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PREFACE 

This study provides guidance to conditions under which a first order 

approximate (FOA). variance of a model output is acceptable. If any of the input 

parameters for a mathematical model are uncertain, i.e. are random variables, the model 

output will also be a random variable. Ideally, this random variable should be 

represented by a probability density function, but in practice it is typically represented 

by its mean and variance. 

The FOA variance is found by approximating the nonlinear model response with 

a linear surface and finding the variance of the linear approximation. How well the FOA 

variance performs is a function of how well the linear surface fits the model response and 

of the uncertainty in the input parameters. The specific objective was to find measures 

of nonlinearity and parameter uncertainty which could be used to predict the error in the 

FOA variance.· Models with one and two uncertain parameters were evaluated. 

Methods. to predict the error in the FOA variance of the output of one parameters 

were developed. For two parameter models, it was only possible to formulate an error 

predicting procedure when the model response was polynomial in form. 

I sincerely thank my doctoral committee - Drs. Charles T. Haan, Barry K. 

Moser, Daniel E. Storm, and A vdhesh K. Tyagi - for guidance and support in 

completion of this research. 
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CHAPTER ONE 

INTRODUCTION 

STATEMENT OF PROBLEM 

A realistic assessment of the performance of any water resources project requires 

an assessment of the validity of any predicted loads (hydrologic predictions such as 

discharge) and capacities (ability to perform under a given load). Typically the loads are 

assessed using various hydrologic models, generally having a number of parameters 

which can be determined with varying degrees of accuracy. These parameters are, 

therefore, better represented as random variables. Consequently, the model response, 

being a function of random variables, is also a random variable. 

A frequent practice in hydrologic assessment is to find the "best" parameters, by 

whatever means is available, and accept a model output based. on these parameters as the 

result to be used for planning purposes. Since the model output is actually a random 

variable, it is much better described by a mean, variance, and higher order moments if 

possible. If the variance is large in relation to the mean, it may not be prudent to base 

design or policy decisions on this model output alone. Unfortunately, this aspect of 

modeling is frequently ignored. 

One reason tl1at the model output variance is neglected is the difficulty in 

estimating it. Two methods are generally used in practice - first order approximate 
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(FOA) and Monte Carlo simulation (MCS). The FOA variance is typically easy to 

compute, but may be subject to large errors under high parameter uncertainty or model 

nonlinearity. A MCS is computationally demanding, requiring numerous runs of the 

model to assure accurate results. An additional complication is the problem of 

determining how many model runs are required, whibh is a function of the parameter 

uncertainty and degree of correlation between the uncertain parameters. It is quite 

possible that the number of runs required could be in the thousands, which would present 

a problem if the model was expensive or time consuming to run. 

To date, the only widely used criterion for determining if a FOA variance is valid 

is to restrict parameter coefficient of variation (Cv) to less than 0.2 (Benjamin and 

Cornell, 1970). This is a very restrictive assumption in hydrologic modeling, where 

there is often great uncertainty in the parameters. The FOA variance has been shown 

to perform well when the parameter uncertainty is higher than 0.2. The circumstances 

under which this occurs has only been developed for specific models, however. Figure 

1-1 illustrates that the relative error in FOA variance is not strictly a function of Cv. It 

is also a function of properties of the model. The models used to generate the data in 

the figure were explicit functions, i.e., y = f(x) where x was a random variable with a 

given distribution. Thus, an exact variance could be found by numerical integration and 

compared with the FOA variance. 

As a result, there are two variance estimating procedures - one which may be 

computationally prohibitive, and one whose applicability is severely limited due to a lack 

of a procedure for predicating its accuracy. Consequently, neither method is commonly 

used and model results which may actually contain a great deal of uncertainty are 

accepted as valid point estimates. 
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OBJECTIVES 

The objective of this work was to develop a methodology for predicting the 

accuracy of a model output variance estimated by first order (FO) methods. To be 

useful, this predictor needs to be derived from information readily available to the 

modeler, such as parameter characteristics and a relatively small number of parameter -

model response combinations. The key factors include the uncertainty in the 

parameters, the nonlinearity of the model or deviation of the model response from a 

linear surface, and whether the response more closely approximates an exponential or 

polynomial surface. 

These factors are relatively easily obtained. Parameter uncertainty is 

characterized by the Cv, which is a function of the mean and standard deviation. The 

linear surface is defined via a Taylor Series (TS) expansion of the model function about 

the mean values of the parameters. The form of the model response, i.e. exponential or 

polynomial, can be determined by evaluating first and second derivatives of the response 

with respect to the parameter(s) at several points and determining if certain criteria are 

met. If necessary, the derivatives can be found numerically. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

Literature reviewed in support of this study included works which addressed 

uncertainty and sensitivity analysis techniques in general, papers describing FO 

approximation procedures, studies comparing FO approximation results with MCS 

results, literature addressing quantification of model nonlinearity, various supporting 

statistical literature, and studies describing applications of FO analysis. 

Several researchers have compared the accuracy, applicability, and computational 

demands of various sensitivity and uncertainty analysis techniques. Thomas (1982) 

discussed the use of Latin Hypercube sampling as a means of obtaining an output 

probability density function (PDF) and cumulative density function (CDF). An example 

was cited of a Latin Hypercube procedure requiring 200 model runs agreeing well with 

a MCS of 1000 model runs. He also describes the adjoint sensitivity analysis procedure, 

which yields a complete set of sensitivity coefficients for a set of simultaneous linear 

equations and a response function that is an explicit transformation of the solution of the 

set of linear equations. A procedure of this sort can be applied to a model utilizing a 

finite difference approximation that is linear in the parameters. 

Doctor (1989) summarized various sensitivity and uncertainty analysis procedures. 

Sensitivity analysis techniques included using numerical approximations of partial 

derivatives, linear regression techniques, and the adjoint method. Uncertainty analysis 

5 



methods appropriate for use with spatially correlated input variables included first and 

second order approximations, MCS, and "deterministic" uncertainty analysis. The Latin 

hypercube sampling method was suggested as a means of reducing the computational 

requirements of a simulation. For parameters which are not normally distributed and do 

not have a linear dependence, the use of a rank transformation to produce a correlated 

multivariate sample was described. 

A number of works address the formulation of FO analysis procedures and the 

potential for errors in their use. Dettinger and Wilson (1981) formulated the FO 

approximation of the covariance matrix and the second order approximation of the mean 

of a vector of time and space dependent model outputs. They then applied this to 

transient and steady state piezometric heads . found by numerical solution of the partial 

differential equations. They noted that if the second order mean was substantially 

different from the FO mean, this could be a sign that the nonlinearity was such that even 

a second order approximation would be unacceptable. They noted that the first and 

second order analysis procedure could be applied to nonlinear systems with reasonably 

small coefficients of variation and cited the 0.2 limit for coefficient of variation proposed 

in Benjamin and Cornell (1970). 

Taylor (1985) looked at two examples of correlated parameters and the resulting 

error in a FO approximation of the variance of a function of these parameters. The first 

example was from a typical physics laboratory problem, where two angles are measured, 

and the errors in their measurements are perfectly negatively correlated. If a FO 

approximation of the experimental result which depends on tl1ese two measurements is 

computed neglecting tl1e correlation, it will be too small by a factor of square root of 2. 

The second example was the correlation between the linear regression coefficients 
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A and B in 9 = A + Bx. These are negatively correlated in that an overestimated A 

will result in an underestimated B. The variances and covariance of A and B can be 

computed from the data used in the regression, and the variance of an individual 

prediction, 9, is a function of the variances and covariance, i.e. 

(2-1) 

where 2xaAB is the covariance term. This covariance term can be re-written as 

-2o 2 

Y x(I:x.) 
N(I:x/-(J:.x/ 1 

(2-2) 

By neglecting this covariance term, the summation of terms of the form XXj is omitted 

from the computation of the variance, potentially resulting in significant error. 

Asbjornsen (1986) used the function K = exp(-u), where u is a random variable, 

to demonstrate that eliminating the second and higher order terms of a TS expansion 

results in poor estimates of the variance of K. The TS approximation of the variance of 

K is 

3 7 247 Var[K]=y2+-y4+-y6+-ys+ ... 
. 2 6 576 

(2-3) 

where y = E[u]au. If y > 1, or equivalently, if the coefficient of variation of u is 

greater than 1/(E[u]2), then eliminating higher order terms can give a poor approximation 

of tl1e variance of K. 

Kuczera (1988) developed the distribution of model output for a hydrologic model 

given that the error model was an ARMA model, as opposed to a normal, mean-zero, 

constant variance model as used in least-squares estimation. The least-squares model is 
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a special case of the ARMA model. An approximate distribution of model output based 

on the ARMA error model was developed. This approximate distribution used a FO 

approximation of the model output variance. The use of Beale's nonlinearity measure 

was suggested as a means of checking if the FOA variance will give satisfactory results. 

Beale's nonlinearity measure is a function of the difference between the actual model 

output and the linearized response computed for vectors of parameters sampled on the 

90 percent confidence ellipsoid of the parameters, the variance of the residuals, and the 

number of parameters. 

Numerous studies have been completed in which the results of a FO 

approximation have been compared with the results of a MCS. Song and Brown (1990) 

used the Streeter-Phelps equation as an example and compared the results of MCS and 

FO approximation to estimate model output variance when correlations between the 

model parameters were included or ignored in the analysis. The MCS results including 

the correlations were considered the "true" results to compare the others against. A 

multivariate normal distribution was used to generate the inputs. There were nine 

correlated parameters with Cv's ranging between 0.05 and 0.20. The highest correlation 

coefficients were O. 8 and O. 6. 

They found that neglecting the correlations in the MCS understated the output 

standard deviation by approximately 13 percent on average. A FO approximation which 

considered correlations performed considerably better, with an average error of 

approximately 7 percent. Neglecting the correlations in a FO analysis resulted in a 

considerably higher error of 20 percent. 

The nonlinearity of the Streeter-Phelps model varies and depends on the travel 

time. The FOA and MCS results agreed well, to within 10 percent, in the vicinity of the 

8 



dissolved oxygen sag point, where the model is not highly nonlinear. When the travel 

time approached four times the travel time to the sag point, the MCS and FOA results 

differed by as much as 25 percent. This was attributed to model nonlinearity. There 

was no attempt made to quantify this nonlinearity, and it was stated that the significance 

of model nonlinearity would have to be resolved on a case by case basis. 

Garen and Burges (1981) tested the accuracy of a FO approximation of model 

output variance using the Stanford Watershed Model. This was done considering several 

combinations of parameters as the uncertain parameters, and selecting Cv's between 0.0 

and 0.6. The parameters were treated as uncorrelated, although three parameters were 

actually interrelated. The MCS was done including and neglecting the correlations with 

similar results. They concluded that this particular analysis was not sensitive to the 

correlations and ignored them. 

The various test runs were ranked as to whether there was "good", "fair", or 

"poor" agreement between the variances estimate based on MCS and FO analyses. As 

the Cv of the parameters was increased, the number of "good" agreements decreased and 

the number rated as "poor" increased. They concluded that the Cv of parameters to 

which the model is sensitive should be no more than 0.25, with higher Cv's being 

acceptable for the less sensitive parameters. They also found that the FO analysis 

performed better with low intensity storms, which will produce a less nonlinear response. 

It was mentioned that the model was nonlinear, but no attempt was made to quantify the 

degree of nonlinearity and relate it to the performance of the FO analysis. 

Bates and Townley (1988) studied FO analysis and MCS of prediction uncertainty 

of a flood event (hydrograph) model. They calibrated the two model parameters k and 

m by using 8 storm events for each calibration and determined the mean, standard 
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deviation, and Cv for each parameter. The Cy's were small - 0.093 to 0.13. They used 

the intrinsic and parameter effects measures of nonlinearity of Bates and Watts (1980) 

to determine the nonlinearity of the model/ data set. The parameter effects measures were 

in excess of the critical value, indicating a nonlinear model. The critical value adopted 

for both intrinsic and parameter effects is 1/(2:VFP,n-P,°') (Bates, 1988) where p is the 

number of parameters to be estimated, n is the number of samples used to estimate the 

parameter, and ex is the exceedance probability. They calculated a FO mean and a 

second order mean and because of their similarity concluded that the degree of 

nonlinearity was mild. 

There was very good agreement between FO, second order, and MCS results for 

the mean of peak discharge. The FO and MCS results for standard deviation of the peak 

discharge also agreed well. They concluded that the FO approximation performed 

satisfactorily when the nonlinearity was "moderate." They were not specific as to 

whether the Bates and Watts measure or the result of the second order approximation was 

the basis of their decision. 

LaVenue, Andrews, and RamaRao (1989) used a finite difference groundwater 

flow and transport model. For their particular model, the FOA and MCS means and 

standard deviations of travel time agreed well. They commented that the simulation 

approach is preferable when the system is nonlinear or when there is a high degree of 

uncertainty in the parameters. They did not address the issue of quantifying the 

nonlinearity or parameter uncertainty. 

Mishra and Parker (1989) compared the performance of a FO analysis with a 

MCS for an unsaturated flow model. Agreement between the two methods for the 

estimated water content standard deviation tended to be a function of water content. It 
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was noted that the largest discrepancies occurred at the wetting front, where the sharpest 

gradients occurred. Their uncertain parameters were saturated conductivity and the 

parameters of the water content vs matric potential model proposed by VanGenuchten, 

which they incorporated into their model. The VanGenuchten model parameters had Cv's 

of 0.05 and 0.07. The Cv of K. was 0.28. Except to cite the presence of the wetting 

front, an indirect reference to model nonlinearity, Mishra and Parker did not draw any 

other conclusions about the accuracy of a FO approximation. 

Tung and Hathhorn (1988) used the Streeter-Phelps equation and found FO 

approximations of the mean, variance, skewness, and kurtosis of a critical location X.: 

(location of minimum dissolved oxygen concentration) in a stream reach. They then 

constructed normal, lognormal, Weibull, and gamma distributions for X.:, along with a 

distribution constructed using the Fisher-Cornish expansion. The parametric distributions 

use only the first two moments, the Fisher-Cornish expansion uses higher order 

moments. These distributions were compared to a "true" distribution derived by MCS. 

There appeared to be better agreement for the parametric distributions than for the 

Fisher-Cornish expansion. The conclusion was that a F0 approximation of higher order 

moments would decrease in accuracy as model nonlinearity increased. 

Huang (1986) looked at the uncertainty in the design of an open channel to carry 

the flow through a sluice gate. He used triangular distributions for the uncertain 

parameters, such as gate coefficient, Manning's n, gate submergence coefficient, and 

various geometry parameters, which were assumed to be independent. The FO mean and 

variance of the load (flow) and resistance (channel capacity) were calculated. The FO 

approximation of overall reliability (probability of not failing) was computed as O. 987 

for load and resistance normally distributed and as .991 for load and resistance 
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lognormally distributed. The result of a MCS was 0.997. The author did not speculate 

as to the cause of the error. The need to make distributional assumptions was cited as 

a problem with both procedures. 

Protopapas and Bras (1990) used FO and MCS techniques to evaluate model 

prediction uncertainty for an unsaturated flow and transport model where the soil 

hydraulic properties were represented as random fields. The model used a linearized 

(finite difference) approximation. A mean and standard deviation of solute concentration 

were calculated at each time step and at each depth node. They used two Cv' s for K. 

The FO means and standard deviations agreed much better with the MCS results for the 

lower Cv. Linearization errors associated with the larger variance were cited as a cause 

of discrepancy, but no quantification was suggested. 

Sagar and Clifton (1983) proposed a groundwater flow and transport model in 

which inputs such as hydraulic conductivity, specific storage, or boundary conditions are 

considered random variables. The model uses a numerical approximation of the 

differential equation governing flow and transport. Outputs are hydraulic head and 

Darcian velocity fields, which are computed as a second order approximation of the mean 

of model output. The model also generates a FO approximation of the variance

covariance matrix of these fields. The model was applied to two test cases and the 

results compared to a MCS. There was good agreement between the hydraulic head 

fields for both test cases. The FO approximation of the variance-covariance structure 

resulted in overstated standard deviations of the hydraulic heads at each of the grid 

nodes. The approximate standard deviations were, on average, 22 percent larger for test -

case 1 and 18 percent larger for test case 2. The accuracy of the standard deviation 

prediction was concluded to be a function of the variances and covariances of the 
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uncertain parameters, decreasing as the covariances increased. The paper did not address 

quantifying the nonlinearity or recommend limits for the covariances. 

Sager (1984) reports application of the model to two test cases, using hydraulic 

conductivity as the only random variable. The cases were identical, except that test case 

2 had greater uncertainty in the hydraulic conductivity. Model results were compared 

to MCS. For both test cases, there was good agreement for the hydraulic head field. 

The approximate variances and covariances were found to have decreasing accuracy as 

the uncertainty in the hydraulic conductivity increased. A maximum coefficient of 

variation of 1.0 was recommended, but it was also noted that the limit would be problem 

dependent. 

Melching and Anmangandla (1992) compared FOA, MCS and advanced FO -

second moment methods for constructing the CDF of dissolved oxygen deficit and critical 

oxygen concentration when the Streeter-Phelps equation is used to compute them. There 

was good agreement between the FOA and MCS results near the mean values of the 

uncertain parameters, but the agreement deteriorated as extreme values were approached. 

The uncertain parameters had C/s ranging from 0.05 to 0.5. Problems cited with the 

FOA were failure to account for nonlinearity and inability to make use of the probability 

distributions of the uncertain parameters. 

Smith and Charbeneau (1990) compared use of FOA and MCS with a coupled 

unsaturated - saturated rone contaminant fate and transport model. Site specific 

parameters were assumed to be uncertain and contaminant specific parameters were 

assumed to be known. Trials were done using a variety of contaminants. FOA means 

and variances tended to agree best with MCS results when the contaminant is strongly 

sorbed by soil. Model nonlinearity and uncertainty in site parameters were cited as the 
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reasons for large errors, which occurred when the contaminant was easily leached. Cy's 

of the uncertain parameters ranged from O. 02 to 1. 0. It was suggested that nonlinearity 

could be evaluated by comparing the function gradients at the mean and the mean plus 

or minus one standard deviation. If they differed by a certain percentage, the model was 

too nonlinear for FO analysis to be applicable. A range of 5 to 10 percent was proposed, 

but no specific ~xamples of the test being used successfully were presented. 

Three procedures for subjectively or numerically determining the degree of 

nonlinearity of model response were located in the literature. Kuczera (1990) 

recommended the use of response surface plots to evaluate model nonlinearity. The 

response surface is the plot of the squared differences between the actual response and 

the model response. With more than two parameters, Kuczera recommends taking them 

two at a time, such that the parameter space 9T is partitioned as 9T = (9?, 9/), where 

9 1 contains the two parameters of interest and 9 2 contains the remainder of the 

parameters. The variance-covariance matrix, I:, of 9 is similarly partitioned 

(2-4) 

then 9 1 I 9 2 = 02 is distributed N(01, Ev2) where 

(2-5) 

The linearized conditional probability region is the interior of the ellipse 

(2-6) 

where x\2,a:J is the chi-squared value for two degrees of freedom and probability (1-a). 

In the event that this ellipse is extremely elongated in a direction not parallel to a 
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parameter axis (as occurs when there are high correlations), a principal components 

rotation is recommended. 

If the model is not highly nonlinear, there should be a contour in the response 

surface plot which matches the linearized conditional probability region. The 

interpretation of the deviation is somewhat subjective. The plot can provide additional 

information, however. For example, if the largest deviations are at the ends of a 

principal axes of the ellipse, the model is most highly nonlinear at the extreme high and 

low values of that parameter. 

Beale (1960) proposed a nonlinearity measure for use in determining if model 

nonlinearity was too high for an approximate linearized confidence interval to be valid. 

Given a least squares estimate of the p-element parameter vector, 0, and a hyperplane 

tangent to the response surface at 0, the measure is a function of the squared differences 

between the response at other points in the parameter space, Oh and the corresponding 

point on the tangent plane. The Oi' s could be obtained by using the intermediate results 

of the least squares fitting process or obtained through sampling. Using the 2p points 

at the ends of the principal axes of the 90 percent confidence ellipsoid in parameter space 

is another possible approach given. The measure is computed as 

w 
L [P(8;)-7(9,)]2 

fl =ps2_1=_1 ____ _ 
6 w (2-7) 

L [P(8;)-P(8)]4 

i=l 

where P( •) is the model response and T( •) is the corresponding point on the tangent 

hyperplane, p is the number of parameters in 0, and s2 is an estimate of the variance of 

the residuals. The model is sufficiently close to a linear model if 
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N < 0.01 
8 

F(a.JJ,V) 

(2-8) 

where Fca,P,•> is the F value corresponding to the a level of the test, with p degrees of 

freedom in the numerator and v degrees of freedom in the denominator. v is equal to n

p, where n is the number of data points used to estimate the parameter vector. 

Bates and Watts (1980) proposed measures of intrinsic curvature and parameter 

effects curvature. Both these measures were functions of the first and second derivatives 

of the model with respect to the parameters, evaluated at the mean values of the 

parameters. Given a model f(x,0), n data points (x1,x2, ••• x0 ) used to fit the model, and 

a vector 0 = (Oi,02, ••• OP) of p parameters to be estimated, V. is an n x p matrix of the 

partial derivatives where the pth column is 

(2-9) 

The matrix V.. is the n x p x p matrix of partial derivatives such that 

(2-10) 

Finding the QR decomposition of V. aswhere R is upper triangular, then the 
R 

V.=QR=Q(__B._) (2-11) 
on-p.q, 

matrix L is the inverse of R and 

(2-12) 

Considering V .. as an n-high stack of p x p matrices, another n-high stack of p x p 

matrices is created by pre- and post-multiplying each p x p face of V •• by the p x p 

matrices LT and L. 
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A final n x p x p array is computed as 

A .. =QTU .. (2-13) 

The "top" p faces of A •• form the parameters effects curvature array, A . .P8 and the final 

n-p faces form the intrinsic curvature array, A .. IN. Standardized relative curvatures can 

then be computed as 

(2-14) 

(2-15) 

where d is a unit vector defining in which direction the curvature is being defined. The 

selection of d such that the relative parameter effects curvature or intrinsic effects 

curvature is maximized can be found by an iterative procedure described in Bates and 

Watts (1980). 

Bates (1988) compared this measure with Beale's measure as applied to 

hydrologic modeling, and concluded that Beale's measure may understate nonlinearity, 

and that the measure of Bates and Watts was potentially more useful since it separated 

parameter and intrinsic effects. It was noted that the maximum relative curvature, either 

from intrinsic or parameter effects, was at least as large as the largest element of A .. IN 

or A . .P8 . 

Works addressing response surface methodology and various other statistical 

procedures have also provided insight. An alternative method of uncertainty analysis 

based on experimental design generally referred to Taguchi's Method was evaluated and 

refined by D'Errico and Zaino (1988). The original Taguchi's method was based on a 

3n factorial design. Given n uncertain parameters for which the mean, µh and standard 

deviation,<1h are known, the response Y = f(X1,X2, ••• X8 ) is evaluated for all N possible 
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combinations of µi + <1i(3/2)112, where N = 3°. The first four moments of system 

response are then computed as 

(2-16) 

and for k = 2 to 4 

(2-17) 

Taguchis' s method was based on replacing the normal distribution of an uncertain 

parameter with a three point discrete distribution with equal mass at each point. This 

three point distribution will have the same first, second, and third moments as the N(µ, 

a2) distribution, but the kurtosis coefficient will be 1.5 instead of 3. The use of a three 

point distribution with a probability of 4/6 atµ and a probability of 1/6 atµ + #3 will 

reproduce the first four moments of a N(µ, er) distribution. The first moment is then 

computed as 

N 

m1=Ewl~ (2-18) 
i=l 

where the w/s are 1/6 when Yi is a function of (µi + oy3) and 4/6 when Yi is a function 

ofµ. For multiple parameters, the weights are multiplied, i.e. the weight for Yi as a 

function of µ 1 and µ2 + <1,Y3 is the product of the weights, or 1/6 X 4/6. The higher 

moments are computed as 

N 

mk =E wi(Y;-m/ 
i=l 

(2-19) 

The error in both Taguchi's method and the modification is, for a given function, 

dependent on the uncertainty in the parameters. 

Downing, et al. (1985) compared the results of using a response surface 
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methodology with the results of Latin Hypercube sampling. They concluded that a 

response surface was appropriate when a range of input values of interest was small, but 

that Latin Hypercube sampling performed better when the entire range of possible inputs 

was of interest. They noted that with a five point design ofµ. + 2ncr for n = 0, 1, 2 that 

the ratio of 12/s was equal to a constant number, and that departures of this ratio from 

that constant were an indication of nonlinearity. 12 represented the difference between the 

responses for minimum and maximum inputs, and s2 was the sum of the squared 

deviations [f(µ. + 2ncr) - f(µ.)]2. The paper also noted that the partial rank correlation can 

be used as a measure of the monotonicity in a relationship, with partial rank correlations 

approaching 1 in absolute value indicating a strongly monotonic relationship. 

The FO approximation has been determined to be sufficiently accurate by some 

researchers to be used as the basis of their conclusions. Burges (1979) evaluated the 

uncertainty in flood fringe mapping as a function of the uncertainty in the discharge and 

hydraulic parameters. A FOA standard deviation of floodplain width was computed for 

various parameter uncertainties expressed as coefficients of variation. These 

approximations were considered to be sufficiently accurate since the coefficient of 

variation of any individual parameter was less than 0.2. This analysis showed significant 

uncertainty in the width of a flood plain, which should be recognized in any planning 

processes. 

Loague and Green used a FO approximation to express the uncertainty of 

attenuation and retardation factors for pesticide leaching as a function of the uncertainty 

in soil characteristics and chemical parameters. They found considerable uncertainty 

( coefficient of variation close to unity) in both the attenuation and retardation factors for 

all soil orders evaluated. Within the taxonomic categories of a single soil order, the 
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coefficient of variation of the retardation factor was found to decrease as lower categories 

were evaluated. The accuracy of the FO approximation for this situation was not 

addressed. 

Scott (1993) used FOA to compute the coefficient of variation of the production 

of pipeline and hopper dredges. Several factors contribute to the uncertainty. 

Temperature and salinity changes result in uncertainty in water density. Difficulty in site 

characterization result in uncertainty in the density of the dredged and in-place sediment 

densities. Errors in measuring flow rates and volumes are another source of uncertainty, 

with increasing accuracy being associated With time and expense (i.e., more sophisticated 

equipment and calibration). The procedure presented would enable a user to evaluate 

which sources of uncertainty contribute most to uncertainty in the production computation 

and design an optimal instrumentation/site characterization program. FOA accuracy was 

not addressed in the published paper, but the uncertain parameters had low Cv' s (0. 1 

maximum), so accuracy was not considered a potential problem (personal communication 

with S. Scott, August 1993). 
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CHAPTER THREE 

THEORY 

DERIVATION OF FIRST ORDER APPROXIMATION OF VARIANCE 

The FO approximation of mean and variance as described in Benjamin and 

Cornell (1970) is based on the relationship 

Var[y] =E[y2]-(E[y])2 (3-1) 

If y is a function of a set of random variables, y = g(X1,X2, ••• X.,), then y can be 

approximated by a TS expansion about the mean values of the X's as 

(3-2) 

where the overbar indicates a mean value. The FO approximation of this is 

(3-3) 

Using three properties of expected values, namely E[c] = c, where c is a constant, E[cX] 

= cE[X], where X is a random variable, and E[X1+X2] = E[X1]+E[X2], the FO 

approximation of the expected value of y is therefore 
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Since the expected value of (xi - xi) is zero, this reduces to E[y] ~ g(i). 

Similarly, the expected value of y2 is 

From equation 3-1, the FO approximation of the variance of y is 

(3-4) 

(3-5) 

(3-6) 

Since E[(xi - xi)(xj - xj)] is equal to Cov[~,xj] for i ¢ j and equal to Var[~] for i = j, 

this expression is typically written 

p p 

Var[y]i::t"°' ( ag l-)2Var[x,J+2L L ag I- ag I-Cov[x1,xl (3-7) 
~ a,.... x, 1=1 1=1 a,.... x, a,.... x, P 
1=1 ""i i:t-j ""i ""I 

ERROR IN FIRST ORDER APPROXIMATION OF VARIANCE 

Given a function, y = g(X), where Xis a vector of random variables with PDF 

fx(X), the exact mean of y is 

E[y] = J. . .J g(xl' ... ,xP)f x:<xl' ... ,xP)dxr··dxp (3-8) 
.t1 xP 

The FO approximation of the mean, g(X), is not equal to this, but it may be a good 

approximation under some conditions. The second order approximation of y includes the 
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terms of the TS expansion shown in equation 3-2. A second order approximation of the 

mean of y is 

(3-9) 

If the model is not highly nonlinear, the second and mixed partial derivatives will be 

small. If the parameters have small Cv' s, the variances and covariances will be small 

compared to the means. Under either of these two conditions, the second term will be 

small compared to the first term, and a FO approximation will be reasonably accurate. 

The exact variance of y is 

Var[y]= J .. .J [g(xp ... ,x,)]:fx(xp ... ,x,)dx1 ... dxP -(E[y])2 (3-10) 
x1 Xp 

Geometrically, this amounts to the area under the surface defined by [g(X)ffx(X) 

minus the square of the area under the surface defined by g(X)fx(X). The FO 

approximation will agree to the extent that the area under the tangent plane surface 

agrees with the area under the actual surface. This is best illustrated using a one 

parameter case as an example. The notation x- LN(µ, a2) indicates that xis lognormally 

distributed with distribution parameters µ and a2. The lognormal PDF is 

1 1 fx(x)= exp(-[ln(x)-µ]2) 

-/2rra2x 202 
(3-11) 

with E[x] = exp(µ + a2/2) and Var[x] = µ2{exp(a2) - 1). 

Let the parameter be a random variable X with a Cv of 1 and distributed 

lognormally x-LN(0.347, 0.693). The expected value of Xis 2.0, and the variance of 

Xis 4.0. If the model is y = x2, then the TS approximation of a linear surface is y = 
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4 + 4(x-2). The actual and linear surfaces are shown in Figure 3-1. The range of x 

values was selected as the range covering approximately 90 percent of the area under the 

PDF of x. There does not appear to be particularly good agreement between the two 

surfaces. Using the same X, but changing the model to y = xu, results in better 

agreement, as shown in Figure 3-2. 

The error in the variance is more precisely represented by the difference between 

the area under the [g(X)]2fx(X) curve and the area under the [l(X)]2f x(X) curve minus the 

difference between the squared areas under the g(X)f x(X) and l(X)f x(X) curves. Here 

l(•) represents the linear surface. The differences in the [g(X)ffx(X) and [l(X)]2fx(X) 

curves for y = x2 and y = xu are shown in Figures 3-3 and 3-4. Figures 3-5 and 3-6 

illustrate the discrepancies between the g(X)fx(X) and l(X)f x(X) curves for the same two 

functions. 

These figures show a larger discrepancy between areas for the more highly 

nonlinear model y = x2, given the same uncertainty in X. The difference in the areas 

under the curves in Figures 3-5 and 3-6 also represents the differences between the exact 

means of the y's and the FO approximations of the means. For each model, this 

difference is smaller than the difference in areas under the curves for squared model and 

linear surfaces. It appears, therefore, that if the linear surface is satisfactory for 

approximating model response variance, it will also be satisfactory for approximating the 

mean of model output. 

For these particular examples, the analytical and approximate means and variances 

compared as follows: 
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Model 

y = x2 

y = x1.1 

Variance 

Analytical 

956.111 

6.513 

Approximate 

64.000 

5.560 

Mean 

Analytical 

8.000 

2.227 

Approximate 

4.000 

2.144 

This exercise demonstrates that a FO approximation can perform satisfactorily 

with a high parameter Cv if the model is not highly nonlinear, i.e. if the model response 

does not disagree "too much" with the linear fit. Any prediction of FOA variance 

accuracy will therefore have to address model nonlinearity. 

This is further complicated by the fact that a nonlinear model is more or less 

nonlinear, depending on the range of the parameter space under consideration. The 

model in Figure 3-7 is y = exp(-x). If X-LN(0.347,0.693) with a Cv of 1.0, 99 

percent of the area under the PDF of xis between 0.20 and 9.81. For a Cv of 0.25, with 

X-LN(0.632,0.061), 99 percent of the area under the PDF is between 1.05 to 3.34. 

The model is less nonlinear in the smaller range. The figure shows the much smaller 

discrepancy between the model and a linear surface when the smaller range is considered. 

Figure 3-8 shows the difference between the [g(X)ffx(X) and [l(X}]2f x<X) curves when 

the two ranges are considered. 

The same principles can be applied to multiple parameter models, although it is 

not really possible to illustrate this graphically. It is therefore apparent that a method to 

predict the accuracy of a FO approximation of model response variance must take into 

account parameter uncertainty, as reflected by Cv, model nonlinearity, represented by 

deviation from a linear fit or by some measure of curvature, or some combination of both 

these effects. 
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CHAPTER FOUR 

ANALYSIS OF MODELS WITH ONE UNCERTAIN PARAMETER 

APPROACH FOR FIRST ORDER ACCURACY PREDICTOR 

Comparison of Analytical and Approximate Solution 

The prediction technique was developed using FOA variances and analytical 

variances. Models with one and two uncertain parameters were evaluated in detail. 

Even though most hydrologic models have several uncertain parameters, the results 

presented here should still be useful. Sensitivity analysis makes it possible to identify 

a combination of parameters which are most uncertain and to which the model is most 

sensitive. An additional reason to restrict the analysis is that the processes of computing 

derivatives increases as the number of parameters increases. A point may be reached 

where this effort may equal that of a MCS. This work will not attempt to address how 

many parameters might represent that point. 

Models which are explicit functions of the parameters and for which "analytical" 

variances could be derived were used to generate the data. Since, in general, closed 

form solutions to the integrals are not available, the term "analytical" solution will be 

used to refer to a numerical integration over the parameter space of the product of the 

model response (or model response squared) and the PDF of the parameters. The FOA 

variance was computed using the TS expansion as the linear surface. 
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The data were generated observing three constraints. First, the models were 

continuous and monotonic in all their parameters. This is not an unreasonable constraint 

since most models of natural systems respond monotonically to their parameters in the 

range of allowable parameter values. Exponential models of the form y = abx and 

polynomial models of the form y = xb where x is the uncertain parameter were used. 

The second constraint was that parameter Cv ranged between 0.1 and 1.5. 

Preliminary results indicated that if the parameter Cv was greater than 1.5, the FOA 

variance had significant errors, even with only mildly nonlinear models. Also, this 

represented a useful range for water resources modeling. 

The final constraint was that numerical results either so large or so small that a 

significant loss of precision could be suspected were not used. Turbo c++ software was 

used to program an IBM compatible personal computer to perform the numerical 

integrations. The numerical quantities were assigned the type "double", allowing for 15 

digit precision (Borland, 1991). 

The models were selected to represent as wide a variety as possible of functional 

forms and degrees of nonlinearity, given the experimental constraints. For computing 

the analytical solutions, lognormally distributed parameters were used. This commonly 

used distribution allows for correlations and suitably represents parameter distributions 

in many hydrologic modeling applications. 

Analysis of normally distributed parameters was also considered, but given the 

constraints, the choice of models is somewhat limited. Since the parameters can take on 

negative values, any functions with even powers will not be monotonic.. Another result 

of the inclusion of negative values is that fractional powers cannot be accommodated. 

Functions which include division by the parameter (or a function of the parameter) will 
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not be continuous. The normally distributed one parameter models are therefore 

restricted to forms such as exp(x), a constant raised to the power x, or odd-powered 

polynomials. This is a significant restriction, however, since many hydrologic models 

include expressions containing parameters raised to negative or fractional powers. 

Using a lognormally distributed parameter allows the use of a more interesting 

and varied set of models, since there are no negative numbers to deal with. The 

lognormal analysis can include fractional and negative powers, and thus a wide range of 

model nonlinearity, from nearly linear as in x1.o5 to very nonlinear as in x-2• The primary 

problem with the lognormal functions is with increasing functions. The upper tail of the 

lognormal distribution approaches zero much more slowly than the upper tail of the 

normal distribution. Thus, to cover the entire range of significant probability of the 

parameter it is quite possible to be dealing with very high values of the parameter. This 

can result in overflow errors and loss of precision in the numerical integrations for some 

power and exponential functions. 

Analytical and Approximate Variance Data Generation 

For each one parameter model, a set of parameter distributions covering the range 

of Cy's up to 1.5 was used. As broad a range of means was used as possible, but again 

the overflow and precision considerations dictated what mean and variance combinations 

could be used with each model. 

The analytical mean and variance of the model response was found by numerical 

integration of equation 3-10, which requires numerical integration of equation 3-8. For 

functions of lognormally distributed parameters, the lower limit was initially taken as 

0.01 and the upper limit was 
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UL==exp(µ +4.5{rl-) (4-1) 

whereµ and <J are the lognormal distribution parameters. The trapezoidal rule was used. 

A step size of 0.01 was found to be extremely time consuming, so a step size of 0.05 

was tried. The results agreed with the results for the smaller step size to six decimal 

places, so 0.05 was initially considered an acceptable step size. 

Error data for certain decreasing function models did not behave as expected, 

however. For a given Cv, the computed error in FOA variance for some exponential 

models was larger with more nearly linear models than it was for some highly nonlinear 

models. The lower limit of integration was changed to 0.00001. Step size and upper 

limit of integration were adjusted until results for smaller and larger step sizes agreed to 

at least 12 decimal places. The error in FOA variance then responded as expected to Cv 

and model nonlinearity. The procedure adopted for decreasing function models with one 

lognormally distributed parameter was to set the upper limit as 

UL==exp(µ +6{rl-) 

and to make the step size equal to UL/500,000. 

(4-2) 

With rapidly increasing functions, such as y = axh where b was greater than 2, 

as x increases the model response is increasing and the PDF is decreasing. The critical 

need here is to have the upper limit of integration sufficiently large that the incremental 

area computed from doing another step is insignificant. Preliminary calculations 

indicated that for b equal to 5 an upper limit of 

UL==exp(µ+ I6{rl-) (4-3) 

was sufficiently large. A lower limit of 
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U=exp(µ-4-f}-) (4-4) 

was also found to be satisfactory. Figure 4-1 shows a PDF times the square of y = x2• 

This figure shows that the function is not highly nonlinear in the tail of the PDF. Thus, 

an accurate numerical integration can be carried out with larger step sizes. This is 

desirable since increasing the range would require increasing the number of steps from 

500,000 to perhaps 1 or 1.5 million and would be exceptionally time consuming. 

However, in the region of the curve where the function is highly nonlinear, the smaller 

step size is still needed. One way to generate a variable step size is to base the step size 

on z and compute x as 

x=exp(µ +z{rl-) (4-5) 

where z ranges between -4 and 20. This was tried using a z step size of 0.005. The 

results were compared to the previous method using for an upper limit 

UL=exp(µ +20{rl-) (4-6) 

and 1.5 million steps. The variances and errors agreed well with the relative errors 

(defined later) agreeing to three to four decimal places. The ability to use this procedure 

represented a substantial savings in computation time, with only 4,800 steps required for 

each numerical integration. 

VARIANCE ERROR RESULTS FOR ONE PARAMETER MODELS 

The variables of interest for use in formulating a predictor included the Cv of the 

parameter, the FOA variance from a TS expansion, the first derivatives computed to 

construct the TS approximation, and a set of parameter - response combinations.From 
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this data, other data such as the area between the model response surface and the linear 

approximation were derived. The objective was to find something which could be readily 

computed from the available data and which correlated well with the error in the FOA 

variance. The various nonlinearity measures proposed in the literature were considered 

and several attempts were made to develop an original measure. The error in the FOA 

variance was computed as a relative error 

analytical variance - FO variance error 
analytical variance 

Predictors Found to be Unsuitable 

(4-7) 

The method in Kuzcera (1990) was rejected since it is subjective and the response 

surface contour plots will be time consuming to construct if the data has to be generated. 

Similarly, Beale's measure (Beale, 1960) was intended for use with a model that was 

fitted to experimental data, and required an estimate of the variance of the residuals, 

which may not be available with a physically based model. A variant of Beale's measure 

was tried using equation 2-7 but not multiplying by ps2• For the models and parameter 

distributions tried, this did not correlate well with the error in a FOA approximation of 

the variance. Figure 4-2 displays the error vs Beale's measure. Exponential models of 

the form y = abx, where xis the uncertain parameter, were used. For this example, the 

x's were lognormally distributed and their Cv was 0.5. The scatter in the data shows that 

Beale's measure is not a useful predictor. 

The intrinsic curvature portion of the Bates and Watts curvature measure (Bates 

and Watts, 1980, Bates, 1988) was also applied to the data. This did not correlate well 
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with the error in a FOA approximation of variance. It had the additional disadvantage 

that the matrix of second derivatives was required. 

Several other predictors were considered. Some of them required model 

responses at discrete points and some did not. Since it appeared that the area between 

the model response and the linear fit squared might be a good predictor, a nonlinearity 

measure that does not require evaluation of the model at discrete points was formulated 

as 

x2 l [f (g(x)-A-Bx)2dx]2 

L _x_1 _____ _ 

x2 
(4-8) 

f g(x)dx 
xl 

where xis the uncertain parameter, x1 and x2 define the range of interest or the range of 

significant probability, and A and B are linear fit parameters which are found as 

x2 

f !!._g(x)dx (4-9) 
B 

xldt 

x2-xl 

and 

x2 

f (g(x)-Bx)dx (4-10) 
A xl 

x2-xl 

This measure appeared to correlate well with what is intuitively more or less linear 

(Figure 4-3). It did not, however, correlate well with the error in FOA variance, as the 

scatter in Figure 4-4 shows. The same models and parameter distributions shown in 

Figure 4-2 were used here. An additional disadvantage is that an integrable surface 
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would have to be fit to the model response if the model was not an explicit function of 

the parameters. 

Another approach which worked fairly well for normally distributed parameters 

used the slope between the model responses at the points µ. + Zl1 where z = { +2.5, 

+0.67, 0.0}. The difference between the slopes of the individual segments and of the 

overall slope along with squared and cross product terms and the error in the FOA 

variance were input to a step-wise regression program. A good fit, as indicated by 

correlation coefficient R2 of 0.982, was obtained. Figure 4-5 shows the predicted vs true 

errors. The predictor model was then tried with a data set which had not been used in 

the regression with fair results as also shown in the figure. This approach was even less 

successful with lognormally distributed variables, however. 

Another procedure was suggested in Downing, et al. (1985). Given a linear 

model, g(x), and a five point design of x = µ + na where n = (0, 1,2), it was found that 

the ratio Izls was always equal to 4/V'To or 1.2649. Here, 12 is the range of the model, 

or g(µ+2a) minus g(µ.-2a) and s2 is computed as 

2 

s2= L [g(µ+no)-g(µ)]2 (4-11) 
n=-2 

Some preliminary work indicated that the departure of the ratio Izfs from 1.2649 matched 

what intuitively was more or less nonlinear. Figure 4-6 shows these results. This 

departure did not correlate well with the error, as Figure 4-7 shows. The departure in 

the figure was computed as a relative departure - (1.2649 - lz/S)/1.2649. The same 

models and parameter distributions were used as in Figure 4-2. 

Since the error in variance is a function of the difference between the areas under 
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the [g(x)]2f x(x) and [l(x)]2f x(x) curves, an attempt was made to approximate the 

[g(x)]2f x(x) surface by finding the model response and PDF evaluation at the five points 

in the 5-point design given earlier. This turned out to be a very poor approximation of 

the actual surface (Figure 4-8), and the difference between the area under the discretized 

surface and under the linear surface did not correlate at all with the error in the FOA 

variance. 

A final idea came from Bates and Townley (1988). They proposed that a 

significant difference between the first and second order approximation (SOA) of the 

mean of a model response was an indication of a nonlinear model. The SOA will agree 

with the FO approximation if Cv' s are small, i.e., a relatively small range of the function 

is of interest and the function will be more nearly linear the smaller the range under 

consideration. The other reason for agreement between the first and second order 

approximations is small second derivatives, which is an indication of a more nearly linear 

model. A relative difference, (FOA mean - SOA mean)/FOA mean, was computed using 

the same models and parameter distributions as used earlier. While it produced an 

interesting plot (Figure 4-9), it would not be a particularly useful predictor. 

PREDICTION FACTORS FOR ONE PARAMETER MODELS 

A preliminary data set was generated using a lognormally distributed uncertain 

parameter, denoted x. Exponential models of the form y = abx and polynomial models 

of the form y = xb were used. The initial results showed that the errors behaved 

differently for different configurations of response. The configurations were classified 

as increasing concave-up, decreasing concave-up, increasing concave-down, and 

decreasing concave-down. What form the models take depends on the values of a and 
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b. Figure 4-10 shows the various forms and the restrictions on a and b required for the 

models to take those forms. 

It was also obvious from the initial data that the polynomial forms behaved 

differently from the exponential forms. The reason for this may be in how the functions 

are bounded. Since the parameter, x, was lognormally distributed, x does not take on 
\_ 

values less than or equal to zero. However, there are some differences in the way the 

polynomials and exponentials behave as x decreases and passes through zero. 

Considering the one term models y = abx and y = xb, there are both polynomial and 

exponential forms which are decreasing and concave-up (curve A in Figure 4-10). Both 

forms asymptotically approach zero as x - + oo. However, as x - o+, the polynomial 

form goes to + oo , as x - o-, the polynomial form goes to - oo , and the function is 

discontinuous at x = 0. The exponential form crosses the y-axis at y = 1 and then goes 

to + oo as x - - oo . Similarly, for increasing concave-down forms ( curve B in Figure 

4-10), both approach zero asymptotically as x increases, but the polynomial forms go to -

oo as x - o+ and the exponential forms cross the y-axis at y = -1. 

The increasing concave-up forms (curve C in Figure 4-10) behave somewhat 

differently. Both are unbounded as x - + oo. The exponential forms cross the y-axis 

at y = 1 and go to O as x - - oo. For the polynomials, how the function is bounded as 

x - 0 is a function of the power. If the power is not an integer, the function is a 

complex number for x < 0. With an even integer power, the function has a minimum 

at x = 0. With an odd integer power, the function approaches -oo as x - -oo. The 

same phenomenon occurs with the decreasing concave-down models (curve Din Figure 

4-10), except that the sign of the function value is changed. 

Thus, it was necessary to analyze them separately and also find a means of 
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determining which form a response that was not an explicit function of the parameter (or 

a response that was a combination of exponential and polynomial terms) would take. 

Model Classification . 

The ratio of the second to the first derivative behaves differently, depending on 

whether the form is exponential or polynomial. For exponential forms, y = ahx, the ratio 

is equal to bln(a), regardless of which value of the parameter (x) is used to evaluate the 

derivatives. If the model output has a polynomial form, the ratio is not constant. 

However, the ratio divided by the value of x used to evaluate the derivatives will be 

constant for all values of x. For a one term polynomial of the form y = axb, the ratio 

divided by the value of x is equal to b - 1. These results only work to classify a 

response if it is strictly exponential or polynomial. 

For responses which take on a "mixed" form such as y = axhe-x or y = axh + 

ecdx, neither the ratio nor the ratio divided by x is constant across the values of x. 

However, for some models one form may be dominant. 

If it is not obvious which form a model takes, one approach is to compute a set 

of parameter-response pairs and estimate models of the form y = constant + axb and y 

= constant + kcdx. A recommended set of parameter-response pairs is made up of X;_ 

= exp(µ + u2/2 + zio), where z = { +2, +0.64, O} and the corresponding y/s. The 

response then is closest in form to the estimated model with an R2 closest to unity. Most 

statistical packages, such as SYSTAT (Wilkinson, 1990), will estimate nonlinear models 

and provide the R2• A visual inspection of plots of the response and estimated 

polynomial and exponential models can also provide insight as to whether or not the 

model can be classified. Another technique is to construct a semi-log plot with y on a 
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logarithmic scale. If this plot is linear, the model is exponential. 

Some models are truly "mixed", in which case neither the polynomial or 

exponential error estimating procedures work particularly well. If one fitted curve does 

not match a lot better than the other one, the model is probably "mixed". In this case, 

a conservative estimate of the error in the FOA variance can be obtained by assuming 

both forms and accepting the larger error. These model classification procedures will 

be evaluated in more detail in a later section covering the verification runs. 

Results for Exponential Models 

Exponential models with forms decreasing concave-up, increasing concave-up, 

increasing concave-down, and decreasing concave-down (A, B, C, and D respectively 

in Figure 4-10) were investigated. The models used to generate the predictors for the 

concave-up models were of the form y = abx. A constant multiplier is irrelevant since 

is does not change the magnitude of the relative error. Given a constant, k, and a model 

y = kabx 

The FOA variance is 

Var[kabXj =E[k2a2bX]-(E[kabX])2 

=k2E[a2b1-(kE[abXj)2 

=k2LE[ a 2b1 -(E[ a bXj)2} 
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The relative error is 

error 

=k2fFO Var[a hx_i} 

k2{Var[a",}-k2{FO Var[a"x_i} 

k2{Var[abx_i} 

(4-13) 

(4-14) 

The k2's cancel, so this relative error is equal to the relative error in the FOA variance 

of y = ahx. This is also the case for the polynomial models. 

Decreasing Concave-Up Models and Increasing Concave-Down Models 

The models evaluated here are the exponential forms (y = abx) of curves A and 

B of Figure 4-10. For these models, the x's were lognormally distributed with means 

ranging between 0.25 and 50 and the x's had CV's between 0.1 and 1.5. Table 4-1 is a 

summary of CV's, means, and variances of x, and the corresponding lognormal 

parameters. A grid of a - b combinations was constructed, containing 15 models for 

which a was between O and 1· and b was greater th~ O and 15 models for which a was 

greater than 1 and b was less than zero. Additional a - b combinations were added later 

to smooth some curved plots. 

The error can be computed either as a relative error (equation 4-7), which may 

be more useful in practice or as a simple difference between the analytical and FOA 

variances. The term "error" will be used to denote the relative error and "difference" 

will be used to denote the simple difference. 

Both the relative error and the difference are functions of Cv of x (Cvx) and E[x], 

which determine the extent and location of the range of significant probability. They are 
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also functions of a and b, which determine the degree of nonlinearity of the model. The 

sample correlation coefficient between two random variables is a measure of the strength 

of the linear relationship between the variables. Since model nonlinearity is important, 

it was considered worthwhile to select 5 x's, compute the corresponding y's, and 

compute the sample correlation coefficient (rx,y) between the x's and y's. This is 

calculated as 

(4-15) 

where sx us the sample standard deviation of x, Sy is the sample standard deviation of y 

and sx,y, the sample covariance between x and y is computed as 

(ExiY1-ExiEy/n) 

n-1 

The quantity n is the number of (x,y) pairs. 

The five x's were selected as 

(4-16) 

(4-17) 

whereµ and u were the lognormal distribution parameters and z = { +2, +0.64, O}. 

These are the same points recommended for the model classification procedure. 

This sample correlation coefficient had to be computed to at least 6 decimal places 

to be useful. This is because a small difference in the correlation can indicate a large 

difference in the error. For example, if Cvx is 0.5 and the model is y = a-x, for a = 1.1, 

the correlation is -0.99997 and the error in the FOA variance is -0.019. If a = 2.0, the 

correlation is -0.9984 and the error is -0.127. Thus, a -0.15 percent change in the 

correlation results in a 568 percent change in the error. For a given Cvx, rx,y was plotted 
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against the error. The data plotted as a smooth curve with no scatter, indicating that rx,y 

in combination with Cv was a successful predictor. To make the plot easier to read and 

use, rx,y was transformed to a "correlation factor" as 

factor=ln(l -abs(r x)) (4-18) 

Due to the way the points are picked, the factor is a function of Cv, E[x], a, and 

b. This is a further indication that it may be a suitable predictor. Figure 4-11 is a 

composite plot of error vs factor for all the Cv's. This shows that the maximum errors 

tend to become larger in absolute value as Cv increases, which is the expected result. 

There are also some unexpected patterns in these curves which will be analyzed in the 

remainder of this section. The composite curve requires too small a scale to be useful 

for predicting errors. Figures 4-12 through 4-18 give the curves for each value of Cv. 

Error predictions for other Cv's between 0.1 and 1.5 can be found by interpolation 

between curves. 

Consider the exponential model y = abx. For a given a, as b increases the 

nonlinearity increases. The expected result is, therefore, that given a combination of Cv, 

E[x], and a, the error in the FOA variance will increase as b increases. This actually 

turned out not to be the case. 

To further investigate the behavior of the difference as a function of Cv, E[x], a, 

and b, an analytical solution for the difference was formulated. To find values of a and 

b which gave maximum and minimum errors, the partial derivatives of the difference 

with respect to a and b were set equal to zero. 

First noting that 
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... 
Efy] = J abxf :x<x)dx and Efy 2] = J a2bxf :x<x)dx (4-19) 

0 0 

and 

FO Variance=(dy)2Var(x)=[ln(a)babEix1]2 Var(x) (4-20) 
dx 

then 

... 
di/I= J a2hx_tx<x)dx-[f abxf x<x)dx]2-[ln(a)babECx1]2Var(x) (4-21) 

0 0 

Using Leibniz' Rule to evaluate derivatives of an integral. 

-21n(a)b2a C2bECxJ-1>var(x){l +In(a)bE[x]} (4-22) 

and 

-2[ln(a)]2ba2bE[xJvar(x){l +ln(a)bE[x]} (4-23) 

Once these two equations are set equal to zero and some canceling and rearranging is 

done, they become identical 
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-ln(a)ba2bECxlvar(x){l +ln.(a)bE[x]} (4-24) 

It is theoretically possible to do this analysis using the relative error rather than 

the difference, but the resulting expressions would be so lengthy that it would be difficult 

to derive any useful information from them. While the difference behaves differently 

from the error with respect to the factor, it will change from positive to negative at the 

same point. 

For b equal to zero, both the partial derivative and the error are equal to zero. 

For all a's and distributions of x, the evaluation of equation 24 (as a function of b) 

exhibited the pattern shown in Figure 4-19. The figure also shows that the b's for which 

equation 24 is equal to zero correspond to the minimum and maximum differences. The 

locations of these zeros, and the point at which the difference curve crosses the zero axis 

change as a function of a and the distribution of x. Given a Cv and E[x], the distribution 

of x is defined. As a increases the b's for minimum difference, maximum difference, 

and zero difference increase. For a given Cv and value of a, as E[x] increases the b's 

for minimum, maximum and zero differences all decrease. Given E[x] and a, the point 

of minimum. difference is nearly the same for all values of Cv. The b's for zero and 

maximum difference increase as Cv increases. Figures 4-20 through 4-22 demonstrate 

these phenomena. 

For all combinations of a and distributions of x, the (relative) error as a function 

of b exhibits the general pattern shown in Figure 4-23. For a given a and distribution 

of x, the error curve crosses the zero axis at the same location (value of b) as the 
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difference curve. The b at which the minimum difference occurs is the same as the h 

for the minimum relative error. In Figure 4-23 the difference was so small with respect 

to the relative error that it was multiplied by 100 so the curve could be seen. Figures 

4-24 through 4-26 illustrate the behavior of the relative error as a, E[x], and Cv change. 

The pattern exhibited by the error and difference occurs as a result of the way the 

FOA variance is computed. Another way of expressing the FOA variance is 

FO Variance=(slope of tangent)2xVar(x) (4-25) 

with the slope evaluated at E[x]. Thus, how well the slope evaluated at E[x] represents 

the "overall" slope of the response determines how well the FOA variance performs. 

For any exponential, decreasing concave-up model, the larger the exponent, the 

faster the response gets close to zero. Thus the slope of the response becomes nearly 

zero even at relatively small values of x, as shown in Figure 4-27. Given a large E[x], 

the slope of the tangent computed at that point will be quite small, and given a large b, 

the slope of the response throughout most of the range of significant probability may also 

be quite small. This is also illustrated in Figure 4-27, where E[x] is 5.0 and the range 

covering 99 percent of the area under the PDF is between 1.5 and 13. 7. Thus, for large 

E[x], the slope of the tangent at E[x] becomes more representative of the overall slope 

as the exponent increases. In addition, for larger E[x], the slope of the tangent is smaller 

in absolute value than the overall slope, and both the difference and the error are 

positive. 

For relatively small E[x], the slope of the tangent for the curve with the smaller 

exponent better represents the overall slope. This is shown in Figure 4-28, where E[x] 

is 0.5 and 99 percent of the area under the PDF is between 0.114 and 1. 76. The figure 
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also illustrates that the slope of the tangent is larger than the overall slope, so the 

difference and error are therefore both negative. As the exponent increases, the absolute 

value of the error increases. 

If the mean falls right in the region of maximum curvature, an increase or 

decrease in the error will not correspond to an increase or decrease in the exponent. 

See, for example, Figure 4-29, where E[x] is 2.0 and the 99 percent range is 0.45 to 

7. 94. Here, it is not at all obvious which tangent would better represent the overall 

slope. 

Since the correlation coefficient, rx,y, is a measure of the strength of the linear 

relationship between x and y, it is expected that the error, or the absolute value of a 

negative error, would continue to increase as rx,y decreases (or as the factor increases). 

Figure 4-11 shows that this is not the case. Instead, as the factor increases, the error, 

which is originally negative, increases in absolute value, reaches a minimum, begins to 

increase, passes through zero, and has a maximum value of 1. Due to the way the error 

is computed (equation 4-7), 1 is the maximum possible positive error. The E[x] - a - b 

combinations closest to the point where the error changed from negative to positive were 

examined. It was found that the linear fit did not match the response well at all. Also, 

the g(x)f x(x) and l(x)f x(x) curves and the [g(x)]2fx(x) and [l(x)]2fx(x) curves did not match 

either. The variance, however, is computed as the difference between the area under 

[g(x)]2f x(x) and the square of the.area under g(x)fx(x). For each Cv - a - b combination, 

there will be a point such that if the tangent is computed at that point that difference will 

be equal even though the linear surface does not match the response. Theoretically, 

then, it is possible to identify points on the factor axis where the error is small, even 

though the model may be highly nonlinear. It should be noted, however, that the 
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increasing portion of the error vs factor curve (Figure 4-11) is relatively steep, 

particularly for larger Cv's. When the factor falls in the increasing portion of the curve, 

predicted errors may not be particularly accurate since a very small change in the factor 

may result in a large change in the error prediction. It is recommended that the curve 

only be used to predict errors when the factor is less than the factor corresponding to the 

minimum point on the curve. 

Increasing Concave-Up Models and Decreasing Concave-Down Models 

A similar analysis was performed for increasing concave-up models and 

decreasing concave-down. The models considered were the exponential forms of types 

C and D in Figure 4-10. The same Cv's were used as in the previous analysis. The 

highest E[x] was 10, since higher values resulted in computer overflow errors and loss 

of precision for many of the models. 

These models behaved differently from the type A and B models. In all cases, 

tl1e difference and error was positive, i.e. the exact variance was always greater than the 

FbA variance. Also, the error always increased as the correlation decreased (or the 

factor increased). Figure 4-30 shows the curves for all the C/s. The expected result 

of increased error with increased Cv is also demonstrated here. 

The behavior of the difference and the error with respect to b was as expected. 

As b increased, the difference increased, as shown in Figure 4-31. Equation 4-24 was 

evaluated for four example models. For the values of b for which it was possible to get 

a solution (without overflow errors), the partial derivative was a strictly increasing 

function, which is also shown in the figure. As b increased, the relative error increased 

and asymptotically approached its maximum value of 1.0 (Figure 4-32). 

For a given b, Cv, and E[x], as a increased, the relative error increased, 
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approaching 1 asymptotically. For a given b, Cv, and a, as E[x] increased, the relative 

error exhibited the same behavior. Similarly, when given a, b, and E[x], as Cv 

increased, relative error increased and approached 1 asymptotically. This is 

demonstrated in Figure 4-33. 

These results are due to the form of the response, the way the FOA variance is 

computed, and the extent of the range of significant probability for a lognormally 

distributed random variable. In taking a FOA variance, the assumption is that the slope 

of the tangent at E[x] is representative of the overall slope of the response. With a 

lognormally distributed random variable, the expected value of the random variable is 

to the left of center of the range of significant probability. For an increasing model of 

the form y = ahx, the slope becomes increasingly steeper as x increases. Thus, the slope 

taken at E[x] will be flatter than the overall slope in the range of significant probability 

and a FOA variance will be less than the true variance. 

Figure 4-34 shows the response curves for increasing values of a. As a increases, 

the slope increases more rapidly as x increases. The slope of the tangent at E[x] then 

becomes less representative of the overall slope as a increases, and the error in the FOA 

variance becomes larger. 

Figure 4-35 illustrates how the range of significant probability changes as E[x] 

increases. Here, a and Cv are constant. The vertical bars delineate the ranges for 99 

percent of the area under the PDF for each of the values of E[x]. There is obviously a 

larger discrepancy between the slope of the tangent and the overall slope for E[x] equal 

to 5.0 than there is for E[x] equal to 1.0. Thus, as E[x] increases, the error in the FOA 

variance also increases. 

For a given E[x] and a, as Cv increases, the range of significant probability 
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increases. This is shown in Figure 4-36. In this Figure, E[x] is 2.0 and the vertical bars 

indicate the range of 99 percent of the area under the PDF for each 4. With each 

increase in Cv more of the rapidly increasing portion of the response is included in the 

range, and the slope of the tangent at E[x] becomes increasingly smaller than the overall 

slope. The error in the FOA variance will therefore increase as 4 increases. 

Results for Polynomial Models 

Polynomial models of the form y = xh were used to generate the error data. As 

shown previously for the exponential models, multiplication by a constant would not 

affect the error in the FOA variance. For all the one term polynomial models, the error 

data generated showed that the relative error was strictly a function of the power, b and 

Cvx· This differs from the behavior of exponential models, where the error is also a 

function of E[x]. This difference may be due to the way the slope of the response 

behaves throughout the range of x. 

For exponential models (y = ahx), the slope is finite (positive or negative, 

depending on whether the model is increasing or decreasing) at x equal to zero, and then 

approaches either zero or ± oo. For polynomial models, the slope is either zero at x 

equal to zero and then approaching ± oo as x increases or the slope is + oo at x equal to 

zero and approaches zero as x increases. Thus for polynomials, the slope covers the 

entire range between O and either -oo or + oo, whereas for exponentials it does not. 

Thus, for a given Cv and b, the divergence between the model and the linear fit (tangent) 

throughout the range of significant probability may result in the same error in variance 

regardless of where the tangent is computed. 

In addition to being a function of band 4, the difference between the analytical 
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and FOA variance was also a function of E[x]. For positive b, as E[x] increased, the 

difference increased. For negative b, as E[x] increased in absolute value, the difference 

increased. 

The error vs b curve had the same general form for all values of 4. For b 

sufficiently large or small, the error went to 1.0. As Cv increased, the error reached 1.0 

at lower values of b. As b approached zero from the negative side, the error decreased 

and the curve crossed the zero axis. The crossing point was between -0.4 and -0.3 for 

all the Cv' s considered. To investigate if the curves were actually matching well or if 

this was a computational artifact similar to that which occurred with tl1e exponential 

function, several response and response squared times PDF curves were plotted, along 

with the corresponding linear fit times PDF curves. The function was y = x--34 and E[x] 

was 2.0. How well the curves matched up was a function of the 4 , with a good match 

being obtained for Cv equal to 0.1 and not particularly good matches for Cy's of 0.5 and 

1.0. Figure 4-37 shows these curves. Similar curves were also plotted to look at tl1e 

effect of E[x] (Figure 4-38). The same function was used and 4x was 0.5. How well 

the curves corresponded did not appear to change as E[x] changed, confirming the 

previous observation based on computed errors that the error was a function strictly of 

band Cv. 

As b approached zero from either direction, the curve rose sharply (spiked) and 

then returned immediately to the path it had been tracing. To determine exactly what 

was occurring, errors were computed using b's of +0.01, +0.001, +0.0001, and 

±0.00001. Figure 4-39 shows the curves in tl1e region of b equal to zero for selected 

Cy's. To ensure tl1at the computations were accurate, the step size was halved so that 

there were 1,000,000 steps in each numerical integration. At b equal to zero, both the 
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exact and FOA variances are equal to zero. However, the relative error is undefined, 

since it includes division by zero. Another way to express the relative error is 

error=l FO variance 
exact variance 

(4-26) 

If the ratio of the FOA variance to the exact variance is approaching zero as b 

approaches zero, then the relative error will, in fact, go to 1.0. This ratio was computed 

for the various b's and is plotted in Figure 4-40. The figure shows that the ratio does 

approach zero as b approaches zero, so the relative error approaches 1.0 as b gets close 

to zero. Figure 4-39 also shows that the rise and fall back to the base curve is sharper 

for larger Cy's. 

Once b is positive, the error decreases and reaches a minimum. This minimum 

was approximately 0.33 for all Cv's considered. The curve then crosses the zero axis at 

b equal to 1.0 and the error goes to 1.0 once bis sufficiently large. For b equal to zero, 

the error should be zero since the model is y = ax, which is linear. For this model, the 

TS linear fit will match tl1e model exactly, so the FOA variance will equal the exact 

variance. 

The procedure for predicting the error in the FOA variance for models classified 

as polynomial is to generate a grid of 5 parameter (x) and response combinations as xi 

= exp(µ + u2/2 + zio) where z = { +2, +0.64, O}. A model of the form y = constant 

+ axh is then fit to the five points. A number of commercial statistical packages will 

perform this operation. The b obtained from the curve fitting process is then used to 

enter the curve for the appropriate Cv and the relative error predicted. Interpolation 

between curves may be done, if needed. Figures 4-41 through 4-4 7 are the error vs b 
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curves for selected Cy's. 

Results of Verification Runs 

Three sets of verification runs were completed. The models used as verification 

models had the forms 

(4-27) 

(4-28) 

and 

(4-29) 

Analytical variances were found by numerical integration and relative errors computed. 

Relative errors were then predicted based on model classification and either b or the 

factor. Linear interpolation between b' s and factors was used to compute the predicted 

errors. Predicted relative errors were then compared with the actual relative errors. 

For the models with the sum of polynomials form (equation 4-27), a test grid of 

24 increasing function models was generated. The Cy's of x were 0.1, 0.5 and 1.0. 

These Cy's correspond to a2's of 0.00995, 0.22314, and 0.69315. The b's were 

estimated using SYSTAT (Wilkinson, 1990). Table 4-2 showsµ, a2, the model constants 

a, b, c, d, and the b power estimated by fitting this curve: 
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y=constant + ax b (4-30) 

Of the 24 models in the test run, the predicted relative error was correct to within +0.01 

in 19 cases (79 percent). The predicted error was correct to four decimal places in 10 

cases (42 percent). For all but one of the cases for which the predicted error was more 

than +0.01 off, the actual and predicted errors were at least 0.67 and the predicted 

errors were off by no more than 0.03. In this range, the FOA variances are obviously 

unacceptable, so it is not quite so critical to predict the error to within +0.01. There 

was one case where the difference between the predicted and actual errors was greater 

than 0.01 and the error was in a range where it would be desirable to predict the error 

closely. Here, the actual error was 0.162, and the predicted error was off by 0.013. 

Table 4-2 also shows the actual and predicted errors. 

A test grid of 21 decreasing sum of polynomial models was created. The fitted 

curve was estimated, and five cases were eliminated because the estimated power was 

less than -5. Actual and predicted errors were compared. In 10 out of 16 cases (63 

percent), the difference between the actual and predicted errors was less than 0.01. In 

6 of those 10 cases, the difference was less than 0.001. There were five cases (31 

percent) with differences between 0.02 and 0.08, all with errors overpredicted. For two 

cases, the difference was approximately 0.20. The actual errors were -0.22 and -0.36 

and the predicted errors were -0.44 and -0.57, respectively. This is a similar result to 

the result for increasing function models, where the more erroneous predictions were 

made in cases where the FOA variance would probably be rejected anyway. Table 4-2 

also includes these results. Figure 4-48 is a plot of the actual vs predicted errors for all 

the sum of polynomial test runs. 
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A set of 18 decreasing and 14 increasing sum of exponential models (equation 4-

28) was created. There were 18 increasing functions to start with, but overflow errors 

occurred during the numerical integrations, so four were eliminated. Table 4-3 givesµ, 

u2 and the model constants a, b, c, d, e, and f. The factors were computed and the 

relative errors computed. 

Of the 18 decreasing function models, the difference between the actual and 

predicted error was less than 0.01 for 7 cases (39 percent), and less than 0.05 for 14 

cases (78 percent). The largest difference was 0.11. For this case, the actual error was 

-0.22 and the predicted error was -0.33. The other three predictions which were off by 

more than 0.05 also involved errors with absolute values greater than 0.25. The error 

was overpredicted in all cases. As with the polynomials, these represent situations in 

which the FOA variance would probably be rejected anyway. The actual and predicted 

errors are also in Table 4-3. 

Of the 14 increasing function models, the difference between the actual and 

predicted errors was less than 0.01 for 10 models (71 percent). For three other models, 

the difference was less than 0.02, so overall the difference was less than 0.02 for 93 

percent of the models. For one model, the actual error was 0.96 and the predicted error 

was 0.562. The Cvx for this model was 1.0, the factor was -7.2, and this factor was in 

the very steep portion of the error vs factor curve. These results are also in Table 4-3. 

Figure 4-49 shows predicted vs actual errors for all the sum of exponential models. 

There were 23 test cases of decreasing function mixed sums (equation 4-29). 

Curves of the form y = constant + axh and y = constant + kabx were fitted to the five 

recommended points. The R2 from the regression was used to classify the models. 

Errors were predicted using both the polynomial and exponential methods. The model 
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was then classified according to which method performed better. Using R2, 19 models 

were correctly classified, two could not be classified, and two were incorrectly classified. 

The two models could not be classified because the R2 from the exponential curve fitting 

was zero and polynomial curve estimation would not converge to a solution. Of the 

correctly classified models, 10 had prediction errors, i.e. predicted error minus actual 

error, less than 0.05 in absolute value. Five models had prediction errors between 0.06 

and O .1, and none had prediction errors with absolute values greater than O. 2. If an 

acceptable range for the error in the FOA variance is ±0.2, there would only have been 

one case in which an acceptable FOA variance would have been rejected and none in 

which an unacceptable FOA variance would have been accepted. 

For one incorrectly classified model, the error predicted using the polynomial 

method was O. 17 too large and the error predicted using the exponential method was O. 19 

too small. Classification of this model was questionable since the R2 's were 0.999168 

(exponential) and 0.999155 (polynomial). A clear choice between the two types of 

models was not really indicated. Choosing the larger (polynomial) error prediction of 

0.41 would have most likely resulted in rejection of the FOA variance. The actual error 

was 0.24, which would also have probably been considered unacceptable by most users. 

The other incorrectly classified model appeared clearly polynomial, with a 

polynomial R2 of 0. 999 and an exponential R2 of 5E-1 l. The polynomial error prediction 

was -.084 and the actual error in the FOA variance was -0.253. In this case, a possibly 

unacceptably erroneous (but at least conservative) estimate of the variance would most 

likely have been accepted. Table 4-4 gives the actual error, errors predicted by both 

methods, R2 's from both curve fittings, factor, and estimated b power for all the models. 

There were 18 test cases of mixed sums of increasing functions. Twelve models 
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could be classified correctly by comparing the R2 from the curve fitting. Three could 

not be classified, since the R2 from both curve estimations was zero, and three were 

classified incorrectly. For the 12 classified correctly, the absolute value of the difference 

between the actual and predicted errors was less then 0.005. Again, assume that a 

reasonable limit on the error in the FOA variance is +0.2. For the three models 

incorrectly classified, basing an accept or reject decision on the predicted error would 

not have resulted in making an incorrect decision. Table 4-4 shows the actual error, 

errors predicted by both methods; R2's from both curve fittings, factor, and estimated b 

power for each model. Figure 4-50 shows actual vs predicted error for the mixed 

models. 

The test cases showed that extremely accurate error predictions could be made for 

models which are strictly polynomial or exponential. With mixed polynomial -

exponential models, the R2 from a curve fitting process was a good indicator of whether 

the form of the output was more closely exponential or polynomial. The error 

predictions were quite accurate when the models could be properly classified. If the 

purpose of predicting the error is to determine if the FOA variance is sufficiently 

accurate, and if the standard for acceptance is error between -0.2 and +0.2, then there 

were only two out of 36 test cases in which an erroneous accept/reject decision would 

have been made witl1 the mixed polynomial - exponential models. Considering all 

models evaluated, only 2 out 113 erroneous accept/reject decisions would have been 

made. 
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SUMMARY OF ERROR PREDICTION PROCEDURE 

The first step in the error prediction procedure is to classify the model. The 

model should be evaluated at the five recommended points, xi = exp(µ + u2/2 + zio) 

where z = {±2, +0.64, O}. First and second derivatives should be evaluated at those 

points, either analytically or numerically. If the ratio of the second to first derivative is 

constant for all xi, then the model is exponential. If the ratio divided by xi is constant, 

then the model is polynomial. 

If the derivative ratio is not conclusive, curves of the forms y = constant + axb 

and y = constant + kabx should be estimated. If either the polynomial or exponential 

curve clearly fits the data better, then that error estimating procedure should be used. 

If both curves appear to fit well and it is not clear which form the model takes, both 

procedures can be applied and the larger error accepted. For some models, the curve 

estimation process may not converge to a solution or the R2's may both be very close to 

zero. For these models, it is not possible to predict the error in the FOA variance. 

If the model is polynomial, the b power derived in the curve fitting process and 

Cvx are used to find the error in the FOA variance. Curves giving error vs b are 

provided for selected C/s. It may be necessary to interpolate between curves. If the b 

power has an absolute value greater than 5, then the accuracy of the FOA variance is 

highly questionable. This is also the case for Cv's greater than 1.5. 

If the model is exponential, the correlation factor is computed using the x's and 

y's at the five recommended points. Curves giving factor vs error are provided for 

selected C/s. It may be necessary to interpolate between curves. If the factor is in the 

steeply rising portion of the error vs factor curve, then the error prediction and the 
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accuracy of the FOA variance may be questionable. Again, if Cvx is greater than 1.5, 

the FOA variance will not be accurate. 

RESULTS OF EXAMPLE APPLICATIONS 

The procedure was tested using two models for which the output is not an explicit 

function of the parameters. One model computes the sediment washoff from urban 

streets. The other routes a flood hydrograph through a reach of river using the kinematic 

wave approximation. 

The sediment washoff model uses the Soil Conservation Service (SCS) curve 

number method (SCS, 1972) to calculate the runoff in IO-minute increments resulting 

from a IO-year, I-hour storm. The total rainfall near Stillwater, Oklahoma, for this 

event is 2. 7 inches, with incremental values for six time steps selected as 0.32, 0. 79, 

0.63, 0.48, 0.32, and 0.16 inches. This rainfall was considered to have no uncertainty. 

A hypothetical urban area with 1700 square foot, single family dwellings on 1/4 

acre lots was assumed. The 160 acre watershed had 32 acres in woods (SCS curve 

number 55), 108 acres in lawns (SCS curve number 61), and 40 acres of roadway and 

roof surface. Thirty acres of the road and roof surfaces were directly connected to the 

drainage system. SCS Curve number for the directly connected impervious areas was 

98. Runoff was generated by computing the runoff from impervious and pervious areas 

separately and summing to get the total runoff for each time increment. 

The washoff equation used in United States Geological Survey model DR3M 

(Alley and Smith, 1982) was used to model washoff of sediment from the impervious 

areas. The weight of pollutant (tons) washed off during a time step is 

64 



W=LJl-exp(-~RLlt)] (4-31) 

where L0 is the weight of the pollutant of interest on the impervious surfaces at the 

beginning of the time step, R is the runoff rate (inches/hour) during the time step, and 

Llt is the length of the time step (hours). K3 is a rate constant, which is estimated via 

calibration. Runoff rate is computed for each time step. L0 is known from the previous 

time step. Washoff is computed, and L0 is adjusted to start the next time step. 

Alley and Smith (1982) recommend 4.6 inches-1 as an initial starting value for K3• 

For the illustration, K3 was taken as the uncertain parameter, lognormally distributed, 

with mean 4.6, and Cv's of .1, .25, .5, and 1. The initial weight of sediment on 

impervious surfaces was taken as 50 tons for convenience. Since the model is linear in 

that parameter, its actual value does not affect the accuracy of a FOA variance. 

Each of the Cv - mean combinations defines a distribution for K3• A random 

sample of 10,000 K/s was drawn from each distribution. This was established to be a 

sufficient number of samples as part of another study (Stevens and Haan, 1993). The 

cumulative washoff for the duration of the storm was computed using the 10,000 K/s 

in each sample. The variance of the generated output was accepted as the "true" 

variance of the model response. 

The model was run at the five points found as K3 = exp(µ + cr/2 + zo") where 

z = {O, +0.64, ±2} and µ and <J are the lognormal distribution parameters 

corresponding to the mean and variance of K3 • The model was also run using values of 

K3 which were 0.99 and 1.01 times the five K/s to generate the results needed to 

compute the first and second derivatives. The ratio of the second derivative to the first 

derivative was 0.64 at all five points for all four distributions of K3, indicating an 
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exponential model. For Cv of K3 equal to 0.1, the estimated exponential model was W 

= 50.00 - 50.00 x 2.704-0·646KJ. Figure 4-51 is a plot of the five K3 - model output pairs 

and a smooth curve plotted using the estimated exponential model. Visual inspection of 

this plot indicates that the model output has the correct exponential form. The estimated 

exponential models for the other Cy's of K3 had nearly the same constants. All estimated 

models had an R2 equal to 1.000000. 

FOA variances were computed based on the four distributions for ~ and 

compared to the variances derived via simulation. The results are shown in Table 4-5. 

The correlation between five model outputs and K/s was computed. The correlation 

factor used to predict the error for exponential functions was computed and the error in 

the FOA variance predicted. It was necessary to interpolate between the curves for Cv 

equal to 0.1 and Cv equal to 0.3 to find the predicted error for Cv equal to 0.25. Figure 

4-52 illustrates use of the curves to predict the error. The factors and predicted errors 

are also in Table 4-5. The predicted errors compared very well with the actual errors, 

with the maximum difference being 0.017. · 

The second model used the kinematic wave approximation to route an inflow 

hydrograph through a reach of river. A forward difference scheme was used to find the 

simultaneous solutions of the continuity equation 

aQ aA -+-=0 (4-32) 
ax at 

and Manning's equation 

Q=aAll (4-33) 
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where (3 is equal to 5/3 and 

a.= /st 
2 

(4-34) 

nps 

Sr is the friction slope, p is the wetted perimeter, and n is Manning's roughness 

coefficient. Substituting equation 4-33 into the continuity equation and using a forward 

difference approximation of the partial derivatives gives 

(a.A1+1J+1)P + At+lJ+l («AtJ+l)P + At+lJ =0 (4-35) 
Ax At Ax At 

Figure 4-52 is a diagram of the grid in the x-t plane. The step size in the x direction was 

1 mile (5,280 feet). The step size in the t direction was 6 hours (21,600 seconds). 

The unknown in equation 4-35 is Ai+tj+t and the equation is nonlinear in that 

quantity. An interval bisecting method was used to solve the equation. Once Ai+tj+l is 

found, Qi+lj+l can be computed from equation 4-33. The peak flow at the end of the 

reach of river was selected as the model output of interest for the example. 

For convenience, a wide rectangular channel was selected. The channel was one 

half mile wide (2640 feet) and had a bottom slope of 0.004 feet/foot. The Manning's 

roughness coefficient (n) was the uncertain parameter. The n-value of 0.025 

recommended for clean and straight natural river channels (Henderson, 1966) was used 

as the mean of n. A lognormal distribution for n was assumed. Cv' s of O .1, and O. 25 

were selected to define the distributions of n. The base flow was assumed to be 500,000 

cubic feet per second (cfs). The inflow hydrograph was a simple triangular hydrograph, 

peaking at 2,000,000 cfs in 60 hours (2.5 days) hours and returning to base flow at 120 

hours (5 days). The river and storm properties are not intended to represent any real 

places or events. This is merely an example to illustrate the technique. 
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The simulation was first run with 2000 samples. To test if 2000 samples were 

sufficient for the simulation to converge to a true solution the mean and variance were 

found using the first 1000 generated outputs (simulation 1), the first 1500 generated 

outputs (simulation 2), and the entire sample of 2000 (simulation 3). If the percent 

change in the variance between simulation 1 and simulation 2 and between simulation 2 

and simulation 3 was less than 1, then the 2000 samples would be considered adequate. 

The percent changes were 1.2 and 3.4 respectively. Additional groups of 500 samples 

were generated and added on, and the percent change between the original group and 

group plus 500 computed. This was continued until the percent change for two 

successive groups was less than 1. This occurred when the entire sample had 5000 

members. The percent change in variance between a sample of 4000 and 4500 members 

was -0.21. The percent change between the 4500-member and 5000-member samples 

was 0.07. Thus, 5000 runs was determined to be an adequate number for a valid 

simulation. 

The model was evaluated at the five recommended points and at the recommended 

points plus and minus one percent to assess the form of the output. Neither the ratio of 

second to first derivatives or that ratio divided by n was constant. The FOA variance 

was computed using the numerical first derivative evaluated at the mean. The FOA 

variance was found to be 7,116,837. The variance by simulation was 234,828,478, and 

the relative error was 0.97. A visual inspection of the model output vs n curve (Figure 

4-54) indicated that the model was not highly nonlinear, and this great of an error might 

be questionable. It was felt that the step size used for taking the numerical derivatives 

should be evaluated in more detail. Accordingly, step sizes ranging between 0.0005 and 

0.01 were used. Model outputs were generated so the derivative at the mean of n could 
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be evaluated using either a two-point central difference or four-point central difference 

approximation. The step size for which the two agreed most closely was 0.006. The 

four-point approximation of the first derivative with respect to n was -6,252, 159. Using 

this gave a FOA variance of 241,240,305 and a relative error of -.027. This was much 

more reasonable, given that the model was not particularly nonlinear in n. 

To further check whether 6,252,159 was a reasonable approximation of the first 

derivative, a linear model was estimated using the five recommended points. The 

estimated slope was -6,285,380. Again, given that the model was not highly nonlinear, 

this is further evidence that the original first derivative of -1,067,096 was not accurate. 

The R 2 of the estimated linear model was O. 99, confirming that the model is not highly 

nonlinear inn. 

Using the new step size of 0.006, the first and second derivatives were repeated. 

Again, neither the ratio or ratio divided by n was a constant. Since the derivatives were 

not useful for classifying the model, the SYSTAT (Wilkinson, 1990) statistical software 

was used to estimate models of the form 

Q = constant + an b (4-36) 

and 

Q = constant + ka bn (4-37) 

For Cv of n equal to 0.1, the R2 for the polynomial model was 0. 97 and the power 

was -2.098. The statistical software SYSTAT (Wilkinson, 1990) would not estimate the 

exponential model y = constant + kahx. An error message indicating that the function 

was undefined at an estimated parameter value was returned. 

69 



With a power of -2.098 and a Cv for the parameter of 0.1, the predicted error for 

a polynomial model was 0.079. Figure 4-55 shows use of the curve to predict the error. 

While it was not possible to estimate an exponential model, the correlation factor could 

still be computed and was found to equal -4.89. Using this and the exponential 

decreasing function curve for Cv equal to 0.1 gave a predicted error on -0.006. This 

process is shown in Figure 4-56. 

For this example it appeared that the form of the output was more closely 

polynomial, so the error predicted using the polynomial technique should be most 

accurate. The predicted error was fairly close to the actual error. In addition, the 

predicted error was sufficiently small that the FOA variance would probably not have 

been rejected, although what constitutes an acceptable error is a matter of individual 

judgment. Given that a FOA variance would be judged acceptable if the predicted error 

is between -0.2 and 0.2 the result would have been to accept the FOA variance as 

sufficiently accurate. 

For the second run, the mean of n was still 0.025 and the Cv was increased to 

0.25. Since the Cv of n would not affect the first derivative at the mean, tl1e same first 

derivative of 6,252,159 found earlier was used. The FOA variance was 1,526,933,288. 

Since 5,000 samples had been required for a valid simulation with Cv equal to 0.1, it 

seemed likely that even more samples would be required with a more uncertain 

parameter. A total of 8,000 samples were generated to start with. A similar percent 

change analysis was done, starting with 5,000 samples and adding on in increments of 

500. None of tl1e percent changes between 5,000 and 8,000, i.e. between 5000 and 

5500, 5500 and 6000, etc., were greater tlian 1 percent. Also, they were neither 

consistently positive or negative, so tl1e variance was neither increasing or decreasing as 
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more samples were added. Thus 8,000 samples was considered sufficient. The sample 

variance was 1,421,857,185 and the relative error in the FOA variance was -0.074. 

A polynomial model with the form of equation 4-30 was estimated. The R2 was 

0.98 and the b power was -0.00366. Using the curve for Cv equal to 0.1 gave a 

predicted error of -0.0008. The curve for Cv equal to 0.3 gave an error of -0.042. 

Straight line interpolation between the curves yielded an error of -0.032 for Cv of 0.25. 

This compares very well with the actual error of -0.074. It was not possible to estimate 

an exponential model, again because of parameter out of range errors. The correlation 

factor could be computed, and was -5.964. The predicted error for this factor for C/s 

of 0.1 and 0.3 were -0.0149 and -0.0803, respectively. By straight line interpolation, 

the predicted error was -0.064. This is also a very accurate prediction and illustrates that 

if the form the model takes is uncertain, good results can be obtained by computing 

errors using both the polynomial and exponential methods and accepting the larger error. 

Several conclusions can be drawn from the applications. If the model output has 

exactly the correct form, as confirmed by derivative ratios, the error predicting method 

is very accurate. If fact, in these cases, it may be possible to use the predicted error and 

the FOA variance to make a very precise estimate of the actual variance. Just the one 

example given here is not sufficient to prove this, but this may be a promising approach 

to pursue as a subject for future research. 

If the derivative ratios do not indicate a strictly polynomial or exponential model, 

then estimating a model using a statistical package can give an indication of the form of 

the output. In the flow routing example, the derivative ratios were not constant, but the 

statistical software was unable to estimate exponential models and polynomial models 

with R2 's very close to unity were estimated. It therefore appeared that the form was 
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polynomial. Good error predictions were obtained using both methods. However, these 

results should only be used to make an assessment of whether or not the FOA variance 

is within an acceptable range. Using the predicted error to estimate a variance by 

correcting the FOA variance would not be recommended, since the predicted error had 

the wrong sign in one case. 

Another factor concerning FOA variances illustrated by these examples is the 

affect of the accuracy of numerical derivatives. With the washoff model, the derivative 

ratio was constant. Given an exponential model y = constant + kabx, the derivative ratio 

is equal to bln(a). For all foµr C/s of K3 the estimated bln(a) was equal to -0.6423. 

Thus, the numerical derivatives could be accepted without much question. 

With the hydrograph, the output was a rougher curve and the numerical derivative 

was unstable, i.e. decreasing the step size would not necessarily result in a more accurate 

approximation of the derivative. (If the step size is too large truncation errors can occur 

and if the step size is too small round off errors can occur.) Round off errors are even 

more likely with an example such as this where the response is a very large number and 

the step size is much less than 1, and the change is response and step size differ by 

approximately 7 orders of magnitude. Thus, the optimum step size needed to be 

identified. The FOA variance computed using the arbitrary step size of plus and minus 

1 percent was extremely inaccurate, while the FOA variances computed using the step 

size identified as optimum were quite accurate. 
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TABLE 4-1 

MEAN, VARIANCE, Cv, AND LOGNORMAL DISTRIBUTION PARAMETERS OF 
UNCERTAIN PARAMETER, x 

E[x] Var[x] CV µ 

0.25 0.000625 0.1 -1. 391270 0.009950 
0.25 0.005625 0.3 -1.429383 0.086178 
0.25 0.015625 0.5 -1.497866 0.223144 
0.25 0.030625 0.7 -1.585682 0.398776 
0.25 0.0625 1.0 -1. 732868 0.693147 
0.25 0.09 1.2 -1.832293 . 0. 891998 
0.25 0.140625 1.5 -1.975622 1.178655 
0.5 0.0025 0.1 -0.698122 0.009950 
0.5 0.0225 0.3 -0.736236 0.086178 
0.5 0.0625 0.5 -0.804719 0.223144 
0.5 0.1225 0.7 -0.892535 0.398776 
0.5 0.25 1.0 -1. 039721 0.693147 
0.5 0.36 1.2 -1.139146 0.891998 
0.5 0.5625 1.5 -1.282475 1.178655 

1 0.01 0.1 -0.004975 0.009950 
1 0.09 0.3 -0.043089 0.086178 
1 0.25 0.5 -0.111572 0.223144 
1 0.49 0.7 -0.199388 0.398776 
1 1 1.0 -0.346574 0.693147 
1 1.44 1.2 -0.445999 0.891998 
1 2.25 1.5 -0.589327 1.178655 
2 0.04 0.1 0.688172 0.009950 
2 0.36 0.3 0.650058 0.086178 
2 1 0.5 0.581575 0.223144 
2 1.96 0.7 0.493759 0.398776 
2 4 1.0 0.346574 0.693147 
2 5.76 1.2 0.247148 0.891998 
2 9 1.5 0.103820 1.178655 
5 0.25 0.1 1. 604463 0.009950 
5 2.25 0.3 1.566349 0.086178 
5 6.25 0.5 1.497866 0.223144 
5 12.25 0.7 1.410050 0.398776 
5 25 1.0 1.262864 0.693147 

·5 36 1.2 1.163439 0.891998 
5 56.25 1.5 1. 020110 1.178655 

10 1 0.1 2.297610 0.009950 
10 9 0.3 2.259496 0.086178 
10 25 0.5 2.191013 0.223144 
10 49 0.7 2.103197 0.398776 
10 100 1.0 1. 956012 0.693147 
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TABLE 4-1 (CONTINUED) 

MEAN, VARIANCE, Cv, AND LOGNORMAL DISTRIBUTION PARAMETERS OF 
UNCERTAIN PARAMETER, x 

E[x] Var[x] CV µ a2 

10 144 1.2 1.856586 0.891998 
10 225 1.5 1. 713258 1.178655 
15 2.25 0.1 2.703075 0.009950 
15 20.25 0.3 2.664961 0.086178 
15 56.25 0.5 2.596478 0.223144 
15 110.25 0.7 2.508662 0.398776 
15 225 1.0 2.361477 0.693147 
15 324 1.2 2.262051 0.891998 
15 506.25 1.5 2.118723 1.178655 
25 6.25 0.1 3.213901 0.009950 
25 56.25 0.3 3.175787 0.086178 
25 156.25 0.5 3.107304 0.223144 
25 306.25 0.7 3.019488 0.398776 
25 625 1.0 2.872302 0.693147 
25 900 1.2 2.772877 0.891998 
25 1406.25 1.5 2.629548 1.178655 
35 12.25 0.1 3.550373 0.009950 
35 110.25 0.3 3.512259 0.086178 
35 306.25 0.5 3.443776 0.223144 
35 600.25 0.7 3.355960 0.398776 
35 1225 1.0 3.208774 0.693147 
35 1764 1.2 3.109349 0.891998 
35 2756.25 1.5 2.966021 1.178655 
50 25 0.1 3.907048 0.009950 
50 225 0.3 3.868934 0.086178 
50 625 0.5 3.800451 0.223144 
50 1225 0.7 3.712635 0.398776 
50 2500 1.0 3.565449 0.693147 
50 3600 1.2 3.466024 0.891998 
50 5625 1.5 3.322696 1.178655 
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TABLE 4-2 

RESULTS OF POLYNOMIAL TEST RUNS 

µ o2 a b C d est. error pred. 
power error 

Decreasing Models 

1. 60446 0.00995 -2 0.2 -2.5 0.15 0.173 -0.006 -0.006 
0.58158 0.22314 -2 0.2 -2.5 0.15 0.173 -0.152 -0.153 

-0.34657 0.69315 -2 0.2 -2.5 0.15 0.172 -0.573 -0. 577 
0.58158 0.22314 -2 0.8 -2.5 0.15 0.532 -0.147 -0.095 

-0.34657 0.69315 -2 0.8 -2.5 0.15 0.496 -0.573 -0.357 
0.58158 0.22314 -2 0.2 -2.5 0.9 0.694 -0 .113 -0.058 

-0.34657 0.69315 -2 0.2 -2.5 0.9 0.661 -0.439 -0.223 
0.58158 0.22314 -2 0.8 -2.5 0.9 0.858 -0.059 -0.058 

-0.34657 0.69315 -2 0.8 -2.5 0.9 0.858 -0.202 -0.200 
1. 60446 0.00995 -2 0.5 -1.5 0.5 0.500 -0.006 -0.006 
0.58158 0.22314 -2 0.5 -1.5 0.5 0.500 -0.152 -0.152 

-0.34657 0.69315 -2 0.5 -1.5 0.5 0.500 -0.571 -0.571 
1. 60446 0.00995 -2 0.5 -1.5 0.1 0.387 -0.007 -0.006 
0.58158 0.22314 -2 0.5 -1.5 0.1 0.360 -0.162 -0.153 

-0.34657 0.69315 -2 0.5 -1.5 0.1 0.344 -0.619 -0.576 
0.58158 0.22314 -2 0.5 -1.5 0.9 o. 710 -0.108 -0.085 

Increasing Models 

1.60446 0.00995 2 1.1 1.5 1.05 1.080 0.002 0.002 
0.58158 0.22314 2 1.1 1.5 1.05 1.079 0.037 0.038 

-0.34657 0.69315 2 1.1 1.5 1.05 1.079 0 .116 0.117 
1.60446 0.00995 3 2 2.5 1. 75 1.911 0.030 0.031 
0.58158 0.22314 3 2 2.5 1. 75 1.904 0.502 0.509 

-0.34657 0.69315 3 2 2.5 1.75 1.902 0.901 0.905 
1. 60446 0.00995 2 1.1 0.5 1.15 1.111 0.002 0.002 
0.58158 0.22314 2 1.1 0.5 1.15 1.110 0.053 0.053 

-0.34657 0.69315 2 1.1 0.5 1.15 1.110 0.148 0.162 
1. 60446 0.00995 3 2 1. 5 2.5 2.266 0.048 0.050 
0.58158 0.22314 3 2 1.5 2.5 2.239 0.672 0.685 

-0.34657 0.69315 3 2 1.5 2.5 2.228 0.961 0.980 
1.60446 0.00995 0.75 1.05 0.5 1.15 1.094 0.002 0.002 
0.58158 0.22314 0.75 1.05 0.5 1.15 1.095 0.045 0.045 

-0.34657 0.69315 0.75 1.05 0.5 1.15 1. 092 0.135 0 .138 
1. 60446 0.00995 2 2.5 1.5 2.5 2.500 0.062 0.062 
0.58158 0.22314 2 2.5 1. 5 2.5 2.500 0.777 0. 777 

-0.34657 0.69315 2 2.5 1.5 2.5 2.500 0.994 0.994 
1. 60446 0.00995 0.75 1. 05 1.5 1. 05 1. 050 0.001 0.001 
0.58158 0.22314 0.75 1.05 1.5 1.05 1.050 0.023 0.023 

-0.34657 0.69315 0.75 1.05 1.5 1. 05 1.050 0.073 o. 073 
1.60446 0.00995 2 2.5 2.5 1. 75 2.300 0.050 0.053 
0.58158 0.22314 2 2.5 2.5 1. 75 2.248 0.676 0.700 

-0.34657 0.69315 2 2.5 2.5 1. 75 2.224 0.960 0.983 
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TABLE 4-3 
RESULTS OF EXPONENTIAL TEST RUNS 

µ o2 a b C d e f factor pred. error 
error 

decreasing models 

1.60446 0.00995 1.50 -0.25 2.00 -0.25 100 200 -6.59 -0.014 -0.014 
1.60446 0.00995 0.75 a.so a.so a.so 100 200 -5.43 -0.013 -o. 011 
1.60446 0.00995 0.75 a.so a.so 1.25 100 200 -5.11 -0.010 0.014 
1. 60446 0.00995 1.50 -0.25 2.00 -1. 00 100 200 -4.97 -0.007 0.014 
1. 60446 0.00995 0.75 1.25 a.so 1.25 100 200 -4.24 0.018 0.030 
1.60446 0.00995 1.50 -1. 00 2.00 -1.00 100 200 -4.11 0.025 0.030 
0. 58158 0.22314 1.50 -0.25 2.00 -0.25 100 200 -5.27 -0.207 -0.206 

....:i 0.58158 0.22314 0.75 a.so a.so a.so 100 200 -3.96 -0.318 -o. 311 O'I 
0.58158 0.22314 1.50 -0.25 2.00 -1.00 100 200 -2. 77 -0.355 -0.292 
0.58158 0.22314 1.50 -1.00 2.00 -1.00 100 200 -2.63 -0.344 -0.324 
0.58158 0.22314 0.75 0.50 0.50 1.25 100 200 -2.53 -0.330 -0.221 
0.58158 0.22314 0.75 1.25 a.so 1.25 100 200 -2.44 -0.316 -0.256 

-0.34657 0.69315 1.50 -0.25 2.00 -0 .25 . 100 200 -5.49 -0.515 -0.513 
-0.34657 0.69315 0.75 o.so 0.50 .a.so 100 200 -4.11 -0.866 -0.860 
-0.34657 0.69315 1.50 -0.25 2.00 -1.00 100 200 -2. 78 -1.281 -1.243 
-0.34657 0.69315 1.50 -1.00 2.00 -1.00 100 200 -2.70 -1.302 -1.288 
-0.34657 0.69315 0.75 0.50 0.50 1.25 100 200 -2 .47 -1.356 -1.281 
-0.34657 0.69315 0.75 1.25 0.50 1.25 100 200 -2.44 -1.363 -1. 316 



µ a2 a b 

increasing models 

1. 60446 0.00995 0.50 -0.15 
1.60446 0.00995 0.50 -0.15 
1.60446 0.00995 0.50 -0.15 
1.60446 0.00995 1.25 0.50 
1.60446 0.00995 1.25 1.50 
1.60446 0.00995 0.50 -0.85 
1. 60446 0.00995 1.25 1.50 

.....J 0.58158 0.22314 a.so -0.15 

.....J 0.58158 0 .22314 a.so -0.15 
0.58158 0.22314 0.50 -0.15 
0.58158 0.22314 1.25 a.so 
0.58158 0.22314 1.25 1.50 
0.58158 0.22314 a.so -0.85 

-0.34657 0.69315 a.so -0.15 

TABLE 4-3 (CONTINUED) 
RESULTS OF EXPONENTIAL TEST RUNS 

C d e f 

0.75 -0.15 0.25 0.75 
0.75 -0.85 0.25 0.75 
0.75 -0.85 0.25 0.75 
1. 75 0.50 0.25 0.75 
1. 75 0.50 0.25 0.75 
0.75 -0.85 0.25 0.75 
1. 75 1.50 0.25 0.75 
0.75 -0.15 0.25 0.75 
Q.75 -0.85 0.25 0.75 
0.75 -0.85 0.25 0.75 
1. 75 a.so 0.25 0.75 
1. 75 0.50 0.25 0.75 
0.75 -0.85 0.25 0.75 
0.75 -0.15 0.25 0.75 

factor pred. error 
error 

-8.02 0.013 0.014 
-5.75 0.056 0.056 
-5.75 0.056 0.056 
-5.47 0.068 0.068 
-5.28 0.077 0. 077 
-4.19 0 .177 0.180 
-3.37 0.330 0.342 
-6.89 0.128 0.130 
-4.70 0.486 0.495 
-4.70 0.486 0.495 
-4.45 0.599 0.613 
-4.27 0.712 o. 729 
-3.50 1.000 1.000 
-7.22 0.562 0.962 



TABLE 4-4 
RESULTS OF MIXED POLYNOMIAL-EXPONENTIAL TEST RUNS 

error exp. factor exp. poly. b poly. R2 better 
R2 pred. R2 pred. class pred. 

Decreasing Models 

0.237 0.999168 -1.65 0.044 0.999055 -1.09 0.413 exp poly 
-0.075 0.998908 -2.39 -0.306 0.999675 -0.40 0.029 poly poly 
-0.224 0.999932 -2.27 -0.278 0.998014 -0.47 0.062 exp exp 

0.082 0.999656 -1. 75 -0.037 0.998288 -0.96 0.335 exp exp 
-0.314 0.999952 -2.87 -0.360 0.998844 -0.10 -0.093 exp exp 
-0.096 0 -4.32 -0.288 0.999917 0.43 -0.158 poly poly 

0.297 0.99806 -1. 70 0.003 0.999754 -1.05 0.387 poly poly 
0.123 0.997547 -2.09 -0.218 0.999947 -0.65 0.157 poly poly 

....J -0.184 0.999671 -2.37 -0.303 0.998918 -0.40 0.029 exp exp 00 
0.036 0.998898 -1.99 -0.178 0.999378 -0.72 0.199 poly poly 

-0.254 5.48E-11 -2.84 -0.359 0.999327 -0.12 -0.085 poly exp 
-0.089 0 -3.44 -0.353 0.999923 0.14 -0.148 poly poly 

0.335 0.997147 -1. 73 -0.021 0.99996 -1.02 0. 371 poly poly 
0.261 0.996742 -1. 89 -0.124 0.999995 -0.84 0.268 poly poly 

-0.131 8.22E-14 -2.52 -0.328 0.999662 -0.31 -0.010 poly poly 
-0.011 4.93E-13 -2.30 -0.286 
-0.172 4.62E-15 -2.79 -0.356 0. 99977 -0.15 -0.074 poly poly 
-0.073 0 -2.99 -0.363 

0.355 0.996438 -1. 76 -0.042 1 -0.99 0.355 poly poly 
-0.062 0 -2.70 -0.350 0.999999 -0.21 -0.054 poly poly 
-0.055 0 -2.69 -0.349 0.999503 -0.15 -0.075 poly poly 
-0.065 5.33E-16 -2.72 -0.351 0.999796 -0.15 -0.074 poly poly 
-0.058 0 -2.73 -0.352 0.999786 -0.15 -0.076 poly poly 



TABLE 4-4 (CONTINUED) 
RESULTS OF MIXED POLYNOMIAL-EXPONENTIAL TEST RUNS 

error exp. factor exp. poly. b poly. R2 better 
R2 pred. R2 pred. class pred. 

Increasing Models 

0.002 0 -10.64 0.003 0 -20.07 
0.002 0 -10.68 0.003 0 -17.53 
0.034 0 -6.10 0.044 0 -18.37 
0.034 2.16E-16 -6.10 0.044 l 2.00 0.035 poly poly 
0.034 0 -6.10 0.044 l 2.00 0.035 poly poly 
0.109 l.14E-16 -4.95 0.099 0.99998 2.81 0.082 poly exp 
0.048 0.999993 -8.03 0.069 l 1.10 0.051 poly poly 
0.048 0.999993 -8.04 0.069 1 1.10 0.051 poly poly 

-..J 0.557 0 -3.88 0.953 1 2.01 0.558 poly poly 
\0 

0.556 0 -3.88 0.951 1 2.00 0.556 poly poly 
0.556 0 -3.89 0.950 1 2.00 0.556 poly poly 
1. 000 0 -3.70 0.991 0.999985 2.14 0.623 poly exp 
0.147 0.999984 -7.74 0. 288 l 1.10 0.143 poly poly 
0.147 0.999984 -7.75 0.286 1 1.10 0.142 poly poly 
0.935 -4.03 1. 000 1 2.01 0.935 poly poly 
0.933 -4.04 1. 000 1 2.00 0.934 poly poly 
0.933 -4.04 1. 000 1 2.00 0.933 poly poly 
1. 000 -3.96 1.000 0.999998 2.09 0.949 poly exp 



TABLE 4-5 
RESULTS OF WASHOFF MODEL APPLICATION 

CV variance actual factor pred. 
FOA sim. error error 

0.1 0.592 0.606 0.022 -3.92 0.040 

0.25 3.70 4.49 0.18 -2.28 0.18 

0.5 14.8 22.8 0.35 -1.36 0.36 

1 59.3 93.3 0.36 -0.863 0.36 
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Figure 4-44. Relative Error vs b for Cv 0.7 

124 



1.5 

1.0 

i--, 
0.5 

0 
i--, 
i--, 

li1 
(I) 

:> ....... ....., 
CIJ ........ 
(I) 

~ 
0.0 

-0.5 

-1.0 

... ·!·····: ... ·-=·· ... ·····=··· .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..................................... 

. . . .................................. ................ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ·-·· ............................. ··-· .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ................. , ................................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . •, . . . . . . . . . . 
.. ·:· •••• !· •.. •: •... •:• ......... •:• ••• ·!· ... •: .• • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' . . . . . . . ...................................................... . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . 

" . . . . . . . . . . . . . . . . . . . . ................. ,, .............................. ._ ... . . . . . . . . . " . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

. ... ·····=····· .... ·····=-····!···· ····-:····· 

. .................. . 

. .................. . 

. . . . . . .. . . . .. ~-····!·····~····!·····!'····-:····· . . ,. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . - . . . . . . . .. . . .. -··· ..... ···-······· ..... ···-····· . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . .............. , ............ , ...... ,, .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...... ··=····· ... ·:····-=·. ···!. ····=····. !·· .• •: ····-=· .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .... ........... . ................................................ . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............. , ............................. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 
.. ··=·····\·····lo ... ·-=····· . ····=·. ···i· . .. ,j, ····-= .... ·····=····. ····i·····=·· ... i•• ···=····· i•• ···i ·····=···· . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
··-r····r····f ····r··-- ····-r····r····f ····r ··· ····-r···· ..... f .. ··r····~····-r····r····f ····r·· 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ····-···············-····· ·····-··········-····-·· ............ ···········-···········-··········-····-···· 

l l l l l I I l l 1 l I l l I l l ... ·; .... ;· ... ·t .... ~- ......... -~· .... ;· ... ·; .... ~- ....... ·t .. . ~- ... ·t .... ~- .... ; .... -~- .... ;· ... ·t ... ·t ... . 
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

... •:• ... ·!·····:·. ··-=····· .... ·=·· ···!· .... , .... ·=·· .• . ..• ·=·· . ·!·····:·····=·····!·····=·····!· ····:····-=····· . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. ............................... ...... .................................................... . . . . . . . . . . . . . . . . . . 
: : : : ~ : : : . : : : : : : : : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..... .. ....... ._ ........................... ··-···· ....................................................... ._ .......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

... ·=· .... ;: ..... j, •••• -=····· • ····=·· .. . ;: ... ··:'r···. -=····· .... ·=··· .. ;: ..... ; .. ··-=· ····i··· ··=·· ... t, ••••• ;. ····=····· . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
·· ·-r· ··· r····r ··· ·r···· ····-r · · ·· r · · · ·r ···· r···· · ··· T ····r · ···f ··· · r··· ·; · ···-r···· r··· ·r·· .. r· · ·· 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . 

-5 -4 -3 -2 -1 0 
b 

1 2 3 4 5 

Figure 4-45. Relative Error vs b for Cv 1.0 
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Figure 4-46. Relative Error vs b for Cv 1.2 
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CHAPTER FIVE 

ANALYSIS OF TWO PARAMETER MODELS 

Two parameter models with polynomial, exponential, and mixed forms were 

evaluated. The objective was to find a means of predicting the error in the FOA 

variance, or, if that was not possible, to find a way to determine a range for the errors. 

Given uncertain parameters x and y and constants a, b, c, and d, the models 

studied were of the forms 

Polynomial 

Exponential 

Mixed Exponential-Polynomial 

z = xbt 

z = abxcdy 

z = abxt 

(5-1) 

(5-2) 

(5-3) 

Note that models with the form of equation 5-2 can be rearranged to have the form 

(5-4) 

where c1 = bln(a) and c2 = dln(c). 

The uncertain parameters were assumed to be lognormally distributed, and had 

C/s of 0.1, 0.5, and 1.0. A variety of means and combinations of constants were used, 

to form a grid of models with varying degrees of nonlinearity and various combinations 

of parameters being more or less uncertain. Correlations between the parameters of 0, 

+0.25, +0.5, and ±0. 75 were used. 

The analytical solutions were obtained by numerically integrating the expression 
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Var(z)= ff z2/XY(x,y)dxdy-£f f efx!,x,y)dxdy]2 (5-5) 

0 0 0 0 

where fXY(x,y) was the bivariate lognormal PDF of x and y. For each parameter, the 

upper limit used for the integration was 

UL=exp(µ+6a) (5-6) 

Since this limit might not be sufficiently high for rapidly increasing functions, any 

models for which the computed expected values of z or z2 were larger than 106 were 

eliminated. The double numerical integrations were extremely time consuming to 

compute, so it was not practical to have a higher upper limit. Each integration took 

approximately 11 minutes to complete on an Intel 80486 based PC running at 33 MHz. 

The majority of the integrations were done on a Sun SparclO workstation, and these took 

anywhere from 0. 7 to 2.5 minutes, depending on other usage of the equipment. 

To ensure that the computer program written to perform the integrations 

performed properly, the computations were checked using a spreadsheet. Since the 

strictly increasing exponential models were most likely to "blow up", two of them were 

used as test cases. A mean of 1 and Cv of O .1 was chosen for both x and y. These were 

used because the integrations involving very small numbers seemed more likely to have 

errors if the step size was too large. Due to limitations of spreadsheet dimensions, the 

step size used in the spreadsheet was considerably larger than the step size used in the 

program, so perfect agreement in the results would not be expected. For the model z = 

1. l ·5x 1. l ·5Y, the program result for E[ z] was 1. 09 and the spreadsheet result was 1.11, 

indicating that the computations in the program proceeded as they were supposed to. A 

second model, z = ex&' was also checked. The program result was 7.46. The 
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spreadsheet result was 7.625848. Increasing the upper limit to 

UL=exp(J.L +8 a) (5-7) 

for both x and y on the spreadsheet still gave a result of 7.625848, indicating that the 

upper limit used was appropriate. 

The expression for the FOA variance of the output of a two parameter model is 

az 2
1 

az 2
1 

· az I az Var(z):::(-) -Var(x)+(-) -var(y)+2- --1-Cov(x y) ax X O)' y ax XO)' y ' . 

The term "error" refers to the relative error 

analytical variance - FO variance error=~_.;...~~~~~~~~~~ 
analytical variance 

RESULTS FOR POLYNOMIAL MODELS 

(5-8) 

(5-9) 

The first thing investigated for the polynomial forms (equation 5-1) was if, as for 

the one parameters models, the mean of the uncertain parameter affected the error in the 

FOA variance, where error is defined by equation 5-9. Through the remainder of this 

chapter, the term "error" refers to the relative error in the FOA variance computed in 

this manner. The test cases showed that the error was not a function of the parameter 

means. This can be shown analytically for the case with b = 1, c = 1, and independent 

parameters. The exact variance is 

Var(z)=Var(x)Var(y)+Var(y)(E[x])2+Var(x)(Efy])2 (5-10) 

and the FOA variance is 

139 



FOA Var(z) =)fVar(x) +?Var(y) (5-11) 

The error is, then 

error 
Var(x) Var(y) (5-12) 

Var(x) Var(y) + Var(y)(E[x])2+ Var(x)(E[y])2 

Substituting the expression (E[x])2 = Var(x)/Cv/ and the similar expression for y gives 

1 error=~~~~-
1 1 

1+--+--c 2 C 2 
V~ Vy 

(5-13) 

showing that the error is only dependent on the means of the parameters through Cv. It 

was found empirically that this result also holds for b's and e's not equal to one and for 

correlated parameters. It is not possible to prove this analytically. Table 5-1 contains 

some of these empirical results. 

Analysis of this simple example (b = c = 1) also revealed other interesting 

details. If y is not uncertain, i.e. Var(y) = 0, then the model is equivalent to a constant 

times x. In this case, the error in the FOA variance would be zero, since the model is 

linear in x. Throughout this chapter, references to the "error due to x" will mean the 

error in the FOA variance that would be computed using the one-parameter model 

methods and considering x the only uncertain parameter. For these computations the y 

parameter should be replaced by its mean. For example, if Var(y) is equal to 0, then y 

is a constant and 

(5-14) 

Also, oz/ox = y and the FOA variance is y2Var(x). The error due to xis zero since the 

exact and FOA variances are equal. Similarly, if the variance of x is zero, the error due 
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to y is zero. 

Comparing equation 5-10 and 5-11 it is apparent that when both parameters are 

uncertain the analytical solution for the variance is the same as the FOA variance, except 

that the tenn Var(x)Var(y) is added to the exact variance. Thus, even though there is 

no error due to either x or y, there will still be an error in the FOA variance. Since the 

squared C/s in equation 5-13 are all positive, the error will always be positive and less 

than one. 

The error in the FOA variance is a function of the C/s of x and y, the values of 

band c, and the correlation coefficient, p. Some patterns in the behavior of the error 

can be identified. 

Given Cvx, Cvy, c and p, the behavior of the error as a function of bis similar to 

the behavior of the error as a function of b for one parameter polynomial models. While 

the grid of models for which the analytical and approximate variances were computed 

was not sufficiently dense that a smooth curve could be constructed, the available data 

exhibited a very consistent error pattern. The error was equal to one for large negative 

powers, decreasing, and then increasing back to one for large positive powers. The 

pattern was the same for all values of p investigated. Figure 5-1 contains some examples 

of this pattern. As expected, given Cvx, b, and c, the error increased as Cvx increased. 

Figure 5-2 shows this. 

The effect of parameter correlation on the error was also investigated. Given Cv' s 

of x and y, b, and c, the error as a function of p depended on the form of the model 

output. For models with z increasing as both x and y increased, or polynomial 

increasing models (PIMs), and for polynomial models with z decreasing as both x and 

y increased (PDMs), the error increased. as p increased. Given a polynomial model with 
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z increasing as either x or y increased and decreasing as the other increased (PMM), the 

error decreased as p increased. Figures 5-3 through 5-5 show results for three 

combinations of Cv. While the magnitudes of the errors changed as a function of Cv, the 

pattern followed by the curves did not. 

Given a model and the distributions of its parameters, the FOA variance as a 

function of p is a linear function. Note that the first partial derivative of FOA variance 

with respect to p given by 

aFOVar =2JVar(x) Vary(y) az I- az l-
ap ax xay y 

(5-15) 

is not a function of p, so the FOA variance is linear in p. The first partial derivative of 

the analytical variance with respect top is 

avar(z) = j j z2 afx-!.x,y) dxdy-[j j z afx-!.x,y) dxdy]2 
ap o o ap o o ap 

(5-16) 

The derivative of the PDF with respect top is 

P exp{ - l [z/-2PZxZ +z 2]} 
3 2(1 2) y y 

1t0"/J;:>'(1-p2)2 -p 

+ 1 exp{ - l [z 2-2pz 7 +z 2]} 
r:;-3_ 2(1 2) X X-y y 

2rrn:xo/YV 1-p -p 

(5-17) 

It is obvious that the partial derivative of the analytical variance with respect to 
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p will be a highly nonlinear function of p, although the form it will tal<:e is a function of 

all the parameters and is not possible to predict without evaluating the integrals, which 

have no analytical solution. 

An intuitive argument for how the variance behaves with respect to p can be 

formulated. Consider finding the mean and variance by simulation. If the parameters 

are positively correlated, then it is likely that the sampled parameters will either both be 

above or below the mean value of the parameter. If the model is a PIM, a model result 

computed from two parameters which are both above or below the mean will be further 

away from the FOA mean (equation 3-4); than a model result using a parameter above 

the mean and a parameter near the mean. The more highly correlated the parameters 

are, the more likely they are to be the same relative distance from the mean. In this 

sense, relative distance refers to the number of standard deviations away from the mean. 

Thus, there will be a wider spread of model results away from the FOA mean, and 

consequently a larger variance. 

If the parameters are negatively correlated, then the sampled parameters are more 

likely to be one above and one below the mean. This would tend to bring the model 

result closer to the mean. Here, there would be a smaller spread and a smaller variance. 

The effect of correlation is the same for models decreasing in both parameters. 

With PMMs, if the parameters are negatively correlated and one is above and one 

below the mean, this will cause a larger spread in the results. Consider a PMM where 

z increases as x increases and decreases as y increases. If the sampled x parameter is 

above the mean and the sampled y parameter is below the mean, then the model result 

is an above FOA mean value divided by a below FOA mean value, which will give an 

even relatively higher above FOA mean result. This will yield a larger spread and 
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higher variance. For positively correlated parameters, the sampled values are likely to 

be either both above or below the mean. The effect of having the model output 

decreasing as one parameter increases and increasing as the other increases will tend to 

bring the model result closer to the mean. Thus, the variance will decrease as the 

parameters become more highly positively correlated. 

Figure 5-6 is a plot of the analytical and FOA variances as a function of p. The 

PIM used was z = x1.5yl.5, with -1.5 being the exponent for the PDM and z = xuy-1.5 

was the PMM. This plot shows the divergence of the analytical variance away from the 

FOA variance as p increases or decreases. While the analytical variance curves may not 

look nonlinear in the plot, they actually are. Numerical derivatives of the analytical 

variances with respect to p were taken at points along the curve and found to range 

between 0.046 and 0.054. for the PIM, between 0.048 and 0.057 for the PDM, and 

between -0.055 and -0.047 for the PMM. This confirms that the curves are nonlinear 

and diverge away from the linear FOA variance function, which has a constant slope of 

0.045 for the PIM and PDM and -0.045 for the PMM. 

Figures 5-7 through 5-9 show error as a function of p for one type of model 

(PIM, PDM, or PMM) and three combinations of Cv's. These curves show that as the 

Cy's increase, the function becomes more nonlinear. Figure 5-10 displays the analytical 

and FOA variances for the increasing model. This plot illustrates that the analytical 

variance diverges froni the FOA variance at a much faster rate for higher Cy's resulting 

in the error function (Figure 5-7) being more nonlinear for higher Cy's. 

It would be possible to construct error vs power (b or c in equation 5-1) plots 

similar to the plots constructed for one parameter polynomial models. Constructing these 

plots would require holding the Cv' s of x and y and the value of b fixed and plotting the 
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error as a function of c. For an example of what constructing these curves would 

require, assume that a range of useful values of Cvx and Cvy is between 0.1 and 1 and a 

range of useful values of c is between -3.5 and 3.5. Since the error is highly nonlinear 

with respect to Cv and c, the grid of Cv' s and c would have to be fairly dense for 

interpolation between curves to be accurate. If Cv' s of O .1, 0. 3, 0. 5, 0. 7, and 1 are used 

with c having increments of 0.5, then 375 plots are needed. Given that these 375 plots 

were available, using them to predict errors could be an arduous task since up to five 

interpolations may be required. 

A search was therefore made for a factor (or factors) which would be a function 

of the sources of error and could be used to predict the error. A factor which seemed 

promising was the error due to x and the error due to y, along with p. Using data for 

p = 0, a plot of error due to x and error due toy vs FOA variance error was constructed 

by assigning different symbols to ranges in the error (Figure 5-11). There was very little 

overlap of different symbols, indicating that a valid contour plot or regression could 

potentially be formulated. The pattern of the symbols indicated that contours would be 

nearly circular, suggesting a quadratic model. 

Denoting the error due to x as errx and the error due to y as erry, an error

predicting model of the form 

error=CONSTANT +Al *(errx+erry) +A2 *(errx2+erry 2) +A3 *errx*erry (5-18) 

was estimated using the SYSTAT (Wilkinson, 1990) statistical software. A total of 354 

errx-erry-variance error triples were used in the estimation. The R2 was 0.9966, 

indicating a good fit. The standard deviation of the residuals was 0.046, another 

indication of a good predictive model. Model parameters CONSTANT, A 1, A2, and A3 
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were found to be 0.0610, 0.854, 0.0939, and -0.929, respectively. A plot of the 

residuals (Figure 5-12) indicated that while they may not l~ave uniform variance 

throughout, there was no definable pattern to suggest a way the error-predicting model 

could be modified. Figure 5-13 is a plot of actual vs predicted errors. The data clusters 

well around the line of equality. 

Note that even if the errors due to x and y are zero, the error-predicting model 

will still estimate some error due to the constant. The previous simple example of z = 

xy illustrated that there will always be some error, even when errors due to x and due 

toy are zero. The model z = xy is the only model for which these errors are exactly 

zero. (In reality, the error in the FOA variance for the model z = xy is not a constant, 

but depends on the Cv' s of x and y. However, it is not necessary to use the model to 

malce predictions for z = xy, since an analytical solution is available.) The simple 

example illustrates, however, that it is appropriate to formulate the error-predicting 

model to predict an error, even when the errors due to x and y are zero. 

A similar symbol plot was constructed using the data for p equal to O. 25 (Figure 

5-14). Again, there was not too much overlap in the data, and it appeared that contours 

would be nearly circular. The same form of error-predicting model was estimated, this 

time having an R2 of 0.97. The standard deviation of the residuals was 0.067, indicating 

a good predictive model. Model parameters CONSTANT, Al, A2, and A3 were 

estimated as O. 0859, 0 .119, 0. 810, and -0. 911, respectively. The residuals had a 

reasonably uniform variance (Figure 5-15), and again did not have any pattern which 

would suggest a modification to the error-predicting model. Figure 5-16 is a plot of 

actual vs predicted errors. The data cluster fairly well about the line of equality. The 

same procedure was attempted for p equal to 0.5. The symbol plot (Figure5-17) showed 
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some overlap in the data. The model was estimated, and the R2 was 0.91. A plot of the 

actual vs predicted errors (Figure 5-18) showed a significant divergence from the line of 

equality. This would not appear to be a particularly good model. Since it appeared that 

the scatter became greater as p increased, an error-predicting model for p equal to 0. 75 

was not even attempted. 

The symbol plot for p equal to -0.25 (Figure 5-19) did not show much overlap 

and it appeared that contours would be circular contours, so the error-predicting model 

was estimated for this data. The R2 was 0. 980 and the standard deviation of the residuals 

was 0.058, indicating a good model. Model parameters CONSTANT, Al, A2, and A3 

were computed as 0.0265, 0.0848, 0.884, and -0.950, respectively. The residuals had 

a reasonably uniform variance (Figure 5-20) and they did not exhibit any pattern which 

would indicate that the error-predicting model should be reformulated. The estimated 

vs actual data clustered well about the line of equality (Figure 5-21). Similar to the 

results for p = 0.5, the data for p = -0.5 (Figure 5-22) had considerable scatter and the 

estimated model had an R2 of 0.899. The actual vs estimated data diverged considerably 

from the line of equality (Figure 5-23). Again, an error-predicting model for p equal to -

0.75 was not attempted. 

Another approach tried was to plot the error which would occur if the parameters 

were uncorrelated against the error which occurred with the correlation. The scatter in 

the data was reduced if the models were separated into the categories - PDM, PIM, and 

PMM. These curves are shown in Figures 5:..24 through 5-41. The plots suggested that 

it might be possible to formulate linear models to predict the errors with correlated 

parameters as a function of the errors with uncorrelated parameters. 

Linear models of the form 
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error P =CONSTANT +slopexerror 0 (5-19) 

where errorp is the error for the given p corresponding to the error when p = 0, were 

estimated for the PDMs. Table 5-2 gives p, R2, the model parameters (CONSTANT and 

slope), and the standard error of the estimate (SEE) for all the models. Figures 5-42 

through 5-47 are plots of the residuals. These exhibited reasonably uniform variance and 

did not indicate that the error-predicting model should be reformulated. Figures 5-48 

through 5-53 are plots of the predicted vs actual errors. With the exception of the model 

for error_,75 , the data clusters well about the line of equality. Actual vs predicted error 

data for this model indicates that if the predicted error is 0.4 or less, the actual error will 

be even smaller. 

Linear models were estimated for the PIMs. The R2 was close to unity and the 

SEE was reasonable small for p equal to -0.25, 0, 0.25, 0.5 and 0.75. Figures 5-30 

through 5-35 are plots of errorP vs error0• It was clear there was too much scatter in the 

data for p equal to -0.5 or -0. 75 to find an accurate model. Table 5-3 gives the R2, 

model parameters, and standard error ,of the estimate for the models successfully 

estimated. Figures 5-54 through 5-57 are plots of the residuals, and exhibit satisfactory 

characteristics. Figures 5-58 through 5-61 show the predicted vs actual values, which 

cluster fairly well about the line of equality. 

Figures 5-36 through 5-41 are errorp vs error0 plots for the PMMs. Estimation 

statistics (R2 and SEE) were satisfactory for all values of p, with the exception of 0. 75. 

Table 5-4 gives the R2, model parameters, and standard error of the estimate. Plots of 

the residuals (Figures 5-62 through 5-66) were acceptable. Figures 5-67 through 5-71 
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display actual vs predicted errors, and the points are all close to the line of equality. For 

p = 0. 15, the data appeared to have too much scatter for an acceptable linear model. 

The estimated model had an R2 of 0. 78, confirming this. 

An attempt was made to estimate a quadratic model for increasing models with 

p equal to -0.5 or -0.75. This was not successful, with the R2's being 0.85 and 0.24 

respectively. The plots of errorp vs error0 for these two correlations indicated that the 

error with the correlated parameters is always less than the error with the uncorrelated 

parameters. This may be useful information, since it indicates that the error in FOA 

variances estimated for correlated parameters will be no larger than the error which 

would be present if the parameters were uncorrelated. Thus, if the FOA variance would 

be acceptable had the parameters been uncorrelated, the FOA variance with the 

correlated parameters will be a more conservative estimate. 

For p equal to 0.75, the error with correlated parameters was always larger than 

the error which would have been present had the parameters been uncorrelated. In fact, 

for all positive values of p evaluated here, given a PDM or PIM, errorp was larger than 

error0 • Given a PDM or PIM, if p were negative, errorp was smaller than error0• The 

reverse was true for PMMs. For positive p, errorp was smaller than error0• For 

negative p, errorp was larger than error0• 

For purely polynomial forms, the procedure is to first confirm that the model has 

the correct form. One way to do this is to compute the first and second partial 

derivatives with respect to x and y, numerically if necessary, at points on the response 

surface. The recommended points are x = E[x], Yi = exp(µy + <J/12 + zi<Jy), where z 

= {O, +0.64, ±2}, and xi = exp(µx + <J//2 + Zi<Jx), y = E[y]. While any points on 

the response surface will work, these points are recommended because the model 
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evaluations at these points will be used later to compute errors (assuming the model has 

the correct form). If the ratio 

(5-20) 

is a constant regardless of the values of.x·at which the derivatives were evaluated, then 

the model has the correct form with respect to x. The same procedure can be applied 

to determine if the model has the correct form with respect to y. 

An alternative procedure is to use the five xi - model response pairs and estimate 

models of the forms 

£ = constant + ax b (5-21) 

and 

i = constant + ka bx (5-22) 

If the R2 obtained from estimating the polynomial model is much closer to one than the 

R2 obtained from estimating the exponential model, then the model can be accepted as 

being polynomial in x. Similar models 

i = constant + dy c (5-23) 

and 

£ = constant + kc dy (5-24) 

can be estimated and compared to determine if the model is polynomial in y. 

Once it is confirmed that the model has the correct polynomial form, the error 

due to x can be found by using the five recommended x and model output pairs and 

following the procedure for one parameter models. First, find the b power considering 
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the model to be z = xbE[y Y, then using b and Cvx and the curves for one parameter 

polynomial models, find the error due to x. The error due to y is found in the same 

manner, using the five recommended y and model output pairs. 

The error due to y and the error due to x are then used to predict the error which 

would be present if x and y were uncorrelated. The model for this is 

error;:::0.061 +0.0939(errx 2+erry 2)+0.854(errx+erry)-0.929xerrxxerry (5-25) 

Once the error for uncorrelated parameters is known, the error corresponding to the 

correct type of model (PDM, PIM, or PMM) and correct p can be found using one of 

the linear models, unless pis less than -0.25 or greater than 0.5. If necessary, the errors 

can be interpolated between values of p. How accurate a straight line interpolation will 

be is a function of the C/s of the parameters, the nonlinearity of the model (by how 

much b or c differ from unity), and whether the model is a PDM, PIM, or PMM. While 

this was not evaluated in detail, Figures 5-7 through 5-9 may provide some guidance as 

to the nonlinearity of the error vs p function. 

A grid of models not used in the error-prediction model estimation process was 

created to validate the model. The test grid contained 64 models, with Cv's of 0.1 and 

0.5, E[x] and E[y] equal to 2, and combinations of band c equal to +0.25 and ±0.5. 

The p values used were O and ±0.25. The models with p equal to +0.25 will also be 

used to test whether the quadratic error-predicting model or the linear error p as a function 

of error0 model makes better predictions. 

For p equal to zero, there were 32 models in the test grid. The difference 

between the actual FOA error and the error predicted with the quadratic error-predicting 

model ( equation 5-18) ranged between -0. 07 and O. 02. The mean of the differences was 
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-0.03. Figure 5-72 shows the actual vs predicted errors. The data clusters well around 

the line of equality. 

There were 16 models with p equal to 0.25. Using the quadratic error-predicting 

model, the difference between the actual and predicted errors was between -0.12 and 

0.06. The mean of the differences was -0.04. Figure 5-73 displays the actual vs 

predicted errors. The data show that the model performed well. Using the linear error.25 

vs error0 model resulted in differences between -0.15 and 0.10, with their mean being -

0.02. Figure 5-74 shows actual vs predicted errors using this model. This model 

performed well, also. The absolute value of the difference was larger when the quadratic 

error-predicting model was used for 9 out of 16 models. 

With p equal to -0.25, there were also 16 models. The difference between the 

actual and predicted errors when the quadratic error-predicting model was used ranged 

between -0.11 and 0.09, with a mean of 0.01. Figure 5-75 contains the actual vs 

predicted error data. The data cluster well about the line of equality. Using the linear 

error __ 25 vs error0 model resulted in differences between -0.09 and 0.11, having a mean 

of -0.01. Figure 5-75 displays the actual vs predicted errors. The data cluster well 

about. the line of equality. The absolute value of the difference between predicted and 

actual errors was greater when the linear model was used in 9 out of 16 cases. 

Another test grid of models was generated, this set having Cvx equal to 0.3 and 

Cvy equal to 0.7. The means of x and y were both 2, combinations of +0.25 and +2 

were used for band c, and p was O or +0.25. There were 16 models with p equal to 

zero. The quadratic error-predicting error model was used to predict errors. The model 

did not perform particularly well with the new Cy's. Three predicted errors were within 

+0.05 of the actual error, one predicted error was within ±0.15, and the remainder 
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differed from the actual by more than ±0.3. 

Although the errors in the predictions were relatively large, if a relative error 

with absolute value greater than 0.2 is grounds for rejecting a FOA variance, there were 

only two cases in which an underestimated variance would be accepted. There were also 

only two cases in which an overestimated variance would be accepted. There was one 

case in which an acceptable variance would be rejected. 

The conclusions based on the empirical data for polynomial models are as 

follows. The quadratic model performs well for predicting errors when the Cv's of x and 

y are equal to the Cv' s in the data set used to estimate the model, but does not perform 

well when x and y have different Cv' s. If the Cv' s of x and y are some combination of 

0.1, 0.5, and 1, the model will perform acceptably. Even though the model did not 

estimate the errors particularly accurately with Cv not equal to 0.1, 0.5, or 1, there were 

only 4 out of the 16 cases where a model would have been accepted which should have 

been rejected. There was only one case in which a model which should have been 

accepted would have been rejected. It is not recommended that the model be used with 

parameter Cv's not equal to 0.1, 0.5, or 1. 

RESULTS FOR EXPONENTIAL MODELS 

Strictly exponential models (equation 5-2) were also evaluated. A model that is 

exponential in both x and y can be identified by finding tl1e ratio of the first and second 

derivatives with respect to x and y. If the ratio 

(5-26) 

is constant regardless of tl1e value of x used to evaluate the derivatives, the rriodel is 
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exponential in x. The same procedure is used to determine if it is exponential in y. 

The grid of models consisted of all combinations of a or c equal to 1.1 or e 

(2. 71828), b or d equal to +0.5 or + 1 (including combinations of positive and negative 

powers), E[x] or E[y] equal to 1 or 5, and Cvx or Cvy equal to 0.1, 0.5, and 1. The 

values of p used were 0, +0.25, +0.50, and 0.75. For each value of p, the 

combinations of bases, exponents, means, and Cv's resulted in 1152 models. After the 

models with E[z] or E[z2] greater than le+06 were eliminated, there were approximately 

850 models available for analysis with each value of p. 

The error in the FOA variance for two parameter exponential models is a function 

of the model constants a, b, c, and d, and of the parameter means, Cy's and correlation. 

Using equation 5-4 to rewrite the model, a and b can be combined as bln(a) and c and 

d can be combined as dln(c). 

The behavior of the error in the FOA variance as a function of these various 

factors was examined. The error was seldom monotonic with respect to any of the 

factors. Given a mean and Cvy and dln(c) combination, the error as a function of bln(a) 

decreased to a minimum and then started rising again. This was the case for all values 

of p. Figure 5-77 shows examples of this behavior. In these plots, E[y] equalled 1, Cvy 

was 0.5 and dln(c) was -,0.5. Based on the behavior of the one parameter models, the 

curve would most likely start out at 1 for large negative values of bln(a), decrease to a 

minimum, and then increase back to 1. The minimum point was in the vicinity of bln(a) 

equal to zero. It should be noted that for bln(a) to be exactly equal to zero, either b has 

to be zero or a has to be 1. For either case, the model is then not a function of x. The 

error may then exhibit similar behavior to the error in one parameter polynomial models 

as the power approached zero. It will be shown later that the bln(a) factor is not useful 
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for predicting the error, so it was not considered worthwhile to investigate this behavior 

in detail. 

Given all factors but the Cv of one parameter, the error was generally larger if 

the Cv was larger. This is also shown in Figure 5-77. This is the expected result, but 

since the. error is not a monotonic function of any of the factors, it is not entirely 

unexpected that there would be cases of smaller Cv's being associated with larger errors. 

Given all factors but the mean of one parameter, the error tended to be larger for larger 

mean. This is also shown in the figure. 

Given parameter means and Cy's, the behavior of the error as a function of dln(c) 

depended on the value of bln(a). No useful trends or consistent patters could be 

identified. Figure 5-78 presents examples. Here, E[x] and E[y] are equal to 1 and the 

Cy's of x and y and 0.5. 

As a function of p, the error tended to decrease asp increased for models where 

z increased as both x any y increased (EIMs) and for models where z decreased as both 

x and y increased (EDMs). For models where z increased as either x or y increased and 

decreased as the other increased (EMMs), the error increased as p increased. There 

were exceptions to this, however. Figures 5-79 through 5-81 display this data. Figures 

5-82 through 5-84 show the models by category. Larger errors were found with Cv' s 

equal to 0.1. This is possible given the nonlinear, non-monotonic behavior of the errors 

as functions of bln(a) and dln(c), so the error as a function of Cv depends on the choices 

of bln(a) and dln(c). Here, the a's and e's were 1.1 and band d were either 0.5 or -0.5, 

depending on whether the model was an EIN, EDM, or EMM. 

An attempt was made to identify a factor or combination of factors which could 

be used to predict the error for exponential functions. Since it had been successful for 
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polynomial models, an attempt was made to use the error due to x and the error due to 

y. The error due to x is found by evaluating the model at five points with ~ equal to 

exp(µx+o\/2+ziux) where z = {O, ±0.64, ±2} and y equal to E[y], then finding the 

"factor" as described for one parameter exponential models. The one parameter model 

error vs factor curves are then used to predict the error due to x. The error due to y is 

found in the same manner. 

Figure 5-85 displays the data for p equal to 0. The figure shows that there is too 

much scatter and overlap in the data to construct a model, or even to make a contour 

plot. Since this approach was not successful for p equal to 0, it was not considered 

worthwhile to investigate any other p's. The data did show, however, that if both the 

error due to x and error due to y were greater than 0.25, then the error in the FOA 

variance would be at least 0.3. With an error0 of at least 0.3 and given and EIM or 

EDM and negative p, errorp would be larger than 0.3. Given an EMM and positive p, 

errorp would be larger than 0.3. 

The factor approach, which had been successful for one parameter models was 

also tried. To compute the factor, y was set at its mean, the model was evaluated at the 

five recommended points, and the correlation coefficient between the x's and model 

outputs was found. The same procedure was repeated for y. The factors were then 

computed as described for one parameter models. Figure 5-86 shows the error and 

factor data for Cvx and Cvy equal to 0.5. The figure shows that there is too much scatter 

in the data to construct a model or contour plot. Since this approach was not successful 

for p equal to O and for parameter Cv equal to 0.5, it was not considered necessary to 

evaluate other p's or C/s. 

The final procedure attempted was to talce the data for given parameter means and 
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Cv's and attempt to relate the error to bln(a) and dln(c). Figure 5-87 shows this data for 

p equal to zero. Again, there was too much scatter in the data to construct a model. In 

this plot, E[x] and E[y] are equal to 1 and their Cv's are 0.5. 

As a final check, the decreasing models were separated out, and a factor vs error 

plot (Figure 5-88) was maqe. Even with just decreasing models, there was still too much 

scatter to construct a model or contour plot. A plot like Figure 5-87 was also 

constructed, using just the decreasing models (Figure 5-89). Again, there was too much 

scatter to construct a model. 

The conclusion for exponential models is, therefore, that none of the approaches 

which worked for one parameter models or for two parameter polynomial models can be 

used to predict the error in the FOA variance. In some cases, it is possible to establish 

that the error will be at least O. 3. 

RESULTS FOR MIXED EXPONENTIAL-POLYNOMIAL MODELS 

Models containing an exponential and polynomial component (equation 5-3) were 

also evaluated. Since it was not possible to identify an error predictor for exponential 

models, it was not known if this effort would be successful. Accordingly, a smaller grid 

of model - parameter combinations was generated first, to be examined for any potential 

predictive factors. If it appeared that there might be something which could be used, the 

grid could then be expanded and a methodology developed. 

A model can be checked to determine if it has the mixed exponential-polynomial 

(EP) form by setting the x parameter equal to its mean and finding the first and second 

partial derivatives with respect to the y parameter at several points. If the ratio of second 

derivative to first derivatives is constant regardless of the value of y, then the model is 
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exponential in y. If the ratio divided by y is constant, the model is polynomial in y. 

Whether the model is polynomial or exponential in xis found in the same manner. If 

the model contains a polynomial and exponential component, then it fits into the mixed 

EP category. 

The model (equation 5-3) can also written as 

(5-27) 

where b2 is equal to bln(a). The model grid contained all combinations of E[x] equal to 

1 and 5, E[y] equal to 1, Cvx or Cvy equal to 0.1, 0.5 and 1, b equal to +l, +0.5, and 

+0.1, and c equal to +0.5 and +1.5. Values of p used were 0, +0.25, +0.5, and 

+O. 75. As before, if the expected value of z or z2 was greater than le+06, those results 

were eliminated from the data set. There were originally 2016 model - parameter 

combinations, with 1690 remaining after the questionable ones were eliminated. 

The first analysis done was to determine if the error in the FOA variance could 

be predicted using the error due to x and the error due to y. The error due to the 

exponential component is found using the procedure outlined for the two parameter 

exponential models. The error due to the polynomial component is found by using the 

procedure described for two parameter polynomial models. 

Figure 5-90 shows the results for p equal to zero. There is considerable scatter 

and overlap in the data, indicating that a good model, or even a contour plot, could not 

be constructed. The available data shows that if the error due to x and error due toy 

are both greater than 0.25, then the error in the FOA variance will be at least 0.3. The 

plot also indicates that if both the error due to x and error due toy are less than zero, 

the error in the FOA variance will be less than 0.3. 
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The models for which z decreased as both x and y increased (EPDMs) were then 

separated from the rest, to determine if any consistent patterns could be found by 

separating the models into categories. Figure 5-91 shows these results, and it appeared 

that there might be somewhat circular contours. A model with the form of equation 5-18 

was estimated. Model parameters CONSTANT, Al, A2, and A3 were estimated to be 

0.150, 0.204, 0.610, and -0.531, respectively. The R2 was 0.92 and the standard 

deviation of the residuals was 0.10. This would not appear to be a particularly accurate 

model. A plot of actual vs predicted errors (Figure 5-92) confirmed this. Since this 

approach did not work for EPDMs with p equal to 0, it was not considered worthwhile 

to pursue it for other values of p or other types of models. 

For the mixed EP models, a potential predictor for the error due to the 

exponential component is the correlation factor and a potential predictor for the error due 

to the polynomial component is the power, c. Taking the data for p equal to zero, a plot 

using the factor and the power for Cvx and Cvy equal 0.5 was constructed (Figure 5-93). 

There was considerable overlap in the data, so neither a model or contour plot could be 

constructed using these data. Again, the EPDMs were evaluated separately (Figure 5-

94 ). The figure shows that there was too much overlap in the data to construct a model. 

Finally, a plot using bln(a) and c, with E[x] and E[y] equal to 1 and Cvx and Cvy 

equal to 0.5 was constructed (Figure 5-95). There was no overlap, so it might have been 

possible to construct a contour plot. There were no obviously circular contours or 

contours which would suggest any other type of function to fit to the data. The data was 

somewhat sparse, and it is entirely possible that addition of more points would result in 

scatter or overlap. This approach was not carried any further since application of the 

method would require generating plots for all combinations of useful values of p, E[y], 
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Cvx, and Cvy. This would be a massive effort to compile, and would not be particularly 

useful, since interpolations between four sets of curves would be required. 

The behavior of the error with respect to p exhibited the same trends as found in 

polynomial models, i.e., error increasing as a function of p for EPDMs and for models 

in which z increased as both x and y increased (EPIMs). For models where z increased 

as either x or y increased and decreased as the other increased (EPMMs), the error 

decreased as p increased. Figures 5-96 through 5-98 show error as a function of p. For 

a given type of model, error with Cv's of x and y equal to 0.1 were smaller than errors 

with higher Cv's for either parameter. This is the expected result, but again, is 

dependent on the choices of b, c, and E[y]. Figures 5-99 through 5-101 contain this 

data. 

For the cases where it can be established that error0 is at least 0.3, given an 

EPDM or EPIM and positive p, errorp will be larger than 0.3. Also, given that error0 

is at least 0.3, with an EPMM and negative p, errorP will be larger than 0.3. If it can 

be established that error0 is less than 0.3, given an EPDM or EPIM and negative p, 

errorP is also less than 0.3. For EPMMs, if error0 is less than 0.3 and pis positive, then 

error p is also less than O. 3. 

The conclusion for mixed models is, therefore, that no reliable method for 

predicting the error in the FOA variance could be identified. In some cases, it is 

possible to predict if the error is less than or greater than 0.3. 
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TWO PARAMETER EXAMPLE APPLICATION 

A model for which the response is not an explicit function of the parameters was 

used to demonstrate the error predicting procedure. The model finds the runoff 

hydrograph resulting from a 24-hour rainstorm. The SCS curve number method is used 

to find the rainfall excess. The SCS unit hydrograph is used to compute the runoff 

hydrograph. The· response of interest is the peak discharge, Qp, of the runoff 

hydrograph. 

Model parameters · with no uncertainty· were the watershed area and 24-hour 

rainfall depth. For this example, the watershed area was 2 square miles (1280 acres) and 

the 24-hour rainfall was taken as the 10-year storm in Stillwater, Oklahoma, which is 

approximately 6 inches. The uncertain parameters were the SCS curve number and the 

time increment for the computations. The time increment determines the time to peak 

of the unit hydrograph. 

The model first takes the total rainfall and divides it up into incremental amounts. 

The equation 

t-12 24 04 
P =P [0.5+-'-( . . )'1ss1 

i 24 24 21 t,-121 + .04 
(5-28) 

(Barfield, et al, 1981) approximates the SCS Type Il mass rainfall curve. In equation 

5-28, P24 is the 24-hour rainfall, Pi is the accumulated rainfall at the end of the ith time 

increment in inches, and~ is the time in hours at the end of the ith time increment. 

The SCS curve number method (SCS, 1972) was used to find the cumulative 

rainfall excess, Rh in inches at the end of each time period. This is computed as 
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where S is a parameter computed from the curve number, CN, as 

S= 1000 _10 
CN 

(5-29) 

(5-30) 

The rainfall excess for time period i is given by ri = 1\ - l\_1• The contribution 

to runoff from that rainfall excess is found by applying the SCS unit hydrograph. The 

ordinates of the unit hydrograph can be approximated. by 

t 
UHG =q [ __!exp(l -t/t '\]3•77 

i Pt JI' 
p 

(5-31) 

(Barfield, et al, 1981) where 1p is the time to peak in hours which is taken as 4 times the 

time increment and q., is the peak flow rate of the unit hydrograph. This is estimated as 

484A q=-
p t 

p 

(5-33) 

where A is the watershed area in square miles. 

sum 

The ordinate of the total runoff hydrograph in the jth time step is found as the 

j 

qj= E "l;-i+l 
i=l 

(5-34) 

where rk is the rainfall excess in the kth time step. The discharge at the peak of the 

runoff hydrograph is then identified and is the response of interest. 

For this example, the mean of the curve number was 75 and the Cv was 0.1. 

Corresponding lognormal distribution parameters are µc equal to 4.3125 and u/ equal to 
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0.00995. Then mean of the time increment was taken as 30 minutes (0.5 hours) and the 

Cv was 0.1. The lognormal distribution parameters were µi equal to 3.3962 and u/ equal 

to 0.00995. Two cases were considered. For one, the parameters were assumed to be 

independent. For the other, they were correlated with p equal to -0.25. 

Since evaluations of first and second derivatives at the means of the parameters 

are required for model classification and for computing the FOA variance, an evaluation 

of the optimum step size was needed. For the partial derivative with respect to curve 

number, both the two-point and four-point central difference approximations were equal 

to 30.64 cfs/unit of CN for step sizes of 0.001, 0.005, 0.01, 0.05, 0.1, 0.3. This was 

accepted as the correct result. As a check, a linear model was estimated using curve 

number - model response pairs found at the 5 recommended points. The slope of this 

model was found to be 29.3, indicating that 30.64 is a reasonable estimate of the first 

derivative at the curve number mean. 

The results were not as clear for the derivative with respect to the time increment. 

The two- and four-point derivatives did not exhibit the pattern found in the one-parameter 

example of being different, coming closer in value, and then starting to diverge as the 

step size increased. For this case, it was decided that the best estimate of the first 

derivative was the one closest to the slope found by estimating a linear model of the form 

QP = CONSTANT + SLOPE * ~t. The slope was found to be -1236. The derivative 

found using a step size of2 minutes (0.03333 hours) was -1249.34. The two- and four

point derivatives had only a 0.9 percent difference. This was accepted as the best 

approximation of the derivative at the mean of the time increment length. 

The ratio of second to first derivatives was found and was not constant for either 

curve number or time increment. Neither was the ratio divided by curve number or time 
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increment. Accordingly, polynomial and exponential models (equations 5-21 through 5-

24) were estimated. Polynomial models using curve number and time increment as the 

dependent variable had R2's of 0.998 and 0.999 respectively. The exponential models 

had zero R2's in both cases. Thus, it was determined that the model could be classified 

as polynomial in both curve number and time increment and the polynomial error 

predicting technique could be applied. 

The "true" variances to compare the FOA variances against were derived by 

MCS. A random sample of 10,000 independent curve numbers and time increments was 

generated and the model run using each pair of parameters. Since the curve number 

cannot be greater than 100, the samples with curve number greater than 100 were 

eliminated, leaving 9,991 samples. The distribution of curve number is in reality 

truncated on the right at curve number equal to 100. This is not particularly significant, 

since only 0.18 percent of the area under the PDF is eliminated. The sample statistics 

for curve number showed a mean of 74.86 and a Cv equal to 0.099, which were very 

close to the intended mean and Cv. 

To determine if the 9,991 samples were sufficient, the variance was found using 

the first 5,000 samples and first 6,000 samples. The percent change was -1.41. The 

percent changes for 6,000 to 7,000 and 7,000 to 8,000 were 0.5 and -0.03, respectively. 

This indicates that the simulation had converged to a solution by 8,000 samples, so 9,991 

was definitely sufficient. 

A sample of 10,000 curve numbers and time increments with a correlation 

coefficient of -0. 25 was also generated. The correlated sample was generated by first 

generating pairs of independent random normal deviates, z1 and Zi· These independent 

random normal deviates were transformed to correlated random normal deviates, f1 and 
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f2 using the equations 

'1 =0.790569z1 +0.612372zi (5-35) 

and 

1z=-o.19os69z1 +.612312Zi (5-36) 

The constants in these equations were based on the eigenvectors of the 2 x 2 correlation 

matrix between CN and time increment. They were found using the SYSTAT computer 

software (Wilkinson, 1990). The curve number - time increment pairs were then found 

as 

(5-37) 

and 

increment = exp(µi+AN") (5-38) 

Once the samples with curve number greater than 100 were eliminated, there were 

9,984 samples remaining. The sample mean and Cv of curve number were 74.92 and 

0.10, respectively. Sample mean and Cv of time increment were 0.501 and 0.0995. The 

sample correlation coefficient was -0.255. These samples statistics are very close to the 

intended values. 

A similar analysis was conducted to determine if the number of samples was 

sufficient. The percent changes in variance between 8,000 and 9,000 and between 9,000 

and 9,984 samples were -0.43 and -0.08 respectively. Thus 9,984 was accepted as a 

sufficient number of samples for the correlated parameter simulation. 

With the parameters assumed independent, the sample variance of the model 

responses was 56,071. The FOA variance was computed (equation 5-8) and found to be 

165 



56,710. The relative error (equation 5-9) was -0.011. 

To use the quadratic error model to predict the errors, the error due to curve 

number and error due to increment must be known. Polynomial models estimated using 

the five recommended points were 

QP =-584.3+3.425 x(curve number)1·41 (5-39) 

and 

Qp =535.8+ 116.94 X (incrementrl,BS (5-40) 

Using the estimated b and c powers gave an error due to curve number of 0.011 and an 

error due to time increment of 0.06. The quadratic model (equation 5-25) gave a 

predicted error of 0.12. 

With the correlated parameters, the sample variance was 66,857 and the FOA 

variance (equation 5-8) was 63,888. The relative error was 0.044. Using the quadratic 

model for the predicted error when pis equal to -0.25 gave a predicted error of 0.089. 

The linear model for error_.25 as a function of error0 for PMMs was also applied. 

The model is 

error -.2S = .046 + .969 x error 0 (5-41) 

and the predicted error was O .16. Using the actual error for p equal to O of -0.011 in 

the linear model gave a predicted error of O.01. 

The example applications showed several things. The error with independent 

parameters was overpredicted. This resulted in an overprediction of the error with 

correlated parameters using the linear model. The best results were obtained for the 

correlated parameters using the quadratic model. If an acceptable range for the error in 
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FOA variance is ±0.2, use of the predicted errors would have resulted in the correct 

accept or reject decisions. As with the one parameter models, the choice of step size can 

have a great influence on the numerical first derivative. It appears that using a step size 

which produces a first derivative close in value to the slope of an estimated linear model 

is a good approach. 

167 



TABLE 5-1 
EFFECT OF PARAMETER MEAN ON ERROR IN FOA VARIANCE - TWO PARAMETER 

POLYNOMIAL MODELS 

E[x] E[y] Cv[X] Cv[Y] p b C error 

1.0 1.0 0.1 0.1 0 -0.5 -0.5 0.017 

5.0 1.0 0.1 0.1 0 -0.5 -0.5 0.017 

1.0 1.0 0.5 0.1 0 -0.5 -0.5 0.090 

5.0 1.0 0.5 0.1 0 -0.5 -0.5 0.090 

1.0 1.0 1.0 0.1 0 -0.5 -0.5 0.222 

5.0 1.0 1.0 0.1 0 -0.5 -0.5 0.222 

1.0 1.0 1.5 0.1 0 -0.5 -0.5 0.327 

5.0 1.0 1.5 0.1 0 -0.5 -0.5 0.327 

1.0 1.0 0.1 0.5 0 -0.5 -0.5 0.091 

5.0 1.0 0.1 0.5 0 -0.5 -0.5 0.091 

1.0 1.0 0.5 0.5 0 -0.5 -0.5 0.242 

5.0 1.0 0.5 0.5 0 -0.5 -0.5 0.242 

1.0 5.0 0.1 0.1 0.5 -0.5 -1.5 0.062 

5.0 5.0 0.1 0.1 0.5 -0.5 -1.5 0.062 

1.0 5.0 0.5 0.1 0.5 -0.5 -1.5 0.197 

5.0 5.0 0.5 0.1 0.5 -0.5 -1.5 0.197 
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TABLE 5-2 
MODEL PARAMETERS - LINEAR MODELS TO PREDICT ERRORP 

AS A FUNCTION OF ERROR0 - PDMs 

p R2 SEE const. slope 

-0.75 0.962 0.071 -0.134 1. 078 

-0.5 0.988 0.039 -0.0853 1.058 

-0.25 0.998 0.017 -0.0408 1.030 

0.25 0.998 0.014 0.0377 0.970 

0.5 0.993 0.026 0.0725 0.941 

0.75 0.987 0.036 0.105 0.915 
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TABLE 5-3 
MODEL PARAMETERS - LINEAR MODELS TO PREDICT ERRORP 

AS A FUNCTION OF ERROR0 - PIMs 

p 

-0.25 

0.25 

0.5 

0.75 

0.982 

0.992 

0.975 

0.954 

SEE const. 

0.064 -0.0823 

0.039 0.0689 

0.067 0.128 

0.089 0.180 
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slope 

1.035 

0.956 

0.912 

0.872 



TABLE 5-4 
MODEL PARAMETERS - LINEAR MODELS TO PREDICT ERRORP 

AS A FUNCTION OF ERROR0 - PMMs 

p R2 SEE const. slope 

-0.75 0.977 0.054 0.125 0.909 

-0.5 0.988 0.039 0.0872 0.939 

-0.25 0.997 0.022 0.0459 0.969 

0.25 0.994 0.030 -0.0503 1.027 

0.5 0.955 0.098 -0.107 1. 013 
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CHAPTER SIX 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

SUMMARY 

The objective of this work was to develop a methodology for predicting the error 

in a FOA variance of a model response. The FOA variance is found by approximating 

the model response with the first order terms of a TS expansion of the model response 

about the means of the parameters. The variance of this linear approximation, which can 

be computed without need for numerical integration, is then computed. Unfortunately, 

this technique is not particularly useful because the results are not always acceptably 

accurate, and there is very little published guidance addressing under what circumstances 

they will be sufficiently accurate. 

First, the sources of error in the FOA variance had to be determined. One source 

of error was the failure of the linear surface to match the nonlinear. model response 

surface. Another source of error was the uncertainty in the parameters. As parameter 

uncertainty increases, the range of the parameter for which there is significant probability 

increases. Given a response surface and tangent point, the linear surface at that tangent 

point will . better match the surface if smaller ranges of the parameters are of interest. 

Thus, as parameter uncertainty increases, the linear surface becomes a poorer 

approximation of the model response, and the FOA approximate variance increases in 
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error. For exponential models, it was also discovered that the mean of the parameter 

(point of tangency for the linear approximation) also affected the error in the FOA 

approximate variance. 

To evaluate the error in the FOA variance, a grid of polynomial and exponential 

models with different nonlinearities and parameter uncertainties was constructed. The 

"true" variance was found by numerical integration. 

It was then discovered that the error in the FOA variance behaved quite 

differently for models with exponential or polynomial formats. For one parameter 

exponential models of the form y = abx, the error was a function of the nonlinearity of 

the model, the uncertainty of the parameter, which is quantified by Cv, and of the mean 

of the parameter. A factor which tal<:es in the model nonlinearity and the mean is the 

correlation coefficient between the x's and y's, where five x's are chosen in a specific 

manner. Curves giving the error vs the correlation factor were then plotted for different 

values of Cv. Interpolating between curves for Cy's not represented was shown to give 

satisfactory results. 

For one parameter polynomial models, the error was a function of only parameter 

Cv and model nonlinearity. Given a model of the form y = axb, the b power was a 

satisfactory measure of model nonlinearity. Curves giving the error as a function of b 

for selected Cy's were constructed. If the model was not explicitly in that form, a 

polynomial model of the form y = constant + axh could be estimated and the b power 

from the estimation used to enter the curves. Interpolation between curves for Cv' s not 

present gave satisfactory results. 

Since different methods were required for polynomial or exponential models, a 

method to classify models was required. If the ratios of the second to first derivatives 
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at several points were the same, regardless of the points at which they were evaluated, 

then the model has an exponential form. If that ratio divided by the value of x at which 

it was evaluated is constant, then the model is polynomial. An alternative method is to 

estimate exponential and polynomial models and determine which one fits better. There 

may be some models which are not clearly exponential or polynomial, in which case any 

error prediction may not be valid. 

For two parameter models, there was a much larger grid of models required. For 

a model z = f(x,y), the form could be polynomial with respect to both x and y, 

exponential with respect to both x and y, or exponential in one and polynomial in the 

other. The scope of the model grid increased further to take in various positive and 

negative correlations of the parameters. 

For polynomial models, the error in the FOA variance was a function of the 

parameter Cv's, the powers to which x and y were raised, and the correlation between 

parameters. The behavior of the error with respect to any one of these factors was 

nonlinear and non-monotonic. 

For strictly polynomial models with independent parameters, it was possible to 

formulate an error predicting · model. The independent variables in the model were tl1e 

error found by setting y equal to its mean and predicting an error based on five x - model 

response pairs, or error due to x, and the equivalent error due to y. It was also possible 

to formulate a model for p equal to ±0.25. For some higher p's, it was possible to 

formulate models to predict the error with the correlated parameters as a function of the 

error which would have been present had the parameters been independent. Verification 

trials of tl1e procedures gave acceptable results when parameter Cv's were the same as 

those used to estimate the models. 
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For exponential models, the error in the FOA variance was a function of the 

parameter means and Cv's, the model nonlinearity, and the parameter correlation. The 

behavior of the error with respect to any of these factors was extremely nonlinear and 

was also non-monotonic. All the techniques which had worked for one parameter models 

or for two parameter polynomial models were tried, and no attempts to formulate any 

type of predictive methodology were successful. In some cases, it is possible to predict 

if the error would be greater than or less than a certain value. 

The mixed polynomial models had results similar to the strictly exponential 

models. Here, the error was a function of parameter Cv's, the nonlinearity of the 

exponential component, the power of the polynomial component, the mean of the 

parameter in the exponential component, and the correlation between the parameters. 

Again, this behavior was highly nonlinear and was non-monotonic. Efforts to formulate 

an error predicting model were unsuccessful. It was possible to identify some conditions 

under which the error was either greater than or less tl1an a certain amount. 

The two parameter models can be classified in either parameter by setting the 

other parameter equal to its mean and using the procedures for one parameter models. 

An example application in which the response was not an explicit function of tl1e 

parameters was demonstrated. The model was classified as polynomial in both its 

parameters. The error prediction techniques were applied. They were sufficiently 

accurate that a correct accept or reject decision could be made. 
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Step-by-Step Procedure for One Parameter Models 

To facilitate use of the technique, a step-by-step procedure with accompanying 

flow chart (Figure 6-1) is presented. 

Stw 1. Determine parameter Cv. If parameter Cv is greater than 1.5, the procedure is 

not applicable. (Stop) 

Step 2. Compute the model responses, first derivatives, and second derivatives at the 

five recommended points. 

Stw 3. Find the ratios of the second to the first derivatives at each of the five points. 

If the ratios are the same at all five points, the model is clearly exponential and the 

exponential error predicting procedure may be used. Go to Step 9. 

Step 4. Divide each derivative ratio by the value of x at which it was evaluated. If these 

five quotients are equal, the model is clearly polynomial and the polynomial procedure 

can be used. Go to Step 10. 

Step 5. Estimate polynomial and exponential using the five parameter - response pairs. 

If the estimated exponential model clearly fits better, the exponential procedure can be 

used. Go to Step 9. 

Step 6. If the estimated polynomial model clearly fits better, the polynomial procedure 

applies. Go to Step 10. 

Stw 7. If both models appear to fit well, use both the polynomial and exponential 

procedures and accept the larger error. Complete Steps 9 and 10 and compare results. 

(Stop) 

Step 8. If neither model appears to fit, the procedure is are not applicable. (Stop) 

Step 9. Apply exponential procedure. Compute the correlation factor and find the error 
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using curve(s) for the appropriate Cv(s). (Stop) 

Step 10. Apply polynomial procedure. Estimate b power and find the error using the 

curve(s) for the appropriate Cv(s). (Stop) 

Step-by-Step Procedure for Two Parameter Models 

To facilitate use of this procedure, a step-by-step listing with accompanying flow 

chart (Figure 6-2) is presented. 

Step 1. Determine parameter Cv's. If either is greater than 1.0, then the procedures are 

not applicable. (Stop) 

Step 2. Set x equal to its mean and evaluate the model at y equal to the five 

recommended points. Set y equal to its mean and evaluate the model at x equal to the 

five recommended points. Determine if the model is polynomial, exponential, or unable 

to classify in both x and y. 

Step 3. If it is not possible to classify the model in either x or y, the procedure is not 

applicable. (Stop) 

Step 4. If the model is exponential in both x and y, it may be possible to place limits 

on the error. Compute error due to x and error due to y and determine if limits may be 

applied. (Stop) 

Step 5. If the model is exponential in one parameter and polynomial in the other, it may 

be possible to place limits on the error. Compute error due to x and error due y and 

determine if limits may be applied. (Stop) 

Step 6. Find the error due to x and error due toy. If pis equal to 0, use the quadratic 

error predicting model and predict the error. (Stop) 

Step 7. If the model is a PDM, PIM, or PMM and if-0.25 < p ::::; 0.25, go to Step 13. 
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Step 8. If the model is a PDM and -0.75 < p s 0.75, go to Step 14. 

Step 9. If the model is a PDM and IPI > 0.75, the procedure is not applicable. (Stop) 

Step 9. If the model is a PIM and -0.25 < p < 0. 75, go to Step 14. 

Step 10. If the model is a PIM and p < -0.25 or p > 0.75, the procedure is not 

applicable. (Stop) 

Step 11. If the model is a PMM and -0.75 ::;; p s 0.5, go to Step 14. 

Step 12. If the model is a PMM and p < -0. 75 or p > 0.5, the procedure is not 

applicable. (Stop) 

Step 13. Use quadratic error predicting models or use quadratic error predicting model 

assuming p is O and then apply linear error model to predict error. (Stop) 

Step 14. Use quadratic error predicting model and find error assuming p is 0. Use 

linear. error predicting model. (Stop) 

CONCLUSIONS 

Much of the discussion in the literature about the accuracy of a FOA variance is 

concerned with · limiting the parameter Cv to ensure acceptable results. The example 

problems (washoff, flood routing, and outflow hydrograph) demonstrated that this 

concept is valid for models which are not highly nonlinear. In water resources problems, 

however, parameter Cv is frequently much higher than 0.25. Thus, an FOA variance is 

rejected as being inaccurate. Given the computational demands of MCS, the output 

variance is often neglected altogether. The procedures developed herein should enable 

users to identify situations in which the model is not highly nonlinear and a FOA 

variance will perform acceptably even in the presence of high parameter Cv-

For highly nonlinear models this work showed that restricting the parameter Cv 
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to small values is not sufficient to guarantee small errors. The factor vs error and b vs 

error curves both asymptotically approach a relative error of 1 (100 percent error), even 

for C/s as low as 0.1. For two parameter polynomial models, there were models with 

both parameter C/s equal to 0.1 with relative errors in FOA variance as high as 0.5 (50 

percent). 

For two parameter models, it is not possible to predict the error in the FOA 

variance unless the model is polynomial in both parameters. Even then, the error 

predicting technique had limited applications, i.e. parameter correlations and C/s were 

limited. 

With models for which the response is not an explicit function of the parameters, 

the derivatives required to compute the FOA variance had to be computed numerically. 

In some cases, changing the step size for the numerical approximation affected the results 

significantly. It was concluded that an optimal step size should be selected based on 

agreement between two- and four-point central difference approximations and on 

agreement between the numerical derivative and the slope of a linear model estimated 

using five parameter - response combinations. 

RECOMMENDATIONS 

The error predicting techniques proposed here should primarily be used to make 

accept - reject decisions concerning FOA approximate variance. They should not in 

general be used to find errors and then correct an FOA variance to achieve a better 

estimate. If use of one of the error predicting techniques proposed here does not clearly 

show that a FOA variance is acceptable, then another method, such as MCS, should be 

used to estimate the variance. 
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With one parameter exponential models, the error initially decreases as factor 

increases, reaches a minimum, and starts rising again. The rising portion of the curve 

is quite steep, with the steepness increasing as Cv increases. If the computed factor is 

larger than the factor corresponding to the minimum point, use of the curve to predict 

the error should be done with extreme caution. This would only be recommended if the 

model response was known to have exactly the correct form, as confirmed by derivative 

ratios. 

For polynomial models, the error vs b curve has a spike at b equal to zero. If 

the b power to be used to enter the curve is less than -0.001 or greater than 0.001, then 

ignoring the presence of the spike should give acceptable results. For b's within that 

range, predicted errors should be interpreted with caution. 

If the R2 is to be used to classify a model, the estimation should show clearly that 

the model is one type or the other. If the R2's differ by less tlian approximately 0.05 or 

so, this is not clear evidence that the model is one type or the otl1er. If both models fit 

well, i.e., both R2's close to unity, then it is generally safe to assume both forms, 

estimate errors, and accept the larger error. 

Several ideas for future research have emerged throughout the course of this 

work. A similar analysis could be done with uncertain parameters having normal, 

uniform, triangular, or other distributions of interest. The search for a factor which can 

be used to predict error in FOA variance for two parameter exponential and mixed BP 

models can be continued. 

It is probably not worthwhile to try and extend the analysis to models with three 

uncertain parameters. This would be a massive undertalcing given that there are ten 

combinations of model types, i.e. all polynomial, two polynomial and one exponential, 
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two EP mixed and one polynomial, one of each, etc. For each model type an enormous 

grid of models would be required to cover the combinations of model nonlinearity and 

parameter uncertainty. Given that no predictors or models could be identified for most 

two parameter models, it is even less likely that one can be developed for three 

parameter models. Attempting to develop this data would not be recommended until 

prediction methods can be derived for two parameter models. 

The issue of step size in numerical derivatives also needs to be resolved. Criteria 

for determining the optimum step size and for identifying the best numerical estimate of 

the derivatives are needed. 

More work could also be done in the area of classifying the model as to 

exponential or polynomial. It may be possible to use the R2 or some other attribute of 

the curve fitting process to predict if the model is sufficiently close to the correct form 

for the error predicting method to be applicable. 

For the one parameter exponential example (the washoff model), the predicted 

errors were extremely accurate. They could have been used successfully to find the 

exact variance as 

FDA variance variance = -----
I -error 

(6-1) 

This example differed from the other examples in that the exponential classification was 

confirmed by derivative ratios. Further research could be conducted to determine if, for 

all cases in which the derivative ratios can be used to classify the model, the predicted 

error is sufficiently accurate that equation 6-1 can be applied. 

Finally, the use of the slope derived by fitting a linear model through a set of 

parameter - model response pairs as an alternative to the slope of the tangent at the mean 
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in the FOA,variance computation should be investigated. Some of the preliminary data 

developed as part of this study indicated that the approximate variances can be more 

accurate when the slope from a regression is used. This work would have to address for 

what sorts of models an improvement is found. An optimum number of points for the 

regression and how to choose them would also have to be identified. 
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