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CHAPTER 1

INTRODUCTION

Statement of the Problem

We are often faced with the problem of having to
decide what classification to assign to a set of
observations given that the observations are derived from
one of several classes or groups. In Geophysics for
example Shumway (1982) and Tjostheim (1975) have
considered the classification of a given seismic pattern
as coming from an earthquake or a nuclear explosion. In
Engineering, the problem is that of detecting a radar
signal or equivalently discriminating between a pattern
generated by signal plus noise and noise alone. Similar
gquestions exist in such diverse areas as Medicine,

Speech and Agriculture.

In all of the above circumstances we are required
to use the available information about a given set of
classes to identify the origin of a new data set
according to some specified criterion. In this study we
are interested in the classification of a time series that
obeys the autoregressive model.

We are concerned with the problem of classifying a



given finite empirical time series YN=(y(l), y(2), ...,
Yy(N))’ into one of two mutually exclusive autoregressive

(AR) populations (or classes) 81 and ¢, having unknown and

2
possibly different orders P, and P, respectively. YN is
generated by a stochastic process from one of these

classes and obeys the AR equation given by

p

Z‘PjY(t‘j) = g(t), t=p+l,...,N , (1)
j=0

where

¢0=l, {e(t)} is a sequence of independent and identically
distributed normal random variables with mean zero and
variance 1/t , ©t > 0, and p = (wl,...,wp)’, the set of AR
coefficients, is a vector of solutions to the difference
equation (1) such that the process {y(.)} is weakly
stationary. We note that the difference equation in (1)
may also be written as the following regression equation:
y(t) = @yv(t-1) + g,y(t-2) ... g y(t-p) + e(t), t=p+l,
...,N. The stationarity of a stochastic process is defined

below.

Stationary Stochastic Processes

A real-valued stochastic process {y(t), t=0,%1,
+2,...} is said to be strictly or (strongly) stationary in
distribution if for any n=1,2,... and any n-tuple (tl,

., tn) and k integers,



F(y(t), «.op ¥(E))) = F(R(E +K), ooy y(E 4K)),

where
F(y(tl), c e y(tn)) is the n-dimensional distribution
© .
function of y(tl), R, y(tn).
In this study, a weaker sense of stationarity will do.

A stochastic process is said to be weakly or covariance

stationary if the first two moments exist and are time
invariant. This definition means that a covariance
stationary process will have constant mean, variance and
covariance. Henceforth the term stationary will refer to

covariance stationary. ‘
The stochastic process may thus be characterized by
the parameter

9i=(¢Pi': Til Pi)', i=1,2.

That is, 2% Y
by

N comes from class 8i’ this fact is symbolized

YN ~ AR(pi), i=1,2.

The classification problem is to formulate a decision
rule which divides the ocbservation vector YN into two

disjoint regions (Cl, Cz) so as to minimize the probability

of misclassification of Y,, into one of the classes 81 and

N
32.
The probability of misclassifying YN that originates

from class 81 is given by

ICP(YN|Gl)dYN ,
2



where P(YNlel) is the conditional probability of observing

YN given that YN originates from class ¢, and dYN =

1
dy(l)...dy(N). Further, suppose my denotes the
unconditional probability that YN comes from class 81 and
¢(1]2) is the penalty or cost for misclassifying YN as
coming £rom ﬁl'yhen it in fact comes from 32. Then the

expected cost of misclassifying YN that originates from 81

is given by
c(1l2)mljC P(Tyl0))dYy .
2

Defining m, and ¢(211) similarly, the expected cost of

misclassifying YN is

c(1|2)mlfc P(Yyl6y)a¥y + c(21l)m,[ P(¥y|0,)a¥y .
C
2 1
For specified values of my and My, the Bayes solution
to the classification problem is obtained (Anderson, 1584)

by assigning YN to cluass 81 if Y, falls in the region

ot
defined by

x P(¥ylo,) m,c(l12)
‘1 5T T ETYTe,) * mstETDy |

otherwise assign Y,_ to 82

N
1f my=m,, that is, the two classes are equally likely
and if equal costs of misclassification are incurred, then
the above assignment becomes
* .

where



P(Y, ]6;)
(3)

§,,(Y, ; 6,,6,) = 1ln
12N 172 [ P(YNlez)
is called the Discriminant Function.

Now 812(Y ;61,62) is unknown since it depends on the

N
unknown AR parameters el and 62. The classical procedures
estimate 612(YN;61,62) by first estimating el and 62 and
then replacing el and 62 with their estimates. These
estimation procedures are referred to as estimative
methods and include the technigques of maximum likelihood,
least squares, Burg, and Yﬁle-Walker. This study proposes
an alternative approach to the approximation of
612(YN;61,62).

The alternative procedure estimates 612(YN;61,62) by
replacing P(YNlei) with P(Ylei), called the predictive

probability density of Y  given the training realization

N
xi=(x(l), x(2), ... x(Ni)) from class ﬂi, i=1l,2. This
classification procedure is performed in both time and
frequency domains and is the basis of this investigation

whose objectives are given in the following section.

Research Obijectives

1. Identify prior probability densities for the AR
parameter 6 = (¢, T, P). These priors are given in Chapter
III. The priors proposed for the AR order p are new and to

the author’s knowledge, have not been used elsewhere in



the iiterature.

2. Use the priors in objective 1 above tq derive time
domain and frequency domain predictive discriminant
functions for the classification of the test realization
YN' The derived functions are unique and new becéuse no
Qalue of the AR order is assumed; other forms of the
predictive discéiminant functions assume known values of
the order p.

3. Conduct a simulation study to evaluate the relative
Aperformances of the estimative and predictive discrimination
procedures. To the author’s knowledge no such study has been
doné previously. The éimulation study is done in Chapter 1IV.

4. Compute the J-divergence rate (Shumway and Unger,
1974). The J-divergence rate gives a measure of distance
'(the amount of information available for discriminating)
between the two classes 81 and 8,. The J-divergence rate is

defined as
I(1,2;¥)=1(1;7 ) +1(2;Yy)

where

Bo(0)  (Ey())
I(l;YN)zEl f-I-('a-) -.1ln -1 ’

fy(0) (£ (o))
1(2;Yy)=E, £570) ~ ln £,70) -le,

and Ei is expectation with respect to class 8i' i=1,2.

I(i;Y) is the Kullback-Liebler discrimination information



(Parzen, 1982) for measuring the distance between the

spectral densities fY(m) of Y_ and fi(w) of Xi, the

N
training realization from class 8i, i=1,2.

Predictive discrimination in the time domain involves

the use of the predictive density of YN in the evaluation

of the discriminant function. In the frequency domain, the

discriminant function is based on the spectral density of

YN evaluated at the frequencies 0, 1/N,...,(N-1)/N. .

The Methodology of the Proposed Solution

The basis for this research is the notion of
predictive discrimination from the works of Geisser (1964),
Dunsmore (1966), and Aitchison and Dunsmore (1975). The
essence of this procedure is that P(YNlei) in the
discriminant function in equation (2) is replaced by the

predictive density P(YNlXi) defined by

IGP(YN,ei,Xi)de

Fyly) = i P(X,)
i
IGP(YN'ei’xi)P(xilei)P(ei)dei
_ 4
P(X,)

I@P(YNlei)P(Xilei)P(ei)dei
i

P(Xi)



where @i is the support for ei, the test realization YN is
independent of the training realization Xi from class 81,
P(xi) and P(ei) are respectively the marginal probability
densities of Xi and ei; given the AR parameter ei from
class ﬁi’ P(Ynlei) and P(xilei) are respectively the

conditional prdbability densities of Y, and Xi'

N

The primary purpose of this study is the
classification rather than the identification of a given
autoregressive time series of unknown order p. Hence p will
be assigned an a priori probability density which will be
eventually summed out in the course of the analysis.‘If the
order p is known, or a reliable estimate exists, then the
prior density becomes unnecessary and such knowledge would
_lend to a substantial reduction of the computational
effort.

Hermans and Habbema (1975) have demonstrated that in
discriminating between two normal populations, the
estimative procedure of maximum likelihood and the
predictive discrimination have approximately equal error
rates when there are a large number of training
realizations. In the case of small sample sizes, however,
simulation studies by Aitchison et al (1977) and Moran and
Murphy (1979) have shown that the predictive approach has
a lower error rate than the maximum likelihood procedure
in discriminating between two multivariate normal

populations. Aitchison and Dunsmore (1975) explain this



discrepancy by the fact that whereas the estimative
procedures ignore the sampling variability of gi(xi) (that
is, ei estimated from the training data xi generated from
class 81), the predictive density weights the possible
distributions of P(YNlai) on the plausible values of 6i,

i=1,2. In our case, we will examine the error rates from
the predictive and estimative procedures for the
classification of time series. In particular, we will be
interested in finding out if the conclusions stated above
hold when we discriminate time series data from an
autoregressive process. It is also of interest to relate
the classification of a time series to the overall scheme
of time series analysis. This relationship is best
explained by first stating the usual objectives of time

series analysis.
The Analysis of Time Series

The study of time series usually starts with a
determination of the model that best describes the series.
The representations for time series are defined in terms
of the stochastic processes, linear or nonlinear, that
give rise to the series. This study considers only linear
processes and may be represented by moving average (MA),
autoregressive (AR) or a combination of these, referred to
autoregressive moving average (ARMA) models. These models

are defined in the next section.
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(i) Time Series Models

Moving Average Processes. The moving average model for

the time series y(t) is a linear combination of a sequence

of uncorrelated random variables given by

y(t)

u o+ e(t) + wlc(t~l) + wze(t-Z) +

()]
u Ywse(t-3)

j=0
‘where ¥g =1, {e(t)} is a sequence of uncorrelated random
variables from a fixed distribution with constant mean and
variance. {e(t)} is called a white noise process.

If only q of the y weights are nonzero, that is, wk=0,

if k>q, then the resulting process is called a moving

‘average process of order q and is denoted as MA(q).

Autoregressive (AR) Processes. The autoregressive

model for y(t) is obtained by regressing y(t) on its past

values and a white noise process, {e(t)}. That is,

y(t) = pyy(t-1) + g,y(t-2) + ... + e(t)
w
= Yoyy(t-3) +e(t).
j=1

If only p of the ¢ weights in the above representation
are nonzero, then the resulting process is said to be an

autoregressive process of order p, and is denoted as RR(p).
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Autoregressive moving average (ARMA) Processes. A

difficulty that is often encountered in restricting a time
series model to only the autoregressive or the moving
average is that a very large number of parameters may be
needed. An alternative to either model is the mixed
autoregressive'moving average ARMA(p,qg) given by

y(t) = @q¥(t-1) + @py(t-2) + ... + o y(t-p) +

wle(t-l) + wze(t-z) +‘... + wqe(t-q) + eg(t).
The analysis of a given time series typically

Ainvclves de§criptive, inferential, forecasting and control
procedures. The basic features of each of these analytical

schemes are given next.

(ii) Describing a Time Series

Sample statiétics and graphs are used to describe a
time series in order to have a better understanding of the
stochastic process that generated the series. In the time
domain analysis, some of the statistics that are used most
often include the autocorrelation coefficient, the partial
autocorrelation coefficient and the autocovariance.

.Given a time series Yn=(y(l), y(2), ...,y(n))" of
length n, the autocorrelation coefficient of lag v is

defined by

= Y(D) = 1
p(u) -7—-(5‘), 1% ,2,...P,
where y(v) =Cov(y(t+v), y(t)) is the autocovariance

function of lag v; y(0). the autocovariance of lag 0 is



the variance of the series. The sample estimate of p(v) is

given by
A
by = L), (8
7(0)
where
' n-p
36) = £ Y(r(tw)- (x(B)-y) , » <,
' t=1
and
n
- _ 1
Yy = Y y(t)
t=1

A plotéof 6(») versus p is called the correlogram. The
correlogram is useful for identifying an MA(g) process. If
'thé'ééf;éiogram of a time series vénishes after lag g, then
the series may be identified as having the moving average
'structure with lag q.

The partial autocorrelation coefficient of lag v is
the correlation coefficient between y(t) and y{(t+v)
after eliminating the linear effect of y(t+l) ,...,
y(t+v-1). Given the autoregressive series of order p, the
sample partial autocorrelation coefficient, denoted ﬁj,
j=1,2,...,p, is obtained by simultaneously solving the set

of linear equations:

P

6(k>=z R B(k-3),  k=1,....p.
i=]
J:’:

The graph of ﬁj versus j is called the sample partial
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autocorrelogram and drops to zero for all j>p. The partial
correlogram is extremely useful for a preliminary estimate
of the AR order.

Other descriptive measures usually considered in a
preliminary time series analysis are given in the
frequency domain. The basic theory of the frequency domain
{or spectral analysis) of time series is given in the last
section of this chapter. In this section, we will only
define and intérpret the spectral density function, the
(cumulative) spectral distribution function, the
periodogram and the cumulative periodogram.

The sample spectral density of Yn=(y(l),...,y(n))' for

the frequency Oy is

n
E(o)= 1) y(t)exp(2ni(t-1lo )12,
t=1

where 3=/(-1), o= 2t , k=1,2, ... ,[n/2]+1 and [x] is the
largest integer less than or equal to x. The graph of

g(wk) Versus w, is called the periodogram of Y- The
periodogram exhibits peaks at frequencies that correspond
to periodicities in the series Yﬁ”and is thus useful for
determining the periodicities of an AR series. The
periodogram of a white noise (purely random) series is

flat and withoutbany peaks. This flatness property may be

utilized for a preliminary identification of a white noise



time series.

There are equivalent expressions for the ordinate of

the periodogram that are often used. These include the
standardized periodegram ordinates
£(0) £(0y)
—3 and ‘log "fif' ’
b ; c

where

=

”I

n
8% = =Y (r(t)-N? and '§=-r1,—2 7(t).
t=1 t=1

The sample spectral distribution function of Yn is

Jumps in the cumulative periodogram, the plot of F(mk)
Versus o, at various values of Wy correspond to

periodicities at the respective frequencies.

(iii) Inference

The statistical inferences in time series analysis

, k=1,2,...,q and g=[n/2]+1.

14

deal for the most part with the estimation and testing of

time series models as well as the distributional
properties of estimators. Both parametric and

nonparametric techniques for model estimation are well



covered in most texts onvtime series analysis. These
include Box and Jenkins (1976), Priestley (1981), Diggle
(1990) and Wei (1990). In this study, we summarize, for
fixed order p, the estimation of p and = for an AR(g,z,P).
The estimation procedures are due to Burg (1967, 1968)
and Yule-Walker (Box and Jenkins (1976)) and are briefly

stated next.

The Yule-Walker estimate for ¢ is obtained by
replacing p and the matrix P with the sample estimates in

the following Yule-Walker equations:

where
1 p(1) ... p(p-1)
P - 9(1) % e P(?'z)

pp-1) p(p-2) ... 1

’

Pzilrp(l)rp(z):---:P(P-l))’r S(V)l V=0,1,--.,P-l is as
defined in equation (4). The estimated white noise

A-1l

variance T is given by

P
Lo z B,
j=0

15

where Q(j) is the sample covariance function is as defined

by equation (4). The other estimative procedure is due to

Burg (1967, 1968).

The expression for ?_l above is readily obtained from

multiplying
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y(t)=py(t-1)+py(t-2)+.. . +py(t-p)+e(t)
by y(t) and taking expectations, noting that E(y(t)e(t)) =
T-l, the white noise variance.

I1f Yn ~ AR(p) and p is fixed, ¢ and t may be
estimated by an entropy-based procedure due to Burg (1967,
1968). Burg’s procedure has been found to produce a
superior»estima£or to that due to Yule-Walker in the case
of small sample sizes, and also when Yn is close to being
‘nonstationary. The combutational algorithms for the Burg
and Yule-Walker procedures are given in Chapter III,
section 3.1. If the order p of the AR series is fixed and
unknown, numerous procedures exist for the”g§P§?§Eigp of
P.

The estimation of the AR order p of a time series has
’received considerable attention from researchers in time
seriesfanalysis. The vast literature on this topic deals
with various estimation criteria, many of which are
related. The AIC (Akaike Information Criterion) of Akaike
(1971, 1974), and various férms of it, have become some of
the most widely accepted of the criteria. The AIC for a
time series of order j is defined as

AIC(j)=-210gL(a)+23, 3=0,1,2,...

where Q=(Ql,32,...,&j)’ are the maximum likelihood

estimates of the model parameter o and L{«) is the
likelihoed function of «. The RIC determines the order by

selecting the j for which AIC(j) is a minimum.
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shibata (1976) has shown that the AIC is inconsistent
and tends to overestimate the true order no matter how
large the sample size. Schwarz (1978) and Hannan and Quinn
(1979) have modified the AIC to ensure consistency by
replacing 23j in AIC(j) with log(n) and log(log(n))
fespectively. Lutkepohl (1985) has used simulation
studies of certéin multivariate processes to compare most

of the current order estimation criteria. Having
understood the underlying stochastic process that
generates a time series and having estimates of the model
parameters, we would want to use such information to
predict or forecast, and possibly control, the future

values of the time series.

-(iv) Forecasting and Control

An importantvcomponent of time series analysis is
forecasting, that is, predicting the future behavior of a
time series. The ability to correctly forecast a process
enables us to control, or at least prepare an appropriate
response to, the future behavior of the process. The
importance attached to forecasting is reflected in the
considerable literature on forecééting techniques.
standard forecasting techniques such as the Box-Jenkins
approach may be found in most texts on time series
analysis such as Box and Jenkins (1976) and Andersoh

(1984). In this study, we are concerned with identifying
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the origin of a given series rather than the forecasting
of future values of that series. We are also interested in
how time series discrimination relates to the classical
analysis of time series.

The problem of time series discrimination is essentially
an inferential procedure since, in contrast to
forecasting, discriminant analysis and the conclusiqns
therein pertain only to the current observation at hand.
Predictive discrimination differs from the standard or
classical discriminant analysis only in the way that the

discriminant function in equation (3) is approximated.
Frequency Domain Analysis

Frequency domain analysis may be defined as inference
regarding the spectral density function. The principal
concept in the frequency domain (or spectral) analysis of
a time series is that the series can be expressed in terms
‘of independent sinusoids. A sinusoid is a combination of
sines and cosines. In general a discrete stationary time
series y(t) measured at unit intervals has the spectral
representation (Priestley (1981), Newton (1988)) given by

the stochastic integral

1 1
y(t)=fcos(2ntw)du(w)+fsin(2ntw)dv(w),
0 0

where u(w) and v(w) are uncorrelated stochastic processes
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with orthogonal increments. The expression of y(t) as the
sum of independent frequency components is analogous to
the analysis of variance where the effect of a treatment
on an experimental unit may be viewed as the sum of
linear, guadratic and higher-order effects that are
statistically independent. An important time domain
measure that haé é spectral representation is the
autocovariance function y(v):

1
1(»)=J cos(2mw)dF(w), »=0,1,2,... ,
0

where F(w) is called the spectral distribution function
and represents the contribution to.the variance of the
series by all the frequencies in the range (0,w). The
.total variation of the series is thus F(l) given by

F(l)=y(0)=variance of y(t).
For a discrete stationary process, F(w) is a continuous
function on (0,1) and may therefore be differentiated with
respect to v in (0,1). Hencé

dF(w)

f(w)= - T

where f(w) is called the spectralﬁdensity function or

simply the spectrum. y(v) may therefore be expressed as

1
()= cos(2mw)f(w)dw, v=0,1,2,...
0

The quantity f(w) represents the contribution to the
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variance of components with frequencies in (w,w+dw). Thus
a peak in the periodogram implies an important
centribution from the frequencies in that interval. It
turns out that just as the autocovariance function y(w) of
a stationary stochastic process can be expressed in terms
of f(w) as a cosine transform, an inverse relation exists

whereby f(0) is the following Fourier transform of y(v):

4]
f(w)=-%— Z y(v)eiwp.

VE-®
The autocovariance function and the spectral density
function are thus a Fourier pair.

Chapter II provides a historical perspective tq the

classification problem with particular attention to time
series and predictive analysis. The main'results of this

study are given in chapter III.



CHAPTER II

LITERATURE REVIEW

Time series has been studied since the 1920’s but most
of the literature is devoted almost exclusively to model
estimation and forecasting techniques. A series of
observations indexed in time often produces a pattern
which may form a basis for discriminating among different
classes of events. The Discriminant Analysis of Time
Series may be studied in the time domain or the frequency
domain. McLachlan’s book (1992) offers not only a good
account of the recent developments in discriminant
analysis but also provides an extensive bibliography of
the literature in the field.

The problem in time series discrimination in time
domain is that one observes a discrete parameter time
series {y(t), t=1,...,N} at each of N points in time with
the objective of classifying the observed series into one
of two mutually exclusive and exhaustive categories 81 and

g The sampled time series is conveniently represented as

9°
an Nxl1 vector YN=(y(1),y(2),...,y(N))’. The classification
problem then reduces to one that is well covered in

standard texts on Multivariate Statistical Analysis such
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as Anderson (1984). The standard optimal classification

rule (Bnderson, 1984) is to assign Y, to

N
P(YNlel)

'81, if P-z-?;l—re—pz c ,
82, otherwise.

When P(YNlei) are Multivariate Normal, MVN(ui,Ei),
i=1l,2 the above rule is reduced to Wald’s (1944) criterion

which, after simplification, classifies Y, into

N

81,»if W(YN)zlog(c);
82, otherwise,

where the discriminant function W(YN) is given by

WLQ)=T'A = 2 (=) T (g mity)

and Aléznl(”l-”z)'

The discriminant function W(YN) will provide the basis
for assessing the error rate of our rule and will be
estimated from the training ‘realizations. The error rate
is the estimated probability of misclassification and in
this study will be defined as the proportion of
misclassifications to the total ﬁﬁmber of test
realizations. The distributional properties of W(YN) have
been studied by Wald (1944) and Anderson (1951). An
alternative classification rule based on the likelihood
ratio criterion involves the discriminant function Z(YN)

given by
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N
2 5 % 13 3
Z(YN) =

N
1 5 % ,a15 3

where Xi is the mean vector of the training realizations

averaged over Ni units, i=1l,2, Y. is the mean vector of

N
the test realization averaged over N units, $§ is the
covariance matrix of the test realization YN and n=N1+N2.

The distribution of Z(YN) is known (Anderson, 1984) to
be asymptotically equivalent to that of W(YN). However the
immense difficulty in calculating their exact distributions
has turned efforts to their limiting distributions.

Okamoto (1963, 1973) has obtained the asymptotic
expansions of W(YN) and Z(YN) to terms of order n_? while
lSiotani and Wang (1975, 1977) have extended the expansions
to terms of order n-s. The compiexity in evaluating these
probability distributions coupled with the cumbersome
matrix calculations involved have severely limited the use
of these time domain rules. An attractive alternative form
of analysis is found in spectral (or frequency domain)
analysis. The use of spectral approximations in statistical
discrimination has been fairly standard since the early
1950’s. Shumway (1982) has used approximations by Wahba
(1968), Liggett (1971) and Shumway and Unger (1974) to

discriminate between earthgquakes and nuclear explosions.

Tiostheim (1975) and Tylor and Marshall (1991) have
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utilized autoregressive techniques to classify earthgquakes
and nuclear explosions. In Dargahi-Noubary and Laycock
(1981) the Kullback-Leibler information measure has been
used to identify the relevant frequency bands for the
discrimination of stationary time series while an estimate
of the error rate is derived from spectral ratios.
Dargahi-Noubary:(1992) has further shown that if classes
have equal mean functions, discrimination based on the
frequency with the largest Kullback-Liebler information is
equivalent to classification based on the best linear
discriminant.

Kashyap (1978) has however demonstrated that in
discriminating among autoregressive processes the
methodology of time domain analysis can be simplified to a
‘useful form. Utilizing the autoregressive structure of the
observation vector Yy he derived an optimal feature which
is not only amenable to easy computation but more
importantly possesses all the information contained in YN
that is relevant for classification. The resulting optimal
claSsification'rule, unlike the procedure suggested by
Wald (1944) and related forms of it, is not quadratic in
all the feature components, even for large N. Krzysko
(1983) has extended Kashyap’s (1978) results to
multivariate autoregressive processes and, has also
investigated the true order of the multivariate

autoregressive equation by minimizing the posterior risk.
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The time domain analysis portion of this study will be

done along the lines of Kashyap (1978) and Krzysko (1983)
but will incorporate the notion of predictive analysis in
discriminating between autdregressive classes. The

spectral analysis will be treated principally along the
lines of Cook (1985), Dargahi~Noubary and Laycock (1981)
and Dargahi-Noubary (1992). This study incorporates
predictive analysis in the discrimination of time series.

A brief discussion of the basic concept of the predictive

procedure is appropriate at this stage.
Predictive Analysis

The essential feature of Statistical Predictive
Analysis is that from the information at our disposal we
wish to make some reasoned statement about a future
observation. Formally the predictive density of a future
observation given the available data is obtained as
follows:

P(futureldata)=fP(futureldata,parameters)
.P(datajparameters).d(parameters)

Jeffreys (1961), by the formulation above and, Fisher
(1935) from the fiducial argument, derived the predictive
density for observations following a univariate normal
density. Zellner and Chetty (1965) derived the predictive
distributions for the multivariate regression model.

Geisser (1964, 1966, 1982) has applied the multivariate
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normal extension of Jeffrey's (1961) derivation %o
discriminant analysis.

The Bayesian predictive discrimination of time series
overlaps with the general Bayesian analysis of time series
as formulated by Zellner (1971). Harrison and Stevens
(1976) and Chow (1975) derived Bayesian forecasting
techniques that‘are based on the Bayesian predictive
distribution of future observations. The use of the
predictive density function for forecasting has been
studied further by Shaarawy and Broemeling (1984) and by
Broemeling and Land (1984).

In this study we are interested in the use of
predictive densities for the discrimination of
autoregressive processes of unknown and possibly different
lorders. The various analytical procedures in both the time

and frequency domains are given in the next chapter.



CHAPTER III
TIME SERIES DISCRIMINATION

Preliminaries

The observed time series vector YN=(y(l), y(2), ...,
y(N))’ from the AR process of unknown order p may be
partitioned into

YN=(YO, z)',
where Y0=(y(l),...,y(p))’ serves as the set of initial
conditions to the difference equation (1) in Chapter I and
Z=(y(p+l),...,y(N))’. Hence the difference equation (1)

may be expressed as

Z = Wp + ¢, (5)

where. ,

y(p) y(p+l) ce y(1)

y(ptl) y(p) cee ¥(2)

W(N-p)xp . : d
y(R-1) y(N-2) ... Y(N-p)
lp=(¢1,¢12. .--,tpp)’
and e = (e(p+tl), e(p+2), ..., e(N))’.

Since YO contains virtually no information about 6,
the distribution of YN can be expressed as (Kashyap

(1978)):

. (N-p)/2
p(ryle) = (5] exp(- 5 (z-Wo) (z-Wo) |B(¥g),  (6)

27
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where P(Y0)=P(YOIG).
We introduce the following notation: The statistics with

and ¥ are computed respectively from the training data

Xi from the class 3i, i=1,2 and from the test realization

Yy to be classified. In particular we define the following:
- - P T
® = (WW) "WZ,
th = (1/N)(2-Wp)' (Z-Hp) .

Now, from  (Z-We)’ (Z-We)=[ (Z-We)- (We-Wp) 1’ [(Z-We)- (We-We)]
=(Z2-Wp)' (Z-Wp)+(p-9p) W W(p-9p),

we may equivalently express the probability density of Y

N
from equation (4) as
(N-p)/2 e ~ .~ N
P(ryi0) = 2(%,) (5] exp (- 5 4 L (o) R (p-0)) )
(7)

We may similarly express the probability density
function of Xi=(x(l), x(2), ..., x(Ni))’ together with the

corresponding statistics $i and %;1. The distributional
form of Yy and X, defined a§ove will be utilized in the
derivation of the discriminant functions in the time
domain. The rest of this chapter describes the
estimative and predictive discrimination procedures.

In the time domain analysis of time series, we assume
that observations are taken at discrete and egqual intervals
over a finite period. The purpose of time domain
discrimination is thus to classify time series that are

ordered according to the sequence in which they were
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collected or observed. This time domain discrimination
involves the evaluation of the discriminant function given

in equation (2) of chapter II, and reproduced here as

8y,(Yy ; 6,,0,) = 1 F(Tyloy)
; .0 = 1ln ,
120¥y 7 61,9, P(Y,T6,)

where P(YNlei) is defined in equation (4) and Yy originates
from class i.

In the frequency domain, the classification of the
test realization Yy into one of two AR classes 61 and'82
is essentially a test of the hypothesis

HO: fY(wlel) = fY(mlez), wS(OIl)I

where fY(mlei), as defined in section 3.2.4, is the
spectral density of YN given that YN is generated by
AR(pi), i=1,2.

| At frequency o, Parzen (1982) déscribes the following

information divergence:

1

£, (wl6,) fo(uwley;) ‘
I(fy ()it (0)) = -%H A 1ug{3—-w-—-i-] - l}dw,

£, (o) £; ()

whére fi(w) is the‘spectral density of Xi, i=1,2,.

The information divergence above is also referred to
as a measure of the distance between the spectral densities
defined. We may thus define the following discriminant
function for the classification of Yy into one of the

classes 81 and 32
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81, (Ygif s £5) = I(£,(0) ;£ (0)) - I(Eg(w);f,(0))

1

f (o) £,(0) £, (o)
.%.J { Yo Ty ® + log( 22¥ ]}dw. (8)
fl(w) fz(m) fl(w)

The discriminant rule in the frequency domain is given

as follows:

Classify YN into ¢, if 612(Y f2) 2 0;

1 nEy

otherwise classify YN into &2.
Both the discriminant rules of equation (2) in the

time domain and of equation (8) depend on ¢, t, and p, the
parameters of the AR model. Estimative Discrimination and
Predictive Discrimination in the sections that follow are

attempts at the evaluation of the discriminant functions.
Estimative Discrimination

The estimative approach to discrimination estimates
A A
the discriminant function by replacing ei with ei, where ei

is the estimate from the training realization xi, i=1,2.
The discriminant function 2612, from equations (3) and (7),

becomes

T
(N-pl)log(—fﬂ t t,(2-Wep, )" (Z-Hyp,)
(9)

T
- (W-py)log( o2 | = v (B-Wey)' (2-Wpy).

For specified AR orders P and Py the problem is to



31

determine estimates of the AR parameters 05 and Ty, i=1,2.

If p is known and fixed, then ) (k<p) is defined as
the k-th element of the p-dimensional vector ¢. However to
accomodate changing values of the dimension p, we introduce
a second subscript as follows: O, refers to the k-th
element of the j-dimensional vector ¢. This convention will
be used in the recursive formulations of Burg and

Yule-Walker in the next two sections.

Burg Estimation

The Maximum Entropy Method (MEM) for estimating ¢ and
t of an AR(@) process, 06=(¢,t,p), and a given order p was
first formulated by Burg (1967, 1968). For a series of
limited length, this procedure has been shown to be
superior to other estimation methods for spectral
estimation. See for example Ulrich and Bishop (1975). MEM
is essentially a recursive formulation that estimates the
AR parameters (for known order p) by utilizing only the
existing sample information. That is MEM, unlike other
spectral estimators, such as Yule-Walker, makes no
assumptions on the extension of the available sample
information.

The recursion suggested by Burg (1967,1968) is very
similar to that used in Yule-Walker estimation outlined in
Box and Jenkins (1976, p.82). The principal difference

between these two recursions is the way partial
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autocorrelations ate estimated by the Burg formulation.
Suppose that xn=(x(l), .e., X(n))’~ AR(p) model and
satisfies:

p

o x(t-k) = e(t), t=p+l,....n,

k=0
-where e(t) is white noise (or prediction error) with
variance 1/t. The p-point prediction filter is the set of
coefficients ¢=(¢1,¢2,...,¢p)’ and p is the length of the
prediction filter.

To estimate the prediction filter of length p(2l), the

739{9mgygpedure starts by estimating the coefficient for
p=l and then p=2 and so on. When p=1, the Burg estimate

for 01 1 the first element of a l-dimensional vector is

n-1
2 z x(t)x(t+1)
#1,1 =
! n-1
Y (x(£)1% + [x(t+1)1%)
t=1

The récursion formulation for an arbitrary filter of
length p is given by Andersen (1974). The estimation
procedure involves the following steps:

Etep 1: For m=l, find $1 1 @s given above.

Step 2: Increase m by 1 and Compute

a(m,t)=a(m—1,t)—$m b(m-1,t)

-1,m-1
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and b(m,t)=b(m-1,t+1)-¢ _, __,a(m-1,t+l),
where a(l,t)=x(t) and b(1l,t)=x(t+1).
n-m
2 ) x(t)x(t+m)
Step 3: Compute $m m - = =1
Y (rx(6)1? + [x(t+m)1?)
t=1
Step 4: Compute $m,k=$m—l,k_($nnn?($1n—l,m—ﬁ' k<m=2,...,p.

Step 5: Estimate the white noise variance as follows:
Al _ A-1 _A2

Tm rm—ﬁl ®m,
If m<p, return to step 2;

if m=p, stop. The Burg estimates are given by
8= (9 9 6. )
1,p" ¥2,p" °""' "p,p’’

72 atl (142 .

and p-1'""%,p

Yule-Walker Estimation

The Yule-Walker estimates for the AR Coefficients (for
known AR order p) are obtained by solving the Yule-Walker
equations given in section 1.2, Chapter I. The recursion
for performing the computation is as follows (Box and

Jenkins, 1976):

Step 1: Start with m=1 and compute



n-1
z x(t)x(t+1)
A i t=1
wl,l n
2
) [x(e)]
t=1
Step 2: Increase m by 1 and compute
m-1
A e A Al =
p(m) - ¥ ¢m_1,jp(m 3)
j=1
m~-1
_ A Ap s
1 Z ‘pm-l,j p(3)
j=1

A _ A _ A A - -
where Pnx * Pme1,k " Pm,m¥me1,p-kc KL Pol

and ﬁ(j), j=1,...,p is the estimated autocorrelation of

‘lag j, defined by

Ag
. 6(3) - Z(J)’
3(0)
where
n-1
¥(3) = ) (x(t+3)-x) (x(t)-x),
t=1
n
X = % z x(t),
t=1
%;1 = %;%l(luai.m)’
n
and %51 = '%'Z [x(t)]z.

34
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Step 3: If m<p, return to step 2;

if m=p, stop. The Yule-Walker estimates are given by

8= Dy v By v e D),
l,p 2,p p.p
-1 A1 A2
and 2 = 1- .
t Tp-1(1790p o)

Estimative Discriminant Functions

The Burg discriminant function in the time domain is
obtained by replacing the parameters of equation (9) with
the following estimates:

Substitute Si for 1 using the Schwarz (1978) or

other estimation criterion;

replace N and Ty with the Burg estimates described in

the previous section.

In the frequency domain, obtain the Burg discriminant
function using the estimates in the above paragraph in
equation (8).

The Yule-Walker discriminant functions are obtained in
an equivalent way. The Schwarz (1978) or some other

criterion is used for the estimation of P, -

Predictive Discrimination

The starting point of predictive discrimination is the

prior density for the AR parameter 6i=(¢i’, T Pi)’, i=1,

2. The joint probability density of ei may be expressed as
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the product of the following probability densities:
P(6;)=P(p;lt; ,p;)P(7;Ip;)P(p;), 1i=1,2.

The predictive approach to statistical discrimination
proposed by Geisser (1964, 1966) replaces P(YNIGi) with the

predictive density, P(YNIXi) defined as

1 1
Pj

P(Xi)

where

P(xi)=z.r.cif,pfi’(YN|ei)P(wi v, 05 )B(x; I1p; )B(X, 16, )dp, dr, P(p;)
Py

is the marginal probability density of the training

realization xi'from class 8i, i=1,2 and P(pi) is the

probability distribution of the AR order Py from class 8i.

The expressions for P(ei) and P(Ylei) will be extremely

useful for the determination of predictive densities in

the time and frequency domains.

Probability Distributions for the AR order

(1) Subjective Prior Distribution. The motivation for

this subjective prior arises from Akaike’s (1971, 1974)
Information Criterion (AIC) for the estimation of p.
Schwarz (1978) modified the ARIC to ensure consistency of
the estimator of p while shibata (1976) demonstrated by

simulation that when p < 9, the AIC correctly identified p



37

about 75% of the time. The relative frequency disribution

for the AR order Py from class 8i, i=l, 2 is defined as

follows:
0.75, if pi=ﬁ1,
0. , 1f p. ., .= 1,..., ;
B(p,)= Kgs if p.#b., py= 1 K <9 (10)

0, otherwise,

where ﬁi is estimated from the training sample from the
population si using the Schwarz (1978) criterion; and K is

the maximum value of P, i=1,2.

(2) The Maximum Entropy Distribution. A maximum .

entropy density incorporates the available partial
information but is as noninformative as possible. In
deriving the density for the AR order, the partial
‘information is obtainable from the training sample Xi from
class 8§, i=1,2.

The entropy of the prior density £(p) of p is defined
by Kullback (1958) and Parzen (1982) as

H(p) = )E(p)1ogE(p)
P

where P is the set of allowable values of the AR order p.
In this study we define the maximﬁm entropy prior density
Eo(p) as the g(p) that maximizes H(p) such that EE(pi)=§i,
where ﬁi is estimated from the training realization and
EE is expectation with respect to the probability density
£. The solution to this maximization problem iz, from

Berger (1985), given by



exp(p;i.;)
—_— Y if p, € P;
yexp(p;h;)
0, otherwise

whererlxil<l is a constant determined from EE(pi)=$i,
i=1,2, and P = {1, 2, ..., K, K < o}.

Neting that

_ 1 - exp(Kxi)
z exp(p;2;) = exp(dy) ,
P 1 - exp(li)

we have

‘ l-exp(Kxi)
Eglpy) = o

0, otherwise,

where li is determined from

l-exp(Kx.)
exp(3,) > zexp(piki) = 8.
l—exp(li) P

If we drop the upper bound on K and let K —— ®, then

from

exp(p;x;)

S R e E
exp(p. .

E(p;) = § P i

0, otherwise,

and

38
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o

exp(xi)
zeXP(pixi) = ——,
p.=1 l—exP(xi)
i
Pi -1
E-(p.) = {exp(3;)} {1-exp(2;)}, if p; € P, I3 I<1;
0t 0, otherwise.

That is P; -~ Geometric(exp(xi)).

Hence Eg(pi) = 6i gives

l—exp(li)
6i = expzxis
or exp(xi) = 1 ’
1+6i

yielding the maximum entropy prior density in terms of ﬁi:

-p.
B, (1+d) ', if py e P;
P(Pi) = (11)

o, otherwise.

Joint Prior Probability Density for P and Ty

(1) The Multivariate Normal Gamma. For a specified

white noise variance 1/1:i (ti >0) and AR order p;, suppose
that the a priori probability density of ?; is the
multivariate normal with mean My and covariance matrix

-1 ,
(1/1:i)2i given by

P.

i Pj

1

2 1/2 72 R 7RV )
(2n) Iz Ty exp %;-(wi pi) Zi(wi ui)},
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Py -1
where u; eR and Z;

» @ P; X Py matrix of constants are
the hyperparameters of CH and Ty for fixed P,
Hyperparameters are the parameters of the a priori
distribution of the original parameters.

If the scale parameter Ty has the a priori Gamma
density P(ti) with parameters ai/2 and Bi/2, then

ai/2 a;
(Bi/2) 5 -1 ’
P(ti)z fT5;777—_- T; exp(-Biri/2), a; >0, B;>0

where oy and__Bi are the hyperparameters of T -

The a priori probability density of ei becomes

(pi+ti)/2

P(6;) « T4 exp{—zj-‘ti((wi-ui)’Ei(wi-uiHBi} P(p;), (12)

‘where P(pi) is the a priori mass function for the order of

the AR process from class ei.

(2) The noninformative prior density. If the

distributional form of v is unknown then we assume that P
is simply a vector of real constants in the pi~dimensiona1
plane. In that case, ei is distributed a pfiori as
-3 '
29 (13)

P(ei) < ti P(pl)r Ti>or pi‘:lrzr--- )

where qizO is the hyperparameter for Ty and P(pi) is the

prior probability mass function of the AR order P,
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Time Domain Discriminant Functions

If 0 and T, are jointly distributed as Multivariate
Normal Gamma Prior Density, then p(xi), the marginal
probability density of xi is given (as shown in Appendix

A) by
N,-2p; N, +o; =Py

}P(X )E7) IR, +z, | 1/2(k11+4;1+31) ___7_—_—P(pi)r2,(l4)

where Ai=Wi’Wi is derived from the training realization xi,

_ -1 A
137 (By¥5;) T(Rypi¥Eips ),

_ _ : -1 _
kyi=(oy=pg) B (B4R, ) 78, (9 -y )

and r, =F((Ni+ai-pi)/2).

Again from the derivation in Appendix A, the

predictive density P(YNIXi) is given by

YT menem e T oI5 ey
P,

N. 7p N. +ai_pi ’ (15)
ZH 2 A, +E, & [1‘11%> ) P(p;)T,
where AOi = Wo Wo is derived from the test realization YN

from class 31,
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_o s, -1, 7 °
koj = (@3703) Ry (R +RA) "R, (0-0;),

- A-l -1
Ugi™ By * NjT 7+ Nogo +kgtk,.,

and n, = N+Ni+q-2pi+2.
If the AR orders Py and p, are known, then we may drop
the summation with respect to p; in equation (15) and the

predictive density is reduced to

(Ni+ai—pi)/2

F

1l A-1
1A, +5, | o (k. .+T, +B.)
(N-p.)/2 i 2 1i "1 i
(1/x) i [..__._____L_..] 5 ¢

IRg  +RA; 435 (uoi)(Ni+N+“i'2Pi)/2

where
¢ = (A..+A )hl(A +A )
0i 0i' R4 0iPi7Ri®i /-
- - , : -1 -
kpy = (cgi=ny) ' (Boy+B; ) (Rgi+RA;+2;) "B (cg-py)
T((N+N, +a. -2p.)/2)
and F3 = i 4 1 .

I((N+a;-p;)/2)

Hence, when Py and p, are known, the predictive
discriminant function simplifies to

2D12(YN;Gl,62)=D1+D2+D3+D4+D5+D6,

where

|B n+B . +E. 1
b, - 109,(__.9_2__._2;___2_],
By tBy+E, 1
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A, +2. |
D2 = log(__im_l.],
iA2+221
D, = (N+N,+a,-2p,)log(B sNeoan AT ek 4k )
3 2 72 2 2 2 2°2 02 722
~(N+N, +ay-2p. ) log (g, +Nr 14N 2714k 4k, )
171 °°1 1l 1l 1°1 01 "217°
Dy = (Nl+a1-p1)10g(k11+éi1+31)-(N2+a2~p2)log(k12+égl+32),
b. = log F((N+§l+q1—2pl)/2)
5 T{(N+N,*a,=2p,)/2) |’
and
[ T((N,+a,~2p,)/2)
vDG = logt .
F((Nl+“l-pl)/2)

Suppose that the prior density for ei is the vague or

noninformative prior defined in egqguation (13). Then from

P(xi)=§ ft-fm.P(xiiei)P(¢ilrifPi)P(ti‘pi)dwidriP(pi)’
i
and Appendix A, P(xi), the marginal density of Xi is given

by

. (Ni—zpi)/z —1/2 % -'(ni'N)/2
) B(Xy) (x/2) A1 (28 /M) T'((n;-N)/2)P(p;).
Py
The corresponding predictive probability density, P(Ylei),

is given by
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NPy
(N+N, -3p. )/2 -1 @y T r[”i'Pi )p(pi)
}?n/2) e 1By, +A, | 0i 5

Pj

(N,=75,077 . (7;-N)72 '
Yar2) F T a2 g T r g m/2)R ey
P.

i
(16)
where
-1 A=l
T St S koi
0i 5

The predictive discriminant function is defined as

p(xﬁxxi;).

Dyo(¥yi0y. 92)=1°9['FT?§T§;

If the AR orders P and p, are known, that is P(pi)=1,
i=1,2, the summation signs in equation (16) become

unnecessary and the predictive density P(YNlXi) becomes

(1/x)

(Ni—pi)/z[ 1A, | ].%5' (w, 871y (03772

r.. .
11, ¢
|A;+A (dOi)(ni pi)/2

oil

r((n;-p;)/2)

where rli = F((ni—N)IZ)

Hence, if Py and p, are known, the predictive

discriminant function corresponding to the vague prior
density is
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[A ,+A | Al ~_ _
log(-—gg——g-)+logC——l-)+(n2-p2)log(Nr2l+N2%2l+k02)
IA01+A11 A2|

1

" - A-1 A-1l
=(ny-p;)log (Nt "+N, T, "+kgy, )+(n, -N)log(N T, ")

-1
‘(T)2‘P2)109(N2/t\2 )~

Frequency Domain Discriminant Functions

The spectral density of an autoregressive process with

parameter 6 = (p, T, p) is given by (Newton (1988), p.101l)

- 1 T
f(oley) = 5y | , 3=/ (-1), we(0,1).
) pi(k)exp(2nwjk)l2
k=0

f_l(wlei), the multiplicative inverse of f(wlei) is defined
as
Py
-1 - . 2 -
£ “(olo;) = tilz p; (k)exp(2n03k)1®, J=/(-1), we(0,1).
k=0

The multiplicative inverse may be expressed (Cook (1985))
as the following quadratic form:

-1 - 1] (17)
f (0'91)‘t1¢1 Di(w)wi' 05(0:1)1 .

where Di(u) is a P; X p; symmetric matrix given by

1 cosw .. cos(p: -1o
cos® 1 “e cos(pi—2)w

cos(pi-l)w cos(pi—2)w “ee 1



46

The inverted predictive spectral density may therefore
be defined at frequency o by

f‘l(wlxi> }: j £7% (le, )P(X, 10, )P(0; )y, dr,
Py (’Pir ”Ci)

E (f(wle.))
eilxi i
='Eeilxi(ti¢iDi(“)wi)'

If the joint prior density of Py and Ty follows the
multivariate normal gamma density given in egquation (12),

then following Cook (1985), for fixed P -

’ Y - 1 , 7
Eeilxi{tiwiDi(w)wi)} = tr(D; (0)F ;) + -El(Ni+q)BiDi(u)Bi

where
tr(G) = trace of matrix G,
Fli = Ai+Ei,
Foi = WiZi+2iuy.
R L ILTTE NIET I P N

and b

The inverted predictive spectral density becomes

£ 1 01x;) = Ytr(Dy()Fy ) + —%§N1+q)w’Di(m)w}P(pi) (18)

Py

The predictive discriminant function in the frequency

domain may be evaluated from the data by combining
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equations (8) and (18) as follows:

) e 51 d) £71(0)
2—7\‘-2 -:T—-— - T—— + log 'TI"—“ ’ (19)
£y €)) £y (8) £, %)

where 8 = (k-1)/N, is the natural frequency at times
k=1,2, ..., N of the test realization Yy-

The noninformative prior may be obtained from the
multivariate normal gamma pricr by the simple
substitutions:

Ei = 0 and Bi = 0.

Then the inverted predictive spectral density corresponding

to the noninformative prior is

£ (01%;) = JTEr(D; (0)Fyy) + F(N;+a)e'D; (o)o}P(py)
P

1
where
tr(G) = trace of matrix G,

Fi; = By,

Foi = Wiy

B, = F.b &

i 1i “2i°
- ’ Y -1

and by = 2;72;-Fy P15 Foy



discriminate each of the following pairs of AR classes:
two AR(1) processes, AR(1l) versus AR{(2), and two AR(2)
processes. That is, for simulation purposes, the minimum
and maximum AR orders are respectively 1 and 2. This
restriction on Py is solely for computational convenience
to accomodate the immense CPU time required for the

evaluation of the predictive discriminant functions. The
theory has beén developed for any AR order in the range
l < Py < 9, i=1,2. Further, because the AR series are
generated by stationary processes, the mean and variance
of each series assume the values 0 and 1 respectively
without any loss of generality.

The AR coefficients, p; are chosen to ensure some
.resemblance of the spectra for the two AR series being
discriminated. The problem of discriminating between
series with distinct spectra is clearly a trivial exercis
and is not reflective of the practical problems
encountered in the applications of discriminant analysis.
This similarity is readily verified from the superimposed
spectral plots of Figures 1, 12 and 23.

‘The AR coefficients p; used in this simulation study
were generated from a short computer program. The compute
program provided the coefficients and the corresponding

spectral densities from which those in this study were
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chosen. The three pairs of AR processes for classification

are as follows (AR(pi) is autoregression from process si of



order P; . i=1,2):

1. CLASS 1 : BR(1) CLASS 2 : AR(1)
p, = 1 py = 1
p, = -.8258 0, = =.9238
AR Equation: - AR Equation:
y(t) = .8258y(t-1)+¢ y(t)=.9238y (t-1)+e
2. CLASS 1 : AR(2) CLASS 2 : AR(1)
Pl:2 P2=l
¢ = (.2944, .6503) 9, = .9572
AR Equation: y(t) = AR Equation: y(t) =
-.2944y(t-1)-.6503y(t~2)+¢ -.9238y(t-1)+¢
3. CLASS 1 : AR(2) CLASS 2 : AR(2)
P, = 2 ' P, = 2
o = (-.8266, -.934) @ = (-.4939, -.8207)
AR Equation: y(t) = AR Equation: y(t) =

.8266y(t-1)+.9340y(t-2)+e .4939y(t-1)+.8207y(t-2) + ¢

Having defined the AR processes for classification we
must~next obtain the training data from each class.
Training data consist of samples of existing data from
each AR ciass. In the simulation situation these samples
are obtained by generating from each class series of
lengths (or sizes) 50, 100, 200, and 400. The AR series to
be classified, referred to as the test realization, are

generated randomly from each class. The lengths of these
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realizations range from small to large as 50, 100, 200,
and 400. The training data and test realizations are
combined to detefmine the error rates.

For each combination of training data length and
length of test realization, 100 test realizations are

randomly generated from each class and classified

according to each of the six discriminant functions in the
time and frequency domains., The J-divergence rate is also
evaluated for each combination. The entire source code for
the simulation study was written in SAS (using the IML
procedure) ahd is given in Appendix B. Several
difficulties were encountered not only in writing and
running the program but also in the graphical analysis of
-the results.

The greatest difficulty arose from the extensive CPU
time needed to évaluate the discriminant functiomns. More
than 100 minutes of CPU fime {on the IBM computer model
30920) were required to run e :h of the three simulation
cases. This extensive demand of CPU time also restricted
the number of simulation cases to the three listed at the
beginning of this chapter. The OVERLAY pption of the plot
procedure in SAS is available in two-dimensional not in
three-dimensional plots. The lack of the OVERLAY option
meant that in the three-dimensional plotting of (X, ¥, Z),
several values of the third variable, Z could not be

simultaneously plotted for the same values of X and Y.
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Thus whereas SAS plots (without superimposed Z-values) can
not provide a fast and visual comparison of Z-values, such
plots are possible with EXECUSTAT, a software package for
statistical analysis. The complexity of the functions that
had to be evaluted also necessitated the use of
subroutines and modules to perform the repetitive tasks.
All of these subroutines are completely listed and fully
described in Appendix C. Appendix B contains a listing of

the SAS source for the simulation program.



CHAPTER V

SUMMARY AND CONCLUSIONS

The 6bjective of this research was to propose a new
procedure for the discrimination of univariate
autoregressive time series of unknown order. The new
procedure, called the predictive discriminant analysis, is
based on the evaluation of the discriminant function using
the predictive density of the observed series. Since no
population parameters are estimated, the proposed approach
to classification avoids the usual problems associated
with discrimination procedures that are based on parameter
estimation. One such problem is the variability of the
estimates.

Chapter I defined the goals of the study and also
introduced the basic notion of predictive analysis, the
basis of the new classification method. Chapter II not
only gave the historical perspective to the general
classification problem but also outlined the special
difficulties associated with the discrimination of time
series. In Chapter III, the estimative and predictive
forms of the discriminant function were obtained in the
time and frequency domains. The estimative discriminant

functions were based on the parameter estimation
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methods dué to Burg (1967, 1968) and due to Yule-Walker
(Box and Jenkihs, 1976). The predictive formé of the
discriminant function were obtained using various prior
densities for the autoregressive parameter & = (¢’ ,t,p)
defined in equation (1), Chapter 1.

Two prior densities for the unknown order p were
given: the subﬁective prior and the maximum entropy prior.
The joint pfior distribution}of the autoregressive
coefficient » and the innovation variance 1/t was modelled
by the vague prior and by the multivariate—nofmal—gamma
prior. Predictive densities and the corresponding
predictive discriminant functions were derived for each
joint prior density for ¢ and z. These derivations were
.obtained in the time and in the frequency domains. The
simulation study detailed in Chapter IV was based on the -
time and frequency‘domain evaluation of the estimative and
predictive discriminant functions. The evaluated predictive
discriminant functions were derived from the joint vague
prior density for ¢ and ¢ and on the subjective prior for
the order p. The purpose of the simulation was to
investigate the accuracy of the éroposed new classification
technique for discriminating between two autoregressive
processes. To conduct the simulation study, three separate
and independent pairs of univariate autoregressive
processes were chosen for classification.

The first pair consisted of two processes each of



order i; the second involved an AR process of order 1 and
an AR process of order 2; the third case compared AR
processes both of order 2. The three pairs of processes
were simulated and studied separately and independently.
The results and conclusions of the simulation studies are

demonstrated in'the graphs and tables given respectively

in the list of Figures and Tables. The description and

analysis of each graph is given in the next section.
Graphical Analyses

The graphs in the list of Figures are arranged
according to the classification cases. That is, Figures
1-11 pertain to the classification of AR(1l) processes,
Figures 12-22 refer to AR(1l) and AR(2) and Figures 23-33
are for AR(2) processes. The analysis for each plot is
done by a statement of the puréose or objective of the
plot and the results or conclusions to be drawn from the
plot. The plots are arranged and analyzed according to th
following order: spectra, Box and Whisker, Quantile,
3~-dimensional, J-Divergence, Fregquency over Time Domain,

and Relative Improvements and J-Divergence.

Spectral Plots

Figures 1, 12 and 23 contain respectively the
superimposed spectral plots of the simulated series from

the classification of two AR(1), AR(2) and AR(1), and two
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AR(2) processes.

The purpose of the spectral plots is to highlight the
similarity that exists between the spectra of the AR
series being discriminated. Thé closeness of the spectra
demonstrates the difficulty of attempting to classify the

AR series solely by their spectra.

Box and Whisker Plots

The Box and Whisker plots in Figures 2, 13 and 24
provide not only the important descriptive features of the
error rates for each classification scheme but also permit
"an easy comparison of these features among the six
discrimination methods considered.

Each plot contains a central box that extends from the
first quartile to the third guartile and hence contains
50% of the error rates. One whisker extends from the lower
guartile to the minimum error rate observed; the other
whisker extends from the upper quartile to the maximum
arror rate. The plus sign in the box gives the location of
the mean error rate and the center line locates the
median. These features are described for each pair of AR

processes for classification.

AR(1l) Processes. Figure 2 contains the Box and Whisker

plots for the discrimination of two AR(1l) processes. The
six plots correspond to the six discriminant functions:

Predictive, Burg and Yule-Walker, each evaluated in time
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and frequency domains.

An overview of the six plots shows that predictive
discrimination in the frequency domain yields the best
(lowest) error rate of about 15% while the Yule-Walker
procedure, alsq in the frequency domain, has the worst
(highest) error rate of about 52%. The plot also shows
that the predictive discrimination in the frequency domain
has an average error rate of about 24.5%, about 25% of the
rates are under 19%, one half of the rates fall between

19% and 30% and that one fourth are above 30%.

AR(1) and AR(2). The Box and Whisker plot for this

aﬁalysis is in Figure 13. Predictive discrimination in the
frequency domaih, as in the previous case, appears to be
.superior to the other classification methods since it
provides the smallest minimum error rate of about 11% and
the smallest maximum of about 30.5%. The next best
discrimination methods are the predictive in time domain,
Burg in frequency domain, Bﬁrg in time domain, and the
Yule-Walker procedures in the time and frequency domains

in that order.

AR(2) Processes. Figure 24 shows that in

discriminating between two autoregressive series of order
two, the predictive methods (in time and frequency domains)
are almost eqgually effective and perform significantly

better than the other discrimination procedures. The



predictive methods have a mean error rate of 20% and
approximate minimum and maximum error rates of 13% and 36%
respectively. The predictive methods are fcllowed by the
Burg in the frequency domain with an average rate of abkout
25% ; the minimum and maximum rates are respectively 17%
and 46%. The worst procedure in terms of error rates
appears to be Yule~Walker in the freguency domain with fthe
highest minimum rate of about 21% and the largest maximum

rate of 58.5%,

guantile Plots

The guantile plotz in Figures 3-4, 14-15 and 25-26
provide percentiles of the error rates. That is, =ach
‘point on the quantile plot approximates the fraction of
the error rates that are below a particular value. For
instance, consider Pigure 3, the quantile plet for the
frequency domain discrimination of ARl(l) and ARz(l). The
proportion 4735 (or 47.5%) indicates that 47.5% of the
error rates fall below 17% from using predictive
discrimination, 19.5% from Burg and 25% from Yule-Walker.

‘The Box and Whisker and the Quantile plots do not
account for the effects of other variables on the errvor
rates. For instance, the plots do not relate the sizes or
lengths of the training data and of the test realizations
to the error rates. These plots also fail tc account for

the relationship between the error rate and the
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J-divergence rate. The next sections on 3-dimensional and

J~divergence plots examine these relationships.

3-Dimensicnal Plots

The 3-dimensional plots in Figures 5-6, 16-17 and

27-28 show the effects of the lengths of training data and

test realizations on the error rates. All of the plots
show that the error rates tend to decrease (improve) as
the lengths of the training data and test realizations
increase. The question that remains to be answered is a
determination of whichvciassification is best at various
sizes of the training data and test realizations. This
question will be answered on a case by case basis
‘according to the classification of ARl(l) and ARz(l),

AR1(2) and ARz(l) and, ARl(Z) and AR2(2) in that order.

.AR(l) and AR(1l). The plot of Figure 5 (in freguency

domain) shows the Yule-Walkgr error rates to be
consistently inferior to (higher than) the predictive and
Burg rates. This inferiority is most prominent with the
smaller sizes of the training and test data. The edge that
the predictive enjoys over the Burg procedure diminishes
with increasing data size and is virtually nonexistent at
size 400,

Figure 6 (in the time domain) also shows the
predictive procedure to produce error ratez that are

consistently lower than those by the Burg and Yule-Walker
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methods. For large samples of the training and test
realizations however, the three classification schemes

appear to be equally effective.

AR(2) and AR(l). Figures 16 and 17 (in frequency and

time domains respectively) show the superiority of
predictive discrimination over Burg and Yule-Walker.
Whereas Figure 16 shows the Burg procedure to be
consistently better than Yule-Walker, Figure 17 shows
these two estimative methods to produce virtually

identical error rates.

AR(2) Processes. Figures 27 and 28 depict respectively

the frequency and time domain plots for discriminating
‘between two AR(2) processes. Figure 27 shows error rates
that indicate a distinet and consistent superiority of the
predictive discrimination ovér Burg and of Burg over
Yule-Walker.

Figure 28 on the other hand, while maintaining the
predictive as the best procedure, shows Burg as having the
worst error rates especially for small samples. All of
these methods however recover gquickly and have almost
identical rates for large samples. While the lengths of
training data and test realizations have a causal effect
on the error rates, the J-divergence rate attemptis to
account for the magnitude o©f the error rates. This

non~causal relationship will be examined in the rest of
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the Graphical Analyses.

Error Rates and J-Divergence Plots

We recall that the J-divergence rate measures the
amount of available information in the training data and
test realizations for the discrimination of AR processes.
We would thus ekpect the classification errors to decrease
as the J-divergence increases. This fact is validated by
Figures 7-8, 18-19 and 29-30 which are derived
respectively from the discrimination of two AR(1l), ARl(Z)
and ARz(l) and, two BR(2) processes.

All of the plots show the predictive to be the best
classificéﬁién érocedure. As the J;divergence rate
increases, however, the gap in the error rates among the

three procedures narrows.

Plots for Time and Frequency

Domain Comparison

A practical problem inﬁtime series discrimination is a
determination of the more effective domain of analysis;
that is, whether the time or the frequency domain provides
the lower error rates for a given classification
procedure. Figures 9, 20 and 31 attempt to answer this
question by plottipg the quantity 100(TIME-FREQ)/TIME
against the J-divergence rate. FREQ and TIME refer
respectively to the error rates in the frequency and time

domains from a given classification method. Hence for a
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specified discrimination procedure, 100(TIME-FREQ)/TIME
measures the percent improvement of frequency over time
domain discrimination at each value of the J-divergence

rate.

AR(1l) Processes. In figure 9, the use of the Burg

procedure in the frequency domain to discriminate between
two BR(1l) series yields an improvement that lies in the 7%
to 14% range. Figure 9 also shows that Yule-Walker is more
effective in the time than in the frequency domain with an
improvement between 7% and 12%. Predictive discrimination
on the other hand appears to be equally effective in

either domain.

AR(2) and AR(1l). Figure 20 shows that the Yule-Walker

and predictive procedures are more effective in time
domain with relative improvement in the ranges 29% to 59%
and 23% to 34% respectively. Burg discrimination is more
efficienf in the frequency domain with improvement between
11% and 22%.

AR(2) Processes. In Figure 31, while the Burg

discrimination appears more efficient in the fequency
domain (14% to 18% relative improvement), Yule-Walker and
predictive procedures show no discernible difference

between domains.

Plots for Improvement Rate and J-Divergence

Figures 10-11, 21-22 and 32-33 show respectively
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pairwise comparisons of the three discriminant functiecns
for the classification of AR(1l) versus AR(1), AR(2) versus
AR(1) and RR(2) versus AR(2). Each figure plots the
ordinate 100(a-b)/a against the J-divergence rate. The
quantities a and b denote the error rates from the two
discriminant functions being compared.

These plots attempt to determine which of two
discrimination criteria AR and B is more accurate at a
given rate of J-divergence. Points on the plots that fall
above the zero mark correspond to method B having lower
error rates fhan method A while points below zero indicate
that B is a better classifier at the given value of
J~-divergence., We now compare each pair of classification

‘procedures by an examination of each plot.

AR(1l) Processes. Figure 10 shows the predictive and

Burg procedures with significant improvements over
Yule-Walker, with relative improvements ranging
respectively from 17% to 21% and from 14% to 17.5%. The
improvement of predictive discrimination over Burg on the
other hand ranges between 0.5% and 7%.

The time domain comparisons are provided in Figure 1l.
In this figure, the greatest improvement is by the
predictive over Burg, followed by predictive over
Yule~Walker. This figure also shows Yule-Walker out

performing Burg in the amount .2% to 7.8%.
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AR(2) and AR(1). Figures 21 and 22 are respectively the

frequency and time domain plets. In the frequency domain,
while the Burg and predictive procedures out perform
Yule-Walker, Burg is seen to have improvements between 6%
and 18% over predictive discrimination. In time domain, no
substantial difference is noticed between the predictive
and Yule-Walker procedures. However significant
improvements can be seen of both the predictive and

Yule-Walker over Burg.

AR(2) Processes. The frequency domain plot of Figure 32

shows that the Burg has an almost constant improvement of
about 21.5% over Yule-Walker. The predictive procedure has
‘gsignificant improvements cover Burg and Yule-Walker, the
most dramatic improvement, ranging between 35% and 41%,
being over Yule-Walker.

In the time domain, Pigure 33 shows a constant but
insignificant improvement of Burg over Yule-Walker. The
mest improvement comes from the predictive over

Yule-Walker and Burg.

Conclusions

The principal objective of this study was to determine
which of three discrimination procedures -~ Burg,
Yule-Walker and predictive - provided the lowest error

rates in the classification of two autoregressive
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processes. The processes were assumed to be linear,
stationary and of unknown order.

The simulation study has shown that of the three
classifications, predictive analysis produces the lowest
error rates in both time and frequency domains. The

largest margin of this superiority is in the frequency

domain. This frequency domain edge is probably due to the
fact that whereas the discriminant function in the
frequency domain is evaluated from all available
information, the time domain function loses some
information (from the training and test realizations)
which is used as the initial condition to the difference
equation (1). However, the asymptotic error rates are
‘barely distinguishable among the three methods. The study
also shows that the estimative procedures of Burg and
Yule-Walker tend to produce higher error rates for
increasing orders of the autoregressions. This tendency is
probably due tc the fact that higher AR orders correspond
to more AR parameters that muszt be estimated thus
increasing the risk of estimation errors.

‘The results of the study lead to a recommendation of
the predictive procedure in the frequency domain especially
for AR series of order more than one. It should be noted
however that the accuracy of predictive discrimination
comes with a high cost of CPU time and requires

substantial computer programming.
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Further Work

The technique of predictive discrimination may be

‘ extended to other areas such as

(1)
(2)
(3)
(4)

Nonlinear Time Series

Moving average processes

Multivariate time series

The consideration of priors other than those in this

study for modeling the AR parameters.
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APPENDIX A

SOME FORMULA DERIVATIONS

Suppose that a given series xn obeys the
autoregressive model with parameters ¢, v and p. Assume
that for fixed p, the joint prior density of ¢ and Tt is the
multivariate normal gamma defined in Chapter III, secﬁion

3.2.2,

1. P(Xi); the Marginal Density of X,

From the definition of P(Xi) in Chapter III, section

3.2, we have

P(XO)IZI1/2 Nto

2 -1 T A=
P(Xy) = - T exp{- = (7
N (27) (N-P)/2 J 2

L8}

T
X J exp{- = [ (9p=8)"A(p~)+(p-p)'Z(o-1) 1 }dodr,
9

where %-l and $ are respectively sample estimates from the
training realization X and are defined on Page 28. From Box
and Tiao (1973, p. 418), the quadratic forms under the

second integral may be combined as follows:

(0-0)'B(p=0)+(p-p) 'E(p-u) = (p-c)’' (B+T)(p-c) + k ,
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(a+z) "L (Rp+y),

3

where ¢,

and ky (w-u)’A(A+2)mlE(w-u)-
Hence the integral with respect to ¢ becomes
exp(-{—kl)J exp{- = (p-c; ) (A+2) (p-c;)dp
9

‘ p
= exp(—-%—kl)(Zn/rff-|A+El-1/2.

Thus P(XN) reduces to

p(xo)(zﬁ)“‘“'zp)/z{-l- exp{-t( 5(2 " +prk,)) e

1l/2 N+u-p_l
JA+E]

The integral part is evaluated as

1
- = = (N+a-p) -
[ 5 (3 leprr)] 2 r(Mep

A combination of the last two expressions and taking
expectation with respect to P(Pi)' the distribution of Py

yields equation (8), the expression for P(XN).

2. The Predictive Density, P(Ylen)

‘The numerator of P(YNEX) (suppressing the n subscript
is
N+n+a-P_1
T /A -
exp{- o (T + © + B)}

P(xy) 1511/

T

(2n) (B-P)72 Jt

XJ exp{- -'5— [(o-0) Alg-9)+(o-1) EZ(p-p)+(p-p) By (p-p) ]} dpdr.
® | |
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Combining the quadratic forms successively, the integral

with respect to ¢ is reduced to

exp(-t/2 )J exp{- v}(fp-cz) ‘t(Ry+A+Z) (p-c, ) }de
P

p/2 -1/2
= exp(~-t/2)(2n/t) IAO+A+EI

]

. -1
where c (Ao + A) (A0¢ +Ap)

~ A

o = (-0) B (ara ) ta(p-p)

w
L]

(A0+A+z)-1[(A0+A)co+Ep]

w
]

5 = (cg=n)" (Rg+R) (Rg+A+E) 1E(cy-p)

The numerator of P(len) then becomes

1/2 | nra-q _
P(X4)P(¥y) IS T p-Tha
(N+n-3p)72 | [B+A¥T] T &P~ —)ar,
(2xn) T
RS | -1
where u = Nz +nt "+ + k2 + ko
and n=N+n + q +2 -2p.

Noting that the integral part of the last expression is

(_H--;—mw-q) r(rg_g_g} ,

the predictive density in equation (11) is obtained upon

division of the numerator of P(len) by P(xn).



APPENDIX B

SAS SOURCE CODE FOR THE SIMULATION STUDY

PROC IML;
START PAIC(X,N,MXP);
PH=J(MXP,MXP,0);
PART=J(MXP,1,0);
ERRVAR=PART;
AC=PART;
AIC=PART;
SQ=55Q(X);
ERRVO=SQ/N;
AC(!1})=COVLAG(X,1)/sQ;
PH({1,1})=AC(il});
PART(i1{)=AC(il});
ERRVAR( !1})=ABS(ERRVO*(1-PART(}|1})*%2));
AIC(!1})=N*LOG(ERRVAR(!1!))+2*LOG(N);
DO I=2 TO MXP;
COV=COVLAG(X,I);
AC(iIi)=Ccov(il,I})/sQ;
NUM=0.0;
DEN=0.0;
DO K=1 TO I-1;
NUM=NUM+PH( | I-1,K!)*AC(}I-K!});
DEN=DEN+PH(}I-1,K})*AC(!K!);
END;
PART(}I!)=(AC({I})-NUM)/(1-DEN);
ERRVAR(|I!)=ABS(ERRVAR(!I-1})*(1-PART(|I}!)*%*2));
PH({I,I})=PART(}I});
AIC(!I})=N*LOG(ERRVAR(!I!))+2*LOG(N);
DO K=1 TO I-1;
PH(!I,K|)=PH(!I-1,K}!)-PART(!I}!)*PH(}I-1,I-K!);
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END;
END;
P=AIC(i>:<});
RETURN (P);
FINISH PAIC;
*BEGIN BGYW SUBROUTINE;
START BGYW(PHIBG,PHIYW,ERRVBG,ERRVYW,X,N,P);
PH=J(P,P,0);
PART=J(P,1,0);
ERRVAR=PART;
AC=PART;
AIC=PART;
8Q=88Q(X);
ERRVO=SQ/N;
AC(!1})=COVLAG(X,1)/8Q;
PH(11,1})=AC(i1});
PART({1})=AC(i1l});
ERRVAR(}1})=ABS(ERRVO*(1-PART(}1})**2));
AIC(!1})=N*LOG(ERRVAR(!1!))+2*LOG(N);
IF P>1 THEN
DO I=2 TO P;
COV=COVLAG(X,1)/8Q;
AC(iIl)=CoV(}il,1});
NUM=0.0;
DEN=0.0;

DO K=1 TO I-1;

NUM=NUM+PH( }I-1,K!)*AC(!I-K});
DEN=DEN+PH(!I-1,K})*AC(!K});

END;
PART(}I}!)=(AC(}I})-NUM)/(1-DEN);
ERRVAR(!I})=ABS(ERRVAR(|{I-1})*(1-PARRT(!I})**2));
PH(I{I,I!)=PART(!I}); '
AIC(!I!)=N*LOG(ERRVAR(!I!))+2*LOG(N);

DO K=1 TO I-1;

PH(}I,K!)=PH(}I-1,K})~PART(}I})*PH(}I-1,I-K!);
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END;
END;
ERRVYW=ERRVAR(!P!);
PHIYW=PH(!P,!):;
*END YULE-WALKER ESTIMATES;
*BEGIN BURG ESTIMATES;
Bl=J(P,N-1,0);
B2=J(P,N-1,0);
DEN=0;
NUM=0;
DO T=1 TO N-1;
B1(}11,Ti)=X(iT!):
B2(i1,Ti)=X(iT+1}):
DEN=DEN+B1(}{1,T})**2+B2(}1,T})*%*2;
NUM=NUM+B1(!1,T!)*B2(}1,T});
END;
AC(}1l})=2*NUM/DEN;
PH(11,1}1)=AC(i1l});
PART(}1}!)=AC(i1}):; _
ERRVAR( {1} )=ARS(ERRVO*(1~PART(}|1})**2));
AIC(!1!)=NXLOG(ERRVAR(}1l}))+2*LOG(N);
IF P>1 THEN
DO I=2 TO P;
NUM=0.0;
DEN=0.0;
DO T=1 TO N-I;
TEMP=PART(}I-1});
B1({I,T})=Bi(}I-1,T!)-TEMP*B2(}I-1,T!);
B2(}I,T})=R2(}1~-1,T+1})-TEMPX*B1(!I-1,T!);
NUM=NUM+B1(}I,T}!)*B2(i1,T});
DEN=DEN+B1(}I,T!)**2+4B2(}I,T})**2;
END;
PART(}I})=2*NUM/DEN;
ERRVAR(!I!)=ABS(ERRVAR(}I-1})*(1-PART(!I})**2));
PH(!I,I})=PART(!I});
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AIC(!I})=N*LOG(ERRVAR(|I)))+2*LOG{N);
DO K=1 TO I-1;
PH(!I,K))=PH(}I-1,K!)-PART(!I})*PH(}I-1,I-K!);
END;
END;
PHIBG=PH(!P,!});
ERRVBG=ERRVAR( P! };
*END BURG ESTIMATES;
FINISH BGYW;
*END BGYW SUBROURINE;
*BEGIN SUBROUTINE D-MATRIX AT FREQUENCY FREQ;
START DMATRIX(D,P,FREQ,N);
D=J(P,P,0);
DO I=1 TO P;
DO J=1 TO P;
K=ABS(I-J)/N;
D(}I,3})=COS(K*FREQ);
END;
END;
FINISH DMATRIX;
*END SUBROUTINE DMATRIX;
*BEGIN SUBROUTINE DISCFN;
START DISCFN(TDISCFN,FDISCFN,JDIV,SER,IPl,IP2,N,PHl,PH2,
VARL,VAR2,PHO1,PH02,VAROL,VAR02,D1,D2,PKFRQ,MAXPK) ;
z1=J(N-IP1,1,0);
W1=J(N-IP1,IP1,0);
Z2=J(N-1P2,1,0);
W2=J(N-1P2,1P2,0);
Z1=SER(!IP1+1:N});
W1=SER(!IPLl:N-1!);
IF IP1>1 THEN
DO M=2 TO IPl;
W1l=W1l}!SER(!IP1-M+1:N~-M});
END;
Z2=SER(!IP2+1:N});
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W2=SER( | IP2:N-1});
IF IP2>1 THEN
DO M=2 TO IP2;
W2=W2! {SER(!IP2-M+1:N~M});
END;
TWOPI=8*ATAN(1);
E=(N-IP2)*LOG(VAR2*TWOPI)-(N-IP1)*LOG(VARL*TWOPI);
TDISCFN=(SSQ(Z2-W2*PH2'))/VAR2-(SSQ(Z1-W1*PH1 ))/VAR1+E;
FDISCFN=0; |
JDIV=0;
DO I=1 TO MAXPK;
FREQ=PKFRQ(!1!});
CALL DMATRIX(D1,IP1l,FREQ,N);
CALL DMATRIX(D2,IP2,FREQ,N);
F1=PH1*D1*PH1'/VARL;
FO1=PHO1*D1*PHOl'/VAROL;
F2=PH2*D2*PH2 " /VAR2;
FO2=PHO2*D2*PHO2"'/VARO2;
FDISCFN=FDISCFN+F1/F01-F2/F02+LOG(F2/Fl);
JDIV=JDIV+(F1/F01-F2/F02+LOG(F2/F1)~-2)/(2*N);
END;
FINISH DISCFN;
*END SUBROUTINE DISCFN;
*BEGIN SUBROUTINE STATS;
START STATS(V,Z,W,A,AINV,WZ,PHI,Y,N,P);
Z=Y(!P+1:N});
W=Y(iP:N-1});
DO M=2 TO P;
W=W}!Y(I|P-M+1:N-M});
END;
A=W *W;
AINV=INV(A);
WZ=W *Z;
PHI=SOLVE(A,WZ);
V=8SQ(Z-WXPHI);
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FINISH STATS;
*END SUBROUTINE STATS;
*BEGIN SUBROUTINE GAMM;
START GAMM(E,RA);
GAM=1.0;
DEN=2%3;
DEND=4*A;
IF MOD(E,2)=0.0 THEN
DO J=2 TO E/2+1;
GAM=GAM*(J~1)/DEN;
END;
ELSE
DO J=1 TO (E-1)/2;
GAM=GAMX* (2*J-1)/(DEND);
END;
IF MOD(E,2)=0.5 THEN GAM=GAMXSQRT(22/7):;
RETURN (GAM);
FINISH GAMM;
" *END SUBROUTINE GAMM;
HH
FINALPR=J(1,7,1);
CPR="LTRAIN" "LTEST" "JDIV" "ERROTMPR"
"ERROFRPR" "SDTMPR" "SDFRPR";
CREATE PRED.DATA FROM FINALPR (}COLNAME=CPR!);
FINALEST=J(1,11,0);
C="LTRAIN" "LTEST" "JDIV" "ERROTMBG" "ERROTMYW" "ERROFRBG"
"ERROFRYW" "SDTMBG" "SDTMYW" "SDFRBG" "SDFRYW";
CREATE EST.DATA FROM FINALEST (}COLNBME=C!);
SIGMAl=c, ;
SIGMA2=02;
AR1={1 'Pl);
AR2={1 ¢,};
SEED=563693504;
NTEST=100;
MAXP=MAXIMUM AR ORDER ALLOWED;
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LTRAIN=25;
DO LTR=1 TO 4 BY 1;
LTRAIN=LTRAIN*2;
X1=ARMASIM(AR1,1,0,1,LTRAIN, SEED);
X2=ARMASIM(AR2,1,0,1,LTRAIN, SEED);
X1=X1-X1(!:});
X2=X2-X2(}1:});
P1=PAIC(X1,LTRAIN,MAXP);
P2=PAIC(X2,LTRAIN,MAXP);
FREE PH ERRVAR AIC PART DEN NUM AC;
RUN BGYW(PHIBGl,PHIYW1,ERRVBG1,ERRVYW1l,bX1,LTRAIN,Pl);
RUN BGYW(PHIBG2,PHIYW2,ERRVBG2,ERRVYW2,X2,LTRAIN,P2);
FREE ERRVAR1 ERRVAR Bl B2 PART1 PH1 ACl AICl PHIBG PHIYW;
FREE ERRVAR Bl B2 PART PH AC AIC;
LTEST=25;
DO LTE=1 TO 4 BY 1;
LTEST=LTEST*2;
MAXPEAKS=.1XLTEST;
*GENERATE NTEST REALIZATIONS TO BE CLASSIFIED.;
NTBG1=0;
NTYW1=0;
NTBG2=0;
NTYW2=0;
NFBG1=0;
NFYW1=0;
NFBG2=0;
NFYW2=0;
' NT1=3(3,1,0);
NT2=NT1;
NF1=NT1;
NF2=NT1;
ERROTMPR=J(3,1,0);
ERROFRPR=ERROTMPR;
SDTMPR=ERROTMPR ;
SDFRPR=ERROTMPR ;



CALL

CALL

IF
IF
IF
IF
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PKFREQ1=J(MAXPEAKS+1,1,0);
PKFREQ2=J (MAXPERKS+1,1,0);

DO NT=1 TO NTEST;
Y1=ARMASIM(AR1,1,0,1,LTEST,SEED);
Y1=Y1-Y1(}:});

PKT=FFT(Y1l);
PR=PKT(}|,##));

DO I=1 TO MAXPEAKS;

PKFREQL( !I})=PK(!i<:>!});
K=PKFREQL(!I});
PK(1K})=-1*PK(}K|);

END;
Y2=ARMASIM(AR2,1,0,1,LTEST,SEED);
Y2=Y2-Y2(}:1);

PKT=FFT(Y2);
PK=PKT(,##!):

DO I=1 TO MAXPEAKS;

PKFREQ2( !I})=PK(}i<:>!);
K=PKFREQ2(iI});
PK( |K})=-1%PK(|K});

END;

FREE PK;

RUN BGYW(PHIBGO1l,PHIYWOl,ERRVBGOLl,ERRVYWO1,Y1,

LTEST,Pl);
DISCFN{TIMEBGl,FREQBGl,JDIVBG,Y1l,Pl,P2,LTEST,PHIRG1,

PHIBG2,ERRVEG1,ERRVBG2,PHIBGOl,ERRVBG01,Dl1,
D2,PKFREQ1 ,MAXPERKS) ;
DISCPN{TIMEYW1l,FREQYW1l,JDIVYW,Y1,P1l,P2,LTEST,PRIYW],

PHIYW2,ERRVYW1,ERRVYW2,PHIYWO1l,ERRVYWO01,D1,
D2, PKFREQ]1 ,MAXPERKS) ;

TIMEBG1<0 THEN NTBGl=NTBGl+l;

TIMEYW1<0 THEN NTYW1=NTYW1l+l;

FREQBG1>0 THEN NFBG1l=NFBGCl+l;

FREQYW1>0 THEN NFYW1=NFYW1l+l,;
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RUN BGYW(PHIBG02,PHIYWO02,ERRVBGO2,ERRVYW02,Y2,LTEST,P2};
CALL DISCFN{TIMEBG2,FREQBG2,JDIVBG,Y2,Pl,P2,LTEST,PHIBG],

PHIBG2,ERRVBG1l,ERRVBG2,PHIBG02,Dl1,D2,PKFREQ2,

MAXPERKS) ;
CALL DISCFN(TIMEYW2,FREQYW2,JDIVYW,¥2,P1,P2,LTEST,PHIYWI,

PHIYW2 ,ERRVYW1l,ERRVYW2,PHIY®W02,D1,D2,PKFREQ2,

MAXPERKS) ;
IF TIMEBG2>0 THEN NTBG2=NTBG2+1;

IF TIMEYW2>0 THEN NTYW2=NTYW2+1;
IF FREQBG2<0 THEN NFBG2=NFBG2+1;
IF FREQYW2<0 THEN NFYW2=NFYW2+1;

TMNUM1=J3(3,1,0);

TMNUM2=TMNUM1 ;

TMDEN1=TMNUM1 ;

TMDEN2=TMNUM1 ;

TMNUM11=TMNUMI ;

TMNUM12=TMNUM] ;

TMDEN21=TMNUMI ;

TMDEN22=TMNUM1 ;

TMNUM21=TMNUM1 ;

TMNUM22=TMNUM1 ;

TMDEN11=TMNUM1 ;

TMDEN12=TMNUM1 ;

TIMEPR1=TMNUMI ;

TIMEPR2=TMNUM1 ;

*FIND PREDICTIVE DENSITIES IN TIME AND FREQUENCY DOMAINS;

FR1=3(3,1,0);

FR2=FR1;

FRO1=FR1;

FRO2=FR1;

FREQPR1=FR1;

FREQPR2=FR1;

FR11=FR1;

FR12=FRL;



FR21=FR1l;
FR22=FR1l;
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DO K=1 TO MAXPERKS;

DO P=1

TO MAXP;

OMEGA=PKFREQL( (K} );
RUN STATS(V1,Zl1l,Wl,ARl,A1INV,WZ1,PHI1,X1,LTRAIN,P);
RUN STATS(V2,22,W2,A2,A2INV,WZ2,PHI2,X2,LTRAIN,P);
" RUN STATS(V0,20,W0,R0 ,AOINV,WZ0,PKIO,Y1, LTEST,P);
*EVALUATE TIME DOMAIN PREDICTIVE DISCRIMINANT FUNCTIONS;
IF K=1 THEN

DO;

SQ=SQRT(22/14);

EN=LTRAIN+LTEST~3%*P;

El1l=(SQ)**(EN);

AAO1=INV(AO+Al);

E12=SQRT(ABS(DET(AA01)));

KOl=(PHIO-PHI1) ‘*AO*RAO1*Al*(PHIO-PHIL);

A01=V1+VO+KO1;

NUM11=GAMM(EN,RA01)*EL1*E12;

ED=LTRAIN-2*P;

D11=(SQ)**ED/SQRT(ABS(DET(A1)));

DEN11=D11*GAMM(ED,V1);

E12=1/SQRT(ABS (DET(A2+A0)));

AR02=INV(AO+A2); -

KO2=(PHIO~PHI2) “*AO*AAOL*A2* (PHIO-PHI2);

A02=V2+VO+K02;

NUM12=GAMM(EN,A02)*E11*E12;

D11=(SQ)**ED/SQRT (ABS(DET(A2)));

DEN12=D11*GAMM(ED,V2);

IF P=Pl THEN
DO I=1 TO 3;
TMNUM11(}I})=TMNUM11(!I})+NUML11*(0.65+I%0.1);
TMDEN11(}I})=TMDEN11(}I!)+DEN11*(0.65+I%0.1);
TMNUM12( ! I} )=TMNUM12(}1!)+NUM12%(0.65+I%0.1);
TMDEN12(!I!)=TMDEN12(}I!)+DEN12%(0.65+I%0.1);
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END;
ELSE
DO I=1 TO 3;
TMNUM11(}I})=TMNUMI1(!I})+NUM11*(0.35-1*%0.1);
TMDEN11(jI!)=TMDEN11(|!I})+DEN11*(0.35~-1%0.1);
TMNUM12(}I})=TMNUM12(}I})+NUM12*(0.35-1%0.1);
TMDEN12({I!)=TMDEN12(}I})+DEN12*(0.35-1*%0.1);
END;
*EVALUATE TIME DOMAIN PREDICTIVE DISCRIMINANT FUNCTIONRS;
| RUN STATS(V0,20,W0,A0,AO0INV,WZ0,PHIO,Y2,LTEST,P);
ARO1=INV(AO+Al);
E12=SQRT(ABS(DET(ARO01)));
KO01l=(PHIO-PHI1l) "*AO*ARAO1*Al*(PHIO-PHI1);
A0l1=V1+VO+KO01l;
NUM21=GAMM(EN,AO01)*E1l1*El12;
D11=(SQ)**ED/SQRT(ABS(DET(AL))):
DEN21=D11*GAMM(ED,V1);
ARO2=INV(AO+A2});
E12=SQRT(ABS(DET(AA02)));
K02=(PHIO-PHI2) '*A0*AA02*A2*(PHIO-PHI2);
A02=V2+VO0+K02;
NUM22=GAMM(EN,A02)*E11*E12;
D11=(SQ)**ED/SQRT(ABS(DET(A2)));
DEN22=D11*GAMM(ED,V2);-
IF P=P2 THEN
DO I=1 TO 3;
TMNUM21(}I})=TMNUM21(}I})+NUM21*%(0.65+1%0.1);
TMDEN21(iI})=TMDEN21(}I!)+DEN21*(0.65+1%0.1);
TMNUM22( I} )=TMNUM22(!I})}+NUM22*(0.65+I1%0.1);
TMDEN22( I} )=TMDEN22(!I})+DEN22*(0.65+I*%0.1);
END;
ELSE
DO 1I=1 TO 3;
TMNUM21(}I})=TMNUM21(!I})+NUM21*(0.35~-1%0.1);
TMDEN21{!I}!)=TMDEN21(}I})+DEN21%(0.35-1*%0.1);
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TMNUM22( |1} )=TMNUM22(}I})+NUM22*(0.35-1*%0.1);
TMDEN22( I} )=TMDEN22(}I])+DEN22%(0.35-1%0.1);

END;
END;
* ESTIMATE SPECTRAL DENSITY;

RUN STATS(VO,Z0,W0,A0,AOINV,WZ0,PHIO,Y1,LTEST,P);

CALL DMATRIX(D,P,OMEGA,LTEST);

Fl1=TRACE(D*Al)+(LTRAIN+1)*PHI1 *D*PHI1/Vl;
F2=TRACE(D*A2)+(LTRAIN+1)*PHI2 *D*PHI2/V2;
FO=TRACE(D*AO)+(LTRAIN+1)*PHIO *D*PHIO/VO;

IF P=Pl THEN
DO I=1 TO 3;

FR11({I})=FR11(!I1})+F1*(0.65+I1*0.1);
FRO1({I})=FRO1(i1})+FO0*(0.65+I1%0.1);
FR12(1I})=FR12({1I})+F2*(0.65+1%0.1);

END;
ELSE
DO I=1 TO 3;

FR11({I})=FR11(}I])+F1*%(0.35-1*%0.1);
FROL(}I})=FRO1(}I})}+F0*(0.35-1%0.1);
FR12(1I])=FR12(}1})+F2%(0.35-1%0.1);

END;
OMEGA=PKFREQ2( |K});

RUN STATS(VO0,z0,W0,A0,AQINV,WZ0,PHIO,Y2,LTEST,P);

FO=TRACE(D*A0)+(LTRAIN+1)*PHIO ' *D*PHIO/VO;

IF P=P2 THEN

DC I=1 TO 3;
FR21(1I}{)=FR21({I1})+F1*(0.65+I%0
FRO2({I})=FRO2(}I})+F0*(0.65+I*0
FR22(}I})=FR22({I})+F2*%(0.65+I*%0

END;

ELSE

DO I=1 TO 3;
FR21({I})=FR21(|I})+F1*(0.35-1I%0
FRO2({I})=FRO2(}I})+F0*(0.35-I%0

.1);
.1);
1);

.1);
.1);
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FR22(!I})=FR22(!1})+F2%(0.35-1%0,1);
END;
END; *END LOOP FOR P=1 TO MAXIMUM P;
DO I=1 TO 3;
TEMP1=TMNUM11(}I})*TMDEN12(!I});
TEMP2=TMDEN11(}I})*TMNUM12(!1});
TIMEPR1( I} )=LOG(TEMP1l/TEMP2);
PT1=FR11({I})/FROL(iI});
PT2=FR12({I})/FRO1(i1});
PT3=LOG(FR12(}I})/FR11(iI}));
FREQPR1(}1}!)= FREQPR1(!I})+PT1-PT2+PT3;
TEMP1=TMNUM21(}I})*TMDEN22(!1});
TEMP2=TMDEN21(}I})*TMNUM22(!1}!);
TIMEPR2(}I})=LOG(TEMPl/TEMP2);
PT1=FR21(1I})/FRO2(}I});
PT2=FR22({1})/FRO2(}|I});
PT3=LOG(FR22(}I})/FR21(}1})):
FREQPR2(}1!)= FREQPR2(}I})+PT1-PT2+PT3;
END;
END; *END LOOP FOR PEAK FREQUENCIES;
DO I=1 TO 3;
IF TIMEPRL(}I})< O THEN NT1(!I})=NT1(}I})+1;
IF FREQPR1(!I{)> O THEN NF1(!I})=NFLl(!I})+1;
IF TIMEPR2(!I})> O THEN NT2(!I})=NT2(}I})+1;
IF FREQPR2(!I})< O THEN NF2(!I})=NF2(iI})+1;
END; *END I PROB;
END; *GENERATION OF NTEST REALIZATIONS;
TEMP=2*¥NTEST;
DO I=1 TO 3;
ERROTMPR( }I})=100%(NT1(!I})+NT2(}I}))/TEMP;
ERROFRPR( }I!)=100%(NFL1{|I})+NF2(!1!))/TEMP;
SDTMPR( ! 1] )=SQRT(ERROTMPR({I!)*(100~-ERROTMPR({I!))/TEMP);
SDFRPR( ! I})=SQRT(ERROFRPR(!I!)*(100-ERROFRPR(!I!))/TEMP);
END;
ERROTM75=ERROTMPR( !1}};
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ERROTM85=ERROTMPR( {2});
ERROFRPR=ERROFRPR({ {11} ;
SDTMPR=SDTMPR{ |1} )};
SDFRPR=SDFRPR( {11});
ERROTMYW=100* (NTYW1+NTYW2)/TEMP;
ERROTMBG=100*(NTBG1l+NTBG2) /TEMP;
ERROFRYW=100*(NFYW1+NFYW2) /TEMP;
ERROFRBG=100* (NFBGL+NFBG2)/TEMP;
SDTMYW=SQRT (ERROTMYW* (100 ~-ERROTMYW) /TEMP) ;
SDTMBG=SQRT (ERROTMBG* (100-ERROTMBG ) / TEMP) ;
SDFRYW=SQRT( ERROFRYW* ( 100-ERROFRYW ) / TEMP) ;
SDFRBG=SQRT (ERROFRBG* (100-ERROFRBG ) / TEMP) ;
FINALEST=LTRAIN| {LTEST| |JDIV} |ERROTMBG| { ERROTMYW] |
ERROFRBG | { ERROFRYW | | SDTMBG | | SDTMYW | | SDFRBG| | SDFRYW;
SETOUT EST.DATA; APPEND FROM FINALEST;

.
¢

FINALPR=LTRAIN; |LTEST| |JDIV| |ERROTMPR| | ERROFRPR; |
SDTMPR | { SDFRPR;
~ SETOUT PRED.DATA; APPEND FROM FINALPR;
END; * END DO LOOP FOR LTE=1 TO LTEST;
END; * END TRAINING DATA GENERATION: DO LOOP LTR=1,LTRAIN;
CLOSE EST.DATA;
CLUSE PRED.DATA;
PROC PRINT DATA=EST.DATA;
PROC PRINT DATA=PRED.DATA;



APPENDIX C
SUBROUTINES USED IN THE SIMULATION STUDY

1. BGYW(PHBG,PHIYW,ERRVBG,ERRVYW,X,N,P);

PURPOSE: To estimate AR coefficients and error variance by
the Burg and Yule-Walker estimation criteria.
INPUT: BAn AR series X of size N and order P.

OUTPUT: PHIBG, PHIYW, ERRVBG, ERRVYW, where

PHIBG Burg estimate of ¢, the AR coefficients,

PHIYW = Yule-Walker estimate of ¢,
ERRVBG = Burg estimate of 1/t, the error variance,

ERRVYW = Yule-Walker estimate of 1/<t.

2. DISCFN(TDISCFN,FDISCFN,JDIV,SER,IP1,IP2,N,PHl,6PH2,

VAR1,VAR2,PHOl1,PH02,VARO1,VARO2,D1,D2,PKFRQ,MAXPK)

PURPOSE: To evaluate the discriminant functions in time
and frequency domains and also to evaluate the

J-divergence rate.
INPUT: SER=test realization of length N,
IPl=estimated order of AR class 1
IP2=estimated order of AR class 2,
N=length of test realization for classification,

PHl=estimate of ¢ using training data from class 1,

90
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PH2=zestimate of ¢ using training data from class 2,
VARl=estimate of error variance 1/t from training data
in class 1,
VAR2=estimate of error variance 1/t from traing datza in
class 2,
PHOl=estimate of ¢ using test realization SER ASSUMED
to come from class 1,
PHO2=estimate of ¢ using test realization SER ASSUMED
to come from class 2,
VAROl=estimate of T using test realization SER assumed
to come from class 1,
VARO2=estimate of v using test realization SER assumed
to come from class 2,
Dl=matrix from subroutine DMATRIX assuming class 1,
D2=matrix from subroutine DMATRIX assuming class 2,
PKFRK=vector of peak frequencies identified by the FFT,
Fast Fourier Transform,
MAXPK=the maximum length of the vector PKFRK.
OUTPUT: TDISCFN=Time domain discriminant function,
FDISCFN=Frequency domain discriminant function,

JDhIvV=J~-divergence rate.

3. DMATRIX(D,P,FREQ,N)

PURPOSE: To create the pxp matrix, D(vw) at freguency o,

1 cosw ... cos(p-1l)w
cCoS® 1 ... cos(p-2)v
Do) = . . :

cos(p-1l)o cos(p-2)o ... 1



INPUT: P, FREQ, N where

P = the order of a series,
FREQ = the estimated fregquency, and
N = the length of the AR series.

QUTPUT: A p by p symmetric Matrix D of cosine values.

4. GAMM(E,R)

PURPOSE: To compute the quantity T'(E/2)
(a/2)E/2

INPUT: E is a positive integer and A is greater than zero.

QUTPUT: The computed value of T(E/2)
(a/2)E72

5. PAIC(X,N,MXP)

. PURPOSE: To use the AIC (the ARkaike Information Criterion)
to estimate the order of a given time series.
INPUT: The time series X of length N and maximum order
MXP, |

QUTPUT: The estimated order of X.

6. STATS(V,Z,W,A, AINV,WZ,PHI,Y,N,P)

PURPOSE: To obtain some basic statistics for the
evaluation of discriminant functions.
INPUT: Y = {(y(l), . . ., y(P))', a time series vector
of length N énd order P.

OUTPUT: 2 = (y(P+l),...,y(M))’,



AINV
WZ

PHI

i

y(P) y(P+1)
y(P+1) y(P)

y(N-1) y(N-2)

W'W,
A—l
WZ,
RIRV*R’'Z,

(Y-WXPHI) ' *(Y-WXPHI).

y(1)
y(2)

. y(N:P)
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TABLES
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Notes:

(a)
(b)

(c)
(d)

(e)

TABLE I

95

ERROR RATES AND J-DIVERGENCE FROM AR(1l)
VERSUS AR(1) CLASSIFICATION

DATA refers to the length of the training data,

TEST refers to the length of the

test realization,

JDIV refers to the J-Divergence rate,

The first entry for each (DATA,TEST) tuple is

the misclassification percentage; the second

entry is the corresponding standard error.

TIME DOMAIN RATES: 1

FREQUENCY DOMAIN RATES:

A OO N W

PREDICTIVE;
BURG;
YULE-WALKER
PREDICTIVE;
BURG;
YULE-WALKER



TABLE I (Continued)
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DATRA TEST JDIV

CLASSIFICATION METHOD

50 50 0.94 42.94 41.86 48.46 47.52 43.63 51.66

4.95 4.93 5.00 4.99 4.96 5.00

50 100 0.99 35.86 35.41 41.02 39.46 36.28 43.34

4.80 4.78 4.92 4.89 4.81 4.96

50 200 1.10 28.34 28.33 32.84 31.02 28.55 34.40

4.51 4.51 4.70 4.63 4.52 4.75

50 400 1.38 21.46 21.64 25.10 23.38 21.55 26.13

4.11 4.12 4.34 4.23 4.11 4.39

100 50 1.06 34.67 33.44 38.68 38.56 35.36 41.56
4.76 4.72 4.87 4.87 4.78 4.93

100 100 1.12 30.65 29.88 34.59 33.92 31.14 36.88
4.61 4.58 4.76 4.73 4.63 4.82

100 200 1.25 25.57 25.26 29.26 28.14 25.88 30.91
4.36 4.34 4.55 4.50 4.38 4.62

100 400 1.56 20.19 20.18 23.39 22.10 20.34 24.51
4.01 4.01 4,23 4.15 4.03 4.30

200 50 1.37 26.62 25.48 29.46 29.70 27.21 31.83
4.42 4,36 4.56 4.57 4.45 4.66

200 100 1.45 24.69 23.81 27.54 27.45 25.17 29.59
4.31 4.26 4.47 4.46 4.34 4.56

200 200 1.62 21.82 21.27 24.62 24.15 22.17 26.25
4.13 4.09 4.31 4,28 4.15 4.40

200 400 2.02 18.20 17.97 20.82 20.02 18.41 21.99
3.86 3.84 4.06 4.00 3.88 4.14

400 50 2.29 19.74 18.80 21.73 22.06 20.20 23.56
3.98 3.91 4.12 4,15 4.02 4,24

400 100 2.42 18.92 18.10 20.93 21.10 19.34 22.62
3.92 3.85 4.07 4.08 3.95 4.18

400 200 2.70 17.54 16.92 19.57 19.51 17.89 21.03
3.80 3.75 3.97 3.96 3.83 4.07

400 400 3.37 15.50 15.11 17.49 17.16 15.75 18.65
3.62 3.58 3.80 3.77 3.64 3.90




Notes:

(a)
(b)

(c¢)
(d)

(e)
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TABLE II

ERROR RATES AND J-DIVERGENCE FROM AR(2)
VERSUS AR(1) CLASSIFICATION

DATA refers to the length of the training data,
TEST refers to the length of the

test realization,

JDIV refers to the J-Divergence rate,

The first entry for each (DATA,TEST) tuple is
the misclassification percentage; the second
entry is the corresponding standard error.
PREDICTIVE;

BURG;

YULE-WALKER
PREDICTIVE;

BURG;
YULE-WALKER

TIME DOMAIN RATES:

FREQUENCY DOMAIN RATES:

1
3
4
2
5
6
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TABLE II (Continued)

CLASSIFICATION METHOD

DATA TEST JDIV 1 2 3 4 5 6
50 50 1.03 31.21 30.51 40.72 43.57 35.69 44.15
4.63 4.60 4.91 4.96 4.79 4.97
50 100 1.15 27.06 27.15 34.95 37.05 31.02 37.64
4.44 4.45 4.77 4.83 4.63 4.84
50 200 1.42 22.12 22.66 28.32 29.78 25.41 30.32
4.15 4.19 4.51 4.57 4.35 4.60
50 400 2.16 17.16 17.83 21.84 22.83 19.74 23.29
3.77 3.83 4.13 4.20 3.98 4,23
100 50 1.23 24.37 23.21 32.11 34.65 27.81 35.02
4.29 4,22 4.67 4.76 4.48 4.77
100 100 1.37 22,27 21.78 29.07 31.10 25.47 31.51
4.16 4.13 4.54 4,63 4.36 4.65
100 200 1.69 19.30 19.37 24.93 26.42 22.13 26.85
3.95 3.95 4.33 4.41 4.15 4.43
100 400 2.58 15.76 16.15 20.18 21.21 18.10 21.60
3.64 3.68 4.01 4.09 3.85 4.12
200 50 1.76 18.26 17.02 24.24 26.32 20.80 26.56
3.86 3.76 4.29 4.40 4.06 4.42
200 100 1.96 17.35 16.52 22.86 24.67 19.80 24.93
3.79 3.71 4.20 4.31 3.98 4.33
200 200 2.42 15.86 15.50 20.69 22.14 18.13 22.43
3.65 3.62 4.05 4.15 3.85 4.17
200 400 3.68 13.73 13.78 17.74 18.80 15.74 19.10
3.44 3.45 3.82 3.91 3.64 3.93
400 50 3.59 13.34 12.25 17.78 19.38 15.17 19.54
3.40 3.28 3.82 3.95 3.59 3.96
400 100 3.98 12.98 12.10 17.22 18.70 14.78 18.87
. 3.36 3.26 3.78 3.90 3.55 3.91
400 200 4.92 12.33 11.74 16.24 17.53 14.07 17.72
3.29 3.22 3.69 3.80 3.48 3.82
400 400 7.49 11.26 11.01 14.70 15.73 12.88 15.94

3.56 3.13 3.54 3.64 3.35 3.66
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TABLE III

ERROR RATES AND J-DIVERGENCE FROM AR(2)
VERSUS AR(2) CLASSIFICATION

Notes: (a) DATA refers to the length of the training data,

(b) TEST refers to the length of the test
realization,
(c) JDIV refers to the J-Divergence rate,

(d) The first entry for each (DATA,TEST) tuple is
the misclassification percentage; the second

entry is the corresponding standard error.

(e) TIME DOMAIN RATES: 1 = PREDICTIVE;
3 = BURG;

4 = YULE-WALKER

FREQUENCY DOMAIN RATES: 2 = PREDICTIVE;
5 = BURG;

6 = YULE-WALKER



TABLE III (Continued)
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CLASSIFICATION METHOD

DATA TEST JDIV 2 3 4
50 50 1.11 36.24 35.96 54.88 56.54 45.80 58.42
4.81 4.80 4.98 4.96 4.98 4.93
50 100 1.30 29.36 29.49 44.00 45.58 36.87 46.90
4.55 4.56 4.96 4.98 4.82 4.99
50 200 1.77 22.65 22.97 33.64 35.02 28.29 35.90
’ 4.19 4.21 4.72 4.717 4.50 4.80
50 400 3.30 16.87 17.22 24.90 26.00 20.99 26.59
3.75 3.78 4.32 4.39 4.07 4,42
100 50 1.36 30.24 29.67 46.25 47.41 38.45 49.18
4.59 4.57 4.99 4.99 4.86 5.00
100 100 1.59 25.92 25.72 39.26 40.45 32.76 41.79
4.38 4.37 4.88 4.91 4.69 4,93
100 200 2.17 20.97 21.06 31.43 32.56 26.33 33.50
4.07 4.08 4.64 4,69 4.40 4.72
100 400 4.05 16.15 16.38 23.99 24.96 20.17 25.59
3.68 3.70 4.27 4.33 4.01 4,36
200 50 2.05 23.85 23.19 36.75 37.53 30.47 39.05
4.26 4.22 4.82 4.84 4.60 4.88
200 100 2.39 21.58 21.17 33.00 33.83 27.44 35.09
4.11 4.08 4.70 4.73 4.46 4.717
200 200 3.26 18.48 18.34 27.99 28.84 23.36 29.80
3.88 3.87 4.49 4.53 4,23 4.57
200 400 6.07 14.94 15.00 22.38 23.19 18.76 23.86
3.56 3.57 4.17 4.22 3.90 4.26
400 50 4.61 18.01 17.41 27.88 28.41 23.08 29.61
- 3.84 3.79 4.48 4.51 4.21 4,57
400 100 5.38 16.98 16.51 26.16 26.72 21.69 27.80
: 3.75 3.71 4.40 4.42 4,12 4.48
400 200 7.34 15.36 15.06 23.48 24.07 19.53 24.97
3.61 3.58 4.24 4,28 3.96 4,33
400 400 13.65 13.15 13.05 19.91 20.51 16.62 21.20
3.38 3.37 3.99 4.04 3.72 4.09




101

FIGURES
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SECTION 1

FIGURES FOR AR(1) VERSUS AR(1) CLASSIFICATION
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SECTION 2

FIGURES FOR AR(2) VERSUS AR(1l) CLASSIFICATION



115

m -6.86 3 i i 3 1 H 3 L - 1 ]
.00 8.18 .20 8.8 8.48 8.38

- Figure 1Z. Spectral Plots for AR(2) and AR(1)



58 N e senemcestsereosasvetseessasritsatassessneeennan
i S | 1
3 - - z
1 T P PP PPTPIOS 3
i %
[ | | 5
= T . 6
% 38 :. ......................................... ‘.........T ....................
- + +
= i +
I + |
§ 2B - SISl AR (SN WA ST BT + ...... N30 PR IRRTRE PR
N | I
1
- 1 1
18 :.. ............. AL A R R LALLM AL AL
5 B T TS O R

1 2 3 4 5 6
CLASSIFICATION METHOD

Figure 13. Box and Whisker Plot for AR(2) vs. AR(1)

PRED-TIME
BURG-TIME
YU-TIME
PRED~-FREQ
BURG-FREQ
YW-FREQ

STT



QUANT ILE

: . . . - . 3
T R P feveeonssernans S A Seenereeaneensds
. . . : .

L . : . : .
r~ 3 . .. - 3 L
. o . - ‘e . -
. - - * - - L]
48 S feeeresrenanne feenncsnsncenes tereeresantaans Sesrteriesnseends

. - - » . .
- . . . - . -

. . » - .

. . : : :

. : : : .

L . . : : : :

. . . . -+ .
R T CTTT T RN . P SR

. .
> L -

:

.........................

+
| + :
29 :.: .............. ,++ ........... E}'B'D'
¥ ¥

. .
> . -

-3 . L] .

. - . . - .

3 . . . - . 3
18... ...........................................................................
. . . . . -

- . . . . ! . .

. . . . . .

. . . . . .

I ST NS VN N SIS TUNEY SN W | YU WO T DAY SN WU MENSY NN WANSE S |

n 8.2 0.4 8.6 8.8 1
FRACTION OF ERROR RATES (FREQUENCY DOMAIN)

Figure 14. Quantile Plot for AR(2) vs. AR(1)

+ 0O ¥

PREDICTIVE
BURG
YULE-WUALKER

LTT



QUANTILE

51

41}

21 f

11 f

31 |

5 & i ¥ PREDICTIVE
+ : ¥ : 0O BURG
i % i+ YULE-WALKER

1 o d i

8 8.2 8.4 0.6 0.8 1
FRACTION OF ERROR RATES (TIME DOMAIN)

Figure 15. Quantile Plot for AR(Z) vs. AR(1)

8Li



¥ PREDICTIVE
-0 BURG
+ YULE-UALKER

ERROR RATE (FREQ. DOMAIN)

TRAINING DATA

Figure 16. Error Rates and Lengths of Training Data,
Test Realization for AR(Z) vs AR(1)

QLk



ERROR RATE (TIME DOMAIN)

TRAINING DATA

* PREDICTIVE

-0 BURG

+ YULE-WALKER

TEST REALIZATION

Figure 17. Error Bates and Lengths uf Training Data,

Test Realization for AR(Z) us AR(1)

0zt



ERROR RATE (FREQUENCY DOMAIN)

a8

10

.38

28

160

. : : : : * PREDICTIVE
—?.-.--...-.-.;....? .................. § --=.---uo-----...-é...o-.o--'-c-.'..-gn D BURG
T B : : : + YULE-WALKER

J-D IVERGENCE

Figure 18. Error Rates and J-Divergence for AR(Z) vs AR(1)

1zh



FRROR RATE (TIME DOMAIN)

- 0 I3 & *
G o i vrereneaeenneneds
.
- . 3 » -
. A - - - A4

+ L : : * PREDICTIVE
D.......i..................§...............‘..g..................g. D BURG

a1 [
5 +  YULE-WALKER

- . * . .
P - L3 - . -
31 b Sereecenrn %2.*..,.‘,
ot - . - .
:

.
™ . s N . .

. cY . . .

. . . .

ol s . . 3

: w Oy . - :

. . » . . °
21- ..................... EE .................................................
) - . . .

. LA o . .

> . St ¢ . »

. - . .’ -

. . .

= . . .

.
. . . .
. : . .

.
: : : * : w. -
11... ................................................................... *...:
2 1 1 i 2 i 3 1 ]

J-DIVERGENCE

Figure 19, Error Rates and J-Divergence for AR(2) vs AR{1)

44!



] L s L ) R L] L2 L E 3
. * C e e . -
41.. .......................................................................... —
Ll L - H . .
- . : - -
- . » e ™

21 b B N STTTTITIS +++ ................. =
S S A : o

« PREDICTIVE
I e, : : 3 + BURG
1 .: ...... ; e , ................ .: % YULE-UALKER

IMPROVEMENT ()

J-DIVERGENCE RATE

Figure 28. IMPROVEMENT OF FREQUENC? OVER TIME
DOMAIN FOR AR(2) VS AR(1)

el



IMPROVEMENT ()

32 |

22 |-

12 [

T T 7 " T
T HEdereeerraaenas Bﬁ* .................................... -
ET Ly ¥ : '
: a4+ tE o+ + i
I T3 4+
IO RO SOOI PP & ]
2 é'n :
] n ]
L e B .
a -] [}
e s 2 ]
;.¢J ; L .C;"lll'. iIlI; ............... ;l-l

J-DIVERGENCE RATE

Figure 21. IMPROVEMENT RATE AND J-DIVERGENCE FOR

AR(Z) US AR(1) (FREQUENCY DOMAIN)

(B-P)}/B

(Y-P) vy

(Y-B) v

pel



IMPROVEMENT (%)

¥ ¥ ¥ r * - MR T L] T R L] E l
41 Lo A0S ST OUTOTRA SO VRSO OTA -
: : i SR ;o
R SO e
21 el e R RCRIRIIL P
& P E i1 - (B-P)/B

1 _.* ......... +.+.+.§....i‘ ........ ,,|_..,. ................. .... ¥ (Y"B)/Y

0] Z 4 b 8
J-DIVERGENCE RATE

Figure 22. IMPROVEMENT BATE AND J-DIVERGENCE FOR
AR(Z) US AR(L) (TIME DOMAIN)

szl



126

SECTION 3

FIGURES FOR AR(2) VERSUS AR(2) CLASSIFICATION
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