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CHAPTER I
" INTRODUCTION
A. Thesis Objective

This dissertation reports low temperature measurements of thermal
conductivity for the insulating ferromagnet CuK2014.2H20. These
measurements are applied through the Debye theory of thermal conduc-
tivity to an investigation of phonon scattering due to magnetic ordering
in applied magnetic fields, through the critical temperature of the
magnetic phase transition. The temperature range of the study is
.6 < T <1.5 K, with most of the data below 1 K.

A reason for selection of cupri halides for study in general is
that such crystals have Curie pointsl of the order of 1 K, at which
temperatures the non-magnetic background scattering is relatively low,
and the simple Debye-Callaway Theory2 is appropos.

Another reason for the selection is the belief that next nearest-
neighbor exchange is important in the interactions, and that these are
closely approximated by the isotropic Heisenberg model.5 Such crystals
have a body-centered tetragonal structure, with low distortion from
dubic symmetry.

Magnetic phonon scattering is studied along isotherms as a
function of applied magnetic field, and along isochamps as a function
of temperature for low fields. Previous studiesu on this material have

shown that the zero field conductivity in the paramagnetic phase can be



sccounted for by scattering of phonons from magnetic critical fluctu-
aticns. The basis for the relaxation rate describing this scattering
is discussed in the theory section. An attempt is made to account for
the low-field temperature dependenge using a gimilar relaxation rate.

The behavior of the relaxation rate as a function of applied field is

obtained end compared with simple model calculations.
B. Critical Pheinomena

Whenever any two of three thermodynsmic variables, connected by
an equation of state for a substancg are plotted in a plane, there ‘
appear regions separated by bound;;ies: This is a phase diagram. he
regions each represent either one phase, or two phases coexisting. In
such plots, one boundary has a point &associated with a certain tempersa-
ture, Tc’ at which phases adjacent to this boundary become physically
indistinguishable. This is the critical point, labelled by Tc' The
behavior of thermodynamic variables near the critical point is called
critical phenomena; subsequent discussion is concerned with magnetic

phase transitions near Tc’ where Tc is the limiting temperature at and

sbove which they can occur.

1. Critical Exponents

A most fascinating discovery, about which most has been learned
in the past ten years, is that the behavior of properties near phase
transitions can be described by laws involwving small-number exponents.

A critical exponent is defined az follows. Let

be a dimensionless independent variasble. Let a general property of the



system be described by the function f (€ ), the behavior of which is to
be studied near the critical temperature, Tc' It is assumed f (€) is
continuous for € # O. Then
lig In f (€ ) = X\
e -0 ng
is called the critical exponent associated with the function f (€), and
is assumed to exist.

It is necessary to distinguish in some cases the approach from
below T , € +0, from the approach from above T, €+0, because the
exponents may be different.

An important example is the exponentﬁ?, characteristic of order
parameters. A typical order parameter is the magnetization for a ferro-
magnet. An order paramenter, p, is so called because it is non vanishing
oﬁly in the ordered phase. The relation

<p> = sl¢)?
is found valid near Tc’ where a is a constant. ULxperimentally, the
value of 4 appears to be very near the fraction 1/3 for some widely
desparate systems, but therg is a growing list of materials for which
deviations from the value 1/3 are significant.

Examples illustrating the general applicatioh of certain ex-
ponents for analogous properties abound; a good reference is the mono-
graph by Stanley.5

This discussion is to be confined to magnetic phase transitions;
analogous behavior in fluid and other systems is referenced. %Phe criti-
cal points for ferromagnetic and antiferromagnetic phenomena are re-
spectively the Curie point Tc, and the Neil point, Tn. Beneath ‘I‘c there
is spontaneous magnetization, above Tc an external field is required to

induce magnetization. ‘The magnetization from below is accurately repre-



sented by5

B
Men, (€]
under zero field, where M is the order parameter and Mm is constant,

M vanishes as € > 0.

2o Fluctuations in the Order Parameter

L. Onsager6 found in 19%4 the partition function for the Ising
model of crystal magnetization in two dimensions for zero field. He
then derived thermodynamic properties. His finding that the specific
heat had a logarithmic singularity at the cr;tical point suggested that
the finite discontinuities in the derivatives of thermodynamic po-

7

tentials at the critical point, according to Ehrenfest's scheme, might
instead be singularities for real substances in some cases. This sug-
gestion was later supported in 1958 by Buckingham, Fairbank, and
Kellera,8 in an experiment with 4He: Specific neat was found to be
divergent to within a micro degree of the A-point. It is now believed
that at least some second order derivatives of the Gibbs and Helmholtz
potentials are divergent at the critical point. YThe source of singu~
larities in the thermodynamic derivatives near the critical point is
large scale fluctuations in the order parameter.

Basically, a fluctuation is a deviafion of a function describing
a property from the ensemble average for this function., Interest here
is in steady~-state, or time-independent fluctuations, which depend in
general upon position, 7.

Thus, the fluctuation at position EA

1
p(;;) is Spl = p(?;) - po(;z), where p_ is the ensemble average at

for an order parameter

}Z. Considering another fluctuation, 6p2 at 5;, one finds convenient



the definition of the joint fluctuation, 6p1 5p2, in arriving at the

pair-correlation function:

8 ('1'"1, 'i'z,) -/[Spl §p, 4V, dv,.
vV -

This double-volume integral affords analytical treatment of
fluctuations. The case that g = 0 implies that deviations are inde-

pendent at the different positions,';: and ;;. The function measures

a conditional probability: that of finding a value of p in the

neighborhood of';; if this value were found near ;;:

9

Ornstein and Zernike” derived the pair correlation function in
1914; it is modified to date by introducing a small critical exponent,

n:

g (r) = e'n@’

d-2+n
r

It is semi-empirical, and applioable tod =3, 2, or 1 dimension models,
Here r = i;'; - ;; l s and f is the temperature-dependent correlation
length,

As one lowers temperature toward Tc’ in the case of the magnetic
phase transition, small islands of correlated moments begin to appear
and grow in radius., The lifetime of these islands is also small, and
grows as Tﬁch. An island has an ordered pattern; in the ferromagnetic
case the moments are all parallel, in the anti-ferromagnetic case
noments alternate consecutively in direction. <YThe mean radius of an
island is roughly the "correlation length,"g'. Above Tc there may be
small islands of correlation, but the magnetizations of different is-
lands are randomly oriented. Such order is said to be short-ranged.
Below Tc there is a long-range order, the case of spontaneous magneti-

zation. At T the radius and lifetime of these iglands apply to the



magnetic domains of the ordered phase.

An intuitive picture of the effect of the magnetic phase tran-
sition on thermal conductivity emerges. Near the critical point,
phonons are scattered by islands of correlated spin, of average radius
é?, analogous to the critical-opalescence phenomenon for light. This
scattering increases the fhermal resistance at the transition tempera-

ture.

3 Static Scaling Laws

No theory yet exists which connects the variety of exponents and
the exponent laws observed empirically to hold near the critical point.
However, a fruitful assumption that has had a unifying effect is the
static scaling hypothesis. It simply supposes that the thermodynamic
derivatives are characterized by a single 5 -parameter or correlation

10,11 a correlation function representative

length. Then, specifically
of any thermodynamic quantity is assumed to be a homogeneous function
of r/€ , or else of q§ , where q is the wave-vector magnitude, 2T/A ,
for excitations of wave-length)\.* (A function f(x,y,2,--) is homo-
geneous of deg#ee n if, for any number t, f(tx,ty,tz,--) =
2 £(x,7y2,--)).

An earlier statement of the static écaling hypothesis is equiva-

lent:5 The Gibbs potential G (€ ,H) is a generalized homogeneous

function, which means that it is of such form that for any number, t,

. ‘
Kadanoff correlation-functiog scaling laws may possibly conflict
with some calculations (see Stanley)~”.
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p:

&e *
G(t €E,t "H =tc (HE, H) (1)

Here, ay and ac are two exponents, or scaling parameters. If
the hypothesis is valid it would follow that the other thermodynamic
potentials, such as the Helmholtz, the enthalpy, and the internal ener-
gy, are also genefalized homogeneous‘functions (see the reference).

The physical significance of such functions is that scaled re-
lationships are possible. The generalized homogeneous properties can
be used to express the independent variables as functions of one vari-
able, (the correlation length), which sets the expanded scale teo which
the ordinates of one curve section are a simple multiple of the corre-

sponding ordinates of another curve section. A set of plots such aa

G( €, H) can be transformed via the proper scale § to one curve. One

scales G in §(€) dependent units: -—Z%-;,-)» , and H similarly: E“—?_ﬂ R

whence —/‘-%(—5-:) = r;—V—HG.—y is the scaled relation: #(§) and w (£)

are scaling functions, ¢ is a constant.

a. Relationships Among Critical Exponents

By thermodynamic considerations, stability criteria, and analysis
of the geometric behavior of potential plots, & number of inequalities
have been found connecting various critical exponernts. A couple of
these are here summarized.

- ’ i
Rushbrooke Inequality: for H=0, T—T , & +24+ © Z 2

*
A generalized homogeneous function G, of degree n, is defined
m m m

by the condition G (q 1 x, Q 2 ¥ 4 5 zy===) = qG (x, y, Z~--) where

qQ is any number, and myy +ee are exponents. Let gq = tl/n, and the

2’
equivalent definition follows.



Griffith's Inequality: if O3S <0 for M20, T = T,
————_—"f} = c’.
oM
T

m’+ 8§ +1)2 2,

In Stanley's book can be found extensive tables of exponent
inequalities.’

An important consequence of the scaling hypothesis is that the
exponent inequalities become equalities. Experiments contradict the
gcaling relation oc = Oc/, but otherwise as yet haven't distinguished
equalities from inequalities.

For example, eCc' = 0,Q= 1/8, and "= 1 3/4 apply to the two
dimensional Ising model. YThese values satisfy the Rushbrooke ex-
prgssion as an equality. One may try other exponent values from ap-
pended Table I in the various inequalities: The result in each case is
an equality, relating the exponents.

All of %he various relatione among the exponents are derivable
under the static scaling assumption; it implies all of the critical ex-
ponents can be expressed in terms of only two scaling parameters &g and

' If any two critical exponents are known, the others can all be

€ :
found.

The manner of finding critical exponent relationships is illus-

5

trated by example.” Differentiate (1) with respect to H, getting

- 3G(taG€, Ny B _,26(€,n
%1 o 7
o (t " H)
or | _ (2)
taﬂﬂ (taé, taH‘H) =t M(e, H).

aﬁl

a¢
IfH= 0, M(€,0) = ¢ M(t €, 0); this holds for all t; take
1

t=(-€) d¢.



TABLE 1

EXPONENT DEFINITIONS AND VALUES

Exponent Definitions and experimental data Exact and approximate theoretical values
. Heisent: Heisenberyg
AT = |T-T| Classical Ising Ising Z‘;Z‘ ;e)rg e(;ﬂ: ’;‘)ft., xponent
Ggs-liquid Ferromagnet theory d=2) | d=13) (S = x) S =1
beloir T, at coexistence T - T, —~ H=0,T-»>T.— below T,
e bilog s 0 0 o ,
& Cp~ AT = olog) CH ~ A== 0tlog) ‘(discon.) (log) 1‘5 ig‘ag; a
B pL g~ AT M(T)~AT>0% : : P Z
Y Kp~AT-7322 xr~ATY 1 13 141382 Y
v «(T)~ ATV K(T)~AT” 1 1 (0-67513:3%) v
A Bplepd~ FKplep ~ AT 7= & FJeH3~ ATV 11 12 A’
aaT=T, P > pe M->0 at T=T,
3 [p—pel~1p—pl42 |H|~|M|o222 15 5L+015 8
7. TR/ Lo(K) ~ 1/k2" Fo(k) ~ 1/k2m ) 5+ 0-008 0-075 + 0-035 ~0-08 7
Gc(r) ~ r»ld‘_z;n) 7 20 \/Soz Srz> ~ ptd~24m) 7 20
abore T, p=p T>T+ H=0,T-> T+ A above T
: 2 ax 0 0 140 ~0(? ~0(?) x
o Cy ~ AT 3" Cy~ATa=0 (discon.) (log) 1 +0-015 = ) (
y Ky~ AT 7212 xr~AT - 7=13 1 1%. 1} +0-003 1-33+0-01- 1-43+£0-04 ¥
v k(T)~AT->20¢ k(T)~ AT 2086 3 1 %+ 0:0025 0:692 4 0-012 ~0-74 v
A — oA F[oH A~ AT 722 13 13 15% £ 0-03 1-81 £0-05 A
Source: M. B. Fisher,

Physics, Part II, (1967).

"Theory of Equilibrium Critical Phenomena,"

Reports on Progress in
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Then, 1
- 8y
—
M(E, 0) = (-€) M(-1, 0).

But 8 is defined by an exponent law: M(E€, 0)~ (-e)ﬂ, as €~>0 ,

whence,
L= — : (3)
‘ €
Other detailed derivations after this fashion can be followed in Stan-
ley's ‘noolc.5

b. The Form of the Equation of State

Equation (2) is one example of an equation of state, relating

variables M, H, and T. It can be put into the form

=1 a
M(E, H) = tall M(t ee, t&HH) .
Take 1
“a
t=)cli €
whence, 1 - ay
8¢

M€, H) =le] = K ) .

€ H

]
€1’ |e1%/%
Using Bquation (3), and another critical exponent relationship,

% =A= g6, one gets

a
€

M€, H) €_ _E = wl
where

o= H(E, M)
lelﬂ&

is 8 scaled magnetic field and m the scaled magnetization. Plots of m

versus h should be the same for all temperatures. This is borne out
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in a plot from both supercritical (T )»Tc) and subcritical (T <;Tc)

isotherm data in the inaulating ferromagnet CrBr

3

C. Interaction of Pnonons with

Critical Fluctuations

1. Magnetic Relaxation Rate from Ultrasonic

Attenuation

Calculations of phonon relaxation time for magnetic critical
scattering have been based to date on tneorieé that apply at low fre=-
quencies and long wavelengths. Thege theories afford more accurate
treatment of ultrasonic attenuation than they do of thermal conducti-
vity. Moreover, magnetic scattering relaxation tiﬁe may be derived
from ultrasonic attenuation: Phonon damping in spin interactions has
the rate

Tn'l(?\,_ﬁ) = v x(?\"a)’
where @ is the ultrasonic attenuation and v is the sound velocity.
Calculations have been made of ultrasonic attenuation at longer wave-
lengths using mode-mode coupling techniques of Laramore and Kadanoff,
and by Ka.wasaki.l3 These caloculations yield a model for‘ZTM-l that
shall be explored in terms of thermal conductivity.

Development of the ultrasonic attenuation begins with the iso-~

tropic Heisenoerg haiiltonian, as treated ty Sterﬂ?lh»
= e -
H= :E: J .+ u, = )S, .8 4
%oy 900y sauy-T)S; .8 (&)

J is the exchange interaction,'ﬁz is the displacement of the .’L-E-12

—

particle from the i jattice gite, and is the vector displace-

1,3
pent of aite J from site i,

:Ho and Lister (1969).

12
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A three-dimensional Taylor's series expansion of J is made

E
about ij‘
. ] n
I (T, 48 - = A [T, V]
13 3 n=0 n! 13 ?.?
| 1J
where
- > -» J ,
uij;uj—ul, a.ndV:Vr =nij 3T
.. —-———li— being a unit vector from site i toward site o
+J ~5 ij
Thus,
.. n
o0 ->
I3 1 |, . _6 44 ond
n=0 nt 13 n J—>-
S i3 2 6ij

At low temperatures, relative displacements e may be expected

iJ
small enough that sufficient accuracy will result by keeping only three

terms in the expansion. One defines the strain variables by

—dpe
€ -;l-?‘ . -'é'_il_y (5)
ij ij 513
whence
- > IR . 2% 2
J (uij +5ij)~Jo (61,‘]) + -—a——;-—e i + 1/2 arz € ij (6)

Since one is interested only in spin-phonon interactions involw=-
ing the strain variables, one writes the interaction hamiltonian by

Equations (4) and (6),

~ 8 J aJ 2| >
Bl/z 3y _a—rjsijeia'* 5.2 Jsijela}i'sa' (1)

This is the basis for the paper by Luthi, Moran, and Pollina.,15

on ultrasonic attenuation. Treatment begins by neglect of the second-

order term in HI, because it would lead to an unobservedtx? dependence
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for the c¢critical attenuation.

Let the displacement operators

o (—v —8>
_?gz *QEQ' Rk+ 13)

be introduced, where aq are annihilation operators, and e are polari-

zation vectors of the phonons; the summation covers the first Brillouin

>

5=
Zone. %These operators are substituted into the expression u, T

-
ij J
whence, through the definition for 6 5 and Equation (7), one obtains
a complex expression.

The real part of this expression, under the condition 6ij<< Rq,

is the interaction hamiltonian used by Luthi, Moran, and Pollina:15
R g >
iq.R -1q.R,
1 —* i At -
H, = z ZWC( )( Q. 5..)ed  -ea ]? . S,
I ri=> i i
13 a Sij 513 q J q q J

The critical attenuation coefficient is next presented; the deri-

vation is based on this interaction hamiltonian, H‘I'

_hw °°.-*__4P
_ekg? ‘ -14q.§. iwt
& = %—E%,—g—— iu%'.dje l")-(2(13}(1,3.(%;))(5 dt (8)

where <—---> denotes the thermal average,

1 °2J d -y S => —>
and X, ; = 50 ar}slj(5 q)(65_3.&1)3 .8

Now the transport coefficient,OC, is basioé.lly a reciprocal mean-
free path for phonons of frequencyw3; as such it is jointly proportion-
al to the number density of scatterers and the cross-section of each,
This latter product is thus proportional to a space-time fourier trans-

form of the four-spin correlation function,
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Z (0,8, 9 =<5, 0.0 T, 1. T (0>, ®

This transform is reminiscent of the scattering of particles by
nucleii: The scattering amplitude in the Born approximation is es-
sentially the fourier transform of the scattering potential.

It more closely parallels the concept of the dynamic structure
factor, which is defined as a fourier space-time transform of a two-
spin correlation funotion.5 It will be recalled that this structure
factor, used in connection with neutron scattering, is proportional to
the spectral scattered intensity of neutronsi

A most successful but difficult evaluation of the four-spin corre-
lation-functions has been accomplished by Kawasaki16 and by Laramore and
Kadanoff.12 They applied mode-mode coupling theory, which uses static
scaling to approximate divergent transport coefficients due to differ-
ent modes of excitation, such as sound waves, heat, etc. Their evalu-
ation of the integrals in (9) rests upon approximating assumptions,
namely, that wavelengths are much longer than correlation length at the
oritical point (q§:<<i), spin fluctuations have a time-dependence of
the "hydrodynamic" form e-t/ Tij, and that w<<.()5, the relaxation rate
of order-parameter fluctuations for this Laremore and Kadanoff hydro-
dynamic reéime in the paramagnetic phase. Kawasaki also used the long
wavelength assumption but with the alternate assumption.QJ>>!}$.

The final result of calculation invoking the use of critical
exponent laws for the transport parameter,®¢ , is concisely presented

by Kawasakil7

o¢ (@) = _b‘,w2 y for w<<ﬂ 3 bo > 0.

¢ 16

This matches an earlier result by Kawasaki, and by Laramore and Kada-
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12 :
noff™" for the paramagnetic phase only:
(W) w1, where () _-]|€|
{1 13 §
is the fluctuations relaxation rate; an inverse transition lifetime.
Here, p = 2 -0, where 2 is the critical index for the relaxation rate
of order parameter fluctuations, and ocis the critical exponent for
specific neat. It follows that
2
1 ~ v« T

Th le] ®

in the hydro-dynamicv Tregime.
Kawasaki's result under the alternate a.ssumptionw»n wag that
oc(w)~ [r-1 | °w
There 1s a correlation length, 5 b’ which representa the boundary
between the hydrodynamic regime and the critical region. The condition
q g‘ b = 1 defines the' boundary. The relevant q value is assigned by the
dominant phonona: For T = 1° K, take v = 21:105 cm/sec as the sound

velocity, the wavelength as A= 30 r» where r_ is a characteristic

lattice spacing of the system. One then finds a boundary correlation

length
g e —30 0 =5 r
b ™ 2 T ~7 "o
Now correlation length also follows an exponent law,
-V
§ =7 l€|

Assuming a valuel8 V= 2/3, one finds that the hydrodynamic
aescription may fail when |
€] =0.09
Moreover, ’Z’M (Tc) = 0, which implies, upon substitution into the

Debye integral for thermal conductivity, Equation (57) in the appendix,
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a vanishing thermal conductivity. This contradicts experiment, so
knowledge of behavior of YTM in the non-hydrodynamic region is

essential,

2. A Semi-Empirical Model for YT'-I

There is scant knowledge of relaxation-time behavior at the
boundary defined by q g = 1, Dixon, Rives, and Walton;h agsume the
Kawasaki conditions

af <1, -(),f > w

and postulate the interpolation function (see the appendix)

-1 D w?r |
[ st | (54)

where
/7

which fits the hydrodynamic benavior for

1‘22; >> w

and assymptotically the Kawasaki form when
7/
w >>O§

This function has been used to fit the thermal conductivity
measurements, with tne results that for CuKZCIA.ZHZO and no external
magnetic field

p’ = 1.56 + 0.10

= 0.88K C' = (T4 3 0.9) x 1012 hg

D' = 1 deg >

andvfor CuRb2014.2H20,

p+ = 1.72 i 002

12

C' = (9.1 + 1.8) x 10°° hza
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and
D' = 0.7 deg-l,

for the paramagnetic phase. Agreement with the theoretical value’
2z = 5/3 is excellent; the logarithmic singularity in specific heat
implies L= 0.

A wide range of p values described the data equally well in the
ferromagnetic phase in both cases: the fit was poor.

The problem here investigated is the behavior of the postulated
function, 7:;'1, to find the field dependence of D', and p down thrpugh
the ordering temperature, Tc = 0.88° X for Cuchlh.2H20, from the para-

magneticéphase. The field dependence of scattering due to critiecal

fluctuations of a few kilogauss is studied.



CHAPTER II

EXPERIMENTAL PROCEDURE

A. The Establishment of Low Temperatures

1. fhe Cryogenic Apparatus

8. The Cryostat and Associated Systems

Cryogenic spparatus is necessary to achieve and maintain a de-
sired low temperature of the crystal specimen, within a degree or two
of Bbsolute zero. Also to be achieved and maintained is & known temper-
ature gradient in the specimen., Accuracy practicable in the equipment
to be described for temperature control is + 1 millidegree.

The cryostat is an enclosure within which the specimen is sus-
pended, and which is refrigerated by an extérnal environment of liquid
hHe in this situation. The cryostat can be filled with an exchange gas,
H2 in this application, in order to cool the specimen to the outer bath
temperature via the gas conductor. It can be evacuated to maximize the
thermal isolation of the sample. Yor this purpose is provided the
oryostat vacuum system.

The cryostat vacuum system consists of a mechanical forepump and
a diffusion pump, arranged sequentially with valves (see Figure 1 for
details of the cryogenic system) and an associated ion-gage to monitor

pressure within the cryostat. 'The diffusion pump can be bypassed if

high vacuum is not desired. Iypically pressuré is reduced to between
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10" and 107° torr in this study.

The vacuum isolation from the external #He temperature, of the
order 4.2 K, is essential before a lower temperature is possible. Ad-
vantage is taken of the lowering of the boiling-point of liquid #He
under pressure reduction, #o produce further cooling. A small liquid
#He "pot" within the cryostat suspends another "BHe pot" from which the
specimen is supported. (This-latter pot is to be subsequently dis-
cussed). Some liquid #He is allowed to fill this 4He chamber when the
external liquid reaches the proper level, providing more intimate -
thermal contact with the specimen. Then the #He pot is "pumped down"
via the hHe sysﬁem.

The hHe system consists of a mechanical forepump with two valves
in a parallel arrangement, and a mercury manometer for pressure indi-
cation, During pumpdown the liquid #He in the pot boils, its boiling
point falling with the pressure, to the ;\-point (~2.2 K)'where hHe
undergoes the phase transition to the superfluid phase. After this the
temperature again falls, ,

Previously 5He gas has been admitted to the 5He pot, from which
the specimen is directly suspended. In the vicinity of 1.5 K, 3He
condenses in the tube passing through the #He pot, and runs down into
the 5He pot. As much liquid 3He is collected as possible, while the
hHe pot affords some additional thermal shielding at about 1.3 K. A
further temperature reduction is possible by pﬁmping down the 3He pot.

The 3He system is a closed system, in which the 3Ee is recycled to
minimize its loss, since 3He is an expensive by-product of hydrogen bomb
manufacture. It consists of a forepump and a diffusion-pump vacuum

system arranged serially, with a low pressure ( 3 LP) Wallace and Tiernan
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gage and two parallel operated manometers (one oil and one Hg) for
monitoring the pressure in the 3He pot. A 3He tank can supply this
pressure initially through the imput vales 3, 311, and 512 in the

event that gas has been lost from the system. There is a fore-pressure
thermocouple gage (3 HP) that reads the fore-pressure of the diffusion
pump, which is the low-pressure side of the forepump. The bypass valve

(3 BP) returns some of the inlet gas to the forepump, bypassing the
3

He diffusion pump; the fraction thus bypassed permits pressure control.

The added vacuum pathway through the high vacuum valve (3 HV) produces

3

lower preésures on the liguid “He,

3

He read on the Wallace and Tiernan

3

The vapor-ﬁressure of liquid
gage (3 LP) yields the temperature of the “He pot, and hence also of
the specimen in the absence of electrical heating, via standard temper-
ature-vapor pressure tables for liquid 3He.19 The smallest pressure

division, 0.2 torr, corresponds on the average t0 & millidegree temper-

ature increment.

b. Thermometry

(1). The Sample Heaters, The time-lag between pressure ad-

justment and thermal equilibrium, signified by steady readings in the
foregoing equipment, makes the procedure awkward and difficult, if de-
pendent only upon such adjustments. Therefore a post-heater is intro-
duced: a resistance coil of 500,(1 on the support between the specimen
and the “He pot. It is fed from the varisble tap om a 1 K heliopot,
which in turn is energized by & l.5-volt dry cell, so that it dissipates
between O and 4.5 mw of heat. One achieves thermal equilibrium near a

desired temperature by adjusting the cryogenic equipment for a slow
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cooling rete through the temperature, then energizing the post-heater
for a compensating warming rate, as indicated by the resistance thermo-
meter. A steady reading of the resistance R(T) of the element (A
Speer carbon resiétor) used as a Egermometer, implies thermal equi-
librium at the corresponding temperature, T.

Determination of thermal conductivity demande thé creation of an
easily measured temperature-gradient in the sample. This necessitates
a gradient heater at the lower end of the sample. It consists of a
75_()coil of number 34 karme wire, whose resistance is independent of
temperature. This coil is in serigs with a 1.5 volt cell, a variable
resistance, and a standard resistéf, IOQfl. the voltage across the
standard is measured to within 0.1 mv by a digital voltmeter, so that
one is essentially measuring the current in the circuit: The reading
in millivolts is 100 times the current in ma, Ih' One therefore knows
the heat input to the crystal from the gradient heater: IhZRh, con~

viently expressed in milliwatts.

(II). The Thermometers. The temperature gradient is measured
in terms of a resistance differential between two calibrated resistance
thermometers. These are thermally anchored by clamps at & known sepa-~
ration, L, on the sample. The thermometers are &ll mounted on copper
stalks to remove them as much as is convenient from the magnetic field,
and thus redﬁce magneto resistive effects. Ther&éﬁéfer leads are all
coiled to make them long, and of AWG # 40 manganin wire. Alsc, they

are all anchored thermally tc the 5

He pot, to minimize temperature
differences across them. These provisicns minimize conductive heat
losses from the thermometers.

The thermometers are zll Speer carbon resistors nominally 470fﬁl,
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1/2 W at room temperature. Three were carefully selected from a col-
lection, to have nearly the same resistance at liquid helium tempera-
ture--in this case 1135{). These were installed in the cryostat, and

3

calibrated via the “He vapor-pressure tablesl9 down to 0.67 K. Further
calibration down to 0.218 K was acéomplished through susceptibility

measurements of a 2(e(NO .5Mg(N03)2.2h H,0 pill via & mutual in-

3)5 .
ductance bridge. Resistance at each temperature was determined by A.C.
wheatstone bridge.

The calibration data were fitted to a fifth degree polynomial in
8 least-squares computer program, for each resistor. The thermometer
used to measure T has a lead resié%gnce correction: The correction is
unnecessary except in calibration procedure for the AT thermometers,

because lead resistance, R cancels in the subtraction occurring in

lead
O R measurements. The program determined the coefficients in the
polynomialzo
-1 2 3 4 5
T = a, t &x + ax + an + x4+ asx =y

for each resistor where X =1/R - Rieéd , and also the computer was

programmed to find the coefficients in the inverse fits,

3 5

2 4
- ' ' ' ' 1 '
X ab +a'y + a2 y + 53 y +e'y + as y

for subsequent program usage.

(111). Tne Temperature Bridges. The resispﬁpqe*tnérmometers
operate in A.C. wﬁea£stone bridges to achieve imﬁé;tant advantages as
compared to D.C. bridge usage. Inadverient tnermo electric emfs hava
no effect on A.C. bridge balance., D.C. amplifiers without 4rifs
problems are relatively expensive. A.C. amplifiers with high gain and

narrow band width are simpler to design, and they have s nigh signal to
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noise ratio at the output. The advantagecus phase sensitivity of tae
detector insures detection of the direction of bridge unbalance:
whether the bridge setting is above or below the thermometer resistance.

'The bridges are low frequency, to minimize reactance. Frequen-
cies are not sub-multiples of 60 nz; s0 that powerline pickup is mini-
nized.

It is important that the thermometer current produce negligible
heat dissipation. The optimum current is found at the highest temper-
ature of a run of data by first balancing the bridge at the lowest
bridge excitation for which balance is practicable, then increasing the
excitation. As long as unbalance ié not observed, joule heating of tne
thermometers is tolerable. Sensitivity increases with increased exci-
tation, so one brings the excitation to the threshold of observed un-
balance. As the bridges are excited by conastant voltage, the joule
heating of the carbon resistors decreases with & lowering of tempera-
ture, which corresponds to an increase of resistance, since such re-
sistoré have a negative temperature coefficient. Thus joule heating
remains tolerable.

The T-bridge circuit is shown in Figure 2. Tne lock-in amplifier
supplies a 35 hz sinuscid for bridge excitation., The combined sensi-
tivity of the pre-amplifier and the lock-in amplifier is typically such
that & quarter of & millivolt of bridge unbalancglgylthe input corre-
sponds to 10 volts output. R{T) typically ranges from 1800(]) tarough
5000 n for the temperature range of interest.

The AT bridge circuit is depicted in Figure 3. Two resistance
thermometers, selected as that pair of the three chosen which are

nearest s&like in their resistance-temperature charscteristics, are
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elements in the bridge arms. Their resistance difference diverges as
their common temperature lowers; this difference, obtained without the
gradient heater, is needed for getting the temperature gradient. The

| uniformly higher resistance, RL’ was chosen as the colder thermometer;
the standard resistance,z; R, is in series with the warmer thermometer,
RH'

A useful practice eliminated the colder thermometer in the & T
determinations. It is only necessary to keep the temperature T (de-
termined at the colder site), the same with the gradient heater on as
it was with it off. Thus RL remains‘constant, and subtracts out in the
computation of S R, the desired increment in the resistance differences.
At bridge balance, the standard resistence reads AR, = RL - RHG with

G

the gradient heater on, and AR = - RH without it, whence

Ry
6§ R=AR; - &R = Ry - Ry,
Thus only two resistance thermometers are really used, one to

measure T, the other to measure AT.

Co The Solenoid Magnet

A superconducting solenoid comnsisting of 23,815 turns of niobium
base alloy wire furnishes up to 70 kilogauss at a rated current of 43.6
amperes, at 4.2 K. One derives the field at the solenoid center within

+ 1% in terms of the measured magnet current, I.: B = 1,605 I,

M
kilogauss.

The field is uniform within 1% over a sample volume one inch in
diameter. The msolenoid inductance is 18.8 henries at rated current.

It has been found to remain superconducting at 75 kilogauss.

The commercial magnet power-supply permits selection of either



manual current control, or a constant sweep-rate of the current; the .
former was chosen in the taking of data. It features built-in safety
precauntions; tﬁe magnet is shunted so that inadvertent open circuits do
not lead to hazardous voltages. The digital voltmeter yields magnet

current in terms of the shurt voltage.

2. Cryostat Operation

a. Cooling Procedure

References to Figure 1 will facilitate understanding of the cool-
ing process with the cryogenic apparatus.

At the outset, one evacuates the 3He pot and the cryostat.

Evacuation of the 5He pot really entzils cdllecting 5He on the
higher-pressure side of the forepump by closing the input valve 3 Il'

Input and forepump valves, rescpectively 3 I_ and 3 F, may be opened tec

2
allow maximum collection volume in the line. The low-vacuum valve
3 LVl'must be opened, whence, with 3 HV closed, evacuation occurs
through the opened bypass valve 3 BP. To monitor low 3He pressure, the

manometer gage valves 3 P, 3 Pl' and 3 P, are also opened.

2
Only the manometer valve, 4 Pl in the AHe system is open.
Cryostat evacuation requires opening of the low and high vacuua

valves, CLV and CHV respectively, and the cryostat valve C. %he

cryostat bypsass valie, CBP, and the hydrogen valves, H

1 and H2, are

closed.

One next fills the liquid nitrogen shield, at least 16 hours be-
fore a data-run. The solenoid magnet is a sizeable heat sink, and has
been equipped with cooling coils; the ligunid nitrogen is passed through

these before entering the shield. A gold-constantan thermocouple moni-
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tors roughly the magnet temperature thchltypically is about 120 K after
a 16 hour (all night) wait.

The liquid nitrogen shield is now refilled via the magnet cooling
coils, and the liquid 4He pot valve is "cracked" (opened and closed),
to insure it is not stuck or lockediby ice. Then the #He bypass valve,
4 BpP, is opened evacuating the #He pot, while the magﬁet and cryostat
cool on down to the liquid nitrogen boiling-point, 77 K. The magnet
thermocouple yields this temperature more accurately than does the
resistance bridge: R (77)=2680( 1.

Further cooling is to be accomplished with 4He. Closing the

cryostat vacuum valve, C, so that hydrogen can be admitted via valves

H1 and H2 at a pressure of 1 torr as read on a thermocouple gage, pre-
pares the éystem for the liquid #He transfer process.

A liquid 4He transfer tube is slowly inserted into a source dewar,
letting some cold gas escape to clear the tube of all but #He gas; a
cloudy jet signifies sufficient precocling. The liquid #He inlet is
uncorked and the transfer tube slowly inserted. Under a low pressure, .
cold uHe gas passes up past the magnet, and cooling is monitored until
the hydrogen condenses in the cryostat (1o°f5 T fEZOO), as indicated
when the thermocouple gage preésure falls below 20 microns.

Upon hydrogen condensation, the transfer pressure.is increased by
a factor of three or four. The resistance bridge normally indicates
cooling has‘stOpped upon removal of the heat exchange gas. If not, the
run is aborted, for the sample is not isolated from the #He bath.

At this point,cooling has progressed near to collection of liguid
A

He in the dewar. One now admits gas fo the 3He pot by closing the 5He

bypass, 3 BP, and slowly opening input valve, 3 Il' Cooling resumes
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via gas conduction.

One closes the bypass valve, 4 BP, and monitors the liquid hHe
depth by the level gage. Upon indication that the liquid level is
asbove the level of the pot valve 4 PV, one opens this valve a minute,
then closes. <This fills the hHe pot with liquid 4He.

Liquid 4He transfer is terminated when the level is within five
inches above the valve 4 BP,

The sample temperature is now near that of the liquid 4He: 4,2 K.
One now further reduces temperature by "pumping down" the liquid QHe in
the 4He pot. The bypass valve &4 BP is slowlf opened, whence evaporated
4He is pumped off. Pressure falls (hence also the boiling point) to
the A point, 2.186 K.

3He pressure via gage 3 LP below th¢

One carefully monitors the
;\ -point. The 4He cools the 3He down to about 1.3 K; the 3He begins
condensation at about 1.7 K, corresponding to a pressure of about 40
torr. Condensed liquid accumulates in the 3He pot, producing further

3

cooling as the initially warmer 3He pot revaporizes some “He to reach
the temperature of liquid 3He. Most condensation has occurred when the
resistance bridge setting corresponds to 1.3 K.

One now closes input valve 3 Il’ and is ready for further temper-

3

ature reduction via “He pumpdown.

b. Temperature Measurement

Temperature measurement without the gradient heater begins with
the lock-in amplifier set for low sensitivity. One then adjusts the T-
bridge until the null indicating meter is on scale; its indication is

proportioned to the bridge output. One next adjusts the post heater
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resistor to the midpoint of its rangé. This control is highly non-
linear, so that heat output is a low fraction of maximum. The bypass
valve, 3 BP, is now opened so that the indicator shows a slow drift-
rate, preferably cooling, and near rull output. Then one achieves
thermal equilibrium by adjusting éée post heater so that the null indi-
cator shows a steady, on-scale reading, using increasing amplifier
sensitivities. PFinally, R is reset for a null reading, and the H T
bridge is adjusted for a null output: R and AR are taken as data.

Temperature measurement witn the gradient heator is the sanme,
except that the gradient heater, instead of the post lieater, is ener-
gized at a prescribed current befbie the bypass valve 3 BP is adjusted
for slow cooling neaf null output. The post heater is then energized

at little or no output, then adjusted for thermal equilibrium.
B. Thermal Conductivity Computations

The data consist of two kinds: the temperature is held constant
and the field is varied, or the field is fixed and the temperature is
varied. In either case, the independent variable is increased over a
range of values without the gradient heater, then decreased through the
same values as nearly as possible, using the gradient heater. Mismatch
of corresponding values between the two sets of data is taken care of
by interpolations.

Consider the gradient heater dissipation,

Ithh 10
Define T' =a/T/a{R, which ig found by the computer from the inverse-fit
polynomial for the T thermometer. Tne temperature difference between

thermometer olamps is then
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AT=T" SR,
Let the distance between these clamps, which has been carefully
measured by a micrometer microscope, be L. If the crystal cross-
section is A, then the thermal conductivity of the crystal is

2
Ih Rh L

K= AT'S R

conveniently in milliwats (mw) per cm-degree.

Ih and § R measurements are substituted into this expression via
a computer program, which also derives temperature T from R data. The
program displays T, AT, K, and K/??\values.

A plot of the field dependéh;e of the fractional change in K,
K., - Ko

Ko Ko

vhere K = H (€, T), and K =K (0, T), has the advantage of elimina-

tion of most of the measured quantities. If one keeps the gradient-
heater current the same with the field on, as it was with it off, the
complete factor Ih2 Rh L/A divides out in the ratio. If, in addition,
the temperature is held the zame in both cases, one also has

t !
T, = To , and the ratio reduces to

H
AK 5Bo -5Ry - bR,

K, ~ &Ry S8y

A plot of this function against the field at a given temperature

1.

reveals magnetic saturation of the thermal conductivity. One may use

this function and Ko derived from the zero field data, to get K

AK

<)
0

"
K

1=K (1 +

This computation affords a check on computer results based on

Ih values for H = O, and is =0 used.



CHAPTER III
EXPERIMENTAL RESULTS

The experimental thermal average of the relaxation rate for
phonon scattering due to order-parameter fluctuations, compared with
the diamagnetic relexation rate, is presented for CuK2014.2H20 in this
chapter: G -(Tm'l Z;). The data reduction is in two forms: sets of
isp-champs, and sets of isotherms. The Dixon, Rives, and Walton Modelh
suggests one unknown parameter, D(H), may be eliminated to facilitate
at study of the remaining parameters in the model, if the ratie:. of
G(H, T) to Gc(H, Tc), the critical isotherm, is plotted. Accordingly,
isotherms of the function_/\_- G/Qc are plotted. The section follow-
ing this data reduction is an attempt to relate these results to the
model., The list of symbols, page viiwill expedite understanding of

the sequel.
A. Data Reduction

1. Isochamps of Thermal Conductivity

The effect of fixed magnetization on the temperature dependence
of thermal conductivity for CuK2014»2H20 is shown in Pigure 4. These
results show a pronounced inflection in the thermal conductivity curve
near the critical temperature, most pronounced at zero field, which
tends to disappear at higher fields. More revealing (Figure 5) are

those plots for which the dominating T3 dependence is divided out:

32
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K/T5 versus T at constant H. %Yhe zero-field plot appears almost to
have a slope discontinuity at Tc = 0,88 K; the critical temperature is
well located. For T> T, K 0/T5, is nearly independent of T, but de-
creases as T-i--To . The plots for H # O seem to show an assymptotic
approach of KH/T3 to a minimum level as T increases above Tc.

At any given T near Tc’ K., is seen to increase with field. Since

H
KH depends on H only through Yrﬁ-l in the denominator of the thermal
conductivity integrand (See Appendix), it follows that ZTM'I has de-
creased. Now T:M'l is the relaxation rate for phonon scattering by
low-lying excitations of the paramagnetic ions. As magnetic excitation:-
energy increases with the field, the thermal population of excitations
decreases, hence also the scattering rate decreases.

Thus the smoothing of the K(T) and K/T5 curves in increasing field
implies the reduction of the magnetic critical fluctuations: less and
less phonons of the thermal distribution have sufficient energy to ex-
cite the fluctuations. A saturation field can remove the magnetic criti-
cal fluctuations entirely; this is the basis of the method for investi-

gating the thermal average

¢ =<

Under a saturation field, the thermal conductivity integral,

equation (57) in the appendix, becomes

{r
K AT3/—(1‘O—;:—53- TDdx; (10)

(o]
here, KD is taken as a convenient symbolic way of representing
-1
. . -1 -1
K (H>>KBT/gB). The total relaxation rate is 7 =~ = TM +Z;) y

and the limiting value of ‘C"l is TD"l at high fields. Equation (10)
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takes the numerical form

[~ -]
Ky = 9425 1 gt oX 1 dx,
W (e - 1)% 1+ 52 107F £t ot
(cuk® 4) ©

for CuK2014.2H20. In practice, for this salt, fields in excess of
BOKOe produced saturation values of KD.

By Equation (57) (appendix) and Equation (10) it becomes ap-
paerent that G (H, &), defined experimentally by

K (r) - (H, T)
G (H, T) = X (H, ©) (11)

has the signification

/[GWT xt o¥ ‘Zﬁ—l dx

1
R & (* - 1% @ Ty Ty

o o=1
i.e« G (H, T) = <_1: M > according to the Debye Theory.

?:D

20 Isochamps of the Relative Magnetic

Relaxation Rate, G

The function, G, is plotted versus temperature for three low-
field values, Figure 6. It is seen that G (0O, T) pesks at £, = 0.88,
implying maximum scattering rate occurs just before long-range order
sets in at the critical temperature., 4n increase in H raises the ener-
gy required for magnetic excitations; this necessitates a rise in
thermal population of higher-energy phonons before maximum scattering-
rate can again occur. Lhus there is a shift of G max to higher temper-
ature as the field increases.

At the same time, the increasing order introduced by the field
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reduces the magnetic scattering rate,’Zf-l, hence the peaks decrease

M
in height.

The slope 9G/ 3T appears to be discontinuous at T, for the two
isochamps H = 0, H‘a 0.96 KOe with little scatter: 4his clearly marks
the phase transition.

These isochamps clearly behave like the magneticvspecific heat,
CH, for the salt,21 except that the zaro-field specific heat is very
sharp. There is one important respect in which the specific heat plots
differ from these plots of the function G, however. On the high T
gide of Tc’ specific-heat curves cross. Beyond the intefsection with
the CH(O, T) plot, there is a region where, for H £ 0, CH(H,T)>>CH(O,T);
a corresponding situation is not observed for the isochamp plots of the

thermal aversge
-1

T
G (B, T) =& M,
'CD'I

For further discussion of this, refer to section B, the lagt paragraph

of part 3 in this chapter.

5 ‘the Critical Isotherm, Gc

»*
A log-log plot of the thermal average ',
-1

T -
Gc.," & TM-1T> - KDcKHcKHc (12)
D c

computed from thermal conductivity measurements (see Appendix) is pre-
gented in Figure 7. The higher-field linearity of the plot prompted a

least-squares fitting program for the function.

*
The subscript ¢ denctes the function at the critical temperature.
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1ncc=l"1nn+1na.
The line of best fit had a slope[ = -0.5, and a is a constant. At the

critical temperature there is thus the power-law dependence

a
G = ——
¢ .HO.S

This function does not fit the data below 10 KOe, however.
Thermal conductivity can't vanish at low fields, so a phenomenological
cut-off parameter, Hycs is introduced., YThere are theoretical grounds
for a cut-off parameterll: Van Hove argued that the Onsager transport
coefficient,J«b, depends mainly on short-range order and should remain

finite at Tc. Approximate mean fiéld calculations support the assertion,

The spin diffusion coefficient satisfies the Einstein relation

,67a E where"\M is the magnetic susceptibility, divergent at Tc.
Thus ,e(Tc) = 0, Then, as spin transport coefficienta don't diverge

for finite frequency at Tc, a outoff parameter may be expected.

Accordingly
ac
Gc- .
Hoé + H
The function
. -2 ) Eoc + H
c
s
e -

is linear in H, with intefceptl%ca.'z, and slope ac'z. A best line

c

was fitted to the data, Gc-2 versus H, Figure 8. 1Iis intercept and
slope yielded the values H_ _ = 1.1 KOe, a, = 2.76.

Hence,

G = 2.76 (13)

¢ ‘V l.1 + H

22

that more generally the function

6 (H, 1) = —2f00 (14)

It has indeed been found
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FIGURE 8., Linear Fit to Gc'z (B)

G, is the fractional change in thermal
csndnctivity from saturation at Tc'
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describes near-critical isotherms, within the bounds
€ = ,—g- - 1|<1o'1.
c

the uncertainties in the exponent [~ for Gc, for the cutoff parameter

Ho(T)’ and for the parameter a(T) are + 12%.

4, Isotherms of the Hydrodynamic Regime

Initial attempts to plot the function

T, T
A_<M_ .
<TG Ty

(15)

for fixed T > 1.050, looked suggestive of exponential decay. YThis
prompted plots on semilog paper of the same data. There resulted obvi-
ously linear plots for all of the isotherms for H >t KOe, Figure 9.
The plots all exhibit a rather sharp rise from A (0, T), which starts
between 0.6 and 0.9, to the linear portion at about 5 KOCe. A compari-
son of the various isotherms reveals the random scatter of points
fitted by the lines.
The plots fit the equation

LogA_= Log b + m.H (16)
where n, is the slope of the line, and b is its gzero-field intercept.
A best line for each temperature was constructed using statistical pro-
cedure, and extensive base 10 log tables,

Equation (16) in the form

A=v10™% | for H > 5 X0e,

is better described in terms of a critical exponent law which considers
-1
100 = €H' s where I-Il is a field-parameter, hopefully fixed, and
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¢ ! Log, €
By = (17)

Parameters from the limes of best fit are detailed in the

following table:

TABLE II

PARAMETERS FOR LINEAR ISOTHERMS

T my H,KOe b
1.05° 1909 -0.0128 57415 1.80
1,11° 2614 ~0.00504 115.7 1.29
1.14° 2954 -0.00878 60.3 1.30
1.20° .3625 -0.00637 69.1 1.49
1,25° L1k -0.00582 6lt.9 1.61

The values of H, in the table, apart from the very divergent one

1
at 1.11°, appear to be randomly distributed around an average, this
average being fl = 62,6 KOe. *he slopes of the semilog plots, if T
dependent, should have a monotonic dependence em T; the plots show no
evidence of this. *The imescapable conclusion, is that nl indeed is
constant, and that the various values of Hl reflect systematic errors
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in the data runs.
The best fit to each isotherm,./\.versus H, is depicted in re-
spective Figures 10, 11, 12, 13, and 14, as a solid curve abouve 5 KOe

in each plot of data. Xach was computed according tc the equation

e b e/

It is concluded that tne isotherms of the hydrodynamic regime,

T > 1.050, fit the critical exponent law

A-ve?t, (18)

for H > 5 KOe, and -; a 62,6 KOe.
The systematic error in a data-run probably dervies from knowing
the field to an accuracy of 1% or to less accuracy. It is quite likely

that residual field is responsible for a slope error.

Se Isotherms of the Critical Region

A family of three relative isotherms, _A_- G/Gc, presented in
Figures 15, 16, and 17, exhibit the behavior of the average magnetic
scattering relaxation rate in the critical region:

-1
A_ - <TM t D> T
-1
<TM ‘t D> Tc

The gap at 37 KOe in Figure 16 corresponds to a slight heater-

current drop that occurred during the data run; the fractional change
in thermal conductivity, A‘K/Ko, shows a corresponding gap associated
with some inadvertent change in a circuit parameter.

All isotherms plotted, for T>Tc and T<Tc’ exhibit the common-
feature of a sharp rise in the mean magnetic scattering rate from 0 to

about 5 KOe. The rise is sharper at T nesar 'Pc. Data is sufficient for
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the 0.67o isotherm to indicate a very sharp peak; the peak appears to
broaden a little as T rises past Tc.

It must be admitted that in view of the inadequate theoretical
treatment to date of the relaxation rate'Z:M-l, this feature is not
understood. The two isotherms of the critical region, Figures 16 and
17, brackett Tc’ showing that the behavior of.J\.above and below but
near Tc is similar. |

These isotherms of the critical region show that the mean mag-
netic scattering relaxation rate for phonons sharply peaks a little
below 5 KOe, starting from & relatively low rate at H = O. The zero-
field intercept rises with temperatﬁre. The relative rate/L falls to
a minimum at sbout 1% KOe, then rises slowly to & maximum at about
40 KOe for 0.82°, at 35 KOe for 0.96°.

The isotherms of the critical region superficially resemble two-
term exponential plots. 7This in turn is suggestive of critical ex-
ponent terms. Following the hint, the Dixon and Walton Modell4L is ex-

pressed in terms of a thermal average dependent on the sum of two terms,

in the data analysis.
B, Data Analysis

The interpolation model for the relative magnetic relaxation rate
Equations (54%) and (56) (see the Appendix) is here developed in a form
that can bé studied in terms of the data reduction of section A. Thus
the function G is, according to the model.
x2 '1‘3

¢ (B, T) =D (H, T) & I :
Ty L+axm) T

Allowance for the possibility of T-dependence of D is made, though D (H)

was assumed in the original model. One can multiply the numerator and
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" the denominator of the fraction by TD/xT, and then factor out ‘I“2 to get
X
2 D..
G (E, T) =D (H, T) T° K—mv > (19)
-( )- + 1

xT

It is convenient to define the parameter y = -(7- ’
xT
whence

= , T 2 * o)
¢ (H, M) =D (E, D) T <1+£% (20}

The manner in which this expression of the model becomes experi-~

mentally accessible is developed in the sequel.

1. Significance of the Critical Isotherm, G

At the critical point, the rate of magnetic-ordering fluctuations

vanishes: y = 0. Yhen the model yields

6, =D (8, T) T02<xTD>Tc (21)

This is equivalent to the empirical Equation (13), whence one

derives the critical coupling coefficient

D (H 1) = Be (22)
Tcz <x2;)>'1‘ ] Hoc + B
[+

where a_ = 2.76, H = 1.1 KOQe.

c oc

It is thus seen that this coefficient exhibits the inverse
squsre-root law.

Moreover, the fact that Equation (14) has the same form as that

of G, (Bquation(13)) in the critical region for <107t implies

<1 +y;T~ < Z' >T
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within the accuracy of the plots. This conditiom on Equation (20),
combined with Equation (14), implies a square-root law for the

coupling coefficient in the critical region:

D(H, T) = 2 (1) (23)

lfl2 *
P '<x'Z"D> I,V H +H

The cutoff field, Ho’ and the function a, are 1-dependent, thus

revealing D to be temperature dependent, as suspected.

But Equation (21) can be placed in simpler form. Consider the
report by Dixon, Rives, and walton,l+ on fitting the interpolation formu-
la to a plot of the difference between zéro-field conductivity and that
calculated with only background scattering. Assuming ﬂu‘ C (H)€E P ; D,
C, and P were taken as adjustable parameters. A best fit was achieved*
with D' (0, T) = 1 dggrl. (*he other parameters for CuK2014.2H20 are
listed at the end of Chapter I). Assuming this value, a simple ratio

shows, by Equation (22),

t (31
D (H, Tc) _ H . D' (H, 10) .
[ o= Iy '@

D (0, 10) Ho +H 1

Hoc
B (E ) =Y (24)
oc
2. ‘he Model in Accessible Form

Equations (20) and(21) yield the model expression for the

*
condidering ‘Z% to be the boundary-scattering relaxation time,

o

D (H, 1) = 1% T:B D' (H, ). In the ratio, however, the constant

divides out. See Equations (53) and (54) in the appendix.
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. relative isotherms, A :

p (g, 1) [0V 1 xC |
A\~ D (H, Tc)(Tc/ x"[:D>T 1+y> (2_5>

These functions are meaningful only as igotherms expei-imenta.lly,
for the H-dependence of D is not cancelled except at Tc' Incorporating

the previous results, Equations (22) and (23), we get the ratio

D(H, T aa_(Tc2<xTD>Tc Hoc+H (26)
D%H, Tc) a, \ T/ <xTp>q H, +H *

Substitution of Equation (26) into (25) yields

+H t
1
'A'gﬁr v H +H (x‘CD>T<1+y ’E‘ *

Define

' .+ § - ’
_A-_ . aa('l‘) /‘/ __oc + —, (27)

o]
C

whence

A\, xT,

‘<fo>T <1+y

2 (28)

It remains to simplify this via the generalized mean-value
theorem* of definite integrals. Consider a weighting function
I (H,T,X)> 0, continuous on the interval of integration 0.4 X < X,
and any other function g (H,T,X) also continuous on this interval. 'rhe

theorem then asserts

X X
m - m
[ I (§,T7,X) g (H,T)X) dx = g (H,T,X)! Idx,

where X (H,T) is some particular value of X in the interval: O <X _-_:Xm.

%
See various advanced calculus texts: Sokolnikoff, pages 114, 115,

or Courant, Differential and Integral Calculus, vol. II, (1937) p. 232.
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Let I % be the integrand of the thermal conductivity integral
(see the appendix). ItZO, and is continuous over the interval. Con-
sider the weighting function I = ItTD X >0, and the other function
(1 + y)-l is continuous over the interval O S.X.‘.Xm. Then

X
m
X .
1 z‘1)\ {I(l+y)-ldx 1

<x;Z‘D>,1,< l+y 7T "1+ sz (29)

X,
{ I dx

witn 2 = -, and 0 <X(H T .<_xm.

Now XT = #(D/k_B where (U denotes an average frequency of the

phonon distribution. One sees Equation (56) (in the appendix) that

Z = .('l?- = g—- ’ (30)

which is to be understood as a regime index, according to the ordering
relations Z>>1, (hydrodynamic), or Z<<l (non-hydrodynamic). (See the
end of Chapter I). In terms of this regime index, the function,/\,ta.kes

a rather simple form

Aa_No_ (31)

o)
l+12

by Equations (28) and 29).

3 Hydrodynamic Isotherms According to the Model

The average relative magnetic relaxation rate,_/\.., has been seen
to fit a critical exponent law involving a single term, for T =1,1° and
H->—5 KOe. The interpolation model muat then yield such a critical ex-
ponent law in this domain, to fit experiment. The model for the rate
of order-parameter fluctuations (see the discusaion associated with

Equation (56) in the appendix) is here assumed of the general form

N=c (@, ne ME 1 (32)
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The reason for allowing the possibility of dependence of the
exponent on T is this: the exponent is not known in the subcritical
regime, nor for H ¥ O in the hydrodynamic regime. Dixon, Rives, and
Wa.lton,[+ found the value A (0, 1) = 1.56 = p, a constant for the para-
magnetic phase but any choice, p' of exponent within the domain 1<p'< 4
fitted equally well the ferromagnetic phase of GuK2014.2H20. It seems
prudent also to regard C' to be T-dependent until experimentally proven
not so, if not.

The regime index accordingly follows a critical exponent law
C! (H, T)€>‘(H’ T)
w

Z =

The condition that Equation (3)) can represent the desired critical ex-
ponent law is then that Z>>1, which sets the hydrodynamic regime for

sufficiently high €, .so that

A=A, 7 - gy € A (33)

This must be equivalent to the experimental result, Equation (18)

— -2 (H, v
O e I o

for H25 KOe. A convergent power-series expansion is next made for the
exponent function, where the p's are taken in general to be T de-
pendent:

A, T) = p(T) + p,(T) H + py(T) ...
Intuitively it seems likely that \(H, T) has a slow monotonic de-
pendence on H, so A\(H, T) is assumed nearly linear. The justifiable
procedure followed is to include higher-order terms in an improved

approximation only if the fit to data necessitates it. Thus

A(H, T) = p(T) + p,(T) H (35)
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Substitution of Equation (35) into (34) yields the identifi-

cations
AT .
b (T) = ---—C-—C,’—-—€ P andpl=—"l~1f'-' (36)

The b (T) identification implies field saturation of_A.OE/C' has oc-
ocurred for H > 5 KOe,& > 0.26,

''he field-dependent exponent then is

H
A=p--—=—=p+pH (31)
By
where experiment has shown that in the paramagnetic phase,

1

p = 1.56, and p, = - g5z~ = - 0.016 KOe"

2.6
which are constants.

Recalling that )\ (H) = z - oc, where z is the critical index for
the relaxation rate of order parameter fluctuations, and oc isv the
critical exponent for specific heat,12 one suspects that the term le
may be describing oc, with the above value for Py in the paramagnetic

phase. If for H= 0O, oc -oc°<0, a small negative constant,l (see

Table I) then oc (H) =QC- p)H, whence the specific heat follows the law

H
If this identification is possible, one sees that specific heat
increases as H increasea for ooo< pIH, and € <1. Just this situation is

Been for the isochamps of C_ for CuK2C14.2H20 in the paper of Miedema,

H
Vé.n Kempen, and Huiska.mp;21 with €>0.1. These isochamp intersections
all occur within the near-critical isotherm range, € < O.1. An
assumption like oc = ~0.02 leads at least qualitatively to the behavior

of CH as described in the paper. It is hoped that the suggested form

of the specific-heat index spurs further research into the matter.
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4, Isotherms of the Non-Hydrodynamic Regime

If the regime index fulfills the condition Z<<1 (see the dis-
cussion of Equation (54) Chapter 1), the Equation (31) becomes
approximately {

A=A_ -2,
representing the Kawasaki form forVZh-l in the non-~-hydrodynamic region.

The two near-critical isotherms, Figures 16 and 17, are too far
from Tc to insure that the approximation is good. The case that
T = 0.96° corresponds to €= 0,09, and T = 0.815° to €= 0,08, and these
values of € are near the boundary bbtween the hydrodynamic and the non-
hydrodynamic regimes.18 (See the latter part of the discussion on
ultrasonic attenuation, Chapter I).

The interpolation model described by Equation (31) and based on
behavior in assymptotic limits, would be supported if it could be shown
to fit these near-boundary isotherms. ‘Lhe similarity of the two iso-
therms, which brackett Tc, implies that the same function describes
T<Tc behavior as the T>Tc behavior, for near-boundary isotherms.
this condition is at leaat satisfied by the model.

‘ One can solve Equation (31) for Z, getting

/¢
A, N
Z = -1 = ——,
A )
according to the model. One must knowaAgl(H, T), which in turn

necessitates knowledge of a(T), and HO(T) (Equation (27)), in order to
plot the function Z. If Wis slowly changing with H, the plot then
would reveal the benhavior ofhfl;ith H. The graphic description would
more accurately describeflﬂat nigh fields, wherp @ saturates. This iz

said in the hope that further research will be initiated.
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The data in this study is insufficient for proving validity of
the model near the boundary of the critical region. More isotherms
below 0.960, and particularly below Tc are needed. ‘Then, aasuming the
nodel, a computer program could be devised to reproduce the data,./\,
when correct trial functions C'(H, T), and A(H, T) are substituted into
Equation '(31). These could possibly be series expansions of a few

terms.



CHAPTER IV
SUMMARY

The interpolation formula

'Z'M‘l - D(H) x°1 .,
cme B | 4

expressed equivalently by

fn‘l = D'(H,T) w3,
C'EP + W

k5

where C = —é_;- C', D= T D‘Z’B , and x = é-;%)—, has here been

studied as 8 model for the magnetic scattering relaxation rate for
phonon heat carriers in a crystal of CuK2C1,+.2H20. The symbols have
the usual standard definitions.

| Thermal conductivity data was used in a technique to get the
thermal average <Tm-lf]?weighted by the thermal conductivity inte-
grand. The results, expressed by plots at either constant field or
constant temperature, are studied in terms of a two term formula de-
rived in terms of the model. 'The field dependence of the parameters
D', and A(H) are here summarized.

The coupling coefficient is expressed by

1,1
11+ 8T

the critical temperature. H is the field in KOe. The condition

D' (4, T) = = 0.88°,

€= ‘%— - 1,50.1 defines the critical region, where at high fields
c
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D/(H, T)~ (8 (T) + H)%.
Here HO(T) is a phenomenological cutoff parameter; (thermal conduc-
tivity must be finite at H = 0). HO(TC) = 1,1 KOe. The spin-inter-
action fields become a decreasing fraction of the ordering field, H, as
B increases, so the interaction strength D' would be expected to de-
crease with an H increase.

The critical exponent for the magnetic rate of order-parameter
fluctuations is found to be

A(H) = p + pH,
where p = 1.56 = A\(0), according to previous results of Dixon, Rives,
and Wa.lton,4 and Py = -0.016 KOc-l, in the paramagnetic phase. Analy-
8is of this was based on the linear semilog plots of isotherms in the
hydrodynamic regime above 5 KOe.

It is suggested that the critical index for specific heat at
constant H may be ar=_ct5 - le, where CCO is a small negative constant.
In the paramagnetic phase, this may explain why CH increases with
field for €>0.1 as shown in the paper by Miedema, Van Kempeﬁ, and
Huisk&l.mp.21 Low field isochamps of the thermal average G:d;x-l To> H
behave like CH’ except that they do not c¢ross.

Isotherms in the near-critical region have a structure not
amenable to analysis in terms of the model, at the present state of
knowledge. The interpolation model was selected on the basis of accu~
raéy of description at two limiting conditions: Z <<1 (the non-
hydrodynamic regime) and Z >>>1 (the hydrodynamic regime) where
Z =-r1,%3'is the regime index..(),is the relaxation rate of order
parameter fluctuations, and W an average frequency of the:phonon distri-

bution. Two isotherms of the critical region studied in this discussion
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are near the boundary, €= 0.09, between the regimes; analysis based
on the interpolation formula may be questionable. The formula may be

indeed incorrect for them.
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APPENDIX
A. Thermal Conductivity Theoxry

Knowledge of the theory of Thermal Conductivity in insulators
is applicable to the extraction of information about critical phase

transitions. A review of this theory is then appropriate.

1. The Heat Flux

Consider a system consisting of a crystal lattice and its energy.
Under the assumption of small displacements, the hamiltonian operator

for the system is

with eigenvalues (n+ + %)ﬁcoa . Here, n_  is the number of
k,A k,% * k,)

phonons with wave vector.ﬂ; and polarization index A.
The system is considered a Bose-gas of phonons having the equi-
librium distribution

o) 1
-+ = hw*‘
B, v (e B /1T 1)

(38)

where kB is the Boltzmann constant, V is the system volume and T is the
absolute temperature.

The phonon distribution is in general non-uniform throughout the
system: local wave packets form from the normal modes; these conduct

the heat through the system at group velocity

68
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— - . 9
v’k’,A vk w??\ 39)

The heat flux through the system is

—ly .
Q= __Z n_| Tha, ?r: ;
k,% k,A k’A k’}\
heat power per unit area conducted through the system, where n__ b
. k’
phonong/volume is the actual phonon distribution, unknown in the non-

equilibrium case. One therefore makes use of small departures from
equilibrium, 5n__>= , an excess phonon density, in an

o
n -n
- -
k ,A k ’) k )7\
approximation approach. For thermal equilibrium,

L= . _hw. T -0
TATEA CENTA

Then
—p — i
.0 g .
a-4 =F§w_, v, Sn, =4, (40)
A GA BA TA
the heat flux,
2. The Relaxation-Time Concept

Provided the departure of n 1, A from the equilibrium distribution
k,
is small, a good approximate expreesion for 6n__>>\can be found. BSince,
k,
through Liouville's Theorem
n(¥+ &7, Ean AT, t + At) = n(?,?r’,t) + At grtl y

[}
°

of phonons. Subsequent experimental work is concerned only with the

- — n >
one has Vn.v. +an-0: = =1 where (Cis the acceleration of the gas

—
steady-state heat flow, however, for which = 0. One then has the

Boltzmann transport equation for phonon flow:



70

0% >
—EA gy o OBy
ot A B2 or B

considering

and using the chain rule.

Now the time dependence of n L ?\is due to diffusion via the
K,

temperature gradient, phonon scatter, and external fields., In this
study, phonon scatter is due partly to low level siates of paramagnetic
ions in the material; external magnetic fields affect phonon scatter
iudirecfly through these. YThere are also phonon collision processes
intrinsic to the crystal being studied. 'Lhe local time variations in

n_ are due to phonon collisions, and a wave packet finds different

K, A
temperature regions at correspondingly different times, as described by

the Boltzmann equation

a n n
%A - Y- 1)
Ot collisionms o T E,A

If the heat processes are suddenly removed, scattering processss
act to restore equilibrium, which is theoretically never reached. There
is a characteristic time ‘C_’ y to be called a relsxation time, associ-

4 -
ated with the approach. For the k,) set of phonons, it is defined by

o]
'51. 3!11-;’-}\ dt--—-——-x-—-anl?y\j ,f_“K;Z\
?,7\ a t a b Ave TE’,A
i
Ir T is emall the average derivative differs. regligibly

Ky, A
from the integrand, and one has
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n n_,
?.E&:__é_lbz\ » | (42)

0t t-l-c,,7\

Considering only time-dependence, the solution of this equation is

n = n
A HA

showing Z’_’ to be a characteristic time for exponential decay of 5!?_)

Ky A K, A
to equilibrium: Sn a Q.
BA
For the slight departure from equilibrium, the approximation
a n n°
2 920 ®a ,

or o

is also valid.

Solving Equation (42) for § n__ , substituting from Equation

?
(41) and then from Equation (43), one gets

Vv

A BA Ot A

This, in turn, substituted into Equation (40), yields the heat-

(44)

flow equation

no__‘
R N O BATA "
in which relaxation times explicitly appear.
3 The Debye Theory of Thermal Conductivity
Now a n°
hw LA g 2 (46)

LA O
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is the contribution to the specific heat at constant volume for the k
mode, }th polarization component. Then the dyadic
x- T, 0, 7,5,
KA KA KA IGA KA
is a thermal conductivity tensor, in terms ot wnich the heat conductiom_

vector (4%5) is
—pe

Q= - KX/T.

The subsequent investigation is concerned only witn heat con-
duction in the direction ot the temperature gradient, Let the VT di-
recvion be that of the z axis. -e-f ies to be the direction of Tr';)\
with respect to this axis. The th;?mal cenductivity in this dir:::tion

is

K= ¢, vi, 2 o (47)
AT T 5

One now approximates this discrete state distribution by a con-
tinuous distribution in k-space. The summation may be approximated then
by an intebgral as follows:

The normal modes are travelling waves, governed by the periodic

boundary conditions I‘l =N (Ll is one dimension of the sclid, con-

Kik
sidered a rectangular parallelopiped); similarly, L, =K, A, s
. k2 k2
Ly = N_ A ;A are wavelengths; N_ are integers. Then A = L. /N_,
> TR R Wi TR
- 2 s = 3 L
vhence k, 2T/ s = (2 T/Li) b]_gi + One hes akAk ak, = A7V,

(21!')3/VAN1AN2AN3, the permissable volume increments in k-space. The
smallest non vanishihg volume-increment results when ANl =1 =A~H2 ’ANB’
i.e., V/ (21r)3 c13vk = 1, where V = LILZLB,'the golid volume. Multiply-

ing each term in the above summation {47) by unity doesn't change the
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summation, so

Vkmax
v 2 2 3
K= — Z cC v cog"© 4’V .,
(2m)> 2 Tm A EX EA KA
o

It is convenient to treat the approximate differential in poladr
spherical coordinates

4%V, = k%dk sin -6a6dg,

whence
Vkm
v 2 2
Ke— 2 [T, C, v cos” @ (-d cos € )adkax.
2m> X/ BA A B ') k,?\¢

©
The angle integrations carried out, one has the integrzl over the

first Brillouin Zone

Y 2 a,
K 2 2 Z/ )\k)\ >\kdk

which is the general expression for thermal conductivity.
There are three polarization directions; the integral is the same

for each component, so finally

The crude thermal conduct1v1ty of elementary kinetic theory is
readily found from this through the mean value theorem of integrals.
Thus,

k
Em&X

K = -—1—2—'— {Cv (v"{)}/kzdk = const. x C?./\.,

2T A
where_A_ is the average phomon mean-free path, and v iz the average

phonon velocity.



T
Evaluation of the integral in (48) involves the acoustic approxi-
mation w?., M k. If this is not involved, or wﬁv depends on T, one
must use the integral (48) in its general form. In the subsequent work,
the acoustic approximation is assumed, which leads to the Debye e~

quation for thermal conductivity of an isotropic solid. Substituting

(46) into (48), one gets

K = 27Y2 //K’ZJ X v2k k2 dk, where, (49)
using (38)
)):}wk %wk
o] 2

gn, kg T € kg T Wy

hw, 2

.—E-——,i;——--l 1) ,
B

For isotropic media, vk = v ig the acoustic velocity, assumed
the same for all modes of vibration, and taken to be constant. Thus,

also, dk = d CUk/v. Substituting (50) into (49), one gets

Lnax }f’w/kBT
/“C(w)w 7’7“’2 CM L, w2aw.
v{ ky T (e /keT-l)

One defines the dimensionless variable

ﬁw

whence

and
kg T 3 k, @'r
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or finally the Debye expression for thermal conductivity is

kBl+ 1’ g b ax |
- X € ax, 51
K 21['21‘)3‘, O/ ‘Zl(x) (ex j 1)2 ( )

wvhere @ - ﬁ wm ax/kB is the Debye temperature.

B, Relaxation-Time Rationale

1. Law of Combination of Relaxation Times

Attention now focuses on T(x), hereafter called the combined
relaxation time, or the lifetime for nonequilibrium states, labelled
‘ﬁw, to decay to the equilibrium states.

There are many different phonon scattering processes; one proper-
ly adds their respective scattering amplitudes (i.e., the wave functions)
and computes net scattering probability from this sum. However, if the
scattering centers are sufficiently separated, the scattering is mostly
incoherent, which permits addition of cross-sections, each numerically
an independent probability for a collision process, to get total
scattering probability. Thus, if the cross section for the kth moade in
process 1 is ki’ the mean free path is

'/\ki " "n %:—ki =Tyvy -
whence

O' - 1 = 1 .

ki nvk‘Z:‘i o Ay

The number of scattering centers per unti volume is n. The scattering

probability for all the different processes is then a"k = Z G'Ei =
i

1/n v = 1/‘[‘i = 1/n N T ti are the scattering relaxation times
. 0 / ]
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" for the different processes.

Thus, 3% = :zi%. is assumed, valid only if scattering proba-

i~i ,
Bilities are independent. Validity has been examined theoretically amd
experimentally, it seems that for low temperatures the effects of

different scattering processes are properly combined thus.

2 Belaxation Times for Different Scattering

Processes

There remains a discussion of the scattering mechanisms, and
their relaxation times. There are phonon-phonon interactioms, point
defect, boundary, and magnetic ordering interactions with phonons.
These are nere considered with their regions of dominant contribution

to the thermal conductivity.

a. Phonon-Phonon Interactions

Only three-phonon interactions are considered; mutual inter-
actions among more than three are believed of very low probability.
The three-phonon interaction gives rise to either of two processes;
normal processes, and umklapp processes.

Normal processes are described by conservation of energy,

B w +ﬁw2 = 17'0-’3, and conservation of momentum, -]? +X% =k these

1 17 F2 T RS
give no contribution to thermal resistance, their effect is indirect,
through stabilizing the equilibrium distribution.

Umklapp processes, for which momentum is mot conserved, are

described by

- - - —
k1 + k2 - k3 + G;

- = R -

k, + k, is outside the first Brillouin Zone; G is that reciprocal

1 2
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lattice vector necessary to return'E; to the first Brillouin Zone. The
effect, equivalent to a Bragg reflection of crystal planes, means that
some total momenta each have a component that is reversed in direction
from the corresponding component of the vector sum“E; +“§;, hence the
term "Umklapp Scattering."

A short plausibility treatment of relaxation time for umklapp
processes is introduced for the sake of continuity, based on the inte-
gral theorem of the mean value. Umklapp processes begin for two inter-
acting phonons which have each.reached a momentum corresponding to &
wave vector'ﬁ'which equals half the effective radius of a Brillouin
Zone.23 Call this wave vector-E;in, and consider that only uwmklapp

processes are occurring, or equivalently, that these processes are

dominant. The thermal conductivity for these processes is

@'r 2
L d XX 2
Ky (T) = AT ;/;inZ: s (®) (1 - e_x) x° ax

iy 1 1 ¥
According to the theorem, there is some X', xmiﬁ; X '<:xmax ’

for which

. x
K. (T) = 207 T (x)x12 % > x 2 ax.
’ ’ €{f ( 1-6 )

e X

The value X' corresponds to a particular wave-vector, say

k' = g. At a given temperature,

where
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o B o G0/,

and = ﬁﬁ,ﬁ”(Q) is a constant, fitted by experiment. The expression
for'7fbis of the form usually used; X' is proportional to®(q): one
agssumes Herring's relaxation time for phonon-phonon scattering,cuarB,

and

T (x') = ———F (52)
v bT5e®cfg 2 -

where b is a constant.24 Of course, the dummy varieble X' becomes X in
applications, but o remains constant. The thermal resistance, KU-l, is
proportional to T at high temperatures, and falls exponentially at low
temperatures, as Peierls discovered.25 Umklapp processes are important
typically for@/T< 20; are of consequences above the temperature of
maximun K, unimportant below it. As the K peak is near 10 K in

CuK2014.2H20, these processes are unimportant.

b. Point Defect Scattering

Point defects, such as vacancies, interstitials, impurity ions,
and isotope ions, produce diffraction scatter according to the Rayleigh
scattering formula borrowed from optics. For the isotope ion, the

scatter probability is

L
(k) = “;Dz (& m)2,

where D M is the point mass, D is the crystal density. Thus,

o ()~ w",

and

1
Tp R
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is the point defect relaxation time, which also can be expressed

1l
- =L (53
‘Z; Bx'T : )

A' and B are constants fitted by experiment. Thermal conductivity due
to point defects is greatest for low frequencies; thermal resistance
increases fast with frequency, as point defects begin to dominate. A4s
point defect scatter is appreciable before the kmin of the umklepp
processes is reached, this relaxation time is includedlin the combined

relaxation time, T .

¢. Boundary Scattering

Boundary scattering of phonons affects conductivity in the follow-
ing way. The mean-free path,/\ﬁ s for scattering, is inversely pro-

portional to the number-density of scattering centers. 44.0 is dominated

k
by phonon-phonon processes at high temperatures; as temperature falls,
the number density of phonons present lowers, and the mean-free path
increases. These are long wavelength phonons for whichJA;iljz_ L, a
crystal dimension. For these,J\zi can't increase. As temperature
lowers, eventually thermal resistivity is dominated by such phonons.
The crude thermal conductivity expression K == const. x cvyj\suffices to
show, that a54ﬁ;=L, K must decrease with further temperature decrease
because this is the behavior of the mean specific heat, C.e K reduces
to a '1‘3 law near O K.

Casimir26 likened a long crystal to a cylindrical tube with
perfectly black walls, and the phonon gas to a fhoton gas. To this he

applied block-body radiation theory, with T low enough that phonon-

phonon interactions were negligible, the walls were such that radiation
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* wag diffusely scattered.
The result was a boundary-scatter relaxation time

L
1:8 =Ty

where L is a Casimir length26 computed from the crystal geometry. For
a square cross-section, of gide a, L = 1,12 a. For a rectangular cross

section, say .3 cm x .5 cm, L = .4 om. More generally, L = 1,12 A, A

being the sample cross-section.

d. Scattering Due to Magnetic Ordering

The magnetic-order acattering relaxation time is here introduced,
which is to be the object of investigation. It is postulated4 to fit
the Laramore and Kadonoff12 Theory, and the Kawasakil3 conditions:

-1 _pwdr

T (5%)
¥ cr lg|P +w
where
T - Tc
6 = ]
T
c

and Tc is the Curie-point for the magnetic phase transition, p is a

eritical exponent, and D', C' are constants.
C. The Use of Thermal Conductivity

LTne reciprocal lifetime of the scattering processes within the

temperature range of investigation is then

w2
1 _ 1 1,1 _ ¥k, DTw

v
= +
T Y:B YZP ’Ch L crlel? +w

It is convenient to define

ks

C = —k-';C', and D-—:ﬁ——‘:ZB D', whence
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T =L 1 - : (55)
v 2 :
l + BTAX# + DX T
cleyf + X

expresses the lifetime in terms of the parameter X. The denominator

terms are dimensionless forms of relexation-rates:

'35'1 = 1+ BT

the "diamagnetic" rate or boundary and point-defect rates combined, and

, 2 .3
-1 DX° T o

the mssumed magnetic scattering relaxation rate. {l= C €? is the rate
/
of magnetic ordering fluctuations, corresponding to {lacreP o
The thermal conductivity, where A, C, and D are constants, is

then

CE& 4

X
K,A&/ x* o* ax , (57)
(ex_l)z( b by AT&E)

[} 1+BTX +
ceP + m

which is the analytical tool for exploring the magnetic phase transition

phenomena near the critical temperature, To' The constant 4 is

4

k 3
fe——BVTL ’

2T!'2}%_3 v

and constants, B, C, D, and p are fitted by experiment.
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