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CHAPTER I 

INTRODUCTION 

ZnSe: Search for blue emitter 

Since the first observations of electroluminescence from zinc selenide (ZnSe) 

in 1963 by Lozykowski[l] and independently by Aven and Cusano[2], researchers 

have seen the potential for the use of ZnSe as a blue emitter. Over the last three 

decades much experimental and theoretical effort has been directed toward devel

oping blue LED's and laser diodes based on ZnSe. Although there are numerous 

reports of electroluminescence from ZnSe [1-10] most were also found to emit red, 

green and sometimes yellow. A few of these papers[S-10], however, report pure 

blue emission but they were plagued by problems associated with lithium doping. 

These problems will be discussed below. 

Research on ZnSe was still in the early stages when, in the early 60's, the 

first solid state laser diodes were developed. These diode lasers were red emitters 

based on GaAs. GaAs laser diodes have found numerous applications in devices 

such as laser printers, video disc players and compact disc players (including CD 

ROMs). 

For many years researchers have realized that if the red LED's and lasers, 

currently used in devices such as CD ROMs, are replaced with blue, then an 

order of magnitude increase in storage capacity is possible[ll]. Some of the other 

advantages of blue emitters include 

• Faster, low cost color printers by shifting the sensitivity ·Of photoconducting 

materials from red to blue[12]. 

1 
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• Many of the large, expensive, high power consumption gas lasers which emit 

blue light could be replaced with smaller, inexpensive laser diodes. 

• Blue lasers are more efficient than red lasers for underwater applications, such 

as communications and mapping, since red light is more highly absorbed. 

• Blue LED's, combined with their existing red and green counterparts, would 

enable the production of flat, full color displays using low cost, low power 

consumption solid state devices. 

Unfortunately, the development of devices based on ZnSe has been hampered 

by a variety of problems such as self compensation (which prevents p-type doping), 

twinning, high contact resistance and the lack of suitable substrate material. 

It was generally believed that self compensation in ZnSe was due to native de

fects. Neumark[13], however, proposed that compensation was due to amphoteric 

defects such as lithium which act as acceptors when they occupy a zinc site (Lizn) 

but when incorporated interstitially (Lii) they behave as donors. Thus, when at

tempts are made to make p-type ZnSe using lithium as the dopant, undesirable, 

compensating Lii donors are incorporated in addition to the Lizn acceptors. Neu

mark argues that as more lithium is incorporated into a sample the compensation 

effect catches up to the doping and saturation is reached (i.e. incorporating more 

Lithium does not change the free hole concentration). Her calculations lead to the 

conclusion that the maximum attainable free hole concentration decreases as the 

exponential of 1/2E9 where E9 is the band-gap. Thus, for wide band-gap semicon

ductors such as ZnSe, high p~type doping levels can not be achieved with lithium. 

MBE growth of ZnSe:Li by Haase et al.[9] at 3M showed that the free carrier 

concentration not only saturated, as Neumark has shown, but in fact, decreased 

as more lithium was incorporated after saturation. The free carrier concentration 

they obtained, 8· 1016cm-3, is the highest to date for p-type ZnSe. 

Through the continuing efforts at 3M, Cheng et al.[14] were able to grow 

high quality, undoped MBE films at temperatures as low as 150°C. Finally, in June 

of 1990, 3M reported their success in fabricating the first laser diode based on 
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ZnSe. The active region of this device was a Cd0•2Zn0•8Se quantum well sandwiched 

between an n-type ( Cl doped) and a p-type (N doped) layer of ZnSe. One month 

later a collaborative effort between Brown and Purdue universities also produced a 

working laser diode based on ZnSe[l5]. In this case the active region was a CdZnSe 

multiple quantum well. In both of these cases, however, device lifetime was limited 

to a few hours or days of heavy operation. It is believed that two of the major 

causes for device failure are: (1) high voltage drops across electrodes which cause 

heating and (2) lattice strain at the GaAs/ZnSe interface. 

For the growth of ZnSe devices, G.aAs has been the substrate material of 

choice due to its low cost, availability, well characterized surface preparation meth

ods and its close lattice match (0.28%) to ZnSe at room temperature. There are, 

however, several problems associated with performing heteroepitaxial growth of 

ZnSe on GaAs. They may be summarized as follows: 

• Although the two lattices are closely matched at room temperature, they 

have different coefficients of thermal expansion (7.0 x 10-5 ac-1 for ZnSe 

and 5.8 x 10-5 ac-1 for GaAs) which may cause severe lattice strain during 

post-growth cooling as well as during device operation. 

• Band-gap offset between ZnSe and GaAs creates potential barriers at the 

interface which inhibit the flow of charge through the device. In order to 

overcome these barriers one is forced to use higher operating voltages than 

would otherwise be required. 

• It has been shown that the highly defective structure Ga2Se3 , forms at the 

ZnSe/GaAs interface. Creation of this defect structure results in numerous 

vacancies which may act as traps or recombination centers thus reducing the 

ability of the device to luminesce at short wavelengths. 

In order to overcome many of these problems it is necessary to grow ZnSe on 

a ZnSe substrate (i.e. homoepitaxy). Unfortunately, large area, high quality ZnSe 

material suitable for use as substrate is not currently available. Most researchers 

have chosen to grow very complicated buffer layer structures in an attempt to 
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minimize effects such as lattice mismatch. Growth of these complicated structures, 

however, presents a whole new array of problems. Many researchers feel that 

homoepitaxy is the most appropriate solution to the problems associated with 

ZnSe growth. Much of the characterization work presented in this thesis was done 

in cooperation with Eagle Picher* in support of their efforts to develop a new 

growth technique known as seeded physical vapor transport (SPVT). To date the 

SPVT technique appears to be the most promising technique for the production 

of substrate quality ZnSe. Analysis has shown[16) that samples grown by SPVT 

exhibit greater crystallinity, a smaller concentration of dislocations, and a less 

complex deep level structure than their melt grown counterparts. 

One of the highest quality LED's which has been produced to date was 

reported by Ohkawa et al.[17). In these devices Ohkawa and his collaborators grew 

chlorine doped MBE layers of n-type ZnSe on an n-type SPVT ZnSe substrate. 

A nitrogen doped p-type layer was then grown on the chlorine doped layer. This 

was the first report of p-type ZnSe homoepitaxial layers. These diodes were found 

to emit strong blue light at 2.67eV. At room temperature the blue emission was 

more than an order of magnitude stronger than the red emission and at 77K 

the red emission was not present. Although these devices worked quite well, the 

mobility and free carrier concentration were limited due to impurity' scattering and 

compensation. 

Crystal Structure and Energy Bands 

The crystal structure for ZnSe is the zinc-blende structure shown in Fig. 

1. This structure is very similar to the diamond structure in that it contains two 

interpenetrating fee (face centered cubic) lattices, one being offset from the other 

by one-quarter of a body diagonal. In the zinc-blende structure each of these two 

lattices is composed of a different element (e.g. zinc and selenium). The unit cell 

is a cube which contains a total of eight atoms in the following configuration: four 

zinc atoms at 000 0.!!..!!. .!!.0.!!. and .!!..!!.0· and 4 selenium atoms at .!!..!!..!!. .!!. 3a 3a 3a.!!. 3a 
'22'22 22' 444,444,444 

*Eagle Picher Research Labs, Miami, OK 
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and 3
4a 3: !· Each atom is tetrahedrally bonded to four nearest neighbor atoms of 

the opposite type at a distance of v]a where a is the lattice constant which has a 

value of 5.668A(pg. 80 of Cohen and Chelikowski[18]). 

The bond formed in zinc selenide is neither purely ionic or purely covalent 

but rather it is a mixed bond being approximately 63 percent ionic in nature[18). 

A contour plot of the valence charge density is shown in Fig. 2(a), note that the 

maximum charge density does not lie midway between the atoms ( covalent bond

ing) nor does it coincide with one of the atoms (ionic bonding). For comparative 

purposes charge density plots for a strongly covalent system (Si) and a strongly 

ionic system (NaCl) are also shown. Note the relative locations of the charge 

density maximum in each of these other systems. 

The calculated energy band structure for ZnSe is shown in Fig. 3. This 

figure shows several valence and conduction bands but of particular interest is 

the valence band maximum (rs) and the conduction band minimum (r5) which 

both occur at k=O (i.e. the gamma point). Thus, ZnSe is a direct band-gap 

semiconductor. According to this calculation the direct gap has a width of 2.76eV. 

Experimental observations usually give values near 2.82eV at OK and 2.713eV 

at 300K[20). We also notice from this figure that the greater curvature of the 

conduction band indicates that the electron effective mass is smaller than the hole 

effective mass. The effective mass ratio, m* /m, for electrons and holes is 0.17 and 

0.65, respectively. 

Thesis Project 

It is the aim of this thesis to arrive a more complete understanding of the 

many materials problems associated with zinc selenide and the development of 

devices based on this material. This is the first extensive study which has been 

undertaken to study the deep level defect structure of SPVT ZnSe. 

The specific goals of this thesis are to develop, test and implement new theo

retical descriptions of some of the methods used in this study as well as to identify 

and model the trapping processes involving deep level defects and impurities in 
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Figure 1. Crystal structure of cubic zinc selenide. Solid circles represent zinc 
atoms and open circles represent selenium atoms (Kittel(l 7]). 
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a 

b 

Figure 2. The above contour plots show the valence charge density in units of 
electrons per unit cell volume for (a) ZnSe, (b) Si and (c) NaCl. 
Notice the differences in the location of the charge maximum in 
highly covalent crystals (Si), highly ionic crystals (NaCl) and crys
tals which exhibit mixed bonding (ZnSe) ((a) and (b) from Cohen 
and Chilakowski[18], ( c) from Kittel[19]). 



8 

6 

2 Zn Se 

-

-a 

-10 

L r x. K r 
Wove Vector k -

Figure 3. Calculated band structure for ZnSe. The energy at the top of the valence 
band (rn is assumed to be zero. 
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both melt grown(MG) and seeded physical vapor transport grown zinc selenide. 

The primary purpose for characterization of melt grown samples is to form a basis 

for comparison. By comparing many of the finding for SPVT samples to those 

finding for MG samples, the superior quality ~f the SPVT samples becomes more 

apparent. 

The samples studied included as-grown, semi-insulating MG and SPVT sam

ples, in which the resistivity was often too high to be measured; and SPVT samples 

which had been treated in molten zinc in order to reduce their resistivity. This 

method will be elaborated in chapter V. No low resistivity MG samples were 

available. 

In chapter III the experimental procedures employed in the study of high 

resistivity samples are presented. Also presented in chapter III are the results 

obtained from these experiments. The methods used to characterize the high re

sistivity samples include thermally stimulated current (TSC), thermoluminescence 

(TL), photoconductivity (PC) and photoluminescence (PL). For reasons described 

at the beginning of chapter III, not all of the methods employed are appropriate 

for low resistivity samples. 

The theoretical description of TSC and TL was originally developed in 1945 

and remained virtually unchanged for 45 years. Recently, however, significant 

developments have been made[21-23]. Detailed developments of both theories are 

presented in chapter II. Chapter II also includes computer modeling of TSC and 

TL for the purpose of testing both the new and old theoretical descriptions. 

Low resistivity samples were fabricated into Schottky diodes and analyzed 

by the method of deep level transient spectroscopy (DLTS). The development of 

the DLTS method is presented in chapter IV and the results of experiment are 

given in chapter V. 

Finally, in chapter VI, the results of all experiments are summarized and the 

connection between various experimental results is made. By comparing results 

for different samples and for different experiments a better understanding of the 
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deep level structure is gained and a model is presented which describes the major 

features of, and differences between, MG and SPVT zinc selenide. 



CHAPTER II 

THEORY OF TSC AND TL 

Introduction 

When a semiconductor or insulator is heated, following band-gap excitation 

at low temperature, one may measure transient light emission ( thermoluminescence 

or TL) and transient enhancement of electrical conductivity* ( thermally stimulated 

current or TSC). The characteristics of the resulting TL and TSC are dictated by 

the properties of deep levels within the band-gap. 

Before discussing the theoretical development of TSC and TL one should have 

a qualitative understanding of the processes involved. In the following discussion, 

reference is made to the model shown in Fig. 4. The transition numbers used below 

are in reference to this figure. 

In a TSC or TL experiment, the sample is cooled to low temperature and is 

illuminated with a light source which excites carriers across the band-gap. Some of 

these carriers become trapped (transitions 1 and 3) where they will remain until a 

sufficient amount of thermal energy is applied through heating to excite the trapped 

carriers to their respective delocalized band (transitions 2 and 4). This heating is 

normally performed on a linear time scale at a heating rate f3 (i.e. T = To+ (3t). 

When a sufficient amount of thermal energy is applied, the trapped electrons ( or 

holes) are thermally excited to the delocalized band, transition 2 (4), where they 

contribute to the electrical current thus giving rise to thermally stimulated current 

transients. Some of the detrapped electrons (holes) may recombine with trapped 

holes (electrons), transition 5 (6), and lose energy in the form of radiation (i.e. 

*Although thermally stimulated current and conductivity are often used syn
onymously, what is actually measured is current, not conductivity. 

11 
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Figure 4. Energy band model of single level system used to describe TSC and TL. 
Solid vertical lines represent electron transitions and dashed lines 
represent hole transitions. 
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thermoluminescence). Since the concentrations of the various defect levels are 

usually small (for example: "' 1012 to 1016cm-3 ) compared to carrier concentrations 

of low resistivity semiconductors (1018 to 1022cm-3 ), the associated TSC signals are 

very weak; often on the order of a few pico-amps at fields strengths of a few volts per 

mm. Since the background currents in low resistivity semiconductors ( at similar 

fields) are many orders of magnitude larger, it is not possible to measure TSC 

for these samples. Similarly, TL is not measured in low resistivity samples since 

the high carrier concentration causes a rapid depletion of recombination centers. 

Although not useful for low resistivity samples, TSC and TL are very sensitive 

techniques capable of detecting very low defect concentrations. Townsend and 

Kelly[24] have shown that TL is sensitive enough to detect as few as 109 defects 

in a given sample. 

Now that the basic model for the system under study has been introduced, 

some discussion regarding terminology is in order. The terms donor, electron trap, 

acceptor, hole trap and recombination center are often misused in the literature. 

The most common error is calling a donor an electron trap or vice-versa ( similarly 

for acceptors and hole traps). Donors, electron traps and electron recombination 

centers will be discussed below but keep in mind that the same arguments also 

apply to acceptors, hole traps and hole recombination centers. 

A donor is an impurity which gives rise to an energy level within the band

gap and is neutral at zero Kelvin. As the temperature increases the donor becomes 

ionized thus 'donating' an electron to the conduction band. As the temperature is 

again lowered the ionized donor reclaims an electron from the conduction band and 

returns to its neutral state. Although, at lower temperatures, the donor captures an 

electron, it is not considered a trap since it is simply reclaiming what it donated 

earlier. An electron trap, on the other hand, does not have excess electrons to 

donate to the conduction band at high temperatures. Traps do, however, capture 

electrons from the conduction band at lower temperatures possibly removing the 

electrons which were thermally excited from shallow donors (i.e. compensation). 
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An electron recombination center is often referred to as a hole trap. This 

defect level contains trapped holes which act as recombination sites for electrons 

in the conduction band. At higher temperatures there may be sufficient thermal 

energy to excite these holes to the valence band. The excitation of carriers out of 

a defect is indicative of trap like behavior. This may be summarized as follows: if 

the probability of recombination is much greater than the probability of thermal 

excitation the center is a recombination center. If , however, the probability of 

excitation is greater then the center is a trap. From this argument, it can be seen 

that a given defect may act as a trap at high temperatures and as a recombination 

center at low temperatures. 

Development of Theory 

In order to describe the kinetics of TSC and TL, various transitions shown 

in Fig. 4 must be described. Keep in mind we are only considering electron de

trapping and recombination with trapped holes (i.e. transitions 1,2 and 5). In 

considering the capture of electrons ( transition 1) by traps of concentration N and 

cross sections S, it is easier to imagine the traps traveling through a sample in 

which the free electrons are stationary. Assume that the concentration of previ

ously filled traps is n and that the traps are moving at a velocity Ve where Ve is 

the thermal velocity of electrons in the conduction band. As the (N - n) empty 

traps travel through the sample they sweep out a fractional volume per unit time 

of (N - n)Sve. Therefore, the rate of electron capture is nc(N - n)Sve where nc 

is the free electron concentration. 

The thermal excitation of an electron from a trap of depth E below the 

conduction band (transition 2) is characterized by the attempt to escape frequency 

s and the probability of thermal excitation exp( -E / kT) where k is Boltzmann's 

constant. The product of these two terms gives the probability per unit time of an 

electron being thermally excited to the conduction band. The rate of excitation is 

thus given as ns exp(-E/kT). 
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The expressions for the rates of trapping and detrapping may be combined 

to give the time rate of change of trapped electrons, namely 

~ ( E) dt = ne(N - n)Sve - nsexp - kT . (1) 

The quantity s, referred to as the frequency factor, or attempt frequency, may be 

written as 

(2) 

Where Ne is the effective density of states in the conduction band. Ne and Ve are 

given by: 

and 

N.(T) = 2 ( ~~;,·) 
312 

Ve(T) = {3k'ji y-;;;-

Where m* is the electron effective mass in the conduction band. 

(3) 

(4) 

It is usually assumed that the frequency factors (Eqn. (2)) follows a power 

law temperature dependence[25], that is, 

s(T) = BT2-b (5) 

where Band bare constants and O ~ b ~ 4. By combining equations (2), (3) and 

(4) it is found that the capture cross section also follows a power law temperature 

dependence defined as 

( ;,,2)3/2 
S(T) = B 21r r-b = cr-b 

2V3m*k2 
(6) 

where C is a parameter dependent upon the effective mass. 

There are two paths through which charge may be added to or removed from 

the conduction band: (1) The tra,p level is capable of both adding and removing 

charge. Any charge added to (removed from) the trap level is removed from (added 

to) the conduction band; (2) The recombination path removes charge from the 
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conduction band through the recombination of an electron and a trapped hole. 

The rate of this recombination is nc/ r where r is the recombination lifetime. 

The rate equations describing the rate of change of free and trapped charge 

may be written as: 

(7) 

and 

(8) 

where the temperature dependencies of S, Ve and Ne are implicit. 

The solution of equations (7) and (8) usually proceeds from two fundamental 

assumptions which were first introduced by Randall and Wilkins[26] in 1945. The 

assumptions are: (1) the rate of retrapping of charge that has been released from a 

trap is negligible compared to the rate of recombination (i.e. first-order kinetics), 

and (2) the system is close to equilibrium. That is, the rate of change of free 

electrons is small compared to the detrapping and recombination rates (i.e. Quasi

Equilibrium or QE). These assumptions may be expressed as 

(9) 

and 

ldncl ldn I 
dt .~ dt 

(10) 

respectively. 

Applying these approximations to equations (7) and (8) leads to 

!: ~ -ns exp ( - ! ) (11) 

and 
dn nc -~--
dt T 

(12) 
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Integration of equation (11), using the relationship T =To+ (3t, results in 

(13) 

Where n0 is the initial trapped electron concentration and 0 is temperature. 

Substituting equations (12) and (13) into equation (11) leads to 

( E) { 1T s(0) ·( E ) } nc = noTs(T)exp -- exp - . --. exp -- d0 
kT ~ (3 k0 

(14) 

Substitution of equation (5) for s in the above equation results in an integrand 

which is a product of a power law and an exponential. An approximate closed 

form expression for this type of integral was obtained by Keating[27]. Applying 

his approximation to equation (14) leads to the following closed form expression 

for the free carrier concentration: 

nc(T) = noT BT2-b exp ( - !, ) 
{ .-BkT4-b ( (b- 4)kT) ( E)} 

x exp (3E l + E exp - kT (15) 

noTF(T) 

Using the above expression, it is now possible to describe TSC and TL in terms 

of the parameters B ( or C), E, b, no and (3. In general, one might expect both 

radiative ( characterized by Tr) and non-radiative ( Tnr) recombination pathways in 

which case TL is given by 

(16) 

where T, Tr and Tnr are related through the expression. 

1 1 1 -=-+-. 
T Tr Tnr 

(17) 

From the free carrier concentration the TSC is evaluated according to 

T SC(T) = Aeµenc (18) 



18 

where A is the electrode area, e is the electron charge, µ is the electron mobility 

and £ is the applied electric field. 

Substituting equation (15) into equations (18) and (16) we have 

TSC(T) == C'µn 0TF(T) (19) 

and 
T 

T L(T) = no-F(T) 
Tr 

(20) 

where the constants A, e and£ have been absorbed into the constant C'. Equations 

(19) and (20) are often used as fitting equations when analyzing TSC and TL. It 

is usually assumed that both µT and T / Tr are constants and the fitting parameters 

become no (or C'), b, B, and E. 

From the above equations we see that TSC and TL have very similar char

acteristics and, depending on the temperature dependencies of µ, T and Tr they 

may have close or identical peak positions. The factors influencing relative peak 

positions will be examined in the following section. 

TSC and TL correlations 

In order to examine the TL process more fully, a more complete expression 

for the rate of capture of electrons by re.combination centers must be obtained. 

Let m represent the concentration of holes trapped at the recombination center. 

Through an argument similar to that used earlier to derive the capture rate for a 

trap, the following expression is derived to describe the rate of recombination 

dm 
dT 

1 
- 13 Rvemnc 

Ar 
- -/3mnc 

. (21) 

where R is the recombination cross section, Ar is the transition probability for 

recombination ( cm3s-1 ) and the TL intensity is given by -dm / dt ( -/3 x dm / dT). 

In a first attempt to understand the correlation between the peak maxima 

of TSC and TL, Chen[28] assumed that Ar was constant so that integration of 
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equation (21) gives 

(22) 

where mo is the concentration of trapped holes at the beginning of the experiment 

(i.e. when T = T0 ). Substitution of equation (22) into equation (21) leads to the 

following expression for TL 

TL(T) = n,A,mo exp ( - i £~ n,de) (23) 

Equating the temperature derivative of the above equation to zero results in the 

following expression which is true at the maximum of the TL curve 

(24) 

where Tm is the temperature of the TL maximum and ncm is the free carrier 

concentration at Tm, Each quantity of the right hand side of equation (24) is 

always positive, thus, the left hand side must also be positive. This indicates that 

at the peak of the TL, the TSC ( actually nc) will always be increasing. In other 

words, the peak of the TL curve will appear at a lower temperature than the peak 

of the TSC curve. 

A troubling point in the above analysis is that Chen has completely ignored 

the temperature dependence of Ar. The transition probability Ar may be weakly 

dependent upon temperature, thus varying very little over the temperature range of 

a single TL peak. In order to analyze TSC and TL correlations correctly, however, 

the effects of temperature dependence must be examined. Ar is the product of 

the two temperature dependent quantities R and Ve, If R is assumed to have a 

temperature dependence of r-d, similar to the capture cross section (equation (6)), 

then Ar may be written as 

(25) 

where Aro and d are constants and O ::; d ::; 4. By once again taking the tem

perature derivative of equation (23), this time accounting for the temperature 
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dependence of Ar, the following relationship is obtained 

(26) 

where Arm is the transition probability evaluated at Tm. If the case is considered 

in which the peak of nc occurs at a lower temperature than the TL peak, then the 

left side of equation (26) is negative which leads to 

(27) 

Since the term on the left is always positive, the term on the right must be positive 

as well. This leads to the requirement that d < 1/2(29]. This is a necessary but not 

a sufficient condition to satisfy the inequality. If, on the other hand, the inequality 

is reversed (TL peak oc~urs at lower temperature), then there is no additional 

restriction on the allowed values for d. 

By examining equations (16) and (21) it is seen that the radiative recombi

nation lifetime Tr may be expressed as 

1 
(28) 

As argued above, if Ar is constant then the TL peak should occur at a lower 

temperature than the peak of nc, Since TL is defined as the recombination rate 

nc/ Tr, the shift in peak maxima is due to the temperature dependence of Tr or 

more directly, the temperature dependence of m. Initially, as nc increases, the 

rate of recombination increases. At higher temperatures, although nc may still be 

increasing, the rate of recombination decreases due to the depletion of available re

combination centers m. From this argument it is difficult to justify the often made 

assumption that the recombination lifetime is a constant; this can only be true if 

m is a constant. Obviously if TL is being measured, m is not constant. In order 

to reconcile this contradiction, the idea of thermally disconnected traps was intro

duced(30]. A thermally disconnected trap is simply a trap which is deeper that the 
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trap which is involved in the TL process and is thus thermally stable throughout 

the temperature range of the TL peak. If the concentration of thermally discon

nected traps H is sufficiently large (H ~ N), then charge neutrality demands 

that the concentration of full recombination centers m must also be large. In this 

case, the change in the concentration of trapped holes during a measurement is 

negligible compared to the total concentration and the recombination lifetime is 

nearly constant. It has been shown[31,32] that a large concentration of thermally 

disconnected traps is necessary in order for the TL and nc peaks to coincide. 

The Randall Wilkins expression (equation (14)) was odginally derived to 

describe TL. A consequence of the findings reported above is that TSC data cannot 

be properly described by the Randall Wilkins expression unless the concentration 

of thermally disconnected traps is large. As pointed out by McKeever[33], however, 

this is not a serious problem in most real systems. McKeever argues that there 

are usually many trap levels . which are deeper than the levels which initiate the 

observed TL and TSC. 

Other Models 

In the development of first-order kinetics Randall and Wilkins[26] assumed 

that an electron, once released from a trap, has a negligible probability of recap

ture. Within a few years after this theory was introduced, Garlick and Gibson[34] 

considered the case in which the transition probabilities for trapping (At) and re

combination (Ar) are equal. Thus, detrapped electrons recombine at a rate Arncm 

and are retrapped at a rate Atnc(N -n). In the absence of thermally disconnected 

traps, charge neutrality demands that m = n. The probability that a detrapped 

electron will undergo recombination, rather than recapture, is expressed as 

Substitution of m = n and Ar = At leads to 

n 
a=-

N 

(29) 

(30) 



22 

Consider an infinitesimal interval of time 8t; the concentration of electrons which 

are <let rapped is equal to ~~ tit. Only a fraction a of these electrons are actually lost 

through recombination; the remaining electrons are retrapped. Thus, the actual 

concentration of electrons which are 'losti during the interval 8t is a~~ ot. Therefore, 

the inclusion of retrapping reduces the rate of change of trapped electrons by the 

factor a. The modified rate equation, as presented by Garlick and Gibson, is 

dn = -n2~ exp (-I_) . 
dt N kT 

(31) 

Compare to equation(ll). Solving the above equation subject to the QE approxi

mation, yields 

For kinetics, which are neither first or second order, Partridge and May[35] intro

duced a purely empirical relationship in which the kinetic order is defined by a 

parameter l. In this 'general-order' case it is difficult to attach a physical meaning 

to the parameter /. The time rate of change of trapped electrons is given by 

dn , 1 ( E) dt = s n exp - lcT (33) 

where s' is a constant ( s-1 cm3 (/ - 1)). 

Chen[:36] solved the general-order equation subject to the QE approximation. 

The resulting equation is 

( E){(l-l)s'n1- 1 fr ( E) } 1=~ 
nc = s'n~Texp - kT /3 ° lro exp - k8 de+ 1 (34) 

Although a great deal of work has been done on second-order and general-order 

kinetics, nearly all well studied systems are dominated by first-order kinetics. 

Generalized Description of TSC and TL 

In the previous section first-, second- and general-order kinetics were exam

ined. Each of these models proceeds from the assumption of quasi-equilibrium. 
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Lewandowski and McKeever[21], however, have forgone the assumption of quasi

equilibrium and the assignment of a specific kinetic order in favor of a generalized 

description in which quasi-equilibrium and kinetic order are described by the func

tions q(T) and P(T), respectively. 

The q(T) function is defined in the following manner: 

q(T) nc = dnc 
T · dt 

combining with equation (8), we can write 

Q(T)nc = _ dn 
T . dt 

(35) 

(36) 

where Q(T) = q(T)+l. The kinetic order function, P(T), is defined by the relation 

P(T) = T(N - n)Sve (37) 

Notice the similarity between the two above equations and equations (12) and (9) 

respectively. 

Combining the definition of Q(T) with equation 7 leads to 

(38) 

Substituting equations (28) and (37) into equation (38) leads to 

(39) 

where charge neutrality has allowed the substitution n + H = m. 

If equation (39) is substituted back into equation (36) and combined with 

the definition of P(T), equation (37), the following differential equation in n is 

obtained 

(40) 

where !dT has been substituted for dt. 
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Integration of the above equation leads to a result similar in form to equation 

(13); namely 

{ 1 IT Q(0) ( E ) } 
n = n0exp - f3 }To Q(f>) + P(f>)s(0)exp - kf> df) (41) 

In order to obtain an expression for nc(T), the above equation must be substi

tuted into equation (39). Since n appears twice in equation (39), the substitution 

leads to a very long, complicated expression. In order to simplify this expression, 

Lewandowski and McKeever[21) employed the expansion 

n = f)-1 )i+I (!?:_) i 
n+H . H 

t=l 

(42) 

which is valid for H > n. With this expansion, substitution of equation ( 41) into 

equation (39) yields 

_ SNc ( E) ~( )i+I (no)i ( . ( )) nc - R(Q + P) exp - kT {;;t -1 H exp -ig T (43) 

where 
l IT Q(0) · ( E ) 

g(T) = f3 }To Q(0) + P(0)s(0)exp - kf) df) (44) 

It was further argued that if H ~ n0 , the series expansion (Eqn. ( 42)) may be 

approximated by the first term. In this case the generalized expression for TSC 

becomes 

S(T)Nc(T)no ( E ) 
TSC(T) = Aeµ£ R(T)H (Q(T) + P(T)) exp - kT exp (-g(T)) (45) 

where, for clarity, all temperature dependencies are explicitly indicated. 

It is possible to derive the generalized expression for TL without employing 

the expansion shown in equation (42). Begin by multiplying the numerator and 

denominator of equation (39) by the thermal velocity Ve. Replace SNcve, in the 

numerator, with the frequency factors and replace veR( n+H), in the denominator, 

with Tr-I· Using the relation TL= nc/Tr, we have 

n0s(T) · ( E) 
T L(T) = Q(T) + P(T) exp - kT exp ( -g(T)) (46) 



25 

where, once again, all temperature dependencies are explicitly indicated. 

Before examining specific cases such as first- or second-order kinetics, it is 

necessary to better understand the nature of the Q and P functions. 

By solving equation {38) for Q we can write 

By identifying the following terms: 

Q may be written as 

Rex(T) - rate of excitation 

- nNcSveexp (-!), 

Rrecomb(T) - rate of recombination 

nc 
- - = ncRve(n + H) 

T 

Rrecap(T) - rate of recapture 

- ncSve(N - n), 

Q(T) = Re:i:(T) - Rrecap(T). 
Rrecomb(T) 

By substituting (Rve(n + H)t 1 for Tin equation (37), we obtain 

P(T) = S(N ~ n) 
R(n + H) 

which may be expressed as 

P(T) = Rrecap(T) . 
Rrecomb(T) 

{47) 

{48) 

{49) 

(50) 

(51) 

(52) 

(53) 

Consider now the case of first-order kinetics (slow retrapping), in which recombina

tion dominates over recapture; equation (53) reveals that P ~ 1. For second-order 
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kinetics (fast retrapping), on the other hand, recapture dominates over recombi

nation, thus, P ~ l. For cases in which the rate of retrapping is equal to the rate 

of recombination (the 'retrapping' case), equation (53) indicates that P = l. By 

comparing equation (36) to equation (12), it can be seen that the assumption of 

QE demands that Q(T) ~ l. It is instructive to consider, separately, the physical 

implications of each of the three cases of kinetic order presented above[22]. In each 

case the assumption of QE is also imposed. 

We first consider the case of QE and second-order kinetics ( Q(T) = 1 and 

P(T) ~ 1). By combining equations (51) and (53), it can be shown that the 

condition P ~ l implies that Rex(T) ~ Rrecap(T) for all T which, from equation 

(51), further implies that Q(T) = 0. This is in contradiction with the initial 

assumption that Q(T) = l. Additionally, if Rex(T) ~ Rrecap(T) for all T, the trap 

in question would never empty. One concludes from this argument that it is not 

possible to obtain TL or TSC under the conditions of second-order kinetics and 

quasi-equilibrium. 

The conditions for the retrapping case are P(T) = 1 and Q(T) = l. For P = 
1, equation (53) implies that Rrecap(T) = Rrecomb(T). From the definitions of Rrecap 

and Rrecomb this condition may be expressed as S(T)(N-n(T)) = R(T)(n(T)+H). 

Although this condition does not create a contradiction or violate any physical 

principles, is seems highly unlikely that this equality would be true for all T. Thus 

it is unlikely that the retrapping case will be realized in any physical system. 

Finally, the case of first-order kinetics is considered ( Q(T) = 1 and P(T) ~ 

1). From equation (53) it follows that Rrecomb ~ Rrecap· By combining equations 

(51) and (53) we find the additional condition that Rex~ Rrecap· These conditions 

give rise to no contradictions and they are much less restrictive than the equalities 

found in the retrapping case. It can be concluded by these arguments that all or 

most real systems near quasi-equilibrium should be described first-order kinetics. 

Based on the above conclusions, the remainder of this derivation will be per

formed under the assumption of first-order kinetics. Quasi-equilibrium, however, 

will continue.to be described by the Q(T) function. 
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Substitution of equation (44) and the condition P(T) <: 0 into equations 

( 45) and ( 46) yields 

S(T)Nc(T)no ( E ) ( 1 IT ( E ) ) 
TSC(T) = Aeµe R(T)HQ(T) exp - kT exp - (3 }To s(0)exp - kf) d0 

(54) 

and 

n0s(T) ( E ) ( 1 IT ( E ) ) T L(T) = Q(T) exp - kT exp - (3 }To s(0) exp - kf) d0 . (55) 

By making appropriate substitutions involving T and s(T) and by imposing the 

condition H ~ n, equation (56) may be rewritten as 

r(T)s(T) ( E) ( 1 IT ( E ) ) TSC(T) = Aeµ£n0 Q(T) exp -kT exp -p }To s(0)exp - kf) d0 

(56) 

By comparing equation (56) to equations (14) and (19) and comparing equation 

(55) to equations (14) and (20) it can be shown that 

TSCQE(T) = Q(T)TSC(T) (57) 

and 

T LqE(T) = Q(T) TL(T), (58) 

where TSCqE(T) and T LqE(T) are the first-order, quasi-equilibrium solutions 

(Eqns. (19) and (20)). The solutions to first-order kinetics obtained both with 

and without the QE assumption merely differ by the factor Q(T), thus, if one can 

determine the shape of Q(T), then one can correct the QE solutions and describe 

the TSC and TL curves more exactly. 

By combining equations (19) and (20) with the definition of q(T) (Eqn. (35) ), 

the shape of q(T) can be determined from experimental measurements through the 

following relationships 

r(T) (3 d 
q(T) = Tr(T) TL(T)CµdT(TSC(T)) (59) 
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and 
d 

q(T) = /3r(T) dT ln (TSC(T)) (60) 

where the temperature dependence ofµ has been ignored in the first equation. If 

it is further assumed that the temperature dependencies of r(T) and Tr(T) are 

the same ( which is always true for a single recombination pathway) then their 

ratio is a constant which may be absorbed into the constant C, thus, allowing the 

evaluation of q(T) to within a scaling constant. If, however, no TL is observed from 

the sample under study, equation (60) may be used to evaluate q(T) from TSC 

data alone. Unfortunately, equation (60) demands that there be prior knowledge 

of the temperature dependence of T. 

Even if it is possible to experimentally determine the shape of q(T), a problem 

still remains: it is not know how to properly scale q(T) in order to evaluate Q(T) 

(recall than Q(T) = q(T) + 1). 

In an effort to solve the problems associated with evaluating the Q function 

from experimental data, Lewandowski [37] has managed to eliminate the depen

dence of the generalized TSC and TL expressions upon Q(T) and P(T). There 

now exists an expression which has been derived without resorting to the QE as

sumption. The derivation proceeds from the assumptions that: (1) there is a large 

concentration of thermally disconnected traps so that n + H ~ nc, for all T, (2) 

first-order kinetics, (3) the mobility is a constant (i.e. µ(T) =µ),and (4) H ~ n0 • 

The equation which result from these assumptions are: 

T SC(T) = Kf50 exp (P(~~3
~~) l exp (p~a~:/~~) 9 2-• 

exp(-~) x exp {-B fe 0 1<2-b) exp(-_£) d0'} d0 {61) 
k0 /3 }To k0' 

and 

TL(T) K TLTl/2-d (-f!T3/2-d) IT ( n03/2-d ) o2-b 

- o exp /3(3/2 - d) }To exp /3(3/2 - d) o 

x exp(-~) exp {-B fe 0 1<2-b) exp(-_£) d0'} d0 (62) 
k0 /3 }To k0' 
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ford# 3/2. For the cased= 3/2, the above equations reduce to 

TSC(T) = l(TSCT-0//3 {T en/13e2-b exp (- E) 
0 1~ ke 

X exp {- B { 9 e 1<2-b) exp(-_§_) de'} de . Ph k& 
(63) 

and 

TL(T) - K5LT-(1+0//3) {T 90/13e2-b exp (- ~ )· 
}To ke 

X exp {- B { 9 e 1<2-b) exp(-_§_) de'} de 
p }To ke' 

(64) 

where the various parameters are defined through the parameterization of the re

combination cross section R(T), the capture cross section S(T), the recombination 

lifetime r(T), and the frequency factor s(T). The parameterizations are as follows: 

R(T) = DT-d, (65) 

S(T) = CT-b, (66) 

.!_ = ve(T)R(T)H = nT1l2-d, 
T . ·. (67) 

and 

s(T) = Nc(T)S(T)ve(T) = BT2-b (68) 

where B, C, D, n, band dare constants. The constants K'[50 and K'[L are defined 

as: 

and 

K'tsc = A£eµnoB 
p (69) 

(70) 

where A is the electrode area, e is the applied electric field, and e is the electron 

charge. 
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Computer Modeling and Testing 

Computer modeling was performed in order to compare the generalized solu

tion, equations (61) through (64) to the Randall Wilkins solution, equation (15). 

Both the Randall Wilkins and generalized solutions were evaluated then compared 

to exact numerical solutions to the rate equations (7) and (8) which were obtained 

using a fourth order adaptive Runge-Kutta method (see appendix A). 

In order to use the Runge-Kutta method, the rate equations describing the 

transfer of charge into and out of the trap and the conduction band ( equations (7) 

and (8)) must be fully parameterized and written as derivatives with respect to 

temperature rather than time. Recall that the heating rate is linear according to 

T = T0 + f3t so that we may replace dt with dT //3. Making this substitution, as 

well as replacing T with equation (28), in equations (7) and (8) we have 

(71) 

and 

(72) 

The inclusion of min equation (72) indicates the need for a third rate equation to 

describe the rate of change of trapped holes in the recombination center. If we make 

use of charge neutrality, however, the need for a third equation is eliminated. If the 

recombination center is sufficiently deep that there is no thermal excitation into the 

valence band then we know that all of the holes reside on recombination centers. 

We also know that the total number of trapped plus free electrons must add up to 

the total number of trapped plus free holes (charge neutrality). Mathematically 

stated 

m = n+nc+H. (73) 

By parameterizing the quantities R and S as in equations ( 65) and ( 66) and by 

parameterizing the density of states and the thermal velocity as Ne= A 1T 312 and 
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Ve= A2T 112 respectively (c.f. equations (3) and (4)), we have 

dn A2CT2-b [ 3; 2 ( ( E )] - = r- n N - n)-A1nexp --
dT (3 C kT 

(74) 

and 

From the solution of these equations the TL curve can be easily calculated from 

(76) 

By varying the parameters E, C, D, band din the above rate equations it is possi

ble to generate a wide range of TSC and TL curves. In this study, nearly a hundred 

data sets were generated and subsequently compared to the Randall Wilkins and 

generalized expressions. Reported here is a sample of these data sets which em

phasize the more significant trends which were observed. 

After generating data using RK analysis, the resulting TSC and TL curves 

were fitted* to the RW expression in order to determine parameter values. 

The graphs in Fig. 5 show TSC data sets generated using RK which were 

fitted to the RW expression equation (15). In each data set the activation energy 

E was 0.3eV and the temperature dependencies of R and S were both -3/2 (i.e. 

a = b = 3/2), other parameters are listed in the figure caption. The results of 

fitting to TSC ( actually nc) yielded a range of activation energies from 0.29le V to 

0.318eV. The 'poorest' fits (largest value for x2) t were obtained for data sets (a), 

(b) and (c), in which both N and Hare small (109m-3 and 1012m-3 respectively). 

When N and H were increased to more physically reasonable values (10100r 11m-3 

and 1012•130r 14m-3 ) as in sets (d), (e) and (f), the fits were markedly improved. For 

set (f), the values of N and Hare large but the condition H ~ N is only weakly 

*See appendix B for a detailed description of the fitting procedure used. 

tsee appendix B. 
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satisfied since H/N = 10. As a result, set (f) is not as good a fit as sets (d) and 

(e). 

When fitted to Runge-Kutta TL data, a similar trend is observed (see Fig. 

6). In most cases, however, the parameter values obtained from TL fitting are 

closer to the actual values than those obtained from TSC fitting. In the case of 

sets (d) and (e), the parameters obtained from TL fitting are nearly perfect. 

Also shown in the graphs of Figures 5 and 6 are the Q-functions which were 

evaluated from the RK data. The Q-function was calculated using equation (47). 

We notice, from Figures 5 and 6, that in most· cases the Q-function is close 

to unity (i.e. the system is near QE) for temperatures below the peak maximum. 

Beyond the peak maximum, however, a sharp decrease in the Q-function is seen. 

Note that in sets (a), (b) and ( c) the quality of the fit is poorest on either side 

of the peak maximum, this is a direct result of deviations from quasi-equilibrium 

which render the Randall Wilkins equation invalid. The departure from QE is not 

as severe in sets (d), (e) and (f), thus the validity of the Randall Wilkins equation 

is better in these cases. 

Although the quality of fit is worse for sets (a), (b) and (c), it has been 

noticed, in certain instances, that these 'poor fits' actually yield more accurate 

parameter values. This apparent inconsistency has been addressed in some detail 

in appendix B. One of the points discussed is the fact that fitting often results in 

a local x2 minimum. As discussed in the appendix, this problem is dealt with by 

repeating the fit for several sets of initial fitting parameters. 

Table I shows fitting values obtained for the data shown in figures 5 and 

6. The table shows parameter values obtained for two sets of initial parameter 

values. The starting parameter values for fit-1 were chosen randomly and the 

starting values for fit-2 were simply the parameter values which were used in the 

Runge-Kutta program. The two sets of fitting results exhibit the widest variation 

in fitted parameters which were found, thus if a particular data set is considered 

the uncertainty in parameter values may be determined. For example, consider 

set (b) results for TSC. The activation energy ranges from 0.302eV to 0.318eV so 
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Figure 5. TSC curves generated using Runge-Kutta method. Solid line represent 
RK data, dotted line represent best fit to RW expression. Solid 
line is also used to represent Q-function. RK data is normalized, 
no scale is shown. Scale shown is for Q-function; Parameter val
ues used in each data set are: E=0.3eV, b=d=3/2 and /3=5K/min. 
Variable parameters include:(a) N=109 , H:::::::::1012 , C=l.6· 10-11, 
D=l0-15; (b) N=109 , H=l012, C=l.6· 10-15 , D=l0-15; (c) N=109 , 

H=1012, C=l.6· 10-14, D=l0-15; (d) N=1010, H=10~3, C=l.6· 
10-15, D=10-1a; (e) N=lOn, H=l014, C=l.6· 10-15, D=10-1a and 
(f) N = 1011 , H=1012, C=l.6· 10-15, D=l0-13. N and Hare in 
units of m-3 and C and D are in units of m2K312 (for d=3/2). See 
Table I for fitted parameters. 
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units of m-3 and C and Dare in units of m2K312 {for d=3/2). See 
Table I for fitted parameters. 
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that if we had no prior knowledge of Ewe would write E = 0.310 ± O.OOSeV, thus 

the uncertainty is 0.016eV which represents only a 5% error. 

The values given in Table I reveal that, as mentioned earlier, fitting to TL 

data results, in most cases, parameter values which are closer to the actual values. 

The primary reason for this improvement is that the Randall Wilkins equations 

assumes that T is a constant. Since there is only one recombination pathway, 

T = Tr, thus T / Tr = 1 and TL is completely independent of the temperature 

dependence of T. TSC, on the other hand, is directly proportional to T, thus any 

temperature dependence in T will directly affect the quality of the fit. As mentioned 

in a previous section and other reports[31,32], large concentrations of thermally 

disconnected traps reduce the temperature dependence of T thus increasing the 

validity of the Randall Wilkins expression for TSC. In most cases, however, one 

expects better result when fitting to TL rather than TSC. 

Although a wide range of parameter space was covered in these calculations, 

the extent of this range was somewhat limited by extremely long computation 

times. As the values of N and H were increased from 109 and 1012 to 1012 and 

1014 the computation times increased from a range of 10-600sec to a range of 

40-14,000sec. As attempts were made to further increase the parameters to the 

range of 1018 , computations ran for several days generating only a few of the 

approximately one thousand data points required for a data set. The reason for 

this drastic increase in computation time has not yet been explained. 

In order to compare the results discussed above to the generalized expression 

it was necessary to numerically solve the integrals in equations (61) through (64). 

Since the inner integral is of the same form as the integral of equation ( 14), once 

again Keating's approximation was employed. For the outer integral it was nec

essary to use an adaptive Simpson's algorithm[38]. In order to save computation 

time when calculating the value at some temperature Ti, the integral was only 

evaluated from Ti-I to n and added to the previously saved value of the integral 

from To to Ti-I· 
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Since computation times from several minutes to a few hours are common 

when calculating the generalized expression, it was not practical to use. the gen

eralized expression as a fitting equation. In order to perform comparisons, both 

the RW expression and the generalized expression were calculated using exactly 

the same parameter values which were used in the RK calculations. Fig. 7 shows 

overlay plots of TSC evaluated by each of the three methods. The RK plots are 

the same as those shown in Fig. 5. Notice that the RW curve for data sets (a), (b), 

( c) and ( f) do not match the RK curves whereas for sets ( d) and ( e) they do match 

quite well ( compare to fitting results of Fig. 5). The curves for the generalized 

solution, however, are in good agreement with every one of the RK curves except 

for set ( f) in which the requirement H ~ N is not well satisfied. It was found 

that the generalized solution was in excellent agreement with the RK solution for 

all parameter ranges tested, provided that the assumptions stated on page 28 were 

not violated. 

Similar observations to those stated above are made for the TL curves shown 

in Fig. 8. For sets (a) through (e), the results are much the same as for TSC. For 

set ( f), however, a significant improvement in the agreement between RK and the 

generalized solution is observed. Once again, this is attributed to the fact that TL 

does not depend on the temperature dependence of r. An additional observation 

is made here; although the generalized solution is derived assuming that H ~ N, 

this condition does not appear to be as strict for TL as for TSC. 

Having confidence in the integrity of the generalized solution, the validity of 

the RW expression may be investigated over a wider range of parameter space. By 

comparing the RW expression to the solutions of the generalized expression the 

lengthy computation time of RK is avoided. The testing involved calculating TSC 

curves using both the RW and the generalized expressions over a wide range of 

parameters. After normalizing each data set the x2 value between the two curves 

was calculated and a three-dimensional plots was constructed in order to easily 

determine ranges of 'good' and 'poor' agreement. The 3-D plots are shown in 

figures 9 and 10. In each of these figures we observe parameter ranges for which 
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Figure 7. TSC curves generated using Runge-Kutta method. Open circles rep
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RW expressions respectively .. Parameter values used in each data 
set are: E=0.3eV, b=d=3/2 and /3=5K/min. Variable parameters 
include:(a) N=l09 , H 1012 , C=l.6· 10-11, D=l0-15 ; (b) N=l09 , 
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10-14 , D=l0-15 ; (d) N=1010, H=1013, C=l.6· 10-15 , D=l0-13; 

(e) N=1011 , H=1014, C=l.6· 10-15 , D=l0-13 and (f) N = 1011 , 

H=1012, C=l.6· 10-15 , D=l0-13• N and Hare in units of m-3 and 
C and D are in units of m2K312 (for d=3/2). -
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Figure 8. TL curves generated using Runge-Kutta method. Open circles rep-· 
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x2 is independent of parameter changes and regions in which x2 changes rapidly. 

Notice that the x2 value corresponding to Fig. 7(a) is indicated on the surface plot 

in Fig. 9. This indicator is intended to provide a reference point so that the reader 

might visualize the quality of fit based on the value of x2• 

We may conclude from these calculations that the Randall Wilkins expres

s10n, while adequate over certain parameter ranges, should be questioned when 

used for fitting or for modeling over a wide range of parameters. The generalized 

expression, on the other hand, appears to accurately describe the kinetics of the 

system under study, over a very wide range of parameters. The best solution, 

of course, is one in which we are not required to make assumptions or approxi

mations, namely Runge-Kutta. As discussed earlier, however, concerns regarding 

computation time often forces us to find alternative solutions. Fortunately, in this 

case, the generalized solution provides us with the alternative solution. 



10 

10 

x2 1 o 

40 

r-----L 10 -20 

2 
X 

b 

Figure 9. Variation in the x2 difference between the Randall· Wilkins and 

generalized expressions as a function of C and H. Para.meter 
values: E=0.3eV and f3=5K/min. Additional para.meters: (a) 
b == d == 3/2, D == 10-15; (b) b == d == 2, D == 10-13 . . 



2 
X 

-5 
10 

10 -7L_~-----~ 
10-1 

10-1 
C -1 

1 0 ~ I.----~--:-::--~:--_-~~~~-=-;-~---- -16 10-1~ -14 10-15 10 -l.3 10 10-12 10 

D 

Figure 10. Variation in the x' difference between the Randall Wilkins and gen

eralized expressions as a function of C and D. Parameter values: 
E == 0.3e V, b == d == 3 /2, H == 1015 and/3 == 5K/min. 

41 



42 

TABLE I. 

PARAMETERS OBTAINED FROM FITTING TO 
RUNGE-KUTTA TSC DATA 

Set Source x2 C E b 
actual *** l.60·10-17 0.300 1.50 
fit-l(TSC) . 0.0155 6.72-10-15 0.309 2.59 

(a) fit-2(TSC) 0.0156 6.31·10-16 0.305 2.22 
fit-l(TL) 0.0118 1.27.10-15 0.302 2.42 
fit-2(TL) 0.0120 3.21.10-16 0.300 2.18 
actual *** l.60·10-15 0.300 1.50 
fit-l(TSC) 0.0183 l.17·10-9 0.318 4.00 

(b) fit-2(TSC) 0.0193 6.14·10-14 0.302 2.31 
fit-l(TL) 0.0149 5.89-10-10 0.313 4.00 
fit-2(TL) 0.0156 3.46·10-14 0.297 2.29 
actual *** l.60·10-14 0.300 1.50 
fit-l(TSC) 0.0224 4.69·10-15 0.291 1.52 

(c) fit-2(TSC) 0.0224 6.92-10-13 0.299 2.41 
fit-l(TL) 0.0181 1.00·10-9 0.307 3.78 
fit-2(TL) 0.0187 4.00·10-13 0.295 2.39 
actual *** l.60·10-15 0.300 1.50 
fit-l(TSC) 1.32·10-4 6.97·10-17 0.299 0.85 

(d) fit-2(TSC) 8.85-10-5 4. 78· 10-14 . 0.310 2.00 
fit-l(TL) 8.33·10-9 9.76·10-16 0.299 1.41 
fit-2(TL) 8.33-10-9 9.76·10-16 0.299 1.41 
actual *** 1.60·10-15 0.300 1.50 
fit-l(TSC) 1.32·10-4 6.98·10-17 0.299 0.85 

(e) fit-2(TSC) 8.85-10-5 4.78·10-14 0.310 2.00 
fit-l(TL) 1.23·10-5 4.42.10-16 0.298 1.27 
fit-2(TL) 1.24·10-5 1.40·10-16 0.300 1.47 
actual *** l.60·10-15 0.300 1.50 
fit-l(TSC) 2.24-10-5 5.41.10-11 0.302 0.74 

(f) fit-2(TSC) l.62·10-4 4.05·10-14 0.309 1.50 
fit-l(TL) 0.0073 5.26-10-10 0.307 4.00 
fit-2(TL) 0.0080 2.53·10-14 0.291 2.25 



CHAPTER III 

EXPERIMENTAL RESULTS FOR HIGH 

RESISTIVITY SAMPLES 

Sample Preparation 

The experimental results discussed in this chapter were obtained for high 

resistivity, undoped ZnSe single crystals grown by the Bridgman and SPVT tech

niques. A description of these growth techniques is available elsewhere[l6). The 

samples were all 1/4µm polished. The average size of the polished samples was 

5mm x5mm xlmm. Some of the samples used in this study were etched in either 

14 normal NaOH at 90°C or a 3 percent bromine methanol solution at room tem

perature. These etchants, however, were found not to affect either the TSC or the 

TL results. 

Samples to be used for TSC were fitted with electrodes in order to provide 

electrical contacts. The electrodes were fabricated by placing the sample in a 

vacuum chamber and evaporating gold onto the sample from a heated tungsten 

filament. The electrode on the rear face of the sample (the side facing the sample 

holder) was simply a thick gold film. The electrode on the front (illuminated) face 

of the sample, however, was not so simple. In order to allow for illumination the 

front electrode was fabricated in one of two ways: (1) a mask is used to prevent 

gold from covering the center of the sample face. This provides us with a window 

through which we can illuminate the sample; (2) a semi-transparent gold film was 

evaporated in order to allow illumination through the electrode. One must use 

care so as not to make the film so thin that it is non-conducting. This problem 

is easily overcome by placing a glass microscope slide beside the sample during 

evaporation. By measuring the resistance across the surface of the glass slide 

43 
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and continuing evaporation until the glass slide begins to conduct, one ensures a 

conducting electrode. Additionally, one of the melt grown samples used in this 

work was fitted with ultrasonically soldered indium electrodes, on which the front 

face contained a 3mm illumination window. 

Experimental Procedures and Apparatus 

All TSC, TL and photoconductivity data were obtained using a continuous 

fl.ow cryostat (Oxford CF-1204) using liquid nitrogen as the coolant. A detailed 

cross section of the cryostat is shown in Fig. 11 (a). This type of cryostat is preferred 

to a closed system since the latter requires a compressor piston to be mounted 

inside the cryostat. Such a mechanism can generate much mechanical vibration 

which would be detrimental to the sensitive nature of TSC measurements. 

Samples were mounted on a copper block at the end of a sample holder which 

was fitted into the cryostat. When performing electrical measurements great care 

was taken to ensure adequate thermal contact to the copper block while also pro

viding electrical insulation. Since simultaneous measurements of TSC and TL were 

often made, precautions were taken to ensure that the insulating materials used 

did not themselves emit TL in the temperature range of interest. Additionally, 

the sample holder was designed SQ that the coaxial and triaxial cables, which con

nected to the sample, were enclosed in 3/16 inch metal tubing to provide additional 

shielding. This degree of shielding was found to be necessary when measuring the 

small currents associated with TSC. The sample holder and the details of sample 

mounting are shown in Fig. ll(b). The sample holder was also fitted with a pair 

of Watlow 40 watt DC cartridge heaters and a high precision rhodium-iron resis

tive temperature sensor. These elements, in conjunction with an Oxford ITC-4 

temperature controller, enabled us to either maintain a constant temperature or 

provide a linear heating profile with a temperature accuracy of O.lK. 

After mounting a sample, the holder is inserted into the sample chamber ( see 

Fig. ll(a)) which is then evacuated to remove moisture and other contaminants. 

After allowing several hours for outgassing, the pressure in the sample chamber is 



LIQUID 
NITROGEN 

HEAT 
EXCHANGER 

COAX CABLE 

3/16" TUBING 

CRYOSTAT 

TEMPERATURE 
SENSOR 

SAMPLE HOLDER 

(a) 

INSULATION 
CHAMBER 

RADIATION 
SHIELD 

SAMPLE 
CHAMBER 

WINDOWS 

(b) 

45 

END VIEW 

Figure 11. Figure (a) shows the cross sectional details of the Oxford CF - 1204 
cryostat which was used in this work. Figure (b) shows the details 
of the sample holder. The metal tubes which enclose the coax. and 
triax. cables provide both mechanical stability and shielding from 
electrical noise. The combination of mica and indium foil provides 
good thermal contact as well as electrical insulation. 



46 

raised to approximately 500 torr by introducing high purity helium gas. This gas 
"-

provides the heat exchange between the sample and holder and the cooling coils 

surrounding the sample chamber. 

Once the sample chamber has been flooded with helium gas, the TSC /TL 

experiment proceeds as follows: (1) the sample is cooled, in the dark, to low 

temperature (usually SOK); (2) an electronic shutter is opened to allow illumination 

with either white light or monochromatic light ( depending on the nature of the 

experiment); (3) after closing the illumination shutter, the shutter protecting the 

PMT is opened and the electrometer is activated; (4) the sample is heated, in the 

dark, to high temperature (usually 300K) using a heating profile which is linear 

in time. During both the cooling and heating cycles, the same bias voltage is 

maintained across the sample in order to avoid measuring current transients due 

to polarization or depolarization of di polar defects [39]. For various experimental 

considerations, the bias voltage maintained during illumination may be different 

from the bias during heating and cooling (see pages 55 and 65). In all cases, the 

sign of the bias voltage refers to the polarity of the front or illuminated face of the 

sample. 

TSC data were measured with a Keithley 617 electrometer/programmable 

power supply thus allowing for a single instrument to provide the power source 

and measure the resulting current. Using this type of arrangement has allowed 

the measurement of currents as low as 0.0lpA with an acceptable signal-to-noise 

ratio. 

TL data were obtained in the following ways: first, emission from the sample 

was focused on the detector of an EMI model 9635QB photomultiplier tube (PMT), 

the output of which was connected to a discriminator in order to convert the current 

output of the PMT to digital pulses suitable for input to a photon counter (HP 

model 5334B). From this apparatus curves of TL intensity versus temperature were 

obtained ('standard' TL); second, the emission was focused on the entrance of a 

SPEX 1681 spectrometer which had been modified to produce a one inch flat field 

image (i.e. a spectrograph). This image was focused onto the detector of a Quantar 
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Technology microchannel plate PMT. Usi:p.g this arrangement it was possible to 

obtain either TL or PL as a function of both temperature and wavelength. 

For measurements using the microchannel plate PMT the excitation source 

was an Ar ion laser(.\= 351.1nm). For TSC and standard TL a xenon lamp was 

used to excite the sample before heating. This light source was used both unfil

tered and in combination with a 334nm interference filter. For measurements of 

photoconductivity and excitation wavelength dependent TSC and TL, a tungsten 

lamp was used in conjunction with a SPEX 1681 spectrograph. The xenon lamp 

was inappropriate for these measurements due to the sharp emission lines present 

in the xenon spectrum. 

All experimental control was performed by an IBM PC which was interfaced 

to the equipment via IEEE-488 or RS-232 as shown in Fig. 12. In addition to the 

equipment described above the computer also: (1) opened and closed electronic 

shutters, to provide illumination and to expose the PMT to the sample during 

heating; (2) provided timing signals to start, stop and read the photon counter; 

(3) started and stopped preprogrammed temperature sweeps which had been stored 

in the temperature controller; ( 4) record and save all data. 

Results 

Upon mounting a sample an I-V characterization was performed in order to 

determine the ohmic or non-ohmic nature of the electrodes. Effects due to contact 

resistance and non linearity of I-V characteristics are somewhat unimportant in 

TSC measurements since we are concerned only with the transient nature of the 

current; the absolute magnitude is of no significance in evaluating trapping param

eters. We are, however, concerned with the nature of highly blocking contacts. A 

highly blocking contact limits our ability to measure weak TSC signals since most 

of the voltage drop will appear across the contact rather than across the sample 

under study, thus, reducing or signal by orders of magnitude. Fortunately, all of 

our electrodes exhibited an acceptable degree of non-linearity, as shown in Fig. 13. 
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Figure 12. This figure shows the major components of the experimental apparatus 
used for measuring TSC and TL. Interface connections for both 
IEEE-488 and RS-232 are also shown. 
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Kinetic Order 

As mentioned in chapter II, the fitting equations (Eqns. (19) and (20)) were 

derived on the basis of first-order kinetics, or slow retrapping (see Eqn. (9)). Before 

using these fitting equations, it must be determined that the observed TSC and· 

TL are indeed first-order. 

Examination of equations (19) and (20) shows that the initial trapping con

centration n0 enters into the equation only as a scaling factor. Stated more simply: 

varying n0 (i.e. illumination time) does not change the shape or position of the 

peak. In the case of non-first-order kinetics (Eqns. ( 32) and ( 34)) we see that 

the dependence upon n0 is nonlinear and varying n0 causes the peak position 

and shape to change. Non-first-order peaks also exhibit a much higher degree 

of symmetry than first-order peaks[40). Thus, first-order kinetics can be verified 

experimentally by taking TL and TSC measurements after each of several illumi

nation times. If the peaks are first-order they should grow without shifting in 

temperature or changing shape. One must use a certain amount of caution in the 

case of overlapping peaks since small shifts may be observed if two or more over

lapping, first-order peaks grow at different rates. From the data shown in Fig. 14 

it is apparent that all TL and TSC peaks are first-order. It should be pointed out 

at this time that no TL was observed from the SPVT samples. 

Curve Fitting 

Having confirmed that the TSC and TL peaks are described by first-order 

kinetics curve fitting was performed in order to determine the trapping parameters 

of each peak. The data were fitted to a set of overlapping peaks defined by equa

tions (19) and (20) as outlined in appendix B. In this manner it was possible to 

obtain trapping parameters (E, Band a) for the SPVT TSC peaks and the MG 

TL peaks. Once obtained these values were used to calculate the capture cross

section ( S) and frequency factor ( s) at the maximum of each peak. It was found 

that the TSC spectra for SPVT samples are composed of eight overlapping peaks 
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with activation energies (E) between 0.18 and 0. 71eV, as summarized in Table IL 

The TL spectrum for the MG samples is composed of six peaks with activation 

energies between 0.14 and 0.73eV (Table III). These tables also show the values 

of the capture cross section S and the frequency factor s evaluated at the peak 

maximum Tm, The deconvoluted spectra for SPVT TSC and MG TL are shown 

in Fig. 15a and b, respectively. 

The TL peak near 195K (MG sample), although it appears to be a single 

peak, proved to be very difficult to fit ( see Fig. 15b ). The shape of the peak appears 

to be too symmetrical for a first-order peak. Variable illumination experiments, 

however, indicate that it follows first-order behavior. Attempts were made to fit 

this peak to a composite of first-order peaks (Eqn. (20), to second-order peaks 

and by assuming a gaussian distribution of trap levels. All of these attempts have 

failed to yield a satisfactory fit. The fit shown in Fig. 15b is the best fit to a 

single peak. A possible cause for the inability to fit this TL peak to the standard 

equations is that the system has deviated from quasi-equilibrium. If the system 

is not in quasi-equilibrium then the fitting equations (Eqns. (19) and (20)) are no 

longer valid. This peak will be further analyzed in a later section ( see page 71). 

TABLE IL 

FITTING PARAMETERS OBTAINED WITH A FOUR PARAMETER 
FIT TO THE TSC DATA FROM SPVT ZNSE. 

Trapping Parameters 
Peak No. Tm(K) E(eV) B(s-1 ) a s(s-1 ) S(cm2) 

1 87.5 0.20 6.6xl08 1.3 l.4x 1010 3.0xl0-16 

2 95.5 0.20 3.3x1010 2.8 9.9xl08 l.8x10-11 

3 121.3 0.18 1.1 X 109 3.6 4.7x105 5.3x10-21 

4 126.5 0.33 2.8x1011 2.0 2.3xl011 2.4x 10-15 

5 151.0 0.27 2.9xl08 2.7 8.6xl06 6.3x10-20 

6 170.8 0.40 4.2xl010 2.4 6.0x109 3.5x10-17 

7 197.9 0.46 9.1 xl010 2.5 6.9xl09 3.0xl0-17 

8 256.7 0.71 2.2xl010 1.3 l.Ox1012 2.6xl0-15 
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Figure 15. Deconvoluted spectra for (a) SPVT (TSC); (b) MG (TL). The symbols 
represent the data and the solid line represents the composite of 
the fitted peaks. The individual fitted peaks are represented by 
dotted lines (The actual data point density is 6 times greater than 
that shown). Experimental parameters: (a) Illuminated with 334nm 
filtered xenon lamp for 20min with +5v bias applied; cooled and 
heated with -5v bias applied. (b) Illuminated with unfiltered xenon 
lamp for 10s with no bias applied; cooled and heated with -5v bias 
applied. 



54 

The TSC curves for the MG samples are highly complex. In an attempt to 

resolve the individual peaks, the method of Tm - Tstop (41] was employed. This 

method involves heating to a temperature Tstop following illumination, returning 

to the illumination temperature then heating and recording data over the entire 

temperature range of interest. The initial heating cycle partially empties the trap 

levels closest to the delocalized bands. When the data is recorded the temperature 

of the first maximum, Tm, is noted. The experiment is repeated many times, incre

menting the value of Tstop each time. It is expected that the value of Tm remains 

constant until the value of Tstop is high enough that the initial heating completely 

empties the corresponding trap level. Subsequent cycles will then have a higher Tm 

value. By plotting Tm versus Tstop a stair step type of plot is normally observed, 

each step corresponding to a separate peak. Close peak overlap may cause several 

steps to form a ramp, thus making it impossible to distinguish individual peaks. 

Despite using this method we were unable to deconvolute the peaks. Thus, no 

fitting data are provided for TSC from the MG samples. 

Until now the possible temperature dependence of the product µT has been 

ignored (see Eqn. (19)) since this temperature dependence is weak compared to the 

exp( -E / kT) dependence of the TL and TSC curves. In all the results presented 

we have assumed that µT is a constant. In order to account for the possible 

temperature dependence it is necessary to obtain µT as a function of temperature 

TABLE III. 

FITTING PARAMETERS OBTAINED WITH A FOUR PARAMETER 
FIT TO THE TL DATA FROM MG ZNSE. 

Trapping Parameters 
Peak No. Tm. E(eV) B(s-1 ) a s(s-1 ) S(cm2) 

1 100.0 0.14 1.1 X 108 3.6 8.lxl04 1.5x10-20 

2 117.1 0.26 4.4xl09 2.1 3.2xl09 4.2xl0-16 

3 127.0 0.29 6.9x109 2.1 3. 7x 109 4.1 X 10-16 

4 139.6 0.30 3.9xl09 2.3 7.2xl08 6.7x10-17 

5 157.6 0.35 5.5xl09 2.2 2.0xl09 l.4xl0-16 

6 196.4 0.73 2.5xl012 0 9.6xl016 4.5x10-9 
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(to within a scaling constant), divide the TSC data by this function and then fit 

the resulting 'corrected' spectra to the standard first-order equation. In order to 

obtain the temperature dependence of µr one may measure the photocurrent[42] 

which is given by 

(77) 

where e is the electron charge, <p is the photon flux per unit time, V is the applied 

bias and L is the sample thickness. Since all of these parameters are constants they 

may be ignored so that Ive ex µr. By measuring Ive as a function of temperature 

we obtain the temperature dependence of the product µr which may be used to 

correct TSC. Since the temperature dependence of µr was small, applying this 

technique to our samples made little or no difference in the fitting parameters. 

Dependence of TSC and TL Upon Excitation Bias 

An attempt to determine the sign of the charge carriers released during TSC 

was made using the method of Scharager et al.[43]. To apply this technique one 

monitors the growth of TSC peaks as a function of illumination time for both posi

tive and negative excitation biases. The excitation source must be monochromatic 

using energies greater than the band gap in order to ensure absorption of photons 

at the sample surface. A xenon lamp and a 334nm interference filter were used 

for this purpose. According to the discussion of Scharager et al.[43], by applying 

a negative excitation bias, one expects the free electrons generated at the surface 

to be pushed into the sample whereas holes will be quickly removed through the 

front face electrode. Thus, peaks due to the thermal release of electrons from bulk 

states would be expected to grow more rapidly than peaks due to the release of 

holes. Similarly, when applying a positive excitation bias, peaks due to hole re

lease should grow more rapidly than those due to electron release. Peaks due to 

surface states, however, may not be affected by changing the excitation bias. In 

the application of this technique one must bear in mind that peak overlap and 
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space charge effects may influence the behavior of each peak and definite carrier 

assignments may be difficult. The experiments should be performed using several 

different combinations of positive or negative biases applied during illumination, 

heating and cooling. These measurements should all yield consistent results before 

definitive conclusions can be made. 

In the case of the MG samples the results for peaks 1 through 6 were generally 

inconsistent and gave different results depending upon the particular combination 

of polarities used. As Fig. 16 shows, TSC peaks 1 through 6 initially grow more 

rapidly under the influence of a positive excitation bias, whereas peaks 7 and 8 

grow more rapidly under the influence of a negative excitation bias. For longer illu

mination times, however, TSC peaks 1 through 6 grow to much greater magnitude 

with a negative excitation bias applied. The latter results for peaks 1-6 appears to 

contradict the results for shorter illumination times. This may indicate that the 

TSC spectrum below about 180K is a complex overlap of both hole related and 

electron related peaks. Analysis of peaks 7 and 8, however, consistently indicate 

association with electron traps. The inset in Fig. 16 shows the detailed growth 

of peak 1 for short illumination times. Fig. 17 shows the TSC spectrum resulting 

from a 20 volt excitation bias (both positive and negative). Once again the en

tire TSC spectrum appears to be dominated by the thermal release of electrons. 

These carrier assignments must be regarded as somewhat indefinite since the TSC 

structure changes significantly when various biasing combinations are used and the 

results for peaks 1-6 are quite inconsistent. 

Analysis of the SPVT samples, however, consistently indicated that all the 

TSC peaks from this material were due to the release of holes. The growth of TSC 

curves for both positive and negative excitation biases is shown in Fig. 18 and, 

as before, the inset indicates the growth of a particular TSC peak (peak 1) with 

illumination time. 
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Figure 17. TSC from MG sample for both positive and negative 20v excitation 
bias. 



,--.... 
(f) 

0.. 

E 
<( 
0.. ......__,, 
u 
(f) 
~ 

~ 

(f) 

0.. 

E 
<( 
0.. ......__,, 
u 
(f) 
~ 

4 

3 

2 

1 

0 

3 

2 

1 

0 
80 

0 

59 

a 

O +v b 
• -v +' 

01 
0.3 ~ 

~ 

a.. 

0.0 
6 12 18 

Time ( x 1 0 0 s) 

120 160 200 240 280 

Temperature(K) 
Figure 18. Growth of TSC peaks for a SPVT sample as a function of illumina

tion time for both (a) positive and (b) negative bias applied during 
illumination. Inset shows detailed growth of peak 1. 
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TL and TSC Correlations 

If the mechanism giving rise to TL involves transitions to delocalized bands, 

there should, in principle, be a corresponding TSC peak at, or near, the same 

temperature. The exact relationship between the peak positions will depend on 

the temperature dependence of µ and Tr as discussed in Chap. II In contrast, a 

given TSC peak will not necessarily have a corresponding TL peak. For example, 

if the recombination processes are non-radiative, no TL peak will be observed. 

In the present samples, the relative sizes of both the TSC and TL peaks are 

dependent upon illumination time and the biases applied during illumination and 

heating. The relative peak heights were also found to vary from sample to sample. 

This latter property was found to be especially true for the MG samples. However, 

it is important to note that the number and positions of the peaks were independent 

of all the above conditions; only the relative peak heights changed. The values 

determined for the trapping parameters were unaffected by the illumination time 

and the polarity and value of the applied biases. 

In Fig. 19 simultaneously measured TSC and TL for a MG sample are com

pared. It is observed that all of the TL peaks have corresponding TSC peaks. From 

the peak near 200K we see that the TL peak appears at a slightly lower temper

ature than the corresponding TSC peak, in agreement with theory ( see discussion 

on page 18). 

TL and PL Emission Analysis 

Of the previous studies of PL and TL emission analysis on ZnSe samples, 

grown by a variety of methods, most have observed two important broad emission 

bands. These bands occur at ~ l.97eV (red) and ~2.35eV (green) and are believed 

to be associated with copper substitutionals (Cuzn)· Copper gives rise to one of 

two energy levels in the band-gap, either~ 0.72eV or~ 0.35eV above the valence 

band, which act as recombination centers for red and green emission. With this in 

mind, the center at 0. 72e V is referred to as the Cured center and the level at 0.35e V 
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Figure 19. Overlay of TSC and TL spectra for MG sample. Note that each TL peak 
has a corresponding TSC peak. The TSC peak near 200K has been 
scaled down by a factor of 10. The sample was illuminated, with no 
bias applied, for 10s using an unfiltered xenon lamp. Cooling and 
heating were performed with -5v bias applied. 
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is the Cugreen center. The level at 0. 72eV is often attributed to zinc vacancies and 

is referred to as the self-activated or SA center. From the measurements made in 

this study it is not possible to distinguish the Cured center from the SA center. 

For the purpose of discussion the center will be referred to as the Cured center. 

The sample used for these measurements is not the same sample which was 

used to measure the TL curves shown in Figs. 14(c) and 19. Sample-to-sample 

variations in the relative peak heights have already been noted (see page 60) and 

this explains the difference in the relative peak heights between the two data sets. 

The sample used for the emission analysis was a larger sample with no electrodes so 

that a larger luminescent area might be observed thus resulting in a signal which 

was strong enough to be observed with the microchannel plate PMT. Although 

the relative peak heights are different, the overall TL structure is the same as that 

shown in Figs. 14c and 19. 

The data obtained from measurements of TL versus temperature and wave

length for the MG material are shown in Fig. 20(a) and (b) where plot (b) is simply 

a magnification of plot (a) and viewed from a different perspective. The magni

fied plot shows that the low temperature peaks are present in this sample but are 

weaker than seen previously( see Fig. 14( c)). Study of these plots reveals that the 

TL signal is entirely due to red emission at Amax ~ 630nm, 1.97eV (Stringfellow 

and Bube (44] report this emission as well as emission at 1.95eV). We also note 

that the main peak near 200K does not appear to be a composite but rather a 

single TL peak with a broad emission band. We do not observe any green emission 

which has been previously reported in ZnSe (44,45]. Possible causes for the lack of 

green emission will be discussed in Chap. VI 

From the TSC data, and from the correlation between the TSC and TL peak 

positions (in particular: TL peak 6 and TSC peak 7; see Fig. 19), we may argue 

that since the TSC peak near 200K is due to the thermal release of electrons, then 

the TL peak near 200K is also due to the release of electrons. Since, in Fig. 20, 

all the TL peaks occur at the same wavelength, they all apparently involve the 

same recombination process thus, one infers that these are also due to the thermal 
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Figure 20. Wavelength dependence of TL emission from MG sample; only red 
emission is present. The same data is plotted in (a) and (b). (b) is 
a magnified view of (a) in order to show that the low temperature 
TL peaks, although weak, are indeed present. The sample was illu
minated with light from an Argon ion laser ( 4.8m W) for 2min and 
heated at 5K/min with no bias applied: the sample was not fitted 
with electrodes. 



64 

release of electrons which subsequently recombine with holes trapped at the Cured 

centers. One may further infer from the conclusions of Fig. 19 that most, if not 

all, of the observed TSC peaks in the MG samples are also due to electron release. 

We examined the PL spectra from both types of samples as a function of 

temperature and wavelength (i.e. thermal quenching). In order to reproduce, 

as closely as possible, the conditions present during TSC and TL, measurements 

were taken while the samples were being heated at a rate of 5K/min with a -5v 

bias applied. The resulting spectra are shown in Fig. 21. The insets to these 

figures show the details of the DAP* ( donor acceptor pair) and exciton emission 

structure at 12K while the main figures show the overall PL structure as a function 

of temperature from SOK to 220K. The insets show that the PL spectrum of the 

MG sample is dominated by DAP emission and its phonon replicas, whereas the 

spectrum for the SPVT sample is dominated by exciton emission. The larger graph, 

for the SPVT sample, indicates the presence of both Cured (A :=:::: 647nm; l.92eV) 

and Cugreen ( A :=:::: 535nm; 2.32e V) emission. · Identification of the exact wavelength 

for green emission was complicated by overlap with the large peak near 505nm 

(2.46eV). 

Since the intensity of luminescence emission decreases exponentially with in

creasing temperature, one constructs a plot of ln(JPL) versus l/T and extracts the 

activation energy from the slope (slope= -E/k). Fig. 22a shows the quenching of 

the luminescence for both red and green emission from an SPVT sample. At low 

temperatures we see that each luminescence peak appears to be associated with 

the same shallow level (15.7meV). It is believed that this is a shallow donor and 

that free electrons are momentarily captured by the shallow donor before recom

bining with holes at copper centers. This type of model has also been proposed by 

Stringfellow and Bube(44) and by Oczkowski[46) in which they found the shallow 

donor energy to be 12-15meV. 

*Donor Acceptor Pair emission: Luminescence transition involves an electron 
on a donor site recombining with a hole on an acceptor site. 
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As the temperature increases to about 95K, however, the luminescence at 

505nm begins to quench rapidly. It is difficult to determine the corresponding 

energy since the quenching occurs very quickly; by the time the temperature rises 

to 125K the slope again corresponds to an energy of 15.7meV. Apparently we are 

now seeing the tail of the emission peaks at 535nm and 64 7nm. A similar rapid 

quenching process is seen for the 535nm luminescence over the temperature range 

from 165K to 220K: It is likely that this process involves thermal excitation from 

the Cu9reen center. 

A thermal quenching plot for the MG sample is shown in Fig. 22b. In order 

to determine if more than one component is involved in the red emission ( e.g. free 

to bound and a process involving the intermediate donor state) the quenching at 

the peak of the emission (625nm; 1.98eV) and 25nm to either side of the peak was 

analyzed. As the plot shows, each of these wavelengths quenches at the same rate 

and with a slope corresponding to a donor energy of 14.7meV. It is likely that this 

is the same donor species which is observed at 15.7meV in the SPVT samples. For 

temperatures greater than 175K all three of the components begin to quench more 

rapidly with a corresponding energy of 45.7meV. This energy may correspond to 

another donor level which acts as an intermediate level once the 14.7meV level has 

fully quenched. This process has not been previously reported for ZnSe. 

An important observation, concerning the production of TL, is that the lu

minescence is quenched over the same temperature range for which TL is observed, 

indicating the likelihood that holes are being removed from the Cu-centers in suf

ficient numbers to result in a non-constant luminescence efficiency ( r /Tr). 

Photoconductivity and Wavelength Dependence of TSC and TL 

The wavelength dependence of the photoconductivity (PC) was measured 

and TSC and TL measurements were performed following illumination at several 

different wavelengths. If the wavelength is varied so that the photon energy is 

less than the band-gap, the observed photoconductivity or TSC and TL must 

be a result of impurity absorption. Thus, a measurement of this type provides 
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Figure 21. Emission spectrum of photoluminescence for (a) SPVT and (b) MG 
samples. Emission due to both Cured and Cu9 reen is observed. The 
sample was illuminated with light from an Argon ion laser ( 4.8m \V) 
during heating, and was cooled and heated with a -5v bias applied. 
Insets show the PL spectra taken for the same samples at 12K. 
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significantly more information about the deep levels than does standard 'white 

light illumination' measurements. 

When measuring photoconductivity due to absorption by deep levels, while 

scanning from long to short wavelengths, one normally expects a stepwise increase 

in the conductivity when the energy is sufficient to excite electrons from the deep 

level to the delocalized band[20,47]. The reason for a stepwise increase is the 

fact that deep levels, unlike shallow levels, are delocalized in k space ( momentum 

space). When the energy increases above the energy required for transitions to 

the bottom of the conduction band, electrons are excited into higher energy states 

within the band, thus the optical trap depth is taken as the rising edge of the 

photoconductivity step. For the case of shallow levels transitions occur at k=O 

only, thus the absorption lines are very sharp. 

We see from the data in Fig. 23a and b that our PC spectra contain broad 

peaks. Milnes[47] claims that dips in a PC spectrum, such as those seen here, 

may be an indication of wavelength dependence of the optical cross section of the 

absorbing center. The PC spectrum for a MG ZnSe sample at 80K (Fig. 23a) shows 

PC increases at 920nm(l.35eV), 850nin(l.46eV), 630nm(l.97eV), 540nm(2.3eV) 

and a sharp increase toward the band edge between 475 and 440nm(2.61 and 

2.82eV). Increases at 920 and 850 are attributed to absorption by deep, empty hole 

traps (i.e. they contain electrons). Since these two trap levels are close to mid

gap they are not observed during TSC and TL; they are too deep. Although the 

wavelength of 630nm is the same as the emission wavelength due to recombination 

on the Cured center, the increase in PC at 630nm is not due to absorption at the 

Cured center. Stringfellow and Bube[44] report the absorption threshold for the 

Cured center as 539nm(2.3eV). Thus the increase in PC observed at 540nm is due 

to absorption at the Cured center. Stringfellow and Bube also report an absorption 

threshold of 477nm(2.6eV) for the Cugreen center. It is difficult to isolate the 

absorption at the Cugreen center in the results presented here, but it is believed 

that the increase in PC from 4 75 to 440nm includes the Cu9 reen center as well as 

the band edge. 
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The PC spectrum for an SPVT sample at 80K is shown in Fig. 23b. The main 

features of this spectrum are the broad PC peak centered near 700nm(l.77eV) 

and a narrower peak near 520nm(2.38eV). The latter has a rising edge near 

560nm(2.2leV) and is believed to be associated with the Cured center, although 

the threshold wavelength is longer than that seen for the MG sample (540nm). 

The broad peak at 700nm may be associated with a series of mid-gap states such 

as those reported by Ohki et al.[48] for nitrogen doped metalorganic vapor phase 

epitaxy ZnSe films. Comparison of PC data for MG and SPVT grown samples 

indicates a considerably more complex deep level structure for MG samples. 

In order to properly compare TSC and TL obtained at different illumina

tion wavelengths, it is necessary to make sure the sample is being illuminated 

with approximately the same number of photons at each wavelength. To do this, 

the spectral output of the tungsten lamp (in combination with the SPEX 1681 

spectrograph) was measured using an Oriel thermopile. 

Once it was determined that the approximate number of photons at each 

wavelength was the same, TSC and TL was measured following illumination at 

several wavelengths. It was found that the results for the MG sample varied 

considerably as the wavelength was varied between 450nm and 600nm. 

Figure 24 shows the TSC spectrum obtained for a MG sample illuminated 

at 500nm. The variation in peak heights versus illumination wavelength is shown 

in Fig. 25a and b. As the graphs reveal, most of the TSCpeaks decrease with 

increasing wavelength. This may indicate the dominance of surface states in the 

TSG spectrum. As the wavelength increases there is less absorption at the surface, 

thus, the concentration of free carriers which may be captured by surface states is 

reduced. Peak 9 is seen to grow as the wavelength increases from 450 to 510nm. 

As the wavelength increased beyond 510nm, peak 9 decreases. Since there is less 

surface absorption at longer wavelengths, one expects bulk states to become more 

involved in the absorption process, thus, an increase in peak height with longer 

wavelength implies the association with bulk states rather than surface states. As 

the wavelength increases above 510nm there is no longer sufficient photon energy 
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for the absorption by these bulk states. For peak 5, a decrease in peak height 

is seen as the wavelength increases from 450 to 530nm. As the wavelength is 

further increased, however, peak 5 begins to grow. This behavior indicates that at 

the temperature corresponding to peak 5 there may actually be two very closely 

overlapping peaks; one due to surface states and one due to bulk states. 

Growth of TL peaks versus wavelength for a MG sample is shown in Fig. 

26. Since TL is dependent on the populations of both electron and hole traps, 

interpretation of these results is not as straightforward as the interpretation of 

TSC results. The behavior of TL peaks 5 and 6 is similar to the behavior of TSC 

peak 9. TL peaks 1 and 2 also show similar behavior but the TL peak maximum 

occurs for an illumination wavelength of 480nm. Recall from the discussion of PC 

that absorption at the Cu9reen center occurs near 477nm. Thus, TL peaks 1 and 2 

may be associated with absorption at the Cu9reen center although the TL process 

involves recombination with the Cured center. Perhaps absorption at the Cugreen 

center simply provides electrons which fill the electron traps involved in the TL 

process. 

When TSC was measured for an SPVT sample as a function of illumination 

wavelength (from 450 to 900nm), it was found that the TSC peak heights were 

independent of wavelength. The conclusion reached from this important result is 

that excitation of electrons into mid-gap states creates free holes in the valence 

band which subsequently become trapped. These trapped holes then give rise to 

the observed TSC. 

A significant point to note here is that both types of sample contain mid-gap 

states. These states may be instrumental in preventing both n- and p-type doping 

by providing a large concentration of compensating centers. 

Hard-to-Fit TL Peak 

In this section special consideration is given to TL peak 6 in the melt grown 

sample. This particular peak has proven quite difficult to analyze. As mentioned 
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earlier, attempts at fitting to first-order and second-order peaks as well as a gaus

sian distribution of trap levels have all failed. In this section other methods of 

analysis will be considered in order to determine the activation energy of the trap 

level associated with this TL peak. 

Heating Rate Analysis 

If TSC or TL data are recorded using several heating rates, it is observed that 

as the heating rate increases, the peaks both increase in magnitude and shift toward 

higher temperature. This behavior was first observed by Booth[49] in 1954. Booth 

equated the derivative of equation (16) to zero to obtain the following condition 

for the TL peak maximum: 

(3E ( E ) 
kT~ = sexp - kTm. (78) 

where equation (14) has been substituted for nc and it was assumed that T = taur. 

Tm is the temperature corresponding to the peak maximum. By evaluating equa

tion (78) at two different heating rates, Booth obtained the following expression 

for the activation energy E 

(79) 

Hoogenstraaten[50] took this analysis one step further, suggesting the use 

of several linear heating rates and plotting ln(T;,)/ (3 versus 1/T m· According to 

equation (78), this plot should be linear with a slope of E/k and an intercept of 

In( sk/ E). This analysis, of course, assumes that the frequency factor is a constant. 

This assumption may be justified if the range of Tm is sufficiently small. 

The main weakness of this method is the inability to accurately determines. 

Since s is determined from the value of the intercept, one must extrapolate over 

a wide temperature range to obtain its value. By performing this extrapolation, 

however, one can no longer justify ignoring the temperature dependence of s. 
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Chen and Winer[51) accounted for the temperature dependence of the fre~ 

quency factor by parameterizing it as in equation (68). If this parameterization is 

substituted into equation (16) before equating the derivative to zero, then equation 

(78) becomes 

T;! _ E + (2- b)kTm (.-~) 
/3 - B kT2-b exp kT m 

(80) 

or 

l (T:!) = l (E + (2 - b)kTm) ~ 
n /3 n B kT2-b + kT. m m 

(81) 

where Chen and Winer argue that the denominator of the preexponential fac

tor is weakly temperature dependent and thus treated as a constant since E ~ 

(2 - b)kTm. Unfortunately, b must be determined by some other means before 

determining E from the above equation. 

If, however, equation (80) is used as a three parameter fitting equation, the 

values of E, B and b may be determined simultaneously. It was found, however, 

that the values obtained for B and b are still not in very good agreement with other 

methods when tested on computer generated data. The most likely cause for this 

basic weakness is the insensitivity of equation (80) (and Eqn. (81)) to changes in 

B and b. Since B and b appear in linear (logarithmic) terms, whereas E appears 

in an exponential (linear) term, small changes in E will cause large errors thus 

demanding a better fitted value for Ethan for B orb. In cases where peak overlap 

is significant, the values of E are called into question as well. 

Variable heating rate data was obtained for a MG sample at heating rates 

from 3K/min to 6K/min in increments of 0.5K/min. The resulting TL curves are 

shown in Fig. 27( a) and the plot of ln(T;!/ /3 versus 1/T is shown in Fig. 27(b ). 

From the slope and intercept of this plot, an activation energy of 0.571eV and 

a frequency factor of 4.46 x 1014 ( s-1 ) were obtained. If, rather than performing 

linear regression, the plot in (b) is fitted to equation (81) an activation energy of 

0.539eV and a frequency factor of 1.35 x 1011 x T 0·06 is obtained. Evaluating the 

latter expression at 195K gives a frequency factor of 4.33 x 1013 ( s-1 ) which is in 
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reasonably good agreement with the result obtained from linear regression. Note 

that these frequency factor values are considerably higher than the values for the 

other TL peaks given in table III. 

Initial Rise 

The observation that the initial rise portion of a TSC or TL curve may 

be described by a simple exponential was first made by Garlick and Gibson (34]. 

They applied the approximation that n ~ n0 for T ~ T0 where T0 is a low enough 

temperature that the trap is not very active. As a general rule, the value of T0 

should correspond to a temperature for which the magnitude of the TSC or TL 

does not exceed 15 percent of the peak maximum. By describing TSC or TL by 

the relation 

I = const x exp ( - !, ) , (82) 

where I represents TSC or TL, the activation energy is obtained from a line of 

slope -E/k on a plot ofln(J) versus 1/T. 

In order to apply the initial rise technique, there must be no overlap in the 

initial rise portion of the peak under study. For the data presented here, the hard

to-fit TL peak appears sufficiently free of overlap. Fig. 28 shows the plot of ln(T L) 

versus 1/T for the initial rise portion of the TL curve from Fig. 27(a) which was 

obtained at 5K/min. From this initial rise plot the activation energy was found to 

be 0.876eV. This result, as expected, is not in good agreement with the results of 

fitting (see Table III). Better agreement was expected, however, with the heating 

rate analysis of the previous section. 

Comments 

It is becoming obvious that TL peak 6 cannot be described by standard first

order kinetics. It has been shown that it was not possible to fit the peak to any 

of the standard TL equations and each other method of analysis used yielded a 
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different result. From PL emission analysis (page III) we conclude that over the 

temperature range of the TL peak in question, we may be observing the effects 

of simultaneous release of electrons and holes. The kinetics which describe the 

simultaneous release of electrons and holes have been investigated by Schon [52,53] 

and by Klasens [54] and the effects on TL analysis have been discussed by Chen 

et al. [55] and by McKeever et al. [56]. Their findings indicate that one may 

obtain a 'good' fit to equation (20) but the physical interpretation of the parameter 

values obtained is not straightforward. In particular, the E values obtained from 

the TL curves may not simply be interpreted as 'trap depths' but rather as a 

weighted average of the trap depth and the depth (from the valence band) of the 

recombination center[55,56]. 



CHAPTER IV 

DLTS THEORY 

Deep level transient spectroscopy (DLTS) is a spectroscopic technique for 

characterizing deep level defects and impurities in p-n junction and Schottky 

diodes. The method, which exploits the characteristics of junction capacitance, was 

first introduced by Lang[57,58] in 1974 in a study of oxygen donors and ZnO com

plexes in GaP p-n junctions. Lang claimed that earlier capacitance methods[59-

62] were limited to detecting traps deeper than 0.3eV from the delocalized band. 

Overcoming these limitations was the motivation for developing DLTS. 

The basic principle of DLTS is to monitor transient changes in the capaci

tance of a junction following a sudden change in the applied bias. By observing the 

evolution of this transient over a wide temperature range it is possible to obtain a 

great deal of information about the defects present in the region of the junction. 

Schottky Barriers 

Before proceeding with a discussion of DLTS it is necessary to briefly discuss 

the physics of Schottky barriers. Since this development is available in many 

texts[63,64], it will not be covered in detail here. Also, p-n junctions will be 

mentioned only briefly for two reasons: first, a Schottky diode is equivalent, from 

a mathematical standpoint, to a p-n junction in which one side of the junction is 

very heavily doped(63] (i.e. one sided junction). Second, in the following chapter 

experimental results are presented for a DLTS study of a ZnSe/platinum Schottky 

diode. 

Consider the metal/semiconductor interface shown in Fig. 29. Since the band 

structure of the two materials is quite different, the bands in the semiconductor 
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will bend to accommodate the metal and ensure that the Fermi level is constant 

throughout the junction. For the specific case shown, the metal is in contact 

with an n-type semiconductor and the metal work function </Jm is greater than the 

semiconductor work function <p8 • It is this difference in the work functions which 

gives rise to the Schottky effect[63]. 

Band bending near the junction interface causes electrons in the conduction 

band of the semiconductor to be forced deeper into the semiconductor thus leaving 

the junction depleted of free charge. This 'depletion' region, however, contains 

bound charge since some of the donor states are now above the Fermi level and 

thus have become ionized. The junction may be characterized as a parallel plate 

capacitor of plate separation Xn and capacitance C where 

(83) 

and E is the dielectric constant. The quantity Xn is usually referred to as the 

depletion width or depletion length. 

If Nd represents the net concentration of ionized donors then the charge 

density in the depletion region is Ndq where q is the charge of the ionized donor. 

By solving Poisson's equation in the depletion region it is found that 

(84) 

where Vi is the built in potential of the barrier and Va is the externally applied 

forward bias voltage. 

By combining equations (83) and (84) one obtains the junction capacitance 

as a function of dopant concentration Nd and applied voltage Va 

C=A (85) 

Notice that as the reverse bias is increased (i.e. Va is made more negative) the 

capacitance C is decreased. Thus the bias voltage gives direct control of the 

junction capacitance. 
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If we invert and square both sides of equation (85) the following expression 

is obtained 
1 2Yct 2Va 

c2 A2tNdq A2tNdq (86) 

From this equation it is apparent that if the capacitance is measured at several 

reverse bias voltages Va, a plot of J2 versus Va will have a slope proportional 

to I/Nd. Once Nd has been determined from the slope, the barrier potential Yct 

may be determined from the intercept. The value obtained for Nd, as mentioned 

earlier, is the net ionized donor concentration. That is, Nd actually represents the 

concentration of ionized donors minus the concentration of trapped charge (i.e. 

electrons in deep traps). If the temperature is sufficiently high then all donors 

are ionized and the concentration of trapped charge is negligible. In this case, the 

value of Nd obtained from equation (86) is the total donor concentration Nd. 

DLTS Experiments 

As mentioned earlier, DLTS exploits the transient capacitance response under 

the influence of a sudden change in the applied bias. Consider a Schottky contact 

which is subjected to a reverse bias, the Fermi level is lowered and, according to 

equation (84), the depletion width increases. The equilibrium capacitance under 

this reverse bias condition is referred to as the quiescent capacitance Cq. 

Continuing the above discussion, it is helpful to treat majority and minority 

traps separately. 

Majority Carrier Traps 

In an n-type semiconductor, majority traps are electron traps. When the 

reverse bias is applied and the Fermi level shifts down, some electron traps may 

now exist above the Fermi level. These traps will quickly give up their electrons 

as shown in Fig. 30a. 

If the magnitude of the reverse bias is suddenly decreased ( or if the junction 

is forward biased), then the Fermi level is shifted up and the traps are once again 
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filled as shown in Fig. 30b. This reduction of reverse bias is usually in the form 

of a short pulse and is referred to as a 'fill' pulse. At the end of the fill pulse the 

reverse bias is restored and the depletion width returns to its original value. The 

quiescent capacitance, however, is not immediately restored. Since some electrons 

still remain within the depletion region the amount of trapped charge has been 

reduced, thus, the capacitance has been reduced as well. The electrons in these 

traps will eventually be thermally excited back into the conduction band ( see Fig. 

30c) and the capacitance will return to Cq. The transient response of the junction 

capacitance is shown in Fig. 31a. 

Minority Carrier Traps 

The situation for minority traps is very similar to that already described for 

majority traps. Once again an n-type semiconductor is assumed, thus, minority 

carriers are holes. 

In order to provide holes for trapping, the fill pulse must be sufficient to 

forward bias the junction and cause minority carrier injection. This may only be 

done for p-n junctions. In the case of Schottky diodes, optical excitation is used to 

generate free holes ( optical DLTS). As the free holes become trapped the amount 

of bound charge increases, thus the capacitance increases. As these holes are ther

mally detrapped following the end of the fill pulse, the capacitance decreases back 

to the quiescent level Cq as shown in Fig. 31b. 

For both minority and majority traps, the rate at which the capacitance 

returns to the quiescent level depends on the thermal excitation rate ( also called 

emission rate). The rate of excitation is strongly temperature dependent as indi

cated by equation ( 48). 

The DLTS spectrum is obtained by measuring the value of the capacitance 

at two times, t1 and t2 , following the end of the fill pulse. These measurements are 

made many times while the temperature is being changed so that the measurements 
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cover a wide range of emission rates. The sampling times t 1 and t 2 are made quickly 

enough that the temperature does not change during the measurement. 

If a plot is constructed of ~C(T)(= C(t2) - C(t1 )) versus temperature, a 

curve such as that shown in Fig. 32 is obtained. As the figure indicates, at high 

temperatures the emission rate is high and the transient decays before a measure

ment is made at time t1 . For low temperatures the emission rate may be so slow 

that there is no measurable decay between times t1 and t2• Thus ~C is small 

for both high and low temperatures. For intermediate temperatures, however, a 

significant change may occur between t1 and t 2• The temperature at which the 

maximum of ~C occurs depends on the choices of t1 and t2 • For the example in 

Fig. 32, the DLTS spectrum of a majority carrier trap is shown; note that the peak 

is positive. By examining Fig. 31a and b, it is easily realized that a minority carrier 

trap will result in a negative peak. Thus DLTS provides for easy identification of 

minority and majority traps. 

Theory and Data Analysis 

In order to analyze the kinetics involved during a DLTS measurement, con

sider a single electron trapping levelof concentration Nin which there is a concen

tration n of trapped electrons. The rate equa1ion describing the transfer of charge 

between the trapping level and the conduction band is given by equations (7) and 

(8). For the purposes of DLTS analysis (in the absence of recombination) we write 

dnc dn 
dt =enn-cnnc(N-n)=-dt (87) 

where en is the electron emission rate (s-1) and Cn is the electron capture coefficient 

( cm3 /s ). Comparison to equations (7) and (8) indicates that the emission rate and 

capture coefficient are defined as 

(88) 

and 

(89) 
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respectively. From the capture coefficient, the capture rate is easily obtained by 

multiplying by the concentration of carriers available for capture ( n). Thus, 

(90) 

where the capture rate has been written as the inverse of the capture lifetime for 

electrons Ten. 

At the end of a fill pulse the depletion region is depleted of free carriers, thus 

the capture term in equation (87) is assumed to be zero. This assumption leads to 

the simple, first-order relationship 

n(t) = n0 exp(-te) (91) 

where n0 is the trapped charge concentration at the end of the fill pulse (t = 0). 

An equation analogous to equation (87) may be written for a trap interacting 

with the valence band, namely 

dp - = e (N - n) - c pn dt p p 
(92) 

where ep is the hole emission rate, cp is the hole capture coefficient and p is the 

concentration of free holes. Since equation (92) leads to equations analogous to 

(88), (89) and (90); we may drop the subscripts and write 

e = NvSvthexp (-!,), (93) 

c = Svth (94) 

and 
1 

(95) - = Svthnv 
Tc 

where Nv, Vth and nv are the density of states, thermal velocity and carrier con

centration for the corresponding delocalized band. 
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Activation Energy and·Trap Concentration 

For interaction with a single trap level the transients shown in Fig. 31 may 

be described by 

C(t) = A 
(Nd - n(t))qt 

2(Vi - Va) 
(96) 

where we have replaced the net ionized donor concentration N~ in equation (85) 

with ( Nd - n( t)) where Nd is the donor concentration and n( t) is the concentration 

of carriers in deep traps. Equation (96) may be written as 

qtNd ~ 
C(t) = A 2(Vi - Va) V 1 - ~- (97) 

If it is assumed that the donor concentration is much greater than the con

centration N of the deep traps under study(65] (i.e. Nd ~ N), then we may 

approximate the second square root term in equation (97) by the zeroth and first 

order terms in a binomial expansion. Thus, we approximate C(t) as 

C(t) ~ A qtNd (l _ n(t)) 
2(Vi - Va) 2Nd 

(98) 

Substitution of equation (91) into equation (98) leads to the simple exponen

tial decay relationship 

(99) 

With C defined by the above equation we may now write the expression for 

the value of tl.C(T) for two arbitrary times t1 and t2 as 

(100) 

Let emax represent the emission rate at the peak of the DLTS curve. There

fore, by definition of emax, the derivative of tl.C(T) with respect to e, at the peak 

maximum, is zero. Thus, 



92 

Solving the above equation for emax yields 

(102) 

From the above relationship, the emission rate at the peak maximum is 

obtained as a function of the gate times t1 and t2 . If the temperature of the peak 

maximum, Tm, is noted for several sets of gate times t1 and t2 , then equation (93) 

may be used to determine the activation energy. If the pre-exponential factor in 

equation (93) is assumed to have a temperature dependence of T 2 (i.e. constant 

S), then a plot of ln(e/T2) versus 1/T is expected to be a straight line of slope 

-E/k. 

It is possible to obtain the trapped electron concentration n0 by substituting 

equation (102) fore in equation (100) and solving for n0 • Thus we have 

2(l,'d - Va) rr/(r-1) 

qf.Nd r - 1 
(103) 

where ~Cmax is simply the value of ~C at the peak maximum and r = t2/t1 • In 

the case of a saturating fill pulse, n0 = N so that equation (103) gives us the total 

trap concentration N. 

Capture Cross Section 

During a fill pulse, a charge carrier spends an average time of Tc in the deple

tion region before being captured. Thus it is implied that the traps fill according 

to the relation 

(104) 

where Tc is the capture lifetime. 

Consider a fill pulse of width t I which fills some fraction of the trap levels 

according to equation (104). Since the intensity of the DLTS signal depends on 

the concentration of trapped electrons which are released following a fill pulse, we 

may substitute ~C(tp) and ~C(oo) for n(t) and Nin equation (104). ~C(oo) is 
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the value obtained for AC under the influence of a saturating fill pulse. Making 

these substitutions, and solving equation (104) for Tc, leads to 

T, = ( Tp )" 1 AC(oo) 
n AC(oo)-AC(tp) 

(105) 

Plotting the numerator versus denominator of equation (105) results in a 

straight line of slope Tc, When evaluating Tc this way, caution should be used to 

ensure that the fill pulse width Tp is small compared to a saturating fill pulse. If 

Tp is too large then a significant fraction of the traps become filled which results in 

an increase in Tc, thus Tc becomes time dependent and the plot no longer yields a 

straight line. Once Tc has been determined, the capture cross section is evaluated 

using equation (95). 

The evaluation of the capture cross section, unfortunately, requires knowl

edge of the free carrier concentration n. In the case of a majority carrier trap it is 

generally assumed that all of the donors ( or acceptors) are ionized, thus n ~ Nd 

( or Na), Recall that the ionized donor concentration may be determined from a 

plot of 1/C2 versus voltage (Eqn. (86)). 

In the case of minority traps in a p-n junction, the minority carrier concen

tration is given by Lang[57] as 
,L 

n=--1 
qAD 

(106) 

where I is the minority carrier injection efficiency, L is the diffusion length, q is 

the electronic charge, A is the junction area, D is the diffusion coefficient and J 

is the injection current measured during the fill pulse. Thus, for minority traps, a 

great deal of knowledge of the electrical characteristics is required. 

A frequently used method for calculating the capture cross section for a 

minority trap is to employ equation (93) after determining the emission rates and 

activation energy. 



CHAPTER V 

DLTS EXPERIMENTS 

Sample Preparation 

The sample used in this DLTS study was an SPVT Schottky diode. Since 

p-type ZnSe is not readily available it was not possible to obtain a p-n junction 

for study. The Schottky diode was not fabricated from an as grown sample. The 

as grown sample was treated in molten zinc to reduce the resistivity and promote 

n-type conductivity. This zinc treatment process is usually referred to as zinc 

extraction. It is believed that the treatment causes zinc diffusion into the sample 

which displaces substitutional impurities on zinc sites and also fills zinc vacancies. 

Following this treatment, the sample was fitted with two electrodes; a gold ohmic 

contact and a platinum Schottky contact. Both of these electrodes are on the same 

side of the sample. 

The Schottky diode has a low enough resistivity that characterization using 

DLTS is possible. For high resistivity samples, DLTS is impractical since the carrier 

concentration is too low to give rise to large changes in the junction capacitance. 

Experimental Apparatus 

All measurements were made using a Bio-Rad model DL-4600 DLTS system. 

A block diagram for this system is shown in Fig. 33. The following discussion 

describes the overall operation of the system. 

When performing DLTS measurements, the sample is mounted on a cold 

finger in a vacuum insulated cryostat. The sample is cooled with liquid nitrogen 

which is pumped from a storage dewar, circulated through the base of the cold 

94 



TEMPERATURE. 
CONTROLLER 

CRYOSTAT 

SAMPLE 

·• .. 
•, 

;) 

SIGNAL 
PROCESSOR 

CAPACITANCE 
METER 

((.~.-! FAST PULSE i . 
·····... ! INTERFACE ~--·············; 

····•••!••••••••••••••d•••••n•••••••••••••l 

RATE WINDOW 
GENERATOR 

PULSE 
GENERATOR 

POWER 
SUPPLY 

Figure 33. Block diagram of Bio-Rad DLTS system 

95 



96 

finger and returned to the storage dewar. Electrical contacts to the sample are 

made by positioning needle shaped probes over both electrodes. Positioning of the 

probes is facilitated by mounting them on x-y-z translation stages. 

External connections to the cryostat probes are connected to a Boonton 

capacitance meter which has been modified (by Bio-Rad) to improve response time. 

The capacitance meter measures the impedance ( Z) of the junction when subjected 

to a low voltage, 1MHz signal. The junction capacitance is calculated as C = 1/wZ 

where w is the angular frequency (21rMHz). Output from the capacitance meter is 

analyzed by a signal processor which performs sampling and signal averaging. 

The power supply and pulse generator together maintain a reverse bias and 

provide fill pulses. Following a fill pulse, the rate window generator provides a series 

of three timing pulses which instruct the signal processor to begin a measurement. 

The three timing pulses (at times t 1 , t 2 and t3 ) cause the signal processor to take a 

measurement at three points along the capacitance transient. The signal processor 

then outputs the two DLTS signals fl.CA = C(t2)-C(t1) and fl.CB = C(t3)-C(t2). 

Thus, this system generates two DLTS curves in a single temperature sweep. The 

'rate window' of each DLTS curve is simply the value of the emission rate at 

the peak maximum as defined by equation (102). The rate windows which are 

generated simultaneously are summarized in Table IV. Note that the ratio of 

timing pulses for each rate window is a constant, that is r = t2 /t1 = t3/t2 = 0.4016 

for each rate window pair. 

Since the capacitance meter operates at 1MHz, the interconnections between 

the power supply /pulse generator and the capacitance meter are filtered to reject 

the 1MHz signal. This creates a problem when DLTS is to be measured using fill 

pulses on the order of lµs since the filter circuit prevents these pulses from reaching 

the sample. The fast pulse interface shown in Fig. 33 corrects this problem by 

removing the capacitance meter (and filter) from the circuit for the duration of 

the fill pulse. 

Control of the DLTS system is accomplished by an HP-9000 computer con

nected via an IEEE-488 interface bus. 
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Results 

Capacitance-Voltage Analysis 

After mounting the sample, the quiescent capacitance was measured as a 

function of the reverse bias voltage from O to 9v. As shown in Fig. 34a, the 

quiescent capacitance ranges from about ,...., 13.5pF at zero reverse bias down to 

rv6.5pF at 9v. In part b of this figure we see that the plot of 1/02 versus reverse 

bias gives rise to a straight line, indicating that the trap concentration in the 

depletion region is uniform. From the slope of the 1 / 0 2 versus V plot and from 

equation (86) a donor concentration of Nd~ 6.3 x 1014cm-3 is obtained (there is a 

small dependence upon V, but it will be ignored). Substitution of Nd into equation 

(84) indicates that the depletion width may be varied from 2µm at Ov to 4µm at 

9v. 

DLTS Analysis 

A typical DLTS spectra for the ZnSe Schottky diode is shown in Fig. 35a. 

The data were obtained with a reverse bias of 2v and a Ov, 2ms fill pulse. The 

spectra appears to contain a single electron trap. From a plot of In( e/T2 ) verses 

1/T (Fig. 35b) the trap depth was estimated to be 0.329eV. As is seen in the 

figure, there is significant variation in peak height with varying rate window; in 

TABLE IV. 

RATE WINDOWS USED IN BIO-RAD 
DLTS SYSTEM 

Rate windows 

1000/400 
200/80 
50/20 
10/4 
2/0.8 

Timing signals 

0.614 1.53 3.81 
3.06 7.62 18.97 
12.2 30.4 75.6 
61 152 378 

306 762 1897 
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general, this type of behavior is not expected. It has been shown(66] that strong 

electric fields in the depletion region may enhance the thermal emission rate(Poole

Frenkel effect). Zhao et al.[67] observe that such effects may cause variations in 

the DLTS peak heights as seen in Fig. 35. Zhao et al. point out that if large peak 

height variations are seen for both large and small reverse bias voltages then field 

enhanced emission is not significant. With this idea in mind, DLTS measurements 

were repeated with a reverse bias of 8v. The repeated DLTS measurement resulted 

in nearly identical variations in peak height and an activation energy of 0.329eV; 

exactly the same value obtained for a reverse bias of 2v. Thus, the effects of field 

enhanced emission are negligible. 

By applying equation (103) at the peak of the 1000/s rate window, trap 

concentrations (N) of 8.5 x 1012cm-3 and 1.8 x 1012cm-3 are obtained for the 2v 

and 8v spectra, respectively. Recall that the derivation of the capacitance transient 

equations in the previous chapter depend on the approximation N «: Nd, In the 

data presented here this inequality is well satisfied. 

When preparing to analyze the capture cross section for the observed peak, 

DLTS was performed with short fill pulses (lµs). As shown in Fig. 36a the DLTS 

peak height is reduced by approximately a factor of 10. We also notice that the 

DLTS spectrum is not composed of a single peak but rather several overlapping 

peaks. These additional peaks were found to saturate for short fill pulses whereas 

the larger peak does not saturate until the fill pulse width is on the order of a 

few milliseconds. Activation energy plots for the two major peaks (labeled A and 

B) are shown in Fig. 36b. Notice that the value of the activation energy for peak 

A (the larger peak) is 0.342eV. This is higher than previously calculated and the 

difference is attributed to peak overlap. Note, however, that the difference is only 

about 3%. The energy calculated for peak Bis 0.225eV. 

As outlined in chapter IV, the capture cross section of a trap is calculated by 

· varying the fill pulse width and observing the changes in the DLTS peak height (see 

Eqn. (105)). Unfortunately, the smaller peaks which appear in Fig. 36a saturated 

for fill pulses of "' 0.lµs. Since these pulse widths represent the lower limit of 
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the system used, capture cross section analysis could not be performed on these 

peaks. The larger peak, however, did not present this problem and was analyzed 

as follows. DLTS data were taken for fill pulses of 2, 4 ,6 8 and lOµs. Each of 

these data sets contains 3 rate window pairs giving a total of 6 rate windows in 

the range from 200/s down to 4/s. By analyzing the peak height variations versus 

fill pulse width for a particular rate window, we may evaluate the capture cross 

section at the temperature of the peak maximum for that rate window. Since 

the peak maximum occurs at a different temperature for each rate window, the 

capture cross section is evaluated at 6 different temperatures. These calculations 

were complicated by a significant amount of baseline drift as a function of fill pulse 

width. This shift was corrected by zeroing the baseline on each data set. It is 

believed that the drifting baseline is due to the less than ideal characteristics of 

the Schottky contact. 

Figure 37 a shows the results obtained by plotting the data for the individual 

rate windows according to equation (105). The resulting capture cross sections are 

shown in Fig. 37b. Due to the short pulses.used in this analysis, it was necessary 

to use the fast pulse interface, thus, the 1000 / 400 rate window pair was not used. 

An attempt was made to fit the capture cross section curve shown in Fig. 37b 

to a power law temperature dependence (see Eqn. (66)). This attempt yielded a 

capture cross section of 6 x 10-21T2cm2• The quality of the fit was quite poor and 

we also notice that the fitted value for the temperature dependence parameter, 

b, is at the lower limit of its allowed range (i.e. b = 0). Thus, the capture cross 

section is not well described by a power law temperature dependence. Another 

commonly used parameterization of the capture cross section is 

( -Eb) S(T) = C exp kT (107) 

where Eb is the height of a barrier which electrons must overcome in order to be 

captured. This type of capture cross section often arises in the case of trapping 
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centers which undergo a large lattice relaxation following electron capture or emis

sion. The resulting fit is shown as the solid line in Fig. 37b and the resulting 

parameters are Eb= 0.087eV and C = 5.45 x. 10-14• 

Curve Fitting 

Most published analysis using the method of DLTS uses the traditional meth

ods discussed above. Curve fitting has not been used for DLTS possibly due to 

concerns about the difficulty involved in writing software to perform fitting as well 

as concerns about computation time. However, with faster computers and more 

advanced software these concerns seem unnecessary. 

In order to fit a DLTS curve, equation (100) must be fully parameterized. 

Begin by defining a constant A1 such that equation (100) becomes 

(108) 

where the temperature dependence has been explicitly indicated. The thermal 

emission rate e(T) is evaluated according to equation (93). Fitting was performed 

using both the power law (Eqn. (66)) and the exponential (Eqn. (107)) temper

ature dependence for the capture cross section. In the following discussion power 

law and exponential cross sections will be referred to as SA and SB, respectively. 

When using equation (107) for S(T), the emission rate becomes 

e = NvvthC exp ( ~;b) exp(-!) (109) 

(-E') - NvvthC exp kT 

(110) 

where E' represents the sum of the trap depth E and the barrier height Eb. Thus, 

from fitting we cannot separate the values of E and Eb. If, however, we combine 

fitting results (E') with the results from the previous section (Eb), it is possible to 

obtain the actual trap depth E. 

Fitting the DLTS spectra shown in Fig. 36 to a composite of six overlapping 

peaks defined by equation (108) resulted in the deconvolution of peaks shown in 
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Fig. 38). Fits using both SA(T) and SB(T) resulted in nearly identical values for 

x2; 0.02040 and 0.0242, respectively. The peak shapes and positions for these fits 

are also nearly identical, thus, only the fit for which S(T) = SA(T) is shown. The 

fitting results are shown in table V. Two activation energies are given for peak 4; 

the first value is E' and the value in parenthesis is E - E' - Eb, Also included 

in the table are the trap concentrations calculated from equation (103). Since 

peaks 1, 2, 3, 5 and 6 are saturated, the values given in the table are the actual 

concentrations. For peak 4, however, the value given is smaller than the actual 

concentration since trap is not saturated under these conditions. 

Capacitance Transient Capture 

By attaching a LeCroy model 9400A oscilloscope to the output of the capaci

tance meter it was possible to observe the capacitance transients. The oscilloscope 

was interfaced to an IBM-PC for the purpose of downloading the capacitance 

transients at even temperature intervals. The transients were zeroed at t = 0 and 

fitted to the simple exponential relationship of equation (99) in order to obtain 

TABLE V. 

PARAMETERS OBTAINED FROM FITTING DLTS DATA 

Trapping Parameters 
Peak No. S(A or B) E(eV) C b N(cm-3 ) 

1 A 0.087 4.52 X 10-17 1.06 8.92 X 1010 

B 0.096 9.20 X 10-15 * 9.03 X 1010 

2 A 0.127 1.89 X 10-15 1.61 3.04 X 1011 

B 0.132 1.97 X 10-14 * 3.04 X 1011 

3 A 0.229 6.70 X 10-13 1.70 7.61 X 1010 

B 0.231 3.49 X 10-12 * 7.82 X 1010 

4 A 0.334 1.99 X 10-12 1.06 1.01 X 1012 

B 0.350(0.263) 7.16 X 10-lO * 1.01 X 1012 

5 A 0.360 3.99 X 10-13 0.88 2.63 X 1011 

B 0.383 5.54 X 10-lO * 2.61 X 1011 

6 A 0.325 1.00 X 10-s 3.46 9.38 X 1010 

B 0.293 6.76 X 10-13 * 9.39 X 1010 
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the emission rate. Thus, by capturing transients at several temperatures one may 

calculate the activation energy from a plot of ln(e/T2) versus 1/T. By capturing 

transients at intervals of 2K between 178K and 210K, this process yielded an ac

tivation energy of 0.33leV. The capacitance transients were well described by the 

simple exponential decay relationship. Fig. 39a shows the evolution of the capac

itance transient from low to high temperatures. The resulting activation energy 

plot is shown in Fig. 39b. 

Obvious drawbacks to this method are the large amount of data generated 

( approximately 1000 points per transient) and the time and effort required to 

perform the fitting. A definite advantage, however, is the fact that capturing 

transients allows for the characterization of a trap in a single temperature sweep 

(i.e. multiple measurements with different rate windows are not required). If 

adequate hardware and software modifications are implemented, a great deal of 

the process may be automated. 

Optical DLTS 

As already mentioned, it is not possible to observe minority carrier peaks in 

the spectrum of a standard DLTS experiment using a Schottky diode. In order to 

observe minority carrier traps we inust obviously generate minority carriers. In a 

p-n junction this is done by forward biasing the junction to cause minority carrier 

injection. In a Schottky diode, however, minority carriers are generated via optical 

excitation with light of energy greater than the band-gap. This excitation will also 

generate majority carriers, most of which will be swept out of the depletion region 

and some of which will be trapped. Thus when measuring the 'optical' DLTS 

(ODLTS) spectra, both electron and hole traps will be observed. 

The experimental setup for ODLTS, shown in Fig. 40, is the same as that 

described for DLTS except for two additional pieces of equipment; (1) a Spectra 

Physics argon ion laser and (2) a Newport model N35085-05 acousto-optic modu

lator (AOM). The AOM was used to modulate the laser beam which was focused 
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on the Schottky junction. The electrical fill pulse was replaced with an optical fill 

pulse by using the fill pulse output of the pulse generator to trigger the AOM. 

Results for ODLTS were found to be inconsistent and difficult to analyze due 

to a large offset in the DLTS baseline. Since a DLTS measurement reports only 

the relative change in capacitance rather than the magnitude of the capacitance, 

baseline correction is very difficult. The ODLTS spectrum shown in Fig. 41 is 

somewhat typical of the spectra obtained. One of the major problems is the 

position of the baseline. If the baseline is placed at BL-1 then point A is a valley 

and points B and D are majority carrier trap peaks. If the baseline is, instead, 

placed at BL-2, then point A is a minority carrier trap peak, C is a valley and 

points B and D are again majority trap peaks. Thus one can choose a number of 

baselines and analyze the data accordingly. There does seem to be a correlation 

between some of the peaks observed here and the overlapping peaks observed in 

standard DLTS for short fill pulses, this may be an indication that there are no 

minority traps to be observed. The latter case, while being somewhat uninteresting 

from the viewpoint of an experimentalist, does have a positive implication; the zinc 

extraction process was effective in removing deep hole traps. 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Discussion and Conclusions 

The two trap levels in the as grown SPVT samples which are of particular 

interest are the hole traps at 0. 71e V and 0.33e V above the valence band ( see Table 

II). Stringfellow and Bube [44) and Wang and Fan [68) report that the hole state 

responsible for red emission at 1.97eV is 0.7 to 0.72eV above the valence band. 

Wang and Fan also report a hole trap at 0.3eV above the valence band. which 

is believed to be the recombination center associated with the green emission at 

2.25eV. It is generally accepted that these hole traps are related to Cuzn (i.e. 

copper substituting for zinc). The hole centers near 0.7eV and 0.3eV are thus 

referred to as the Cured and Cugreen centers respectively. The above results also 

agree with the findings of other authors reporting on MG samples [69,46,70). From 

the data presented here it is inferred that the 0.33 and 0. 71e V TSC peaks are caused 

by hole release from the Cugreen and Cured centers, respectively. 

Spark source mass spectrograph analysis of the SPVT and MG samples indi

cates that they contain equal concentrations of copper (0.2ppm) which raises the 

question of why no TL is observed from the SPVT samples. Furthermore, since we 

observe TSC from the release of holes from the copper centers in the SPVT sam

ples one might ask why we do not observe TSC with the same activation energy, 

and corresponding peak position, from the MG samples? 

Based on TSC and TL results a model is developed for the TSC and TL 

processes in both SPVT and MG samples. This model describes the role of the 

Cured and Cugreen centers as well as providing explanations for the lack of TL from 

the SPVT samples. 
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It was shown, for the MG samples, that TSC due to the release of electrons 

is seen over the entire temperature range of interest (see page 55). TL is also seen 

in this temperature range and it is believed that the TL is also due to the release of 

electrons, from states between approximately 0.2 and 0.7eV below the conduction 

band, which recombine with holes in recombination centers (e.g. Cured)· These 

levels have been reported by several authors in MG ZnSe [46,71,45,72]. Emission 

spectra reported by Hitier et. al. [45] show that the TL emission from MG ZnSe 

arises from electrons recombining with holes trapped at the Cuzn centers. It is 

know from impurity analysis [16], PL analysis (see Fig. 21) and TSC analysis that 

the Cuzn centers are also present in the SPVT samples; lack of TL, therefore, 

must be due to the lack of localized states from which electrons could be thermally 

released in the temperature range of these experiments. 

TSC due to hole release from the Cured center is not observed in the MG 

samples since the holes act as recombination sites for detrapped electrons, produc

ing TL. We saw, from the TL emission spectra, that the Cugreen center does not 

act as a recombination center during TL (i.e. no green emission). Hole release 

from these centers may in fact give rise to TSC in the MG samples but remain 

hidden in the complex structure of overlapping peaks. 

From photoconductivity and illumination wavelength dependent TSC and 

TL measurements it is seen that both sample types contain a variety of very deep 

to mid-gap levels. The compensation effect of these levels has been observed by 

Ohki et al.[48]. 

It has also been found that the red luminescence mechanism in both sample 

types involves a shallow donor at rvl5meV (15.7meV for MG and 14.7meV for 

SPVT). This is in agreement with other reports[44,46]. The melt grown samples 

have also been found to contain a donor level at 45. 7me V which is involved in the 

red luminescence mechanism after the 15.7meV donor quenches. 

Fig. 42a shows a suggested energy level model for TSC and TL in the MG 

samples. Transitions (1) followed by transitions (2) and transitions (3) will give 

rise to simultaneous TL and TSC. If, as in the SPVT samples, the corresponding 



114 

electron traps are absent then the holes trapped by the copper centers will not 

undergo recombination. In this case one observes TSC from the release of holes 

from these centers, and the measured activation energies of 0.33e V and 0. 71e V 

(peaks 4 and 8 from in Table II). Fig. 42b shows the proposed energy level model 

for the SPVT samples. Notice that the SPVT sample does not contain an array 

of active electron centers but does contain deep centers as well as a shallow donor 

level. 

DLTS analysis of a Schottky diode made from zinc extracted SPVT material 

has shown that there exists an electron trap between 0.3 and 0.35eV below the 

conduction band. This level has been reported to be a selenium vacancy(73] or a 

complex of a selenium vacancy and a residual impurity(74]. Miyajima et al.[75] 

agree with the idea of a vacancy /impurity complex and claim that the impurity is 

a gallium interstitial. This vacancy appears to be absent in the as grown material, 

thus appearing as a result of zinc extraction. There is a possibility that the zinc 

extraction process has introduced a gallium impurity but this possibility has not 

yet been investigated. Deep hole traps appear to have been effectively removed by 

the zinc extraction process. 

The above model provides a consistent explanation for the primary features 

which have been observed in this research. The model provides a clear justification 

for the differences in TSC between SPVT and MG samples as well as the lack of 

TL in SPVT samples. There appears to be a significantly smaller concentration of 

deep states from which electrons could be thermally released in the SPVT material 

compared to the MG material. This may be beneficial to the use of the SPVT 

material as a superior quality zinc selenide for use as epitaxial substrates. Mid

gap defect states, however, still provide an effective compensation mechanism. It 

has also been observed that zinc extraction effectively removes many of the deep 

compensating centers such as Cuzn, With the removal of many deep centers, the 

resistivity of zinc extracted samples varied from 3 to 300cm with corresponding 

free carrier concentrations on the order of 1014cm-3 • In general, for high quality 

n- or p-type semiconductors, one expects resistivities less than Hkm and carrier 
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concentrations greater than 1018cm-3 . Thus, mid-gap defects may be an important 

cause for the inability to obtain high conductivity n- or p-type ZnSe. 

Future Work 

Although a great deal of effort has been made to better understand both the 

theoretical and experimental aspects of the work described in this thesis, there is 

still a great deal of work to be done. 

The derivation of a new description of TSC and TL phenomena was presented 

along with results of computer modeling and comparison to older theoretical ap

proaches. This modeling and testing may be expanded to cover a wider range of 

parameters. In this work variations in the temperature dependencies of the cap

ture and recombination cross sections were not fully investigated. The generalized 

solution was also developed under the assumption of a single trap level. There 

are few real systems in which well isolated single TSC or TL peaks occur, thus it 

is usually assumed that overlapping peaks are merely a superposition of isolated 

peaks (i.e. they don not interact with oneanother). The generalized solution needs 

to be analyzed for its effectiveness in the case of multiple overlapping peaks. In 

this case a reexamination of the conditions for first-, second- and general-order 

kinetics would also be warranted. 

We have also seen here that significant progress has been made in the devel

opment of bulk ZnSe. Further investigation is required to more fully understand 

the nature and origins of mid-gap levels. Since these levels form an effective 

compensation mechanism, it is necessary to identify methods for their removal. 

Further work is also necessary to understand the formation of the apparent sele

nium vacancy during zinc extraction. An attempt should be made to correlate the 

concentration of vacancies to the length of time the sample was treated in molten 

zinc. As each of these basic materials problems is overcome, the realization of 

efficient blue emitters, based on homoepitaxial growth of ZnSe, is one step closer 

to reality. 
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APPENDIX A 

METHOD OF RUNGE-KUTTA

FEHLBERG 

In order to solve the initial value problem 

x' = f(t, x) 

x(a) = s, 

(111) 

one often expands x in a Taylor series. This method, of course, requires differ

entiating J(t,x) in order to determine the higher order derivatives of x. In many 

instances this approach becomes extremely complicated and tedious. 

Carl Runge and Wilhelm Kutta designed the famous· Runge-Kutta method 

to imitate the Taylor series method with one important distinction; evaluation 

of higher order derivatives is not necessary. This method provides a powerful 

technique for solving systems of non-linear coupled differential equations such as 

those presented in chapter II (see equations (74) and (75)). 

The Runge-Kutta method of order 4 is presented here without derivation. 

A complete development for the second order Runge-Kutta method is presented 

by Chaney and Kincaid[38]. For higher than second order, they present equations 

without derivation. The fourth order Runge-Kutta solution to the initial value 

problem is given as follows 

(112) 

where 

F1 = hf(t, x) 
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F2 = hf (t + ~, x + ~ F1) 

F3 = hf ( t + % , x + ~ F2) 

F4 = h f ( t + h, X + F3) 
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and h is the step size for the independent variable x. The above expansion agrees 

with the Taylor series expansion up to terms of order h4 • Therefore, truncation 

error is on the order of h5 but the precise value of this error is unknown. 

The fourth order algorithm was improved by E. Fehlberg to include an esti

mate of the truncation error. Felhberg's fourth order equation is 

(t h) _ ( ) ~F 1408 F 2197 F _ !p, 
X + - X t + 216 l + 2565 3 + 4104 4 5 5 (113) 

where 

By adding the additional function evaluation 

F6 = hf t + -h x - -Fi + 2F2 - --F3 + --F4 - -Fs ( 1 8 3544 1859 11 ) 
2 ' 27 2565 4104 40 

(114) 

a fifth order Runge-Kutta method is obtained 

x(t h) _ x(t) ~ F 6656 F 28561 F _ !}_ F, }:_ F. 
+ - + 135 1 + 12825 3 + 56430 4 50 5 + 55 6 (115) 

By evaluating both equations (113) and (115) and calculating the difference, an 

error estimate is obtained. 

These equations are used to form an adaptive Runge-Kutta-Fehlberg algo

rithm. If the error exceeds a predetermined maximum, then the step size h is 



124 

reduced in order to improve accuracy. If, on the other hand, the error is less than 

some minimum required error, then the value of h may be increased in order to 

reduce calcula.tion time. 

Equations (113) through (115) were used to generate the Runge-Kutta data 

presented in chapter II. The differential equations (74) and (75) must be written 

in the form 

:; = Jn(T, n, nc) 

!; = Jnc(T,n,nc)• 

where fn and Jnc denote the right hand side of equations (74) and (75), respec

tively. By defining the functions FI' through F6 and Ftc through F;c as above, 

the Runge-Kutta-Fehlberg algorithm is implemented as follows 

(T 8T) (T) 25 pn 1408 F.n 2197 pn 1 F,n 
n + = n + 216 1 + 2565 3 + 4104 4 - 5 5 

(T 8T) (T) 16 pn 6656 F.n 28561 pn 9 F,n 2 F.n 
n 2 + = n2 + 135 1 + 12825 3 + 56430 4 - 50 5 + 55. 6 

Errorn = ln2 - nl 

nc(T + 8T) = · · · 

At the end of these evaluations we have the values of n and nc at T + 8T. By 

repeating these steps many times it is possible to evaluate n and nc over a wide 

temperature range. The variable Errorn has a counterpart Errornc which is cal

culated in a similar manner. The larger of these two numbers determines the 
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maximum error for the current iteration, if this number is too large then all values 

are reset to their values at the beginning of the iteration, 8T is divided by two and 

the process is repeated. If the largest error is less than some minimum error level, 

then the value of 8T is doubled for the next iteration. 

In chapter II, the Runge-Kutta solutions were referred to as exact numerical 

solutions. It may seem that the word exact implies a bit too much confidence but 

since all of the data sets were obtained with a maximum allowed error of 10-6 %, 

for all practical purposes they are exact. 



APPENDIX B 

CURVE FITTING 

When attempting to describe real data with a mathematical model, it is 

often convenient to perform curve fitting. Curve fitting involves minimizing the 

function 
N 

X2 = L [Yi - f(xi, a)]2 (116) 
i=l 

where Xi, Yi describes the data to be fitted, N is the number of data points, f is the 

mathematical model and a is an n dimensional vector in which each component 

is an adjustable fitting parameter. Thus, the adjustable parameters define an n

dimensional x2 space. For the specific case of n=2, x2 is simply a surface which 

contains peaks and valleys. Curve fitting is the systematic process of searching for 

the deepest valley. 

This minimum value obtained for x2 may have two very undesirable prop

erties. First, it may simply be a local minimum in which case we have failed to 

find the best fit. Second, the fitting program may have wandered into a region of 

parameter space in which some parameters have taken on physically meaningless 

values such as negative capture cross sections. The latter problem is easily over

come by restricting the parameter space which is accessible to the fitting program. 

The first problem, however, is not so simple; several local minima may occur in 

regions of physically reasonable parameter space. We can often locate several lo

cal minima by repeating the fit to a particular data set several times, each time 

using a different set of starting values for the fitting parameters. If the program 

locates the same minimum each time, then we take this minimum as the best fit. 

If, however, several local minima are found, one may siJnply interpret the range of 

the various parameters as a range of uncertainty. 
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The curve fitting results for TSC and TL data presented in this thesis were 

obtained by implementing the Randall Wilkins expression through PeakFit™ ( a 

product of Jandel software). 

There are some points of concern when fitting data to the Randall Wilkins 

equation (Eqn. (15)). First, it was necessary to scale the fitting parameters so 

that their values were all within a few orders of magnitude of one another. The 

reason for this requirement is to prevent the equation from becoming over or under 

sensitive to any one parameter. For example, the activation energy Eis normally 

a number between O and 1 and the coefficient for the capture cross section, C, is 

commonly on the order of 10-15 • Obviously, these two numbers cannot be varied 

by equal amounts. PeakFit™ attempts to account for the orders of magnitude 

difference but it does not do a good job; it often varies small numbers too quickly. 

This problem is easily corrected by introducing the fitting parameter a and ex

pressing C either as Cox 10°' or as ax 10-15• Both of these expressions have been 

used and it was found that the best results were obtained with the latter. Another 

parameter which must be dealt with is the scaling constant n0 • For data such 

as Runge-Kutta output, peak heights of 108 are typical and this results in large 

values for n0 (typically on the order of 109 ). We have found that by normalizing 

the data, prior to fitting, we restrict n0 to a range from about 50 to a few hundred. 

Since the fitting parameter b (temperature dependence of S; see Eqns. (6) and 

(66)) is already restricted to the range of Oto 4, we need ilot be concerned with it. 

With the above points in mind, the fitting equation used in PeakFit™ was 

written as 

I - #A. A1. #B. x 2-#D. exp (-#A2) X (117) 
k·X 

{
-A1 . #B . k . x 4-#D 

exp /3/60. #C x 

( (#D-4)·k·X) (-#C)} 
1 + #C . exp k . X 
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where the fit parameters #A, #C and #D represent n0 , E and b, respectively. The 

parameter #B may be used to represent either B or C depending on the value of 

the scaling constant A1 • According to equation (6), the parameters B and C are 

related according to 

B = 3.256564 x 1025 m C 
m* 

(118) 

where the scaling constant has the units (Kelvin2 m2 sec)-1 • 

If we first consider the case of parameterization in B, we proceed as follows. 

If it is assumed that B is on the order of 109 , then A1 should be set equal to 109 . 

This will force the parameter #B to be on the order of 1. In order to calculate B, 

simply take the product #B x 109 • If, on the other hand, we wish to parameterize 

in C, assuming C is on the order of 10-15 , then set A1 = 3.256564 x 1010 ;:: • . This 

will again force #B to be on the order of 1 and we calculate C as #B x 10-15 • 
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