THE RANDOMIZATION MODEL FOR THE

ANALYSIS OF COVARIANCE

By

```
        ROBERT S. WILSON
```

 Bachelor of Arts
 Grinnell College
 Grinnell, Iowa
 1970
 Master of Science
 Iowa State University
Ames, Iowa
1980

Submitted to the Faculty of the Graduate College of the
Oklahoma state University
in partial fulfillment of the requirements for
the Degree of DOCTOR OF PHILOSOPHY

May, 1993

COPYRIGHT
by

Robert stewart Wilson

May 1993

OKLAHOMA STATE UNIVERSITY

THE RANDOMIZATION MODEL FOR THE ANALYSIS OF COVARIANCE

Thesis Approved:

PREFACE

This dissertation is a wide-ranging examination of the randomization model as applied to the analysis of covariance. The focus is on the randomized block design with one blocking factor, one treatment factor, and one covariate. The study contrasts two sources of randomness, the usual source, normally distributed random errors, and unit errors arising from the random assigning of treatments to experimental units. Examined are two types of unit errors, experimental unit errors and experimental unit-treatment interaction errors.

We replace the $\Sigma Y_{i j k} s_{i j}^{k}$ technique with a new permutation matrix technique, which is easily adapted to other models. We replace the probability of a unit receiving a given treatment with the probability of selecting a given randomization. This facilitates studying unequal selection probabilities. Errors generated for numerical simulations are linearly independent of the covariate. The F-distribution analogue of normal probability paper facilitates comparison with the case of normally distributed random errors.

We prove that the randomization distribution of several of the usual anova-table terms and estimators consists of clusters of values. For experimental unit errors, each cluster collapses to a single value for several terms and estimators. In the single covariate case, the noncentrality parameters for the tests of the usual hypotheses of adjusted treatment effects and of adjusted covariate are linked. The linkage of the noncentrality parameters permits avoiding, for both tests, randomizations with low power.

Also derived is the relationship between the Kempthorne and the Neyman definitions of experimental unit-treatment interaction errors and the relationship required for two matrices to have identical projectors. An open question is the need for, or suitability of, the F-distribution as derived from a singular normal distribution. Appendix E lists several possible extensions.

A numerical simulation examines the three types of error, each with equal and unequal within-block variances, and with zero and one nonzero set of treatment effects. Computer programs compute all possible randomizations for each of the $3 \times 2 \times 2=12$ cases. While the experimental unit-treatment interaction errors provide the F-ratios with a distribution close to the F distribution, the experimental unit errors do not. Nonequality of the within-block errors lowers the mean of the

Abstract

F-ratios and their variances. A weighting of the selection probabilities appears of little advantage. Restricting randomization to the cluster with the largest noncentrality parameter for the adjusted covariate proves advantageous. For this model, this cluster is the most balanced on the covariate.

This work is designed to rapidly introduce one familiar with the general linear model to the terminology and topics of the randomization model. To this end, it presents concepts from diverse sources in a uniform notation, reviews aspects of the general linear model, presses the bibliography into service as an index to its author's cited pages, indexes notation and key terms, and has numerous internal references. The trained statistician will find the style slow, even verbose and repetitious. We hope his/her graduate student will find such helpful.

The discoveries of this dissertation could not have been made without the extensive work of others, especially Drs. Oscar Kempthorne and S. R. Searle, both of whom built upon the work of many others. Software (SAS 6.07) and mainframe (IBM 3090-200S) available in the 1990's permitted simulations difficult, if not impossible, £ifteen or more years ago. My thanks to the anonymous doners of the Version 6 SAS manuals. Earlier versions of parts of this work have been presented at the Annual

Meetings of The American Statistical Association of 1988, 1989, and 1990.

I thank my parents, Don and Nell Wilson, for their support and encouragement.

I thank the Department and the Graduate College for their patience while I financed and completed this work, and that outlined in Appendix G. My thanks to Dr. J. Leroy Folks for help in securing desk space and for work on partial drafts, also to Drs. William D. Warde, Barry K. Moser, and Kenneth E. Case for committee work, and to John and especially Frances Griffin whose careful readings greatly improved the exposition. Being my own typist, all errors are my responsibility; Appendix F is an errata page.

Hypotheses are like nets:
only he who casts can catch.
G. R. Dolby

BRIEF TABLE OF CONTENTS
Chapter
Page
I. INTRODUCTION. 1
II. THE NORMALLY DISTRIBUTED RANDOM ERRORS MODEL 5
2.1 Introduction 5
2.2 Overview of the Analysis of Covariance 6
2.3 The General Linear Model for the Analysis of Covariance 15
2.4 Estimators 25
2.5 Sums of Squares Tables 33
2.6 The F-Ratio and Tests of Hypotheses 39
2.7 Numerical Example. 65
2.8 Matrices Producing Identical Projectors 73
2.9 Early Understanding of Random Error. 92
III. THE RANDOMIZATION MODEL 101
3.1 Introduction 101
3.2 Randomization 101
3.3 Errors and Their Implications. 122
3.4 The Randomization Model. 140
3.5 The Normal-Randomization Model 150
3.6 The Randomization Test 166
3.7 Randomization, ANOVA Terms and Estimators 184
3.8 Expected Value of the F-Ratio. 223
3.9 Experimental Procedures when Both Errors 239
4.1 Introduction 239
4.2 Construction of Random Errors 243
4.3 Method of Simulation 254
4.4 Expectations and Standard Deviations of Parameter Estimates and Anova Terms. 257
4.5 Distributions of Estimates and Anova Terms 270
4.6 F-Distribution Probability Plots 290
4.7 Weighted Selection Probabilities 320
4.8 G-groups, Noncentrality Parameters and OSL's 336
BIBLIOGRAPHY and AUTHOR INDEX. 363
APPENDICES 381
APPENDIX A - DISTRIBUTIONS. 382
APPENDIX B - THE R(•|•) NOTATION. 385
APPENDIX C - SUMS TO PROJECTORS VIAKRONECKER PRODUCTS386
APPENDIX D - SUMMARY OF CONTRIBUTIONS TO THE DISCIPLINE. 387
APPENDIX E - COLLECTED SUGGESTED EXTENSIONS 389
APPENDIX F - LISTING OF COMPUTER PROGRAMS 394
APPENDIX G - OTHER TOPICS 463
APPENDIX H - ERRATA 469
INDEX OF TERMS $.470-473$

DETAILED TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. THE NORMALLY DISTRIBUTED RANDOM ERRORS MODEL 5
2.1 Introduction 5
2.2 Overview of the Analysis of Covariance 6
2.2.1 Two Motivating Examples 6
2.2.2 Uses of Analysis of Covariance. 10
2.2.3 Literature Review - Analysis ofCovariance.10
2.3 The General Linear Model for the Analysis of Covariance 15
2.3.1 The Model in Matrix Notation. 16
2.3.2 Summation Form of the Model
Equation. 22
2.4 Estimators 25
2.4.1 Sketch of Derivation in Matrix Notation. 25
2.4.2 The "Model $\mathbf{x "}^{\prime}$ 27
2.4.3 Estimators in Summation Notation 31
2.5 Sums of Squares Tables 33
2.5.1 Matrix Notation 33
2.5.2 Summation Notation. 35
2.5.3 Tables of Sums of Squares 37
2.6 The F-Ratio and Tests of Hypotheses. 39
2.6.1 The Test of the Full Model 39
2.6.2 Testing Model Equation Parameters Adjusted for Other Model 42Equation Parameters
2.6.3 Products of Partitioned Matrices 45
2.6.4 Alternative Forms of $\hat{\beta}_{\mu, b}, \tau, \beta^{\prime}$ the F-Ratio, and the Non-Centrality Parameter. 58
2.6.5 Testing Hypotheses of Interest in the Randomized Block Design with Covariates 62
2.7 Numerical Example. 65
2.8 Matrices Producing Identical Projectors 73
2.8.1 The Task of the Theorem 73
2.8.2 Theorem 2.8.3 and Two NumericalExamples.76
2.8.3 Estimable Functions 78
2.8.4 Reductions in Sums of Squares 79
2.8.5 Converting the Estimator $\hat{\mathrm{F}}_{\mathrm{C}}$ to $\hat{\mathrm{F}}_{\mathrm{e}}$. 81
2.8.6 Proof of Theorem 2.8.3. 83
2.8.7 Readings in Generalized Inverses 90
2.9 Early Understanding of Random Error. 92
III. THE RANDOMIZATION MODEL 101
3.1 Introduction 101
3.2 Randomization. 103
3.2.1 Definition of Randomization 103
3.2.2 Sequential Selection Process. 105
3.2.3 A Two-Stage Selection Process 105
3.2.4 A Mass Draw Selection Process 109
3.2.5 Assignment and Selection
Probabilities 110
3.2.6 Restricted Randomization 114
3.2.7 Unequal Selection Probabilities 117
3.2.8 Why Randomize 118
3.3 Errors and Their Implications. 122
3.3.1 Two New Error Terms 122
3.3.2 Technical Error 124
3.3.3 Experimental Unit Error 124
3.3.4 Block-Treatment Interaction 126
3.3.5 Experimental Unit-Treatment Interaction 127
3.3.6 Relationships Among Error Terms 132
3.3.7 Additivity. 134
3.3.8 Errors in the Covariate Model 136
3.3.9 Two Hypotheses: In-particular
and on-average. 138
3.4 The Randomization Model. 140
3.4.1 The Model Equation and Assumptions 140
3.4.2 The Probability Space for the
Randomization Model 141
3.4.3 Auxiliary Variables and the Data. 144
3.4.4 Implications and Inferences 147
3.5 The Normal-Randomization Model 150
3.5.1 Introduction 150
3.5.2 The Model Equation. 150
3.5.3 The Combined Probability Space. 157
3.5.4 Expectations of the Response
Vector \mathbf{I}_{s} 158
3.5.5 Superpopulation Approach. 163
3.5.6 Exchangeability 164
3.6 The Randomization Test 166
3.6.1 Overview of the Randomization Test 166
3.6.2 Experimental Unit x Treatment Interaction 168
3.6.3 Testing the Null Hypothesis 169
3.6.4 Computing the Power of the Randomization Test 171
3.6.5 The Randomization Test Under
Simulation 174
3.6.6 Randomization Applied to $\mathrm{H}_{\mathrm{a}}: \mu, \mathrm{b}, \tau,{ }_{\mathrm{F}} \mathrm{F}=\mathbb{D}$ 178
3.6.7 A Requirement of the Test Statistic 181
3.7 Randomization, ANOVA Terms and Estimators 184
3.7.1 Permutation Matrices 184
3.7.2 Permutation and Projection
Matrices. 187
3.7.3 Permutation, Anova Terms, and an Estimato 198
3.7.4 Permutation and the Noncentrality Parameters 211
3.7.5 Restricting Randomizations to Maximize Power 216
3.8 Expected Value of the F-Ratio. 223
3.8.1 The Randomized Block Design without a Covariate 223
3.8.2 The Randomized Block Design with a Covariate 227
3.8.3 Possible Approaches 230
3.9 Experimental Procedures when Both Errors Are Present 233
3.9.1 A Two-Stage Procedure 233
3.9.2 Other Experimental Procedures 237
IV. NUMERICAL SIMULATIONS 239
4.1 Introduction 239
4.2 Construction of Random Errors. 243
4.2.1 Construction of the Experimental Unit Errors 243
4.2.2 Construction of the Experimental
Unit-Treatment Interaction Errors 249
4.2.3 Construction of the Normally
Distributed Random Errors 252
4.2.4 Combination of Errors 253
4.3 Method of Simulation 254
4.3.1 Generation of Randomizations and Attachment of Treatments and Errors. 254
4.3.2 Generation of Anova Terms 255

4.6 F-Distribution Probability Plots 290
4.6.1 Display of Results UsingProbability Paper 290
4.6.2 F-Distribution Plots for Three Error Types 294
4.6.3 Equal and Unequal Within-Block Error Variances 301
4.6.4 A Possible Problem With the Graphs 315
4.7 Weighted Selection Probabilities 320
4. .l Review of Cox's Suggested Weights 320
4.7.2 Cox's Third Ratio Applied to Simulation. 323
4.7.3 Distribution of Parameter Estimates vs Cox's Third Ratio. 329
4.8 G-groups, Noncentrality Parameters and OSL's 335
4.8.1 A Comparison of the Two Noncentrality Parameters 336
4.8.2 Cox's Second Ratio and $\lambda_{\beta / \mu, b, \beta}$ 339
4.8.3 Restricting Randomization a via $\lambda_{\beta \mid \mu, b, \beta}$. 340
4.8.4 OSL's for the Best and Worst Cases 344
4.8.5 Hypothesis Tests for the Best and Worst Cases 352
BIBLIOGRAPHY and AUTHOR INDEX 363
APPENDICES 381
APPENDIX A - DISTRIBUTIONS 382
A. 1 Multivariate Normal 382
A. 2 Noncentral Chi Squared. 382
A. 3 Noncentral F 383
A. 4 Noncentral Beta 384
APPENDIX B - THE R(: $1 \cdot$) NOTATION. 385
APPENDIX C - SUMS TO PROJECTORS VIA KRONECKER PRODUCTS 386
APPENDIX D - SUMMARY OF CONTRIBUTIONS TO THE DISCIPLINE 387
APPENDIX E - COLLECTED SUGGESTED EXTENSIONS 389
APPENDIX F - LISTING OF COMPUTER PROGRAMS 394
F.l Function of Programs 394
F. 2 Flow of Programs and Data Sets 395
F. 3 Program meu 396
F. 4 Program meuxti 401
F. 5 Program cterms 408
F. 6 Program glm 424
F. 7 Program noncent 436
F. 8 Program testf 442
F. 9 Program snormal 445
F. 10 Program probp 448
APPENDIX G - OTHER TOPICS 463
APPENDIX H - ERRATA 469
INDEX OF TERMS 470-473

LIST OF TABLES

Table Page
2.5.1 Combined Analysis of Variance Table Matrix Notation 37
2.5.2 Combined Analysis of Variance Table Summation Notation 38
2.7.1 Treatments and Responses for Example One 65
2.7.2 Analysis of Variance Table -- Matrix Computation 68
2.7.3 Combined Analysis of Variance Table -- Summation Computation 70
3.7 .1 Effect of a Permutation Matrix - One Block 185
3.7.2 Effect of a Permutation Matrix - Design Matrix. 186
3.7.3 Effect of a Permutation Matrix - Projector Matrix 194
4.2.1 Experimental Unit Errors 247
4.2.2 Experimental Unit-Treatment Interaction Errors 248
4.2.3 Experimental Unit-Treatment Interaction Errors Summed Across Treatments. 249
4.4.1 Randomization Expected Value of Parameter Estimates - Equal Within-Block Variance 259
4.4.2 Randomization Standard Deviation of Parameter Estimates - Equal Within-Block Variances 263
4.4.3 Randomization Expectation and Standard Deviation of Anova Terms - Equal Within-Block Variance 264
4.4.4 Randomization Mean and Standard Deviation of Anova Terms - Unequal Within-Block Variances 268
4.7.1 Weighted Expected Value of ParameterEstimates - Equal Within-Block Variances . . 326
4.7.2 Weighted Standard Deviation of Parameter Estimates - Equal Within-Block Variances . . 327
4.7.3 Weighted Expectation and Standard Deviation of Anova Terms - Equal Within-Block Variance. 328
4.7.4 Weighted Mean and Standard Deviation of Anova Terms Unequal Within-Block Variances 329
4.8.1 Randomization Expected Value of Parameter Estimates for G-Groups with Extreme Values of $\lambda_{s, f \mid \mu, b, ~}$, Equal Within-Block Variances 360
4.8.2 Randomization Standard Deviation of Parameter Estimates for G-Groups with Extreme Values of $\lambda_{s, f \mid \mu, b, r}$ Equal Within-Block Variances 361

LIST OF FIGURES

3.3.1 Experimental Unit-Treatment Interaction 129
3.3.2 Error as Experimental Unit-Treatment Interaction. 128
3.4.1 Near Identical Experimental Units. 146
3.6.1 Type II Error Probabilities. 178
3.4.2 Nonidentical Experimental Units. 147
4.2.1 Construction of Experimental Unit Errors Block One. 248
4.5.1 The Distribution of $\tau_{1}-\hat{\tau}_{1}$ for Experimental Unit Error. 272
4.5.2 The Distribution of $\tau_{1}-\hat{\tau}_{1}$ for Experimental Unit-Treatment Interaction Error 274
4.5.3 The Distribution of $\hat{\beta}-\hat{\beta}$ for Experimental Unit Error 277
4.5.4 The Distribution of \hat{F} - $\hat{\beta}$ for Experimental Unit-Treatment Interaction Error 278
4.5.5 The Distribution of OSL's for $F(\tau=\mathbb{D} \mid \tau=\mathbb{D})$ Experimental Unit Error 280
4.5.6 The Distribution of OSL's for $F(\tau=\mathbb{D} \mid \tau \neq \mathbb{C})$ Experimental Unit Error. 281
4.5.7 The Distribution of OSL's for $F(T=\mathbb{D} \mid \tau=\mathbb{D})$ Experimental Unit-Treatment Interaction Error. 279
4.5.8 The Distribution of OSL's for $F(\tau=\mathbb{D} \mid \tau \neq \mathbb{D})$ Experimental Unit-Treatment Interaction Error. 286
4.5.9 The Distribution of OSL's for $F(\beta=0 \mid \beta \neq 0)$ Experimental Unit Error. 2884.5.10 The Distribution of OSL's for $F(\beta=0 \mid \beta \neq 0)$Experimental Unit-TreatmentInteraction Error289
4.6.1 F-Distribution Plot $\tau=\mathbb{C}$ Entire Range. 295
4.6.2 F-Distribution Plot $\tau=0$
Upper Tail 20 Percent. 296
4.6.3 F-Distribution Plot $\tau \neq \mathbb{O}$ Entire Range. 297
4.6.4 F-Distribution Plot $\tau \neq \mathbb{C}$
Upper Tail 20 Percent. 298
4.6.5 F-Distribution Plot $\beta \neq 0$ Entire Range 299
4.6.6 F-Distribution Plot $\beta \neq 0$
Upper Tail 20 Percent. 300
4.6.7 Equal vs Unequal Within-Block
Error Variances $\tau=\mathbb{C}$
Experimental Unit Error - Entire Range . . . 302
4.6.8 Equal vs Unequal Within-Block
Error Variances $\tau=\mathbb{C}$
Experimental Unit Error - Upper Tail 20\% . . 303
4.6.9 Equal vs Unequal Within-Block
Error Variances $\tau \neq \mathbb{D}$
Experimental Unit Error - Entire Range . . . 304
4.6.10 Equal vs Unequal Within-Block
Error Variances $7 \neq \mathbb{O}$
Experimental Unit Error - Upper Tail 20\% . . 305
4.6.11 Equal vs Unequal Within-Block
Error Variances $\beta \neq 0$
Experimental Unit Error - Entire Range . . . 306
4.6.12 Equal vs Unequal Within-Block
Error Variances $\beta \neq 0$
Experimental Unit Error - Upper Tail 20\% . . 307
4.6.13 Equal vs Unequal Within-Block
Error Variances $\tau=\mathbb{D}$
Experimental Unit-Treatment Interaction Error - Entire Range 308
4.6.14 Equal vs Unequal Within-Block
Error Variances $\tau=\mathbb{C}$
Experimental Unit-Treatment
Interaction Error - Upper Tail 20\% 309

4.6.16 Equal vs Unequal Within-Block

Error Variances $\tau \neq \mathbb{O}$
Experimental Unit-Treatment Interaction Error - Upper Tail 20\% 311
4.6.17 Equal vs Unequal Within-Block
Error Variances F尹o

\quad Experimental Unit Treatment
4.6.18 Equal vs Unequal Within-Block

Error Variances $\beta \neq 0$
Experimental Unit Treatment Interaction Error - Upper Tail 20\% 313
4.6.19 Equal vs Unequal Within-Block

Error Variances $\tau \neq \mathbb{C}$ Normally
Distributed Random Error - Entire Range. . . 314
4.6.20 Equal vs Unequal Within-Block

Error Variances $\tau \neq \mathbb{C}$ Normally Distributed Random Error - Upper Tail 20\% . 315
4.7.1 The Distribution of $\tau_{1}-\hat{\tau}_{1}$ Vs Ratio Two
Experimental Unit Error. 331
4.7.2 The Distribution of $\tau_{1}-\hat{\tau}_{1}$ vs Ratio Two Experimental Unit-Treatment Interaction. . . 332

4.7.4 The Distribution of $\hat{F}-\hat{\hat{F}}$ Vs Ratio Two Experimental Unit-Treatment Interaction. . . 334
4.8.1 Adjusted Noncentrality Parameters Experimental Unit and Normally Distributed Random Errors. 338
4.8.2 Adjusted Noncentrality Parameters

Experimental Unit-Treatment
Errors 339
FigurePage
4.8.3 Cox's Second Ratio vs $.5 \sigma^{2} \lambda_{s, f} \mid \mu, b, \tau$ 340
4.8.4 OSL's vs Noncentrality Parameters for p Experimental Unit Errors 342
4.8.5 OSL's vs Noncentrality Parameters for β Experimental Unit-Treatment Interaction. . . 343
4.8.6 OSL's vs Noncentrality Parameters for β Normally Distributed Random Errors 344
4.8.7 OSL's for β vs OSL's for t Minimum Noncentrality Parameter for F. . . . 350
4.8.8 OSL's for β vs OSL's for τMaximum Noncentrality Parameter for β. . . . 350
4.8.9 Tests of Model and Parameter Hypotheses All Randomizations 352
4.8.10 Tests of Model and Parameter Hypotheses Minimum Noncentrality Parameter for F. . . . 356
4.8.11 Tests of Model and Parameter Hypotheses Maximum Noncentrality Parameter for \bar{F} 357

LIST OF SYMBOLS

Guide:	Subscripts - i, j, k, s Scalers - μ, b, τ, f Vectors - T, F, $\mathbb{W}, \mathbb{Z}, \mathbb{E}, \mathbb{Z}$ Estimators - $\hat{b}, \hat{\tau}, \hat{\bar{p}}$ Matrices - $\mathbb{I}, \mathbb{I}, \mathbb{B}, \mathbb{F}_{\boldsymbol{r}} \mathbb{E}, \mathbb{Z}, \mathbb{R}, \mathrm{M}, \boldsymbol{A}$ Sets - U, Ω, E, B, E, E, G Number of elements in a set - $N(\xi), N(B), N(E)$
symbol	Description (page of first use)
0	a vector or matrix of zeros (16)
11	vector of ones (20)
α	Type I error probability (171)
@s	the randomization s used to conduct the actual experiment (169)
b	number of blocks (20) vector of block effects (19)
b_{i}	effect of block i (22,123)
\hat{b}_{i}	estimate of effect of block $i=$ mean response
(bt) ${ }_{\text {ik }}$	block i x treatment k interaction (123, 126)
F^{+}	all model equation parameters, T and $F(16)$
β_{h}	elements of F^{+}being tested (42)
F_{r}	elements of F^{+}other than F_{h} (42)
F	covariate parameter(s) (19, 22) Type II error probability
$\hat{\mathrm{F}}$	unique estimator of \mathcal{F} (18)
$\hat{\mathbf{F}}^{+}$	a solution to the least squares equations (17)
$\hat{F}_{\mu, b}, \tau$	$\hat{\beta}$ estimate of $\overline{\mathcal{F}}$ as adjusted for $\mu, \mathrm{b}, \& \boldsymbol{\tau}$ (30

Symbol	Description (page of first use)
$\hat{F}_{S} ; \mu, b$	F $\hat{F}_{\mu, b, t, F}$ for randomization s (207)
${ }^{\text {F }}$ R	randomization probability-Type II error (173)
$\mathrm{F}_{\mathrm{R}}(\mathrm{F})$	simulation probability-Type II error (176-177)
8	set of block-wise randomizations (108)
\square^{n}	n-dimensional o-field of Borel sets (16,157)
$\varepsilon_{j l: k}$	set of block-wise randomizations with unit jl having treatment k; inclusion probability (111)
d	denominator degrees of freedom for F-ratio (39)
$\mathrm{e}_{\text {K }}^{\mathrm{j}}$	Dr. Kempthorne's experimental unit error (124)
$e_{i j}^{N 1}$	Dr. Neyman's experimental unit error (127)
$e_{i j}{ }_{j}$	a postulated experimental unit error (125)
e	vector of experimental unit errors (198)
$\mathrm{E}_{\mathrm{N}}(\cdot)$	normal (Gaussian) expectation of (.) (25)
$\mathrm{E}_{\mathrm{R}}(\cdot)$	randomization expectation of (.) (114)
ε	set of experiment-wise randomizations (108)
\mathbb{E}	matrix of experimental unit errors (154)
ε	vector of random errors (16)
$\varepsilon_{i k}$	error for unit i receiving treatment k (22)
$\hat{\underline{E}}$	vector of residuals (17, 18)
\pm	matrix of columns=experimental unit error (154)
\mathbb{E}_{5}	column of E for randomization s (157)
F	F-ratio (39)
F_{S}	F-ratio for randomization s (202)

Symbol	Description (page of first use)
	T) F-ratio to test $F=0$ as adjusted by μ, b, τ (63)
$F(\tau \mid \mu, b$	F) F-ratio to test $\tau=\mathbb{C}$ as adjusted by $\mu, \mathrm{b}, \mathrm{F}$ (64)
g	the label of a g-group (194)
g-group	randomizations having the same value of g (195)
1	any generalized inverse (83)
G	the set of distinguishable groupings of randomizations (106-107)
$H_{o} ; \mu, b,$	$\tau=\mathbb{I}$ a null hypothesis test of $\tau=\mathbb{D}$ when μ, b, and \bar{F} are in the model equation (63-64)
H	matrix of experimental unit-treatment interaction errors (155)
H_{s}	column of H for randomization s (157)
$\mathrm{m}_{\mathrm{i}} \mathrm{K}_{\mathrm{jk}}$	Dr. Kempthorne's experimental unit-treatment interaction error (128)
$\mathrm{ni}_{\mathrm{ijk}} 1$	Dr. Neyman's experimental unit-treatment interaction error (127, 132)
$\mathrm{n}_{\mathrm{i}}^{\mathrm{N}} \mathrm{j}$ ($\mathrm{n}_{\mathrm{i}}^{\mathrm{N} k}$ for a model equation with blocks (127)
nipk	A postulated experimental unit-treatment interaction error (128, 132)
$n_{i j} 1$	form of $\mathrm{rijk}_{\mathrm{j} k}$ (234)
$n_{i} \cdot k$	form of $\mathrm{r}_{\mathrm{ij}} \mathrm{k}$ (235)
n_{s}	vector of experimental unit-treatment interaction errors for randomization s (199)
i	block label subscript (22)
II	identity matrix
0	power set of fil (142, 157)
j	experimental unit label subscript (123)
π	a matrix of ones

Symbol	Description (page of first use)
k	treatment label subscript (22)
L_{s}	left hand side of an inequality (217-219)
\mathbb{H}	a matrix, usually $\mathbb{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{I}^{\prime}}$ (18)
2	noncentrality parameter (39)
$\lambda_{F} \mid \mu, b, \tau, F$, for the adjusted covariates (63)	
${ }^{2} \mathrm{~S}$, Fl	
$\chi_{\text {f, }}$	fixed part of ${ }^{\text {S }}$, fil $, \mathrm{b}, \mathrm{T}, \mathrm{F}$ (213)
${ }^{2} \mathrm{~g}, \mathrm{~F}$	random part of $\lambda_{S, f}, f, b, \tau, F$, constant within each g-group (213)
${ }^{2} \tau \mid \mu, b, \tau, \beta \quad \lambda$ for the adjusted treatments (64)	
$\lambda_{\text {f, }}$ T	fixed part of ${ }_{s}, \tau \mid \mu, b, \tau, F(215)$
$\lambda_{S,}$ T	random part of $\lambda_{s, ~} / 1 \mu, b, \tau, F(215)$
M	any matrix such that $\mathrm{X}_{\mathrm{a}}=\mathrm{X}_{\mathrm{b}} \mathrm{M}(77,78,87)$
m	permutation matrix with elements $(0,1)$ used generate X_{S} for randomization s (185-186)
$M_{s, i}$	diagonal block i of M_{s} (186)
\%	set of all permutation matrices (187)
${ }^{\mu}$	model equation mean for matrix (19), summation (23), identity (123)
$\mu *$	mean in usual summation model equation (22)
n	number of experimental units (16) numerator degrees of freedom for Fratio (39)
n_{S}	vector of normally distributed random errors for randomization s (199)
$N(B)$	number of block-wise randomizations (108, 115)

Symbol	Description (page of first use)
$N\left(e_{j l: k}\right)$	number of sets in $\theta_{j l: k}$ (111)
$\mathrm{N}(\mathrm{E})$	number of experiment-wise randomizations (108)
N(E)	number of groupings of experimental units into t groups of r experimental units each (107, 115)
$\mathrm{N}_{\mathrm{n}}(\cdot, \cdot)$	n-dimensional normal distribution (16)
\mathbb{N}	matrix, normally distributed random errors (155)
N_{s}	column of \mathbb{N} for randomization s (157)
OSL	observed significance value, the p-value (170)
OSL ${ }_{\text {R, @s }}$	randomization OSL for experiment s (170-171)
OSL $\mathrm{R}_{\mathrm{R}}(\mathrm{F})$	randomization OSL for simulation (175)
$O_{\text {OL }}^{\text {R, }}$,	randomization OSL for experiment s (170)
$p(i j l: k)$	probability of unit ijl receiving treatment k - the assignment probability (104)
$p(s)$	probability of selecting randomization sthe selection probability (109)
p	rank of x , the design matrix (16)
F	$\mathrm{E}_{\mathrm{R}}(5)$, the $p(5)$ in column vector form (157)
F.,	the ', 'block of the projector $\mathbf{E}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{x}$ ' (195)
q	rank of \mathbb{Z}, the covariates (18)
R_{s}	coefficient of determination R^{2} for randomization s (223)
$\mathrm{R}(\cdot 1 \cdot, \cdot)$	reduction in sum of squares (Appendix B
$\mathrm{R}_{\mathrm{S}}(\cdot 1 \cdot)$	$\mathrm{R}(\cdot 1 \cdot)$ for randomization s (203)
F	type one elementary matrix (187)
\mathbb{R}^{n}	n-dimensional set of real numbers (16, 142, 157)
$\mathbb{R}_{\mathbf{X}}$	
F_{z}	$\mathbb{F}_{\mathrm{x}} \mathbb{F}^{\text {when }} \mathrm{X}$ has mean, blocks and treatments (26)
	xxiv

Symbol	Description (page of first use)
$\mathrm{F}_{\mathrm{g}}^{3}$	\mathbb{F}_{z} when X has only the mean and blocks (31)
$S_{i j _1}$	stage one response (233)
$\mathrm{SSB}_{Y Y}$	sum of squares for blocks for Y (35)
$\mathrm{SSM}_{Y Z}$	sum of cross products for the mean for YZ (35)
$S S R^{\text {PY }}$	summation sum of squares for residuals (35)
SSR	matrix sum of squares for residual (36)
SSR_{5}	SSR for randomization s (204)
$\operatorname{SST}_{\mathrm{Yy}}$	sum of squares for treatments (35)
sstot	total sum of squares (35)
5	selection vector - one element $=1$, rest $=0$ (156)
s	set over which to compute the OSL, F_{R} or $\mathrm{F}_{\mathrm{R}}(\mathrm{F})$ (170, 173, 175, 176, 177)
σ^{2}	variance (16)
t	number of treatment levels (20)
$t_{@ s, s}$	test statistics for randomization s in the randomization test conducted @s (170)
\%	set of all $N(E) t_{@ s, s}(170,172)$
\%	set of all $N(E)$ test statistics for a simulated randomization test (174)
T	matrix of model parameter values (152)
τ	vector of parameters: blocks, treatments (19)
${ }^{\tau} \mathrm{k}$	effect of treatment k (22), averaged over all units when algebraically defined (123)
τ_{k}^{K}	treatment effect equal for all units (126)
$\hat{\tau}_{\mu, b}$	$\hat{\tau}$ when u, b, τ, and \hat{F} are in the model (30)
$\hat{\tau}_{g}$	covariate g's estimate of τ - model X (27)

Symbol	Description (page of first use)
${ }^{41}$	set of all bpt unit labels (142)
१1	the Cartesian product $\mathrm{I}_{1} \mathrm{x} \ldots \mathrm{x}$ ($\mathrm{I}_{\mathrm{bp}}(142,157)$
$\operatorname{Var}_{R}(\cdot)$	randomization variance (251)
ψ	variance-covariance matrix (16)
$\mathrm{v}_{\mathrm{ijk}}$	$S_{i j _1}-F Z_{i j}$, the response adjusted for the covariate (234)
*	element of 91, one randomization (142-143)
$\mathrm{W}_{\mathrm{ijkl}}$	stage two model response. (235)
14	matrix $\equiv(1 / t)\left\{\text { diag }\left[\Pi_{t x t}\right]\right\}_{\text {bxb }}(46,56)$
x^{-}	any generalized inverse of X (83)
s^{+}	model matrix including covariate(s) (16), the Moore-Penrose inverse of \mathbf{X} (83)
x	design matrix (19); a matrix of all $N(E)$ possible X for all randomizations (153)
x_{μ}	the μ part of E , a vector of ones (19)
x_{b}	the block part of \mathbf{x} (19)
$\mathrm{E}_{\text {T }}$	the treatments part of X (19)
x_{C}	coding version of \mathbf{X} ($80-81$)
E_{e}	effects version of E ($80-81)$
$\bar{x}_{\text {h }}$	elements of x^{+}being tested (42)
E_{r}	elements of X^{+}other than those of X_{h} (42)
X_{S}	X with $\mathrm{X}_{\text {T }}$ arranged as per randomization s (185)
$x\left(x^{\prime}\right)^{-}$	the projector (matrix) of x (75)

Symbol	Description (page of first use)
Y_{ik}	response of unit i with treatment k (22)
$Y_{i j k}$	response when unit ij receives treatment k (123)
Y.	$Y_{i j k}$ averaged over all i, j, k (123)
I	vector of observations (16), the data (144) matrix of all possible observations(152-152,156)
I_{5}	column of the matrix \mathbf{I} for randomization s (157)
$\tilde{\mathbf{T}}$	vector of all possible responses $Y_{i j k}$ (144)
$\mathrm{z}_{\text {i } k}$	covariate value of unit i and treatment k (22)
\mathbb{Z}	matrix of continuous covariates (19)

CHAPTER I

INTRODUCTION

Analysis of covariance combines elements of two classical data analysis techniques, analysis of variance, and linear regression. The general linear model builds from this synthesis. Typically, the errors of such models are assumed to be normally distributed, and detached from the experimental units used to conduct the experiment. Errors attached to the experimental units are possible and arise in experimental units which are biological in origin. With such errors, the assignment of experimental units to treatments becomes important. In extreme cases, the assignment chosen may determine the outcome of the analysis of the experimental results.

Some results are known for models without a covariate whose errors are attached to the experimental units. The randomization test is one example. Another is that in the randomized block design, when the treatments are zero, the mean of the F-ratio, as averaged over all randomizations, equals the first moment of the central F distribution. Some asymptotic and simulation results are in the literature, as are many papers on regression models without a design component.

Results available for models with attached errors combining design and regression components, such as the analysis of covariance, are few and limited to asymptotic results.

This work extends what is known about such models by examining the randomized block design with a single covariate. The work proceeds in three steps.

The first, Chapter Two, reviews the typical linear model, laying out the assumptions, and the estimators and tests in matrix and in summation notations. Some new results are derived on the noncentrality parameters of the hypotheses of interest and on the associated projector matrices. A new proof clarifies the relationship between matrices with equal projector matrices. A brief review of the origins of the linear model concludes Chapter Two.

The second step develops the model using attached errors, the randomization model. Chapter Three derives a method to count the number of randomizations flexible enough to handle such restrictions as balancing on covariates. It replaces the traditional assignment probability and delta summation notation with selection probability and matrix notation. Two classical types of attached error terms are reviewed and related to each other. The randomization model, including its probability space, is developed, then generalized to include normally distributed random error. A flexible matrix

```
representation aids this generalization. A section
expands the definition of the randomization test and
randomization power computation to include unequal
selection probabilities. A second matrix notation based
on permutation matrices is developed. Results are
derived for projector matrices and noncentrality
parameters operated on by such permutation matrices. The
clustering of values of some estimates and of some
analysis of variance terms under the randomization model
is proved. A new result links the noncentrality
parameters of the usual hypotheses of interests for the
Case of a single covariate.
The final step is the simulation studies of Chapter Four. A novel method permits generating the two types of attached errors. Means and standard deviations of estimators and analysis of variance terms are compared, and their histograms are displayed. The \(F\) distribution analog of normal probability paper is developed and used to contrast the two attached errors with the usual normally distributed random error. The effect of unequal within-block error variances is investigated. Examined is a weighted randomization suggested by D. R. Cox, as is restricting randomization to large values of the noncentrality parameter for the adjusted covariate. Graphs and displays illustrate results derived in Chapter Three. Two conclusions are (1) the usual F-distribution is a reasonable approximation to the randomization distribu-
```

tion for experimental unit-treatment interaction error, but not for experimental unit error and (2) restricting randomization to randomizations with the maximum value of the noncentrality parameter for the adjusted covariate improves estimates and hypothesis tests.

The permutation matrix techniques, probability space, and computer programs herein developed allow straight£orward investigation of more complicated models, for example, models with multiple covariates or factor interaction in the design part, models combining types of errors, or models with missing values. Easy extensions are combining types of errors and examining different values for the treatment effects, error variances, and covariate. Appendix E collects and discusses the extensions mentioned in the text. Several computer programs, written in $S A S$, and reproduced in Appendix F, may be modified for further simulation work.

Principle contributions of this work include a compilation of terminology and known results presented in a common notation; bibliographies of relevant topics; development of new matrix-based methods; new results in the clustering of Anova values and estimators, and in the relationship between the noncentrality parameters of the usual hypotheses, and a new proof of a relationship of projector matrices; new methods for numerical simulation and analysis of their results; and the results themselves.

CHAPTER II

THE NORMALLY-DISTRIBUTED RANDOM ERRORS MODEL

Section 2.1

Introduction

Chapter Two presents the normally-distributed random errors model for the analysis of covariance. section 2.2 is an overview of the technique and literature review. Sections 2.3 - 2.6 review the model, the estimators, tables of sums of squares and tests of hypotheses. A numerical example comprises section 2.7. Section 2.8 proves a theorem on projectors and has a brief literature review of generalized inverses. Section 2.9 is a summary of the early concepts of what is today the error term in the model equation; it concludes Chapter 2.

This chapter introduces the notation and develops the "Model $\mathbf{x}^{\prime \prime}$, the projectors and the non-centrality parameters for the hypotheses of interest. Chapter Three builds upon and contrasts the results of this chapter. We begin by introducing some terminology in the context of two examples. The first appearance of a term, or when it is defined, is noted by underscoring the term and, when several pages are referenced, underscoring this page number in the index.

Section 2.2
Overview of the Analysis of Covariance

Two hypothetical experimental situations introduce the use and terminology of the analysis of covariance in a blocked design. Of importance are the two hypotheses of interest. A literature review completes this section.

2.2.1 Two Motivating Examples

Scientific experiments examine the effects of different conditions or variables upon a measurable response of a system or outcome of an experiment. When the conditions or variables are nominal values labeling the types of conditions being examined, then the variables are termed factors. When the variables take values which may be continuous along the real number line, then the variables are termed covariates. The techniques of analysis of covariance permit combining both types of variables in the same theoretical framework.

A typical use of analysis of covariance in a designed experiment is the study of various feed additives as cattle growth promoters. Analysis of covariance considers the final weight of the animal as the response variable, the various additives as discrete levels of one factor and initial animal weight as a continuous covariate. Cattle breeds are a second factor, treated as a blocking variable, with one level per breed. This
designed experiment focuses on the effects of the additives, a factor, upon final animal weight, the response. Within each breed or level of the blocking variable, the animals are assigned to each feed additive at random. The blocking variable and the covariate are not of interest, but are included in the analysis to remove sources of variation that are costly or impossible to remove prior to the experiment. As the assignment of an animal to a feed additive is within the control of the experimentor, this is a designed experiment.

An example of an observational study is an examination of wages and job seniority. Within each of several cities, the wage earners in designated sectors of the economy are sampled at random and found to have various years of seniority and wages. The analysis of covariance considers the wages as the dependent variable, sectors of the economy as levels of one factor and seniority as a continuous covariate. Each city is a level of a second factor, treated as a blocking variable. This study focuses upon the effect of seniority, the covariate, upon wages. The two factors of cities and sector of economy are not of interest, but are included to remove variation in the obtained sample. As the assignment of a wage earner to a sector of the economy is not under the control of the experimentor, this is an observational study, not a designed experiment [Hocking, 1982, p. 560; Cox and McCullagh, 1982, p. 541]. The term
dependent variable, often used in place of response variable, gives the impression that the causal variables are known to be the blocks, factors and covariates under study. Seldom is this the case. For this reason, we use the term response throughout.

A treatment is a "combination of stimuli or operations [factor levels] imposed by the experimenter" [Wilk, 1957, p.220]. An example is that of feed additives. When there is but one factor, each level of the factor is also a treatment. An experimental unit is the largest group of experimental material to which a treatment is assigned in a single trial of the experiment [Snedecor and Cochran, 1967, Ed. 6, p. 15]. In this example, each animal is an experimental unit. Observational studies consider the discovered "treatment" as having been assigned to their randomly selected subjects (experimental units). An example is the sector of the economy "assigned" to each wage earner.

A typical designed experiment assigns a discrete factor level to the experimental unit, but uses as a covariate a continuous variable permanently affixed to the experimental unit. However, the reverse may hold; the continuous variable may be assigned and the discrete factor level may be permanently affixed [Holland, 1986, p. 945]. Throughout we assume that the continuous variables are permanently affixed to the experimental units
and measured without error and that the discrete factor levels are assigned at random to the experimental units. Technically speaking, a blocking variable is a factor; like a factor, it has levels, but for blocking variables, the levels typically are termed "blocks." Random assigning of treatments to experimental units takes place within each block of the blocking variable. Hence, the experimental design is termed a completely randomized block design, or, equivalently, a randomized block design. A second difference between factors and levels of the blocking variable is that the experiment focuses on the factors, not on the blocking variable(s). Blocking variables are intended to isolate sources of variation which could not be eliminated from the experiment or sampled population.

The hypothesis of interest in the first example is that of the treatments (feed additives) adjusted for the mean, blocks and covariate (initial animal weight). The hypothesis of interest in the second example is that of the covariate (seniority) adjusted for the mean, blocks, and treatments (sector of the economy). The term "adjusted for the blocks" replaces the more lengthly "adjusted for the levels of the blocking variable(s)." The more general experimental situation may have multiple blocking variables; multiple factors, each with its own number of levels; interactions among factors; multiple
covariates; interaction among the covariates; covariate coefficients differing among the levels of one or more factors; and (infrequently) interactions among the factors and the covariates. This work examines, in the main, only the most elementary of these cases, that is, one blocking variable, one factor and one or more covariates.

2.2.2 Uses of Analysis of Covariance

Cochran [1957, p. 262-267] further discusses this list of the most important uses of analysis of covariance

1. To increase precision in randomized experiments.
2. To remove the effects of disturbing variables in observational studies.
3. To throw light on the nature of treatment effects.
4. To fit regressions in multiple classification.
5. To analyze data when some observations are missing. A similar list is in Steel and Torrie [1980, p. 401]. The two hypotheses of interest discussed in section 2.2.1 illustrate, respectively, uses three and two. This paper does not discuss uses four or five. Cox and McCullagh [1982, p. 541-542] offer a more technical list, with components of covariance and canonical regression analysis.

2.2.3 Literature Review - Analysis of Covariance

Most published works on the analysis of covariance use the normally-distributed random errors model. This model assumes an infinite population of random errors. Older textbooks and papers use summation notation.

Kempthorne [1952, p. 98-103] shows the derivation of the equations, in summation notation, used to analyze a randomized block design with one factor of interest and one covariate. Cochran [1957] provides a clearly-written derivation of formulas and review. Ostle's numerical examples [1963, Ch. 14, p. 410-465] detail the use of a covariate in several experimental designs, including the randomized block design with one covariate. Snedecor and Cochran [1967, Ch. 14, p. 419-446] detail the numerical calculations for one- and two-way classification designs with one and two covariates. Wildt and Ahtola [1978, p. 58-691 provide numerical examples of several designs, including the randomized block design with one factor of interest and one covariate. Steel and Torrie [1980, Ch. 17, 401-4371 have a good discussion of the uses and assumptions of the analysis of covariance. Numerical examples show the use of one and two covariates in a randomized block design. ott [1988, Ch. 18, p. 676-681] casts the treatment variables as zero-one dummy variables and discusses the computer output from such a regressionbased analysis. DeLury [1948] provides a real-data example of a treatment affecting a covariate measurement.

More modern and advanced publications use matrix notation instead of the older summation notation. The introductory text by Neter, Wasserman and Kutner [1990, Ch. 23, p. 861-906] includes numerical examples with calculations for one- and two-way classifications with one
covariate. They present sufficient matrix algebra for the calculations. The advanced treatment of Searle [1987, Ch. 11, p. 416-456] is one of, if not the, most extensive textbooks on this topic. He compares the summation and matrix notations, centered and noncentered covariates and various hypotheses. Included are the mean model and one- and two-way classifications, both with one and two covariates, but without numerical computations. Other chapters discuss unequal cell counts, the mean model, interpretation of output from several computer packages and other textbooks [p. 242]. Searle's earlier text [1971] provides an extensive theoretical development of the general linear model, including the overparameterized, non-full-rank case. This earlier work discusses the analysis of covariance [p. 240-361] and includes a numerical example of the computations for a one-way classification with one covariate. Seber [1977, Ch. 101 uses both summation and matrix notation for the randomized block design. He discusses the results of Hsu [1938] and Atiqullah [1964] applicable to quadratic forms with vectors not normally distributed. A second work by Seber [1980, p. 61-65] discusses the nested nature of the hypotheses of interest. He uses projector matrices and intersections of linear spaces for much of his theoretical development, as does Scheffe [1959]. Graybill [1976] thoroughly develops the general linear model using matrix notation, but his discussion of the analysis of covariance
is brief [p. 283-297]. C. R. Rao [1973, p. 288-294] has a brief discussion of the analysis of covariance using matrix notation and a numerical example. Morrison [1983, p.122-131] concentrates upon regression, but also discusses the noncentrality parameter. He includes an example of sample size determination. C. R. Rao [1975, p. 475-4871 discusses the case of a variance-covariance matrix which is not positive definite, as does Searle [1971, p. 221-224].

Searle [1982] and Graybill [1983] provide matrix algebra textbooks designed for students of statistics. Either textbook presents a solid foundation for the advanced texts mentioned above.

Beyond such texts there is a vast literature. Two entire issues of Biometrics [Vol. 13, 1957 and Vol. 38, 19831 discuss the analysis of covariance. Cox and McCullagh and discussants [1982] provide a review including a brief history of the technique. They use matrix notation. A comment by Hocking [1982, p. 558-561] adds the use of the hat matrix [Hoaglin and Welsch, 1978] as a diagnostic tool and cautions about the interpretation of computer-provided estimated treatment effects. Herein, the hat matrix is termed the projector of the matrix x. Henderson [1982] details the assumptions of the normallydistributed random-errors model [p. 623-624] and discusses the more realistic case of a mixed model; our model equation parameters are assumed to be fixed.

Bingham and Fienberg [1982] discuss two numerator sums of squares in the F-test for adjusted treatment effects when block x treatment interaction terms are considered nonsignificant. Their hierarchical method places them in the treatment sum of squares. This paper uses the usual method and enters this interaction as the, or as part of the, error term. When there is but one experimental unit per treatment per block, the block x treatment interaction is the error term. When there are multiple experimental units per treatment per block, the block x treatment interaction may be tested for statistical significance. This paper does not consider such tests.

We turn now to the model for the analysis of covariance, using both matrix and summation notation for the model equation.

Section 2.3

The General Linear Model for the Analysis of Covariance

This section presents the model, that is, the model equation, the assumptions and the probability space, for the analysis of covariance.

The first sub-section begins with the general linear model in matrix notation, then restricts it by stages until achieving a model similar to the usual summation notation model for the case of one blocking variable, one factor and one covariate. The second sub-section presents the model equation in summation notation.

The matrix notation is adopted from Searle [1971, p. 340-361] and Cox and McCullagh [1982, p.543]. Henderson [1982, p. 623-624] presents a detailed list of assumptions, most of which are incorporated in Assumptions 1 - 8, presented in Section 2.3.

Of primary importance are the matrix-notation model equation and partitioning of (2.3.4) and (2.3.5), (p.17), the summation-notation model equation of (2.3.8), (p.23), and the discussion ending Section 2.3.2.
2.3.1 The Model in Matrix Notation

Beginning with the general linear model, define
n the number of experimental units,
I the $\mathrm{n} x \mathrm{l}$ vector whose elements are yields or responses,
p^{\prime} the number of columns of $\mathbf{x}^{+}, p^{\prime}<n$,
X^{+}the $\mathrm{n} \times \mathrm{p}^{\prime}$ model matrix whose
elements are explanatory variables,
F^{+}the $\mathrm{p}^{\prime} \mathrm{x} 1$ vector of model equation
parameters and
ع. the $\mathrm{n} \times \mathrm{l}$ vector whose elements are
random errors.
The most general model equation is

$$
\begin{equation*}
\mathbf{I}=\mathbf{X}_{\mathrm{F}}^{+}+\varepsilon . \tag{2.3.1}
\end{equation*}
$$

At this stage the assumptions are Assumptions 1-4*,

1. The model equation is correct, that is, the model matrix \mathbf{x}^{+}contains the correct variables and/or the proper functions of these variables, such as logs or squares,
2. The errors are distributed normally, each with mean 0 ,

3*. The errors have variance-covariance matrix W^{2}; with σ^{2} unknown, and $\psi(n \times n)$, known and positive definite, 4^{*}. The elements of \mathbf{X}^{+}are known constants, measured without error.

Assumptions 3* and 4*, marked with an asterisk, are modified below.

The probability space for the random variable s is
the triple, $\quad\left(\mathbb{R}^{n}, \mathbb{B}^{n}, N_{n}\left(\mathbb{M}, \psi_{\sigma}^{2}\right)\right)$,
with \mathbb{R}^{n} the n-dimensional set of real numbers, \mathbb{B}^{n} the n-dimensional σ-field of Borel séts of real numbers and $N_{n}(.,$.$) the n$-dimensional multivariate normal distribution.

When \mathbf{x}^{+}lacks full column rank the generalized inverse ($\left.\mathbf{z}^{+} \mathbf{x}^{+}\right)^{-}$is not unique; thus, neither is the
 rank, the unique solution is termed an estimator and denoted $\hat{\boldsymbol{\beta}}^{+o}$. The estimator $\hat{\mathrm{F}}^{+0}$, or a solution \hat{F}^{+0}, [Searle, 1971, p. 80 and 169] defines $\hat{\varepsilon}$, the estimator for Ξ, which is the $n \times 1$ vector of residuals

$$
\begin{equation*}
\hat{z}=\mathbf{Y}-\hat{\mathbf{Y}}=\mathbf{Y}-\mathbf{X}^{+} \hat{\boldsymbol{F}}^{+0}=\mathbf{Y}-\mathbf{X}^{+} \hat{F}^{+0} . \tag{2.3.3}
\end{equation*}
$$

The last equality follows from the discussion below (2.8.5), (p. 76). The distribution of the residuals, $\hat{\varepsilon}$, is the singular normal distribution. The usual estimators of ε and Y and a result in generalized inverses [Searle, 1971, p. 20], shows $\hat{\varepsilon}$ to have a form which characterizes the singular normal distribution.

The following form characterizes the singular normal distribution. For clarity, \mathbf{I} temporarily replaces \mathbf{X}^{+}.

$$
\begin{aligned}
& \hat{\boldsymbol{\varepsilon}} \equiv \mathbf{I}-\hat{\mathbf{I}}=\hat{\mathbf{X}} \hat{\boldsymbol{F}}+\boldsymbol{\varepsilon}-\hat{\mathbf{E}} \hat{\boldsymbol{F}} \\
& =\mathbf{X} \beta+\varepsilon-\mathbf{E}\left[\left(\mathbf{I}^{\prime} \mathbf{E}\right)^{-} \mathbf{I}^{\prime} \mathbf{I}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =E F+\varepsilon-E F-\left[E\left(X^{\prime} X\right)^{-} \mathbf{I}^{\prime}\right] \varepsilon \\
& =\left[I I-E\left(X^{\prime} E\right)^{-} \mathbf{I}^{\prime}\right] \varepsilon
\end{aligned}
$$

$$
\begin{aligned}
& =\mathbb{C}+\mathbb{L} \text {, where } \mathbb{L} \equiv\left[\mathbb{I}-\boldsymbol{E}\left(\boldsymbol{E}^{\prime} \mathbf{X}\right)^{-\mathbf{I}^{\prime}}\right] \text {. }
\end{aligned}
$$

When ε has the normal distribution with mean zero and variance $\sigma^{2} I I$, and \mathbb{L} ' lacks full rank, this form characterizes the singular normal distribution, as given by Anderson and cited by Searle [1971, p. 66-72]. Since \mathbb{H}
 H'L. Thus, $\hat{\varepsilon}$ has the singular normal distribution here with mean of zero and variance-covariance matrix of $\mathbb{L L ^ { \prime }} \sigma^{2}$. To partition the model matrix \mathbf{x}^{+}into an $n \times p$ design or incidence matrix $\underset{X}{ }$, with discrete elements and an nxq matrix of covariates \mathbb{Z}, with continuous elements, replace Assumption 4* with

Assumption 4

The columns of the design matrix x are causally and linearly independent of the columns of the matrix of covariates \mathbb{Z}; all elements of both matrices are known constants, measured without error. The matrix \mathbb{Z} has full column rank, q.

See Henderson [1982, p. 623-624] for a discussion of a mixed model when Assumption 4 does not hold.

This partitioning gives

$$
\begin{gather*}
\mathbf{X}^{+}=\left[\begin{array}{lll}
\mathbf{X} & \mid & \mathbb{Z}
\end{array}\right], \vec{F}^{+}=\left[\begin{array}{l}
\tau \\
\hat{F}
\end{array}\right] \text { and the model equation } \\
\mathbf{Y}=\mathbf{X}_{\tau}+\mathbb{Z} \overline{\mathcal{F}}+\boldsymbol{\xi} . \tag{2.3.4}
\end{gather*}
$$

The randomized block design further partitions \mathbf{x} and τ as $\quad \mathbf{z}=\left[\begin{array}{lllll}\mathbf{x}_{\mu} & \mid \mathbf{x}_{\mathrm{b}} & \mid & \mathbf{z}_{\tau}\end{array}\right]$ and $\tau=\left[\begin{array}{c}\mu \\ \mathrm{b} \\ \tau\end{array}\right]$.

Note the reuse of τ as the treatments part of the vector of design or incident coefficients. The context will make clear the meaning of τ. The matrix X_{μ} is the $n \times 1$ column vector of ones, $\mathbb{1}$. The matrices X_{b} and \mathbf{X}_{T} are the design or incident matrices for, respectively, the block and treatment effects; they are assumed to be constructed so as to be orthogonal to each other and to X_{μ}.

This paper considers the treatments as having been relabeled into one new factor with a number of levels equal to the number of treatments. Discussion of the original factors and their interactions is an extension. Much of the following restricts the model to one having full column rank in each of the partitions of \mathbf{x}, X_{b} and X_{T}. As discussed in section 2.8.2, (p. 76), below, many such restrictions are possible. For comparability with the summation notation and ease of interpretation, we select the "usual constraints," which are usual and useful only in limited cases such as this
balanced design [Searle, 1971, p.209-220]. Consideration of unbalanced models, such as the unbalanced mean model, is an extension. Limitation to this effects model gives Assumption 5,

Restrict the model so that $\mathbb{1}^{\prime} \mathrm{D}=\mathbb{1} \tau=0$, and constrain the estimators so that $\mathbb{I}^{\prime} \hat{b}=\mathbb{H}^{\prime} \hat{\tau}=0$. For τ and $\hat{\tau}$ these sums hold within each block. Require an equal number of observations for each treatment within each block.

With b levels of the blocking variable and t treatments, Assumption 5 results in x_{b} being $n x(b-1), x_{\tau}$ being $n x$ ($t-1$) and x having rank $\mathrm{p}=1+(\mathrm{b}-1)+(\mathrm{t}-1)$. The vectors b and τ have dimensions, respectively, (b-1) $x 1$ and $(t-1) \times 1$. Each element of X_{b} and \mathbf{x}_{τ} is one of 0 , 1 , or -1 . The partitions of (2.3.5) are mutually orthogonal; in particular, $\mathbb{E}_{b}^{\prime} \mathbb{X}_{\tau}=\mathbb{0}$. These are the effects versions of \mathbf{X}_{b} and \mathbf{X}_{τ}, as in the left-hand matrix Of (2.8.2), (p. 74).

A further limitation on the models considered is Assumption 6:

The covariate slope coefficient(s) of β have the same value for each treatment.

This assumption details Assumption 1 by excluding the case of a separate slope for each level of the treatment.

The randomized block design adds Assumptions 7 and 8, Assumption 7:

There is no interaction between the blocks and the treatments. Any which appears in the estimation procedures is considered to be residual error.

This assumption provides an error term when there is but one observation per treatment per block. When there are multiple observations, the presence of block x treatment interaction may be tested, but is not in this paper. If the interaction is not statistically significant, it typically is considered as part of the residual error. See Bingham and Fienberg [1982] for an argument to consider it as part of the treatment sum of squares.

Assumption 8:
Randomization occurs independently within each level of the blocking variable.

Thornett [1982, p. 138] posits that the assignment of experimental units to treatments should be independent of the responses. He then proves that a procedure involving equally likely (uniform probability) randomization is virtually essential in obtaining such independence [his Theorem 3, p. 140]. The only role that randomization plays in the normally distributed random errors model is that randomization necessarily follows from this sound experimental practice. Hooper [1989, p. 578-579] suggests an alternative conditional interpretation of the
usual hypotheses using a weaker condition.
The normally distributed random errors model is conditioned on the randomization used to conduct the experiment. However, this model treats the errors as detached from and unaffected by the experimental units and/or the treatments they receive. Thus, the conditional distribution of the errors, given the randomization, reduces to the distribution of the errors alone.
2.3.2 Summation Form of the Model Equation

The experimental design having one blocking variable, one factor, one covariate and one experimental unit per treatment has the model equation, in summation form, of

$$
\begin{aligned}
& Y_{i k}=\mu^{*}+b_{i}+\tau_{k}+F\left(Z_{i k}-\bar{Z} \ldots\right)+\varepsilon_{i k} \\
& \text { with } i=1, \ldots, b \text { levels (or blocks) of } \\
& \text { the blocking variable, } \\
& k=1, \ldots, t \text { levels (or treatments) } \\
& \text { of the single factor, } \\
& \mu^{*}=\text { an overall mean, } \\
& b_{i}=\text { the block effect for block i, } \\
& \tau_{k}=\text { the treatment effect for level } k \text {, } \\
& \text { F = covariate slope coefficient, } \\
& \text { constant for all treatments } \tau_{k} \text {, } \\
& Z_{i k}=\text { covariate of the experimental unit } \\
& \text { in block i assigned to treatment } k \text {, } \\
& \bar{z}_{\ldots}=(1 / b t) \sum_{i}^{b} \sum_{k}^{t} z_{i k}, \quad \text { and } \\
& \varepsilon_{i k}=\text { error for the experimental unit } \\
& \text { of block i and treatment } k \text {. }
\end{aligned}
$$

Assumption 5, in summation notation, is
5. Restrict the model so that

$$
\sum_{i=1}^{b} b_{i}=0 \quad \text { and } \sum_{k=1}^{t} \tau_{k}=0
$$

and constrain the estimators so that

$$
\sum_{i=1}^{b} \hat{b}_{i}=0 \text { and } \sum_{k=1}^{t} \hat{\tau}_{k}=0
$$

and assign the same number of experimental units to each treatment in each block.

Subsequent numerical examples use one experimental unit per treatment per block.

The standard matrix notation does not center the covariate variable about its mean. By redefining the mean of the summation model equation as

$$
\begin{equation*}
\mu=\mu^{*}-\beta \bar{Z} \tag{2.3.7}
\end{equation*}
$$

the model equation of (2.3.6) becomes

$$
\begin{equation*}
Y_{i k}=\mu+b_{i}+\tau_{k}+F Z_{i k}+\varepsilon_{i k} . \tag{2.3.8}
\end{equation*}
$$

It is the μ of (2.3.8), not the μ^{*} of (2.3.6), which corresponds to the μ element of (2.3.5), (p. 19). See Searle [1987, p. 438-441] for further discussion of the differences between the matrix and summation model equations (2.3.5) and (2.3.6).

Let ij denote the j th experimental unit in the i th block. The covariate values $Z_{i j}$ are attached to the ijth experimental unit, but, for one experimental unit per treatment and after the assignment of treatments, the covariate values may be identified by the treatment
applied. Thus, the literature and (2.3.8) use $Z_{i k}$ instead of Z_{ij}. For any number of experimental units per treatment, the covariates are to be combined on the basis of the treatments they receive, thus, the ik subscripting is more convenient. (See Section 2.5, (p. 33), and (2.4.29), (p. 32).)

The summation model considers the $\varepsilon_{i k}$ to be independently distributed with identical variances. For this, Assumption 3^{*} becomes

Assumption 3. The errors have variance covariance matrix $\Pi \sigma^{2}$ with σ^{2} unknown. We adopt this assumption for the matrix model equation. Use of the more general variance-covariance matrix ψ is an extension.

Note that Assumption 8, independent randomization within each level of the blocking variable, is nowhere used in the model equation, in the probability space, or in other assumptions. Also, the label identifying the experimental unit, ij, has everywhere been replaced by ik. The identity of the individual experimental unit has been lost; only its block and treatment membership is retained. These two aspects set off the normally distributed random errors model from the model of Chapter Three.

We next examine the matrix and summation formulas for the estimators of the model equation parameters.

Section 2.4

Estimators

Section 2.4 presents the estimators typically of interest in the analysis of covariance. The first subsection sketches their derivation in matrix notation. The second develops the "model $\mathbf{X "}^{\prime \prime}$. The final sub-section displays the estimators in summation notation.

Of importance are the model X residuals (2.4.10), (p. 28), the product of (2.4.13b), (p. 29), the estimators of (2.4.19-2.4.22 and 2.4.24), (p. 30-31), and their summation versions in (2.4.27-2.4.29), (p. 32).

2.4.1 Sketch of Derivation in Matrix Notation

One task of the experiment is to estimate functions of the elements of the vectors τ and \bar{F} and the statistical precision of these estimates, which requires estimating σ^{2}. Initiated by Legendre [1806], Adrian [1808] and Gauss [1809], the method of least squares provides the minimum variance unbiased estimators for τ and β under the normally distributed random errors model. These estimators follow from the expectation of (2.3.4), (p. 19),

$$
\begin{equation*}
E_{N}(\bar{Y})=\mathbf{E}_{\tau}+\mathbb{Z} \boldsymbol{F}, \tag{2.4.1}
\end{equation*}
$$

by the usual calculus method of minimization. That is, one equates the first derivative of the sum of the squared errors, $\varepsilon^{\prime} \varepsilon, \frac{\partial\left(\xi^{\prime} \xi\right)}{\partial\left[\begin{array}{c}\tau \\ \beta\end{array}\right]}$, to zero and shows the
second derivative (equal to the leftmost bracketed term of (2.4.2)) to be positive definite. Assumptions 4 and 5 ensure that $[\mathbb{X} \mid \mathbb{Z}]$ is of full column rank, $p+q$. Applying Corollary 1.4.2 (3) of Graybill, [1976, p. 22] to $[\mathbb{X} \mid \mathbb{Z}]$ proves the second derivative to be positive definite. When x does not have full column rank, it is only the estimable functions of \mathcal{F}^{+}which have minimum variance for any generalized inverse of x. See Searle, 1971, p. 182. The least squares equations corresponding to (2.4.1) are

$$
\left[\begin{array}{ll}
\Sigma^{\prime} \underline{E} & \bar{x}^{\prime} \mathbb{Z} \tag{2.4.2}\\
\mathbb{Z}^{\prime} X & \mathbb{Z}^{\prime} \mathbb{Z}
\end{array}\right]\left[\begin{array}{l}
\tau^{0} \\
\bar{F}^{0}
\end{array}\right]=\left[\begin{array}{l}
\bar{Z}^{\prime} I \\
\mathbb{Z}^{\prime} I
\end{array}\right]
$$

Multiplying by the inverse and solving directly for τ and by substitution for β gives the solutions of the least squares equation (2.4.2), which in the case of a full rank x matrix, are also estimators. They are

$$
\begin{align*}
& \hat{\hat{F}}^{0}=\left\{\mathbb{Z}^{\prime}\left[I I-X\left(X^{\prime} X\right)^{-} X^{\prime}\right] \mathbb{Z}\right\}^{-1}\left\{\mathbb{Z}^{\prime}\left[I I-X\left(X^{\prime} X\right)^{-} X^{\prime}\right] E\right\} \tag{2.4.3}\\
& =\left\{\mathbb{Z}^{\prime} \mathbb{F}_{\mathrm{x}}^{\mathbb{Z}\}^{-1}\left\{\mathbb{Z}^{\prime} \mathbb{R}_{\mathrm{x}} \mathrm{~F}\right\}}\right. \tag{2.4.4}\\
& =\left\{\left[\mathbb{R}_{\mathrm{x}} \mathbb{Z}\right]^{\prime}\left[\mathbb{R}_{\mathrm{x}} \mathbb{Z}\right]\right\}^{-1}\left[\mathbb{R}_{\mathrm{x}} \mathbb{Z}\right]{ }^{\prime} \mathrm{I} . \tag{2.4.5}\\
& =\left\{\mathbb{R}_{z}{ }^{\prime} \mathbb{R}_{z}\right\}^{-1} \mathbb{R}_{z}^{\prime} \mathbf{I}, \tag{2.4.6}\\
& \text { where } \mathbb{R}_{X}=\mathbb{I}-\boldsymbol{X}\left(X^{\prime} \mathbf{X}\right)^{-1} X^{\prime} \text { and } \mathbb{R}_{Z}=\mathbb{R}_{X} \mathbb{Z} \text {. } \\
& \text { By the symmetry and idempotency of } \mathbb{R}_{X}, \mathbb{Z}^{\prime} \mathbb{R}_{\mathrm{x}} \mathbb{Z}= \\
& \left(\mathbb{R}_{X} \mathbb{Z}\right)^{\prime}\left(\mathbb{R}_{x} \mathbb{Z}\right), \text { with rank }\left(\mathbb{Z}^{\prime} \mathbb{R}_{x} \mathbb{Z}\right)=\operatorname{rank}\left(\mathbb{R}_{X} \mathbb{Z}\right) \text { [Graybill, } \\
& \text { 1976, p. 6, Theorem 1.2.211. Assumption 4, linear }
\end{align*}
$$

independence of \mathbb{E} and \mathbb{Z}, (p. 18), ensures that $\mathbb{N}_{x} \mathbb{Z}$ has full column rank q. Hence the rank of the $g \times q$ matrix $\mathbb{Z} ' \mathbb{R}_{\mathrm{X}} \mathbb{Z}$ is q and its inverse exists. Likewise, the full column rank of \mathbb{Z} ensures the existence of the inverse of $\mathbb{E}^{\prime} \mathbb{Z}$. Thus $\hat{\hat{F}}$. , or for short $\hat{\vec{F}}$, is the unique solution, so denoted by a hat (^). Under Assumption 5, (p. 20), (IX $^{-1}$ exists, making $\hat{\tau}^{o}$ the unique solution.

By (2.4.5), $\hat{\mathrm{F}}^{\circ}$ is also the least squares estimator for f in the model equation

$$
\begin{equation*}
\bar{I}=\left(\mathbb{R}_{X} \mathbb{Z}\right) F+\varepsilon=\mathbb{R}_{Z} \bar{F}+\varepsilon \tag{2.4.8}
\end{equation*}
$$

2.4.2 The "Model I" $^{\prime \prime}$

The "model x " provides an alternative to (2.4.2) and is useful for the covariance model. See Searle [1971, p. 342-343], Cox and McCullagh [1982, p. 543-544] and Zyskind, et al. [1964, p.139-141] for discussions of this model. From each column of $\mathbb{E}, \mathbb{E}_{g}$, one obtains the "residuals" one would obtain under the "model X"

$$
\mathbb{X}_{g}=\mathbf{x}_{\tau}+\varepsilon, \quad g=1,2, \ldots, q
$$

For each of the q covariates, first obtain the least squares estimate of $\mathbb{Z}_{g}, \hat{\mathbb{E}}_{g}$,

$$
\begin{align*}
& \tau_{g}^{o}=\left(X^{\prime} X\right)^{-I^{\prime} \mathbb{E}_{g},} \tag{2.4.9}\\
& \left.\hat{\mathbb{E}}_{g}=\mathbf{X}_{\tau_{g}^{0}}^{0}=\boldsymbol{X}\left[\left(X^{\prime} \bar{X}\right)-\bar{X}\right) \mathbb{Z}_{g}\right],
\end{align*}
$$

and then the "residuals"

$$
\begin{align*}
\mathbb{R}_{z, g} & =\mathbb{Z}_{g}-\hat{\mathbb{Z}}_{g}=\mathbb{Z}_{g}-X_{G} \tau_{g}^{0}=\mathbb{Z}_{g}-\left[\mathbf{X}\left(\mathbf{X}^{\prime} X\right)^{-} \mathbf{X}^{\prime}\right] \mathbb{Z}_{g} \\
& =\left[\mathbb{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}\right] \mathbb{Z}_{g}=\mathbb{R}_{X} \mathbb{Z}_{g} . \tag{2.4.10}
\end{align*}
$$

Making an $n \times q$ matrix from the q vectors $\mathbb{N}_{x} \mathcal{E}_{g}$ gives

$$
\begin{equation*}
\mathbb{R}_{\mathrm{x}}^{\mathbb{Z}}=\left[\mathbb{I}-\mathbb{X}\left(X^{\prime} \mathbf{X}\right)^{-} \mathbf{x}^{\prime}\right] \mathbb{Z}=\mathbb{F}_{z} \tag{2.4.11}
\end{equation*}
$$

Because of Assumption 4, that the covariates of \mathbb{Z} are causally unrelated to the treatment variables of \mathbf{x}, (p. 18), no one would actually compute these "residuals." Furthermore, the τ_{g}, differ with each of the $g=1,2, \ldots, q$ covariates, \mathbb{Z}_{g}. The line above equation (2.4.10) has the shape or form of the definition of residuals, as in equation (2.3.3), (p. 17), when the $\hat{\mathrm{F}}^{+o}$ or $\hat{\mathrm{F}}^{+0}$ of (2.3.3) is written as ($\left.\mathbf{I}^{\prime} \mathbf{X}\right)^{-} X^{\prime} \mathbf{I}$. These residuals, $\mathbb{R}_{z, g}$, are the formal residuals under the "model $\mathbf{x}^{\prime \prime}$.

Next, to (2.4.1) add and subtract $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-\mathbf{X}^{\prime} \mathbb{Z}} \mathbf{F}$, giving

$$
\begin{align*}
& =\mathbf{X} \boldsymbol{T}+\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{x}^{\prime} \underset{\mathbb{Z}}{\boldsymbol{F}}+\left[\mathbb{I}-\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{X}\right] \mathbb{Z}_{\beta} \\
& =\mathbf{X}\left[\tau+\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{X}^{\prime} \mathbb{Z}_{F}\right]+\mathbb{N}_{\mathbf{X}} \mathbb{Z}_{F} \\
& =\boldsymbol{X} \tau^{*}+\mathbb{F}_{x} \mathbb{T} \mathcal{F} \\
& =\left[\begin{array}{lll}
\mathbb{E} & \mid & \mathbb{R}_{\mathrm{X}} \mathbb{Z}
\end{array}\right]\left[\begin{array}{l}
\tau^{*} \\
F
\end{array}\right], \tag{2.4.12}\\
& \text { where } \tau^{*}=\tau+\left(\mathbf{X}^{\prime} \mathbf{I}\right)-\mathbf{X}^{\prime} \mathbb{Z} \mathcal{F} . \tag{2.4.13a}
\end{align*}
$$

The least squares equations for (2.4.12) are derived as were those of (2.4.1), (p. 25), and are

By the Corollary of p. 20 of Searle [1971],

$$
\begin{align*}
& \mathbf{X}^{\prime} \mathbb{R}_{\mathrm{X}}=\left[\mathbf{X}^{\prime}-\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{I}^{\prime} \mathbf{X}\right)-\mathbf{I}^{\prime}\right]=\left[\mathbf{X}^{\prime}-\mathbf{X}^{\prime}\right]=0, \\
& \text { as does } \mathbf{I}^{\prime} \mathbb{R}_{\mathrm{Z}} \text { and their transposes. } \tag{2.4.13b}
\end{align*}
$$

Hence, the least squares equation for (2.4.12) becomes

The solution of (2.4.14) provides another estimate for τ. Typically, the analysis of covariance has multiple estimators (or solutions) for the model equation parameters τ and \bar{F} depending upon what other parameters are in the model equation used to derive the estimator. To distinguish these various estimators, we subscript each estimator with the parameters used in the model equation which provided the estimation. The estimated parameter is always included in this equation, so the parameter being estimated is always repeated as a subscript.

Under Assumption 5, that ($\left.X^{\prime} X\right)^{-1}$ exists, (P .20), the solution is unique and the estimators (in a shorthand notation) are

$$
\begin{align*}
& \hat{\tau}_{\tau}^{*}=\hat{\tau}_{\tau}=\left(E^{\prime} X^{-1} E^{\prime} \bar{I}, \quad\right. \text { and } \tag{2.4.15}\\
& \hat{\beta}_{\tau, \beta}=\left\{\mathbb{Z}^{\prime} \mathbb{R}_{X} \mathbb{Z}\right\}^{-1}\left\{\mathbb{Z}^{\prime} \mathbb{R}_{X} \bar{F}\right\} \tag{2.4.16}\\
& =\left\{\mathbb{R}_{\mathrm{z}}{ }^{\prime} \mathbb{R}_{\mathrm{z}}\right\}^{-1} \mathbb{R}_{\mathrm{z}}{ }^{\prime} \mathrm{I} \tag{2.4.17}\\
& =\hat{\boldsymbol{F}}^{0}{ }_{\tau, \hat{F}} \text {, by (2.4.6). }
\end{align*}
$$

Substituting into (2.4.3) gives

$$
\begin{align*}
& \hat{\tau}_{\tau, \beta}^{o}=\hat{\tau}_{\tau}^{*}-\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbb{Z}_{\hat{F}}^{\top}, \mathcal{F}, \quad \text { or in brief, } \\
& \hat{\tau}_{\tau, \beta}=\hat{\tau}_{\tau}-\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\mathbb{Z}}_{\tau, \beta} . \tag{2.4.18}
\end{align*}
$$

The estimate for τ ignoring the covariates is, in the more brief notation, $\hat{\tau}_{\tau}$, while $\hat{\tau}_{\tau}$, β adjusts for the covariates.

For the randomized block design using Assumption 5, (p. 20), and the partitioning of (2.3.5), (p. 19), the brief notation for the above estimators is

$$
\begin{align*}
& \hat{\tau}_{\mu, b, \tau}=\left(E^{\prime} I\right)^{-1} I^{\prime} I \tag{2.4.19}\\
& \hat{F}_{\mu, b, \tau, F}=\left\{\mathbb{Z}^{\prime} \mathbb{R}_{x} \mathbb{Z}\right\}^{-1} \quad\left\{\mathbb{Z}^{\prime} \mathbb{R}_{x} \bar{Y}\right\} \tag{2.4.20}\\
& =\left\{\mathbb{R}_{z}{ }^{\prime} \mathbb{R}_{z}\right\}^{-1} \mathbb{R}_{z}{ }^{\prime} \mathbf{I} \tag{2.4.21}\\
& \hat{\tau}_{\mu, F, \tau, F}=\hat{\tau}_{\mu, b, \tau}-\left(X^{\prime} X\right)^{-1} X^{\prime} \hat{\Psi}_{\mu} \hat{F}_{\mu, b}, \tau, F \tag{2.4.22}
\end{align*}
$$

The first, (2.4.19), estimates the treatment effects after adjusting for the mean and the blocking variable(s) only. The last, (2.4.22), estimates the treatment effects after adjusting for the mean, the blocking variable(s) and covariate(s).

A reduced model omitting the treatment parameters, the elements of τ, estimates \mathcal{F} adjusted for the mean and blocks but not the treatment effects. This model equation is

$$
\mathbf{I}=\left[\begin{array}{lll}
X_{\mu} & \mid & X_{b}
\end{array}\right]\left[\begin{array}{l}
\mu \tag{2.4.23}\\
b
\end{array}\right]+\mathbb{Z} \beta+\varepsilon
$$

As with (2.4.1), (p. 25), one may apply the "model $\mathrm{X}^{\prime \prime}$ to this model equation and compute a residual matrix corresponding to \mathbb{R}_{z}, denoted $\mathbb{R}_{g_{g}}$ which adjusts only for the mean and the blocks, not the treatments. The least squares estimator, $\hat{\boldsymbol{F}}_{\mu, b, F}$, is found as above and is

From (2.4.9), (p. 27), we see that $\left(X^{\prime} X\right)^{-} X^{\prime} \mathbb{Z}_{g}$ is the matrix with columns of τ_{g}^{0}, one per \mathbb{Z}_{g}, from the "model X". The $n \times q$ matrix \mathbb{R}_{z} is the residual from the multivariate model

$$
\begin{equation*}
\mathbb{z}=\mathbf{x} \Upsilon+E \tag{2.4.25}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\tau= & {[\tau, \tau, \ldots, \tau], } \\
& (\tau \text { repeated } q \text { times }) ; p \times q, \text { and } \\
E= & \text { the multivariate equivalent of } \varepsilon .
\end{aligned}
$$

Each column of \uparrow is estimated separately using one column of $\mathbb{2}$, then recombined to form $\hat{\mathrm{T}}$, giving

$$
\begin{equation*}
\mathbb{F}_{\mathrm{z}}=\mathbb{z}-\hat{X r} \tag{2.4.26}
\end{equation*}
$$

2.4.3 Estimators in Summation Notation

The following equations compare the summation and matrix notations for the estimators of interest, equations (2.4.21), (p. 30), through (2.4.22), (p. 31). See Kempthorne [1952, p. 97-103] or Cochran [1957] for the derivation of these terms using summation notation.

The estimate of β adjusted for the estimated mean, blocks and treatment effects is

$$
\begin{equation*}
\hat{\beta}_{\mu, b, T, F}=\operatorname{SSR}_{Y Z} / \operatorname{SSR}_{z Z} . \tag{2.4.27}
\end{equation*}
$$

Section 2.5 defines the righthand side of (2.4.27).
Under Assumption 6, (constant \mathcal{F} for all treatments), $\hat{\boldsymbol{F}}$ is the pooled within-class regression estimate.

The estimate of τ_{k} without adjustment for the covariate is

$$
\begin{equation*}
\hat{\tau}_{k ; \mu, b, \tau}=b^{-1} \sum_{i=1}^{b} Y_{i k}-(b t)^{-1} \sum_{i=1}^{b} \sum_{k=1}^{t} Y_{i k} \tag{2.4.28}
\end{equation*}
$$

The estimate of τ_{k} adjusted for the estimated covariate is

$$
\begin{equation*}
\hat{\tau}_{k ; \mu, b, \tau, \bar{F}}=\hat{\tau}_{k ; \mu, b, \tau}-\hat{\beta}_{\mu, b, \tau, F}\left(\bar{Z}_{\cdot k}-\bar{z}_{\ldots}\right), \tag{2.4.29}
\end{equation*}
$$

$$
\text { where } \bar{z}_{\cdot k}=\left(1 / b \sum_{i=1}^{b} z_{i k}\right.
$$

The $\operatorname{SSR}_{Y Z}$ term of (2.4.27) corresponds to the matrix term $\mathbb{Z} \mathbb{R}_{z} \bar{F}$, and the $S S R_{z Z}$ term corresponds to the matrix term $\mathbb{Z}^{\prime} \mathbb{R}_{z} \mathbb{Z}^{\prime}$, both of (2.4.20). Equation (2.4.28)
corresponds to the matrix notation of (2.4.19), (p. 30), substituting summation notation for the elements of $\mathbf{x}^{\prime} \mathbf{x}$. The diagonal elements of $\mathbf{I}^{\prime} \mathbf{I}$, once inverted, provide the divisors of (2.4.28). The product \mathbf{x}^{\prime} (provides the summations. Likewise, the product of $\mathbf{z}^{\prime \mathbb{Z}}$ of (2.4.22) provides the summations for \bar{z}_{k}, and \bar{z}.. of (2.4.29), while the $\left(X^{\prime}\right)^{-1}$ provides the divisors. Next we examine the sums of squares tables.

Section 2.5

Sums of Squares Tables

Section 2.5.3 presents analysis of variance tables, one in matrix notation, the other in summation notation. The first sub-sections discuss the notation used in the tables.

The analysis of covariance typically presents two analysis of variance tables, one for the treatments adjusted for the covariates, and one for the covariates adjusted for the treatments. Table 2.5.1 combines these two tables and shows in matrix notation the formulas used to compute the sums of squares column. Table 2.5.2 does the same for the summation notation. Both tables use the R(.1.) notation discussed in Appendix B, (p.384). Table 2.5.1 follows Searle [1971, Tables 8.3a and 8.3b, p. 344-345]. Table 2.5.2 follows Searle [1971, Tables 8.4a and 8.4b, p. 351-352]; both tables use Ostle [1954, p. 394]. The two tables provide identical numerical values for the example of Section 2.7 and the simulations of Chapter 4.

2.5.1 Matrix Notation

The sum of squares due to treatments, plus the sum of squares due to covariates adjusted for the treatments (both adjusted for the mean and the blocks) is $R(t \mid \mu, b)+$ $R(f \mid \mu, b, t)$. This sum equals the sum of squares due to covariates, plus the sum of squares due to treatments
adjusted for the covariates (both adjusted for the mean and blocks), $R(\beta \mid \mu, b)+R(t \mid \mu, b, \beta)$, so the two pairs have the same sum. Typically, one finds the numerical value of the term $R(t \mid \mu, b, \beta)$ by the subtraction
$R(t \mid \mu, b, F)=[R(t \mid \mu, b)+R(\beta \mid \mu, b, t)]-R(\beta \mid \mu, b)$.
The matrix notation, Table 2.5.1, shows two methods of deriving the sums of squares for the adjusted covariate terms. One uses the projector $\mathbb{R}_{z}\left(\mathbb{R}_{\mathrm{z}}{ }^{\prime} \mathbb{R}_{\mathrm{z}}\right)^{-} \mathbb{R}_{\mathrm{z}}{ }^{\prime}$; the other uses the $R(\cdot 1 \cdot)$ notation. Similarly, two methods are shown for the unadjusted covariate term. Examination of the model X derivation of $\mathbb{R}_{Z},(p, 28)$, (and $\mathbb{R}_{\mathfrak{B}}$, (p. 31)), appears to show that the effects of the discrete variables are removed before computing the quadratic form. The second method, using $R(\cdot, \cdot, \cdots)$, computes two quadratic forms and then uses the second quadratic form to subtract the effect of the discrete variables from the first quadratic form.

2.5.2 Summation Notation

The sums of squares and cross products in summation notation are

$$
\text { total SSTot } \ldots=\sum_{i=1}^{b} \sum_{k=1}^{t}[\cdot i k][\cdot i k]
$$

mean

$$
\operatorname{SSM} \ldots=\frac{1}{b t}\left[\sum_{i=1}^{b} \sum_{k=1}^{t}[\cdot i k]\right]\left[\sum_{i=1}^{\sum_{i}} \sum_{k=1}^{t}[\cdot i k]\right]
$$

blocks

$$
\operatorname{SSB} . . \quad=\frac{1}{t} \sum_{i=1}^{b}\left[\sum_{k=1}^{t}[\cdot i k]\right]\left[\sum_{k=1}^{t}[\cdot i k]\right],
$$

$\begin{array}{r}\text { treatments } \\ \text { SST } . .\end{array}=\frac{1}{b} \sum_{k=1}^{t}\left[\sum_{i=1}^{b}[\cdot i k]\right]\left[\sum_{i=1}^{b}[\cdot i k]\right] \quad$ and
residual

$$
\begin{aligned}
\operatorname{SSR} \ldots & =(\operatorname{SSTot} \ldots-\operatorname{SSM} \ldots)-(S S B \ldots-\operatorname{SSM} \ldots) \\
& =-(S S T \ldots-\operatorname{SSM} \ldots) \\
& \operatorname{SSTOt} \ldots-\operatorname{SSB} \ldots-\operatorname{SST} \ldots+\operatorname{SSM} \ldots,
\end{aligned}
$$

where each dot (') is replaced by the appropriate subscript, y or z, as shown in Table 2.5.2. Here, the dot (•) indicates replacement by y or z, not averaging over a subscript.

Note that $S_{Y S}$ of the summation notation does not equal the $S S R$ of the matrix notation. The later is

$$
\begin{aligned}
& S S R=\text { total }-R(\mu)-R(b \mid \mu) \\
& \text { - one of }\{[R(t \mid \mu, b)+R(f \mid \mu, b, t)] \text { or } \\
& [R(t \mid \mu, b, F)+R(F \mid \mu, b)]\} \\
& =I^{\prime} I-R(\mu, b, \tau, \beta)
\end{aligned}
$$

$$
\begin{align*}
& =F^{\prime}\left\{\mathbb{I}-\mathbb{R}_{Z}\left(\mathbb{R}_{Z} \mathbb{R}_{Z}\right)^{-} \mathbb{R}_{Z}-X\left(X^{\prime} X\right)^{-} X^{\prime}\right\} Y \text {. } \tag{2.5.2}
\end{align*}
$$

The two terms within braces, \{\}, are equal. A similar subtraction provides the degrees of freedom for the residual sum of squares.

The term $R(p \mid \mu, b)$ is more easily understood as

$$
\begin{equation*}
R(\beta \mid \mu, b)=\frac{\left[\left(\operatorname{SSTot}_{y z}-\operatorname{SSM}_{y z}\right)-\left(\operatorname{SSB}_{y z}-\operatorname{SSM}_{y z}\right)\right]^{2}}{\left[\left(\operatorname{SSTOt}_{z z}-\operatorname{SSM}_{z Z}\right)-\left(\operatorname{SSB}_{z z}-\operatorname{SSM}_{z Z}\right)\right]} \tag{2.5.3}
\end{equation*}
$$

The numerator is a $S S R_{y z}$ term and the denominator is a $S_{S R} z_{\text {t }}$ term for a model equation without the treatment effects. The form is the same as the sum of squares term for the covariate after the mean, blocks and treatments, $R(f \mid \mu, b, \tau)$. Both summation forms correspond to the respective matrix forms using \mathbb{R}_{z} and \mathbb{R}_{3}.

In Table 2.5.1, the total uncorrected sum of squares is written in a form which emphasizes that it too is a quadratic form.

In the section following the tables, we examine, in some detail, the formulas used in hypothesis testing.

2.5.3 Tables of Sums of Squares

TABLE 2.5.1
COMBINED ANALYSIS OF VARIANCE TABLE -- MATRIX NOTATION

Source of Variation	d.f.	Sum of Squares	
Total corrected for the mean (μ)		$\begin{aligned} & \mathbf{I}^{\prime}\left\{\text { II }(\text { II' II })^{-1} \text { II' }^{\prime}\right\} \mathbf{I} \\ & -\mathbf{I}^{\prime}\left\{\mathbf{X}_{\mu}\left(\mathbf{X}_{\mu} \mathbf{X}_{\mu}\right)^{-1} \mathbf{X}_{\mu}{ }^{\prime}\right\} \mathbf{Y} \\ & =\text { total }-R(\mu) \end{aligned}$	
Blocks after the mean (b\|ر)	$b-1$	$\begin{aligned} & R(\mu, b)-R(\mu) \\ & \quad=R(b \mid \mu) \end{aligned}$	
```Treatments and interactions after the mean and blocks (t\|\mu,b)```		$\begin{aligned} & R(\mu, b, t)-R(\mu, b) \\ & =R(t \mid \mu, b) \end{aligned}$	
```Covariates after the mean, blocks, treatments and interactions ( F\|	,b,t)```		$\begin{aligned} & Y^{\prime}\left\{\mathbb{F}_{Z}\left(\mathbb{R}_{z}^{\prime} \mathbb{R}_{z}\right)^{-1} \mathbb{R}_{z}^{\prime}\right\} \mathbf{I} \\ & \text { or } R(\mu, b, t, F) \\ & =-R(\mu, b, t) \\ & =R(F \mid \mu, b, t) \end{aligned}$


Covariates after the mean and blocks (f\|ر,b)		
```Treatments and inter- actions after the mean, blocks and covariates (t\|\mu,b,F)```	$t-1$	$\begin{aligned} & R(\mu, b, t, \beta) \\ & -R(\mu, b, \beta) \\ = & R(t \mid \mu, b, F) \end{aligned}$
Residual	-q	SSR   (by subtraction)

TABLE 2.5 .2

COMBINED ANALYSIS OF VARIANCE TABLE - SUMMATION NOTATION

Source of Variation	d. . $^{\text {. }}$	Sum of Squares
Total corrected for the mean ( $\mu$ )	$\mathrm{n}-1$	$\begin{aligned} & \text { SSTot }_{Y Y}-\text { SSM }_{Y Y} \\ & =\text { total }^{2}-R(\mu) \end{aligned}$
Blocks after the the mean (b\|」)		$\begin{aligned} & S S_{Y Y}-S S M_{Y Y} \\ & =R(b \mid \mu) \end{aligned}$
Treatments after the mean and blocks ( $\tau \mid \mu, b$ )	$t-1$	$\begin{aligned} & S S T_{Y Y}-\operatorname{SSM}_{Y Y} \\ & =R(\tau \mid \mu) \end{aligned}$
Covariate after the mean, blocks and treatments ( $F \mid \boldsymbol{\mu}, \mathrm{b}, \mathrm{T}$ )	1	$\begin{gathered} {\left[\operatorname{SSR}_{\mathrm{Yz}}\right]^{2}\left[\operatorname{SSR}_{\mathrm{Zz}}\right]^{-1}} \\ =\mathrm{R}(\mathrm{~F} \mid \mu, \mathrm{b}, \tau) \end{gathered}$
Covariate after the mean and blocks (f\|r,b)		$\begin{aligned} & {\left[\text { SSTot }_{y z}-\text { SSB }_{y z}\right]^{2} /} \\ & {\left[\text { SSTot }_{z z}-\text { SSB }_{z z}\right]} \\ & \quad=R(\hat{F} \mid \mu, b) \end{aligned}$
Treatments after the mean, blocks and covariate ( $\tau \mid \mu, \mathrm{b}, \mathrm{F})$	$t-1$	$\begin{aligned} & \operatorname{SST}_{Y Y}-\operatorname{SSM}_{Y Y} \\ & +R(F \mid \mu, b, \tau) \\ & -R(F \mid \mu, b) \\ & =R(\tau \mid \mu, b, F) \end{aligned}$
Residual	$n-b-t$	$\begin{gathered} S S R_{Y Y}-R(F \mid \mu, b, \tau) \\ =\text { SSR of the } \\ \text { matrix notation } \end{gathered}$

## Section 2.6

The F-Ratio and Tests of Hypotheses

Section 2.6 develops the $F$-ratio and the noncentrality parameter for the hypotheses of interest in the analysis of covariance. Projectors for three partitionings of $[\mathbb{Z} \mid \mathbb{Z}]$ are derived. They allow disentangling the matrix under the control of the experimenter, the design matrix, from the other matrices in some fratios and noncentrality parameters.

Important results are Theorems 2.6.15, (p. 55), and 2.6.19-2.6.22, (p. 59-69). Section 3.7 will further develop Theorems 2.6.19-2.6.22.

### 2.6.1 The Test of the Full Model

For the model with model equation (2.3.1), (p. 16), the test statistic for testing the null hypothesis

$$
\begin{equation*}
\mathrm{H}_{\mathrm{Q}}: \mathrm{\beta}^{+}=\mathbb{0} \tag{2.6.1}
\end{equation*}
$$

is the F-ratio
with the non-centrality parameter
$\lambda=$

$$
\begin{align*}
& \left.(1 / 2)\left(\mathbf{x}^{+}{ }^{+}\right) \cdot\left[\mathbf{x}^{+}\left(\mathbf{x}^{+} \cdot \mathbf{x}^{+}\right)^{-} \mathbf{x}^{+}\right]\right]\left(\mathbf{x}^{+} \bar{F}^{+}\right) /\left[\sigma^{2}\right],  \tag{2.6.3}\\
& =(1 / 2) \quad \mathcal{F}^{+} \cdot\left[\mathbf{x}^{+} \cdot \mathbf{x}^{+}\right] \bar{F}^{+} /\left[\sigma^{2}\right], \tag{2.6.4}
\end{align*}
$$

and $n=r a n k\left(\mathbf{X}^{+}\right), d=\operatorname{rank}\left(\mathbb{I}-\mathbf{E}^{+}\left(\mathbf{X}^{+} \cdot \mathbf{X}^{+}\right)^{-} \mathbf{z}^{+}\right)$.
Recall that $\mathbf{x}^{+}=\left[\mathbf{z}_{\mu}\left|\mathbf{z}_{\mathrm{b}}\right| \mathbf{E}_{\mathrm{T}} \mid \mathbb{Z}\right]$, as in (2.3.4), (p. 19).

Equation (2.6.4) follows from (2.6.3) by the definition of the generalized inverse (R1.1 of Section 2.8.7, p. 83). See Searle [1971, p. 54-64] for a development of the distribution of $F$ from the assumptions of the model. When $\mathbb{F}^{+}=\mathbb{C}$, the parameters of the $F$-distribution ( $\mathrm{n}, \mathrm{d}, \mathrm{d}=0$ ), are known, and thus the F -ratio is a statistic. When $\mathcal{F}^{+} \neq \mathbb{D}$, known or not, 2 is not known, as by Assumption 3* and 3, (p. 16 and 24), $\sigma^{2}$ is unknown. In this case, the $F$-ratio is not a statistic, since one of its parameters, the $\sigma^{2}$ of its noncentrality parameter, is unknown. However, one may assume value(s) for the ratio $\beta^{+} / \sigma$, or assume a range of values for $\sigma^{2}$ for given value(s) of $\mathrm{f}^{+}$. Morrison [1983, p. 127-131] does the former in determining the sample size needed to achieve a given power. Alternatively, one may compare ratios of $\lambda$ as computed from different model matrices, $\mathbf{x}^{+}$, and/or different $\mathrm{F}^{+}$vectors. Comparing ratios of two $\mathrm{F}^{\prime} \mathrm{s}$, such as $\left(\beta_{1}^{+} / \sigma^{2}\right) /\left(\beta_{2}^{+} / \sigma^{2}\right)$, or of two $\lambda^{\prime} s$, cancels the unknown $\sigma^{2 \prime}$. Further investigation of handiing an unknown $\sigma^{2}$ is an extension.

When the null hypothesis (2.6.1) is true, $\beta^{+}=\mathbb{0}$, and by (2.6.4), $\lambda=0$. Under Assumptions 4 and $5, X^{+}$has full column rank, thus $\mathbf{X}^{+} \mathbf{X}^{+}$is positive definite [Searle, 1971, p. 36, Lemma 5]. By the definition of positive definitiveness, $\lambda>0$ except for $\beta^{+}=\mathbb{0}$. Thus, the converse
holds: when $\lambda=0, \overline{\mathcal{F}}^{+}$must equal $\mathbb{O}$. This gives the equivalence of

$$
\begin{align*}
& H_{0}: \beta^{+}=0 \quad \text { and } \\
& H_{0}: \lambda=0 . \tag{2.6.5}
\end{align*}
$$

The first is "a set of linear statements" about the parameters $\mathbf{F}^{+}$. The second is a statement about a quadratic form of the parameters. See Searle [1987, p. 233-2361 for this and additional forms of the hypotheses. The general linear hypothesis, $H_{a}: \mathbb{K}_{\beta}^{+}=m$ is an extension. The power of the test is one minus the probability of failing to detect a false null hypothesis, that is, (l-the probability of a Type II error)=1-FII. For any given alternative $F^{+} \neq \mathbb{C}($ equivalently $2 \neq 0)$, the power of the test increases with increasing 2 . By (2.6.4) and the shape of the density function of $F$, increasing the power requires
a. manipulating $\mathbf{x}^{+}$to maximize those $\lambda$ corresponding to alternative, nonzero $\mathrm{F}^{+} \mathrm{s}$, or
b. increasing d, or
c. decreasing $n$,
(2.6.6a-c)
while keeping the other two parameters constant [Seber, 1980, p.351. Sections 3.7.5, (p. 216) and 4.8, (p. 335), examine option (a).

### 2.6.2 Testing Model Equation Parameters Adjusted

## for Other Model Equation Parameters

The tests of hypotheses of interest in the analysis of covariance are that some elements of $\mathrm{F}^{+}$, those of the hypothesis, are zero after adjusting for the remaining elements. Partition the model equation parameters into those of the hypotheses (h) and all of those remaining (r). The parameter vector and model matrix are partitioned conformably, as in

$$
\begin{align*}
& \stackrel{F}{+}^{+}=\left[\begin{array}{c}
\bar{F}_{h} \\
\frac{F_{Y}}{Y}
\end{array}\right] \text { and } \\
& \mathbf{x}^{+}=\left[\begin{array}{llll}
X_{h} & \mid & X_{r}
\end{array}\right] . \tag{2.6.7}
\end{align*}
$$

The columns of $\mathbf{X}^{+}$and rows of $\mathrm{F}^{+}$are reordered to permit this partitioning. Denote the parameters of the model equation providing the full model by subscripts on $H_{o}$, and denote the parameters of the model being tested by a subscript on $F$, as shown below,

$$
\mathrm{H}_{0 ; h, r} \mathrm{~F}_{\mathrm{h}}=\mathbb{0} .
$$

The partitioning yielding (2.3.4), (p. 19), is a special case of (2.6.7). The R-notation for the sums of squares associated with this hypothesis is $R(h \mid r)=R(h, r)-R(r)$.

The denominator of (2.6.2) remains unchanged, while the $R$-notation gives as the numerator $R(h \mid r)=R(h, r)-R(r)=$

$$
\begin{align*}
& /\left\{\sigma^{2}\left[\operatorname{rank}\left(\mathrm{X}^{+}\right)-\operatorname{rank}\left(\mathrm{E}_{\mathrm{r}}\right)\right]\right\} . \tag{2.6.8}
\end{align*}
$$

As always, the non-centrality parameter has the same center matrix, as in the brackets [] in (2.6.8), as the numerator of the associated $F$ ratio, and replaces $F$ with $\mathbf{Z}^{+}{ }^{+}{ }^{+}$, where the value of $\bar{\beta}^{+}$is that of the alternative hypothesis. The non-centrality parameter is

$$
\begin{align*}
& 2=\left[1 /\left(2 \sigma^{2}\right)\right] x \tag{2.6.9}
\end{align*}
$$

$$
\begin{aligned}
& =\left[1 /\left(2 \sigma^{2}\right)\right] x
\end{aligned}
$$

$$
\begin{align*}
& =\left[1 /\left(2 \sigma^{2}\right)\right] x  \tag{2.6.10}\\
& F_{h}{ }^{\prime} X_{h},\left\{I I-\left[X_{Y}\left(X_{Y}{ }^{\prime} X_{Y}\right)-X_{Y}{ }^{\prime}\right]\right\} E_{h} F_{h} . \tag{2.6.11}
\end{align*}
$$

Equation (2.6.10) follows from (2.6.9) by Theorem 2.6.3, below, (p. 47). The first term within the braces $\{\cdot\}$ of (2.6.10) is positive definite if $X_{h}$ has full column rank and is positive semidefinite if $\mathbf{X}_{\mathrm{h}}$ has less than full column rank. The second term is positive definite if (a) $X_{h}$ has full column rank, (b) this rank is less than or equal to the rank of $\mathrm{g}_{\mathrm{r}}$, and (c) the columns of the two matrices are linearly independent. Otherwise, the second term is positive semidefinite, or, as in (2.6.12), zero.
[Searle, 1971, p.36, Lemma 5 and p. 37, Lemma 7.] As the second term follows a negative sign, its contribution to the non-centrality parameter is to lower (the second term is greater than zero) or to leave unchanged (the second term equals zero) the value of 2 and thus to lower or to leave unchanged the power of the hypothesis test, as discussed in (2.6.6a), (p. 41).

As Weisberg [1980, p. 89] points out, when $X_{h}$ and $X_{r}$ are orthogonal, (2.6.10) reduces to

$$
\begin{equation*}
2=(1 / 2) F_{h}^{\prime}\left[E_{h}^{\prime} E_{h}\right] F_{h} / \sigma^{2} \tag{2.6.12}
\end{equation*}
$$

In general, 2 depends upon $F_{h}, \sigma^{2}, E_{h}{ }^{\prime} E_{h}, X_{Y}\left(X_{Y}{ }^{\prime} X_{Y}\right)^{-} X_{Y}$, and the product $X_{h}^{\prime} X_{r}$. Designs with an equal number of experimental units receiving each treatment and without a covariate may select design matrices $\mathbf{X}_{\mathrm{h}}$ and $\mathbf{X}_{\mathrm{r}}$ such that $\boldsymbol{x}_{\mathrm{h}}{ }^{\prime} \mathrm{x}_{\mathrm{r}}=\mathbb{0}$. In general, a covariate forces $\mathrm{E}_{\mathrm{h}}{ }^{\prime} \mathrm{x}_{\mathrm{r}} \neq \mathbb{0}$. When this product is altered by the randomization used to conduct the experiment, then the power of the test is conditioned on the randomization used. Section 3.7.5 (p. 216), further discusses this. On the other hand, the observed significance level is derived from the null hypothesis, which usually assumes $\mathcal{F}_{\mathrm{h}}=\mathbb{0}$. In this case, altering the randomization has no effect on the noncentrality parameter, as by assumption the non-centrality parameter is zero.

See Searle [1971, p. 343-344] for the non-centrality parameter (2.6.10) in $\mathbb{R}_{2}$ notation. Morrison [1983, p.122124] develops a special case of (2.6.9). In his Equation 8 [p. 123], jo twice erroneously appears as $\propto j$. Pope and Webster [1972, p. 330-331] state without proof the form of $\lambda$ for stepwise regression with a missing parameter.

### 2.6.3 Products of Partitioned Matrices

This section expresses the estimate of $\mathrm{F}_{\mathrm{r}}$ (2.4.21), (p. 30), the F-ratio (2.6.2), (p. 39), and the noncentrality parameter (2.6.10), (p. 43), in an alternative form. The reexpressions are based upon the main results of this section, Theorems 2.6.16, (p. 56), and 2.6.17, (p. 57). Theorem 2.6.3 is referred to after Equation (2.6.11), (p. 43), above.

## Theorem 2.6.1.

 $\left(X^{\prime} X\right)^{-}=$


$$
\begin{align*}
\mathbb{A} & =\left(\mathbb{B}^{\prime} \mathbb{B}\right)-\left(\mathbb{E}^{\prime} \mathbb{A}\right)\left(\mathbb{A}^{\prime} \mathbb{A}\right)^{-}\left(\mathbb{A}^{\prime} \mathbb{B}\right) \\
& =\mathbb{B}^{\prime} \mathbb{B}-\mathbb{B}^{\prime} \mathbb{W}=\mathbb{B}=\mathbb{B}^{\prime}[\mathbb{H}-\mathbb{W}] \mathbb{B} . \tag{2.6.13}
\end{align*}
$$

Note that $\mathbb{Q}$ is the multivariate analogue for the residual sum of squares for the multivariate model equation

$$
\mathbb{E}_{\mathrm{nxq}}=\mathbb{F}_{\mathrm{nxp}} F_{\mathrm{pxq}}+\mathrm{E}_{\mathrm{nxq}} .
$$

Proof: $\quad X^{\prime} \mathbb{E}=\left[\begin{array}{l}\mathbb{A}^{\prime} \\ \mathbb{B}^{\prime}\end{array}\right]\left[\begin{array}{lll}\mathbb{A} & \mid & \mathbb{B}\end{array}\right]=\left[\begin{array}{ll}\mathbb{H}^{\prime} \mathbb{H} & \mathbb{A}^{\prime} \mathbb{B} \\ \mathbb{B}^{\prime} \mathbb{H} & \mathbb{B}^{\prime} \mathbb{B}\end{array}\right]$.
The generalized inverse of (X'X) gives the desired result [Searle, 1971, p. 27, Equation (49)].

Theorem 2.6.2.

$$
\begin{aligned}
& \text { For } \mathbf{X}=\left[\begin{array}{ll}
\boldsymbol{A} \mid \mathbb{B}
\end{array}\right] \text {, } \\
& \boldsymbol{E}\left(\mathbb{E}^{\prime} \boldsymbol{E}\right)^{-} \mathbf{X}^{\prime}=\boldsymbol{W}+\boldsymbol{M}\left[\mathbb{E} \mathbb{G}^{-} \mathbb{B}^{\prime}\right] \boldsymbol{W}^{\prime}
\end{aligned}
$$

$$
\begin{align*}
& \text { with } \mathbb{M}=\left[\boldsymbol{A}\left(\mathbb{A}^{\prime} \boldsymbol{A}\right)^{-} \boldsymbol{A}^{\prime}\right] \text { and } \\
& \mathbb{G}=\mathbb{E}^{\prime} \mathbb{B}-\mathbb{E}^{\prime} \mathbb{H}=\mathbb{E}=\mathbb{E}^{\prime}[\mathbb{I}-\mathbb{W}] \mathbb{E} \text {. } \tag{2.6.14}
\end{align*}
$$

Proof: In partitioned form the projector $\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{X}^{\prime}$

$$
=\left[\begin{array}{lll}
\mathbb{H} & \mid \mathbb{B}
\end{array}\right]\left[\begin{array}{ll}
\mathbb{F}^{\prime} \mathbb{A} & \mathbb{R}^{\prime} \mathbb{E} \\
\mathbb{B}^{\prime} \mathbb{H} & \mathbb{B}^{\prime} \mathbb{E}
\end{array}\right]^{-}\left[\begin{array}{l}
\mathbb{F}^{\prime} \\
\mathbb{E}^{\prime}
\end{array}\right] .
$$

Inserting (2.6.13) and multiplying gives

$$
\begin{aligned}
& E\left(X^{\prime} X\right)^{-} \mathbf{z}^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& +\left[\mathbb{B}^{-} \mathbb{B}^{\prime}\right] . \\
& \text { (2.6.15) }
\end{aligned}
$$

Defining $W$ and $\mathbb{G}$ as in (2.6.14) gives the result.

Theorem 2．6．3．

For $\mathrm{E}=\left[\begin{array}{l|l}\text { A } & \mathrm{B}\end{array}\right]$ ，

$$
\mathbb{A}^{\prime}\left[X\left(X^{\prime} X\right)^{-} X^{\prime}\right] \mathbb{A}=\mathbb{A}^{\prime} \not A^{\prime}
$$

Proof：Substituting（2．6．15）into the bracketed term of


$$
\mathbb{A}^{\prime}\left[E\left(X^{\prime} X\right)^{-} X^{\prime}\right] \mathbb{F}
$$

$$
=+\left(\mathbb{A}^{\prime} \mathscr{A}^{\prime}\right)\left(\mathbb{A}^{\prime} \mathbb{A}^{-}\left(\mathbb{A}^{\prime} \mathbb{A}^{\prime}\right)\right.
$$


－ $\mathbb{H}^{\prime}\left[\mathbb{B} \mathbb{Q}^{-} \mathbb{B}^{\prime}\right]\left[\mathbb{A}\left(\mathbb{A}^{\prime} \mathbb{A}\right)^{-}\left(\mathbb{F}^{\prime} \mathbb{A}\right)\right]$
－［（ $\left.\left.\mathbb{R}^{\prime} \mathbb{A}\right)\left(\mathbb{R}^{\prime} \mathbb{A}\right)^{-} \mathbb{A}^{\prime}\right]\left[\mathbb{R} \mathbb{Q}^{-} \mathbb{R}^{\prime}\right] \mathbb{A}$
$+\mathbb{A}^{\prime}\left[\mathbb{E} \mathbb{Q}^{-} \mathbb{E}^{\prime}\right] \mathbb{A}$.
Repeated application of Equation 29 and the Corollary， both on p． 20 of Searle［1971］，gives

```
\mp@subsup{\mathbb{A}}{}{\prime}[X(X'X)
 = + 冊舟
```






```
 = 田.

We now develop the projection matrix for three partitions of \(\mathbf{x}\) ．For each，the initial step utilizes Assumption 5，that the matrices \(X_{b}\) and \(\mathbf{X}_{\tau}\) are the effects version of the design matrix，（p．74）．Thus，each
partition has full rank and a unique inverse. By Theorem 2.8.3, (p. 76), the final step, the projector, is the same for any matrix which satisfies the conditions of the theorem. Thus, each projector holds for a class of matrices, not only those satisfying Assumption 5.

The matrices are defined for one experimental unit per treatment per block, thus \(p=t\). The adjustment to multiple experimental units, say \(r\), per treatment per block is to repeat each row \(r\) times in the initial partitioned form and add \(r\) as a multiplier or divisor in subsequent steps.

The first partition is \(\mathbb{X}=\left[\begin{array}{llll}\mathbf{x}_{\mu} & \mid & X_{b}\end{array}\right]\). Theorem 2.6.4.

For \(\mathbf{X}=\left[\begin{array}{lll}\mathbf{x}_{\mu} & \left.\mid \mathbf{x}_{\mathrm{b}}\right]\end{array}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(X_{b}\) is the effects version of the blocks partition of the design matrix, the matrix

Proof: Apply Assumption 5 and the partitioning of \(\mathbf{x}\).

\section*{Theorem 2.6.5.}
 each of \(b\) levels of the blocking factor and where \(X_{b}\) is the effects version of the blocks partition of the design matrix, the matrix

Proof: Matrix multiplication of (2.6.17).

\section*{Theorem 2.6.6.}

For \(\mathbf{z}=\left[\begin{array}{lll}\mathbf{x}_{\mu} & \mid X_{b}\end{array}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(z_{b}\) is the effects version of the blocks partition of the design matrix, the matrix
\[
\begin{gather*}
\left(X^{\prime} X\right)^{-1}= \\
\frac{1}{b t}\left[\begin{array}{c|c}
1 \\
- & - \\
\mathbb{O}(b-1) \times 1 & b \mathbb{I}_{(b-1)} \times(b-1)
\end{array}\right] \tag{2.6.19}
\end{gather*}
\]

Proof: Matrix multiplication of (2.6.18) by (2.6.19) yields the identity matrix. The inverse is unique since, by assumption, \(X^{\prime} X\) has full rank.

Theorem 2.6.7.
For \(X=\left[X_{\mu} \mid X_{b}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(X_{b}\) is the effects version of the blocks partition of the design matrix or one satisfying Theorem 2.8.3, (p. 87), the projector
\(=(1 / t)\left\{d i a g\left[I_{t x t}{ }^{]}\right\}_{\text {bxb }}\right.\). (Defined as \(\mu\) below.)
Proof: Matrix multiplication of (2.6.19) by (2.6.17), the latter twice. The projector (2.6.20) may be obtained directly from the summation notation by a Kronecker product process developed by Craig Jefferson and the author. Appendix C, (p. 385), presents this process.

The second partition is \(\mathbf{X}=\left[\mathbf{X}_{\boldsymbol{T}}\right]\).
Theorem 2.6.8.

For \(\mathbf{Z}=\left[\mathbf{X}_{\boldsymbol{T}}\right]\), with \(t\) experimental units in each of
b levels of the blocking factor and where \(\mathbb{X}_{\tau}\) is the effects version of the treatments partition of the design matrix, the matrix

Proof: Apply Assumption 5 and the partitioning of x .

Theorem 2.6.9.
For \(\mathbf{x}=\left[\mathbf{z}_{\tau}\right]\), with \(t\) experimental units in each of b levels of the blocking factor and where \(\mathbf{x}_{\boldsymbol{\tau}}\) is the effects version of the treatments partition of the design matrix, the matrix
\[
\begin{equation*}
X^{\prime} X=b\left[\mathbb{I}_{(t-1) x(t-1)}+\mathbb{I}_{(t-1) x(t-1)}\right]_{(t-1) x(t-1)} \tag{2.6.22}
\end{equation*}
\]

Proof: Matrix multiplication of (2.6.21).

Theorem 2.6.10.

For \(\mathbb{X}=\left[\mathbb{X}_{\boldsymbol{\tau}}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(\mathbf{x}_{\boldsymbol{\tau}}\) is the effects version of the treatments partition of the design matrix, the matrix
\[
\left(X^{\prime} X\right)^{-1}=\frac{1}{b t}\left[t \mathbb{I}_{(t-1) \times(t-1)-} \mathbb{I}_{(t-1) \times(t-1)}(t-1) \times(t-1) .\right.
\]

Proof: Matrix multiplication of (2.6.23) by (2.6.22) yields the identity matrix. The inverse is unique since, by assumption, \(X\) 'X has full rank.

Theorem 2.6.11.
For \(X=\left[\mathbf{x}_{\tau}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(\mathbf{x}_{\tau}\) is the effects version of the treatments partition of the design matrix, or one satisfying Theorem 2.8.3, (p. 87), the projector \(E\left(X^{\prime} X\right)^{-} X^{\prime}\) has \(b x\) b identical blocks, each \(t \times t\). Thus,
(bt)x(bt) .
Proof: Matrix multiplication of (2.6.23) by (2.6.21), the latter twice.

Note that the coding version of \(\mathbf{x}_{\tau}\) does not satisfy Theorem 2.8.3 (p. 87) and thus does not yield the projector matrix of (2.6.24); see Section 2.8 .4 below, (p. 79). The coding version yields a projector similar to (2.6.24), but the diagonal elements of the diagonal blocks are not all equal; one is zero. The projector (2.6.24) may be obtained directly from the summation notation by the Kronecker product process of Appendix \(C\).

The third partition is \(\mathbf{x}=\left[\begin{array}{llll}\mathbf{x}_{\mu} & \left|X_{\mathrm{b}}\right| & \mathbf{x}_{\boldsymbol{T}}\end{array}\right]\). Theorem 2.6.12.

For \(\mathbf{x}=\left[\begin{array}{lllll}\mathbb{X}_{\mu} & \mid & \mathbb{X}_{\mathrm{b}} & \mid & \mathbf{x}_{\boldsymbol{\tau}}\end{array}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(k_{b}\) and \(X_{T}\) are the effects version of the blocks and treatments partitions of the design matrix, the matrix
[bt] \([1+(b-1)+(t-1)]\) (2.6.25)
Proof: Apply Assumption 5 to the indicated partition.

Theorem 2.6.13.

For \(\mathbf{E}=\left[\begin{array}{lll|l}\mathbf{x}_{\mu} & \left|\mathbf{E}_{\mathrm{b}}\right| & \mathbf{x}_{\tau}\end{array}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(\mathbb{X}_{p}\) and \(\mathbf{x}_{\boldsymbol{T}}\) are the effects version of the blocks and treatments partitions of the design matrix, the matrix
\[
\begin{align*}
& (b+t+1) \times(b+t+1) \text {. } \tag{2.6.26}
\end{align*}
\]

Proof: Apply matrix multiplication to (2.6.25).

\section*{Theorem 2.6.14.}

For \(\mathbf{x}=\left[\begin{array}{l|l|l}\mathbf{x}_{\mu} & \left.\mathbf{E}_{\mathrm{D}} \mid \mathbf{x}_{\tau}\right] \text {, with } t \text { experimental units } \mathrm{f}\end{array}\right.\) in each of \(b\) levels of the blocking factor and where \(f_{b}\) and \(\mathbf{x}_{\boldsymbol{T}}\) are the effects version of the blocks and treatments partitions of the design matrix, the matrix \(\left(x^{\prime}\right)^{-1}=\)
\((b+t+1) x(b+t+1)\)
Proof: Matrix multiplication of (2.6.27) by (2.6.26)
yields the identity matrix. The inverse is unique since, by Assumption 5, (p. 20), \(\mathbf{X}\) ' \(\mathbf{X}\) has full rank.

Theorem 2.6.15.
For \(\mathbf{X}=\left[\begin{array}{lllll}\mathbf{x}_{\mu} & \mid & \mathbf{X}_{\mathrm{D}} & \mid & \mathbf{x}_{\boldsymbol{\tau}}\end{array}\right]\), with \(t\) experimental units in each of \(b\) levels of the blocking factor and where \(X_{b}\) and \(\mathbf{x}_{\boldsymbol{\tau}}\) are the effects version of the blocks and treatments partitions of the design matrix or ones satisfying Theorem 2.8.3, (p. 87), the projector
\[
X\left(X^{\prime} X\right)^{-} X^{\prime}=
\]

Proof: Matrix multiplication of (2.6.27) by (2.6.25), the latter twice. The projector (2.6.28) may be obtained directly from the summation notation by the Kronecker product process of Appendix C, (p. 385).

Note that there are but two types of submatrices in the projector matrices of (2.6.20), (p. 50), (2.6.24), (p. 52) and (2.6.28). The submatrices on the diagonal are one type. The submatrices off of the diagonal are another. In each of the diagonal submatrices, all diagoal elements have the same value, as do all off-diagonal elements. The two sets of diagonal elements may be equal as in (2.6.20), or unequal as in (2.6.24) and (2.6.28).

In each of the off-diagonal submatrices, again all diagonal elements have the same value and all offdiagonal elements have the same value. The two sets of elements may be equal as in (2.6.20), or not equal as in (2.6.24) and (2.6.28).

Finally, the diagonal blocks may equal the offdiagonal blocks, as in (2.6.24) or they may be unequal as in (2.6.20) and (2.6.28). These structural characteristics have important effects upon the randomization model as discussed in Section 3.7.2, (p. 187).

Theorems 2.6.16 and 2.6.17 decompose projectors used in the usual analysis of covariance hypotheses. The decomposition separates the treatments part of the appropriate model matrix from the other parts. The first theorem is a special case of Theorem 2.6.2, (p. 47).

Theorem 2.6.16.
For versions of \(\mathbf{X}_{\boldsymbol{\tau}}\) with all columns summing to zero within each block, such as the effects version, and \(\mathbf{X}_{r}=\left[\mathbf{x}_{\mu}\left|X_{b}\right| \mathbf{x}_{\tau}\right]\), the projector
 \(W=(1 / t)\left\{d i a g\left[I_{t x t}\right]_{b x b}\right.\) as in (2.6.20). (2.6.29)

Note that X of (2.4.7), (p. 26), is, here \(\mathrm{X}_{\mathrm{r}}\).
Proof: Partition \(\mathbb{X}_{工}\) as \(\mathbb{X}_{工}=[\mathbb{A} \mid \mathbb{E}]\), where \(\mathbb{H}=\left[\mathbb{X}_{\mu} \mid \mathbb{X}_{\mathrm{D}}\right]\) and \(\mathbb{B}=\mathbb{X}_{\tau}\). Theorem 2.6.2, (p. 47), gives \(\mathbb{H}\left(\mathbb{H} \mathbb{H}^{\prime}\right)^{-\mathbb{A}}\) as W; Theorem 2.6.7, (p. 50), gives the above \(W\).

Theorem 2.6.2 splits \(X_{r}\left(X_{r} X_{r}\right)-X_{r}\) ' into five terms. The middle three contain \(\begin{array}{ll}\mathbb{B} \\ \text { and/or } \\ \text { 'W'. This product }\end{array}\) sums one block's worth of columns of \(\mathbf{E}_{\tau}(=\mathbb{B})\). By Assumption 5, (p. 20), each such sum is zero. The fifth term has the form \(\mathbf{E}_{\tau} \mathbb{Q}^{-} \mathbf{x}_{\tau}{ }^{\prime}\), where \(\mathbb{Q}=\mathbf{x}_{\tau}{ }^{\prime}\left[\mathbb{I I}-\mathbb{M} \mathbf{x}_{\tau}\right.\), as in (2.6.13), (p. 54). Again \(\mathbf{x}_{\tau}{ }^{\prime} \boldsymbol{N}=\mathbb{Q}\), leaving \(\mathbb{O}=\mathbf{x}_{\boldsymbol{\tau}}{ }^{\prime} \mathbb{I} \mathbf{x}_{\tau}\); thus, \(\mathbf{x}_{\tau} \mathbb{G}^{-} \mathbf{z}_{\tau}=\mathbf{x}_{\tau}\left(\mathbf{x}_{\tau}{ }^{\prime} \mathbf{x}_{\tau}\right)^{-} \mathbf{x}_{\tau}{ }^{\prime}\). The first term from Theorem 2.6.2 remains unchanged, providing the desired result of separating \(\mathbf{x}_{\tau}\) from the other partitions of this model matrix.

\section*{Theorem 2.6.17.}

For a treatment matrix \(\mathbf{x}_{\boldsymbol{\tau}}\) orthogonal to both the blocks matrix \(\mathbf{x}_{\mathrm{b}}\) and the mean vector \(\mathbf{x}_{\mu}\), as when \(\mathbf{x}_{\boldsymbol{\tau}}\) and \(X_{b}\) are the effects version, and for \(X_{r}=\left[X_{\mu}\left|X_{b}\right| \mathbb{Z}\right]\),
\[
\begin{align*}
& =\mathbf{x}_{\boldsymbol{\tau}}{ }^{\prime}\left\{\mathbb{Z}\left[\mathbb{E}^{\prime}(\mathbb{I}-\mu) \mathbb{Z}\right]^{-} \mathbb{Z}^{\prime}\right\} \mathbf{x}_{\boldsymbol{\tau}} \text {, where } \\
& 山=(1 / t)\left\{d i a g\left[\Pi_{t x t}\right]_{b x b}\right. \text { as in (2.6.20). } \tag{2.6.30}
\end{align*}
\]

Proof: Partition \(X_{r}\) as \(X_{X}=[\mathcal{A} \mid \mathbb{B}]\), where \(\mathbb{A}=\left[X_{\mu} \mid X_{b}\right]\)
 Theorem 2.6.7, (p. 50), gives \(\mathbb{W}=(1 / t)\left\{d i a g\left[\mathbb{T}_{t x t}\right]\right\}_{\text {bxb }}\).

Theorem 2.6 .2 splits \(X_{r}\left(X_{r} X_{r}\right) X_{Y}\) into five factors, all except the last beginning and/or ending in แ. Pre-multiplication by \(\mathbf{x}_{\boldsymbol{\tau}}{ }^{\prime}\) or post-multiplication by \(\mathbf{x}_{\tau}\) gives
\[
\begin{aligned}
& X_{\tau}{ }^{\prime} W=X_{\tau}{ }^{\prime}\left\{\left[X_{\mu} \mid X_{b}\right]\left(\mathbb{F}^{\prime} \mathbb{F}^{-\mathbb{A}^{\prime}}\right\} \quad\right. \text {, or } \\
& \omega X_{\tau}=\left\{\mathbb{A}\left(\mathbb{A}^{\prime} \mathbb{A}\right)^{-}\left[X_{\mu} \mid X_{b}\right]^{\prime}\right\} \mathbf{x}_{\tau} .
\end{aligned}
\]

Each of these four factors is zero by the assumed mutual orthogonality of \(\left[\mathbf{x}_{\mu} \mid X_{b}\right]\) and \(\mathbf{x}_{\tau}\), as discussed below (2.3.5), (p. 127). The last factor of Theorem 2.6.2 is \(\mathbb{B}\) \(\mathbb{A}^{-} \mathbb{B}^{\prime}=\mathbb{E}\left[\mathbb{E}^{\prime}(\mathbb{I}-\mathbb{N}) \mathbb{E}\right]^{-} \mathbb{B}^{\prime}\). Upon substituting \(\mathbb{E}\) for \(\mathbb{E}\), this provides the desired result of separating \(\mathbf{x}_{\boldsymbol{\tau}}\) from the other partitions of this model matrix.
2.6.4 Alternative Forms of \(\hat{F}_{\mu, b}, \tau, \mathcal{F}^{\prime}\) the \(F\)-Ratio and the Non-Centrality Parameter

The following theorems disentangle the matrix under the control of the experimenter, \(\Sigma_{\tau}\), from the other matrices, \(\mathbf{x}_{\mu}, \mathbf{f}_{\mathrm{b}}\) and \(\mathbb{z}\). In each theorem \(\mathbf{x}_{\tau}\) remains as part of a projector matrix having the form of Equation (2.6.25) of Theorem 2.6.12.

Theorem 2.6.18.

For versions of \(\mathbf{x}_{\boldsymbol{\tau}}\) with all columns summing to zero for each block, such as the effects version,
\[
\begin{align*}
\mathbb{R}_{z}= & \mathbb{R}_{\mathrm{x}}^{\mathbb{Z}}=\left[\mathbb{I}-\mathbb{W}-\mathbf{x}_{\tau}\left(\mathbf{x}_{\tau}^{\prime} \mathbf{x}_{\tau}\right)-\mathbf{x}_{\tau}{ }^{\prime}\right] \mathbb{Z} \\
& \text { where } W=(1 / t)\left\{\text { diag }\left[\mathbb{I}_{\text {txt }}\right]\right\}_{\mathrm{bxb}} . \\
& \text { as in }(2.6 .20) . \tag{2.6.31}
\end{align*}
\]

Proof: Apply Theorem 2.6.16 to Equation 2.4.7, (p. 26).

Theorem 2.6.19.

For versions of \(\mathbf{x}_{\boldsymbol{\tau}}\) with all columns summing to zero for each block, such as the effects version,
\[
\text { where } \mathbb{W}=(1 / t)\left\{d i a g\left[\mathbb{I}_{t x t}\right]\right\}_{b x b}
\]
as in (2.6.20).

Proof: Apply Theorem 2.6.18 to Equation 2.4.4, (p. 26). This gives the desired result of disentangling the treatments matrix from the other submatrices of the model matrix.
\[
\begin{aligned}
& \hat{\beta}_{\mu, b}, \tau, F=\left\{\mathbb{Z}^{\prime}\left[\mathbb{I}-\boldsymbol{W}-\mathbf{x}_{\tau}\left(\mathbf{E}_{\tau}{ }^{\prime} \mathbf{x}_{\tau}\right)^{-} \mathbf{x}_{\tau}{ }^{\prime}\right] \mathbb{Z}\right\}^{-1} \\
& \mathbf{x}\left\{\mathbb{Z}^{\prime}\left[\mathbb{I I}-\mathbb{H}-\mathbf{E}_{\tau}\left(\mathbf{E}_{\tau}{ }^{\prime} \mathbf{E}_{\tau}\right)^{-} \mathbf{E}_{\boldsymbol{\tau}}{ }^{\prime}\right]\right\} \mathbf{I}
\end{aligned}
\]

Theorem 2.6.20.
For versions of \(\mathbf{x}_{\tau}\) with all columns summing to zero for each block, such as the effects version,
\[
\begin{aligned}
& F(F \mid \mu, b, \tau)=\frac{F^{\prime}\left\{\mathbb{R}_{Z}\left(\mathbb{R}_{Z}^{\prime} \mathbb{R}_{Z}\right)^{-1} \mathbb{R}_{Z}{ }^{\prime}\right\} F / q}{\operatorname{SSR} /(n-p-q)} \\
& =\left\{\mathrm { F } ^ { \prime } \left\{\left[\text { II }-\mathbb{H}-\mathrm{X}_{\tau}\left(\mathrm{X}_{\tau}{ }^{\prime} \mathrm{X}_{\tau}\right)^{-} \mathrm{X}_{\tau}{ }^{\prime}\right] \mathcal{Z}\right.\right. \\
& \mathbf{x} \quad\left\{\mathbb{Z}^{\prime}\left[\mathbb{I}-\mu-\mathbf{x}_{\tau}\left(\mathbf{x}_{\tau}{ }^{\prime} \mathbf{x}_{\tau}\right)^{-} \mathbf{x}_{\tau}{ }^{\prime}\right] \mathbb{Z}\right\}^{-1}
\end{aligned}
\]
\[
\begin{aligned}
& \left\{\left\{Y^{\prime}\left[I I-X_{\tau}\left(X_{\tau}{ }^{\prime} X_{\tau}\right)^{-} X_{\tau}^{\prime}-\mathbb{R}_{z}\left(\mathbb{R}_{z}^{\prime} \mathbb{F}_{z}\right)^{\left.-R_{z}^{\prime}\right]} \bar{Y}\right\} /\{n-p-q\}\right\}^{-1}\right.
\end{aligned}
\]
where
\[
\begin{equation*}
M=(1 / t)\left\{d i a g\left[\pi_{t \times t}\right]\right\}_{\text {bxb }} \text { as in }(2.6 .20) . \tag{2.6.33}
\end{equation*}
\]

Here, \(p\) is the rank of \(x, q\) is the rank of \(\mathbb{Z}\). Proof: Apply Theorem 2.6.18 to Table 2.5.1, (p. 37), using the idempotency of \(\mathbb{R}_{z}\). Note that in the numerator the treatments matrix is disentangled from the other submatrices of the model matrix. The projector of \(\mathbb{R}_{z}\) in the denominator may be similarly reexpressed with \(\mathbf{x}_{\tau}\) separated from the other submatrices.

Theorem 2.6.21.
For versions of \(\mathbf{x}_{\boldsymbol{T}}\) with all columns summing to zero for each block, such as the effects version,
\[
\begin{aligned}
& \lambda_{\beta \mid \mu, b, \tau, \beta} \\
& =1 /\left(2 \sigma^{2}\right) \cdot x
\end{aligned}
\]
\[
\left\{\beta^{\prime} \mathbb{Z}^{\prime}[\mathbb{I}-\mathbb{W}\} \mathbb{Z} F-\beta^{\prime} \mathbb{Z}^{\prime}\left[\mathbb{E}_{\tau}\left(\mathbb{X}_{\tau}^{\prime} \mathbb{X}_{\tau}\right)^{-\mathbf{x}_{\tau}}{ }^{\prime}\right] \mathbb{Z} \beta\right\}, \text { (2.6.34) }
\]
\[
\begin{equation*}
=1 /\left(2 \sigma^{2}\right) \times\left\{\boldsymbol{\beta}^{\prime} \mathbb{Z}^{\prime}\left[\mathbb{I}-\mu-\mathbf{x}_{\tau}\left(\mathbf{x}_{\tau}^{\prime} \overline{\mathbf{x}}_{\tau}\right)^{-} \mathbf{x}_{\tau}^{\prime}\right] \mathbb{Z} \beta\right\} \tag{2.6.35}
\end{equation*}
\]
\(=1 /\left(2 \sigma^{2}\right) x\)
 where \(W=(1 / t)\left\{\right.\) diag \(\left[\mathbb{T}_{\text {txt }}{ }^{1}\right\}_{\text {bxb }}\) as in (2.6.20).

Proof: From Equation (2.6.10), (p. 43), with \(X_{h}=\mathbb{Z}\) and
\[
\begin{array}{r}
X_{r}=\left[x_{\mu}\left|x_{b}\right| x_{\tau}\right], \\
2_{\beta \mid \mu, b, \tau, \beta}=
\end{array}
\]
\[
\begin{equation*}
(1 / 2) F^{\prime}\left\{\mathbb{Z}^{\prime} \mathbb{Z}-\mathbb{Z}^{\prime}\left[\mathbb{E}_{r}\left(\mathbb{E}_{r} \cdot \mathbb{E}_{r}\right)^{-\mathrm{g}_{r}} \cdot\right] \mathbb{Z}\right\} \hat{F} / \sigma^{2} \tag{2.6.37}
\end{equation*}
\]

By Theorem 2.6.16, (p. 56), the projector of this \(X_{r}\) is
 ing gives (2.6.35) and (2.6.34). The idempotency of \(\mathbb{R}_{z}\) gives (2.6.36). In each of (2.6.34) to (2.6.36), the treatments matrix \(\mathbf{X}_{\boldsymbol{T}}\) is disentangled from the other submatrices of the model matrix.

Theorem 2.6.22.
For treatments matrices \(\mathbf{x}_{\boldsymbol{\tau}}\) orthogonal to both the blocks matrix \(X_{b}\) and the mean vector \(X_{\mu \mu}\), as when \(\mathbf{X}_{\tau}\) and \(X_{b}\) are the effects versions of these matrices,
\[
\begin{aligned}
& { }^{2} \tau \mid \mu, b, \tau, \beta=1 /\left(2 \sigma^{2}\right) x \\
& \left\{\boldsymbol{T}^{\prime} \mathbf{X}_{\boldsymbol{T}}{ }^{\prime} \mathbb{X}_{\boldsymbol{T}} \boldsymbol{T}-\boldsymbol{T}^{\prime} \mathbf{E}_{\boldsymbol{T}}{ }^{\prime}\left[\mathbb{Z}\left(\mathbb{Z}^{\prime}(\mathbb{I}-\mathbb{L}) \mathbb{Z}\right)^{-} \mathbb{Z}^{\prime}\right] \mathbb{E}_{\boldsymbol{T}} \boldsymbol{T}\right\}, \\
& \text { where } \mathbb{W}=(1 / t)\left\{d i a g\left[\mathbb{I}_{t x t}\right]\right\}_{b x b} \text {, as in (2.6.20). }
\end{aligned}
\]

Proof: From Equation (2.6.10), (p. 43), with \(X_{h}=\mathbf{x}_{\boldsymbol{T}}\) and
\(z_{r}=\left[X_{\mu}\left|z_{D}\right| \mathbb{Z}\right]\),
\({ }^{2}{ }_{\tau} \mid \mu, b, \tau, \beta=\)

Application of Theorem 2.6.17, (p. 57), to the second term of (2.6.39) and rearranging the \(\tau\) gives the desired result. Note that \(\mathbf{x}_{\boldsymbol{\tau}}\) is disentangled from the other submatrices of the model matrix.

\subsection*{2.6.5 Testing Hypotheses of Interest in the Randomized}

Block Design with Covariates.

The following list of hypotheses and F-tests partitions \(\mathbb{X}^{+}\)as \([\mathbb{X} \mid \mathbb{Z}]\) and expresses the \(F\)-test of (2.6.2), (p. 39), in \(R\) notation. The numerator of the F-test is a form of (2.6.8), (p. 43). The denominator is that of (2.6.2). Under the assumption of a true null hypothesis, the \(F\)-statistic yields a p-value, herein
termed the observed significance level, OSL \(_{F}\), in this case, as computed from the \(F\) distribution.

The hypothesis that the covariates, adjusted for the mean, blocks and treatment effects have no effect on the response is
\[
\begin{equation*}
H_{0 ; \mu, b, \tau} \beta=0 . \tag{2.6.40}
\end{equation*}
\]

The F-statistic used to test this hypothesis is
\[
\begin{equation*}
F(\beta \mid \mu, b, \tau)=\frac{R(\beta \mid \mu, b, \tau) / q}{S S R /(n-p-q)} \tag{2.6.41}
\end{equation*}
\]

The associated noncentrality parameter is (2.6.34), (p. 61),
\(\lambda_{\beta \mid \mu, b, \tau, F}=1 /\left(2 \sigma^{2}\right) x\)
 where \(\mathbb{H}=(1 / t)\left\{d i a g\left[\mathbb{I}_{t x t}\right]\right\}_{\text {bxb }}\) as in (2.6.20), (p. 50).

The hypothesis that the treatments, adjusted for the mean and blocks, but without adjustment for the covariates, are all equal is
\[
\begin{equation*}
\mathrm{H}_{0 ; \mu, \mathrm{b}} \tau=\mathbb{0} . \tag{2.6.42}
\end{equation*}
\]

Under Assumption 5, "all treatments equal", (p. 20), implies that each element of \(\tau\) is zero. The F-statistic used to test this hypothesis is
\[
\begin{equation*}
F(\tau \mid \mu, b)=\frac{R(\tau \mid \mu, b) /(t-1)}{S S R /(n-p-q)} \tag{2.6.43}
\end{equation*}
\]

Normally one replaces the above hypothesis with the following one which uses the treatment sum of squares adjusted also for the covariates. The hypothesis that the treatments, adjusted for the mean, blocks and covariates, are all equal is
\[
\begin{equation*}
\mathrm{H}_{\mathrm{o} ; \mu, \mathrm{b}, \overline{\mathrm{~F}}} \mathrm{~T}=\mathbb{0} . \tag{2.6.44}
\end{equation*}
\]

The F-statistic used to test this hypothesis is
\[
\begin{equation*}
F(\tau \mid \mu, b, \beta)=\frac{R(\tau \mid \mu, b, \beta) /(t-1)}{S S R /(n-p-q)} . \tag{2.6.45}
\end{equation*}
\]

The associated noncentrality parameter is (2.6.38),
\[
\begin{aligned}
& \lambda_{\tau} \mid \mu, b, \tau, \beta=1 /\left(2 \sigma^{2}\right) x \\
& \left\{\tau^{\prime} \mathbb{X}_{\tau}^{\prime} \mathbb{X}_{\tau} \tau-\tau^{\prime} \mathbb{X}_{\tau}^{\prime}\left[\mathbb{Z}\left(\mathbb{Z}^{\prime}(\mathbb{I}-\mathbb{W}) \mathbb{Z}\right)^{\left.-\mathbb{Z}^{\prime}\right]} \mathbb{X}_{\tau} \tau\right\},\right.
\end{aligned}
\]
\[
\text { where } \mathbb{W}=(1 / t)\left\{\operatorname{diag}\left[\pi_{t x t}\right\}_{\mathrm{bxb}}\right.
\]
as in (2.6.20), (p. 50).
The hypothesis that the covariates, adjusted for the mean and blocks, but without adjustment for the treatments, have no effect upon the response is
\[
\begin{equation*}
H_{o ; \mu, b} F=\mathbb{D} . \tag{2.6.46}
\end{equation*}
\]

The F-statistic used to test this hypothesis is
\[
\begin{equation*}
F(F \mid \mu, b)=\frac{R(F \mid \mu, b) / q}{S S R /(n-p-q)} . \tag{2.6.47}
\end{equation*}
\]

Normally one replaces this last hypothesis with the one first above, \(H_{o} ; \mu, b, \tau, \beta=\mathbb{O}=\mathbb{1}\) which tests for the effect of the covariates after adjusting for treatment effects as well as those of the mean and blocks.

Next, a numerical example illustrates Sections 2.3-2.6.

\section*{Section 2.7}

\section*{Numerical Example}

Section 2.7 uses matrix and summation methods to calculate the combined analysis of variance tables,

Tables 2.5.1 and 2.5.2, (p. 37-38), the estimates, \(\hat{F}_{\mu, b, F}, \hat{F}_{\mu, b, \tau, F}, \hat{\tau}_{\mu, b}, \tau\), and \(\hat{\tau}_{\mu, b, \tau, F},(p, 32)\), and associated \(F\)-statistics and noncentrality parameters of Equations (2.6.41) - (2.6.47). The artificial data represent one random assignment of treatments to experimental units.

For this example, the mean is \(\mu=10.0\), block effects are \(b_{1}=-b_{2}=1.5\), treatment effects are \(\tau_{k}=0\) for all \(k\), and the covariate is \(\bar{F}=2.0\). Table 2.7 .1 shows the assigned treatment, \(k\), the response, \(Y_{i k}\), and the covariate, \(Z_{i k}\), for each block-plot experimental unit. The plot (j=•) and treatment (\(k=\cdot\)) identification numbers happen to be the same for this example.

TABLE 2.7.1
TREATMENTS AND RESPONSES FOR EXAMPLE ONE
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{plot \(\mathrm{j}=1\)} & j=2 & \(j=3\) & \(\mathrm{j}=4\) & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Block } \\
& \text { Totals }
\end{aligned}
\]} \\
\hline block & \(\mathrm{k}=1\) & \(\mathrm{k}=2\) & \(\mathrm{k}=3\) & \(k=4\) & \\
\hline \(\mathrm{i}=1\) & 17.3956 & 29.8077 & 34.1529 & 52.9714 & 134.3276 \\
\hline & \(z_{11}=5\) & 9 & 17 & 19 & 50 \\
\hline block & \(\mathrm{k}=1\) & \(k=2\) & \(\mathrm{k}=3\) & k=4 & \\
\hline \(i=2\) & 38.4230 & 35.6973 & 7.4435 & 20.4594 & 102.0232 \\
\hline & 14 & 11 & 2 & 1 & 28 \\
\hline \multicolumn{5}{|l|}{Totals} & Grand Totals \\
\hline Treat. & 55.8186 & 65.5050 & 41.5964 & 73.4308 & 236.3508 \\
\hline Covaria & e: 19 & 20 & 19 & 20 & 78 \\
\hline
\end{tabular}

Examples of calculations, using the matrix notation under Assumptions 1 - 8 with \(\mathbf{x}=\left[\mathbf{X}_{\mu}\left|\mathbf{X}_{\mathrm{b}}\right| \mathbf{X}_{\mathrm{T}}\right]\), are
\[
\begin{aligned}
& \mathbf{Z}=\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & 1 & 0 & 0 \\
1 & 1 & -1 & 1 & 0 & 1 & 0 \\
1 & -1 & 1 & 0 & 0 & 1 \\
1 & 1 & -1 & -1 & -1 & -1
\end{array}\right] \quad \mathbf{Y}=\left[\begin{array}{r}
17.3956 \\
29.8077 \\
34.1529 \\
52.9714 \\
38.4230 \\
35.6973 \\
7.4435 \\
20.4594
\end{array}\right] \quad \mathbb{Z}=\left[\begin{array}{r}
5 \\
9 \\
17 \\
19 \\
14 \\
11 \\
2 \\
1
\end{array}\right] \\
& \left(\mathbf{I}^{\prime} \mathbf{X}\right)^{-1}=\left[\begin{array}{ccccc}
0.125 & 0 & 0 & 0 & 0 \\
0 & .125 & 0 & 0 & 0 \\
0 & 0 & 0.375 & -0.125 & -0.125 \\
0 & 0 & -0.125 & 0.375 & -0.125 \\
0 & 0 & -0.125 & -0.125 & 0.375
\end{array}\right] \\
& \left.\mathbb{R}_{Z}=\left[\begin{array}{r}
-7.25 \\
-3.75 \\
4.75 \\
6.25 \\
7.25 \\
2.75 \\
-4.75 \\
-6.25
\end{array}\right] \quad \mathbb{R}_{\mathcal{B}}=\left[\begin{array}{r}
-7.50 \\
-3.50 \\
4.50 \\
6.50 \\
7.00 \\
4.00 \\
-5.00 \\
-6.00
\end{array}\right] \quad \begin{array}{l}
\hat{\beta}_{\mu, b, F}=2.0038 \\
\hat{\beta}_{\mu, b}, \tau, \beta=1.9672
\end{array}\right]
\end{aligned}
\]

The vectors \(\left.\tau_{(},\right)^{\prime}=\left[\hat{\mu}, \hat{b}_{1}, \hat{\tau}_{1}, \hat{\tau}_{2}, \hat{\tau}_{3}\right]^{\prime}\) are
(Model \(\tau_{g}^{0}=\left[\begin{array}{r}9.75 \\ 2.75 \\ -0.25 \\ 0.25 \\ -0.25\end{array}\right], \quad \hat{\tau}_{\mu, b}, \tau=\left[\begin{array}{r}29.54 \\ 4.04 \\ -1.63 \\ 3.21 \\ -8.75\end{array}\right], \quad \hat{\tau}_{\mu, b, \tau, \beta}=\left[\begin{array}{r}10.35 \\ -1.37 \\ -1.14 \\ 2.72 \\ -8.25\end{array}\right]\).
By Assumption \(5, \hat{\tau}_{4} ; \mu, b, \tau=7.17\) and \(\hat{\tau}_{4} ;, \mu, b, \tau, \beta=6.68\).

The summation notation yields the same estimates as the matrix notation
\(\hat{\boldsymbol{F}}=504.6043 / 256.5000=1.9673\), and estimates of \(\tau\) not corrected for the covariate \(\left(\hat{\tau}_{\mu, b}, \tau\right)\)
\[
\begin{aligned}
& \hat{\tau}_{1}=(1 / 2)(55.8186)-29.5438=-1.6345, \\
& \hat{\tau}_{2}=(1 / 2)(65.5050)-29.5438=3.2086, \\
& \hat{\tau}_{3}=(1 / 2)(41.5964)-29.5438=-8.7456, \\
& \hat{\tau}_{4}=(1 / 2)(73.4380)-29.5438=7.1716, \text { and }
\end{aligned}
\]
estimates of \(\tau\) corrected for the covariate \(\left(\hat{\tau}_{\mu, b}, \tau, b\right)\)
\[
\begin{aligned}
& \hat{\tau}_{1}=-1.6345-1.9673(9.5-9.75)=-1.1427, \\
& \hat{\tau}_{2}=3.2086-1.9673(10-9.75)=2.7168, \\
& \hat{\tau}_{3}=-8.7456-1.9673(9.5-9.75)=-8.2538, \\
& \hat{\tau}_{4}=7.1715-1.9673(10-9.75)=6.6798 .
\end{aligned}
\]

The first set of summation formulas of Section 2.5.2
replaces the \(\cdots\) of the summation formulas with \(y y\),
\[
\begin{aligned}
\operatorname{SSTOt}_{Y Y}= & (17.3956)(17.3956)+\ldots+(20.4594)(20.4594) \\
= & 8,388.1126, \\
& (17.3956+\ldots+20.4594)]=6,982.7126, \\
\operatorname{SSM}_{Y Y}= & 1 /(2.4)[(17.3956+\ldots+20.4594) \\
\operatorname{SSB}_{Y Y}= & (1 / 4)\left[(134.3276)^{2}+(102.0232)^{2}\right]=7,113.1594, \\
\operatorname{SST}_{Y Y}= & (1 / 2)\left[(55.8186)^{2}+(65.5050)^{2}+(41.5964)^{2}\right. \\
& \left.+(73.4308)^{2}\right]=7,264.4820, \\
\operatorname{SSR}_{Y Y}= & 8,388.1126-7,113.1594-7,264.4820+ \\
& 6,982.7126=993.1838 .
\end{aligned}
\]

Recall that \(S S R\) is the sum of squares for the residual.

The sums of squares for terms in \(z\) with subscripts \(z z\) are
\[
\begin{aligned}
& \operatorname{SSTot}_{z Z}=(5)(5)+\ldots+(1)(1)=1,078, \\
& \operatorname{SSM}_{z Z}=1 /(2 \cdot 4)[(5+\ldots+1)(5+\ldots+1)]=760.5, \\
& \operatorname{SSB}_{z Z}=(1 / 4)\left[(50)^{2}+(28)^{2}\right]=821, \\
& \operatorname{SST}_{z Z}=(1 / 2)\left[(19)^{2}+(20)^{2}+(19)^{2}+(20)^{2}\right]=761, \\
& \operatorname{SSR}_{\mathrm{zZ}}=1,078-821-761+760.5=256.5 .
\end{aligned}
\]

The sums of \(Y Z\) crossproducts with subscripts yz are \(\operatorname{ssTot}_{y z}=(17.3956)(5)+\ldots+(20.4594)(1)=2,908.2419\), \(S S M_{Y Z}=1 /(2.4)[(17.3956+\ldots+20.4594)(5+\ldots+1)]\) \(=2,304.4303\),
\(\operatorname{SSB}_{Y Z}=(1 / 4)[(134.3276)(50)+(102.0232)(28)]\)
\(=2,393.2574\),
\(\operatorname{SST}_{Y Z}=(1 / 2)[(55.8186)(19)+\ldots+(73.4308)(20)]\) \(=2,314.8005\),
\(S_{S R}^{Y Z}=2,908.2419-2,393.2574-2,314.8005+\) \(2,304.4203=504.6043\).

The values in Table 2.7 .2 correspond to Table 2.5.1, as derived by the \(R(\cdot \mid \cdot)\) notation and "the Model \(\mathbf{x}\) ".

TABLE 2.7.2
COMBINED ANALYSIS OF VARIANCE TABLE - MATRIX COMPUTATION
\begin{tabular}{|c|c|c|}
\hline Source of Variation & d.f. & Sum of Squares \\
\hline \multirow[t]{3}{*}{Total corrected for the mean (\(\mu\))} & \multirow[t]{3}{*}{\(n-1\)} & 8,388.1126 \\
\hline & & -6,982.7126 \\
\hline & & \(=1,405.4000\) \\
\hline \multirow[t]{3}{*}{Blocks after the mean (b| \(\mu\))} & \multirow[t]{3}{*}{\(\mathrm{b}-1\)} & 7,113.1594 \\
\hline & & -6,982.7126 \\
\hline & & \(=130.4468\) \\
\hline \multirow[t]{3}{*}{```
Treatments and
 interactions after the
 mean and blocks (t|\mu,b).
```} & \multirow[t]{3}{*}{t-1} & 7,394.9288 \\
\hline & & -7,113.1594 \\
\hline & & \(=281.7694\) \\
\hline \multirow[t]{3}{*}{```
Covariates after the
    mean, blocks, treatments
    and interactions ( F|\mu,b,t)
```} & \multirow[t]{3}{*}{q} & 992.6920 \\
\hline & & 8,387.6208 \\
\hline & & \[
\begin{array}{r}
-7,394.9288 \\
=\quad 992.6920
\end{array}
\] \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Covariates after the } \\
& \text { mean and blocks (} \mathrm{F} \mid \boldsymbol{\mu}, \mathrm{b} \text {) } \\
& \text { q } \quad 1,031.9418 \\
& \text { or 8,145.1011 } \\
& \text {-7,113.1594 } \\
& =1,031.9418 \\
& \text { Residual error } \\
& n-p-q \\
& 0.4918 \\
& \text { (by subtraction) }
\end{aligned}
\]

The numerical values of Table 2.7 .3 correspond to Table 2.5.2 as derived by the summation notation.

TABLE 2.7.3
COMBINED ANALYSIS OF VARIANCE TABLE-SUMMATION COMPUTATION
\begin{tabular}{|c|c|c|}
\hline Source of Variation & d. f . & Sum of Squares \\
\hline Total corrected for the mean (\(\mu\)) & 8-1 & \[
\begin{array}{r}
8,388.1126 \\
-6,982.7126 \\
=1,405.4000
\end{array}
\] \\
\hline Blocks after the the mean (b|ر) & 2-1 & \[
\begin{array}{r}
7,113.1594 \\
-6,982.7126 \\
=130.4468
\end{array}
\] \\
\hline Treatments after the mean and blocks (\(\tau \mid \mu, b)\) & 4-1 & \[
\begin{array}{r}
7,264.4820 \\
-6,982.7126 \\
=\quad 281.7694
\end{array}
\] \\
\hline Covariate after the mean, blocks, and treatments (\(F \mid \mu, b, \tau\)) & 1 & \[
\begin{aligned}
& \frac{(504.6043)^{2}}{256.5000} \\
= & 992.6920
\end{aligned}
\] \\
\hline
\end{tabular}
\[
\begin{array}{ll}
\text { Covariate after the } & 1 \\
\text { mean and blocks }(F \mid \mu, b) & \frac{(514.9845)^{2}}{257.0000}
\end{array}
\]
\(=1,031.9418\)

Residual error
\[
\begin{gathered}
8-2-4 \\
=2
\end{gathered}
\]
\(993.1838-992.6920\)
\(=.4918\)

Tables 2.7 .2 and 2.7 .3 yield the same following F-statistics. In each case, the OSL \(_{F}\) is effectively 1.0.

For the covariate adjusted for the mean, blocks and treatments, the \(F\)-statistic for testing the null hypothesis
\[
\begin{aligned}
& H_{0} ; \mu, b, \tau, \beta \beta=0 \\
& \text { is } \quad F(\beta \mid \mu, b, \tau)=[992.6920 / 1] /[.4918 / 2] \\
&=4,036.9744 .
\end{aligned}
\]

For \(\beta=2.0\) the noncentrality parameter is
\[
\begin{aligned}
\lambda_{\bar{F} \mid \mu, b, \tau, \beta} & =\left[1 /\left(2 \sigma^{2}\right)\right][1028-2] \\
& =\left[1 /\left(2 \sigma^{2}\right)\right][1026]=\left[1 / \sigma^{2}\right][513] .
\end{aligned}
\]

This test properly rejects the null hypothesis.
For the treatments adjusted for the mean and blocks, but not the covariate, the \(F\)-statistic for testing the null hypothesis
\[
\begin{aligned}
& H_{0 ; \mu, b, \tau} \tau=\mathbb{D} \\
& \text { is } \quad F(\tau \mid \mu, b)=[281.7694 / 3] /[.4918 / 2] \\
&=381.9566 .
\end{aligned}
\]

Since \(\tau=\mathbb{0}\), the noncentrality parameter is zero.
This test erroneously rejects the null hypothesis.

For the covariate adjusted for the mean and blocks, but not the treatments, the F-statistic for testing the null hypothesis \(H_{a ; \mu, b, F} \beta=0\)
\[
\text { is } \begin{aligned}
F(\beta \mid \mu, b) & =[1,031.9418 / 1] /[.4918 / 2] \\
& =4,196.5913 .
\end{aligned}
\]

For \(\beta=2.0\), the noncentrality parameter is
\[
\lambda_{\beta \mid \mu, b, \beta}=\left[1 /\left(2 \sigma^{2}\right)\right][1024]=\left[1 / \sigma^{2}\right][512] .
\]

Both tests of \(\beta\), adjusted for the treatments or not adjusted, properly reject the null hypothesis.

The F-statistic for testing the null hypothesis \(H_{o: \mu, b, \tau, \beta} T=\mathbb{Q}\) (adjusted for the covariate) is \(F(\tau \mid \mu, \mathrm{b}, \bar{\beta})=[242.5196 / 3] /[.4918 / 2]=328.7510\). Since \(\tau=\mathbb{0}\), the noncentrality parameter, 2 , is zero. Both tests of \(\tau\), adjusted for the covariate or not adjusted, erroneously reject the null hypothesis.

We next prove a characteristic of projection matrices and digress a bit to discuss the implications of the proof.

\section*{Section 2.8}

\section*{Matrices Producing Identical Projectors}

Two different matrices may have identical projectors,
 conditions of Theorem 2.8.3, (p. 87). The first section introduces effects and coding matrices and the use their projectors play in the analysis of variance. The next section demonstrates the theorem. Sections 2.8.3-2.8.5 apply the theorem to, respectively, estimable functions, reductions in the sums of squares, and the estimator \(\hat{\boldsymbol{\beta}}\). The theorem is proved in Section 2.8.6. The final section is a literature review and a suggested reading list. Theorem 2.8.3 gives the conditions for reparamaterizing a model equation.

\subsection*{2.8.1 The Task of The Theorem}

Consider an experiment testing one factor with four levels, using two experimental units per level. The model equation in matrix notation is
\[
\begin{equation*}
\mathbf{F}=\mathbf{X}_{\mathbf{F}}+\varepsilon \tag{2.8.1}
\end{equation*}
\]
with \(I\) an 8 by 1 vector of responses,
E an 8 by 4 design matrix,
F a 4 by 1 vector of parameters, and
\(\varepsilon\) an 8 by 1 vector of errors with mean zero and variance-covariance matrix \(\mathbb{I} \sigma^{2}\).

One possible design matrix is the "effects" matrix, \(x_{e}\) below, which incorporates the usual constraints of Assumption 5, (p. 20). Using \(\mathbf{x}_{\mathrm{e}}\), the resulting elements of \(\hat{F}_{e}\), the usual least squares estimator of \(\hat{F}_{e}\), equal those obtained from the summation notation model, \(\hat{\mu}, \hat{\tau}_{1}, \hat{\tau}_{2}\) and \(\hat{\tau}_{3}\). The estimate for \(\tau_{4}\) is the negative of the sum of the estimates of \(\tau_{1}, \tau_{2}\) and \(\tau_{3}\).

Other design matrices are possible, such as the dummy or coding matrix, \(f_{C}\) below. The first element of \(\hat{\mathcal{F}}_{C}\) will not equal \(\hat{\mu}\), nor will the last three elements equal the \(\hat{\tau}_{k}, k=1,2,3\). The estimates \(\hat{\boldsymbol{F}}_{C}\) are familiar to users of the SOLUTIONS option in the MODEL statement of PROC GLM in the SAS statistical computing package.

The two design matrices are

The rank of \(X_{e}\) and of \(X_{C}\) equals the number of their columns, giving them full column rank and \(\mathbf{X ' X}^{\prime}\) a true inverse. The matrices may be partitioned as
\[
\mathbf{x}_{\mathrm{e}}=\left[\begin{array}{lll}
\mathbf{x}_{\mu} & \mid \mathbf{x}_{\tau \mathrm{e}}
\end{array}\right] \text { and } \mathbf{z}_{C}=\left[\begin{array}{l|l}
\mathbf{x}_{\mu} & \mid \mathbf{x}_{\tau C} \tag{2.8.3}
\end{array}\right] .
\]

The full model sum of squares, due to fitting the model equation with both mean and treatment effects, is
\[
\begin{equation*}
F^{\prime}\left[E\left(X^{\prime} X\right)^{-1} E^{\prime}\right] \quad Y \tag{2.8.4}
\end{equation*}
\]

The product within the brackets is the projection matrix or projector. Interestingly enough, either \(\mathrm{E}_{\mathrm{e}}\) or \(\mathrm{E}_{\mathrm{c}}\) or many other forms of the model matrix produce the same projector. When \(E\) does not have full column rank (2.8.4) becomes
\[
\begin{equation*}
F^{\prime}\left[X\left(X^{\prime} X\right)^{\left.-I^{\prime}\right]} I_{,}\right. \tag{2.8.5}
\end{equation*}
\]
where the minus sign indicates any member of the set of generalized inverses defined in Section 2.8.6. The numerical value (2.8.5) is the same for any of the (nonunique) generalized inverses (\(\left.\mathbf{X}^{\prime} \mathrm{X}\right)^{-}\)of \(\mathrm{X}^{\prime} \mathrm{X}\). (See for example, Graybill [1983], Theorem 6.6.9, p. 134, or Searle [1987], Theorem 7.1(14), p. 218.)

One would not expect the projector matrices to be equal for every pair of matrices. One may ask what relationship between two matrices, \(X_{e}\) and \(X_{C}\), not necessarily design matrices, results in the equality of their projectors, and, conversely, what such equality tells us about the relationship between arbitrary pairs of matrices \(X_{e}\) and \(X_{C}\). While the relationship is well known, we find no proof of it in more commonly used linear models textbooks. It appears to follow from the Corollary of p. 129 of zyskind, et al. [1964], who state it, without proof, on their page 102. Pringle and Rayner
[1971] present the relationship under "Reparametrization" p. 88-90. Graybill [1976, p. 493-498, Theorem 13.2.7]
proves equivalent relationships are required for reparameterization to hold. Section 2.8.2 states what the relationship must be; the proof is deferred until Section 2.8.6.

\subsection*{2.8.2 Theorem 2.8.3 and Two Numerical Examples}

Theorem 2.8.3
For any matrices \(X_{a}(n x q), X_{b}(n \times p)\), and \(M(p x q)\)
\[
\begin{equation*}
x_{a}\left(x_{a}^{\prime} x_{a}\right)^{-} x_{a}^{\prime}=x_{b}\left(x_{b}^{\prime} x_{b}\right)^{-} x_{b}^{\prime} \tag{2.8.6}
\end{equation*}
\]
\(\Leftrightarrow\left\{\begin{array}{l}X_{a}=X_{b} \mathbb{M} \text { for some } \mathbb{M}, \text { and } \\ \operatorname{rank}\left(X_{a}\right)=r a n k\left(X_{b}\right) .\end{array}\right.\)
As an example, straightforward multiplication will show that the projection matrices are equal for \(\mathbf{x}_{\mathrm{e}}\) and \(\mathbf{z}_{C}\) of (2.8.2). Their ranks are both equal to four and \(X_{C}=\) \(\mathrm{E}_{\mathrm{e}}{ }^{\mathrm{M}}\) for
\[
M=1 / 4\left[\begin{array}{rrr}
1 & 1 & 1 \tag{2.8.9}\\
3 & -1 & -1 \\
-1 & 3 & -1 \\
-1 & -1 & 3
\end{array}\right]
\]

The matrices need not be design matrices with elements of 0 and \(\pm 1\). Multiplication (computer assisted, one hopes) will confirm the equality of the projector matrices for the pair
\[
\begin{align*}
& \mathbf{x}_{a}=\left[\begin{array}{rrrrrr}
234 & 250 & 311 & 284 & 144 & 234 \\
290 & 347 & 350 & 333 & 152 & 290 \\
170 & 175 & 265 & 189 & 101 & 170 \\
264 & 297 & 286 & 331 & 170 & 264 \\
185 & 229 & 365 & 287 & 161 & 185 \\
208 & 236 & 337 & 256 & 135 & 208 \\
218 & 230 & 227 & 216 & 96 & 218 \\
161 & 165 & 174 & 153 & 69 & 161
\end{array}\right] \text { and } \begin{array}{l}
\text { (8 } x 66) \\
\text { rank=4 }
\end{array} \\
& \mathbf{z}_{b}=\left[\begin{array}{rrrrrrr}
7 & 5 & 8 & 3 & 7 & 5 & 8 \\
2 & 14 & 9 & 1 & 2 & 14 & 9 \\
3 & 2 & 7 & 9 & 3 & 2 & 7 \\
6 & 6 & 11 & 5 & 6 & 6 & 11 \\
5 & 1 & 13 & 5 & 5 & 1 & 13 \\
3 & 4 & 10 & 8 & 3 & 4 & 10 \\
3 & 9 & 4 & 3 & 3 & 9 & 4 \\
2 & 6 & 3 & 4 & 2 & 6 & 3
\end{array}\right] \tag{2.8.10}\\
& \begin{array}{l}
\left(\begin{array}{ll}
8 & x
\end{array}\right) \\
\text { rank }=4 .
\end{array}
\end{align*}
\]

The two matrices have the same number of rows and the same rank. They do not have the same number of columns.

One matrix connecting \(X_{a}\) and \(X_{b}\) of (2.8.10) by
\[
X_{a}=X_{b} M \text { is }
\]
\[
M=\left[\begin{array}{rrrrrr}
11 & 1 & 9 & 4 & 4 & 11 \\
8 & 7 & 5 & 9 & 3 & 8 \\
2 & 6 & 13 & 6 & 5 & 2 \\
7 & 4 & 8 & 2 & 1 & 7 \\
3 & 9 & 2 & 10 & 3 & 3 \\
7 & 9 & 5 & 3 & 1 & 7 \\
3 & 5 & 7 & 9 & 4 & 3
\end{array}\right] \begin{aligned}
& \text { (} 7 \times 6) \\
& \operatorname{rank}=5
\end{aligned} .
\]

Two others are
\[
M=\left[\begin{array}{llllll}
7 & 5 & 5.5 & 7 & 3.5 & 7 \\
7.5 & 8 & 5 & 6 & 2 & 7.5 \\
2.5 & 5.5 & 10 & 7.5 & 4.5 & 2.5 \\
7 & 4 & 8 & 2 & 1 & 7 \\
7 & 5 & 5.5 & 7 & 3.5 & 7 \\
7.5 & 8 & 5 & 6 & 2 & 7.5 \\
2.5 & 5.5 & 10 & 7.5 & 4.5 & 2.5
\end{array}\right]=\begin{aligned}
& (7 x 6) \\
& \text { rank }=4
\end{aligned}
\]
\[
\mathbb{N}=\left[\begin{array}{rrrrrr}
14 & 10 & 11 & 14 & 7 & 14 \\
15 & 16 & 10 & 12 & 4 & 15 \\
5 & 11 & 20 & 15 & 9 & 5 \\
7 & 4 & 8 & 2 & 1 & 7 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]=\begin{aligned}
& (7 \times 6) \\
& \text { rank }=4
\end{aligned}
\]
where \(X_{b}^{+}\)is the Moore-Penrose generalized inverse and \(X_{b}^{-}\) is a generalized inverse constructed by the method of Searle [1982, p.217]. Result R1 of Section 2.8.6, (p. 83), discusses such inverses.

Note that for each of the above five matrices, the rank equals neither the number of rows nor the number of columns. The rank of \(M\) is five; the rank is four for the other four matrices.

\subsection*{2.8.3 Estimable Functions}

When x does not have full rank, the generalized inverse of \(X^{\prime} X\) is not unique, and consequently neither is the estimate of \(\hat{\beta}, \hat{F}\). However, certain linear functions of the elements of \(\hat{\hat{F}}\) do yield identical (invariant) values for all generalized inverses. Such invariant functions are called estimable functions, estimable because the estimate is not altered by (is invariant to) the choice of the generalized inverse. It is known that the linear function \(\mathbb{P} F\) is estimable if and only if a matrix \(\mathbb{B}\) exists such that \(\mathbb{A}=\mathbb{E X}\); also, that the "best" (minimum variance, unbiased) linear estimator of \(\mathbb{A}_{\hat{F}}\) is \(\hat{\mathbb{A}} \hat{\tilde{F}}\). [See Graybill 1983, p. 134 and the Note ending p. 135, or Searle 1987, p. 221 and 287-288.]

Such an estimate is also invariant over all pairs of matrices satisfying Theorem 2.8.3. Consider the estimable function \(\mathbb{A}_{a} \vec{F}_{a}\). It is estimated by \(\vec{H}_{a} \hat{F}_{a}\), where \(\mathbf{X}_{\mathbf{a}}\) is used in the model equation to estimate \(F\). Thus,
\[
\mathbb{H}_{a} \hat{F}_{a}=\mathbb{B} \mathbf{X}_{a} \hat{F}_{a}=\mathbb{E}\left[\mathbf{X}_{a}\left(\mathbf{X}_{a} \cdot \mathbf{X}_{a}\right)^{-} \mathbf{X}_{a}\right] \mathbf{F}
\]

Provided \(X_{b}\) satisfies Theorem 2.8 .3 , one may substitute it into the above brackets and obtain

Because \(F_{b}\) equals \(\mathbb{B X}_{b}\), the function \(F_{b} F_{b}\) is estimable and its estimate equals the estimate of the function \(\mathbb{H}_{a} \mathcal{F}_{a}\), as shown in (2.8.12a).

\subsection*{2.8.4 Reductions in Sums of Squares}

The model equation of (2.8.1) fits to the data both the mean and treatment effects. The sum of squares due to fitting this model is \(R(\mu, \tau)\), and equals (2.8.4) (and (2.8.5), (p. 76)). The sum of squares due to the mean alone is \(R(\mu)\). This sum of squares has the same form as
 (2.8.3), (p. 74). The reduction in the sum of squares due to adding treatments, once the mean is already in the model, is \(R(\tau \mid \mu)=R(\mu, \tau)-R(\mu)\).

Provided the conditions of Theorem 2.8.3 are met, as in (2.8.2), (p. 74), the reduction in the sum of squares using the dummy or coding matrix is equal to the reduction using the usual-constraints model matrix.

Each of the columns of \(\mathbf{x}_{\text {тe }}\) of (2.8.3), (p. 74), is orthogonal to the column of ones of \(\mathbf{x}_{\mu}\). Consequently, \(R_{e}(\mu, \tau)=R_{e}(\mu)+R_{e}(\tau)\), and \(R_{e}(\tau \mid \mu)=R_{e}(\mu, \tau)-R_{e}(\mu)=\) \(R(\mu)+R_{e}(\tau)-R(\mu)=R_{e}(\tau)\). But this orthogonality is not the case for \(\mathbf{x}_{\text {TC }}\), the dummy coding matrix, and for it \(R_{C}(\tau \mid \mu) \neq R_{C}(\tau)\). Theorem 2.8 .3 tells us why the sums of squares due only to treatments differ in the two model matrices, that is, why \(R_{e}(\tau) \neq R_{C}(\tau)\). (Removing a row of \(X_{e}\) would correspond to one treatment's having fewer observations than other treatments. In such an unbalanced case, the columns of \(\mathbf{x}_{\text {te }}\) are not orthogonal to the column of \(X_{\mu}\) and \(\left.R_{e}(\mu, \tau) \neq R_{e}(\tau).\right)\)

Examination of the two design matrices shows that no matrix \(\mathbb{M}\) exists such that \(\mathbf{E}_{T C}=\mathbf{E}_{T e}{ }^{M}\), as seen in
\[
\mathbf{x}_{\mathrm{Te}}=\left[\begin{array}{rrr}
1 & 0 & 0 \tag{2.8.12b}\\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & -1 & -1
\end{array}\right] \quad \text { and } \quad \mathbf{x}_{\mathrm{TC}}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] .
\]

Any matrix \(M\) capable of transforming the top three rows of \(\mathbf{x}_{\text {тe }}\) into the top three rows of \(\mathbf{x}_{\text {TC }}\) is incapable of transforming the fourth row of \(\mathbf{x}_{\text {тe }}\), (-1 -1 -1 \()\), into the fourth row of \(\mathbf{x}_{\text {TC }}\), (000). The columns of \(\mathbf{E}_{\text {TC }}\) are not linear combinations of the columns of \(\mathbf{x}_{\text {тe }}\). Their column spaces differ, thus Theorem 2.8.3 cannot be
satisfied and the projector matrices cannot be equal. If the column of l's \(^{\prime}\) is included, then a M matrix does exist and Theorem 2.8.3 applies as demonstrated in (2.8.9), (p. 76).
2.8.5 Converting the Estimator \(\hat{\boldsymbol{F}}_{C}\) to \(\hat{\boldsymbol{F}}_{\mathrm{e}}\)

Theorem 2.8.3 provides an easy proof for Theorem 2.8.1 which is due to Ott [1977, first ed., p. 524], who implies the sufficient conditions stated below. It allows one to obtain the estimates (\(\hat{\beta}_{e}\)) from one design matrix (\(\mathbf{X}_{\mathrm{e}}\)) directly from the estimates (\(\hat{\mathrm{F}}_{\mathrm{C}}\)) obtained from another design matrix (\(X_{C}\)) without computing \(X_{e}{ }^{\prime} \mathbf{F}\). This theorem of Ott led to Section 3.8. It is a fullrank reparameterization of \(\boldsymbol{\beta}_{\mathrm{C}}\).

\section*{Theorem 2.8.1}
\[
\begin{align*}
& \text { For matrices } \mathbb{X}_{C} n x q, X_{e} \text { nxp, and } \mathbb{M} p x q \text { with } \\
& X_{C}=X_{e} M \text { and } \operatorname{rank}\left(X_{e}\right)=\operatorname{rank}\left(X_{C}\right)=p, \\
& \text { then } \quad \hat{\mathbf{I}}_{e}=\hat{\mathbf{I}}_{c}, \text { and } \tag{2.8.13}
\end{align*}
\]
where \(\hat{\mathbf{Y}}_{(\cdot)}\) and \(\hat{\boldsymbol{P}}_{(}\),) are the usual least squares estimators.

Proof.
Since the conditions for Theorem 2.8.3 are satisfied, one may replace the projector matrix for \(X_{e}\) with that of \(\mathrm{x}_{\mathrm{C}}\) and obtain
\[
\begin{align*}
& \hat{X}_{e} \equiv z_{e} \hat{F}_{e}=z_{e}\left(z_{e}{ }^{\prime} z_{e}\right)^{-1} z_{e}{ }^{\prime} \bar{F} \tag{2.8.15}
\end{align*}
\]

Then one equates \(\mathrm{E}_{\mathrm{e}} \hat{\mathrm{F}}_{\mathrm{e}}\) and \(\mathrm{X}_{\mathrm{C}} \hat{\mathrm{F}}_{\mathrm{C}}\) and solves for \(\hat{\mathrm{F}}_{\mathrm{e}}\). The assumption that \(\operatorname{rank}\left(\mathrm{E}_{\mathrm{e}}\right)=\mathrm{p}\), its number of columns, gives \(z_{e}{ }^{\prime} z_{e}\) a true inverse and thus the unique solution for \(\hat{F}_{e}\).

A use of (2.8.14) is to convert the SAS PROC GLM solution vector to the usual-constraints solution. Using PROC IML, one constructs \(\mathrm{E}_{\mathrm{e}}\) and \(\mathrm{E}_{\mathrm{C}}\) as in (2.8.2) and obtains the matrix in the brackets of (2.8.14). Then, dropping the elements of \(\hat{\mathrm{F}}_{\mathrm{C}}\) which SAS has set to zero, one obtains \(\hat{\vec{F}}_{e}\) via (2.8.14). Finally, one equates the estimate for the level with the largest subscript, here \(\hat{\tau}_{4}\), to the negative of the sum of the estimates for the other levels, here \(-\left[\hat{\tau}_{1}+\hat{\tau}_{2}+\hat{\tau}_{3}\right]\).
2.8.6 Proof of Theorem 2.8.3

Results R1 through R8 are used to prove Theorem 2.8.3. All matrices have real elements.

R1. For any matrix there is a generalized inverse matrix, \(\mathbb{G}\), satisfying any one or more of the following conditions
\[
\begin{aligned}
& \text { R1.1 figif = } \\
& \text { RI. } 2 \mathbb{G A G}=\mathbb{G} \text { reflexive, } \\
& \text { R1.3 (AG) }{ }^{\prime}=\mathbb{A G} \text { symmetric, and } \\
& \text { R1.4 (Gif)' = Gif symmetric. }
\end{aligned}
\]
[Ben-Israel and Greville 1980, p. 7-22.]
No notation is standard. We use \(\mathbb{(1 , 2 , 3)}\) to indicate membership in the set of generalized inverses \(\mathbb{G}\) satisfying conditions R1.1, R1.2, and R1.3. Others use \(\mathbb{T}_{1 r}^{-}\), the letter "l" to indicate the set of least squares generalized inverses \(\left\{\mathbb{A}^{(1,3)}\right\}\), and the "r" to indicate the set of reflexive generalized inverses \(\left\{\mathbb{m}^{(1,2)}\right\}\). We drop the set indication \(\{\cdot\} ;\) it is implied throughout. For \((1,2,4)\) another notation is \(\mathbb{m}_{m r}^{-}\), the set of minimum-norm reflexive generalized inverses. Only the Moore-Penrose generalized inverse, \(\boldsymbol{m}^{(1,2,3,4)} \equiv \mathrm{m}^{+}\)is unique. A generalized inverse satisfying at least condition R1.1 is denoted \(\mathbb{A}^{-}\). The particular matrix selected is immaterial provided it is a member of the class indicated by the superscript(s).

R2. \(\operatorname{rank}[\mathbf{X}]=\operatorname{rank}\left[\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-} \mathbf{I}^{\prime}\right] . \quad[\) Graybill 1983, Theorem 6.6.8, p. 134.]

R3. \(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{E}\right)^{-} \mathbf{E}^{\prime}=\mathbf{E} \mathbf{X}^{+}\). For \(\mathbf{X} \mathbf{n x p}\), all generalized inverses, including \(\mathbf{x}^{+}\), are pxn; thus the multiplication of the right hand side is permitted. When \(x\) has full column rank \(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{I}^{\prime}\) also equals \(\mathbf{E X}^{+} . \quad\) [Graybill 1983, Corollary 6.6.9.3, p. 135, or Searle 1982, p. 221-222.]

R4. For any matrices \(\mathbb{A}\) and \(\mathbb{B}\) of suitable dimensions, the Moore-Penrose generalized inverse of their product, \(\left(\mathbb{A X}_{\mathbb{B}}{ }^{+}\right.\), can always be expressed as
\[
(\mathbb{A} \mathbb{B})^{+}=\mathbb{B}^{(1,2,4)_{\mathbb{A}^{2}}(1,2,3)} \quad\left(=\mathbb{E}_{\operatorname{mr}}^{-} \mathbb{G}_{\underline{1}}^{-}\right) .
\]
[Shinozake and Sibuya 1974, Theorem 3.2, p. 34.]
R5. For a \(\mathbb{H}^{(1,2,3)}\) such that \(\mathbb{T}^{(1,2,4)}\) is a solution to \((\mathbb{A B})^{+}\)of \(R 4\), the form of \(\mathbb{B}^{(1,2,4)}\) may be written as
\[
\mathbb{E}^{(1,2,4)}=\mathbb{B}^{+}+\left\{(\mathbb{A B})^{+} \mathbb{A}-\left[\mathbb{I I}-(\mathbb{A B})^{+} \mathbb{A} \mathbb{B}\right] \mathbb{B}_{\mathbb{A}^{+}}(1,2,3) \text { 电 }\right\}
\]
\[
\mathbf{x}\left\{\mathbb{I}-\mathbb{B E}^{+}\right\}
\]
\[
+\mathbb{K}\left\{\mathbb{I}-\left\{\left(\mathbb{I}-\mathbb{E B}^{+}\right) \mathbb{A}^{(1,2,3)}\right]\left\{\left(\mathbb{I}-\mathbb{B B}^{+} \mathbb{A}^{(1,2,3)}\right]\right\}\right.
\]
\[
\mathbf{x}\left\{\mathbb{I}-\mathbb{E B}^{+}\right\},
\]
where \(\mathbb{K}\) is an arbitrary \(q x p\) matrix, \(\mathbb{A}\) is \(n \times p\), and \(\mathbb{E}\) is pxq. [Wibker, Howe, and Gilbert 1979, Theorem 4, Equation 17 , p. 112.] That such \(\mathbb{A}^{(1,2,3)}\) and \(\mathbb{P}^{(1,2,4)}\) exist follows from R4.

R6. Theorem 2.8.2.
For \(\mathbb{A}^{(1,2,3)}\) and \(\mathbb{B}^{(1,2,4)}\) satisfying R5,

The proof proceeds by postmultiplying the equation of \(R 5\) by \((1,2,3)\). This leaves the third term equal to zero as shown by straightforward multiplication and by Wibker, Howe, and Gilbert [1979] on the bottom of their page 112. Thus, the third term is dropped.

Removing the internal grouping in the second term of R5 gives
\[
\begin{aligned}
& \mathbf{x}\left\{\mathbb{I}-\mathbb{E B}^{+}\right\}
\end{aligned}
\]
\[
\begin{aligned}
& \mathbf{x}\left\{\mathbb{I}-\mathbb{R B}^{+}\right\} \\
& =\mathbb{B}^{+}+(\mathbb{A B})^{+} \mathbb{A}^{-\mathbb{B}^{+}}(1,2,3)_{\mathbb{A}} \\
& +(\mathbb{A B})^{+}(\mathbb{A B}) \mathbb{E}^{+}(1,2,3) \underset{\mathbb{A}}{ } \\
& -(\mathbb{A} \mathbb{B})^{+}(\mathbb{A B}) \mathbb{B}^{+} \\
& +\mathbb{B}^{+}{ }^{(1,2,3)(\mathbb{A B})} \mathbb{E}^{+} \\
& -(\mathbb{A B})^{+}(\mathbb{A} \mathbb{W}) \mathbb{B}^{+} \mathbb{M}^{(1,2,3)(\mathbb{A E}) \mathbb{E}^{+} .}
\end{aligned}
\]

Premultiplication by \(\mathbb{A} \mathbb{B}\) and postmultiplication by A \((1,2,3)\) gives
\[
\mathbb{A B G}^{(1,2,4)}(1,2,3)
\]
\[
=(\mathbb{A B}) \mathbb{B}_{\mathbb{A}^{+}}(1,2,3)+(\mathbb{A B})(\mathbb{A B})^{+} \mathbb{A \mathbb { A }}(1,2,3)
\]
\[
-(\mathbb{A B}) \mathbb{B}^{+}\left[\mathbb{A}^{(1,2,3)} \mathbb{A \mathbb { A }}^{(1,2,3)}\right]
\]
\[
+\left[(\mathbb{A B})(\mathbb{A B})^{+}(\mathbb{A B})\right] \mathbb{B}^{+}\left[\mathbb{A}^{(1,2,3)} \mathbb{A R}^{(1,2,3)}\right]
\]
\[
-\left[(\mathbb{A B})(\mathbb{A B})^{+}(\mathbb{A B})\right] \mathbb{B}^{+} \mathbb{A}^{(1,2,3)}
\]
\[
+(\mathbb{A B}) \mathbb{B}^{+} \mathbb{A}^{(1,2,3)}(\mathbb{A B}) \mathbb{B}^{+} \mathbb{A}^{(1,2,3)}
\]
\[
-\left[(\mathbb{A B})(\mathbb{A B})^{+}(\mathbb{A B})\right] \mathbb{B}^{+} \mathbb{A}^{(1,2,3)}(\mathbb{A B}) \mathbb{B}^{+} \mathbb{A}^{(1,2,3)} .
\]

Applying R1.1, or R1.2 as appropriate, to the terms within the brackets gives

Cancellation of terms gives the result.
R7. If \(\operatorname{rank}(\mathbb{A B})=\operatorname{rank}(\mathbb{A}) \Rightarrow\left[\mathbb{A}(\mathbb{A} \mathbb{B})^{-}\right]=\mathbb{F}^{-}\).
[Searle 1982, Exercise \(39(\mathrm{a})\), p. 226.]
R8. For any matrix \(\mathbb{A}, \mathbb{A}^{(1,2,3)}=\mathbb{A}^{+}\). [Wibker, Howe, and Gilbert 1979, p. 109.]
\[
\begin{aligned}
& \operatorname{ABEG}(1,2,4){ }_{\boldsymbol{H}}(1,2,3) \\
& =(\mathbb{A B}) \mathbb{E}_{\mathbb{H}^{+}}(1,2,3)+(\mathbb{A B})(\mathbb{A B})^{+}{ }_{\mathbb{A}}(1,2,3) \\
& \text { - } \quad(\mathbb{A B}) \mathbb{B}^{+} \mathbb{A}^{(1,2,3)} \\
& +(\mathbb{A B}) \mathbb{B}^{+}{ }_{(1,}(1,2,3) \\
& -\quad(\mathbb{A B}) \mathbb{B}^{+}{ }_{\neq}(1,2,3) \\
& +(\mathbb{A B}) \mathbb{B}_{\mathbb{H}^{+}}(1,2,3)(\mathbb{A B}) \mathbb{B}_{\mathbb{H}^{+}}(1,2,3) \text {. } \\
& \text { - (} \mathbb{A B}) \mathbb{B}^{+} \mathbb{H}^{(1,2,3)(\mathbb{A} \mathbb{B}) \mathbb{B}^{+} \mathbb{H}^{(1,2,3)} .}
\end{aligned}
\]

We now repeat the statement of and prove Theorem 2.8.3.

Theorem 2.8.3.
For any matrices \(g_{S}(n \times q), X_{a}(n \times p)\), and \(\mathbb{M}(p x q)\)
\[
\begin{align*}
& z_{a}\left(z_{a}^{\prime} z_{a}\right)-z_{a}^{\prime}=E_{b}\left(E_{b}^{\prime} z_{b}\right)^{-} z_{b} \tag{2.8.16}\\
\Leftrightarrow & \left\{\begin{array}{l}
z_{a}=z_{b} M \text { for some } \mathbb{M}, \text { and } \\
\operatorname{rank}\left(x_{a}\right)=\operatorname{rank}\left(z_{b}\right) .
\end{array}\right. \tag{2.8.17}
\end{align*}
\]

Proof.
(2.8.16) \(\Rightarrow\) (2.8.18) by R2.

By R3 one may replace (2.8.16) with
\[
\begin{equation*}
\mathrm{x}_{\mathrm{a}} \mathrm{x}_{\mathrm{a}}^{+}=\mathrm{x}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}^{+} \tag{2.8.16*}
\end{equation*}
\]
(2.8.16*) \(\Rightarrow\) (2.8.17)

Multiplying (2.8.16*) on the left by \(X_{a}\) and using R1.1 gives
\[
\begin{aligned}
& x_{a}=x_{a} x_{a}^{+} x_{a}=x_{b}\left(x_{b}^{+} x_{a}\right) \text {, or } \\
& x_{a}=x_{b} \mathbb{N}^{*}, \text { with } M^{*} \equiv x_{b}^{+} z_{a} .
\end{aligned}
\]

Note that \(\mathbb{M}^{*}\) need not equal \(\mathbb{N} ; ~ M 1\) need not be unique.
(2.8.17) and \((2.8 .18) \Rightarrow(2.8 .16)\)

By assumption (2.8.17), \(\quad X_{a} X_{a}^{+}=X_{b} H\left(X_{b}\right)^{+}{ }^{+}\).
Applying R 4 to (\(\left.\mathrm{X}_{\mathrm{b}} \mathbb{H}\right)\) gives
\[
z_{a} z_{a}^{+}=z_{b} \min (1,2,4) z_{b}(1,2,3) .
\]

Applying R6 (Theorem 2.8.2) to the entire right hand side of the above gives

By assumption (2.8.17) \(\mathrm{z}_{\mathrm{b}} \mathbb{M}=\mathrm{z}_{\mathrm{a}}\); assumption
(2.8.18) adds \(\operatorname{rank}\left(X_{b} \mathbb{M}^{\prime}\right)=\operatorname{rank}\left(X_{b}\right)\), the condition for R7, which, applied to the term within brackets [] above, gives
\[
x_{\mathrm{a}} \mathrm{x}_{\mathrm{a}}^{+}=\mathrm{x}_{\mathrm{b}}\left[\mathrm{x}_{\mathrm{b}}^{-}\right] \mathrm{x}_{\mathrm{b}} \mathrm{x}_{\mathrm{b}}(1,2,3)
\]

Applying R1.1 to the first three matrices of the right hand side gives \(X_{a} X_{a}{ }^{+}=X_{b} X_{b}(1,2,3)\).

Applying R8 gives the result \(X_{a} X_{a}{ }^{+}=X_{b} X_{b}{ }^{+}\).

Finally, R3 permits returning to the desired form \(x_{a}\left(x_{a}{ }^{\prime} x_{a}\right)^{-} x_{a}{ }^{\prime}=x_{b}\left(x_{b}{ }^{\prime} x_{b}\right)^{-} x_{b}{ }^{\prime}\).

Note that Assumption (2.8.18) requires rank(\(\left.X_{a}\right) \leq \operatorname{rank}(\mathbb{M})\) (and rank \(\left(X_{b}\right) \leqq \operatorname{rank}(\mathbb{N})\)), but none of the matrices need be of full row or full column rank. The matrix M need not be square, in which case \(p \neq q\).

Proof of Theorem 2.8.3 is straightforward under the more restricted cases of
a) \(X_{a}\) and \(X_{b}\) have full column rank \((p=q)\) and \(M\) has \(a\) true inverse \(\mathbb{H}^{-1}\), and
b) \(\left(X_{a} \mathbb{M}\right)^{+}=\mathbb{M}^{+} x_{a}^{+}\)and \(\mathbb{M}\) has a true inverse.

The difficulty in (b) is to set the minimum restrictions
on \(X_{a}\) and \(\mathbb{M}\) such that \(\left(X_{a} M^{+}\right)^{+}=M^{+} \Sigma_{a}^{+}\). These restrictions must link both the column and null spaces of the two matrices. See Greville [1966] for conditions under which this equality holds. Shinozake and Sibuya's Theorem 3.2 [1974] permits the use of the less restrictive inverses \({ }_{N T}(1,2,4)\) and \(x_{a}(1,2,3)\), thus avoiding the difficulty.

The projection matrix for \(X_{a}\) is a projector on the range or column space or manifold (equivalent terms) of \(\mathrm{E}_{\mathrm{a}}\) along the null space of \(\mathrm{E}_{\mathrm{a}}\), and likewise for the projection matrix for \(\mathbb{Z}_{\mathrm{b}}\). The equality of the two projectors is the equality of the column spaces of \(\mathrm{E}_{\mathrm{a}}\) and \(\Sigma_{b}\) and the equality of the null spaces of \(X_{a}\) and \(X_{b}\). Postmultiplication of \(\Sigma_{b}\) by \(H\) generates a new member in the set of all linear combinations of the column vectors of \(X_{b}\). Thus, \(X_{a}\) has the same column space as \(X_{b}\). Conditions (2.8.17) and (2.8.18) of Theorem 2.8.3 imply the equality of the column spaces of \(X_{a}, X_{b}\), and hence of their respective projectors. Thus, their orthogonal basis may be chosen to be identical, giving identical orthogonal complements and null spaces. (See Graybill [1983], Theorem 5.4.3, p. 87 and Corollary 5.4.4, p. 89.)

\subsection*{2.8.7 Readings in Generalized Inverses}

The novice to the topic of generalized inverses with courses in linear algebra and linear models could begin with Chapter 8 of Searle [1982]. Several numerical examples introduce the topic. Chapter 6 of Graybill [1983] covers the Moore-Penrose and generalized inverses. Care should be taken with his notation, especially if simultaneously reading Searle. Cline [1979] has geometric illustrations as well as numerical examples and exercises. He focuses on the Moore-Penrose inverse; later chapters touch on other generalized inverses and introduce the Drazin inverse.

The first three chapters of Ben-Israel and Greville [1980] contain a good introduction to the multi-condition generalized inverses, such as \(\mathbb{A}^{(1,2,3)}\), used in Theorem 2.8.3 and in statistical applications. Subsequent chapters cover applications in areas of mathematics outside of statistics. Boullion and Odell [1971] present partitioned matrices and statistical applications including sequential least squares, quadratic forms, and stochastic matrices. Their Notes and Comments provide useful insights and direct the reader to the major and more readable early papers. Pringle and Rayner [1971] bring together many results on generalized inverses. They discuss the multi-condition generalized inverses and
how to compute them, the over-parameterized linear model (\(X\) not of full column rank), and the linear model with a singular variance-covariance matrix.

Rao and Mitra [1971] thoroughly cover the statististical applications of generalized inverses, including the case of a singular variance-covariance matrix. They discuss many additional multi-condition matrices created by attaching additional characteristics to those of R1. The novice will find the going there easier after grasping the suggested parts of Searle, Graybill, Ben-Israel and Greville, and Cline. The specialist should consult Nashed [1976] for an annotated bibliography nearly complete up to 1976. Zielke [1978] and Campbell [1982] provide more recent bibliographies.

We return to the normally distributed random error model with a discussion of early understanding of this type of error. As Chapter Three will make clear, there are types of errors which do not have the characteristics discussed in the following section.

\section*{Section 2.9}

\section*{Early Understanding of Random Error}

Section 2.9 illustrates the early understanding of random error using citations from Galileo and Gauss. The citations are grouped into fourteen categories. The chapter ends by introducing two different types of errors and contrasting their characteristics with those of the errors discussed by Galileo and Gauss. Chapter Three investigates these two different types of error.

The linkage of normally distributed random errors with least squares estimation grew out of the expansion of global navigation and nationwide surveying, and the beginning of modern astronomy in the late 1500's in Europe. Workers in these areas made careful and repeated measurements of an object assumed to be in a fixed place, for example a star. As few, if any, of the measurements precisely equaled one another, workers came to realize that all measurements erred from the true value. While improving their methods and instruments, they also realized that errors inevitably remained and described these errors.

The following excerpts illustrate the thinking of the times and the understanding of the errors which today are addressed by the normal distribution model and least squares estimation technique. Providing the excerpts are Galileo Galilei [GG] (1564-1642) from his work in stellar distances and Karl Friedrich Gauss [KG] (1777-1885) from
his work in the determination of orbits. Similar perceptions are found in the writings of others throughout the two centuries. Maistrov [1974, pages 30-35 and 148-157] presents a more extensive review of the historical development of the theory of errors. See also Sheynin [1966].
1. A unique true value exists; errors are deviations from it.

Doubtless one must say that [the supernova of 1572] was located in a single place at a unique and determinate distance from the earth. [GG 281]

Whenever the calculations made from the observations . . . do not agree in putting it in the same place, there must be errors in the observations [GG 289]

The quantities \(s, s^{\prime \prime}, s^{\prime \prime}, s^{\prime \prime \prime}, ~ e t c\). will furnish as many different determinations of the same quantity. [KG 250]
2. Errors are measured in units of the observations, not in units of values calculated from them.

The size of the instrumental errors, so to speak, must not be reckoned from the outcome of the calculation, but according to the number of degrees and minutes actually counted on the [astronomical] instrument. [GG 293]

If the astronomical observations and other quantities, on which the computation of orbits is based, were absolutely correct... .
[KG 249]
3. Types of errors form a continuum from systematic to random.
[Systematic errors] may be predicted and evaluated since these are either constant or vary in a regular manner. . . . Such a division of error into two kinds is relative, and in many cases depends upon the problem at hand. [KG in Maistrov, page 155]
4. Both types of error may be reduced by experimental technique and measuring devices.

Tycho Brahe [the astronomer] measured the same object under varied conditions for the purpose of elimination of errors. [Maistrov, p. 152]

What faith can we have in calculations founded upon observations which . . . are made with less convenient and more unreliable instruments? [GG 310, see also GG 315-316]
5. Physically impossible values should be discarded.

Whenever the calculations imply that the two angles [of a triangle] exceed two right angles, the observations are to be taken as unquestionably mistaken. [GG 289, see also GG 290-291]
6. Random errors remain after systematic errors have been removed.

In the differences between the observed and computed places there will remain no trace of any law, which it would be possible to remove or sensibly diminish by a correction of the elements. [KG 252]
7. Random errors are inevitable.

We know too well that in the taking of only one altitude of the pole [Polaris] with the same instrument, in the same place, by the same observer who has repeated the observation a thousand times, there will still be a variance of one, or sometimes of many minutes. [GG 290]

All our measurements and observations are nothing more than approximations to the truth. [KG 249]
8. Small random errors are more likely than large ones.

One must believe that they would be more likely to err little than much. [GG 290]

Generally speaking, small errors oftener occur than large ones. [KG 253]
9. Positive random errors are as likely as negative random errors.

Or must the errors be always of one kind, so that when they err they are always mistaken by an excess, or always be a defect and never by an excess?

I do not doubt that they are equally prone to err in one direction [as] the other. [GG 291]
[As from the data no reason exists otherwise] we must assume, [based] upon the principles of probability, that greater or less errors are equally possible. [KG 253]
10. The distribution of random errors is symmetric.

The probability to be assigned to each error \(\Delta\) [delta]. . . should be . . . equal, generally, for equal opposite values of \(\Delta\). [KG 254]
11. The maximum probability of the true value is that which gives a zero value for the random error as measured from the true value.

And among the possible places, the actual place must be believed to be that in which concur the greatest number of distances, calculated on the most exact observations. [GG 293]

The probability to be assigned to each error 0. . . should be a maximum for \(s=0\). [KG 254]
12. For theoretical purposes, positive probability is assigned to large random errors.

The probability to be assigned to each error \(\Delta\). . . should vanish, if, for \(\Delta\) is taken the greatest error, or value greater than the greatest error . . . [and the probability must] converge to zero on both sides, asymptotically as it were from \(\Delta=0\). [KG 254]
13. Random errors are mutually independent.

Wherefore, since we are authorized to regard all observations as events independent of each other. . . . [KG 255] [The translation, at least, is obscure as to the source of the authorization.] 14. Multiple observations of the same object are to be combined by averaging.

If the degree of accuracy is to be presumed in all the observations . . . [it] must . . . be considered an axiom with the same propriety as the [axiom that the] arithmetical mean of several observed values of the same quantity is adopted as the most probable value. [KG 260]

But if . . . the [astronomical] observations are distant from each other by too great an interval of time, . . . so that it would not be admissible to regard their deviations as constant for all observations . . . [then] the
mean deviation . . . cannot be regarded as
common to all the observations. [KG 260]
Many experimental studies differ in an important aspect from the studies in navigation and astronomy which lead to the normally distributed random errors theory. In these experimental studies the observations, which are combined, are no longer made upon the same object. When such differing objects or experimental units are organic in nature, they are seldom identical in every aspect, even when the "same" experimental unit is measured at a later date.

When the experimental units differ, different responses, as measured without error, may arise from units receiving the same treatment. Such errors are not the result of errors in multiple observations of the same or physically identical objects. They arise independently of the error due to inadvertent changes in experimental conditions and/or subsequent measurements, that is, measurement errors. There is no a priori reason to expect the distribution of these errors to fit the above descriptions, especially numbers 8, 9, 10 , and 12 ; number 11 does not apply. Physically adjacent experimental units in agricultural studies, such as fields or plots, may not be independent, violating number 13.

Some organic experimental units may have a higher or lower response regardless of the treatment applied. Such units are more robust or less so than others. Such deviations from the mean response are experimental unit errors.

An experimental unit may perform like others receiving treatment \(A\), but quite differently from those receiving treatment \(B\) when it also receives treatment \(B\). This is experimental unit \(x\) treatment interaction error.

Either type of error causes an instability in the combined data not present in the studies of Galileo and Gauss or, typically, in studies using inorganic experimental units. For example, the outcome may be altered if most of the robust experimental units receive treatment \(A\) while most of the nonrobust units receive treatment \(B\), as opposed to the reverse assignment of treatments. Or, should the penicillin-allergic experimental units receive the placebo, all will go well; not so if the penicillin goes to the allergic experimental units. In extreme cases, the outcome of the experiment depends upon the randomization used to link treatments with experimental units. There appears to be no provision within the normally distributed random errors theory for this type of instability of results.

If either experimental unit error and/or experimental unit \(x\) treatment interaction error is an amalgamation of elementary errors, one could employ a central limit
theorem to support treating its distribution as approximately normal. For example, compare the three assumptions of Hagen's Hypothesis [C.R. Rao, 1973, p. 161] with, respectively, excerpts 6, 13 , and 9 above. But, these errors need not be an amalgamation; they may arise from a single cause, different perhaps for each experimental unit. The measurement error is the more likely to be an amalgamation of elementary errors satisfying some central limit theorem, and having a distribution approximately normal.

One could argue that such errors arise from extreme experimental units which form a different population and, hence, should be removed from the experiment. An example is inclusion in the study population of only those whose skin test shows them not to be allergic to penicillin. However, such a test may not be known and, if known, would need be done in both the experimental material and the future applications of the results of the experiment. Furthermore, one may need to test for a plethora of conditions.

Chapter Three examines such such errors and the implications they have upon the classical analysis of covariance.

\section*{CHAPTER III}

\section*{THE RANDOMIZATION MODEL}

\section*{Section 3.1}

Introduction

\begin{abstract}
Suppose every experimental unit of the study is assigned, at the same time, to treatment \(k\). Suppose further that the responses from all experimental units are identical. Yet further, suppose that this holds when the same experimental units are assigned en masse to each of the other treatments. In such a situation, the normally distributed random errors theory of Chapter 2 would suffice. All errors would be failures to properly measure the response, or failures to apply the treatments identically, and/or the effects of factors not measured. But, in some investigations, experimental units and treatments are such that experimental units receiving the same treatment consistently fail to respond identically. Some experimental units may respond with higher yields to all treatment, others may respond with yields higher to some treatments and lower to others. Chapter Three examines the analysis of covariance as applied to such experimental units.
\end{abstract}

The foundation is the randomization model. This model considers the conceptual population of values actually obtained if the experiment were conducted anew using each of the possible assignments of treatments to experimental units. Reassigning all treatments to experimental units, each time repeating the experiment, is seldom, if ever, possible in practice. At the very least the experimental units are older and have been exposed to the treatments of previous experiments. Thus, the population of outcomes is conceptual, existing only in artificial simulations.

Subsequent chapter subheadings and topics are
Section 3.2 Randomization
Section 3.3 Errors and Their Implications
Section 3.4 The Randomization Model
Section 3.5 The Normal-Randomization Model
Section 3.6 The Randomization Test
Section 3.7 Randomization, Anova Terms and Estimators

Section 3.8 Expected Value of the F-Ratio
Section 3.9 Experimental Procedures when Both Errors are Present.

\section*{Section 3.2}

Randomization

Section 3.2.1 introduces the experimental unit assignment probability. Sections 3.2.2-3.2.4 discuss methods of linking experimental units and treatments. Section 3.2.5 links assignment and selection probabilities. Sections 3.2.6 and 3.2.7 discusses restricted randomization and unequal selection probabilities. The final section, 3.2.8, discusses why one randomizes. Major results are the \(N(E)\) of (3.2.4), (p. 108), the selection process of (3.2.7), (p. 109), and Theorem 3.2.1, (p. 112), linking the two types of probabilities.

\subsection*{3.2.1 Definition of Randomization}

Consider one fixed treatment, k. By randomization we mean that the experimental unit(s) assigned to treatment \(k\) are not fixed a priori. Instead, the experimental unit(s) are assigned by a process which makes the treatment to which each unit is assigned a random event. The process must uphold the assumptions of the model, here being Assumption 8, (p. 22), that randomization occurs independently within each block, and Assumption 5, (p. 20), which is satisfied by an equal number, r, of experimental units per treatment per block.

The notation for experimental unit ijl receiving treatment \(k\) is \(U_{i j l k}\). Within the \(i \underline{\text { th }}\) block, \(r\) times \(p\)
experimental units are available, of which \(r\) are assigned to each treatment. The subscripts 1 (the letter el) and j have values of, respectively, \(1=1,2, \ldots, r\), and \(j=1,2, \ldots, p\). As before, \(p=t\), the number of treatments. When there is but one experimental unit per treatment per block, \(r=1\), and the subscript 1 is dropped.

One way to randomly link experimental units to treatments is to select the experimental units at random from a larger, perhaps theoretically infinite, population. For some authors, randomization implies this. Here, the experimental units are the finite number in hand and awaiting assignment to treatments. The random linkage is of these experimental units to the treatments. Section 3.5.5, (p. 163), considers these experimental units as part of a larger population.
"Randomization" here has nothing to do with the survey sampling technique also called randomization or randomized response used in obtaining probabilistic answers to sensitive polling questions, as in Warner [1965].

Many randomization processes are possible. All
begin by uniquely labeling experimental units and treatments. Directly or indirectly, all assign to each jlth experimental unit of block i, an experimental unit assignment probability for each treatment, k. This is denoted as \(p(i j l: k)\), the probability that experimental unit \(U_{i j l}\) is assigned to treatment k. Typically, the assignment is made "at random," meaning with equal
probability. Such a process makes all p(ijl:k) equal.

\subsection*{3.2.2 A Sequential Selection Process}

The random process may be (a) a sequential selection process, (b) a mass draw process, or (c) a multi-stage process combining aspects of (a) and (b).

One sequential selection process selects, "at random", p of the experimental units and assigns them one by one "at random" to each of the \(t\) treatments, then repeats the process \(r\) times. As the two processes of (a) selection into group \(r\) and (b) assignment to treatment \(k\) operate independently,
\[
\begin{align*}
p(\mathrm{ijl:k} \mid r) & =\rho(\mathrm{ijl:k,} \mathrm{r}) / \rho(r) \\
& =\rho(\mathrm{ijl:k}) \rho(r) / p(r) \\
& =p(\mathrm{ijl:k}) \tag{3.2.1}
\end{align*}
\]
where \(p(r)\) is the probability that \(U_{i j l}\) is in group r.

\subsection*{3.2.3 A Two-Stage Selection Process}

A process in-between the sequential and mass draw processes proceeds block-wise in two stages per block. The first stage lists the set \(\mathbb{G}\) of unique, distinguishable groupings of the pr=tr experimental units of a block into \(t\) groups of \(r\) experimental units each. This set has \(N(G)\) elements. The example below lists four such groupings. There are (rt)! ways of ordering, or listing, the rt experimental units. However, not all are distinguishable for purposes of the test statistics and/or estimators. For each list, such as (a) below, one
divides the rt experimental units into \(t\) subgroups of \(r\) each. The first \(r\) comprise subgroup 1 , the second \(r\) comprise subgroup two and so on for each list. The parentheses of the example indicate this grouping. Subgroups with the same experimental units, regardless of the order of the experimental units, are indistinguishable from one another, such as (a) and (b) of the example. Each subgroup of the same \(r\) experimental units may be ordered in r! ways. This holds for each of the \(t\) subgroups. Thus, the initial (rt)! lists, each of rt experimental units, reduce to (rt)!/[(r!)t] lists, each of \(t\) subgroups of \(r\) experimental units each. The groupings of the reduced list are distinguishable. The \(t\) subgroups can be arranged in \(t\) ! ways which, with an assumption, are indistinguishable, as in (a), (b) and (c) of the example. The assumption is that the function of the data used subsequently, as in a hypothesis test, does not depend upon the order of arranging the subgroups, nor on the order of the experimental units within each subgroup. In the example, this is the ordering of (a) the subgroups bound by parentheses and (b) the experimental units within each subgroup. This is the case for the usual estimators, (p. 30), and F-ratio test statistics, (p. 62). This is not the case when \(t=2\) and the test statistic is the onetailed student's t-test. In such a case, there are \(2 \mathrm{~N}(G)\) unique, distinguishable groupings of the experimental
units, half of which differ only in the sign of their test statistic from the other half. The example below illustrates this by considering only the first two columns (\(t=2\)). Note that sets (a) and (b) become distinguishable from (c). For fully-worked examples using the t-test, see Kempthorne [1952, p. 232] or Kempthorne and Doerfler [1969, p. 232, Table 1]. For the functions used herein, the initial (rt)! lists reduce to \(N(G)\), the number of unique, distinguishable groupings of experimental units per block,
\[
\begin{equation*}
N(\xi)=\left\{\frac{(r t)!}{(r!)^{t} t!}\right\} \tag{3.2.2}
\end{equation*}
\]

The first stage ends by selecting, "at random," one of the \(N(G)\) unique, distinguishable groupings. This stage is a mass draw process.

The example below lists four of the (rt)! orderings of the experimental units. The numbers represent the experimental units. There are \(t=3\) subgroups of \(r=2\) experimental units each; \(N(G)=(6!) /\left[\left(2^{3}\right)(3!)\right]=\) 720/[(8)(6)] = 15. Note that (a), (b) and (c) are indistinguishable from each other, while each is distinguishable from (d). Thus, only two elements of the set \(G\) are listed below,
(a) \((1,2) \quad(3,4) \quad(5,6)\)
(b) \((2,1)(4,3)(5,6)\)
(C) \((3,4)(1,2) \quad(5,6)\)
(d) \((4,1)(2,5)(3,6) \quad\).

The second stage begins with the single grouping selected at the end of stage one, such as the grouping which includes (a), (b) and (c) above. Then one selects "at random" one of the \(t\) sets (of rexperimental units each) to assign to treatment \(k=1\). Repeat this for each of the \(k=2,3, \ldots, t\) treatments. There are \(t\) ! ways of assigning the \(t\) sets of experimental units to the \(t\) treatments. As described, the second stage is a sequential assignment process, but it can be performed as a mass draw process.

The set of all block-wise randomizations is \(E\).

Combining stages one and two gives as the total number of unique, block-wise randomizations,
\[
\begin{align*}
N(B) & =\{N(G)\}\{t!\} \\
& =\left\{(r t)!/\left[(r!)^{t} t!\right]\right\}\{t!\} \\
& =(r t)!/\left[(r!)^{t}\right] \tag{3.2.3}
\end{align*}
\]

This is the multinomial coefficient for distributing rt objects into \(t\) groups of \(r\) objects each. When \(t=2\), (3.2.3) reduces to (\(t^{t}\)), as in the above cited examples of the \(t\)-test. When \(t=3\) and \(r=2\), as in the example, \(N(B)=(3 \cdot 2)!/(2!)^{3}=720 / 8=90\).

The set of all experiment-wise randomizations is \(\varepsilon\). For a model which randomizes independently in each of b blocks (Assumption 8), there are
\[
\begin{equation*}
N(E)=\{N(B)\}^{b}=\{N(\xi) t!\}^{b}=\left\{(r t)!/\left[(r!)^{t}\right]\right\}^{b} \tag{3.2.4}
\end{equation*}
\]
unique, experiment-wise randomizations. When there is
but one experimental unit per treatment per block, \(r=1\), \(N(G)=1\) and the numbers of unique block- and experiment-wise randomizations are, respectively,
\[
\begin{align*}
& N(B)=(t!) \quad \text { and } \tag{3.2.5}\\
& N(E)=(t!)^{b} . \tag{3.2.6}
\end{align*}
\]

The values of \(N(G), N(B)\) and \(N(E)\) in (3.2.2) - (3.2.6) are the largest consistent with the model assumptions of Chapter Two; smaller values may also be consistent, as in (3.2.12) and (3.2.13), found below (p. 115).

The two-stage process permits unequal probabilities at each stage. Restricted randomization, discussed in Section 3.2.6, (p. 114), is an example of this.

\subsection*{3.2.4 A Mass Draw Selection Process}

The mass draw process conceptually performs all of the possible experiment-wise randomizations. The experimental units are not physically assigned all possible ways. Rather, the \(N(E)\) experiment-wise randomization labels are ordered in an arbitrary, but fixed manner, say, \(s=1,2,3, \ldots, N(E)\). To each label, an experiment-wise randomization selection probability is attached, \(p(s)\). These probabilities guide the process of selecting the one experiment-wise randomization used for the actual experiment. The process is
(a) select with uniform probability \(R\), \(0<R<1\);
(b) find the value of \(1 \leq S \leq N(E)\) satisfying
(c) select the plan with label s=S.
[Kempthorne and Doerfler, 1969, p. 232, as corrected.] Because \(R\) is uniform (0,1), the probability of \(R\) falling into any interval is the length of the interval, \(p(s)\). Experimental randomizations with larger values of \(p(s)\) have greater probabilities of capturing R. The selected label, \(s\), then directs the actual assignment of experimental units to treatments. The mass draw process attaches one experiment-wise randomization selection probability, \(p(s)\), to each of the \(N(E)\) experiment-wise randomizations. In contrast, the sequential selection process attaches t treatment assignment probabilities, p(ijl:k), to each of the bpr experimental units.

\subsection*{3.2.5 Assignment and Selection Probabilities}

Typically, the literature uses "at random" to mean equal probability for each of the \(\rho(i j: k)\) assignment and \(\rho(s)\) selection probabilities, that is,
\[
\begin{align*}
\rho(s) & =1 / N(E) \quad \text { and } \tag{3.2.8}\\
\rho(i j: k) & =1 / t . \tag{3.2.9}
\end{align*}
\]

Because equal probability is assigned to \(\rho(s), \rho(s)=1 / \mathrm{N}\) with \(N=N(E)\) or \(t\) as indicated in (3.2.8) and (3.2.9).

We now prove that equality of all \(\rho(s)\) implies the equality of all \(\rho(i j 1: k)\), that is (3.2.8) \(\Rightarrow\) (3.2.9). As examples, we use (3.2.2), (p. 107), (3.2.4), (p. 108), and the below (3.2.12), (p. 115), (3.2.13), (p. 116). Note that (3.2.6), (p. 109), is the special case of \(r=1\) of (3.2.4) and for \(r=1\), (3.2.2), (p. 102), has \(N(G)=1\).

The proof uses inclusion probabilities lCassel, Särndal, Wretman, 1977, p. 11-12 and 68]. For an arbitrary block, define \(E_{j l}: k\) as the set of all blockwise randomizations which assign experimental unit jl to treatment \(k\). The number of such randomizations is easily found with the two-stage process of Section 3.2.3. At the first stage, the number of groupings is \(N(\mathbb{G})\), as in (3.2.2) or the below (3.2.12). At the second stage, the set containing experimental unit \(j 1\) is assigned to treatment \(k\). The remaining \((t-1)\) sets may be assigned in (t-1)! ways to the remaining \(t-1\) treatments. This process is repeated \(N(\mathbb{G})\) times, once per element of \(\mathcal{G}\), giving as the number of elements in \(\varepsilon_{j l: k}\),
\[
\begin{equation*}
N\left(E_{j l: k}\right)=\{N(E)\}\{(t-1)!\} \tag{3.2.10}
\end{equation*}
\]

For example, using \(N(\xi)\) of (3.2.2) and (3.2.12),
\[
\begin{aligned}
N\left(e_{j l: k}\right) & = \begin{cases}\left\{(r t)!/\left[(r!)^{t} t!\right]\right\}\{(t-1)!\} & \text { for (3.2.2) } \\
\left\{(t!)^{r} / t!\right\}\{(t-1)!\} & \text { for (3.2.12) }\end{cases} \\
& = \begin{cases}(r t)!/\left[(r!)^{t} t\right] & \text { for (3.2.2) } \\
(t!)^{r} / t & \text { for (3.2.12) }\end{cases}
\end{aligned}
\]

There are \(N(\mathbb{B})\) block-wise randomizations for each of the remaining b-1 blocks, giving
\[
\begin{equation*}
N\left(\varepsilon_{i j l: k}\right)=N\left(\varepsilon_{j l: k}\right)[N(B)]^{b-1} \tag{3.2.11}
\end{equation*}
\]

The first order inclusion probability is the probability of assigning \(U_{i j l}\) to treatment \(k\), which equals \(p(i j l: k)\). By definition, this is the total of all selection
probabilities summed over only those elements of \(E\) which assign experimental unit ijl to treatment \(k\).

Theorem 3.2.1
a) All \(p(s)\) are equal \(\Leftrightarrow p(s)=1 / N(\xi)\).
b) All \(p(i j l: k)\) equal \(\Leftrightarrow p(i j l: k)=1 / t\).
c) All \(p(s)\) are equal \(\Rightarrow\) all \(p(i j l: k)\) are equal.

Proof:
\[
\begin{aligned}
& \text { Parts (a) and (b) follow directly from the } \\
& \text { definition of a probability set function. For (c), } \\
& \rho(i j l: k) \equiv \sum_{i j l: k}^{\sum p(s)}=\sum_{i j l: k}^{\sum[N(E)]^{-1}}=e_{i j l: k}^{\sum[N(B)]^{-b}} \\
& =\left\{N\left(\varepsilon_{i j l: k}\right)\right\} \times\left\{\left[N(\xi)^{-1}(t!)^{-1}[N(B)]^{-(b-1)}\right\}\right. \\
& =\left\{N\left(\varepsilon_{j l: k}\right)[N(B)]^{b-1}\right\} \\
& x\left\{\left[N(G)^{-1}(t!)^{-1}[N(B)]^{-(b-1)}\right\}\right. \\
& =\left\{N(G)[(t-1)!][N(\mathbb{B})]^{b-1}\right\} \\
& x\left\{\left[N(G)^{-1}(t!)^{-1}[N(B)]^{-(b-1)}\right\}\right. \\
& =[(t-1)!] /[t!] \\
& =1 / \mathrm{t} \text {. }
\end{aligned}
\]

For the \(N(E)\) of (3.2.4) and (3.2.13) the proof is
\[
\rho(i j l: k)=\sum_{i j 1: k} p(s)=\varepsilon_{i j l: k}^{\sum[N(E)]^{-1}=\varepsilon_{i j 1: k}^{\sum}[N(E)]^{-b}}
\]
\[
\begin{aligned}
& = \begin{cases}\varepsilon_{i j 1: k}^{\sum} \frac{(r!)^{t}}{(r t)!}[1 / N(B)]^{b-1} & \text { for (3.2.4) } \\
e_{i j 1: k}^{\sum} \frac{1}{(t!)^{r}}[1 / N(B)]^{b-1} & \text { for (3.2.13) }\end{cases} \\
& =\left\{\begin{array}{l}
\left\{N\left(\epsilon_{i j l: k}\right)\right\}\left\{\frac{(r!)^{t}}{(r t)!}[1 / N(B)]^{b-1}\right] \\
\left\{N\left(\varepsilon_{i j l: k}\right)\right\}\left\{\frac{1}{\left.(t!)^{r}[1 / N(B)]^{b-1}\right\}}\right. \text { for (3.2.4)}
\end{array}\right. \\
& =\left\{\begin{array}{l}
\left\{\frac{(r t)!}{\left[(r!)^{t} t\right]}[N(B)]^{b-1}\right\}\left\{\frac{(r!)^{t}}{(r t)!}\left\{\frac{1}{N(\bar{B})}\right\}^{b-1}\right\} \text { for (3.2.4) } \\
\left\{\frac{(t!)^{r}}{t}[N(\mathbb{B})]^{b-1}\right]\left\{\frac{1}{\left.(t!)^{r}\left\{\frac{1}{\operatorname{N(B)}}\right\}^{b-1}\right\} \text { for (3.2.13) }} .\right.
\end{array}\right. \\
& =1 / t \text {. }
\end{aligned}
\]

The second order inclusion probability, within a block, is defined as the probability that experimental units \(U_{j l}\) and \(U_{j} l^{\prime \prime}\), are both assigned to treatment \(k\). The inclusion probability is the summation of \(p(s)\) over the set \(\varepsilon_{j l, j 11: k}\) defined similarly to \(\Theta_{j l: k}\). This probability is prior to the creation of the sets \(\mathcal{G}\). Afterward, the second order probability is 0 if 1 and \(l^{\prime}\) are in different sets \(j\) and \(j^{\prime}\). Two such experimental units will not be assigned to the same treatment \(k\). If l and \(l^{\prime}\) are in the same \(j\) set, the second order inclusion probability is the probability of this set being assigned to treatment \(k\). Higher order inclusion probabilities are defined likewise up to and including order \(r\), after which all are zero. No more than \(r\) experimental units may be assigned to treatment \(k\) in any one block. A conjecture
is that the implication reverse to Theorem 3.2.1(c) requires equality for all inclusion probabilities for orders from 1 through r.

Bailey [1987, p. 712], discussing an additive design (see Section 3.3 .7 below) without a covariate, defines a randomization process as
a) unbiased if \(E_{R}\left[\hat{\tau}_{k}-\hat{\tau}_{k},\right]=\tau_{k}-\tau_{k}\),,\(k \neq k\) and as
b) valid if \(E_{R}[T r e a t m e n t ~ M e a n ~ S q u a r e] ~\)
\[
=E_{R}\left[\text { Error Mean Square] when } H_{a}: \mu, b, \tau=\mathbb{0}\right. \text {. }
\]

A process is unbiased if and only if all p(ijl:k) are equal. Thus, by Theorem 3.2.1, biased additive designs lacking a covariate must have unequal selection probabilities, \(p(s)\). "For most common designs validity can be characterized in terms of [second order inclusion probabilities]" [ibid. p. 712]. See Bailey [1987] for references to earlier discussions of these definitions. Often "unbiased" is used for (b).

Two processes, \(a\) and \(b\), whose sets of \(p(s)\) are equal, that is \(\rho_{a}(s)=\rho_{b}(s)\) for each \(s\), are equivalent selection processes. The two-stage selection process of Section 3.2.3, (p. 105), with equal probability of selection at each stage is equivalent to the mass draw selection process with \(p(s)=1 / N(E)\).

\subsection*{3.2.6 Restricted Randomization}

Randomization may be constrained or restricted by adding a condition to the model, or equivalently,
assigning a zero value to some selection probabilities. For example, in each block one could group the rt experimental units to balance the range of the covariate "initial height" by assigning one experimental unit of the tallest \(t\) to each treatment, then one experimental unit of the next tallest \(t\) to each treatment and so on, finally assigning one experimental unit of the shortest \(t\) to each treatment. This adds a condition to the model by restricting the membership of each of the \(t\) subgroups of G. Alternatively, one could assign zero values of \(p(s)\) to selected groupings of \(G\). For example, either tactic could eliminate (d) from the list in Section 3.2.3.

We derive \(N(G)\) for such a condition on the model. Taking the tallest \(t\) experimental units, assign them one at a time to the \(t\) subgroups. There are \(t\) ways of assigning the first experimental unit, \(t-1\) ways of assigning the second and so on. This gives a total of \(t\) ! ways of assigning the tallest \(t\) experimental units. Repeat this process with the next tallest \(t\) experimental units, again obtaining \(t!\) ways of assigning them.

Continuing for \(r\) such groups gives (t!) \({ }^{r}\) initial lists. The \(t\) subgroups can be arranged in \(t\) ! ways, making the number of distinguishable groups,
\[
\begin{equation*}
N(G)=(t!)^{r} / t!. \tag{3.2.12}
\end{equation*}
\]

The number of possible experiment-wise randomizations is
\[
\begin{align*}
N(E) & =\{N(B)\}^{b}=\{[N(\xi)][t!]\}^{b} \\
& =\left\{\left[(t!)^{r} / t!\right][t!]\right\}^{b} \\
& =\left\{(t!)^{r}\right\}^{b} . \tag{3.2.13}
\end{align*}
\]

With \(t=3\) and \(r=2\), this restriction gives \(N(G)=(3!)^{2} /(3!)\) \(=6\) and \(N(B)=(3!)^{2}=36\). Without the restriction, \(N(G)=90\), as shown below (3.2.3), (p. 108). Such a restriction helps to equalize the covariate values for each treatment within each block, improving the balance of the covariate in the design. Verrill [1993] terms this predictor sort sampling and discusses the characteristics of experiments so conducted. For an example, see Reisch and Webster [1969, p. 705] where \(N(G)\) is that of (3.2.13), (p. 116).

The serpentine method of balancing ranks the experimental units by their single covariate, say from high to low, then assigns treatments \(1,2, \ldots, t\) in the following order (1,2,...,t), (t,t-1,t-2,...,1), \((1,2, \ldots, t),(e t c.) . T h i s\) method so constrains G that
\[
\begin{equation*}
N(\xi)=1 \text { for all r. } \tag{3.2.14}
\end{equation*}
\]

See Finney [1957 p. 374-375, his "objective rule of allocation"l, who does not recommend it due to the unpredictable bias in estimation of experimental error it may produce. Various such balancing methods have been proposed [Finney, 1946; Lucas, 1950; Greenberg, 1953; Finney, 1957; Cox, 1957, Methods III, IV and V; Reisch and Webster, 1969, p. 705; Wu, 1981A].

\subsection*{3.2.7 Unequal Selection Probabilities}

> Instead of restricting randomization with zero-valued selection probabilities, one may assign unequal or weighted selection probabilities. For example, the values of \(p(s)\) may be assigned via the concomitant variables or functions thereof. A few such weighting methods have been proposed and are further discussed in section \(4.7,(p .320)\).
> When the experimental unit assignment probabilities, p(ijl:k), are unequal and/or dependent, it is difficult to compute the experiment-wise randomization selection probabilities, p(s), from the p(ijl:k). The mass draw process sidesteps this difficulty by assigning the p(s) directly. The experimental unit assignment probabilities are assigned, if at all, via the first order inclusion probabilities. The remainder of Chapter 3 considers equal probabilities as in Theorem 3.2.1, (p. 112), and randomization restrained only by the model assumptions. \(N(E)\) designates all possible randomizations; zero valued \(p(s)\) are used to avoid those randomizations eliminated by, say, balancing on the covariate. Chapter 4.7, (p. 320), examines unequal, nonzero-one, assignment probabilities.

\subsection*{3.2.8 Why Randomize}

Many reasons have been advanced for including a random component in the linking of experimental unit to treatment in designed experiments. Cox [1958, p. 74-85], Bailey [1982] and Folks [1984] provide reviews. Four of the more frequently cited benefits follow. The paper by Basu [1980] and accompanying discussion touches on each of these points. A Bayesian view is in Rubin [1978]. 1. Randomization (with equal \(p(s)\)) provides an equal probability that any two first, second, etc. adjacent experimental units will be assigned to the same treatment or treatment pair, or triplicate etc. This is useful when errors in adjacent (physically, temporally, etc.) experimental units are of equal magnitude and correlated, as happens in field plots in agricultural experiments. As the number of experimental units increases, the "adjacent to" probabilities, and hence correlations, uniformly shrink. Under Assumption 2, that the errors are normally distributed, zero correlations implies independence of the errors, satisfying Assumption 3, that the variance-covariance matrix equals \(\mathbb{I} \sigma^{2}\). Thus, "the expected value of the total error for any one treatment is independent of that for any other treatment" [Anderson and Bancroft, 1952, p. 221].

The goal of the experimenter is a randomization
which appears free of concentrations of adjacent
treatments. Of course, the randomization actually selected may or may not so appear.
2. Randomization protects one from favoring a particular treatment and from charges of having done so [Lane, 1980, p. 5891. Failure to randomize has invalidated experiments, for example, the Lanarkshire milk trials of 1930 [Cox, 1958, p. 77-81]. Randomization is now standard practice in medicine and other fields. Recall the work by Thornett discussed in Chapter 2.3.1, (p. 21), linking randomization to the independence of (a) the assignment of treatments to experimental units and (b) the responses of the experimental units.

Goals One and Two conflict in that concentrations of adjacent or nearby treatments can be detected in all but a few randomizations. Should the selected randomization have clear concentrations of treatments, the door is open to charges of having favored a treatment, even if without intention. Yet, failure to utilize the initial randomization opens the door to charges of manipulation. Yates [1975, p. 586] claims that Fisher ducked the question of what to do when the selected randomization has a "systematic" arrangement of treatments. Cox [1958, p. 85-891 suggests three options, (a) add a condition to the model statement, as in Section 3.2.6, (p. 114), (b) ignore the suspect randomization and select another, or (c) employ restricted randomization. For designs without a covariate, Bailey [1985] presents unbiased and
valid, (p. 114), restricted randomization processes for designs with two or four treatments on eight experimental units. A second paper [Bailey, 1987] adds more designs and details the permutation group methods involved. Both papers specify all suspect randomizations a prioris and assign them zero values of \(p(s)\). As few unbiased and valid restricted randomization are available, in practice one follows Cox's suggestion (b) and discards suspect randomizations. The probability of a randomization actually being used does not, in practice, equal [N(E) \(]^{-1}\). [Kotz and Johnson, Vol. 7, p. 524-530]. 3. Randomization provides robustness against model inadequacies [Hooke, 1958; Royal and Herson, 1973 (for survey sampling); Wu, 1981B (£or linear models)]. As Godambe [1966] points out, under equal-probability sampling, the likelihood function is flat (uniform), thus uninformative. Hence, his argument for abandoning probabilistic sampling. His suggestion and manner of promoting it [Hartley and Rao, 1971; Godambe, 1975], have aroused much discussion [Godambe and Thompson, 1971]. Basu's 1980 paper continues the argument. If the model equation and assumptions are correct, the optimal design approach leads to nonrandom, purposeful, assignment of treatments to experimental units [Kiefer, 1959; Fedorov, 19691. However, should the model be in error, purposeful assignment can lead to biased estimates.
4. In several experimental designs, all lacking a covariate, randomization provides a basis for statistical inference without the necessity for assuming a distribution for the residuals [Kempthorne, 1975, p. 326, Section 1.15]. Kempthorne [1955, p. 949\(]\) points to the difficulty of testing the assumptions for the normally distributed random errors model of Chapter Two. When the errors are additive (Section 3.3.7, p. 134) the randomization test (Section 3.6, p. 166,) avoids such assumptions. Cochran and Cox [1957, p. 6-9] discuss these issues.

Assumption 3, that the variance is \(\# \sigma^{2}\), (p. 24), removes randomization Goal (1) Erom consideration. Goal (3) is beyond the scope of this paper, but of importance. Section 3.7.5, (p. 216), shows that the presence of a single covariate gives some randomizations greater statistical power than others, at least for normally distributed random error. Section 3.8.2 discusses why a covariate makes impossible the closed-form expectations helpful in Goal (4). We feel Goal (2) is essential for confidence in and adoption of experimental findings when the errors discussed in the next section may be present.

\section*{Section 3.3}

Errors and Their Implications

The algebraic identity of Section 3.3.1 introduces two types of errors which are detailed in Sections 3.3.3 and 3.3.5. Section 3.3.2 reviews the "technical error". An interaction error is presented in Section 3.3.4. Section 3.3 .6 connects various definitions of the error and interaction terms. Section 3.3.7 discusses additivity. A covariate requires redefining the errors, as shown in Section 3.3.8. Section 3.3.9 compares the hypotheses with and without additivity. of major interest is (3.3.8), (p. 136), and the discussion of (3.3.1) vs (3.3.3), (p. 138).

\subsection*{3.3.1 Two New Error Terms}

The error term of the model equations of Chapter Two, (2.3.1), (2.3.4) and (2.3.6), (p. 16-22), is assumed to be due to inaccuracy of experimental technique. It is postulated as part of the model, as opposed to being defined explicitly. The randomization model replaces it with one or more new error terms. These new errors require the identifiability of the experimental unit and, for one, the treatment assigned to it. The label ijk now replaces the ik used in Chapter Two. Throughout, we use \(r=1\) and drop the subscript 1. A superscript distinguishes between similar error terms; the notation (•) indicates that any of the similar terms
applies. When the model lacks a covariate, the terms are defined explicitly by a model equation which is an algebraic identity, such as (3.3.1) and (3.3.6) below. The averaging version of the dot notation simplifies such identities. An example of this notation is
\[
Y \omega_{k}=\frac{1}{D P} \sum_{i=1}^{b} \sum_{j=1}^{\sum} Y_{i j k},
\]
where \(Y_{i j k}\) is the unobservable true response when treatment \(k\) is applied to experimental unit ij. Conceptually, treatment \(k\) can be applied to all experimental units, and experimental unit ij may receive in turn each treatment \(k\), as in \(Y_{i j}\). One algebraic
identity is
\[
\begin{align*}
Y_{i j k} & =Y \ldots+\left(Y_{i} \ldots-Y \ldots\right)+(Y \ldots k-Y \ldots) \\
& +\left[\left(Y_{i \cdot k}-Y_{i} \ldots\right)-(Y \ldots k-Y \ldots)\right] \\
& +\left(Y_{i j} .-Y_{i} \ldots\right) \\
& +\left[\left(Y_{i j k}-Y_{i j} .\right)-\left(Y_{i \cdot k}-Y_{i} \ldots\right)\right], \\
& =\mu+b_{i}+\tau_{k}+(b t)_{i k}+e_{i j}+\Pi_{i j k} . \tag{3.3.1}
\end{align*}
\]

The second equality supplies symbolic names for the respective terms of the first equality. Variations of this equation and its last three terms are the subject of the following sections. Until Section 3.3.8, the model equation has no covariate. Note that \(\sum_{i=1}^{b} b_{i}=\sum_{k=1}^{t} \tau_{k}=0\), embodying Assumption 5, (p. 20).

\subsection*{3.3.2 Technical Error}
"Technical error" is the term used by Neyman [1935, p. 110, 114 and 145], Wilk [1955, p. 70; 1957, p. 224], and Wilk and Kempthorne [1955, p. 1148] for the normally distributed random error term of Chapter Two. The last two authors also use the term "measurement errors" [p. 1148]. Neyman describes the technical error as that "due solely to the inaccuracy of experimental technique, the vegetative conditions in all our hypothetical [agricultural] experiments being exactly the same" [p. 110]. In Neyman's description, the vector of technical errors has dimension bpt x linstead of bt x 1 as in Chapter Two. This implies that his technical error may differ with each experimental unit-treatment combination, that is, with each reassigning of experimental units to treatments.

\subsection*{3.3.3 Experimental Unit Error}

Kempthorne [1952, p. 145-146] defines the experimental unit error as
\[
\begin{equation*}
e_{i j}^{K}=Y_{i j} \cdot-Y_{i}, \ldots, \tag{3.3.2}
\end{equation*}
\]
a term of the algebraic identity of (3.3.1). He describes it as "the deviation of the \(j \frac{t h}{}\) plot from the block mean averaging over all treatments" [p. 146]. It is "the difference between (a) the (conceptual) mean of the yields of all treatments on unit jof block i and (b) the mean over the whole of block i" [Wilk, 1955, p. 71].

Kempthorne uses the term "plot error"; Wilk uses "unit error." Roux [1982] uses this experimental unit error in a model equation containing a covariate, as discussed below in Section 3.3.8, (p. 136).

Bartlett [1935], Welch [1937], Pitman [1938] and Plackett's review of their results [1960, p.152-157], use an error term, \(e_{i j}^{P}\), which is similar to \(e_{i j}^{K}\) in that it is not determined by the particular treatment applied to experimental unit ij. Instead of defining \(e_{i j}^{P}\) as a term in an algebraic identity, they postulate it as an error term, say, as "arising from the variability among the [experimental units] of a [block], errors in measurement, and other accidents affecting particular individuals" [Pitman, p. 322-323]. Pitman includes technical errors in this term; other authors [Kempthorne, Wilk, op. cit.] assume the technical errors to be small enough to ignore. The \(e_{i j}^{P}\) experimental unit error is not a conceptual deviation of the ijth experimental unit as averaged over the treatments of the particular experiment; rather, it exists independently of any treatment. The \(e_{i j}^{K}\) of (3.3.2) may be large because the ijth experimental unit has a large response (\(Y_{i j k}\)) for but one treatment. The \(e_{i j}^{P}\) would be large (or small) for all treatments; it is the robustness (or lack of) of experimental unit ij to all treatments.

Kempthorne [1952, p. 137] uses the \(e_{i j}^{K}\) of (3.3.2), but with the model equation
\[
\begin{align*}
& Y_{i j k}= Y \ldots+\left(Y_{i} \ldots-Y_{1} \ldots\right)+\left(Y_{i j k}-Y_{i j} .\right) \\
&+\left(Y_{i j}-Y_{i} \ldots\right) \\
&=\mu+b_{i}+\tau_{k}^{K}+e_{i j}^{K} . \tag{3.3.3}
\end{align*}
\]

In this model, the treatment effect, \(\tau_{k}^{K}\), is assumed to be identical for each experimental unit. In (3.3.1), (p. 123), \(\tau_{k}\) is the treatment effect as averaged over all experimental units. When the \(e_{i j}^{K}\) are considered as random variables, forcing them to sum to zero within each block imparts a correlation among them within each block. The variance-covariance matrix is not \(I r^{2}\) as in Assumption 3, (p. 24), but, rather is \(\psi_{\sigma}^{2}\) as in Assumption \(3^{*}\), (p. 16):

\subsection*{3.3.4 Block-Treatment Interaction}

Kempthorne [1952, p. 145-146] defines
\[
\begin{equation*}
(b t)_{i k}=\left(Y_{i} \cdot k-Y_{i} \ldots\right)-(Y \ldots k-Y \ldots) \tag{3.3.4}
\end{equation*}
\]
as "the deviation of the \(k\) th treatment from the overall mean, averaging over all plots." A term of the identity (3.3.1), (p. 123), it is "the difference between (a) the effect of treatment \(k\) on block \(i\) and (b) the treatment effect." Thus, "it is a measure of the extent to which treatment \(k\) and block i interact" [Wilk, 1955, p.7l]. It is not a random variable unless the blocking factors and/or their levels are a random sample from a larger
population. Herein, as in Chapter Two, we consider them fixed. By Assumption 7, (p. 21), this term is either zero or included in the normally distributed random error. Roux [1984] applies the multiplicative approach of Mandel [1961] to block-unit interaction.

\subsection*{3.3.5 Experimental Unit-Treatment Interaction}

The classical example of experimental unit-treatment interaction is penicillin allergy [Kempthorne, 1975, p. 324]. Should the penicillin treatment be assigned to an allergic experimental unit, the response is quite different than if the penicillin had been assigned to a nonallergic experimental unit. The conclusion of an experiment can be determined by a sufficient number of such unfortunate assignments.

Discussing the response for treatment \(k\) in block \(i\), Neyman [1935, p. 111 and 145] defines the "soil error" as
\[
\begin{equation*}
\pi_{i j k}^{N l}=Y_{i j k}-Y_{i \cdot k} . \tag{3.3.5}
\end{equation*}
\]

It is "the correction for fertility variation within the block" [ibid. p. 111]. Neyman's definition is in terms of the algebraic identity
\[
Y_{i j k}=Y \cdot \cdot k+\left(Y_{i \cdot k}-Y \cdot{ }_{k}\right)+\left(Y_{i j k}-Y_{i \cdot k}\right)
\]

The addition of terms for the mean and block requires redefining this interaction term as follows
\[
\begin{align*}
Y_{i j k} & =Y \ldots+\left(Y_{i} \ldots-Y \ldots\right)+(Y \ldots k-Y \ldots) \\
& +\left[Y_{i j k}+\left(Y \ldots-Y_{i} \ldots-Y \ldots j\right)\right] \\
& =\mu+b_{i}+\tau_{k}+\gamma_{i j k}^{N 2} . \tag{3.3.6}
\end{align*}
\]

This experimental unit-treatment interaction term contrasts (a) the response of experimental unit ij to treatment \(k\) with (b) the overall mean as adjusted for (i) the response of block i averaged over all treatments and experimental units and for (ii) the response of treatment \(k\) averaged over all experimental units. Its functional form is similar to the usual estimate for factor \(A\) by factor \(B\) interaction.

Kempthorne [1952, p. 145-146] defines a different experimental unit-treatment interaction,
\[
\begin{equation*}
n_{i j k}^{K}=\left(Y_{i j k}-Y_{i j}\right)-\left(Y_{i \cdot k}-Y_{i} \ldots\right) . \tag{3.3.7}
\end{equation*}
\]

It is a term of the algebraic identity of (3.3.1) and is "the deviation of the effect of the \(k\) th treatment on the \(j \frac{\text { th }}{}\) plot of the \(i \underline{\text { th }}\) block from the average effect in the ith block". [p. 146]. Wilk [1955, p. 72] describes it as "the difference between (a) the effect of treatment \(k\) on unit \(j\) of block \(i\) and (b) the effect of treatment \(k\) over all of block i. It is a measure of the extent to which treatment \(k\) and unit j of block i interact."

Roux [1984] defines an experimental unit-treatment interaction for the completely randomized design. It is identical to (3.3.7), but lacks the subscript i.

As with \(e_{i j}^{P}\), one may postulate an experimental unittreatment interaction, \(n_{i j k}^{P}\). The following graph illustrates this interaction error term.

Graph 3.3.1
Experimental Unit - Treatment Interaction \(\mathrm{Mij}_{\mathrm{i}}\)

The graph is that of a factor \(A\) by factor \(B\) interaction as in the normally distributed random error model, except here the second "factor" is the experimental unit. Of the experimental unit-treatment interaction terms, \(n_{i j k}^{N}\), most closely resembles the estimate of the \(A\) by \(B\) interaction. We use it to indicate the meaning of the postulated version of the experimental unit-treatment interaction term, \(\eta_{i j k}^{P}\).

Suppose several experimental units receive in turn treatments \(k\) and \(k '\) as in Graph 3.3.2.

The experiment proceeds under the assumption that the experimental unit-treatment errors are small relative to the treatment effects, as shown in the left-hand side of Graph 3.2 for plots one and two. The experimental unit \(i=1, j=1\) has zero interaction under either treatment k or \(\mathrm{k}^{\prime}\). Other experimental units respond to treatment k (and/or \(k^{\prime}\)) but over or under shoot the "true" effect of treatment \(k\) (and/or \(k^{\prime}\)). For these experimental units, any assignment of treatments to experimental units, such as the points with an asterisk (*), will lead to the correct conclusion that \(\tau_{k}>\tau_{k}\). . In experimental units \(j\) \(=3\) or 4 to the right-hand side of Graph 3.2, the plot errors are large relative to the treatment effects. The conclusion is determined by the assignment made. The assignment shown leads to the incorrect conclusion
\(\tau_{k}<\tau_{k}{ }^{\prime}\). The difference between points assigned to the same experimental unit is:
\[
Y_{i j k}-Y_{i j k},=\left(\tau_{k}-\tau_{k},\right)+\left(r_{i j k}-r_{i j k},\right),
\]
and is a fixed shift due to treatment differences which is constant for all experimental units, plus a shift due to interaction which may differ with each experimental unit.

Each of the experimental unit-treatment interaction error terms is a random variable, dependent upon the plot \(j\) to which treatment \(k\) is applied. Each is independent of the technical error \(\varepsilon\) and of the \(\eta_{i}(j)\) of a different block [Neyman, 1935, p. 146]. Two \(n_{i j}^{(j)}\) in the same block are not statistically independent, as the following joint probability of their indices is not factorable,
\[
p\left(I J K=i j k, I J^{\prime} K^{\prime}=i j j^{\prime}\right)=\left\{\begin{array}{cl}
0 & \text { for } j=j^{\prime} \\
t^{-1}[t-1]^{-1} & \text { or } k=k ' \text { or both } \\
\text { othise. }
\end{array}\right.
\]

When the entire set of \(n_{i j k}\) are considered as random variables, the entire set of bpt \(n_{i j k}\) are correlated, but the \(b p n_{i j k}\) appearing in any one randomization appear not to be. They may have a variance-covariance matrix of II \(\sigma^{2}\), as in Assumption 3, (p. 24).

\subsection*{3.3.6 Relationships Among Error Terms}

The various error terms are related as follows
\[
\begin{align*}
e_{i j}^{K}+n_{i j k}^{K} & =\eta_{i j k}^{N 1} \quad \text { and } \\
(b t){ }_{i k}^{K}+e_{i j}^{K}+\eta_{i j k}^{K} & =\eta_{i j k}^{N 2} \quad . \tag{3.3.8}
\end{align*}
\]

When algebraic identities define the error terms, the model must either (a) use one of the Neyman definitions, \(\mathrm{n}_{\mathrm{i}}^{\mathrm{N}} \mathrm{j}_{\mathrm{k}} \mathbf{B}^{\text {) }}\), without an experimental unit error term or (b) Kempthorne's definition \(\eta_{i j k}^{K}\) and include the experimental unit error term, \(e_{i j}^{K}\). When (bt) \(K_{i k}\) is zero, the definitions of \(\mathrm{m}_{\mathrm{ijk}}^{\mathrm{N}} \mathrm{l}\) and \(\mathrm{m}_{\mathrm{ijk}}^{\mathrm{N}}\), (3.3.5), (p. 127), and (3.3.6), (p. 132), are identical, as seen in (3.3.8).

The error term(s) may be postulated instead of defined in terms of an algebraic identity. In this case the model equation will include \(e_{i j}^{P}\) and/or \(\mathrm{n}_{\mathrm{ij} k}\), instead of those of (3.3.8). The interaction term, \(n_{i j k}{ }^{p}\), indicates the response by experimental unit ij over and above (a) that due to its robustness relative to other experimental units, \(e_{i j}^{P}\) and (b) that due to the treatment effect, \(\tau_{k}\), considered as averaged over all experimental units.

When for several experimental units the effect of \(e_{i j}^{P}\) and/or \(M_{i j k}^{P}\) is large relative to the effect of \(\tau_{k}\), the effects of \(\tau_{k}\) will be masked. Comparing subsets of the experimental units, say with the bootstrap procedure, may permit detection of treatment effects by removing
experimental units with large \(e_{i j}^{P}\) and/or \(\eta_{i j k}^{P}\). The model would no longer have the same number of experimental units per treatment per block. Such methods are not considered here.

Wilk [1955, p. 72] notes that \(\tau_{k}=0\) for all \(k\) does not imply (bt) \({ }_{i k}=0\) for all \(k\), nor does (bt) \({ }_{i k}=0\) imply \(n_{i j k}^{K}=0\) for all i and \(k\).

Wilk suggests that if blocking has successfully grouped experimental units that are homogeneous as to their responses to the treatments, then a zero blocktreatment interaction effect would imply a zero experimental unit-treatment interaction. The converse does not hold; small experimental unit-treatment interaction effects can coexist with large block-treatment interaction effects. An example is animal experimental units blocked by parents. Litter mates may differ little in their response to any treatment \(k\), making \(n_{j}^{(j)}\) small, but litter-to-litter differences may be substantial, making (bt) \({ }_{i k}\) large \([K e m p t h o r n e, ~ 1955, ~ p . ~ 952 ; ~ R o u x, ~ 1984, ~ p . ~\) 144]. The consistency of transmission of relevant genes to offspring, say by inbreeding, determines the success of such blocking. Should one treatment have an unusual and equal effect on one experimental unit of each block, then \(n_{i j} j_{j}\) would be large for that treatment, but (bt) \({ }_{i k}\) would be small.

\subsection*{3.3.7 Additivity}

Model equations lacking interaction are said to be additive or to have mutual additivity [Wilk and Kempthorne, 1955, p. 1149; Cox, 1958, p. 14-17]. For such model equations,
\[
\begin{align*}
& Y_{i j k}=\mu+b_{i}+\tau_{k}+e_{i j}, \text { or } \tag{3.3.9}\\
& Y_{i j k}=\mu+b_{i}+\tau_{k}+e_{i j}+\varepsilon . \tag{3.3.10}
\end{align*}
\]

Those model equations including interaction terms are non-additive. The interactions may be those of Section 3.3.4 [(bt) \(\left.{ }_{i k}\right]\) and/or Section 3.3.5 [\(\left.\eta_{i j k}^{P}\right]\) and/or interaction between two factors. Additivity in the strict sense excludes all interactions, but permits an experimental unit error, \(e_{i j} j^{\prime}\), in the model, as in (3.3.9). Additivity in the broad sense also excludes all interaction, but permits an experimental unit error, \(e_{1}^{(} j^{\prime}\), and a normally distributed random error, \(s\), as in (3.3.10) [Kempthorne, 1955, p. 952; W. J. Welch, 1990, p. 697]. Under broad additivity, it is the expected value of the difference between the responses of the same experimental unit subjected to two different treatments, \(k\) and \(k\) ', which equals \(\tau_{k}-\tau_{k}\). . The expectation is with respect to the normal distribution,
\[
E_{N}\left(Y_{i j k}-Y_{i j k}\right)=\tau_{k}-\tau_{k} \cdot
\]

Equation (3.3.11) summarizes these types of additivity,
\[
Y_{i j k}-Y_{i j k^{\prime}}=\left\{\begin{array}{lll}
\tau_{k}-\tau_{k}, & \text { for each ij} & \begin{array}{l}
\text { additive } \\
\text { strict sense }
\end{array} \\
\tau_{k}-\tau_{k}, & \text { expected value }\left(E_{n}\right) & \begin{array}{l}
\text { additive } \\
\text { broad sense }
\end{array} \\
\tau_{k}-\tau_{k}, & {\left[(b t)_{i k}-(b t)_{i k},\right]} & \text { non-additive } \\
& +\left[n_{i j k}-n_{i j k},\right] & (3.3 .11)
\end{array}\right.
\]

Treatments may be additive within a block, implying that all \(n_{j}^{(j)}=0\), but non-additive from block to block, implying that (bt) \({ }_{i k} \neq 0\) [Wilk, 1955, p. 72]. Model equations with the former, all \(n_{i j}^{(j)}=0\), have unit treatment additivity [Wilk and Kempthorne, 1955, p. 1150], also termed treatment-unit additivity [Wilk, l955, p. 72].

A nonrandom covariate with constant coefficient \(\bar{F}\) does not affect the additivity, or lack thereof, of the model equation, as the two treatments, \(k\) and \(k\) ', are applied to the same experimental unit, whose covariate value is unchanged. If the coefficient changes with the treatment, \(\mathcal{F}_{\mathrm{k}}\), then the model equation is non-additive.

Under additivity (btik \(=n_{i j k}=0\)) and without a covariate, Kempthorne points out [1955, page 956], that Randomization affects only the [experimental unit] error, this statement indicates the fields of application where randomization is important. One can envision experimental situations where [experimental unit] errors are trivial and the additional errors large in
```

comparison to them. In such a situation the lack
of randomization will not seriously invalidate
the experimental conclusions. This seems to be
to be the main reason why the randomization
experiment has not been essential to progress
in some of the physical and chemical sciences.

```

The inanimate "subjects" of the physical scientists are homogeneous experimental units which react identically to identical changes in treatments. They face no interacttion between the experimental unit \(i, j\) and the treatment \(k\); the interaction \(m_{i j k}\) equals zero for all randomizations. Researchers whose subjects are plants, animals, or humans face experimental units closer to the two examples of Graph 3.3.2, (p. 130), hopefully closer to those of the left-hand side. Ideally, the \(r_{i j k}\) and \(e_{i j}\) are small enough so that only a small percentage of the randomizations will provide incorrect conclusions.

\subsection*{3.3.8 Errors in the Covariate Model}

The presence of a covariate prevents defining the terms of the model equation by an algebraic identity such as (3.3.1), (p. 123), or (3.3.3), (p. 124). one way around this is to define
\[
\begin{equation*}
W_{i j k}=Y_{i j k}-F Z_{i j} \tag{3.3.12}
\end{equation*}
\]

One then uses the \(W_{i j k}\) in place of the \(Y_{i j k}\) in (3.3.1) or (3.3.3). This method postulates a known covariate slope coefficient, \(\bar{F}\).

A covariate with a constant slope coefficient \(\bar{F}\) is like experimental unit error in that it is attached to the experimental unit and is unaltered by the randomization. While the bp experimental unit errors are entirely unknown, the bp covariates are known, up to the unknown multiplicative constant \(\overline{\mathrm{F}}\). When the slope coefficient changes with each treatment, \(\mathcal{F}_{\mathrm{K}}\), the product \(\mathcal{F}_{\mathrm{K}} \mathrm{Z}_{\mathrm{ij}}\) has some aspects of the experimental unit-treatment interaction error. Like this error, the product changes with the treatment as \(\mathcal{F}_{\mathrm{K}}\) changes to \(\mathrm{F}_{\mathrm{K}}\). . Unlike this error, this product is known up to the multiplicative constants \(F_{k}, F_{k}\), etc. Also, the change from \(F_{k}\) to \(F_{k}\), is independent of the experimental unit, thus the ratio \(\left(F_{K} Z_{i j}\right) /\left(F_{K}, Z_{i j}\right)\) is constant for each covariate \(Z_{i j}\).

Roux [1982, p. 4] defines \(F\) as the term minimizing the variance of \(\hat{\tau}_{k}\), when \(\hat{\tau}_{k}\) is defined as in (2.4.29), (p. 32). His model equation is (3.3.3), (p. 124), with the covariate entering at the estimation stage. The definition of \(F\) is equal to the usual least squares estimator from the model equation
\[
\begin{equation*}
e_{i j}=f\left(z_{i j}-z_{i} .\right)+d_{i j}, \tag{3.3.13}
\end{equation*}
\]
where the \(d_{i j}\) represents deviation from regression. The resulting minimum variance of the estimated value of \(\tau\) is
\[
\begin{equation*}
\operatorname{var}\left(\hat{\tau}_{k}\right)=\sum_{i=1}^{\sum_{j}} \sum_{j=1}^{p}\left(d_{i j}\right)^{2} /\left[b^{2} t\right] \tag{3.3.14}
\end{equation*}
\]

More common is to postulate the model equation, as in Kempthorne [1952, p. 159]. A price is that "we are entirely dependent on the accuracy of the model . . . for the test of the hypotheses that there are no treatment effects." [ibid., p. 159].

\subsection*{3.3.9 Two Hypotheses: In-Particular and On-Average}

The hypotheses of interest in Chapter Two, (2.6.40), (p. 63), and (2.6.44), (p. 64), test at least one treatment being nonzero for the response of every experimental unit. This is the in-particular version of the hypotheses. In the randomization model, when there is experimental unit error, with or without normally distributed random error, again the hypotheses test a nonzero treatment effect for every experimental unit.

When there is experimental unit-treatment interaction, rijk, some experimental units may be positively affected, others negatively affected, and yet others unaffected, by one or more of the \(t\) treatments. Nevertheless, the treatment effect, averaged over all experimental units may be nonzero. In the randomization model with experimental unit-treatment interaction, the two hypotheses test at least one treatment being nonzero for the responses as aueraged over all experimental units receiving that treatment. This is the on-average version of the hypotheses. The truth of the in-particular hypothesis implies the truth of the on-average hypothesis, but the converse does not hold.

The randomization model equation of (3.3.3) lacks experimental unit treatment and block treatment interactions, but includes experimental unit error. This model equation tests the in-particular hypothesis, as the \(\tau_{k}^{K}\) of (3.3.3), (p. 124), suggests. The of \(\tau_{k}\) of (3.3.1), (p. 123), shows it to be averaged over all experimental units. It tests the on-average hypothesis.

The in-particular hypothesis interests the physician and his/her patient. They need to know if the treatment will work in their particular case. The on-average hypotheses interests the public health authorities and the society supporting them. They need to know if, on average, the society will benefit from the treatment, even if some are injured by it. The in-particular version interests the chemist verifying a mechanistic explanation for a physical phenomenon, such as generating oxygen and hydrogen by electrolysis. The on-average version interests the entomologist facing a diverse and evolving population, such as in mosquito control. When there is experimental unit-treatment interaction and/or block-treatment interaction, the standard analysis of variance of Chapter Two (with or without a covariate) gives the appearance of testing the in-particular hypothesis, when in fact, it only tests the on-average hypothesis. See Neyman [1935, p. 111, below (3) and 172-177], Welch [1937, p. 22-23] and Kempthorne [1952, p. 132-134; 1975, p. 324-325, Section 1.12] for discussions of these two hypotheses.

\section*{Section 3.4}

The Randomization Model

Sections 3.4.1 and 3.4.2 present the randomization model equation, assumptions and probability space. Section 3.4 .3 describes the parameter space and shows that interest centers in statistics of these parameters. Section 3.4 .4 contrasts assumptions underlying the randomization and normally distributed random errors models. Connections between survey sampling and randomization model concepts are discussed in sections 3.4.3 and 3.4.4. The major result is the probability space of Section 3.4.2, (p. 142).

\subsection*{3.4.1 The Model Equation and Assumptions}

The Randomization model equation is identical to (2.3.4), (p. 19), or (2.3.6), (p. 22), except the error term is \(e_{i j}\) and/or \(n_{i j k}\) in their postulated versions, as is necessary with a covariate. For convenience we drop the superscript \(P\). As \(r=1\), we drop the subscript 1. Assumptions 1 and 3-8 of the normally distributed random errors model hold. We add Assumption 9,
\[
\begin{equation*}
\sum_{j=1}^{p} e_{i j}=\sum_{j=1}^{p} n_{i j k}={ }_{k=1}^{t} n_{i j k}=0, \tag{3.4.1}
\end{equation*}
\]
for all blocks \(i=1,2, \ldots, b\).
In the unusual cases where these terms may be estimated, discussed below in Section 3.9, (p. 232), their estimators are similarly constrained.
3.4.2 The Probability Space for the Randomization Model

We follow Cassel, Sarndal and Wretman [1977,p. 1-31] in defining the probability space for the randomization model. They use (\(\downarrow, 0, p(s)\)) to denote the probability space as developed for survey sampling, instead of the more common notation (\(\Omega, \mathcal{F}, \mathcal{F}\)). We adapt their notation for the randomization model.

The randomization model has a finite population of bpt block-plot-treatment labels, ijk, which identify the responses \(Y_{i j k}\). Designate one set of all bpt of the labels as \(\operatorname{HJ}_{u}=\{111,112, \ldots, 11 t, 121, \ldots, 112 t\), ..., ijk, ..., bpt\}, where \(u=1,2, \ldots, b p\).

The \(\psi_{u}\) are identical for each value of \(u\). Any experimentwise randomization draws one label from fu for each of its bp experimental units. That is, there are bp draws of \(\overbrace{u}\).

Assume that each draw is independent from all others. This gives as \(\dagger 1\) the Cartesian product
\[
\tau_{1}=\Psi_{1} \times \psi_{2} \times \cdots \times \psi_{\mathrm{bp}} .
\]

The set if has bpt \({ }^{\text {bp }}\) elements. For two blocks and one experimental unit for each of four treatments, bp=(4)(2) =8, and typical elements, \(\psi\), of 9\(]\) are
(111, 122, 133, 144, 211, 222, 233, 244), or
(111, 121, 131, 141, 211, 211, 211, 211), or
(111, 112, 113, 114, 111, 112, 113, 114).
Each row, not each triplet, is one element of 41 . Elements (entire rows), such as the last two, are useless or impossible experiment-wise randomizations. In the second row only one treatment is used; in the third row the same experimental unit is reused. Such randomizations will be assigned zero probability. Only elements such as the first are possible experiment-wise randomizations. This Cartesian product representation is due to Dr. Sahadeb Sarkar with help from Dr. Ignacy Kotlarski and the author. Define 0 as the set of all sets of 4 , that is, the power set of 4 , plus the null set.

The probability density or mass (set) function, \(p(\cdot)\), is defined on the sets of 0 . Only those sets permitted by the experimental design, such as the \(N(E)\) sets of (3.2.4), (p. 108), or (3.2.13), (p. 116), have non-zero selection probability. Label these sets \(s=1,2\), \(\ldots, N(E), N(E)+1, \ldots, N(0) . \quad\) In these experimental designs all sets of \(\mathfrak{Q}\) with more than one element of \(\mathfrak{f}\) are
assigned zero selection probability, that is, the experiment is performed but once. In designs which reuse experimental units, such as crossover designs, only sets of \(d\) with two elements of \({ }^{4}\) may be assigned nonzero selection probability. All other sets, the vast majority of the sets in \(\|_{\text {, }}\) are assigned zero selection probability. Denote the summation over all elements of \(d\) as \(E\left({ }^{(}\right)\). For \(r=1\) and \(p=t\), one such \(p(\cdot)\) is
\[
\begin{aligned}
& f(\mathrm{~s})=\left\{\begin{array}{cl}
(\mathrm{p}!)^{-b} & \text { for the } N(\xi)=(\mathrm{p}!)^{\mathrm{b}} \text { elements of } \xi \subset \mathbb{Q} \\
0 & \text { otherwise, }
\end{array}\right. \\
& \text { with } \sum_{d} p(\mathrm{~s})=1
\end{aligned}
\]

For the randomization model, the probability space is the triple
\[
\begin{equation*}
\text { (t), d, } p(s)) \text {. } \tag{3.4.2}
\end{equation*}
\]

In the following we consider \(s=\{1,2, \ldots, N(E)\}\), it being understood that \(\rho(s)=0\) for the remaining sets of \(\&\).

The random vector of length \(b p, \quad \mathbf{~}(\psi)\), is a set function which assigns each element, \(\psi\), of \(\psi\) to a point in \(\mathbb{F}^{b p}\), a bp-dimensional Euclidean space,
\[
\begin{equation*}
\mathbf{I}(\psi): \psi->\mathbb{F}^{\mathrm{b}} \mathrm{p} . \tag{3.4.3}
\end{equation*}
\]

The sets, \(s\), and their probabilities, \(p(s)\), define the experimental design, just as they define the sampling design in survey sampling. In the terminology of survey sampling, the selection probability \(p(s)\) is the unordered sample design [Cassel, S \(\partial r n d a l\) and Wretman, 1977, p.l0].

\subsection*{3.4.3 Auxiliary Variables and The Data}

To each of the elements of any \(\psi_{u}\), say \(i j k\), is associated a known concomitant or auxiliary variable(s), such as the covariate \(Z_{i j}\). For each block-plot ij the covariate \(Z_{i j}\) is identical for each treatment and each is unaltered by the other.

There are bpt possible responses \(\mathbf{I}_{i j k}\). The vector \(\tilde{\mathbf{I}}\) of all of them is the parameter of the finite population. That is, \(\tilde{\mathbf{Y}}^{\prime}=\left(Y_{111}, Y_{112}, \ldots, Y_{11 t}, Y_{121}, \ldots, Y_{12 t}\right.\), \(\left.\ldots, Y_{i j k}, \ldots, Y_{b p t}\right)\).

The parameter space is \(\mathbb{R}^{b p t}\), a bpt-dimensional Euclidean space; \(\tilde{\tilde{I}} \equiv \mathbb{R}^{\mathrm{bpt}}\).

The data is the random vector \(\bar{Y}\), of length bp, taking observed values
\[
Y_{i j k}=\left\{\left(i j k, Y_{i j k}\right), i j k E s E q, Y_{i j k} \equiv \tilde{Y} \equiv \mathbb{R}^{b p t}\right\}
\]

A statistic is a function \(U\) of the data \(I\), such as \(U(\bar{Y})=\) \(F(\tau \mid \mu, b, F)\). In the randomization model, \(U(\bar{I})\) depends upon the parameter \(\tilde{F}\) only through (a) those \(Y_{i j k}\) which have been selected by randomization \(s\), and possibly through (b) known auxiliary information provided by the labels, ijk. The covariates, \(\mathrm{Z}_{\mathrm{ij}}\) 's, are such auxiliary information. Recalling that \(\tilde{\mathcal{I}}\) is the vector of parameters, we see that no unknown parameters enter into \(U(\bar{F})\). This definition of a statistic is the same as in the
normally distributed random errors model where such statistics as the F-ratio under the null hypothesis depend upon only known parameters, in this case the numerator and denominator degrees of freedom.

Interest in the randomization model is in such statistics, not the entire set of parameters \(\tilde{\mathbf{I}}\). The typical statistics of interest (F-ratios) ignore the plot labels in the parameter space \(\mathbb{R}^{b p t}\) and replace the plot labels in the data space \(\mathbb{x}^{6}\) p with the treatment labels. This treats both spaces as \(\mathbb{x}^{b t}\).

The researcher hopes the plots are sufficiently alike (small \(e_{i j}\)) and sufficiently unaffected by the treatments (small \(n_{i j k}\)) to permit the lower dimensional space to represent the higher dimensional space. The parameter space needs to be "thin" in the plot dimension, for the statistics to be valid for all randomization.

Graph 3.4.1a shows small values of \(e_{i j}\) and \(r_{i j k}\). The effect of treatment two reveals itself as positive for any randomization. In Graph 3.4.2a the values of \(e_{i j}\) and \(r_{i j k}\) are ten times those of Graph 3.4.1a. Now different randomizations lead to different conclusions. One randomization gives \(\left(j, k ; Y_{i j k}\right)\) as \((1,1 ; 4.5)\), \((2,3 ; 4.5),(4,3 ;-3.5)\) and \((3,4 ; 4.5)\), erroneously suggesting that treatment 3 has a negative effect. The base response and treatment effects are identical in both graphs.

Graphs 3.4 .1 b and 3.4 .2 b show the range of plot responses projected on the treatment axis. In the former, the spread of responses, the thickness of the plot dimension, is small. In the latter the spread is large. Only when the errors are small relative to the treatment effects (Graph 3.4.1a) are the conclusions free of the randomization used to conduct the experiment.

Graphs 3.4.1(a,b)
Near Identical Experimental Units

\subsection*{3.4.4 Implications and Inferences}

Being able to fix the probability of selecting any particular randomization permits a second approach to achieving such desirable attributes in an estimator as unbiasedness and minimum variance. The first approach, applicable in both models, is to alter the functional form of estimators and test statistics. We do not attempt this, but instead hold fixed such functions as
\(\hat{F}_{\mu, b}, \hat{F}\) and \(F(\tau \mid \mu, b, f)\), as defined in Sections 2.4-2.6. The second approach, precluded in the normally distributed random errors model, is to alter the selection probabilities, the \(\rho(s)\), and hence, the assignment probabilities, p(ij:k). This alters the expectation of estimators and test statistics in the randomization model and hence, their bias and variance. The pair \(\{\rho(s)\), estimator\} is termed a strategy. Sections 4.7 and 4.8 below discuss alternative strategies, strategies with unequal selection probabilities.

The randomization model treats its population as finite and, strictly speaking, must limit its conclusions to that population. Invariably, one takes a leap of faith and claims that the new population of experimental units is sufficiently like the one examined to apply to it the results obtained from the previous experiment. The leap of faith occurs earlier in the normally distributed random errors model. At the onset, one assumes a distribution, the normal one; a covariance structure, \(\mathbb{W}\) or \(\mathbb{I}\); identical experimental units (all \(\mathrm{e}_{\mathrm{ij}}=0\)); and no interaction between experimental unit and treatment (all \(\left.n_{i j k}=0\right)\). Having assumed that the experimental units studied were drawn from an infinite population, the researcher is free to apply his/her results to future experimental units assumed to come from the same population. This model has the advantage of known
```

distributions for statistics of interest. Underlying
its use is the assumption that the error term in the
model equation arises not from variations among the
experimental units, but rather from a sum of many random
variables. These random variables have unknown distribu-
tions but satisfy some central limit theorem. Thus, the
error term comes to approximate a normal distribution.
As detailed in Section 3.3.3 (p. 124), the randomization
model makes quite different assumptions about its errors.
White [1975] discusses these issues.
It is possible to combine the two models. We do so
in the following section.

```

\section*{Section 3.5}

The Normal-Randomization Model

This section develops a matrix notation which allows combining the normally distributed random errors model and the randomization model. Sections 3.5 .3 and 3.5.4 use the notation to derive the mean and variance of the vector of responses. Section 3.5 .5 discusses the superpopulation approach. The final section discusses exchangeability. The main results are (3.5.1), (p. 156), (3.5.2), (p. 157) and Theorems 3.5.2(e), (p. 160) and 3.5.5, (p. 163).

\subsection*{3.5.1 Introduction}

The notation typically used in the randomization model employs a zero-one indicator random variable. It has value one if treatment \(k\) is assigned to the experimental unit under consideration and zero otherwise. This notation is suitable when all assignment probabilities, \(p(i j: k)\), are equal. It is awkward when they are not. Use of selection probabilities, \(p(s)\), equal or not, calls for an alternative notation. The following notation permits using \(p(s)\) as well as combining the normally distributed random errors model and the randomization model.

\subsection*{3.5.2 The Model Equation}

This notation builds an alternative model equation from several large, partitioned, matrices. We define the
matrices \(I_{r} \mathbb{X}, T, \mathbb{E}, H\) and \(\mathbb{W}\). The first two symbols are redefined from previous use. Assumptions \(1-9\) continue to hold. We illustrate the model equation using a design with two blocks, \(i=1,2\); four treatments, \(k=1,2,3,4\); and one experimental unit, \(j=1,2,3,4\), per treatment per block. Changes needed to fit other designs appear to be straightforward.

The matrix of responses is \(\bar{F}\), with dimension bpr \(x\) N(E). Each column, \(\boldsymbol{I}_{S}\), represents all bpr responses arising from one randomization. In the example \(r=1\). Each column is identically ordered as to blocks, and within blocks as to treatments. By convention, we permute the plots starting with the last block. The first b-l blocks begin in the first of the \(N(\mathbb{B})\) blockwise randomizations. After building a column for each of the \(N(\mathbb{B})\) block-wise randomizations in the last block, we move to the second permutation in the penultimate block and build all \(N(\mathbb{B})\) columns for the block-wise randomizations of the last block. Once all \(N(\mathbb{B})\) block-wise randomization are listed for the penultimate block, we set the third-to-last block to the second block-wise randomization and repeat the above. This continues until the last column has all blocks in their last block-wise randomization. The \(I\) matrix for the example has elements \(Y_{i j k}\). Arrows point to some of the permuted subscripts. Only the plot subscript (j) changes. The matrix is

The matrix of model equation parameters, \(T\), has a block diagonal form with bpr identical blocks. Each block has dimensions \(1 \times[1+(b-1)+(t-1)+q]\). The matrix \(T\) has dimensions bpr x bpr[1+(b-1)+(t-1)+q]. For the example, each block is \(\left[\mu b_{1} \tau_{1} \tau_{2} \tau_{3} \mathrm{~F}\right]\), giving \(\mathbb{T}\) dimensions \([2 \times 4 \times 1] \times\{[2 \times 4 \times 1][1+(2-1)+(4-1)+1]\}\), with
\[
\mathbb{T}=\left[\begin{array}{lllllllllllllll}
\mu \mathrm{b} & \tau_{1} & \tau_{2} & \tau_{3} & \mathrm{~F} & & & & & & & & \text { zero } & & \\
& & & & & \mu \mathrm{b} & \tau_{1} & \tau_{2} & \tau_{3} & \mathrm{~F} & & & & & \\
\\
& \text { zero } & & & & & & & & & \cdot & \ddots & & & \\
& & & & & & & \mu & b & \tau_{1} & \tau_{2} & \tau_{3} & F
\end{array}\right] .
\]

The matrix X has one column for each of the \(s=1,2, \ldots, N(\varepsilon)\) experiment-wise randomizations. Each column, \(X_{S}\), has one block for each block-treatment combination, ik. Each of these blocks, \(X_{S, i k}\) resembles one (or more, if \(r>1\)) transposed row(s) of the \(\mathbf{x}^{+}\)of (2.3.1), (p. 16). When r>1 experimental units receive the same treatment in each block, all rows of \(x^{+}\) receiving treatment \(k\) are included in the column \(\Sigma_{S, i k}\). The indicators and covariates of each \(\mathbb{E}_{S}\),ik are ordered to conform to the structure of the blocks of \(\mathbb{T}\). The design or incident matrix part of \(X_{s, i k}\) indicates the
block and treatment assigned. These rows are constant for all columns of E . The covariates are tied to the experimental units. They are placed in the \(X_{S}\) to correspond to the experimental units receiving treatment k. The covariate part, \(Z_{i j}\), of \(X\) changes in each \(X_{S}\). In general, \(\mathrm{E}_{\mathrm{S}}\),ik has dimension \(\mathrm{r}[1+(\mathrm{b}-1)+(\mathrm{t}-1)+\mathrm{q}] \mathrm{x} 1\) and \(\mathbf{z}\) has dimension \(\operatorname{bpr}[(1+(b-1)+(k-1)+1] \times N(E)\). For the example, with \(s=24, X_{S}\) is the following \(2 \times 4=8 X_{S}\),ik stacked one upon the other in the same block-treatment order as the \(\mathrm{I}_{\mathrm{S}}\).
\[
\begin{aligned}
& \mathbf{z}_{24,11}=\left[\begin{array}{l}
1 \\
\frac{1}{1} \\
0 \\
0 \\
Z_{11}
\end{array}\right] \mathbf{z}_{24,12}=\left[\begin{array}{l}
1 \\
\frac{1}{0} \\
1 \\
0 \\
\mathbf{z}_{12}
\end{array}\right] \quad \mathbf{z}_{24,13}=\left[\begin{array}{l}
1 \\
\frac{1}{0} \\
0 \\
1 \\
z_{13}
\end{array}\right] \mathbf{z}_{24,14}=\left[\begin{array}{c}
1 \\
-\frac{1}{1} \\
-\frac{1}{1} \\
-\frac{Z_{14}}{}
\end{array}\right]
\end{aligned}
\]

The full \(\mathbf{X}\) matrix has \(N(E)\) columns of \(X_{S}\) as in

Note that the treatment subscripts for each \(X_{S}\),ik match the corresponding row of \(\mathbf{I}\). For each block, the product TX will always select \(\tau_{1}\) for its first row, \(\tau_{2}\) for its second row, etc.

The matrix of experimental unit errors, \(\mathbb{E}\), has the same form as \(\bar{I}\). It has dimensions bpr \(\times N(E)\) and columns \(\mathbb{E}_{5}\), each with submatrices \(\mathbb{E}_{i, s}(B)\), where \(s(B)\) is the block-wise randomization corresponding to the experiment-wise randomization \(s\). Each element of \(\mathbb{E}_{i}, s(B)\) is the experimental unit error, \(e_{i j}\), for the \(j\) th experimental unit appropriate for the randomization. For the example, the submatrices of \(\mathbb{E}_{24}\) are
\[
\mathbb{E}_{24}=\left[\begin{array}{l}
\mathbb{E}_{1,1} \\
\mathbb{E}_{2,24}
\end{array}\right], \text { with } \quad \mathbb{E}_{1,1}=\left[\begin{array}{l}
e_{11} \\
e_{12} \\
e_{13} \\
e_{14}
\end{array}\right] \text { and } \mathbb{E}_{2,24}=\left[\begin{array}{l}
e_{24} \\
e_{23} \\
e_{22} \\
e_{21}
\end{array}\right] \text {. }
\]

The entire \(\mathbb{E}\) matrix is
\[
\mathbb{E}=\left[\begin{array}{lll|l|lll}
\mathbb{E}_{1}, 1 & \mathbb{E}_{1}, 1 \cdots \mathbb{E}_{1}, 1 \mid & \mathbb{E}_{1}, 2 \cdots \mathbb{E}_{1}, 2 & \cdots & \mathbb{E}_{1}, \mathbb{B} & \cdots & \mathbb{E}_{1}, \mathbb{B} \\
\mathbb{E}_{2,1} & \mathbb{E}_{2,2} \ldots \mathbb{E}_{2, \mathbb{B}} \mid \mathbb{E}_{2,1} \cdots \mathbb{E}_{2, \mathbb{E}} & \cdots & \mathbb{E}_{2,1} & \cdots & \mathbb{E}_{2, E}
\end{array}\right] .
\]

Note that the experimental unit subscripts for the \(\mathrm{e}_{\mathrm{ij}}\) of each column of \(\mathbb{E}_{S}\) match those of \(\mathbf{I}_{S}\). The same \(e_{i j}\)
reappear in each column permuted differently. For each block i, all j=1,2,...,p experimental unit errors appear an equal number of times in each row. Thus, the first equality of (3.4.1), Assumption 9, (p. 140), gives as zero the sum of each row of \(H\).

The matrix of experimental unit-treatment interactions, \(H\), has the same form as \(I\). It has dimensions bpr \(x N(E)\) and columns \(H_{S}\), each with submatrices \(H_{i, S}(B)\), where \(s(B)\) is the block-wise randomization corresponding to the experiment-wise randomization s. Each element of
\(H_{i, s}(B)\) is the experimental unit \(x\) treatment interaction error, \(n_{i j k}\), appropriate for the randomization. For the example, the submatrices of \(H_{24}\) are

The arrow notes the rearranged units (j) of block 2 . The entire \(H\) matrix is
\[
H=\left[\begin{array}{llll|ll|l|lll}
H_{1}, 1 & H_{1}, 1 & \cdots & H_{1}, 1 & H_{1}, 2 & \cdots & \cdots & H_{1}, B & \cdots & H_{1}, B \\
H_{2}, 1 & H_{2}, 2 & \cdots & H_{2}, B & H_{2}, 1 & \cdots & \cdots & H_{2}, 1 & \cdots & H_{2}, B
\end{array}\right] .
\]

Note that the treatment subscripts for each column of \(\mathbb{H}\) match the corresponding column of \(\bar{F}\). Each row of \(\mathbb{H}\) contains the \(n\) values for one treatment of one block. All plots appear an equal number of times in each row. The center equality of restriction (3.4.1), Assumption 9. (p. 140), gives a zero sum for each row of \(\boldsymbol{H}^{\text {(}}\)

The matrix of normally distributed random errors has the same form and dimensions as \(F\). Under Assumption 3, (p. 24), these errors are identically distributed, so they need no subscripts. Every element of \(\mathfrak{N}\) has the identical symbol. As they represent random variables, their values differ. Under Assumption \(3^{*}\), (\(\mathrm{p}, 16\)), the variance-covariance matrix is \(w^{2}\). In this case, the errors would need subscripts, perhaps block and plot subscripts, perhaps only the block subscript, depending upon 4 . While the columns of \(\mathbb{E}\) permute identical
elements, each column of \(\mathbb{N}\) has unique elements. Should each column of \(\mathbb{N}\) be identical, \(\mathbb{N}\) would be equivalent to the experimental unit error matrix \(\mathbb{E}\). Section 3.7.3, below, (p. 198), also discusses this point.

Having defined the necessary matrices, the
normal-randomization model equation is
\[
\begin{aligned}
& \mathbf{I}=\mathbb{T}+\mathbb{E}+\mathbb{H}+\mathbb{N} \\
& \text { with dimensions for this example of } \\
& \mathbb{T}: \operatorname{bpr} \times \operatorname{bpr}[1+(\mathrm{b}-1)+(\mathrm{k}-1)+q], \\
& \mathbf{X}: \operatorname{bpr}[1+(\mathrm{b}-1)+(\mathrm{k}-1)+q] \times \mathrm{N}(E) \text { and } \\
& \mathbf{I}, \mathbb{E}, \mathbb{H}, \mathbb{N}: \operatorname{bpr} \times \mathbb{N}(E) .
\end{aligned}
\]

A model may include one or more of \(\mathbb{E}, W\) and \(\mathbb{N}\). Slightly more compact versions of this notation are possible. The selection matrix, \(\mathcal{F}\), has dimensions \(N(E) \times 1\). It is a column vector with zeros everywhere except for the sth row, which contains a one. By postmultiplying the two sides of (3.5.1), it selects (a) the responses actually observed from the matrix \(E\), (b) the assignment of treatments to units from the product \(\mathbb{T} X\) and (c) the set of experimental unit \(x\) treatment interaction errors from matrix \(H\). The form of the matrices \(\mathbb{E}\) and permits 3 to carry along the proper arrangement of these errors. The value of \(S\) selected by (3.2.7), (p. 117), determines which row of 5 has value one. Denote the selected randomization as \(s_{s}\), obtained by the method of (3.2.7).

The post-multiplication by \(s_{s}\) is
\[
\begin{align*}
\mathbf{I} \mathcal{S}_{S} & =[\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H}+\mathbb{N}] \boldsymbol{S}_{S} \\
I_{S} & =(\mathbb{T} \mathbb{X})_{S}+\mathbb{E}_{S}+\mathbb{H}_{S}+\mathbb{N}_{S} . \tag{3.5.2}
\end{align*}
\]

The subscript s identifies the vectors selected from the larger matrices. These vectors determine the responses observed in the experiment actually conducted.

Such a model equation was suggested by one for regression from finite populations developed by Jonrup and Rennermalm [1976].

\subsection*{3.5.3 The Combined Probability Space}

When \(\mathbb{N}\) is included in the model, the probability space for the normal-randomization model combines the probability spaces of Sections 2.3, (p. 15) and 3.4, (p. 140). It is
\(\left(\left(\boldsymbol{\vartheta} \times \mathbb{R}^{n}\right),\left(\mathbb{Q} \times \mathbb{E}^{n}\right), \mathbb{P} \times N_{n}\left(\mathbb{C}, \omega_{\sigma}^{2}\right)\right)\),
where \(n=b p r\).
Since \(\$\) is an indicator vector, its expectation is a vector, \(\mathbb{P}\), whose elements are the selection probabilities, \(p(s), E_{R}(\mathcal{F})=\mathbb{F}\). As indicated in (3.5.3) the probability functions for the two distributions are statistically independent. Since \(\mathbb{F}\) is a discrete probability function, the expectation with respect to the normal distribution and the expectation with respect the randomization distribution may be interchanged freely, that is, \(E[\cdot] \equiv \mathrm{E}_{\mathrm{N}} \mathrm{E}_{\mathrm{R}}[\cdot]=\mathrm{E}_{\mathrm{R}} \mathrm{E}_{\mathrm{N}}[\cdot]\). This follows from a
theorem by Tonelli [Royden, 1968, p. 270].
In some cases, agricultural studies for example, the variance is known to increase with the magnitude of the response. Thus, the normally distributed random error associated with a large value of \(b_{i}, \tau_{k}\), \(\mathrm{FZ}_{i j}, \mathrm{e}_{\mathrm{ij}}\), and/or \(n_{i j k}\) would have a larger variance than would the error associated with smaller values. We do not examine this case. As indicated by the above Cartesian products, the values of the \(e_{i j}\) and/or \(n_{i j k}\) do not alter the normal distribution part of the probability space. This is restated as

Assumption 10.
The randomization distribution and the distribution of the normally distributed random errors are statistically independent.

\subsection*{3.5.4 Expectations of the Response Vector \(\mathbf{I}_{S}\)}

In the matrix notation developed in Section 3.5.2, expectations of the terms of (3.5.2), (p. 157), are straightforward. For example, Theorems 3.5.2(e) and 3.5.4 derive the first two moments of \(\mathbf{I}_{\mathbf{S}}\); Theorem 3.5.5 derives the variance.

Theorem 3.5.1 Moments of the Distribution
a. \(E_{R}[F]=\mathbb{F}\).

Proof: Each elements of \(\mathcal{S}\) is either 0 or 1.
The expectation of a \(\{0,1\}\) indicator variable is its probability.
b. \(\quad E_{R}\left[s^{\prime} s^{\prime}\right]=\sum_{\mathbb{U}}\left\{\rho(s)\left[\xi_{S} s_{S}{ }^{\prime}\right]\right\}=\operatorname{diag}(\mathbb{F})\).

Proof: Each matrix \(\mathcal{S}_{5} \mathcal{S}_{\mathrm{S}}\) ' has dimensions \(N(E) x N(E)\) with a one on a unique diagonal position and zeros elsewhere. The product \(p(s) s_{S} S_{S}\) converts the one on the diagonal to \(p(s)\). Summing gives the result.
c. \(\quad \operatorname{Var}_{R}[\mathbb{S}]=\operatorname{diag}(\mathbb{F})-\mathbb{P} \mathbb{F}^{\prime}\), with diagonal elements \(p(s)-[p(s)]^{2}=p(s)[1-p(s)]\) and off-diagonal elements - \(p\left(s^{\prime}\right) p\left(s^{\prime}\right)\), sfs'.

Proof: Apply \(\operatorname{Var}(\cdot)=\left[E(\cdot)^{2}\right]-[E(\cdot)]^{2}\) to (a) and (b).

Theorem 3.5.2 First Moments of Equation Parameters
a. \(E\left[(T X)_{S}\right]=E_{R}[(T X) S]=(T X) E_{R}[S]=T X F\).

Proof of a - d: Apply Theorem 3.5.1(a).

When \(\mathbb{P}\) has equal elements, \(\mathbb{F}=\mathbb{1} / \mathbb{N}(E)\), the covariate is averaged over the pr experimental units in each block. For example, the first element of \(E\left(T X_{S}\right)\) is \(\mu+b_{1}+\tau_{1}+F\left(\bar{Z}_{1}.\right)\), the second is \(\mu+b_{1}+\tau_{2}+\bar{F}\left(\bar{Z}_{1},\right)\), etc.
b. \(E\left[\mathbb{E}_{S}\right]=E_{R}[\mathbb{E} \mathbb{F}]=\mathbb{E P}\).
c. \(E\left[H_{S}\right]=E_{R}\left[H_{T}[]=H F\right.\).

When \(\mathbb{P}\) has equal elements, \(\mathbb{F}=\mathbb{1} / \mathbb{N}(E), \mathbb{F}\) averages each row of \(\mathbb{E}\) and \(H\). Each label, \(i j\) or \(i j k\), appears an equal number of times in each row. Under this condition, Assumption 9, (p. 140), gives zero as the row sum and \(E\left[\mathbb{E}_{S}\right]=E\left[H_{S}\right]=\mathbb{0}\).
d. \(E[N]=E_{R} E_{N}[\mathbb{N}]=\mathbb{O}\).

Proof: Assumptions 2, (p. 16) and 10, (p. 158).
e. \(E\left[Y_{S}\right]=E_{N} E_{R}[\mathbf{I}]=E_{R}\left\{\left[\mathbb{T}+\mathbb{E}+H+E_{N}(\mathbb{N})\right]\right.\) S \(\}\)
\(=E_{R}\{(\Sigma T+\mathbb{E}+H+\mathbb{O}) S\}=(\Sigma T+\mathbb{E}+H)\left[E_{R}(S)\right]\)
\(= \begin{cases}{[(\mathbb{T})+\mathbb{E}+H] \mathbb{F}} & \text { for general } p(s) \\ (\mathbb{T})[\mathbb{N} / \mathbb{N}(E)] & \text { when all } p(S) \text { are equal. }\end{cases}\)
Proof: Combine a - d.

Theorem 3.5.3 Second Moments of Equation Parameters
a. \(E\left[\mathbb{E}_{S} \mathbb{E}_{S}^{\prime}\right]=E_{R}\left[(\mathbb{E S})\left(\mathbb{E} \mathcal{S}^{\prime}\right)^{\prime}\right]=E_{R}\left[\mathbb{E}\left(\mathbb{S}^{\prime}\right) \mathbb{E}{ }^{\prime}\right]\)
\(=\mathbb{E}\left[E_{R}\left(S^{\prime} \mathcal{S}^{\prime}\right)\right] \mathbb{E}^{\prime}=\mathbb{E}\left[d i a g\left(\mathbb{F}^{\prime}\right)\right] \mathbb{E}^{\prime}\).
Proof of a - f: Apply Theorem 3.5.1b.
b. \(E\left[H_{S} H_{S}{ }^{\prime}\right]=H[d i a g(\mathbb{F})] H^{\prime}\).
c. \(E\left[\mathbb{E}_{S^{\prime}} H_{S}{ }^{\prime}\right]=\mathbb{E}[\operatorname{diag}(\mathbb{F})] H^{\prime}\).

When \(\mathbb{F}\) has equal elements, \(\mathbb{F}=\mathbb{1} / \mathbb{N}(E)\) and \(\operatorname{diag}(\mathbb{F})=\) I/N(E). The equalities above become \(\mathbb{E E}\) '/N(E), \(H_{H} / \mathbf{N}(E)\), and \(\mathbb{E H} H^{\prime} / \mathrm{N}(E)\). Each of these products is block diagonal. Each off-diagonal block is product of a row from one
block times a column from another block. The randomization will pair for each block a fixed eij (or rijk for (b)) subscript of one row with all subscripts of the column-block being multiplied. This sums that columnblock. By Assumption 9, (p. 140), such a sum over all experimental units in a block is zero. Consequently, all off-diagonal blocks of the matrix are zero when \(\mathbb{F}=\mathbb{H} / N(E)\). The same holds for off diagonal elements of the diagonal blocks. For (a) the diagonal elements are \(\left(e_{i j}\right)^{2}\) times \(p\), the number of elements in the block. For (b) the diagonal elements are \(\left(\eta_{i j k}\right)^{2}\) times p. For (c) the fixed \(e_{i j}\) is multiplied by all rijk for that block. This sums the \(H_{i j k}\), leaving all elements of (c) as zero.
 e. \(E\left[(\mathbb{T} X)_{S} H_{S}^{\prime}\right]=E_{R}\left[(\mathbb{T E})\left(H^{S}\right)^{\prime}\right]=(\mathbb{T})[\operatorname{diag}(\mathbb{P})] H^{\prime}\)

When \(\mathbb{F}\) has equal elements, \(\mathbb{F}=\mathbb{1} / N(\mathbb{E})\) and diag(\(\mathbb{P})=\) II/N(E). Recall that each row of \(T \mathbb{X}\) is identical except for the covariate part. The incident or design parts sum the columns of the righthand matrix. By Assumption 9 each such sum is zero. Thus, the above two equalities reduce to the product of a matrix structured like \(\bar{I}\), but with elements \(\mathbb{E}^{\prime} \mathcal{F}\), times, respectively, \(\mathbb{E}\) or \(\mathbb{H}\). Without a covariate these two products would be zero.
```

f. E[(TX)

```
g. \(E\left[M_{s} M_{s}^{\prime}\right]=E_{N}\left[M_{s} M_{s}^{\prime}\right]=\pi r^{2}\)

Proof: Assumptions 10, 2 and 3, (p. 158, 16 and 24).
h. \(E\left\{\left[(\mathbb{T} X)_{S}+E_{S}+H_{S}\right] \mathbb{N}_{S}{ }^{\prime}\right\}=E_{R}\left[(\mathbb{T}+\mathbb{E}+\mathbb{H}) S E_{N}\left(\mathbb{N}^{\prime}\right)\right.\)
\(\left.=E_{R}[(\mathbb{T} X+\mathbb{E}+\mathbb{H})]\left[\mathbb{O}^{\prime}\right]\right\}=\mathbb{O}\), by Assumption 10 .

Theorem 3.5.4 Second Moment of the Response Vector \(I_{S}\)
\[
\mathbb{E}\left[\mathbf{I}_{S} \mathbb{I}_{S}^{\prime}\right]=(\mathbb{T} \mathbb{X}+\mathbb{E}+\mathbb{H})[\operatorname{diag}(\mathbb{F})][(\mathbb{T} \mathbb{E}+\mathbb{E}+\mathbb{H}) S]^{\prime}
\]
\[
+w_{\sigma}^{2}
\]

Proof:

The triple of zeros follows from \(E_{N}[\mathbb{N}]=\mathbb{0}\). The expectation of a quadratic form [Searle, 1971, p. 55] is applied to each of the identical bp rows of \(N\) and identical bp columns of \(\mathbb{N}^{\prime}\). The trace[diag(\(\left.\left.\mathbb{F}\right)\right] \psi_{\sigma^{2}}=\psi_{\sigma}^{2}\),
\[
\begin{aligned}
& =E_{N} E_{R}\left\{[(T X+\mathbb{E}+\mathbb{H}+\mathbb{N}) \mathbb{S}]\left[(\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H}+\mathbb{N}) \mathbb{S}^{\prime}\right]^{\prime}\right\} \\
& =E_{R}\left\{[(\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H}) S][(\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H}) \boldsymbol{S}]^{\prime}\right\} \\
& +\mathrm{E}_{\mathrm{R}} \mathrm{E}_{\mathrm{N}}\left\{2\left[(\mathbb{T} \mathbb{S})(\mathbb{N S})^{\prime}+(\mathbb{E S})(\mathbb{N S})^{\prime}+(\mathbb{H S})(\mathbb{N S})^{\prime}\right]\right. \\
& \left.+(\text { NS })(\text { NS })^{\prime}\right\} \\
& =(\mathbb{T} \mathbb{E}+\mathbb{E}+\mathbb{H})[\operatorname{diag}(\mathbb{P})](\mathbb{T}+\mathbb{E}+\mathbb{H})^{\prime} \\
& +\mathrm{E}_{\mathrm{R}}\left\{2[\mathbb{D}+\mathbb{D}+\mathbb{D}]+\mathrm{E}_{\mathrm{N}}\left(\mathbb{N}(\mathbb{S})(\mathbb{N}(5))^{\prime}\right\}\right. \\
& =(T X+\mathbb{E}+\mathbb{H})[d i a g(\mathbb{F})](T \mathbb{E}+\mathbb{E}+\mathbb{H})^{\prime} \\
& +2 \mathrm{E}_{\mathrm{N}}\left\{\mathbb{N}[\operatorname{diag}(\mathbb{F})] \mathbb{N}^{\prime}\right\} \\
& =(\mathbb{T} X+\mathbb{E}+\mathbb{H})[d i a g(\mathbb{F})](\mathbb{T} X \mathbb{E}+\mathbb{H})^{\prime} \\
& +\{\operatorname{trace}[d i a g(\mathbb{F})]\} \psi_{\sigma^{2}}^{2} .
\end{aligned}
\]
because the elements of \(\mathbb{P}\), the \(\rho(s)\), must sum to 1 . When \(\mathbb{S}=\mathbb{1} / \mathbb{N}(E)\), the individual terms simplify as discussed above.

Theorem 3.5.5 Variance of the Response Vector
\[
\begin{aligned}
& \operatorname{Var}\left(\boldsymbol{I}_{\mathrm{S}}\right)=(\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{W})[\operatorname{diag}(\mathbb{F})](\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{W})^{\prime}+W_{\sigma}^{2} \\
& -(\mathbb{T} E+\mathbb{E}+\mathbb{H})[\operatorname{diag}(\mathbb{F})]^{2}(\mathbb{T} X+\mathbb{E}+\mathbb{H}) \text {) } \\
& =(\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H})\left[\operatorname{diag}(\mathbb{F})-\mathbb{F F}^{\prime}\right](\mathbb{T} \mathbf{X}+\mathbb{E}+\mathbb{H})^{\prime} \\
& +\psi \sigma^{2} .
\end{aligned}
\]

Proof: Apply Theorems 3.5.4 and 3.5.2(e) to the Variance relationship \(\operatorname{Var}(\cdot)=E\left[(\cdot)^{2}\right]-[E(\cdot)]^{2}\).

With knowledge of the values of \(e_{i j}\) and \(n_{i j k}\), one perhaps could alter the elements of \(\mathbb{F}\), the \(p(s)\), to, say, minimize the variance of \(\mathbf{F}_{S}\) while leaving it unbiased. The mechanics of this are an extension.

\subsection*{3.5.5 Superpopulation Approach}

One may also consider the available experimental units, the ij part of 4 , to be a random sample of a larger population, perhaps one now existing, or a conceptual one including experimental units that might exist in the future. Under this viewpoint, the \(e_{i j}\) and \(n_{i j k}\) are themselves random variables. One approach is to enter them as population means in the model equation and move deviations from these means into the normally distributed random error term. This larger population
suggests the superpopulation approach of survey sampling and focuses on the population to which the inferences of the current experiment will be applied. Expectation with respect to this superpopulation may in fact be what is desired from a designed experiment. See Cassel, Sarndal, and Wretman [1977] for a discussion of the fixed and superpopulation approaches in survey sampling. B. L. Welch [1937, p. 47-48] and Kempthorne and Doerfler [1969, pages 231-235] touch on this concept.

\subsection*{3.5.6 Exchangeability}

Random events are exchangeable if and only if their joint distribution is unaltered by any permutation of the labels identifying the individual events. Independent and identically distributed random errors, such as the normally distributed random errors of Chapter 2 are exchangeable random variables. Under the probability space for the randomization model, with \(p(s)=[N(E)]^{-1}\), the \(N(E)\) randomizations are exchangeable. When the \(p(s)\) are equal within a group of randomizations, the randomizations within the group exhibit partial exchangeability. In both cases, all joint distributions have zero probability for two or more randomizations and constant probability of any one randomization within the group. When \(n_{s}=n_{s}=\mathbb{0}\), the functions defined below in Theorems 3.7.9, (p. 202), and 3.7.10, (p. 211), have identical values for all randomizations within the
g-group. When the \(p(s)\) within a g-group are equal valued, such random variables exhibit partial exchangeability.

In the limit, as the number of observations goes to infinity, the joint probability distribution of exchangeable random variables is a weighted average of independent random variables, even if the original joint probability distribution is not independent. This is "de Finetti's representation theorem." See de Finetti [1937, p. 15-17, 81-83, 99-101; 1970, Vol. 2, p. 215; 1977, p. 211], Chow and Teicher [1988, p. 226], or Cassel, Sarndal, Wretman, [1977, p. 72, 85] for this theorem.

The normal-randomization model embeds each randomization in an infinite sequence of events. Within each randomization, the events of the sequence differ only by the normally distributed random error. When \(n_{s}=\mathbb{D}\), the \(\mathbf{F}_{s}\) of each g-group, (p.197), are so embedded. In this model, some version of de Finetti's theorem appears to hold. If so, a tool is available for use in applying limit theorems to the functions of Theorem 3.7.9, (p. 202). Chow and Teicher [1988, p. 33, 223-226 and 309-311] illustrate such uses of exchangeability. Cifarelli, et al., discuss exchangeability in the experimental setting [1981A], in the analysis of variance [1979] and in linear regression [1981B]. See also Lindley and Novick [1981].

We next examine the randomization test with unequal selection probabilities, \(p(s)\).

\section*{Section 3.6}

The Randomization Test

Section 3.6 .1 sketches the randomization test for treatments. Section 3.6.2 discusses the need for zero experimental unit-treatment interaction error. Sections 3.6 .3 and 3.6 .4 describe the randomization test and power computation for \(p(s)\) equal or not. Section 3.6 .5 discusses the randomization test and power computation under simulation. Section 3.6 .6 shows that the randomization test for the covariate(s) as adjusted for the mean, blocks and treatments will have zero power for some randomizations when the values of the covariates repeat in each block. The final section, 3.6 .7 , shows the test satisfies the requirements of a hypothesis test. Major results are the OSL (3.6.2), and power (3.6.6), (p. 170173), of the randomization test and of the test under simulation (3.6.10), (p. 175). See also Edgington [1987].

\subsection*{3.6.1 Overview of the Randomization Test}

While the randomization model is a conceptual framework, the randomization test is a statistical test of a null hypothesis. In simulations or in rare cases the randomization test may be extended to measure the power of the test for a given alternative hypothesis. The parameter tested is one the experimentor may randomly assign to experimental units. Herein, this is the part of \(\tau\) containing the treatments, as in (2.3.4) and (2.3.5), (p. 19).

The basic idea of the randomization test is that if the treatments have no effect, then each observed response, \(Y_{i j l k}\) does not depend upon the treatment \(k\) to which experimental unit \(U_{i j l}\) was assigned. One computes the value of the test statistics for the randomization actually used to conduct the experiment. One then recomputes it as if the experimental units had been assigned to different treatments. One repeats this for all randomizations and obtains a set of values of the test statistic.

The test statistic is one whose values (a) will tend to be similar if all randomization are equal and (b) will tend to fall into a specified subset of all values, the set \(s\), if the treatments have an effect. Should the test statistic provided by the actual experiment fall into the set s, then either (i) the null hypothesis is false, or (ii) an unusual (unlucky) randomization has been used to conduct the experiment. As stated in Section 3.4.4, (p. 141), the test statistic is fixed as the F-ratios of Chapter Two (2.6.41) and (2.6.45), (p. 63 and 64). The set \(\xi\) is defined so that (b) will tend to occur for the F-ratio, as shown in Section 3.6.7, (p. 181). The set \(\Xi\) may differ for other statistics. It is the critical region.

The terms randomization, rerandomization and permutation tests are used with different meanings by different authors [Kotz and Johnson, Vol. 7, p. 524 and

530; Zyskind, et al., 1964, p. 171-175; Kempthorne and Doerfler, 1969, p. 234-235; Gabriel and Hall, 1983; W. Welch, 1990, p. 6931. They usually refer to permuting the experimental units assigned to the treatments. This applies when \(r=1\). But, for \(r>1\), should the set \(G\) be constrained as in (3.2.12) or (3.2.14), (p. 115), then many permutations will violate the constraints. Thus, the term randomization appears more appropriate. Cox and Hinkley [1974, p. 180 and 196] differentiate between the terms permutation and randomization. In their usage, the permutation test follows from a physical system generating independent and identical values, such as conditioning on the order statistics. Their randomization test follows from the randomization in the design which makes all permutations equally likely. We use the term randomization to emphasizes not only the reassigning of experimental units to treatments, but also the accompanying changes in experimental unit assignment probabilities, the \(p(i j l: k)\) 's. The latter is important when the assignment probabilities are not all equal.
3.6.2 Experimental Unit \(x\) Treatment Interaction

When the experimental units are artifically
reassigned to new treatments, the experimental unit \(x\) treatment interactions, \(H_{s}\), are not, and outside of a simulation, cannot, be reassigned. The interaction
errors of the actual response become assigned to treatments not responsible for them. Because of this, the randomization test assumes the \(n_{i j k}\) are zero or negligible, as in Wilk [1955, p. 78-79, (a) and (b)]. This is the assumption of additivity in the strict or in the broad sense of (3.3.11), (p. 135).

\subsection*{3.6.3 Testing the Null Hypothesis}

The test begins with the randomization actually used to conduct the experiment, the experiment conducted under ("at") randomization s, @s. The process defined in (3.2.7), (p. 109), is one method of obtaining the value of s. The responses from this randomization provide the actual responses, \(\mathbf{I}_{\mathrm{G}}\), read as "the actual responses at randomization s." The actual responses and the actual randomization provide the actual test statistic \(\mathrm{t}_{\mathrm{a}}, \mathrm{s}=@_{\mathrm{s}}\).

The next step computes the test statistic for another randomization, s干@s, using the data observed in the actual experiment, \(\mathbf{I}_{\mathrm{s}}\). One pretends the experimental units were assigned to the treatments as specified by randomization s. In matrix notation, the columns of the treatments part of the actual design matrix \(\mathbf{x}_{T}\), @s, are rearranged within each block to represent randomization s. We denote the rearranged design matrix as \(\mathbb{Z}_{5}\). The rows of \(\bar{X}_{S}\) and the rows of \(\bar{Z}_{Q_{s}}\) remain linked to the same experimental units regardless of the randomization.

Repeating this for all s尹@s produces \(N(E)-1\) artificial experiments and \(N(E)-1\) artificial test statistics, \(t_{\text {@s, sf@s. }}\) These values, plus the actual test statistic, \(t_{\text {@s, }}=@_{s,}\) form the set
\[
\mathscr{I}_{@ s}=\left\{t_{@ s, 1}, t_{@ s, 2}, \ldots, t_{@ s, s=@ s}, \ldots, t_{@ s, N(E)}\right\} .(3.6 .1)
\]

The design, covariates and/or responses may be such that some artificial test statistics equal others. Theorem 3.7.9(3), (p. 202) specifies such a \(\mathrm{t}_{\mathrm{s}, \mathrm{s}}\). Denoting the random value of \(t_{@ s, s}\) as \(T_{@ s, s, ~ n o t e ~ t h a t ~ i t s ~}^{\text {@ }}\) distribution is known; \(\mathrm{T}_{\mathrm{G}, \mathrm{s}}\) is a statistic.

The final step computes the p-value or the observed significance level, the OSL, for the randomized test as
\[
\begin{align*}
& \text { OSL }_{R, @ s} \equiv \sum p(s), \tag{3.6.2}\\
& s=\left\{s \text { such that } t_{@ s, s} \underline{2} t_{@ s, s=@ s}\right\} .
\end{align*}
\]

The summation of \(p(s)\) is over those \(s\) whose artificial test statistic is greater than or equal to the actual test statistic. Randomizations with values of \(t_{@ s, s}\) larger than \(\mathrm{t}_{\text {@s, }}=@ s\) and whose small values of \(p(s)\) make them unlikely to be selected contribute less to the OSL \(\mathrm{R}_{\mathrm{p}}\) @ than do those randomizations whose large values of \(\rho(s)\) make them more likely to be selected. The actual test statistic, \(\mathrm{t}_{\text {@s, @s, }}\) is included in \(s\) [Kempthorne,

1952, p. 130-131]. When all \(\rho(s)\) are equal, one simply counts the randomizations with \(t_{\text {@s,s }}\) greater than or equal to \(t_{\text {@s,s }}=@_{s}\), obtaining
\[
\begin{equation*}
\text { OSL }_{R, @ s}=\left\{\frac{N\left(t_{Q s, s}{ }^{2} t_{@ s, s}=@ s\right)}{N(E)}\right\} . \tag{3.6.3}
\end{equation*}
\]

The selection of one randomization used to conduct the actual experiment provides an internal criterion, \(t_{\text {@s,s }}\) @s, with which to assess the artificial test statistics, the \(t_{@ s, s}\). This internal criterion leads to the OSL \(_{R}\),@s and the test of the hypothesis. Note that the value of \(O S L_{R}\),@s depends upon the randomization used to conduct the actual experiment

The minimum value of the \(O S L_{R}\), @s is \(p(@ s)\), which equals \(1 /[N(E)]\) if all \(\rho(s)\) are equal. If the \(O S L_{R}\), @s is less than a predetermined \(\times\) probability of a Type I error, or otherwise indicates a sufficiently small probability or cost of error, then the null hypothesis is rejected. Either the null hypothesis is false or @s is an unusual randomization.

\subsection*{3.6.4 Computing the Power of the Randomization Test}

Kempthorne [1952, p. 230-231] details the computation of the sensitivity (power) of the randomization test for a known alternative hypothesis. Although his section title mentions the infinite model approach, the method assumes the presence of experimental unit error. We add
unequal \(p(s)\) to his description and consider the possibility of known \(\mathbb{E}, \mathbb{H}\) and/or \(\mathbb{N}\). Term the base responses the responses one would obtain if no treatment were applied to the experimental units. A uniformity trial could supply such values. They are
\[
\text { base responses }=\left[X_{\mu}\left|X_{b}\right| \mathbb{Z}\right]\left[\begin{array}{c}
\tau_{\mu} \tag{3.6.4}\\
\tau_{b} \\
F
\end{array}\right]+\mathbb{E} .
\]
combining the notations of Sections 2.3 and 3.5.2, (p. 15 and 157). We use \(\mathbb{E}\). to represent any of the equal column vectors of experimental unit error.

Step one assigns the experimental units to the treatments according to randomization @s=@1. Then, it adds the known values of the treatment effects, \(H_{@ 1}\) and Mal to the base responses. This gives the actual responses, \(\mathbf{I}_{@ 1}\), for randomization @s=@l. For each actual experiment conducted at randomization @s=@l, one conducts artificial experiments at randomization \(s=1, s=2, \ldots\), \(\mathrm{s} \neq \mathrm{s}, \ldots, \mathrm{s}=\mathrm{N}(\boldsymbol{E})\). For each \(\mathrm{s}, \mathrm{I}_{@ 1, \mathrm{~s}}=\mathrm{I}_{@ 1, @ \mathrm{~s}+\left(\mathrm{H}_{\mathrm{s}}-H_{@ 1}\right)+, ~}\) (\(\left.\mathbb{M}_{s}-\mathbb{M} @_{1}\right)\). This adjusts the \(\mathbf{I}_{@ 1}\),s to have the experimental unit \(x\) treatment interactions and normally distributed random error of the artificial experiment of randomization s. Proceed as in the section 3.6 .3 with the test of the null hypothesis and compute the set, \(\mathscr{T}_{@ 1}\), of \(N(E)\) values of the artificial test statistic derived from the actual
experiment @s=@l. With the elements of \(T_{@ 1}\), compute the OSL \(_{R, @ 1}\) by (3.6.2), (p. 168), or (3.6.3), (p. 169).

Repeat this process, making each randomization the actual one. This gives \(N(E)\) sets of \(Y\) @s,
\[
\begin{align*}
& T_{@ 1}=\left\{t_{@ 1,1}, \cdots, t_{@ 1, s}, \cdots, t_{@ 1, N(E)}\right\}, \\
& \mathscr{V}_{@ 2}=\left\{t_{@ 2,1}, \cdots, t_{@ 2, s}, \cdots, t_{@ 2, N(E)}\right\}, \\
& T_{@ N}(E)=\left\{t_{@ N}(E), 1, \cdots, t_{@ N}(E), N(E)\right\} . \tag{3.6.5}
\end{align*}
\]

A total of \(N(\xi) \times N(E)\) test statistics need to be computed. For each set \(T_{@_{s}}\) compute the \(O L_{R}\), @s as in the randomization test. The internal criterion for each T@s is the test statistic \(\mathrm{t}_{\text {@s, }}\) @s. Using a fixed \(\alpha\), note those T@s with \(0 S L_{R}\), @s greater than \(*\). These actual randomizations improperly accept the false null hypothesis. The probability of a Type II error, \(\mathcal{F}_{\mathrm{R}}\), is the sum of the probabilities of such randomizations, or
\[
\mathrm{F}_{\mathrm{R}} \equiv \sum_{s} p(@ \mathrm{~s}),
\]
\[
s=\left\{@ s \text { such that oSL }{ }_{R}, @ s>\infty\right\} .
\]

The summation of \(p(@ s)\) is over those @s whose OSLR, @s is greater than \(\alpha\). The same selection probabilities are used within each \(\overbrace{@}\) and for the set of \(N(E)\) © itself. As with the \(0 S L_{R, @ s, ~ r a n d o m i z a t i o n s ~ w h i c h ~ a c c e p t ~ t h e ~}^{\text {, }}\) erroneous null hypothesis and have a large probability of being selected (large \(p(s))\) contribute more to \(F_{R}\) than do randomizations with a small selection probability.

When all \(p(s)\) are equal, the calculation is
\[
\begin{equation*}
F_{R}=\{\frac{N(\overbrace{a_{S}}) \text { with oSL }}{N(E)}\} \tag{3.6.7}
\end{equation*}
\]

The power of the randomization test is \(1-\bar{F}_{\mathrm{R}}\).
In theory, the randomization test and power computation may be conducted for any simulation. In practice, \(N\left(T_{@ s}\right)\) and the product \(N\left(J_{@ s}\right) \times N\left(\mathrm{~T}_{\mathrm{s}}\right)\) are prohibitively large. Gabriel and Hall [1983] and others they mention have devised methods to obtain significance levels and confidence intervals using but a fraction of the calculations required for the full randomization test.
3.6.5 The Randomization Test Under Simulation

In a simulation, no randomization is privileged as the one used to conduct the actual experiment. Instead of a set \(\mathrm{T}_{\mathrm{@s}}\), one has the set
\[
\begin{equation*}
\mathscr{Y}=\left\{t_{@ 1}, t_{@ 2}, \cdots, t_{@ s}, \cdots, t_{@ N(E)}\right\} . \tag{3.6.8}
\end{equation*}
\]

Each \(\mathrm{t}_{\mathrm{a}}\) is computed as if randomization \(s\) had been used to conduct the actual experiment, that is, computed like the \(\mathrm{t}_{\text {@s,s }}\) @s of Section 3.6.3. Each randomization provides one \(\mathbf{I}_{\text {@ }}\); all randomizations are used. When testing the null hypotheses, there is no privileged \(\mathrm{t}_{\text {@s }}\) to use in computing the OSL \(_{R, \text { @s }}\) as in (3.6.2) or (3.6.3), (p. 170). Thus, the set \(s\) must be defined by an external criterion. One criterion is the point which would define the critical region under the normal distribution theory.

For a test of the null hypothesis with a fixed \(x\), this criterion is the value of \(F_{n, d}, \lambda=0,(1-\infty)\) such that
\[
\begin{equation*}
P_{F}\left\{t_{@ s} \underline{\underline{2}} F_{n, d, \lambda=0,(1-\infty)}\right\} \leq \infty, \tag{3.6.9}
\end{equation*}
\]
where \(\mathrm{t}_{\mathrm{g}}\) is assumed to have the F distribution with indicated parameters. Such \(t_{@ s}\) improperly reject a true null hypothesis.

The observed significance level for this test is the probability of observing such randomizations,
\[
\begin{equation*}
\mathrm{OSL}_{R(F)} \equiv \sum_{S} \rho(@ s), \tag{3.6.10}
\end{equation*}
\]
\[
\xi=\left\{\text { @s such that } t_{@ s} \geqq F_{n, d, 2=0,(1-\alpha)}\right\} \text {. }
\]

The summation of \(p(s)\) is over those \(s\) whose test statistic \(t_{@ s}\) is greater than or equal to \(F_{n, d, 2=0,(1-\infty)} \cdot\) When all \(p(s)\) are equal the calculation is
\[
\begin{equation*}
\operatorname{OSL}_{R(F)}=\left\{\frac{N\left(t_{Q_{s} \geq F_{n, d, \lambda}}\right.}{N(\varepsilon)}\right\} \tag{3.6.11}
\end{equation*}
\]

Strictly speaking, this simulation is not a randomization test, as it relies upon an external distribution for the test criterion. This is indicated by the subscript notation \(R(F)\), where the \(F\) identifies the external criterion as the \(F\) distribution.

The computation of the power of the test, \(1-\hat{F}_{R}(F)\), may proceed as in Section 3.6.4. One considers in turn each randomization as the privileged one and obtains \(N(E)\) sets of \(\mathrm{Y}_{\mathrm{G}}\). For each set the external criterion enters via the replacement of (3.6.2), (p. 170), with
\[
\text { OSL }_{R}(F), @_{s} \equiv \sum_{s} \rho(s),
\]
\[
s=\left\{s \text { such that } t_{@ s, s} \underline{F_{n, d}}, \lambda=0,(1-\infty)\right\}
\]

Then obtain the Type II error probability by replacing (3.6.6), (p. 173), with
\[
\begin{gathered}
\mathrm{F}_{\mathrm{R}}(F) \equiv \sum_{s} \rho(@ s), \\
s=\left\{@ s \text { such that } \operatorname{OSL}_{R(F), @ s}>\infty\right\} .
\end{gathered}
\]

A second method uses only the set 5 of (3.6.8). One defines
\[
\begin{gathered}
\mathcal{F}_{\mathrm{R}(\mathrm{~F})} \equiv \sum_{s} \rho(@ s) \text {, with } \\
s=\left\{@ s \text { such that } \mathrm{t}_{@ s}<\mathrm{F}_{\mathrm{n}, \mathrm{~d}, \lambda=0,(1-\infty)}\right\} .
\end{gathered}
\]

Here, \(s\) is the set of \(s\) for which \(t_{\text {@s }}\) erroneously accepts a false null hypothesis.

A third method includes the magnitude of each Type II error. One weights the magnitude of each Type II error by the selection probability of the randomization committing the error. One defines
\[
\begin{aligned}
& \mathrm{F}_{\mathrm{R}}(\mathrm{~F}) \equiv \mathrm{F} \rho(@ \mathrm{~s}) \mathrm{FF}_{\mathrm{s}} \text {, @s with } \\
& \xi=\left\{@_{s} \text { such that } \mathrm{t}_{\mathrm{@}}<\mathrm{F}_{\mathrm{n}, \mathrm{a}, \mathrm{x}=0,(1-\infty)}\right\} \text {, and } \\
& F_{F,} @_{s} \equiv \int_{0}^{F_{n}, d, \lambda=0,(1-\infty)} \begin{array}{l}
d\left(F_{n,}, d, @_{s} \neq 0,\right.
\end{array} .
\end{aligned}
\]

The integrand is the noncentral F-distribution for the true value of \(F\) with the noncentrality parameter appropriate for randomization @s. One integrates from zero to the point at which one would no longer accept the erroneous null hypothesis, \(F_{n, d, \lambda=0,(1-\infty)}\). The set s is those randomizations for which one commits a Type II error.

While the randomization distribution will have one probability of a Type II error, the \(F\)-distribution will have one probability for each randomization due to the change in its non-centrality parameter from one randomization to the next. Examining the characteristics of the above three methods is an extension. Graph 3.6.1 illustrates how the Type II error probabilities differ with the randomization.

Graph 3.6.1
Type II Error Probabilities

\subsection*{3.6.6 Randomization Applied to \(H_{a: \mu, b, \tau, F}^{\beta=\mathbb{D}}\).}

The randomization test is a test of a variable under the control of the experimentor. As per section 2.2.1, (p. 8), the covariates are herein not subject to assignment by the experimentor. Consequently, strictly speaking, the randomization test cannot test \(H_{a}: \mu, b, \tau, F=\mathbb{C}\). Nevertheless, \(F(F \mid \mu, b, \tau)\) depends upon the randomization, thus, so does this hypothesis test.

To take an extreme case, suppose \(\mathbb{Z}\) has but one column whose elements, the covariates \(Z_{i j}\), differ within a block, but repeat exactly in all blocks. An example of this is an industrial experiment, blocked on shifts, which adjust each experimental unit (a lathe) for a known covariate. The covariate, say operating revolutions per minute, differs from lathe to lathe, but remains constant from shift to shift for each lathe. The treatments could be fixed angles of the cutting tool and the responses the yield of machined parts.

We show that in this case, the randomization can force the value of the test statistic to be zero, regardless of the true value of \(F\). The explanation follows from (2.6.10), (p. 52) and (2.6.28), (p. 55). In
 (2.6.28). For this \(\underset{z}{ }\), when the treatments of \(\underset{y}{ }\) repeat in the same order in all blocks, the same treatment is linked to the same covariate value in each block. Such an \(\mathbf{X}\) provides (2.6.28); in which case, \(\mathbb{Z}^{\prime} \mathbf{X}\left(\mathbb{X}^{\prime} \mathbf{X}\right)^{-\mathbb{E}^{\prime}}=\mathbb{Z}^{\prime}\). Straightforward pre-multiplication of (2.6.28) by such a \(\mathbb{Z}^{\prime}\) will show this. Consequently, the idempotency of
 By (2.6.10), (p. 43), \(\lambda\), in this case \(\lambda_{p \mid \mu, b, ~}, f\), equals zero for all f. By Theorem 3.7.6(a), (p. 193), the treatments of \(\mathbf{x}\) will be linked, in each block, with the identical covariate values in \(N(G) t!\) randomizations.

Such randomizations will order the treatments so that \(\mathbf{X}_{\tau, 5}\) aligns treatment 1 with the same value of the covariate in every block. And, aligns treatment 2 with a value of the covariate the same in every block and so on for all treatments. There are \(N(\xi) t\) ! ways to do this. In such randomizations, the model \(X\) will perfectly predict \(\mathbb{Z}_{1}\) and (2.4.10), (p. 28), will give a zero value for \(R_{z}\), and hence \(F(\beta \mid \mu, b, \tau)=0\). Under the normally distributed random error model, the observed. significance level, \(O S L_{F}\) is one for all values of the covariate slope coefficient \(\bar{\beta}\). The null hypothesis is never rejected; in fact, \(:=0\). Even if \(F \neq \mathbb{D}\), the null hypothesis is always accepted; thus, \(F_{F}=1\) and the power, \(1-F_{F}\), is zero for these randomizations.

This is what one would expect, as such a covariate, equal in each block, is completely confounded with the treatments, and the hypothesis test adjusts for the treatment. Cox [1982, p. 200, bottom] notes, without proof, that "when the [covariates] identify a system of blocking, there may exist a large number of arrangements with \(\left|\left|\bar{z}_{1}-\bar{z}_{2}\right|\right|_{\Omega_{2}}=0\) and an exact second moment randomization theory may hold." When the randomizations align the same covariates with the same treatments in each block, the covariates identify a system of blocking. In such randomizations, for the one factor case, Cox's "large number" \(=N(\mathrm{E}) \mathrm{t}!\).

If the covariates in each block are similar instead of exactly equal, the \(N(\xi) t!\) randomizations which align the treatments and similar covariates identically in each block will give the test near zero power. For the same covariate, other randomizations will thoroughly mix the covariates assigned to each treatment. In this case, the model \(x\) will poorly predict \(\mathbb{Z}_{1}\). The absolute value of the difference \(\mathbb{Z}_{1}-\hat{\mathbb{Z}}_{1}=\mathbb{F}_{z}\) will be large. Since the numerator of the \(F\)-ratio is a positive definite quadratic form, \(F(\bar{F} \mid \mu, b, \tau, F)>0\) for such randomizations.

If the covariates take similar values in each block the restriction on randomization of (3.2.13), (p. 116), tends to repeat a similar pattern of covariate values in each block. With such a restriction, different randomizations will greatly differ in their power to detect p;og. Some will approximate the extreme case described above and have near-zero power.

\subsection*{3.6.7 A Requirement of the Test Statistic}

As Kempthorne [1952, p. 128-129] points out, the test statistic "must be such that deviations from the null hypothesis tend to place the value of the ractual test statisticl in a distinctive set of possible values." For any randomization \(s\), the test statistic \(\mathrm{t}_{\mathrm{s}, \mathrm{s}} \equiv \mathrm{F}_{\mathrm{c}, \mathrm{s}, \mathrm{s}}\) does this, as we now show.

Consider the case when the model equation contains normally distributed random error. By Assumption 9, the
distributions of the normally distributed random errors and the randomizations are independent. Consequently, the distribution of a function of the normally distributed random error alone is independent of the randomization distribution. That is, for randomization \(S=s\),
\[
\begin{align*}
E[& \left.F_{@ S, S} \mid S=s\right] \\
& =E\left[F_{@ S, S}, S\right] / E_{R}[S]=E_{F}\left[F_{@ S, S}\right] E_{R}[S] / E_{R}[S] \\
& = \begin{cases}\frac{d}{d-2}[1+2 \lambda / n] & \text { when the model contains } \\
F_{@ S, S} & \text { otherwal randomerror, }\end{cases} \tag{3.6.12}
\end{align*}
\]

See Appendix A. 3 , (p. 384), for the mean of the \(F\) statistic.

When the model equation has normally distributed random error \(\lambda\) enters the expectation. Under the null hypothesis \(\lambda=0\) and under any alternative hypothesis \(\lambda>0\). Under any alternative hypothesis each \(\mathrm{F}_{\mathrm{S}, \mathrm{s}}\) has expectation \(2 \lambda /[n(d-2)]\) greater than \(F_{@ s, s}\) under the null hypothesis. Thus, the entire distribution of the \(N(E)\) test statistics \(F_{@ s, s}\) is shifted to the right, if the alternative hypothesis is true. This provides the required distinctive set Kempthorne [1952, p. 128-129] discusses.

When the model equation lacks normally distributed

\section*{random error}
\[
\begin{aligned}
\bar{F}_{S} & =[(\mathbb{T} \mathbb{X})+\mathbb{E}+\mathbb{H}] \mathbb{F}_{S} \\
& =\left(\mathbb{T}_{0} \mathbb{X}\right)_{S}+\left(\mathbb{T}_{T} \mathbb{X}\right)_{S}+\mathbb{E}_{S}+H_{S} .
\end{aligned}
\]

Consider the null hypothesis \(H_{o ; h, r} \mathcal{F}_{h}=\mathbb{C}\). The elements of \(\mathbb{T}\) hypothesized to be zero (h) are set to zero in \(\mathbb{T}_{o}\) while in \(\mathbb{T}_{\boldsymbol{T}}\), only those elements of \(\mathbb{T}\) hypothesized as nonzero (r) have nonzero symbolic values; \(\mathbb{T}=\mathbb{T}_{\mathrm{c}}+\mathbb{T}_{\mathrm{T}}\). Under the null hypothesis, \(\mathbb{T}_{\boldsymbol{T}}=\mathbb{0}\).

Letting \(E\left(X^{\prime} X\right)^{-} X^{\prime}=\mathbb{F}\), the quadratic form
\[
=\left(\mathbb{T}_{0} X\right)_{S} \cdot \mathbb{H}\left(\mathbb{T}_{Q^{X}} X\right)_{S}+\left(\mathbb{T}_{T} X\right)_{S} \cdot \mathbb{F}\left(\mathbb{T}_{T} X\right)_{S}+\text { quadratic }
\] and bilinear forms in the other terms \(\underline{\underline{z}}\left(\mathbb{T}_{0} \mathbb{E}\right)_{S}{ }^{\prime W\left(\mathbb{T}_{0} \mathbb{X}\right)_{S}}+0+0+\) the same quadratic and bilinear forms in the other terms.

The inequality follows from \(\left(\mathbb{T}_{T} \mathbb{E}\right)_{S}{ }^{\prime} \mathbb{H}\left(\mathbb{T}_{T} \mathbb{X}\right)_{S}\) being a positive definite quadratic form. When the alternative hypothesis is true, \(\mathbb{T}_{\tau}\) is nonzero. This increases the value of \(R(h, r)\), while leaving \(R(r)\) unchanged, increasing the numerator of the \(F\)-ratio, \(R(h \mid r)\). The denominator is reduced. Together, the F-ratio is increased. Thus, under the alternative hypothesis, the \(N(E)\) values of the Fos,s are shifted to higher values, again providing the required distinctive set. When the model equation contains normally distributed random the above two arguments act together.

We next develop a method of obtaining, for all randomizations, such values as the model equation parameter estimates and analysis of variance terms.

\author{
Section 3.7 \\ Randomization, Anova Terms and Estimators
}

Section 3.7.1 develops a matrix method which will produce the design matrix unique to each randomization. Section 3.7.2 applies this method to projectors. Section 3.7 .3 that shows these projectors provide a clustering to the distribution of some model equation estimators and analysis of variance terms. Section 3.7 .4 shows the clustering of the noncentrality parameter associated with \(F(\beta \mid \mu, b, \tau)\). The final section, 3.7.5, develops, for the single covariate case, a relationship between the noncentrality parameters associated with \(F(\beta \mid \mu, b, \tau)\) and \(F(\tau \mid \mu, b, \dot{F})\). This relationship allows one to improve the power of both usual hypothesis tests by restricting randomization. The main results are Theorems 3.7.9, (p. 202), and 3.7.15, (p. 219).

\subsection*{3.7.1 Permutation Matrices}

The design matrices for two randomizations, \(s\) and \(s^{\prime}\), differ only in the columns representing the treatments, the columns of \(Z_{S}, \tau^{\text {. }}\) Holding constant from one randomization to the next the order of the experimental units, that is, the rows of \(X\) and \(\mathbb{Z}\), makes the matrices \(X_{\mu}, X_{b}\), and \(\mathbb{Z}\) constant for all randomizations. Within a level of the blocking variable, the rows of \(\mathrm{E}_{\mu}\) and \(\mathrm{E}_{\mathrm{b}}\), are constant. Thus, within a block, one may interchange the rows of \(x\) to obtain the configuration of zeros and plus
or minus ones in \(\mathbf{X}_{\tau}\) corresponding to randomization \(s\). Designate an arbitrary design matrix \(X_{S}=1\) as the one for randomization number one, \(s=1\). Premultiplication of \(X_{s=1}\) by the proper permutation matrix, \(\mathbb{M}_{s}\), interchanges the rows of \(X_{s}=1\) to yield the design matrix for randomization s, \(X_{S}\). An illustration for a single block follows,
\[
\begin{aligned}
& M_{S, i=1} X_{S=1}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll|rrr}
1 & 1 & 1 & 1 & 1 & 0 \\
1 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1 & 1 & -1 & -1
\end{array}\right]
\end{aligned}
\]

Effect of a Permutation Matrix - One Block
Example 3.7.1

The full permutation matrix, \(\mathbb{M}_{s}\), is block diagonal, with one block per level of the blocking factor. All elements of off-diagonal blocks of \(M_{s}\) are zero. Each block submatrix, \(M_{s, i}\), is rt by rt; the entire matrix, \(M_{s}\), is brt by brt. As in Example 3.7.1, each row and each column of the block submatrix, \(M_{s, i}\), has a single element with the value one; all other elements are zero.

Example 3.7.2 illustrates the full permutation matrix, Ms, for \(b=2, r=1, t=4\) and randomization number \(s=24\).

Note how block two of \(X_{S=1}\) changes to block two of \(X_{S}=24\).
\[
\begin{aligned}
& M_{S=24} X_{S=1}=\left[\begin{array}{l:c}
M_{S=1, i=1} & \text { zero } \\
\hdashline \text { zero } & M_{S=24, i=2}
\end{array}\right] X_{S=1} \\
& =\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 1 & & \\
0 & 1 & 0 & 0 & 1 & & \\
0 & 0 & 1 & 0 & 1 & \text { zero } \\
0 & 0 & 0 & 1 & 1 & & \\
\hdashline & - & 1 & 0 & 0 & 0 & 1 \\
& \text { zero } & 10 & 0 & 1 & 0 \\
& & & 0 & 1 & 0 & 0 \\
& & & 1 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{rrrrrrr}
1 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 \\
1 & 1 & 1 & -1 & -1 & -1 \\
\hdashline 1 & 1 & -1 & -1 & 0 & 0 \\
1 & 1 & -1 & 0 & 1 & 0 \\
1 & 1 & -1 & 0 & 0 & 1 \\
1 & 1 & -1 & 1 & -1 & -1
\end{array}\right] \\
& =\left[\begin{array}{ccc:ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 1 & -1 & -1 & -1 \\
\hdashline 1 & -1 & -1 & -1 & -1 \\
1 & 1 & -1 & 0 & 0 & 1 \\
1 & -1 & 0 & 1 & 0 \\
1 & 1 & -1 & 1 & 0 & 0
\end{array}\right]=X_{S=24}=\left[X_{\mu}\left|X_{b}\right| Z_{S=24, \tau}\right] \\
& \text { Effect of A Permutation Matrix - Two Blocks } \\
& \text { Example 3.7.2 }
\end{aligned}
\]

The block diagonal structure of \(M_{s}\) allows each block submatrix to switch only the rows of one block of the design matrix, \(X_{S}\). The label \(s\) is the block-wise randomization in \(\mathbb{M}_{5, i}\), and the experiment-wise randomization in \(\mathbb{M}_{s}\). In Example 3.7.2 the block-wise randomizations are 1 and 24; the experiment-wise randomization is 24 . For brevity, we shorten \(X_{S=1}\) to \(X_{1}\).

\subsection*{3.7.2 Permutation and Projection Matrices}

There are \(N(E)\) permutation matrices forming the set
\[
\begin{equation*}
\hat{m}=\left\{\mathbb{M}_{1}=\mathbb{I}, \mathbb{M}_{2}, \cdots \cdot \cdots, \mathbb{M}_{3}, \cdot \cdots, \mathbb{M}_{N}(E)\right\} \tag{3.7.2}
\end{equation*}
\]

Each permutation matrix, except the first, is the product of one or more type one elementary matrices, the "row switcher" matrix, \(\mathbb{R}\), times the identity matrix, II. Recall that such elementary matrices are orthogonal; thus \(\mathbb{R}^{-1}\) exists and equals \(\mathbb{R}^{\prime}\). The product of two row switcher matrices is also a row switcher matrix, but not necessarily an elementary one, as it may switch more than one row. We prove the following theorems.

Theorem 3.7.1.
\(\mathbb{M}_{s}\) is orthogonal, that is, \(\mathbb{M}_{s}^{\prime} \mathbb{M}_{s}=\mathbb{M}_{s}^{-1} \mathbb{M}_{5}=\mathbb{M}_{s} \mathbb{M}_{s}^{\prime}=\mathbb{M}_{s} \mathbb{M}_{s}^{-1}=\mathbb{I}\).

Proof: For m@l and \(\mathbb{R}\) a type one elementary matrix or \(\mathbb{I}\),
\[
\begin{align*}
\mathbb{M}_{s, i}^{\prime} & =\left(\mathbb{R}_{1} \mathbb{R}_{2} \cdots \mathbb{R}_{m-1} \mathbb{R}_{m}\right)^{\prime} \\
& =\mathbb{R}_{m}^{\prime} \mathbb{R}_{m-1}{ }^{\prime} \cdots \mathbb{R}_{2}^{\prime} \mathbb{R}_{1} \\
& =\mathbb{R}_{m}^{-1} \mathbb{R}_{m-1}-1 \cdots \mathbb{R}_{2}^{-1} \mathbb{R}_{1}^{-1} \\
& =\left(\mathbb{R}_{1} \mathbb{R}_{2} \cdots \mathbb{R}_{m-1} \mathbb{R}_{m}\right)^{-1} \\
& =\left(\mathbb{R}_{s, i}\right)^{-1} \tag{3.7.3}
\end{align*}
\]

Therefore, by definition, \(M_{s, i}\) is orthogonal. As this holds for all blocks, \(\mathbb{M}_{s}\) is orthogonal.

Theorem 3.7.2.

When the set \(\mathcal{G}\) is unrestricted, the set \(m,(3.7 .2)\), and the operation matrix multiplication form a group. The set of \(\mathbb{H}_{5}\), \(i\) corresponding to \(f l\) and matrix multiplication likewise form a group.

Proof: By writing \(\mathbb{H}_{s}\) as a product of elementary row switcher matrices, one may directly verify the conditions defining the pair (f, matrix multiplication) as a group. One list of these conditions is
a) \(\frac{\mathrm{n}}{\mathrm{n}}\) is closed under matrix multiplication,
b) matrix multiplication is associative,
c) matrix multiplication has an identity element, II,
and d) each element of \(\mathrm{m}, \mathrm{H}\), has an inverse under the operation of matrix multiplication, \(\| l^{\prime}\), which is also an element of fir

See, for example, Burton [1971, p. 48-53 and 69-74]. Conditions (b) and (c) follow from matrix multiplication. Condition (d) follows from (i) the transpose of each \(\mathbb{M}_{s}\) has the proper form and thus is a member of \(\hat{m}\), and (ii) by Theorem 3.7.1 the transpose is the inverse. Condition (a) follows from the fact that the product of any row of one \(\mathrm{ll}_{\mathrm{s}}\) times the columns of another \(\mathrm{H}_{\mathrm{s}}\), will yield exactly one element of that row of the product, Ms lis', with a nonzero value. This one nonzero value must have one as its value. This holds for all rows of the
product. The value one is in a different column in each row of the premultiplier; consequently, the value one will be in a different column of the product \(\mathbb{M}_{s} \mathbb{H}_{s}\). Thus, the product will have the form of a permutation matrix and be a member of \(m\). One may fix the labels \(1,2, \ldots, N(E)\) to the elements of \(\hat{M}\) in an arbitrary manner. This proves Theorem 3.7.2.

Restricted randomization destroys the group characteristic of the pair (\(\cap\), matrix multiplication). The product of two permutation matrices, each included among the restricted set, would not necessarily be among the restricted set, violating condition (a) of Theorem 3.7.2. One may preserve the group nature of the pair (fil, matrix multiplication) by including all randomizations and then assigning a zero value to the experiment-wise randomization selection probability, \(p(s)\), corresponding to those randomizations which would have been restricted. Herein \(N(E)\) is the number of all possible randomizations.

Theorem 3.7.3.

randomizations.
When needed, the same generalized inverse is assumed for all randomizations.

Proof: \(\left[X_{S}{ }^{\prime} X_{S}\right]=\left[\left(M_{S} X_{1}\right)^{\prime}\left(M_{S} X_{1}\right)\right]=\left[X_{1}{ }^{\prime}\left(M_{S} M_{S}\right) X_{1}\right]\)
\[
\begin{equation*}
=\left[\Sigma_{1} \prime \text { (II) } \Sigma_{1}\right], \quad \text { by Theorem 3.7.1. } \tag{3.7.4}
\end{equation*}
\]

The assumed uniqueness of the inverse provides the same result for \(\left[X_{S}{ }^{\prime} X_{S}\right]\).

Theorem 3.7.4.

Proof: By Theorem 3.7.3 and that \(\mathrm{E}_{\mathrm{S}}=\mathrm{m}_{\mathrm{S}} \mathrm{E}_{1}\),
\[
\begin{align*}
& =M_{s}\left[X_{1}\left(E_{1} I_{1}\right)^{-} E_{1}^{\prime}\right] M_{s}^{\prime} . \tag{3.7.5}
\end{align*}
\]

Theorem 3.7.5.

For projectors \(\left[\mathrm{E}_{1}\left(\mathbf{E}_{1} \mathbf{I}_{1}\right)^{-} \mathrm{E}_{1}\right.\) '], all of whose diagonal blocks have, within each block, identical diagonal elements and identical off-diagonal elements, the diagonal blocks of \(\left[X_{S}\left(X_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}\right]\), or equivalently
 i.e., for all randomizations.

Proof: Each diagonal block of \(\mathrm{E}_{1}\left(\mathrm{E}_{1} \mathrm{I}_{1}\right)^{-} \mathrm{I}_{1}\) ' is pre- and post-multiplied by the same block of \(M_{s}\), transposed for the post-multiplication. As seen in Example 3.7.3 below, for a specific \(M_{s}\), pre-multiplication by \(M_{s}\) moves a given
diagonal element vertically w rows. Post-multiplication by the transpose, \(\mathrm{M}_{\mathrm{s}}\) ', moves the element horizontally w columns, returning it to the diagonal, albeit in a new position. This applies to all diagonal elements and holds for all \(\mathrm{M}_{\mathrm{s}}\). Thus, all off-diagonal elements remain in off-diagonal locations. By assumption, all diagonal elements have the same value; thus the resulting diagonal is identical to the original diagonal. By assumption, all off-diagonal elements have the same value; thus the resulting off-diagonal elements are identical to the original off-diagonal elements, albeit also relocated. This proves Theorem 3.7.5.

Section 2.6.3, below (2.6.28),(p. 55), discusses this structure in a projector. The projectors for [\(\left.X_{\mu} \mid X_{b}\right],(2.6 .20),(p .50) ;\) the effects version of \(X_{\tau}\), (2.6.24), (p. 52); and \(\left[X_{\mu}\left|x_{b}\right| x_{\tau}\right],(2.6 .28),(p .55)\) all have this structure. The projectors for matrices related to these three matrices by the conditions of Theorem 2.8.3, (p. 87), also have this structure. Note that the coding version of \(\mathbf{x}_{\boldsymbol{T}}\) is not so related to the effects version of \(\mathbf{x}_{\tau}\); thus, its projector does not have this structure, nor does the projector for \(\mathbb{Z}_{\tau}\) with more than one factor. Consideration of the effects of randomization upon projectors derived from \(\mathbf{E}_{\tau}\) with multiple factors and interactions is an extension.
\[
\text { While } \Sigma_{1}\left(\mathbf{E}_{1} ' \mathrm{E}_{1}\right)^{-} \mathrm{E}_{1} \text { ' is symmetric, for clarity }
\]

Example 3.7.3 uses distinct elements. Each element is its original row, column location. All elements remain in their original blocks.
\[
\begin{aligned}
& \mathbf{x}\left[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 1 & & & \\
0 & 0 & 1 & 0 & 1 & & \text { zero } \\
1 & 0 & 0 & 0 & 1 & & & \\
0 & 0 & 0 & 1 & & & & \\
- & - & - & -1 & \overline{0} & \overline{0} & - \\
& \text { zero } & & 10 & 0 & 0 & 1 & 0 \\
& & & 1 & 0 & 0 & 0 \\
& & & & 10 & 1 & 0 & 0
\end{array}\right]
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{lllll|llll}
83 & 81 & 82 & 84 & 87 & 8 \varepsilon & 86 & 85 \\
63 & 61 & 62 & 64 & 67 & 68 & 6 \epsilon & 65
\end{array} \\
& \left.\begin{array}{llll:llll}
63 & 61 & 62 & 64 & 67 & 68 & 6 \in & 65 \\
53 & 51 & 52 & 54 & 1 & 57 & 58 & 56 \\
5 & 5
\end{array}\right]
\end{aligned}
\]

Effect of a Permutation Matrix - Projector Matrix
Example 3.7.3

The diagonal elements of the off-diagonal blocks of \(X_{1}\left(X_{1}{ }^{\prime} X_{1}\right)^{-} X_{1}\) ' are not returned to the diagonal. When the off-diagonal blocks have elements with different values in their on- and off-diagonal positions, randomization alters the projector, as with the projectors for \(\mathbf{x}_{\boldsymbol{\tau}}\) (effects version) (2.6.24), (p. 52), and for \(\left[X_{\mu}\left|X_{b}\right| X_{\tau}\right]\), (2.6.28), (p. 55). When they are the same, as in the projector for \(\left[X_{\mu} \mid X_{b}\right],(2.6 .20),(p .50)\), randomization does not alter the projector. This is as one would expect; randomization occurs within the block, affecting only the treatments, not the blocks.

Theorem 3.7.6.

For projectors \(X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\), all of whose diagonal blocks have, within each block, identical diagonal elements and identical off-diagonal elements (as in Theorem 3.7.5), and for a number of randomizations equal to \([N(G) t!]^{b}\), there are
a) exactly \([N(\xi) t]^{b-1}\) groups of randomizations, each comprised of exactly [N(G)t!] randomizations. Within each group all projectors \(X_{S}\left(X_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}\) ' are identical.
b) at most \([\mathrm{N}(\xi) \mathrm{G}]^{\mathrm{b}-1}\) groups of randomizations, each having an integer multiple (1, 2, ...) of [N(G)t!] randomizations. That is, having l[N(G)t!] or \(2[N(G) t!]\) or \(3[N(G) t!]\), etc. number of randomizations. Within each
of these groups all \(X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\) ' \(\mathbb{Z}\) are identical.
Consequently, within each group, all values are identical

Proof of Part (a):
By Theorem 3.7.2, (p. 188), each of the following \(\mathrm{b}-1\) products is a member of m
\[
\begin{equation*}
\mathbb{m}_{s, 1}\left(\mathbb{N}_{5,2}\right)^{\prime}, \quad \mathbb{M}_{5,1}\left(\mathbb{N}_{5,3}\right)^{\prime}, \ldots, \mathbb{M}_{5,1}\left(\mathbb{M}_{s, b}\right)^{\prime} \tag{3.7.7}
\end{equation*}
\]

Replacing each product by the label for the member of m which the product equals, yields an ordered sequence of labels,
\[
\begin{equation*}
t_{1}, t_{2}, \ldots, t_{b-1} . \tag{3.7.8}
\end{equation*}
\]

The identical sequence of labels may be obtained for any of the other \([N(\xi) t!]-1\) choices of \(M, 1\) by replacing
\[
\left(\mathbb{M}_{5,2}\right)^{\prime}, \quad\left(M_{s, 3}\right)^{\prime}, \ldots,\left(\mathbb{H}_{5}, b\right)^{\prime}
\]
with the appropriate
\[
\left(\mathbb{H}_{5 *, 2}\right)^{\prime}, \quad\left(\mathbb{M}_{5 *, 3}\right)^{\prime}, \ldots,\left(\mathbb{H}_{5 *, b}\right)^{\prime}
\]

For each block, s and s* are two necessarily different block-wise randomizations. The group nature of (\(\boldsymbol{m}\), matrix multiplication) ensures that this can be done. There are \(\left\{[N(G) t!]^{b}\right\} /\{[N(G) t!]\}=[N(G) t!]^{b-1}\) such sequences of labels, (3.7.8). Label each unique sequence of labels of (3.7.8) by \(g\),
\[
\begin{equation*}
g=1,2, \ldots,[N(\xi) t!]^{b-1} . \tag{3.7.9}
\end{equation*}
\]

Designate as \(\mathbb{F}_{1,1}, \mathbb{F}_{1,2}, \ldots, \mathbb{F}_{1, b}\), the first row of b blocks of \(\left[\mathbf{x}_{1}\left(\mathbf{x}_{1} \mathbf{x}_{1}\right)^{\prime} \mathbf{z}_{1}\right]\)]. The first row of blocks of the product \(\mathbb{M}_{5}\left[\mathrm{E}_{1}\left(\mathrm{E}_{1}{ }^{\prime} \mathrm{E}_{1}\right)^{-} \mathrm{X}_{1}{ }^{\prime}\right] \mathrm{M}_{\mathrm{s}}\) ' is
\[
\begin{array}{r}
\mathbb{H}_{5,1} \mathbb{F}_{1,1},\left(\mathbb{M}_{5,1}\right)^{\prime}, \quad \mathbb{M}_{5,1} \mathbb{F}_{1,2},\left(\mathbb{M}_{5,2}\right)^{\prime}, \\
\ldots, \mathbb{H}_{5,1} \mathbb{F}_{1, b},\left(\mathbb{M}_{5, b}\right)^{\prime} . \tag{3.7.10}
\end{array}
\]

The permutation matrices \(H_{5,1}\) and (\(H_{5,2}\)) only switch, not multiply, the rows and columns of \(\mathbb{F}_{1,2}\). Thus, the products \(H_{5,1} \mathbb{F}_{1,2},\left(\mathrm{H}_{5,2}\right)\) ' and \(\mathrm{H}_{5 *, 1} \mathbb{F}_{1,2},\left(\mathrm{M}_{5} *, 2\right)\) ' are equal since the products \(M_{s, 1}\left(M_{5,2}\right)\) and \(M_{s *, 1}\left(M_{s} *, 2\right)^{\prime}\) are equal. Being equal, they have the same \(t\) label of (3.7.8). This holds for all b blocks of row one and for all [N(G)t! \(]^{b-1}\) sequences (3.7.7) with identical sequences of \(t\) labels (3.7.8). Thus, all randomizations with the same value of \(g(3.7 .9)\) have the identical first row of blocks of \(\operatorname{Min}_{s}\left[\Sigma_{1}\left(x_{1}^{\prime} x_{1}\right)^{-} x_{1}{ }^{\prime}\right] M_{s}\).

We now show that any row of blocks of one \(X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\) ' is identical to the same row of any another \(X_{S} *\left(X_{S}{ }^{\prime} X_{S *}\right)^{-} X_{S} *^{\prime}\), provided \(s\) and \(s^{*}\) are in the same g-group. Without loss of generality, consider the second row of blocks. Two sequences of products are
\[
\begin{aligned}
& M_{s, 2}\left(M_{s, 1}\right)^{\prime}, \quad I_{,} M_{s, 2}\left(M_{s, 3}\right)^{\prime}, \ldots, M_{s, 2}\left(M_{s, b}\right)^{\prime} \text { and } \\
& M_{s *, 2}\left(m_{s *, 1}\right)^{\prime}, I_{,} M_{s *, 2}\left(M_{s *, 3}\right)^{\prime}, \ldots, M_{s} *, 2\left(M_{s} *, b\right)^{\prime} .
\end{aligned}
\]

The assumption that \(g\) is the same for both sequences gives
\[
\begin{equation*}
\mathbb{H}_{5,1}\left(\mathbb{H}_{5,2}\right)^{\prime}=\mathbb{H}_{5 *, 1}\left(\mathbb{N}_{5 *, 2}\right)^{\prime} \tag{3.7.11}
\end{equation*}
\]

Premultiplication and Theorem 3.7.1, (p. 187), give
\[
\begin{array}{r}
{\left[\mathbb{M}_{5,1}\left(\mathbb{M}_{5,2}\right)^{\prime}\right]\left[\mathbb{M}_{5,2}\left(\mathbb{M}_{5,3}\right)^{\prime}\right]} \\
=\mathbb{M}_{5,1} \mathbb{I}\left(\mathbb{M}_{5,3}\right)^{\prime} \text { and } \\
{\left[\mathbb{H}_{5 *, 1}\left(\mathbb{N}_{5 *, 2}\right)^{\prime}\right]\left[\mathbb{M}_{5 *, 2}\left(\mathbb{M}_{5 *, 3}\right)^{\prime}\right]} \\
=\mathbb{H}_{5 *, 1} \mathbb{I}\left(\mathbb{H}_{s} *, 3\right)^{\prime} \tag{3.7.13}
\end{array}
\]

By the assumption of equal values of \(g\), the right-hand side of (3.7.12) equals the right-hand side of (3.7.13). Thus,
\[
\begin{align*}
& {\left[\mathbb{M}_{5,1}\left(\mathbb{M}_{5,2}\right)^{\prime}\right]\left[\mathbb{H}_{5,2}\left(\mathbb{M}_{5,3}\right)^{\prime}\right] } \\
= & {\left[\mathbb{H}_{5 *, 1}\left(\mathbb{H}_{5 *, 2}\right)^{\prime}\right]\left[\mathbb{M}_{5 *, 2}\left(\mathbb{M}_{5 *, 3}\right)^{\prime}\right] . } \tag{3.7.14}
\end{align*}
\]

Premultiplication by the transpose of \(\left[\mathrm{m}_{5,1}\left(\mathrm{H}_{5,2}\right)^{\prime}\right]\), which by (3.7.11) equals the transpose of \(\mathbb{M}_{5 *, 1}\left(\mathbb{M}_{5} *, 2\right)\), gives
\[
\begin{equation*}
H_{5,2}\left(m_{5,3}\right)^{\prime}=H_{5 *, 2}\left(m_{5 *, 3}\right)^{\prime} \tag{3.7.15}
\end{equation*}
\]

Thus, the third block of row two of the first projector matrix (s) equals the same block of the second projector matrix (s*).

This same argument applies to all blocks of row two and all rows of blocks. Thus, all randomizations with the same value of \(g(3.7 .9)\) have identical values of \(M_{s}\left[x_{1}\left(x_{1} x_{1}\right)^{-} x_{1}{ }^{\prime}\right\}\left(H_{s}\right)^{\prime}\). This proves Part (a).

The permutation matrix of Example 3.7.3, (p. 192), has block-wise randomizations labeled 13 and 18. The experiment-wise randomization is \(s=(13-1)\{[N(\xi) t!1\}+18\) \(=(12)(24)+18=306\), while \(g=6\). The permutation matrix with block-wise randomizations 1 and 6 , has experimentwise randomization of 6 , also with \(g=6\). Thus, randomizations \(s=306\) and \(s=6\) yield identical projector matrices, when the initial projector matrix has the special form discussed in Theorem 3.7.5. We use the term g-group for the groups of randomizations with the same value of \(g\) in (3.7.9), (p. 194).

For the \(\mathrm{s}_{\mathrm{S}}\) of Example 3.7.2, (p. 186), \(\mathrm{t}=4, \mathrm{~b}=2\), and \(r=1\), thus \(N(G)=1\), giving \([N(G) t!]^{b-1}=[(1)(4!)]^{2-1}=\) 24 possible values for the projector \(X_{S}\left(X_{S}{ }^{\prime} X_{S}\right){ }^{-} X_{S}\), not \((4!)^{2}=576\), the total number of randomizations.

Proof of Part (b) of Theorem 3.7.6:
 (2.4.11), (p. 28). Thus, randomizations with equal \(X_{S}\left(X_{S} X_{S}\right)^{-y_{S}}\) ' also have equal \(\mathbb{R}_{S, z}\). By part (a) each equal-valued \(\mathbb{F}_{s, z}\) appears in \([N(G) t!]\) randomizations, as do \(\mathbb{R}_{s, z}\left(\mathbb{F}_{s, z}{ }^{\mathbb{F}_{s}, z}\right)^{-\mathbb{F}_{s, z}}\), and \(\left(\mathbb{F}_{s, z} \mathbb{R}_{s, z}\right)^{-\mathbb{F}_{s, z}}\). However, each column of \(\left[X_{S}\left(X_{S} X_{S}\right)^{-} X_{S} \prime\right] \mathbb{Z}\) is a weighted sum of the elements of a column of \(\mathbb{Z}\). For some \(\mathbb{Z}\), two or more of the g-groups will yield the same sum. The covariate of

Table 2.7.1, (p. 69), does this. For that \(\mathbb{Z}\) there are \([N(G) t!]^{b-1}-1=[(1)(4!)]^{2-1}-1=24-1=23\) randomizations groups. One value of the projector \(\mathbb{R}_{S, z}\left(\mathbb{F}_{S}, Z^{\prime} \mathbb{R}_{S, z}\right)^{-} \mathbb{F}_{S}, z^{\prime} \operatorname{appears}(2)[N(\xi) t!]=(2)[24]=48\) times. This proves Part (b) of Theorem 3.7.6.

The functions of Part (b) are grouped, but these groups may be fewer than \([N(G) t!]^{b-1}\) in number and contain an integer multiple of [N(G)t!] randomizations. Equality of the \(X_{S}\left(X_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}\) ' implies equality of the \(\mathbb{R}_{s, z}\left(\mathbb{F}_{S}, z^{\prime} \mathbb{F}_{s, z}\right)^{-} \mathbb{F}_{s, z}{ }^{\prime}\) for randomizations within the same g-group, but not the converse. Such duplication is unlikely with multiple covariates, but will occur when multiple observations have the same covariate values. Possibly this result can be exploited in the analysis of covariance analog of the measurement of pure error.

\subsection*{3.7.3 Permutation, Anova Terms and an Estimator}

The repetition in multiple randomizations of identical values of \(\mathbb{E}_{S}\left(\mathbb{E}_{S}{ }^{\prime} \mathbb{Z}_{S}\right)^{-} \mathbb{Z}_{S}\) ' and functions with \(\mathbb{Z}\) (Theorem 3.7.6) imparts a cluster pattern to the values of those Anova terms in which they appear. Theorem 3.7.9 presents the clustering and dispersing parts of these terms.

The clustering term involves (\(\mathbb{Z} \bar{F}+e)\), where \(e\) is the \(n x l\) vector of experimental unit error. Alone, it is constant for all randomizations. The dispersing term
involves (\(\pi_{s}+n_{s}\)), the sum of the \(n x l\) vector for experimental unit-treatment interaction errors (\(\pi_{s}\)) plus the \(n x l\) vector of normally distributed random errors (\(n_{s}\)). Typically, both of these vectors differ with each randomization. In each Anova term, (\(\mathbb{\mathbb { E }} \boldsymbol{f}+\mathrm{e})\) is multiplied by one or more projectors which are constant for all randomizations in the same randomization group. The product fixes a cluster center for the values of the Anova term for those randomizations in the group. Within the group, the constant projector multiplies \(\left(n_{s}+n_{s}\right)\). This product disperses the values about the cluster center, providing the \(n_{s}\) and/or \(n_{s}\) change with the randomizations, as is the typical case.

The relative magnitude of the elements of \((\mathbb{\mathbb { Z }}+\mathrm{e})\) and (\(n_{s}+n_{s}\)) determine the degree of intermingling of values from different clusters, i.e., from different randomization groups. When \(F\) is near zero, the elements of (\(\overrightarrow{\mathbb{Z}} \vec{F}+e)\) may be nearly equal to those of \(\left(n_{s}+n_{s}\right)\). In this case, the clusters merge one into another. Typically, \(\mathbb{Z} F \neq \mathbb{U}\) and thus, the elements of \((\mathbb{Z} \bar{F}+e)\) are large relative to those of \(\left(\pi_{s}+n_{s}\right)\). In this case, clusters are distinct with little intermingling of values. Under strict additivity (3.3.11), (p. 125), \(e \neq \mathbb{0},\left(n_{s}+n_{s}\right)=\mathbb{0}\) and there is no dispersion; each cluster collapses to a single value identical for all [N(G)t!] randomizations in the group. The randomization
test (Section 3.6.3, p. 169), holds constant the value of \(\mathrm{r}_{\mathrm{S}}\), treating \(\mathrm{n}_{\mathrm{s}}\) and \(\mathrm{n}_{\mathrm{s}}\) as negligible for all randomizations (Section 3.6.2, (p. 170)). Again, each cluster collapses to a single value. When the clusters are distinct, a continuous distribution is a poor approximation to this discrete randomization distribution. The clustering imparts a stair step shape to the cumulative distribution function when \(p(s)\) is constant for all randomizations, s. As clusters become less distinct, the steps collapse, making the cumulative distribution function more like the sigmoid curve of a continuous density function, albeit discrete.

There are at most brt \({ }^{2}\) distinct elements of \(n_{s}\), one for each experimental unit (with replications for \(t\) treatments in b blocks) times one per treatment. They are reselected to form each of the \([N(\xi) t!]^{b}\) for all randomizations. There are (brt)[N(G)t!] \({ }^{\text {b }}\) distinct elements of the \([N(\xi) t!]^{b} n_{S}\). An extension is the examination of the different dispersion effects, if any, of the two error terms \(n_{s}\) and \(n_{s}\). Note that should \(n_{s}\) be constant for all randomizations, it would have the same effect as e. Hence, the assumption here and in section 3.5.2, (p. 155), that the columns of \(\mathbb{N}\) of (3.5.1), (p. 156), the \(\mathrm{n}_{\mathrm{S}}\), differ with each randomization.

The main result follows two preliminary theorems.
Theorem 3.7.7.
\[
\begin{align*}
& \mathbb{Z}^{\prime}\left\{\mathbb{F}_{S, z}\left(\mathbb{F}_{S, z}{ }^{\prime} \mathbb{F}_{S, z}\right)^{-\mathbb{F}_{S,}} z^{\prime}\right\} \\
& =\mathbb{Z}^{\prime}\left\{\mathbb{I I}-X_{S}\left(E_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}{ }^{\prime}\right\} \tag{3.7.16}
\end{align*}
\]

Proof: By the definition of \(\mathbb{F}_{S, z}(2.4 .7)\), (p. 26), and the idempotency and symmetry of \(\mathbb{R}_{s, x}\),
\[
\begin{aligned}
& \mathbb{Z}^{\prime}\left\{\mathbb{F}_{S, z}\left(\mathbb{F}_{S, z} \mathcal{F}_{S, z}\right)^{\left.-\mathbb{F}_{S}, z^{\prime}\right\}}\right. \\
& \quad=\mathbb{Z}^{\prime} \mathbb{F}_{S}, x^{\mathbb{Z}}\left[\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)\right]^{-}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime} \\
& \quad=\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)\left[\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{-}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\right.
\end{aligned}
\]
which, by the Corollary of p. 20 of Searle [1971] and the definition of \(\mathbb{R}_{S, 2}\), becomes
\[
\left.=\left(\mathbb{R}_{S}, x^{\mathbb{Z}}\right)^{\prime}=\mathbb{Z}^{\prime}\left\{I I-X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\right\}^{\prime}\right\}
\]

Theorem 3.7.8.

For full rank \(\mathbb{R}_{S, Z},\left(\mathbb{R}_{S, z}{ }^{\prime} \mathbb{F}_{S, z}\right)^{-\mathbb{F}_{S,}}{ }^{\prime} \mathbb{Z}=\mathbb{I}\)
Proof: By the definition of \(\mathbb{R}_{S, z}(2.4 .7)\), (p. 26),
\[
\begin{aligned}
& \left.\left(\mathbb{F}_{S}, z^{\prime} \mathbb{F}_{S}, z\right)^{-F_{S}, z^{\prime} \mathbb{Z}}\right) \\
& \quad=\left[\left(\mathbb{F}_{s, x^{Z}}\right)^{\prime}\left(\mathbb{F}_{s}, x^{z}\right)\right]^{-}\left(\mathbb{F}_{S}, x^{\mathbb{E}}\right)^{\prime} \mathbb{Z}
\end{aligned}
\]
which by the idempotency and symmetry of \(\mathbb{R}_{5, x}\)
\[
\begin{aligned}
& =\left[\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)\right]^{-}\left(\mathbb{Z} \mathbb{R}_{S}, x^{\prime}\right)\left(\mathbb{R}_{S}, x^{\mathbb{Z}}\right) \\
& =\left[\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)\right]^{-}\left[\left(\mathbb{R}_{S}, x^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{S}, x^{\mathbb{Z}}\right)\right]
\end{aligned}
\]

By Assumption 4, (p. 18), \(\mathbb{R}_{s, z}\) has full column rank,
and thus, so does \(\left[\left(\mathbb{R}_{5}, X^{\mathbb{Z}}\right)^{\prime}\left(\mathbb{F}_{5}, x^{\mathbb{Z}}\right)\right]\). Consequently, the inverse is a true inverse, giving the result. See Section 2.4.1, (p. 25), for details on the rank of \(\mathbb{R}_{S, z}\).

Theorem 3.7.9.
When (a) the design matrix \(X_{S}\) has the projector \(\left[X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}{ }^{\prime}\right]\), all of whose diagonal blocks have, within each block, identical diagonal elements and identical off-diagonal elements (as in Theorem 3.7.6(b)), and (b) for a number of randomizations equal to [N(G)t! \(]^{b}\), there are at most \([N(G) t!]^{b-1}\) clusters of numerical values, with each cluster composed of an integer multiple of [N(E)t!] randomizations for
1. The sum of squares for the covariate(s) as adjusted for the mean, blocks and treatments, \(R_{S}(\beta \mid \mu, b, \tau)\),
2. The residual sum of squares, \(S S R_{s}\),
3. The F-ratio, and hence the OSLF, for the covariate(s) as adjusted for mean, blocks and treatments, \(F_{s}(\bar{F} \mid \mu, b, \tau)\),
4. The estimate for the regression slope coefficient, as adjusted for the mean, blocks and treatments, \(\hat{\vec{F}}_{S} ; \mu, g, \tau, F^{\prime}\) when \(\mathbb{Z}\) has full column rank as per Assumption 4, (p. 18),
5. The F-ratio, and hence the OSL \(_{F}\), for the treatments as adjusted for the mean, blocks and covariate(s), \(F_{S}(\tau \mid \mu, b, F)\), and the \(F-r a t i o\) (and \(0 S L_{F}\)) for the entire model equation, when the null hypothesis of \(\tau=\mathbb{D}\) is true.

Graph 4.5.9, (p. 288), and the points marked "u" in Graphs 4.6.5 and 4.6.7, (p. 299-302), illustrate Part 3. Graphs 4.5.3 and 4.5.4, (p. 277-278), illustrate Part 4. Graphs 4.5.5, (p. 280), and the top left of Display 4.6.7, (p. 350), illustrate Part 5.

To begin the proof, write the vector of observations as
\[
\begin{equation*}
\mathbf{I}_{S}=\mathbf{X}_{S} \tau+\boldsymbol{z}_{F}+e+n_{S}+n_{S} \tag{3.7.18}
\end{equation*}
\]

Proof of Part 1.
\[
R_{S}(F \mid \mu, b, T) \equiv \bar{I}_{S}{ }^{\prime}\left\{\mathbb{R}_{S, Z}\left(\mathbb{R}_{S,} z^{\prime} \mathbb{F}_{S, Z}\right)^{\left.-\mathbb{R}_{S,}, z^{\prime}\right\} \bar{I}_{S}}\right.
\]
\[
\text { By }(2.4 .13 b),(p, 194), \text { all terms in }{\underset{S}{S}} \text { are zero, }
\] leaving

By Theorem 3.7.6(b) the first term is constant for all [N(G)t!] randomizations having the same value of the \(g\) of (3.7.9), (p. 194). It sets at most \([N(G) t!]^{b-1}\) cluster centers. Within each g-group, the other two terms of
\[
\begin{align*}
& +2(\mathbb{\mathbb { E }} \bar{F}+e)^{\prime}\left\{\mathbb{F}_{S, Z}\left(\mathbb{F}_{S, Z}{ }^{\prime} \mathbb{R}_{S, Z}\right)^{-\mathbb{F}_{S,}}{ }^{\prime}\right\}\left(\pi_{S}+n_{S}\right) \\
& +\left(n_{S}+n_{S}\right)^{\prime}\left\{\mathbb{F}_{s, z}\left(\mathbb{F}_{S,} z^{\prime} \mathbb{F}_{S, z}\right)^{-} \mathbb{F}_{S, z}{ }^{\prime}\right\}\left(n_{S}+n_{S}\right) . \tag{3.7.19}
\end{align*}
\]
(3.7.19) disperse values about each cluster center. When \(\left(\pi_{s}+n_{s}\right)=\mathbb{C}\) for all \(s\), as in strict additivity, or is negligible as in the randomization test, each of the at most \([\mathrm{N}(\xi) \mathrm{E}!]^{\mathrm{b}-1}\) clusters collapses to a single value. Otherwise, the relative values of (\(\mathbb{Z} F+e)\) and \(\left(n_{s}+n_{s}\right)\) determine the extent of cluster dispersion and overlap. Duplication of values for clusters and/or individual randomizations may occur via the weighted sum of certain (\(\mathbb{Z} \mathcal{F}+e\)) and/or (\(n_{s}+n_{S}\)), in the manner of Theorem 3.7.6(b) or by the addition operation of (\(\left.\mathbb{Z}_{\mathcal{F}}+e\right)\) and/or \(\left(\pi_{S}+n_{S}\right)\).

Proof of Part 2:
From (2.5.2), (p. 36),
\[
\begin{aligned}
& =\left\{\left(\tau^{\prime} X_{S}{ }^{\prime}+F^{\prime} \mathbb{Z}^{\prime}\right)+e^{\prime}+\left(r_{S}{ }^{\prime}+n_{S}{ }^{\prime}\right)\right\} \\
& x\left\{\text { II }-X_{S}\left(X_{S}{ }^{\prime} Z_{S}\right)^{-} X_{S}{ }^{\prime}-\mathbb{F}_{S, z}\left(\mathbb{F}_{S, z}{ }^{\prime} \mathbb{F}_{S, z}\right)^{-\mathbb{F}_{S,}}{ }^{\prime}\right\} F_{S} .
\end{aligned}
\]

Since II - \(X_{S}\left(X_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}{ }^{\prime}=\mathbb{R}_{S,}\), terms involving \(X_{S}\) ' are zero, by (2.4.13(b)). By Theorem 3.7.7, terms involving \(\mathbb{Z}\) cancel. The idempotency provides the same cancellation on the right for \(\bar{I}_{S}\), leaving,

\begin{abstract}
Values of the first term are constant for all [N(G)t!] randomizations having the same value of \(g\), as in (3.7.9). Within each g-group, the last two terms disperse values about the value set by the first term. When \(\left(n_{S}+n_{s}\right)=\mathbb{a}\) for all s, as in strict additivity, or is negligible as in the randomization test, each of the \([N(G) t]^{b-1}\) clusters collapses to a single value. Otherwise, the relative values of \(e\) and \(\left(n_{s}+n_{s}\right)\) determine the extent of cluster dispersion and overlap. As with \(R_{S}(f \mid \mu, b, \tau)\), clusters and/or individual randomizations may have identical values of \(\mathrm{SSR}_{\mathrm{S}}\).
\end{abstract}

Proof of Part 3:
By Parts 1 and 2,
\(F_{S}(F \mid \mu, b, \tau)=\{[1 / q] /[1 /(n-p-q)]\} x\)

where \(n=t h e ~ n u m b e r ~ o f ~ o b s e r v a t i o n s, ~\)
\(\mathrm{p}=\operatorname{rank}\left(\mathbb{Z}_{\mathrm{S}}\right)\) and \(\mathrm{q}=\mathrm{rank}(\mathbb{\mathbb { L }})\).
When \(\left(n_{s}+n_{s}\right)=\mathbb{C}\) for all \(s\), as in strict additivity, or is negligible, as in the randomization test, each of the [N(G)t!] \({ }^{\text {b-1 }}\) clusters collapses to a single value. Otherwise, the relative values of \((\mathbb{E} F+e)\) and \(\left(n_{s}+n_{S}\right)\) determine the extent of cluster dispersion and overlap.

As with \(R_{s}(f \mid \mu, b, \tau)\), clusters and/or individual randomizations may have identical values of \(F_{s}(f \mid \mu, b, \tau)\).

Equation (3.7.21) provides a formula for the \(\mathrm{t}_{\text {@s, }}\) of (3.6.1), (p. 170), and (3.6.5), (p. 173), and the \(t_{\text {@s }}\) of (3.6.8), (p. 174). This result proves the assertion in Pitman of \((t!)^{b-1}\) unique values of the test statistic and details the conditions under which it holds [Pitman, 1937, bottom six lines of p. 323]. (We state his assertion in our notation.) His model lacks a covariate. Without one, the first projector of \(R_{S}(\tau \mid \mu, b)=R_{S}(\mu, b, \tau)-R(\mu, b)\) has the special form giving it identical values for randomizations having the same value of \(g\), as in (3.7.9), (p. 194), The second projector is constant for all randomizations. Thus, one obtains Pitman's result.

Graph 4.5.9, (p. 288), illustrates Part 3 via the OSL \(_{F}\) 's associated with the \(F_{S}(F \mid \mu, b, \tau)\). The automatic scaling has grouped clusters with similar values, but in each case there are an integral multiple of \(N(G) t!=\) \(1(4!)=24\) randomization per bar of the histogram. The points marked "u" on Graphs 4.6.5 and 4.6.6, (p. 299), also illustrate Part 3. Each "u" is one cluster of \(N(G) t!=24\) points when \(\pi_{s}=n_{s}=\mathbb{D}\).

Proof of Part 4:
By the definition of \(\hat{\boldsymbol{F}}_{S} ; \mu, \mathrm{b}, \mathrm{T}, \mathrm{F},(2.4 .17),(\mathrm{p} .29)\), and Theorem 3.7.8, (p. 201),
\[
\begin{align*}
& \hat{F}_{S} ; \mu, b, \tau, F \\
& =\left(\mathbb{R}_{s, z} \mathcal{R}_{s, z}\right)^{-\mathbb{R}_{s, z}}{ }^{\prime}\left[\mathbb{Z} F+e+\left(n_{s}+n_{S}\right)\right] \\
& =\beta+\left(\mathbb{F}_{s, z}{ }^{\prime} \mathbb{R}_{S, z}\right)^{-} \mathbb{F}_{s, z}{ }^{\prime}[\text { e }] \\
& +\left(\mathbb{F}_{s, z}{ }^{\prime} \mathbb{R}_{S, z}\right)^{-\mathbb{F}_{S,}}{ }^{\prime}\left[n_{s}+n_{s}\right] . \tag{3.7.22a}
\end{align*}
\]

The first term, \(F\), is constant for all randomizations. The second term (in e) is constant within each randomization group. The third term (in \(n_{s}+n_{S}\)) differs with each randomization and disperses values about the \([N(\xi) t!]^{b-1}\) cluster centers set by the second term. When \(\left(n_{S}+n_{S}\right)=\mathbb{a}\), as in strict additivity, or is negligible as in the randomization test, each of the \([N(G) t]^{b-1}\) clusters collapses to a single value. Otherwise, the relative values of \(e\) and (\(\left.\pi_{s}+n_{s}\right)\) determine the extent of cluster dispersion and overlap. As with \(R_{s}(f \mid \mu, b, \tau)\), clusters and/or individual randomizations may have identical values of \(\hat{F}_{S}: \mu, b, \tau, \mathcal{F}^{\prime}\) Equation (3.7.22a) is a generalization to multiple covariates and additional error types of a result found in Cochran [1957, the second to last equation of p. 272].

The last parts of (3.7.22a) are the least squares estimator of \(F_{S}, \varepsilon\) in the model equation
\[
\begin{align*}
{\left[e+n_{S}+n_{S}\right] } & =\mathbb{R}_{S}, z^{F_{S}, \varepsilon}+\text { error } \tag{3.7.22b}\\
& =\left(\mathbb{R}_{S}, x^{\mathbb{E}}\right) F_{S}, \varepsilon+\text { error } \\
& \left.=\left\{\left[I I-\mathbb{Z}_{S}\left(\mathbb{Z}_{S} \mathbb{Z}_{S}\right)-\mathbb{X}_{S}\right]\right] \mathbb{Z}\right\} F_{S}, \varepsilon+\text { error. }
\end{align*}
\]

This equation should be contrasted with (2.4.8), (p. 27). For the one covariate case, a near zero correlation of \(\left[e+n_{S}+n_{S}\right]\) with \(\left\{\left[\mathbb{I}-X_{S}\left(X_{S}{ }^{\prime} X_{S}\right)^{-} X_{S}{ }^{\prime}\right] \mathbb{E}\right\}\) implies \(F_{S}, \varepsilon \approx 0\) and a small bias of \(\hat{F}_{S}: \mu, b, \tau, \bar{F}\).

Graph 4.5.3, (p. 277), illustrates Part 4 when e¥̣ and \(n_{s}=n_{s}=0\). The automatic scaling has grouped clusters with similar values, but in each case, there is an integral multiple of \(N(\xi) t!=1(4!)=24\) randomizations per group. Graph 4.5.4, (p. 278), illustrates Part 4 when \(e=n_{S}=\mathbb{0}\) and \(n_{S} \neq \mathbb{O}\). It is similar to the case \(e=n_{S}=\mathbb{0}\) and \(n_{S} \neq 0\).

Proof of Part 5:
When \(\tau=\mathbb{0},(3.7 .18),(p .203)\), lacks the \(\mathbb{X}_{S} \tau\) term. Consequently, \(R_{S}(\tau \mid \mu, b, F)\) is
\[
\begin{align*}
& \left(\mathbb{Z}_{F}+e\right)^{\prime}\left\{\mathbb{F}_{S}-\mathbb{B}\right\}(\mathbb{Z} F+e) \\
+ & 2\left(\mathbb{Z}_{F}+e\right)^{\prime}\left\{\mathbb{F}_{S}-\mathbb{E}\right\}\left(n_{S}+n_{S}\right) \\
+ & \left(n_{S}+n_{S}\right)^{\prime}\left\{\mathbb{F}_{S}-\mathbb{B}\right\}\left(n_{S}+n_{S}\right) \tag{3.7.22c}
\end{align*}
\]
where \(F_{S}\) is the projector for \(\left[x_{\mu}\left|x_{D}\right| X_{S}, \tau \mid \mathbb{Z}\right]\)
and \(\mathbb{E}\) is the projector for \(\left[\mathbb{X}_{\mu}\left|\mathbb{Z}_{5}\right| \mathbb{2}\right]\).

Equation (3.7.22c) is (3.7.19) for \(\tau=\mathbb{C}\). By Theorem 3.7.6(a), (p. 193), the first term is constant for all [N(E)t!] randomizations having the same value of the \(g\) of (3.7.9), (p. 194). It sets at most \([N(\mathbb{G}) t!]^{b-1}\) cluster centers. Within each g-group, the other two terms of (3.7.22c) disperse values about each cluster center. When \(\left(n_{s}+n_{s}\right)=\mathbb{C}\) for all \(s\), as in strict additivity, or is negligible as in the randomization test, each of the at most \([\mathrm{N}(G) t!]^{b-1}\) clusters collapses to a single value. Otherwise, the relative values of \(e\) and (\(n_{s}+n_{s}\)) determine the extent of cluster dispersion and overlap. As with \(R_{S}(F \mid \mu, b, \tau)\), clusters and/or individual randomizations may have identical values of \(F_{S}(\tau \mid \mu, b, F)\) when \(\tau=\mathbb{C}\). As the other parts of the sum of squares for the entire model are constant or clustered within a g-group, when the \(\tau\) part is zero, then the model sum of squares is also constant or clustered.

Graphs 4.5.5, (p. 280), 4.6.7, (p. 302), 4.6.8, (p. 303) and the top left part of Display 4.8.7, (p.350-351), illustrate Part 5. In Graph 4.6.21, \(\tau=\mathbb{\pi}\), and all \(N(G) t\) ! \(=1(4!)=24\) values of the OSL for \(F_{S}(\tau \mid \mu, b, F)\) of this g-group have collapsed to the single point marked "X".

This completes the proof of Theorem 3.7.9.

The projector for \(\left\{\mathbb{X}_{\mu}\left|X_{b}\right| \mathbb{Z}\right]\) appearing in the sum of squares for the treatments as adjusted for the mean, blocks and covariate, lacks the special structure which gives multiple randomizations identical values for the sum of squares, \(R_{S}(\tau \mid \mu, b, F)\). When \(\tau \neq \mathbb{G}\), its distribution has \([N(G) t!]^{b}\) distinct values, as does the corresponding F-ratio, even with strict additivity or in the randomization test. The clustering of values of the denominator, (3.7.20), of the F-ratios may impart clustering to the ratio itself. Similarly, the estimate of \(\tau\) as adjusted, \(\hat{\tau}\), will have \([N(G) t!]^{b}\) distinct values. The clustering of the \(\hat{\tilde{p}}\) may impart a clustering to the \(\hat{\tau}\). In both cases, the degree of clustering depends upon the relative values of the elements of the involved vectors and matrices. As with \(R_{S}(F \mid \mu, b, \tau)\), the sums (\(\left.\mathbb{Z} F+e\right)\) and/or \(\left(\pi_{S}+n_{S}\right)\) may give different randomizations identical values.

\subsection*{3.7.4 Permutation and the Noncentrality Parameters \\ The following two theorems detail the effect randomization has upon the noncentrality parameters.}

Theorem 3.7.10.

For (a) those design matrices \(X_{S}=\left[X_{\mu}\left|X_{b}\right| X_{S}, \tau\right]\) with projectors \(\left[X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\right.\) '], all of whose diagonal blocks have, within each block, identical diagonal elements and identical off-diagonal elements (as in Theorem 3.7.5), and (b) a constant variance \(\sigma^{2}\) and (c) £or a number of randomizations equal to \([N(G) t!]^{b}\), there are at most [N(G)t! \(]^{b-1}\) unique values for the noncentrality parameter
\[
\begin{align*}
& \lambda_{S}, \vec{F} \mid \mu, b, \tau, F \tag{3.7.23}\\
& =\left\{1 /\left(2 \sigma^{2}\right)\right\} \times F^{\prime}\left\{\mathbb{Z}^{\prime} \mathbb{Z}-\mathbb{Z}^{\prime} H_{S}\left[\mathbb{X}_{1}\left(\mathbb{X}_{1}^{\prime} \mathbb{Z}_{1}\right)-\mathbb{X}_{1}^{\prime}\right] H_{S}^{\prime} \mathbb{Z}\right\} F
\end{align*}
\]

Each unique value will occur in an integral multiple of [N(E)t!] randomizations for the g-groups of (3.7.9). When experimental unit-treatment interaction, \(n_{s}\), is included in the model equation, one may consider the variance to change with the randomization. This will disperse the values of this noncentrality parameter about the cluster centers provided by a constant variance. Note that none of the error terms directly enters into the value of the noncentrality parameters.

When \(\bar{X}_{\tau}\) has all columns summing to zero within each block, as in the effects version of \(\mathbf{x}_{\boldsymbol{\tau}}\), (3.7.23) becomes
\[
\begin{aligned}
& -\left\{1 /\left(2 \sigma^{2}\right)\right\}
\end{aligned}
\]
where \(\mathbb{L}=(1 / t)\left\{d i a g\left[\mathbb{I}_{t x t}\right]_{\text {bxb }}\right.\) as in (2.6.20).
(3.7.24)

Proof: Apply Theorem 3.7.6, (p. 193), to (2.6.37), (p. 42), with \(X_{Y}=X_{S}\). Use (3.7.5) to obtain (3.7.23). Apply Theorem 2.6.16, (p. 56), to (3.7.23), grouping the II and M matrices, to obtain (3.7.24). Theorem 3.7.6(b) provides the number of groups and the number of randomizations within the groups. The values of \(\mathbb{Z}\) may be such that two or more randomizations yield identical values of \(\lambda_{s, f \mid \mu, b, \tau, \beta}\). The covariates of Table 2.7.1, (p. 65), have but \(24-1=23\) unique values, one value appearing \(2(24)=48\) times. The vertical lines of points of Graph 4.8.1, (p.338_), illustrate this theorem. This graph led to the theorems of section 3.7.

The abbreviated notation used subsequently for (3.7.24) is
\[
\begin{equation*}
\lambda_{S, F \mid \mu, b, \tau, F}=\lambda_{f, F}-\lambda_{g, F}, \tag{3.7.25}
\end{equation*}
\]
where \(\lambda_{f, \beta}=\left\{1 /\left(2 \sigma^{2}\right)\right\} \times\left\{F^{\prime} \mathbb{Z}{ }^{\prime}\right.\) [II-W] \(\left.\mathbb{E} F\right\}\),
which is fixed for all randomizations, and where \(\lambda^{2}, \beta=\left\{1 /\left(2 \sigma^{2}\right)\right\}\)
 is constant within subgroups, g, of randomizations having identical \(X_{S}\left(X_{S} X_{S}\right)^{-} X_{S}\) matrices. This abbreviated notation holds when (a) \(\mathbf{X}\) gives its projector the necessary structure, as discussed in Theorem 3.7.5, (p. 190), also below (2.6.28), (p. 55), and when (b) the columns of \(\mathbf{x}_{\boldsymbol{\tau}}\) sum to zero within each block, as discussed in Theorem (2.6.16), (p. 56). The single factor case with \(\mathbf{X}_{\mathcal{T}}\) in its effects version satisfies these conditions. These conditions are not satisfied when \(\mathbf{X}_{\boldsymbol{\tau}}\) is in its coding version.

\section*{Theorem 3.7.11.}

There are at most \([N(\xi) t]^{b}\) unique values for the noncentrality parameter
\[
\begin{equation*}
\text { where } \Sigma_{r}=\left[x_{\mu}\left|X_{b}\right| \mathbb{Z}\right] \text {, constant for all s. } \tag{3.7.26}
\end{equation*}
\]
\[
\begin{aligned}
& \lambda_{S, \tau \mid \mu, b, \tau, \tilde{F}}=\left\{1 /\left(2 \sigma^{2}\right)\right\} \times \tau^{\prime}\left\{X_{1, ~} \tau^{\prime} X_{1, \tau}\right\} \tau
\end{aligned}
\]

When the treatment matrix \(\mathbf{x}_{T}\) is orthogonal to both the blocks matrix \(X_{b}\) and the mean vector \(X_{\mu}\), the second term of (3.7.26) may be reexpressed giving
\[
\text { where } \mu \vDash(1 / t)\left\{d i a g\left[\pi_{t x t}\right]\right\}_{\text {bxb }} \text { as in }(2.6 .20)
\]

The vertical spread of the points of Graph 4.8.1, (p.338), illustrates this theorem its form of (3.7.28) below.

Proof: Applying Theorem 3.7.3, (p. 189), to the first term of (2.6.39), (p. 62), gives the first term of (3.7.26). The second term follows directly from (2.6.39) with \(\mathrm{K}_{\mathrm{S}, \tau}=\mathrm{M}_{\mathrm{S}} \mathrm{E}_{1, \tau}\). Application of Theorem 2.6.22, (p. 51), to the second term of (3.7.26) provides the second term of (3.7.27). Note that \(X_{r}=\left[X_{\mu}\left|X_{0}\right| z\right]\) is constant for all randomizations. Neither version of the
 special form of its diagonal blocks which gives identical values to g-groups of randomizations. It is possible for a given \(\mathbf{X}\) and \(\mathbb{Z}\) to have different individual randomizations with identical values for \(\lambda_{S, T}, \mu, b, \tau, \mathcal{F}^{\circ} \quad\) The covariates of Table 2.7.1, (p. 65), do this. This appears to regularly occur within some randomization groups, but not in others. An extension is to discover why.
\[
\begin{aligned}
& { }^{2} \mathrm{~S}, \tau \mid \mu, \mathrm{b}, \tau, \mathrm{~F}=\left\{1 /\left(2 \sigma^{2}\right)\right\} \times \tau^{\prime}\left\{\mathrm{X}_{1, \tau}{ }^{\prime} \mathrm{E}_{1, \tau}\right\} \tau \\
& -\left\{1 /\left(2 \sigma^{2}\right)\right\} \times \tau^{\prime}\left\{\mathbb{X}_{1}, \tau^{\prime} H_{S},\left[\mathbb{Z}\left(\mathbb{Z}^{\prime}(\mathbb{I}-W) \mathbb{Z}\right)^{-1} \mathbb{Z}^{\prime}\right] \mathbb{M}_{S} E_{1, \tau}\right\} \tau,
\end{aligned}
\]

The abbreviated notation used subsequently for (3.7.27) is
\[
\begin{equation*}
{ }^{2} S, \tau \mid \mu, b, \tau, F=\lambda^{2}, \tau-\lambda_{S}, \tau \prime \tag{3.7.28}
\end{equation*}
\]
where
\(\lambda_{\mathrm{E}, \tau}=\left\{1 /\left(2 \sigma^{2}\right\} \times\left\{\tau^{\prime} \mathrm{E}_{1, \tau} \mathrm{~T}_{1, \tau} \mathrm{E}_{1}\right\}\right.\)
which is fixed for all randomizations,
and
\[
\begin{aligned}
& \lambda_{s, \tau}=\left\{1 /\left(2 \sigma^{2}\right)\right\} \mathrm{x} \\
& \tau^{\prime}\left\{X_{1}, \tau^{\prime} M_{S}^{\prime}\left[X_{Y}\left(X_{Y}{ }^{\prime} X_{Y}\right)^{-} X_{Y}{ }^{\prime}\right] M_{S} X_{1, \tau}\right\} \tau, \\
& =\left\{1 /\left(2 \sigma^{2}\right)\right\} \mathrm{x} \\
& \left\{\tau^{\prime} \Sigma_{1}, \tau^{\prime} \quad \mathbb{M}_{S}^{\prime}\left[\mathbb{Z}\left(\mathbb{Z}^{\prime}(\mathbb{I}-W) \mathbb{Z}\right)^{-1} \mathbb{Z}^{\prime}\right] M_{S} \quad \mathbf{E}_{1, \tau} \tau\right\},
\end{aligned}
\]
which changes with each randomization.
As in \((2.6 .20), \mu=(1 / t)\left\{d i a g\left[I_{t x t}\right]\right\}_{\mathrm{bxb}}\)
and \(X_{I}=\left[X_{\mu}\left|X_{b}\right| \mathbb{Z}\right]\).
For each \(\lambda_{g}, \bar{p}\) with the same value, there are [N(G)t!] \(\lambda_{S, \tau}\) Typically, each \(\lambda_{S}, \tau\) has a unique value.

This abbreviated notation holds for \(\mathbf{x}_{\boldsymbol{T}}\) orthogonal to both the blocks and mean matrices. This is the case when both \(X_{b}\) and \(X_{\tau}\) are in their effects version.

An extension is to derive, if possible, the fixed and random parts of the noncentrality parameters with fewer restrictions on \(X_{T}\), such as, multiple factors and/or the coding version.

Note that the random part of both noncentrality parameters can only decrease the value of the entire parameter. See the discussion of positive semi-definite matrices below (2.6.11), (p. 43).

\subsection*{3.7.5 Restricting Randomizations to Maximize Power}

Selecting the randomization which maximizes the noncentrality parameter maximizes the power of the F-test under the normally distributed random errors model, as discussed in (2.6.6a), (p. 41).

When the noncentrality parameters may be divided into fixed and random parts, as in Theorems 3.7.10, (p. 211), and 3.7.11, (p. 213), and there is but one covariate, Theorem 3.7.15, below, allows one to simultaneously obtain
a) a near maximum power for the F-test of alternative, nonzero, values of the treatment effect, as adjusted for the mean, blocks and covariate, and
b) the maximum power for the F-test of an alternative, nonzero, univariate, covariate slope coefficient, \(\beta\), as adjusted for the mean, blocks and treatments.

Furthermore, one retains a degree of randomness in the assignment of experimental units to treatments. The randomness obtained satisfies goal two of Section 3.2.8, protection against favoring a particular treatment, (p. 118), but not necessarily goal one, freedom from the same treatment being applied to adjacent experimental units.

Further work is needed on the effect of this restriction on goal one and on model equation robustness, goal three.

For use in the proofs which follow we state the result,

Theorem 3.7.12.

> For \(\mathbb{H}=\mathbb{B}^{\prime} \mathbb{E}\) of full rank, \(\left(x^{\prime} y\right)^{2} \leq\left(x^{\prime} \mathbb{F} X\right)\left(y^{\prime} \mathbb{F}^{-1} y\right)\), \(\quad\) with equality when \(x * \mathbb{H}^{-1} y\), where \(x\) and \(y\) are column vectors.

Citation: C. R. Rao, 1973, p. 54, Section le.1,(ii)(b), Equation le.1.4. This is a version of the Cauchy-Schwarz inequality. Here, \(\alpha\) designates a constant proportion for each element of the vectors \(x\) and \(\mathbb{A}^{-1} y\).

Theorem 3.7.13.

For \(\mathbb{E}_{\tau}\) with full column rank
\[
\begin{aligned}
& \left(F^{\prime} \mathbb{Z}^{\prime} \mathbb{H}_{\mathrm{S}} \mathrm{X}_{1}, \tau^{\prime}\right)^{2} \leq
\end{aligned}
\]
\[
\begin{align*}
& x \quad\left\{\tau^{\prime}\left(X_{1}, \tau^{\prime} X_{1}, \tau\right) \tau\right\} . \tag{3.7.30}
\end{align*}
\]

Proof:
Let
\[
\begin{aligned}
& \dot{A}=\left(E_{1}, \tau^{\prime} X_{1}, \tau^{-1}\right. \\
& x=\left[X_{1}, \tau^{\prime} H_{S}^{\prime} \mathbb{Z}\right]_{F} \text { and } \\
& y=\tau .
\end{aligned}
\]

Theorem 3.7.12 gives the desired result. Only most unusual \(\tau, \mathcal{F}\) and \(\mathbb{Z}\) would make the two vectors of \(T h e o r e m\)
3.7.12, \(x=\left\{x_{1}, \tau^{\prime} M_{s} \mathbb{Z}\right]_{F}\) and \(A^{-1} y=\left(x_{1}, \tau^{\prime} \Sigma_{1}, \tau\right) \tau\), proportional (o) to one another. Thus, equality in (3.7.30) or (3.7.31), below, is unlikely.

In the abbreviated notations of (3.7.25), (p. 213), and (3.7.28), (p. 215), and under those conditions, (3.7.30) becomes
\[
\begin{equation*}
L_{S}\left(2 \sigma^{2}\right)^{2} \leq\left(\lambda_{g, \beta}\right)\left(\lambda_{f}, \tau\right) \tag{3.7.31}
\end{equation*}
\]
where \(L_{S}=\left(F^{\prime} \mathbb{Z}^{\prime} M_{S} \Sigma_{1}, \tau^{\tau}\right)^{2}\) with the subscript \(s\) indicating that the left hand side changes with each randomization.

Theorem 3.7.14.
For \(\mathbf{x}_{\tau}\) orthogonal to \(\mathbf{x}_{\mu}\) and \(\mathbf{X}_{\mathrm{b}}\), with all columns of \(\mathbf{E}_{\tau}\) summing to zero within each block, and with \(\mathbf{x}_{\tau}\) and \(\mathbb{Z}\) having full column rank,
\[
\begin{equation*}
M=(1 / t)\left\{\operatorname{diag}\left[I_{t x t}\right]_{\mathrm{bxb}} \text { as in }(2.6 .20) .\right. \tag{3.7.32}
\end{equation*}
\]

Proof:
Let \(\quad \mathbb{H}=\left[\mathbb{Z}^{\prime}(\mathbb{I}-(\mu) \mathbb{Z}]^{-1}\right.\),
\[
x=\left[\mathbb{Z}^{\prime} \mathbb{M}_{s} \mathbb{x}_{1, \tau} \tau^{]} \quad\right. \text { and }
\]
\[
y=F .
\]

Theorem 3.7.12 gives the desired result. With but one covariate, the two vectors of Theorem 3.7.12,
\[
\begin{aligned}
& \left(\tau^{\prime} \mathbb{E}_{1}, \tau^{\prime} \mathbb{M}_{s}^{\prime} \mathbb{Z}_{F}\right)^{2} \leq
\end{aligned}
\]
\[
\begin{aligned}
& \times\left\{\boldsymbol{F}^{\prime}\left[\mathbb{Z}^{\prime}(\mathbb{I I}-\boldsymbol{W}) \mathbb{Z}\right] \mathrm{F}^{\prime}\right\} \text {, where }
\end{aligned}
\]
\(x=\left[\mathbb{Z}^{\prime} \mathbb{M}_{5} X_{1,5}\right] \tau\) and \(\mathbb{F}^{-1} y=\left[\mathbb{Z}^{\prime}(\mathbb{I}-\mathbb{W}) \mathbb{Z}^{-1}\right]_{F}\), are scalers and thus are always proportional. Therefore, equality holds in (3.7.32) and (3.7.33), below.

In the abbreviated notations of (3.7.25), (p. 213), and (3.7.28), (p. 215), and under those conditions, (3.7.32) becomes
\[
\begin{equation*}
L_{S}\left(2 \sigma^{2}\right)^{2} \leqq\left(\lambda_{S}, \tau\right)\left(\lambda_{f, F}\right) \tag{3.7.33}
\end{equation*}
\]
where \(L_{S}=\left(F^{\prime} \mathbb{Z}^{\prime} M_{S} X_{1}, \tau^{\tau}\right)^{2}\), with the subscript \(s\) indicating that the left hand side changes with each randomization. Note that \(L_{s}\) has the same value in Theorems 3.7 .13 and 3.7.14.

\section*{Theorem 3.7.15.}

Consider an arbitrary group, \(g\), of \([N(E) t!]\)
randomizations, \(s\), with identical values of \({ }^{2} g, \beta\). When there is only one covariate and the conditions on \(\mathbf{x}_{\tau}\) of Theorems 3.7.10, (p. 211), and 3.7.11, (p. 213), hold, for any such group, \(g\),
\[
\begin{equation*}
\lambda_{S, \tau} \leqq\left[\frac{\lambda_{E, \tau}}{\lambda_{f, F}}\right\} \lambda_{g, F}, \tag{3.7.34}
\end{equation*}
\]
independently of \(\beta\), for all \(\tau\) and for all s in \(g\).

Proof: For a single covariate, (3.7.33) becomes \(L_{s}\left(2 \sigma^{2}\right)^{2}\) \(=\left(\lambda_{S, \tau}\right)\left(\lambda_{f, F}\right)\) Applying this to (3.7.31) gives \(\left(\lambda_{S}, t\right)\left(\lambda_{f, F}\right) \leqq\left(\lambda_{g, F}\right)\left(\lambda_{f}, \tau\right)\). Division by \(\lambda_{f, F}\) gives the above inequality.

Examination of the detailed form of \(\lambda_{g, F}\) and \(\lambda_{f, F}\) for the single covariate case, shows each to be scalers multiplied by \(\mathrm{F}^{2}\). Thus, F cancels in (3.7.34) and (3.7.36), below. Equality in (3.7.34) holds for only those most unusual combinations of \(\tau, F\) and \(\mathbb{Z}\) which give equality in (3.7.31). Graph 4.8.1, (p. 338), illustrates this theorem. Graph 4.8.2, (p. 339), illustrates the case where the variance \(\sigma^{2}\) changes with each randomization s. This disperses the columns of values as seen in Graph 4.8.1.

The end of Section 2.6.1, (p. 41), and of Section 3.6.7, (p. 181), discuss increasing the power of the hypothesis test when using the F-statistic under the normally distributed random errors model. For given degrees of freedom, one wishes to maximize the noncentrality parameter. Since \(\lambda_{s, \tau}\) can only reduce the value of \(\lambda_{\tau} \mid \mu, b, \tau, F^{\prime}\) large values of \(\lambda_{s, ~} \tau\) should be avoided. Theorem 3.7 .15 shows how to do this. Selecting the randomization set \(g_{\text {min }}\) with the minimum value of \(\lambda_{g, F}\) simultaneously selects the \(N(G) t!\) randomizations whose theoretical maximum \(\lambda_{S}, \tau\) is the minimum. Larger values of \(\lambda_{s, \tau}\) and \(\lambda_{g, F}\) are thus avoided. One conducts the actual experiment using one of the randomizations in \(g_{\text {min }}\). This set has \([N(E) t!]\) randomizations from which to choose the one used to conduct the actual experiment.

Theorem 3.7.15 does not ensure selecting the randomization with the minimum \(\lambda_{s, \tau}\), nor selection from among a set of randomizations with the smallest \(i_{s}, \tau\). Values of \(\lambda_{S, \tau}\) smaller than the smallest \(\lambda_{S, \tau}\) in the group \(g_{\text {min }}\) may exist in other groups of larger \(\lambda_{g, p}\). Theorem 3.7.15 merely allows avoiding large values of \(\lambda_{S}, \tau\). By minimizing the random part, \(\lambda_{S}, \tau\), one maximizes \(\lambda_{s, \tau \mid \mu, b, \tau, F}\). Theorem 3.7.15 shows how to avoid \(\lambda_{s, ~} / \mu, b, \tau, f\) which are far from the maximum.

The ratio \(\left\{\lambda_{E, T} / \lambda_{f, F}\right\}\) of (3.7.34) approximates the regression slope coefficient for the least squares line fit to the \([N(\mathcal{E}) \mathrm{t}!\mathrm{]}\) points, \((X, Y)\), where \(X=\lambda, F\) and \(Y\) =observed maximum \(\lambda_{s}, \tau\) in group \(g\). This line is (observed maximum \(\left.\lambda_{S, T}\right)=(\) slope \()\left(\lambda_{g, F}\right)\) +error. (3.7.35) When \(\lambda_{f, \tau} \approx \lambda_{f, F}\), the approximated slope is near horizontal (one) and large reductions in \(\lambda_{g}, \beta\) are needed to appreciably reduce the maximum of the \(\lambda_{s,}\) for those randomizations in group \(g\). The range of values of \({ }^{2} g, F\) and the ratio \(\lambda_{f, ~} / / \lambda_{f, F}\) indicates the sensitivity of the maximun within g-group noncentrality parameter, \(\lambda_{s}, \tau\), to different randomizations.

From (2.6.34) and (2.6.38), \(0 \leqq \lambda_{S, T} \leqq \lambda_{f, T}\) and \(0 \leqq \lambda_{g, F} \leqq \lambda_{f, F}\). Thus, dividing both sides of (3.7.34)
by \(\lambda_{f, \tau}\) gives, for all \(s\) in a fixed \(g\),
\[
\begin{equation*}
0 \leqq \frac{\lambda_{S, \tau}}{\lambda_{E, \tau}} \leqq \frac{\lambda_{g, F}}{\lambda_{E, F}} \leqq 1 . \tag{3.7.36}
\end{equation*}
\]

For the one-covariate, one-factor case, the noncentrality parameters of the \(F\)-test for the two usual hypotheses of interest are interconnected.

Theorem 3.7.15 does not hold with multiple covariates. None of the noncentrality parameters depend upon the data. With sufficient resources, all values of \(\lambda_{S, \tau}\) and \(\lambda_{g, \beta}\) could be computed and ranked for those alternative \(\tau\) and \(\bar{F}\) of interest. Randomization could be restricted to those randomizations with low ranks for both \(\lambda_{S, \tau}\) and \(\lambda_{s, F}\), should such exist. Widely differing alternatives of \(\tau\) and \(F\) would necessitate recomputing the rankings. Scaler multiplication of the \(\tau\) or \(f\) would not alter the rankings. The randomization group supplying \(g_{\min }\) appears to be the one with the smallest elements of \(\mathbb{Z}^{\prime} \mathrm{X}_{1}\left(\mathrm{X}_{1}{ }^{\prime} \mathrm{X}_{1}\right)^{-} \mathrm{X}_{1}\) '. When \(\mathrm{s}=1\) orders the covariates from low to high within each block, \(g_{m i n}\) occurs in the randomization in which the unit-valued elements of the offdiagonal block of \(\mathrm{E}_{\mathrm{g}}\left(\mathrm{E}_{\mathrm{g}} \mathrm{I}_{\mathrm{g}}\right)^{-} \mathrm{E}_{\mathrm{g}}\) ' are on the upper-right to lower-left diagonal. This randomization has the least squaring of the elements of \(\mathbb{Z}\); it is the most balanced. An extension is to consider consider multiple factors, interactions, and other such \(\mathbf{x}_{\tau}\) as the coding version.

Section 3.8
Expected Value of the F-Ratio

Section 3.8.1 reviews known results for the expected value of the f-ratio in the randomized block design without a covariate. Section 3.8 .2 discusses results for the design with a covariate. Section 3.8.3 discusses possible further work on this expectation. The review of literature is the major contribution of this section.

\subsection*{3.8.1 The Randomized Block Design without a Covariate}

For the balanced randomized block design with b blocks and \(t\) treatments, but without a covariate, the F-ratio has a numerator degrees of freedom \(n=t-1\) and a denominator degrees of freedom \(d=[\) (number of observations-l)-(b-l)-(t-1)1 and is
\[
\begin{equation*}
F_{S}=\frac{(\text { Sum of Squares for Treatments })_{S} / n}{(\text { Sum of Squares for the Residuals })_{S} / d} . \tag{3.8.1}
\end{equation*}
\]

The transformation of Appendix A.4, (p. 384), yields
\[
\begin{equation*}
R_{S}=\frac{(\text { Sum of Squares for Treatments) }}{S} \text { Total Sum of Squares }, \tag{3.8.2}
\end{equation*}
\]
which is the coefficient of determination, usually denoted as \(R^{2}\). Under the assumption of normally distributed random errors, \(R_{s}\) has the non-central Beta distribution, as defined in Appendix A. 4.

The advantage of \(R_{S}\) over \(F_{s}\) is, that under the null hypothesis of no treatment effects, the denominator of \(R_{s}\) is constant for all randomizations. The constant
denominator makes possible deriving the moments of \(R_{s}\) under the null hypothesis and the randomization model. Bartlett [1935] derived the mean and variance of \(R_{s}\) for the case of two treatments. Plackett [1960, p. 155-156] presents a clear proof with discussion. B. L. Welch [1937] and Pitman [1937] extend the results to any number of treatments. Pitman adds the third and fourth moments. All authors consider only experimental unit error; both experimental unit-treatment interaction error and normally distributed random error are zero. All assign equal probability to each randomization and consider only the null hypothesis case. Under the alternative hypothesis of treatment effects, the denominator of \(R_{s}\) is not constant for all randomizations \([\) Atiqullah, 1963, p. 3371 If the \(\sigma^{2}\) of the non-centrality parameter is considered to change with the randomization, for example, when experimental unit-treatment interaction is present, then the non-centrality parameter also changes with the randomization.

When the null hypothesis of no treatment effects is true, the first moment is \(1 / b\) under both the normally distributed errors and the randomization models. That is, one obtains the same first moment of the statistic \(R_{s}\) when it is averaged over these two quite different probability spaces. This may help explain why the normally
distributed random errors model provides a good approximation to the randomization model for this design.

The variance of the central-Beta distribution is
\[
\begin{equation*}
\sigma_{B}^{2}=\frac{2(b-1)}{b^{2}[b(t-1)+2]} \approx \frac{2 b}{b^{3}[t-1]}=\frac{2}{b^{2}[t-1]} . \tag{3.8.3}
\end{equation*}
\]

The variance of \(\mathrm{R}_{\mathrm{S}}\) under the randomization model is
\[
\begin{equation*}
\sigma_{R}^{2}=\frac{2(1-A)}{b^{2}(t-1)} \text {, where } A=\frac{\sum_{i=1}^{b}\left[\sum_{j=1}^{t} e_{i j}^{2}\right]^{2}}{\left[\sum_{i=1}^{b} \sum_{j=1}^{t} e_{i j}^{2}\right]^{2}} \text {. } \tag{3.8.4}
\end{equation*}
\]

When the variances of the experimental units are equal within each block, A takes its minimum value, \(1 / b\), in which case \((1-A)=(b-1) / b\) and \(\sigma_{B}^{2} \approx \sigma_{R}^{2}\). When the variances of the \(e_{i j}\) are zero in all blocks but one, then A takes its maximum value of 1 . In this case the two variances differ. When the number of blocks is large, and the block variances approximately equal, then the effect of \(A\) is minimal and the two variances are near equal. Pitman [1937, p. 331-335] discusses conditions yielding near-equality for the third and fourth moments. B.L. Welch [1937, p.47] and Pitman [p.335] conclude that the randomization test may be approximated by the normal theory test, especially in the upper tail, for the randomized block design. This conclusion does not hold for all designs, such as the Latin Square [B.L. Welch, p.47]. Atiqullah [1963] considers the randomized block design with one factor with t levels. He considers only experimental unit error (additivity) and assigns equal
probability to all randomizations. Instead of the F-ratio, he uses Fisher's z transformation of the mean squares (MS),
\[
\begin{equation*}
\mathrm{Z}=(1 / 2) \ln (\text { MS-hypothesis/MS-residual). } \tag{3.8.5}
\end{equation*}
\]

Atiqullah uses a Taylor's series expansion and cumulants to derive approximate limiting moments for the null and non-null distribution of Fisher's 2 [Atiqullah, 1963, Eq. 21, 22 , and 35,36]. The limit is taken as the number of treatment levels \(t\) goes to infinity.

Atiqullah [1962A] derives similar approximate limiting moments for \(Z\) under an infinite population model with a fixed allocation of treatments to experimental units but an unknown distribution of the errors [his equations 25 and 26]. For the null hypothesis, applying the normal distribution to these results gives expressions identical to those derived under the randomization model, provided the within-block variances of the experimental unit errors are equal [See Atiqullah, 1963, p. 338].

Robinson [1973A] shows that the critical value of the F-ratio tends to a constant in probability as the number of blocks, b, becomes large. Further, as b goes to infinity, the sequence of \(F\)-ratios, \(\left\{F_{b}\right\}\), tends in distribution to a central chi-square distribution, when \(\left\{F_{b}\right\}\) goes to zero, or tends to a non-central chi-square distribution, when \(\left\{F_{b}\right\}\) goes to a constant. Thus, the randomization test of the null hypothesis of no treatment effects, is asymptotically as powerful as the test using
the \(F\) ratio under the normally distributed random errors model as the number of blocks becomes large. Robinson includes only experimental unit error in his model and assigns equal probability to all randomizations.

\subsection*{3.8.2 The Randomized Block Design with a Covariate}

When a covariate is included in the randomized block design, Robinson [l973B, p. 368] writes, "it is difficult to obtain results on the usual test statistic of the [F-Ratio]. In fact, is has not been possible to obtain moments of this statistic under the randomization model, as was done by Pitman [1937] and B. L. Welch [1937] for the analysis of variance case. However, it is possible to obtain asymptotic results"
D. R. Cox [1956, p. 1147] explains the source of this difficulty,

If we try to calculate the randomization expectations of [the residual and treatment mean square, both adjusted for the covariate], there is the difficulty that \(\left.\left[S S R_{y z}\right]^{2 /[S S R} z_{z}\right]\) is a ratio of random variables so that no simple exact expression of the form of its expectation can be written down.

Table 2.5.2, (p. 38) and Section 2.5.2, (p. 35) show this. Different randomizations tally different covariate values to obtain the sums \(\operatorname{SST}_{y z}\) and \(\operatorname{SST}_{z z}\). Hence, \(\operatorname{SSR}_{y z}\) and \(\operatorname{SSR}_{z z}\) differ with each randomization.

Atiqullah [1962B] uses a mixed model equation and derives moments for the \(Z\) of (3.8.5), (p. 226). This \(Z\) corresponds to the \(Z\) of the fixed model for the "random" coefficients as adjusted for the fixed coefficients. While such results could apply to the analysis of covariance, his results are limited to the case where the projector for the adjusted sums of squares, such as \(\mathbb{F}_{S}\left(\mathbb{F}_{S}{ }^{\prime} \mathbb{R}_{S}\right)^{-1} \mathbb{F}_{S}\) ' of Table 2.5.1, (p. 37), has identical elements along its diagonal. This condition he terms quadratic balance [p. 1411. In only unusual cases will a continuous covariate be quadratically balanced.

The 1964 paper by Atiqullah discusses the sensitivity of the \(F\)-test in the analysis of covariance for a design with one factor and an arbitrary number of covariates but without blocks. The errors of his model resemble those of the normally distributed random errors model, but have some non-normal distribution. The model is not a randomization model. One finding is that the lack of quadratic balance in the projector for the covariates determines the sensitivity of the \(F\)-test to non-normality [p. 365]. Another is that non-normality of the errors has little effect on the \(F\)-test provided the covariates are normally distributed [p. 368]. He uses Fisher's \(2,(3.8 .5)\), for testing the treatments as adjusted by the covariate. His last three sections present results for random covariates, interaction
between slope and treatment and model equation terms quadratic in the covariate.

The model equation of Robinson [1973B] has blocks, one factor with \(t\) levels (treatments) and one covariate. His estimator of the regression slope coefficient is within each block, thus, it is invariant to the randomization. When the estimator is over all blocks, as herein, its value changes with each group of randomizations, as proved in Theorem 3.7.9(4), (p. 202). He considers only experimental unit error (additivity) and assigns equal probability to all randomizations.

Robinson focuses on the treatments sum of squares as adjusted by the covariate. His Theorem 2 proves the asymptotic distribution of the associated test statistic, \(S\), under the null hypothesis, to be a central chi-square with \(t-1\) degrees of freedom as the number of blocks goes to infinity. He constructs an increasing function of the usual F-ratio (his Eq. 3). He then proves that a function of the difference between these two test statistics goes to zero in probability as the number of blocks goes to infinity (his Theorem 3). Thus, [Rao, 1973, p. 122, (x)(d)], the increasing function of the usual F-ratio has the same asymptotic distribution as \(S\), the central chi-square with \(t-1\) degrees of freedom. Rejecting the null hypothesis using the increasing function of the usual \(F\)-ratio is equivalent to rejecting using the \(F\)-ratio itself [Robinson, 1973B, p.372].

Robinson proves (his Theorem 5) that when the null hypothesis is false (the treatment effects are not all zero) and the sequence of the usual non-centrality parameter \(\lambda_{b}\) has a limit as the number of blocks \(b\) goes to infinity, then a second statistic tends in distribution to a non-central chi-square distribution with non-centrality parameter the limiting value of \(\lambda_{b}\). As the number of blocks goes to infinity, the usual F-ratio, under the normally distributed random errors model, has the same chi-square limiting distribution.

Robinson concludes, "at least for a large number of blocks, the usual normal theory test is appropriate under a randomization model with the quite weak conditions of Theorem 1" [p. 372]. These conditions are that as the number of blocks goes to infinity (i) the sequence of the correlation coefficient of the treatments and covariate has a limit and (ii) the sequence of a sum of \{SST \(_{\mathrm{xx}} /\) SSTot \(_{\mathrm{xx}}+\operatorname{SST}_{\mathrm{zz}} /\) SSTot \(\left._{\mathrm{zz}}\right\}\) goes to zero.

\subsection*{3.8.3 Possible Approaches}

Hooper [1989] groups nine published articles into four categories by the techniques used. These categories are (a) real and simulated data, (b) moment calculations, (c) Edgeworth expansions and (d) limit theorems. Hooper adds (e), assigning a model to the experimental unit errors. There appears to be no results for models including experimental unit-treatment interaction errors.

Consolidation of existing Edgeworth expansion and limit theorems (\(c\) and d) may suggest additional results. Gayen [1950] presents Edgeworth expansions. Some possible approaches to categories (a) and (b) follow. The availability of personal computers appears to permit inexpensive calculation of the F-ratio for all randomizations for small real-data uniformity trials. The Eden and Yates [1933] study computed a sample of 1000 of the trial's possible \(24^{8}\) randomizations. While a bit large, multiple personal computers could compute all randomizations for this data in otherwise unused time over the course of several months. See also Center [1982].

Hsu's [1938] results on the moments of a quadratic form, \(x\) fix' \(^{\prime}\) have been simplified for special cases by \(C\). R. Rao [1952], Plackett [1960, p. 40-41] and Atiqullah [1962A]. These results assume the projector \(\mathbb{A}\) is fixed and the vector \(x\) has a random, but unknown continuous distribution. The permutation matrix can be shifted from the projector, here \(\mathbb{A}\), to the vectors \(\mathbf{I}\) and \(\mathbb{Z}\), making \(\mathbb{A}\) fixed and the vectors random, albeit with discrete distributions. More useful would be results on the randomization moments of \(X_{\mathbb{F}_{5}} x^{\prime}\) and \(\left[x \mathbb{F}_{5} x^{\prime}\right] /\left[x \mathbb{E}_{5} x^{\prime}\right]\) for \(x\) a fixed vector and \(\mathbb{F}_{s}\) and \(\mathbb{E}_{s}\) determined by randomization \(s\) under a randomization model.

Atiqullah [1963] uses infinite population cumulants to express the randomization moments. Finite population
moments are more appropriate, but need development in the multivariate, mixed moment case. The tensor techniques of McCullagh [1987] and the finite population results of Irwin and Kendall [1943-45] and Boullion, Seaman and Young [1990] appear to be one route to such development. Hooper [1989] posits two models [his 1.8 and 2.2] for the experimental unit errors. With the second model, his Theorem 2.1 proves the power of a randomization test converges to the asymptotic normal-theory power, as the number of experimental units goes to infinity with the number of treatments fixed. He discusses conditioning on the experimental units or on the randomization used to conduct the experiment. Several experimental designs are presented, all without a covariate. While his proofs appear to call for orthogonality of the columns of the design matrix, perhaps proofs can be obtained which include a covariate.

Zuskind, et al., [1960, 1964, 1968] and Kempthorne, et aI., [1967] discuss related topics. See also the results of Roux, discussed above on page 127.

In summary, the expected value of the F-ratio under the randomization model has not been, and appears never to become, an easy problem.

We next examine estimating the unit error terms by reusing the experimental units.

\section*{Section 3.9}

Experimental Procedures when Both Errors are Present

Section 3.9.1 sketches a two-stage procedure capable of handling phenomena in which both experimental unit and experimental unit-treatment interaction errors are present. Section 3.9.2 discusses other experimental procedures allowing control of both errors. All procedures reuse experimental units, which is not always possible. These sections present some of the difficulties in experiments when such errors are large. See Good [1979].

\subsection*{3.9.1 A Two-Stage Procedure}

This two-stage procedure permits detection of treatment effects when the experimental units may exhibit both experimental unit and experimental unit-treatment interaction errors. This procedure requires experimental units capable of repeatedly receiving, in succession, all treatments.

Stage one is a uniformity trial designed to insure repeatability of measurement and to estimate the experimental unit errors. No treatments are applied.

The initial model equation is
\[
\begin{equation*}
S_{i j \_l}=\mu+r_{1}+b_{i}+F_{i j}+e_{i j}+T_{i j \_} l \tag{3.9.1}
\end{equation*}
\]

The term \(r_{1}\) denotes the replication effect; the subscript is the letter "l". The dash (_)in two subscripts reserves a place for the treatment subscript which enters at stage
two. The model parameters may be defined as the least squares "estimators" for some conceptual, but finite, population of observations fitted to an appropriate model matrix [区| \(\mathbb{Z}]\).

Alternatively, one may explicitly define the parameters in terms of averages over the conceptual population of observations. We use the averaging version of the dot notation. First, adjust for the covariate, giving \(V_{i j \_l}=S_{i j \_l}-\overline{\mathrm{F}} \mathrm{i}_{\mathrm{ij}}\). Then
\[
\begin{aligned}
& \mu \quad=V . . . \text {, the overall mean, } \\
& r_{1}=V . .{ }_{1}-V \ldots, \text {, the replication effect, } \\
& b_{i}=V_{i . \ldots} \text {. V.... , the block effect, } \\
& e_{i j}=V_{i j \ldots .}-V_{i . \ldots} . \text {, the experimental unit error, }
\end{aligned}
\] experimental unit-replication interaction. As \(F\) is not known, the interpretation of estimates of the other model parameters will incorporate an uncertainty from the estimate of \(F\). Note that \(n\) is here interaction with replication; there are no treatments in Stage One.

Stage One ends when the experimental technique gives \(r_{1}\) and \(r_{i j \_1}\) near zero values for all repetitions and reasonably stable estimates for the experimental unit errors, eij. If these conditions cannot be achieved, then the treatment effects will be confounded.

The stage Two model equation is
\(W_{i j k l}=\mu+b_{i}+e_{i j}+F Z_{i j}+t_{k}+r_{i=k}+n_{i j k}+E_{i j k l}\). Adjust the response for the experimental unit errors and covariate slope coefficient estimated in Stage One by
\[
Y_{i j k l}=W_{i j k l}-e_{i j}-F Z_{i j}
\]
and obtain,
\[
\begin{equation*}
Y_{i j k l}=\mu+b_{i}+t_{k}+r_{i \cdot k}+r_{i j k}+\varepsilon_{i j k l} \tag{3.9.2}
\end{equation*}
\]

The analysis of the actual experiment uses (3.9.2). As treatments are administered and possibly measured separatly within each block, say a hospital, we retain a block term in the model equation. The definitions of the model equation parameters in terms of averages over a conceptual population are
\begin{tabular}{|c|c|}
\hline \(\mu\) & Y..., the overall mean, \\
\hline \(\mathrm{b}_{i}\) & \(Y_{i} \ldots . . Y \ldots\), the block effect, \\
\hline \(t_{k}\) & Y..k. - Y..., the treatment effect, \\
\hline \(\mathrm{n}_{\mathrm{i}} \cdot \mathrm{k}\) & \\
\hline & the block-treatment interaction. \\
\hline \(n_{i j k}\) & \(\left(Y_{i j k} \cdot-Y_{i j} ..\right)-\left(Y_{i} \cdot k \cdot-Y_{i} . ..\right)\), the \\
\hline & the within-block experimental unit- \\
\hline & treatment interaction and \\
\hline \(E_{i j k l}\) & \(Y_{i j k l}-Y_{i j k}\), , the replication effect \\
\hline & for experimental unit ij when it receives \\
\hline & treatment \(k\). \\
\hline
\end{tabular}

Estimates of these defined quantities will incorporate uncertainty from the estimates of \(e_{i j}\) and \(F ; Z_{i j}\) is assumed known.

Alternatively, the model parameters may be defined as least squares estimates derived from a conceptual population of responses. As Stage One showed the replication effect \(\varepsilon_{i j k l}\) to be small, we assign it an error status with a normal distribution, mean zero, variance \(\sigma^{2}\). Here we combine the randomization model with the normally distributed random errors model.

If the experimental units are homogeneous within blocks, responding to each treatment similarly, then \(n_{i j k}\) will be near zero. If the experimental units of each block respond to treatments similarly, then \(r_{i} \cdot k\) will also be near zero.

Zhou, et al. [1989] provide an actual example of experimental unit-treatment interaction error. Subjects from two racial groups showed differences in response to metabolic clearance of the drug propranolol. Heretofore, patients had not been blocked on racial heritage for this drug, thus the interaction was within the blocks. In (3.9.2), had the blocks been hospitals with patients of mixed racial heritage and the treatment been propranolol vs a placebo, then the block-treatment interaction action (\(n_{i} \cdot k\)) would have been zero, while the experimental unittreatment interaction (\(n_{i j k}\)) would have been non-zero.

As indicated by the subscripts, each experimental unit needs to be subjected to each treatment r (replication) times, a total of \(t \times r\) measurements per experimental unit. This provides the error degrees of freedom needed for the statistical analysis. Such a design is applicable only in special cases. Possibly an incomplete block design would allow estimation of base response effects and a sufficiently broad screening of the experimental units for treatment interaction effects.

\subsection*{3.9.2 Other Experimental Procedures}

The crossover experimental design permits one to partially separate the experimental unit-treatment interaction error from the measurement error. In this design, half of the experimental units are given first treatment \(A\) and later treatment \(B\), perhaps a control. The other half of the experimental units receive the two treatments in the reverse order, \(B\) first, then \(A\). If this cycle is repeated several times, those experimental units unusually susceptible to one or both treatments will repeatedly manifest themselves. With sufficient cycles one drives quite low the probability of so many repeatedly poor (or superior) performances exhibited under only one treatment being due to measurement errors alone. In the example of penicillin, repeated adverse reactions to the drug would indicate an experimental unit-treatment interaction error, not a measurement error. Of course, such experimental designs are not
always possible, as in the penicillin example, or in cases where changes in uncontrollable variables are too great between the cycles, such as growing-season-long agriculture experiments, or in those resulting in the permanent altering or sacrifice of the experimental unit.

When the experimental unit is reused in different experiments, as are plots at an agricultural experiment station or panelists in a series of food taste tests, information can be accumulated on the experimental unit over several different experiments. Some experimental units may show consistent superior yields or preferences across a single class of treatments (experimental unittreatment interaction error) or a wide variety of classes of treatments (experimental unit error). Such historical data can provide an estimate of the experimental unit differences.

Should the same experimental units be available for a replication of the experiment, it may be advantageous to select a randomization, \(s^{\prime}\), within the same g-group as the randomization, \(s\), used in the original experiment. If only experimental unit error is present the two estimates of the covariate slope coefficient, \(F\), should be equal. Any difference between the two estimates, \(\hat{F}_{S}\) and \(\hat{F}_{S}{ }^{\prime}\), suggests the magnitude of other error types. Such considerations are an extension. See Richards [1980]. We next illustrate the results of of Chapter III with numerical simulations.

CHAPTER IV

\section*{NUMERICAL SIMULATIONS}

\section*{Section 4.1}

Introduction

Chapter Four presents and discusses numerical simulations which provide examples for several of the theorems of Chapter Three. The simulations examine the three types of errors, experimental unit error, experimental unit-treatment interaction error and normally distributed random error. For each type of error, the simulations examine four cases: the combinations of (a) all treatments zero vs one specific set of nonzero treatments and (b) equal (1 to 1) vs one set of unequal (1 to 4) within-block error variances. The 1 to 1 cases have equal error variances in the two blocks; the 1 to 4 cases have the variance in the second block four times that in the first block. The 1 to 1 and 1 to 4 cases have, for each randomization, the same error variance when computed over all experimental units. Twelve sets of randomizations are examined.

Attention focuses on bias in estimation, distribution of estimators and anova terms, the closeness of the \(F\) distribution to the distribution of the calculated F-ratios, and the use of a ratio and of the noncentrality parameter \(\lambda_{p \mid \mu, b, \tau}\) to weight randomizations.

The randomization test is discussed, but being a simulation, no actual experiment was performed. Thus, no randomization is privileged as the one against which to assess those not performed. The simulation is a pseudorandomization test employing an external criterion as discussed in Section 3.6.5, (p. 174-178).

Major conclusions are that when the null hypothesis
 mean square does not equal that of the error mean square for any of the three error types. The two mean square errors are close for the normally distributed random error. In Bailey's [1987, p. 712] terminology, none of these models is valid, (p. 114). Standard deviations of the F-ratios exceed their average by a factor of four for the two unit errors and a factor of 20 for normally distributed random error. For all three error types, nonequality of within-block error variance greatly reduces the means and standard deviations of the \(F\)-ratios, but has little effect upon means and standard deviations of parameter estimates. Only the experimental unit errors provide unbiased estimates for the adjusted treatments. Only this error type estimated each treatment level with
the same standard deviation. All error types provide biased estimates for the adjusted covariate slope parameter, although the experimental unit-treatment interaction error's average estimate is close to \(F\). Only this error's estimates for the mean and block parameters are close to unbiased.

Distributions of estimators derived using the experimental unit errors do not have the normal distribution, nor do the F-ratios for this error type have the usual \(F\) distributions. Nonequality of the within-block error variances affects the F-ratios for this error type. The respective distributions for the other two errors are closer to the normal and the \(F\) distribution and are little affected by nonequal within-block error variances.

The weighting suggested by D. R. Cox [1956, p. 1148] has but modest effect for this simulation. For this single covariate case, his ratio is a linear function of the noncentrality parameter for the adjusted covariate. Restricting randomization to the g-group with the maximum value for the noncentrality parameter of the adjusted covariate improves the power to detect a nonzero \(F\) and, modestly, a nonzero \(\tau\) for the experimental unit-treatment interaction and normally distributed random errors. There is little improvement in the cases of experimental unit errors. Averaging model equation parameters over this g-group yielded means with less bias
and smaller standard deviation than did averaging over other g-groups. This holds for all three error types. The singular normal distribution and related F-distribution should be considered more closely as the proper source of the degrees of freedom when computing the observed significance levels, especially in the experimental unit error cases.

Subsequent chapter subheadings are the following: Section 4.2 Construction of Random Errors

Section 4.3 Method of Simulation
Section 4.4 Expectation and Standard Deviation of Parameter Estimates and Anova Terms Section 4.5 Distribution of Estimators and Anova Terms

Section 4.6 F-Distribution Probability Plots Section 4.7 Weighted Selection Probabilities Section 4.8 G-groups, Noncentrality Parameters, and OSL's

\section*{Section 4.2}

\section*{Construction of Random Errors}

Sections 4.2.1-4.2.3 describe the construction of simulated values for three types of errors, experimental unit error, experimental unit-treatment interaction error and normally distributed error. Section 4.2.4 discusses combining error types. Of importance is the method of constructing the first two types of error so that they are orthogonal to the covariate.

\subsection*{4.2.1 Construction of the Experimental Unit Errors}

The experimental unit errors are attached to the experimental units and are unaltered by the treatment assigned to the experimental unit and by whatever value the assigned treatment has. Thus, only one set of these errors need be constructed. The following sketches their construction; computer program meu in Appendix F. 3 provides the details.

The method of construction is such that the set of experimental unit errors,
\[
\left\{e_{i j} ; i=1,2, \ldots, b, j=1,2, \ldots, p\right\}
\]
(a) sums to zero, (b) has variance equal to 30 , (c) in vector form is orthogonal to the vector of covariates, and (d) gives \(\hat{F}=\hat{F}\) in (4.2.2) below. Conditions (a) and (b) impose Assumptions 2, \(\mathrm{E}_{\mathrm{R}}\left(\mathrm{e}_{\mathrm{ij}}\right)=0\), (p. 16), and 3, \(\operatorname{Var}_{R}\left(e_{i j}\right)=q^{2},(p .24)\) on each randomization. Condition
(a) satisfies a definition of the experimental unit error, \(e_{i j}^{K}\), of (3.3.2) which sums to zero over the experimental units for each block and Assumption 9, (p. 140), that the \(e_{i j}\) also sum to zero. For models with a random covariate, condition (c) ensures a zero covariance between the errors and the covariates, but not necessarily statistical independence. Throughout, we consider the covariates to be fixed.

Construction begins in block \(i=1\) with the equation
\[
\begin{equation*}
Y_{1 j}=\overline{F Z}_{1 j} \tag{4.2.1}
\end{equation*}
\]

The intercept term, \(\mu+b_{i}+\tau_{k}\), does not affect the errors, so it is omitted. In effect, all experimental units receive the same, \(k\) th, treatment. To each point of (4.2.1) add a random error, \(e_{1 j}\). These simulations used the SAS function UNIFORM to generate the initial values of all \(\mathrm{e}_{\mathrm{ij}}\). Compute the initial \(\hat{\hat{F}}\) using the usual least squares method. The steps in the remainder of this paragraph are performed repeatedly until the obtained slope \(\hat{F}\) differs from the desired slope of \(\hat{F}=2.0\) by less than \(10^{-8}\) radians. This was achieved in \(£\) ewer than 100 iterations. Compute the errors as the difference \(\mathcal{F Z}_{1 j}\) \(\hat{\mathrm{F}} \mathrm{Z}_{1 j}\). Center the errors about zero by subtracting their mean. This ensures that they will sum to zero, (a) above. Center the vector of \(Y_{1 j}\) values about zero. Since
both \(\bar{F}\) and \(\hat{F}\) pass through the same point, \((\bar{Y}, \bar{Z})\), here \((0,0)\), they may be treated as angles, measured in radians in a counter-clockwise manner, from the line \(Z=0\) through the origin. Compute the usual least squares estimator of F using the model
\[
\begin{equation*}
Y_{1 j}=F Z_{1 j}+e_{1 j} . \tag{4.2.2}
\end{equation*}
\]

Subtract the arc tangent (in radians) of \(\hat{F}\) from that of F, \(\tan ^{-1}(\hat{F})-\tan ^{-1}(\hat{F})\). Rotate the set of points \(\left(Y_{1 j}, Z_{1 j}\right)\) by a number of radians equal to this difference. Rotation is clockwise for positive differences and counterclockwise for negative differences. Retain the rotated \(Y_{1 j}\) values, but replace the rotated covariates by their original values, \(Z_{1 j}\). The least squares estimate of the slope of this hybrid set of points is between the original estimate and the desired value (2.0). Return to recompute the errors.

Once a slope sufficiently close to \(\mathcal{F}\) has been obtained, (d) above, multiply the errors by a constant to obtain the desired equal within-block variance, (b) above. Repeat the iteration for block 2. Notice that these errors are the residuals of a least squares estimation of a regression parameter. Thus, they are orthogonal to the covariates, (c) above. When considered as residuals from a model whose error term has the multivariate normal distribution, these residuals have the singular normal distribution discussed below (2.3.3) (p. 17).

Multiplication by the appropriate constants, one per block, provides a second set of errors having unequal within-block variances. The chosen ratio is 1:4; the variance of the errors of block two is four times that of block one. For all three types of errors the unequal within-block variances are 12 and 48. The large ratio makes the effects of unequal within-block variances more visible in graphic displays. The variance over all blocks is 30 for all sets of errors. Defining the variance to have the number of observations as its denomnator eases the construction of such unequal within-block variance errors.

Table 4.2.1 displays the experimental unit errors. The magnitude of these errors is of the order of the treatment effects, \(\tau_{k}=\{-6.5,-3.5,2.57 .5\}\). The goal is to present the simulation with "loud noise." The summary statistics are based upon more decimals than are shown in the table. Note that all means are zero, satisfying the first equality of Assumption 9, (p. 140). Also, within-block variances are 30, or 12 and 48, while both over-all variances are 30 .

TABLE 4.2.1

\section*{EXPERIMENTAL UNIT ERRORS}

Graph 4.2.1 plots the errors for block 1. The letters on the line mark the values of \(Y_{1 j}\) of (4.2.1), without error. The "A" represents \(j=1\), "B" represents \(j=2\), and so on. Above or below the line are the \(\mathrm{Y}_{1 j}\) 's of (4.2.2) with error for the equal (E) and not equal (N) withinblock variance cases. The slopes of the least squares fit of the E's and of the N's each equal 2.0, the same slope as the line through the letters A through D. The variance of the E's is 30 , while that of the N's is, for this block, only 12. Thus, the N's are closer to the line than are the E's. These E's and N's become the
\(e_{i j}\) 's of (4.2.2), (p. 245) and the elements of the identical columns of \(\mathbb{E}\) (3.5.1), (p. 156). Section 4.6.4, (p. 315), discusses their variance-covariance matrix should the errors be considered a random vector.

Construction of Experimental Unit Errors - Block One Graph 4.2.1

\subsection*{4.2.2 Construction of the Experimental Unit-Treatment}

\section*{Interaction Errors}

These experimental unit errors are altered by the treatment assigned to the experimental unit, but not by whatever value the assigned treatment has. Thus, one set of these errors needs to be constructed for each level of the treatment factor. With two exceptions, the process
is as described in Section 4.2.1. The conditions (a)-(d) are met for each treatment. Here, condition (a) satisfies the identity definitions of the experimental unit-treatment interaction error, \(\mathrm{n}_{\mathrm{i} j \mathrm{j}}^{\mathrm{N}}\), of (3.3.5), (p .27), and \(\mathrm{n}_{\mathrm{i} j k}(3.3 .7)\), (p. 128), both of which sum to zero across the experimental units for each treatment. Condition (a) also satisfies the second equality of Assumption 9, (p. 140). That is, the \(n_{i j k}\) sum to zero over the experimental units (j) for each treatment (k). Summation to zero over the treatments for each unit was not achieved as discussed below. The computer program meuxti in Appendix \(F .4\) provides the details. The first exception is to repeat, within each block, the process of Section 4.2 .1 for all except the last treatment level. The errors for the last treatment level are the negative of the sum of the errors for the first t-1 treatment levels. All are then multiplied by a constant to obtain the desired variance. This ensured that all sums over experimental units, one per treatment level, equal zero and that all sums over treatments, one per experimental unit, are close to zero, with the two exceptions shown in Table 4.2 .2 below. The sum over both experimental units and treatments is zero. We did not find a method to provide zero sums and equal variances both over all experimental units and over all treatments.

Table 4.2.2 displays the experimental unitinteraction errors for the equal within-block variance case. Note that experimental unit 1 of block 1 lowers its response by 2.1 units when treatment 1 is applied, but increases its response by 5.24 units when treatment 4, the far right of row one, is applied. This is the interaction effect. The errors are of the magnitude of the treatment effects, again with the goal of presenting the simulation with "loud noise." For each treatment, within each block and over all experimental units, all means equal zero and all variances equal 30 , all based upon more decimals than are shown in the table.

TABLE 4.2.2
EXPERIMENTAL UNIT-TREATMENT
INTERACTION ERRORS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Block } \\
\text { (i) }
\end{gathered}
\] & Plot (j) & \(\mathrm{k}=1\) & \multicolumn{2}{|l|}{\[
\begin{array}{ll}
\text { Treatments } \\
k=2 \quad k=3
\end{array}
\]} & \(\mathrm{k}=4\) \\
\hline 1 & 1 & -2.10 & -3.44 & -1.20 & 5.24 \\
\hline 1 & 2 & 4.27 & 1.71 & -0.86 & -3.98 \\
\hline 1 & 3 & -7.98 & 8.07 & 8.64 & -6.79 \\
\hline 1 & 4 & 5.81 & -6.34 & \(-6.58\) & 5.53 \\
\hline 2 & 1 & 0.99 & -4.18 & 6.21 & -1.68 \\
\hline 2 & 2 & 1.22 & 7.68 & -8.52 & -0.21 \\
\hline 2 & 3 & -8.69 & -6.08 & -0.59 & 8.54 \\
\hline 2 & 4 & 6.48 & 2.58 & 2.90 & -6.65 \\
\hline
\end{tabular}

Unlike the experimental unit errors, no column of errors will appear in any one randomization. Hence, the mean and variance imposed here will not carry over to those errors appearing in any one randomization. Within each randomization, the mean of the rijk will not equal zero, nor will the variance equal 30. The variance term of the noncentrality parameters will differ for each randomization. The imposition of a variance of 30 on the columns of Table 4.2.2 is an attempt to maintain a similarity of the magnitude of the experimental unit and experimental unit-treatment interaction errors.

Alternatively, one could standardize within each randomization those errors which did appear. This would force each randomization to have a different set of experimental unit-treatment interaction errors, which violates their definition, (p. 127). On the other hand it would impose Assumptions \(2, E_{R}\) (error)=0, (p. 16), and \(3, \operatorname{Var}_{R}(\) error \()=\sigma^{2},(\mathrm{p} .24)\), on each randomization. Either method gives, for this method of construction, \(E_{R}(e r r o r s)=0\) and \(\operatorname{Var}_{R}(e r r o r s)=30\) over all randomizations. Table 4.2.3 displays the means and variances for each experimental unit as summed across all treatments. Ideally, each would have zero mean. Across all (16) experimental unit-treatment interaction errors of any one block, the mean is zero and the variance is 30.

TABLE 4.2.3

EXPERIMENTAL UNIT-TREATMENT
INTERACTION ERRORS SUMMED ACROSS TREATMENTS
\begin{tabular}{ccrr}
\hline \begin{tabular}{c}
Block \\
(i)
\end{tabular} & \begin{tabular}{r}
Plot \\
(j)
\end{tabular} & Mean & Variance \\
\hline 1 & 1 & -1.50 & 11.15 \\
1 & 2 & 1.14 & 9.36 \\
1 & 3 & 1.94 & 62.11 \\
1 & 4 & -1.58 & 26.77 \\
\hline & & & \\
2 & 1 & 1.34 & 14.86 \\
2 & 2 & 0.17 & 33.28 \\
2 & 3 & -6.82 & 43.52 \\
2 & 4 & 5.31 & 23.56 \\
\hline
\end{tabular}

For each treatment within each block there is a graph corresponding to Graph 4.2.1. Such graphs are similar to Graph 4.2.l and hence are omitted.

For each treatment, a second set of experimental unit-treatment interaction errors was constructed with unequal block variances (12 and 48) as computed over all experimental units. There errors are multiples of the ones shown in Table 4.2.2 and are omitted.

\subsection*{4.2.3 Construction of the Normally Distributed Random}

\section*{Errors}

The normally distributed random errors are attached to the experimental units and are unaffected by the treatment assigned to the experimental unit and by the

\begin{abstract}
value of such treatment. If these errors were identical for each randomization, they would merely add to the experimental unit errors. These simulations use a different set of normally distributed random errors for each randomization. The SAS function RANNOR generates the random errors which are then standardized to mean zero and variance 30 by the \(S A S\) procedure standardize. The standardization is done anew for each randomization. As with the other errors, a second set with unequal block variances (12 and 48) was constructed. Step Two of the computer program cterms in Appendix \(F .5\), provides the details. The program computes additional, unused, error sets.
\end{abstract}

\subsection*{4.2.4 Combination of Errors}

The sets of errors may be added together. The overall mean will remain zero while the variance will increase. This increase in variance makes it difficult to compare simulations using a single type of error. Standardization of the variances is possible, but it destroys the definitions of the experimental unit and experimental unit-treatment interaction errors. Such combined errors are an extension.

We next describe how these errors are combined to form the observed responses for all randomizations.

\section*{Section 4.3}

\section*{Method of Simulation}

Section 4.3.1 describes the generation of twelve sets of all possible randomizations. Section 4.3.2 discusses the generation of analysis of variance terms and model equation estimates.

\subsection*{4.3.1 Generation of Randomizations and Attachment of}

Treatments and Errox

All simulations use two blocks, each with four experimental units, one for each of the four levels of the single factor, and one covariate. Since there is but one factor, each level is also a treatment. As per (3.2.6), (p. 109), there are \(N(E)=(t!)^{b}=(4!)^{2}=576\) possible randomizations, each with \(b t=(2)(4)=8\) observations, for a total of 4,608 observations. The values for the mean, blocks, covariate and, when present, the experimental unit errors, are constant for each randomization. With each new randomization, at least two of the eight experimental unit-treatment interaction errors are replaced by others from among the 16 . All eight normally distributed random errors differ with each randomization. When the treatments are not zero, at least two experimental units receive different treatments as one changes from one randomization to another.

In the computer data file, each of the 4,608 observations contains the 11 variables: identification numbers for (1) randomization \(s,(2)\) block is and (3) experimental unit j; (4) a value equal to the sum of the effects for the mean, block and covariate; (5) a value adding the effect of the assigned treatment; and (6-11) values for the three types of errors, experimental unit, experimental unit-treatment interaction and normally distributed random error, each in the two versions (a) equal withinblock variances and (b) unequal within-block variances. From these, one computes twelve observed \(Y_{i j k}\) values, one for each combination of the six error terms and zero or nonzero treatment effects. Thus, twelve simulated \(Y_{i j k}{ }^{\prime} s\) appear in each of the 4,608 observations. These twelve Yijk's are the observations for the twelve simulations discussed in Section 4.1, (p. 239). The SAS program cterms, of Appendix F.5, provides the details.

Values of the model equation parameters are \(\mu=10\), \(b_{1}=-1.5, \quad b_{2}=1.5, \tau_{1}=-6.5, \tau_{2}=-3.5, \tau_{3}=2.5, \tau_{4}=7.5\) (or all \(\left.\tau_{k}=0.0\right)\), and \(\beta=2.0\). The covariate values are \(\mathbb{Z}^{\prime}=(1,2,11,14,5,9,16,19)\), in the order \(Z_{i j}(i=1,2 ;(j=1,2,3,4))\).

\subsection*{4.3.2 Generation of Analysis of Variance Terms}

The following process is applied to each of the twelve sets of randomizations. The SAS procedure GLM reads the eight observations for one randomization,
outputting the normally printed analysis of variance table to a temporary computer file. This is repeated for the remaining 575 randomizations. A SAS program then reads the 576 analysis of variance tables, extracting numbers of interest. Among them are (a) the mean square error for the treatments adjusted for the mean, blocks, and covariate, (b) the mean square error for the covariate adjusted for the mean, blocks, and treatments, (c) the residual mean square error, (d) the calculated F-ratios and observed significance levels (OSL's) or p-values for (a) and (b), and (e) the estimated values of the adjusted \(k\) treatment effects and of the adjusted covariate slope coefficient. These estimates use the coding form of the x matrix, (p .74). A subsequent step adds the estimates provided by the usual constraints of Assumption \(5,(p .20), \hat{\tau}_{k ; \mu, b, \tau, \beta}\) and \(\hat{\beta}_{\mu, b}, \tau, \beta\). The conversion is by (2.8.14) of Theorem 2.8.1, (p. 81). These are the estimates herein discussed. The SAS program glm of Appendix F. 6 is typical; the other eleven differ in the observed \(Y_{i j k}\) offered, via macros, to the GLM procedure as the dependent variable, and a minor change for nonzero \(\tau\).

The following sections discuss these anova terms and estimators for the twelve cases, beginning with their means and standard deviations.

Section 4.4

\section*{Expectation and Standard Deviation \\ of Parameter Estimates and Anova Terms}

The first three subsections examine randomizations with equal within-block error variances. The first, 4.4.1, presents expectations of estimates of the model equation parameters. Section 4.4 .2 presents the associated standard deviations. Section 4.4.3 presents means and standard deviations for terms from the analysis of variance tables. The final section, 4.4.4, examines randomizations with unequal within-block error variances. We use the shorter \(\hat{T}\) and \(\hat{F}\) for the estimated estimators. Major findings for this simulation are as follows:
1. For the randomization expectation, the experimental unit errors provide unbiased estimates for the treatment effects as adjusted for the mean, blocks, and covariate, but not for the adjusted covariate. The other two error types provide nearly unbiased estimates for the adjusted covariate, but not for the adjusted treatments effects. The expectation is over all randomizations, \(E_{R}(\cdot)\).
2. Only the experimental unit errors provide equal randomization variance for the adjusted treatment effects.
3. The randomization average mean square for the adjusted treatments under the null hypothesis (\(\tau \mid \mu, b, F=\mathbb{C})\) does not equal the average for the residual mean square.

For the cases in which the errors have a variance \(\sigma^{2}=30\) for all randomizations (experimental unit and normally distributed random errors), the average residual mean square does not equal 30 .
4. Randomization means and standard deviations for the F ratios are smaller when the within-block error variances are unequal than when they are equal. The means and standard deviations for the mean squares and model equation parameter estimates are similar in the equal and unequal within-block error cases.

\subsection*{4.4.1 Expectation of Parameter Estimates - Equal}

Block-wise Error Variances

Table 4.4.1 displays each model equation parameter value and its expectation over all randomizations. Two values are shown for the treatments. To the left of the slash is the value when the \(\tau_{k}\) equal zero; to the right is the value when the \(\tau_{k}\) equal the nonzero values shown in the column titled "Value". The values of the treatment effects do not affect the value of the estimates of other parameters. The selection probability is \(\rho(s)=1 / 576\) for all randomizations s. For the cases of experimental unit and normally distributed random errors, the error variance is 30 for each block of each randomization. For the case of experimental unittreatment interaction error, the error variance differs in each block and each randomization.

TABLE 4.4.1
\begin{tabular}{cc}
RANDOMIZATION EXPECTED VALUE OF PARAMETER ESTIMATES \\
EQUAL & WITHIN-BLOCK ERROR VARIANCES \\
\hline & Three Types of Error: \\
Parameter: & Experimental \\
Name Value & Unit \\
& \\
& \\
&
\end{tabular}
\begin{tabular}{lllll}
\(\mu\) & 10.0 & 6.05 & 9.94 & 9.36 \\
\(\mathrm{~b}_{1}\) & -1.5 & -.42 & -1.48 & -1.33 \\
\(\mathrm{~b}_{2}\) & 1.5 & .42 & 1.48 & 1.33 \\
\(\tau_{1}\) & \(0 /-6.5\) & \(0 /-6.5\) & \(-.68 /-7.18\) & \(.28 /-6.22\) \\
\(\tau_{2}\) & \(0 /-3.5\) & \(0 /-3.5\) & \(.88 /-2.62\) & \(.23 /-3.27\) \\
\(\tau_{3}\) & \(0 / 2.5\) & \(0 / 2.5\) & \(-.46 / 2.04\) & \(.01 / 2.51\) \\
\(\tau_{4}\) & \(0 / 7.5\) & \(0 / 7.5\) & \(.26 / 7.76\) & \(-.52 / 6.98\) \\
\(F\) & 2.0 & 2.41 & 2.01 & 2.07
\end{tabular}

For the experimental unit errors, the estimator for the adjusted treatments is unbiased, with respect to the randomization distribution, both when the treatments are zero and when they take the above nonzero values. Estimates for all other parameters, \(\mu, b\) and \(\beta\), are biased. Relative to the other two types of errors, the biases are large. The bias of . 41 for \(\hat{\beta}\) equals the randomization
expectation of \(\left(\mathbb{R}_{S, z}{ }^{\prime} \mathbb{R}_{S, z}\right)^{-} \mathbb{R}_{S, z}{ }^{\prime}[e]\) as shown in (3.7.22a)
of Theorem 3.7.9(4), (p. 202). In this equation, the vector \(e\) is constant for all randomizations; only the \(\mathbb{R}_{S, z}\) change. The biases of .01 and .07 for the other two types of error also follow (3.7.22a).

With experimental unit-treatment interaction error, the mean estimate for the treatment effects suffers a shift, constant for each of treatment k's two values. For example, for \(\tau_{1}\), the mean of the estimates is too small by .68 when \(\tau_{1}=0\) and when \(\tau_{1}=-6.5\). Similar shifts occur for the other \(\tau_{k}\). The cause of this shift is unknown, but is not believed to be a consequence of the location of the errors relative to the line (above or below) in Graph 4.4.1, (p. 248). The two reasons for this belief are (a) a similar shift occurs with experimental unit-treatment interaction errors, which differ with each randomization and (b) the shift does not occur with experimental unit error. The bias for other model equation parameters is quite small, less than . 07 . Tests suggest that even such a small value well exceeds the accumulated computer round-off error.

With normally distributed random error, the mean estimate for the treatment effects again suffers a shift, constant for each of treatment k's two values. For example, for \(\tau_{1}\), the mean is too large by . 28 when \(\tau_{1}=0\) and when \(\tau_{1}=-6.5\). The randomization bias for other model
equation parameters is small, smaller than with experi-
mental unit error, but larger than with experimental
unit-treatment interaction error.
 Some yet unanswered questions are the following:
 1. Why the normally distributed errors yielded biased
estimates,
2. Why one error type yielded unbiased estimates for the treatments but not the other model equation parameters, while the other error types yielded biased estimates for the treatments, but nearly unbiased estimates for other parameters and
3. The origin of the constant shift observed in each treatment mean estimates using experimental unittreatment interaction and normally distributed random error.

\subsection*{4.4.2 Standard Deviation of Parameter Estimates - Egual} Within-Block Error Variances

Table 4.4.2 displays the standard deviation of the parameter estimates. The standard deviations are unaffected by the value of the treatment effects, hence only one value is shown for each pair of \(\boldsymbol{T}_{k}\).

In all cases, the standard deviations are large, often larger than the value of the parameter being estimated. Such large values suggest that the magnitude of the simulation errors is excessive relative to the magnitude of the parameter values. It is known that
under the normally distributed random errors model, a covariate destroys the otherwise spherical variance of the estimates of the adjusted treatments. Thus, the unequal treatment standard deviations in the normal error column are to be expected. Interestingly, spherical, equal variance, estimates are provided by the experimental unit errors. We suggest that this is due to \(\beta_{i j}+e_{i j}\), for a fixed experimental unit ij, being constant for all randomizations, while \(\mathrm{FZ}_{\mathrm{ij}}+\mathrm{r}_{\mathrm{ij} k}\) and \(\mathrm{FZ}_{\mathrm{i} j}{ }^{+n_{i j}}\) differ with each randomization. All three error types preserve the spherical variance of the estimates of the two levels of the blocking variable. This is expected, as the estimates for the \(b_{i}\) are not adjusted for the covariate, as are the estimates for the \(\tau_{k}\).

TABLE 4.4.2
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter:} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{```
Three Types of Error
 Experimental:
 Unit Unit-Treat.
 Interaction
```}} & \multirow[t]{2}{*}{\begin{tabular}{l}
Normally \\
Distributed
\end{tabular}} \\
\hline Name & Value & & & \\
\hline \(\mu\) & 10.0 & 18.6 & 7.51 & 10.86 \\
\hline \(\mathrm{b}_{1}\) & -1.5 & 5.07 & 3.19 & 2.96 \\
\hline \(\mathrm{b}_{2}\) & 1.5 & ditto & ditto & ditto \\
\hline \(\tau_{1}\) & 0/-6.5 & 11.84 & 5.18 & 7.55 \\
\hline \({ }^{\top} 2\) & 0/-3.5 & ditto & 5.23 & 7.21 \\
\hline \({ }^{\top} 3\) & \(0 / 2.5\) & ditto & 5.01 & 6.93 \\
\hline \({ }^{\top} 4\) & 0/7.5 & ditto & 4.83 & 6.90 \\
\hline \(\mathcal{F}\) & 2.0 & 1.93 & . 79 & 1.13 \\
\hline
\end{tabular}
4.4.3 Expectation and Standard Deviation of ANOVA TermsEqual Within-Block Error Variances

Table 4.4.3 displays the expectation and standard deviation of several ANOVA terms for each of the three types of errors. Shown are the cases when all treatment effects are (a) zero ( \(\tau=\mathbb{D}\) ) and (b) when they are those of this simulation as 1isted in Table 4.4.1 ( \(\tau \neq \mathbb{O}\) ). All three types of errors have a variance of 30 within each block and randomization.

TABLE 4.4.3
RANDOMIZATION EXPECTATION AND STANDARD DEVIATION OF ANOVA TERMS
EQUAL WITHIN-BLOCK ERROR VARIANCE
Three Types of Error Experimental:

ANOVA Term Expectation:

Unit
Unit-Treat.
Interaction Distributed
\begin{tabular}{llrr} 
MS Residual & 45.01 & 26.71 & 40.03 \\
MS \(\tau=\mathbb{D} \mid \mu, b, \beta\) & 49.99 & 24.96 & 39.23 \\
MS \(\tau \neq \mathbb{D} \mid \mu, b, \beta\) & 144.99 & 91.17 & 100.56 \\
MS \(\beta \neq 0 \mid \mu, b, \tau\) & 527.5 & 525.0 & 561.1 \\
& & & \\
F \(\tau=\mathbb{D} \mid \mu, b, \beta\) & 38.93 & 7.23 & 52.86 \\
F \(\quad \tau \neq \mathbb{D} \mid \mu, b, \beta\) & 70.41 & 24.86 & 112.27 \\
F \(\quad \beta \neq 0 \mid \mu, b, \tau\) & 136.77 & 107.79 & 248.83
\end{tabular}

Standard Deviation:
\begin{tabular}{|c|c|c|c|c|}
\hline MS & Residual & 39.39 & 22.10 & 32.10 \\
\hline MS & \(\tau=\mathbb{D} \mid \mu, b, F\) & 26.26 & 18.20 & 22.20 \\
\hline MS & \(\tau \neq \mathbb{D} \mid \mu, b, \bar{\beta}\) & 71.29 & 52.19 & 65.01 \\
\hline MS & \(\beta \neq 0 \mid \mu, b, \tau\) & 336.8 & 379.4 & 400.5 \\
\hline F & \(\tau=\mathbb{D} \mid \mu, b, F\) & 150.6 & 41.1 & 1081.4 \\
\hline F & \(\tau \geqslant \mathbb{O} \mid \mu, b, \bar{\beta}\) & 320.0 & 158.0 & 2292.3 \\
\hline F & F\% & 459.8 & 479.0 & 4172.6 \\
\hline
\end{tabular}

Under the normally distributed random errors model the residual mean square and, under the null hypothesis, the mean square for \(\tau=\mathbb{D} \mid \mu, b, \tau\), both divided by \(\sigma^{2}\), have the \(x^{2}\) distribution with mean equal to 1 and variance equal to 2. (See Appendix A.2, (p. 382) or Searle [1971], Corollaries 2.2-2.4, p. 58.) For \(\sigma^{2}=30\) and the randomization expectation, the mean values are \(40.03 / 30.0=1.33\) and \(39.23 / 30.0=1.31\) for normally distributed error. Neither equals 1 . Nor are the
randomization variances what one would expect;

\begin{abstract}
\((32.10)^{2} /(30)^{2}=1030.41 / 900=1.14\) and \((22.20)^{2} /(30)^{2}=\) 492.84/900=.44; neither equals 2. For these two mean squares, the randomization mean and variance are both smaller than the theoretical mean and variance as derived under the normally distributed random errors model. Section 4.6.4, (p. 315), discusses a possible reason for this.
\end{abstract}

Under the normally distributed random errors model, the mean, variance, and higher moments of the mean squares are defined when the null hypothesis does not hold. All involve a constant noncentrality parameter. As shown in Theorems 3.7.10 and 3.7.11 (p. 211 and 213), under the randomization model, the noncentrality parameters change with the randomization. The proper comparison of moments and variances obtained under simulation with those derived from the normal distribution model involving a noncentrality parameter is not clear. Possibly one could compute the normally distributed random.errors model moments and variance for each randomization using its particular noncentrality parameter, average them using \(F(s)\) and compare the result with simulation values such as those above. Such considerations are an extension.

Comparison with the mean of the F-distribution is not possible because the mean is undefined when, as is the case here, the denominator degrees of freedom is less than or equal to 2. (See Appendix A.3, (p. 383).)

When the errors represent experimental unit error or experimental unit-treatment interaction error, the randomization expectations of the residual and null hypothesis mean squares are close, 45.01 - 49.99 and 26.71 - 24.96, but clearly not equal. For these two types of errors, and zero treatment effects, the mean square for the adjusted treatments is a (randomization) biased estimator for the residual mean square error, at least for this simulation. For normally distributed random error, the expectations are nearly equal, 40.03 vs 39.23; the difference exceeds computer roundoff error.

The randomization expected value of the residual mean square does not equal the variance of the errors, 30, for any of the three error types. In particular, they do not equal 30 for the experimental unit and normally distributed random errors, both of which are standardized to have \(\sigma^{2}=30\) in each randomization. See Sections 4.2.1 and 4.2.3, (p. 243 and 252); in the terminology of Bailey, (p.114), these processes are not valid.

When the treatments are nonzero, the randomization expectation of the mean square for the adjusted treatments is at least 2.5 that when the treatments are zero. Likewise, the randomization expectation of the \(F\)-ratios for nonzero treatments is about twice that for zero treatments. This suggests that, on average, the F-ratio is distinguishing between the null and alternative hypotheses, as discussed in section 3.6.7, (p. 178).

The large standard deviation for all F-ratios indicates the instability of the F-ratios from one randomization to another. The standard deviations exceed the randomization means for the F-ratios by a factor of 3 to 4, even when the treatments are zero. This suggests that it is important to condition the conclusions of an analysis of covariance upon the randomization actually used to conduct the experiment.

\subsection*{4.4.4 Expectation and Standard Deviation of Anova Terms-}

\section*{Unequal Within-Elock Error Variances}

The cases for unequal within-block error variances use a ratio of \(l\) to 4 for the variance of block one \(\left(\sigma_{i=1}^{2}=12\right)\) to that of block two \(\left(\sigma_{i=2}^{2}=48\right)\), with a variance of 30 overall. The denominator for the variance is the number of observations, not the number of observations minus one. These values of the within-block error variances hold in each randomization for experimental unit error and normally distributed random error, but only approximately for experimental unit-treatment interaction error. For the last error type see the discussion below Table 4.2.2, (p. 250).

Unequal within-block variances have little effect on the mean or standard deviation of the estimated parameters and mean squares. Thus, there is no table for these cases. However, the mean and standard deviation of the F-ratio are affected. Table 4.4.4 displays values for these terms when the within-block error variances are unequal.

TABLE 4.4.4
RANDOMIZATION MEAN AND STANDARD DEVIATION
OF ANOVA TERMS
UNEQUAL WITHIN-BLOCK ERROR VARIANCES

\begin{tabular}{llrrr}
F & \(\tau=\mathbb{D} \mid \mu, \mathrm{b}, \mathrm{F}\) & 3.39 & 4.25 & 5.88 \\
F & \(\tau \neq \mathbb{D} \mid \mu, \mathrm{b}, \mathrm{F}\) & 6.48 & 18.13 & 14.84 \\
F & \(\mathrm{~F} \neq \mathrm{O} \mid \mu, \mathrm{b}, \tau\) & 20.84 & 96.87 & 62.42
\end{tabular}

Standard Deviation:
\begin{tabular}{llrrr}
\(F\) & \(\tau=\mathbb{D} \mid \mu, b, F\) & 4.27 & 14.23 & 34.40 \\
\(F\) & \(\tau \neq \mathbb{O} \mid \mu, b, F\) & 8.68 & 63.07 & 106.52 \\
\(F\) & \(\beta \neq 0 \mid \mu, b, \tau\) & 20.67 & 381.69 & 323.71
\end{tabular}

Both means and standard deviations of the \(F-r a t i o s\) are smaller than for the equal within-block error variance cases. Yet, the means of the numerators and denominators of this ratio are similar to those for the equal within-block error variances cases, shown in Table 4.4.3, (p. 264). The implication is that less frequently
```

unequal than in the equal within-block error cases does a
large numerator appear over a small denominator in the
F-ratio.

```

Note that both means and standard deviations are smaller for the experimental unit error case than for the other two types of errors.

We now turn from the moments of these terms to their \(f u l l\) distributions.

\section*{Section 4.5}

Distribution of Estimates and Anova Terms

Section 4.5 discusses the distribution of various parameter estimates and analysis of variance terms as provided by this simulation. With one observation per randomization, these are discrete distributions and are presented in histogram form. Histograms for the equal and unequal within-block error variance cases are similar; only the former are shown. Section 4.5.1 displays the distribution of \(\hat{T}\); Section 4.5.2 presents that of \(\hat{F}\). Section 4.5.3 discusses the distribution of the OSL's associated with the F-ratio for \(\boldsymbol{T}=\mathbb{U}\) and \(\boldsymbol{T} \mathbb{U}\) for the experimental unit errors. Section 4.5.4 covers the experimental unit-treatment interaction errors. Section 4.5 .5 describes the OSL's distribution for \(F=0\) for both unit errors.

Major findings for experimental unit errors follow:
1. The distributions of \(\hat{\tau}\) and \(\hat{F}\) are non-normal.
2. For \(H_{a ; \mu, b, F^{\top}=\mathbb{0}}\) the actual Type \(I\) error rate is larger than \(\propto\) when \(\approx\) is derived from the central \(F\) distribution. This suggests the \(F\)-distribution does not well approximate the randomization distribution of the F-ratios for these errors, at least in the upper tail.
3. For \(H_{j}, \mu, b, F^{T H 0}\) and \(x=.05\), the Type II error rate is high. This suggests that the magnitude of the errors has overwhelmed the model equation parameters.

For experimental unit-treatment interaction and normally distributed random errors major, findings are, 1. The distributions of \(\hat{x}\) and \(\hat{F}\) are near normal.
2. For \(H_{0 ; \mu, b, F^{\tau}=\mathbb{M},}\) the actual Type I error rate is close to \(\approx\) as derived from the \(F\) distribution. This suggests that the \(F\)-distribution is a close approximation to the randomization distribution of the F-ratios for these two error types, at least in the upper tail.
 II error rates are high, as with experimental unit errors (3 above).

Several graphs illustrate parts of Theorem 3.7.9, (p. 202); part (3) is illustrated by Graphs 4.5.9 and 4.5.10, (p. 289). Part (4) is illustrated by Graphs 4.5.3 and 4.5.4, (p. 277). Part (5) is illustrated by Graph 4.5.5, (p. 280).
4.5.1 Distribution of \(T_{1}-\hat{T}_{1}\)

The distributions for the four treatment effects, the \(\hat{\tau}_{k}\), are each similar; only the distribution of \(\hat{\mathrm{T}}_{1}\) is discussed. Further, the distribution of \(T_{k}-\hat{\tau}_{k}\) is identical, axis values excepted, for \(\tau_{k}=0\) or \({ }^{T}{ }_{k} \neq 0\). Hence, the only distributions presented are those of the differences \(T_{1} \hat{}^{-\hat{T}_{1}}\). These discrete distributions are shown in histogram form for the cases of experimental unit error (Graph 4.5.1) and of experimental unit-treatment interaction
error (Graph 4.5.2). The latter histogram is similar to the one for normally distributed random error, which is omitted.

Graph 4.5.1 displays the distribution of \(\tau_{k}-\hat{\tau}_{k}\) for treatment \(k=1\), with the values of \(\tau_{1}=\{0,-6.5\}\). Points adjacent to the 8 on the vertical, lefthand, axis represent estimates of \(\tau_{1}\) in error by a deficit of between 4 and 12 units, that is, estimates from -4 to -12 when \(\tau_{1}=0\) or estimates from -10.5 to -18.5 when \(\tau_{1}=-6.5\).


Graph 4.5.1
The Distribution of \(\tau_{1}-\hat{\tau}_{1}\) for Experimental Unit Error

As hinted at by the unbiasedness of \(\hat{\tau}_{1}\), (Table 4.4.1, p. 259), this distribution is centered at zero.

Each group of six points in the far upper and lower tails represents 1.04 percent of the distribution; they are five standard deviation units (11.84) from the mean. Each of the two groups of six points in the near upper and lower tails are another 1.04 percent of the distribution. They are some 3 standard deviation units from the mean. This distribution has more probability in its far tails than one would find in the normal distribution; it is tail heavy relative to the normal distribution. These twenty-four randomizations yielded highly erroneous estimates of \(\tau\).

From two to three standard deviations, (23.6 to 35.4) the density is zero, less than a normal distribution. Some 95\% of these observations are within one standard deviation of the mean, while for a normal distribution one would find only \(84 \%\) of the observations in this region. Relative to the normal distribution, this distribution is overly peaked, and tail heavy with sizeable voids in the shoulders. It is reasonably symmetric and unimodal about zero.

We believe the repetition of six closely related values is connected to repetition of certain values observed within g-groups of randomizations. These repetitions are due to patterns in the projector of \(X_{S}\). See also Graph 4.7.1, (p. 331). The extreme values of
both Graphs 4.5.1 and 4.5.3 (below) occur in the g-group which assigns to each treatment the covariate with the same rank in each block. For example, treatment one is assigned to the smallest covariate in each block. Ignoring the blocking, this group of randomizations is the least balanced on the covariate, as discussed in Section 4.7.1, (p. 321).

Graph 4.5.2 shows the distribution of \(\tau_{1}-\hat{\tau}_{1}\) for the case of experimental unit-treatment interaction error. The case of normally distributed random error is similar, and is omitted.


Graph 4.5.2
The Distribution of \(\tau_{1}-\hat{\tau}_{1}\) for
Experimental Unit-Treatment Interaction Error

This distribution is also more peaked than the normal distribution. Some 67 percent of the observations are between -4 and +4 or (+-). 77 standard deviation units; a normal distribution would have only 56 percent of its observations in this region. However, it is not tail heavy. Beyond -12 and +12 or (+-)2.32 standard deviation units, fall but 1.7 percent of the observations. This is close to the 2 percent found in this region under the normal distribution curve.

Experimental unit-treatment interaction error provides a distribution of \(\hat{\tau}_{1}\) closer to the normal distribution than does experimental unit error. With experimental unit error, estimates of \(\tau_{k}\) are either better, closer to \(\tau_{k}\), or much worse, farther from \(\tau_{k}\), than one would expect had the error been normally distributed.

\subsection*{4.5.2 Distribution of \(\hat{E}-\hat{\mathrm{E}}\)}

As per Theorem 3.7.9(4), (p. 202), when the only error is experimental unit error, each estimate of \(F\) repeats itself (t!) = 4! = 24 times. Graph 4.5.3 displays these clusters of estimates, each subtracted from \(\beta=2.0\).

As expected from Table 4.4.1, Graph 4.5.3 is centered at \(2.0-2.41=-.41\). The one outlying cluster is 4.2 percent of the observations and represents an estimate of \(\hat{\vec{F}}=11.3\), an error of some magnitude ( \(\mathrm{F}=2.0\) ). Randomiza-
tions in this cluster, or g-group, should be avoided. It is the group which assigns each treatment to the covariate with the same rank in each block. It is the least balanced of all g-groups. The value of the noncentrality parameter \(\lambda_{f \mid \mu, b, F}\) associated with this g-group is 10 , the minimum of all 24 values of \(\lambda_{f \mid \mu, b, \tau}\). The maximum value of this noncentrality parameter is 990. Theorem 3.7.15, (p. 219), suggests selecting the randomization used to conduct the experiment from among those randomizations with the maximum value of \(\lambda_{\text {F| }}, \mathrm{b}, \tau ;\) doing so would avoid estimates in the outlying cluster of Graph 4.5.3. An alternate method of creating experimental unit errors yielded a set of errors with characteristics of both this and experimental unit-treatment interaction errors. The mix was some \(90 \%\) the former and \(10 \%\) the latter. The plot corresponding to Graph 4.5 .3 based on these errors did not show an outlaying cluster as seen in Graph 4.5.3.

About 95 percent of the observations fall within one standard deviation (1.93) of the mean. For a normal distribution, one would expect only 68 percent of the observations to lie within this region. For this simulation, the distribution of the \(\hat{F}\), using experimental unit errors, is not the normal distribution. Estimates are either better or far worse than one would expect had the distribution been normal.


Graph 4.5.3
The Distribution of \(\hat{F-\hat{F}}\) for
Experimental Unit Error

Graph 4.5.4 shows the distribution of \(\hat{\vec{F}}\) using experimental unit-treatment interaction errors. The graph using normally distributed random errors is similar and, thus, omitted. As per Table 4.4.1, this distribution is centered at \(\beta-\hat{F}=2.0-2.007=.007\). Although not always indicated by an asterisk, there are a few observations (.5\%) five standard deviation units from the
mean. Within (t-). 75 (one standard deviation) lie \(78 \%\) of the observations. One would expect \(66 \%\) of the observations in this region if the distribution were the normal distribution. Within (t-)1. 50 (two standard deviations) lie \(95 \%\) percent of the observations, about what one would expect under the normal distribution. In this simulation, both experimental unit-treatment interaction error and normally distributed random error yielded a near normal distribution for the \(\hat{F}^{\prime}\) s.

The Randomization mooel ith Blocks and a Covariste
Date set is masgim.almoch


Graph 4.5.4
The Distribution of \(\vec{F}-\hat{\mathbf{F}}\) for
Experimental Unit-Treatment Interaction Error

\subsection*{4.5.3 Distribution of the OSL for \(\mathrm{H}_{\mathrm{a}}: \tau=\mathbb{O}\) -}

\section*{Experimental Unit Error}

As proved in Part 5 of Theorem 3.7.9, (p. 203), when the null hypothesis \(\tau=\mathbb{0}\) is true, the \(F-r a t i o s\), and hence the OSL's, for the treatments as adjusted for the mean, blocks, and covariate(s) are clustered. When the error is only experimental unit error, each cluster collapses to a single point. Graph 4.5.5 displays the 24 collapsed clusters of this discrete distribution, each containing 24 identical values. The automatic scaling has combined clusters with similar values; note that the values of the frequency column (Freq) are all multiples of 24.

By the discrete analogue of the probability integral transformation [Mood, Graybill, Boas, 1974, p. 202], if the \(F\)-ratio has the \(F\)-distribution, then the tail area or OSL as computed using the \(F\)-distribution for these F-ratios has the uniform distribution over [0,1]. Graph 4.5.5 shows excess probability in the tails, near zero and near one, relative to what one would observe for the uniform distribution. Thus, these F-ratios do not follow the usual F-distribution. Graph 4.6.1, (p. 295), will show in a more direct manner that these F -ratios do not follow the \(F\)-distribution with the usual degrees of freedom.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{The Randomizstion Model with slocks and a covariate Dats met is uargit.gim002} \\
\hline  & & Frea & \(\underset{\text { craca }}{\substack{\text { cum }}}\) & percent & \[
\begin{gathered}
\text { cum. } \\
\text { parcent }
\end{gathered}
\] \\
\hline \(0 . \infty\) & |**............-............................. & 48 & 48 & 8. 33 & 8.33 \\
\hline 0.05 &  & 48 & 96 & 8.33 & 16.67 \\
\hline 0.10 & -0.0.***....-.-.................................................... & 72 & 168 & 12.50 & 29.17 \\
\hline 0.15 & ............................................... & 48 & 216 & 6.33 & 37.50 \\
\hline 0.20 &  & 48 & 264 & 6.33 & 45.83 \\
\hline 0.25 & & 0 & 264 & 0.00 & 45.83 \\
\hline 0.30 & . & 24 & 288 & 4.17 & 50.00 \\
\hline 0.35 & --..................... & 24 & 312 & 4.17 & 54.17 \\
\hline 0.40 & & 0 & 312 & 0.00 & 54.87 \\
\hline 0.45 & & 0 & 312 & \(0 . \infty\) & 54.17 \\
\hline 0.50 &  & 40 & 360 & 8.33 & 62.50 \\
\hline 0.55 & & 0 & 360 & 0.00 & 62.50 \\
\hline 0.60 & & 0 & 360 & 0.00 & 62.50 \\
\hline 0.65 & & 0 & 360 & \(0 . \infty\) & 62.50 \\
\hline 0.70 & & 0 & 360 & 0.00 & 62.50 \\
\hline 0.75 & & 0 & 360 & 0.00 & 62.50 \\
\hline 0.80 &  & 24 & 384 & 4.17 & 66.67 \\
\hline 0.85 &  & 72 & 456 & 12.50 & 79.17 \\
\hline 0.90 & ........................ & 48 & 504 & 8.33 & 87.50 \\
\hline 0.95 & ********************................................ & 72 & 576 & 12.50 & 100.00 \\
\hline & + \({ }_{2}\) & & & & \\
\hline & Parcantage & & & & \\
\hline \multicolumn{6}{|c|}{Graph 4.5.5} \\
\hline \multicolumn{6}{|l|}{The Distribution of OSL'S for \(F(T=\mathbb{T} / \mathrm{T}=\mathrm{T})\)} \\
\hline \multicolumn{6}{|c|}{Experimental Unit Error} \\
\hline
\end{tabular}

One consequence of the heavy tails of Graph 4.5.5 is that the Type \(I\) erxor rate exceeds \(\boldsymbol{c}\). Since \(\tau=\mathbb{I}\), a Type I error is committed when the OSL, computed under the assumption of a central \(F\)-distribution, is less than \(\propto\), say, \(\kappa=.075\). Graph 4.5 .5 shows 16.7 percent ("Cum Percent" column) of the randomizations will yield an OSL less than or equal to .075 (the category boundry on the vertical, lefthand, axis between the midpoints of .05 and .10). The actual Type \(I\) error rate is .167, not .075 .

Graph 4.5 .6 presents the OSL's when the treatments take the nonzero values of this simulation.


Graph 4.5.6
The Distribution of OSL'S for \(F(\tau=\mathbb{C} \mid \tau \neq \mathbb{I})\)
Experimental Unit Error

Since \(\tau \neq 0\), Part 5 of Theorem 3.7.9, (p. 203), does not apply. Whatever clustering is provided by the denominator of this \(F\)-ratio is dispersed by the numerator, more specifically, by the changes in the projector for \(x=\left[\Sigma_{\mu}\left|x_{b}\right| \mathbb{Z}\right]\) within each g-group.

The visible difference between Graphs 4.5.5 ( \(\tau=\mathbb{1}\) ) and \(4.5 .6(\tau \mp \mathbb{D})\) is a shift to more frequent lower valued OSL's (higher valued F-ratios). This suggests that the F-ratio is distinguishing between the two cases of \(\tau=\mathbb{1}\) and \(\tau \neq \oplus\).

By the probability integral transformation, this distribution would be the uniform, if the proper distribution were used to compute the tail area. These OSL's are from the output of SAS's PROC GLM and are computed under the assumption of a true null hypothesis and a full-rank variance-covariance matrix for the errors. Thus, the usual central F-distribution provided these OSL's. However, since the null hypothesis is false, it is the non-central F-distribution (perhaps with adjusted degrees of freedom) which would provide a uniform distribution if the F-ratios approximate an F-distribution. Section 4.6.4, (p. 315), discusses adjusting the degrees of freedom. One would not expect this graph to resemble the uniform distribution.

For this case, one wants to reject the null hypothesis that \(\tau=\mathbb{0}\). One commits a Type II error, with probability \(F_{I I}\), by accepting the erroneous null hypothesis that \(\tau=\mathbb{0}\). This occurs when the observed \(F\)-ratio is less than that tabled F-ratio which provides an OSL equal to \(\propto\), say, .05, for the central F-distribution. Graph 4.5.6 shows that some 80 percent of the randomizations will result in a Type II error for nonzero \(\tau\) with a
near-zero noncentrality parameter \(\lambda_{s}\). The actual power (1- \(\hat{F}_{I I}\) ) for the nonzero \(\tau\) of this simulation requires using the \(\lambda_{s}\) corresponding to randomization \(s\). These \(\lambda_{s}\) change with each randomization, as displayed in Graph 3.6.1, (p. 178). This adjustment appears to give power greater than \(1-.8=.2\), but the power appears to be low enough to suggest altering one's strategy, (p.148).
4.5.4 Distribution of the OSL for \(H_{0}: \tau=\mathbb{I}\) - Experimental

\section*{Unit-Treatment Interaction Error}

The experimental unit-treatment interaction errors change with each randomization, dispersing the clustering effect of projectors identical within each of the g-groups. (See Theorem 3.7.9(5), p. 203.) The heavy tails seen with experimental unit error are not visible in Graph 4.5.7. This distribution appears uniform, but has not been subjected to a statistical test. As it was computed using the central F-distribution, the logic of the probability integral transformation suggests that these F-ratios take the central F-distribution. The graph for normally distributed random error is similar and omitted. Graph 4.6.1 below, (p. 295), also suggests a close approximation to the F-distribution.


Graph 4.5.7
The Distribution of OSL'S for \(F(T=0 \mid T=\mathbb{1})\) Experimental Unit-Treatment Interaction Error

One consequence of the near uniformity of Graph 4.5.7 is that the actual (randomization) Type I error rate is close to \(a\). Since \(\tau=\mathbb{Q}\), a Type \(I\) error is committed when the OSL, computed under the assumption of a central F -distribution, is less than \(\alpha\), say, \(\alpha=.125\). Graph 4.5 .7 shows \(9.55+(5.21 / 2)=12.2\) percent of the randomizations will yield an OSL less than or equal to
«=.125. The actual Type \(I\) error rate is quite close to such stated values of \(\alpha\), for \(\alpha>.05\).

Graph 4.5.8 displays the distribution of the OSL's when the treatments take the nonzero treatment \(\tau\) values of this simulation. As in Graph 4.5.7, the errors are experimental unit-treatment interaction errors. As with Graph 4.5.6, these OSL's are computed assuming a central F distribution. Thus, the distribution is not uniform. The distribution using normally distributed random error is similar to Graph 4.5 .8 and is omitted.

The discussion of power following Graph 4.5.6, applies here, except that adjustments to the degrees of freedom appear necessary for the normally distributed random error case, but not the experimental unittreatment interaction error case. For a near-zero noncentrality parameter and \(\kappa=.125\), Graph 4.5 .8 shows some 100-32.81*67 percent of the randomizations will result in a Type II error.


Graph 4.5.8
The Distribution of OSL'S for \(F(T=\mathbb{C l} \mid \boldsymbol{T} \boldsymbol{T})\)
Experimental Unit-Treatment Interaction Error
4.5.5 Distribution of the OSL for \(H_{0}: F=0\)

Graph 4.5.9 displays the distribution of the OSL's corresponding to \(F(F \mid \mu, b, T)\), the test of the covariate as adjusted for the mean, blocks, and treatments, for the case of experimental unit error. As per part 4 of Theorem 3.7.9, (p. 202), these OSL's are clustered. Each cluster contains \(N(G) t!=1(24)\) randomizations. The automatic
scaling has grouped clusters with similar values.
Graph 4.5.10 displays the same OSL's for the case of experimental unit-treatment interaction error. Note the change in both scales from Graph 4.5.9. For these errors, the clusters remain disperse as per Theorem 3.7.9(4), (p. 202). Both sets of OSL's are derived under the null hypotheses of \(\beta=0\), that is, under the central \(F\) distribution. As \(\beta=2.0\), the proper distribution is the non-central \(F\) distribution, assuming that the experimental unit errors approximate the normal distribution. Thus, neither graph is expected to display the uniform distribution.

In the following cases, Graph 4.5.9 and 4.5.10, one wants to reject the null hypothesis that \(\beta=0\) and does so when the OSL is larger than, say, \(\boldsymbol{x}=.125\). One commits a Type II error, accepting the erroneous null hypothesis, should the OSL be greater than \(\alpha\), say greater than . 125 . For a near-zero noncentrality parameter and \(\propto=.125\), Graph 4.5.9 (experimental unit error) shows that some \(100-[62.5+(16.67 / 2)]=100-70.83=30\) percent of the randomizations will result in a Type II error. For experimental unit treatment interaction error, Graph 4.5.10 shows that some
\[
100-[73.1+(7.64 / 2)]=100-76.9=23
\]
percent of the randomizations will result in a Type II error. The graph for normally distributed random error resembles Graph 4.5.10 and is omitted.

The discussion of power following Graph 4.5.6 applies here, except that adjustments to the degrees of freedom appear necessary for the normally distributed random error case, but not the experimental unittreatment interaction error case.


Graph 4.5.9
The Distribution of OSL'S for \(F(\beta=\mathbb{Q} \mid \boldsymbol{F} \boldsymbol{F}(\mathbb{D})\)
Experimental Unit Error


Graph 4.5.10
The Distribution of OSL'S for \(F(\bar{F}=\mathbb{C} \mid F \neq \mathbb{D})\)
Experimental Unit-Treatment Interaction Error

The graphs for experimental unit-treatment interaction and normally distributed random errors, Graphs 4.5.8 and 4.5.10, resemble, respectively, two and one parameter gamma functions. The latter is the exponential function. Such a relationship has not been investigated.

We next derive the OSL's from the central and noncentral F-distributions and display them in probability plots.

\section*{Section 4.6}

F-Distribution Probability Plots

Section 4.6.1 describes the F-distribution paper probability plots. Section 4.6 .2 presents plots for the three types of errors with equal within-block error variances. Section 4.6.3 presents plots with unequal within-block error variances. Section 4.6.4 discusses potential problems with these plots.

Major findings are that the \(F\) distribution with the usual degrees of freedom is a poor approximation in the case of experimental unit error, but is a reasonable approximation for the other two error types. Also, the case of experimental unit error is sensitive to the equality or nonequality of the within-block error variances, while the case of experimental unit-treatment interaction error is not and the case of normally distributed random error is slightly sensitive.

\subsection*{4.6.1 Display of Results using Probability Paper}

Normal probability paper provides a visual check on the normality of a set of data. If the observations are from a normal distribution, proper plotting on such special paper will yield a straight line. Snedecor and Cochran [1980, Ed. 7, p. 59-63] discuss the construction and interpretation of such plots. On probability paper for the normal distribution, the vertical axis is scaled in units of the lower tail probabilities from the normal
distribution. The horizontal axis is scaled in standard distribution units.

The graphs presented below are an \(F\)-distribution analog of normal probability paper, with axis switched and rescaled. If the observations are from an \(F\) distribution, proper plotting on such graphs will yield a straight line from lower left to upper right along the diagonal. For the upper half of the diagonal line, points below the diagonal indicate a distribution heavy in its upper tail. Points above the diagonal indicate a distribution light in its upper tail. For the lower half of the diagonal line, points above the line indicate a distribution heavy in its lower tail. Points below the diagonal indicate a distribution light in its lower tail. The remainder of this section details the reading of this type of graph.

The horizontal, bottom, axis is the upper tail probability, the OSL, that is, the area under the F-distribution curve to the right of the calculated F-ratio. Its values are calculated by assuming that the F-ratio follows the \(F\) distribution, with known numerator and denominator degrees of freedom and known noncentrality parameter. To present the upper tail area value in its usual righthand side position, the horizontal axis is reversed, the maximum OSL value, 1.0 , is to the left and the minimum OSL value, 0.0 , is to the right. The horizontal, bottom, axis of this probability
paper corresponds to the vertical axis of the usual normal probability paper.

The vertical, lefthand, axis of this probability paper is the rank of the OSL, more properly, the rank divided by the number of observations, ranked from the smallest (0.0) to the largest (1.0). The smallest OSL has a rank of 0 , the median OSL has a rank of .5 and the largest OSL has a rank of 1 . The vertical, lefthand, scale is also reversed, with 1.0 at the bottom and 0.0 at the top. This brings the desired diagonal to the positive 45 degree position.

One way to read the graph is to hold a ruler vertically, up and down, along the right-hand side of the graph, at the 0.0 mark on the lower, horizontal, axis. Move the ruler to the left to, say, the .2 value on the horizontal axis. You have covered 20 percent of the upper tail area, the OSL, of an \(F\) distribution.

If the plotted values are based upon statistics which have the \(F\) distribution, then the line connecting them should be located in such a position that 20 percent of the plotted points, as read on the lefthand, vertical axis, are above the 45 degree line. The lefthand scale is read to the left of the point where the line crosses the ruler. If the line of plotted points is below the 45 degree line, then there are excessive observations with OSL's less than or equal to . 2 . There are too many large calculated \(F\) ratios for their distribution to be the \(F\)
distribution. The actual distribution is tail heavy relative to the \(F\) distribution. In such a case, in some other region, the line of plotted points will be above the 45 degree line. This region is usually near the other tail, near the left, the 1.0 end of the horizontal axis.

One reason for plotting the OSL's instead of the F-ratios is to maintain a common scale for all sets of randomizations. The F-ratios vary widely with values from near zero to the tens of thousands. Such large ranges force most values into an uninformative clump at one corner of a graph of the F-ratios. A second reason is that the OSL incorporates the degrees of freedom and the noncentrality parameter, permitting OSL's computed from central and noncentral \(F\) distributions, perhaps with different degrees of freedom, to be displayed on the same graph. Finally, one is usually interested in the oSL, or p-value, not the actual value of the statistic.

When \(\tau=\mathbb{0}\), the central \(F\)-distribution provides the
 noncentral F-distribution provides the OSL's. The noncentrality parameter changes with each randomization, as per Theorems 3.7.10, (p. 211) and 3.7.11, (p. 213). The variance term, \(\sigma^{2}\), of the noncentrality parameters is the variance of the errors for the randomization. It is constant for the experimental unit and normally distributed random errors. As discussed in section 4.2,
(p. 243-253), the experimental unit errors are constant for all randomizations; the normally distributed random errors are standardized within each randomization to the same variance. The variance changes with each randomization for the experimental unit-treatment interaction errors. This may allow the F-distribution to adjust for differences in the variances of the errors from one randomization to the next, thus, in effect, standardizing the variances. The effect of changes in \(\sigma^{2}\) appears to be much less than that of the randomization itself, but further examination is needed. All OSL's are calculated using the usual integer degrees of freedom. Section 4.6.4 discusses the degrees of freedom as derived from the singular-normal distribution. Computer program probp of Appendix F. 10 details the construction of the following graphs.

\subsection*{4.6.2 F Distribution Plots for Three Error Types}

Graphs 4.6.1 through 4.6.6 come in pairs. The three pairs present the F-distribution plots for the cases of \(\tau=\mathbb{d}, ~ T \neq \mathbb{I}\) and \(F \neq 0\). The first of each pair shows the entire range of the OSL, (1.0 to 0.0). The second zooms in to the 20 percent area of the upper tail, with OSL's from 0.2 to 0.0 .

The plots of Graphs 4.6.1 and 4.6.2 are derived from the hypothesis \(H_{o j \mu, b, F} \tau=\mathbb{Q}\). When \(\tau=\mathbb{Q}\), they suggest that the F-ratios, which produced the plotted OSL's, follow
the central \(F\) distribution, for experimental unittreatment interaction error (i) and for normally distributed random error ( \(n\) ), but not for experimental unit error (u). Points for the experimental unit error (u) represent clusters of equal-valued g-groups, as per Theorem 3.7.9(5), (p. 203). Their off-diagonal positions indicate excess probability in both tails. Thus, the actual Type \(I\) error probability is larger than the stated a. Note that the points for normally distributed random error ( \(n\) ) are not on the diagonal. This is more clearly seen in Graph 4.6.2 below. Section 4.6.4 discusses this.



The detailed plot, Graph 4.6.2, shows that at the point where the \(F\)-distribution has 10 percent (. 10 on the lower, horizontal, axis) of the F-ratios more extreme than the point, the actual percentage (on the lefthand, vertical, axis) of randomizations with more extreme F-ratios is 10 percent in the case of experimental unittreatment interaction error (i), about 14 percent in the case of normally distributed random error ( \(n\) ) and about 20 percent in the case of experimental unit error (u).

The next pair of plots, Graphs 4.6.3 and 4.6.4, uses the non-central \(F\) distribution to obtain OSL's for the nonzero \(\tau\) of this simulation. These plots the usual degrees of freedom; that is, the variance-covariance matrix of each error type is assumed to be nonsingular.


Graph 4.6.3
F Distribution Plot: \(\boldsymbol{T} \neq \mathbb{M}\)
Entire Range


Graphs 4.6.3 and 4.6.4 suggest that none of the types of errors yields an F-ratio which follows the noncentral F distribution. In the detailed plot, Graph 4.6.4, all three lines are below the diagonal in the upper half of the plot. This indicates excessive probability in the upper tail. The excess is slight for experimental unit-treatment interaction error (i), but larger for normally distributed random error ( \(n\) ) and experimental unit error (u). Also there is a deficiency
of probability in the lower tail of the distribution. This is indicated by the line's being below the diagonal in the lower half of the plot.

The last two error plots, Graphs 4.6 .5 and 4.6.6, display the OSL's derived from the F-ratio testing the hull hypothesis of \(F=0\), when the value of \(F=2.0\). They use the non-central \(F\) distribution and the usual degrees of freedom by assuming that the variance-covariance matrix of each error type is nonsingular.


Graph 4.6.5
F Distribution Plot: \(₹ \neq 0\)
Entire Range


The points in Graphs 4.6.5 and 4.6.6 for experimental unit error (u) show the clustering discussed in Theorem 3.7.9(3), (p. 202). The conclusions are the same as those for Graphs 4.6.3 and 4.6.4. The tails are heavy in the case of experimental unit error, and slightly so in the other two cases.

In summary, the three pairs of graphs cast doubt on the assumption of an \(F\)-distribution, central or noncentral, with the usual degrees of freedom in the case of experimental unit errors (u). The other two error types Yield close approximations to the F-distribution.

\subsection*{4.6.3 Equal and Unequal Within-Block Error Variances}

The next seven pairs of \(F\)-probability plots compare (a) the OSL's from cases with the same (s) error variances in both blocks to (b) the OSL's from cases with different (d) error variances in the two blocks. The ratio of error variances is 1 to 4, block one vs block two. The two unit errors each have three pairs of plots, one pair each for the cases of \(\tau=\mathbb{C}, T \neq \mathbb{D}\) and \(\mathrm{F}=0\). The normally distributed random error has one pair of graphs ( \(\tau=\mathbb{Q}\) ), as its other two ( \(\tau \neq \mathbb{D}\) and \(F \neq 0)\) resemble the one for \(\tau=\mathbb{M}\). All graphs assume the usual degrees of freedom.

When the errors are experimental unit errors and the treatments are zero, as in Graphs 4.6.7 and 4.6.8, the \(F\)-ratios and accompanying OSL's display the clusters discussed in Theorem 3.7.9(5), (p. 203). The offdiagonality of the \(u\) 's of Graph 4.6.1, (p. 295), is more clearly seen here. Graph 4.6 .8 shows that the equal within-block variance case (s) has a heavy upper tail, while the unequal case (d) has a light upper tail, both for os.075. For os.075 the actual Type \(I\) error level exceeds \(x\) in the equal within-block variance case (s), but is less than \(w\) in the unequal within-block variance case (d). For \(\alpha>.075\) the actual Type I error exceeds a for both cases.


Graph 4.6.7
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{D}\)
Experimental Unit Error -- Entire Range


Graph 4.6.8
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{D}\) Experimental Unit Error - Upper Tail 20 Percent

For experimental unit error and nonzero treatments, as in Graphs 4.6.9 and 4.6.10, the treatment effects disperse the clustering seen in Graphs 4.6.7 and 4.6.8. For equal within-block error variances (s), the distribution is tail-heavy. Where the non-central F-distribution would have covered . 2 of the \(F\)-ratios (. 2 on the lower, horizontal, axis), the randomization distribution has covered some . 35 (on the lefthand, vertical, axis) of the F-ratios. There are more larger F-ratios than one would expect from the usual non-central F-distribution. For
unequal within-block error variances (d), the distribution is tail heavy for OSL's > . 10 and tail light for OSL's < . 05.

The asymmetry about the center of Graph 4.6.9, (.5,.5), is due to the nonzero value of the noncentrality parameter's having a larger effect in the upper tail of the F-distribution than in the lower tail.


Graph 4.6.9
Equal vs Unequal Within-Block Error Variances \(\tau \neq \mathbb{C}\) Experimental Unit Error - Entire Range


Equal vs Unequal Within-Block Error Variances \(\tau \neq \mathbb{C l}\) Experimental Unit Error - Upper Tail 20 Percent

The F-ratios, and hence the OSL's, for the cases with \(\mathrm{F}=2.0\) display the clustering proved in Theorem 3.7.9(3), (p. 202). Graphs 4.6.11 and 4.6.12 display these OSL's for the case of experimental unit error. While the points are near the diagonal for OSL's less than . 7 , the lower tail is light for both equal and unequal within-block error variances. In this region, 1.0 to .7, the \(F\)-ratios do not follow this noncentral F-distribution; there are fewer very small f-ratios than one would expect. When the errors have the same
within-block error variances (s), Graph 4.6 .12 shows that the randomization distribution of the \(F-r a t i o s ~ i s ~ t a i l ~\) heavy for OSL'ss.2. For unequal within-block error variances (d), the near diagonal pattern for small OSL's suggests a good approximation to this noncentral F-distribution within this region.


Graph 4.6.11
Equal vs Unequal Within-Block Error Variances pło Experimental Unit Error - Entire Range


Equal vs Unequal Within-Block Error Variances foo Experimental Unit Error - Upper Tail 20 Percent

The next six graphs, Graphs 4.6.13 through 4.6.18, display the case of experimental unit-treatment interaction errors. The equality or nonequality of within-block variances has little affect on the OSL's for this type of error. Points for all three pairs are on the diagonal in the important upper tail area. The graphs displaying the entire range show all points near the diagonal, suggesting the \(F\)-distribution is a good approximation to the randomization distribution for this error type. The detailed graph for the case of \(\tau=\mathbb{0}\), Graph 4.6.14, shows
the equal and unequal cases differing slightly for OSL's between . 2 and .05. The actual Type I error rate is lower than \(\alpha\) in this region for the case of unequal within-block error variances (d) and higher than ofor the case of equal within-block error variances (s).


Graph 4.6.13
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{a}\) Experimental Unit-Treatment Interaction Error Entire Range

Effect of Unequal Within-block Variances
- same block variance d = different block variances

Plot of RSTCOO4*STCOO4. Symbol used is 's'
Plat of RSTC007*STCOOT.
Symbol used is 'd'


Graph 4.6.14
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{T}\) Experimental Unit-Treatment Interaction Error Upper Tail 20 Percent

\begin{abstract}
Graphs 4.6.15 and 4.6.16 are for the experimental unit-treatment interaction error cases with \(\tau \neq \mathbb{C}\). Deviation from the diagonal throughout the range \(1.0-.85\) suggests this non-central \(F\) distribution differs from the randomization distribution. The detailed graph, Graph 4.6.16, suggests a good approximation in the upper tail, say, from . 15 to zero.
\end{abstract}


Graph 4.6.15
Equal vs Unequal Within-Block Error Variances \(\tau \neq \mathbb{O}\) Experimental Unit-Treatment Interaction Error Entire Range


Graph 4.6.16
Equal vs Unequal Within-Block Error Variances \(\tau \neq \mathbb{O}\) Experimental Unit-Treatment Interaction Error

Upper Tail 20 Percent

For \(F^{\circ}{ }^{0}\), Graph 4.6.17, shows a deviation from the diagonal suggesting that the randomization distribution and the \(F\)-distribution differ for this case. The detailed graph, Graph 4.6.18, suggests a good approximation in the upper tail, say from . 075 to zero. Both graphs are for the experimental unit-treatment interaction error case.


Graph 4.6.17
Equal vs Unequal Within-Block Error Variances fro Experimental Unit-Treatment Interaction Error Entire Range
Effect of Unequal Within-block Variances
s = same block variance d = different block vartances
Plat of RSZNOO4*SZNOO4. Symbol used is 's'.
Plot of RSZNOOT*SZNOOT.
Symbol used is ' \(\mathbf{d}\) ':

Graph 4.6.18
Equal vs Unequal Within-Block Error Variances fro
Experimental Unit-Treatment Interaction Error Upper Tail 20 Percent

For the case of normally distributed random errors, the three pairs of graphs for \(\tau=\mathbb{0}, \tau \neq \mathbb{D}\) and \(F \neq 0\), are remarkably alike. Only the pair for \(\tau=\mathbb{0}\) is shown. These are Graphs 4.6.19 and 4.6.20. Equality of within-block error variances (s) leads to a distribution slightly tail-heavy in both tails. At the \(a=.1\) level (.10 on the lower, horizontal axis) the probability of a Type \(I\) error is about . 14 when the error variances are equal in both blocks (s) and is about . 075 when the error variances differ (d) in the two blocks (. 14 and .075 on the lefthand, vertical, axis).


Graph 4.6.19
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{0}\) Normally Distributed Random Error - Entire Range


Graph 4.6.20
Equal vs Unequal Within-Block Error Variances \(\tau=\mathbb{C}\) Normally Distributed Random Error

Upper Tail 20 Percent
4.6.4 A Possible Problem with the Graphs

One possible problem with these graphs is that the line of plotted points for those sets of randomizations using normally distributed random errors does not fall on the 45 degree line, as it should.

To make the normally distributed random errors more like the experimental unit errors, the normally distributed random errors are forced to sum to zero within each randomization. Tests indicate that forcing normally distributed random errors to have a mean of (to sum to) zero within each randomization costs one degree of freedom. That is, the plot of the resulting F-ratios is brought to the 45 degree line by reducing the appropriate (denominator) degree of freedom by one. Computer program testf of Appendix \(F .8\) details this test.

For those randomizations using normally distributed random error, such a reduction did not bring the plotted line of \(F\)-ratios to the 45 degree line. A fractional reduction, from 2 to 1.75 helped, but no degree of freedom, constant for all randomizations, was able to bring the entire line of plotted values to the 45 degree line.

One possible reason is that standardizing to zero within each randomization gives the errors the singular normal distribution. See the discussion following (2.3.3), (p. 17). Following Corollary 2s. 2 of Searle [1971, p. 69], we computed the Chi-square degrees of freedom for the denominator quadratic form, \(x\) 'fx in Searle's notation. The 8 by 1 vector of normally distributed random errors provided the \(x\); the denominator term within braces of (3.7.21), (p. 205), times \(\sigma^{2}\) provided the matrix \(\mathbb{A}\). The errors and center
matrix \(H_{\text {both change with each randomization. The }}\) variance-covariance matrix, \(\psi=\mathbb{H} \mathbb{L}^{\prime}\left(\mathbb{I} \sigma^{2}\right)\), in Searle's notation, for the singular normal is, in this case, block diagonal with identical diagonal blocks. The diagonal blocks are \(\left\{\mathbb{I}_{4 \times 4}-(1 / 4) \mathbb{I}_{4 \times 4}\right\} \sigma^{2} ;\) the off-diagonal blocks are \(\mathbb{\Phi}_{4 \times 4}\). The standardization transformation subtracts the block-wise mean from each original error within each block, hence \(\mathbb{L}=\mathbb{I}-(1 / t) \mathbb{I}\). The variance, \(\mathbb{I c}^{2}\), cancels in the product fiv.

The resulting degrees of freedom, trace(f), differed for each randomization, ranging from 1.0 to 1.96 with a mean of 1.4.

Unfortunately, the condition on Searle's Corollary 2s.2, that
\[
\begin{equation*}
\Psi_{A W F W}-\Psi_{A F W}=\mathbb{0}, \tag{4.6.1}
\end{equation*}
\]
appears not to hold for all randomizations. The maximum element of the right-hand side of (4.6.1), over all randomizations, is not zero, but 1.14 , with the mean of the maximum elements equalling .39. Furthermore, applying these degrees of freedom as the divisor of the residual sum of squares and as the denominator degrees of freedom in the calculation of the OSL's brought the line of plotted points farther from, not closer to, the diagonal.

Unable to justify altering the denominator degrees of freedom, we use the one provided by the analysis of variance table, 2, for all randomizations using normally
distributed random error. Thus, the line of plotted points remains off of the diagonal line. As the F-ratio for each randomization should be an \(F\) statistic and the ensemble on the diagonal, further investigation is suggested.

One could argue that the experimental unit errors have the singular normal distribution. This is because our method of construction forces them to be the residuals from a least squares procedure. When the errors of the original least squares model are normally distributed, the residuals are known to have the singular normal distribution. In this case \(V=\mathbb{L} \mathbb{L}^{\prime}=\mathbb{L}\) of the discussion following (2.3.3), (p. 22) and \(\mathbb{A}\) is as above. The condition on Corollary 2 s .2 (4.6.1) is more nearly 'satisfied. The maximum element of the right-hand side of (4.6.1), over all randomizations, is . 09 and the mean of the maximum elements is .02. However, use of trace ( \(\mathrm{f}_{\mathrm{N}}\) ) for the degrees of freedom moved the line of plotted points farther from the diagonal.

Uncertainty of this approach led us to again use the original, constant, degrees of freedom (2) for those randomizations using experimental unit error.

Zyskind, Kempthorne, et al., [1968, p. 11], point out that forcing the experimental unit errors to sum to zero also forces the covariance matrix of the \(Y_{i j k}\) 's (and the errors) to be singular.

The experimental unit-treatment interaction errors for each treatment are also residuals from a least squares procedure. However, as each treatment appears but once per block, the entirety of any one set of residuals never appears in any one randomization. We see no argument that they have a singular normal distribution. The SAS program snormal in Appendix F. 9 details the tests of these singular normal distributions.

We now turn from equal selection probability for all randomizations to examine one proposed method which has all selection probabilities greater than zero, but unequal.

Section 4.7
Weighted Selection Probabilities

Section 4.7.1 reviews Cox's suggested weights for the selection probabilities, \(p(s)\), for the analysis of covariance. Section 4.7.2 presents means and standard deviations obtained via his weights for this simulation. They should be compared with those in Tables 4.4.1-4.4.4, (p. 259-268). Section 4.7.3 displays graphs suggesting that the ratio may be used to avoid randomizations with large errors in estimation.

The major findings are that, for this simulation, weighting the selection probabilities with Cox's third ratio modestly improves the estimates of the model equation parameters and/or their standard deviations. Weighting has little effect on the expectation and standard deviation of the mean squares and \(F-r a t i o s . ~ A\) second finding is that using the weights to assign zero selection probabilities to some randomizations excludes from consideration those randomizations with highly biased estimates for the adjusted \(\tau\) and \(F\).

\subsection*{4.7.1 Review of Cox's Suggested Weights}

Cox [1956, 1957, and 1982] presents several ratios useful in the analysis of covariance. Our understanding of three of these ratios follows.

The first,
\[
\begin{equation*}
\left[S S T_{z Z}-\operatorname{SSM}_{z z}\right] /\left[\left(\operatorname{SSR}_{z Z}-\operatorname{SSM}_{z Z}\right) /(t-1)\right] \tag{4.7.1}
\end{equation*}
\]
is discussed by Finney [1946, p. 54, Eq. 3], Lucas [1950], Greenberg [1953, p. 698], Cox [1956, p. 1146, Eq. 7 (part)], Cox [1957, p. 153, Eq. 6b (part)], and Cox [1982, p. 198, Eq. 3 (part)]. See (2.5.1), p. 35, for the definition of \(S S M_{z Z}, S S T_{z Z}\) and \(S S R_{z Z}\). The term \(S S T_{z Z}\) first sums, over all blocks, those covariate values whose experimental unit receives treatment 1 , then sums those receiving treatment 2 , and so on for all k treatments. If the randomization is such that all these sums (over treatments) are equal, then the numerator of (4.7.1) is zero; otherwise it is positive. Equation (4.7.1) follows a negative sign in the expectation of the numerator of the F-ratio for the treatments [Greenberg, 1953, p. 698, Eq. (A)]. This equation follows under the assumption that the true mean of the covariate is identical in each of the treatment groups; that is, the design is balanced on the covariate. Under this condition, minimizing (4.7.1) maximizes the numerator of this \(F\)-ratio when the treatment effects are nonzero [Greenberg, 1953, p. 698]. Equation 3 of Cox [1982, p. 198] extends (4.7.1) to the multiple covariate case with the trace function reducing the dimensionality to one.

The second ratio is
\[
\begin{equation*}
R(\mu, b, \tau) / E_{R}\left\{\operatorname{SSR}_{z z} /\left(d . f . \text { of } \operatorname{SSR}_{z z}\right)\right\} \tag{4.7.2}
\end{equation*}
\]

The R(.) notation is detailed in Appendix B, p. 385. This reduction in sums of squares, \(R(\mu, b, \tau)\), is for \(\mathbb{Z}\) and has the form \(\mathbb{Z}^{\prime} \mathbb{A} \mathbb{Z}\), where \(\mathbb{A}\) is the projector matrix for \(\left[\mathbf{x}_{\mu}\left|\mathbf{x}_{\mathrm{b}}\right| \mathbf{x}_{\tau}\right]\). The residual sum of squares, \(\operatorname{SSR}_{z z}\), is the matrix version as in Table 2.5.2, (p. 38), for the model equation \(\mathbb{Z}=\mu+b_{i}+\tau_{k}\) +error. The expectation is over all randomizations. This ratio appears in Cox [1982, p. 200, the final paragraph]. Cox denotes the denominator as \(\Omega_{z}\), which he defines on the bottom of his page 198.

The third ratio is
\[
\begin{equation*}
\operatorname{SSR}_{\mathrm{zz}} / \mathrm{E}_{\mathrm{R}}\left\{\operatorname{SSR}_{\mathrm{zz}} /\left(\mathrm{d} . \mathrm{f} . \text { of } \operatorname{SSR}_{\mathrm{zz}}\right)\right\} \tag{4.7.3}
\end{equation*}
\]

The denominator is as in (4.7.2); the numerator, \(\operatorname{SSR}_{z z}\), differs from the numerator of (4.7.2) by terms constant over all randomizations. The difference is such that ratios two and three are linearly and inversely related. The third ratio is based upon Cox \([1956, \mathrm{p} .1148\), Eq. 14]. Cox [1956, p. 1150, iiil states,

Arrangements with a large value of \(\operatorname{SSR}_{z Z}\) will have a small value for \(\operatorname{SST}_{z z}\) lbetter balanced on the covariatel, and conversely. Hence the weighting proportional to \(\operatorname{SSR}_{z z}\) attaches greater chance of selection to those arrangements in which the treatment groups are balanced with respect to the mean value of \(Z\).

Ratio one (4.7.1) did not yield the informative graphs of ratio two (equivalently ratio three) and has not been examined as closely as the latter two ratios. A graph of ratio one vs ratio three resembles the probability density function for the exponential distribution. The SAS program glm of Appendix F. 6 details the computation of these three ratios.

\subsection*{4.7.2 Cox's Third Ratio Applied to Simulations}

A step in the SAS program glm uses the third ratio as a weighting variable to compute the values of Tables 4.7.l - 4.7.4. These tables should be compared with Tables 4.4.1-4.4.4, (p. 259-268), which display the same means and/or standard deviations for parameter estimates and analysis of variance terms, but without the weights of ratio three.

For the case of experimental unit error, Table 4.7.1 below, weighting with the third ratio improves the expectation of the mean, the block effects, and the covariate coefficient. All are closer to their true values than in the unweighted case. The expectations of the treatment estimators remain equal to their true values because the weights are equal within each g-group and, within each g-group, the treatment estimators are unbiased. Table 4.7.2 below shows that the standard deviations for all parameter estimates are reduced. Weighting affects these terms in a like manner in the unequal within-block error variance case; the corresponding table is not shown.

The effect upon the expectation of the mean squares and F-ratios, Table 4.7.3, is modest and mixed; changes are desirable in some cases and undesirable in others. The standard deviations are slightly smaller than in the unweighted case. This also holds for the unequal within-block error variance cases for the experimental unit errors, Table 4.7.4.

For the case of experimental unit-treatment interaction error, weighting with the third ratio again improves all estimates of model equation parameters and reduces the standard deviation of the estimates, as seen in Tables 4.7.1 and 4.7.2. The estimates for the blocks and covariate parameters are unbiased or almost so.

The effect of weighting upon the expectation and standard deviation of the residual and adjusted treatment mean squares and their F-ratios is negligible, for both equal and unequal within-block error variance cases, as in Tables 4.7.3 and 4.7.4. The weighting increases the expectation of the mean square and F-ratio for the adjusted covariate, but has little effect upon their standard deviations. This increase occurs in both equal and unequal within-block error variance cases for the experimental unit-treatment interaction errors.

For the case of normally distributed random error, the weighting has little effect upon the expectations of the estimated equation parameters, but does reduce the standard deviation of these estimates, Tables 4.7.1-4.7.2.

Weighting has little, if any, effect upon the expectation and standard deviation of the mean squares for the residual and adjusted treatment effects, as seen in Tables 4.7.3 and 4.7.4 Weighting increases the expectation of the mean square for the adjusted covariate, but leaves its standard deviation nearly unchanged. The expectation and standard deviation of all F-ratios are modestly increased in the equal within-block error variance case. The effect is mixed in the unequal within-block error case for the normally distributed random errors.

The expected mean square residual differs from the expected mean square for \(\tau=\mathbb{D} \mid \mu, b, F\) about as much in the weighted as in the unweighted case. See Table 4.7.3. Weighting reduces the difference between the two mean squares in the case of experimental unit-treatment interaction error and experimental unit error, and has little effect for the normally distributed random error.

TABLE 4.7.1
WEIGHTED EXPECTED VALUE OF PARAMETER ESTIMATES EQUAL WITHIN-BLOCK ERROR VARIANCES

Three Types of Error
```

Parameter:
Name Value

```

Experimental:
Unit Unit-Treat. Interaction

Normally
Distributed
\(\mu \quad 10.0\)
8.90
9.98
9.46
\(b_{1}-1.5\)
\(-1.20\)
\(-1.50\)
\(-1.35\)
\(\mathrm{b}_{2} \quad 1.5\)
1.20
1.50
1.35
\(\tau_{1} \quad 0 /-6.5 \quad 0 /-6.5 \quad-.38 /-6.88 \quad .24 /-6.26\)
\(\tau_{2} 0 /-3.5 \quad 0 /-3.5 \quad .44 /-3.06 \quad .20 /-3.30\)
\(\tau_{3} 0 / 2.5 \quad 0 / 2.5 \quad-.17 / 2.23 \quad .08 / 2.42\)
\(\tau_{4} \quad 0 / 7.5\)
\(0 / 7.5\).10/7.60
\(-.35 / 7.15\)
F 2.0
2.11
2.002
2.056

TABLE 4.7.2
WEIGHTED STANDARD DEVIATION OF PARAMETER ESTIMATES EQUAL WITHIN-BLOCK ERROR VARIANCES
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Parameter:} & \multicolumn{2}{|l|}{Three Types of Error Experimental:} & \multirow[b]{2}{*}{\begin{tabular}{l}
Normally \\
Distributed
\end{tabular}} \\
\hline Name & Value & Unit & Unit-Treat. Interaction & \\
\hline \(\mu\) & 10.0 & 10.8 & 5.42 & 7.27 \\
\hline \(\mathrm{b}_{1}\) & -1.5 & 2.93 & 2.86 & 1.98 \\
\hline \(\mathrm{b}_{2}\) & 1.5 & above & above & above \\
\hline \({ }^{\top} 1\) & 0/-6.5 & 7.56 & 4.13 & 5.53 \\
\hline \({ }^{\top} 2\) & 0/-3.5 & above & 4.17 & 5.38 \\
\hline \({ }^{\top} 3\) & \(0 / 2.5\) & above & 4.04 & 5.13 \\
\hline \({ }^{T} 4\) & \(0 / 7.5\) & above & 3.70 & 5.21 \\
\hline \(\beta\) & 2.0 & 1.11 & . 58 & . 76 \\
\hline
\end{tabular}

TABLE 4.7.3
WEIGHTED EXPECTATION \& STANDARD DEVIATION OF ANOVA TERMS EQUAL WITHIN-BLOCK ERROR VARIANCES


Standard Deviation:
\begin{tabular}{|c|c|c|c|c|}
\hline MS & Residual & 38.51 & 21.44 & 32.60 \\
\hline MS & \(\tau=\mathbb{O} \mid \mu, b, F\) & 25.67 & 18.79 & 23.06 \\
\hline MS & \(\tau \neq \mathbb{C} \| \mu, b, \beta\) & 70.33 & 52.41 & 65.92 \\
\hline MS & \(\beta \neq 0 \mid \mu, b, \tau\) & 316.5 & 380.1 & 395.75 \\
\hline F & \(\tau=\mathbb{O} \mid \mu, b, \beta\) & 146.92 & 41.40 & 1162.8 \\
\hline F & \(\tau ⿻ \mathbb{T} \mid \mu, \mathrm{b}, \mathrm{F}\) & 311.87 & 153.65 & 2464.9 \\
\hline F & Fヲ0| & 447.89 & 487.87 & 4486.5 \\
\hline
\end{tabular}

TABLE 4.7.4
WEIGHTED MEAN AND STANDARD DEVIATION OF ANOVA TERMS UNEQUAL WITHIN-BLOCK ERROR VARIANCES

Anova Term
Expectation:

Three Types of Error
Experimental: Unit Unit-Treat. Interaction

Normally Distributed
\begin{tabular}{llrrr}
\(F\) & \(\tau=\mathbb{Q} \mid \mu, b, \beta\) & 2.47 & 4.29 & 5.45 \\
\(F\) & \(\tau \neq \mathbb{Q} \mid \mu, b, \beta\) & 5.02 & 18.72 & 13.95 \\
\(F\) & \(\beta \neq 0 \mid \mu, b, \tau\) & 21.10 & 111.89 & 66.79
\end{tabular}

Standard Deviation:
\begin{tabular}{llrrr} 
F & \(\tau=\mathbb{Q} \mid \mu, \mathrm{b}, \beta\) & 3.05 & 14.80 & 31.53 \\
\(F\) & \(\tau \neq \mathbb{Q} \mid \mu, \mathrm{b}, \beta\) & 6.53 & 66.45 & 97.95 \\
\(F\) & \(\beta \neq 0 \mid \mu, \mathrm{b}, \tau\) & 18.95 & 409.10 & 303.65
\end{tabular}

\subsection*{4.7.3 Distribution of Parameter Estimates vs Cox's}

\section*{Second Ratio}

Graphs 4.7.1-4.7.4 show the error in estimation, \(\tau_{1}-\hat{\tau}_{1}\) or \(\beta-\hat{\beta}\), vs the value of Cox's second ratio (4.7.2), (p. 322), for the two experimental unit error cases. The ratio is on the lower, horizontal, axis; the error in estimation is on the lefthand, vertical, axis. The graphs for the normally distributed random error case are nearly identical to those for the experimental unit-treatment interaction error case, and are omitted. Graphs for all levels, \(k\), and all values \((\tau=\mathbb{C}\) and \(\tau \neq \mathbb{D})\) of \(\tau .-\hat{\tau}\). are
identical; only those for \(k=1\) are shown. Graphs for unequal within-block error variances are omitted as they are nearly identical to those shown, which all have equal within-block error variances. Recall that the second ratio is linearly and inversely related to the third ratio used to weight the randomizations of Tables 4.7.1-4.7.4.

Each graph indicates that, for this simulation, selecting a randomization with a small value of ratio two (or equivalently, a large value of ratio three) avoids randomizations with large errors in estimating \(\tau_{1}\) and \(\mathcal{F}\).

Graphs 4.7.1 and 4.7.2 for \(\tau_{1}-\hat{\tau}_{1}\) display, respectively, the cases of experimental unit errors and experimental unit-treatment interaction errors for the case of equal within-block error variances. For experimental unit errors, Graph 4.7.1, identical values of \(\tau_{1}-\hat{\tau}_{1}\) repeat six times \((F=6)\); adjacent groups of six are combined and are represented by ( \(L=12\) ). The cause of this is believed to be related to repetitions of certain values within g-groups of randomizations. In both graphs, the distribution appears centered about zero and appears so for all treatments. Table 4.4.1, (p. 259), shows the expectation to be zero for experimental unit error, but to be slightly biased for the other two errors. Thus, in the latter case, the observations are not centered, in the sense of the mean, about zero.


Graph 4.7.1
The Distribution of \(\tau_{1}-\hat{\tau}_{1}\) vs Ratio Two Experimental Unit Error


Graph 4.7.2
The Distribution of \(\tau_{1}-\hat{\tau}_{1}\) vs Ratio Two
Experimental Unit-Treatment Error
```

Graphs 4.7.3 and 4.7.4 for $\hat{F}-\hat{F}$ display, respectively, the cases of experimental unit errors and experimental unit-treatment interaction errors for the case of equal within-block error variances. For experimental unit errors, Graph 4.7.3, identical values repeat 24 times ($\mathrm{X}=24$), as proved in Theorem 3.7.9(4), (p. 202). The highly erroneous estimate of $\hat{\boldsymbol{F}}=-8.95(\hat{F}=2.0)$ can be avoided by assigning a zero selection probability value

```
to \(p(s)\) for those randomizations with large values of the second ratio. As seen along the horizontal line at zero in Graphs 4.7.3 and 4.7.4, unbiased estimates of \(F\) are obtained by some randomizations throughout the range of the second ratio. This suggests searching for an alternative function which would better distinguish randomizations yielding unbiased estimates. Selecting the randomization used to conduct the actual experiment on the basis of the second ratio (4.7.2) (or third ratio) discards many unbiased or low biased randomizations for the gain of avoiding those with large bias.


Graph 4.7.3
The Distribution of \(\hat{F}-\hat{F}\) vs Ratio Two
Experimental Unit Error


The Distribution of \(\hat{F}-\hat{\hat{F}}\) vs Ratio Two
Experimental Unit-Treatment Error

The final section considers restricting randomization. Instead of assigning varing selection probabilities as in this section, \(p(s)\) is either zero or a constant. The noncentrality parameter for the adjusted covariate is used to select those randomizations with nonzero selection probabilities.

\section*{Section 4.8}

G-groups, Noncentrality Parameters, and OSL's

Section 4.8 discusses the use of the noncentrality parameter for the covariate as adjusted for the mean, blocks, and treatment, \(\lambda_{s, \beta \mid \mu, b, \tau, ~ t o ~ s e l e c t ~ t h o s e ~ r a n d o m-~}^{\text {r }}\) izations better able to detect nonzero values of \(F\) and \(\tau\). Section 4.8.1 contains examples of Theorem 3.7.15, (p. 219), which plays a key role throughout Section 4.8 . Section 4.8 .2 suggests that Cox's second (and third) ratio (4.7.2), (p. 322), for a single covariate is a linear function of this non-centrality parameter. The graphs of Section 4.8.3 show the effect on \(H_{o j \mu, b, t, p} F=0\) of using \(\lambda_{s, f \mid \mu, b, \tau}\) to select the randomization used to test the hypothesis. Section 4.8.4 displays together the OSL's for the usual two hypotheses as one moves from the lowest to the highest values of \(\lambda_{s, f} \mid \mu, b, \tau\). Section 4.8.5 compairs the means and standard deviations of the estimated model equation parameters as computed within (a) the lowest and (b) the highest values of \(\lambda_{s, F \| \mu, b, T}\) The major result is that for, this simulation, selecting the randomization used to conduct the experiment from among the g-group with the largest value of \(\lambda_{s, F \mid \mu, b, F}\) improves the probability of detecting nonzero covariates for all error types, but offers only modest help in detecting nonzero treatments in the cases of experimental unit-treatment interaction and normally
distributed random errors and no help in the case of experimental unit error. If proper, use of the singular normal distribution may improve the situation for experimental unit errors. Limiting randomization to randomizations within the maximum-valued g-group substantially improves the expectations and standard deviations of the model parameter estimates for all three error types. These randomizations are the most balanced on the covariate.

\subsection*{4.8.1 A Comparison of the Two Noncentrality Parameters}

Graphs 4.8.1 and 4.8.2 illustrate Theorem 3.7.15, in particular equation (3.7.34), (p. 219), for the three types of error. The lower, horizontal, axis is the noncentrality parameter for the covariate as adjusted for the mean, blocks, and treatments. The lefthand, vertical, axis is for the noncentrality parameter for the treatments as adjusted for the mean, blocks, and covariate.

The errors enter the noncentrality parameters only via the variance. The experimental unit and normally distributed random errors have constant and equal-valued variances, thus, their graphs are identical; both cases are represented by Graph 4.8.1. The vertical lines display groups with equal values of the noncentrality parameter for the covariates as adjusted for the mean, blocks, and treatments. These are the g-groups of Theorem 3.7.10, (p. 211). The letters on the graphs label the g-groups.

The variance for the experimental unit-treatment interaction errors changes with each randomization, as discussed in Section 4.2.3, (p. 252). As shown in Graph 4.8.2, this disperses the values of each g-group, blurring the columns seen in Graph 4.8.1.

Each graph shows that one can avoid low-valued noncentrality parameters for the adjusted treatments by restricting randomization to g-groups with large values of the noncentrality parameter for the adjusted covariate. The desirable randomizations are those in the top righthand corner of the graphs, or at least the right-most column. As discussed in (2.6.6a), (p. 41), one thus avoids randomizations having low power to detect nonzero model equation parameters. Such lower-powered randomizations are to the left andor bottom of the graphs. In the case of a single covariate, the desired g-groups may be discovered without knowledge of the true value of the covariate slope parameter. The discovered g-group(s) will be favorable for all values of the treatment effects.

Consider the twenty-four points (X,Y) of Graph 4.8.1 to be: \(X={ }^{2} g, F \mid \mu, b, T\), on the horizontal axis and
\[
Y=\min \left\{x_{s}, \tau \mid \mu, b, F\right\} \text {, on the vertical axis. }
\]

A few such points are circled on the graph. The \(Y\) value is the bottom point in each of the twenty-four columns of numbers. The least squares fit of a straight line through these points, as in (3.7.35), (p. 221),
estimates the slope parameter as . 22. This value is a close approximation to the ratio \(\left\{\lambda_{f, T} / \lambda_{f, F}\right\}=.235\). This ratio is part of (3.7.34), (p. 219). As discussed below (3.7.35), (p. 221), one increases the minimum value of the noncentrality parameter for the adjusted treatments by . 22 for each unit increase in the noncentrality parameter for the adjusted covariate. Had the slope been near zero, no g-group of randomizations would have been advantageous in avoiding low-valued, adjusted-treatment, noncentrality parameters.


Experimental Unit and Normally Distributed Random Errors


Experimental Unit-Treatment Interaction Errors

\subsection*{4.8.2 Cox's Second Ratio and \(\lambda_{p \mid \mu, b, ~}\)}

Graph 4.8.3 shows the apparent linear relationship between Cox's second ratio and the noncentrality parameter for the covariate as adjusted for the mean, blocks, and treatments. Values for Cox's second ratio are on the vertical axis. The horizontal axis shows the noncentrality parameter prior to multiplication by \(.5 \sigma^{2}\); the axis plots. \(5 \sigma^{2} \lambda_{s, \beta \mid \mu, b, \tau}\). This linear relationship suggests Theorem 3.7.5, (p. 190), and (2.6.6a),
(p. 41), as rationale for applying Cox's second or third ratio for the randomization process. An algebraic proof of the relationship of these ratios and the noncentrality parameter is an extension.


Graph 4.8.3
Cox's Second Ratio vs \(.5 \sigma^{2} \lambda_{s, f \mid \mu, b, \tau}\)

\section*{}

According to (2.6.6a), (p. 41), the best randomizations for detecting a nonzero covariate slope coefficient are the ones with the largest noncentrality parameter for the adjusted covariate slope parameter. The graphs of this section display the OSL for the hypothesis test
\(H_{o j \mu, b, \tau, \beta}{ }^{\beta=0}\). Since \(\beta=2.0\), this hypothesis should be rejected. Small values of the OSL, say, less than . 10 , do this; larger values result in accepting a false null hypothesis, a Type II error. Each of Graphs 4.8.4-4.8.6 shows that large values of \(\lambda_{\beta \mid \mu, b, \tau,}\) to the right on the lower, horizontal, axis, avoid large values of the OSL, that is, avoid a Type II error for this hypothesis test. These are the points below the horizontal dashed line. There is one graph for each of the three error types. Theorem 3.7.10, (p. 211), proves the clustering of noncentrality parameter values seen along the lower, horizontal, axis of Graph 4.8.4, for experimental unit error, and of Graph 4.8.6, for normally distributed random error. When the variance is not constant for each randomization, as for the experimental unit-treatment interaction error of Graph 4.8.5, those clusters on the horizontal axis are dispersed.

Theorem 3.7.9(3), (p. 202), proves the clustering of OSL values along the lefthand, vertical, axis of Graph 4.8.4 for experimental unit error. This error is constant for all randomizations. In contrast, the values of the errors \(n_{s}\) and \(n_{s}\) change with each randomization. This disperses the clusters on the vertical axis, as discussed in Theorem 3.7.9, and as seen in Graph 4.6.5, for experimental unit-treatment interaction error \(n_{s}\), and in Graph 4.6.6, for normally distributed random error \(\mathrm{n}_{\mathrm{s}}\).

Anova Terms and Model Parsmeter Estimates
vo Covartete hypothesis Noncentrality Parameter
Plot of SZCOO2*NCZ_102. Symbol is value of G_groupl


Graph 4.8.4
OSL's vs Noncentrality Parameters for \(p\) Experimental Unit Errors

Covariate
hypothasis Noncentrality Parameter
Plot of SZCOO4*NCZ_104. Legend: \(A=1\) obs, \(B=2\) obs, etc.


Graph 4.8.5
OSL's vs Noncentrality Parameters for \(F\) Experimental Unit-Treatment Interaction Errors

Anova Terms and Modei Parameter Estimates
ve Covartate hypotheste Noncentraltty Parameter


\subsection*{4.8.4 OSL's for the Best and Worst Cases}

Displays 4.8 .7 and 4.8 .8 present the OSL's for the adjusted treatments vs those for the adjusted covariate. The randomizations are grouped by equal values of the noncentrality parameter for the adjusted covariate. This is equivalent to grouping by the g-groups. The value used is \(.5 \sigma^{2} \mathrm{~g}, \mathrm{~F} \mid \mu, \mathrm{b}, \mathrm{T}\), with 10 the minimum value (Display 4.8.7) and 990 the maximum (Display 4.8.8). The
multiplication by \(.5 \sigma^{2}\) avoids the changes in \(\sigma^{2}\) from one randomization to the next which occur in the experimental unit-treatment interaction errors.

In the top row of three graphs, the OSL's for the adjusted treatments (lefthand scale) use \(\tau=\mathbb{0}\). The central F-distribution provides the OSL's for the top row. In the bottom row of three graphs, the OSL's for the adjusted treatments use the nonzero \(\tau\) of this simulation. The noncentral \(F\)-distribution provides the OSL's of the bottom row. The noncentrality parameter, \(\lambda\), is for the appropriate randomization and variance. The covariate slope coefficient, \(\beta\), is always equal to 2.0 . The noncentral F-distribution provides the OSL's for the adjusted covariate (the bottom scale of both rows of graphs). The usual degrees of freedom are used in all cases.

The left-most column of two graphs, one above the other, uses experimental unit errors. The center column of two graphs uses experimental unit-treatment interaction errors, and the right-most column of two graphs uses normally distributed random errors.

Each graph has the OSL for the adjusted treatments on the lefthand, vertical, axis and the OSL for the adjusted covariates on the lower, horizontal, axis.

For experimental unit error, the left-most column of two graphs of both displays, the covariate values are clustered, as per Theorem 3.7.9(3), (p. 202). This provides the columns of values seen in these graphs in
both displays. When the treatment effects are zero, as in the top lefthand graph of both displays, the clustering discussed in Theorem 3.7.9(5), (p. 203), also operates. Together, the two sources of clustering result in the single point of the top, left-most graph of both displays. The OSL for the adjusted treatments is the same for each of the display's 24 randomizations, as is the OSL for the adjusted covariates, hence the single point.

In all plots, the value of \(F\) is nonzero. One wants
 wants low valued OSL's, OSL's to the left of each graph. Note that as one moves from minimum values of the noncentrality parameter (Display 4.8.7) to the maximum value (Display 4.8.8), the OSL's shift to the left, to lower values, in the center and right-most columns of graphs. These two columns represent experimental unit-treatment interaction and normally distributed random errors. While most randomizations of these two error types of Display 4.8 .7 make the Type II error of accepting the
 of the randomizations of Display 4.8 .8 commit a Type II error. By restricting randomization to those randomizations with the maximum value of the noncentrality parameter (Display 4.8.8), the researcher improves his/her chance of selecting a randomization which will lead to the correct hypothesis test conclusion when \(F \neq 0\).

In contrast to the experimental unit-treatment interaction and normally distributed random errors, the experimental unit errors appear to be unaffected by the shift in the value of the adjusted covariate's noncentrality parameter. The column of values in the left-most column of graphs has the same OSL for the adjusted covariate hypothesis in both displays, about .05. Increasing the value of this noncentrality parameter did not lower OSL's for this error type. The advice of (2.6.6a), (p. 41), applys to distributions affected by a noncentrality parameter or a function of it. The failure to lower the OSL's suggests that the F-distribution is not applicable for this error type, at least not in the upper tail. Recall that the probability plot of Graph 4.6.12, (p. 219), also suggested a poor fit of the upper tail of the \(F\)-distribution for experimental unit error. Use of the singular normal distribution, if proper, may result in the g-group affecting the OSL for this error type.

For the top row of three graphs, the null hypothesis of \(H_{a}: \tau \mid \mu, b, F^{\tau=\mathbb{D}}\) is true. One wants to accept this hypothesis. Thus, one wants high-valued OSL's, ones larger than .10 towards the top of each graph. However, in this case, the noncentrality parameter is zero and Theorem 3.7.15, (p. 219), does not apply. The OSL's for experimental unit error, the top left-most graph, take a higher value as one moves from minimum to maximum values
of the noncentrality parameter (Display 4.8.7 to 4.8.8). Some OSL's for experimental unit-treatment interaction error and normally distributed random error take lower values, but the effect of the noncentrality parameter for the adjusted covariates upon this OSL is small.

For the bottom row of three graphs, the null hypothesis of \(H a: \tau, \mu, b, F^{T}=\mathbb{I I}\) is false. One wants to reject this hypothesis. Thus, one wants low-valued OSL's, ones near the bottom of the graphs, ideally below, say \(=.10\). The center and right-most graphs, for experimental unit-treatment interaction and normally distributed random errors, show a slight improvement at the larger value of the adjusted covariate's noncentrality parameter (Display 4.8.8). More randomizations have adjusted treatment \(O S L^{\prime}\) s below. 10 in Display 4.8 .8 than in Display 4.8.7. For experimental unit-treatment interaction, the change is from none to four randomizations; for normally distributed random error, the change is from six to ten. Again, by restricting randomization to those randomizations with the maximum value of the noncentrality parameter, the researcher improves his/her chance of selecting a randomization which will lead to the correct conclusion.

For experimental unit error, the lower, left-most graph, the number of randomizations correctly rejecting this null hypothesis decreases as one moves from the lowest to the highest noncentrality parameter (Display
4.8.7 to 4.8.8). Again, this contradicts the advice of (2.6.6a), (p. 41), suggesting that the F-distribution is not applicable for this error type, at least in the upper tail.

While the effect of the value of the noncentrality parameter for the adjusted covariate appears large for the hypothesis test of this parameter, the effect upon the hypothesis test of the adjusted treatments appears to be small, and limited to the cases of experimental unit-treatment interaction and normally distributed random errors. This may or may not hold in other simulations. Possibly, this noncentrality parameter has little effect on the tail probabilities for the degrees of freedom used to compute the OSL's for the adjusted treatments. Examination of such is an extension.

Observed Significance Levels for Treatments and Covariates
Treatments are Zero in Top Row, Nonzero in Bottom Row
Left to Right: experimental unit error, experimental-unit
treatment interaction error, normal random error



\(A=1, B=2\), etc. P1ot of STC102*SZC002.

\(A=1, B=2\), etc. Plot of STC 104*SZCOO4.

\(A=1, B=2\), etc. Plot of STC146*SZCO46.

```

Observed Significance Levels for Treatments and Covariates
Treatments are Zero in Top Row, Nonzero in Bottom Row
treatment interaction error, normal random error

```

\(A=1, B=2\), etc. Plot of STCOO2*SZCOO2.
\(A=1, B=2\), etc. Plot of STCOO4*SZCOO4.
\(A=1, B=2\), etc. Plot of STCO46*SZCO46



\(A=1, B=2\), etc. Plot of STC102*SZCOO2.

\(A=1\). \(B=2\), etc. Plot of STC 104*SZC004.

\(A=1 . B=2\), etc. Plot of STC146*SZCO46


OSL's for \(F\) Vs OSL' for \(T\)
Maximum Noncentrality Parameter for \(\mathcal{F}\)
4.8.5 Hypothesis Tests for the Best and Worst Cases

One method to preserve the value of the stated Type I error level, \(\alpha\), is to first test the entire model equation, then test the two usual hypotheses of interest. When \(\tau=\mathbb{D}\) and \(F=0\), one wants the model ( \(M\) ) and covariate (C) to be statistically significant (S), while the treatments (T) to be not statistically significant (N). Such an outcome is circled in the upper portion of Display 4.8.9. There one sees that for experimental unit error, 144 or \(25 \%\) of the randomizations yield this correct outcome. For experimental unit-treatment interaction error, \(47.4 \%\) yield the correct outcome; for normally distributed random error, \(30.6 \%\) do so. All other randomizations err on one or more of the three hypotheses tested. All hypothesis tests use \(w=.10\) and the central F-distribution with the usual degrees of freedom.

Circled in the lower portion of Display 4.8.9 is the proper outcome when \(\tau \neq \mathbb{O}\) and \(F \neq 0\), this is statistical significance (S) for the model (M), the treatments (T) and covariate (C). Some \(30.7 \%\) of the randomizations for the experimental unit error type yield the correct outcome. The other two error types yield the correct outcome in, respectively, \(24.5 \%\) and \(23.6 \%\) of their randomizations. For the error and parameter values of this simulation, one is more likely to select a randomization leading to erroneous results than one leading to the correct result, both for \(\tau=\mathbb{I}\) and \(\boldsymbol{T r i m}\).


Displays 4.8 .10 and 4.8 .11 detail the previous display (Display 4.8.9) for, respectively, the smallest value and the largest value of the noncentrality parameter for the covariate as adjusted for the mean, blocks, and treatments, \(.50^{2}{ }^{2} g, \bar{p} \mid \mu, b, \tau\). These two noncentrality values are the same as in Displays 4.8.7 and 4.8.8; the conclusions are similar.

For experimental unit error and \(\tau=\mathbb{D}\), all 24
randomizations yield the correct conclusions for the three hypotheses at both the lowest (Display 4.8.10) and the highest (Display 4.8.11) values of the adjusted covariate noncentrality parameter. For this error type, and \(\tau \mp \mathbb{C}\), there are fewer correct conclusions at the highest value than at the lowest value of the noncentrality parameter, 22 vs 4 or \(92 \%\) vs \(17 \%\) (Displays 4.8 .10 vs 4.8.11). As with Displays 4.8.7 and 4.8.8, this suggests that the advice of (2.6.2a), (p. 41), does not apply to the case of experimental unit error. That is, in their upper tails, the distribution of the F-ratios over all randomizations is not approximated by the F-distribution. The effect of the singular normal method of computation of the degrees of freedom, if appropriate, is an extension.

For experimental unit-treatment interaction and normally distributed random errors, more randomizations yield the correct conclusion at the higher than at the lower noncentrality parameter value, for both \(\tau=\mathbb{0}\) and

T\#G. For experimental unit-treatment interaction error, no randomization yields the correct conclusions at the lower value of the noncentrality parameter, both for \(\tau=\) \(\mathbb{0}\) and \(\boldsymbol{\tau} \neq \mathbb{0}\). At the higher level of the noncentral- ity parameter, 50\% of the randomizations lead to correct conclusions for \(\tau=\mathbb{d}\) and \(17 \%\) for \(\tau \mathbb{Q}\). For normally distributed random error, the improvement is from \(1 / 24\) to 9/24 for \(\tau=\mathbb{Q}\) and from 4/24 to 10/24 for \(\boldsymbol{T} \mathbb{O}\). For these two error types, restricting randomization to the g-group with the largest value of the noncentrality parameter for the adjusted covariate is more likely to select a randomization which will lead to the correct conclusions for these hypotheses.


TABLE 2 OF ERR TYPE BY RESULT CONTROLLING FOR TRT̄_VAL=Nonzero Treats


Display 4.8.10
Tests of Model and Parameter Hypotheses Minimum Noncentrality Parameter for \(F\)

Counts and Percentages of Randomizations with Dutcomes for Hypotheses: Model (M). Adj. Treatments (T). Adj. Covarlate (C) of: Significant (S) Reject Null Hypothesis and Nonsignificant (N) Accept Null Hypothesis
- Lamda: covariates given rest \(=990\)

TABLE 1 OF ERR TYPE BY RESULT CONTROLLING FOR TRT_VAL=Zero Treats


TABLE 2 OF ERR TYPE BY RESULT CONTROLLING FOR TRT_VAL=Nonzero Treats
ERR_TYPE(Type of Error) RESULT(Hypotheses Test)


Display 4.8.11
Tests of Model and Parameter Hypotheses Maximum Noncentrality Parameter for \(\mathcal{F}\)
4.8.6 Parameter Estimates for the Best and Worst Cases

Tables 4.8.1 and 4.8.2 display, respectively, the means and standard deviations of the estimates of the model equation parameters for the g-groups with the lowest (1) and highest (h) values of the noncentrality parameter for the covariates as adjusted for the mean, blocks, and treatments, \(\lambda_{s, f \mid \mu, b, \tau}\). The first column of numbers in each table shows the true value of the model equation parameter; the two treatment values are shown. For all error types and all estimates, the tables show less bias and smaller standard deviations for the g-group with the highest (h) value of this noncentrality parameter.

The second column of Table 4.8 .1 is for experimental unit error. The expectation of the estimated treatment effects, \(\hat{\tau}_{k}\), is unbiased within both g-groups. This holds for \(\tau=\mathbb{D}\) and \(\tau \neq \mathbb{D}\). Table 4.8.2 shows that the standard deviations of the estimates within the highest valued (h) g-group are much smaller than are those within the lowest valued (1) g-group, for example 4.96 vs 53.61 for \(\hat{\tau}_{1}\). The standard deviation is equal for all estimated treatment effects, and is unaffected by the value of \(\tau\). Estimates for the other model equation parameters also show less bias at the highest valued g-group, for example \(E(\hat{F})=11.34\) at the lowest valued (1) g-group, but equals 1.94 at the highest (h). The parameter value is \(\beta=2.0\).

As per Theorem 3.7.9(4), (p. 202), \(\hat{F}\) is constant within the g-group for this error type; the standard deviation shown in Table 4.8.2 is zero.

For experimental unit-treatment interaction error, the third column of Table 4.8.1, all estimates are biased, but much less so for the highest valued g-group. This holds for \(\tau=\mathbb{1}\) and \(\tau \neq \mathbb{Q}\), for example for \(\tau_{1}=-6.5\), the expectations are -9.33 and -6.54 . The estimate at the higher valued group (h) is closer to the true value. Standard deviations again are much less at the highest valued g-group than at the lowest valued g-group, for example, 2.53 vs 13.6 for \(\hat{\tau}_{1}\). As discussed in Theorem 3.7.9(4) the \(\pi_{s}\) disperse the clusters of estimates for \(p\), hence the within g-group standard deviation for \(\hat{F}\) is not zero in Table 4.8.2 for this error type. For the same reason, neither is the standard deviation for \(\hat{\vec{p}}\) for the normally distributed random error case (column four).

The standard deviation for \(\hat{F}\) is due only to the dispersion effects of \(n_{s}\) and \(n_{s}\). The standard deviation for \(\hat{\tau}\) is due to these effects plus that of the change in randomization. Should the experimental units be reuseable, one might estimate the variance of the \(r_{s}\) and/or the \(\mathrm{n}_{\mathrm{s}}\) by conducting all experiments within the same g-group of randomizations.

The case of normally distributed random error is similar to the case of experimental unit-treatment interaction error. One exception is that the biases for \(\hat{\tau}_{2}\) and \(\hat{\tau}_{3}\) are larger than for other levels of \(\hat{\tau}\).

The cases with unequal within-block error variances resemble the data of Tables 4.8.1-4.8.2 and are omitted. Their biases and standard deviations are slightly larger.

TABLE 4.8.1
RANDOMIZATION EXPECTED VALUE OF PARAMETER ESTIMATES FOR G-GROUPS WITH EXTREME VALUES OF \(\lambda^{2}\), \(\mathfrak{F} \mid \mu, b, \tau\) EQUAL WITHIN-BLOCK ERROR VARIANCES

Three Types of Error:
\begin{tabular}{lll} 
Parameter: & Experimental & Normally \\
Name Value & Unit & Unit-Treat. \\
(l=min., \(h=\) max. \()\) & Interaction &
\end{tabular}
\begin{tabular}{rrrrr}
\(\mu\) & 10.0 & 1 & -80.13 & 12.42
\end{tabular}
\begin{tabular}{rrrrrr}
\(\mathrm{b}_{1}\) & -1.5 & l & 23.08 & -2.16 & 0.17 \\
& & h & -1.65 & -1.52 & -1.41 \\
\(\mathrm{~b}_{2}\) & 1.5 & 1 & -23.08 & 2.16 & -0.17 \\
& & h & 1.65 & 1.52 & 1.41
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\({ }^{\top} 1\)} & \multirow[t]{2}{*}{0/-6.5} & 1 & 0/-6.5 & -2.83/-9.33 & -0.93/-7.43 \\
\hline & & h & 0/-6.5 & -0.04/-6.54 & 0.01/-6.40 \\
\hline \multirow[t]{2}{*}{\({ }^{\top} 2\)} & \multirow[t]{2}{*}{0/-3.5} & 1 & 0/-3.5 & 4.04/ 0.55 & -0.44/-3.94 \\
\hline & & h & 0/-3.5 & -0.04/-3.54 & 0.63/-2.87 \\
\hline \multirow[t]{2}{*}{\({ }^{\top} 3\)} & \multirow[t]{2}{*}{\(0 / 2.5\)} & 1 & \(0 / 2.5\) & -7.19/-4.69 & 6.51/9.01 \\
\hline & & h & \(0 / 2.5\) & 0.04/ 2.46 & -0.67/ 1.83 \\
\hline \multirow[t]{2}{*}{\(\tau_{4}\)} & \multirow[t]{2}{*}{0/ 7.5} & 1 & \(0 / 7.5\) & 5.98/13.48 & -5.14/ 2.36 \\
\hline & & h & \(0 / 7.5\) & 0.12/ 7.62 & 0.06/7.44 \\
\hline \multirow[t]{2}{*}{\(\bar{F}\)} & \multirow[t]{2}{*}{2.0} & 1 & 11.34 & 1.75 & 2.64 \\
\hline & & h & 1.94 & 2.00 & 2.03 \\
\hline
\end{tabular}

TABLE 4.8.2
RANDOMIZATION STANDARD DEVIATION OF PARAMETER ESTIMATES FOR G-GROUPS WITH EXTREME VALUES OF \(\lambda_{S}, f \mid \mu, b, \tau\) EQUAL WITHIN-BLOCK ERROR VARIANCES

Three Types of Error:
\begin{tabular}{|c|c|c|}
\hline , & Experimental & Normally \\
\hline Name Value & Unit Unit-Treat. & Distributed \\
\hline (l=min., \(\mathrm{h}=\) max. & Interactio & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\(\mu\)} & 10.0 & 1 & & 0.0 & 21.5 & 35.60 \\
\hline & & h & & 0.0 & 3.9 & 4.17 \\
\hline \multirow[t]{2}{*}{\(\mathrm{b}_{1}\)} & -1.5 & 1 & & 0.0 & 6.96 & 9.71 \\
\hline & & h & & 0.0 & 2.90 & 1.14 \\
\hline \(\mathrm{b}_{2}\) & 1.5 & 1
\(h\) & & \[
\begin{aligned}
& \text { as in } \\
& b_{1}
\end{aligned}
\] & \[
\begin{gathered}
\text { as in } \\
b_{1}
\end{gathered}
\] & \[
\begin{gathered}
\text { as in } \\
b_{1}
\end{gathered}
\] \\
\hline \multirow[t]{2}{*}{\(\tau_{1}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0/-6.5}} & 1 & 53.61 & 13.6 & 23.21 \\
\hline & & & h & 4.96 & 2.53 & 3.72 \\
\hline \multirow[t]{2}{*}{\({ }^{\tau} 2\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{0/-3.5}} & 1 & as in & 13.6 & 22.29 \\
\hline & & & h & \({ }^{\top} 1\) & 3.49 & 3.81 \\
\hline \multirow[t]{2}{*}{\({ }^{\top} 3\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(0 / 2.5\)}} & 1 & as in & 10.1 & 18.48 \\
\hline & & & h & \({ }^{\top} 1\) & 1.87 & 3.53 \\
\hline \multirow[t]{2}{*}{\(\tau_{4}\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(0 / 7.5\)}} & 1 & as in & 11.2 & 19.48 \\
\hline & & & h & \({ }^{\top} 1\) & 2.16 & 4.64 \\
\hline \multirow[t]{2}{*}{F} & \multirow[t]{2}{*}{2.0} & & 1 & 0.0 & 2.30 & 3.40 \\
\hline & & & h & 0.0 & 0.45 & 0.43 \\
\hline
\end{tabular}

Tables 4.8 .1 and 4.8 .2 should be compared with Tables 4.4.1 and 4.4.2, (p. 295-262), which average over all randomizations with equal selection probability and with Tables 4.7.1 and 4.7.2, (p. 326-327), which also average over all randomizations, but with weighted selection probabilities. All of these tables display the
equal within-block error cases. The comparison shows an advantage by selecting the randomization used to conduct the actual experiment from among those with the largest value of the noncentrality parameter for the adjusted covariate. For one covariate, these randomizations are the most balanced on the covariate. Model equation parameter estimates are improved for all three error types. Conclusions in hypotheses tests are improved for cases with experimental unit-treatment interaction or normally distributed random errors

The reader interested in further developing these topics will find that Appendix E, (p. 389), lists suggested refinements of this work and extensions. Affixed to the inside back cover is a 3.5" hard diskette containing the SAS programs listed in Appendix F. The files are in ASCII and contain the JCL statements used to submit them. An IBM mainframe cartridge containing SAS transportable versions of the data sets as well as the SAS programs of Appendix \(F\) is available from the author.

Literature on the following topics is cited at the indicated pages:

Analysis of Covariance with Normal Errors -- 10-14
Analysis of Covariance with Unit Errors -- 224-230
Exchangeability -- 164-165
Experimental Unit Errors -- 124-128
Generalized Inverse -- 90-91
Moments and Limits of F-Ratios -- 227-232
Noncentrality Parameter -- 39-41, 45
Rationale for Randomization -- 118-121
Superpopulation Model -- 163-164

Below each of the following bibliographical entries are pairs of page numbers:
/ page(s) of cited work : page(s) of citation / . For example, a passage on page 221 of Anderson and Bancroft's article will be found cited on page 118 of this work. That a general citation to the entire work is found on, say, page 25 herein, is indicated as / --:25/. Multiple citations of a single work are ordered by that author's page numbers. Citations marked A.1, B, etc. are in the Appendices. Some titles without citations are included; they may be of interest.

Adrian .(1808). \(\qquad\) - The Analyst, or Mathematical

Museum, Vol. 1, p. 83-87, 93-109.
/ --:25 /

Anderson, R. L., and T. A. Bancroft. (1952). Statitical Theory in Research. New York: McGraw-Hill. p.220-221. / 221:118 /

Atiquilah, M. (1962A). "The Estimation of Residual Variance in Quadratically Balanced Least-Squares Problems and the Robustness of the F-test". Biometrika, Vol. 49, p. 83-91.
/ --:226, 231 /
Atiqullah, M. (1962B). "On the Effect of Non-normality on the Estimation of Components of Variance". Journal of the Royal Statistical Societys Series B, Vol. 24, p. 140-147.

Atiqullah, M. (1963). "On the Randomization Distribution and Power of the Variance Ratio Test". Journal of the Royal Statistical Society, Series B, Vol. 25, p. 334-347.
/ --:224, 225, 231 / 338:226 /
Atiqullah, M. (1964). "The Robustness of the Covariance Analysis of a One-way Classification". Biometrika, Vol. 51, p. 365-372.
/ --:12 / 365, 368:228 /
Bailey, R. A. (1982). "Randomization". In Recent Trends in Statistics, S. Heiler, Ed. Gottingen: Vandenhoeck and Ruprecht. p. 9-26.
/ --:118 /
Bailey, R. A. (1985). "Restricted Randomization Versus Blocking". International Statistical Review, Vol. 53, p. 171-183. / --:119 /

Bailey, R. A. (1987). "Restricted Randomization: A Practical Example". Journal of the American Statistical Association, Vol. 82, p. 712-719. / --:114, 120 / 712:114, 240/

Bartlett, M. S. (1935). "The Effect of Non-Normality on the \(t\) distribtuion". Proceedings of the Cambridge Philosophical Society, Vol. 31, p. 223-231. / --: 125, 224 /

Basu, D. (1980). "Randomization Analysis of Experimental Data: The Fisher Randomization Test". The Journal of the American Statistical Association, Vol. 75, p. 575-581, with comment on p. 582-595.
/ --:118, 120 /
Ben-Israel, Adi and Thomas N. E. Greville. (1980). Generalized Inverses: Theory and Application. New York: Krieger, Huntington. Chapters 1-3. / 7-22:83 / Ch.1 - Ch.3:90 /

Bingham, Christopher and Stephen E. Fienberg. (1982). "Textbook Analysis of Covariance -- Is It Correct?". Biometrics, Vol. 38, p. 747-753.
```

 / --:21, E.IV.1.b /
    ```

Boullion, Thomas L. and Patrick L. Odell. (1971). Generalized Inverse Matrices. New York: Wiley-Interscience. / --:90 /

Boullion, Thomas L., John W. Seaman, Jr. and Dean M. Young. (1990). "Moments of Discrete Probability Distributions Derived Using a Differential Operator". Presented at the American Statistical Association's Annual Meeting in New Orleans, 1990.
/ --:232 /
Burton, David M. (1971). Abstract and Linear Algebra. Reading, Mass.: Addison-Wesley. / 48-53, 69-74:188/

Campbell, S. L. (Ed.). (1982). Recent Applications of Generalized Inverses. London: Pitman Advanced Publishing Program.
/ --:91 /

Cassel, Claes-Magnus, Carl-Erik SErndal and Jan Hakan Wretman. (1977). Foundations of Inference in Survey Sampling. New York: John Wiley \& Sons. p. 1-85.
```

/ --:64 / 1-31:141 / 10:143 / 11-12, 68:111 /
/ 72,85:165 /

```

Center, Bruce Aruthor. (1982). "An Investigation of the Behavior of Selected Variance Ratio Statistics under Randomization for the Analysis of Covariance". unpublished Ph.D. dissertation, University of Minnesota. University Microfilms Order No. DA8318049. / --:231 /

Chow, Yuan Shih and Henry Teicher. (1978). Probability Theory, Independence, Interchangeability, Martingales. New York: Springer-Verlag. / 33, 223-226, 309-311:165 /

Cifarelli, D. M. (1979). "Impostazione bayesiana di un problema di analisi della varianza con approccio non parametrico". Ist. Mat. Finanz. Univ. Torino. III 17. / --:165 /

Cifarelli, D. M. and E. Regazzini. (1981A). "Some Considerations about Mathematical Statistics Teaching Methodology Suggested by the Concept of Exchangeability". In Exchangeability in Probability and Statistics, G. Koch and F. Spizzichino, Eds., New York: North-Holland Publishing Co. p. 185-206. / --:165 /

Cifarelli, D. M., P. Muliere, and M. Scarsini. (1981B). "IL modello lineare nell'approccio bayesiano non parametrico". Ist. Mat. "G. Castelnuovo". Univ. Roma. / --:165 /

Cline, Randall E. (1979), Elements of the Theory of Generalized Inverses for Matrices. Newton, Mass.: EDC/UMAP.
/ --:90./
Cochran, William G. (1957). "Analysis of Covariance: Its Nature and Uses". Biometrics, Vol. 13, p. 261-281. / --:31 / 262-267:10,11 / 272:207/

Cochran, William G. and Gertrude M. Cox. (1957). Experimental Designs. New York: John Wiley \& Sons. p. 6-9.
/ 6-9:121 /
Cook, M. B. (Miss). (1951A). "Bi-Variate k-Statistics and Cumulants of their Joint Sampling Distribution". Biometrika, Vol. 38, p. 179-195. See Cook (1951B).

Cook, M. B. (Miss). (1951B). "Two Applications of Bivariate k-Statistics". Biometrika, Vol. 38, p. 368-376. See Cook (1951A).
/ --:E.V.1, G /
Cox, David Roxbee. (1956). "A Note on Weighted Randomization". The Annals of Mathematical Statistics, Vol. 27, p. 1144-1151.
/ --:320 / 1146:321 / 1147:227 / 1148:241, 322/ / 1150:322 /

Cox, David Roxbee. (1957). "The Use of a Concomitant Variable in Selecting an Experimental Design". Biometrika, Vol. 44, p. 150-158.
/ --:320 / Methods III, IV, and V:116/153:321/
Cox, David Roxbee. (1958). Planning of Experiments.
New York: Wiley and Sons. p. 14-17, 70-90. / 14-17:134 / 74-85:118 / 77-81:119 / 85-89:119 /

Cox, David Roxbee. (1982). "Eandomization and Concomitant Variables in the Design of Experiments". In Kallianpur, G., E. R. Krishnaiah, J. K. Ghosh, Eds., Statistics and Probability: Essays ir Honor of C. R. Rao. New York: North-Holland Publishing Company. p. 197-202. / --:320/198:321/200:180, 322, 328/

Cox, David Roxbee and D. V. Hinkley. (1974). Theoretical
Statistics. London: Chapman and Hall. / 180 and 196:168/

Cox, David Roxbee and Peter McCullagh. (1982). "Some Aspects of Analysis of Covariance". Biometrics. Vol. 38, p. 541-561. \(/--: 13 / 541-542: 7,10 / 543: 15 / 543-544: 27 /\)
de Finetti, Eruno. (1980). "Frobability: Eeware Falsifications!". In Studies in subjective Probability, Henry E. Kyburg Jr. and Howard E. Smolker, Eds. Huntington, N. Y.: Robert E. Drieger Publishing Co., Huntington, N.Y. p. 193-224. Original article published in 1977. / 211:165 /
de Finetti, Bruno. (1974-1975). Theory of Probability, Volumn Two. New York: Wiley and Sons. Translated from Tengis terie Frobabiniter, Einaudi, Torino, 1970. / Vol. 2 215:165 /
de Finetti, Bruno. (1980). "Foresight: Its Logical Laws, Its Subjective Sources". In Studies in Subjective Probability, Henry E. Kyburg Jr. and Howard E. Smolker, Eds. Huntington, N.Y.: Robert E. Drieger Publishing Co. p. 53-118, also p. 15-18. A translation of "La prévision: Ses lois logiques, ses sources subjectives" £rom the Annales de i'Institut Henri Poincaré, Vol. 7 (1937). / 15-17, 81-83, 99-101:165/

De Lury, D. B. (1948). "The Analysis of Covariance". Biometrics, Vol. 4, p. 153-170.
/ --: 11
Dolby, G. R. (1982). "The Role of statistics in the Methodology of the Life Sciences". Biometrics, Vol. 38. p. 1069-1083. / 1083:vii /

Duncan, Acheson J. (1957). "Charts of the \(10 \%\) and \(50 \%\) Points of the Operating Characteristic Curves for Fixed Effects Analysis of Variance \(F\) Tests, \(\quad=0.01\) and 0.05". The Journal of the American Statistical Society, Vol. 52, p. 345-349.
/ --:A. 3 /
Eden, T. and F. Yates. (1933). "On the Validity of Fisher's Z-test when Applied to an Actual Sample of Non-normal Data". The Journal of Agricultural Science (Cambridge), Vol. 23, p. 6-16. / --:231 /

Edgington, Eugene S. (1987), Randomization Tests, 2nd Edition. New York: Marcel Dekker, Inc. (Volumn 77 in the series, Statistics: Textbooks and Monographs.) / --:166 /

Fedorov, V. V. (1972), Theory of optimal Experiments. New York: Academic Press. Translated into English; originally published in 1969. / --:120 /

Feldt, Leonard S. and Moharram W. Manhmoud. (1958). "Power Function Charts for Specifiying Numbers of Observations in Analyses of Variance of Fixed Effects". Annals of Mathematical Statistics, Vol. 29, p. 871-887. / --:A. 3 /

Finney, D. J. (1946). "Standard Errors of Yields Adjusted for Regression on an Independent Measurement". Biometrics, Vol. 2, p. 53-55. / --:116 / 54:321 /

Finney, D. J. (1957). "Stratification, Balance, and Covariance". Biometrics, Vol. 13, p. 373-386. / --:116 /

Fisher, Ronald Aylmer. (1928). The Design of Experiments. Edinburgh: O1iver and Boyd. / 671:A.4 /

Folks, J. Leroy. (1984). "Use of Randomization in Experimental Research", in Experimental Design, Statistical Models, and Genetic Statistics, Klaus Hinkelmann, Ed. New York: Marcel Dekker, Inc. p. 17-32. / --:118 /

Fox, M. (1956). "Charts of the Power of the F-Test". Annals of Mathematical Statistics, Vol. 27, p. 484-497. / --:A. 3 /

Gabriel, K. R., and W. J. Hall. (1983). "Rerandomization Inference on Regression and Shift Effects: Computationally Feasible Methods". Journal of the American Statistical Society, Vol. 78, p. 827-836. / --:168, 174 /

Galilei, Galileo (1953) 1953), Dialoque Concerning the Two Chief World Systems, Stillman Drake, translator of 1632 original. Berkely: University of California Press. p. 281-316 (The Third Day) and p. 483-487. / the above:92-96/

Gauss, Karl Friedrich (1857) Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections, (Theoria Motus), Charles Henry Davis, translator of 1809 original. New York: Dover. p. 249-260. / 249-260:92-98 /

Gayen, A. K. (1950). "The Distribution of the Variance Ratio in Random Samples of any Size Drawn from Non-Normal Universes". Biometrika, Vol. 37, p. 236-251. / --:231 /

Good, Phillip I. (1979). "Detection of a Treatment Effect When Not All Experimental Subjects Will Respond to Treatment". Biometrics, Vol.35, p.483-489. See Zhou, et al. (1989).

Graybill, Franklin A. (1976). Theory and Application of the Linear Model. Boston: Duxbury Press.
\[
/ 6: 26 / 22: 26 / 283-297: 12-13 / 493-498: 76 /
\]

Graybill, Franklin A. (1983). Matrices with Applications in Statistics, 2nd Edition. Belmont, CA.: Wadsworth. / --:13 / 87,89:89 / 134: 75:78 / 135:84 / Ch. 6:90/

Greenberg, Bernard G. (1953). "The Use of Analysis of Covariance and Balancing in Analytical Surveys." American Journal of Public Health, Vol.43, p.692-699. / --:116 / 698:321 /

Greville, Thomas N. E. (1966). "Note on the Generalized Inverse of a Matrix Product". SIAM Review, Vol. 8, p. 518-521. Errata, Vol. 9, p. 249. / --:89/

Godambe, V. P. (1966). "A New Approach to Sampling from Finite Populations I, II". Journal of the Royal
Statistical Socitey, Series B, Vol. 28, p. 310-328. / --:120 /

Godambe, V.P. (1975). "A Reply to My Critics". Sankhyā C, Vol. 37, p. 53-76. / --:120 /

Godambe, V. P. and M. E. Thompson (1971), "Bayes, Fiducial and Frequency Aspects of Statistical Inference in Regression Analysis in Survey Sampling". Journal of the Royal Statistical Society, Series B, Vol. 33, p. 361-390. / --:120 /

Hartley, H. O. and J. N. K. Rao. (1971). "Foundations of Survey Sampling (a Don Quixote Tragedy)". The American Statistician, Vol 25, p. 21-7.
/ --:120 /
Harvey, James R. (1972). "On Expressing Moments in Terms of Cumulants and Vice Versa". The American Statistician, Vol. 26 , p. 38-39. / --:G /

Henderson, Charles R., Jr. (1982). "Analysis of Covariance in the Mixed Model: Higher-Level, Nonhomogeneous, and Random Regressions." Biometrics, Vol. 38, p. 623-640.
/ 623-624:13, 15, 19 /
Hoaglin, D. C. and R. E. Welsch. (1978). "The Hat Matrix in Regression and ANOVA". The American Statistician, Vol. 32, p. 17-22. / --:13 /

Hocking, R. R. (1982). "Discussion on a Paper by D. R. Cox and P. McCullagh". Biometrics, Vol.38, p. 559-561. / --:13 / 560:7 /

Holland, Paul W. (1986). "Statistics and Causal Inference". The Journal of the American Statistical Association, Vol. 81, p. 945-960, with discussion. / 945:8 /

Hooke, Robert. (1958). "Use of Randomization in the Investigation of Unknown Functions". The Journal of the American Statistical Association, Vol. 53, p. 176-186. / --:120 /

Hooper, Peter M. (1989). "Experimental Randomization and the Validity of Normal-Theory Inference". Journal of the American Statistical Association, Vol.84, p. 576-586. / --:230, 232 / 578-579:21/

Hsu, P. L. (1938). "On the Best Unbiased Quadratic Estimate of the Variance". Statistical Research Memoires, Vol. 2, p. 91-104. / --:12, 231 /

Hsu, P. L. (1941). "Analysis of Variance from the Power Function Standpoint". Biometrika, Vol. 32, p. 62-69. / --:A. 3 /

Irving, J. O. and Maurice George Kendall. (1943-1945). "Sampling Moments of Moments for a Finite Population". Annals of Eugenics, Vol. 12, p. 138-142. / --:232 /

Jefferson, Craig. (1990). Personal communication. / --:50, (used on 53, 55), C /

Jonrup, H. and B. Rennermalm. (1976). "Regression Analysis in Samples from Finite Populations". Scandanavian Journal of Statistics, Vol. 3, p. 33-37. / --:157 /

Kempthorne, Oscar. (1952). The Design and Analysis of Experiments. New York: John Wiley \& Sons. Chapter 8. / 97-103:31 / 98-103:11 / 128-129:181,182 / /130-131:171 / 132-134:139 / 137:126/ / 145-146:124, 125, 126, 128 / 159:138 /230-231:171/ /232:107/

Kempthorne, Oscar. (1955). "The Randomization Theory of Experimental Inference". Journal of the American Statistical Society, Vol. 50, p. 946-967.
Corrections in Vol. 51 (1956), p. 651. / 949:120 / 952:133, 134 / 956:135 /

Kempthorne, Oscar. (1975). "Inference from Experiments and Randomization". In A Survey of Statistical Design and Linear Models, Jagdish N. Srivastava, Ed. New York:North-Holland. p. 303-332. / 324:127 / 324-325:139 / 326:121 /

Kempthorne, Oscar, and T. E. Doerfler. (1969). "The Behaviour of Some Significance Tests Under Experimental Randomization". Biometrika, Vol. 56, p. 231-248. / 232:107, 110 / 231-235:164 / 234-235:168 /

Kempthorne, Oscar, G. Zyskind, S. Addelman, T. N. Throckmorton, and R. F. White. (1967). "Analysis of Variance Proceedures". Aerospace Research Laboratories, Technical Report 149.
Wright-Patterson Air Force Base, Ohio. See also Zuskind, Kempthorne, et al. (1960, 1964, 1968).
/ --:232 /
Kiefer, J. (1959). "On the Nonrandomized Optiomality and Randomized Nonoptimality of Symmetrical Designs". The Annals of Mathematical Statistics, Vol. 29, p. 675-699.
/ --:120 /
Kotlarsky, Ignacy. (1990). Personal communication. / --:142 /
Kotz, Samuel and Norman L. Johnson. (1985-1986). Encyclopedia of Statistical Sciences, Volumns 6 and 7. New York: Wiley and Sons.

Volumn 6 (1985):/ 277:A.2 /
Volumn 7 (1986):/ 524-530:120,167-168 /
Lane, David A. (1980). "Comment" (on Basu 1980). The Journal of the American Statistical Society, Vol. 75, p. 587-589.
/ 589:119 /

Legendre, Adrien-Marie. (1806). New Methods for the Determination of the Orbits of Comets, (Nouvelles methodes pour la determination des orbites des cometes), Paris.
/ --:25 /
Lindley, D. V. and Melvin R. Novick. (1981). "The Role of Exchangeability in Inference". The Annals of Statistics, Vol. 9, p. 45-58.
/ --:165 /
Lucas, Henry L. (1950). "Design and Analysis of Feeding Experiments with Milking Dairy Cattle". Raleigh, N.C.: Institute of Statistics Mimeograph Series No. 18. / --:116, 321 /

Maistrov, L. E. 1974. Probability Theory A Historical Sketch, Samuel Kotz, translator. New York: Academic Press. p. 30-34 and 148-157. / 30-34, 148-157:93 / 152, 155:94 /

Mandel, J. (1961). "Non-additivity in Two-Way Analysis of Variance". The Journal of the American Statistical Association, Vol. 56, p. 878-888. / --:127 /

Mann, H. B. (1949). Analysis and Design of Experiments. New York: Dover Publications, Inc. p. 74-75. /74-74:A.3 /

McCullagh, Peter. (1987). Tensor Methods in Statistics. London: Chapman and Hall. / --:232 /

Mood, Alexander McFarland, Franklin A. Graybill, and Duane C. Boas. (1974). Introduction to the Theory of Statistics, 3rd Edition. New York: McGraw-Hill. / 202:279 / 534:A.2 /

Morrison, Donald F. (1983), Applied Linear Statistical Methods. Englewood Cliffs, N.J.: Prentice-Hall, Inc. p. 120-131.
/ 122-124:45 / 122-131:13 / 127-131:40, A.3 /

Nashed, M. Zuhair, Editor. (1976). Generalized Inverses and Applications. New York: Academic Press. / --:91 /

Neter, John, William Wasserman, and Michael H. Kutner. (1990). Applied Linear Statitical Models, 3rd Edition. Homewood, Illinois: Irwin. / 861-906:11 /

Neyman, J. with the cooperation of K. Iwaszkiewicy and St. Kotodziejczyk. (1935). "Statistical Problems in Agricultural Experimentation". Journal of the Royal Statistical Society, Series B, Vol. 2, p. 107-154. / 110:124 / 111:127, 139 / 114:124/145:124, 127/ / 146:131 / 172-177:139 /

Ostle, Bernard (1954), Statistics in Research. Ames, Iowa: The Iowa State College Press. p. 288-293, 385, 392-397, and 410-465. / 410-465:11 / 394:33 /

Ott, Leyman. (1988). An Introduction to Statistical Methods and Data Analysis, Third Edition. Boston: PWS-Kent Publishing Co. / 676-681:11 / (Only in First Edition,1977) 524:81 /

Pearson, Egon Sharpe and H. O. Hartley. (1976). Biometrika Tables for Statisticians, Vol. II. Biometrika Trust. p. 66-77. / 64, 66-77:A.3 /

Pitman, E. J. G. (1937). "Significance Tests Which May Be Applied to Samples from Any Populations, III The Analysis of Variance Test". Biometrika, Vol. 29, p. 322-335. / --:125, 224, 227/322-323:125/ 323:206/ / 331-335:225 /

Plackett, R. L. (1960). Principles of Regression Analysis. Oxford: Clarendon Press. p. 40-41 and 152-159. / 40-41:231 / 152-157:125 / 155-156:224 /

Pope, P. T. and J. T. Webster. (1972). "The Use of an F-Statistic in Stepwise Regression Procedures". Technometrics, Vol. 14, p. 327-340.
/ 330-331:45 /

Pringle R. M. and A. A. Rayner. (1971). Generalized
Inverse Matrices with Applications to Statistics.
New York: Hafner Publishing Co. / --:90 / 88-90:76 /

Rao, Calyampudi Radhakrishna. (1952). "Some Theorems on Minimum Variance Estimation". Sankhya, Vol. 12, p. 27-42. / --:231 /

Rao, Calyampudi Radhakrishna. (1973). Linear Statistical
Inference and Its Applications, 2nd Edition. New
York: Wiley and Sons. p. 54.
/ 54:217 / 161:100 / 122:229 / 288-294:13 /
Rao, Calyampudi Radhakrishna. (1975). "Theory of
Estimation of Parameters in the General
Gauss-Markoff Model". In A Survey of Statistical
Designs and Linear Models, J. N. Srivastava, Ed.,
New York: North-Holland Co. p. 475-488. / 475-487:13 /

Rao, Calyampudi Radhakrishna and Sujit Kumar Mitra. (1971). Generalized Inverse of Matrices and its Applications. New York: John Wiley and Sons, Inc. / --:91

Reisch, Joan S., and J. T. Webster. (1969). "The Power of a Test in Covariance Analysis". Biometrics, Vol. 25, p. 701-714.
/ 705:116 /
Richards, Winston A. (1980). "The Randomization Analysis of Covariance and Change-Over Designs". Unpublished dissertation. Ames, Iowa: Iowa State Univeristy. See Stewart, Margaret Hill (1980).
/ --:238 /
Robinson, J. (1973A). "The Large-Sample Power of Permutation Tests for Randomization Models". The Annals of Statistics, Vol. 1, p. 291-296. / --:226 /

Robinson, J. (1973B). "The Analysis of Covariance under a Randomization Model". Journal of the Royal
Statistical Society, Series B, Vol. 35 , p. 368-376. / 368:227, 229 / 372:230 /

Roux, C. Z. (1982). "The Analysis of Covariance in Randomization Theory". South African Statistical Journal, Vol. 16, p. 1-23.
/ --:125, E.VI. 8 / 4:137 /
Roux, C. Z. (1984). "Treatment x Unit Interactions in the Completely Randomized and Randomized Block Designs". In Experimental Design, Statistical Models, and Genetic Statistics, Essays in Honor of Oscar Kempthorne, Klaus Hinkelmann, Ed. Marcel Dekker, Inc. p. 141-153. / --:128, 132, E.VI. \(8 / 144: 133 /\)

Royall, R. M. and J Herson. (1973). "Robust Estimation in Finite Populations I'. The Journal of the American Statistical Society, Vol. 68, p. 880-889. / --:120 /

Royden, H. L. (1968). Real Analysis, 2nd Edition. New York: MacMillan Publishing Co., Inc. p. 270. / 270:158 /

Rubin, Donald B. (1978). "Bayesian Inference for Causal Effects: The Role of Randomization". Annals of Statistics, Vol. 6, p. 34-58. / --:118 /

Sarkar, Sahudeb. (1990). Personal communication. / --:142 /

SAS Institute (1990), SAS Language: Reference, Version 6 , First Edition. Cary, N.C.: SAS Institute, Inc. SAS Function PROBF, p. 579. / 578:A. 3

Scheffé, Henry. (1959). The Analysis of Variance. Toronto: Wiley and Sons. p. 42-45, 104-106, 291-329 (Ch.9), 446-455.
\[
/--: 12 / 42,446-454: \text { A. } 3 /
\]

Searle, Shayle R. (1971). Linear Models. New York: John Wiley \& Sons. p. 340-361.
\[
\begin{aligned}
& \text { / --:12 / 20:17, } 47 / 27: 46 / 36: 40,43,44 / \\
& \text { / 37:44 / 43:A.1 / 54-64:40/58:264 / 66-72:18/ } \\
& \text { / 69:316-318, E.I.1 / 80, 169:17 / 182:26 / } \\
& \text { / 209-220:20 / 218:75 / 221-224:13 / 240-361:12 / } \\
& \text { / 246-249:B/342-343:27/343-344:45/340-361:15/ } \\
& \text { / 351-352:33/Ch. 8:90/ }
\end{aligned}
\]

Searle, Shayle R. (1982). Matrix Algebra Useful for Statistics. New York: John Wiley \& Sons, Inc. Chapter 8, p. 212-226.
```

/ --:13 / 217:78 / 221-222:84 / 226:86 / Ch. 8:90 /

```

Searle, Shayle R. (1987). Linear Models for Unbalanced Data. New York: Wiley. p. 10-13, 242-243, 282-288, 416-456 (Ch. 11), 457-483 (Ch. 12). / 28-29: B / 221:78/ 233-236:41/242:12 / / 287-288:78 / 416-456:12 / 438-441:23/

Seber, George Author Rederick. (1977). Linear Regression Analysis. New York: MacMillan Publishing Co., Inc. p. 13-17, 21, 414, 52-54, 151-155, 279-290. /Ch. 10 :12 /

Seber, George Author Rederick. (1980). The Linear Hypothesis: A General Theory. New York: MacMillan Publishing Co., Inc. p. 5-9, 24-29, 34-35, 38-39, 61-65.
/ 5:A. 3 / 9:A. 4 / 35:41, A. 4 / 61-65:12 /
Sheynin, O. B. (1966). "Origin of the Theory of Errors". Nature, Vol. 211, p. 1103-1104. / --:93 /

Shinozaki, Nobuo, and Masaaki Sibuya. (1974). "The Reverse Order Law ( \(A B)^{-}=B^{-} A^{-"}\) [more precisely, \(\left.(A B)^{+}=B_{m r}^{-} A_{1 r}^{-}\right]\). Linear Algebra and its Applications, Vol. 9, p.29-40. / 34:84, 89 /

Snedecor, George W. and William G. Cochran. (1980). Statistical Methods, 7th Edition. Ames, Iowa: Iowa State University Press, Ames, Iowa.
7th Edition (1980): / 59-63:290 / 365-392:11 / 6th Edition (1967): / 15:8 / 419-446:11 /

Steel, Robert G. D. and James H. Torrie. (1980). Principles and proceedures of Statistics, A Biometric Approach, Second Ed. New York: McGraw-Hill Book Company. Chapter 17, p. 401-437. / 401:10 / 401-437:11 /

Stewart, Margaret Jill. (1980). "Randomization Analysis of Replicated Randomized Complete Block Designs". Unpubiished dissertation, Blacksburg, Virginia: Virginia Polytechnic Institute and State University. See Richards, Winston (1980).

Tang, P. C. (1938). "The Power Function of the Analysis of Variance Tests with Tables and Illustrations of Their Use". Statistical Research Memoirs.
University of London: Department of statistics. Vol. II, p. 126-157. / --:A. 3 /

Thornett, M. L. (1982). "The Role of Randomization in Model-Based Inference". Australian Journal of Statistics, Vol. 24, p. 137-145. / 138-140:21, 119 /

Tiku, M. L. (1967). "Tables of the Power of the F-test". The Journal of the American Statistical Association, Vol. 62, p. 525-534. / --:A. 3 /

Verrill, Steve. (1993). "Predictor Sort Sampling, Tight T's and the Analysis of Covariance". The Journal of the American Statistical Association, Vol. 88, p. 119-124. / --:116 / 119:116 /

Warner, S. L. (1965). "Randomized Response: A Survey Technique for Eliminating Evasive Answer Bias". The Journal of the American Statistical Institute, Vo1. 60, p. 66-69. / --:104 /

Weisberg, Sanford (1980), Applied Linear Regression. Wiley and Sons, New York, p. 88-89. / 89:44 /

Welch, B. L. (1937). "On the z-Test in Randomized Blocks and Latin Squares". Biometrika, Vol. 29, p. 21-52. / --:125, 224, 227/22-23:139/47-48:164, 225/

Welch, William. J. (1990). "Construction of Permutation Tests." The Journal of the American Statistical Association, Vol. 85, p. 693-698.
/ 693:168 /
White, Robert F. (1975). "Randomization and the Analysis of Variance". Biometrics, Vol. 31, p. 555-571. / --:149 /

Wibker, E. A., R. B. Howe, and J. D. Gilbert. (1979). "Explicit Solutions to the Reverse Order Law \((A B)^{+}=B_{m r}^{-} A_{r}^{-} "\) Linear Algebra and its Applications, Vol. 25, p. 107-114. / 112:84,85 / 109:86 /

Wildt, Albert R. and Olli Ahtola. (1978). Analysis of Covariance. Beverly Hills, Calif. Sage Publications. p. 58-69.
/ 58-69:11 /
Wilk, M. B. (1955). "The Randomization Analysis of a Generalized Randomized Block Design". Biometrika, Vol. 42, p. 70-79.
/ 70,71:124, 125, 126 / 72:128, 133, 135 / / 78-79:169 /

Wilk, M. B. (1957). "Non-Additives in a Latin Square Design". The Journal of the American Statistical Society, Vol. 52, p. 218-236. / 202:8 / 224:124 /

Wilk, M. B. and Oscar Kempthorne. (1955). "Fixed, Mixed, and Random Models". The Journal of the American Statistical Society, Vol. 52, p. 1144-1167. / 1148:124 / 1149:134 / 1150:135 /

Wu, Chien-Fu. (1981A). "Iterative Construction of Nearly Balanced Assignments 1: Categorical Covariates". Technometrics, Vol. 23, p. 37-44. /--:116 /

Wu, Chien-Fu. (1981B). "On the Robustness and Efficiency of Some Randomized Designs". The Annals of
Statistics, Vol. 9, p. 1168-1177. / --:120 /

Yates, F. (1975). "The Early History of Experimental Designs". In A Survey of Statistical Design and Linear Models, Jagdish N. Srivastava, Ed., New York:North-Holland. p. 581-592. / 586:119/

Zhou, Hong-Hao, Richard P. Koshakji, David J. Silberstein, Grant R. Wilkinson, and Alastair J. J. Wood. (1989). "Racial Differences in Drug Response". The New England Journal of Medicine, Vol. 320, p. 565-570. Related editorial on p. 588-589, and letters in Vol. 321, p. 257-259. / --:236 / See also Good, Phillip above.

Zielke, G. (1978). "Zum Gistorischen entwicklung von verallgemeinerten inversen Matrizen". Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, Vol 27, p. 109-118. (Bibliography of g-inverses.)
/ --:91 /
Zuskind, G. and Oscar Kempthorne. (1960). "Treatment Errors in Comparative Experiments". Aeronautical Research Laboratory, Technical Note 59-19, Wright Patterson Air Force Base, Ohio. WADC Tech. / --:232 /

Zuskind, G., Oscar Kempthorne, R. F. White, E. E. Dayhoff, and T. E. Doerfler. (1964). "Research on Analysis of Variance and Related Topics". Aerospace Research Laboratories, ARL 64-193. Wright-Patterson Air Force Base, Ohio. / --:232 / 129:75 / 139-141:27/171-175:168 /

Zuskind, G., Oscar Kempthorne, F. B. Martin, E. J. Carney, and E. N. West. (1968). "Linear Models and Analysis of Variance Research Procedures". Aerospace Research Laboratories, ARL 68-0119. Wright-Patterson Air Force Base, Ohio. See also Kempthorne, Zuskind, et al. (1967). / --:232, 318 / 11:318 /

\section*{APPENDICES}
APPENDIX A - DISTRIBUTIONS. ..... 381
A. 1 Multivariate Normal ..... 382
A. 2 Noncentral Chi Squared ..... 382
A. 3 Noncentral \(F\) ..... 383
A. 4 Noncentral Beta ..... 384
APPENDIX B - The R(•|•) Notation. ..... 385
APPENDIX C - SUMS TO PROJECTORS VIA KRONECKER PRODUCTS ..... 386
APPENDIX D - SUMMARY OF CONTRIBUTIONS
TO THE DISCIPLINE. ..... 387
APPENDIX E - COLLECTED SUGGESTED EXTENSIONS ..... 389
APPENDIX F - LISTING OF COMPUTER PROGRAMS ..... 394
F.l Function of Programs ..... 394
F. 2 Flow of Programs and Data Sets. ..... 395
F. 3 Program meu ..... 396
F. 4 Program meuxti ..... 401
F. 5 Program cterms. ..... 408
F. 6 Program glm ..... 424
F. 7 Program noncent ..... 436
F. 8 Program testf ..... 442
F.9 Program snormal ..... 445
F. 10 Program probp ..... 448
APPENDIX G - OTHER TOPICS ..... 463
APPENDIX H - ERRATA ..... 469

\section*{APPENDIX A}

\section*{DISTRIBUTIONS AND THEIR MOMENTS}

\section*{A. 1 The Multivariate Normal Distribution}

The notation indicating that the random vector \(I\) has the multivariate normal distribution, with mean \(\mathbf{E}_{\mathrm{F}}\), and variance-covariance matrix \(v\), is
\[
\mathbf{I} \sim N_{n}\left(X_{F}, \psi\right) \text {, with }
\]

I \(n \times 1, \mathrm{x} \mathrm{n} \times \mathrm{p}, \mathrm{F} \mathrm{p} \times 1\), \(\psi\) n \(x \mathrm{n}\) and positive definite.
Unless otherwise stated \(\psi=\pi \sigma^{2}\).
The density function is
\[
\begin{aligned}
& f\left(x_{1}, x_{2}, x_{3}, \cdots, x_{n} \mid \Sigma_{F}, V\right) \\
= & (2 \pi)^{-1 /(2 n)}|\psi|^{-1 / 2} \exp \left\{-(1 / 2)\left[\bar{I}-\Sigma_{F}\right] \psi^{-1}\left[\bar{x}-x_{F}\right]\right\} .
\end{aligned}
\]

The expectation and variance are
\[
E_{N}(\bar{I})=X_{F}, \quad \operatorname{Var}_{N}(\bar{I})=\psi .
\]

The second central moment is \(\psi-\left(X_{F}\right)\left(X_{F}\right)\); all other moments are zero. See Searle [1971, p. 43] for a development of distributions 1-3. For \(v\) singular see Searle [1971 p. 66-77].
A. 2 The Non-Central \(x^{2}\) Distribution

For \(I^{\sim} N\left(X_{F}, V\right)\) and \(\mathbb{N} \|\) idempotent of rank \(n\), \(\|=F \cdot \boldsymbol{f r}\) has the non-central \(x^{2}\) distribution, with degrees of freedom \(n\), and non-centrality parameter
\[
\lambda=(1 / 2)\left(\bar{X}_{\bar{F}}\right) \cdot \mathcal{A}_{\mathcal{H}}\left(\bar{X}_{\bar{F}}\right) .
\]

Typically, \(\mathbb{A}\) is a projector matrix divided by \(c^{2}\), such as \(X\left(X^{\prime} X\right) X^{\prime} / \sigma^{2}\), as in Searle. Also, \(\psi=\mathbb{I} c^{2}\), making \(\mathbb{A} V\) idempotent. The density function is

\[
=\sum_{j}^{\infty} 0\left\{\frac{e^{-\lambda} \alpha^{j}}{j!} \frac{u^{(1 / 2) n+j-1}}{2^{(1 / 2) n+j}} \frac{e^{-(1 / 2) u}}{\Gamma[(1 / 2) n+j]}\right]
\]
with \(u>0, n>0\), and \(2 \underline{2}\).
When \(\lambda=0\), the summation is dropped. When \(\lambda \neq 0\), the non-central \(x^{2}\) is a weighted sum of central \(x^{2}\) density functions with a poisson weight factor. The gamma function, \(\Gamma[a]\), is
\(\Gamma[a]= \begin{cases}(a-1)! & a=\text { integer } \\ \frac{\left[1 \cdot 3 \cdot 5, \cdots,(2 a-1) \pi^{-(1 / 2)}\right.}{2 / n} & a=\text { integer }+(1 / 2) \\ \int_{a}^{\infty} x^{a-1} e^{-x} d x & a>0, \text { real }\end{cases}\)
See Mood, Graybill, Boas [1974], p. 534.
The \(\chi^{2}\) mean is \(E_{\chi^{2}}(U)=n+22\); the variance is \(\operatorname{Var}_{\chi^{2}}(U)=2 n+8 \%\). Moments two through four are
\[
\begin{aligned}
& m_{2}=2(n+2 \lambda), \quad m_{3}=8(n+3 \lambda), \\
& m_{4}=48(n+4 \lambda)+4(n+2 \lambda)^{2} .
\end{aligned}
\]
[Kotz and Johnson, Vol. 6, p. 277.]

\section*{A. 3 The Non-Central \(F\) Distribution}

For \(U_{n} \sim x^{2}(n, 2)\) and \(U_{d} \sim x^{2}(d)\), and \(U_{n}\) and \(U_{d}\) statistically independent, the ratio
\[
F=\frac{U_{n} / n}{U_{d} / d} \sim F(n, d, \lambda)
\]
has the non-central \(F\) distribution. The density function is
\[
\left.\left.\begin{array}{rl}
f(F)= & \sum_{j=0}^{\infty}\left\{\frac{e^{-\lambda} \lambda^{j}}{j!} n^{(1 / 2) n+j} \quad d^{(1 / 2) d} \quad F(1 / 2) n+j-1\right. \\
& \div[(d+n F)(1 / 2)(n+d)+k \\
B[(1 / 2) n+j,(1 / 2) d]
\end{array}\right]\right\},
\]
with \(F \underline{2} 0, \mathrm{n} \underline{1}, \mathrm{~d} \underline{1}, 2 \underline{2} 0\), and \(B[a, b]=\Gamma(a) \Gamma(b) / \Gamma(a+b)\). When \(\lambda=0\), the summation is dropped. The mean is \(E_{F}(F)=[d /(d-2)][1+2 \lambda / n]\) for \(d>2\), and is undefined otherwise. The variance is
\[
\operatorname{var}_{F}(F)= \begin{cases}\frac{2 d^{2}}{n^{2}(d-2)}\left[\frac{(n+2 \lambda)^{2}}{(d-2)(d-4)}+\frac{n+4 \lambda}{d-4}\right] & d>4 \\ \text { undefined } & d \leqq 4\end{cases}
\]

Other authors, SAS [1990, p. 578], Seber [1980, p. 5], and Pearson and Hartley [1976, p. 64] preface \(\lambda\) in the density function with (1/2), thereby eliminating the need to repeat the (1/2) when equating the non-centrality parameter to a quadratic form.

Pearson and Hartley [1976, p. 66-77] show examples of \(\lambda\) for one- and two-way classifications. They include and show use of the Tang [1938] and Tiku [1967] charts of the power function for various values of \(\alpha, n, d\), and a function of 2. Morrison [1983, p. 127-131] has an example of the assumptions needed to use the charts to determine sample size. Duncan [1957] has graphs of
operating characteristics curves; Feldt and Mahnmoud [1958] have charts for determining the sample size needed to detect alternative values of the null hypothesis.
Scheffé [1959, p. 42 and 446-454] presents the Fox power charts. Both sets of charts are easier to read in certain regions. We are unable to find the Lehmer charts promised in the note ending page 42 of Scheffé. Mann [1949, p. 74-75] discusses Hsu's [1941] result on the power of alternative tests.

\section*{A. 4 The Non-central Beta Distribution}

The transformation \(R=(n F) /(n F+d)\) yields the non-central Beta probability density function, \(\mathrm{f}(\mathrm{R} \mid \mathrm{n}, \mathrm{d}, \mathrm{x})\)
\[
=\sum_{j}^{\omega}\left\{\begin{array}{l}
\frac{e^{-\lambda} \lambda^{j}}{j!} R^{(1 / 2) n+j-1} \quad(1-R)(1 / 2) d-1
\end{array}\right.
\]
\[
\div B[(1 / 2) n+j,(1 / 2) d]\}
\]
with \(R \underline{0} 0, \mathrm{n} \underline{\underline{2}} 1, \mathrm{~d} \underline{\geq} 1, \lambda \underline{\geq} 0\), and \(B[a, b]=\Gamma(a) \Gamma(b) / \Gamma(a+b)\).
When \(2=0\), the summation is dropped. The reverse transformation is
\[
F=(d R) /[n(1-R)] .
\]

The value of \(R\) may be obtained directly from the numerator and denominator \(\chi^{2}\) random variables used to compute \(F\), by substitution into the above definition for R. Note that \(R\) equals the coefficient of determination, usually denoted \(R^{2}\).
\[
R=U_{n} /\left[U_{n}+U_{d}\right],
\]
\[
=\frac{\text { Sum of Squares due to the Model }}{\text { Total Sum of Squares }} \text {. }
\]

> Total Sum of Squares

The original derivation of the \(F\)-test used \(R\) [Fisher, 1928, p. 671, distribution C]. Snedecor first used the transformation from \(R\) to \(F\), enabling him to condense the tables of probabilities from those developed for \(z=(1 / 2) \ln [n R /(1-R)]\). See Seber [1980, p. 9 and 35] for this distribution.

The advantage of the \(R\) transformation is that for some experimental designs, the denominator of \(R\) is constant for all randomization, which is not the case for \(F\). Unfortunately, the analysis of covariance has a denominator which changes with each randomization for both \(F\) and \(R\).

\section*{APPENDIX B}

THE R(.|.) NOTATION
The notation \(R(\), , , ...) denotes the reduction in sum of squares due to fitting the model equation containing those terms within the parentheses. The reduction is from the total sum of squares \(\mathrm{I}^{\prime}\) I.

The sum of squares may be partitioned as follows:
\(R(\cdots, \cdots)=R(\cdot, \cdots, \cdots 1 \cdots, \cdots)+R(\cdot, \cdots, \cdots)\),
where terms in the last \(R(\cdot)\) are those following the bar ( \(\|\) ) in the preceding term, \(R(\cdot \mid \cdot)\). The term \(R(\cdot \mid \cdot)\) is the further reduction in the sum of squares achieved by adding to the model equation those terms to the left of the bar after the model equation already contains those terms to the right of the bar. One reads the \(R(\cdot \mid \cdot)\) notation as "the reduction in sums of squares due to adding the terms ... (those to the left of the bar) to the model equation which already contains the terms ... (those to the right of the bar)". The terms to the right of the bar comprise the "reduced" model equation. When the terms to the left of the bar are added to those on the right of the bar, the combined terms comprise the "full" model equation.

In all cases \(R(\cdot, \cdot, \cdot \cdot)\) has the form

The \(\bar{Z}\) matrix contains columns for those terms indicated within the parentheses of \(R(\cdot, \cdot, \cdot \cdot)\). For example, the \(E\) matrix corresponding to \(R(\mu, b)\) is \(\left[X_{\mu} \mid E_{b}\right]\), and the \(E\) corresponding to \(R(\mu, b, F)\) is \(\left[\Sigma_{\mu}\left|\mathbb{E}_{b}\right| \mathbb{Z}\right]\). (See Searle, 1971, pages 246-249 for a more complete discussion of this notation. Searle [1987, p. 28-29] introduces a different reduction notation, \(\mathbb{F}(\cdot \mid \cdot)\), not to be confused with the above \(\mathrm{R}\left(\left.\cdot\right|^{\prime}\right)\).

\section*{APPENDIX C}

SUMMATION SUM OF SQUARES TO PROJECTORS

\section*{VIA KRONECKER PRODUCTS}

The \(X\left(X^{\prime} X\right)^{-1} I^{\prime}\) matrix for the block and treatment sum of squares may be generated directly using Kronecker products, denoted as \(\mathbb{Z}\), and using \(\mathbb{I}_{C}\) as the \(\mathrm{c} \times \mathrm{c}\) matrix of ones. The summation notation for the centered sums of squares guides the choice of terms as in the following example. For \(\sum_{i}^{a} \sum_{j}^{b} \sum_{k}^{c} \sum_{i}\left(y_{i} \cdot k \cdot-Y_{i} \ldots\right)^{2}\), \(X\left(X^{\prime} X\right)^{-1} X^{\prime}=\mathbb{I}_{\mathrm{a}} \mathbb{X}(1 / b) \mathbb{I}_{b}\) W \(\left(\mathbb{I}_{C}-(1 / C) I_{C}\right) W(1 / d) \mathbb{I}_{d}\). The subscripts of \(y . .\). and \(\bar{Y} . . .\). determine the form of the term of the Kronecker product as follows:
1. When the same letter subscript appears in
both y.... and \(\bar{y} . . . .\), as for \(i\) above, then use \(I_{a}\).
2. When both \(Y \ldots\) and \(\bar{Y} . .\). have been averaged over the same subscript, as is the case for \(j\), then use ( \(1 / b\) ) \(\pi_{b}\); for 1 use ( \(1 / 1\) ) \(\pi_{1}\).
3. When the subscript letter appears in y....,
but not in \(\bar{y} \ldots .\). as for \(k\) above, then use \(\mathbb{I}_{C}-(1 / C) \mathbb{I}_{C}\).
The subscripts of y.... must augment fastest from right to left in the same order as in the summation expression. A little manipulation will verify these rules.

These rules were developed by Craig Jefferson and the author.

\section*{APPENDIX D}

SUMMARY OF CONTRIBUTIONS TO THE DISCIPLINE
1. Develops a permutation matrix technique to generate randomizations. This technique is more flexible than the \(\Sigma Y_{i j k} s_{i j}{ }_{j}\) method.
2. Recasts the noncentrality parameters into two parts, one changing with each randomization, the other constant for all randomizations. The first contains the the design matrix, which changes with each randomization. The second contains those terms typically not under the control of the experimentor. These terms are constant for all randomizations.
3. Proves that, for certain models, different randomizations will provide identical values for certain estimates, analysis of variance terms, and noncentrality parameters, for experimental unit errors.
4. Describes the clustering and dispersing effect of different types of errors on the values of certain estimates, analysis of variance terms, and noncentrality parameters.
5. Proves a linkage between the noncentrality parameters in the single covariate case, useful in restricting randomizations to those randomizations which avoid low power.
6. Provides an if and only if proof detailing when two matrices, such as design matrices, will have equal projectors, and hence equal sums of squares for a response variable.
7. Develops the probability space for the randomization model, due in the main to Drs. Sahadeb Sarkar and Ignacy Kotlarski.
8. Develops the model equation and probability space for a model combining unit errors and the classical normally distributed random errors.
9. Shows the algebraic relationship between the errors of Dr. Kempthorne and those of Dr. Neyman.
10. Presents a two-stage randomization process which allows unequal selection probabilities, such as restricted randomization, to be easily incorporated into the defining and counting of the number of randomizations assigned nonzero selection probability.
11. Extends the randomization test and power computation to the case of unequal selection probabilities, and defines such under simulation.
12. Makes a modest start in linking the randomization model with concepts of survey sampling.
13. Links the model assumptions with the model equations for the randomized block design with covariates, in both matrix and summation notations.
14. Offers a more accessible presentation of the "Model X".
15. Programs in SAS a method of generating simulated errors which are orthogonal to the covariate.
16. Develops a computer-generated \(F\)-distribution analogue of normal probability paper, and other graphic means of analyzing numerical simulation results.
17. Briefly reviews the early assumptions as to the characteristics of the error term in a regression model equation.
18. Lists accessible literature on the analysis of covariance, the noncentrality parameter, generalized inverses, experimental unit and experimental unit-treatment interaction errors, exchangeability, and limiting theorems in the analysis of covariance.
19. Gears its presentation to rapidly introduce one familiar with the general linear model to the terminology and topics of the randomization model. Concepts from diverse sources are logically organized and presented in a uniform notation. Frequent internal and external references are provided.

\section*{APPENDIX E}

\section*{COLLECTED SUGGESTED EXTENSIONS}

This work has suggested a variety of extensions, some of which may appeal to those with interests and strengths in matrix algebra, SAS computer programming, survey sampling, limit theorems, etc. Some are suitable for a statistics major's senior paper, others require course work taken at the master's level, and others are suitable for doctoral theses. This dissertation will help beginners grasp the terminology and issues of research into the randomization model. Their progress, and the progress of the discipline, will be aided by a logical sequence of problems to solve. Such a sequence will span several students and years. A researcher who remains current in this area of research will need to alter the sequence to fit developments and available talent and interests. This author believes such an effort would be fruitful.
I. First Steps - Generation of Errors
1. Resolve the role of the singular normal distribution (singular \(W\) ) in the case of normal errors forced to sum to zero for each randomization. Begin the literature review with the sources in Searle [1971, p. 691. Construct a set of normally distributed random errors which are standardized to variance 30 , but not to mean zero within each randomization. Test this set of errors with the F -distribution probability plots of Section 4.6.1, (p. 290). This may isolate the offdiagonality seen for ( n ) in Graph 4.6.1, (p. 295) to the forcing of a zero sum of errors within each randomization. Examine \(v\) alternative to that of p. 317. Examine the difference of (4.6.1), (p. 317), for patterns within g-groups or elsewhere.
2. Once the case for the normally distributed error is resolved, proceed to the experimental unit error case, again examining alternative \(\cup\). Possibly, such "sum to zero" errors invalidate use of the singular F-distribution.
3. Discover those conditions on the errors and design matrix which ensure a zero matrix in (4.6.1), (p.318).
4. With a singular \(V\) as the variance-covariance matrix, use generalized least squares to compute the estimates and F-ratios; see Searle [1971], p. 220-223, and if necessary citations found there.
5. Review the question of changing the value of \(\sigma^{2}\) with each randomization for the experimental unittreatment interaction error cases.
6. Consider using two normally distributed random error data sets. The one with mean zero and standard deviation constant in all randomizations would be for comparison with the experimental unit error cases. The second would have its mean and standard deviation in each randomization equal to that of the experimental unit-treatment interaction error case.
7. Review the construction of the unit errors. Examine the implications of forcing each set to be orthogonal to the covariate. See Section 4.2.1, (p. 243).
8. Discover if orthogonality with the covariate can be maintained for experimental unit-treatment interaction errors which also sum to zero over treatments (as these do) and over units within a block (these do not for \(k=4\) ). see section 4.2.2, (p. 248).

\section*{II Further Understanding of the Projectors}
1. Discover the cause(s) of the extreme values of \(\hat{\mathrm{F}}\) for experimental unit error seen in Graph 4.5.3, (p.277).
2. Discover the reason(s) for the constant shifts in the mean \(\hat{\tau}\) for the experimental unit-treatment interaction and normally distributed random error cases as noted in Table 4.4.1, (p. 259).
3. Discover the reason for the multiple observations at points on Graph 4.7.1 for \(\tau_{1}-\hat{\tau}_{1}\) vs Cox's ration two for experimental unit errors, (p. 331); see p. 214.
5. Discover why the means (Table 4.4.1, p. 259) and standard deviations (Table 4.4.2, p. 262) for estimators and sums of squares for the normally distributed random error case are not what normal theory would predict.
6. Disentangle the matrix which is under the experimentor's control from the expressions for the sums of squares as was done for the noncentrality parameters. See Theorems 3.7.10 and 3.7.11, (p. 211-216).
7. Prove the relationships between
(a) the Cox ratios and the noncentrality parameter for the adjusted covariate (see Graph 4.8.3, p. 340), and
(b) balancing on the covariate, g-groups and the serpentine method (see Section 3.2.6, p. 114) and 4.8, p. 335-362). Begin with a clearer understanding of Cox's results.
III. Further Simulations Using this Paper's Model
1. Streamline the computer programs to permit one submission to compute all 12 cases and analyze them. Input would be the six sets of errors, the two values of \(\tau\), and the values of mean, block, and covariate values. Add one or more of the methods of power computation discussed in Section 3.6.5 (p. 176-177). Analysis could resemble Tables 4.4.1, (p. 259), 4.4.2, (p. 263), 482, (p. 361); Graphs 4.5.1, (p. 272), 4.6.1, (p. 295), 4.6.7, (p. 302); and Displays 4.8.7, (p. 350) and 4.8.10, (p. 356). Consider formal tests of the equality of two distributions. The analysis should have the capacity for alternative model equations and assumptions.
2. Investigate the three methods of power computation of Section 3.6.5, (p. 176-177).
3. Examine other values of errors and model equation parameters to obtain typical outcomes of the simulation. Vary the relative magnitude of errors, treatment effects, and covariates, and their variances.
4. Examine the difference in dispersion effects of the experimental unit-treatment interaction and normally distributed random errors. See p. 200.
5. Combine error types. See Sections 3.5, (p. 150) and 4.2.4, (p. 253).
6. Examine the effects of a missing observation, both missing experimental unit and missing treatment. A brief DATA step prior to the PROC GLM step of SAS program glm will do this. Adjust the reading of the glm output to obtain the desired types of sums of squares.
7. Bootstrap the randomization distribution, see p. 133.
IV. Alternative Model Equations - Derivations
1. Repeat the derivations of such Theorems as 2.6.4
- 2.6.22 (p. 48-62), and 3.7.9-3.7.11 (p. 202-214) for:
a) multiple experimental units per treatment per block, \(r>1\).
b) block \(x\) treatment interaction and placement of same when not statistically significant, see Bingham and Fienberg [1982].
c) multiple factors, with and without factor interaction.
d) a covariate which changes with the treatment.
e) multiple covariates, with and without covariate interaction, constant for all treatments and changing with the treatment or with one factor. orthogonality to all covariates will require a new method of generating the error terms.
f) the general linear hypothesis (p. 41).
2. Derive the randomization model with mixed factors. The values of the covariates need to be considered as randomaly sampled from a larger population.
3. Examine comparing model equations via the ratio of their respective noncentrality parameters. Such a ratio cancels the unknown variance term when it is known to be the same for both models. See p. 40.
V. Alternative Model Equations - Simulations
1. With two blocks, add levels of the treatment variable to provide numerator and denominator degrees of freedom sufficient for the existence of the first four moments for the \(F\)-distribution. Compute values for them from the simulation. Construct Pearson curves to compare with the F-distribution. For the cases with nonzero \(\tau\) and/or \(\bar{F}\), the noncentrality parameter changes with each randomization, as will the moments. A method is needed to compare such a set of moments with the single moment supplied by the \(F\)-distribution. The number of randomizations increases rapidly. See p. 265 and Cook [1951B].
2. Examine the robustness to erroneous model equations and variance-covariance matrices of the randomization model, with equal and unequal assignment probabilities. See (3) of Section 3.2.8, p. 120.
VI. Other Concepts
1. Merge concepts from survey sampling and the randomization model. The super-population model (Section 3.5.5, p. 163) appears to allow the experimental unit of the actual experiment to be viewed as a sample from a
larger population (p. 104). See Extensions III. 5 and IV.2.
2. The concept of a strategy (Section 3.4.4, p. 147) permits developing estimators and test statistics tailored to particular sets of selection probabilities, such as those of Section 4.7, (p. 320) and 4.8, (p. 335). See Section 3.4.4, p. 147.
3. Develop the role exchangeability and partial exchangeability play in the randomization model, Section 3.5.6, p. 164). Develop the implications of de Finetti's representation theorem (p. 165).
4. Develop an analysis of covariance analog of the regression technique of analysis of pure error. See p. 198.
5. Consider models which reuse experimental units. The crossover model appears to use randomizations in the same g-group for both (all) experiments. Repeating the same treatment on some units may permit estimation of the magnitude of both types of unit errors.
6. Drop Assumption 10 (p. 158) of independence of randomization and normal distribution. This alters the probability space of (3.5.3), (p. 157).
7. Proving the conjecture concerning Theorem 3.2.1(c), (p. 113-114), may be quite easy.
8. The papers by Roux (p. 137) appear to suggest other simulations and relationships than those herein.
9. Sections 3.8.1-3.8.3 suggests some challenging approaches to finding the randomization expectation of the mean square errors in the analysis of covariance.

\section*{APPENDIX F}

\section*{LISTING OF COMPUTER PROGRAMS}

\section*{F. 1 SUMMARY OF COMPUTER PROGRAMS}
\begin{tabular}{|c|c|c|}
\hline Program & ASCII & Program \\
\hline Name & File & Function \\
\hline & Name & \\
\hline meu & spmeu & Create experimental unit error \\
\hline meuxti & spmeuxti & Create experimental unit - treatment error \\
\hline cterms & spcterms & Generate observed \(\mathbf{Y}\) values for various error terms \\
\hline glm & spglm & Generate estimates and ANOVA terms; produce means, variances, histograms, and plots \\
\hline noncent & spnoncen & Generate noncentrality parameters \\
\hline testf & sptestf & Test F-distribution probability plots \\
\hline snormal & spsnorm & Test for singular normal distribution \\
\hline probp & spprobp & Combine estimates, anova terms, noncentrality parameters, error variances; compute OSL's, generate F-distribution probability plots. \\
\hline cox & spcox & Analyze best and worst cases. \\
\hline gmeans & spgmeans & Display means of estimator by g-group \\
\hline
\end{tabular}

This copy is supplied with a 3.5 inch hard diskette containing the above SAS programs. The ASCII files are on a standard DOS formatted diskette with file names in the second column above.

An IBM catridge containing transportable versions of the SAS data sets and the above SAS programs is available from the author.

\section*{F. 2 Flow of Computer Programs}

```

U13293A.SASPROG.CNTL(MEU)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:12 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSON',
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE'
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD
*
* Program File: sasprog.cnt1(meu)
* Input file(s): none
* Output File(s): sasdata.data(eu_err)
Experimental Unit error with within-block variance equal and not.
Produces error terms -- e (sub 1j).
Type = experimental unit error.
Unique for each experimental unit.
Sums to zero within each block.
Block variance=(block sum of squares)/(block num.of e.u.).
Linearly independent with the vector of covariates.
Number of versions = 2.
1. Block 1 variance EQuals block 2 variance = b var.
Variable: euEQ
2. Block 2 variance is v_ratio times block i variance.
Variable: euNE
The sum of squares as pooled over all blocks is equal in both
versions and equals b_var * NROW(eu) * n_blocks.
%LET n_blocks = 2; *number of blocks ;
%LET b_var = 30; *within-block variance when eq.;
%LET Vratio = 4; *var(block2)/var(block1) when not eq.;
%LET maxx_iter = 100; *maximum number of iterations;
%LET toler = .00000001: *maximum {tan(beta) - tan(betahat)};
*For orthogonality of error and covariate,
* toler should be less than .000 000 1
*For this. max_1ter should be about 100.;

* Values for the slope coefficient and covariates
are defined in data set initial, below.
*;
************* Debug Print Switch Macro and Switches **********;
* Macro for debug printing follows:;
%MACRO db(db_site,db_act);
%IF %UPCASE(\&db_sit}\vec{e})=\mathrm{ TRUE | %UPCASE(\&db_site) = T
%THEN %QUŌTE(\&db_act);
%MEND db;
*

*Debug print switches (dbps\#):
True- or t = on (in upper and/or lower case), anything else = off.;
%LET dbps1 = f ; \#Echo print slope and covariates;
%LET dbps2 = f ; *Un1form random numbers;
%LET dbps3 = f ; *Initial errors and observed y;
%LET dbps4 = f ; *Means and centered data;
%LET dbps5 = f ; *Beta and rotation angle for centered data
%LET dbps6 = f ; *Rotation and trig function values;
%LET dbps7 = f ; *Iteration results;
%LET dbps8 = f ; *Postiteration betahat and eu;
%LET dbps9 = f ; *Postiteration - characteristics of eu;
%LET dbps10=f ; *Adjust to eq and ne block variances;

```
```

 %LET dbpsil= f ; *Final characteristics of eu;
 \#**************** Values of Slope Coefficient and Covariates *******;

* covariate values for the experimental values from the same block.
* Each row is one block, i=1,2....,b.
* Variable beta = covariate slope coefficient.
* Variables (columns) zi, z2,... = covariates, Z(sub ij).
*;
DATA initlal; INPUT block_id beta zi-z4;
* Debug Print option follows: ;
%db(\&dbps1, PUT block_id= beta= z1= z2= z3= z4= ;);
CARDS;
1
;
************* Logic of Program **************************************;
* For block 1, posit a line,
 Y(ij)=beta*Z(ij) = beta*covariate(ij).
 Consider the intercept (=mu+block+treatment) as zero.
 Y values of this line are the error-free superpopulation points.
 They are also the true Y(ij) values without error.
 Construct a vector of initial errors which sum to zero.
 Add the initial errors to the vector of superpopulation points.
 This sum. is the initial observed y vector.
 Until the least squares slope of observed y vs'covariates=beta
 iteratively:
 Center the y vector and covariates about the origin.
 Rotate the observed y until its least squares slope = beta.
 Subtract out the superpopulation y.
 Adjust the new errors to sum to zero.
 Repeat the iteration.
 Adjust the errors to have the desired variances within each block.
 Do this for equal and not equal block variances.

*;
********************* Logic of rotation **************************;

* theta = tan(beta) for centered data.
* Centered theta hat = c_thetah = angle of slope coefficient
of least squares f1t of data centered on origin.
rotate = theta - c_thetah = angle (radians) to rotate data
to obtain proper angle of theta.
Angle of thetahat is smaller than angle of theta.
"Smaller" is less positive or more negative.
+betahat too shallow or -betahat too steep.
Therefore, rotate the data counterclockwise to increase its
slope, betahat value and thetahat value.
theta - thetahat = rotate < 0:
Angle of thetahat is larger than angle of theta.
"Larger" is more positive or less negative.
+betahat too steep or -betahat too shallow.
Therefore, rotate the data clockwise to decrease its
slope, betahat value and thetahat value.
Note, SAS takes sin(neg angle) = - sin(abs(angle)).
*;
PROC IML;
******************* Begin looping through blocks *********************;
START mblock;

```
```

DO block = 1 T0 \&n_blocks;
*move covariates and beta from data set initial into proc iml.;
USE initial; READ NEXT INTO indata;
block_id = indata(| 1, 1:1 |);
beta = indata(| 1, 2:2 |);
z = indata(| 1, 3:6 |); z = SHAPE(z,1,4); z=z4;
*************** Initial error vector (X axis, variable z) ********;
*create vector of random variables.;
eu=\(4,1,0);
eu = uniform(repeat(9284372828, 4, 1));
*It appears impossible to use a variable as the seed.;

* Debug Print options follow: ;
%db(\&dbps2, PRINT "initial random eu" block eu;);
*Make errors sum to zero.;
mean_eu = eu(| : |);
eu = eu - mean_eu;
* Debug Print options follow: ;
%db(\&dbps3, PRINT "centered eu" block mean_eu eu;);
******************** Inftlal observed y-values-******************;
*sup_popy= superpopulation (error-free) values of Y.;
sup_popy = beta*z;
obs_y = sup_popy + eu;
* Debug Print options follow: :
%db(\&dbps3, PRINT "Initial obs_y" block sup_popy eu obs_y ;);
************* Center data about origin of XY pTane ********\overline{******;}
mean_y = obs_y(|): |); cent_y = obs_y - mean_y;
mean_z = z(|): |); cent_z = z = mean_z;
cent_dat = cent y || cent z;
* Debug Priñt options follow: ;
%db(\&dbps4, PRINT block obs_y mean_y z mean_z cent_dat;);
************* Compute initlal betahat for centered data **********;
c_zpart = INV(cent_z**cent_z)*cent_z*;
c_betah = c zpart*Öbs_y; - *Beta hat for centered data;
*The centerēd data gives beta=tan(angle of l.sq. line.);
*and centered theta hat. theta = angle in radians.;
theta = ATAN(beta); C_thetah = ATAN(c_betah);
rotate = theta - c_thetah; *\overline{radians need to rotate.;}
s_rotate = sin(rotate); crotate = cos(rotate);
%db(\&dbps5. PRINT block c_betah theta c_thetah:):
%db(\&dbps6, PRINT block rötate s_rotate c_rotate;);
********************* Begin data rotation *****苂******************;
1ter = 0;
START mrotate;
DO WHILE (ABS(rotate) > \&toler \& iter < \&max_iter);
cent_y = (cent_dat * (c_rotate // s_rotate))
******* Reset errors to sum to zero *****************************;
eu = cent_y - sup_popy;
mean_eu = eu(| : T);
eu = eu - mean_eu;
******* Recompute centered y vector ****************************;
obs_y = sup_popy + eu;
mean_y = obs_y({: 1);
cent_y = obs_y - mean_y;
cent_dat = cēnt_y| cént_z;
******* \overline{Recompute centered beचta hat and theta ******************;}
c_betah = c_zpart*cent_y; *was obs_y;
c_thetah = \
rotate = theta - \overline{c thetah; *radians needed to rotate.;}
s_rotate = sin(rotate); c_rotate = cos(rotate);
1Fer = iter + 1;
* Debug Print options follow: ;
%db(\&dbps7, PRINT block toler \&max_1ter 1ter
beta c_betah theta c thetah rotate;);
****************** Return to top of while loop ******************;
END; FINISH; RUN mrotate;

```
```

 ********************* Iteration for one block complete ************;
 *return post-iteration observed y values to original position.;
 *obtain post-iteration betahat.;
 obs y = obs y + sup popy(| : |); *original eu had mean=0.;
 betahat = inv(z&*z)*z&*obs_y;
 eu= obs_y - sup_popy;
 * Debug Print options follow: :
%db(\&dbps8, PRINT "postiteration" block tter sum_eu
beta c betah betahat eu;);
************ Report characteristics of post-iteration {eu ********;
mean_eu = eu(| : |);
eu = eu - mean eu
sum_eu = eu(|-: |) * Nrow(eu);
var eu = eu(| \#\# |) / NROW(eu); *mean = zero;
orthog = eu\#*z;
* Debug Print options follow:
%db(\&dbps9, PRINT "postiter " block iter rotate betahat eu
sum_eu var_eu orthog:);
***************** Adjust eu to desired varlances ****************;
eu_eq = SQRT(\&b_var / var_eu) \# eu;
*För not equal errors, ob\overline{taln total sum of squares for equal}
varlances in all blocks. Divide into v_ratio + i parts.
Multiply block }1\mathrm{ by 1 part and block 2 by v_ratio parts.
Divide by existing block variance.
Square root the above. Multiply by existing eu.;
IF block = 1 THEN eu_ne = SQRT(
\&b_var * NROW(eu) * \&n_blocks / (\&v_rat.to +1) / NROW(eu)
/ var_eu)- " eu;
IF block = 2 THEN eu ne = SORT(
\&b_var * NROW(eu) * \&n_blocks / (\&v_ratio +1) / NROW(eu)
* \&
*Compute final observed y ;
obs_yeq = sup_popy + eu_eq;
obs yne = sup_popy + eu_ne;
* Debug Print options follow:;
%db(\&dbpsi0, PRINT "final eq'\& ne"
eu_eq obs_yeq sup_popy obs_yne eu_ne ;);
******** Report C̄haracteristics of final eu_eq-and eu_ne **********;
betah_eq= INV(z**z)*z\&*obs_yeq;
mean_\overline{eq = eu_eq(| : |);}
eu = eu_eq - mean_eq;
sum_eq-}= eu_eq([-: |) * NROW(eu_eq);
var_eq = eu_eq(| \#\# |) / NROW(eu_eq); *mean = zero:
orthogeq = eu_eq\&*z;
betah ne= INV(z\&*z)*z\&*obs yne;
mean_ne = eu_ne(| : |);
eu =- eu_ne --mean_ne;
sum_ne = eu_ne(|: |) * NROW(eu_ne);
var_ne = eu_ne(|\#\# |) / NROW(eu__ne); *mean = zero;
orthogne = \overline{eu ne\&*z;}
* Debug Print options follow: ;
%db(\&dbps11, PRINT "char. of final eu"
block iter sum_eq var_eq orthogeq betah_eq
sum_ne var_ne orthogne betah_ne ;);
************* Move errors to output file one e.u. per row **********;
plot = (DO(1, NROW(z),1))\&; *DO y1elds a row vector;
b_num = J(4,1,1) \# block;
IF}\mathrm{ block = i then
CREATE eu_err
VAR{ b_num plot z eu_eq eu_ne sup_popy obs_yeq obs_yne };
APPEND;
********************** End of One Block ******************************;
END: FINISH; RUN mblock;
CLOSE eu_err:

```
*
```

********************** End of All Blocks ****************************;
RUN;
*
************** Label and Print Data Set eu__err ***********************;
DATA eu_err; SET eu_err;
covar = z; block = b num; drop z b_num;
IF plot = 1 THEN plabel = 'A'; *for graphic output;
IF plot = 2 THEN plabel = 'B':
IF plot = 3 THEN plabel = 'C':
IF plot = 4 THEN plabel = 'D':
LABEL block= 'block'
plot = 'experimental unit'
covar ='covariate'
eu_eq ='e.u. error var-eq'
eu_ne ='e.u. error var-ne'
sup_popy='1st superpopulation y'
obs_yeq ='obs. y var-eq'
obs_yne ='obs. y var-ne'
plabel = 'plot ld label'
;
PROC PRINT DATA=eu err:
TITLE{ 'Experimental Unit Errors for cases: ';
TITLE2 '(a) block variances.are equal and';
TITLE3 '(b) block variance of block 2 is 4 times that of block 1';
************** Plot Data for Visual Examination ************************;
PROC PLOT DATA=eu_err UNIFORM; BY block;
PLOT sup_popy * covar = plabel
obs_yeq * covar ='E'
obs yne * covar ='N'
/ OVERLAY HPOS=50 HAXIS=0 TO 19 BY 1 HREF=0.0 VREF=0.0:
PLOT eu_eq * covar ='E' eu_ne * covar ='N'
/ OVERLAY HPOS=50 HAXIS=0 TO 19 BY 1 VREF=0.0;
PROC PLOT DATA=eU_err UNIFORM;
PLOT sup_popy * covar = plabel
obs_yeq * covar ='E'
obs_yne * covar ='N'
/ OVERLAY HPOS =50 HAXIS=0 TO 19 BY 1 HREF=0.0 VREF=0.0;
PLOT eu_eq * covar ='E' eu_ne * covar ='N'
/ OVERLAY HPOS=50 HAXIS=0 TO 19 BY 1 VREF=0.O;
*
************** Move temporary data to permanent SAS save file. *******;
DATA sasdata.eu_err; SET eu_err:
RUN:

```
```

U13293A.SASPROG.CNTL(MEUXTI)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:14 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(900i) CLASS(E)
//U13293AA JOB (*).'ROBERT WILSON'
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLAASS = X,CLASS=2
/*JOBPARM RODM=R,FORMS=9001,COPIES=1
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE'
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD
*
* Program File: sasprog.cntl(meuxti)
* Input File(s): none
* Output File(s): sasdata.data(euti_err)
Experimental Unit-treatment interaction error
with within-block variances equal and not.
* Produces error terms -- e (sub ij)
Internal to this and program meu, both error types are named eu.
Type = experimental unit - treatment interaction error.
Unique for each experimental unit.
Sums to zero over each plot, for each treatment.
Sums to near zero over each treatment, for each plot
Errors for last treatment are -(sum of errors for rest).
Block variance=(block sum of squares)/(block num.of e.u.).
Linearly independent with the vector of covariates.
Number of versions = 2.
1. Block 1 variance EQuals block 2 variance = b_var.
Variable: euEQ for each treatment
2. Block 2 variance is v_ratio times block 1 variance.
Variable: euNE for each treatment
The sum of squares as pooled over all blocks is equal in both
versions and equals b_var * NROW(eu) * n_blocks.
%LET n_blocks = 2; *number of blocks ;
%LET n_treats = 4; *number of treatments;
%LET b_var = 30; *within-block variance when eq.;
%LET V_ratio = 4; *Var(block2)/var(block1) when not eq.;
%LET max_1ter = 100; *maximum number of iterations;
%LET tol\overline{er = .00000001; *maximum {tan(beta) - tan(betahat)};}
*For orthogonality of error and covariate,
*toler should be less than .000 000 1
*For this, max_iter should be about 100.;
*
Values for the slope coefficient and covariates
are defined in data set initial, below.
*;
************* Debug Print Switch Macro and Switches **********;
* Macro for debug printing follows:;
%MACRO db(db_site,db_act);
%IF %UPCASE(\&db_sit\overline{e})= TRUE | |UPCASE(\&db_site) = T
%THEN %QUD̄TE (\&db_act);
%MEND db;
*Debug print switches (abps\#):
True or t m on (in upper and/or lower case), anything else = off.;
%LET dbpsi = false ; *Echo print slope and covariates;
%LET dbps2 =f ; *Uniform random numbers;
%LET dbps3 = f ; *Initial errors and observed y;
%LET dbps4 = f ; *Means and centered data;
%LET dbps5 = f ; *Beta and rotation angle for centered data;

```

```

*

Angle of thetahat is larger than angle of theta.
"Larger" is more positive or less negative.
+betahat too steep or -betahat too shallow.
Therefore, rotate the data clockwise to decrease its
slope, betahat value and thetahat value.
*
*
*;
PROC IML;
******************* Begin looping through blocks *********************;
START mblock;
DO block = 1 TO \&n_blocks;
*Create column vector of block id number.;
b_num = J(4,1,1) \# block;
*initialize totals of error vectors;
t_eu_eq = J(4,1,0); t_eu_ne = J(4,1,0);
*move covariates and beta from data set initial into proc iml.;
USE initial; READ NEXT INTO indata;
block id = indata(| 1, 1:1 |);
beta = indata(| 1, 2:2 |);
z = Indata(| 1, 3:6 |); z = SHAPE(z,1,4); z=z$;
 *Create column vector of plot id numbers.;
 plot = (DO(1, NROW(z),1))$; *DO yields a row vector;
****************** Begin looping through treatments ****************;
START mtreat;
DO treat = 1 to \&n_treats-1;
*Create column vector of treatment id numbers.;
t_num = J(4,1,1) \# treat;
\#*********** Initial error vector (X axis, variable z) ********;
*create vector of random variables.
* eu=J(4,1,0);
eu = uniform(repeat(5382743916, 4, i));
*It appears impossible to use a variable as the seed.;

* Debug Print options follow: ;
%db(\&dbps2, PRINT "initial random eu" block eu;);
*Make errors sum to zero.;
mean_eu = eu(| : |);
eu = eu - mean_eu;
* Debug Print options follow: :
%db(\&dbps3, PRINT "centered eu" block mean_eu eu;);
******************** Inftlal observed y-values-******************;
*sup popy= superpopulation (error-free) values of Y.;
sup_popy = beta*z;
obs_y = sup_popy + eu;
* Debug \overline{Print options follow:}
%db(\&dbps3, PRINT "initial obs_y" block sup_popy eu obs_y ;);
************* Center data about origin of XY plane **************;
mean_y = obs_y(| : |); cent_y = obs_y - mean_y;
mean_z = z(| |: |); cent_z = z = mean_z;
cent_dat = cent_y| cent_z;
* Debug Priñt options follow: ;
%db(\&dbps4, PRINT block obs_y mean_y z mean_z cent_dat;);
************* Compute initial betaha\overline{t}}\mathrm{ for centered data-*********;
c zpart = INV(cent_z$*cent_z)*cent z$;
c_betah = c_zpart*obs_y; *Beta hat for centered data;
*The centered data gives beta=tan(angle of 1.sq. line.);
*and centered theta hat. theta = angle in radians.;
theta = ATAN(beta); c_thetah = ATAN(c_betah);
rotate = theta - c thetah; *radians need to rotate.;
s_rotate = sin(rotate); c_rotate = cos(rotate);
%db(\&dbps5, PRINT block c_betah theta c_thetah;);
%ob(\&odbps6, PRINT block rotate s_rotate crrotate;);
******************** Begin data rotation *****\overline{******************;}
iter = 0;
START mrotate:

```
```

 DO WHILE (ABS(rotate) > &toler & iter < &max_iter);
 cent_y = (cent_dat * (c_rotate // s_rotate))
 ******* Reset errors to sum to zero ****************************
 eu = cent_y - sup_popy:
 mean_eu = eu(| : T);
 eu = eu - mean_eu;
 ******* Recompute centered y vector ******************************;
obs_y = sup_popy + eu;
mean_y = obs_y(| : |):
cent_y = obs_y - mean_y;
cent_dat = cent_y| cent_z;
\#****** \vec{Recompute centered beta hat and theta *******************;}
c_betah = c_zpart*cent_y; *was obs_y;
c_thetah = \overline{ATAN(c_betā̆);}
rotate = theta - c_thetah; *radians needed to rotate.;
s_rotate = sin(rotate); c_rotate = cos(rotate);
1Ter = 1ter + 1;

* Debug Print options follow: ;
%db(\&dbps7, PRINT block toler \&max_1ter iter
beta c_betah theta c_thetah rotate;);
***************** Return to top of while loop *****************;
END; FINISH; RUN mrotate;
********************** Iteration for one error complete *************;|
*return post-iteration observed y values to original position.;
*obtain post-iteration betahat.;
obs_y = obs_y + sup_popy(|: |): *original eu had mean=0.;
betahat = inv(z\&*z)*z\&*obs_y;
eu= obs_y - sup_popy;
* Debug Print options follow: ;
%db(\&dbps8, PRINT "postiteration" block iter sum_eu
beta c_betah betahat eu;);
************ Report characteristics of post-iteration eu ********;
mean_eu = eu(| : |);
eu = eu - mean_eu;
sum_eu = eu(1-: |)* NROW(eu):
var_eu = eu(| /H|| / NROW(eu); *mean = zero;
orthog = eut*z;
* Debug Print options follow: ;
%db(\&dbps9, PRINT "postiter " block iter rotate betahat eu
sum_eu var_eu orthog;);
****************** Adjust eu to desired variances ******************;
eu eq = SQRT(\&b_var / var eu) \# eu;
*FÖr not equal errors, ob\overline{tain total sum of squares for equal}
variances in all blocks. Divide into v_ratio + i parts.
Multiply block 1 by 1 part and block 2 by v_ratio parts.
Divide by existing block variance.
Square root the above. Multiply by existing eu.:
IF block = 1 THEN eu_ne = SQRT(
\&b_var *.NROW(eu) * \&n_blocks / (\&v_ratlo +1) / NROW(eu)
/ var_eu)}\mp@subsup{}{}{\prime}\#\mathrm{ eu;
IF block = 2 THEN eu ne = SQRT(
\&b_var * NROW(eu) \# \&n_blocks / (\&v_ratio +1) / NROW(eu)
* \overline{\&v_ratio / var_eu J \# eu;}
*Compute final observed y ;
obs_yeq = sup_popy + eu_eq;
obs_yne = sup_popy + eu_ne;
* Debug \overline{Print options follow: ;}
%db(\&dbps10, PRINT "final eq \& ne"
eu_eq obs_yeq sup_popy obs_yne eu_ne ;);
******** Report Characteristics of final eu_eq_and eu_ñe *********;
betah_eq= INV(z\&*z)*z\&*obs_yeq;
mean_eq = eu_eq(| : |);
eu =-eu_eq --mean_eq;
sum_eq = eu_eq(}\mp@subsup{|}{}{-}:|)*NNROW(eu_eq)
var_eq = eu_eq(| \#\#|) / NROW(eu__eq); *mean = zero:

```
```

 orthogeq = eu_eq4*z;
 betah_ne= INV(z&*z)*z&*obs_yne;
 mean_ne = eu_ne(|: |);
 eu = eu_ne - mean_ne;
 sum_ne = eu_ne(|: |) * NROW(eu_ne);
 var_ne = eu_ne(| ##|)/ NROW(eu__ne); *mean = zero;
 orthogne = eu ne$*z;
 * Debug Print optioñs follow: ;
%db(\&dbpsi1,PRINT "char. of final eu"
block treat iter sum_eq var_eq orthogeq betah_eq
sum_\overline{ne var_ñe orthogne betah_ñe;);}
************* Move errors to output file one e.u. per row *********;
IF block = 1 \& treat = 1 then
CREATE euti err
VAR{b_num- plot t_num z .eu_eq eu_ne sup_popy obs_yeq obs_yne };
APPEND:
t_eu_eq = t_eu_eq + eu_eq; *Cumulative totals for last treatment.;
t_eu_ne = t_eu_ne + eu_ne;

```

```

 END; FINISH; RUN mtreat;
 **************** End of All but Last Treatment ***********************;
*********************** Create errors for final treatment *************;
t_num = U(4,1,1) \# treat;
eu__eq = - t_eu_eq; *mean already equals zero;
eu_ne = - t_eu_ne;
var्r_eq = eū_eq̆(| \#\# |) / NROW(eu_eq); *mean = zero;
var_ne = eu_ne(| \#\# |) / NROW(eu_ne); *mean = zero;

* Debug-Print options follow: ;
%db(\&dbps12, PRINT "initial last treat"
block treat eu_eq var_eq eu_ne var_ne;);
***************** Adjust eu To desi\overline{red variances *****************;}
eu_eq = SQRT(\&b_var / var_eq) \# eu_eq;
If block = 1 THEN eu_ne =-SQRT(
\&b_var * NROW(eu) * \&n_blocks / (\&v_ratio +1) / NROW(eu)
/ var_ne)}\#\mathrm{ (eu_ne;
If block = 2 THEN eu_ne = SQRT(
\&b_var * NROW(eu) * \&n_blocks / (\&v_ratio +1) / NROW(eu)
* \&v_ratio / var_ne J \# eu_ne;
*Compute final observed y for last treatment;
obs_yeq = sup_popy + eu_eq;
obs_yne = sup_popy + eu_ne;
***** \overline{Report characteristićs of errors for final treatment *****;}
betah_eq= INV(z**z)*z**obs_yeq;
mean_\overline{eq = eu_eq(:);}
sum_eq = eu_eq(:);*NROW(eu_eq);
var_eq = eu_eq(| \#n|)/NROW(eu_eq); *mean = zero;
orth̆ogeq = \overline{eu_eq\&*z;}
betan_ne= INV(z\&*z)*z\&*obs_yne;
mean_ne = eu_ne(|): |);
sum_ñe = eu_ne(; 1);*NROW(eu_ne);
var_ne = eu_ne(| \#\# |})/\mathrm{ NROW(eü_ne); *mean = zero;
orthogne = \overline{eu_ne\&*z;}
* Debug Print options follow: :
%db(\&dbpsi3, PRINT "final eu-last treat"
block treat iter eu_eq eu_ne ;) ;
* Debug Print options folTow: ;
%db(\&dbps14, PRINT "char. of final eu-last treat"
block treat iter sum_eq var_eq orthogeq betah_eq
APPEND;
********************* End Of One Block ******************************;
END; FINISH; RUN mblock;

```
```

*********************** End of All Blocks *****************************;
CLOSE eutI_err;
*
RUN; *End of creation of errors.;

* exit proc lml;
************** Label and Print Data Set euti_err **********************;
TITLE\ 'Experimental Un\t x Treatment Interaction Errors';
DATA euti_err; SET eut1__err:
covar =-z; block = b_num; treat = t_num; drop z b_num t_num;
IF plot = 1 THEN plabel = 'A'; F
IF plot = 2 THEN plabel = 'B';
IF plot = 3 THEN plabel = 'C';
IF plot = 4 THEN plabel = 'D'
IF treat = 1 THEN tlabel ='A': *for graphic output;
IF treat = 2 THEN tlabel = 'B';
IF treat = 3 THEN tlabel= 'c':
IF treat = 4 THEN tlabel = 'D';
LABEL block= 'block'
plot = 'experimental unit'
treat= 'treatment'
covar ='covariate'
eu_eq ='e.u. error var-eq'
eu_ne ='e.u. error var-ne'
sup popy='superpopulation y'
obs_yeq ='obs. y var-eq'
obs_yne ='obs. y var-ne'
plabel = 'plot id label'
tlabel = 'treatment td label'
;
PROC PRINT DATA=euti_err:
VAR block plot treat covar eu_eq eu_ne sup_popy
obs_yeq obs_yne plabel tTabel;
TITLE2 '(a) within-block variances are equal and';
TITLE3 '(b) block variance of block 2 is 4 times that of block 1';
PROC MEANS DATA=euti_err.N SUM MEAN VAR MIN MAX VARDEF=N;
BY block treat;
VAR eu_eq eu_ne;
TITLE2 ;
TITLE3 ;
PROC SORT DATA=euti_err; BY block plot:
PROC PRINT DATA=euti err:
VAR block plot treat
obs yeq obs yne plabel tTabel;
TITLEi 'Experimental Unit Errors for cases: ':
TITLE2 ;
TITLE3 ;
PROC MEANS DATA=euti_err N SUM MEAN VAR MIN MAX VARDEF=N:
BY block plot ;
VAR eu_eq eu_ne:
PROC MEANS DATA=euti__err N SUM MEAN VAR MIN MAX VARDEF=N;
BY block;
VAR eu_eq eu_ne:
PROC MEANS DATA=euti_err N SUM MEAN VAR MIN MAX VARDEF=N;
VAR eu_eq eu_ne;
PROC SORT DATA=euti_err; BY block treat;
************** Plot Data`for Visual Examination ***********************;
PROC PLOT DATA=euti_err UNIFORM; BY block treat;
PLOT sup_popy * covar = plabel
obs_yeq * covar ='E'
obs_yne * covar ='N'

```
```

 / OVERLAY HPOS=50 HAXIS=0 TO 19 8Y 1 HREF=0.0 VREF=0.0;
 PLOT eu eq * covar ='E' eu_ne * covar ='N'
 / OVERLAY HPOS=50 HAXI\overline{S}=0 TO 19 BY 1 VREF=0.0;
 PROC PLOT DATA=eUt\_err UNIFORM;
PLOT sup_popy *- covar = plabel
obs_yeq * covar ='E'
obs_yne * covar ='N'
/ OVERLAY HPOS=50 HAXIS=0 TO 19 8Y 1 HREF=0.0 VREF=0.0;
PLOT eu_eq * covar =tlabel eu_ne * covar =tlabel
/ \overline{HPOS=50 HAXIS=0 TO 19 BY '1 VREF=0.0;}
PROC PLOT DATA=euti_err UNIFORM;
PLOT sup_popy *-covar = plabel
obs_yeq * covar ='E'
obs_yne * covar ='N'
/ OVERLAY HPO\overline{S}=50 HAXIS=0 TO 19 BY 1 HREF=0.0 VREF=0.O;
PLOT eu_eq * covar =tlabel eu_ne * covar =tlabel
/ \overline{HPOS=50 HAXIS=0 TO 19 BY-1 VREF=0.0;}
************** Move temporary data to permanent SAS save file. *******;
DATA sasdata.euti_err; SET euti_err;
RUN; *End of program;

```
```

U13293A.SASPROG.CNTL(CTERMS)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4.1992 14:59:05 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSON',
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE'
//SASDATA DD DSN=U13293A.SASDATA.DATA.DISP=OLD
PROC CONTENTS DATA=sasdata._ALL_ ;

* Program File: sasprog.cntl(cterms) Collect TERMS
* Step One:
* Input File(s): eu_err and euti_err
* Output File: rm_error one obs per eu per randomization
Step Two:
Create standardized normal errors, store in file nor_err.
Step Three:
Merge eu, euti, and normal error, store in file all_err.
Step Four:
* Combine (sum) errors. store in file comb_err.
Step Five:
* Standardize combined sums, store in file std_err.
Step Six:
Create observed y's for combined errors, store in file obs_y.
Step Seven:
Attach variable g_group to the file.
*
*
* Output File(s): sasdata.data(obs_y)
One record per experimental unit for each
experimental-randomization = {(tl)**b}*{bt}
Collects model parameter terms (mu, blocks, treats, beta, covar)
and error terms (e.u., eu-ti, and normal).
With the above, construct the various observed y values.
Two super population y values are defined:
s_popynt = mu + b_val + beta*z (no treatment)
s_popywt = mu + b_val + beta*z + trt_val (with treat.)
*
*
*

*************** Debug Print Switch Macro and Switches **********;

* Macro for debug printing follows:;
%MACRO db(db_site,db_act);
%IF %UPCASE(\&db_site})=\mathrm{ TRUE | %UPCASE(\&db_site) = T
%THEN %qUŌTE(Bdb_act);
%MEND db;
*

*Debug print switches (dbps\#):
True or t = on (in upper and/or lower case), anything else = off.;
%LET dbpsi=f ; *data set eu_err \& euti_err as tnto IML;
%LET dbps2 = f ; *output to r\overline{m}_err within}\mathrm{ loop of IML;
%LET dbps3 = f ; *data set rm_err - first observations;
%LET dbps4 = f ; *data nor_er\overline{r eq var only - 1st obs;}
%LET dbps5 = f ; *data nor_err eq \& ne var - 1st obs;

```
```

 %LET dbps6 = f
 %LET dbps7 = f
 %LET dbps8 = f
 %LET dbps9 = f
 %LET dbps 10= f
 %LET dbps 11= f
 ************************ End of Debug Print Swtthces ****************;
***;
*Step One:
Produce data set of one obs, per eu, per randomization, with
experimental unft and eu-treatment interaction errors.;
/* *Successful step turned off. ;
PROC IML
******************* Enter Model Equation Terms and Errors ***********;
*Define constants;
mu val = {10.0};
b_valm={-1.5, 1.5};
t\overline{r}t_valm = {-6.5, -3.5, 2.5, 7.5};
beta = {2.0};
labels = {"A", "B", "C", "D"}:
*Collect experimental unft errors;

* vector name eu_eq and eu_ne appear in two input data sets
* Two super population y values are defined:
* s_popynt = mu_val + b_val + beta*z (no treatment)
* s_popywt = mu_val + b_val + beta*z + trt_val (with treat.)
eu_eqm = U(B,1,0); eu_nem = J (8,1,0); 2m = J(8,1,0);
sup}_ym=f(B,1,0); *W\overline{T}thout mean, blocks, or treatments
USE sasdata.eu_err ;
READ ALL VAR}{eu_eq} INTO eu_eqm;
READ ALL VAR{eu_ne} INTO eu_nem;
READ ALL VAR{covar} INTO zm;
*Collect experimental unit-treatment interaction errors:
eut1_eqi = J (32,1,0); eutt_ne1 = J(32,1,0);
euti_eqm = J(B,4,0); euti_nem = J(8,4,0);
JE sasdata eutt err
READ ALL VAR{eu_eq} INTO euti_eqi;
READ ALL VAR{eu ne} INTO euti_nel;
*Reshape to block-p}lot rows by treātments columns.;

```

```

| eut1_nem(| 1.4 | | | euti_ne1(| 1:4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 1:4 | 2 | | euti_nei | 5:8 | |
| - | 1:4 | 3 | | eutt_nei(| 9:12 | |
| euti_nem(| 1:4 | 4 | | euti_ne1(| 13:16 | |
| euti_nem(| 5:8 | 1 | | euti_nei(| 17:20 | |
| euti_nem(| 5:8 | 2 | | euti_ne1(| 21:24 | |
| euti_nem(| 5:8 | 3 | | euti_ne1(| 25:28 | |
| eut1_nem(| 5 : | 4 | | eut1_ | 29:32 | |

* Debug Print options follow: ;
\%db(\&dbosi. PRINT "Data inout from eu err and euti err (dbosi)":

```
```

PRINT mu_val b_valm trt_valm beta zm
labels
eu_eqm eu_nem euti_eqm euti_nem;);
************************* Create Dutput Data Set *********************;
block = J(1,1,0); plot = U(1,1,0);
*Data set Randomization Model ERRor:
CREATE rm err
VAR{ exp_rand b1_rand b2_rand block plot plabel treat tlabel
mu_val b_val trt_val beta z z eu_eq eu_ne euti_eq euti_ne s_popynt s_popywt };
************************* Define Randomization Pattern ****************;
rpattern =
{1234,124, 2, 1 3 24, 1 3 4, 2, 14 4, 2, 1, 4, 3,

```


```

 4123,4132,4213,4231,4312,4 3 2 1};
 ********** Begin Looping through Experimental-Randomizations ********;
START mbl_rand;
DO b1_rand = 1 TO 24; *All randomizations for block 1, (tl).;
STĀRT mb2_rand;
DO b2_rand = 1 TO 24; *All randomizations for block 2, (t!).;
START mblock;
DO block = 1 TO 2;
b_val = b_valm(| block |);
exp_rand \equiv(b1_rand - 1) \#24 + b2_rand;
START mplot
DO plot = 1 TO 4;
plabel= labels(|plot |);
S_popynt=sup_ym(|_eq_eq_(block-1)\#4 + plot); ;
eu_ne = eu_nem()
z = rrom(|_ zopy=
IF \overline{block = 1 THEN}
treat = rpattern(| b1_rand . plot |);
ELSE
treat = rpattern(| b2_rand . plot |);
tlabel = labels(| treat |);
trt_val = trt_valm(| treat |);
s_popynt = mu_val + b_val + (beta * z);
s_popywt = mu val + bval + (beta * z) + trt val;
euti_eq = eut\overline{i_eqm(|)(block-1)\#4 + plot , treat);}
eut1_ne = euti_nem(| (block-1)H4 + plot ; treat);

* Debug Print options follow: ;
%db(\&dbps2. PRINT "Data set'rm_err within loop (dbps2)":
PRINT exp_rand b1_rand b2_rand block plot
plabel tlabel
mu_val b_val trt_val beta z
s_popynt _s_popywt_val beta z
eu_eq eu_ne_ euti_eq (euti_ne ;);
APPEND:
END; FINISH; RUN mplot;
END; FINISH; RUN mblock;
END; FINISH: RUN mb2_rand;
END; FINISH; RUN mb1__rand;
RUN;
********* Test Print Initial Version of Data Set obs_y *****;
 * Debug Print options follow: :

```
```

 %db(&dbps3. TITLE1 "Observations from rm_err (abps3)":
 PROC PRINT DATA=rm_err (OBS=3\overline{2});
 PROC PRINT DATA=rm_err (FIRSTOBS=4577);
 PROC MEANS DATA=rm err (OBS=32)
 N MEAN VAR STD VARDEF=N;
 BY exp_rand block;
 VAR eu_eq eut1_eq eu_ne euti_ne;
 PROC MEANS DATA=\overline{rm_err (OBS=32)}
 N MEAN VAR STD VARDEF=N;
 BY exp_rand;
 VAR eu_eq euti_eq eu_ne euti_ne;
 PROC MEANS
 N MEAN VAR STD\ VARDEF=N;
 VAR eu_eq euti_eq eu_ne euti_ne;
);
 DATA sasdata.rm_err; SET rm_err; *Randomization Model ERRor;
End of successful step. */
**
*Step Two:
Generate Normally Distributed Random Errors;
/* *Successful step turned off.;
*Normal random error terms have various variances;
DATA nor_err (DROP= sq03 sq10 sq30 sq90);
*Obtaīn very accurate values for standard deviation.;
Sq03 = SQRT(03);
sq10 = SQRT(10);
sq30 = SQRT(30);
sq90 = SQRT(90);
PUT sqO3= sq10= sq30= sq90=:
DO exp_rand = 1 TO 576 BY 1; *576;
DO block = 1 TO 2 BY 1;
DO plot = 1 TO 4 BY 1;
nre03_eq = RANNDR(31415927);
nre10_eq = RANNOR(31415927); *Subsequent seeds are;
nre30_eq = RANNDR(31415927); *ignored.;
nre90-eq = RANNDR(31415927);
OUTPUT
END;
END;
END;
*Force set of normal errors for each randomization to have
zero mean and specified variance,;
PROC STANDARD DATA = nor_err OUT = nor_err
MEAN = 0.0 STD=1.7320508076 VA
BY exp_rand block;
VAR nre03 eq;
PROC STANDARD DATA = nor_err OUT = nor_err
MEAN = 0.0 STD=3.\overline{T}622776602 VARDEF=N;
BY exp_rand block;
VAR nrē10 eq;
PROC STANDARD̄ DATA = nor err OUT = nor err
MEAN = 0.0 STD=5.\vec{4772255751 VARDEF=N;}
BY exp_rand block;
VAR nre`30_eq:
PROC STANDARD DATA = nor_err OUT = nor_err
MEAN = 0.0 STD=9.4868329805 V
BY exp_rand block:
VAR nre90_eq;

* Debug Print options follow: ;
%db(\&dbps4; TITLE1 "Observations from nor_err eq var only(dbps4)";

```
```

PROC PRINT DATA=nor__err (OBS=32);
PROC PRINT DATA=nor_err (FIRSTOBS=4577);
PROC MEANS DATA=nor err (OBS=32)
MEAN VAR STD VARDEF=N;
BY exp_rand block;
VAR nreÖ3_eq--nre90_eq;
PROC MEANS DATTA=nor_er\overline{r}}\mathrm{ (OBS=32)
MEAN VAR STD VARDEF=N;
BY exp_rand;
VAR nre03_eq--nre90_eq;
);
*For not equal variances:
Obtain total sum of squares for equal variances, over all blocks.
Divide into var ratio + 1 parts (4+1).
Obtain new variance, divide by denominator = number of observations.
Multiply block 1 by 1 part and block 2 by var ratio parts (4).
Divide by existing block variance.
Square root the above.
Multiply be the existing normal error.
nreHA_ne = SQRT((SS for 8 obs)/(var ratio + 1)/(n obs 1 block)
* ((1 or var ratio) / (initial variance)))
* (current error term)
Experiment-wide variance will be the initial variance.
\#;
DÁTA nor_err; SET nor_err;
IF block = 1 THEN DO
nre03_ne = SQRT((3 * 4*2)/(4+1)/4 * (1/3)) * nre03_eq;
nre10_ne = SQRT((10*4*2)/(4+1)/4*(1/10)) * nre10-eq;
nre30_ne = SQRT((30*4*2)/(4+1)/4* (1/30)) * nre30_eq;
nre90_ne = SQRT((90*4*2)/(4+1)/4*(1/90)) * nre90_eq;
END;
IF block = 2 THEN DO;
nreO3_ne = SQRT((3*4*2)/(4+1)/4*(4/ 3)) * nreO3_eq;
nre10_ne = SQRT ((10*4*2)/(4+1)/4*(4/10)) * nre10_eq;
nre30_ne = SQRT((30 *4*2)/(4+1)/4 * (4/30)) * nre30_eq;
nre90_ne = SQRT((90 *4*2)/(4+1)/4 * (4/90)) * nre90_eq;
END;

* Debug Print options follow: ;
%db(\&dbps5, TITLE1 "Observations from nor_err eq \& ne var (dbps5)";
PROC PRINT DATA=nor_err (OBS=\overline{32);}
PROC PRINT DATA=nor_err (FIRSTOBS=4577);
PROC MEANS DATA=nor_err (OBS=32)
MEAN VAR STD V
BY exp_rand block;
VAR nre0̄3 eq--nre90 ne:
PROC MEANS DÄTA=nor_er\overline{r}}\mathrm{ (OBS=32)
MEAN VAR STD V
BY exp_rand;
VAR nrē03_eq--nre90_ne;
);
DATA sasdata.nor_err: SET nor_err;
End of successful step. */
***;
*Step Three:
Merge eu, euti and normally distributed errors.;
/* *Successful step turned off. ;

```
```

DATA all_err; *ALL three ERRor types;
MERGE Sasdata.rm_err sasdata.nor_err; BY exp_rand;
covar = z; drop z ;
LABEL
exp_rand= 'experiment-wise rando'
b1 rand = 'block 1 randomization'
b2_rand = 'block 2 randomization'
block = 'block 1d'
b_val = 'block effect value'
plot = 'experimental unit id'
plabel = 'plot label'
treat = 'treatment id'
trt_val = 'treat effect value'
tla\overline{el = 'treatment label'}
covar = 'covariate (z)'
beta = 'covariate slope coef.'
eu_eq = 'e.u. error var-eq'
eu_ne = 'e.u. error var-ne'
euti_eq = 'e.u.t.i.' error var-eq'
euti_ne = 'e.u.t.t. error var-ne'
nre03_eq = 'normal err v=3 -eq'
nre03_ne = 'normal err v=3 -ne'
nre10_eq = 'normal err v=10 -eq'
nre10_ne = 'normal. err v=10 -ne'
nre30_eq = 'normal err v=30 -eq'
nre30_ne = 'normal err v=30 -ne'
nre90 eq = 'normal err v=90 -eq'
nre90_ne = 'normal err v=90 -ne'
s_popynt= 'superpop. no treat'
s_popywt= 'superpop. with treat'
;

* Debug Print options follow: ;
%db(\&dbps6, TITLE1 "Observations from all_err (eu \& nor) (dbps6)";
PROC PRINT DATA=all_err (OBS=\overline{32});
PROC PRINT DATA=all_err (FIRSTOBS=4577);
PROC MEANS DATA=all_err (OBS=32)
N MEAN VAR STD VARDEF=N;
BY exp_rand block;
VAR eu_eq euti_eq eu_ne euti_ne nreo3_eq--nre90_ne;
PROC MEANS DATA=all_err (OBS=32)
N MEAN VAR STD VARDEF=N;
BY exp_rand;
VAR eu_eq euti_eq eu_ne euti_ne nre03_eq--nre90_ne;
PROC MEANS DATA=a\
N MEAN VAR STD' VARDEF=N;
VAR eu_eq euti_eq eu_ne euti_ne nre03_eq--nre9o_ne;
);
DATA sasdata.all_err; Set all_err: *ALL thnee ERROr types;
End of successful step. */
***;
*Step Four:
Combine (sum) three types of error terms in various combinations. ;
/* *Successful step turned off. ;
*Within exp-randomization variances are not standardized.

```

Errors are dtvided by SQRT (num of summed terms) to bring var of sum of one to three error terms within same range.;
*The error terms are EO1 - E81.
The 81 are \(\{\) euti (3) \(\} \times\{\) normal \(\operatorname{err}(1+(4 * 2))\} \times\{\operatorname{eu}(3)\}=81\). The 3 are: 0 , block var eq, and block var ne (eu and euti). The \(1+4\) are var=0, 5, 10, 30, 90. The 2 are block var eq and ne. Each error term may be one to three of: e.u.. e.u.-t.i., normal err.;
*Data set COMBined ERRors one, two, or three types summed;
DATA comb_err; SET sasdata.ail_err;
*Obtain divisor for sums;
RETAIN invsq2 invsq3;
IF_N_ \(=1\) THEN DO; invsq2=1/SQRT(2); invsq3=1/SQRT(3); END;

\(* \operatorname{Var}=0 \quad\) normal eut 1 eu ;


*


```

 e41 = invsq3* (nre10_ne + euti_eq + eu_eq);
 e42 = invsq3* (nre10_ne + euti_eq + eu_ne);
 e43 = invsq2* (nre10-ne + euti-ne + 0);
 e44 = invsq3* (nre10_ne + eut1_ne + eu_eq);
 e45 = invsq3* (nre10_ne + euti_ne + eu_ne);
 | ar $=30$ | | normal | euti | | eu ; |
| :---: | :---: | :---: | :---: | :---: | :---: |
| e46 | | (n re30_eq | $+0$ | | |
| e47 | invsq2* | (nr e 30 _eq | + 0 | | eu_eq |
| e48 | invsq2* | ($\mathrm{nre30}$-eq | + 0 | ${ }^{+}$ | eu_ne |
| e49 | invsq2* | ($\mathrm{nre30}$-eq | + eu | eq | 0 |
| e50 | invsq3* | (nre30_eq | + eu | eq | eu_eq |
| 51 | invsq3* | (nre30 | + eu | eq + | u |
| e52 | invsq2* | (nre30 | + | ne + | |
| 53 | invsq3* | ($\mathrm{nre30} 0$ _eq | + | ne + | e |
| | nvsq3* | (n re30 | | | |


```
*
```



```
* Debug Print options follow: ;
\% db (\&dbps7,
TITLE1 "Observations from comb_err before standardizing (dbps7)";
PROC PRINT DATA=comb err (OBS=16);
PROC PRINT DATA=comb_err (FIRSTOBS=4593);
PROC MEANS DATA = Comberr ( \(O B S=16\) )
N mean var sto min max Vardef \(=\mathrm{N}\);
BY exp_rand block;
VAR e01-e81;
PROC MEANS DATA=comb_err (OBS=16)
N MEAN VAR STD MIN max VARDEF=N;
BY exp_rand;
VAR eOI-e81;
PROC MEANS DATA=comb_err
N mean var sto min max vardef=n;
```

```
        VAR eO1-e81;
);
DATA sasdata.comb_err; SET comb_err;
    End of successful step. */
**********************************************************************
*Step Five:
    Standardize the sumed error terms;
/* *Successful step turned off. ;
*All combined terms are standardizd to mean zero and experiment-wide
        variance of 30, the same values as single-source errors.
    When all combined terms have {equal - not equal} within-block
        variances, then their sum has {equal - not equal} within-block
        variances.
    When the combined terms are a mix of eq and ne within-block
        variance terms, they are treated as if all terms had no equal
        within-block variances. They are standardized within each block
        to have the usual ratio of block variances.
    Thus, for comparisons, all single-source error or combined error
        term have zero mean and the same experiment-wide variance.
;
*Data set: STanDardize combined ERRors;
PROC STANDARD DATA = sasdata.comb err OUT = std_err
            MEAN = 0.0 STD=5.477225575彳
    BY exp rand block;
    VAR e0彳亍-e81;
* Debug Print options follow: ;
    %db(&dbps8.
    TITLE1 "Observations from std_err - 1st standardizing (dbps8)";
    PROC PRINT DATA=std_err (OBS=16);
    PROC PRINT DATA=std err (FIRSTOBS=4593);
    PROC MEANS DATA=std err (OBS=16)
                        N MEAN VAR STTD MIN MAX VARDEF=N;
                        BY exp rand block;
                        VAR eOT}-e81
            PROC MEANS DATA=std err (OBS=16)
                    N MEAN VAR STD MIN MAX VARDEF=N;
                    BY exp_rand;
                            VAR e01-e81;
PROC MEANS DATA=std_err
                    N MEAN VAR STO MIN MAX VARDEF=N;
                            VAR eO1-e81;
);
DATA std_err: SET std_err;
    *Set a\}1\mathrm{ sums involving a term with unequal block variances to
        also have the standard (1:4) unequal block variance. ;
    IF block = 1 THEN DO;
        *Var=00;
            eO3s = e03 * SORT( (30 *4*2)/(4+1)/4*(1/30));
            e06s = e06 * SORT( (30*4*2)/(4+1)/4* (1/30));
            e07s = e07 * SQRT( (30*4*2)/(4+1)/4* (1/30));
            e08s = e08 * SQRT( (30 *4*2)/(4+1)/4* ( 1/30) );
            e09s = e09 * SQRT( (30*4*2)/(4+1)/4*(1/30));
        *Var=03;
            e12s = e12 * SQRT( (30*4*2)/(4+1)/4*(1/30));
```



```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline e73s & = e73 & * SQRT( & ( 30 & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline e74s & e74 & SQRT & ( & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline e75s & \(=e 75\) & SQRT & ( 30 & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline e76s & e76 & SQRT & (30 & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline e77s & \(=e 77\) & SQRT & (30 & * 4 * 2\() /(4+1) / 4\) & & 4/30) \\
\hline e78s & \(=e 78\) & SQRT & ( 30 & * 4 *2) \(/(4+1) / 4\) & & 4/30) \\
\hline e79s & \(=e 79\) & SQRT & ( 30 & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline e80s & \(=280\) & * SQRT( & ( 30 & * 4 *2) \(/(4+1) / 4\) & & 4/30) \\
\hline e815 & \(=281\) & * SQRT( & ( 30 & * \(4 * 2) /(4+1) / 4\) & & 4/30) \\
\hline
\end{tabular}
    END:
* Debug Print options follow: ;
    %db(&dbps9,
        TITLE1 "Observations from std_err - 2nd standardizing (dbps9)";
                        PROC PRINT DATA=std_err (OBS=16);
                        PROC PRINT DATA=std_err (FIRSTOBS=4593);
                        PROC MEANS DATA=std err (OBS=16)
                            N MEAN VAR STD MIN MAX VARDEF=N;
                        BY exp_rand block;
                        VAR e03s--e81s;
                        PROC MEANS DATA=std_err (OBS=16)
                            N MEAN VAR STD MIN MAX VARDEF=N;
                        BY exp_rand;
                        VAR e0\overline{3s--e81s;}
                                PROC MEANS DATA=std err
                    N MEAN VAR \overline{STD MIN MAX VARDEF=N;}
                        VAR eO3s--e81s;
                );
    DATA sasdata.std_err: SET std_err;
        DROP e01-e81-Invsq2 Invsq3;
End of successful step. */
**********************************************************************;
*Step Six:
    Compute the observed y's for each of the single and combined error
        terms;
/* *Successful step turned off. ;
*Create various observed y's.
    Each is an error added to: mu + block + beta*covariate + one of
        (zero or the appropriate treatment effect).
    yobs001 - yobs081 have treatments eq 0.
    yobs101 - yobs 181 have treatments ne 0.
        The inidicates the first (and only) nonzero treatment vector.
    yobs###s use an error term with one or more terms originally having
        unequal block variances. The sum has been standardized to have
        the usual unequal block variances (1:4 ratio).;
```

```
**** Create macro too generate formula for ***************************;
************* the observed population values yobs(H)(##) *************;
    %MACRO m_yobs;
        %DO err_id = 1 %TO 9 ;
            yobsOO&err_1d = s_popynt + eo&err_1d;
            yobs10&err_id = s_popywt + eo&err_1d;
        %END;
        %DO err_id = 10 %TO 81:
```

```
            yobso&err_id = s_popynt + e&err__id;
            yobs1&err_id = s_popywt + e&err_id;
        %END;
    %MEND;
************* End of macro m_yobs ***********************************;
DATA obs y;
    merge sasdata.comb err sasdata.std_err;
    *Data set comb_err attaches original e##.;
    *Data set std_err attaches the standardized e##s.;
    *Call macro m_yobs to generate code creating the observed y values
    for the various non-standardized sums of error terms.;
        %m_yobs;
*Compute the observed y values for the various standardized sums of
    error terms. ;
    *All treatment values are zero. ;
        *Var=00;
            yobs003s = e03 + s_popynt ;
            yobs006s = e06 + s_popynt ;
            yobs007s = e07 + s_popynt ;
            yobs008s = e08 + s_popynt ;
            yobs009s = e09 + s_popynt ;
            *Var=03;
                yobs012s = e12 + s_popynt ;
                yobs015s = e15 + s_popynt ;
                yobs016s = e16 + s_popynt ;
                yobs017s = et7 + s_popynt ;
                yobsO18s = e18 + s_popynt ;
                    yobs019s = e19 + s_popynt ;
                    yobs020s = e20 + s_popynt ;
                yobs021s = e21 + s_popynt ;
                yobs022s = e22 + s_popynt ;
                yobs023s = e23 + s_popynt ;
                yobsO24s = e24 + s_popynt ;
                yobs025s = e25 + s_popynt ;
                yobs026s = e26 + s_popynt ;
                yobs027s = e27 + s_popynt ;
            *Var=10;
                yobs030s = e30 + s_popynt :
                yobs033s = e33 + s_popynt ;
                yobs034s = e34 + s_popynt ;
                yobs035s = e35 + s_popynt ;
                yobs036s = e36 + s_popynt ;
                yobs037s = e37 + s_popynt ;
                yobs038s = e38 + s_popynt ;
                yobs039s = e39 + s_popynt ;
                yobs040s = e40 + s_popynt ;
                yobs041s = e41 + s_popynt ;
                yobs042s = e42 + s_popynt ;
                yobs043s = e43 + s_popynt ;
                yobs044s = e44 + s_popynt ;
                yobs045s = e45 + s_popynt ;
        *Var=30;
            yobs048s = e48 + s_popynt :
            yobs051s = e51 + s_popynt :
                yobs052s = e52 + s_popynt ;
                yobs053s = e53 + s_popynt ;
                yobs054s = e54 + s_popynt ;
```

```
        yobs055s = e55 + s_popynt ;
        yobs056s = e56 + s_popynt ;
        yobs057s = e57 + s_popynt ;
        yobs058s = e58 + s_popynt ;
        yobs059s = e59 + s_popynt ;
        yobs060s = e60 + s_popynt ;
        yobs061s = e61 + s_popynt ;
        yobs062s = e62 + s_popynt ;
        yobs063s = e63 + s_popynt ;
    *Var=90;
    yobs066s = e66 + s_popynt ;
    yobs069s = e69 + s_popynt ;
    yobs070s = e70 + s_popynt ;
    yobs071s = e71 + s_popynt ;
    yobs072s = e72 + s_popynt ;
    yobs073s = e73 + s_popynt :
    yobs074s = e74 + s_popynt ;
    yobs075s = e75 + s_popynt ;
    yobs076s = e76 + s_popynt ;
    yobs077s = e77 + s_popynt ;
    yobs078s = e78 + s_popynt ;
    yobs079s = e79 + s_popynt ;
    yobsO8Os = e80 + s_popynt ;
    yobs081s = e81 + s_popynt ;
*Treatment values are nonzero. ;
    *Var=00;
        yobs103s = e03 + s_popywt :
        yobs106s = e06 + s_popywt;
        yobs107s = e07 + s_popywt ;
        yobs108s = e08 + s_popywt ;
        yobs109s = e09 + s_popywt :
*Var=03;
    yobs112s = e12 + s_popywt ;
    yobs115s = e15 + s_popywt;
    yobsi16s = e16 + s_popywt ;
    yobs117s = e17 + s_popywt ;
    yobs118s = e18 + s_popywt ;
    yobs119s = e19 + s_popywt :
    yobs120s = e20 + s_popywt ;
    yobs121s = e21 + s_popywt ;
    yobs122s = e22 + s_popywt ;
    yobs123s = e23 + s_popywt ;
    yobs124s = e24 + s_popywt ;
    yobs125s = e25 + s_popywt ;
    yobs126s = e26 + s_popywt ;
    yobs127s = e27 + s_popywt ;
*Var=10;
    yobs130s = e30 + s_popywt ;
    yobs133s = e33 + s_popywt ;
    yobs134s = e34 + s_popywt :
    yobs135s = e35 + s_popywt ;
    yobs136s = e36 + s_popywt ;
    yobs137s = e37 + s_popywt ;
    yobs138s = e38 + s_popywt ;
    yobs139s = e39 + s_popywt :
    yobs140s = e40 + s_popywt ;
    yobs141s = e41 + s_popywt :
```

```
    yobs142s = e42 + s_popywt ;
    yobs143s = e43 + s_popywt ;
    yobs144s = e44 + s_popywt :
    yobs145s = e45 + s_popywt ;
*Var=30;
    yobs148s = e48 + s_popywt ;
    yobs151s = e51 + s_popywt ;
    yobs152s = e52 + s_popywt ;
    yobs153s = e53 + s_popywt;
    yobs154s = e54 + s_popywt ;
    yobs155s = e55 + s_popywt ;
    yobs156s = e56 + s_popywt ;
    yobs157s = e57 + s_popywt ;
    yobs158s = e58 + s_popywt ;
    yobs159s = e59 + s_popywt ;
    yobs160s = e60 + s_popywt :
    yobs161s = e61 + s_popywt ;
    yobs162s = e62 + s_popywt ;
    yobs163s = e63 + s_popywt ;
*Var=90;
    yobs166s = e66 + s_popywt ;
    yobs169s = e69 + s_popywt ;
    yobs170s = e70 + s_popywt;
    yobs171s = e71 + s_popywt ;
    yobs172s = e72 + s_popywt ;
    yobs173s = e73 + s_popywt ;
    yobs174s = e74 + s_popywt :
    yobs175s = e75 + s_popywt ;
    yobs176s = e76 + s_popywt ;
    yobs177s = e77 + s_popywt :
    yobs178s = e78 + s_popywt ;
    yobs179s = e79 + s_popywt ;
    yobs180s = e80 + s_popywt ;
    yobs181s = e81 + s_popywt ;
* Debug Print options follow: ;
%db(&dbps 10,
TITLE1 "Observations from obs_y (dbps10)";
                            PROC PRINT DATA =o\overline{bs y (OBS=16);}
    PROC PRINT DATA=obs_y (FIRSTOBS=4593);
    PROC MEANS DATA=obs y (OBS=16)
                            N MEAN VAR STD MIN MAX VARDEF=N;
                        BY exp_rand block;
    VAR yobs001--yobs181s;
PROC MEANS DATA=obs_y (OBS=16)
                    N MEAN VAR STD MIN MAX VARDEF=N;
            BY exp rand;
            VAR yobs001--yobs181s;
PROC MEANS DATA=obs y
                    N MEAN VAR STD MIN MAX VARDEF=N;
            VAR yobs001--yobs181s;
        );
DATA sasdata.obs_y: SET obs_y;
    End of successful step. */
**********************************************************************;
*Step Seven:
```

```
Add the variable g_roup to the file of observed y's. ;
DATA sasdata.obs_Y;
    MERGE sasdata.obs_y sasdata.gr_index;
    BY exp rand;
PROC PRINT TOATA = sasdata:obs_y (OBS=16);
        VAR exp_rand--beta s_popyñt s_popywt covar g_group;
PROC PRINT DATA = sasdata.obs_y (FIRSTOBS=4593);
        VAR exp_rand--beta s_popyñt s_popywt covar g_group;
//
```

```
U13293A.SASPROG.CNTL (GLM)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:09 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSON',
// TIME=(1,0), MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE'
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD
//SASGLM DD DSN=U13293A.SASGLM2.DATA,DISP=OLD
//FT22F001 DD DSN=U13293A.GLMOUT.DATA,DISP=(NEW,KEEP),
// SPACE=(TRK, (800,400)),UNIT=STORAGE
//SYSIN DD *
*
* Program File: sasprog.cntl(glm)
* Run General Linear Models on all randomizations.
//FT22F001 DD DSN=U13293A.GLMOUT56.DATA;DISP=OLD
* Step One:
* Enter the treatment/no treatment code, the error id, and
            s (if errors are standardized) into the macro let statements.
    Step Two:
* Run General Linear Models on all randomizations. 
* For each, perform PROC GLM, obtaining ss for usual estimates.
* Write usual printed output to scratch file.
* Save predicted y_hats, residuals, & incoming data in sas file.
    Only selected variables from sasdata.obs_y are kept.
Step Three:
    Merge g_group labels to file of y_hats, residuals, & input data.
    Label new variables in this file.
    Add g_group variable to this file.
Step Four:
    Read file of usually printed GLM output, selecting variables.
    Save in sas file.
Step Five:
    Add g_group variable to this file.
    Add usual constraints estimators.
    Compute additional sums of squares, ms, f-ratios, & osls.
    Begin computation of ratios 1-3.
Step Six:
    Obtain means over all randomizations.
Step Seven:
    Complete computation of ratios 1-3.
    Compute two types of errors.
    Label for printing and for permanent file.
    Print initial observations.
Step Elght:
    Analysis - means and graphic display.
Output Files -- One pair per error type:
    sasglm.&yhat_ds
        One record per experimental randomization per expertmentsl unit.
    sasglm.&glm_ds
```

```
* One record per experimental randomization
*
*************** Debug Print Switch Macro and Switches **********;
* Macro for debug printing follows:;
        %MACRO db(db_site,db_act);
            %IF %UPCASE(&db_sit\overline{e})= TRUE |%UPCASE(&db_site) = T
            %THEN %QUDTTE(&db_act);
        %MEND db;
*
*Debug print switches (dbps#):
    True or t = on (in upper and/or lower case), anything else = off.;
        %LET dbpsi = f ; *Printed output & yhat_ds from test glm;
        %LET dbps2 = f ; *Y hat output from glm;
        %LET dbps3 = f ; *Read anova output from glm;
        %LET dbps4 = f ; *;
************************ End of Debug Print Switches *****************;
************************************************************************
*Step One:
    Select set of observed y's for analysis.
            Enter ### or ###S into function %STR(...), with ### equalling
                a O for no treatment effects or a 1 for treatments, then
                two digits indicating the error combination.
                Follow ### with an "s" when using the standardized errors.;
            %LET yobs = %STR(yobs155); *0 or 1, then below message;
            %LET error = %STR(e55); *OO to 81 with or w/o an s;
            %LET ypred = %STR(ypre155);
            %LET resid = %STR(resi155):
            %LET yhat_ds = %STR(yhat155); *Output data set of obser.;
            %LET glm_ds = %STR(glm155); *Output data set of anova terms;
            TITLE1 "Observed Y uses Error Combination &yobs ";
    *Output is stored in sas library sasglm.data under the member name
            yhat_ds and glm_ds
            &yhat_ds Has fi record per y_hat by exp_rand = {Tl**B}X{TB}.
            &glm_\overline{ds}
***********************************************************************
*Step Two:
    Use PROC GLM to compute the analysis of variance.
    Send GLM output to scratch file, then read it, creating a sas file.
    Augment data set of individual responses with the value of the
            predicted y, y_hat and the residual values.;
    * Debug Print options follow: :
        %db(&dbps 1.
            TITLE1 "GLM anova output for &yobs (dbps1)";
            OPTIONS NONOTES;
            PROC PRINT DATA = sasdata.obs_y
                (OBS=16 KEEP=exp_rand--beta s_popynt s_popywt covar
                    &yobs &err̄or):
            PROC GLM DATA = sasdata.obs_y
                (OBS=16 KEEP=exp_rand--beta s_popynt s_popywt covar
                    &yobs &err̄or);
                    BY exp_rand;
                CLASS block treat;
                MODEL &yobs = block treat covar / SS1 SS4 SOLUTION;
                MEANS block treat;
                OUTPUT OUT = yhat_ds
                    P= sypred - R= &resid ;
                    PROC PRINT DATA = yhat_ds (OBS=16);
            OPTIONS NOTES;
        );
```

```
PROC PRINTTO UNIT=22 NEW; *Sends output from PROC GLM to a temp file.;
PROC GLM DATA = sasdata.obs_y
    ( KEEP=exp rand--beta s popynt s popywt covar
    &yobs \overline{&}
    BY exp_rand;
    CLASS block treat;
    MODEL &yobs = block treat covar / SS1 SS4 SOLUTION;
    MEANS block treat:
    OUTPUT OUT = &yhat_ds
        P= &ypred - R= &resid ;
OPTIONS NONOTES;
PROC PRINTTO; *Returns output to the line printer.;
OPTIONS NOTES;
**************************************************************************
*Step Three:
    Label new variables and add variable g_group;
PROC SORT DATA= sasdata.gr_index; BY exp_rand;
DATA sasglm.&yhat ds;
    MERGE Byhat_ds sasdata.gr_Index; BY exp_rand;
    LABEL exp_rand = 'Experimeñ̄al Randomization'
                        g_group = 'Eq. projector group'
                        &ypred = 'Predicted y'
                &resid = 'Residual'
            ;
    * Debug Print options follow: ;
    %db(&dbps2, TITLE1 MObservations from glm output data (dbps2)";
        PROC PRINT DATA = sasglm.&yhat_ds (OBS=16) ;
                        );
*********************************************************************;
*Step Four:
    Read the GLM output from each experimantal randomization.
        Extract quantities of interest from the three sections of output:
            anova table (sums of squares), parmaeter estimates, and means.
        Add g_group and non-centrality variables.
    Compūte additional variables.;
DATA sasglm.&gim_ds;
    DROP location skip;
    INFILE FT22FOO1 MISSOVER EOF = all_ran;
    LENGTH location $19;
*Loop through all experimental randomizations;
DO exp_rand = 1 TO 576;
    *Skip through page 1 of GLM output - listing of class, levels, values:
    *Use //. not #n, to permit changes in number of title lines.
        INPUT 1On;
        DO UNTIL (location='Dependent') ;
            INPUT location ; END;
        *PUT location= : *For testing;
    *Having arrived at page 2, column 1 of (blank) line following
        'Dependent Variable',skip to line beginning 'Model' and read vars.;
        INPUT //;
        INPUT e30 dfmod ssmod msmod fmod osimod
            // e30 dfres ssres msres
            // e30 dftot sstot
```

```
    //// e20 rsq coefvar rootmse mean_y
    //// :
    *Read blocks given mean, treatments given mean and blocks, and
        covariate (z) given mean (m), blocks (b), and treatments (t);
        *Type I Sum of Squares;
    INPUT O30 dfb ssb_m msb_m fb_m osib_m
    / e30 dft sst_mb mst_mb ft_mb oslt_mb
    / 030 dfz ssz_mbt msz_mbt fz_mbt oslz_mbt ;
        *Type IV Sum of Squares;
    INPUT
    /// 030 skip ssb_mtz msb_mtz fb_mtz oslb_mtz 
    *Read parameter estimates;
    DO UNTIL (location = 'Parameter'); INPUT location $ ; END;
    * PUT location= ; *For testing;
        INPUT / e22 muhatg / e22 blithatg
                // @22 trinatg / @22 tr2hatg / e22 tr3hatg
                // e22 betahat;
*Read means from third page of glm output;
    DO UNTIL (location = 'Level'); INPUT location ; END;
    * PUT location= ; *For testing;
        INPUT // skip skip bilybar skip blizbar
            ////// skip skip bi2ybar skip bilzbar
            / skip skip tr2ybar skip tr2zbar
                    / skip skip tr3ybar skip tr3zbar
                    / skip skip tr4ybar skip tr4zbar;
    OUTPUT;
*Return to the top of the loop and read glm output
    from the next experimental randomization.;
END:
all_ran: location=location; *Control passes to here upon end of file.;
    *label: needs a statement to activate it, thus loc=loc.;
PUT exp_rand=:
* Debug Print options follow: ;
    %db(&dbps3.
    TITLE1 "Observations from glm output, sasdata.&glm_ds (dbps3)";
        PROC PRINT DATA = sasg1m.&glm_ds (OBS=2);
        );
*Step Five:
    Merge equal projector group la variable, g_group
    Obtain the 'usual constraints' aov estimates and add to data set.
        See Leyman Ott, Edition One, page 524 for details.
            The aov estimates = ('cards')transpose * (glm estimates).
            The covariate slope estimate is unchanged.
            The arrays mimic matrix multiplication.
    Add remaining sums of squares, ms, F-ratios, and osis to data set.
    Compute ratiot, a balancing function of the covariates.;
DATA temp;
    INPUT tma1-tma5 tbia1-tbia5
    tt1ai-tt1a5 tt2ai-tt2a5 tt3ai-tt3a5;
* The sas-estimates to usual-constraints conversion "matrix"
    follows;
    CARDS;
\begin{tabular}{rrrrr}
1.0 & .5 & .25 & .25 & .25 \\
0.0 & .5 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & .75 & -.25 & -.25 \\
0.0 & 0.0 & -.25 & .75 & -.25
\end{tabular}
```

```
0.0 0.0-.25-.25 . - % 
DATA' sasglm.8g1m_ds;
    MERGE sasglm.&glm_ds sasdata.gr_index; BY exp_rand;
DATA sasglm.&glm_ds; SET sasglm.&glm_ds;
    IF_N_ = 1 THEN
    RETA}I\overline{N}\mathrm{ tma1-tma5 tb1a1-tbia5 k
            tt1a1-tt1a5 tt2a1-tt2a5 tt3a1-tt3a5;
        DROP tma1-tma5 tblai-tbla5 k
            tt1a1-tt1a5 tt2a1-tt2a5 tt3a1-tt3a5;
        ARRAY glma {5} muhatg blihatg trinatg tr2hatg tr3hatg;
        ARRAY mua {5} tma1-tma5;
        ARRAY bla {5} tbiai-tbia5;
        ARRAY tia {5} tt1a1-ttia5;
        ARRAY t2a {5} tt2ai-tt2a5;
        ARRAY t3a {5} tt3a1-tt3a5;
        muhata = 0; bl1hata=0; tr1hata = 0; tr2hata = 0; tr3hata = 0;
    DO k = 1 TO 5 BY 1;
        muhata = muhata + glma{k} * mua{k} ;
        bl1hata= blihata + glma{k} * bia{k};
        trihata = trihata + glma{k} * t1a{k};
        tr2hata= tr2hata +g1ma{k} * t2a{k};
        tr3hata= tr3hata + glma{k} * t3a{k};
    END;
*The "usual constraint" is that each sum of estimators equals zero.;
    bl2hata = -blihata;
    tr4hata = -SUM(tr1hata, tr2hata, tr3hata);
*Compute remaining ss, ma, f_statistics, and olss. ;
            ssb_mt = ssb_m;
            ssb-mz = ssb-mtz;
            sst_m = sst_mb;
            sst_mz = ss\overline{t}_mbz
            sszm = ssmod - ssb mz - sst mz;
            ssz_mb = ssmod - sst_mbz - ssb_m;
            sszmt = ssmod - ssbmtz - sstm;
        msb_mt =ssb_mt /dfb;
        msb_mz =ssb_mz /dfb;
        mstm =sstm /dft;
        mst_mz =sst_mz /dft;
        msz_m =ssz_m /dfz;
        msz_mb =ssz_mb /dfz;
        msz_mt =ssz_mt/dfz
            fb_mt=msb mt/msres; fb mz =msb mz /msres;
            ft_m =mst_m/msres; ft_mz =mst_mz /msres;
            fz m =mszm/msres; fz mb =mszmb/msres; fzmt =mszmt/msres;
                oslb_mt = 1-PRO\overline{BF}(fb_mt, dfb, dftot);
                oslb_mz = 1 - PROBF(fb_mz, dfb, dftot)
                oslt_m = 1-PROBF(ftm, , dft, dftot):
                osit_mz = 1 - PROBF(ft_mz, dft, dftot):
                osizm = 1 - PROBF(fzm, dfz, dftot);
                osiz_mb = 1 - PROBF(fz_mb, dfz, dftot);
                oslz_mt = 1 - PROBF(fz_mt, dfz, dftot);
*Compute ratio1 :
    ratioi = for z: adj.(mean & blocks) treatment ms/residual ss
    Ratiol is the block equivalent to the following:
    Finney (1946) page 54, equation 3, A / A*(T-1).
    Lucas (1950).
    Greenberg (1952) page 698, T sub ZZ / (P-1)*(S sub XX).
    Cox (1956) page 1146, equation 7, rightmost pate B sub/(T-1)*R sub.
    Cox (1957) page 153, equation 6B, rightmost part T sub/(T-1)*R sub.
    Cox (1982) page 198, equation 3.trace(B sub Z *INV(S sub Z))/(T-1).;
```



```
        AZSS_MBT='R-EXPT ZSS_MBT' OMEGA='R-EXPT ZSSSMBT/DF',
    RTR1='R-err trihata' RTR2= 'R-err tr2hata' RTR3='R-err tr3hata'
    RTR4='R-err tr4hata' RBETA='R-err betahat'
    RMST_MB='R-ERR MST_MB' RMST_MBZ='R-err mst_mbz'
    RMSZ-MB='R-ERR MSZ-MB' RMSZ-MBT='R-err msz-mbt'
    RFMO\overline{D}='R-ERR FMO\overline{D}
    RFT_MB ='R-ERR FT_MB' RFT_MBZ ='R-ERR FT-MBZ'
    RFZMB ='R-ERR FZ-MB' RFZMBT ='R-ERR FZMMBT'
    SMMU='S-ERR MUHĀTA' SEL1='S-ERR BL1HĀTA' SBL2='S-ERR BL2HATA'
    STRI='S-err trihata' STR2='S-err tr2hata' STR3='S-err tr3hata'
    STR4='S-err tr4hata' SBETA='S-err betahat'
        ZSS MBT = 'Z SS MBT'
/* RAT\overline{IO1 = 'zsst_mb/ dft#zss_mbt'}
    RATIO2 = 'zsst_mb/ omega'
    RATIO3 = 'zss_mbt/ azss_mbt' ;
        1,azss_mbt' 2' 2 % 3
                123456789 123456789 123456789 123456789 <MAX
    */ RATIO1 = 'R1-for Z: Adj. Treat. ms/residual ss'
        RATIO2 = 'R2-for Z: Adj. Treat. ss/E(residual ms)'
        RATIO3 = 'R3-for Z: Residual ss/E(residual ss)' ;
*
* Print aov variables from first few experimental radnomizations.
* Labeling is temporary for the proc print operation.;
PROC PRINT DATA=sasglm.&glm_ds (OBS=26) LABEL SPLIT = '*' ;
VAR exp_rand b1_rand b2_rañd g_group
            dfmōd -- tr\̄zbar mühata -- ratio1 rmu--ratio3 ;
LABEL
    EXP_RAND='EXPER'I*RANDOM'
    B1_-
    /*
    ZT11='Z BL1*TREAT 1' ZT12='Z BL1*TREAT 2' ZT13='Z BLi*TREAT 3'
    ZT14='Z BL1*TREAT 4' ZT21='Z BL2*TREAT 1' ZT22='Z BL2*TREAT 2'
    ZT23='Z BL2*TREAT 3' ZT24='Z BL2*TREAT 4'
    */
        SSMOD = 'SS*MODEL' SSRES = 'SS*RESIDUAL' SSTOT = 'SS*TOTAL'
        MSMOD = 'MS*MODEL', MSRES = 'MS*RESIDUAL' 
        DFMOD = 'D.F.*MODEL' DFRES = 'D.F.*RESIDUAL' DFTOT ='D.F.*TOTAL'
        COEFVAR ='COEF*VAR' RSQ ='R*SQUARED' MEAN_Y = 'MEAN Y*RESPONSE'
```



```
    SSB_MT ='SS B_*M,T'
    SSB_MTZ ='SS B_*M,T,Z' SST_MBZ ='SS T-*M,B,Z' SSZMMBT ='SS Z-*M,B,T'
        MSB_M ='MS'B_*M' MST_M ='MS'T_*M' MS ZMM ='MS'Z_*M'
        MSB-MT ='MS B-*M,T'. MST_MB ='MS T-*M, B', MSZ-MB ='MS Z-*M,B'
        MSB_MZ ='MS B_*M,Z', MST_MZ ='MS T-*M, Z', MSZ-MT ='MS Z-*M,T'
```



```
    FB-MT ='F B-*M,T', FT-MB ='F T'*M,B', FZ-MB ='F Z Z-*M, B',
    FB_MZ = 'F B-*M,Z' FT_MZ ='F T-*M,Z', FZ_MT ='F Z_*M,T'
    FB_MTZ = 'F B-*M,T,Z' FT_MBZ = 'F T- *M,B,Z' FZ-MBT = 'F Z_-M,B,T'
        O
        OSLB_MT ='OSL B_*M,T' OSLTTMB ='OSL T_*M,B' OSLZ_MB ='OSL Z-*M,B'
        OSLB-MZ ='OSL B-*M,Z', OSLTMMZ ='OSL T-*M, Z', OSLZ-MT ='OSL Z- ZM,T'
        OSLB_MTZ='OSL B_*M,T,Z'OSLT_MBZ='OSL T-*M,B,Z,OSLZ_MBT='OSL Z Z*M, O,T',
    MUHATG = 'MU HAT*GLM' BL1HATG = 'BLOCK 1*HAT GLM'
    TR1HATG = 'TREAT 1*HAT GLM' TR2HATG = 'TREAT 2*HAT GLM'
    TR3HATG = 'TREAT 3*HAT GLM' BETAHAT = 'BETA HAT*GLM=ADV'
        MUHATA = 'MU HAT*AOV'
        BL1HATA = 'BLOCK 1*HAT AOV' BL2HATA = 'BLOCK 2*HAT AOV'
        TR1HATA = 'TREAT 1*HAT AOV' TR2HATA = 'TREAT 2*HAT AOV'
            TR3HATA = 'TREAT 3*HAT AOV' TR4HATA = 'TREAT 4*HAT AOV'
    BLIYBAR='BLOCK 1*Y BAR' TRIYBAR='TREAT 1*Y BAR' TRIZBAR='TREAT 1*Z BAR'
```

```
    BL2YBAR='BLOCK 2*Y BAR' TR2YBAR='TREAT 2*Y BAR' TR2ZBAR='TREAT 2*Z BAR'
    BL1ZBAR='BLOCK 1*Z BAR' TR3YBAR='TREAT 3*Y BAR' TR3ZBAR='TREAT 3*Z BAR'
    BL2ZBAR='BLOCK 2*Z BAR' TR4YBAR='TREAT 4*Y BAR' TR4ZBAR='TREAT 4*Z BAR'
    /* THE FOLLOWING CONSTANT VARIABLES ARE NOT PRINTED HERE.
            THEY ARE PRINTED AS OUTPUT FROM THE MEANS PROCEEDURE.
    AMUHATA ='R-EXPT*MUHATA'
    ABL1HATA='R-EXPT*BL1HATA' ABL2HATA='R-EXPT*BL2HATA'
    ATR1HATA='R-EXPT*TR1HATA' ATR2HATA='R-EXPT*TR2HATA'
    ATR3HATA='R-EXPT*TR3HATA'
    ABETAHAT='R-EXPT*BETAHAT'
    AMSB M ='R-EXPT*MSB M'
    AMST_MB='R-EXPT*MST'_MB' AMST_MBZ='R-EXPT*MST_MBZ'
    AMSZ-MB='R-EXPT*MSZ'MB'
    AFMOD = '.R-EXPT*F MO}\mp@subsup{D}{}{\prime
    AFT_MB ='R-EXPT*FT
    AFZ-MB ='R-EXPT*FZ'MB'
    AMSZ-MBT='R-EXPT*MSZ-MBT'
    AFB_\overline{M}='R-EXPT*FB_\overline{M}
    AFT_MBZ ='R-EXPT*FTIMBZ'
    AFZMB ='R-EXPT*FZ MB', AFZ_MBT ='R-EXPT*FZ MBT'
    AZSS̄_MBT='R-EXPT*ZS̈S_MBT' O
*/
RMU ='R-ERR*MUHATA'
RTR1='R-ERR*TR 1HATA'
RTR4='R-ERR*TR4HATA'
RMST_MB='R-ERR*MST_MB'
RMSZ-MB='R-ERR*MSZ-MB'
RFMO\overline{D}='R-ERR*FMO\overline{D}
RFT_MB ='R-ERR*FT_MB.
RFZ-MB ='R-ERR*FZ-MB'
RBL1= 'R-ERR*BL1HATA' RBL2='R-ERR*BL2HATA'
RTR2= 'R-ERR*TR2HATA' RTR3='R-ERR*TR3HATA'
RBETA='R-ERR*BETAHAT'
RMST_MBZ='R-ERR*MST_MBZ'
RMSZMBT = 'R-ERR*MSZ-MBT',
RFB \overline{M ='R-ERR*FB 信'}
RFT_MBZ ='R-ERR*FT_MBZ'
RFZ-MBT ='R-ERR*FZMMBT'
    S\overline{BL1='S-ERR*BL 1HA}TA' SBL2='S-ERR*BL2HATA'
    STR2='S-ERRR*TR2HATA' STR3='S-ERR*TR3HATA'
```



```
    STR1='S-ERR*TR 1HATA
    SBETA='S-ERR*BETAHAT'
        STR4='S-ERR*TR4HATA',
        RATITO1 = 'R1-ZSST_MB/*DFTHZSS_MBT' RATIO2= 'R2-ZSST_MB/*OMEGA'
            RATIO3 = 'R3-ZSS_MBT/*AZSS_MBT';
************
    Analysis of aov estimates and responses.;
PROC MEANS DATA = sasglm.&glm_ds N MEAN STD VAR MIN mAX;
    TITLE1 "Two types of errors R=randomization S=population";
    TITLE2 "Data set is sasglm.&glm_ds ";
    VAR RMU RBL1 RBL2 RTR1 RTR2 RTR3 RTR4 RBETA
        RMST_MB RMST_MBZ RMSZ_MB RMSZ_MBT
        SMU -MB SBL1 SWBL2 STR1 STR2-STR3 STR4 SBETA
        OMEGA AZSS_MBT ZSS_MBT RATIO1 RATIO2 RATIO3;
PROC MEANS DATA = sasglm.&glm_ds N MEAN STD VAR MIN MAX;
    TITLE1 "Mean squares weighted with ratio3";
    TITLE2 "Data set is sasglm.&glm_ds ";
    WEIGHT RATIO3;
    VAR MSRES MST_MBZ MSZ_MBT ft_mbz fz_mbt
        BETAHAT mühata blThata bl2hata
        trihata tr2hata tr3hata tr4hata :
PROC CHART DATA = sasglm.&glm_ds;
    TITLE1 "The Randomization Model with Blocks and a Covariate";
    TITLE2 "Data set is sasglm.&glm_ds ";
HBAR MST_MBZ MSZ_MBT MSRES
            FT MBZ FZ MBT
            OSÏT_MBZ OSL̄Z_MBT
        muHata blihata bl2hata
        TR1HATA TR2HATA TR3HATA TR4HATA BETAHAT
        SMU SBL1 SBL2 STR1 STR2 STR3 STR4 SBETA
    / TYPE = PERCENT LEVELS = 20 ;
        /*
```



```
PROC PLOT DATA = sasglm.8glm_ds;
```

PROC PLOT DATA = sasglm.8glm_ds;
TITLE1 "The Randomization Model with Blocks and a Covariate";
TITLE1 "The Randomization Model with Blocks and a Covariate";
TITLE2 "Data set is sasglm.\&glm_ds ";
TITLE2 "Data set is sasglm.\&glm_ds ";
PLOT B1 RAND * B2 RAND = MST MBZ / HPOS=50 CONTOUR=10 ;
PLOT B1 RAND * B2 RAND = MST MBZ / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = MSZ_MBT / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = MSZ_MBT / HPOS=50 CONTOUR=10;
PLOT B1-RAND * B2_RAND = MSRE\overline{S / HPOS=50 CONTOUR=10;}
PLOT B1-RAND * B2_RAND = MSRE\overline{S / HPOS=50 CONTOUR=10;}
PLOT B1_RAND * B2_RAND = FT_MBZ / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = FT_MBZ / HPOS=50 CONTOUR=10;
PLOT B1-RAND * B2-RAND = FZMMBT / HPOS=50 CONTOUR=10;
PLOT B1-RAND * B2-RAND = FZMMBT / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = OSL̈T_MBZ/ HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = OSL̈T_MBZ/ HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = OSLZMMBT/ HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = OSLZMMBT/ HPOS=50 CONTOUR=10;
PLOT B1-RAND * B2-RAND = BETAMAT / HPOS=50 CONTOUR=10;
PLOT B1-RAND * B2-RAND = BETAMAT / HPOS=50 CONTOUR=10;
/* PLOT B1_RAND * B2_RAND = ZSS_MBT / HPOS=50 CONTOUR=10;
/* PLOT B1_RAND * B2_RAND = ZSS_MBT / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RSQ / / HPDS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RSQ / / HPDS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = COEFVAR / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = COEFVAR / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = MEAN_Y / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = MEAN_Y / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RMU - / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RMU - / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RBL1 / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RBL1 / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RTR1 / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RTR1 / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RTR2 / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RTR2 / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RTR3 / HPOS=50 CONTOUR=10 :
PLOT B1_RAND * B2_RAND = RTR3 / HPOS=50 CONTOUR=10 :
PLOT B1_RAND * B2_RAND = RTR4 / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RTR4 / HPOS=50 CONTOUR=10 ;
PLOT B1-RAND * B2_RAND = RBETA / HPOS=50 CONTOUR=10.;
PLOT B1-RAND * B2_RAND = RBETA / HPOS=50 CONTOUR=10.;
PLOT B1_RAND * B2_RAND = RMST_MB / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RMST_MB / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RMST_MBZ/ HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RMST_MBZ/ HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RMSZ_MB / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RMSZ_MB / HPOS=50 CONTOUR=10 ;
PLOT B1-RAND * B2_RAND = RMSZ MBT/ HPOS=50. CONTOUR=10;
PLOT B1-RAND * B2_RAND = RMSZ MBT/ HPOS=50. CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFMOD / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFMOD / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFB_M / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RFB_M / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RFT_MB / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFT_MB / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFT_MBZ / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFT_MBZ / HPOS=50 CONTOUR=10;
PLOT B1_RAND * B2_RAND = RFZ_MB / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RFZ_MB / HPOS=50 CONTOUR=10 ;
PLOT B1_RAND * B2_RAND = RFZ_MBT / HPOS=50 CONTOUR=10:
PLOT B1_RAND * B2_RAND = RFZ_MBT / HPOS=50 CONTOUR=10:
*/
*/
PROC PLOT DATA = sasglm.\&glm_ds;
TITLE1 "The Randomization Model with Blocks and a Covariate";
TITLE2 "Data set is sasglm.\&glm_ds ";
PLOT (msz_mbt msres fz_mbt betăhat) * g_group / HPOS=50;
PLOT(SMU SBL1 SBL2 STR1 STR2 STR3 STR4 SBETA)
* RATIO2 / HPDS=50 VREF=0.0;
PLOT (RATIO1 RATIO2) * RATIO3 / HPOS=50;
PLOT RATIO1 * RATIO2 / HPOS=50;
/*
PLOT(RMU RBL1 RBL2 RTR1 RTR2 RTR3 RTR4 RBETA
RMST_MB
* RATIO2 / HPOS=50 VREF=0.O;
*/
PROC CHART DATA = sasgim.8yhat_ds;
TITLE1 "The Randomization Model with Blocks and a Covariate";

```
```

 TITLE2 "Data set is sasdata.obs_y ":
 HBAR &yobs &error &ypred &resid
 / TYPE = PERCENT LEVELS = 20;
 /*
 PROC PLOT DATA = sasglm.\&yhat ds;
TITLE1 "The Randomization Model with Blocks and a Covariate":
TITLE2 "Data set is sasdata.obs_y ";
PLOT \&resid * (\&pred covar) / HPOS=50 VREF=0.0;
PLOT \&yobs * \&pred / HPOS=50;
*/
//

* Debug Print options follow: :
%db(\&dbps1. PRINT "Data input from eu_err and euti_err (dbps1)";
PRINT mu_val b_valm trt_valm beta- zm
labels
eu_eqm eu_nem euti_eqm euti_nem;);
************************ Create Dutput Data Set *********************;
********* Test Print In\tial Version of Data Set obs_y *****;
* Debug Print options follow: ;
%db(\&dbps3, TITLE1 "Observations from rm_err (dbps3)";
PROC PRINT DATA=rm err (OBS=32));
PROC PRINT DATA=rm_err (FIRSTOBS=4577);
PROC MEANS DATA=rm_err (OBS=32)
N MEAN VAR STD VARDEF=N;
BY exp_rand block;
VAR eu_eq euti_eq eu_ne euti_ne:
PROC MEANNS DATA=「m_err (OBS=32)
N MEAN VAR STD VARDEF=N;
BY exp_rand;
VAR eu_eq euti_eq eu_ne euti_ne;
PROC MEANS DATA=rm_err
N MEAN VAR STD
VAR eu_eq euti_eq eu_ne euti_ne;
);
DATA sasdata.rm_err; SET rm_err; *Randomization Model ERRor;
DATA all_err; *ALL three ERRor types;
MERGE sasdata.rm_err sasdata.nor_err; BY exp_rand;
covar = z; drop z ;
LABEL
exp_rand= 'experiment-wise rando'
b1_rand = 'block 1 randomization'
b2_rand = 'block 2 randomization'
block = 'block id'
b val = 'block effect value'
plot = 'experimental unit id'
plabel = 'plot label'
treat = 'treatment id'
trt_val = 'treat effect value'
tlabel = 'treatment label'
covar = 'covariate (z)'
beta = 'covariate slope coef.'
eu_eq. = 'e.u. error var-eq'

```
```

eu_ne = 'e.u. error var-ne'
euti_eq = 'e.u.t.i. error var-eq'
euti_ne = 'e.u.t.i. error var-ne'
nre03_eq = 'normal err v=3 -eq'
nre03_ne = 'normal err v=3 -ne'
nre10_eq = 'normal err v=10 -eq'
nre10_ne = 'normal err v=10 -ne'
nre30_eq = 'normal err v=30 -eq'
nre30_ne = 'normal err v=30 -ne'
nre90_eq = 'normal err v=90 -eq'
nre90_ne = 'normal err v=90 -ne'
s_popynt= 'superpop. no treat'
s_popywt= 'superpop. with treat'
**** Create macro too generate formula for ***************************;
************* the observed population values yobs(H)(\#\#) ************;
%MACRO m_yobs;
%DO err_1d = 1 %T0 9 ;
yobsO0\&err_id = s_popynt + e0\&err_id;
yobsio\&err_id = s_popywt + eo\&err_id;
%END;
%DO err id = 10 %TO 81;
yobs0\&err id = spopynt + e\&err_id;
yobs1\&err_1d = s_popywt + e\&err_fd;
%END;
%MEND;
************* End of macro m_yobs *************************************;
/* *Successful step turned off. ;

```
```

U13293A.SASPROG.CNTL(NONCENT)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:16 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'R. S. WILSON',TIME=(0,9),CLASS=2,
// MSGCLASS=X.MSGLEVEL=(1,1)
/*JOBPARM ROOM=R,FORMS=9001,COPIES=1
// EXEC SAS,REGION=918K
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD
//SYSIN DD *
/*****************\#
File: sasprog.cntl(noncent)
Compute noncentrality parameter
Use specified treatments, covarlates, and slope coefficient
Compute various parts of the noncentrality formulas.
Variance (sigma squared) and 1/2 are omitted from all
noncentrality parameters.
**/
options nodate;
proc 1ml;
*Variable value matrices follow;
* Treatment coefficients;
bt = { -6.5, -3.5, 2.5};
* Covarlate coeffictent(s);
bz = { 2.0 };
* Covariate values with comments on equal-valued g-groups;
Title1 'Noncentrality Parameters - less (1/2)(sigma squared)';
T1tle2 'covariate = {1,2,11,14, 5,9,16,19} coeffictent = 2.0';
Title3 'treatments = -6.5, -3.5, 2.5 (+7.5)}';
xz = { 1, 2, 11, 14. 5, 9, 16, 19}; *NO dup 1 change from org;
* xz = { 1, 2, 11, 14, 5, 9. 17, 19}; **original, reordered;
* xz = { 1, 2, 11, 14, 7, 9. 15, 19}; *NO dup;
* xz = { 1, 2, 11, 14, 7, 9, 15, 18};*1 dup ;
* xz = {1, 2, 11, 14, 18, 17, 9, 5}; *1 dup;
* xz = { 1, 2, 11, 14, 7, 9, 17, 19}; *NO dup 2 diff=10;
* xz = {1, 2, 11, 14, 19, 17, 9, 5}; *1 dup and eq following;
* xz = { 1, 2, 11, 14, 5, 9, 17, 19}; *1 dup and eq above;
* xz = {2.63, 9.11, 16.19, 20.93, 30.21, 40.21, 41.09, 50.43};
* Debug print switches prints if true;
dbps1 = 'false' ; *escape;
dbps2 = 'false'; *constant values;
dbps3 = 'false'; *permutation matrix;
*Constant valued matrices follow;
xm ={1, 1, 1, 1, 1, 1, 1, 1};
xb}={1,1,1,1, -1, -1, -1, -1}

```

```

 100, 0 1 0, 0 0 1, -1 -1 -1};
 w = (j(4,4, 1/4) || j(4,4,0)) // (j(4,4,0) || j(4,4, 1/4));
 lam_ft=bt& * xt**xt*bt;
 I = I(8);
 lam_fb = bz& * xz& * (I - w) * xz * bz;
 slope = lam_ft / lam_fb;
 xxxx_t = xt * * inv(xt\overline{4}*xt) * xt&;
 zzzz}\mp@subsup{}{}{-}=xz*\operatorname{lnv(xz& * xz) * * xz$;
    ```

```

21 15 23 17 17 9
*G-table was copied in from output from g-table program, below. ;
********************** begin looping through randomlzations *****;
create temp from escape (|colname = varname |);
start mb1_rand;
do bl_ran\overline{d}=1 to 24 by 1;
b1= j43;
m1 = m4;
start mp set1;
do p_set1 = 1 to 4 by 1; *1 row of rpattern;
one_col = rpattern(|b1_rand, p_set1 |);
If one_col = 4 then b1(|p_set1, |) =-1:
If one_col r= 4 then bl(|p_set1, one_col |)= 1;
m1(|p_set1, one_col |)=1;
end;
finish:
run mp_set1;
start mb2_rand;
do b2_rand = 1 to 24 by 1;
*Compute experimental randomization number:
exp_rand = (b1_rand - 1) \# 24 + b2_rand;
*Compute randomizātion group number from gtable;
group = gtable(|b1_rand, b2_rand |);
b2 = j43;
m2 = m4;
start mp_set2;
do p_set\overline{2}=1}\mathrm{ to 4 by 1:
one_col = rpattern(|b2_rand, p_set2));

```

```

 m2(|p_set2, one_col |)= 1;
 end;
 finish;
 run mp_set2;
 xt_s = b1 // b2 ;
xx\overline{xx_ts = xt_s * inv(xt_st_* xt_s) * xt_st;}
xxxx_ts = xt_s * Inv(xt_s\& * * xt_s
*Debug print switch;
If dbps3 = 'true' then print xt_s x\timesx\times_ts m_s;
*Compute direct noncentralities;
*Section 2.6 for cov given rest:
x_p = xm ||xb ||xt_s || xz;
x\timesx\times_p=x_p* inv(x_p\&* x_p) * x_p\&;
b_h =bz; x_h = xz;
x_r = xm || xb || xt_s ;
xx\timesx_r = x_r * inv(x_r|** x_r) * x_r\&;

```


```

 lam2630b = (bz&* * 隼* (Ti-w) *-xz * bz))
 -(bz* * xz* * x xxx_ts * xz * bz);
 *Section 2.6 for tau given rest;
 b_h =bt; x_h = xt_s;
 x_r = xm | | \
    ```
```

lam269t = (x_h * b_h)\& * (x x xx_p - x mxx_r) * (x_h * b_h);

```


```

 -(bt& * xt_s& * ziz * xt_s * bt);
 *Theorem numbers correspond to dissertation text.;
*Compute random parts of noncent using permutor Theo 3.7.10 \& 11;
lam_gb = bz\& * xz\& * m_s * x x x < t * m_s\& * xz * bz;
lam_st = bt\& * xt\& * m_st * ziz* *m_s * xt * bt:
*Compute the (Diference=flxed-random) noncentralities;
lam_db = 1am_fb - lam_gb;
lam_dt = lam_ft - 1am_st;
*Compute left slde of Theo 3.7.15 which is < lam_gb;
l_s3715 = (lam_fb * lam_st) / lam_ft;
*Compute left and right-hand sides for Theo 3.7.13 \& 14;

* Since (1/2)sigma omitted from lamda, 2sigma is also omitted.;
l_s = bz\& * xz\& * M_s * xt * bt;
l_s = 1_s * |_s;
r_1 = lam_gb * lam_ft;
r_2 = lam_st * lam_fb;
*Debug print switch;
If dbpsi = 'true' then print
exp_rand b1_rand b2_rand group
lam269t lam2610t lam2634t
lamdt lamft lamst
lam269b lam2610b
lam_st
1 am2630b
1am db
1_s371\overline{5}}\mathrm{ 1_s
lam_fb
lam_gb
/*
If group = 24 then t = m_st * ziz * m_s;
If group = 24 then print-
b1_rand b2_rand (|format=2.0|)
lam_gb lam_s̃t (|format=8.5|) t (|format=5.3|);
*/
* Output results;
escape = zero_esc;
escape =

```

```

 slope ;
 /*
 lam269b
    ```


```

 setout tëmp;
 append from escape;
 end;
 finish;
 run mb2_rand;
    ```
    end;
    finish;
    run mbi_rand;

data temp; set temp;
    lam_gb = round ( 1 am_gb, 1):
    \(1 a m-d b=\operatorname{round}(1 a m d b, 1)\);
    label
```

 lam_dt ='Lamda: treatments given rest'
 lam_db ='Lamda: covartates gfven rest'
 lam_ft ='Fixed part: treatments given rest'
 lam_fb ='Fixed part: covariates given rest'
 lam_st ='Random part: treatments given rest'
 lam_gb ='Random part: covariates given rest"
 1_s3715='(Fix cov)/(Fix treat)*(Ran treat)'
 1_s ='Cauchy-S left side'
r_1 ='(Fix tre) * (Ran cov)'
r_2 ='(F\&x cov) * (Ran tre)'
slope ='(Fix tre) / (Fix cov)'
;
proc sort data=temp; by lam_gb;
proc means data=temp maxdec = 8 noprint
n mean var std min max;
by lam_gb;
id g_group;
var lam_fb lam_gb lam_db lam_ft lam_st lam_dt;
output out=meañout
mean= mean_fb mean_gb mean_db . mean_ft mean_st mean_dt
var = var_fb var_gb var_db var_ft var_st var_dt

```

```

 max = max_fb max_gb max_db max_ft max_st max_dt
 ;
 proc print data=meanout;
 var g_group n_gb meen_fb mean_gb mean_db var_db
 mean_ft mean_st mean_dt var_dt;
 *Plot the two noncentrality parameters against one another.;
proc plot data=temp;
plot lam_dt * lam_db;
plot lam_st * lam_gb;
plot 1_s * (r_1 - r_2) ;
*Plot the varlance vs the mean of lamda treatments given rest;
proc plot data=meanout;
plot var_dt * mean_dt;
*Display distribution of noncentrality parameters, parts, and C.S.;
proc chart data=temp;
hbar lam_dt lam_db lam_st lam_gb 1_s
/ type = percent Tevels =-24;
*Test'slope estimated from actual data vs slope in Cauchy-S. result;
proc reg data=meanout;
Title4 '*=predicted point o=actual data points ?=overlap';
model max_st = max gb;
plot p. * max_gb='*' max_st * max_gb='o' / overlay;
*Print randomizations with the largest and smallest lamdas;
proc sort data=temp; by lam_db lam_dt;
proc print data=temp (obs = \overline{26});
Title4
'Data ordered by noncentrality of treatments given the rest (lam_dt)';
Title5
'within noncentrality of covariate given the rest (lam_db) ';
proc print data=temp (firstobs=551);
*Print first and last randomizations;
proc sort data=temp; by exp_rand;
Title4 'Data ordered by experimental randomization number';
Title5 '':

```
```

 proc print data=temp (obs = 26);
 proc print data=temp (firstobs=551);
 *Store data in permanent sas data file;
data sasdata.lamda; set temp;
/***
* The following program computes the above matrix Gtable
Gtable provides the block randomization td number (1,2,...tl)
for the off diagonal cell of m_s, the experiment-wide
permutation matrix. Randomizations with the same number
have the same value of lamda: covarlate given rest.
The table Gtable was computed in a prior run and copted into
the above program.
*
***/
/*
*Compute the transpose of each of the 24 permutation matrices
of left;
start mbr:
do br = 1 to 24 by 1;
start mvalue;
do value = 1 to 4 by 1;
start mrow;
do row = 1 to 4 by 1;
1f left(|br, row |)= value then right_t(|br,value |)= row;
end; fintsh; run mrow;
end; finlsh; run mvalue;
end; finish; run mbr:
print left (|format=3.O(| mvalue right_t (|format=3.0 |);
*Compute product left * right t;
product = j(4,1,0); table = J (24, 24, 0);
start mlbr;
do lbr = 1 to 24;
start mrbr;
do rbr = 1 to 24;
start mrow;
do row = 1 to 4;
temp = left(|lbr, row |);
product(|row(| = right_t(| rbr, temp |):
end; finlsh; run mrow;
start mbr;
do br = 1 to 24;
If left(|br.1(| = product(|1 |)\&
left(br,2(= product(2)\&
left(|br,3(= product(3)\&\&
left(|bri4(| = product(|4 |)
then table(|lbr, rbr |)= br;
end; finish; run mbr;
end; finish; run mrbr;
end; finish; run mlbr;
print table (|format=2.0 |)"Table of M * M(transpose) Id";
*************** end of computation of Gtable *****************;
*/

```
```

U13293A.SASPROG. CNTL(TESTF)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4,1992 14:59:19 U13293A MVS1 **
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSDN',
// TIME=(1,0),MSGLEEVEL=(1,1),MSGCLÁSS=X,CLASS=2
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
//SI EXEC SAS.OPTIONS='MACRO,DQUOTE'
//SYSIN DD *
*
* Program File: sasprog.cntl(testf)
Test F-distribution probability plots of osl's.
Steps:
Generate normal distributed random variables.
Square and sum to obtain 2 indep. chi-squared random variables.
Divide by the degrees of freedom and each other to obtain
f-distributed random variables.
Obtain ranks.
* Plot ranks vs osls.
*************** Debug Print Switch Macro and Switches **********;

* Macro for debug printing follows:;
%MACRO db(db site,db act);
%IF %UPCASE(\&db_sit\overline{e})= TRUE | %UPCASE(\&db_site) = T
%THEN %QUÖTE(\&db_act):
%MEND db;
*
*Debug print switches (dbps\#):
True or t = on (in upper and/or lower case), anything else = off.;
%LET dbps1= f ; *Put data step values to log file;
%LET dbps2 = t ; *print final data set 6 obs;
************************* End Of Debug Prłnt Switches ****************;
**;
*Step One: Obtain f-distributed random variables and osi's.;
DATA fi(KEEP= f_vari osl1 num_chi)
N1(KEEP=var num nor var2);
RETAIN seed1 \overline{20479 Seed2 56193;}
DO var_num= 1 T0 1000;
num_chi = 0;
DO numdf = 1 TO 5 BY 1;
*nor_var = RANNOR(5620479);
CALL RANNOR(seed1 * nor_var1);
num_chi = num_chi + nor_var\*nor_var1;
END;
den_cht = 0;
DO dendf = 1 TO 4 BY 1;
*nor_var = RANNOR(562479);
CALL RANNOR(seed2 , nor_var2);
OUTPUT n1;
den_chi = den_chi + nor_var2*nor_var2;
END;
f_var1= (num_chi/5) / (den_chi/4);
osl1= 1 - PROBF(f_vari, 5, 4);
*Debut print switch follows;

```
```

 %db(&dbps1, IF var_num < 6 THEN PUT
 nor_vari nor_var\overline{2}}\mathrm{ num_chi= den_chi= f_vari= osil=:);
 OUTPUT f1;
 END:
 PROC STANDARD DATA = N1 OUT=n2 std=1.0 vardef=n;
by var_num;
var nōr_var2;
PROC MEANS DATA = n2 Uss NOPRINT;
by var num;
var NÖR_var2;
output out= n3 uss=den_ch12;
data f1; merge F1 n3;
f_var2= (num_chi/5) / (den_chi2/4);
0512=1 - PROBF(f_var2, 5, 4):
f_var3= (num_chi/5)/(den_chi2/ 3);
osl3=1- PROBF(f_var3, 5, 3);
*Debut print switch follows;
%db(\&dbps2. proc print data=f1 (obs=6););
**************************************\#\#**********\#**********************;
*Rank osls. ;
* Stralght 45 degree line indicates actual f distribution.;
PROC RANK DATA = f1 OUT=f2
TIES = MEAN FRACTION;
VAR OSl1 OSl2 osl3;
RANKS r_osl1 r_osl2 r_osi3;
DATA f2; SET f2;
LABEL
r_osl1 = "Rank central-0SL1"
r_osl2 = "Rank central-oSL2"
r_osl3 = "Rank central-0SL3"
;
**;
* Step:
Analysize observed significance for test of f-distribution.;
PROC PLOT DATA = f2;
TITLE1 " Compare rank of osl with actual osl n;
TITLE2 " Central F distribution df(num)=5 df(den)=4 ";
TITLE3 " Normal errors not standardized prior to chi sq.";
*Obs Sig Level for treatments, zero then nonzero ;
PLOT r_osli * osl1= **'
/-VAXIS = 0 TO 1 BY . 2 HAXIS = 0 TO 1 BY . }
VREF = 0. 2 .4 . 6 .8 1. HREF = 0.2 .4 . 6 . . % 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;

```
```

 PLOT r osl1 * osl1 = '*'
 /-VAXIS =0 TO . 2 BY .05 HAXIS = 0 TO . 2 BY . O5
 VREF = 0.05 . 10.15 .2 HREF = 0.05 . 10.15 . 2
 VREVERSE HREVERSE HPOS = 80 OVERLAY ;
 PROC PLOT DATA = f2;
TITLE1 n Compare rank of osi with actual osl not stand.";
TITLE2 " Central F distribution df(num)=5 df(den)=4
TITLE3 " Normal errors are standardized prior to chi sq.";
*Obs Sig Level for treatments, zero then nonzero ;
PLOT r osl2 * osl2= '*'
TVVAXIS = O TO 1 BY . 2 HAXIS = 0 TO 1 BY . 2
VREF = 0. 2 . 4 1.. HREF = 0 . 2 . 4 . 6 . . 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY:
PLOT r os12 * os12 = '*'
/- VAXIS = O TO . 2 BY . O5 HAXIS = 0 TO . 2 BY . 05
VREF = 0.05 . 10.15 . 2 HREF = 0.05 . 10 . 15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
PROC PLOT DATA = f2;
TITLE1 " Compaire rank of osl with actual osl not stand.n:
TITLE2 " Central F distribution df(num)=5 df(den)=3 ";
TITLE3 " Normal errors are standardized prior to chi sq.";
*Obs Sig Level for treatments, zero then nonzero :
PLOT r_osi3 * osl3= '*'

```

```

 VREVERSE HREVERSE HPOS = 80 OVERLAY;
 PLOT r_os13* os13= **'
 / VAXIS = 0 TO . 2 BY . 05 HAXIS = 0 TO . 2 BY .05
 VREF = 0.05 .10.15.2 HREF = 0.05 .10.15.2
 VREVERSE HREVERSE HPOS = 80 OVERLAY:
 //
PROC CHART DATA = f2;
HBAR f_var1 osl1/ TYPE = PERCENT LEVELS=20;
TITLE1 m- Central F distribution df(num)=3 df(den)=2) m;
PROC CHART DATA = f2; WHERE f_var < 10000;
HBAR f vari osi1/ TYPE = PERCENT LEVELS=20;
TITLE1'n Central F distribution df(num)=3 df(den)=2) ";
PROC CHART DATA = f2; WHERE f_var < 1000;
HBAR f_var1 os11/ TYPE =-PERCENT LEVELS=20;
TITLE1-" Central F distribution df(num)=3 df(den)=2) ";
PROC CHART DATA = f2; WHERE f_var < 100;
HBAR f_var1 osl1/ TYPE = PERCENT LEVELS=20;
TITLE1-" Central F distribution df(num)=3 df(den)=2) ";
PROC CHART DATA = f2; WHERE f_var < 10;
HBAR f_vari osl1/ TYPE =-PERCENT LEVELS=20;
TITLE1"" Central F distribution df(num)=3 df(den)=2 m:
//

```
```

U13293A.SASPROG.CNTL(SNORMAL)
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSON',TIME=(1,0),CLASS=2,
// MSGCLASS = X,MSGLEVEL = (1,1)
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
// EXEC SAS,REGION=918K
//SASGLM DD DSN=U13293A.SASGLM.DATA,DISP=OLD
//SASGLM2 DD DSN=U13293A.SASGLM2.DATA,DISP=OLD
//SYSIN DD**
/**
* File: snormal Singular Normal estimate for sigma squared.
* See Searle (1971) p. }69\mathrm{ Corollary 2s.2

* Since L (below) does not have full column rank, the method of
 * Searle, p. 222, (132) and following, will not work.
*
* The normally distributed errors were standardized to sum to
zero within each randomization. Prior to standardizing
they were N(O, I*sigma-squared). The standardizing involved
pre-multiplying them by L=(I-(1/8)*U). The resulting variance
is V=L*L\& = L since L is idempotent. V is singular. The
resulting distribution is singular normal. SN(O,V). The
residual sum of squares y\&*A*y is as beforif, but the degrees of
of freedom are trace(AV), provided the condition VAVAV=VAV is
satisfied. bblowr
By the method of construction, the experimental unit errors
are the residuals from a least squares computation. Thus,
their distribution, assuming the errors of the model are normal,
is the singular normal with V = LL' and L = I - Z*INV(Z\&*Z)*Z,
as per below (2.3.3). Thus, the residual sum of squares for
models using only e.u. error is chi-squared with df=trace(AV),
where A is the projector for the residual sum of squares.,
A=I - P(X) - P(Rz) as below.
For each randomization, this program verifies the condition on the
theorem that VAVAV = VAV, calls in the sum of squares, computes
the degrees of freedom = trace(AV), and outputs resutis.
**/
proc iml;
*Constant valued matrices follow:;
xm = {1, 1, 1, 1, 1, 1, 1, 1}; *Mean;
xb = {1, 1, 1, 1, -1, -1, -1, -1}; *Blocks;
z = {1, 2, 11, 14, 5, 9, 16, 19}; *Covariates;
j43 = J(4,3,0);
*Constant projector follows:
pz=z * INV(z\&*z) * z\&;
*Output vector and variable names for output data set.
sn_sigma = estimate of sigma squared using singular normal error.;
escape = J(1, 6, 0);
varname = {exp_rand max_val min_val tr_Av55
sig55 sn_sig55}:
* exp_rand = experimental randomization id number;

```
```

* max_va and min_va = max and min values of all elements of the
difference matrix VAVAV - VAV;
* tr_AV\#\# = degrees of freedom for the variance estimate sn_sig\#\#;
* sig
* sn_sig\#\# = variance estimate using singular normal df=trace(AV);
* \#\#- = 02 or 03 for the eq and ne block var. versions of e.u. error;
*
= 46 or 55 for the eq and ne block var. versions of normal error;

*Each row of Mpattern (randomization patterns) is one permitted
block-randomization or assignment of treatments (element value)
to expertmental units (element position) within one block. ;
rpattern =

```

```

 2 1 3 4, 2 14 4, 2 3 14, 2 3 4 1, 24 4 3, 24 4, 1,
    ```

```

 4123,4132,4213,4231,4 312,4 3 2 1} ;
 ********************** begin looping through randomizations *****;
CREATE temp FROM escape (|COLNAME = varname |);
START mb1_rand;
DO b1_rand = 1 то 24 BY 1;
b1-}= 143
START mp_set 1;
DO p_set\ = 1 TO 4 BY 1; *1 row of rpattern;
one_col = rpattern(|b1_rand, p_set1 |);
IF One_col = 4 THEN'bi(|p_set1, |; = -1;
IF one_col ᄀ= 4 THEN bi(|p_setf, one_col |)= 1;
END:
FINISH;
RUN mp_set1;
START mb2_rand;
DO. b2_rand = 1 TO 24 BY 1;
*Compute experimental randomization number;
exp_rand = (b1_rand - 1) / 24 + b2_rand;
b2 = j 4
START mp_set2;
DO p_set }\overline{2}=1\mathrm{ TO 4 BY 1;
one_col = rpattern(|b2_rand, p_set2 |);
IF Öne_col = 4 THEN b\overline{2}(|p_set2, ,) = -1;
IF one_col T= 4 THEN b2(|p_set2, one_col |)= 1;
END;
FINISH;
RUN mp_set2;
*Construct full-model X matrix, X = xn \uparrow\uparrow xb \uparrow\uparrow xt_x \uparrow\uparrowz.;
xt_s=b1 // b2 || xt_s || z ;
*Variable projectors follow:;
px = x_s * INV(x_s\$ * x_s)* x_s\$;
r = (\overline{I}(8)-px)** z;
pr = r * GINV(r* * r) * r*;
*PRINT exp_rand px r pr;
*Matrices A and V of Searle follow:;
A = I(8) - px - pr;
*For exper. unit. error. 02 \& 03 ;
*V = I(8) - px;
*For normal dist. error, 46 \& 55 ;

```

```

 *Block diag form affects only ne block variances error sets;
 VAV = V * A * V;
 VAVAV = VAV * A * V;
 diff = VAVAV - VAV;
 max_val = MAX(diff);
 min_val = MIN(diff);
 tr_AV = TRACE(A*V);
 *Read in sum of squares.;
 USE sasgim2.glm055;
 READ NEXT 1 VAR{ssres} INTO ssres:
 *Construct mean square estimator of variance.;
 sn_sig = ssres / tr_AV;
 sig = ssres / 2;
 *PRINT exp_rand A V VAV VAVAV diff
max_val min_val tr_AV sn_sig sig;
escape =
*Output results;
SETOUT temp;
APPEND FROM escape;
END;
FINISH;
RUN mb2_rand;
END;
FINISH;
RUN mbi_rand;
******************************* END Of IML ************************;
TITLE1 "Singular normal and associated chi-square of Searle, p. 69"; PROC MEANS DATA=temp N MIN MAX MEAN VAR VARDEF=N;
VAR tr_AV55 min_val max_val sig55 sn_sig55;
PROC CHART DATA = temp;
HBAR sn_sig55•sig55 tr_AV55 max_val/ TYPE = PERCENT LEVELS = 24;
PROC PLOT DATA=temp;
PLOT sn_sig55 * (sig55 tr_AV55 max_val) ;
*PROC PRINT DATA=temp (OBS=30):
DATA sasgim2.sing_nor:
MERGE sasgim.sing_nor
temp (KEEP = exp_rand sn_sig55 tr_AV55);
BY exp_rand;
PROC PRINT DATA=sasgim2.sing_nor (OBS=30);
//

```
```

U13293A.SASPROG.CNTL(PROBP)
VPSPRINT 5.1.002 WEDNESDAY NOVEMBER 4.1992 14:59:17 U13293A MVS1
VPSPRINT SASPROG.CNTL(*) LOCAL FORM(9001) CLASS(E)
//U13293AA JOB (*),'ROBERT WILSON'.
// TIME=(1,0),MSGLEVEL=(1,1),MSGCLASS=X,CLASS=2
/*JOBPARM ROOM=Y,FORMS=9001,COPIES=1
//S1 EXEC SAS,OPTIONS='MACRO,DQUOTE'
//SASGLM DD DSN=U13293A.SASGLM.DATA,DISP=OLD
//SASGLM2 DD DSN=U13293A.SASGLM2.DATA,DISP=OLD
//SASDATA DD DSN=U13293A.SASDATA.DATA,DISP=OLD
//SYSIN DD *
/*
*
Program File: sasprog.cntl(probp)
Step One:
Select error types. Extract f-ratios and null hypothesis
osl's as provided by proc glm for each experimental
randomizations. Extract the singular normal denominator
mean square and degrees of freedom from sasglm2.sing_nor.
These adjust e.u. and normal errors only. The eutf errors
were not forced to sum to zero wtthin each randomization.
Step Two:
Produce experiment-wfde variance for error terms.
Atttach to data set fratios.
Step Three:
Use noncentralłty parameters to obtaln correct noṇ-null
hypothesis osl.
Step Four:
Rank all osls and attach to file fratios.
Step Five:
Plot ranks vs actual osl values.
Output File:
sasglm2.fratios
One record per experimental randomization
*************** Debug Print Switch Macro and Switches **********;

* Macro for debug printing follows:;
%MACRO db(db_sfte,db_act);
%IF %UPCASE(\&db_sit\vec{e})= TRUE | %UPCASE(\&db_site) = T
%THEN %QUŌTE(\&db_act);
%MEND db;
*

*Debug print switches (dbps\#):
True or t = on (in upper and/or lower case), anything else = off.;
%LET dbps1=f ; *Extract frations from glm|\#\# data sets.;
%LET dbps2 = f ; *Produce var of error terms - Step 2.;
%LET dbps3 = f ; *Attach var(error) to fratios - Step 2.;
%LET dbps4 = f ; *Attach lamda and noncent osl - Step 3.;
%LET dbps5 = t ; *Attach rank(osl) to fratios - Step 4.;
%LET dbps6 = f ; *;

```
```

************************* End of Debug Print Switches ****************;
**;
*Step One:
Input f-ratios and osl's from various treatment-error combinations.
Fz_mbt and oslz_mbt are = for glmOxx and glmixx as nonzero treatments
does not alter this central F statistic for the covarlate.
Key to new varlable names:
f=F-ratio s=significance level m=numerator mean square
t=treatments z=covariate
(for s only) c=central F n=noncentral F
O=zero treatment 1=nonzero treatment
\#\#=error combination
r prefix indicates rank of variable
g suffix indicates f-ratio or sig level used singular normal.
DATA sasglm2.frattos;
MERGE
sasg1m2.sing_nor
sasg1m.glmOO\overline{2}
(KEEP= exp_rand b1_rand b2_rand g_group
ft_mbz oslt_mbz fz_mbt osiz_mbt
ms\overline{t}}\textrm{mbz
ms\overline{z}_mbt
RENAME = (ft_mbz=ft002 oslt_mbz=stc002
fz_mbt=fz002 oslz_mbt=szc002 msz_mbt=mz002)
sasg1m.g1m102
(KEEP= exp_rand
ft_mbz oslt mbz
fz_mbt oslz_mbt
ms\overline{t}}\textrm{mbz
mSZ_mbt
RENAME = Tft_mbz=ft102
os1t_mbz=stc102 mst_mbz=mt102
os1z_mbt=szc102' msz_mbt=mz102))
sasglm.g1mOO3
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
ms\overline{t}}\textrm{mbz
ms\overline{z}_mbt
RENAME = Tft_mbz=ft003 os1t_mbz=stc003
fz_mbt=fzOO3 oslz_mbt=szc003 msz_mbt=mz003))
sasg1m.glm103
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
mst}\textrm{mbz
ms\overline{Z}_mbt
RENAME = (ft_mbz=ft103 oslt_mbz=stc103 mst_mbz=mt103
fz_mbt=fz103 oslz_mbt=szc.103 msz_mbt=mz103))
sasg1m.g1m004
(KEEP= exp_rand
ft_mbz oslt_mbz
fz_mbt oslz_mbt
RENAME =-(ft_mbz=f\overline{t}004 osTt_mbz=stc004
fz_mbt=fz004 os lz_mbt=szc004)).
sasg1m.g1m104
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
RENAME = (ft_mbz=ft104 os1t_mbz=stc104
fz_mbt=fz104 oslz_mbt=szc104))

```
```

sasglm.g1m005
(KEEP= exp_rand
ft mbz oslt mbz
RENAME =- (ft_mbz=f
fz_mbt=fz005 oslz_mbt=szc005))
sasg1m.g1m105
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
RENAME =- (ft_mbz=f\overline{t}105 os\overline{1}t_mbz=stc
fz_mbt=fz105 oslz_mbt=szc105))
sasg1m.glm007
(KEEP= exp_rand
ft_mbz oslt_mbz
RENAME =- (ft_mbz=f\overline{t}00
fz_mbt=fz007
fz_mbt oslz_mbt
osīt_mbz=stc0007
os1z_mbt=szc007))
sasg1m.g1m107
(KEEP= exp_rand
ft_mbz osit_mbz
fz_mbt oslzmbt
os1t_mbz=stc107
0s1z_mbt=szc107))
sasgim.glmO46
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
mstmmbz msz_mbt
RENAME = (ft_mbz=ft046 oslt_mbz=stc046
fz_mbt=fz046 oslz_mbt=szc046 msz_mbt=mz046))
sasglm.g1m146
(KEEP= exp_rand
ft_mbz osit_mbz fz_mbt oslz_mbt
mst}\textrm{mbz
msz_mbt
os1t_mbz=stc146
os1z_mbt=szc146
mst_mbz=mt146
msz_mbt=mz146).)
sasg1m2.g1m055
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
ms\vec{t}mbz
RENAME = (ft_mbz=ft055 osit_mbz=stc055 (%)
ms\overline{z}_mbt
sasg1m2.g1m155
(KEEP= exp_rand
ft_mbz oslt_mbz fz_mbt oslz_mbt
RENAME = Tft_mbz=ft155 os1t_mbz=stc155
os1t_mbz=stc155 mst_mbz=mt155
fz_mbt=fz155 oslz_mbt=szc155 msz_mbt=mz155))
BY exp_rand;

* Debug Print options follow: ;
%db(\&dbps 1.
TITLE1 "Data set sasglm2.fratios (dbpst)";
PROC PRINT OATA = sasglm2.fratios (OBS=26);
);

```
```

***;
*Step Two:
Attach noncentrality parameters and within experimental randomization
variance of error (not residual) term.;
PROC SORT DATA = sasdata.lamda; BY exp_rand;
DATA sasglm2.fratios;
MERGE sasglm2.fratios
sasdata.lamda
(KEEP= exp_rand lam_dt lam_ft lam_st lam_db lam_fb lam_gb
1_s);
BY exp_rand;
*Since the eu errors are constant for all randomizations (but attached
to different treatments) their error variance is constant and during
construction was fixed at 30 (denom=n). Likewise, the ndr errors had
their variance fixed at 30 during construction. The euti errors
selected change with each randomization, thus their error variance
changes with each randomization. Their average, over all
randomizations, is 30. For error conbinations included above,
only 004, 005, and 007 involve euti error. Non-zero treatments
do not affect the error nor their variance. For ease, all are
attached.;
PROC MEANS DATA = sasdata.obs_y (KEEP= exp_rand eO2 -- e81s)
VARDEF=N NOPRINT;
BY exp rand;
VAR eŌ2--e81;
OUTPUT OUT=sasg1m2.err_var VAR=var_eO2-var_e81;

* Debug Print options follow: ;
%db(\&dbps2,
TITLE1 "Data set sasglm2.err_var -- var of errors (dbps2)n;
PROC PRINT DATA = sasglm2.err_var (OBS=26) ;
);

```
```

*Attach needed error (not residual) variances to fratios;
DATA sasglm2.fratios;
MERGE sasglm2.frat10s
sasg1m2.err_var
(KEEP= exp
var_e07 var_e46 var_e55):
BY exp rand;
* Debug Print options follow: ;
%db(\&dbps3.
TITLE1 "Data set sasglm2.fratios with var of errors (dbps3)";
PROC PRINT DATA = sasglm2.fratios (OBS=26);
);

```

*Step Three:
    Use noncentrality parameters to obtain correct non-null
            hypothesis f-ratios for treatments and covariate.
    Use singular normal adjusted df to obtain adjusted error mean square.
        f-ratio, and os 1 for e.u. and normal error models.
    Variable sznOHH = szniH\# and szCOH\# = sznOHA. The value of
        The treatments does not affect this observed significance level.;
```

DATA sasgim2.fratios; SET sasgim2.fratios;
DROP non cent;
*Compute the randomized observed significance level.;
*SAS function PROBF appears not to accept non_cent over about 70
for these f-ratios and degrees of freedom.;
*Error 02;
non_cent = (1/2) / var_e02 * 1am dt;
IF non_cent > 70 THEN non_cent = 70;
*stcOO2- as per PROC GLM;
stcOO2g= 1 - PROBF(mt002/sn_sigO2, 3, tr_AVO2);
*stc102 as per PROC GLM;
stc102g=1 - PROBF(mt102/sn_sigO2, 3, tr_AVO2);
stn102 = 1- PROBF(ft102 - 3, 2, - non_cent);
stn102g= 1 - PROBF(mt102/sn_sigO2. 3. tr_AVO2. non_cent);
non_cent = (1/2) / var_e02 * lam_db;
IF non_cent > 70 THEN non_cen\overline{t}=70;
*ms_z, ms_res and tr_AVH\# are the same for treat=0 or ne 0.;
*tr_AVH\# is the same for equal and unequal block variances.;
*Thus, szCOH\# = szci\#\# and sznOH\# = szniH\# - only O used.;
*szc002 as per PROC GLM;
szcOO2g= 1 - PROBF(mzOO2/sn_stg02, 1, tr_AVO2);
sznO02 = 1- PROBF (fzOO2, _ 1, 2, mon_cent);
sznOO2g= 1- PROBF(mzOO2/sn_sigO2, 1. tr_AVO2, non_cent);
*Error 03;
non_cent = (1/2) / var_e03 * lam_dt;
IF non_cent > 70 THEN non_cent = 70;
*stc003 as per PROC GLM;
stc003g= 1 - PROBF(mt003/sn_sig03, 3, tr_AVO3);
*stc103 as per PROC GLM;
stc103g= 1 - PROBF(mt103/sn_sigo3, 3, tr_AVO3);
stn103 = 1- PROBF(ft103 , 3, 2, non_cent);
stn103g= 1 - PROBF(mt103/sn_sigo3, 3, tr_AVO3, non_cent);
non_cent = (1/2)/var_e03 * lam_db;
IF non_cent > 70 THEN
*szcOO3- as per PROC GLM;
szc003g= 1 - PROBF(mzO03/sn_sig03, 1, tr_AVO3):
szn003 = 1 - PROBF(fz003, non_cent);
sznO03g= 1 - PROBF(mzOO3/sn_sigO3, 1, tr_AVO3, non_cent);
*Error 04;
non_cent = (1/2) / var_e04 * 1am_dt;
IF non cent > 70 THEN non cent = 70;
stn104-= 1 - PROBF(ft104, 3, 2, non_cent);
non_cent = (1/2) / var_e04 * lam_db;
IF non cent > 70 THEN}\mathrm{ non cent = 70;
sznOO4 = 1 - PROBF(fzOO4, 1, 2, non_cent);
*Error 05;
non_cent = (1/2) / var_e05 * lam_dt;
IF non cent > 70 THEN non cen't = 70;
stn105-}=1-\operatorname{PROBF}(ft105, 3, 2, non_cent)
non_cent = (1/2) / var_e05 * lam_db;
IF non cent > 70 THEN non cen\overline{t}=70;
sznOO5-= 1 - PROBF(fzOO5, 1, 2, non_cent);

```
```

 *Error 07;
 non_cent = (1/2) / var_e07 * lam_dt;
 IF non_cent > 70 THEN non_cent = 70;
 stn107}=1 - PROBF(ft107, 3., 2, non_cent)
 non_cent = (1/2) / var_e07 * lam_db;
 IF non_cent > 70 THEN non_cent = 70;
 szn007 = 1 - PROBF(fzOO7, 1, 2. non_cent);
 *Error 46; *Test different df in F, and, in ANOVA:
 non_cent = (1/2) / var_e46 * lam_dt;
 IF non_cent > 70 THEN non_cent = 70;
 *stcO46- as per PROC GLM;
 stcO46g= 1 - PROBF(mt046/sn_sig46, 3, tr_AV46);
 *stc146 as per PROC GLM;
 stc146g= 1 - PROBF(mt 146/sn_sig46, 3, tr_AV46);
 stn146 = 1 - PROBF(ft146 , 3, 2, , non_cent);
 stn146g= 1 - PROBF(mt146/sn_sig46, 3, tr_AV46, non_cent);
 non_cent = (1/2) / var_e46 * lam_db;
 IF non_cent > 70 THEN non_cent = 70;
 *szcO46- as per PROC GLM;
 szc046g= 1 - PROBF(mzO46/sn_sig46, 1, tr_AV46);
 sznO46 = 1 - PROBF(fzO46. - 1, 2, , non_cent);
 szn046g= 1 - PROBF(mzO46/sn_sig46, 1, tr_AV46, non_cent);
 *Error 55;
 non_cent = (1/2) / var_e55 * lam_dt;
 IF non_cent > 70 THEN non_cent = 70;
 *stc055- as per PROC GLM;
 stc055g= 1 - PROBF(mt055/sn_sig55, 3, tr_AV55);
 *stc155 as per PROC GLM;
 stc155g= 1 - PROBF(mt155/sn_sig55, 3, tr_AV55);
    ```

```

 stn155g= 1 - PROBF(mt155/sn_sig55, 3, tr_AV55, non_cent);
 non_cent = (1/2) / var_e55 * lam_db;
 IF non_cent > 70 THEN non_cent = 70;
 *szcO55- as per PROC GLM;
SzC055g= 1 - PROBF(mz055/sn_sig55, 1, tr_AV55 (fon5, non_cent);
szn055 = 1 - PROBF(fz055;.sn_sig55, 1, 2, tr_AV55, non_cent);

* Debug Print options follow: ;
%db(\&dbps4,
TITLE1 "Data set sasglm2.fratios with noncent osls (dbps4)";
* PROC PRINT DATA = sasglm2.fratios (OBS=26);
);
**
 * Step Four:
Names of osls.
Only e.u. and normal errors have singular-normal based osis.
The ranks are named the same, but with a prefix of r.

```



Straight 45 degree line indicates actual f distribution.;

```

rstc046 = "Rank cent-OSL t|rest, treat eq O"
rstc046g = "Rank cent-OSL t|rest, treat eq O.sig-nor"
rstcO55 = "Rank cent-OSL t|rest, treat eq O"
rstc055g = "Rank cent-OSL t|rest, treat eq 0,sig-nor"
rstc102 = "Rank cent-OSL t|rest, treat ne O"
rstc102g = "Rank cent-OSL t|rest, treat ne O,sig-nor"
rstc103 = "Rank cent-OSL t|rest, treat ne O"
rstc103g = "Rank cent-OSL t|rest, treat ne 0.sig-nor"
rstc104 = "Rank cent-OSL t|rest, treat ne O"
rstc105 = "Rank cent-OSL t rest, treat ne 0"
rstc107 = "Rank cent-OSL t|rest, treat ne O"
rstc146 = "Rank cent-OSL t|rest, treat ne 0"
rstc146g = "Rank cent-OSL t|rest, treat ne 0,sig-nor"
rstc155 = "Rank cent-OSL t|rest. treat ne O"
rstc155g = "Rank cent-OSL t|rest, treat ne 0,sig-nor"
rstn102 = "Rank nonc-OSL t|rest. treat ne O"
rstn102g = "Rank nonc-OSL t|rest, treat ne O.sig-nor"
rstn103 = "Rank nonc-OSL t|rest, treat ne O"
rstn103g = "Rank nonc-OSL t|rest, treat ne 0,sig-nor"
rstn104 = "Rank nonc-OSL t|rest, treat ne O"
rstn105 = "Rank nonc-OSL t rest, treat ne O"
rstn107 = "Rank nonc-OSL t|rest, treat ne O"
rstn146 = "Rank nonc-OSL t|rest, treat ne O"
rstn146g = "Rank nonc-OSL t|rest. treat ne 0,sig-nor"
rstn155 = "Rank nonc-OSL t|rest, treat ne O"
rstn155g = "Rank nonc-OSL t|rest, treat ne 0,sig-nor"
rszc002 = "Rank cent-OSL z rest, covar ne o"
rszcO02g = "Rank cent-OSL z|rest, covar ne 0,sig-nor"
rszc003 = "Rank cent-OSL z|rest, covar ne O"
rszc003g = "Rank cent-DSL z|rest, covar ne 0,sig-nor"
rszc004 = "Rank cent-OSL z|rest, covar ne 0"
rszc005 = "Rank cent-OSL z rest, covar ne 0"
rszc007 = "Rank cent-OSL z|rest, covar ne O"
rszc046 = "Rank cent-OSL z|rest, covar ne O"
rszc046g = "Rank cent-OSL z|rest, covar ne 0,sig-nor"
rszc055 = "Rank cent-OSL z|rest, covar ne 0"
rszc055g = "Rank cent-OSL z|rest, covar ne 0,sig-nor"
rszn002 = "Rank nonc-OSL z
rszn002g = "Rank nonc-0SL z|rest, covar ne 0,sig-nor"
rszn003 = "Rank nonc-OSL z/rest, covar ne 0"
rszn003g = "Rank nonc-0SL z|rest, covar ne 0,sig-nor"
rszn004 = "Rank nonc-OSL z|rest, covar ne 0"
rszn005 = "Rank nonc-OSL z|rest, covar ne O"

```
```

 rszn007 = "Rank nonc-0SL z|rest, covar ne O"
 rszn046 = "Rank nonc-OSL z|rest, covar ne O"
 rsznO46g = "Rank nonc-OSL z
 rszn055 = "Rank nonc-OSL z|rest, covar ne O"
 rszn055g = "Rank nonc-OSL z|rest, covar ne 0,sig-nor"
 ;
 */
 ***;
* Step Five:
Analysize observed significance for test of f-distribution.;
PROC PLOT DATA = sasglm2.fratios;
TITLE1 n Compare Three Types of Error m;
TITLE2 "u = experimental unit error n;
TITLE3 "i = experimental unit-treatment interaction error";
TITLE4 nn = normally distributed random error
*********** Treatments Equal Block Variances **************;
*Non-singular normal values for eu and normal error;
*Obs Sig Level for treatments eq zero;
PLOT rstc002 * stc002 = 'u'
rstc004 * stc004 = '1'
rstc046 * stc046 = 'n'
/ VAXIS = O TO 1 BY. 2 HAXIS = O TO 1 BY . 2
VREF = 0.2 .4 . 6 . 8 1. HREF = 0.2 .4 . 6 . 8 1.
VREVERSE HREVERSE. HPOS = 80 OVERLAY;
PLOT rstc002 * stc002 = 'u'
rstc004 * stc004 = '1'
rstc046 * stc046 = 'n'
/VAXIS = O TO .2 BY . 05 HAXIS = 0 TO . 2 BY . 05
VREF = 0 . 05 . 10. . 15 .2 HREF = 0.05 . 10. 15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
*Obs Sig Level for treatments ne zero;
PLOT rstn102 * stn102 = 'u'
rstn104 * stn104 = '1'
rstn146 * stn146 = ' n'
/ VAXIS = O TO I BY . 2 HAXIS = O TO \& BY . }
VREF = 0.2.4.4.6.8 1. HREF = 0.2 .4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PLOT rstn102 * stn102 = 'u'
rstn104 * stn104 = , f,
rstn146 * stn146 = 'n'
/ VAXIS = 0 TO. 2 BY . O5 HAXIS = 0 TO . 2 BY . O5
VREF = 0.05 .10.15 .2 HREF = 0.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
*Singular normal values for eu and normal error:
*Obs Sig Level for treatments eq zero;
PLOT rstc002g* stc002g= 'u'
rstc004* stc004= '1'
rstc046g* stc046g= 'n'
/ VAXIS = O TO 1 BY . 2 HAXIS = O TO 1 BY . }
VREF = 0 . 2 .4 . 6 . 8 1. HREF = 0.2 . 4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;

```
```

 PLOT rstcOO2g* stc002g= 'u'
 rstc004 * stc004 = '1'
 rstcO46g* stcO46g= 'n'
 / VAXIS = 0 TO . 2 BY . O5 HAXIS = 0 TO . 2 BY . O5
 VREF = O O5.10.15.2 HREF =0.O5.10.15.2
 *Obs Sig Level for treatments ne zero;
 PLOT rstn102g* stn102g= 'u'
 rstn104*stn104=, ',
 rstn146g* stn146g= 'n'
 / VAXIS = 0 TO 1 BY. 2 HAXIS = 0 TO 1 BY . 2
 VREF = 0 . 2 . 4 . 6 . 8 1. HREF = 0 . 2 .4 . 6 . 8 1.
 VREVERSE HREVERSE HPOS = 80 OVERLAY;
 PLOT
 rstn102g* stn102g= 'u'
 rstn104 * stn104 = 'i'
 rstn146g* stn146g= 'n'
 /VAXIS = O TO .2 BY . 05 HAXIS = 0 TO . 2 BY . O5
 VREF = 0.05 .10.15.2 HREF = 0.05.10.15.2
 VREVERSE HREVERSE HPOS = 80 OVERLAY;
 ************ Covariate Equal Block Variances ***************;
*Non-singular normal values for eu and normal error;
*Obs Sig Level for (always nonzero) covartate coefficient ;
PLOT rsznOO2 * szn002 = 'u'
rszn004 * szn004 = 'i,
rszn046 * sznO46 = 'n'
/VAXIS = O TO 1 BY. .2 HAXIS = 0 TO 1 BY . 2
VREF = 0 .2 . 4 . 6 . 8 1. HREF = 0 . 2 . 4 % 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PLOT rszn002 * szn002 = 'u'
rszn004 * szn004 = 'i'
rszn046 * szn046 = 'n'
/ VAXIS = O TO.2 BY . 05 HAXIS = 0 TO . 2 BY .05
VREF =0.05.10.15.2 HREF = 0.05 . 10.15.2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
*Singular normal values for eu and normal error;
*Obs Sig Level for (always nonzero) covarlate coefficient ;
PLOT rsznOO2g* sznOO2g= 'u'
rszn004 * szn004 = 'i'
rszn046g* sznO46g= 'n'
/ VAXIS = O TO 1 BY . 2 HAXIS = O TO 1 BY . 2
VREF= =0.2.4 . 6. .8 1. HREF = 0.2 .48 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY;
PLOT rsznOO2g* szn002g= 'u'
rsznO04*sznO04 = 'i'
rsznO46g* sznO46g= 'n'
/VAXIS = O TO.2 BY .O5 HAXIS = 0 TO . 2 BY . O5
VREF = 0.05 . 10.15 . 2 HREF = 0.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PROC PLOT DATA = sasglm2.fratios;
TITLE1 "Effect of Unequal Within-block Variances";

```
```

TITLE2 "s = same block variance d = different block varfances";
********************** Treatments *******************************;
*Only experimental unit error treatments zero \& nonzero;
*Non-singular normal;
PLOT rstc002 * stcOO2 = 's'
rstc003 * stc003 = 'd
/ VAXIS = O TO 1 BY. 2 HAXIS = O TO 1 BY . }
VREF = 0 . 2 . 4 . 6.8 1. HREF = 0 . 2 . 4 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY:
PLOT rstcOO2 * stc002 = 's'
rstc003 * stc003 = 'd'
/ VAXIS = O TO .2 BY . O5 HAXIS = 0 TO .2 BY . 05
VREF = 0.05 .10.15 . 2 HREF = 0.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
PLOT rstn102 * stn102 = 's'
rstn103 * stn103 = 'd'
/ VAXIS = 0 TO 1 BY. 2 HAXIS = 0 TO 1 BY . 2
VREF = 0.2 .4..6 . 8 1. HREF = 0.2 . 4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY;
PLOT rstn102 * stn102 = 's'
rstn103 * stn103 = 'd'
/ VAXIS = O TO .2 BY . O5 HAXIS = O TO . 2 BY . 05
VREF = 0.05..10.15.2 HREF = 0.05 . 10.15 .2
VREVERSE HREVERSE HPOS =80 OVERLAY ;
*Stngular normal:
PLOT rstcOO2g* stc002g= 's'
rstc003g* stc003g= 'd'
/VAXIS = 0 TO 1 BY. 2 HAXIS = 0 TO 1 BY . 2
VREF = 0 .2 . 4 . 6.8 1. HREF = 0.2 .4 . 6 . . 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PLOT rstc002g* stc002g= 's'
rstc003g* stc003g= 'd'
/ VAXIS = 0 TO.2 BY .O5 M HAXIS = O TO . 2 BY .O5
VREF = O.O5 .10.15.2 HREF = O . O5 . 10.15.2
PLOT rstn102g* stn102g= 's'
rstn103g* stn103g= 'd'
/ VAXIS = O TO 1 BY . 2 HAXIS = 0 TO 1 BY . 2
VREF = 0.2 .4 .6 . . 1. HREF = 0 .2 .4 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY;
PLOT rstn102g* stn102g= 's'
rstn103g* stn103g= 'd'
/ VAXIS = 0 TO .2 BY .05 HAXIS = 0 TO . 2 BY . 05
VREF = 0.05 . 10.15 . 2 HREF = 0.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
*Only experimental unit-treat inteact error treats zero \& nonzero;
*Non-singular normal no adjustments tmply the singular normal dist.:
PLOT rstc004 * stc004 = 's'
rstc007 * stc007 = 'd'
/ VAXIS = O TO 1 BY . 2 HAXIS = O TO 1 BY . 2
VREF = 0 .2 .4 .6 .8 1. HREF = 0.2 .4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PLOT rstc004 * stc004 = 's'

```
```

rstc007 * stc007 = 'd'
/ VAXIS = O TO. .2 BY .O5 HAXIS = O TO. . 2 BY . 05
VREF = 0.05.10.15.2 HREF = 0.05. . 10.15.2
VREVERSE HREVERSE HPOS = 80 OVERLAY ;

```
```

PLOT rstn104 * stn104 = 's'
rstn107 * stn107 = 'd'
/ VAXIS = 0 TO 1 BY . 2 HAXIS = O TO 1 BY . 2
VREF = O.2.4 . 6 . 8 1. HREF = O O 2 . 4 . . % . 8 1.
PLOT rstn104 * stn104 = 's'
rstn107 * stn107 = 'd'
/VAXIS = 0 TO .2 BY .05 HAXIS = 0 TO . 2 BY . 05
VREF = 0.05 . 10 . 15 .2 HREF = 0 . 05 . 10. 15 .2
VREVERSE HREVERSE HPOS = 80 OVERLAY;

```
*Only normally distributed random error treats zero \& nonzero:
*Non-singular normal;
    PLOT rstc046 * stc046 = 's'
        rstc055 * stc055 \(=\) ' \(d \prime\)
    \(/\) VAXIS \(=0\) TO 1 BY. \(2 \quad\) HAXIS \(=0\) TO 1 BY. 2
        \(\operatorname{VREF}=0.2 .4 .6^{.2} .81 . \operatorname{HREF}=0.2 .4^{.6} .81\).
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY ;
PLOT rstc046 * stc046 = 's'
    rstc055 * stc055 = 'd'
    \(/\) VAXIS \(=0\) TO. 2 BY . 05 HAXIS \(=0\) TO. 2 BY . 05
        VREF \(=0.05 .10 .15 .2\) HREF \(=0.05 .10 .15 .2\)
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY;
PLOT rstn146 * stn \(146=\prime s^{\prime}\)
    \(r s t n 155 * \operatorname{stn} 155=' d \prime\)

        VREVERSE HREVERSE HPOS \(=80\) OVERLAY ;
PLOT rstn146 * stn146 = 's'
    \(r s t n 155 * \operatorname{stn} 155=\prime{ }^{\prime}\)
    \(/\) VAXIS \(=0\) TO .2 BY . 05 HAXIS \(=0\) TO .2 BY . 05
        VREF \(=0.05 .10 .15 .2\) HREF \(=0.05 .10 .15 .2\)
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY;
*Singular normal ;
    PLOT rstc046g* stc046g= 's'
        rstc055g* stc055g= 'd'
    /VAXIS = O TO 1 BY. 2 HAXIS \(=0\) TO 1 BY. 2
        VREF \(=0.2\). 4.6 . 8 1. HREF \(=0.2 .4 .6 .81\).
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY ;
PLOT rstc046g* stcO46g= 's'
    rstc055g* stc055g= 'd'
    / VAXIS \(=0\) TO . 2 BY . 05 HAXIS \(=0\) TO . 2 BY . 05
        VREF \(=0.05 .10 .15 .2\) HREF \(=0.05 .10 .15 .2\)
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY;
PLOT rstn146g* stn146g=' \(s\) '
    rstn155g* stn155g= 'd'
    / VAXIS \(=0\) TO 1 BY. \(2 \quad\) HAXIS \(=0\) TO 1 BY. 2
        VREF \(=0.2\). 4 . 6.8 1. \(H R E F=0.2 .4 .6 .8\) 1.
        VREVERSE HREVERSE HPOS \(=80\) OVERLAY ;
```

PLOT rstn146g* stn146g= 's'
rstn155g* stn155g= 'd'
/ VAX.IS = O TO .2 BY .05 HAXIS = 0 TO . 2 BY . 05
VREF = 0.O5.10.15 . 2 HREF = 0.05 . 10.15 . 2
******************** Covariates ***********************************;
*Only experimental unit error for covariate;
*Non-singular normal;
PLOT rsznOO2 * szNOO2 = 's'
rsznO03 * sznOO3 = 'd'
/ VAXIS = O TO 1 BY. 2 HAXIS = O TO 1 BY . 2
VREF = 0 . 2 .4 .6.B 1. HREF = 0 .2 . 4 . 6 . . 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY;
'PLOT rszn002 * szn002 = 's'
rszn003 * szn003 = 'd'
/ VAXIS = O TO . 2 BY . O5 HAXIS = O TO . 2 BY . 05
VREF = 0.05.10.15..2 HREF = 0.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = BO OVERLAY ;
*Singular normal;
PLOT rsznOO2g* szn002g= 's'
rsznO03g* sznOO3g= 'd'
/ VAXIS = O TO 1 BY. . 2 HAXIS = 0 TO 1 BY . }
VREF=0 .2 .4 .6.8 1. HREF = 0 . 2 .4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
PLOT rsznO02g* szn002g= 's'
rszn003g* szn003g= 'd'
/ VAXIS = 0 TO. .2 BY . O5 HAXIS = 0 TO . 2 BY . 05
VREF = 0.05 . 10.15 .2 HREF = O.05 . 10.15 . 2
VREVERSE HREVERSE HPOS = BO OVERLAY ;
*Only experimental unit-treat inteact error treats zero \& nonzero;
*Non-singular normal;
PLOT rsznOO4 * szn004 = 's'
rsz2007 * szn007 = 'd'
/ VAXIS = 0 TO 1 BY. . 2 HAXIS = 0 TO 1 BY . 2
VREF = 0.2 .4 .6 .8 1. HREF = 0.2 .4 . 6 . . % 1.
VREVERSE HREVERSE HPOS = BO OVERLAY :
PLOT rszn004 * szn004 = 's'
rszn007 * szn007 = 'd'
/ VAXIS = O TO .2 BY .05 HAXIS = 0 TO . 2 BY . 05
VREF = 0.05 . 10 . 15 .2 HREF = 0.05 . 10.15 .2
VREVERSE HREVERSE HPOS = 80 OVERLAY;
*Only normally distributed random error treats zero \& nonzero;
*Non-singular normal;
PLOT rszn046 * szn046 = 's'
rszn055 * szn055 = 'd'
/ VAXIS = 0 TO 1 BY . 2 HAXIS = 0 TO 1 BY . 2
VREF = 0. .2 .4 .6 .8 1. HREF = 0.2 .4 . 6 . 8 1.
VREVERSE HREVERSE HPOS = 80 OVERLAY}
PLOT rszn046 * szn046 = 's'
rszn055 * szn055 = 'd'
/ VAXIS = O TO . 2 BY .O5 HAXIS = O TO . 2 BY . O5
VREF = 0.05.10.15.2 HREF = 0.05 . 10.15 .2
VREVERSE HREVERSE HPOS = 80 OVERLAY ;
*Singular normal;
PLOT rsznO46g* szn046g= 's'
rszn055g* szn055g= 'd'

```

```

 VREF = 0.2 .48 1. HREF = 04 . 6 . 8 1.
 VREVERSE HREVERSE HPOS = BO OVERLAY;
    ```
```

 PLOT rszn046g* szn046g= 's'
 rszn055g* szn055g= 'd'
 / VAXIS = 0 TO . 2 BY . O5 HAXIS = O TO . 2 BY . O5
 VREF = 0.05.10.15 . 2 HREF = 0.05 . 10. 15 . 2
 VREVERSE HREVERSE HPOS = 80 OVERLAY ;
 /
PROC SORT DATA = sasglm2.fratios; BY g_group;
PROC PLOT DATA = sasglm2.fratios
UNIFORM HPERCENT=33 33 33 VPERCENT=50 50;
BY g_group:
TITLE1 "Observed Significance Levels for Treatments and Covariates";
TITLE2 mu = experimental unit error n;
TITLE3 "i = experimental unit-treatment interaction error";
PLOT stc002 * szc002 = 'u'
stc004 * szc004 = '1'
stc046 * szcO46= 'n' / OVERLAY HAXIS = 0 to . 2 by .05;
PLOT stc102 * szc002 = 'u'
stc104 * szc004 = '1
stc146 * szc046 = 'n' / OVERLAY HAXIS = 0 to . 2 by .05;
PLOT stn102 * szcOO2 = 'u'
stn104 * szc004 = '1'
stn146 * szcO46 = 'n' / OVERLAY HAXIS = 0 to . 2 by .05;
PLOT stcO02g* szc002g= 'u'
stc004 * szc004 = '1'
stcO46g* szcO46g= 'n' / OVERLAY HAXIS = 0 to . 2 by .05;
PLOT stc102g* szc002g= 'u'
stc104 * szc004 = '1'
stci46g* szcO46g=' n' / OVERLAY HAXIS = 0 to . 2 by .05;
PLOT stn102g* szcOO2g= 'u'
stn104 * szc004 = '1,
stn146g* szcO46g= 'n' / OVERLAY HAXIS = 0 to . 2 by .05;
*/
PROC SORT DATA = sasglm2.fratios; BY lam_db;
PROC PLOT DATA = sasglm2.fratios
UNIFORM HPERCENT=33 33 33 VPERCENT=50 50;
BY 1am_db;
TITLE1 "Actual Upper Tall Areas for Treatments and Covariates":
TITLE2 "Treatments are Zero in Top Row, Nonzero in Bottom Row ";
TITLE3 "Left to Right: experimental unit error, experimental-unit":
TITLE4 * treatment interaction error, normal random error
PLOT stc002 * szn002
stc004 * szn004
stc046 * szn046
stn102 * szn002
stn104 * szn004
stn146 * szn046
/ HAXIS = 0.1 .25 .5 .75 1.0 VAXIS = 0.1 . 25 . 5 . . % 1.0
HREF = .1 .25 .5 .75 VREF = .1 .25.5 .75
BOX
;

```
```

//

```


\section*{APPENDIX G}

OTHER TOPICS

\begin{abstract}
Dissertation work began in the Summer of 1983 under Dr. William Stewart. The topic was calibration with a stratified sample from a finite population. The initial task was a bibliography covering 1920 to 1984 with some 350 entries. This topic was abandoned in the Fall of 1984 as Dr. Stewart, by then employed in the private sector, was unable to continue as advisor.
\end{abstract}

The second topic was the derivation shown on the following two pages. After obtaining the result, a literature search showed that the bulk of the proof had been published prior to the 1940's and that the method of moments had been replaced by k-statistics. Further effort with moments appeared unlikely to contribute to the discipline. This work took about a year and was abandoned in the Fall of 1985. Dr. Folks presented the result at the 1985 annual ISI meeting in Amsterdam.

The next topic was to use \(k\)-statistics to obtain approximate estimators of model equation parameters in the analysis of covariance, much as cook (1951B) did for the parameter of simple linear regression. For this, one needs to express higher order, multivariate cumulants \(k\), in terms of multivariate moments \(\mu\). Harvey [1972] published recursive relationships which will generate the formula equating any order of a multivariate \(k\) or \(\mu\) to the other. His formulas have been programed in the symbolic manipulation language MUSIMP. Following the results of the second topic are two pages of output from this program. They show formula equating each of the bivariate cumulants of order eight, \(k_{8,0,} k_{1,7}\), etc., to the bivariate moments \(\mu_{8,0}, \mu_{7,1}\), etc. In the formula, for example, ( 6 U51 U01~2 ) indicates \(6 * \mu_{5,1} *\left(\mu_{0,1}\right)^{2}\); multiplication is indicated by a blank and exponentiation by a caret. Here, \(\mu_{5}, 1\) is the bivariate, ( \(X_{1}, X_{2}\) ), expectation of \(\left(X_{1}\right)^{5} *\left(X_{2}\right)\). Learning this programming language, writing the program, and financing the same took two years.

The next step would have been to derive formula equating the sample cumulants \(k\) to the finite population cumulants \(k\). The methods of Cook [1951A] appear difficult to program and would need to be modified for finite populations. Bell polynomials, tensors, and polykeys were examined. The first two appear to have
been derived; see Sugihara and Murota, [Utilitas Mathematics, Vol. 22 (1982), p. 265-291l, and McCullagh [1987]. The difficulty of programming unfamiliar operators, and the uncertainty of the best method to use, reluctantly led to abandoning this topic in late 1987.

Mid-1988 saw results on one unit error, and Cox's ratio. Mid-1989 saw the general randomization model for experimental unit-treatment interaction error and an essay on the early understanding of the error term. Mid-1990 saw the proof of the theorem on projectors and a procedure when both errors are present. The linkage of the noncentrality parameters proved difficult to unravel, and was solved only in 1992. Organizing and writing the work, and, as always, financing it have been the major tasks since.

\section*{Regression Models for Finite Populations}

\section*{J. Leroy Folks and Robert S. Wilson}

Department of Statistics, Oklahoma State University, Stillwater, Oklahoma, 74078, USA

\section*{Sommaire}

Données \(Y\) populations définies de dimension \(N\) à chaque valeur \(X\), des simples échantillons choisis au hasard de dimensions n sont pris de chaque population Y. La ligne des enchantillons en écarts carrés a un écart à la moyenne pour la ligne de la population en écarts carrés. Les variances de la courbe et de l'interception des échantillons sont estimées par écart à la moyenne et les variances de ces derniers estimateurs sont données.
1 The population regression model
For each of \(L\) distinct \(X\) values we: have'a finite population of Ys of size \(N\) and have fitted a least. squares line to these \(L N\) ( \(X, Y\) ) pairs. Denote the intercept and slope by \(\alpha\) and \(\beta\) so that
\[
\begin{aligned}
Y_{h j} & =\alpha+\beta X_{h}+e_{h j}, \\
h & =1,2, \ldots, L \\
j & =1,2, \ldots, N
\end{aligned}
\]

2 Estimation of \(\alpha\) and \(B\)
Assume that at each \(X_{h}\) we take a simple random sample of \(n\) from the \(N\) Ys, denoted by \(\left\{y_{h j} \mid j=1,2, \ldots, n\right\}\). Fit a least squares line to these \(\ln\) ( \(\mathrm{X}, \mathrm{y}\) ) pairs and denote the intercept and slope by a and b. It follows from Jönrop and Rennermalm (1976) that
\[
E(a)=\alpha \text { and } E(b)=\beta .
\]

3 Estimation of variances
The varlances of \(a\) and \(b\) have forms analogous to the usual expressions.
\[
\begin{gathered}
V(a)=\frac{N-n}{n N} \sum_{h}\left\{\frac{1}{L}-\frac{\left(X_{h}-\bar{X}\right) \bar{X}}{\sum\left(X_{h}-\bar{X}\right)^{2}}\right\}^{2} S_{h}^{2} \\
V(b)=\frac{N-n}{n N} \frac{\sum\left(X_{h}-\bar{X}\right)^{2} s_{h}^{2}}{\left[\sum\left(X_{h}-\bar{X}\right)^{2}\right]^{2}} \\
S_{h}^{2}=\frac{1}{N-1} \sum_{j\left(Y_{h j}-\bar{Y}_{h}\right)^{2} .}
\end{gathered}
\]

With the homogeneity condition that \(s_{h}^{2}=s^{2}, h=1,2, \ldots, L\),
and
\[
\begin{gathered}
V(a)=\frac{N-n}{n N} s^{2}\left\{\frac{1}{L}+\frac{\bar{X}^{2}}{\Sigma\left(X_{h}-\bar{X}\right)^{2}}\right\} \\
V(b)=\frac{N-n}{n N} \frac{s^{2}}{\sum\left(X_{h}-\bar{X}\right)^{2}} .
\end{gathered}
\]

Of course, \(V(a)\) and \(V(b)\) are estimated unbiasedly by replacing \(S_{h}^{2}\) or \(s^{2}\) by
unbiased estimates \(s_{h}^{2}\) or \(s^{2}\)
where
\[
s_{h}^{2}=\frac{1}{n-1} \sum_{j=1}^{n}\left(y_{h j}-\bar{y}_{h}\right)^{2}
\]
and
\[
s^{2}=\frac{1}{L(n-1)} \sum_{h} \sum_{j}\left(y_{h j}-\bar{y}_{h}\right)^{2} .
\]

Finally, the variances of the estimated variances are
\[
v\{\hat{v}(a)\}=\frac{(N-n)^{2}}{n^{2} N^{3}(n-1)(N-1)} \cdot \sum_{h}\left\{\frac{1}{L}-\frac{\left(X_{h}-\bar{X}\right) \bar{x}}{\sum\left(X_{h}-\bar{X}\right)^{2}}\right\}^{2} Q_{h}
\]
and
\[
v\{\hat{v}(b)\}=\frac{(N-n)^{2}}{n^{2} N^{3}(n-1)(N-1)} \frac{\Sigma\left(X_{h}-\bar{x}\right)^{4} Q_{h}}{\left\{\Sigma\left(x_{h}-\bar{x}\right)^{2}\right\}^{4}}
\]
where
\[
\begin{aligned}
& Q_{h}=\sum_{j}^{\sum} Y_{h j}^{4}(N-1)(n-1)(N-n)-4 \underset{i \neq j}{\sum} Y_{h i}^{3} Y_{h j}(n-1)(N-n) \\
& +\sum_{i \neq j}^{\sum} Y_{h i}^{2} Y_{h j}^{2}\left[\frac{1}{N-1}\right]\left[-3 n(n-1)-N^{2}(n-3)+N\left(n^{2}-3\right)\right] \\
& +\sum_{i \neq j \neq k}^{\sum} Y_{h i}^{2} Y_{h j} Y_{h k}\left[\frac{4}{(N-1)(N-2)}\right]\left[3 n(n-1)+N^{2}(2 n-3)-N\left(2 n^{2}-3\right)\right] \\
& +\underset{i \neq j \neq k \neq \ell}{\sum} Y_{h i} Y_{h j} Y_{h k} Y_{h l}\left[\frac{-2}{(N-1)(N-2)(N-3)}\right] X \\
& \quad\left[3 n(n-1)+N^{2}(2 n-3)-N\left(2 n^{2}-3\right)\right] .
\end{aligned}
\]

\section*{BIBLIOGRAPHY}

Jönrup, H. and Rennermalm, B. (1976). Regression analysis in samples from finite populations. Scand. J. Statist. 3: 33-36.


\section*{Variable order: vi:5 v2:3 K \(5,3=\)}

 U 40 U 13 ) + ( \(-10 \mathrm{U} 33 \mathrm{U} 20)+\left(20 \mathrm{U} 33 \mathrm{U} 10^{\wedge} 2\right)+(-30 \mathrm{U} 32 \mathrm{U} 21)+(-30 \mathrm{U} 31\)


 301542 U10 UO1 \()+(60\) U41 U11 U01 \()+(30 \mathrm{U41} \mathrm{U1O} \mathrm{U02})+(-90 \mathrm{U} 41 \mathrm{U} 10 \mathrm{UOL}\) \(2)+(30 \mathrm{U} 40 \mathrm{U} 12 \mathrm{UO1})+(30 \mathrm{U} 40 \mathrm{Ul1} \mathrm{UO2})+(-90 \mathrm{U} 40 \mathrm{Ul1} \mathrm{UO1} \mathrm{\wedge 2})+(10\)
 ) + ( -180 U32 U10~2 U01 ) + ( 120 U 31 U 21 UOL ) + ( 60 U 31 U 20 UOZ ) + ( -180



 \(\left.\sim_{3}\right)+(80 \mathrm{U} 2 \mathrm{U} 20 \mathrm{U} 10)+(180 \mathrm{U} 22 \mathrm{U} 21 \mathrm{U} 10)+(180 \mathrm{U} 22 \mathrm{U} 20 \mathrm{U} 11)\) ( (-540





 UO1 ) + ( -1800 U11 U10~4 U02 \()+(10800\) U11 U10~4 U01~2 \()+(2160\) U10~5 102
 UO1 ) + ( -360 U30 U12 U10 U01 ) + ( -360 U30 U11 U10 U02 \()+(1440\) U30 U11

 4E20 J21 U11 U10~2 U01 ) + ( 1080 U20~2 U10 U02 U01 ) + ( -1080 U 20 U 12 U 11 U 10 ) + ( 2160 U20 U12 U10~2 UO1 ) + ( 4320 U20 U11~2 U1O UO1 ) + ( 2160 U20 U11


\section*{Variable order: v1:4 v2:4 K \(4,4=\)}

 U40 U02~2 \()+(24\) U40 U01~4 \()+\left(-4 U_{3} U_{10}\right)+\left(-16 U_{33} U_{11}\right)+\left(-24 U_{32}\right.\)




 -36 U40. UO2 U01~2 \()+(32\) U33 U10 U01 \()+(96\) U32 U11 U01 \()+(43\) U32 U10
 -2 S8 U31 U11 v01~2 \()+(32\) U31 U10 U03 \()+(384\) U31 U10 U01~3 \()+(32\) U30


 + ( 144 U 22 U 21 U 01 ) + ( 72 U 22 U 20 U 02 ) + ( \(-216 \mathrm{U} 22 \mathrm{U} 20 \mathrm{U} 01 \wedge 2\) ) + ( 144 U 22







 ) + ( -8640 U11~2 U10~2 UO1~2 ) + ( 384 U11 U10^3 UOS ) + ( 11520 U11 U10~3


 U12 U10 UO1 ) + (-864 U21 U11 U10 U02 ) + ( 3456 U21 U11 U10 U01~2 ) \(+(172 \mathrm{E}\)



 U2O U11 U10 UO2 UO1)

ERRATA

INDEX OF TERMS
The page number of the definition is underscored.
actual responses 169
additivity 134-135
broad sense 134
like covariate 137
nonconstant covariate coefficient 135
physical sciences 135
strict sense 134
treatment-unit 136
unit treatment 136
within block 135
assignment probability 104
assumptions 148-149
Assumption 16
Assumption 216
Assumption \(3^{*} 16\)
Assumption 324
Assumption \(4^{*} 16\)
Assumption 418
Assumption 5
matrix form 20
summation form 23, 123
Assumption 620
Assumption 721
Assumption 81
Assumption 9 140, 246, 249
Assumption 10158
auxiliary variable 144
base response 172
block-treatment interaction
14, 21
as an error 126-125
block-wise randomization 108
blocking variable 6
blocks 8
bootstrap 133, 391
calibration 465
clustering of anova terms
and estimates 198-210
in randomization
distributions
275-279, 286-289
clustering of noncentrality parameter
211,213, 337-339
coding model matrix \(/ 4\)
completely randomized block
design 8
concomitant variable 144
such as a covariate 6
conditional distribution 22
covariate 6
identical in each
block 179-180
orthogonal to errors 245
covariate coefficient
additivity 135
experimental unit
error 137
experimental unit-
treatment interaction
error 137
mean and variance 259-263
weighted 326-327
g-group 360-361
randomization distribution 275-278
weighted 332-334
Roux's 137
Cox ratios 320-334
crossover design
143, 237-238, 393
cumulants 465, 469-470
\(s_{i j}^{k}\) technique iv
dependent variable 8
designed experiment 7
design matrix 18
distinguishable groups 105-107
dot notation
averaging 22, 123
replacement 35
effects model 20
matrix for 74
equivalent selection
process 114
unit errors 124,127
errors,
see experimental unit
see e.u. - treatment see normally distrib. combined 253, 391 measurement 124 random 16, 93-100
not residuals 17
technical 124
estimable function 26, 78-79
exchangeability 164-165,393
partial 164-165
normal-randomization model 165
experiment-wise
randomization 108
experimental unit 8
experimental unit error
124, 133, 145-147
Assumption 9140
numerical construction 243-248
numerical values 247
normal-randomization model 154
same as plot error 125
postulated 125
singular normal 318-319
variance 246
experimental unit-treatment
interaction error 127, 127-133, 145-147
Assumption 9140
vs block-treatment interaction 133
example of 127, 236
as factor by factor interaction 129
Kempthorne's 128, 132
Neyman's 127, 132
normal-randomization model 155
numerical construction 248-252
numerical values 250
and on-average
hypothesis 138-139
postulated 128,133
randomization test 168
Roux's 128
variance 251-252
external criterion 174,175
factors 6
F-distribution probability plots
for covariate 299-300
for error type 301-315 problems with 315-319 reading of 290-294 for treatments 294-298
F-ratio 39, 60, 63-64
expected value 222-232 weighted 328-329
numerical example 71-72
numerical means
264-265, 328-329
g-group 197,
216-222, 335-362
balance 336
best and worst 352-362
generalized inverse 83, 90
group (set, operation) 188
hat matrix 13
hierarchical method 14
hypothesis
of interest 8
in-particular 138-139
on-average 138-139
incidence matrix 18
inclusion probability
111, 113
internal criterion 171, 173
k-statistics 465-466,
469-470
Kronecker product process
for projectors
50, 52-53, 55, 386
leap of faith 148-149
least squares equations
26, 29, 31
levels of a factor 6
mass draw 109
mean square - numerical
values 264, 328
weighted 328-329
measurement error
as technical error 124
mixed model 13
model, the 15
alternative 392
combined 150-157
normal errors 16-21
randomization 140-143
model equation
alternative 392
of combined errors 208
matrix form - usual
\(16,19,23,30\)
postulated 138
summation form 22, 23,
combined model 157
model \(x\) 27-29, 31
moments
numerical values 264-265
of quadratic forms 231
Moore-Penrose generalized inverse 83
multivariate model 31, 45
non-centrality parameter adjusted for terms 43, 61, 62
vs Cox's ratio 339-340
full model 39
linkage 219, 336-339
orthogonal terms 44
and power of test
41, 44, 216-222
randomization 211-215
stepwise regression 45
normally distributed
change with each
randomization 156
model 16-24
numerical construction 252-253
random error 16 randomization 150-157
observational study 7
observed significance level 63
randomization distribution 279-289
p-value 62 same as observed significance level
partitioning of \(\mathbf{x}\) matrix 19
penicillin allergy 127
permutation matrix 184-186
projector 190-193
permutation test 167
plot error 125
same as experimental
unit error 124-125
pooled within-class regression estimate 32
power of randomized test 171-177
pseudo-randomized test 174-175, 283, 285
predictor sort sampling 116
probability integral transform 279, 282
probability space
combined model 157
normal model 17
randomization model 142-143
survey sampling 141
procedure, two-stage 233-237
projector 13, 50, 52, 55
75, 192
permutation 190-193, 390
randomization 103-104
biases and valid 114
block-wise 108
experiment-wise 108
model 140-143
nonrandom 120
restricted 114-116, 119, 189, 216-222
unequal probability 117
randomizations
number of 105-109, 114-116, 254
numerical construction 254-255
numerical values 256-259
randomization test 166
randomized block design 8
reparameterization 76
full rank 81
rerandomization test 167

\section*{residuals 17, \\ 27}
response variable 6
errors proportional ..... 158
mean of 160
variance of ..... 163
restricted randomization114-116via noncentralityparameter 340-362
sample design ..... 143
selection probability ..... 109
numerical example ..... 259
see restrictedrandomization
strategy 148unequal 170, 173,175-176, 320-334
unordered sample
design ..... 143
selection process 105-110
equivalent ..... 114
mass draw ..... 109
sequential ..... 105
two-stage ..... 105
unequal probability ..... 117
\(\sum \varepsilon_{i j}^{k}\) technique ivsingular normal distribution17, 242, 315-319, 389
soil error ..... 127
same as experimental
unit-treatment inter.
solution 17
see also estimator ..... 17
strategy 148, 283
sum of squares
matrix notation ..... 37
numerical example 69, ..... 70
via projector matrix ..... 75
randomization
adjusted covariate ..... 205
adjusted treatment ..... 208
residual ..... 204
summation notation ..... 33-35
tables of ..... 37,38
superpopulation 163-164
survey sampling ..... 141,
392
technical error 124
test statistic
requirement of 181-183
treatment 8
numerical values 246
mean and variance 259-263
weighted 326-327 g-group 360-361
randomization distribution 271-275, weighted 330-332
repeated values 273
Type I error - randomization distribution, 280, 284-285
Type II error- randomization distribution 282, 285 287
unbiased randomization process 114
unit error 125
same as experimental
unit error 124-125
unordered sample design
same as selection
probability 143
usual constraints 19-20
valid randomization process 114, 240
weighted randomization
240, 320-334


Professional Instruction: Graduate level Mathematical Statistics and undergraduate level Business Calculus for the University of Central Oklahoma, Edmond, Oklahoma, from January to May 1992; Lotus 1-2-3 computer programming for the Indian Meridian Area Vocational-Technical School, from January to April 1991, Stillwater, Oklahoma; introductory and advanced undergraduate statistical courses for the University of Oklahoma of Stillwater, oklahoma, from August 1981 to May 1985; graduate level linear programming, statistics, and computer programming for the Facultad del la Universidad Autonoma de Chihuahua, Ciencias Agricolas, in Delicias, Chihuahua, Republic of Mexico, in the Summer of 1982 (medium of instruction: Spanish). Teaching Assistant for Oklahoma State University in Statistics in the summer of 1985; for Iowa State University in the summer of 1980.

Professional Consulting: Moore Business Forms, doming and creasing in pads of paper, December 1992. At Oklahoma state University: Marilyn Waters, Home Economics Department, mail survey of restaurant storage of pecans, from November to January 1992; Tamara Walkingstick, Forestry Dept., mail survey of smallholders of forested lands, from August 1991 to January 1992; Hamid Pourjalali, Economics Dept., economic modeling of large corporations, September 1991; H. Matthews, Agricultural Economics Dept., inputoutput matrix analyzing rural development of a U.S. Corps of Engineering dam, February to May 1991; Dr. Sue Hong, Dept. of Home Economics, school leaving of teenaged mothers (SIPP data base), April 1991; Ellen Dickson, Dept. of Education, mail survey of school management style and effectiveness, June to August 1990; Sylvia Gaiko, Hotel and Restaurant Management, taste tests of oklahoma wheat pasta, July 1990; Myoung Lee, student satisfaction with life at OSU, March 1987; Jeffery D. Fair, dimethyl sulfoxide as a topical therapy, December, 1986; Roy stubbs, test of teaching style and student aptitude, February, 1986; Michael E. Akpan, survey of Nigerian teachers and students, January 1986; Ken Trosper, tank outlet pressure and flow rate, January 1986; Randy Currie, Agronomy Department, herbicide seed kill and seed life in soil, December 1985.

Professional Organizations: American Statistical Association, presentations at the 1988, 1989, and 1990 annual meetings.```

