I 12 I 11 I o.oo 4.17 0.00 50.00 45.83 
----------+--------+--------+------- +--------+--------+ 
N.D.R.E. I 4 I 2 I O I 6 I 12 I 

16.67 8,33 · 0.00 25.00 50.00 
----------+---~----+--------+--------+--------+--------+ 
Total 26 3 2 18 23 

Display 4.8.10 
Tests of Model and Parameter Hypotheses 

Minimum Noncentrality Parameter for~ 

Total 

24 

24 

24 

72 

Total 

24 

24 

24 

72 
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Counts and Percentages of Randomtzattons wtth Outcomes for 
Hypotheses: Model (M), Adj. Treatments (T), Adj. Covariate (C) 

of: Stgntftcant (S) Reject Null Hypothesis and 
Nonsignificant (N) Accept Null Hypothesis 

------------------ Lamda: covar.iates given rest=990 ---------------

TABLE 1 OF ERR TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Zero Treats 

ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

:~=q~~~cy IM~/ s1Q1M ~/NIM~ / NI 

----------+--------+~+--------+----- ·--+ 
Exp. Unit I O I 24 I O I . O I 

0.00 100.00 0.00 0.00 
----------+--------+--------+--------+--------+ 

·E.U.T.I.I 01 121 121 01 
0.00 50.00 50.00 0.00 

----------+-- -----+--------+--------+--------+ 
N.D.R.E. I 5 I 9 I 8 I 2 I 

20.83 37.50 33.33 8.33 
----------+--------+--------+--------+--------+ 
Total 5 · 45 20 2 

TABLE 2 OF ~RR TYPE BY RESULT 
CONTROLLING FOR TRT_VAL=Nonzero Treats 

Total 

24 

24 

24 

72 

ERR_TYPE(Type of Error) RESULT(Hypotheses Test) 

Frequency~ 
Row Pct MS TS MS T NIM N T NIM N T NI 

C S C S C S C N 
----------+--------+----- --+--------+--------+ 
Exp. Unit I 4 I 20 I O I O I 

16.67 . 83.33 · 0.00 0.00 
----------+--------+--------+--------+- ------+ 
E.U. T.I. I 4 I 9 I 11 I O I 

16.67 37.50 45.83 0.00 
----------+--------+--------+--------+--------+ 
N. D.R. E. I 10 I · 4 I 8 I 2 I 

41.67 16.67 33.33 8.33 
--------- +--------+--------+--------+--------+ 
Total 18 33 19 2 

Display 4.8.11 

Total 

24 

24 

24 

72 

Tests of Model and Parameter Hypotheses 
Maximum Noncentrality Parameter for ~ 

35.7 
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4.8.6 Parameter Estimates for the Best and Worst Cases 

Tables 4.8.1 and 4.8.2 display, respectively, the 

means and standard deviations of the estimates of the 

model equation parameters for the g-groups with the 

358 

lowest (1) and highest (h) values of the noncentrality 

parameter for the covariates as adjusted for the mean, 

blocks, and treatments, ~s,~l~,b,T" The first column of 

numbers in each table shows the true value of the model 

equation parameter; the two treatment values are shown. 

For all error types and all estimates, the tables show 

less bias and smaller standard deviations for the g-group 

with the highest (h) value of this noncentrality parameter. 

The second column of Table 4.8.l is for experimental 

unit error. The expectation of the estimated treatment 

" effects, Tk, is unbiased within both g-groups. This holds 

for T=ID and T~ID. Table 4.8.2 shows that the standard 

deviations of the estimates within the highest valued (h) 

g-group are much smaller than are those within the lowest 

,.. 
valued (1) g-group, for example 4.96 vs 53.61 for T1 . 

The standard deviation is equal for all estimated 

treatment effects, and is unaffected by the value of T. 

Estimates for the other model equation parameters also 

show less bias at the highest valued g-group, for example 

" E(~)=ll.34 at the lowest valued (1) g-group, but equals 

1.94 at the highest (h). The parameter value is ~=2.0. 
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As per Theorem 3.7.9(4), (p. 202), ~ is constant within 

the g-group for this error type; the standard deviation 

shown in Table 4.8.2 is zero. 
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For experimental unit-treatment interaction error, 

the third column of Table 4.B.1, all estimates are 

biased, but much less so for the highest valued g-group. 

This holds for T=ID and T~ID, for example for T1 =-6.5, the 

expectations are -9.33 and -6.54. The estimate at the 

higher valued group (h) is closer to the true value. 

Standard deviations again are much less at the highest 

valued g-group than at the lowest valued g-group, for 

"' example, 2.53 vs 13:6 for T1 . As discussed in Theorem 

3.7.9(4) the 'Os disperse the clusters of estimates for ~, 

hence the withing-group standard deviation for ~ is not 

zero in Table 4.8.2 for this error type. For the same 

reason, neither is the standard deviation for ~ for the 

normally distributed random error case (column four). 

" The standard deviation for ~ is due only to the 

dispersion effects of 'f's and ns. The standard deviation 

,.., 
for Tis due to these effects plus that of the change in 

randomization. Should the experimental units be 

reuseable, one might estimate the variance of the 'f's 

and/or thens by conducting all experiments within the 

same g-group of randomizations. 
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The case of normally distributed random error is 

similar to the case of experimental unit-treatment 

interaction error. One exception is that the biases for 

"' 72 and 73 are larger than for other levels of 7. 

The cases with unequal within-block error variances 

resemble the data of Tables 4.8.1 - 4.8.2 and are omitted. 

Their biases and standard deviations are slightly larger. 

TABLE 4.8.1 

RANDOMIZATION EXPECTED VALUE OF PARAMETER ESTIMATES 
FOR G-GROUPS WITH EXTREME VALUES OF ~s,~1~,b, 7 

EQUAL WITHIN-BLOCK ERROR VARIANCES 

Three Types of Error: 
Parameter: 
Name Value 
(l=min., h=max.) 

~ 10.0 1 

h 

b1 -1. 5 1 

h 

b2 1. 5 1 

h 

71 0/-6.5 1 

h 

72 0/-3.5 1 

h 

73 0/ 2.5 l 
h 

74 0/ 7.5 1 
h 

~ 2.0 l 
h 

Experimental 
Unit Unit-Treat. 

Interaction 

-80.13 12.42 
10.54 10.06 

23.08 -2.16 

-1. 65 -1. 52 

-23.08 2.16 

1. 65 1.52 

0/-6.5 -2.83/-9.33 
0/-6.5 -0.04/-6.54 

0/-3.5 4.04/ 0.55 

0/-3.5 -0.04/-3.54 

0/ 2.5 -7.19/-4.69 
0/ 2.5 0.04/ 2.46 

0/ 7.5 5.98/13.48 
0/ 7.5 0.12/ 7.62 

11.34 1. 75 
1.94 2.00 

Normally 
Distributed 

3.87 

9.68 

0.17 

-1.41 

-0.17 

1. 41 

-0.93/-7.43 

0.01/-6.40 

-0.44/-3.94 

0.63/-2.87 

6.51/ 9.01 
-0.67/ 1. 83 

-5.14/ 2.36 
0.06/ 7.44 

2.64 
2.03 
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TABLE 4.8.2 
RANDOMIZATION STANDARD DEVIATION OF PARAMETER ESTIMATES 

FOR G-GROUPS WITH EXTREME VALUES OF ~s,~lp,b, 7 
EQUAL WITHIN-BLOCK ERROR VARIANCES 

Three Types of Error: 
Parameter: 
Name Value 
(l=min., h=max.) 

p 10.0 1 

h 

b1 -1. 5 1 

h 

b2 1. 5 1 
h 

71 0/-6.5 1 

h 

72 0/-3.5 1 

h 

73 0/ 2.5 1 

h 

74 0/ 7.5 1 

h 

~ 2.0 1 
h 

Experimental 
Unit Unit-Treat. 

Interaction 

0.0 21. 5 
0.0 3.9 

0.0 6.96 
0.0 2.90 

as in as in 
b1 b1 

53.61 13.6 

4.96 2.53 

as in 13.6 
71 3.49 

as in 10.1 
71 1. 87 

as in 11. 2 
71 2.16 

0.0 2.30 
0.0 0.45 

Normally 
Distributed 

35.60 
4.17 

9.71 
1.14 

as in 
b1 

23.21 

3.72 

22.29 

3.81 

18.48 
3.53 

19.48 
4.64 

3.40 
0.43 

Tables 4.8.1 and 4.8.2 should be compared with 

Tables 4.4.1 and 4.4.2, (p. 295-262), which average over 

all randomizations with equal selection probability and 

with Tables 4.7.1 and 4.7.2, (p. 326-327), which also 

average over all randomizations, but with weighted 

selection probabilities. All of these tables display the 
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equal within-block error cases. The comparison shows an 

advantage by selecting the randomization used to conduct 

the actual experiment from among those with the largest 

value of the noncentrality·parameter for the adjusted 

covariate. For one covariate, these randomizations are 

the most balanced on the covariate. Model equation 

parameter estimates are improved for all three error 

types. Conclusions in hypotheses tests are improved for 

cases with experimental unit-treatment interaction or 

normally distributed random errors 

The reader interested in further developing these 

topies will find that Appendix E, (p. 389), lists 

suggested refinements of this work and extensions. 

Affixed to the inside back cover is a 3.5" hard diskette 

containing the SAS programs listed in Appendix F. The 

files are in ASCII and contain the JCL statements used to 

submit them. An IBM mainframe cartridge containing SAS 

transportable version~ of the data sets as well as the 

SAS programs of Appendix Fis available from the author. 

END OF TEXT 
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APPENDIX A 

DISTRIBUTIONS AND THEIR MOMENTS 

A.l The Multivariate Normal 
Distr.ibution 

The notation indicating that the random vector Y 
has the multivariate normal distribution, with mean xis, 
and var ianc.e-covar iance matrix V, is 

Y - Nn( x,, V ), with 
Y n x 1, X n x p, , p x 1, 
V n x n and positive definite. 
Unless otherwise stated V = x~2. 

The density function is 
f(x1 , x 2 , x 3 .r ••• , xn I xis, V) 

= C 2n) -l/ C 2n > IV i-11 2exp{-( 1/2) [ Y-Xisl i.t..i- 1 [ Y-x,1}. 
The e~pectation and variance are 

EN(Y) = x,, VarN(Y) = V. 
The second central moment is V - cx,>cx,> 1 ; all other 
moments are zero .. see Searle [1971, p. 43] for a 
development of distributions 1 - 3. For V singular see 
Searle [1971 p. 66-77]. 

A. 2 The Non-Central x2 Distribution 

For Y - N ex,, V) and ~V idempotent of rank n, 

~ = Y'~Y has the non-central x2 distribution, with 
degrees of freedom n, and non-centrality parameter 

,._ = c112>cxis>'~ ex,>. 

Typically, ~ is a projector matrix divided by ~2 , such as 

X(X'X)-X'/~2 , as in Searle .. Also, l.l.-1 = x~2, making ~V 
idempotent. The density function is 

f( u I rank(~V), ~, x,> 
oo { e-?.. ,._j uCl/2)n+j-1 

= I: 
j = o j! 2< 11 2 )n+j r l(l/2)n+j] 

e-Cl/2)u }, 
with u > O, n > O, and?..~ 0. 

When ?.. = 0, the summation is dropped. When ·:>.. ;i= 0, the 
non-central x2 is a weighted sum of central x2 density 
functions with a Poisson weight factor. The gamma 
function, r[a], is 
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r (a - 1) ! a=integer I 
rtal 

1 
[1·3·5, ···,(2a-l)n-{1/2) 

a=integer+(l/2) = 
2/n 

fa:, xa-1 e-x dx a>O, real 0 

See Mood, Graybill, Boas [1974], p. 534. 

The x 2 mean is Ex2CU) = n + 2~; the variance is 

Varx2CU) = 2n + SL Moments two through four are 

m2 = 2(n + 2~), m3 = 8(n + 31), 

m4 = 48(n + 41) + 4{n + 2~)2. 
[Kotz and Johnson, Vol. 6, p. 277.] 

A.3 The Non-Central F Distribufion 

For Un - x2 Cn,1) and Ud - x 2 {d), and Un and Ud 
statistically independent, the ratio 

Un In 
Ud / d 

F = F (n, d, 1) 

has the non-central F distribution. The density 
function is 

f(F)= ; { nC1/2)n+j aCl/2)d F(l/2)n+j-1 
j=O-

.;.[(d + nF)(l/2)(n+d)+k B[{l/2)n+j, 

with F ! O, n ! 1, d !1, 1 ! O, and 

11 
(1/2)d] JJ' 

Bta,bl = r(a) r(b) / rca+b). When 1 = o, the summation 
is dropped. The mean is EF(F) =[d/(d-2)][1 + 21/n l for 

d>2, and is undefined otherwise. The variance is 

{ 
2a 2 [ Cn+21)2 n + 41 l d > 4 

VarF(F)= n 2 (d-2) (d-2)(d-4)+ d 4 J 

undefined di 4. 

Other authors, SAS [1990, p. 578], Seber [1980, p. 5], 
and Pearson and Hartley [1976, p. 64] preface 1 in the 
density function with {1/2), thereby eliminating the need 
to repeat the (1/2) when equating the non-centrality 
parameter to a quadratic form. 

Pearson and Hartley [1976, p. 66-77] show examples 
of 1 for one- and two-way classifications. They include 
and show use of the Tang [1938] and Tiku [1967] charts 
of the power function for various values of«, n, d, and 
a function of 1. Morrison [1983, p. 127-131] has an 
example of the assumptions needed to use the charts to 

determine sample size. Duncan [1957] has graphs of 
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operating characteristics curves; Feldt and Mahnmoud 
[1958] have charts for determining the sample size needed 
to detect alternative values of the null hypothesis. 

I 
Scheffe [1959, p. 42 and 446-454] presents the Fox power 
charts. Both sets of charts are easier to read in 
certain regions. We are unable to find the Lehmer charts 

I 
promised in the note ending page 42 of Scheffe. Mann 
[1949, p. 74-75] discusses Hsu's [1941] result on the 
power of alternative tests. 

A.4 The Non-central Beta Distribution 

The transformation R = (nF)/(nF + d) yields the 
non-central Beta probability density function, 

f(R I n,d,·;,) 

cr., r e - "), ·),j I 
= :E <j 

• I 
R(l/2)n+j-1 (l-R) (1/2)d-l 

j = 0 l J • 

-;- B[ (1/2)n+j, (1/2)d l 

with R ! 0, n ! 1, d !1, ·;,,_ ! 0, and 
B[a,bl = r(a) r(b) / r(a+b). 

l 
J' 

When~= O, the summation is dropped. The reverse 
transformation is 

F = (dR)/[n(l-R)). 
The value of R may be obtained directly from the 
numerator and denominator ~ 2 random variables used to 
compute F, by substitution into the above definition for 
R. Note that R equals the coefficient of determination, 
usually denoted R2 . 

R =Un/ [Un+ Ud ), 
= Sum of Squares due to the Model 

Total Sum of Squares 
The original derivation of the F-test used R 

[Fisher, 1928, p. 671, distribution Cl. Snedecor first 
used the transformation from R to F, enabling him to 
condense the tables of probabilities from those developed 
for z = (l/2)1n [nR/(1-R)]. See Seber [1980, p. 9 and 
35] for this distribution. 

The advantage of the R transformation is that for 
some experimental designs, the denominator of R is 
constant for all randomizations, which is not the case 
for F. Unfortunately, the analysis of covariance has a 
denominator which changes with each randomization for 
both F.and R. 
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APPENDIX B 

THE R(• I·) NOTATION 

The notation R( , , · • ·) denotes the reduction 
in sum of squares due to fitting the model equation 
containing those terms within the parentheses. The 
reduction is from the total sum of •quares Y'Y. 

The sum·of squares may be partitioned as follows: 
R ( . ·, • , •.. ) = R ( • ' . I • • • I • ' • , ••• ) + R ( • ' • ' •.• ) ' 

where terms _in the last R ( •) are those following the bar 
( I) in the preceding term, RC· I·). The term RC· I·) is 
the further reduction in the sum of squares achieved by 
adding to the model equation those terms to the left of 
the bar after the model equation already contains those 
terms to the right of the bar. One reads the RC· I·) 
notation as "the reduction in sums of squares due to 
adding the terms ... (those to the left of the bar) to 
the model equation which already contains the terms ... 
(those to the right of the bar)". The terms to the right 
of the bar comprise the "reduced" model equation. When 
the terms to the left of the bar are added to those on 
the right of the bar, the combined terms comprise the 
"full" model equation. 

In all cases RC·,·,···) has the form 
Y' [ X(X'X)-X' l Y. 

The X matrix contains columns for those terms indicated 
within the parentheses of RC·,·,···). For example, the X 
matrix corresponding to R(JJ.,bl is [XJJ. I Xb], and the X 

corresponding to R(JJ.,b,i:c) is [XJJ. I ~ I Z]. (See Searle, 

1971, pages 246-249 for a more complete discussion of 
this notation. Searle [1987, p. 28-29] introduces a 
different reduction. notation, ~C • I·), not to be confused 
with the above RC· I·). 
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APPENDIX C 

SUMMATION SUM OF SQUARES TO PROJECTORS 

VIA KRONECKER PRODUCTS 

The X(X'X)- 1 X1 matrix for the block and treatment 
sum of squares may be generated directly using Kronecker 
products, denoted as 1'2l, and using ]"c as the c x c matrix 

of ones. The summation notation for the centered sums of 
squares guides the choice of terms as in the following 
example. For 

a b C d 
r: r: f 

.,..... 
(yi·k· - . ) 2 t Yi . .. ' l J 

X(X'X)-lx, = Xa ~ (1/b)]"b f:<1 
"'' ( lie - (1/c)]"c) lfil Cl/d)]"d . 

The subscripts of y,,,, and y,,,, determine the form of 

the term of the Kronecker product as follows: 
1. When the same letter subscript appears in 

bothy,,,, and y .... , as for i above, then 

use · :n:a. 

2. When bothy .... and y .... have been averaged 
over the same subscript, as is the case for j, 
then use ( 1/b) ]"b; for 1 use ( 1/1) ]"l. 

3. When the subscript letter appears in y .... , 

but not in y .... , as fork above, then use 

:n:c - (1/c)]"c. 
The subscripts of y .... must augment fastest from right 
to left in the same order as in the summation expression. 
A little manipulation will verify these rules. 

These rules were developed by Craig Jefferson and 
the author. 
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APPENDIX D 

SUMMARY OF CONTRIBUTIONS TO THE DISCIPLINE 

1. 
generate 
than the 

Develops a permutation matrix technique 
randomizations. This technique is more 

~ Yijksi~ method. 

to 
flexible 

2. Recasts the noncentrality param~ters into two 
parts, one changing with each randomization, the other 
constant for all randomizations. The first contains the 
the design matrix, which changes with each randomization. 
The second contains those terms typically not under the 
control of the experimentor. These terms are constant 
for all randomizations. 

3. Proves that, for certain models, different 
randomizations will provide identical values for certain 
estimates, analysis of variance terms, and noncentrality 
parameters, for experimental unit errors. 

4. Describes the clustering and dispersing effect 
of different types of errors on the values of certain 
estimates, analysis of variance terms, and noncentrality 
parameters. 

5. Proves a linkage between the noncentrality 
parameters in the single covariate case, useful in 
restricting randomizations to those randomizations which 
avoid low power. 

6. Provides an if and only if proof detailing when 
two matrices, such as design matrices, will have equal 
projectors, and hence equal sums of squares for a 
response variable. 

7. Develops the probability space for the 
randomization model, due in the main to Drs. Sahadeb 
Sarkar and Ignacy Kotlarski. 

8. Develops th~ model equation and probability 
space for a model combining unit errors and the classical 
normally distributed random errors. 

9. Shows the algebraic relationship between the 
errors of Dr. Kempthorne and those of Dr. Neyman. 
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10. Presents a two-stage randomiz~tion process which 
allows unequal selection probabilities, such as restric
ted randomization, to be easily incorporated into the 
defining and counting of the number of randomizations 
assigned nonzero selection probability. 

11. Extends the randomization test and power 
computation to the case of unequal selection 
probabilities, and defines such under simulation. 

12. Makes a modest start in linking the 
randomization model with concepts of survey sampling. 

13. Links the model assumptions with the model 
equations for the randomized block design with 
covariates, in both matrix and summation notations. 

14. Offers a more accessible presentation of the 
"Model X". 

15. Programs in SAS a method of generating simulated 
errors which are orthogonal to the covariate. 

16. Develops a computer-generated F-distribution 
analogue of normal probability paper, and other graphic 
means of analyzing numerical simulation results. 

17. Briefly reviews the early assumptions as to 
the characteristics of the error term in a regression 
model equation. 

18. Lists accessible literature on the analysis of 
covariance, the noncentrality parameter, generalized 
inverses, experimental unit and experimental 
unit-treatment interaction errors, exchangeability, and 
limiting theorems in the analysis of covariance. 

19. Gears its presentation to rapidly introduce one 
familiar with the general linear model to the terminology 
and topics of the randomization model. Concepts from 
diverse sources are logically organized and presented in 
a uniform notation. Frequent internal and external 
references are provided. 
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APPENDIX E 

COLLECTED SUGGESTED EXTENSIONS 

This work has suggested a variety of extensions, 
some of which may appeal to those with interests and 
strengths in matrix algebra, SAS computer programming, 
survey sampling, limit theorems, etc. Some are suitable 
for a statistics major's senior paper, others require 
course work taken at the master's level, and others are 
suitable for doctoral thesei. This dissertation will 
help beginners grasp the terminology and issues of 
research into the randomization model. Their progress, 
and the progress of the discipline, will be aided by a 
logical sequence of problems to solve. Such a sequence 
will span several students and years. A researcher who 
remains current in this area of research will need to 
alter the sequence to fit developments and available 
talent and interests. This author believes such an 
effort would be fruitful. 

I. First Steps - Generation of Errors 

1. Resolve the role of the singular normal 
distribution (singular V) in the case of normal errors 
forced to sum to zero for each randomization. Begin the 
literature review with the sources in Searle [1971, 
p. 69]. Construct a set of normally distributed random 
errors which are standardized to variance 30, but not to 
mean zero within each randomization. Test this set of 
errors with the F-distribution probability plots of 
Section 4.6.1, (p. 290). This may isolate the off
diagonality seen for (n) in Graph 4.6.1, (p. 295) to the 
forcing of a zero sum of errors within each randomization. 
Examine V alternative to that of p. 317. Examine the 
difference of (4.6.1), (p. 317), for patterns within 
g-groups or elsewhere. 

2. Once the case for the normally distributed error 
is resolved, proceed to the experimental unit error case, 
again examining alternative V. Possibly, such "sum to 
zero" errors invalidat~ use of the singular 
F-distribution. 

3. Discover those conditions on the errors and 
design matrix which ensure a zero matrix in (4.6.1), 
(p.318). 

4. With a singular Vas the variance-covariance 
matrix, use generalized least squares to compute the 
estimates and F-ratios; see Searle [19711, p. 220-223, 
and if necessary citations found there. 
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5. Review the question of changing the value of ~2 
with each randomization for the experimental unit
treatment interaction error cases. 

6. Consider using two normally distributed random 
error data sets. The one with mean zero and standard 
deviation constant.in all randomizations would be for 
comparisori with the experimental unit error cases. The 
second would have its mean and standard deviation in each 
randomization equal to that of the experimental 
unit-treatment interaction error case~ 

7. Review the construction of the unit errors. 
Examine the implications of forcing each set to be orthog
onal to the covariate. See Section 4.2.1, (p. 243). 

8. Discover if orthogonality with the covariate can 
be maintained for experimental unit-treatment interaction 
errors which also sum to zero over treatments (as these 
do) and over units within a block (these do not for k=4). 
See Section 4.2.2, (p. 248). 

II Further Understanding of the Projectors 

1. Discover the cause(s) of the extreme values of ~ 
for experimental unit error seen in Graph 4.5.3, (p.277). 

2. Discover the reason(s) for the constant shifts 
,. 

in the mean 7 for the experimental unit-treatment 
interaction and normally distributed random error cases 
as noted in Table 4.4.1, (p. 259). 

3. Discover the reason for the multiple observa-,. 
tions at points on Graph 4.7.1 for 7 1-71 vs Cox's ration 
two for experimental unit errors, (p. 331); seep. 214. 

5. Discover why the means (Table 4.4.1, p. 259) 
and standard deviations (Table 4~4.2, p. 262) for 
estimators and sums of squares for the normally 
distributed random error case are not what ·normal theory 
would predict. 

6. Disentangle the matrix which is under the 
experimenter's control from the expressions for the sums 
of squares as was done for the noncentrality parameters. 
See Theorems 3.7.10 and 3.7.11, (p. 211-216). 
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7. Prove the relatipnships between 
(a) the Cox ratios and the noncentrality parameter for 

the adjusted covariate (see Graph 4.8.3, p. 340), and 
(b) balancing on the covariate, g-groups and the 

serpentine method (see Section 3.2.6, p. 114) and 4.8, 
p. 335-362). Begin with a clearer understanding of Cox's 
results. 

III. Further Simulations Using this Paper's Model 

1. Streamline the computer programs to permit one 
submission to compute all 12 cases and analyze them. 
Input would be the six sets of errors, the two values of 
7, and the values of mean, block, and covariate values. 
Add one or more of the methods of power computation 
discussed in Section 3.6.5 (p. 176-177). Analysis could 
resemble Tables 4.4.1, (p. 259), 4.4.2, (p. 263), 482, 
(p. 361); Graphs 4.5.1, (p. 272), 4.6.1, (p. 295), 4.6.7, 
(p. 302); and Displays 4.8.7, (p. 350) and 4.8.10, 
(p. 356). Consider formal tests of the equality of two 
distributions. The analysis should have the capacity 
for alternative model equations and assumptions. 

2. Investigate the three methods of power 
computation of Section 3.6.5, (p. 176-177). 

3. Examine other values of errors and model 
equation parameters to obtain typical outcomes of the 
simulation. Vary the relative magnitude of errors, 
treatment effects, and covariates, and their variances. 

4. Examine the difference in dispersion effects of 
the experimental unit-treatment interaction and normally 
distributed random errors~ Seep. 200. 

5. Combine error types. See Sections 3.5, (p. 
150) and 4.2.4, (p. 253). 

6. Examine the effects of a missing observation, 
both missing experimental unit and missing treatment. A 
brief DATA step prior to the PROC GLM step of SAS 
program glm will do this. Adjust the reading of the glm 
output to obtain the desired types of sums of squares. 

7. Bootstrap the randomization distribution, see 
p. 133. 
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IV. Alternative Model Equations - Derivations 

1. Repeat the derivations of such Theorems as 2.6.4 
- 2.6.22 (p. 48-62), and 3.7.9-3.7.11 (p. 202-214) for: 
a) multiple experimental units per treatment per block, 

r>l. 
b) block x treatment interaction and placement of same 

when not statistically significant, see Bingham and 
Fienberg [1982]. 

c) multiple factors, wit~ and without f•ctor interaction. 
d) a covariate which changes with the treatment. 
e) multiple covariates, with and without covariate 

interaction, constant for all treatments and changing 
with the treatment or with one factor. Orthogonality to 
all covariates will require a new method of generating 
the error terms. 

f) the general linear hypothesis (p. 41). 

2. Derive the randomization model with mixed 
factors. The values of the covariates need to be 
considered as randomaly sampled from a larger 
population. 

3. Examine comparing model equations via the ratio 
of their respective noncentrality parameters. Such a 
ratio cancels the unknown variance term when it is 
known to be the same for both models. Seep. 40. 

V. Alternative Model Equations - Simulations 
1. With two blocks, add levels of the treatment 

variable to provide numerator and denominator degrees of 
freedom sufficient for the existence of the first 
four moments for the F-distribution. Compute values for 
them from the simulation. Construct Pearson curves to 
compare with the F-distribution. For the cases with 
nonzero 7 and/or ~, the noncentrality parameter changes 
with each randomization, as will the moments. A method 
is needed to compare such a set of moments with the 
single moment supplied by the F-distribution. The number 
of randomizations increases rapidly. Seep. 265 and 
Cook [ 1951B l. 

2. Examine the robustness to erroneous model 
equations and variance-covariance matrices of the 
randomization model, with equal and unequal assignment 
probabilities. See (3) of Section 3.2.8, p. 120. 

VI. Other Concepts 
1. Merge concepts from survey sampling and the 

randomization model. The super-population model (Section 
3.5.5, p. 163) appears to allow the experimental unit of 
the actual experiment to be viewed as a sample from a 
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larger population (p. 104). See Extensions III.5 and IV.2. 

2. The concept of a strategy (Section 3.4.4, p. 
147) permits developing estimators and test statistics 
tailored to particular sets of selection probabilities, 
such as those of Section 4.7, (p. 320) and 4.8, (p. 335). 
See Section 3.4.4, p. 147. 

3. Develop the role exchangeability and partial 
exchangeability play in the randomiiation model, Section 
3.5.6, p. 164). Develop the implications of de Finetti's 
representation theorem (p. 165). 

4. Develop an analysis of covariance analog of the 
regression technique of analysis of pure error. 
See p. 198. 

5. Consider models which reuse experimental units. 
The crossover model appears to use randomizations in the 
same g-group for both (all) experiments. Repeating the 
same treatment on some units may permit estimation of the 
magnitude of both types of unit errors. 

6. Drop Assumption 10 (p. 158) of independence of 
randomization and normal distribution. This alters the 
probability space of (3.5.3), (p. 157). 

7. Proving the conjecture concerning Theorem 
3 . 2 . 1 ( c ) , ( p . 113 -11 4 ) , · may be qui t e easy . 

8. The papers by Roux (p. 137) appear to suggest 
other simulations and relat.ionships than those herein. 

9. Sections 3.8.1-3.8.3 suggests some challenging 
approaches to finding the randomization expectation of 
the mean square errors in the analysis of covariance. 



Program 
Name 

meu 
meuxti 

cterms 

glm 

noncent 
test£ 
snormal 
probp 

cox 
gmeans 
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APPENDIX F 

LISTING OF COMPUTER PROGRAMS 

F.l SUMMARY OF COMPUTER PROGRAMS 

ASCII 
File 
Name 

spmeu 
spmeuxti 

spcterms 

spglm 

spnoncen 
sptestf 
spsnorm 
spprobp 

spcox 
spgmeans 

Program 
Function 

Create experimental unit error 
Create experimental unit - treatment 

error 
Generate observed Y values for 

various error terms 
Generate estimates and ANOVA terms; 

produce mearis, variances, 
histograms, and plots 

Generate noncentrality parameters 
Test F-distribution probability plots 
Test for singular normal distribution 
Combine estimates, anova terms, non-

centrality param~ters, error 
variances; compute OSL's, generate 
F-distribution probability plots. 

Analyze best and worst cases. 
Display means of estimator by g-group. 

This copy is supplied with a 3.5 inch hard diskette 
containing the above SAS programs. The ASCII files are 
on a standard DOS formatted diskette with file names in 
the second column above. 

An IBM catridge containing transportable versions of 
the SAS data sets and the above SAS.programs is available 
from the author. 
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Flow of Computer Programs 
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U13293A.SASPROG.CNTL(MEU) 
VPSPRINT 5.-1.002 WEDNESDAY NOVEMBER 4, 1992 14:59: 12 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1 
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD 

* * Program File: sasprog.cntl(meu) 
* Input File(s): none 
* Output File(s): sasdata.data(eu_err) 
* Experimental Unit error with within-block variance equal and not. 
* 
* Produces error terms -- e (sub ij). 
* Type= experimental unit·error. 
• Unique for each experimental unit. 
* Sums to zero within each block. 
• Block variance=(block sum .of squares)/(block num.of e.u.). 
* Linearly independent with the vector of covariates. 

* • Number of versions= 2. 
• 1. Block 1 variance EQuals block 2.variance = b_var. 
• Variable: euEQ 
• 2. Block 2 variance is v_ratio times block 1 variance. 
• Variable: euNE 
• The sum of squares as pooled over all blocks ts equal tn both 
• versions and equals b_var •·NRDW(eu) * n_blocks . .. . 

* 

%LET n blocks= 2; •number of blocks; 
%LET b-var = 30; •wtthtn-block variance when eq.; 
%LET v:ratio = 4; •var(block2)/var(block1) when not eq.; 
%LET max 1ter = 100; •maximum number of iterations; 
%LET toler = .00000001; •maximum {tan(beta) - tan(betahat)}; 

*For orthogonal tty of error and covariate, 
•toler should be less than .000 000 1 
*For thts, max_iter should be about 100.; 

• Values for the slope coe-ff1ctent and covariates 
• are defined tn data set tnittal, below . 
• •• . 

************* Debug Prtnt Swttch Macro and Switches **********; 
• Macro for debug printing follows:; 

. %MACRO db( db st te. db act) ; 
%IF %UPCASE(&db stte) • TRUE I %UPCASE(&db_stte) • T 

· %THEN %QUOTE(&db act); 
%MEND db; -

• 
*Debug print switches (dbps#): 
True·or t = on (tn upper and/or lower case), anything else= off.; 

%LET dbps1 = f *.Echo prtnt slope· and covariates; 
%LET dbps2 = f *Uniform random numbers; · 
%LET dbps3 = f *Initial errors and observed y; 
%LET dbps4 = f *Means and centered data; 
%LET dbps5 = f *Beta and rotation angle for centered data; 
%LET dbps6 = f •Rotation and trig function values; 
%LET dbps7 = f •Iteration results; 
%LET dbpsS = f *Postiteration betahat and eu; 
%LET dbps9 • f *Postiteration - character1stics of eu; 
%LET dbps10= f *Adjust to eq and ne block vartances; 
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%LET dbps11= f •Final characteristics of eu; 

••••••••••••••• Values of Slope Coefficient and Covariates•••*•**: 
• 
• Each row of data set 1n1t1al contains the block, the slope then the 
• covariate values for the experimental values from the same block. 
• Each row is one block, 1=1,2, ... ,b. 
• Variable beta= covariate slope coefficient. 
• Variables (columns) z1, z2, ... = covariates, Z(sub ij). 
•: 

DATA fn1tial; INPUT block_fd beta z1-z4; 
• Debug Prfnt option follows: : 

%db(&dbps1, PUT block fd= beta= z1= z2= z3= z4= 
CARDS; -

) : 

1 2 1 2 11· 14 . 
2 2 5 9 16 19 

•••••••••••••· Logfc of Program •••••••••••••••••••••••••••••••••••••; 
• 
• For block 1, posft a line, 
• Y(1j) = beta•Z(1j) = beta*covariate(1j). 
• Consider the intercept (=mu+block+treatment) as zero. 
• Y values of this line are the error-free superpopulat1on points. 
• They are also the true Y(1j) values without error. 
• Construct a vector of 1n1t1al errors which sum to zero. 
• Add the 1n1t1al errors to the vector of superpopulat1on points. 
• Thfs sum. 1s the 1n1tial observed y vector. 
• Until the least squares slope of Observed y vs·covariates=beta 
• iteratively: 
• Center they vector and covariates about the origin. 
• Rotate the observed y until 1ts least squares slope= beta. 
• Subtract out the superpopulat1on y. 
• Adjust the new errors to sum to zero. 
• Repeat the iteration. · 
• Adjust the errors to have the desired variances within each block. 
• Do thfs for equal and not equal block variances. 
•: 

••••••••••••••••••••• Logic of rotation••••••••••••••••••••••••••: 
• theta= tan(beta) for centered data. 
• Centered theta hat= c_thetah = angle of slope coefficient 
• of least squares fft of data centered on origin. 
• rotate= theta - c thetah = angle (radians) to rotate data 
• to obtain proper angle of theta . 
• 
• Angle of thetahat ts smaller than angle of theta. 
• nsmaller• fs less positive or more negative. 
• +betahat too shallow or -betahat too ~teep. 
• Therefore, rotate the data counterclockwise to increase fts 
• slope, betahat value and thetahat value . 
• 
• theta - thetahat =rotate< 0: 
* Angle of thetahat ts larger than angle of theta. 
• •Larger• ts more posttfve or less negative. 
• +betahat too steep or -betahat too shallow. 
• Therefore, rotate the data clockwise to decrease 1ts 
• slope," betahat value and thetahat value . 
• 
• Note, SAS takes stn(neg angle)= -sin( abs(angle)). 
*· ' 

PROC IML; 
••••••••••••••••••• Begtn looping through blocks••••••••••••••••••••: 
START mblock; 
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DO block= 1 TO &n blocks: 
*move covariates and beta from data set initial into proc iml.; 

USE initial; READ NEXT INTO indata; 
block id= indata(I 1, 1:1 I>: 
beta~ indata(I 1, 2:2 I): 
z = indata(I 1, 3:6 I): z = SHAPE(z,1,4); z=zC:: 

*************** In1tial error vector (X axis, variable z) ********: 
*create vector of random var i ab 1 es .. ; 

eu=J(4, 1,0); 
eu = uniform(repeat( 9284372828, 4, 1) ); 
*It appears impossible to use a variable as the seed.; 

* Debug Print options follow: ; 
%db(&dbps2, PRINT "initial random eu• block eu;): 

*Make errors sum to zero.; 
mean_eu = eu(I : I>: 
eu = eu - mean eu; 

* Debug Print options follow: ; 
%db(&dbps3, PRINT •centered au• block mean_eu eu;); 

******************** Initial observed y-values ******************: 
•sup_popy= superpopulation (error-free) values of Y.; 

sup_popy = beta*z; 
obs_y = sup_popy + eu; 

* Debug Print options follow: ; 
%db(&dbps3, PRINT "initial obs_y" block sup_popy eu obs_y ;); 

************* Center data about origin of XV plane**************: 
mean_y = obs_y(I : I): cent_y = obs_y - mean_y; 
mean z = z(I : )· cent z = z - mean z· 
cent:dat = cent_y'II cent_z: - - ' 

* Debug Print options follow: ; 
%db(&dbps4, PRINT block obs_y mean_y z mean_z cent dat;); 

************* Compute initial betahat for centered data-*********; 
c_zpart = INV(cent_zC:*cent_z)*cent_ze:; 
c_betah·= c_zpart*obs_y; *Beta hat for centered data; 
*The centered data gives beta=tan(angle of 1.sq. line.); 
*and centered theta hat. theta= angle in radians.; 
theta= ATAN(beta); c thetah = ATAN(c betah); 
rotate= theta - C thetah; *radians need to rotate.; 
S rotate• sin(rotate); C rotate= COS(rotate); 

%db(&dbps5, PRINT block c_betah theta c_thetah;); 
%db(&dbps6, PRINT block rotate s_rotate c_rotate;); 

******************** Begin data rotation************************; 
iter = O; 
START mrotate; 
DO WHILE ( ABS(rotate) > &toler & iter < &max_iter); 

cent_y = (cent~dat * (c_rotate // s_rotate) ) ; 
******* Reset errors to sum to zero****************************; 

eu = ceot_y - sup.,.eopy; 
mean_eu = eu(I : I): 
eu = eu - mean eu; 

******* Recompute centered y vector****************************; 
obs_y = sup_popy + eu; 
mean_y = obs_y(I : I>: 
cent y = obs y - mean y; 
cent:dat = cent_y 11 cent_z: . 

******* Recompute centered beta hat and theta******************: 
c_betah = c_zpart*cent_y; •was obs_y; 
c thetah = ATAN(c betah); 
rotate= theta - c thetah: •radians needed to rotate.; 
s rotate= sin(rotate); c rotate= cos(rotate); 
i tar = i ter + 1 ; -

* Debug Print options follow: 
%db(&dbps7, PRINT block toler &max iter 1ter 

beta c betah theta c thetah rotate;); 
****************·* Return-to top of while loop *****************; 
END; FINISH; RUN mrotate; 
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•••••••••••••••••••• Iteration for one block complete••••••••••••: 
•return post-iteration observed y values to original position.; 
•obtain post-iteration betahat.; 

obs_y = obs_y + sup_popy(I : I): •original eu had mean=O.; 
betahat = inv(zt•z)•zt•obs_y; 
eu= obs_y - sup__popy; 

• Debug Print options follow: ; 
%db(&dbps8, PRINT "poi:;titeration" block 1ter sum_eu 

. beta c betah betahat eu; ) ; 
•••••••••••• Report characteristics of post-iteration\eu ••••••••: 

mean_eu = eu( I : I): · 
eu = eu - mean eu· 
sum_eu = eu(,-: j) • NROW(eu); 
var eu = eu( #II I)/ NROW(eu); •mean= zero; 
ortiiog = eut•z: 

• Debug Print options follow: ; 
%db(&dbps9, PRINT "postiter • block iter rotate betahat eu 

. sum_eu var_eu orthog;); 
•••••••••••••••• Adjust eu to desired variances ••••••••••••••••: 

eu_eq = SQRT(&b_var / var_eu) II eu; 
•For not equal error.s, obtain total sum of squares for equal 
variances in all blocks. Divide into v ratio+ 1 parts. 
Multiply block 1 by 1 part and block 2 by v ratio parts. 
Divide by existing block variance. - • 
Square root the above. Multiply by existing eu.; 

IF block= 1 THEN eu ne = SQRT( 
&b var • NROW(eu) -. &n blocks / (&v rat.io +1) / NROW(eu') 

- I var eu )- # eu; -
IF block= 2 THEN eu-ne = SQRT( 

&b var• NROW(eu) * &n blocks/ (&v_ratio +1) / NROW(eu) 
• iv ratio / var eu T II eu; 

•compute final observed y: 
obs_yeq = sup_popy + eu_eq; 
obs_yne = sup_popy + eu_ne; 

• Debug Pr.int options fol low: ; 
%db(&dbps10, PRINT •final eq & ne• 

eu_eq obs_yeq sup_popy obs_yne eu_ne ;); 
•••••••• Report characteristics of final eu_eq and eu_ne •••••••••: 

betah eq= INV(zt•z).•zt•obs yeq; 
mean_eq = eu_eq<I : I>: -
eu = eu eq - mean eq; 
sum_eq·-= eu_eq(,-: I>• NRDW(eu~eq); 
var_eq = eu_eq( 1111 I)/ NROW(eu_eq); •mean= zero; 
orthogeq = eu_eqt•z;. 

betah_ne= INV(zt•z)•zt•obs_yne; 
mean_ne = eu_ne( I : I); 
eu = eu ne - mean ne· · 
sum ne -= eu ne(,-: I>• NROW(eu ne); 
var:ne = eu:ne( ##I>/ NROW(eu_ne); •mean= zero; 
orthogne = eu_net•z; 

• Debug Print options follow: ; 
%db(&dbps11, PRINT •char. of final eu• 

block iter sum eq var eq orthogeq betah_eq 
sum-ne var-ne orthogne betah_ne ;); 

••••••••••••• Move errors to output-file one e.u. per row•••••••••: 
plot= ( D0(1, NROW(z),1) )t; •Do yields a row vector; 
b num = J(4,1,1) # block; 
IF block= 1 then 

CREATE eu err 
VAR{ b num plot z eu_eq eu_ne sup__popy obs_yeq obs~yne }; 

APPEND; -
••••••••••••••••••••• End of One Block ••-••••••••••••••·•••••••••••••; 

END; FINISH; RUN mblock; 
CLOSE eu_err; 
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********************** End of All Blocks****************************; 
RUN; 
* 
************** Label and Print Data Set eu err***********************; 
DATA eu_err; SET eu err; -

covar = z; block-= b num; drop z b num; 
IF plot = 1 THEN plabel = 'A'; -*for graphic output; 
IF plot = 2 THEN plabel = 'B'; 
IF plot 3 THEN plabel 'C'; 
IF plot = 4 THEN plabel = 'D'; 
LABEL block= 'block' 

plot= 'experimental unit' 
covar ='covariate' 
eu eq ='e.u. error var-eq' 
eu-ne ='e.u. error var-ne' 
sup_popy='1st superpopulation y' 
obs_yeq ='obs. y var-eq' 
obs_yne ='obs. y var-ne' 
plabel = 'plot id label' 

PROC PRINT DATA=eu_err; 
TITLE1 'Experimental Unit Errors for cases: '; 
TITLE2 '(a) block variances.are equal and'; 
TITLE3 '(b) block variance of block 2 is 4 times that of block 1'; 

************** Plot Data for Visual Examination**********************; 
PRDC PLOT DATA=eu err UNIFORM; BY block; 

PLOT sup_popy-* covar = plabel 
obs_yeq * covar ='E' 
obs_yne * covar ='N' 

/ OVERLAY HPOS=SO HAXIS=O TO 19 BY HREF=O.O VREF=O.O; 
='N' 
1 VREF=O.O; 

PLOT eu_eq * covar ='E' eu ne * covar 
/ OVERLAY HPOS=50 HAXIS;O TO 19 BY 

PROC PLOT DATA=eu err UNIFORM; 
PLOT sup_popy-* covar = plabel 

obs_yeq * covar ='E' 
obs_yne * covar ='N' 

/ OVERLAY HPOS=SO HAXIS=O TO 19 BY HREF=O.O VREF=O.O; 
PLOT eu eq * covar ='E' eu ne * covar 

/ OVERLAY HPOS=50 HAXIS;O TO 19 BY 
='N' 
1 VREF=O.O; 

* ************** Move temporary data to permanent SA$ save file. *******; 

DATA sasdata.eu_err; SET eu_err; 
RUN; 
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U13293A.SASPROG.CNTL(MEUXTI) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:14 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*JOBPARM ROOM=R,FORMS=9001,COPIES=1 
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD 

* * Program File: sasprog.cntl(meuxti) 
* Input File(s): none 
* Output File(s): sasdata.data(euti_err) 
* Experimental Unit-treatment interaction error 

with wtthtn-block variances equal and not. 
* * Produces error terms -- e (sub tj). 
* Internal to this and program meu, both error types are named eu. 
* Type= experimental unit - treatment interaction error. 
* Unique for each experimental untt. 
* Sums to zero over each plot, for each treatment. 
* Sums to near zero over each treatment, for each plot. 
* Errors for last treatment are -(sum of errors for rest). 
* Block variance=(block sum of. squares)/(block num.of e.u.). 
* .Linearly independent with the vector of covariates. 

* * Number of verstons = 2. 
* 1. Block 1 variance EQuals block 2 variance= b var. 
* Variable: euEQ for each treatment -
* 2. Block 2 variance is v ratio times block 1 variance. 
* Variable: euNE for each treatment 
* The sum of squares as pooled over all blocks ts equal in both 
* versions and equals b_var * NROW(eu) * n_blocks . .. . 

* 
* 
* 
* *: 

%LET n blocks= 2; •number of blocks; 
%LET n-treats = 4; *number of treatments; 
%LET b-var = 30; *within-block variance when eq.; 
%LET v-ratio = 4; •var(block2)/var(block1) when not eq.; 
%LET max iter = 100; •maximum number of iterations; 
%LET toler = .00000001; *maximum {tan(beta) - tan(betahat)}; 

*For orthogonality of error and covariate, 
•toler should be less than .000 000 1 
•For this, max_iter should be about 100.; 

Values for the slope coefficient and covariates 
are defined tn data set initial, below. 

************* Debug Print Switch Macro and Switches **********; 
* Macro for debug printing follows:; 

%MACRO db(db site.db act); 
%IF %UPCASET&db site)= TRUE %UPCASE(&db_site) = T 

%THEN %OUOTE(&db act); 
%MEND db; -

* . 
*Debug print switches (dbps#): 
True or ta on (in upper and/or lower case), anything else• off.; 

%LET dbps1 = false *Echo prjnt slope and covariates; 
%LET dbps2 = f *Uniform randOJII numbers; 
%LET dbps3 •· f *Initial errors and observed y; 
%LET dbps4 = f *Means and centered data; 
%LET dbps5 = f *Beta and rotation angle for centered data; 
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%LET dbpsG = f *Rotation and trig function values; 
%LET dbps7 f *Iteration results; 
%LET dbpsS = f *Postiteration betahat and eu; 
%LET dbps9 f *Postiteration - characteristics of eu; 
%LET dbps10= f *Adjust to eq and ne block variances; 
%LET dbps11= f *Final characteristics of eu; 
%LET dbps12= f *Initial eu for last treatment; 
%LET dbps13= f *Final eu for last treatment; 
%LET dbps14= f *Final characteristics of eu-last treat; 

*************** Values of Slope Coefficient and Covariates*******; 

* * Each row of data set initial contains the block, the slope then the 
* covariate values for the experimental values from the same block. 
* Each row is one block, i=i,2, ... ,b. 
* Variable beta= covariate slope coefficient. 
* Variables (columns) z1, z2, ... = covariates, Z(sub ij). 
* . . 

DATA initial; INPUT block_:id beta z1-z4 ; 

* Debug Print option follows: ; 
%db ( &dbps 1 , PUT block - id= beta= z1= z2= z3= z4= ) ; 

CARDS; 
1 2 1 2 11 14 
2 2 5 9 16 19 

************* Logic of Program***********************~*************; 
* 
* Repeat the following for the first n_treats-1. 
* Errors for the last treatment are defined to be the 
* negative of the sum of errors for the first n_treats-1 treatments. 

* * For block i, posit a line, 
* Y(ij) = beta*Z(ij) = beta*covariate(ij). 
* Consider the intercept (=mu+block+treatment) as zero. 
* Y values of this line are the error-free superpopulation points. 
* They are also the true Y(ij) values without error. 
* Construct a vector of initial errors which sum to zero. 
* Add the initial errors to the vector of superpopulation points. 
* This sum is the initial observed y vector. 
* Until the least squares slope of observed y vs covariates=beta 
* iteratively: 
* Center they vector and covariat~s about the origin. 
* Rotate the observed y until its least squares slope= beta. 
* Subtract out the superpopulation y. 
* Adjust the new errors to sum to zero. 
* Repeat the iteration. · 
* Adjust the errors to have the desired variances within each block. 
* Do this for equal and not equal block variances. 
*; 

********************* Logic of rotation**************************; 
* theta= tan(beta) for centered data. 
* Centered theta hat= c_thetah = angle of slope coefficient 
* of least squares fit of data centered on origin. 
* rotate= theta - c thetah = angle (radians) to rotate data 
* to obtain proper angle of theta. 

* * Angle of thetahat is smaller than angle of theta. 
* "Smaller• is less positive or more negative. 
* +betahat too shallow or -betahat too steep. 
* Therefore, rotate the data .counterclockwise to increase its 
* slope, betahat value and thetahat value. 

* * theta - thetahat =rotate< 0: 
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* Angle of thetahat ts larger than angle of theta. 
* "Larger• is more positive or less negative. 
* +betahat too steep or -betahat too shallow. 
* Therefore, rotate the data clockwise to decrease tts 
* slope, betahat value and thetahat value. 
* 
* Note, SAS takes stn(neg angle)= -sin( abs(angle)). 
*: 

PROC IML; 
******************* Begin looping through blocks********************: 
START mblock; 
0.0 block = 1 TD &n blocks; 

*Create column vector of block id number.; 
b num = J(4,1,1) # block; 

•tnitialtze totals of error vectors; 
t_eu_eq = J(4,1,0); t_eu_ne = J(4,1,0): 
•move covariates and beta from data set initial tnto proc iml.; 

. USE initial; READ NEXT INTO indata; 
block_td = tndata(I 1, 1:1 I): 
beta= indata(I 1, 2:2 I>: 
z = tndata(I 1, 3:6 I): z = SHAPE(z,1,4); z=zt: 

*Create column vector of plot id numbers.; 
plot= ( 00(1, NRDW(z),1) )$; *DO yields a row vector: 

***************** Begtn looping through treatments****************: 
START mtreat; 
DO treat= 1 to &n treats-1; 

*Create column vector of treatment td numbers.; 
t num = J(4,1,1) # treat; 

**************** Initial error vector (X axis, variable z) ********: 
•create vector of random variables.; 

* eu=J(4,1,0): 
eu = untform(repeat( 5382743916, 4, 1) ): 
*It appears tmposstble to use a variable as the seed.; 

• Debug Prtnt options follow: : 
%db(&dbps2, PRINT •tnitial random eu" block eu:): 

*Make errors sum to zero.; 
mean_eu = eu(I : . f): 
eu = eu - mean eu; 

* Debug Print options follow: ; 
%db(&dbps3, PRINT •centered eu• block mean_eu eu;): 

******************** Initial observed y-values ******************: 
•sup_popy= superpopulatton (error-free) values of Y.; 

sup_popy = beta•z: 
obs_y = sup_popy + eu; 

* Debug Prtnt options fol low: ; 
%db(&dbps3, PRINT • fnitfal obs_y• .block sup_popy eu obs_y : ) : 

************* Center data about orig.in of XV plane **************: 
mean_y = obs_y(I : f); cent_y = obs_y - mean_y; 
mean z = z(I : ): cent z = z - mean z: 
cent:dat = cent_y II cent_z: - -

* Debug Print options follow: : 
%db(&dbps4, PRINT block obs_y mean_y z mean_z cent dat;) :. 

************* Compute fnitfal betahat for centered data-*********: 
c_zpart = INV(cent_zt•cent_z)•cent_zt: 
c betah = c zpart•obs y; *Beta hat for centered data; 
*The centered data gtves beta=tan(angle of 1.sq. line.>: 
•and centered theta hat. theta= angle in radians.; 
theta= ATAN(beta): c thetah = ATAN(c betah); 
rotate= theta - C thetah; *radians need to rotate.; 
s rotate= sin(rotate): c rotate= cos(rotate); 

%db(&dbps5, PRINT block c_betah theta c_thetah;); 
%db(&dbps6, PRINT block rotate s_rotate c_rotate:): 

******************** Begin data rotation************************: 
fter = O; 
START mrotate: 
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DO WHILE ( ABS(rotate ) > &taler & iter < &max_iter); 
cent_y = (cent_dat * (c_rotate // s_rotate) ) ; 

******* Reset errors to sum to zero****************************; 
eu = cent y - sup popy; 
mean_eu =-eu(I : T>: 
eu = eu - mean eu; 

******* Recompute centered y vector****************************; 
obs_y = sup_popy + eu; 
mean_y = obs_y(f : I); 
cent_y = obs_y - mean_y; 
cent_dat = cent_y II cent_z; 

******* Recompute centered beta hat and theta******************; 
c_betah = c_zpart•cent_y;· •was obs_y; 
c thetah = ATAN(c betah); 
rotate= theta - c thetah; *radians needed to rotate.; 
S rotate= sin(rotate); C rotate= COS(rotate); 
iter = iter + 1; -

* Debug Print options follow: ; 
%db(&dbps7, PRINT block taler &max iter iter 

beta c betah theta c thetah rotate;); 
***************** Return-to top of While loop*****************; 
END; FINISH; RUN mrotate; 

******************** Iteration for one error complete************;! 
•return post-iteration observed y values tooriginal position.; 
*obtain post-iteration betahat.; 

obs_y = obs_y + sup_popy(I : I): *original eu had mean=O.; 
betahat = tnv(z••z)•z••obs_y; 
eu= obs_y - sup_popy; 

* · Debug Print options follow: ; 
%db(&dbps8, PRINT •posti-teration" block iter sum_eu 

beta c betah betahat eu;); 
************ Report characteristics of post-iteration eu ********; 

mean_eu = eu(I : I): 
eu = eu - mean eu· 
sum_eu = eu(1-= I>* NROW(eu); 
var _eu = eu( /IN I) / NROW(eu); •mean = zero; 
orthog = eu••z: 

* Debug Print options follow: ; 
%db(&dbps9, PRINT •postiter • block iter rotate betahat eu 

sum_eu var_eu orthog;); 
**************** Adjust eu to desired variances ****************; 

eu_eq = SQRT(&b_var / var_eu) # eu; 
•For not equal errors, obtain total sum of squares for equal 
variances in all blocks .. Divide into v ratio+ 1 parts. 
Multiply block 1 by 1 part and block 2 by v_ratio parts. 
Divide by existing block variance. 
Square root the above. Multiply by existing eu.; 

IF block= i THEN eu ne = SQRT( 
&b var *.NROW(eu) -. &n blocks/ (&v ratio +1) / NROW(eu) 

- . I var eu )- # eu; -
IF block= 2 THEN eu-ne = SQRT( 

&b var* NROW(eu) * &n blocks/ (&v_ratio +1) / NROW(eu) 
* iv ratio / var eu T # eu; 

*Compute final observed y; 
obs_yeq = sup_popy + eu_eq; 
obs_yne = sup_popy + e_u_ne; 

* Debug Print options follow: ; 
%db(&dbps10, PRINT •final eq & ne• 

eu_eq obs_yeq sup_popy obs_yne eu_ne ;); 
******** Report characteristics of final eu_eq and eu_ne *********; 

betah eq= INV(z••z)•z••obs yeq; 
mean_eq = eu_eq<l : I>: -
eu = eu_eq - mean_eq; 
sum eq = eu eq(I : I>* NROW(eu eq); 
var:eq = eu:eq( NN I>/ NRDW(!u_e~); •mean= zero; 



* 

orthogeq = eu_eq¢*z; 

betah_ne= INV(z¢.*z)*z¢*obs yne; 
mean_ne = eu_ne(I : I); -
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eu = eu ne - mean ne; 
sum ne -= eu ne(1-= I)* NROW(eu ne); 
var:ne = eu:ne( ## I>/ NROW(eu_ne); *mean= zero; 
orthogne = eu_ne¢*z; 

Debug Print options follow: : 
%db(&dbps11, ·PRINT "char. of final eu" 

block treat iter sum_eq var_eq orthogeq betah eq 
sum ne var ne orthogne betah ne ;); 

************* Move errors to output-file one e.u. per row*********; 
IF block= 1 & treat= 1 then 

CREATE eut1 err 
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VAR{b num- plot t num z,eu_eq eu_ne sup_popy obs_yeq obs_yne }; 
APPEND; - -
t eu eq = t eu eq + eu eq; *Cumulative totals for last treatment.; 
t-eu-ne = t-eu-ne + eu-ne; 

********************* End of One Treatment*************************; 
END; FINISH; RUN mtreat; 

**************** End of All but Last Treatment**********************; 

********************* Create errors for final treatment************; 
t_num = J(4,1,1) # treat; 
eu_eq = - t_eu_eq; *mean already equals zero; 
eu_ne = - t eu ne· 
var_eq = eu eq(1·## I) 1 NROW(eu eq); *mean= zero; 
var_ne = eu:ne( ## ) / NROW(eu:ne); *mean= zero; 

* Debug Print options follow: ; 
%db(&dbps12, PRINT "initial last treat• 

* 

* 

block treat eu eq var eq eu ne var ne;); 
**************** Adjust eu to desired variances ****************; 

eu~eq = SQRT(&b_var / var_eq) # eu_eq; 
IF block= 1 THEN eu ne = SQRT( 

&b var* NROW(eu) -* &n blocks/ (&v ratio +1) / NROW(eu) 
- I var ne )- # eu ne; -

IF block= 2 THEN eu-ne = SQRT(-
&b var* NROW(eu) * &n blocks/ (&v ratib +1) / NROW(eu) 
* iv ratio / var ne T # eu ne; -

*Compute final observed y for last treatment: 
obs_yeq = sup_popy + eu_eq; 
obs_yne = sup_popy + eu_ne: 

***** Report characteristics of errors for final treatment*****; 
betah_eq= INV(z¢*z)*z¢*obs_yeq; 
mean eq = eu eq( I : ·I); 
sum_eq eu:eq( : . ) * NROW(eu_eq); 
var_eq = eu_eq( ##I>/ NROW(eu_eq); *mean= zero; 
orthogeq = eu_eq¢*z; 

betah_ne= INV(z¢*z)*z¢*obs_yne: 
mean_ne eu ne(I : I); 
sum_ne = eu-ne( : ) * NROW(eu ne); 
var_ne = eu:ne( ##I>/ NROW(eu_ne); 
orthogne = eu_ne¢*z: 

Debug Print options follow: ; 
%db(&dbps13, PRINT "final eu-last treat" 

block treat iter eu eq eu ne :) ; 

*mean= zero: 

Debug Print options follow: ; -
%db(&dbps14, PRINT "char. of final 

block treat iter sum_eq var_eq 
sum_ne var_ne 

eu-last treat• 
orthogeq betah eq 
orthogne betah:ne ;): 

APPEND; 

********************* End of One Block*****************************; 
END; FINISH; RUN mblock; 
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********************** End of All Blocks****************************; 
CLOSE euti_err; 

* 
RUN; *End of creation of errors.; 
* exit proc iml; 
************** Label and Print Data Set euti_err *********************; 
TITLE1 'Experimental Unit x Treatment Interaction Errors'; 
DATA euti err; SET euti err; 

covar =-z; block= b-num; treat= t_num; drop z b_num t num; 
IF plot = 1 THEN plabel = 'A'; *for' graphic output; 
IF plot = 2 THEN plabel = 'B'; 
IF plot = 3 THEN plabel = 'C'; 
IF plot = 4 THEN plabel = 'D'; 
IF treat= 1 THEN tlabel = 'A'; *for graphic output; 
IF treat= 2 THEN tlabel = 'B'; 
IF treat= 3 THEN tlabel = 'C'; 
IF treat= 4 THEN tlabel = 'D'; 
LABEL block= 'block' 

plot= 'experimental unit' 
treat= 'treatment' 
covar ='covariate' 
eu_eq ='e.u. error var-eq' 
eu ne ='e.u. error var-ne' 
sup__popy='superpopulation y' 
obs_yeq ='obs. y var-eq' 
obs_yne ":''obs. y var-ne' 
plabel = 'plot id label' 
tlabel = 'treatment 1d label' 

PROC PRINT DATA=euti err; 
VAR block plot treat covar eu_eq eu ne sup__popy 

obs_yeq obs_yne plabel tlabel; 
TITLE2 '(a) within-block variances are equal and'; 
TITLE3 '(b) block variance of block 2 is 4 times that of block 1'; 
PROC MEANS DATA=euti err N SUM MEAN VAR MIN MAX VARDEF=N; 

BY block treat; -
VAR eu_eq eu_ne; 

TITLE2 ; 
TITLE3 ; 

PROC SORT DATA=euti err; BY block plot; 
PROC PRINT DATA=euti:err; 

VAR block plot treat covar eu_eq eu ne sup__popy 
obs_yeq obs_yne plabel tlabel; -

TITLE1 'Experimental Unit Errors for cases: '; 
TITLE2 ; 
TITLE3 ; 

PROC MEANS DATA=euti err N SUM MEAN VAR MIN MAX VARDEF=N; 
BY block plot ; -
VAR eu_eq eu_ne; 

PROC MEANS DATA=euti_err N SUM MEAN VAR MIN MAX VARDEF=N; 
BY block; 
VAR eu_eq eu_ne; 

PROC MEANS DATA=euti_err N SUM MEAN VAR MIN MAX VARDEF=N; 
VAR eu_eq eu_ne; 

PROC SORT DATA=euti err; BY block treat; 
************** Plot Data-for Visual Examination**********************; 
PROC PLOT DATA=euti err UNIFORM; BY block treat; 

PLOT sup__popy *-covar = plabel 
obs yeq * covar ='E' 
obs:yne * covar ='N' 



PLOT 

PROC PLOT 
PLOT 

PLOT 

PROC PLOT 
PLOT 

PLOT 
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/ OVERLAY HP0S=50 HAXIS=O TO 19 BY 1 
eu eq * covar ='E' eu ne * covar ='N' 
/ OVERLAY HP0S=50 HAXIS=O TO 19 BY 1 

DATA=euti err UNIFORM; BY block; 
sup_popy *-covar = plabel 

obs yeq * covar ='E' 
obs:yne * covar ='N' 

HREF=O.O VREF=O.O; 

VREF=O.O; 

/ OVERLAY HP0S=50 HAXIS=O TO 19 BY 1 HREF=O.O VREF=O.O; 
eu eq * covar =tlabel eu ne * covar =tlabel 
/ HPOS=50 HAXIS=O TO 19 BY- VREF=O.O: 

DATA=euti err UNIFORM; 
sup_popy *-covar = plabel 

obs_yeq * covar ~'E' 
. obs_yne * cover ='N' 

/ OVERLAY HPOS=50 HAXIS=O TO 19 BY 1 HREF=O.O VREF=O.O; 
eu eq * covar =tlabel eu ne * covar =tlabel 
/ HPOS=50 HAXIS=O TO 19 BY-1 VREF=O.O; 

************** Move temporary data to permanent SAS save file. *******: 
DATA sasdata.euti err; SET eut1 err; 
RUN; *End of program; -
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U13293A.SASPROG.CNTL(CTERMS) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:05 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1 
//51 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SASDATA DD DSN=U13293A.SASDATA.0ATA,DI5P=OLD 

PROC CONTENTS DATA=sasdata._ALL_ 

* 
* Program File: sasprog.cntl(cterms) Collect TERMS 
* Step One: 
* Input File(s): eu err and euti err 
* Output File: rm::::error one obs per eu per randomization 
* Step Two: 
* Create standardized normal errors, store in file nor_err. 
* Step Three: 
* Merge eu, euti, and normal error, store in file all_err. 
* Step Four: 
* Combine (sum) errors, store in file comb_err. 
* Step Five: 
* Standardize combined sums, store in file std_err. 
* Step Six: 
* Create observed y's for combined errors, store in file obs_y. 
* Step Seven: 
* Attach variable g_group to the file. 
* 
* 
* 
* Output File(s): sasdata.data(obs_y) 
* One record per experimental unit for each 
* experimental-randomization= {(tl)**b}*{bt} 
* 
* Collects model parameter terrns (mu, blocks, treats, beta, covar) 
* and error terms (e.u., eu-ti, and normal). 
* 
* With the above, construct the various observed y values. 
* Two super population y values are defined: 
* s__popynt mu+ b_val + beta*z (no treatment) 
* s_popywt =mu+ b_val + beta*z + trt_val (with treat.) 
* 
* 
* 
*************** Debug Prin~ Switch Macro and Switches **********; 
* Macro for debug printing follows:; 

%MACRO db(db site,db act); 
%IF %UPCASE(&db site)= TRUE %UPCASE(&db_site) = T 

%THEN %QUOTE(&db act); 
%MENO db; -

* *Debug print switches (dbps#): 
True or t = on (in upper and/or lower case), anything else= off.; 

%LET dbpsi = f *data set eu_err & euti_err as into IML; 
%LET dbps2 = f *output to rm_err within loop of IML; 
%LET dbps3 = f *data set rm err - first observations; 
%LET dbps4 = f *data nor_err eq var only - 1st obs; 
%LET dbps5 = f *data nor_err eq & ne var - 1st obs; 
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%LET dbps6 = f 
%LET dbps7 = f 
%LET dbps8 = f 
%LET dbps9 = f 
%LET dbps10= f 
%LET dbps11= f 

*data 
*data 
*data 
*data 
*data 
*· . 

all err - eu, euti & normal-1st obs; 
comb_err before standardizing; 
std_err after 1st standardizing; 
std_err after 2nd standardizing; 

obs_y observed y values; 

************************ End of Debug Print Swithces ****************; 

*********************************************************************· . 
*Step One: 
Produce data set of one obs, per eu, per randomization, with 

experimental unit and au-treatment interactio.n errors.; 

/* *Successful step turned off. ; 

PROC IML; 
******************* Enter .. Model Equation Terms and Errors 
*Define constants; 

mu val = {10.0}; 
b valm = {-1.5, 1.5}; 
trt valm = {-6.5, -3.5, 2.5, 7.5}; 
beta= {2.0}; 
labels= { •A• , "B", "C", •D• }; 

*Collect experimental unit errors; 

***********· . 

* vector name eu_eq and 9U_ne appear in two input data sets 
* Two super population y values are defined: 
* s_popynt = mu_val + b_val + beta•z (no treatment) 
* s_popywt = mu_val + b_val + beta•z + trt_val (wfth treat.) 
* 
* eu_eqm = J(8,1,0); 
sup_ym = J (8., 1 ,0); 
USE sasdata.eu err; 

READ ALL VAR{eu_eq} 
READ ALL VAR{eu ne} 
READ ALL VAR{covar} 

*Collect experimental 
eutt eq1 = J(32,1,0); 
eutf-eqm = J( 8,4,0); 
USE sasdata.eutf err; 

READ ALL VAR{eu_eq} 
READ ALL VAR{eu ne} 

*Reshape to block-plot 
eutf_eqm( 1:4 1 ) 
eutt_eqm( 1:4 2 ) 
euti eqm( 1:4 , 3 ) 
euti~eqm( 1:4 4 ) 
eutf-eqm( 5:8 1 ) 
eutf-eqm( 5:8 2 ) 
eutf-eqm( 5:8 3 ) 
euti:eqm( 5:8 4 ) 

eutf nem( 
euti-nem( 
eutf-nem( 
eutf-nem( 
eutf-nem( 
eutf-nem( 
eutt-nem( 
eutt:nem( 

1 :4 
1 :4 
1 :4 
1 :4 
5:8 
5:8 
5:8 
5:8-

1 
• 2 

3 
4 
1 
2 
3 

• 4 

) 
) 
) 
) 
) 
) 
) 
) 

eu nem = J(B,1,0); zm = J(S,1,0): 
*Wtthout mean, .blocks, or treatments; 

INTO 
INTO 
INTO 

eu_eqm; 
eu_nem; 
zm; 

unit-treatment interaction errors; 
euti ne1 = J(32,1,0): 
eutf:nem = J( 8,4,0): 

INTO eut1_eq1; 
INTO eut f ne1: 

rows by treatments 
• euti_eq1( 1:4 
= eut1_eq1( 5:8 
= eutf_;eq1( 9:12 
= euti_eq1( 13:16 
= eutf eq1( 17:20 
= eutf-eq1( 21:24 
= eut1-eq1( 25:28 
= eut1:eq1( 29:32 

columns.: 
) ; 
) ; 
) ; 
) ; 
) ; 
) ; 
) ; '; 

= eutf ne1( 
• eutf-ne1( 
= euti-ne1( 
= eutf-ne1( 
= eutt-net( 
= eutt-ne1( 
= euti-ne1( 
• eutt:ne1( 

1: 4 ) ; 
5:8 ); 
9: 12 ) ; 

13:16 ); 
17:20 ) ; 
21: 24 ) ; 
25:28 ); 
29:32 ); 

* Debug Print options follow: ; 
%db(&dbos1. PRINT "Data fncut from eu err and eutf err {dbcst)•: 
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PRINT mu val b_valm trt_valm 
labels 
eu_eqm eu_nem eut1_eqm 

beta zm 

eut1_nem; ); 
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************************ Create Output Data Set*********************: 
block= J(1,1,0); plot= J(1,1,0); 
*Daia set Randomization Model ERRor; 
CREATE rm err 

VAR{ exp_rand. b1_rand b2_rand block plot plabel treat tlabel 
mu val b val trt val beta z 
eu=eq eu=ne euti_eq eut1_ne s_popynt s_popywt }; 

************************ Define Randomization Pattern ***************; 
rpattern = 

{1 2 3 4 ' 
1 2 4 3 . 1 3 2 4 . 1 3 4 2 ' 1 4 2 3 . 1 4 3 2, 

2 1 3 4 . 2 1 4 3 
' 2 3 1 4 . 2 3 4 1 . ·2 4 1 3 . 2 4 3 1 ' 

3 1 2 4 . 3 1 4 2 . 3 2 1 4 . 3 2 4 1 ' 3 4 1 2 ' 3 4 2 1 ' 
4 1 2 3 . 4 1 3 2 ' 4 2 1 3 . 4 2 3 1 ' 4 3 1 2 ' 4 3 2 1}; 

********** Begin Looping through Experimental-Randomizations********; 
START mb1 rand; 
DO b1 rand= 1 TO 24; *All randomizations for block 1, (ti).; 

START mb2 rand; 
DO b2 rand= 1 TO 24; *All randomizations for block 2, (ti).; 

START mblock; 
DO block= 1 TO 2; 
b_val = b_valm(I block I): 
exp rand= (b1 rand - 1) # 24 + b2_rand; 

-START mplot; 
DO p 1 ot = 1 TO 4; • 

plabel= labels(! plot I): 
s_popynt=sup_ym(I (bloc_k-1)#4 +plot'): 
eu eq = eu eqm( (block-1)#4 + plot ); 
eu-ne = eu-nem( (block-1)#4 + plot ): 
z - = - zm(I (block-1)#4 + plot 1): 
sup_popy= sup_ym( (block-1)#4 + plot ); 
IF block= 1 THEN 

treat= rpattern(I b1_rand plot I); 
ELSE 
treat rpattern(I b2 rand 

tlabel = labels(! treat I): 
trt_val = trt_valm(I treat I): 

plot I >: 

s_popynt = mu_val + b_val +(beta* z ); 
s popywt = mu val+ b val +(beta* z) + trt val; 
euti_eq = eutT_eqm(I (block-1)#4 + plot , treat I): 
euti_ne = euti_nem( (block-1)#4 + plot , treat ): 

* Debug Print options follow:·; 
%db(&dbps2, PRINT "Data set rm err within loop (dbps2)": 

PRINT exp rand b1 rand b2_rand block plot 
plabel tlabel 
mu val b val trt val beta z 
s_popynt -s_popywt-
eu_eq eu_ne euti_eq euti_ne ); 

APPEND; 

END; FINISH; RUN mplot; 
END; FINISH; RUN mblock; 

END; FINISH; RUN mb2 rand; 
END; FINISH; RUN mb1_rand; 
RUN; 

********* Test Print Initial Version of Data .Set obs_y *****: 

* Debug Print options follow: : 
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%db(&dbps3, TITLE1 "Observations from rm err (dbps3)•; 
PROC PRINT DATA=rm err (0BS=32); 
PROC PRINT DATA=rm-err (FIRST0BS=4577); 
PROC MEANS DATA=rm-err (0BS=32) 

N MEAN VAR STD VARDEF=N; 
BY exp_rand block; 
VAR eu eq euti eq eu ne euti_ne; 

PROC MEANS DATA=rm err (OBS=32) 
N MEAN VAR STD VARDEF=N; 

BY exp_rand; 
VAR eu_eq euti_eq eu_ne euti_ne; 

PROC MEANS DATA=rm err 
N MEAN VAR STD VARDEF=N; 

VAR eu_eq euti_eq eu ne euti ne; 
); - -

DATA sasdata.rm_err; SET rm_err; *Randomization Model ERRor; 

End of successful step. */ 
*********************************************************************: 
*Step Two: 
Generate Normally Distributed Random Errors; 

/* *Successful step turned off.; 

*Normal random error terms have various variances; 
DATA nor err (DROP= sq03 sq10 sq30 sq90); 

*ObtaTn very accurate values for standard deviation.; 
sq03 = SQRT(03); 
sq10 = SQRT( 10); 
sq30 = SQRT(30); 
sq90 = SQRT(90); 
PUT sq03= sq10= sq30= sq90=; 

DO exp rand= 1 TO 576 BY 1; *576; 
DO block= 1 TO 2 BY 1; 

D.O p 1 ot = 1 TO 4 BY 1 ; 
nre03 eq = RANNOR(31415927); 
nre10:eq = RANNOR(31415927); 
nre30 eq = RANNOR(31415927); 
nre90-eq = RANNOR(31415927); 
OUTPUT nor err; 

END; -
END; 

ENO; 

*Subsequent seeds are; 
*ignored.; 

*Force set of normal errors for each randomization to have 
zero mean and specified variance.; 

PROC STANDARD DATA= nor err OUT= nor err 
MEAN= 0.0 STD=i.7320508076 VARDEF=N; 

BY exp rand block; 
VAR nre03 eq; 

PROC STANDARD DATA= nor err OUT= nor err 
MEAN= 0.0 STD=3.1622776602 VARDEF=N; 

BY exp rand block; 
VAR nre10 eq; 

PROC STANDARD DATA= nor err OUT= nor err 
MEAN= 0.0 STD=S.4772255751 VARDEF=N; 

BY exp_rand block; 
VAR nre30 eq; 

PROC STANDARD DATA= nor err OUT= nor err 
MEAN= 0.0 STD=9.4868329805 VARDEF=N; 

BY exp rand block; 
VAR nre90_eq; 

* Debug Print options follow: ; 
%db(&dbps4, TITLE1 "Observations from nor_err eq·var only(dbps4)-; 
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PROC PRINT OATA=nor err (OBS=32); 
PROC PRINT DATA=nor-err (FIRSTOBS=4577); 
PROC MEANS DATA=nor-err (OBS=32) 

MEAN VAR STD VAROEF=N; 
BY exp rand block; 
VAR nre03 eq--nre90 eq; 

PROC MEANS DATA=nor err (085=32) 
MEAN VAR STD VARDEF=N; 
BY exp rand; 
VAR nre03_eq--nre90_eq; 

) ; 

*For not equal variances: 
Obtain total sum of squares for equal variances, over all blocks. 
Divide into var ratio + 1 parts (4+1). 
Obtain new variance, divide by denominator= number of observations. 
Multiply block 1 by 1 part and block 2 by var ratio parts (4). 
Divide by existing block variance. 
Square root the above. 
Multiply be the existing normal error. 

nre## ne = SQRT( (SS for 8 obs)/(var ratio+ 1) / (n obs 1 block) 
- * ( (1 or var ratio) / (initial variance) ) ) 

* (current error term) 
Experiment-wide variance will be the initial variance. 

DATA nor_err; SET nor_err; 
IF block= 1 THEN DO; 

nre03 ne = SQRT( ( 3 *4*2)/(4+1)/4 * ( 1/ 3) ) * nre03_eq; 
nre10-ne = SQRT( ( 10 *4*2)/(4+1)/4 * ( 1/ 10) ) * nre10_eq; 
nre30-ne = SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) * nre30_eq; 
nre9o:ne = SQRT( (90 *4*2)/(4+1)/4 * ( 1/90) ) * nre90_eq; 

END; 
IF block-= 2 THEN DO; 

nre03 ne = SQRT( ( 3 *4*2)/(4+1)/4 * ( 4/ 3) ) * nre03_eq; 
nre10-ne = SQRT( ( 10 *4*2)/(4+1)/4 * ( 4/10) ) * nre10_eq; 
nre30-ne = SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) * nre30_eq; 
nre9o:ne = SQRT( (90 *4*2)/(4+1)/4 * ( 4/90) ) * nre90_eq; 

END; 

* Debug Print options fol low: ; 
%db(&dbps5, TITLE1 "Observations from nor_err eq & ne var (dbps5)"; 

PROC PRINT DATA=nor err (OBS=32); 
PROC PRINT DATA=nor-err (FIRSTOBS=4577); 
PROC MEANS DATA=nor-err (OBS=32) 

MEAN VAR STD VARDEF=N; 
BY exp rand block; 
VAR nre03 eq--nre90 ne; 

PROC MEANS DATA=nor err (OBS=32) 
MEAN VAR STD VARDEF=N; 

BY exp rand; 
VAR nre03_eq--nre90_ne; 

) ; 

DATA sasdata.nor_err; SET nor_err; 

e·nd of successful step. */ 

*********************************************************************; 
*Step Three: 

Merge eu, euti and normally distributed errors.; 

/* *Successful step turned off. ; 
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DATA al 1 err; *ALL three ERRor types.; 
MERGE sasdata.rm err sasdata.nor_err; 

* 

covar = z; drop z 
BY exp_rand; 

LABEL 
exp_rand= 'experiment-wise rando' 
b1 rand= 'block 1 randomization' 
b2:rand = 'block 2 randomization' 

block = 'block id' 
b val = 'block effect value' 
plot = 'experimental unit id' 
plabel 'plot label' 
treat = 'treatment id' 
trt val = 'treat effect value' 
tlabel = 'treatment label' 
covar = 'covariate (z)' 
beta 'covariate slope coef. 

eu_eq = 'e.u. error var-eq' 
eu ne = 'e.u. error var-ne' 

I 

euti _eq = 'e.u.t.i.· error var-eq' 
euti ne = 'e.u.t.i. error var-ne' -
nre03 _eq = 'normal err v=3 -eq' 
nre03 ne = 'normal err v=3 -ne' 
nre10:eq = 'normal err v=10 -eq' 
nre10 ne = 'normal. err v=10 -ne' 
nre3o:eq = 'normal err v=30 -eq' 
nre30_ne 'normal err v=30 -ne' 
nre90_eq = 'normal err v=90 -eq' 
nre90_ne = 'normal err v=90 -ne' 

s_popynt= 'superpop. no treat' 
s_popywt= 'superpop. with treat' 

Debug Print 
%db(&dbps6, 

options follow: 
TITLE1 "Observations from all err (eu & nor) (dbps6)"; 
PROC PRINT DATA=all err (085=32); 
PROC PRINT DATA=all-err (FIRSTOBS=4577); 
PROC MEANS DATA=all-err (085=32) 

N MEAN VAR STD- VARDEF=N; 
BY exp_rand block; 
VAR eu eq euti eq eu ne euti ne nre03_eq--nre90_ne; 

PROC MEANS DATA=all err-(085=32) 
N MEAN VAR STD- VARDEF=N; 

BY exp rand; 
VAR eu-eq euti eq eu ne euti ne nre03_eq--nre90_ne; 

PROC MEANS DATA=all err 
N MEAN'VAR STD- VARDEF=N; 

VAR eu_eq euti_eq eu_ne euti ne nre03_eq--nre90_ne; 
); -

DATA sasdata.all_err; Set all_err; *ALL th~ee ERRor types; 

End of succes.sful step. */ 

*********************************************************************; 
*Step Four: 

Combine (sum) three types of error terms in various combinations. ; 

/* *Successful step turned off. ; 

*Within exp-randomization variances are not standardized. 
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Errors are divided by SQRT(num of summed terms) to bring var of 
sum of one to three error terms within same range.; 

*The error terms are E01 - E81. 
The 81 are {euti (3)} x {normal err (1+ (4*2))} x {eu (3)} = 81. 
The 3 are: 0, block var eq, and block var ne (eu and euti). 
The 1+4 are var=O, 5, 10, 30, 90. The 2 are block var eq and ne. 
Each error term may be one to three of: e.u., e.u.-t.1.,normal err.; 

*Data set COMBined ERRors one, two, or three types summed; 
DATA comb_err; SET sasdata.all_err; 

*Obtain divisor for sums; 
RETAIN invsq2 invsq3; 
IF _N_ = 1 THEN DO; invsq2=1/SQRT(2); invsq3=1/SQRT(3); END; 

******************* Create error terms **************************; 
*Var=O normal euti eu ; 

e01 = O* ( 0 + 0 + 0 ) ; 
e02 = 1* ( 0 + 0 + eu _eq ) ; 
e03 = 1* ( 0 + 0 + eu ne ) ; 
e04 = 1* { 0 + euti _eq + 0- ) ; 
e05 = invsq2* ( 0 + eut1 _eq + eu_eq ) ; 
e06 = 1nvsq2* ( 0 + eut1 _eq + eu ne ) ; 
e07 = 1* ( 0 + euti ne + 0- ) ; -eOS invsq2* ( 0 + euti ne + eu_eq ) ; -e09 = invsq2* ( 0 + euti ne + eu ne ) ; - -

*Var=3 normal euti eu ; 
e10 = 1* (nre03 eq + 0 + 0 ) ; 
e11 = 1nvsq2* (nreo3:eq + 0 + eu_eq ) ; 
e12 = 1nvsq2* (nre03_eq + 0 + eu ne ) ; 
e13 = 1nvsq2* (nre03 eq + eut1 _eq + 0- ) ; 
e14 = 1nvsq3* (nreo3:eq + euti _eq + eu_eq ) ; 
e15 = 1nvsq3* (nre03_eq + eut1 _eq + eu ne ) ; -e16 = 1nvsq2* (nre03 eq + euti-'-ne + 0 ) ; 
e17 = 1nvsq3* (nreoa:eq + euti _ne + eu_eq ) ; 
e18 = 1nvsq3* (nre03_eq + euti ne + eu ne ) ; - -

* normal eut1 eu ; 
e19 = 1* (nre03_ne + 0 + 0 ) ; 
e20 = 1nvsq2* (nre03_ne + 0 " + ) ; eu_eq 
e21 = 1nvsq2* (nre03_ne + 0 + eu ne ) ; 
e22 = 1nvsq2* (nre03 ne + euti _eq + 0- ) ; 
e23 = 1nvsq3* (nreo3:ne + euti _eq + eu _eq ) ; 
e24 = 1nvsq3* (nre03_ne + euti _eq + eu ne ) ; -e25 = 1nvsq2* (nre03_ne + euti ne + 0 ) ; -e26 = 1nvsq3* (nre03_ne + euti ne + eu_eq ) ; -e27 = 1nvsq3* (nre03_ne + euti ne + eu_ne ) ; -

*Var=10 normal euti eu ; 
e28 = 1* (nre10_eq + 0 + 0 ) ; 
e29 = 1nvsq2* (nre10_eq + 0 + eu_eq ) ; 
e30 = 1nvsq2* (nre10_eq + 0 + eu ne ) ; 
e31 = 1nvsq2* (nre10_eq + euti _eq + 0- ) ; 
e32 = 1nvsq3* (nre10 eq + euti _eq + eu_eq ) ; 
e33 = 1nvsq3* (nre10:eq + euti _eq + eu_ne ) ; 
e34 = invsq2* (nre10_eq + euti ne + 0 ) ; -e35 = invsq3* (nre10_eq + euti ne + eu_eq ) ; -e36 = 1nvsq3* (nre10_eq + euti ne + eu ne ) ; - -

* normal euti eu ; 
e37 = 1* (nre10_ne + 0 + 0 ) ; 
e38 = 1nvsq2* (nre10_ne + 0 + eu _eq ) ; 
e39 = 1nvsq2* (nre10_ne + 0 + eu ne ) ; 
e40 = 1nvsq2* (nre10_ne + eut1 _eq + 0- ) ; 
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e41 = 1nvsq3* (nre10 ne + euti _eq + eu_eq ) ; 
e42 = 1nvsq3* (nre10-ne + euti _eq + eu ne ) ; 

e43 1nvsq2* (nre10-ne + euti ne + 0- ) ; 
e44 1nvsq3* (nre10-ne + euti - ) ; -ne + eu_eq 
e45 = 1nvsq3* (nre10:=ne + euti ne + eu_ne ) ; -

*Var=30 normal euti eu ; 
e46 = 1* (nre30 eq + 0 + 0 ) ; 
e47 = 1nvsq2* (nre30-eq + 0 + eu_eq ) ; 
e48 = 1nvsq2* (nre3o:eq + 0 + eu ne ) ; 
e49 1nvsq2* (nre30_eq + euti _eq + 0- ) ; 
e50 = 1nvsq3* (nre30 eq + euti _eq + eu_eq ) ; 
e51 = 1nvsq3* (nre30-eq + euti _eq + eu ne ) ; -e52 = 1nvsq2* (nre30-eq + euti ne + 0 ) ; 
e53 1nvsq3* (nre30:eq eut1 - ) ; + ne + eu_eq -e54 1nvsq3* (nre30_eq + euti ne + eu_ne ) ; -

* normal. euti eu ; 
e55 = 1* (nre30 ne + 0 + 0 ) ; 
e56 = 1nvsq2* (nre30-ne + 0 + eu_eq ) ; 
e57 = 1nvsq2* (nre30-ne + 0 + eu ne ) ; 
e58 = 1nvsq2* (nre30-ne + eut1 _eq + 0- ) ; 
e59 = 1 nvsq3*. ( nre30-ne + euti _eq + eu_eq ) ; 
e60 = invsq3* (nre30-ne + euti _eq + eu ne ) ; 
e61 1nvsq2* (nre30-ne + euti _ne + 0- ) ; 
e62 = invsq3* (nre30-ne + euti ne + eu_eq ) ; 
e63 invsq3* (nre3o:ne + euti - ) ; = ne + eu_ne -

*Var=90 normal euti eu ; 
e64 1* (nre90_eq + 0 + 0 ) ; 
e65 = invsq2* (nre90 eq + 0 + eu_eq ) ; 
e66 = 1nvsq2* (nre90-eq + 0 + eu ne ) ; 
e67 = 1nvsq2* (nre90:eq + euti _eq + 0- ) ; 
e68 = 1nvsq3* (nre90_eq + euti _eq + eu_eq ) ; 
e69 = 1nvsq3* (nre90 eq + euti _eq + eu_ne ) ; 
e70 = invsq2* (nre90-eq + euti ne + 0 ) ; 
e71 invsq3* (nre90-eq + euti - ) ; -ne + eu_eq 
e72 = invsq3* (nre90:eq + ellt 1 ne + eu_ne ) ; -

* normal euti eu ; 
e73 = 1* (nre90 ne + 0 + 0 ) ; 
e74 = invsq2* (nre90-ne + 0 + eu_eq ) ; 

·e75 = invsq2* (nre90-ne + 0 + eu ne ) ; 
e76 = invsq2* (nre90-ne + euti _eq + 0- ) ; 
e77 = invsq3* (nre90-ne + euti_eq + eu_eq ) ; 
e78 = invsq3* (nre90-ne + euti _eq + eu_ne ) ; 
e79 = invsq2* (nre90-ne + euti ne + 0 ) ; 
eSO 1nvsq3* (nre90-ne + euti - ) ; = ne + eu_eq -
e81 = invsq3* (nre9o:ne + euti ne + eu_ne ) ; -

* Debug Print options fol low: 
%db(&dbps7, 
TITLE 1 "Observations from comb_err before standardizing (dbps7)"; 

PROC PRINT DATA=comb err (OBS=16); 
PROC PRINT DATA=comb-err (FIRSTOBS=4593); 
PROC MEANS DATA=comb:err (OBS=16) 

N MEAN VAR STD MIN MAX VARDEF=N; 
BY exp_rand block; 
VAR e01-e81; 

PROC MEANS DATA=comb err (OBS=16) 
N MEAN VAR STD MIN MAX VARDEF=N; 

BY exp_rand; 
VAR e01-e81; 

PROC MEANS DATA=comb err 
N MEAN VAR STD MIN MAX VARDEF=N; 
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VAR e01-e81; 
) ; 

DATA sasdata.comb_err; SET comb_err; 

End of successful step. *I 

*********************************************************************; 
*Step Five: 

Standardize the sumed error terms; 

/* *Successful step turned off. ; 

*All combined terms are standardizd to mean zero and experiment-wide 
variance of 30. the same values as single-source errors. 

When all combined terms have {equal - not equal} within-block 
variances, then their sum has {equal - not equal} within-block 
variances. 

When the combined terms are a mix of eq and ne within-block 
variance terms, they are treated as if all terms had no equal 
within-block variances. They are standardized within each block 
to have the usual ratio of block variances. 

Thus, for comparisons, all single-source error or combined error 
term have zero mean and the same experiment-wide variance. 

*Data set: STanDardize combined ERRors; 
PROC STANDARD DATA= sasdata.comb err 

MEAN= 0.0 STD=S.4772255751 
BY exp rand block; 
VAR e01-e81; 

* Debug Print options follow: 
%db(&dbps8, 
TITLE 1 "Observations from std err -

PROC PRINT DATA=std err 
PROC PRINT DATA=std-err 
PROC MEANS DATA=std-err 

N MEAN VAR STD 
BY exp rand block; 
VAR e01-e81; 

PROC MEANS DATA=std err 
N MEAN VAR STD 

BY exp_rand; 
VAR e01-e81; 

PROC MEANS DATA=std err 
N MEAN VAR STD 

VAR e01-e81; 
) ; 

OUT= std_err 
VARDEF=N; 

1st standardizing (dbps8)"; 
(OBS=16); 
(FIRST0BS=4593); 
(OBS=16) 
MIN MAX VARDEF=N; 

(0BS=16) 
MIN MAX VARDEF=N; 

MIN MAX VARDEF=N; 

DATA std_err; SET std err; 
*Set all sums involving a term w1th unequal block variances to 
also have the.standard (1:4) unequal ·block variance. ; 

IF block= THEN DO; 
*Var=OO; 

e03S = e03 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e06S = eOG * SQRT(. (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e07s = e07 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e08s = eoa * SQRT( (30 *4*2)/(4+1)/4 * ,( 1/30) ) ; 
e09s e09 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

*Var=03; 
e12s = e12 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
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e15s = e15 * SQRT( (30 *4*2)/(4+1 )/4 * ( 1/30) ) ; 
e16s e16 * SQRT( (30 *4*2)/(4+1 )/4 * ( 1/30) ) ; 

e17s = e17 * SQRT( (30 *4*2)/(4+1 )/4 * ( 1/30) ) ; 
e18S = e18 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

e19S = e19 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e20S = e20 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e21S = e21 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e22S = e22 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e23S = e23 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e24s e24' * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e25S = e25 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e26S = e26 ·* SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e27s e27 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) : 

*Var=10; 
e30S = e30 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e33S = e33 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e34S e34 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

e35S = e35 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e36s = e36 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

e37S = e37 * SQRT( (30 *4*2)/(4+1)/4 * ( ,1/30) ) ; 
e38s e38 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e39S = e39 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e40S = e40 * SQRT( (30 *4*2)/(4+1 )/4 * ( 1/30) ) ; 
e41S = e41 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e42S = e42 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e43S = e43 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e44s = e44 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e45s = e45 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

*Var=30; 
e48s e48 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e51S = e51 * SQRT( (30 *4*2)/(4+1 )/4 '* ( 1/30) ) ; 
e52S = e52 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e53S = e53 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e54S = e54 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

e55s = e55 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e56S = e56 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e57s = e57 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e58S = e58 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e59S = e59 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e60S = e60 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e61s = e61 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e62s = e62 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e63S ·· = e63 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

*Var=90; 
e66S = e66 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e69S = e69 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e70S = e70 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e71s = e71 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e72S = e72 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

e73s = e73 * SQRT( (30 *4*2)/(4+1 )/4 * ( 1/30) ) ; 
e74S = e74 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e75s = e75 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e76S ·= e76 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e77S = e77 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e78S = e78 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e79S = e79 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) : 
e80S = eBO * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 
e81S = e81 * SQRT( (30 *4*2)/(4+1)/4 * ( 1/30) ) ; 

END; 
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IF block= 2 THEN DO; 
•var=OO; 

e03S = e03 • SQRT( (30 •4•2)/(4+1)/4 • ( 4/30) ) ; 
eOGs = eOG • SQRT( (30 •4•2)/(4+1)/4 • ( 4/30) ) ; 
e07s = e07 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e08S = eOB • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e09S = e09 • SQRT( (30 •4•2)/(4+1)/4 * ( 4/30) ) ; 

•var=03; 
e12s = e12 • SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e15s = e15 • SQRT( (30 *4*2)/(4+j)/4 * ( 4/30) ) ; 
e16S = e16 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e17S = e17 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e18S = e18 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 

e19!S = e19 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e20s = e20 • SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e21S = e21 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e22S = e22 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e23S = e23 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e24S = e24 • SQRT( {30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e25S = e25 • SQRT( (30 •4•2)/(4+1)/4 • ( 4/30) ) : 
e26S = e26 • SQRT( (30 •4•2)/(4+1)/4 • ( 4/30) ) : 
e27s = e27 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 

*Var=10; 
e30S = e30 • SQRT.( (30 •4•2)/(4+1)/4 • ( 4/30) ) ; 
e33S = e33 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e34S = e34 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e35S = e35 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) : 
e36S = e36 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 

e37S = e37 * SQRT( {30 *4*2)/(4+1 )/4 • ( 4/30) ) : 
e38S = e38 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e39S = e3s • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) : 
e40S = e40 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e41s = e41 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e42s = e42 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e43s ~ e43 • SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e44S = e44 • SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e45S = e45 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) : 

*Var=30; 
e48S = e48 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) : 
e51S = e51 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e52s = e52 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e53S = e53 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e54S = e54 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) : 

e55s = e55 * SQRT( (30 *4*2)/(4+1)/4 • ( 4/30) ) ; 
e56S = e56 * SQRT( (30 *4*2)/14+1)/4 * ( 4/30) ) ; 
e57S = e57 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e58S = e58 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e59S = e59 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e60S = eGO * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e61S = e61 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e62S = e62 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e63S = e63 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) : 

•Var=90; 
e66S = e66 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e69S = e69 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e70S = e70 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) : 
e71S = e71 * SQRT( (30 *4*2)/(4+1)/4 .. ( 4/30) ) ; 
e72S = e72 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) : 
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e73s = e73 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e74s = e74 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e75s e75 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e76s = e76 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e77s = e77 * SQRT( (30 *4*2)/(4+1 )/4 * ( 4/30) ) ; 
e78s = e78 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e79s = e79 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e80s e80 * SQRT( (30 *4*2)/(4+1)/4 * ( 4/30) ) ; 
e81S = e81 * SQRT( (30 *4*2)/(4+1 )/4 * ( 4/30) ) ; 

END; 

Debug Print options follow: ; 
%db(&dbps9, 
TITLE 1 "Observations from std err - 2nd standardizing 

PROC PRINT DATA=std err 
PROC PRINT DATA=std-err 
PROC MEANS DATA=std-err 

N MEAN VAR STD 
BY exp_rand block; 
VAR e03s--e81s; 

PROC MEANS DATA=std err 
N MEAN VAR STD 

BY exp rand; 
VAR e03s--e81s; 

PROC MEANS DATA=std err 

) ; 

N MEAN VAR STD 
VAR e03s--e81s; 

DATA sasdata.std err; SET std err; 
DROP e01-e81 -invsq2 invsq3;-

End of successful step. */ 

(OBS=16); 
(FIRST0BS=4593); 
(085=16) 
MIN MAX 

(OBS=16) 
MIN MAX 

MIN MAX 

VARDEF=N; 

VARDEF=N; 

VARDEF=N;· 

(dbps9) •; 

*********************************************************************; 
*Step Six: 

Compute the observed y's for each of the single and combined error 
terms: 

/* *Successful step turned off. : 

*Create various observed y's. 
Each is an error added to: mu+ block+ beta*covariate + one of 

(zero or the appropriate treatment effect). 
yobs001 - yobs081 have treatments eq O. 
yobs101 - yobs181 have treatments ne o. 

The 1 inidicates the first (and only) nonzero treatment vector. 
yobs###s use an error term with one or more terms originally having 

unequal block variances. The sum has been standardized to have 
the usual unequal block variances (1:4 ratio).; 

**** Create macro too generate formula for***************************; 
************* the observed population values yobs(#)(##) ************; 

%MACRO m yobs; 
%DO err id= 1 %TO 

yobsOO&err_id = 
yobs10&err_id = 

%END; 

9 : 
s_popynt + 
s_popywt + 

%DO err_id = 10 %TO 81; 

eO&err id; 
eO&err:id; 
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yobsO&err id 
yobs1&err=:id 

%END; 
%MEND; 

s popynt + 
s=:popywt + 

e&err id; 
e&err =id; 

************* End of macro m_yobs ***********************************: 

DATA obs_y; 
merge sasdata.comb err sasdata.std err; 

*Data set comb err attaches original e##.; 
*Data set std_err attaches the standardized e##s.; 

*Call macro m_yobs to ge~erate code creating the observed y values 
for the various non-standardized sums of error terms.; 

%m_yobs; 

*Compute the observed y values for the various standardized sums of 
error terms. . 

*All treatment values are zero. ; 
*Var=OO; 

yobs003s = e03 + s__popynt 
yobsOOGs = e06 + s__popynt 
yobs007s e07 .+ s__popynt 
yobs008s = e08 + s__popynt 
yobs009s = e09 + s_popynt 

*Var=03; 
yobs012s = e12 + s__popynt 
yobs015s = e15 + s__popynt 
yobs016s = e16 + s__popynt 
yobs017s = e17 + s__popynt 
yobs018s = e18 + s__popynt 

yobs019s e19 + s_popynt 
yobs020s = e20 + s__popynt 
yobs021s = e21 + s__popynt 
yobs022s = e22 + s__popynt 
yobs023s = e23 + s__popynt 
yobs024s = e24 + s__popynt 
yobs025s = e25 + s__popynt 
yobs026s = e26 + s_popynt 
yobs027s e27 + s__popynt 

*Var=10; 
yobs030s = e30 + s_popynt 
yobs033s = e33 + s_popynt 
yobs034s = e34 + s__popynt 
yobs035s = e35 + s__popynt 
yobs036s = e36 + s_popynt 

yobs037s = e37 + s_popynt 
yobs038s = e38 + s__popynt 
yobs039s = e39 + s__popynt 
yobs040s = e40 + s__popynt 
yobs041s e41 + s__popynt 
yobs042s = e42 + s__popynt 
yobs043s = e43 + s__popynt 
yobs044s = e44 + s_popynt 
yobs045s = e45 + s__popynt 

*Var=30; 
yobs048s = e48 + s__popynt 
yobs051s = e51 + s__popynt 
yobs052s = e52 + s__popynt 
yobs053s = e53 + s__popynt 
yobs054s = e54 + s__popynt 



Appendix F.5 - cterms 421 

yobs055s = e55 + s_popynt 
yobs056s e56 +.s_popynt 
yobs057s = e57 + s_popynt 
yobs058s = e58 + s_popynt 
yobs059s e59 + s_popynt 
yobs060s = e60 + s_popynt 
yobs061s e61 + s_popynt 
yobs062s = e62 + s_popynt 
yobs063s = e63 + s_popynt 

*Var=90; 
yobs066s e66 + s_popynt 
yobs069s e69 + s_popynt 
yobs070s = e70 + s_popynt 
yobs071s = e71 + s_popynt 
yobs072s = e72 + s_popynt 

yobs073s e73 + s_popynt 
yobs074s = e74 + s_popynt 
yobs075s = e75 + s_popynt 
yobs076s = e76 + s_popynt 
yobs077s = e77 + s_popynt 
yobs078s = e78 + s_popynt 
yobs079s = e79 + s_popynt 
yobs080s e80 + s_popynt 
yobs081s = e81 + s_popynt 

*Treatment values are nonzero. ; 
*Var=OO; 

yobs103s = e03 + s_popywt.: 
yobs106s = e06 + s_popywt 
yobs107s = e07 + s_popywt 
yobs108s = e08 + s_popywt 
yobs109s = e09 + s_popywt 

*Var=03; 
yobs112s = e12 + s_popywt 
yobs115s = e15 + s_popywt 
yobs116s = e16 + s_popywt 
yobs117s = e17 + s_popywt 
yobs118s = e18 + s_popywt 

yobs119s = e19 + s_popywt 
yobs120s = e20 + s_popywt 
yobs121s = e21 + s_popywt 
yobs122s = e22 + s_popywt 
yobs123s = e23 + s_popywt 
yobs124s = e24 + s_popywt 
yobs125s = e25 + s_popywt 
yobs126s = e26 + s_popywt 
yobs127s = e27 + s_popywt 

*Var=10; 
yobs130s = e30 + s_popywt 
yobs133s = e33 + s_popywt 
yobs134s e34 + s_popywt 
yobs135s = e35 + s_popywt 
yobs136s = e36 + s_popywt 

yobs137s = e37 + s_popywt 
yobs138s = e38 + s_popywt 
yobs139s = e39 + s_popywt 
yobs140s = e40 + s_popywt 
yobs141s = e41 + s_popywt 



yobs142s 
yobs143s = 
yobs144s 
yobs145s = 

*Var=30; 
yobs148s = 
yobs151s 
yobs152s 
yobs153s = 
yobs154s = 

yobs155s = 
yobs156s = 
yobs157s 
yobs158s = 
yobs159s = 
yobs160s = 
yobs161s = 
yobs162s 
yobs163s = 

*Var=90; 

e42 + s_popywt 
e43 + s popywt 
e44 + s-popywt 
e45 + s=popywt 

e48 + 
e51 + 
e52 + 
e53 + 
e54 + 

s popywt 
SJ)Opywt 
s popywt 
SJ)Opywt 
s_popywt 

e55 + s_popywt 
e56 + s_popywt 
e57 + s_popywt 
e58 + s_popywt 
e59 + s_popywt 
e60 + s_popywt 
e61 + s_popywt 
e62 + s_popywt 
e63 + s_popywt 

yobs166s = e66 + s_popywt 
yobs169s = e69 + s_popywt 
yobs170s = e70 + s_popywt 
yobs171s = e71 + s_popywt 
yobs172s = e72 + s_popywt 

yobs173s = 
yobs174s = 
yobs175s = 
yobs176s = 
yobs177s = 
yobs178s = 
yobs179s = 
yobs180s 
yobs181s = 

e73 + s_popywt 
e74 + s_popywt 
e75 + s_popywt 
e76 + s popywt 
e77 + s:=popywt 
e78 + s_popywt 
e79 + s_popywt 
eSO + s_popywt 
e81 + s_popywt 

* Debug Print options follow: ; 
%db(&dbps10, 
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TITLE1 "Observations from obs y (dbps10)"; 
PROC PRINT DATA=obs y (OBS=16); 
PROC PRINT DATA=obs=y (FIRSTOBS=4593); 
PROC MEANS DATA=obs y (OBS=16) 

N MEAN VAR STD MIN MAX VARDEF=N; 
BY exp rand block; 
VAR yobs001--yobs181s; 

PROC MEANS DATA=obs y (OBS=16) 
N MEAN VAR STD M.IN MAX VARDEF=N; 

BY exp rand; 
VAR yobs001--yobs181s; 

PROC MEANS DATA=obs y 
N MEAN VAR STD MIN MAX VARDEF=N; 

VAR yobs001--yobs181s; 
) ; 

DATA sasdata.obs_y; SET obs_y; 

End of successful step. */ 

*********************************************************************; 
*Step Seven: 
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Add the variable g_roup to the file of observed y's. 

DATA sasdata.obs y; 
MERGE sasdata~obs_y 
BY exp rand; 

sasdata.gr_tndex; 

PROC PRINT -DATA= sasdata.obs_y 
VAR exp_rand--beta s_popynt 

PROC PRINT DATA= sasdata.obs. y 
VAR exp_rand--beta s_popynt 

II 

(085=16); 
s_popywt covar g~group; 

(FIRST0BS=4593); 
s_popywt covar g_group; .. 
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U13293A.SASPROG.CNTL(GLM) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:09 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*JOBPARM ROOM=V,FORMS=9001,COPIES=1 
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SASDATA DD DSN=U13293A.SASDATA.DATA,0ISP=OLD 
//SASGLM DD DSN=U13293A.SASGLM2.DATA,DISP=OLD 
//FT22F001 DD DSN=U13293A.GLMOUT.DATA,DISP=(NEW,KEEP), 
// SPACE=(TRK,(800,400)),UNIT=STORAGE 
//SYSIN DD* 

* 
* Program File: sasprog.cntl(glm) 
* Run General Linear Models on all randomizations. 
* 

//FT22F001 DD DSN=U13293A.GLMOUT56.DATA,DISP=OLD 
* 
* Step One: 
* Enter the treatment/no treatment code, the error id, and 
* s (if errors are standardized) into the macro let statements. 

* 
* Step Two: 
* Run General Linear Models on all randomizations. 
* Loop (via BY exp_rando) through all experimental randomizations. 
* For each, perform PROC GLM, obtaining ss for usual estimates. 
* Write usual printed output to scratch file. 
* Save predicted y_hats, residuals, & incoming data in sas file. 
* Only selected variables from sasdata.obs_y are kept. 

* 
* Step Three: 
* Merge g_group labels to file of Y~hats, residuals, & input data. 
* Label new variables in this file. 
* Add g_group variable to this file. 
* 
* Step Four: 
* Read file of usually printed GLM output, selecting variables. 
* Save in sas file. 
* 
* Step Five: 
* Add g_group variable to this file. 
* Add usual constraints estimators. 
* Compute additional sums of squares, ms, F-ratios, & osls. 
* Begin computation of ratios 1 - 3. 
* 
* Step Six: 
* Obtain means over all randomizations. 
* 
* Step Seven: 
* Complete computation of ratios 1 - 3. 
* Compute two types of errors. 
* Label for printing and for permanent file. 
* Print initial observations. 
* * Step Eight: 
* Analysis - means and graphic display. 
* 
* Output Files One pair per error type: 
* sasglm.&yhat_ds 
* One record per experimental randomization per experimentsl unit. 
* sasglm.&glm_ds 
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* One record per experimental randomization 
* 
*************** Debug Print Switch Macro and Switches ********·**; 
* Macro for debug printing follows:; 

* 

%MACRO db(db site,db act); 
%IF %UPCASET&db site) = TRUE I· %UPCASE(&db_site) = T 

%THEN %OUOTE(&db act); 
%MEND db; -

*Debug print switches (dbps#): 
True or t = on (in upper and/or lower .case), anything else= off.; 

%LET dbps1 = f *Printed output & yhat_ds from test glm; 
%LET dbps2 = f *Y hat output from glm; 
%LET dbps3 = f *Read anova output from glm; 
%LET dbps4 = f *; 

************************ End of Debug Print Switches****************: 

**********************************************************************· . ' 
*Step One: 
Select set of observed y's for analysis. 

Enter### or ###s into function %STR( ... ), with### equalling 
a O for no treatment effects or a 1 for treatments, then 
two digits indicating the error combination. 
Follow### with an •s• when usfng the standardized errors.; 

%LET_ yobs %STR(yobs 155); *O or 1, then below message; 
%LET error = %STR(e55); *00 to 81 with or w/o ans; 
%LET ypred = %STR(ypre155); 
%LET resid = %STR(resf 155); 
%LET yhat ds = %STR(yhat155); *Output data set of obser.; 
%LET glm_ds = %STR(glm155); *Output data set of anova terms; 
TITLE1 "Observed Y uses Error Combination &yobs .. 

' 
sasglm.data under the member name *Output is stored fn sas library 

yhat_ds and glm_ds . 
&yhat_ds Has 1 record per y_hat by exp_rand = {Tl**B}X{TB}. 
&glm_ds Has 1 record per anova table = {Tl**B}. 

**********************************************************************: 
*Step Two: 

Use PROC GLM to compute the analysts of variance. 
Send GLM output to scratch file, then read it, creating a sas file. 
Augment data set of individual responses with the value of the 

predicted y, y_hat and the residual values.; 

* Debug Print options follow: ; 
%db(&dbps1, 

) ; 

TITLE1 "GLM anova output for &yobs (dbps1)•; 
OPTIONS NONOTES; 
PROC PRINT DATA= sasdata.obs_y 

(OBS=16 KEEP=exp_rand--beta s_popynt s_popywt covar 
&yobs &error); 

PROC GLM DATA= sasdata.obs_y 
(OBS=16 KEEP=exp_rand--beta s_popynt s_popywt covar 

&yobs &error); 
BY exp_rand; 
CLASS block treat; 
MODEL &yobs• block treat covar / SS1 SS4 SOLUTION; 
MEANS block treat; 
OUTPUT OUT= yhat_ds 

P= &ypred R= &resid; 
PROC PRINT DATA= yhat ds (0BS=16); 
OPTIONS NOTES; -
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PRDC PRINTTD UNIT=22 NEW; *Sends output from PRDC GLM to a temp file.; 
.PRDC GLM DATA = sasdata.obs_y 

( KEEP=exp_rand--beta s_popynt s_popywt covar 
&yobs &error); 

BY exp rand; 
CLASS - block treat; 
MODEL &yobs= block treat covar / 551 SS4 SOLUTION; 
MEANS block treat; 
OUTPUT OUT= &yhat_ds 

P= &ypred R= &resid 
OPTIONS NDNDTES; 

PRDC PRINTTD; 
OPTIONS NOTES; 

•Returns dutput to the line printer.; 

**********************************************************************: 

*Step Three: 
Label new variables and add variable g_group; 

PRDC SORT DATA= sasdata.gr index; BY exp_rand; 
DATA sasglm.&yhat_ds; -

MERGE &yhat ds sasdata.gr index; BY exp rand; 
LABEL exp_rand 'Experimental Randomizatfon' 

g_group = 'Eq. projector group' 
&ypred = 'Predicted y' 
&resid = 'Residual' 

' * Debug Print options follow: 
%db(&dbps2, TITLE1 •observations from glm output data (dbps2)•; 

PRDC PRINT DATA= sasglm.&yhat_ds (DBS=16) ; 
) ; 

**********************************************************************· ' *Step Four: 
Read the GLM output from each experimantal randomization. 
Extract quantities of interest. from the three sections of output: 

anova table (sums of squares), parmaeter estimates, and means. 
Add g_group and non-centrality variables. 
Compute additional variables.; 

DATA sasglm.&glm_ds; 
DROP location sk·ip; 
INFILE FT22F001 MISSDVER 
LENGTH location $19; 

EDF = al l_ran; 

*Loop through all experimental randomizations; 
DD exp_rand = 1 TD 576; 

*Skip through page 1 of GLM output - listing of class, levels, values; 
•Use //, not Nn., to perm 1 t changes in number of t 1 t 1 e 11 nes. 

INPUT 10n; 
DD UNTIL (location='Dependent') 

INPUT location END; 
*PUT location=; *For testing; 

*Having arrived at page 2, column 1 of (blank) line following 
'Dependent Variable',skip to line beginning 'Model' and read vars.; 
INPUT//; 
INPUT •30 dfmod ssmod msmod fmod oslmod 

// •30 dfres ssres msres 
// •30 dftot sstot 
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//// t120 rsq coefvar rootmse mean_y 
/Ill 
*Read blocks given mean, treatments given mean and blocks, and 
covariate (z) given mean (m), blocks (b), and treatments (t); 
*Type I Sum of Squares; 

·· INPUT 030 dfb ssb m msb m 
/ t130 dft sst-mb mst:mb 
/ 030 dfz ssz-mbt msz mbt 

*Type IV Sum of Squares; 
INPUT 

Ill 
I 

030 skip 
f!l30 skip 

ssb mtz 
sst:mbz 

msb mtz 
mst:mbz 

*Read parameter estimates; 

fb mtz 
ft:mbz 

oslb m 
oslt-mb 
oslz:mbt 

oslb mtz 
oslt:mbz 

DO UNTIL (location= 'Parameter'); INPUT location$ END; 
• PUT location=; *For testing; 

INPUT I t122 muhatg / 022 b11hatg 
II 022 tr1hatg / fll22 tr2hatg / 022 tr3hatg 
II t122 betahat; 

*Read means from third page of glm output; 
DO UNTIL (location= 'Level'); INPUT location. END; 
* ·PUT location= ; *For testing; 

INPUT// skip skip b11ybar skip b11zbar 
· I skip skip b12ybar skip b12zbar 
Ill/I skip skip tr1ybar skip tr1zbar 

I skip skip tr2ybar skip tr2zbar 
/ skip skip tr3ybar skip tr3zbar 
I skip sk1p tr4ybar skip tr4zbar; 

OUTPUT; 
*Return to the top of the loop and read glm output 

from the next experimental randomization.; 
END; 
all ran: location=location; *Control passes to here upon end of file.; 

- *label: needs a statement to activate it, thus loc=loc.; 
PUT exp_rand=; 

* Debug Print options follow: ; 
%clb(&dbps3, 
TITLE1 "Observations from glm output, sasdata.&glm_ds (dbps3)"; 

PRDC PRINT DATA= sasglm.&glm_ds (OBS=2); 
) ; 

**********************************************************************; 
*Step Five: 

Merge equal projector group id variable, g_group 
Obtain the 'usual constraints' ·aov estimates and add to data set. 

See Layman Ott, Edition One, page 524 for details. 
The aov estimates= ('cards')transpose * (glm estimates). 
The covariate slope estimate is unchanged. 
The arrays mimic matrix multipl_ication. 

Add remaining sums of squares, ms, F-ratios, and osls to data set. 
Compute ratio1, a balancing function of the covariates.; 

DATA temp; 
INPUT tma1-tma5 tb1a1-tb1a5 

tt1a1-tt1a5 tt2a1-tt2a5 tt3a1-tt3a5; 
• The sas-esttmates to usual-constraints conversion "matrix" 

follows; 
CARDS; 

1.0 .5 .25 .25 .25 
o.o .5 o.o o.o o.o 
o.o o.o .75 -.25 -.25 
o.o 0.0 -.25 .75 -.25 
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o.o 0.0 -.25 -.25 .75 

DATA sasglm.&glm_ds; 
MERGE sasglm.&glm_ds sasdata.gr_index; 

DATA sasglm.&glm ds; SET sasglm.&glm_ds; 
IF N = 1 THEN SET temp; 
RETAIN tma1-tma5 tb1a1-tb1a5 k 

tt1a1-tt1a5 tt2a1-tt2a5 tt3a1-tt3a5; 
DROP tma1-tma5 tb1a1-tb1a5 k 

tt1a1-tt1a5 tt2a1~tt2a5 tt3a1-tt3a5; 

BY exp_rand; 

ARRAY glma {5} muhatg b11hatg tr1hatg tr2hatg tr3hatg; 
ARRAY mua {5} tma1-tma5; 
ARRAY b1a {5} tb1a1-tb1a5; 
ARRAY t1a {5} tt1a1-tt1a5; 
ARRAY t2a {5} tt2a1-tt2a5; 
ARRAY t3a {5} tt3a1-tt3a5; 
muhata = O; b11hata= O; tr1hata = O: tr2hata = O; tr3hata = O; 

DO k = 1 TO 5 BY 1; 
muhata = muhata 
b11hata= b11hata 
tr1hata= tr1hata 
tr2hata= tr2hata 
tr3hata= tr3hata 

+ glma{k} 
+ glma{k} 
+ glma{k} 
+ glma{k} 
+ glma{k} 

* mua{k}; 
* b1a{k}; 
* t1a{k}: 
* t2a{k}; 
* t3a{k}; 

END; 

*The •usual constraint" is that each sum of estimators equals zero.; 
b12hata = -b11hata; . 
tr4hata = -SUM(tr1hata, tr2hata, tr3hata); 

*Compute remaining ss, ma, f_statist.ics, and olss. 
ssb mt= ssb m; 
ssb-mz = ssb-mtz; 
sst-m = sst-mb; 
sst-mz = sst mbz; 
ssz-m = ssmod - ssb mz - sst_mz; 
ssz~mb = ssmod - sst-mbz - ssb_m; 
ssz-mt = ssmod - ssb-mtz - sst_m; 

msb mt =ssb mt /dfb; -
msb-mz =ssb-mz /dfb; 
mst-m =sst-m /dft; 
mst-mz =sst-mz /dft; 
msz-m =ssz-m /dfz; 
msz:mb =ssz:mb /dfz; 
msz mt =ssz mt /dfz; 

fb-mt=msb mt/msres; fb mz =msb mz /msres; 
ft-m =mst-m /msres; ft-mz =mst-mz /msres; 
fz-m =msz-m /msres; fz-mb =msz-mb /msres; fz mt =msz_mt /msres; 

- oslb-mt = 1 - PROBF(fb mt: dfb, dftot): 
oslb-mz = 1 - PROBF(fb-mz, dfb, dftot); 
oslt-m = 1 - PROBF(ft-m, dft, dftot); 
oslt-mz = 1 - PROBF(ft-mz, dft, dftot); 
oslz-m = 1 - PROBF(fz-m, dfz, dftot); 
oslz-mb = 1 - PROBF(fz-mb, dfz, dftot); 
oslz:mt = 1 - PROBF(fz:mt, dfz, dftot); 

*Compute ratio1 : 
ratio1 = for z: adj.(mean & blocks) treatment ms/residual ss 
Ratio1 1s the block equivalent to the following: 
Finney (1946) page 54, equation 3, A/ A*(T-1). 
Lucas (1950). · 
Greenberg (1952) page 698, T sub ZZ / (P-1)*(S sub XX). 
Cox (1956) page 1146, equation 7, rightmost pate B sub/(T-1)*R sub. 
Cox (1957) page 153, equation 68, rightmost part T sub/(T-1)*R sub. 
Cox (1982) page 198, equation 3,trace(B sub Z *INV(S sub Z))/(T-1).; 
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*Begin computation of omega, the mean of omega_df = S sub Z / OF sub W. 
omega= expectation over all randomizations of (Z residual MS).; 

zsst mb = 2 * USS(tr1zbar, tr2zbar, tr3zbar, tr4zbar); 
*zss:mbt = residual sum of sq for covar given mean, blocks, treats. 

= total ss - block ss - treatment ss + correction factor. 
covariates are: 1 2 11 14 5 9 16 19; 

zss mbt = 1045 - 748.25 - zsst mb + 741.125; 
IF zss_mbt < .0000001 THEN PUT- exp_rand= zss_mbt= 

ratio1 
omega-'-df 

= zsst mb / ( dft 
= zss_mbt / dfres; 

* zss mbt) ; 
* mean square residual; 

* Debug Print options follow: ; 
%db(&dbps4, 
TITLE1 "Observations from glm output, sasdata.&glm_ds (dbps4)"; 

PROC PRINT DATA= sasglm.&glm ds (OBS=2); 
); -

**********************************************************************: 
* Step Six: 

Obtain the randomization expectation of parameters and aov estimates 
from the output of the glm analysts.; 

PROC MEANS DATA= sasglm.&glm_ds N MEAN STD VAR MIN MAX 
TITLE1 "Means, etc. from glm output, sasdata.&glm_ds"; 
VAR muhata b11hata b12hata 

tr1hata tr2hata tr3hata tr4hata betahat zss mbt 
msb m mst mb mst mbz msz mb msz mbt 
fmod fb-m ft-mb ft mbz fz-mb 
ssb m sst-mb sst-mbz ssz mb ssz:mbt 

omega_df 

fz_mbt 

oslb-m oslt-mb oslt-mbz oslz-mb o·s1z_mbt 
oslmod fmod -msmod msres sstot ssmod ssres 
rsq coefvar rootmse mean_y; 

OUTPUT OUT=meanout 
MEAN= amuhata ab11hata ab12hata 

atr1hata atr2hata atr3hata atr4hata 
abetahat azss mbt omega 
amsb m amst mb amst mbz 
afmod afb:m aft:mb 

amsz mb 
aft:mbz 

amsz mbt 
afz:mb afz_mbt; 

***********************************************************************; 
* Step Seven: 

Compute two types of errors. 
Complete construction of ratto2 and ratio3. ; 

DATA sasglm.&glm_ds (DROP= omega_df 
SET sasglm.&glm_ds; 
IF __ N_ = 1 THEN SET meanout; 

_TYPE __ FREQ_); 

* The two error types subtract the estimate from: 
(Typer) The randomization expectation, the average over all 

experimental randomizations. 
(Types) The superpopulatton values as defined a priori.; 

rmu = amuhata - muhata; 
rb11 = ab11hata - b11hata; rb12 = ab12hata - b12hata; 
rtr1 = atr1hata - tr1hata; rtr2 = atr2hata - tr2hata; 
rtr3 = atr3hata - tr3hata; rtr4 = atr4hata - tr4hata; 
rbeta = abetahat - betahat; 
rmst_mb = amst mb - mst_mb; rmst mbz amst mbz - mst_mbz; 
rmsz mb = amsz-mb - msz_mb; rmsz :mbt = amsz :mbt - msz_mbt; 
rfmod = afmod - fmod; rfb m = afb m - fb_m; 
rft mb = aft mb - ft _mb; rft -mbz = aft -mbz - ft _mbz; 
rfz :mb = afz :mb - fz _mb; rfz :mbt = afz :mbt - fz _mbt; 



* 

= 10 - muhata; 
= -1.5 - bl1hata 

0.0 - tr1hata 
0.0 - tr3hata 

smu 
sb11 
str1 
str3 = 
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sbeta 
sb12 
str2 
str4 

= 

= 

2.0 
1. 5 
0.0 
0.0 

- betahat; 
- b12hata; 
- tr2hata; 
- tr4hata; 

*Compute ratio2, Cox (1982) Page 200 TR(B sub Z * INV(omega sub Z)) 
Z SS for treats adj. for mean & blocks/ EXP(Z residual mean sq.) 

*; 
ratio2 = zsst mb / omega; 

•compute ratio3, Cox (1956) page 1148, equation 14, 
* w / randomization expectation of w. Where w = R sub ZZ, 
* the residual sum of squares (given mean, blocks, & treatments). 
* Ratio3 is used as a weight factor in a 2nd supposedly approximately 
* unbiased expectation of the residual mean square. 
*; 

ratio3 = zss_mbt / azss_mbt; 
LABEL 

.EXP RAND~'Exper Random.' 
81 RAND ='Block 1 Random' B2_RAND ='Block 2 Random' 

/* ZT11='Z BL1 TREAT 1' ZT12='Z BL1 TREAT 2' ZT13='Z BL1 TREAT 3' 
ZT14='2 BL1 TREAT 4' ZT21='Z BL2 TREAT 1' ZT22='Z BL2 TREAT 2' 
ZT23='2 BL2 TREAT 3' ZT24='Z BL2 TREAT 4' 

*/ SSMOD = 'SS MODEL' SSRES = 'SS Redisual' SSTOT = 'SS TOTAL' 
MSMOO = 'MS MOO EL' MSRES = 'MS Residua 1 ' 
FMOO = 'F. MODEL' OSLMOD = 'OSL MODEL' ROOTMSE='ROOT MSE' 
OFMOD = 'D.F. MODEL' DFRES = 'D.F. RESIDUAL' DFTOT ='D.F. TOTAL' 
COEFVAR ='COEF VAR' RSQ ='R SQUARED' MEANY= 'MEANY RESPONSE' 

SSB M ='SS B M' 5ST M ='SST M' -SSZ M ='SS Z M' 
SSB-MT ='SS 8- M,T' SST-MB ='SST- M,8' SSZ-MB ='SS Z- MB' 
SSB-MZ ='SS 8- M,Z' SST-MZ ='SST- M,Z' SSZ-MT ='SS Z- M:T' 
SSB-MTZ ='SS 8- M,T,Z' SST-MBZ ='SST: M,8,Z' ssz:MBT ='SS z: M,8,T' 

MSB M ='MS-8 M' MST M ='MST M' MSZ M ='MS Z M' 
MSB-MT ='MS B- M,T' MST-MB ='MST- M,B' MSZ~MB ='MS Z- MB' 
MSB-MZ ='MS 8- M,Z' MST-MZ ='MST- M,Z' MSZ-MT ='MS Z- M0 T' 
MSB-MTZ ='MS B- M,T,Z' MST-MBZ ='MST: M,B,Z' Msz:MBT ='MS z: M:B.T' 

FB M - = 'F B M' FT M - ='FT M' FZ M = 'F Z M' 
FB-MT = 'F B- M,T' FT-MB = 'FT- M,B' FZ-MB = 'F Z- M,B' 
FB-MZ = 'F B- M,Z' FT-MZ ='FT- M,Z' FZ-MT = 'F Z- M,T' 
FB-MTZ = 'F s: M,T,Z' FT-MBZ ='FT- M,B,Z' FZ-MBT = 'F Z- M,8,T' 

OSLB M ='OSL B M' -OSLT M ='CSL T M' - OSLZ M ='OSL Z M' 
OSLB-MT ='OSL B- M,T' OSLT-MB ='OSL T- M,B' OSLZ-MB ='OSL z- M 8' 
OSLB-MZ ='OSL 8- M,Z' OSLT-MZ ='OSL T- M,Z' OSLZ-MT ='OSL z- M0 T' 
OSLB-MTZ='OSL s: M,T,Z' OSLT-MBZ='OSL T: M,8,Z' OSLZ-MBT='OSL Z- M:B,T' 
DFB - ='OF 8' - OFT 'OFT' - DFZ =-'OF Z' 

MUHATG = 'MU HAT GLM' BL1HATG = 'BLOCK 1 HAT GLM' 
TR1HATG = 'TREAT 1 HAT GLM' TR2HATG = 'TREAT 2 HAT GLM' 
TR3HATG = 'TREAT 3 HAT GLM' BETAHAT = 'BETA HAT GLM=AOV' 

MUHATA = 'Mu hat aov' 
BL1HATA = 'Block 1 Hat Aov' b12hata = 
TR1HATA = 'Treat 1 Hat Aov' tr2hata = 
TR3HATA = 'Treat 3 Hat Aov' tr4hata = 

'Block 2 Hat Aov' 
'Treat 2 Hat Aov' 
'TREAT 4 Hat Aov' 

BL1YBAR='BLOCK 1 Y BAR' TR1YBAR='TREAT 1 Y 
BL2YBAR='BLOCK 2 Y BAR' TR2YBAR='TREAT 2 Y 
BL1ZBAR='BLOCK 1 Z BAR' TR3YBAR='TREAT 3 Y 
BL2ZBAR='BLOCK 2 Z BAR' TR4YBAR='TREAT 4 Y 

BAR' TR1ZBAR='TREAT 1 Z 
BAR' TR2ZBAR='TREAT 2 Z 
BAR' TR32BAR='TREAT 3 Z 
BAR' TR4ZBAR='TREAT 4 Z 

AMUHATA ='R-EXPT MUHATA' 
ABL1HATA='R-EXPT BL1HATA' 
ATR1HATA='R-EXPT TR1HATA' 
ATR3HATA='R-EXPT TR3HATA' 
ABETAHAT='R-EXPT BETAHAT' 
AMSB M ='R-EXPT MSB M' 
AMST-MB='R-EXPT MST-MB' 
AMSZ-MB='R-EXPT MSZ-MB' 
AFMOD ='R-EXPT F MOD' 
AFT MB ='R-EXPT FT MB' 
AFZ:MB ='R-EXPT Fz:MB' 

ABL2HATA='R-EXPT BL2HATA' 
ATR2HATA='R-EXPT TR2HATA' 
ATR4HATA='R-EXPT TR4HATA' 

AMST MBZ='R-EXPT 
AMSZ-MBT='R-EXPT 
AFB M ='R-EXPT 
AFT-MBZ ='R-EXPT 
AFZ:MBT ='R-EXPT 

MST MBZ' 
MSZ-MBT' 
FB M' 
FT-MBZ' 
FZ:MBT' 

BAR' 
BAR' 
BAR' 
BAR' 



* 
* 

Appendix F.6 - glm 431 

AZSS MBT='R-EXPT ZSS MBT' OMEGA='R-EXPT ZSS MBT/DF' 
RMU ='R-ERR MUHATA' - RBL1= 'R-ERR BL1HATA' RBL2='R-ERR BL2HATA' 
RTR1='R-err tr1hata' RTR2= 'R-err tr2hata' RTR3='R-err tr3hata' 
RTR4='R-err tr4hata' RBETA='R-err betahat' 
RMST MB='R-ERR MST MB' RMST MBZ='R-err mst mbz' 
RMSZ-MB='R-ERR MSZ-MB' RMSZ-MBT='R-err msz-mbt' 
RFMOD ='R-ERR FMOD' RFB M ='R-ERR FB M' 
RFT MB ='R-ERR FT MB' RFT-MBZ ='R-ERR FT=MBZ' 
RFZ-MB ='R-ERR FZ-MB' RFZ-MBT ='R-ERR FZ MBT' 

SMU ='S-ERR MUHATA' 5BL1='5-ERR BL1HATA' SBL2='S-ERR BL2HATA' 
STR1='S-err tr1hata' STR2='S-err tr2hata' STR3='S-err tr3hata' 
STR4='S-err tr4hata' SBETA='S-err betahat' 

ZSS MBT = 'Z SS MBT' 
/* RATI01 = 'zsst mb/ dft#zss mbt' 

RATI02 = 'zsst-mb/ omega' -
RATI03 = 'zss mbt/ azss mbt' ; 

- 1 - 2 3 41 
123456789 123456789 123456789 123456789 <MAX 

*/ RATI01 = 'R1-for Z: Adj. Treat. ms/residual ss' 
RATI02 = 'R2-for Z: Adj. Treat. ss/E(residual ms)' 
RATI03 = 'R3-for Z: Residual ss/E(residual ss)' 

* Print aov variables from first few experimental radnomizations. 
* Labeling is temporary for the proc print operation.; 
PROC PRINT DATA=sasglm.&glm_ds (0BS=26) LABEL SPL.IT = '*' 

VAR exp_rand b1_rand b2_rand g_group 
dfmod -- tr4zbar muhata -- ratio1 

LABEL 
EXP RAND='EXPER)*RANDOM' 

rmu--ratio3 

81 RAND ='BLOCK 1*RAND0M' B2_RAND ='BLOCK 2*RANDOM' 
/*-
ZT11='Z 
ZT14='Z 
ZT23='Z 
*I 

BL1*TREAT 1' 
BL1*TREAT 4' 
BL2*TREAT 3' 

ZT12='Z BL1*TREAT 2' 
ZT21='Z BL2*TREAT 1' 
ZT24='Z BL2*TREAT 4' 

ZT13='Z BL1*TREAT 3' 
~T22='Z BL2*TREAT 2' 

SSMOD = 'SS*MODEL' SSRES = 'SS*RESIDUAL' SSTOT = 'SS*TOTAL' 
MSMOD = 'MS*MODEL' MSRES 'MS*RESIDUAL' 
FMOD = 'F.*MODEL' OSLMOD 'OSL*MODEL' ROOTMSE='ROOT*MSE' 
DFMOD = 'D.F.*MODEL' DFRES = 'D.F.*RESIDUAL' DFTOT ='D.F.*TOTAL' 
COEFVAR ='COEF*VAR' RSQ ='R*SQUARED' MEAN V = 'MEAN Y*RESPONSE' 

SSB M ='SS B *M' SST M ='SST *M' -SSZ M ='55 Z *M' 
558-MT ='SS 8-*M T' SST-MB ='SS T-*M B' SSZ-MB ='55 Z-*M B' 
558-MZ ~'SS 8-*M:z, SST-MZ ='SS T-*M'z, SSZ-MT ='SS Z~*M,T' 
SSB-MTZ ='SS 8-*M,T,Z' SST-MBZ ='SS T-*M's Z' SSZ-MBT ='SS Z-*M 0 B T' 

MSB M ='MS-8 *M' MST M ='MS-T ;M: MSZ M ='MS-Z ;M: 
MSB-MT ='MS B-*M T' MST-MB ='MS T-*M,B' MSZ-MB ='MS Z-*M,B' 
MSB-MZ ='MS B-*M 0 Z' MST-MZ ='MS T-*M Z' MSZ-MT ='MS Z-*M T' 
MSB-MTZ ='MS B-*M 0 T Z' MST-MBZ ='MS T-*M 0 8,Z' MSZ-MBT ='MS Z-*M 0 B,T' 

FB M - = 'F B *M' • • FT M - = 'FT *M' • FZ M - = 'F Z *M' • 
FB-MT = 'F B-*M T' FT-MB = 'F T-*M,B' FZ-MB 'F Z-*M B' 
FB-MZ = 'F B-*M'z, FT-MZ = 'F T-*M,Z' FZ-MT = 'F Z-*M:T' 
FB-MTZ = 'F B=*M:T,Z' FT=MBZ = 'F T=*M,B,Z' FZ=MBT 'F z:•M,B,T' 

DSLB M ='OSL B *M' OSLT M ='OSL T *M' OSLZ M ='OSL Z *M' 
OSLB-MT ='OSL 8-*M,T' OSLT-MB ='OSL T-*M 8' OSLZ-MB ='OSL Z-*M,8' 
OSLB-MZ ='OSL B-*M,Z' OSLT-MZ ='OSL T-*M:z, DSLZ-MT ='OSL Z-*M,T' 
OSLB-MTZ='OSL 8-*M T,Z' OSLT-MBZ='OSL T-*M,B,Z' OSLZ-MBT='OSL Z-*M,8,T' 
DFB - ='DF*B'- • - OFT ~ 'DF*T' - DFZ =-'DF*Z' 

MUHATG = 'MU HAT*GLM' BL1HATG = 'BLOCK 1*HAT GLM' 
TR1HATG = 'TREAT 1*HAT GLM' TR2HATG 'TREAT 2*HAT GLM' 
TR3HATG = 'TREAT 3*HAT GLM' BETAHAT = 'BETA HAT*GLM=AOV' 

MUHATA = 'MU HAT*AOV' 
BL1HATA = 'BLOCK 1*HAT ADV' BL2HATA = 'BLOCK 2*HAT ADV' 
TR1HATA = 'TREAT 1*HAT ADV' TR2HATA = 'TREAT 2*HAT ADV' 
TR3HATA = 'TREAT 3*HAT ADV' TR4HATA = 'TREAT 4*HAT ADV' 

BL1YBAR='BLOCK 1*Y BAR' TR1YBAR='TREAT 1*Y BAR' TR1ZBAR='TREAT 1*Z BAR' 
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BL2YBAR='BLOCK 2*Y BAR' TR2YBAR='TREAT 2*Y BAR' TR2ZBAR='TREAT 
BL1ZBAR='BLOCK 1*Z BAR' TR3YBAR='TREAT 3*Y BAR' TR3ZBAR='TREAT 
BL2ZBAR='BLOCK 2*Z BAR' TR4YBAR='TREAT 4*Y BAR' TR4ZBAR='TREAT 
/* THE FOLLOWING CONSTANT VARIABLES ARE NOT PRINTED HERE. 

THEY ARE PRINTED AS OUTPUT FROM THE MEANS PRDCEEDURE. 
AMUHATA ='R-EXPT*MUHATA' 
ABL1HATA='R-EXPT*BL1HATA' 
ATR1HATA='R-EXPT*TR1HATA' 
ATR3HATA='R-EXPT*TR3HATA' 
ABETAHAT='R-EXPT*BETAHAT' 
AMSB M ='R~EXPT*MSB M' 
AMST-MB='R-EXPT*MST-MB' 
AMSZ~MB='R-EXPT*MSZ-MB' 
AFMDD ='R-EXPT*F MOD' 
AFT MB ='R-EXPT*FT MB' 
AFZ-MB ='R-EXPT*FZ-MB' 
AZSS MBT='R-EXPT*ZSS MBT' 

*I - -

ABL2HATA='R-EXPT*BL2HATA' 
ATR2HATA='R-EXPT*TR2HATA' 
ATR4HATA='.R-EXPT*TR4HATA' 

AMST MBZ='R-EXPT*MST MBZ' 
AMSZ-MBT='R-EXPT*MSZ-MBT' 
AFB M ='R-EXPT*FB M' 
AFT-MBZ ='R-EXPT*FT-MBZ' 
AFZ-MBT ='R-EXPT*FZ-MBT' 

OMEGA='R-EXPT*ZSS_MBT/DF' 

2*Z BAR' 
3*Z BAR' 
4*Z BAR' 

RMU ='R-ERR*MUHATA' RBL1= 'R-ERR*BL1HATA' 
RTR1='R-ERR*TR1HATA' RTR2= 'R-ERR*TR2HATA' 

RBL2='R-ERR*BL2HATA' 
RTR3='R-ERR*TR3HATA' 

RTR4='R-ERR*TR4HATA' RBETA='R-ERR*BETAHAT' 
RMST MB='R-ERR*MST MB' RMST MBZ='R-ERR*MST MBZ' 
RMSZ-MB='R-ERR*MSZ-MB' RMSZ-MBT= 1 R-ERR*MSZ-MBT' 
RFMDD ='R-ERR*FMOD' RFB M ='R-ERR*FB M' 
RFT MB ='R-ERR*FT MB' RFT-MBZ ='R-ERR*FT-MBZ' 
RFZ-MB ='R-ERR*FZ-MB' RFZ-MBT ='R-ERR*FZ-MBT' 

SMU ='S-ERR*MUHATA' SBL1='S-ERR*BL1HATA' SBL2='S-ERR*BL2HATA' 
STR1='S-ERR*TR1HATA' STR2='S-ERR*TR2HATA' STR3='S-ERR*TR3HATA' 
STR4= '-S-ERR*TR4HATA' SBETA=' S-ERR*BETAHAT' 

ZSS MBT = 'Z SS* MBT' . 
RATl01 = 'R1-ZSST MB/*DFT#ZSS MBT' RATID2= 'R2-ZSST_MB/*DMEGA' 
RATI03 = 'R3-ZSS_MBT/*AZSS_MBT' ; 

*********************************************************************: 
* Step Efght 

Analysts of aov estimates and responses.; 

PROC MEANS DATA= sasglm.&glm_ds N MEAN STD VAR MIN MAX; 
TITLE1 •Two types of errors R=randomtzatton S=populatfon•; 
TITLE2 "Data set ts sasglm.&glm ds •; 
VAR RMU RBL 1 RBL2 RTR1 RTR.2 RTR3 RTR4 RBETA 

RMST MB RMST MBZ RMSZ MB RMSZ MBT 
SMU - SBL1 SBL2 STR1 STR2 -STR3 STR4 SBETA 
OMEGA AZSS_MBT zss_MBT RATI01 RATI02 RATI03; 

PRDC MEANS DATA= sasglm.&glm ds N MEAN STD VAR MIN MAX; 
T~TLE1 •Mean squares weighted wfth ratfo3"; 
TITLE2 •oata set ts sasglm.&glm_ds •; 
WEIGHT RATID3; . ·. 
VAR MSRES MST_MBZ MSZ MBT ft mbz fz mbt 

BETAHAT muhata b11hata b12hata 
tr1hata tr2hata tr3hata tr4hata 

PROC CHART DATA= sasglm.&glm ds; 
TITLE1 •The Randomtzatfon Model w1th Blocks and a Covariate•; 
TITLE2 •Data set· ts sasglm.&glm_ds •: 

HBAR MST MBZ MSZ MBT MSRES 
FT MBZ FZ MBT 
DSLT_MBZ DSLZ_MBT 

MUHATA BL1HATA BL2HATA 
TR1HATA TR2HATA TR3HATA TR4HATA BETAHAT 
SMU SBL1 SBL2 STR1 STR2 STR3 

/TYPE• PERCENT LEVELS= 20; 

I* 

STR4 SBETA 
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OSLMOD FMOD MSMOD MSRES SSTOT SSMOD SSRES 
SSB M SST MB SST MBZ SSZ MB SSZ MBT 
MSB-M MST-MB MST-MBZ MSZ-MB MSZ-MBT 
FB M FT_MB FT MBZ FZ MB FZ MBT 
OSLB M OSLT MB os[T_MBZ os[z_MB os[z_MBT 
RSQ -COEFVAR ROOTMSE MEANY 

zss_MBT RATI01 RATI02 RATI03 
RMU RBL1 RBL2 RTR1 RTR2 RTR3 RTR4 RBETA 
RMST_MB RMST MBZ RMSZ MB RMSZ_MBT 
SMU SBL1 SBL2 STR1 STR2 STR3 STR4 SBETA 

*I 

PROC PLOT DATA= sasglm.&glm_ds; 
TITLE 1 "The Randomization Model with B 1 eeks and a Covariate"; 
TITLE2 "Data set is sasglm.&glm_ds "; 

PLOT B1 RAND * B2 RAND = MST_MBZ / HPOS=SO CONTOUR=10 - * B2-RAND PLOT B1 RAND = MSZ_MBT / HP0S=50 CONTOUR=10 - * B2-RAND PLOT B1 RAND = MSRES I HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2-RAND FT MBZ I HP0S=50 = CONTOUR=10 
PLOT B1 -RAND * B2-RAND FZ-MBT / HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2-RAND OSLT MBZ/ = HPOS=SO CONTOUR=10 
PLOT B1 -RAND * B2-RAND OSLZ-MBT/ HP0S=50 CONTOUR=10 = 
PLOT B1 -RAND * B2-RAND BETAHAT / HP0S=50 CONTOUR=10 = 

I* PLOT B1 -RAND * B2-RAND ZSS_MBT / HPOS=SO CONTOUR=10 = 
PLOT B1 -RAND * B2-RAND I HPOS=SO CONTOUR=10 = RSQ 
PLOT B1 -RAND * B2-RAND COEFVAR / HPOS=SO CONTOUR=10 = 
PLOT B1 - RAND * B2-RAND MEAN_Y I HP0S=50 CONTOUR=10 = -PLOT B1 RAND * B2-RAND = RMU I HP0S=50 CONTOUR=10 
PLOT B1 - * B2-RAND I RAND = RBL1 HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2-RAND RTR1 I HP0S=50 CONTOUR=10 = 
PLOT B1 -RAND * B2-RAND I HPOS=SO = RTR2 CONTOUR=10 -PLOT B1 RAND * B2-RAND = RTR3 I HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2-RAND RTR4 I HP0S=50 = CONTOUR=10 
PLOT B1 -RAND * B2-RAND = RBETA I HP0S=50 CONTOUR= 10.; 
PLOT B1 -RAND * B2-RAND RMST_MB / HP0S=50 = CONTOUR=10 
PLOT B1 -RAND * B2-RAND RMST MBZ/ HP0S=50 = CONTOUR=10 
PLOT B1 -RAND * B2-RAND RMSZ-MB / HP0S=50 CONTOUR=10 = 
PLOT B1 -RAND * B2-RAND RMSZ-MBT/ HP0S=50 . CONTOUR= 10 = 
PLOT B1 -RAND * B2-RAND = RFMOD / HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2-RAND = RFB M I HPOS=SO CONTOUR=10 - B2-RAND RFT-MB / HP0S=50 PLOT B1 _RAND * = CONTOUR=10 
PLOT B1 RAND * B2-RAND = RFT:MBZ / HP0S=50 CONTOUR=10 - * B2-RAND PLOT B1 RAND = RFZ MB I HP0S=50 CONTOUR=10 
PLOT B1 -RAND * B2:RAND = RFZ:MBT / HP0S=50 CONTOUR=10 -*I 

PROC PLOT DATA= sasglm.&glm_ds; 
TITLE1 "The Randomization Model ·with Blocks and a Covariate•; 
TITLE2 "Data set is sasglm.&glm_ds •; 
PLOT (msz mbt msres fz mbt betahat) * g_group / HP0S=50; 
PLOT(SMU - SBL1 SBL2 - STR1 STR2 STR3 STR4 SBETA) 

* RATI02 / HPOS=SO VREF=O.O; 
PLOT (RATI01 RATI02) * RATI03 / HPOS=SO; 
PLOT RATI01 * RATI02 / HP0S=50; 

I* . 

*I 

PLOT(RMU RBL1 RBL2 RTR1 
RMST MB RMST MBZ 

RTR2 
RMSZ MB 

STR2 SMU - SBL1 SBL2 - STR1 
* RATI02 / HP0S=50 VREF=O.O; 

PROC CHART DATA= sasglm.&yhat_ds; 

RTR3 RTR4 
RMSZ MBT 

STR3 STR4 

RBETA 

SBETA) 

TITLE1 "The Randomization Model with Blocks and a Covariate•; 
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TITLE2 "Data set is sasdata.obs_y "· 
HBAR &yobs &error &ypred &resid 

I TYPE= PERCENT LEVELS= 20; 

I* 
PROC PLOT DATA= sasglm.&yhat ds; 

TITLE1 "The Randomization Model with 
TITLE2 "Data set is sasdata.obs_y 

PLOT &resid * (&pred covar) 
PLOT &yobs * &pred 

Blocks and a Covariate"; 

*I 

II 

* Debug Print 
%db(&dbpsi, 

options foltow: ; 

" . . 
I HPOS=SO. VREF=O.O; 
I HPbS=SO; 

PRINT "Data input from eu err and euti err 
PRINT mu val b valm trt:valm beta- zm 

labels -

(dbps1)"; 

eu_eqm eu_nem euti_eqm euti_nem; ); 

************************ Create Output Data Set*********************; 
********* Test Print Initial Version of Data Set obs_y *****; 

* Debug Print 
%db(&dbps3, 

options follow: ; 
TITLE1 "Observations from rm err (dbps3)"; 
PROC PRINT DATA=rm err (085=32); 
PROC PRINT DATA=rm-err (FIRSTOBS=4577); 
PROC MEANS DATA=rm-err (085=32) 

N MEAN VAR STD VARDEF=N; 
BY exp rand block; 
VAR eu_eq euti_eq eu_ne euti_ne; 

PROC MEANS DATA=rm err (085=32) 
N MEAN VAR STD VARDEF=N; 

BY exp rand; 
VAR eu-eq euti eq eu ne euti ne; 

PROC MEANS DATA=rm err - -
N MEAN VAR STD VARDEF=N; 

VAR eu_eq euti_eq eu_ne euti_ne; 
) ; 

DATA sasdata.rm~err; SET rm_err; *Randomization Model ERRor; 

DATA all err; *ALL three ERRor types; 
MERGE sasdata.rm err sasdata.nor_err; 
covar = z; drop z 
LABEL 

exp rand= 'experiment-wise rando' 
b1 rand= 'block 1 randomization' 
b2:rand = 'block 2 randomization' 

block = 'block id' 
b val = 'block effect value' 
plot = 'experimental unit id' 
plabel = 'plot label' 
treat 'treatment id' 
trt val = 'treat effect value' 
tlabel = 'treatment label' 
covar = 'covariate (z)' 
beta = 'covariate slope coef.' 

eu_eq_ = 'e.u. error var-eq' 

BY exp_rand; 
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eu ne = 'e.u. error var-ne' 
eut1 _eq = 'e.u.t.1. error var-eq' 
eut1 ne = 'e.u. t .1. error var-ne' -
nre03 _eq = 'normal err v=3 -eq' 
nre03 ne 'normal err v=3 -ne' 
nre10:eq = 'normal err v=10 -eq' 
nre10 ne = 'normal err v=10 -ne' 
nre3o:eq = 'normal err v=30 -eq' 
nre30 ne 'normal err v=30 -ne' 
nreso:eq = 'normal err v=90 -eq' 
nre90_ ne = 'normal err v=90 -ne' 

s_popynt= 'superpop. no treat' 
s__popywt= 'superpop. with treat' 

**** Create macro too generate formula for***************************; 
************* the observed population values yobs(#)(##) ************; 

%MACRO m_yobs; 
%DO err id= 1 %TO 

yobsOO&err .id = 
yobs10&err:id = 

%END; 

9 ; 
s__popynt + 
s__popywt + 

%DO err id= 10 %TO 81; 

eO&err id; 
eO&err:id; 

yobsO&err_id = s__popynt + e&err id; 
yobs1&err_id = S...:.Popywt + e&err:id; 

%END; 
%MEND; 

************* End of macro m_yobs ***********************************: 
/* *Successful step turned off. 
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U13293A.SASPROG.CNTL(NONCENT) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:16 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'R. S. WILS0N',TIME=(0,9),CLASS=2, 
// MSGCLASS=X,MSGLEVEL=(1,1) 
/*JOBPARM ROOM=R,FORMS=9001,COPIES=1 
// EXEC SAS,REGI0N=918K 
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD 
//SYSIN DD* 

/*************************************************************** 
* File: sasprog.cntl(noncent) 
• 
* Compute noncentralit~ parameter 
* Use specified treatments, covariates, and slope coefficient 
* Compute various parts of the noncentra11ty formulas . 
• 
• Variance (sigma squared) and 1/2 are omitted from all 
• noncentrality parameters. 
* • 
*******************************************~********************/ 

options nodate; 

proc iml; 
*Variable value matrices follow; 

* Treatment coefficients; 
bt = { -6.5, -3.5, 2.5}; 

• Covariate coefficient(s); 
bz = { 2.0 }; 

• Covariate values with comments on equal-valued g-groups; 
Title1 'Noncentral ity. Parameters - less ( 1/2).(sigma squared)'; 
Title2 'covariate= {1,2,11,14, 5,9,16,19} coefficient= 2.0'; 
Title3 'treatments= -6.5, -3.5, 2.5 (+7.5)}'; 

xz = { 1, 2, 11, 14, 5, 9, 16, 19}; *NO dup 1 change from org; 
* xz = { 1, 2, 11, 14, 5, 9, 17, 19}; ·*original, reordered; 
* xz = { 1, 2, 11, 14, 7, 9, 15, 19}; *NO dup; 
• xz = { 1., 2, 11, 14, 7, 9, 15, 18}; *1 dup; 
* xz = { 1, 2, 11, 14, 18, 17, 9, 5}; •1 dup; 
* xz = { 1, 2, 11, 14, 7, 9, 17, 19}; *NO dup 2 dtff=10; 
• xz .. { 1, 2, 11, 14, 19, 17, 9, 5}; •1 dup and eq following; 
• xz = { 1, 2, 11, 14, 5, 9, 17, 19}; *1 dup and eq above; 
• xz = { 2.63, 9.11, 16.19, 20.93, 30.21, 40.21, 41.09, 50.43}; 

prints if true; 
*escape; 

• Debug print 
dbps1 = 
dbps2 = 
dbps3 = 

switches 
'false' : 
'false'; 
'false'; 

*constant values; 
*permutation matrix; 

•constant valued matrices follow; 
xm = {1, 1~ 1, 1, 1, 1, 1, 1}; 
xb = {1, 1, 1, 1, -1, -1, -1, -1}; 
xt = {1 0 0, 0 1 0, 0 0 1, -1 -1 

1 0 0, 0 1 0 0 0 1, -1 -1 
w .. ( j(4,4, 1/4) I I j(4,4,0) ) // 
lam ft= bt• • xt••xt • bt; 
I =-I(8); 
lam fb = bz• • xz• * (I - w) * xz • bz; 

-1, 
-1}: 
c JC4,4,o> 11 JC4,4, 1/4> >: 

slope= lam_ft / lam_fb; 
xxxx t = xt * inv(xt• * xt) 
zzzz- = xz • inv(xz• * xz) 

* xt•: 
* xz•; 
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ziz = xz * inv(xz¢* (I - w) * xz) * xz¢; 
m4 = J(4,4,0); 
j43= J(4,3,0); 
zero_esc = J(1,21,0); 
escape= zero_esc; 

* Debug print switch; 
if dbps2 = 'true' then print w xxxx_t ziz lam_ft lam_fb; 

*Each row of Mpattern (randomization patterns) is one permitted 
* block-randomization or assignment of treatments (element value) 
* to experimental units (element position) within one block. 
*; 
rpattern = 
{1234,1 

2 1 3 4 , 2 
3 1 2 4 , 3 
4 1 2 3 4 

2 4 
1 4 
1 4 
1 3 

3 , 1 3 2 
3 , 2,3 1 
2 , 3 2 1 
2 4 2 1 

4 , 1 
4 , 2 
4 , 3 
3 4 

3 4 
3 4 
2 4 
2 3 

2 , 1 
1 , 2 
1 , 3 
1 4 

4 2 3 , 
4 1 3 , 
4 1 2 , 
3 1 2 

1 4 3 2, 
2 4 3 1, 
3 4 2 1, 
4 3 2 1 } 

varname = {exp_rand b1_rand b2_rand g_group 
lam269t lam2610t lam2634t lam dt lam ft 
lam269b lam2610b lam2630b lam-db lam-fb 

lam st 
lam:gb 

} ; l_s3715 l_s r_1 -r_2 slope 

* lam269 t 
* lam2610 t 
* lam2634-t 
* lam dt ;
*lam-ft= 
* lam:st = 

* lam269 b 
* lam2610 b 
* lam2630-b 
* lam db;
* lam-fb = 
* lam~b = 

* 1 s3715= 
* 1-s = 
* r-1 = 
* r:2 = 

= Eq 2.6.9 noncent tau given rest; 
= Eq 2.6.10 noncent tau given rest; 
= Eq 2:6.34 noncent tau given rest; 

noncent tau given rest as (fixed - random); 
fixed part of tau given rest; 
random part of tau gtven rest; 

= Eq 2.6.9 noncent cov given rest; 
= Eq 2.6.10 noncent cov given rest; 
= Eq 2.6.30 noncent cov given rest; 

noncent beta gtven rest as (fixed - random); 
fixed part of beta given rest; 
group random part of beta given rest; 

(lam_fb * lam_st) / lam ft; 
(bz¢ * xz ¢Ms* xt * bt) squared; 
Right side for Theo. 3.4.13 gb * ft; 
Right stde for Theo. 3.4.14 st* fb; 

*slope= lam_ft / lam_fb; 

Gtable = 
{1 2 3 

2 1 4 
3 5 1 
4 6 2 
5 3 6 
6 4 5 
7 8 13 
8 7 14 
9 11 15 

10 12 16 
11 9 17 
12 10 18 
13 19 7 
14 20 8 
15 21 9 
16 22 10 
17 23 11 
18 24 '12 
19 13 20 
20 14 19 

5 4 6 
6 3 5 
2 6 4 
1 5 3 
4 1 2 
3 2 1 

19 14 20 
20 13 19 
21 17 23 
22 18 24 
23 15 21 
24 16 22 

8 20 14 
7 19 13 

11 23 17 
12 24 18 

9 21 15 
10 22 16 
14 7 8 
13 8 7 

7 
8 
9 

10 
11 
12 

1 
2 
3 
4 
5 
6 

15 
16 
13 
14 
18 
17 
21 
22 

8 13 
7 14 

11 15 
12 16 

9 17 
10 · 19 

2 3 
1 4 
5 1 
6 2 
3 6 
4 5 

21 9 
22 10 
19 7 
20 8 
24 12 
23 11 
15 23 
16 24 

19 14 
20 13 
21 17 
22 18 
23 15 
24 16 

5 4 
6 3 
2 6 
1 5 
4 1 
3 2 

11 23 
12 24 
8 20 
7 19 

10 22 
9 21 

17 9 
18 10 

20 9 11 15 
19 10 12 16 
23 7 8 13 
24 8 7 14 
21 12 10 18 
22 11 9 17 

6 15 21 9 
5 16 22 10 
4 13 19 7 
3 14 20 8 
2 18 24 12 
1 17 23 11 

17 1 2 3 
18 2 1 4 
14 3 5 1 
13 4 6 2 
16 5 3 6 
15 6 4 5 
11 22 16 24 
12 21 15 23 

21 17 23 10 
22 18 24 9 
19 14 20 12 
20 13 19 11 
24 16 22 7 
23 15 21 8 
11 23 17 16 
12 24 18 15 

8 20 14 18 
7 19 13 17 

10 22 16 13 
9 21 15 14 
5 4 6 22 
6 3 5 21 
2 6 4 24 
1 5 3 23 
4 1 2 19 
3 2 1 20 

18 10 12 1 
17 9 11 2 

12 16 
11 15 
10 18 

9 17 
8 13 
7 14 

22 10 
21 9 
24 12 
23 11 
19 7 
20 8 
16 24 
15 23 
18 22 
17 21 
13 20 
14 19 

2 3 
1 4 

22 18 
21 17 
24 16 
23 15 
19 14 
20 13 
12 24 
11 23 
10 22 
9 21 
8 20 
7 19 

18 10 
17 9 
16 12 
15 11 
14 7 
13 8 

5 4 
6 3 

24, 
23, 
22, 
21, 
20, 
19, 
18, 
17, 
16, 
15, 
14, 
13, 
12, 
11 , 
10, 
9, 
8, 
7, 
6, 
5, 
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21 15 23 17 9 
22 16 24 18 10 
23 17 21 15 11 
24 18 22 16 12 

11 19 
12 20 
9 24 

10 23 

13 20 14 7 
14 19 13 8 
18 22 16 12 
17 21 15 11 

8 24 18 22 16 12 10 
7 23 17 21 15 11 9 

10 19 13 20 14 7 8 
9 20 14 19 13 8 7 

3 
4 
5 
6 

5 
6 
3 
4 

1 
2 
6 
5 

2 
1 
4 
3 

*G-table was copied 1n from output from g-table program, below. ; 

********************* begin looping through randomizations*****; 
create temp from escape (lcolname = varname I): 

start mb1 rand; 
do b1 rand= 1 to 24 by 1; 

b1-= j43; 
m1 = m4; 
start mp set1: 
do p set1 = 1 to 4 by 1; *1 row of rpattern; 

one_co1 = rpattern(lbt_rand, p_set1 I>: 
1f one col = 4 then b1(1p set1, I> = -1; 
ff one-col ~= 4 then b1( p-set1, one col I>= 1: 
m1<IP_set1, one_co1 I>= 1: - -

end; 
ffnfsh: 
run mp_set 1 ; 

start mb2 rand; 
do b2_rand = 1 to 24 by 1; 

*Compute experimental_randomfzatfon number; 
exp rand= (b1 rand - 1) # 24 + b2 rand; 

*Compute randomfzatfon group number from gtable; 
group= gtable(lb1_rand, b2_rand I): 
b2 = j43; 
m2 = m4; 

start mp_set2; 
do p set2 = 1 to 4 by 1; 

one_col = rpattern(lb2_rand, p_set2 j>: 
ff one co 1 = 4 then b2 ( Ip set2, ) = -1 : 
ff one-col ~= 4 then b2(lp set2, one col I)• 1; 
m2<IP_set2, one_co1 I>= 1: - -

end; 
ffnish; 
run mp_set2; 

xt s = b1 // b2: . 
xxxx ts= xt s * inv(xt s• * xt s) * xt_s•: 
m_s ~ (m1 ll-m4) // ( m4 II m2)-: 

*Debug print swftch; 
ff dbps3 = . 'true' then print xt_s xxxx_ts m_s; 

*Compute direct noncentralftfes; 
*Section 2.6 for cov given rest: 

x_p = xm 11 xb 11 xt_s 11 xz; 
xxxx_p = x_p * inv(x_p• * x_p) * x_p•: 
b h = bz· x h = xz· 
x:r • xm' 11 xb 11 xt_s : 
xxxx r = x r • inv(x r• * x_r) * x_r•: 
lam269b =-(x_h • b_ii)• * ( xxxx_p - xxxx r ) * (x h * b h); 
lam2610b = b h•*( (x h•*x h) - (x h• * xxix r * x_ii) )•b:h: 
lam2630b = (bz• * xzi * (i-w) •-xz * bz )-

-(bz• * xz• * xxxx_ts * xz * bz ); 

•section 2.6 for tau given rest; 
b h = bt; x h = xt s; 
x:r .. xm 11 Xb 11 xz : 
xxxx_r .= x_r * inv(x_r• * x_r) * X r•· - . 

6 
5 
1 
2 

4, 
3, 
2, 
1}; 
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1am269t 
1am2610t 
1am2634t 

= (x h * b_h)C: * ( xxxx_J> - xxxx_r ) * (x h * b h); 
= b hC:*( (x hC:*x h) ~ (x hC: * xxxx r * x_h) )*b:h; 
= (btC: * xt-sC: .- xt s * bt)-

-(btC: * xt:se: * ztz * xt:s * bt); 

*Theorem numbers correspond to dtssertatton text.; 
*Compute random parts of noncent using permutor Theo 3.7.10 & 11; 

lam_gb = bzC: * xzC: * ms * xxxx t * m sC: * xz * bz; 
lam_st = btC: * xtC: * m:se: * ztz- * m:s * xt * bt; 

*Compute the (Diference=ftxed-random) noncentraltttes; 
lam db= lam_fb - lam_gb; 
lam:dt m lam_ft - lam_st; 

*Compute left stde of Theo 3.7.15 which ts< lam gb; 
1_s3715 = (lam_fb * lam_st) / lam_ft; -

*Compute left and right-hand stdes for Theo 3.7.13 & 14; 
* Since (1/2)sfgma omitted from lamda, 2stgma fs also omitted.; 

1 s = bzC: * xzC: *Ms* xt * bt· 
1-s = 1 s * 1 s· - ' 
r-1 = lam_gb * lam_ft; 
r:2 = lam_st * lam_fb; 

*Debug prfnt swftch; 
ff dbps1 = 'true' 

I* 

exp rand 
1am269t 
lam dt 
1am269b 
lam db 

_s3715 

then prfnt 
b1 rand 
1am2610t 
lam ft 
1am2610b 
lam_fb 

_s r_1 

b2 rand 
1am2634t 
lam st 
1am2630b 
lam_gb 

r_2 

ff group= 24 then t = m_se: * ziz * 
ff group= 24 then prfnt 

m_s; 

group· 

slope 

b1 rand b2 rand (lformat=2.0I) 
lam_gb lam_st (lformat=B.51) t (lformat=S.31): 

*I 

* Output results;· 
escape= zero_esc; 
escape= 

exp_rand 11 
1am269t 

b1 rand 11 b2 rand II ~r1oup 
ll-1am2610t II- 1am2634t I 

11 

11 lam dt II lam ft II lam st 
1 am2ssb 11 T am2s 10b 11 -1 am2s3ob 11 -

1 am db 11 1 am fb 11 1 am gb 11 
1_s3715 II- l_s IT r _ 1 11- r _2 

setout 
append 

temp; 
from escape; 

end; 
ffnfsh; 
run mb2_rand; 

end; 
ffntsh; 
run mb1 rand· 

***************;******** end of 1ml 

data temp; 
lam gb = 
lam-db= 
label 

set temp; 
round(lam_gb, 1); 
round(lam_db, 1); 

**********************· . . 

II slope; 
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proc 
proc 

by 
id 
var 

lam dt ='Lamda: treatments given rest' 
lam-db ='Lamda: covariates given rest' 
lam:ft ='Fixed part: treatments given rest' 
lam fb ='Fixed part: covariates given rest' 
lam:st ='Random part: treatments given rest' 
lam_gb ='Random part: covariates given rest' 
1 s3715='(Fix cov)/(Fix treat)*(Ran treat)' 
1-s ='Cauchy-S left side' 
r-1 ='(Fix tre) * (Ran cov)' 
r-2 ='(Fix cov) * (Ran tre)' 
slope ='(Fix tre) / (Fix cov)' 

sort data=temp; by lam_gb; 
means data=temp maxdec = 8 noprint 

n mean var std min max; 
lam_gb; 
g_group; 

lam fb lam_gb lam_db lam -ft lam_st 
output out=meanout 

mean= mean_fb mean~gb mean db mean_ ft 
var = var fb var _gb · var-db var ft - n-db -n = n fb n_gb n ft - max:db -max = max fb max_gb max ft - -

proc print data=meanout; 
var g_group n_gb meen_fb mean_gb mean db 

mean_ft mean_st mean:dt 

mean_st 
var st 

n-st 
max:st 

var db 
var:dt; 

lam_dt; 

mean_dt 
var dt 

n-dt 
max:dt 

*Plot the two noncentrality parameters against one another.; 
proc plot data=temp; 

plot lam dt * lam db; 
plot lam-st* lam-gb; 
plot l_s-* ( r_1 -r_2) 

*Plot the variance vs the mean of lamda treatments given rest; 
proc plot data=meanout; 

plot var_dt * mean_dt; 

*Display distribution of noncentrality parameters, parts, and C.S.; 
proc chart data=temp; 

hbar lam dt lam db lam st lam gb l_s 
/type= percent Teve1s =-24; 

*Test·slope estimated from actual data vs slope in Cauchy-S. result; 
proc reg data=meanout; 

Title4 '*=predicted point o=actual data points ?=overlap'; 
model max_st = max_gb; 
plot p. * max_gb='*' max_st * max_gb='o' / overlay; 

*Print randomizations with the largest and smallest lamdas; 
proc sort data=temp; by lam db lam dt; 
proc print data=temp (obs= 26); -

Title4 
'Data ordered by noncentrality of treatments given the rest (lam_dt)'; 

Titles 
'within noncentrality of covariate given the rest (lam_db) 
proc print data=temp (firstobs=551); 

*Print first and last randomizations; 
proc sort data=temp; by exp_rand; 

Title4 'Data ordered by experimental randomization number'; 
Tit 1 e5 '': 

I • . 
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proc print 
proc print 

data=temp 
data=temp 

(obs = 26); 
( f i rstobs=55 i); 

*Store data in permanent sas data file; 
data sasdata.lamda; set temp; 

/*************************************************************** 
* The following program computes the above matrix Gtable 
* 
* Gtable provides the block randomization id number (1,2, ... ti) 
* for the off diagonal cell of m_s, the experiment-wide 
* permutation matrix. Randomizations with the same number 
* have the same value of lamda: covariate given rest. 
* The table Gtable was computed in a prior run and copied into 
* the above program. 
* 
****************************************************************/ 
I* 

*Compute the transpose of each of the 24 permutation matrices 
of left; 

start mbr; 
do br = 1 to 24 by 1; 

start mvalue; 
do value= 1 to 4 by 1; 

start mrow; 
do row= 1 to 4 by 1;, 

if left(lbr,row I)= value then rlght_t(lbr,value I)= row; 
end; finish; run mrow; 

end; finish; run mvalue; 
end: finish; run mbr; 

print, left (lformat=3.0(I mvalue right_t (lformat=3.0 I); 

*Compute product left* right_t: 
product= J(4,1,0); table= J(24, 24, O); 
start mlbr; 
do lbr = 1 to 24; 

start mrbr; 
do rbr = 1 to 24; 

start mrow; 
do row= 1 to 4; 

temp= left(llbr, row I>: 
product(lrow(I = right_t(I rbr, temp I); 

end; finish; run mrow; 

start mbr; 
do br = 1 to 24; 

if left( br, 1 ( = product( 1 
left( br,2( = product( 2 
left( br,3( = product( 3 
left( br,4( = product( 4 

table(llbr, rbr I>= br; then 
end; finish; run mbr; 

end; fintsh; run mrbr; 
end; finish; run mlbr; 

)& 
)& 
)& 
) 

prtnt table (lformat=2.0 !)"Table of M * M(transpose) Id"; 

*************** end of computation of Gtable 
*I 

*****************; 
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U13293A.SASPROG.CNTL(TESTF) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:19 U13293A MVS1 ** 
VPSPRINT SASPRDG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1 
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SYSIN DD* 
• 
• 
• Program File: sasprog.cntl(testf) 
• Test F-distribution probability plots of osl's. 
• Steps: 
• Generate normal distributed random variables. 
* Square and·sum to obtain 2 indep. chi-squared random variables. 
• Divide by the degrees of freedom and each other to obtain 
• f-distributed random variables. 
• Obtain ranks. 
• Plot ranks vs osls . 
• 
*************** Debug Print Switch Macro and Switches **********; 
* Macro for debug printing follows:; 

%MACRO db(db site,db act); 
%IF %UPCASE(&db site)= TRUE %UPCASE(&db_site) = T 

%THEN %QUOTE(&db act); 
%MEND db; -

* *Debug print switches (dbps#): 
True or t = on (in upper and/or lower case), anything else= off.; 

%LET dbps1 = f *Put data step values to log file; 
%LET dbps2 = t •print final data set 6 obs; 

************************* End of Debug Print Swi~ches ****************: 

**********************************************************************; 

*Step One: Obtain f-distributed random variables and osl's.; 

DATA f1(KEEP= f var1 os11 num chi) 
N1(KEEP=var num nor var2); 

RETAIN seed1 20479 seed2 56193; 
DO var num= 1 TO 1000; 

num chi = O· 
DO -numdf ='1 TO 5 BY 1; 

•nor var= RANNOR(5620479); 
CALL-RANNOR(seed1 , nor var1); 

num chi = num chi + nor vart•nor var1; 
END; - - -

den chi = O· 
DO -dendf ='1 TO 4 BY 1; 

•nor var= RANNOR(562479); 
CALL-RANNOR(seed2 , nor var2); 
OUTPUT n1; -

den chi = den chi+ nor_var2•nor_var2; 
END: -

f_var1= (num_chi/5) / (den_chi/4 ); 

os11= 1 - PROBF( f_var1, 5, 4 ); 

*Debut print switch follows; 
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%db(&dbps1, IF var num < 6 THEN PUT 
nor_var1 nor_var2 num_chi= den_ch1= 

OUTPUT f 1; 
END; 

PROC STANDARD DATA= N1 OUT=n2 std=1.0 
by var_num; 
var nor_var2; 

PROC MEANS DATA= n2 Uss NOPRINT; 
by var_num; 
var NOR var2; 
output out= n3 uss=den_chi2; 

data f1; merge F1 n3; 
f_var2= (num_ch1/5) / (den_chi2/4); 

os12= 1 - PROBF( f_var2, 5, 4 ); 

f_var3= (num_chi/5) / (den_chi2/ 3); 

os13= 1 - PROBF( f_var3, 5, 3 ): 

*Debut print switch follows; 
%db(&dbps2, proc print data=f1 (obs=6);); 

f_var1= os11=;); 

vardef=n; 

**********************************************************************; 
*Rank osl s. ; 
* Straight 45 degree line indicates actual f distribution.; 

PROC RANK DATA= f1 OUT=f2 
TIES= MEAN FRACTION; 
VAR osl i os12 os13; 
RANKS r_os11 r_os12 r_os13; 

DATA f2; SET f2; 
LABEL 

r osl 1 = "Rank central-OSL1" 
r-os12 = "Rank central-OSL2" 
r:os13 "Rank central-OSL3" 

**********************************************************************: 
* Step: 

Analysize observed significance for test of f-distribut1on.; 

PROC PLOT 
TITLE1 " 
TITLE2 " 
TITLE3 " 

DATA= f2; 
Compare rank of osl with actual osl "; 
Central F distribution df(num)=5 df(den)=4 •: 
Normal errors not standardized prior to chi sq."; 

*Obs 
PLOT 

Sig Level for treatments, zero then nonzero; 
r os11 * os11= '*' 
/- VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 
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PLOT r os11 * os11 = '*' 
I- VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

PROC PLOT DATA= f2; 
TITLE1 • Compare rank of osl with actual osl not stand."; 
TITLE2 • Central F distribution df(num)=5 df(den)=4 "; 
TITLE3 ~ Normal errors are standardized prior to chi sq."; 

*Obs 
PLOT 

PLOT 

Sig Level for treatments, zero then nonzero ; 
r_os12 * os12= I* I 

I VAXIS = 0 TO 1 BY .2 
VREF = 0 .2 . 4 .6 .8 1 . 
VREVERSE HREVERSE HPOS 

r os12 * os12 = '*' 
I- VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

PROC PLOT DATA= f2; 

II 

TITLE1 • Compa"re rank of osl with actual osl not stand."; 
TITLE2 • Central F distribution df(num)=5 df(den)=3 "; 
TITLE3 • Normal errors are standardized prior to chi sq.•; 

*Obs 
PLOT 

PLOT 

Sig Level for treatments, zero then non;zero ; 
r os13 * os13= I* I 

I- VAXIS = 0 TO 1 BY .2 
VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

r os13 * os13 = '*' 
I- VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

PROC CHART 
HBAR 
TITLE1 

DATA= f2; 
f var1 os11I TYPE= PERCENT LEVELS=20; 
.- Central F distribution df(num)=3 df(den)=2) 

PROC CHART DATA= f2; WHERE f var< 10000; 
HBAR f var1 os11I TYPE= PERCENT LEVELS=20; 
TITLE1-" Central F distribution df(num)=3 df(den)=2) 

PROC CHART DATA= f2; WHERE f var< 1000; 
HBAR f var1 os11 I TYPE =-PERCENT LEVELS=20; 
TITLE1-. Central F distribution df(num)=3 df(den)=2) 

PROC CHART DATA= f2; WHERE f var< 100; 
HBAR f var1 os11I TYPE= PERCENT LEVELS=20; 
TITLE1-. Central F distribution df(num)=3 df(den)=2) 

PROC CHART DATA= f2; WHERE f var< 10; 
HBAR f var1 os11 I TYPE =-PERCENT LEVELS=20; 
TITLE1-" Central F distribution df(num)=3 df(den)=2 

II 

.. . 

.. . 

.. . 

.. . 

.. . 
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U13293A.SASPROG.CNTL(SNORMAL) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4, 1992 14:59: 18 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA JOB (*),'ROBERT WILSON',TIME=(1,0),CLASSb2, 
// MSGCLASS=X,MSGLEVEL=(1,1) 
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1 
// EXEC SAS,REGI0N=918K 
//SASGLM DD DSN=U13293A.SASGLM.DATA,DISP=OLD 
//SASGLM2 OD OSN=U13293A.SASGLM2.DATA,0ISP=OL0 
//SYSIN DD* 

/*************************************************************** 
* File: snormal Singular Normal estimate for sigma squared. 
* * See Searle (1971) p. 69 Corollary 2s.2 
* Since L (below) does not have full column rank, the method of 
* Searle, p. 222, (132) and following, will not work. 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The normally distributed errors were standardized to sum to 
zero wtthtn each randomtzatton. Prior to standardtztng 
they were N(O, I*sigma-squared). The standardizing involved 
pre-multtplytng them by L=(I-(1/S)*J). The resulting variance 
ts V= L*L• = L st~ce L ts idempotent. V ts singular. The 
resulting distribution ts singular normal, SN(O, V). The 
residual sum of squares y•*A*y ts as ,eefle-., but the degrees of 
of freedom are trace(AV), provided t~condttton VAVAV=VAV ts 
satisfied. . be.low 

* By the method of construction, the experimental unit errors 
* are the residuals from a least squares computation. Thus, 
* their distribution, assuming the errors of the model are normal, 
* is the singular normal with V = LL' and L = I - Z*INV(Z•*Z)*Z, 
* as per below (2.3.3). Thus, the residual sum of squares for 
* models using only e.u. error ts chi-squared with df=trace(AV), 
* where A ts the projector for the residual sum of squares., 
* A=I - P(X) - P(Rz) as below. 
* 
* * For each randomization, thts program vertftes the condition on the 
* theorem that VAVAV = VAY, calls tn the sum of squares, computes 
* the degrees of freedom= trace(AV), and outputs resutls. 
* 
****************************************************************/ 

proc 1ml; 
*Constant valued matrices follow:; 

xm • {1, 1, 1, 1, 1, 1, 1, 1); 
xb = {1, 1, 1, 1, -1, -1, -1, -1); 
z = {1, 2, 11, 14, 5, 9, 16, 19); 
j43 = J(4,3,0); 

*Constant projector follows: 
pz = z * INV(z••z) * z•: 

*Mean; 
*Blocks; 
*Covariates; 

*Output vector and variable names for output data set. 
sn_s1gma = estimate of sigma squared ustng singular normal error.; 
escape = .J ( 1 , 6, 0) : 
varname • {exp rand max val mtn_val tr_AV55 

sig55 sn_sig55); 

* exp_rand = experimental randomization id number; 
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* max va and min va = max and min values of all elements of the 
- difference matrix VAVAV - VAV; 

* tr_AV## = degrees of freedom for the variance estimate sn_sig##; 
* sig_## = variance estimate via glm using non-sing. normal df=2; 
* sn_sig## = variance estimate using singular normal df=-trace(AV); 
* ## = 02 or 03 for the eq and ne block var. versions of e.u. error; 
* HH = 46 or 55 for the eq and ne block var. versions of normal error; 

*Each row of Mpattern (randomization patterns) is one permitted 
block-randomization or assignment of treatments (element value) 
to experimental units (element position) within one block. ; 

rpattern 
{ 1 2 3 4 . 1 2 4 3 . 1 3 2 4 1 3 4 2 . 1 4 2 3 . 1 4 3 2, 

2 1 3 4 . 2 1 4 3 . 2 3 1 4 2 3 4 1 . 2 4 1 3 . 2 4 3 1 • 
3 1 2 4 . 3 1 4 2 . 3 2 1 4 . 3 2 4 1 . 3 4 1 2 . 3 4 2 1 • 
4 1 2 3 4 1 3 2 4 2 1 3 4 2 3 1 4 3 1 2 4 3 2 1 } 

********************* begin looping through randomizations*****: 
CREATE - temp FROM escape (ICOLNAME = varname I): 

START mb1_rand; 
DO b1 rand= 1 TO 24 BY 1; 

b1-= j43; 
START mp set1; 
DO p setT = 1 TO 4 BY 1; *1 row of rpattern: 

one_co1 = rpattern<lb1_rand, p_set1 I>: 
IF one col = 4 THEN b1(,p set1, I) = -1; 
IF one:col ~= 4 THEN b1( p:set1, one_col I>= 1; 

END; 
FINISH; 
RUN mp_set 1 ; 

START mb2 rand; 
DO b2 rand= 1 TO 24 BY 1; 

· *Compute experimental randomization number: 
exp rand= (b1 rand - 1) N 24 + b2 rand; 

b2 = j43; - -
START mp set2; 
DO p set2 = 1 TO 4 BY 1; 
one:col = rpattern(lb2_rand, p_set2 1): 
IF one_col = 4 THEN b2(lp_set2, ) = -1; 
IF one_col ~= 4 THEN b2(lp_set2, one_col I)= 1; 

END; 
FINISH; 
RUN mp_set2; 

*Construct full-model X matrix, X = xn tt xb tt xt_x ttZ.; 
xt s = b1 // b2 • 
x_s = xm 11 xb 11 xt_s 11 z : 

*Variable projectors follow:; 
px = X s * lNV(x S¢ * X s)* 
r = (1(8) - px)-* z; -
pr= r * GlNV(r¢ * r) * r¢; 

X s¢• - . 
*PRINT exp_rand px r pr; 

*Matrices A and V of Searle 
A= 1(8) - px - pr; 

*For exper. unit. error, 
*V = 1(8) - px; 

*For normal dist. error, 
V = ( I(4)-J(4,4,1/4) 
// ( J(4,4,0) 

follow:; 

02 & 03 ; 

46 & 55 

11 11 
J(4,4,0) 

I(4)-J(4,4, 1/4) 
) 
) : 
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*Block diag form affects only ne block variances error sets; 
VAV = V * A *V; 
VAVAV = VAV *A* V; 
diff = VAVAV - VAV; 
max val = MAX(diff): 
min-val = MIN(diff); 
tr_AV = TRACE(A*V); 

*Read tn sum of squares.; 
USE sasglm2.glm055; 
READ NEXT 1 VAR{ssres} INTO ssres; 

*Construct mean square estimator of variance .. ; 
sn_stg = ssres I tr_AV; 
stg = ssres I 2; 

*PRINT exp_rand AV 
max,:...val min_val 

VAV VAVAV diff 
tr_AV sn_sig sig; 

escape = exp_rand II max_val 11 min_val 11 tr _AV 11 
stg II sn_sig; 

*Output results; 
SETOUT temp; 
APPEND FROM escape; 

END; 
FINISH; 
RUN mb2_rand; 

END; 
FINISH; 
RUN mb1_rand; 

************·******************* END .of IML ************************; 
TITLE1 •singular normal and associated chi-square of Searle. p. 69"; 
PROC MEANS DATA=temp N MIN MAX MEAN VAR VARDEF•N; 

VAR tr_AV55 min_val max_val sig55 sn_sig55; 

PROC CHART DATA=temp; 
HBAR sn_sig55·sig55 tr_AV55 max_vall TYPE= PERCENT 

PROC PLOT DATA=temp; 
PLOT sn_sig55 * (sig55 tr~AV55 max_val) 

*PROC PRINT DATA=temp (085=30); 

DATA sasglm2.sing_nor; 
MERGE sasglm.sing_nor 

temp (KEEP= exp_rand sn_sig55 tr_AV55); 
BY exp_rand; 

PROC PRINT DATA=sasglm2.sing_nor 

II 

(085=30); 

LEVELS= 24; 
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U13293A.SASPROG.CNTL(PROBP) 
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:17 U13293A MVS1 ** 
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E) 

//U13293AA uOB (*),'ROBERT WILSON', 
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2 
/*uOBPARM ROOM=V,FORMS=9001,COPIES=1 
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE' 
//SASGLM DO DSN=U13293A.SASGLM.DATA,DISP=OLD 
//SASGLM2 DD DSN=U13293A.SASGLM2.DATA,DISP=OLD 
//SASDATA OD DSN=U13293A.SASDATA.DATA,DISP=OLD 
//SYSIN DD* 

I* 

* 
* Program File: sasprog.cntl(probp) 
* Make F-distribution probability plots of osl's. 
* Step One: 
* Select error types. Extract f-ratios and null hypothesis 
* osl's as provided by proc glm for each experimental 
* randomizations. Extract the singular normal denominator 
* mean square and degrees of freedom from sasglm2.sing_nor. 
* These adjust e.u. and normal errors only. The euti errors 
* were not forced to sum to zero vi thin each randomization. 

* 
* 
* Step Two: 
* Produce experiment-wide variance for error terms. 
* Atttach to data set fratios. 
* 
* Step Three: 
* Use noncentrality parameters to obtain correct no~-null 
* hypothesis osl. 

* * Step Four: 
* Rank all osls and attach to file fratios. 
* 
* * Step Five: 
* Plot ranks vs actual osl values. 

* 
* 
* Output File: 
* sasglm2.fratios 
* One record per experimental randomization 
* 

*************** Debug Print Switch Macro and Switches **********: 
* Macro for debug printing follows:; 

%MACRO db(db site,db act); 
%IF %UPCASE(&db site)= TRUE %UPCASE(&db'....site) = T 

%THEN %QUOTE(&db act); 
%MEND db; -

* 
*Debug print switches (dbps#): 

True or t = on (in upper and/or lower case), anything else= off.; 
%LET dbps1 = f *Extract frations from glm### data sets.; 
%LET dbps2 = f *Produce var of error terms - Step 2.; 
%LET dbps3 f *Attach var(error) to fratios - Step 2.; 
%LET dbps4 = f *Attach lamda and noncent osl - Step 3.; 
%LET dbps5 = t *Attach rank(osl) to fratios - Step 4.; 
%LET dbps6 = f *; 
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************************* End of Debug Print Switches****************: 

**********************************************************************: 

*Step One: 
Input f-ratlos and osl's from various treatment-error combinations. 
Fz mbt and oslz mbt are= for glmOxx and glmlxx as nonzero treatments 
does not alter-this central F statistic for the covariate. 

Key to new variable names: 
f=F-ratio s=significance level m=numerator mean square 
t=treatments z=covariate 
(for sonly) c=central F n=noncentral F 
O=zero treatment 1=nonzero treatment 
##=error combination 
r prefix indicates rank of variable 
g suffix indicates f-ratio or sig .level used singular normal. 

DATA sasglm2.fratlos; 
MERGE 

sasglm2.sing_nor 
sasglm.glm002 

(KEEP= exp rand bf rand 
ft mbz oslt-mbz 
mst mbz -

RENAME= (ft mbz=ft002 
fz:mbt=fz002 

sasglm.glm102 
(KEEP= exp_rand 

ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft102 
fz:mbt=fz102 

sasglm.glm003 
(KEEP= exp rand 

ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft003 
fz:mbt=fz003 

sasglm.glm103 
(KEEP= exp_rand 

ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft103 
fz:mbt=fz103 

.sasglm.glm004 
(KEEP= exp_rand 

ft mbz oslt mbz 
RENAME =-(ft mbz=ft004 

fz:mbt=fz004 

sasglm.glm104 
(KEEP= exp_rand 

ft mbz oslt mbz. 
RENAME =-(ft mbz=ft104 

fz:mbt=fz104 

b2 rand g_group 
fz-mbt oslz_mbt 
msi mbt 

oslt-mbz=stc002 
oslz:mbt=szc002 

fz mbt oslz_mbt 
msi mbt 

oslt-mbz=stc102 
oslz:mbt=szc102" 

fz mbt oslz_mbt 
msi mbt 

oslt-mbz=stc003 
oslz:mbt=szc003 

fzmbt oslz_mbt 
msz_nib.t 

oslt mbz=stc103 
oslz:mbt=szc103 

mst mbz=mt002 
msz:mbt=mz002) ) 

mst mbz=mt102 
msz:mbt=mz102) ) 

mst.mbz=mt003 
msz:mbt=mz003) ) 

mst mbz=mt103 
msz:mbt=mz103) ) 

fz mbt oslz mbt 
osTt mbz=stc004 
oslz:mbt=szc004) ). 

fz mbt oslz mbt 
osTt mbz=stc104 
os1z:mbt=szc104)) 
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sasglm.glm005 
(KEEP= exp rand 

ft mbz oslt mbz 
RENAME =-(ft mbz=ft005 

fz=mbt=fz005 

sasglm.glm105 
(KEEP= exp rand 

ft mbz oslt mbz 
RENAME =-(ft mbz=ft105 

fz=mbt=fz105 

sasglm.glm007 
(KEEP= exp rand 

ft mbz oslt mbz 
RENAME =-(ft mbz=ft007 

fz=mbt=fz007 

sasglm.glm107 
(KEEP= exp rand 

ft iiibz oslt mbz 
RENAME =-(ft mbz=ft107 

fz=mbt=fz107 

sasglm.glm046 
(KEEP= exp_rand 

· ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft046 
fz=mbt=fz046 

sasglm.glm146 
(KEEP= exp rand 

ft iiibz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft146 
fz=mbt=fz146 

sasglm2.glm055 
(KEEP= exp_rand 

ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft055 
fz=mbt=fz055 

sasglm2.glm155 
(KEEP= exp_rand 

ft mbz oslt mbz 
mst mbz -

RENAME= (ft mbz=ft155 
fz=mbt=fz155 

BY exp_rand; 

Debug Print options follow: ; 
%db(&dbps1, 

fz mbt oslz mbt 
osTt mbz=stc005 
oslz=mbt=szc005)) 

fz mbt oslz mbt 
osTt mbz=stc105 
oslz:mbt=szc105)) 

fz mbt oslz mbt 
osTt mbz=stc007 
oslz=mbt=szc007)) 

fz mbt oslz mbt 
osTt mbz=stc107 
oslz=mbt=szc107)) 

fz mbt oslz_mbt 
msz mbt 

oslt-mbz=stc046 
oslz=mbt=iszc046 

fz mbt oslz_mbt 
msz mbt 

oslt-mbz=stc146 
oslz=mbt=szc146 

fz mbt oslz_mbt 
msz mbt 

oslt-mbz=stc055 
. oslz=mbt=szc055 

fz mbt oslz_mbt 
msz mbt 

oslt-mbz=stc155 
oslz=mbt=szc155 

TITLE1 "Data set sasglm2.frat1os 
PRDC PRINT DATA= sasglm2.frat1os 

(dbps1)"; 
(08S=26); 

) ; 

mst mbz=mt046 
msz=mbt=mz046) ) 

mst mbz=mt146 
msz=mbt=mz146) ) 

mst mbz=mt055 
msz=mbt=mz055) ) 

mst mbz=mt155 
msz=mbt=mz155) ) 
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**********************************************************************: 
*Step Two: 

Attach noncentrality parameters and within experimental randomization 
variance of error (not residual) term.; 

PROC SORT DATA= sasdata.lamda; BY exp_rand; 
DATA sasglm2.fratios; 

MERGE sasglm2.fratios 
·sasdata. lamda 

(KEEP= exp rand lam_dt lam_ft lam_st lam_db lam_fb lam_gb 
1_sT: 

BY exp_rand; 

*Since the eu errors are constant for all randomizations (but attached 
to different treatments) their error variance ts constant and during 
construction was fixed at 30 (denom=n). Likewise, the ndr errors had 
their variance fixed at 30 during construction. The·eutt errors 
selected change with each randomization, thus their error variance 
changes with each randomization. Their average, over all 
randomizations, ts 30. For·error conbtnations included above, 
only 004, 005, and 007 involve eutt error. Non-zero treatments 
do not affect the error nor their variance. For ease, all are 
attached.: 

PROC MEANS DATA= sasdata.obs y 
VARDEF=N NOPRINT; -
BY exp_rand; 
VAR e02--e81; 
OUTPUT OUT=sasglm2.err_var 

* Debug Print options follow: : 
%db(&dbps2, 

( KEEP= exp_rand e02 -- e81s) 

VAR=var_e02-var_e81; 

TITLE1 "Data set sasglm2.err_var -- var of errors (dbps2)": 
PROC PRINT DATA= sasglm2.err_var (085=26) ; 

) : 

*Attach needed error (not restduaJ) variances to fratios; 
DATA sasglm2.frattos; 

MERGE sasglm2.fratios 
sasglm2.err_var 

(KEEP= exp_rand var e02 var e03 var· e04 var_e05 
var_e07 var:e46 var:e55): -

BY exp_rand; 

* Debug Print options follow: : 
%db(&dbps3, 

) i 

TITLE1 "Data set sasglm2.fratios with var of errors (dbps3)"; 
PROC PRINT DATA= sasglm2.frattos (085=2~); 

**************************************.*******************************: 
*Step Three: 

Use noncentrality parameters to obtain correct non-null 
hypothesis f-ratios for treatments and covariate. 

Use singular normal adjusted df to obtain adjusted error mean square, 
f-ratio, and osl for. e.u. and normal error models. 

Variable sznO## = szn1## and szcO## = sznO##. The value of 
The treatments does not affect this observed significance level.; 
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DATA sasglm2.fratios; SET sasglm2.fratios; 
DROP non cent; 

*Compute the randomized observed significance level.; 
*SAS function PROBF appears not to accept non_cent over about 70 
for these f-ratios and degrees of freedom.; 

*Error 02; 
non cent= (1/2) / var_e02 * lam_dt; 
IF non cent> 70 THEN non_cent = 70; 

*stc002- as per PROC GLM; 
stc002g= 1 - PROBF( mt002/sn_sig02, 3, tr_AV02 ) ; 

*stc102 as per PROC GLM; 
stc102g= 1 - PROBF( mt102/sn_sig02, 3, tr_AV02 ) ; 
stn102 = 1 - PROBF( ft102 . 3, 2, non cent ) ; 
stn102g= 1 - PROBF( mt102/sn_sig02, 3, tr_AV02, non:cent ) ; 

non cent= (1/2) / var e02 * lam db; 
IF non cent> 70 THEN non cent= 70; 

*ms z, iiis res and tr AV## are-the same for treat=O or ne O.; 
*tr:AV## Ts the same-for·equal and unequal block variances.; 
*Thus, szcO## = szc1## and sznO## = szn1## - only O used.; 
*szc002 as per PROC GLM; 

szc002g= 1 - PROBF( mz002/sn_sig02, 
szn002 = 1 - PROBF( fz002, 
szn002g= 1 - PROBF( mz002/sn_sig02, 

*Error 03; 
/ var_e03 non cent= (1/2) * lam_dt; 

1, tr_AV02 
1, 2, 
1, tr_AV02, 

IF non_cent > 70 THEN non_cent = 70; 
•stc003 as per PROC QLM; 
stc003g= 1 - PROBF( nit003/sn_sig03, 3, tr_AV03 

*stc103 as per PROC GLM; 
stc103g= 1 - PRDBF( mt103/sn_stg03, 3, tr_AV03 
stn103 = 1 - PROBF( ft103 , 3, 2, 
stn103g= 1 - PROBF( mt103/sn_sig03, 3, tr_AV03, 

non cent= (1/2) / var·eo3 * lam db; 
IF non cent> 70 THEN non cent= 70; 

•szc003- as per PROC GLM; -
szc003g= 1 - PROBF( mz003/sn sig03, 
szn003 = 1 - PROBF( fz003, -
szn003g= 1 - PROBF( mz003/sn_sig03, 

*Error 04; 

1,· tr_AV03 
1, 2. 
1, tr_AV03, 

non cent= (1/2) / var e04 * lam dt; 
IF non cent> 70 THEN non cent= 70; 
stn104-= 1 - PROBF( ft104, 37 2, non_cent ); 

non cent= (1/2) / var e04 * lam db; 
IF non cent> 70 THEN non cent= 70; 
szn004-= 1 - PROBF( fz004, 17 2, non_cent ); 

*Error 05; 
non cent= (1/2) / var e05 * lam dt; 
IF non cent> 70 THEN non cent= 70; 
stn105-= 1 - PROBF( ft105, 37 2, non_cent ); 

non cent= (1/2) / var eos * lam db; 
IF non cent> 70 THEN non cent= 70; 
szn005-= 1 - PROBF( fz005, 17 2, non_cent ); 

) ; 
non cent ); 
non:cent ) ; 

) : 

) : 
non cent ) ; 
non:cent ) : 

) : 
non cent ) ; 
non:cent ); 
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*Error 07; 
non cent= (1/2) / var e07 * lam dt; 
IF non cent> 70 THEN non cent= 70; 
stn107-= 1 - PROBF( ft107, 3~ 2, non_cent ); 

non_cent = (1/2) / var_e07 * lam_db; 
IF non cent> 70 THEN non cent= 70: 
szn007-= 1 - PROBF( fz007, 17 2, non_cent ); 

*Error 46; *Test different df in F, and . in ANOVA: 
non cent= (1/2) / var e46 * lam dt; 
IF non cent> 70 THEN non_cent = 

*stc046- as per PROC GLM; 
stc046g= 1 - PROBF( mt046/sn_sig46, 

*stc146 as per PROC GLM; 
stc146g= 1 - PROBF( mt146/sn_sig46, 
stn146 = 1 - PROBF( ft146 , 
stn146g= 1 - PROBF( mt146/sn_stg46, 

70; 

3, 

3, 
3, 
3, 

tr AV46 -
tr AV46 -2, 
tr_AV46, 

non cent= (1/2) / var e46 * lam db; 
IF non cent> 70 THEN non cent= 70; 

*szc046- as per PROC GLM: -
szc046g= 1 - PROBF( mz046/sn_stg46, 
szn046 = 1 - PROBF( fz046, 
szn046g= 1 - PROBF( mz046/sn_sig46, 

*Error 55; 
non cent= (1/2) / var e55 * lam dt; 
IF non cent> 70 THEN non_cent = 

*stc055- as per PROC GLM; 
stc055g= 1 - PROBF( mt055/sn_sig55, 

*stc155 as per PROC GLM; 
stc155g= 1 - PROBF( mt155/sn_sig55, 
stn155 = 1 - PROBF( ft155 , 
stn155g= 1 - PROBF( mt155/sn_stg55, 

1, tr_AV46 
1, 2, 
1, tr_AV46, 

70; 

3, tr_AV55 

3, tr_AV55 
3, 2, 
3, tr_AV55, 

non cent= (1/2) / var e55 * lam db; 
IF non cent> 70 THEN non cent= 70; 

*szc055- as per PROC GLM; - · 
szc055g= 1 - PROBF( mz055/sn sig55, 
szn055 = 1 ~ PROBF( fz055, -
szn055g= 1 - PROBF( mz055/sn_sig55., 

*. Debug Print options fol low: ; 
%db(&dbps4, 

1, tr_AV55 
1, 2, 
1, tr_AV55, 

) ; 

) ; 
non cent ) ; 
non:cent ) ; 

) ; 
non cent ) ; 
non:cent ) ; 

) i 

) ; 
non cent ) i 
non:cent ) i 

) ; 
non cent ) ; 
non:cent ) : 

TITLE1 "Data set sasglm2.fratios wtth noncent osls (dbps4)"; 
• PROC PRINT DATA= sasglm2.fratios (OBS=26); 

) ; 

··················••**************************************************; 
* Step Four: 

Names of osls. 
Only e.u. and normal errors have singular-normal based osls. 
The ranks are named the same, but with a prefix of r. 

stcO## for treats, normal, central F, treatments 0 
stcO##g for treats, sing-normal, central F, treatments 0 

stc1## for treats, normal, central F, treatments ne 0 
stc1##g for treats, s i ng-norma 1 , central F, treatments ne 0 

stn1## for treats, normal, noncentral F, treatments 0 
stn1#~ for treats~ sing·normal, noncentral F, treatments 0 
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szcO## for covars, normal, central F, treats O or ne 0 
szcO##g for covars, sing-normal, central F, treats O or ne 0 

sznO## for covars, normal, central F, treats O or ne O 
sznO##g for covars, sing-normal, central F, treats O or ne 0 

Straight 45 degree line indicates actual f distribution.; 

PROC RANK DATA= sasglm2.fratios OUT=sasglm2.fratios 
TIES = .MEAN FRACTION; 
VAR 

stc002 stc102 stn102 szc002 szn002 
stc002g stc102g stn102g szc002g szn002g 

stc003 stc103 stn103 szc003 szn003 
stc003g stc103g stn103g szc003g szn003g 

stc004 stc104 stn104 szc004 szn004 
stc005 stc105 stn105 szc005 szn005 
stc007 stc107 stn107 szc007 .szn007 

stc046 stc146 stn146 szc046 szn046 
stc046g stc146g stn146g szc046g szn046g 

stc055 stc155 stn155 szc055 szn055 
stc055g stc155g stn155g szc055g szn055g 

RANKS 
rstc002 rstc102 rstn102 rszc002 rszn002 
rstc002g rstc102g rstn102g rszc002g rszn002g 

rstc003 rstc103 · rstn103 rszc003 rszn003 
rstc003g rstc103g rstn103g rszc003g rszn003g 

rstc004 rstc104 rstn104 rszc004 rszn004 
rstc005 rstc105 rstn105 rszc005 rszn005 
rstc007 rstc107 rstn107 rszc007 rszn007 

rstc046 rstc146 rstn146 rszc046 rszn046 
rstc046g rstc146g rstn146g rszc046g rszn046g 

rstc055 rstc155 rstn155 rszc055 rszn055 
rstc055g rstc155g rstn155g rszc055g rszn055g 

* Debug Prtnt options follow: .; 
%db(&dbps5, 

TITLE1 •Data set sasglm2.frattos ftnal (dbpss)•: 
PROC P.RINT DATA= sasglm2.frattos (085=26); 

) ; 

DATA sasglm2.fratios; SET sasglm2.fratios; 
LABEL 

rstc002 
rstc002g 

rstc003 
rstc003g 

rstc004 
rstc005 
rstc007 

= "Rank cent-OSL tjrest, treat eq o• 
= •Rank cent-DSL t rest, treat eq O,stg-nor• 

= •Rank cent-OSL tjrest, treat eq o• 
= •Rank cent-OSL t rest, treat eq O,stg-nor• 

= "Rank cent-CSL tlrest, treat eq o• 
= •Rank cent-CSL t rest, treat eq o• 
= "Rank cent-CSL t rest, treat eq o• 
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rstc046 = "Rank cent-OSL tjrest, treat eq o• 
rstc046g = "Rank cent-OSL t rest, treat eq 0,s1g-nor 0 

rstc055 = "Rank cent-OSL ti rest, treat eq o• 
rstc055g = •Rank cent-OSL t rest, treat eq O,sig-nor" 

rstc102 = 0 Rank cent-OSL tjrest, treat ne o• 
rstc102g = "Rank cent-OSL t rest, treat ne o,sig-nor" 

rstc103 = "Rank cent-OSL tjrest, treat ne 0" 
rstc103g = "Rank cent-OSL t rest, treat ne 0,sig-nor" 

rstc104 = "Rank cent-OSL ti rest, treat ne o• 
rstc105 = "Rank cent-OSL ·t rest, treat ne o• 
rstc107 = "Rank cent-OSL t rest, treat ne o• 

rstc146 = "Rank cent-OSL tjrest, treat ne o• 
rstc146g = "Rank cent-OSL t rest, treat ne O,sig-nor• 

rstc155 = "Rank cent-OSL ti rest, treat ne o• 
rstc155g = •Rank cent-CSL t rest, treat ne 0,sig-nor" 

rstn102 = "Rank nonc-OSL ti rest, treat ne on 
rstn102g = "Rank none-CSL t rest, treat ne 0,sig-nor" 

rstn103 = "Rank nonc-OSL tjrest, treat ne o• 
rstn103g = 0 Rank none-CSL t rest, treat ne 0,sig-nor• 

rstn104 = nRank nonc-OSL ti rest, treat ne o• 
rstn105 = "Rank none-CSL t rest, treat ne o• 
rstn107 = •Rank nonc-OSL t rest, treat ne o• 

rstn146 = "Rank r'lonc-OSL tjrest, treat ne o• 
rstn146g = •Rank nonc-OSL t rest, treat ne O,sig-nor• 

rstn155 .. •Rank nonc-OSL tjrest, treat ne o• 
rstn155g • •Rank rionc-OSL t rest, treat ne 0,s1g-nor• 

rszc002 = "Rank cent-OSL zlrest, covar ne o• 
rszc002g = "Rank cent-OSL z rest, covar ne O,sig-nor• 

rszc003 = •Rank cent-OSL zlrest, covar ne o• 
rszc003g = "Rank cent-OSL z rest, covar ne O,s1g-nor• 

rszc004 = "Rank cent-OSL zlrest, covar ne o• 
rs%c005 = •Rank cent-OSL z rest, covar ne o• 
rszc007 = "Rank cent-OSL z res_:!:, covar ne o• 

rszc046 .. nRank cent-OSL zlrest, covar ne o• 
rszc046g = •Rank cent-OSL z rest, covar ne 0,s1g-nor• 

rszc055 = •Rank cent-OSL zlrest, covar ne o• 
rszc055g = "Rank cent-OSL z rest, covar ne 0,s1g-'-nor" 

rszn002 .. •Rank nonc-OSL zlrest, covar ne o• 
rszn002g = •Rank nonc-OSL z rest, covar ne O,sig-nor• 

rszn003 = •Rank nonc-OSL zlrest, covar ne o• 
rszn003g = •Rank nonc-OSL z rest, covar ne 0,sig-nor" 

rszn004 = •Rank nonc-OSL zlrest, covar ne o• 
rszn005 = •Rank nonc-OSL z rest, covar ne o• 
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rszn007 = "Rank nonc-OSL zlrest, covar ne 0" 

rszn046 = "Rank nonc-OSL zlrest, covar ne 0" 
rszn046g = "Rank nonc-OSL z rest, covar ne 0,sig-nor" 

rszn055 = "Rank nonc-OSL zlrest, covar ne o• 
rszn055g "Rank nonc-OSL z rest, covar ne O,sig-nor" 

*I 
I* 

**********************************************************************; 
* Step Five: 

Analysize observed significance for test off-distribution.; 

DATA= sasglm2.frat1os; PROC PLOT 
TITLE1 " 
TITLE2 "u 
TITLE3 "1 
TITLE4 •n 

Compare Three Types of Error 
= experimental unit error 

.. . 
"; 

error"; = experimental unit-treatment interaction 
= normally distr.tbuted random error ". . 

********** Treatments Equal Block Variances 
*Non-singular normal values for eu and normal 

*Obs Sig Level for treatments eq zero; 

*************; 
error; 

PLOT rstc002 * stc002 = 'u' 

PLOT 

rstc004 * stc004 = 't' 
rstc046 * stc046 = 'n' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE· HPOS 

rstc002 * stc002 = 'u' 
rstc004 * stc004 = 't' 
rstc046 * stc046 = 'n' 
/ VAXIS = 0 TO .2 BY .05 

VREF =.O .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TD .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

*Obs Sig Level for treatments ne zero; 
PLOT rstn102 * stn102 = 'u' 

PLOT 

rstn104 * stn104 = 't' 
rstn146 * stn146 • 'n' 
/ .V~XIS = 0 TO 1 BY .2 HAXlS = 0 TO '1 BY .2 

VREF = 0 .2 .4 .6 .8 ~. HREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS = 80 OVERLAY; 

rstn102 * stn102 = 'u' 
rstn104 * stn104 = 't' 
rstn146 * stn146 = 'n' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

*Singular normal values for eu and normal error; 
*Obs Stg Level for treatments eq zero; 
PLOT rstc002g* stc002g= 'u' 

rstc004 * stc004 = 'f' 
rstc046g* stc046g= 'n' 
/ VAXIS • 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HR£VERSE HPOS 

HAXIS = 0 TD 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 



PLOT 

*Obs 
PLOT 

PLOT 

rstc002g* stc002g= 'u' 
rstc004 * stc004 = '1' 
rstc046g* stc046g= 'n' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 
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HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

Sig Level for treatments ne zero; 
rstn102g* stn102g= 'u' 
rstn104 * stn104 = '1' 
rstn146g* stn146g= 'n' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rstn102g* stn102g= 'u' 
rstn104 * stn104 = '1' 
rstn146g* stn146g= 'n' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

*********** Covariate Equal Block Variances**************: 
*Non-singular normal values for eu and normal error; 

*Obs Sig Level for (always nonzero) covariate coefficient 
PLOT rszn002 * szn002 = 'u' 

rszn004 * szn004 = '1' 

PLOT 

rszn046 * szn046 • 'n' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .. B 1. 
VREVERSE HREVERSE HPOS 

rszn002 * szn002 = 'u' 
rszn004 * szn004 = '1' 
rszn046 * szn046 = 'n' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVE·RSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= BO OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; -

*Singular normal values for eu and normal error; 
*Obs Sig Level for (always nonzero) covariate coefficient 

PLOT rszn002g* szn002g= 'u' 
rszn004 • szn004 = '1' 

PLOT 

rszn046g* szn046g= 'n' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rszn002g* szn002g= 'u' 
rszn004 * szn004 = '1' 
rszn046g* szn046g= 'n' 
/ VAXIS • 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

PROC PLOT DATA= sasglm2.frat1os; 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

"80 OVERLAY; 

TITLE1 •Effect of Unequal Within-block Variances•; 
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TITLE2 •s = same block variance d = different block variances•; 

**********************Treatments******************************: 
*Only experimental unit error treatments zero & nonzero; 
*Non-singular normal; 

PLOT rstc002 * stc002 = 's' 

HAXIS = 0 TO 1 BY .2 
rstc003 * stc003 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6.8 
VREVERSE HREVERSE 

L HREF = 0 .2 _.4 .6 .8 1. 
HPOS = 80 -OVERLAY ; 

·PLOT 

PLOT 

PLOT 

rstc002 * stc002 = 's' 
rstc003 * stc003 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

rstn102 * stn102 = 's' 
rstn103 * stn103 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4·.6 .8 1. 
VREVERSE HREVERSE HPOS 

rstn102 * stn102 = 's' 
rstn103 * stn103 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

*Singular normal; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

HAXIS = 0 TO 1 BY .2 

PLOT rstc002g* stc002g= 's' 
rstc003g* stc003g= 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6.8 
VREVERSE HREVERSE 

1. HRE~ = 0 .2 .4 .6 .8 1. 
HPOS = 80 OVERLAY ; 

PLOT rstc002g* stc002g= 's' 
rstc003g* stc003g= 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
·VREVERSE HREVERSE HPOS 

PLOT rstn102g* stn102g= 's' 
rstn103g* stn103g= 'd' 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

/ VAXIS • 0 TO 1 BY .2 HAXIS = 0 TO 1 BY .2 

PLOT 

VREF = 0 .2 .4 .6 .8 1. HREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE. HPOS = BO OVERLAY; 

rstn102g* stn102g= 's' 
rstn103g* stn103g= 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

*Only experimental unit-treat inteact error treats zero & nonzero; 
*Non-singular normal no adjustments imply the singular normal dist.; 

PLOT rstc004 * stc004 = '·S' 
rstc007 * stc007 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

PLOT rstc004 * stc004 = 's' 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 



PLOT 

PLOT 

rstc007 * stc007 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

rstn104 * stn104 = 's' 
rstn107 * stn107 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rstn104 * s~n104 = 's' 
rstn107 * stn107 = 'd' 
/ VAXIS = 0 TO c2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 
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HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

*Only normally distributed random error 
*Non-singular normal; 

treats zero & nonzero: 

PLOT rstc046 * stc046 = 's' 

PLOT 

PLOT 

PLOT 

rstc055 * stc055 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rstc046 * stc046 ~ 's' 
rstc055 * stc055 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

rstn146 * stn146 = 's' 
rstn155 * stn155 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rstn146 * stn146 = 's' 
rstn155 * stn155 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF =O .05 .10.15 .2 
VREVERSE HREVERSE HPOS 

*S1ngular normal; 
PLOT rstc046g* stc046g= 's' 

rstc055g* stc055g= 'd' 

PLOT 

PLOT 

/ VAXIS = 0 TO 1 BY .2 
VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rstc046g* stc046g= 's' 
rstc055g* stc055g= 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

rstn146g* stn146g= 's' 
rstn155g* stn155g= 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY ; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 



PLOT rstn146g* stn146g= 's' 
rstn155g* stn155g= 'd' 
/ VA~IS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 
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HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

******************** Covariates 
*Only experimental unit error 
*Non-singular normal; 

***********************************: 
for covariate; 

PLOT rszn002 * szn002 = 's' 
rszn003 * szn003 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6.8 
VREVERSE. HREVERSE 

·PLOT rszn002 * szn002 = 's' 
rszn003 * szn003 = 'd' 

HAXIS 
1. HREF 
HPOS = BO 

= 0 TO 1 BY .2 
0 .2 .4 .6 .8 1. 
OVERLAY; 

/ VAXIS = 0 TO .2 BY .05 
VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

*Singular normal; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

PLOT rs:tn002g* szn002g= ·, s' 
rszn003g* szn003g= 'd' 

PLOT 

/ VAXIS = 0 TO 1 BY .2 
VREF = 0 .2 .4 .6.8 
VREVERSE HREVERSE 

rszn002g* szn002g= 's' 
rszn003g* szn003g= 'd' 

HAXIS 
1. HREF 
HPOS = BO 

= 0 TO 1 BY .2 
= 0 .2 .4 .6 .8 1. 

OVERLAY; 

/ VAXIS = 0 TO .2 BY .05 HAXIS = 0 TO .2 BY .05 
VREF = 0 .05 .10 .15 .2 HREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS = 80 OVERLAY; 

*Only experimental unit-treat inteact error 
*Non-singular normal; 

treats zero & nonzero; 

PLOT rszn004 * szn004 = 's '· 

PLOT 

rszn007 * szn007 = 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

rszn004 * s:tnQ04 = 's' 
rszn007 * szn007 = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 . 10 . 15 . 2 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY; 

*Only ·normally distributed random error treats zero & nonzero; 
*Non-singular normal; 

PLOT rsznQ46 * szn046 = 's' 
rszn055 ·* szn055 = 'd' 
/ VAXIS = 0 TO 1 BY .2 HAXIS = 0 TO 1 BY .2 

VREF • 0 .2 .4 .6 .8 1. HREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS = 80 OVERLAY; 

PLOT rszn046 * szn046 • 's' 
rsznoss * sznoss = 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 

*Singular normal; · 
PLOT rszn046g* szn046g= 's' 

rszn055g* sznossg= 'd' 
/ VAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. 
VREVERSE HREVERSE HPOS 

HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY: 

HAXIS = 0 TO 1 BY .2 
HREF = 0 .2 .4 .6 .8 1. 
= 80 OVERLAY; 



PLOT 

*I 
I* 

rszn046g* szn046g= 's' 
rszn055g* szn055g= 'd' 
/ VAXIS = 0 TO .2 BY .05 

VREF = 0 .05 .10 .15 .2 
VREVERSE HREVERSE HPOS 
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HAXIS = 0 TO .2 BY .05 
HREF = 0 .05 .10 .15 .2 

= 80 OVERLAY ; 

PROC SORT DATA= sasglm2.frat1os; BY g_grqup; 
PROC PLOT DATA= sasglm2.frat1os 

UNIFORM HPERCENT=33 33 33 VPERCENT=50 50; 
BY g_group; · 

TITLE1 
TITLE2 
TITLE3 
TITLE4 
PLOT 

PLOT 

PLOT 

PLOT 

PLOT 

PLOT 

*I 
PROC SORT 
PROC PLOT 

"Observed Significance Levels for Treatments and Covariates"; 
•u = experimental unit error 
"1 = experimental unit-treatment interaction error• 
•n = normally distributed random error 
stc002 * szc002 = 'u' 
stc004 * szc004 = '1' 
stc046 * szc046 = ·1 n' / OVERLAY HAXIS = 0 to .2 by .05; 

stc102 * szc002 = , u, 
stc104 * szc004 = ' 1 ' 
stc146 * szc046 = In' / OVERLAY HAXIS = 0 to .2 by .05; 

stnf02 * szc002" 'U' 
stn104 * szc004 ' i ' 
stn146 * szc046 = 'n' / OVERLAY HAXIS = 0 to .2 by .05; 

stc002g* szc002g= 'U' 
stc004 * szc004 = ' i ' 
stc046g* szc046g= In' / OVERLAY HAXIS = 0 to .2 by .05; 

stc102g* szc002g= 'U' 
stcf04 * szc004 = , i ' 
stcf46g* szc046g= In' I OVERLAY HAXIS = 0 to .2 by .05; 

stn102g* szc002g= 'U' 
stnf04 * szc004 = ' i ' 
stnf46g* szc046g= In' I OVERLAY HAXIS = 0 to .2 by .05; 

DATA= sasglm2.fratios; BY lam_db; 
DATA= sasglm2.frat1os 
UNIFORM HPERCENT=33 33 33 VPERCENT=50 50; 

BY lam_db; 

TITLE1 
TITLE2 
TITLE3 
TITLE4 
PLOT 

•Actual Upper Tail Areas for Treatments and Covariates•: 
•Treatments are Zero in Top Row, Nonzero in Bottom Row • 
"Left to Right: experimental unit error, experimental-unit" 
• treatment interaction error, normal random error • 
stc002 * szn002 
stc004 * szn004 
stc046 * szn046 

stnf02 * szn002 
stn104 * szn004 
stnf46 * szn046 
/ HAXIS = 0 . f .25 .5 .75 1.0 VAXIS = 0 . f .25 .5 .75 1.0 

HREF = . f .25 .5 .75 VREF = . f .25.5 .75 
BOX 
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II 
PLOT stc002 * szc002 'u' 

stc004 * szc004 = ' 1 ' 
stc046 * szc046 = , n' 

stc102 * szc002 = 'u' 
stc104 * szc004 , 1 , 

stc146 * SZC046 = In' 
I HAXIS = 0 TO .5 BY .25 VAXIS = 0 TO BY .25 

HREF = 0 TO .5 BY .25 VREF 0 TO BY .25 

*Central vs non-central osls; 
PLOT stc102 * stn102 = 'u, 

stc104 * stn104 = , 1 , 

stc146 * stn146 = In' 
I VAXIS = 0 TO BY .2 HAXIS = 0 TO 1 BY .2 

VREF = 0 .2 .4 .6 .8 1. HREF = 0 .2 .4 . 6 .8 1 . 
VREVERSE HREVERSE HPOS = 80 OVERLAY ; 

PLOT stc102 * stn102 'U' 
stc104 * stn104 = , 1 , 

stc146 * stn146 = In' 
I VAXIS = 0 TO .2 BY .OS HAXIS = 0 TO .2 BY .OS 

VREF = 0 .OS .10 . 15 .2 HREF = 0 .05 .10 . 15 .2 
VREVERSE HREVERSE HPOS = 80 OVERLAY ; 
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APPENDIX G 

OTHER TOPICS 

Dissertation work began in the Summer of 1983 under 
Dr. William Stewart. The topic was calibration with a 
stratified sample f~om a finite population. The initial 
task was a bibliography covering 1920 to 1984 with some 
350 entries. This topic was abandoned in the Fall of 1984 
as Dr. Stewart, by then employed in the private sector, 
was unable to continue as advisor. 

The second topic was the derivation shown on the 
following two pages. After obtaining the result, a 
literature search showed that the bulk of the proof had 
been published prior to the 1940's and that the method of 
moments had been replaced by k-statistics. Further 
effort with moments appeared unlikely to contribute to 
the discipline. This work took about a year and was 
abandoned in the Fall of 1985. Dr. Folks presented the 
result at the 1985 annual ISI meeting in Amsterdam. 

The next topic was to use k-statistics to obtain 
approximate estimators of model equation parameters in 
the analysis of covariance, much as Cook (1951B) did for 
the parameter of simple linear regression. For this, one 
needs to express higher order, multivariate cumulants K, 
in terms of multivariate momentsµ. Harvey [1972] 
published recursive relationships which will generate the 
formula equating any order of a multivariate Korµ to 
the other. His formulas haVe been programed in the 
symbolic manipulation language MUSIMP. Following the 
results of the second topic are two pages of output from 
this program. They show formula equating each of the 
bivariate cumulants of order eight, K8 , 0 , .,1 , 7 , etc., to 
the bivariate moments µ 810 , µ 711 , etc. In the formula, 

for example, ( 6 U51 uo1~2 ) indicates 6*~5 i*<~o 1 ) 2; 
I I 

multiplication is indicated by a blank and exponentiation 
by a caret. Here, µ 51 1 is the bivariate, (X 1 , x2 ), 

expectation of (X 1 ) 5 *(X2 ). Learning this programming 
language, writing the program, and finan~lng the same 
took two years. 

The next step would have been to derive formula 
equating the sample cumulants k to the finite population 
cumulants K. The methods of Cook [1951A] appear 
difficult to program and would need to be modified for 
finite populations. Bell polynomials, tensors, and 
polykeys were examined. The first two appear to have 



Appendix G - Other Topics 464 

been derived; see Sugihara and Murota, [Utilitas 

Mathematics, Vol. 22 (1982), p. 265-291], and McCullagh 

[1987]. The difficulty of programming unfamiliar 
operators, and the uncertainty of the best method to use, 
reluctantly led to abandoning this topic in late 1987. 

Mid-1988 saw results on one unit error, and Cox's 
ratio. Mid-1989 saw the general randomization model for 
experimental unit-treatment interaction error and an 
essay on the early understanding of the error term. 
Mid-1990 saw the proof of the theorem on projectors and a 
procedure when both errors are present. The linkage of 
the noncentrality parameters proved difficult to unravel, 
and was solved only in 1992. Organizing and writing the 
work, and, as always, financing it have been the major 
tasks since. 
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Regression Models for Finite Populations 

J. Leroy Folks and Robert S. Wilson 

Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, 
74078, USA 

Sommaire 

Donnees Y populations definies de dimension Na chaque valeur X, des 
simples echantillons choisis au hasard de dimensions n sont pris de chaque 
population Y. La ligne des enchantillons en ecarts carres a un ecart a la 
moyenne pour la ligne de la population en ecarts carres. Les variances de la 
courbe et de l'interception des echantillons sont estimees par ecart a la 
moyenne et les variances de ces derniers estimateurs sont donnees. 

1 The population regression model 

. For each pf t·distinct X values we have·a :finite population of Ys of size N 
and have fit;teda least.squares line to these LN.(X,Y) pairs. Denote the 
intercept ·and·slope by a and S so that 

yhj a+ s~ + ehj' 

h = 1, 2, ••• , L 

j 1, 2, ••• , N 

2 Estimation of a and S 

Assume that at each~ we take a simple random sample of n from the N Ys, 
denoted by {yh. lj = 1, 2, ••• , n}. Fit a least squares line to these Ln 
(X,y) pairs and denote the intercept and slope by a and b. It follows from 
Jonrop and Rennermalm (1976) that 

E(a) = a and E(b) = s. 
3 Estimation of variances 

The variances of a and b have forms analogous to the usual expressions. 

V(a) 
N-n r { ! _ <~ - x)x } 2 S2 =--

nN h L l:(~ - X)2 h 

and V(b) = N-n r<~ - x>2s/ 
- i2 nN [ re~ - x>2] 

S2 1 
l: (Yhj 

- 2 
where =-- - Yb) • h N-1 j 

With the homogeneity condition that 

V(a) = N-n S2 
nN 

S~ s2, h = l, 2, 

{1 5c2 } 

I+ re~ - x/ 
S2 

and V(b) N-n 
= nN re~ - x>2 

• • • ' L, 

Of course, V(a) ariq V(b) are estimated unbiasedly by replacing s! or s2 by 
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unbiased estimates s! or s2 

2 1 n 
- 2 

sh =- I: (yhj - y ) n-1 j=l h 
where 

and 
2 1 

(yhj 
- 2 

8 = L(n-1) I: I: - yh) • 
h j 

Finally, the variances of the estimated variances are 

and 

where 

+ iij~kii yhi yhj yhk yhi [(N-l}(N=i)(N-3)) X 

[3n(n-1) + N2(2n-3) - N(2n2 - 3)) , 

BIBLIOGRAPHY 

J6nrup, H. and Rennermalm, B. (1976), Regression analysis in samples from 
finite populations. Scand • .:!.• Statist. 3: 33-36. 



Order of moments isl 8 
Variable order: vl:8 v2:0 
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<USO)+ ( -35 U40n2) + ( -630 U20"'4) + ( -5040 U10"'8 > + < -8 U70 U10 > + 
( -28 U60 U20) + < 56 U60 U10""2) + < -56,U50 U30 > + < -336 U50 U10"3 > + < 
420 U40 U20"'2 > + ( 1680 U40 U10"'4) + ( 560 U30":'2 U20 > + < -1680 U30"'2 U10"2 
> + ( -6720 U30 U10"'5 > + ( 10080 U20"'3 U10"'2) + < -25200 U20"'2 U10"'4 > + < 
20160 U20 U10"'6 > + < 336 U50 U20 UlO > + C 560 U40 U30 UlO > + < -2520 U40 U20 

U10"'2 > + < -5040 U30 U20"'2 U10 > + < 13440 U30 U20 U10"'3 > 

Variable order: v1:7 v2:1 

< U71 > + < -1 U70 UOl > + C -7 U61 U10) + ( -7 U60 Ull ) + ( -21 U51 U20 > 
+ < 42 U51 U10"'2 > + < -21 U50 U21 > + < -35 U41 U30 > + < -210 U41 U10"'3 > + 
C -35 U40 U31 ) + < 210 U31 U20"'2 > + < 840 U31 U10"4) + < 140 U30"'2 U11 > + 
< -2520 U21 U10"'5 > + ( -630 U20"'3 U11 > + < 5040 U11 U10"'6 ) + < -5040 U10''7 
U01 > + < 14 U60 U10 U01 > + < 42 U50 U20 UOl > + < 84 U50 011 UlO > + < -126 
U50 U10"'2 UOl ) + ( 210 U41 U20 U10) + C 70 U40 U30 U01 > + < 210 U40 U21 UlO 
) + ( 210 U40 U20 U11 > + ( -630 U40 U11 U10"'2 > + ( 840 U40 U10"'3 U01 > + < 
2ao' U31 U30 U10 > + ( -1260 U31 U20 U10""2 ) + ( -420 U30"'2 UlO UOl ) + C 420 
U30 U21 U20 > + < -1260 U30 U21 U10"'2) + C -630 U30 U20"'2 U01 > + < 3360 U30 
U11 U10"'3 > + < -4200 U30 U10"'4 UOl > + < -1890 U21 U20"'2 U10 > + < 5040 U21 
U20 U10"'3 > + < 2520 U20"'3 U10 U01 > + ( 7560 U20"'2 U11 U10"'2) + < -12600 U20"' 
2 U10"'3 U01 > + < -12600 U20 U11 U10""4 > + < 15120 U20 U10"'5 U01 > + < -630 U40 

U20 UlO U01 > + < -2520 U30 U20 U11 U10 ~ + ( 5040 U30 U20 U10"'2 U01 > 

Variable order: vl:6 v2:2 

< U62 > + < -20 U31"'2 > + < -2 U61 UOl ) + < -1 U60 U02 > + < 2 U60 U01"'2 > + 
< -6 U52 U10) + < -12 U51 U11 > + < -6 U50 U12 > + < -15 U42 U20 > + ( 30 U42 
U10"2 > + < -30 U41 U21 > + < -15 U40 U22 > + < 60 U40 U11"'2 > + < -20 U32 U30 
> + < -120 U32 U10"'3) + ( 20 U30"'2 U02) + ( -60 U30"'2 U01"'2 > + < 90 U22 U20"' 
2 > + < 360 U22 U10"'4 > + C 180 U21"'2 U20 > + < -540 U21"'2 U10"'2 > + C -90 U20A 
3 U02 > + C 360 U20"'3 U01"'2 > + < -540 U20"'2 U11"'2 > + C -720 U12 U10"'5) + C 
-3600 U11"'2 U10"'4 > + ( 720 U10"'6 U02) + C -5040 U10"'6 U01"'2) + C 24 U51 UlO 
U01 > + < 24 U50 U11 U01 ) + ( 12 U50 U10 U02 > + C -36 U50 U10 U01"'2 > ~ < 60 
U41 U20 UOl > + C 120 U41 U11 UlO > + < -180 U41 U10"'2 U01 > + < 60 U40 .U21 UOl 

) + < 30 U40 U20 U02 > + C -90 U40 U20 U01"'2 > + C 60 U40 U12 U10 > + < -90 
U40 U10"'2 U02) + < 360 U40 U10"'2 U01":'2 > + C 120 U32 U20 .U10 > + C 80 U31 U30 
U01 ) + ( 240 U31 U21 U10 > + < 240 U31 U20 Ull ) + ( -720 U31 U11 U10"'2 > + ( 
960 U31 U10"'3 U01 ) + ( 120 U30 U22 UlO > + < 240 U30 U21 U11 > + < 120 U30 U20 
U12) + C -360 U30 U12 U10"'2 > + ( -720 U30 U11"'2 U10) + ( 480 U30 U10"3 U02 

> + ( -2400 U30 U10"'3 U01"'2 > + < -540 U22 U20 U10"'2) + ( -540 U21 U20"'2 UOl 
> + < 2880 U21 Ull U10"'3 > + < -3600 U21 U10"'4 UOl > + < -540 U20"'2 U12 U10 > 
+ C 1080 U20"'2 U10"'2 U02 > + C -5400 U20"'2 U10"'2 U01"'2 > + C 1440 U20 U12 U10"'3 

> + < 4320 U20 U11"'2 U10"'2 > + < -1800 U20 U10"'4 U02 > + C 10800 U20 U10"'4 U01 
"'2 > + ( 8640 U11 U10"'5 U01 > + ( -360 U40 U11 U10 U01 > + C -720 U31 U20 U10 
UOl > + < -720 U30 U21 U10 U01 > + < -720 U30 U20 Ull U01 > + < -360 U30 U20 
U10 U02 > + < 1440 U30 U20 U10 U01"'2) + < 2880 U30 U11 U10"'2 U01 > + < -2160 
U21 U20 Ull UlO' + C 4320 U21 U20 U10"'2 U01 > + < 4320 U20"'2 U11 U10 UOl > + 
< -14400 U20 Ull U10"'3 U01 > 
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Variable order: v1:5 v2:3 ~ 5, 3 :: 

( U53) + < -3 U52 U01 ) + ( -3 U51 U02) + ( 6 U51 U01"'2) + C -1 USO U03) 
+ ( -6 U50 U01"3) + < -5 U43 U10) + C -15 U42 U11 ) + < -15 U41 U12 > + < -5 
U40 U13 + ( -10 U33 U20 ) + ( 20 U33 U10"'2) + ( -30 U32 U21 ) + ( -30 U31 
U22) + C 120 U31 U11"'2 > + < -10 U30 U23 > + ( -60 U23 U10"3) + < 180 U21"'2 
U11 > + C 30 U20"2 U13 > + ( -360 U20 U11"'3) + ( 120 U13 U10"'4 > + < 1440 u11-
3 u10-2) + ( -120 u10-5 U03 > +. C -5040 U10"'5 U01"'3) + ( 6 USO U02 U01 ) + < 
30 IJ42 UlO UOl ) + < 60 U41 Ul 1 UOl ) + ( 30 U41 U10 U02 > + ( -90 U41 UlO UOl '' 
2) + < 30 U40 U12 U01 ) + ( 30 U40 U11 U02 > + ( -90 U40 U11 uo1-2 > + < 10 
U40 UlO U03) + < 120 U40 UlO uo1-3) + ( 60 U32 U20 UOl > + ( 120 U32 Ull UlO 
> + < -180 U32 u10-2 U01 ) + < 120 U31 U21 U01 > + C 60 U31 U20 U02 > + C -180 
U31 U20 UOl ... 2 > + < 120 U31 U12 UlO > + ( -180 U31 U10"2 U02 ) + C 720 U31 UlO··' 
2 uo1-2 > + < 60 U30 IJ22 UOl > + < 60 U30 U21 U02 > + < -180 U30 U21 UOl ... 2 > + 
< 20 U30 U20 U03 > + C 240 U30 U20 U01"'3) + C 40 U30- U13 UlO > + C 120 U30 U12 
Ull > + ( -360 U30 U11"'2 U01 l + < -60 U30 U10.,..2 U03 > + < -1200 U30 U10"2 UOl 

"3 l + ( 60 U23 U20 UlO l + C 180 U22 U21 UlO l + ( 180 U22 U20 Ull > + < -540 
U22 Ul1 Ul0.,..2 > + < 720 U22 U10"3 UOl > + < -540 U21"2 UlO U01 > + < 180 U21 
U20 U12 > + < -540 U21 U12 U10"'2) + ( -1080 U21 U11.,..2 UlO) + ( 720 U21 U10"'3 
U02 > + ( -3600 U21 IJ10"3 U01"'2) + C -270 U20"2 U12 IJ01 ) + < -270 U20"'2 Ull 
U02) + C 1080 U20"'2 U11 uo1-2) + ( -90 U20"2 UlO U03) + ( -1800 U20"'2 UlO 
U01"3 > + < -180 U20 U13 U10"2 > + < 240 U20 U10 ... 3 U03) + ( 7200 U20 U10"'3 U01 
... 3 > + ( 1440 U12 U11 U10"3) + ( -1800 U12 U10"4 UOl ) + ( -7200 U11"2 U10"3 
UOl ) + ( -1800 Ull U10"4 U02) + ( 10800 Ull U10"4 U01"2 > + C 2160 Ul0 ... 5 U02 
UOl > + < -90,U40 UlO U02 U01 ) + C -720 U31 Ull UlO U01 ) + ( -180 U30 U20 U02 

UOl > + < -360 U30 U12 U10 U01 ) + < -360 IJ30 U11 U10 U02 > + < 1440 U30 Ull 
UlO U01"2 > + ( 720 U30 U10"2 U02 UOl ) + ( -540 U22 U20 U10 UOl > + < -1080 
U21 U20 U11 U01 > + C -540 U21 U20U10 U02 > + < 2160 U21 U20 UlO IJ01"2 > + ( 
4320 U21 U11 U10"2 UOl > + ( 1080 U20"'2 U10 U02 U01 ) + < -1080 U20 U12 Ull U10 

> + < 2160 U20 U12 U10"'2 U01 > + < 4320 U20 U11"'2 U10 UOl ) + <" 2160 U20 Ull 
U10"'2 U02) + ( -10800 U20 U11 U10"2 U01"2) + < -3600 U20 U10"3 U02 U01 > 

Variable order: vl:4 v2:4 

( U44) + ( -18 U22"'2) + ( -144 U11"4) + ( -4 U43 UOl > + ( -6 U42 U02 > + 
( 12 U42 U01"2) + ( -4 U41 U03 > + ( -24 U41 U01"3) + < -1 U40 U04 > + C 6 
U40 U02"2 > + < 24 U40 U01"4 > + ( -4 U34 UlO > + < -16 U33 U11 ) + C -24 U32 
U12 l + < -16 U31 U13 > + < -4 U30 U14 > + < -6 U24 U20 > + ( 12 U24 U10"2) + 
< -24 U23 1.121 > + < 144 U22 U11"2 > + < 72 U21"2 U02 > + ( -216 U21"2 UOl..-..2 > 
+ < 6 U20.,..2 U04 ) + < -54 U20"2 U02""2 .. ) + < -360_.U20."'.'2 . UO 1 '~4 j + ( 72 l.120 U 12''2 

) + ( -24 U14 U10"3 > + < -216 U12""2 U10"2 > + C 24 U10"4 U04 > + < -360 U10''4 
U02"2 > + ( -5040 U10 ... 4 U01 "4 ) + < 24 U41 U02 U01 ) + C 8 U40 U03 UOl > + < 

-36 U40 .U02 U01"2 > + C 32 U33 U10 UOl ) + ( 96 U32 Ull UOl > + C 48 U32 UlO 
IJ02 > + ( -144 U32 UlO U01"2 > + ( 96 U31 U12 UOl ) + ( 96 U31 Ull U02) + < 
:-2S8 U31 Ull Ll01"2 > + < 32 U31 U10 U03 > + < 384 U31 U10 U01"3 > + < 32 U30 
IJ13 UOl ) + ( 48 U30 U12 U02 > + ( -144 U30 U12 U01''2 ) + < 32 U30 Ull U03 > + 
< 384 U30 U11 uo1-3 > + C 8 U30 UlO U04 > + ( -72 U30 UlO U02"2 > + C -480 U30 
UlO U01"4 > + ( 48 U23 U20 UOl > + C 96 U23 Ull UlO) + < -144 U23 U10"'2 UOl > 
+ < 144 U22 U21 UOl l + < 72 U22 U20 U02 > + ( -216 U22 U20 U01A2 l + ( 144 U22 

U12 U10 l + ( -216 U22 U10"2 U02 l + < 864 U22 U10A2 U01"2 ) + ( 48 U21 U20 
U03) + ( 576 U21 U20 U01"3) + ( 96 U21 U13 U10) + < 288 U21 U12 U11 ) + < 
'-864 U21 Ull ... 2 U01 l + ( -144 U21 U10"'"2 U03 l + C -2880 U21 U10"'2 U01"'"3 l + < 
-12 u20-2 uo3 uo1 > + < 432 u20A2 uo2 uo1"2 > + < 24 u20 u14 u10 > + c 96 u20 
U13 IJl 1 l + ( -432 U20 Ul 1 "2 U02 ) + < 1728 U20 Ul 1 "2 UOl "2 > + < -36 U20 U10"2 

U04 > + < 432 U20 U10"2 U02"2 ) + '( 4320 U20 U10"2 U01"4 ) + ( -288 U13 Ull 
u10-2) + < 384 U13 U10"'3 UOl ) + ( -864 U12 U11"2 U10 > + ( 576 U12 u10-3 U02 
) + < -2880 U12 U10"3 U01"'2 ) + C 2304 U11"3 UlO U01 ) + C 1728 U11"2 U10"'"2 Ll02 

> + C -8640 U 11 "2 U 10"2 UO 1 "2 > + < 384 U 11 U 10"3 U03 > + < 11520 U 11 U 10''3 
uo1-3 > + C -480 U10"4 U03 UOl > + ( 4320 U10"4 U02 U01"2) + ( -288 U31 UlO 
U02 UOl > + < -288 U30 Ull U02 UOl > + C -96 U30 UlO U03 U01 > + < 576 U30 UlO 
U02 UOl "2 > + < -864 U22 Ul 1 °UlO UOl > + < -432 U21 U20 U02 UOl > + < -864 U21 
U12 IJ10 UOl > + < -864 U21 Ull U10 U02 > + < 3456 U21 Ull U10 U01"'2 > + < 1728 
Ll21 U10"2 U02 UOl > + < -288 U20 U13 UlO U01 > + ( -864 U20 U12 Ul 1 UOl > + < 
-432 U20 U12 UlO U02 ) + < 1728 U20 U12 UlO U01"2 > + < -288 U20 U11 UlO U03 > 
·+ < -5760 Ll20 Ul 1 UlO uo1-3 > + < 576 U20 U10"2 U03 UOl > + < -4320 U20 Ul0 .... 2 
U02 UOl ,,..2 > + < 3456 U12 Ull U10"2 IJOl ) + C -5760 Ul 1 Ul0.,..3 U02 UOl >" + < 3451.:, 

U20 U11 UlO U02 UOl > 
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INDEX OF TERMS 
The page number of the definition is underscored. 

actual responses 169 
additivity 134-135 

broad sense 134 
like covariate 137 
nonconstant covariate 

coefficient 135 
physical sciences 135 
strict sense 134 
treatment-unit 136 
unit treatment 136 
within block 135 

assignment probability 104 
assumptions 148-149 
Assumption 1 16 
Assumption 2 16 

Assumption 3* 16 
Assumption 3 24 
Assumption 4* 16 
Assumption 4 18 
Assumption 5 

matrix form 20 
summation form .£J.., 123 

Assumption 6 20 
Assumption 7 21 
Assumption 8 21 
Assumption 9 140, 246, 249 

,Assumption 10 158 
auxiliary variable 144 

base response 172 
block-treatment interaction 

14, 21 
as an error 126-125 

block-wise randomization 108 
blocking variable 6 
blocks 8 
bootstrap 133, 391 

calibration 465 
clustering of anova terms 

and estimates 198-210 
in randomization 

distributions 
275-279, 286-289 

clustering of noncentrality 
parameter 

211,213, 337-339 

coding model matrix 14 
completely randomized block 

design 8 
concomitant variable 144 

such as a covariate 6 
conditional distribution 22 
covariate 6 

identical in each 
block 179-180 

orthogonal to errors 
245 

covariate coefficient 
additivity 135 
experimental unit 

error 137 
experimental unit

treatment interaction 
error 137 

mean and variance 259-263 
weighted 326-327 
g-group 360-361 

randomization distribution 
275-278 
weighted 332-334 

Roux's 137 
Cox ratios 320-334 
crossover design 

143, 237-238, 393 
cumulants 465, 469-470 

s!j technique iv 
dependent variable 8 
designed experiment 7 
design matrix 18 
distinguishable groups 

105-107 
dot notation 

averaging 22, 123 
replacement 35 

effects model 20 
matrix for 74 

equivalent selection 
process 114 

unit errors 124, 127 



errors, 
see experimental unit 
see e.u. - treatment 
see normally distrib. 
combined 253, 391 
measurement 124 
random 1.§., 93-100 
not residuals 17 
technical 124 

estimable function 26, 78-79 
exchangeability 164-165,393 

partial 164-165 
normal-randomization 

model 165 
experiment-wise 

randomization 108 
experimental unit 8 
experimental unit error 

124, 133, 145-147 
Assumption 9 140 
numerical construction 

243-248 
numerical values 247 
normal-randomization 

model 154 
same as plot error 125 
postulated 125 
singular normal 318-319 
variance 246 

experimental unit-treatment 
interaction error 

127, 127-133, 145-147 
Assumption 9 140 
vs block-treatment 

interaction 133 
example of 127, 236 
as factor by factor 

interaction 129 
Kempthorne's 128, 132 
Neyman's 127, 132 
normal-randomization 

model 155 
numerical construction 

248-252 
numerical values 250 
and on-average 

hypothesis 138-139 
postulated 128, 133 
randomization test 168 
Roux's 128 
variance 251-252 

external criterion 174, 175 
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factors 6 
F-distribution probability 

plots 
for covariate 299-300 
for error type 301-315 
problems with 315-319 
reading of 290-294 
for treatments 294-298 

F-ratio 39, 60, 63-64 
expected value 222-232 

weighted 328-329 
numerical example 71-72 
numerical means 

264-265, 328-329 

g-group 197, 
216-222, 335-362 
balance 336 
best and worst 352-362 

generalized inverse 83, 90 
group (set, operation) 188 

hat matrix 13 
hierarchical method 14 
hypothesis 

of interest 8 
in-particular 138-139 
on-average 138-139 

incidence matrix 18 
inclusion probability 

111, 113 
internal criterion 171, 173 

k-statistics 465-466, 
469-470 

Kronecker product process 
for projectors 

50, 52-53, 55, 386 

leap of faith 148-149 
least squares equations 

26, 29, 31 
levels of a factor 6 

mass draw 109 
mean square - numerical 

values 264, 328 
weighted 328-329 

measurement error 
as technical error 124 



mixed model 13 
model, the ll 

alternative 392 
combined 150-157 
normal errors 16-21 
randomization 140-143 

model equation 
alternative 392 
of combined errors 208 
matrix form - usual 

16 , li, 2 3 , 3 0 
postulated 138 
summation form 22, .£1, 
combined model 157 

model X 27-29, 31 
moments 

numerical values 264-265 
of quadratic forms 231 

Moore-Penrose generalized 
inverse 83 

multivariate model· 31, 45 

non-centrality parameter 
adjusted for terms 

il, 61, 62 
vs Cox's ratio 339-340 
full model 39 
linkage 219, 336-339 
orthogonal terms 44 
and power of test 

41, 44, 216-222 
randomization 211-215 
stepwise regression 45 

normally distributed 
change with each 

randomization 156 
model 16-24 
numerical construction 

252-253 
random error 16 
randomization 150-157 

observational study 7 
observed significance level 

63 
randomization 

distribution 279-289 
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p-value 62 same as observed 
significance level 

partitioning of X matrix 19 
penicillin allergy 127 
permutation matrix 184-186 

projector 190-193 
permutation test- 167 
plot error 125 

same as experimental 
unit error 124-125 

pooled within-class 
regression estimate 32 

power of randomized test 
171-177 
pseudo-randomized test 

174-175, 283, 285 
predictor sort sampling 

116 
probability integral 

transform 279, 282 
probability space 

combined model 157 
normal model 11. 
randomization model 

142-143 
survey sampling 141 

procedure, two-stage 233-237 
projector 13, SO, 52, 55 

75, 192 
permutation 190-193, 390 

randomization 103-104 
114 biases and valid 

block-wise 108 
experiment-wise 108 
model 140-143 
nonrandom 120 
restricted 114-116, 

119, 189, 216-222 
unequal probability 117 

randomizations 
number of 105-109, 

114-116, 254 
numerical construction 

254-255 
numerical values 

256-259 
randomization test 166 
randomized block design 8 
reparameterization 76 

full rank 81 
rerandomization test 167 



residuals 1.1, 27 
response variable 6 

errors proportional 158 
mean of 160 
variance of 163 

restricted randomization 
114-116 
via noncentrality 

parameter 340-362 

sample design 143 
selection probability 109 

numerical example 259 
see restricted 

randomization 
strategy 148 
unequal 170, 173, 

175-176, 320-334 
unordered sample 

design 143 
selection process · 105-110 

equivalent 114 
mass draw 109 
sequential 105 
two-stage 105 
unequal probability 117 

L tfj technique iv 
singular normal distribution 

ll, 242, 315-319, 389 
soil error 127 

same as experimental 
unit-treatment inter. 

solution 17 
see also estimator 17 

strategy 148, 283 
sum of squares 

matrix notation ~ 
numerical example 69, 70 
via projector matrix 75 

randomization 
adjusted covariate 205 
adjusted treatment 208 
residual 204 

summation notation 33-35 
tables of 37,38 

superpopulation 163-164 
survey sampling 141, 

163-164, 392 

Index of Terms 473 

technical error 124 
test statistic 

requirement of 181-183 
treatment 8 

numerical values 246 
mean and variance 259-263 

weighted 326-327 
g-group 360-361 

randomization distribution 
271-275, 
weighted 330-332 

repeated values 273 
Type I error - randomization 

distribution, 280, 
284-285 

Type II error- randomization 
distribution 282, 285 

287 

unbiased randomization 
process 114 

unit error 125 
same as experimental 
unit error 124-125 

unordered sample design 
same as selection 
probability 143 

usual constraints 19-20 

valid randomization process 
114, 240 

weighted randomization 
240, 320-334 
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