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CHAPTER I 

INTRODUCTION 

The negative binomial distribution (NB) is used in 

entomology, forestry, and accident statistics to name a 

few fields. The probability mass function is given by 

P(X : X) : ( k + X - :t 

k - :t ) ( 
µ, k > 0, x = 0,1,2, ... , and zero elsewhere. This uses 

the familiar parameterization withµ and k, havingµ as 

a location parameter. For a fixedµ, k is a shape para­

meter. µ is adequately estimated by the sample mean. 

k is traditionally estimated by maximum likelihood 

or method of moments approaches.- These methods give fairly 

good estimates fork when the sample variance substantially 

exceeds the sample mean, but problems do occur when the 

sample mean exceeds the sample variance (under-dispersion) 

or when the mean is only slightly smaller than the vari­

ance. In the former case (under-dispersed) the method of 

moments (MME) estimate is negative and the maximum like­

lihood estimate (MLE) does not exist (Levin and Reeds 

(1977)). Obviously this is very frustrating to the 

researcher who encounters a sample he believes is from a NB 
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distribution, but is unable to estimate reasonably one of 

the parameters. 

In.the second case, in which the sample variance is 

only slightly larger than the sample mean, estimates fork 

are often volatile, exhibiting a large degree of variabil­

ity. In simulations it is common fork estimates to exceed 

500 or 1000 when in fact the true value is 5. Again such 

variability of estimates limits the usefulness of the 

methods. 

The focus of this work is to offer a new method which 

provides a finite positive estimate fork, for any NB sam­

ple, regardless of the relative magnitude of the sample 

mean and variance. The large likelihood estimator (LLE), 

which is a variation of the MLE, not only provides area­

sonable estimate fork in all NB samples, but also 

exhibits smaller variability and bias, as compared 

2 

with the MLE and MME approaches. The intuitive explanation 

for the LLE, as well as simulation results and asymptotic 

properties are discussed in chapter III. 

Chapter IV examines a refinement of the LLE, called 

the adjusted LLE. Simulation results are included to 

illustrate the comparative behavior of the LLE, adjusted 

LLE, MLE, and MME methods. 

Chapter II describes the properties of the NB distri­

bution, the problems encountered in the conventional 

estimation of k, and a review of previous work in the 

estimation of k. 
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An alternative method of estimation, developed in the 

early stages of research, called re-weighting, is examined 

in chapter V. The goal of this method is to increase the 

dispersion-to-mean ratio of the sample in order to decrease 

the voiatility of the estimates. Simulation results 

comparing re-weighting yersus MLE and MME are included to 

illustrate the reasonable degree of success enjoyed by the 

re-weighting method: 

Finally .in chapter VI, concluding remarks are offered 

concerning the LLE method, with specific emphasis on the 

benefits of its use and further areas-of research that 

can be explored. In addition, other applications of the 

method beyond the NB distribution are discussed. 



CHAPTER II 

SOME PROPERTIES OF THE NEGATIVE BINOMIAL 

DISTRIBUTION AND PRIOR RESEARCH IN THE 

ESTIMATION OF k 

In this chapter, selected properties of the negative 

binomial distribution are discussed. In addition, the 

difficulties in the estimation of k are outlined, as well 

as the previous work in the estimation of k. 

Properties of the Negative Binomial 

Distribution 

The negative binomial probability mass function is given by 

P(X = X) = ( k + X - ~ 
k - ~ ) ( k 

µ + k 

µ, k > 0, x = 0,1,2, ... , and zero elsewhere. The para­

meterµ is a location parameter; and for a fixedµ, k is 

a shape parameter. Plots of the function for a variety 

of values ofµ and k illustrate the trend when k is 

increased andµ is held constant. Specifically, when k 

is small in relation toµ, the probability mass function 

is wedge-like with most of the mass being concentrated 

at the small x values. Ask is increased the p.m.f. 

4 
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becomes more mound shaped with the larger masses located 

near the value forµ. The graphs in figures 1,2, and 3 

illustrate the trends in the appearance of the p.m.f. 

ask is increased andµ is fixed. The fourth graph on 

each page is the p.m.f. for the Poisson distribution, 

which is the resulting distribution if the NB parameter 

k is allowed to become infinitely large. 

The variance is given by q 2 = µ + 
z . 

µ /k, giving the 

over-dispersion (variance greater than the mean) which 

8 

is characteristic of the distribution. The moment generat­

ing function is given by 

t k M(t) = (k/(µ+k-µe )) fort, -h < t <hand h > 0. 

When k is known the negative binomial distribution with 

parameterµ is a member of the exponential family. Hence 

Xis a complete, sufficient statistic and is a mimimum 

variance unbiased estimator ofµ. 

Problems in the Estimation of k 

Traditionally, k has been estimated by maximum likeli­

hood or method of moments approaches. The method of 

moments estimator is given by 

~ 

k = i 2 / ( S2 - X ) . ( 2 . 1 ) 

The maximum likelihood estimator is the solution ink to 

the following equation: C 2 • 2 ) 

n ln(l+x/k) = n 1/k + n ( 1/k + 1/(k+l) ) + 
~ z 

n (1/k + 1/(k+l) + 1/(k+2) ) + ... 
a 
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where n is the sample size, n is the number of ones in the 
~ 

sample, n2 is the number of twos in the sample, and so on. 

The next paragraphs specifically discuss the problems with 

the method of moments approach. 

Upon viewing equation (2.1), several problems in 

estimating k become apparent. First, if the sample vari­

ance equals the sample mean then k does not exist. In 

addition if the sample variance is less than the sample 

mean then k is negative. These problems are illustrated 

in figure 4. In this graph each sample forms an ordered 

pair with the first coordinate being the sample meah and 

the second coordinate being the sample variance. The 

points originate from a NB distribution withµ= land 

k = 3. Note that the points falling below the line S2 = 

X represent under-dispersed samples, which have a neg­

ative method of moments ~stimate and a non-existent 

maximum likelihood estimate. Points falling on the line 

have no method of moments estimate. Ordered pairs falling 

above the line originate from over-dispersed samples and 

hence their estimates fork can be found using MME or MLE 

approaches. It should be noted that the points falling 

just above the line yield very volatile estimates fork 

when the MME or MLE methods are used. In this context 

volatility describes estimates that are very large or 

very dispersed. 

From the above discussion it is evident that under­

dispersion presents a significant problem in the 
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estimation process. This is true especially for certain 

choices of parameters. For example whenµ= 1, k = 5, and 

the sample size is 50 then about twenty-eight percent of 

the samples generated in simulations have a sample mean 

exceeding the sample variance. Table 1 summarizes the 

percent of under-dispersed samples for other parameter 

combinations. 

µ 

1 
1 
1 

3 
3 
3 

5 
5 
5 

TABLE 1 

PERCENT OF UNDER-DISPERSED SAMPLES IN 
7000 TRIALS FOR SAMPLE SIZE 50 

k % UNDER-DISP 

1 1.0 
3 17.0 
5 28.0 

1 0.0 
3 0.3 
5 3.0 

1 0.0 
3 0.1 
5 0.4 

The table indicates a pronounced problem with under­

dispersion whenµ= l. Ifµ is held constant, then an in­

crease ink is associated with larger percentages of bad 

samples. Another trend not described in the table is the 

increase in the percent of under-dispersed samples as the 

sample size decreases. Next turn to the maximum likelihood 

approach. 
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A second common approach to estimating k is maximum 

likelihood. This estimator is the solution ink for equa­

tion (2.2). A graph of the log likelihood function (as a 

function ofµ and k) is presented in figure 5. In esti­

mating k, µ is set to x and equation (2.2) is solved for 

k. 

In this method, problems occur when the biased 

sample variance is less than the sample mean, X > 
2 S (n-1)/n. Specifically, if the variance is less than the 

mean the log likelihood function behaves asymptotically, 

reaching no maximum (see figure 6)-- hence no 

finite MLE is attainable (Levin and Reeds (1977)). As a 

result, maximization of the log likelihood with numerical 

algorithms yields a 'solution' (often in the millions) 

that is meaningless. The algorithm simply stops when the 

log-likelihood function is within the pre-determined 

tolerance of its supremum, even though no true solution 

for the partial derivative is attained. 

In previous research these under-dispersed samples 

were discarded, and additional samples were generated until 

the desired simulation size was reached (Pieters et al. 

(1977)). Discarding ten to thirty percent (for some 

parameter combinations) of the original samples would 

certainly have an effect on the overall results of the 

simulation. 

In the work of Anraku and Yanagimoto (1990), the 

distribution was parameterized with a= 1/k. a was 
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Log-likelihood 

k 

Figure 6. Log-likelihood Function of 
an Under-dispersed Sample 

found by maximizing a conditional likelihood function, and 

a was defined as zero for under-dispersed samples 

in the simulations. 

It can be seen from the above examples that research­

ers often believed that under-dispersed samples did not 

belong in negative binomial simulations, and hence dis­

carded such samples or considered them from a Poisson 

distribution. 

Even when the sample variance exceeds the sample mean 

there are other problems encountered in estimating k. 

Results from simulations show large upward biases and large 

mean square errors for both the MME and MLE approaches. 

These problems are especially pronounced with the MLE. 

The proposed method, which will be described in 

subsequent paragraphs, is successful in reducing the 

bias, reducing the MSE, and eliminating the problem of 

under-dispersion. 
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Previous Work in the Estimation of k 

In 1977 Pieters et al. used the method of moments and 

maximum likelihood approaches (and two other methods) 

to estimate k for samples of size 50, 100, and 200. Four 

hundred samples were generated via computer simulation for 

each parameter combination with under-dispersed samples 

being discarded. The average k's calculated from these 

simulations displayed the usual upward estimated bias 

encountered in small sample studies. The variability of 

the estimates was not specifically summarized in the text 

of the paper. The authors used t-tests to compare the 

average k's with the known values of the parameters. The 

MLE and MME approaches produced better results (in general) 

as compared with the other methods, but still the two 

preferred methods suffered from the aforementioned upward 

bias. Again, the variance of the k's was not specifically 

discussed in the paper. 

In 1984, Willson et al., used a multistage process to 

estimate k. In this method the MME was calculated for an 

initial sample. Five observations were then added to the 

initial sample and the MME was re-calculated. This process 

was repeated until sequentially adjacent estimates differed 

by less than a predetermined tolerance. This multi-stage 

approach produced lower estimated bias and lower estimated 

MSE as compared with MME and MLE methods. In some para­

meter combinations the improvement was dramatic. However 

these good results are often obtained by reaching very 



16 

large sample sizes in the multi-stage sampling. For 

example the average sample size forµ= 1 and k = 5 is 150, 

and the average sample size forµ= 1 and k = 3 is 110. It 

should be noted that even with the multi-stage procedure, a 

few samples were discarded because of under-dispersion. 

The next three groups of researchers parameterized 

the distribution by setting a= 1/k, and focused their ef­

forts on estimating a. 

The first group, Clark and Perry 11989}, maximized an 

extended quasi-likelihood function (MQLE} to estimate a. 

Negative a's were allowed in the simulation results and no 

samples were discarded. Large simulations with 10,000 

samples for each parameter combination were run for samples 

of size 50. The results were tabulated to include average 

a, standard deviation of the a's, number of negative 

estimates, and the 50th, 75th and 25th percentiles for the 

set of a's generated for each parameter combination. The 

authors noted that the results for MQLE were slightly bet­

ter than MME when the sample size is large. Smaller 

simulations were run (1,000 samples per simulation} for 

sample _sizes 10, 20, 30 and 50 in order to study the 

behavior of the MQLE for small samples. 

In 1990 Piegorsch followed up the work of Clark and 

Perry by estimating a with the maximum likelihood approach. 

This method was absent from the Clark and Perry paper. 

Piegorsch allowed negative a's in his simulation results as 

long as the inequality was satisfied a> -1/y , where 
n 
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y is the largest observed value in the random sample. The 
n 

author did not specify how many samples were discarded 

because of this restriction. Sample sizes and size of 

simulations were exactly the same as used by Clark and 

Perry. Piegorsch summarizes his results by recommending 

the MOLE for small sample estimation and voices a slight 

preference for the MLE when samples are large, due to its 

established asymptotic properties. 

A third group of researchers, Anraku and Yanagimoto, 

1990, maximized a conditional likelihood function to esti­

mate a. They treated under-dispersed samples as origi­

nating from a Poisson distribution. In these samples~ k 

was defined as infinity, and a was defined to be zero (it 

can be shown by simulations that the chance of mis­

classifying a negative binomial sample as Poisson is 

large, see appendix A for the results of such a simulation 

study). The tabulated results for simulation studies 

compared the Conditional Maximum Likelihood Estimator 

(CMLE), MLE, and MME. The authors concluded that the CMLE 

and MLE are comparable in estimating a for a single 

population (they voice a preference in favor of CMLE in 

terms of overall performance). Again note that in these 

studies, a was DEFINED to be zero for under-dispersed 

samples. 

Now turn from the comparison of different simulation 

studies to the examination of existence and uniqueness for 

the maximum likelihood estimator. 



18 

A common technique used throughout most of the pre­

vious papers is maximum likelihood estimation. A question 

that arises when using this method involves the existence 

and uniqueness of a maximum for the log-likelihood funct­

ion. Anscombe (1950) posed such a question and offered 

a sketch of ,a proof for the existence of at least one posi­

tive finite solution ink for aLN L(k,µ = x)/ ak =O 

when (n-l)s 2 /n > x He also stated his belief that 

such a root is unique and that there is no root when 

(n-l)s 2 /n s x . In 1977 Levin and Reeds confirmed 

Anscombe's conjecture by proving that the likelihood 

function has at most one local maximum at k. This maximum 

z -occurs for finite k iff (n-l)s /n > x. So we know that 

there is a finite MLE iff the sample is over-dispersed and 

no finite MLE fork otherwise. This concludes the review 

of previous work. The next chapter is a description of the 

work completed by this author. 



CHAPTER III 

LARGE LIKELIHOOD ESTIMATION OF k 

An Intuitive Explanation of the Large 

Likelihood Estimator 

Suppose that a researcher wishes to maximize the log 

likelihood function with respect to k for an under-dis­

persed sample. A graph of this function, lettingµ= x, 

illustrates the problem of maximization (see figure 7). 

The usual method of setting the partial derivative equal to 

zero and solving fork gives no finite solution. Suppose 

instead that the partial derivative is set to a small 

positive constant, say c = 0.13, and the equation is 

solved fork. This process yields a reasonable estimate 

fork in any NB sample, regardless of the relative mag­

nitude of the sample mean and variance. This k is the 

large likelihood estimator. 

Log­
likelihood 

k 

Figure 7. Log-likelihood Function for 
an Under-dispersed Sample 
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When this same process is applied to a log likelihood 

function that can be maximized, the LLE and MLE are close, 

especially when the concavity around the maximum is ex­

treme. Specifically, samples from distributions with small 

k (in relation toµ) tend to generate log likelihood 

functions that display extreme negative concavity at the 

maximum (the function has a sharp point at the maximum), 

hence the LLE and MLE results for these parameter 

combinations are very similar (see figure 8). Samples that 

originate from distributions with a large k (in relation 

toµ) generate log-likelihood functions that are 

moderately concave at the maximum, and hence the 

differences between the MLE and LLE are more pronounced. 

Log­
likelihood 

k 

Figure 8. Log-likelihood Function 
With a Pointed Maximum 

It should also be noted that choice of a positive 

constant censures that the LLE will be smaller than the 

MLE. In simulations this has the effect of producing an 

average LLE that is closer to the true k as compared with 

the average results from the MLE and MME approaches. 

The large likelihood method also reduces the frequency 

of extremely large estimates encountered in the MLE and 



the MME approaches. The volatility of the MLE and MME 

estimates seen in the borderline NB-Poisson samples seems 

to be less pronounced with the LLE. 

A further advantage of the large likelihood approach 

is that a positive k is always possible (even if the 
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sample is under-dispersed). This is in contrast to Clark 

and Perry (1989) and Piegorsch (1990) . These researchers 

parameterized the distribution with a= 1/k. Clark and 

Perry maximized the extended quasi-likelihood to estimate 

a. No samples were discarded but negative a's were 

encountered in the simulations. Piegorsch investigated the 

MLE under the a = 1/k parameterization. Again, negative 
~ 

a's were allowed as long as a > -1/y n' where 

Yn is the largest observation in the sample. 

The previous paragraphs described the intuitive 

justification for large likelihood estimation, as well as 

some of its benefits. The results of computer simulations 

that were run in order to compare the performance of the 

LLE with the MM and ML methods are included next in this 

paper. 

Simulation Methods 

In order to study the behavior of the LLE, as compared 

with the MLE and MME, three sets of simulations were run. 

The first set consisted of nine simulations of 7000 samples 

each (sample size equals 50). These simulations were 
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run for the LLE only, and the results were compared with 

the results for the MME and MLE published by Willson et al. 

(1984). The nine cases mentioned above are achieved by 

pairing the values of 1,3 and 5 forµ with the values 1,3, 

and 5 fork. The results of these nine simulations are 

summarized in tables 2, 3, and 4. 

Tables 2,3 and 4 compare Bias, s;, and MSE, 

respectively for large likelihood estimation versus method 

of moments and maximum likelihood estimation. The results 

for the MME and MLE originate from 10,000 samples of size 

50 (Willson et al. (1984)). Under-dispersed samples were 

discarded. The simulations were run until 10,000 good 

samples were generrated. A large percent of the samples 

was thrown out when smallµ values (1 and 3) were 

combined with large k (k = 5). The results for the LLE 

column are based on 7000 samples of size 50. No samples 

were discarded from the simulation because of under­

dispersion. The estimate fork is the solution ink for 

o L(k, X = µ) 
ok = 0.13 

the partial derivative of the log-likelihood function. 

The constant 0.13 was chosen because it yielded favorable 

results in preliminary simulations. 

In the second set of simulations, the three methods 

of estimation were directly compared. Specifically, a 

sample was generated, and the LLE, MLE, and MME were found 
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1 
1 
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3 
3 
3 

5 
5 
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µ 

1 
1 
1 

3 
3 
3 

5 
5 
5 

TABLE 2 

COMPARISON OF THE BIAS IN THE LLE, 

MLE, AND MME, N = 50 

K MME MLE 

1 0.57 0.66 
3 1.40 2.60 
5 0.84 2.90 

1 0.17 0.11 
3 1.1 1. 2 
5 2.9 4.7 

1 0.14 0.09 
3 0.54 0.55 
5 1. 7 2.3 

TABLE 3 

COMPARISON OF Sk FOR THE LLE, MLE, 

AND THE MME, N = 50 

k MME MLE 

1 1. 8 4.2 
3 4.5 12.0 
5 5.5 15.0 

1 0.43 0.38 
3 3.9 7.4 
5 9.4 27.0 

1 0.36 0.3 
3 1.7 1.7 
5 7.0 18.0 
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LLE 

0.25 
0.03 

-1. 30 

0.09 
0.31 

-0.05 

0.07 
0.24 
0.24 

LLE 

0.75 
1.55 
1. 66 

0.36 
1. 40 
2.00 

0.29 
1.17 
1. 97 
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TABLE 4 

COMPARISON OF THE MSE FOR THE LLE, 
MLE, AND MME WITH N = 50 

µ k MME MLE LLE 

1 1 3.6 18.0 0.63 
1 3 23.0 150.0 2.39 
1 5 31.0 240.0 4.44 

3 1 0.22 0.15 0.14 
3 3 16.0 56.0 2.05 
3 5 97.0 740.0 4. 00 

5 1 0.15 0.1 0.09 
5 3 3.2 3.3 1. 44 
5 5 52.0 330.0 3.95 

for that sample. Under-dispersed samples produced a finite 

LLE but the MLE and MME were designated as missing values. 

This plan was carried out for 2,000 samples of size 50. 

Again the same nine parameter combinations were studied. 

The results of this second set of simulations are sum­

marized in tables 5 through 11. An accompanying set of box 

plots illustrates quartile information for these simu­

lations (see appendix B). 

In tables 5 through 11 the percent under-dispersion 

column represents the percent of samples where no MLE was 

possible or where the MME was negative. Again, the LLE was 

found for all samples. After 2000 samples were estimated 

the average k, median k, estimated MSE, Sk ,01 , o3 , and 

99th percentile were found for the three methods. 
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TABLE 5 
A 

AVERAGE k FOR THE LLE, MLE, AND MLE 
FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 1. 263 1. 765 1. 566 0.95 
1 3 2.982 5.771 4.570 15.00 
1 5 3.745 8.670 6.050 28.15 

3 1 1.104 1.123 1.171 0.00 
3 3 3.258 4.218 3.994 0.25 
3 5 4.970 8.827 7.827 2.60 

5 1 1. 074 1. 086 1.137 0.00 
5 3 3.202 3.451 3.438 0.00 
5 5 5.127 6.894 6.520 0.15 

TABLE 6 

MEDIAN k FOR THE LLE, MLE, AND MME 
FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 1. 041 1.069 1.125 0.95 
1 3 2.629 2.877 2.903 15.00 
1 5 3.545 4.062 3.912 28.15 

3 1 1.046 1.060 1. 096 0.00 
3 3 2.930 3.138 3.132 0.25 
3 5 4.502 5.323 5.222 2.60 

5 1 1. 032 1. 040 1. 086 0.00 
5 3 3.012 3.151 3.118 0.00 
5 5 4.707 5.245 5.168 0.15 



26 

TABLE 7 

25th PERCENTILE FOR THE LLE, MLE, AND MME 
FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME \ UNDER-DI SP 
MLE & MME 

1 1 0.768 0.782 0.803 0.95 
1 3 1.825 1.872 1.892 15.00 
1 5 2.412 2.442 2.391 28.15 

3 1 0.852 0.860 0 •. 865 0.00 
3 3 2.309 2.415 2.376 0.25 
3 5 3.488 3.856 3.769 2.60 

5 1 0.870 0.877 0.879 0.00 
5 3 2.433 2.510 2.474 0.00 
5 5 3.790 4.066 3.980 0.15 

TABLE 8 

75th PERCENTILE FOR THE LLE, MLE, AND MME 
FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 1. 511 1. 603 1. 670 0.95 
1 3 3.889 5.357 5.060 15.00 
1 5 4.902 7.729 6.894 28.15 

3 1 1.274 1.296 1.381 0.00 
3 3 3.887 4.433 4.459 0.25 
3 5 6.027 8.304 7.962 2.60 

5 1 1. 231 1.245 1. 340 0.00 
5 3 3.707 3.955 3.985 0.00 
5 5 6.052 7.278 7.092 0.15 



27 

Table 9 

ESTIMATED MSE FOR THE LLE, MLE, AND 
MME FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 0.660 60.713 3.974 0.95 
1 3 2.305 101.635 25.339 15.00 
1 5 4.421 359.921 36.331 28.15 

3 1 0.141 0.160 0.224 0.00 
3 3 1.918 67.221 16.989 0.25 
3 5 4.015 170.011 79.056 2.60 

5 1 0.089 0.096 0.152 0.00 
5 3 1.213 2.345 2.363 0.00 
5 5 3.600 91.954 40.307 0.15 

TABLE 10 

s "' FOR THE LLE, MLE, AND MME FROM 
k 

2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 0.769 7.756 1. 912 0.95 
1 3 1.518 9.695 4.783 15.00 
1 5 1.688 18.619 5.937 28.15 

3 1 0.361 0.381 0.442 0.00 
3 3 1. 361 8.109 4.001 0.25 
3 5 2.004 12.467 8.431 2.60 

5 1 0.289 0.298 0.365 0.00 
5 3 l.082 1.463 1.473 0.00 
5 5 1. 893 9.402 6.165 0.15 



28 

TABLE 11 

99th PERCENTILE FOR THE LLE, MLE, AND 
MME FROM 2000 SAMPLES OF SIZE 50 

µ k LLE MLE MME % UNDER-DISP 
MLE & MME 

1 1 4.255 11.316 9.800 0.95 
1 3 7.197 46.738 23.529 15.00 
1 5 8.025 60.984 29.481 28.15 

3 1 2.322 2.434 2.704 0.00 
3 3 7.874 18.836 16.268 0.25 
3 5 10.735 67.623 48.580 2.60 

5 1 . 1.987 2.036 * 0.00 
5 3 6.707 8.571 8.808 0.00 
5 5 11.214 30.742 30.637 0.15 

TABLE.12 

"" 
AVERAGE k FOR THE LLE, MLE, AND MME 

FROM 1500 SAMPLES OF SIZE 250 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 1.054 1.063 1. 081 0.00 
1 3 3.171 3.871 3.823 0.00 
1 5 4.822 8.529 7.893 3.60 

3 1 1.018 1.021 1.039 0.00 
3 3 3.055 3.108 3.118 0.00 
3 5 5.121 5.447 5.421 0.00 

5 1 1.013 1. 015 1. 026 0.00 
5 3 3.061 3.091 3.091 0.00 
5 5 5.067 5.203 5.204 0.00 
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TABLE 13 

" MEDIAN k FOR THE LLE, MLE, AND MME 
FROM 1500 SAMPLES OF SIZE 250 

µ k LLE MLE MME % UNDER-DISP 
MLE & MME 

1 1 1.014 1.021 1.040 0.00 
1 3 2.867 3.032 3.055 o.oo 
1 5 4.507 5.292 5.130 3.60 

3 1 1.006 1.008 1.028 0.00 
3 3 2.968 3.011 3.008 0.00 
3 5 4.955 5.166 5.133 0.00 

5 1 1. 004 1.006 1.018 0.00 
5 3 3.031 3.059 3.062 0.00 
5 5 4.929 5.037 5.017 0.00 

T.ABLE 14 

25t.h PERCENTILE FOR THE LLE, MLE, AND 
MME FROM 1500 SAMPLES OF SIZE 250 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

.. 

1 1 0.884 0.889 0.887 0.00 
1 3 2.281 2.353 2.364 0.00 
1 5 3.426 3.712 3.667 3.60 

3 1 0.921 0.923 0.919 0.00 
3 3 2.628 2.659 2.631 0.00 
3 5 4.246 4.371 4.347 0.00 

5 1 0.934 0.936 0.924 0.00 
5 3 2.730 2.751 2.724 0.00 
5 5 4.392 4.471 4.457 0.00 
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TABLE 15 

75th PERCENTILE FOR THE LLE, MLE, AND 
MME FROM 1500 SAMPLES OF SIZE 250 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 1.177 1.187 1.221 0.00 
1 3 3.687 4.113 4.091 0.00 
1 5 5.882 8.150 8.090 3.60 

3 1 1.100 1.103 1.142 0.00 
3 3 3.383 3.446 3.473 0.00 
3 5 5.782 6.131 ·6.113 0.00 

5 1 1. 082 1. 084 1.122 0.00 
5 3 3.343 3.380 3.409 0.00 
5 5 5.588 5.746 5.802 0.00 

TABLE 16 

ESTIMATED MSE FOR THE LLE, MLE, AND 
MME FROM 1500 SAMPLES OF SIZE 250 

µ k LLE MLE MME % UNDER-DI SP 
MLE & MME 

1 1 0.062 0.067 0.085 0.00 
1 3 1.666 14.192 11. 610 0.00 
1 5 3.478 197.5 105.8 3.60 

3 1 0.019 0.019 0.030 0.00 
3 3 0.367 0.421 0.492 0.00 
3 5 1.577 4.150 3.693 0.00 

5 1 0.013 0.013 0.022 0.00 
5 3 0.215 0.232 0.274 0.00 
5 5 0.891 1.101 1.191 0.00 



TABLE 17 

Sk FOR THE LLE, MLE, AND MME 
FROM 1500 SAMPLES OF SIZE 250 
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µ k LLE MLE MME % UNDER-DISP 
MLE & MME 

1 1 0.244 0.251 0.281 0.00 
1 3 1.279 3.666 3.307 0.00 
1 5 1.857 13.608 9.875 3.60 

3 1 0.138 0.139 0.171 0.00 
3 3 0.603 0.640 0.691 0.00 
3 5 1.250 1.988 1.875 0.00 

5 1 0.114 0.114 0.147 0.00 
5 3 0.460 0.473 0.516 0.00 
5 5 0.942 1. 030 1. 072 0.00 

Finally, a third set of simulations was run to 

compare the behavior of LLE, MLE,and MME for large samples 

(n = 250). These simulations were carried out exactly as 

the second set but with a larger sample size. The results 

are summarized in tables 12 through 17. The constant 

C=0.13 was used in both the second and third sets of simu­

lations because it produced good results in preliminary 

trials. 

All of the simulations were run on PC-SAS using the 

IML procedure. Newton's method was used to find the MLE 

and LLE. 
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Simulation Results 

To summarize the results from the first set of 

simulations (tables 2, 3, and 4), note that the LLE 

exhibited a smaller estimated bias in all parameter combin­

ations exceptµ= land k = 5. In this case the MME yield­

ed a smaller estimated bias. For certain parameter 

combinations (µ = 1 and k = 3; µ = 3 and k.= 3; andµ= 5 

and k = 5) the bias from the LLE is dramatically smaller 

than the results from the other two methods. 

The LLE produces a marked decrease in MSE in compar-

ison with the MLE and MME approaches. This reduction 

occurred for all parametei combinations. Similar results 

hold for S ~ . The previous paragraphs discussed the re-

sults for the first set of simulations, where the large 

likelihood estimator (run in 1992) was compared to the 

maximum likelihood and method of moments estimators pub­

lished in 1984 by Willson et al. Now turn to the discus­

sion of the second set of simulations, in which a sample 

was subjected to all three methods of estimation ( LLE, 

MLE, and MME) within the same simulation. 

In table 5 the average k 's for n = 50 are presented. 

Note that the average LLE is closer to the true value of k 

for all parameter combinations exceptµ= land k = 5. In 

this case the average MME is closer to 5 than the other two 

methods. It should also be noted that the differences 



between the three methods are more pronounced (with the 

LLE having the advantage in most cases for combinations 

µ = 5 and k = 5, µ = 3 and k = 5, µ = 3 arid k = 3, and 

µ = 1 and k = 3. In contrast, the three methods behave 

similarly when k is small (k = 1). This similarity 
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should be expected, especially between the LLE and MLE, 

since the sampies from distributions with a small k 's tend 

to give rise to log likelihood functions which exhibit 

extreme concavities around the maximum. Hence the LLE and 

MLE are close. 

Next turn to the variability of the k's. Table 9 

summarizes the estimated MSE's for samples of size 50. 

In all nine simulations the MSE's for the LLE's are 

smaller than the estimates for the other two methods, with 

most of the simulations showing a dramatic difference. 

· Obviously the LLE's do not exhibit the extreme variability 

seen in the MLE's. As with the results for the average 

k's, the three methods behave similarly when k is small in 

relation toµ. 

The results for s; (table 10) correspond to those of 

the estimated MSE 's. Again in most cases the standard 

errors for the LLE 's are much smaller than the estimates 

for the other two methods. Only when k is small in 

relation toµ do the three methods behave similarly. 

For the 75th percentiles (Table 8), the Q LLE is 
9 

smaller than the other two Q's. This would indicate that 
9 
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the benfits seen in the LLE are gained not only by 

eliminating the extreme values seen in the MLE and MME, but 

also by producestimates that are in general less variable 

than the other two methods. The 99th percentiles (table 

11) for the LLE are in all cases smaller, and in most cases 

dramatically smaller than the other 99th percentiles. 

Before moving to the discussion of the next set of 

simulations it should be noted that a decrease in sample 

size is associated with an increase in the percent of 

under-dispersed samples. This trend is reflected in these 

sets of simulations (compare the percent under-dispersed 

for n = 50 with n = 250). Another trend that appears is 

that the smaller sample size accentuates the difference 

between the LLE and the other two methods, favoring the 

LLE. As you will see in the next set of simulations, 

larger sample sizes produce results that are more alike for 

the three methods. So the larger sample sizes produce 

similar results for the LLE, MLE, and MME, but the benefits 

of the LLE become more evident for the smaller sample sizes 

(n = 50). The next discussion will focus on the 

comparative behavior of the three methods when sample size 

is 250. 

Table 12 summarizes the average k 's for n = 250. A 

familiar trend continues in the sense that the results for 

the three methods are very similar when k is small. On the 

other hand the largest differences between the methods 

occur when k = 5, with the LLE giving the better results in 
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every case. It should be noted that the difficulty with 

the average LLE forµ= l, k = 5, and n = 50 is no longer 

a problem in the simulations for n = 250. Next turn to the 

variability of the estimates. 

The estimated MSE 's are given in table 16. Again the 

results for the LLE, MLE, and MME are very similar in the 

simulations with k = 1. Differences in performance occur 

when k = 5, with the LLE being less variable than the 

other two methods. The same can be said for the combina­

tionµ= land k = 3. Corresponding results hold for the 

estimated standard errors ( see table 17 ). 

The medians (table 13) for all the methods are reason­

ably close to the true k, with the median LLE being the 

smallest in all cases. The worst results are obtained 

(for any method) whenµ= l, or 3, and k = 5. The median 

LLE is especially low whenµ= land k = 5. Recall however 

that this value is based on the full 1500 samples, whereas 

the medians for the other two methods are based on 96.4 % 

of 1500. The 75th percentiles (table 15) are comparable 

for the three methods except whenµ= land k = 5. In this 

case 

Q MME 
3 

Q LLE is 5.882 as compared with Q MLE = 8.15 and 
3 3 

= 8.09. 

It is clear that increasing the sample size decreases 

the differences between the three methods. Taking the 

larger n improves the performance of all the methods by 

decreasing Bias and decreasing the variability of the 
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estimates. 

Some Examples 

The samples included in this section were selected 

from simulations in order to illustrate the properties of 

the LLE, with special emphasis on its behavior for under­

dispersed or borderline NB-Poisson samples. The values for 

the parametersµ and k represent the numbers used in the 

simulations. 

µ k 

3 1 

X: 

FREQ: 

1 5 

X: 

FREQ: 

1 5 

X: 

FREQ: 

TABLE 18 

SPECIFIC EXAMPLES FOR THE LLE, MLE, 
AND MME FOR N = 50 

0 1 

9 13 

0 1 

19 19 

X 
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MME 

1.149 

6 
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7 

2 

-34.916 

16.993 

8 

3 

MLE 

1. 254 

14 

1 

20.885 

16 

1 

LLE 

1. 236 

5.155 

4.236 



Existence of a Finite Positive Large 

Likelihood Estimator 
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At present, every sample generated in the course of 

the simulations yielded a finite positive LLE fork. How­

ever it is important to prove that a finite positive LLE 

exists for any negative binomial sample. This amounts to 

showing that 
.,. 

8L(k,µ = x) 
. - C = 0 

8k 

has a finite positive solution ink, where C is a small 

positive constant. For convenience of notation let 

8L(k,µ = x) 8L 

8k 8k 

The first part of the proof ~ill show that the derivative 

of the log-likelihood is positive for some small positive 

k, i.e. show that 

8 L 
----- > 0 

8 k 
for some small positive k. 

This requires equations (2.2) and (2.3) from Theorem 2.1, 

published in Willson et al. (1986). I am expanding these 

two equations for clarity. 

8 L 

8 k 

= n~(l/k) + n2 (1/k + 1/(k+l)) + 

n (1/k + 1/(k+l) + 1/(k+2)) - n ln(l + x/k) 
9 

( 3 . 1 ) 



For small positive k we have ln ( 1 + k/ X) ( 1 

~ ln (x + k) - ln(x) < 1. 

~ ln(x + k) - ln(k) < 1 + ln(x) - ln(k). 

q ln((x + k) / k) < 1 + ln(x / k). 

~ ln(l + x/k) < 1 + ln(x) + ln(l/k). 

Let b = ln(l/k), hence the right hand side of the in­

equality becomes 1 + ln(x) + b, which is linear in b. 

Recall that a linear function can be bounded above (for 

large enough b) by an exponential function, i.e. 

1 + ln (x) + b < n + n + •••.• 
1 2 

e 0 / n 

= n + n + ••• 
1 2 

I ( nk) . 

But bis large when k is a small positive, therefore 

ln(l + x/k) < ln(x/k} + 1 = ln(x} + b + 1 

< ( n + ••.•• ) / ( nk ) 
1 

< ( n ( 1/k) + n ( 1/k + 1/ ( k + 1) ) + 
1 2 

n (1/k + 1/(k+l) + 1/(k+2} 
3 

+ ••• } /n 

the above inequality is true for some small postitive k. 
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For the second part of the proof we want to show that 

the derivative gets epsilon close to Oas k approaches 

positive infinity. Begin by taking the following limit. 

ii L 
li.m ----- = li.m ( n ( 1/k} + n ( 1/k + 1/ ( k+l) ) + ••• ) 

1 2 

k -+ (X) a k k -+ 00 

li.m n ln(l + x / k} = 0 
k -+ (X) 
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Denote n (1/k) + n (1/k + 1/(k+l)) + ... as r1 
t. 2 

and n ln(l + x /k) as LN. If ~l > LN for large k then 

the proof is completed. On the other hand, if LN > ~l for 

large k then the proof can be complet~d by arguing that the 

partial derivative is continuous ink for k > 0 
' 

the 

partial derivative is positive for some small positive k, 

and the derivative is negative for some large k, therefore 

the partial derivative is equal to some small positive b 

for some k > 0. Hence the LLE exists for all negative 
,.. 

binomial samples. So a finite, positive k can be 

found using the large likelihood method for over or 

under-dispersed negative binomial samples, giving the large 

likelihood method an advantage over the method of moments 

and maximum likelihood approaches. 

In the previous sections the properties of the large 

likelihood estimator were considered for finite sample 

sizes. The next step is to examine the large sample 

properties of the estimator. Specifically, the 

consistency, asymptotic normality, and asymptotic 

efficiency will be studied for the LLE. Simulation 

results suggest consistency when the average k's are 

compared for n = 50 versus n = 250. It is the goal of 

the next-section to establish the above large sample 

properties with mathematical rigor. The proof, which is 

a variation of Cramer's proof (1946), starts with the 

question of consistency, progresses to asymptotic normal­

ity, and finishes with asymptotic efficiency. 

• 



Asymptotic Properties of the Large 

Likelihood Estimator 
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The results of simulations suggest that the average LLE 

moves closer to the true value fork as the sample size n 

increases. This trend can be seen when comparing the re­

sults for simulations of n = 250 versus n = 50 (tables 12 

and 5 respectively). In response to this evidence of con­

sistency this section will offer a proof of consistency for 

the LLE, as well as arguments to establish the asymptotic 

normality and asymptotic efficiency of the estimator. The 

proof is based on Cramer's argument (1946) to show con­

sistency, asymptotic normality, and asymptotic efficiency 

for the maximum likelihood estimator. The appropriate 

changes have been incorporated into Cramer's proof in order 

to demonstrate the results for the LLE. Also some steps in 

the proof have been expanded for the sake of clarity. 

Consistency of the Estimator 

In this section it will be shown that the solution for 

8 LN L 

8 k 
- C = 0 converges in probability to the true 

value of k, as n ~ oo, where Lis the likelihood function 

for a sample of size n, and Ca small positive constant. 

f will denote the negative binomial probability mass func­

tion where f = f(x; µ, k) for x = 0,1,2,3, .... , 

µ > 0 and k > 0. The following three assumptions are made 

for the proof. 



1) For a 11 x e { O, 1, 2, 3, . . } 

8 LN f 

8 k 
I .exist for all k e A 

where A - (a,b) and b >a> a. 

2) for all k e A, 

I 8 £ I < G:s. ( x) ' I ozf I < Gz ( x), and I 8aLNf I < H ( x) 
8 k 8 k2 8 k 9 

where G:s.(x) and Gz(x) are integrable functions over 

(-oo, oo), or in the case of discrete random variables 

00 00 00 

E G:s. ( x) < oo and E Gz( x) < oo • Also E H ( x) f < M 
x:O x:O x=O 

where Mis independent of k and M < oo. 

00 

3) For all k e A, E is finite 
x=O 

and positive. 
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Next use Taylor's theorem to express the derivative of 

the log(£) as a sum of three terms, where the subscript o 

on ( ) denotes that a term is to be evaluated at the true 

value k of the parameter k. It is assumed that k e A. 
0 0 

8 k 8 k 
) + 

0 

8 LN f 
= ( 

8 LN f 

1 z 
2 e (k - k 0 ) H(x), 
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where I e f _< 1. From the above algebraic expression, the 

likelihood equation (after division by n) may be written 

in the form 

iJ LN L 
= 

n iJ k 

where B = 
0 

and 1 
n 

Bo 

1 
n 

n 

+ (k - k o) B + 
~ 

n 

( 
iJ LN f. 

Jo 
E 

I. 
B 8 k I 

i. = ~ 

H(x. ) . 
I. 

f. denotes 
I. 

1 
2 

2 e (k - ko) B = 0 I 2 

1 
n 

( 
8 2 LN f. 

E 
I. 

= 
~ n 8 k 2 i. = ~ 

f ( X. i k 1 µ ) • 
I. 

Subtracting the constant C from both sides of the equation 

gives the large likelihood equation shown below (eq.3.1). 

~ ( 8 LN L 

8 k 
c) = 1 

n ( 
n 

E 
i.=~ 

( 
8 LN f,. 

8 k 

+ 

) -
0 

C J + 

Next it is important to examine the B. 's as n. ap-
1. 

Jo 

preaches infinity. This is an intermediate step towards the 

goal of showing that the root of eq.3.1 converges in 

probability to k . 
0 

As before, f. denotes f ( x. · 
I. I. ' 

µ. I k ) • Hence 



(X) 

I: 
x=o 

f. 
1. 

= 1, and so 8 

8 k 
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(X) 

I: f. 
1. 

= 0 
x=O 

Using assumptions 1) and 2), the derivative and the sum can 

be interchanged (see lemma 4) giving 

8 

8 k 

(X) 

I: 
x=o 

(X) 

f. = 
1. 

(X) 

I: 
x=O 

(X) 

8 fi. 
8k = 0 Similarly 

I: f. = I: = 0 Then for all k e A, 
1. 

x=O 

E( 
8 LN f ) = 

8 k 
0 

E(-8 
2 

LNf ) = 
8 k2 0 

= 

x=o 

00 (18f) I: £.Dk i. 
x=O 1. 0 

(X) 

( 1 
I: £. x=O 1. 

82f. 
--1. 

8k 2 

8 LN 
8 k 

f. = 0 and 
1. 

( 1 8 f. )2 ) 
f. --1. f. 

8k 
1. 

1. 0 

2 - r .• 

And by assumption 3), r > 0 . So B is the mean of n 
0 

= 

i.i.d. random variables with mean zero. From Khintchine's 

theorem it follows that B0 converges in probability to 
p p 

2 
zero. Similarly B~--,.. - r , and B2 ___,,. E( H(x) ) < M. 

p 

Letting C be a constant random variable gives C/n ___,,. O. 

Let 6 and & be arbitrarily small positive numbers. 

Let PC • ) denote the joint probability function of the ran-

dom variables x , x , x , ... , x . For n > n = n ( 6, & ) , 
~ 2 9 n o o 



the following four inequalities hold: 

p,., = p ( I Bo I ~ 62 ) < &/ 4 , 

P2 = P( 
2 - r I 2 ) < &/ 4 I 

Pa= P( jB2 j ~ 2M ) < &/ 4, 

P P( C/ S - ~2) < , = - n u &/ 4 • 

Further let S be the set of points x = ( x ,x ,x , •.. ,x 
~ 2 a n 

h th t 11 f . 1 . t I Bo I < ~2 ' B.. < -rz/ 2 ' sue a a our 1nequa 1 es u ~ 

jB2 j < 2 M, and C/n < 6 2 are satisfied. The complement 

of s, denoted S', consists of points x such that at least 

one of the four inequalities is not satisfied. So 

p ( $I) s P + P + P + P < & , and thus P(S) 
~ 2 9 4 > 

1 - & This implies that the probability that x e S is 

1 - & , whenever n > n. 
0 

In the concluding step of the proof, it will be shown 

that (8 LN L )/ ( 8 k ) - C, which is a continuous 

function of k e A, is both positive and negative fork 

values in a neighborhood of the true value k0 , and hence 

(8 LN L )/ ( 8 k ) - C has a solution within k ± 6 
0 
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for n > n. To accomplish this let k = k ± 6 
0 0 

The right 

hand side of ( 3.1 ) becomes B - C/n ± B 6 + ( G/ 2) B 6 2 
0 · ~ 2 

If x e S then B0 - C/n + (G/ 2)B 6 2 < ( 1 + M )62 
2 



- B 6 > B - C/n + ( e; 2) B 6 2 , and so for k = k ± 6 
:l O 2 0 

the sign of (8 LN L )/ ( 8 k ) - c will be determined by 

Fork= k - 6, (8 LN L )/ 
0 

8 k - C > O, 

and (8 LN L )/ ( 8 k ) - C < O for k = k + 6. So 
0 

by continuity of (8 LN L )/ 8 k ) - C ink, and for 
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arbitrarily small 6 and e, the large likelihood expression 

will, with probability exceeding 1-e, have a root between 

k ± 6, for n > n (6,e) . Thus, consistency of the large 
0 0 

likelihood estimator is proved. The next section 

establishes asymptotic normality for the estimator. 

Asymptotic Normality for the Estimator 

Let k* be the solution to equation 3.1, the con-

sistency of which was proved in the previous section. If k* 

is substituted into 3.1, the equation becomes 

Algebraic manipulation of the equation yields the expression 

y lri = 

1 1 
y lri ( 

r, 

E 
i = :l 

8 LN fi 
8 k ) -

0 

1 1 
y lri 

C 

The denominator of the right hand side converges in prob-



ability to 1. The subtracted expression in the numerator 

converges in probability to O. The expression 
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( 8 LN f 
8 k is a variable with mean zero and variance 

/ 
2 r , hence by the Central Limit Theorem ( Lindeburg-Levy) 

the sum 8 LN f~ 
8 k is asymptotically normal 

2 with mean zero and variance r n. From this it can be con-

cluded that the first term in the numerator is asymptotical­

ly normal(0,1). Hence the ieft hand side of eg. 3.1 is 

asymptotically normal(0,1 ), and so k is* asymptotically 

normal with mean k0 and variance 1/ c r 2 n ). Thus the 

second result is shown .. The next argument will show that 

large likelihood estimator is asymptotically efficient. 

Asymptotic Efficiency of the Estimator 

In the case of unbiased estimators that obey regular­

ity conditions, the asymptotic efficiency is defined as 

eo( k* ) = lim 
n ~ 00 

where the variance of k* 
2 is of order w /n where w is 

a constant. However when the estimator is not unbiased, 

k* is approximately normal (for large n) with mean k and 

variance 1/( n E{( 8 LN f)/ 8k }: ), i.e. 2 w/n. 



So the asymptotic efficiency of k is given by eo( k ), 
* * 

and substitution of w2 = 1/( E{(a LN f)/ 8k }2 into 
0 

the equation for eo( k* ) gives a ratio of 1. Hence k* 

is asymptotically efficient. • 

Discussion of Assumptions 1),2), and J.l. 

In this section the validity of the three assumptions 

will be examined, as well as a discussion of interchanging 

the order of differentiation and summation (infinite). 
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Lemma 1. Begin with the first assumption, which in­

volves the existence of the first, second, and third partial 

derivatives of LN f (with respect to k). 

a LN f 

a k 
= 1 

k+x-1 + ••. + _1_ + 
k 

µ - X 
µ + k 

Let k e A. When x = O, the sum 1 
k+x-1 + ••• + 1 

-k- is 

zero. Hence for X = o, 1, 2, . 
partial derivative exists. 

8 2LN £ - 1 Next = + ... + 
a k2 (k+x-1) 2 

Again if x = 0 then the sum 

. 
' 

and 

- 1 -- + 
k2 

- 1 
2 (k+x-1) 

1 
k 

k EA, the first 

1 µ - X - µ+k -
(µ k)2 + 

- 1 + ••• + --
k2 

equals 

zero, and so fork e A and x = O, 1, 2, ... , the second 

partial derivative exists. Taking the third partial de­

rivative gives 

8 9 LN f 2 = a a ka ( k+x-1) 
+ ••• + 1 2(µ - x) 

+--'----
(µ+k)2 (µ + k)a 
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Again the third partial exists for x = O, 1, 2, ... and 

k e A. So the first assumption of the proof holds. 

Lemma 2. In this section it must be shown that the 

first and second partial derivatives off (with respect to 

k) are bounded by integrable (summable) functions. 

Also it will be demonstrated that the thizd partial deriv­

ative of LNf is bounded by a function with finite, positive 

expected value. 

Let k e A, Ci = ( µ!k )k , and Cz = 
X 

( µ~k ) • 

iJ f 

8 k 
= - 1- Ci Cz ( 

( X ! ) 
(k+x-2) .•• k + (k+x-l)(k+x-3) ..• k + .•. 

... + (k+x-1) ••. (k+l) + µ/(µ+k) + LN( k/(µ+k) ) -

X ( k+x-1 ) . • • k / ( µ + k ) ) 

I : : I ~ Ci Cz ( (k+x-2) .•• k + (k+x-l)(k+x-3) •.• k+ 
( X ! ) 

... + (k+x-1) .•• (k+l) + µ/(µ+k) + LN( (µ+k)/k ) + 

X ( k+x-1 ) k /( µ + k ) ) 

1 
~ x ! Ci Cz C x (k+x-1) •.. (k + 1) k/k + 
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x ( k+x-1 ) ... k /( µ + k ) + LN( (µ+k)/k )Cs (k+x-1) .... k 

+ µ/(µ+k) (k+x-1) ... k Cs ) 

X f X f 
= -k- + µ+k + Cs LN( (µ+k)/k ) f + Csµ I ( µ+k) f = 

= G:t(X) Where Cs is a real number such that 

(X) 

(k+x-1) ... k Ca 2:: 1. Hence E 
x=o 

G:t ( X) = 

= µ/k +µI ( µ + k ) + Ca LN(( µ+k )/ µ) + Csµ /(µ+k) <oo, 

showing that the absolute value of the partial derivative 

is bounded by a summable function G:1 fork e A. 

Next, it will be shown that the absolute value of the 

second partial derivative is bounded by a function G2(x), 

where G2(x) is summable over x = O, 1, 2, 

Let k e A; and C:1, and C2 be defined as before. 

I :2:2 I = ; ! I C:l ( LN( k/(µ+k) ) + µ/( µ+k) ) C2 • 

{ (k+x-2) ... k + (k+x-1) (k+x-3) ... k + •.. + (k+x-1) •.. (k+l) + 

LN( k/ (k+µ) ) + µ/( µ+k ) - x (k+x-1) .. k/(µ+k) } + 

C:1 C2 ( - x/(µ+k) { as before } + 

C:1C2 [Ck+x-3) ... k + (k+x-2) (k+x-4) ... k + ... + (k+x-2) .. 
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(k+x-3) •.• k+(k+x-1) (k+x-4) ••• k + ••. + (k+x-1) (k+x-3) ... 

+ ••• + 

(k+x-2) •.• (k+l)+ ••• + (k+x-1) •.. (k+2) ]+ 1/k - 1/(µ+k) 

2 2 
- µ/( µ+k ) ·. -x ( - (k+x-1) .•• k /(µ+k) + 

( (k+x-2) ••. k + (k+x-1) (k+x-3) ..• k + •.. + (k+x-1) .•. (k+l) ) 

+ ( µ+k) ) 

~ c~c2 C C LN((µ+k)/µ) + µ/(µ+k)){ x(k+x-1) ••. (k+l)k/k 
( X ! ) 

+(LN((µ+k)/k)+µ/(µ+k))(k+x-1) ..• k Ca+x(k+x-1) .•. k/(µ+k) J 

2 +(x/(µ+k)){as before}+x(x-l)(k+x-1) .•• (k+2)(k+l)k/(k +k) 

+ ( 1/k + 1/(µ+k) + µ/( µ+k ) 2 ) (k+x-1) ..• k Ca+ 

x (k+x-1) .•• k/(µ+k) 2 + X 2/<µ+k) (k+x-1) •.. (k+l)k/k ) 

= x/k ( LN(( µ+k )/k ) + µ/( µ+k ) )£+Ca( LN(( µ+k)/k) 

+ µ/( µ+k ) ) f + X f / (µ+k) + X2 f /(µk + k 2 ) + 

+ Ca x/( µ+k ) ( LN(( µ+k )/k ) + µ/( µ+k ) ) f + 

x 2 f /( µ+k ) 2 + (x2-x) f /(k 2 +k ) + Cs f ( 1/k + 1/(µ+k)+ 

2 2 2 2 
µ/( µ+k ) ) + X f /(µ+k) + X f / ( µk+k ) = G2(x) . 



co 
And so E Gz(x) = µ/k ( LN(( µ+k )/k ) + µ/(µ+k) ) 

x=O 

2 2 + Ca ( LN( ( µ+k )/k ) + µ/(µ+k) ) + µ/(µ+k) + (O' + µ )+ 

(µk + k 2 ) +Caµ/( µ+k ) ( LN(( µ+k )/k ) + µ/(µ+k) 

2 2 2 + (O' + µ - µ)/(k +k 

Ca ( 1/k + 1/(µ+k) + µ/(µ+k) 2 + 
2 µ/(µ+k) 

+ 

+ 
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Therefore fork e A, andµ> O, the absolute value of the 

second partial derivative off is bounded by a summable 

function, Gz(x). 

And finally for assumption 2) it will be shown that 

the absolute value of the third partial derivative off is 

bounded by a function H(x), whose expected value is less 

than a finite number M (with M independent of k). Let keA. 

= I ck+~ 
+ • • • + 

+ 2( µ-x) 

( µ + k )9 

+ + 1 + 2µ + 2x . 

( µ + k )9 

+ 1 + 
(µ+k)2 

= H(x) 



(X) 

The expected value is E 
x=O 

+ + 1 + 
µ+k )2 

H(x} f(x ; k} = 

2 µ 

µ+k )9 
+ 

2 µ 

µ+k )9 
::s;M(oo. 

Recall that A= (a,b} where b >a> 0. If a~ 1 then 

M = 6µ + 2. If O <a< 1, then Mis equal to the following 

2 µ 
a 

a 
+ 1 

2 
a 

+ 1 
( ) 2 µ+a 

+ 4 µ 

} a µ+a 
I which is finite and 

independent of k. Hence all of the conditions of as­

sumption 2) have been verified. 
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Lemma 3. For the final assumption 3) it is necessary to 

show that fork e A, the expected value of the square of 

the first partial off is finite and positive. Let the sum 

1/(k+x-1} + 1/(k+x-2} + ... + 1/k be denoted by w for ease 

of notation. The square of ( a LN f / a k } equals 

W2 + 2 W LN( k/ (µ+k} } + ( LN( k/(µ+k} } ) 2 + 

( (µ-x}/(µ+k} }2 +2w(µ-x}/(µ+k} + 2 LN( k/(µ+k) } (µ-x)/(µ+k). 

The above expression is bounded from ~bove by 

( x/k }2 + 2x/k LN( (µ+k}/ k } + LN( k/(µ+k} ) ) 2 + 

( (µ-x}/(µ+k} }2 +2x/k (µ+x}/(µ+k)+2 LN((µ+k}/ k)(µ+x)/(µ+k). 

Hence, the expected value is bounded from above as the next 

inequality demonstrates. Let k e A. 

(X) 

E 
x=o 

( 8 LN 

8 k 

f ) 2 f ( X ; k ) 
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LN( k/(µ+k)) ) 2 + 2 
O' / ( µ+k ) + 

4 µ/ (µ+k) LN( ( µ+k )/k ) < oo. So the expected value is 

finite. Next it will be shown that the expected value is 

positive. Consider E ( 8 LN f ) 
x=o 8 k 

2 

f ( X ; k ) • The 

square term is non-negative and f is positive. If the ex­

pected value equals zero, then this means that (8 LN f)/ 8 k 

is equal to zero for all x = O, 1, 2, ••• and k e A. This 

conclusion about the derivative implies that the log likeli­

hood function is constant for x = O, 1, 2, ... and k e A, 

which it is not. Therefore the expected value is positive 

as required. The final lemma addresses the question of ex-

changing the order of the derivative and the infinite sum. 

Lemma 4. This lemma is from Folland (1984). Let 
(X) 

f . X X [ a, b ] ---+ CR and E f ( x; k~ < (X) . , 
x=O 

for fixed k~ e [ a, b ] , where - (X) < a < b < (X) . 

(X) 

Let F(k) = E f{ X ; k ) for k e [ a, b ]. Suppose 
x=O 

that 8 f/8k exists and there is a g(x) such that 

(X) 

E g{x) < oo, and 18 f{x;k)/8 kl ~ g{x) for all k e [a,b] 
x=O 

and x = O, 1, 2, .... , then F(k) is differentiable 

(X) 

and, E 8 f ( x, k) = 
x=O 8 k 

8 

8 k 

(X) 

E f cx,k>. 
x=O 
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Proof: Let kn be any sequence converging to ko. Therefore 

8 f( x,ko )/ 8 k = lim hn(x) where 
kn -+ko 

hn(X) = ( f( x, kn) - f( x,ko) ) / ( kn - ko) . 

By the Mean Value Theorem 

I hn(x) I S sup 8 f(x,k)/8 k I S g(x). 
k e [a,b] 

Applying the Dominated Convergence Theorem gives 

QO .QO 

8 

8k 

QO 

E 
x=O 

f( x, ko) 
= !!"\ ko [ 

~=
0

f(x,kn)- ~=
0
f(x,ko)] 

kn - ko 

= 
QO 

lim E [ 
kn-+ ko x=o 

f(x,kn)-

kn. -

f(x,ko) ] 

ko 

QO 

= E 
x=O 

8 f(x,k). 

8 k 

This concludes the proof of the asymptotic properties 

of the large likelihood estimator. The next chapter will 

be devoted to a refinement of the LLE, namely the adjusted 

large likelihood estimator. This new method sets the 

derivative equal to a small positive c, but the value of C 

changes in response to the concavity of the log likeli­

hood function. 

• 



CHAPTER VI 

CHOICE OF OPTIMAL C AND ADJUSTED LARGE 

LIKELIHOOD ESTIMATOR 

Optimal Choice of C 

The choice of C = 0.13 for the LLE provides an over­

all improvement for estimation in terms of bias and var­

iability, as compared with the method of moments and 

maximum likelihood approaches. However, fixing C causes 

the average LLE to over-estimat~ or under-estimate the true 

value of k by (in some cases) a considerable degree--

still the LLE does provide the researcher with an improved 

method of estimation. The question arises "what value of 

C will produce an average LLE that is essentially un­

biased?"· In an effort to reach an answer, many simula­

tions were run in order to find the optimal ( minimizes 

estimated bias ) C for each parameter combination. These C 

values are summarized in table 19. 

It should be noted that the resulting bias is quite 

robust to the choice of C when k is small in relation to 

µ (k = 1 and µ = l ,3, or 5). Specifically, C can be 

varied from 0.5 to 0.8 with no great change in the average 

LLE. This is intuitively reasonable because the concavity 

of the log likelihood function (at its maximum) is in 
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general much more extreme when k = 1. With extreme con­

cavities (the log likelihood has a sharp point at its 

maximum), C can be varied greatly without changing the 

average LLE of the simulation (see figure 9). 

log 

likeli­

hood 

µ 

k 

5 

3 

1 

TABLE 19 

OPTIMAL VALUES FOR C 

1 3 

0.05 0.13 

0.13 0.25 

0.69 0.89 

k 

Figure 9. Log Likelihood Function 
With a Sharp Point 

5 

0.18 

0.31 

0.97 

On the other hand, the choice of C when k is large in 

relation toµ (k = 5) is crucial. Again an appeal to the 

concavity will explain the reason. The log likelihood 

function arising from a population with k = 5 andµ= 1 
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(for example) exhibits moderate to mild concavity at its 

maximum (if the maximum exists). Hence a small change 

in C produces large changes in the average LLE. 

Adjusted Large Likelihood Estimator 

A conclusion that can be drawn from the above discus­

sion is that for a fixed value ofµ, the concavities of 

the log likelihood functions (at the maximum) follow a 

marked trend ask is increased from 1 to 3 and again to 5. 

To demonstrate this, nine simulations of 1500 samples of 

size 50 were run, and the median second derivative 

(at the maximum) was found. The differences between the 

median second derivatives can be quite dramatic ask is 

increased from 1 to 3 and then to 5 (see table 20). 

This being the case, it is natural to think that the 

concavity of a log likelihood function (at the maximum) 

could give information to the researcher in regard to the 

choice of C. Such an idea was implemented in the adjusted 

large likelihood estimator. 

µ 

k 

5 

3 

1 

TABLE 20 

MEDIAN SECOND PARTIAL DERIVATIVE 
FROM 1500 SAMPLES OF SIZE 50 

1 

0.047 

0.132 

3.492 

3 

0.102 

0.491 

10.413 

5 

0.204 

0.898 

14.158 
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The adjustment to the LLE comes in the form of 

changing the constant C in response to the concavity of the 

log likelihood function. If the sample is under-dispersed, 

the value of C is set to 0.09, because there is no max­

imum to evaluate the second derivative. The algorithm 

for the Adjusted LLE (adjLLE) uses the sample mean and 

the absolute value of the second partial derivative of the 

log likelihood function (denoted 'sec') to find an 

adjusted C. The goal of the process is to tailor the 

constant so the the average adjLLE will be closer to the 

true value of k than the average LLE, MLE, or MME. A 

function C = c(x, sec) will be developed that chooses 

a C in response to the sample mean and concavity. The 

derivation of this function follows. 

Using the data from table 19, a non-linear model is 

fit with C as the response variable andµ and k as explan­

atory variables. The choice of the model 

cz ca C = c 0 + ( c 1 µ )/ ( k ) was suggested by the data. 

In fact during the course of the research, many other 

models were fitted, but the end results are not as 

promising as the final model described above. The 

SAS procedure NLIN yielded (4.1) 

C = -0.0589 + ( 0.7049 µ 0 • 27~) / ( k ~- 0277 ) , 

with absolute residuals being bounded from above by 

0.0438. The same process was carried out for the data in 

table 20, giving equation (4.2) 

lsecl = -0.1715 + 4.6066 ( µ ) / ( k 2.955d) 



with absolute residuals bounded from above by 0.94. 

It is helpful to visualize the two grids of data 

stacked vertically. When the sample is encountered and 

k is to be estimated, the true value of kin the parent 

population is the same regardless of which grid that is 

examined. Hence equations (4.1) and (4.2) are each solved 

for k, giving k =( ( c~ µ cz )/ ( C - co ) )~/ca and 

k =( b~ µ bz ) / ( -sec - bo ) ) ~/ba The right hand 

side of both expressions are equated, and then the equal­

ity is solved for C giving 

c2 bz c3/b3 C = co + ( c~ µ ) / ( ( b~ µ ) / ( -sec - bo ) ) 

Substitution of x forµ gives a value for C that depends 

on the sample mean and concavity. This C is then used 

in the usual LLE algorithm instead of the fixed 0.13. 

Table Summary of the Simulation Results 

Nine simulations, consisting of 3000 samples of size 

50, were run using the same parameter combinations as in 

previous chapters. The program generates a sample and 

the MME and MLE are calculated if possible. If there is 

a valid maximum for the log likelihood function then this 

information is used in the form of 'sec' to find an 
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adjusted C in the adjusted LLE. The LLE is found for all 

samples whether they be over or under-dispersed. So for 

each sample four estimates are found-- namely the MME, MLE, 

LLE, and adjLLE. If the sample is under-dispersed the MME 

and MLE will be missing values; the constant for the LLE 
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will be 0.13; and the C for the adjLLE will be 0.09. 0.09 

was chosen because it allows moderate improvement in the 

bias for theµ= land k = 5 combination without increasing 

the bias too much in theµ= land k = 3 case. To elabor­

ate, if the C for the adjLLE is set to 0.05 (for under 

dispersed samples) then the bias for theµ= land k = 5 

will be greatly improved, but this will be at the expense 

of theµ= 1 and k = 3 case. Using 0.05 in the latter 

parameter combination produces an average adjLLE that is 

3.8 to 4.0. And so an improvement for one parameter 

combination causes a deterioration in the results for 

an adjacent parameter combination. The results for the 

nine simulations are summarized in tables 21 through 24. 
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TABLE 21 
A 

AVERAGE k FOR 3000 SAMPLES OF SIZE 50 

µ k MME MLE LLE adjLLE % UNDER-DI SP 

1 1 1.575 1. 660 1.278 1.210 1. 30 
1 3 4.797 6.967 2.988 3.111 13.97 
1 5 6.136 9.028 3.715 4.006 27.07 

3 1 1.165 1.114 1.095 1.024 0.00 
3 3 4.127 4.507 3.349 3.267 0.33 
3 5 7.720 10.155 4.908 4.981 3.13 

5 1 1.137 1.089 1.077 1.016 0.00 
5 3 3.518 3.513 3.248 3.121 0.03 
5 5 6.589 6.877 5.223 5.191 0.30 

TABLE 22 

S"' 
k 

FOR 3000 SAMPLES OF SIZE 50 

µ k MME MLE LLE adjLLE % UNDER-DI SP 

1 1 1.826 3.983 0.787 0.856 1.30 
1 3 5.472 20.376 1.521 1.868 13.97 
1 5 6.099 25.693 1. 649 2.096 27.07 

3 1 0.439 0.384 0.363 0.431 0.00 
3 3 4.126 15.316 1. 430 1.552 0.33 
3 5 9.634 44.254 2.028 2.353 3.13 

5 1 0.373 0.309 0.300 0.282 0.00 
5 3 1.593 1.561 1.148 1.184 0.03 
5 5 5.451 7.031 1. 936 2.135 0.30 
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TABLE 23 

MSE FOR 3000 SAMPLES OF SIZE 50 

µ k MME MLE LLE adjLLE % UNDER-DI SP 

1 1 3.664 16.291 0.696 0.776 1. 30 
1 3 33.158 430.763 2.313 3.502 13.97 
1 5 38.477 676.050 4.370 5.377 27.07 

3 1 0.220 0.163 0.141 0.117 0.00 
3 3 18.292 236.776 2.166 2.478 0.33 
3 5· 100.177 1984.29 4.119 5.535 3.13 

5 1 0.158 0.103 0.096 0.080 0.00 
5 3 2.806 2.698 1.380 1.415 0.03 
5 5 32.225 52.945 3.798 4.593 0.30 

TABLE 24 

75th 
A 

PERCENTILE FOR k FROM 3000 
SAMPLES OF SIZE 50 

µ k MME MLE LLE adjLLE % UNDER-DI SP 

1 1 1. 680 1. 619 1. 522 1. 402 1., 30 
1 3 5.312 5.741 3.882 4.056 13.97 
1 5 7.087 7.852 4.824 5.438 27.07 

3 1 1.387 1. 279 1.258 1.174 0.00 
3 3 4.551 4.603 3.999 3.899 0.33 
3 5 7.812 8.253 6.052 6.208 3.13 

5 1 1.332 1. 247 1. 234 1.162 0.00 
5 3 4.069 4.051 3.778 3.624 0.03 
5 5 7.291 7.450 6.146 6.136 0.30 



Interpretation of the Simulation Results 

For 8 of the 9 parameter combinations the average 

adjLLE is closer to the true k than the average LLE, MLE, 

or MME. In the exceptional case ofµ= 1 and k = 3, the 

average LLE is~ 2.93 and the average adjLLE is~ 3.11. 

The overall improvement in the bias that is provided by 

the adjLLE is paid for at the price of a slightly larger 

variability (in some cases). Only for parameter com­

binationsµ= 3 and k = 1, andµ= 5 and k = 1 is 

estimated standard error for the k 's smaller in the 

adjLLE as compared with the LLE. Still it should be 

remembered that the variation of the LLE based methods are 

very similar and in most cases much smaller than the 

variation of the MME and MLE approaches. So in general 

the adjLLE provides a slightly smaller bias and a slightly 

larger variability as compared with the LLE, but the two 

new methods give much better results than the MLE and MME. 

The adjLLE somewhat improves the problem encountered 

with the LLE forµ= 1 and k = 5. Recall for .this para­

meter combination that the average LLE under-estimated the 

true value of k by about 1.3, whereas the average MME 

over-estimated the true k by about 1.14. Using the adjLLE 

decreases the under-estimation to about 1 (the average 

adjLLE is 4.008). Hence the absolute bias for the adjLLE 

is slightly smaller than the bias seen with the LLE and 

MME approaches (and certainly the MLE). 

The upper quartile ( o3 ) for the adjLLE is in 6 of 
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the 9 cases smaller than the quartile for the LLE (and 

hence much smaller than the quartiles for the two con­

ventional methods). In the case ofµ= land k = 5, 
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a3 for the adjLLE is bigger than the quartile for the LLE, 

but this is desirable since the LLE under-estimates k for 

this parameter combination. Also forµ= 1 and k = 3, and 

µ = 3 and k = 5 the upper quartiles for the LLE are 

slightly smaller than those for the adjLLE. 

In general the results for the LLE and adjLLE are 

very similar, with a slight improvement in the bias 

offered by the adjLLE. Both LLE based methods show a 

great improvement over the MME and MLE approaches in terms 

of bias, variability, and upper quartiles. 

Problems With the Adjusted Large 

Likelihood Estimator 

The adjLLE is based on simulation results for samples 

of size 50. It is a matter for further research to deter­

mine if the grids ( of values ) and the equations for 

sample size 50 can be used with reasonable success for 

sample sizes that are close to 50. This idea is offered 

since the fixed C = 0.13 worked well for n = 50 and for 

n = 250. 

The original goal of the adjLLE was to reduce the bias 

encountered in the LLE approach. In almost all cases the 

adjLLE did reduce the bias, but the results were somewhat 

less dramatic than hoped for. This marginal improvement 
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could be due to the fact that the non-linear equation that 

was used to fit the median second derivatives did not model 

the grid of values well forµ= 1. The residuals were quite 

large with I residi I < 0.9 . Hence there was a systematic 

error in the equations _that related second derivative and 

choice of C. Another explanation that can be offered is 

that the grid of optimal C's was found by fixing C, running 

a simulation, and finding the average LLE. C was adjusted 

until the process yielded an average LLE that was within 

0.05 of the true _value fork. But in the adjLLE algo­

rithm, the C's varied due to variation in sample mean 

and sample concavity (the usual sample variation). 

It was hoped that these variable C's would (over the 

course of the simulation) produce an average LLE that was 

very close to the true value of the parameter. This 

success was enjoyed to a certain degree. 

The next chapter examines a preliminary solution to 

the problem of under-dispersion. The technique of 

re-weighting a sample produces favorabl~ results in most 

negative binomial samples, but some samples are not 

responsive to the approach. The details are discussed in 

chapter V. 



CHAPTER V 

REWEIGHTING: A PRELIMINARY APPROACH TO 

SOLVE THE PROBLEM OF UNDER-DISPERSION 

One of the main goals of this research was to find a 

method of estimating k that worked for all negative binom­

ial samples. Attention was focused on enlarging the sample 

variance by increasing the frequency (or weight) of the 

smallest and largest observations in the sample. If an 

under-dispersed sample is encountered, extra weight is 

given to the observation(s) that produce(s) the largest 

increase in the S2 / ~ ratio, where S2 = S2 (n-1)/n. 
i i 

The phrase "extra weight" refers to increasing the 

frequency (by one) of the largest and smallest obser­

vations in the sample. This re-weighting increases the 

above ratio, and repeated application of the technique will 

2 -usually render the sample over-dispersed, i.e. s / x >1. 
i 

This inequality can be attained in most cases, but not 

in all possible samples. There are some samples that 

re-weighting cannot over-disperse. 

Figure 4 on page 10 illustrates the problem. For 

2 For this graph S is plotted versus X for 200 samples of 
i 

size 35. The samples are from a negative binomial distri-
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bution withµ= 1 and k = 3. Each dot represents a sample, 

2 with the ordered pair being ( x, s~ ). The plus symbols 

form the lines: = X Dots falling below this line 

represent under-dispersed samples, and hence a finite 

positive k is not available. The goal of re-weighting is 

to increase the variance-to-mean ratio of the sample, thus 

moving the dot above the line so that reasonable k 

estimates can be found by MLE and MME approaches. 

It should be noted that dots falling just above the 

line represent samples that exhibit very volatile estimates 

fork. Finite positive k's are possible for the MLE and 

MME approaches, but these estimates can often be very large, 

i.e. k for mle = 1256.67 when the actual value is 5. This 

volatility can be explained in the MME by examining the 

denominator of the estimator, which is S2 - X. When the 

sample mean and variance are very close together, then the 

denominator will be nearly zero, forcing the fraction to 

increase dramatically. 

The following example illustrates the re-weighting pro­

cedure. A sample of size 35 was generated usingµ= 3 

and k = 3. The frequencies are listed in the following 

table. 



TABLE 25 

AN EXAMPLE TO ILLUSTRATE RE-WEIGHTING 

observation 

frequency 

0 

4 

1 2 

4 11 

3 

6 

4 

4 

5 

3 

6 

1 

7 

1 

X = 2.7428 
2 

st. = 3.6195 MME= 7.6518 

Increase the frequency of observation 8 to 2. 

new x = 2.8888 2 st. = 4.2654 MME= 5.5696 

8 

1 

Enlarging the frequency of 8 from 1 to 2 increases the 

variance-to-mean ratio and decreases the MME estimate for 

k from 7.6518 to 5.5696. This re-weighting will also 

decrease the MLE fork. 

If an under-dispersed sample is obtained the re-

2 weighting process will be repeated until st. > x. 

In general the algorithm can be outlined as follows. 

2 Calculates and X for the sample. 
t. 

Do while s2 <= X 
t. 

re-weight (obtain the observation that yields the 

maximum variance-to-mean ratio and increase its 

frequency) 

2 Calculate st. and X. 

End of do loop. 

Re-weight once more. 

Calculate MM and MLE fork. 
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Simulation Results for Re-weighting 

Simulation results for various parameter choices are 

given in tables 26 through 32. Each table summarizes the 

results from 2400 samples of size 35. Note that the values 

in the column denoted Conventional are obtained without re­

weighting. For example, whenµ= land k = 1, 3.1 % of 

the 2400 samples were discarded because S2 < X . So the 
~ 

aveMLE 1.987 is based on 2325 samples. On the other hand, 

the values in the column denoted by Re-weight are based on 

the full 2400 samples (there w.ere O \ under-dispersed 

samples after re-weighting). Note that this method also 

dramatically reduces the estimated MSE. Max k refers to 

the largest k calculated in the 2400 samples. This value 

is also reduced by re-weighting. 
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TABLE 26 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME, µ = 1 and k = 1 

MLE RE-WEIGHT 

% UNDER-DISPERSED 3.1 0 
,. 

AVE k 1.987 1.398 

MSE 28.066 1.308 
,., 

MAX k 120.58 8.47 

AVE N 35 36.26 

MME RE-WEIGHT 
,. 

AVE k 1.744 1.445 

MSE est 5.311 1.656 
,. 

MAX k 31.08 7.87 

TABLE 27 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME, µ = 1 and k = 3 

MLE RE-WEIGHT 

% UNDER-DISPERSED 20.25 0 

"' 
AVE k 7.422 3.050 

MSE 451.238 3.385 

"' MAX k 475.02 9.41 

AVE N 35 38.05 

MME RE-WEIGHT 

,. 
AVE k 4.515 3.218 

MSE 27.441 3.765 

"' MAX k 41.44 8.97 
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TABLE 28 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME,µ = 1 and k = 5 

MLE RE-WEIGHT 

% UNDER-DISPERSED 33.1 0 

" AVE k 9.977 3.668 

MSE 618.52 5.166 

" MAX k 447.15 10.331 

AVE N 35 39.21 

MME RE-WEIGHT 

" AVE k 5.686 3.842 

MSE 32.846 5.161 

" MAX k 41.45 8.97 

TABLE 29 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME, µ = 3 and k = 1 

MLE RE-WEIGHT 

% UNDER-DISPERSED 0 0 

" AVE k 1.218 1.083 

MSE 1. 081 0.295 
A. 

MAX k 34.09 12.25 

AVE N 35 36.0 

MME RE-WEIGHT 
A 

AVE k 1.281 1.164 

MSE 0.769 0.375 
A. 

MAX k 20.10 12.08 
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TABLE 30 

Cl::>MPARISON OF RE-WEIGHTING TO THE 
MLE AND MME,µ = 3 and k = 3 

MLE RE-WEIGHT 

% UNDER-DISPERSED 0.8 0 

"' AVE k 5.145 3.457 

MSE 110.782 5.091 

"' MAX k 338.61 19.48 

AVE N 35 36.03 

MME RE-WEIGHT 

,. 
AVE k 4.575 3.437 

MSE 27.502 5.220 
,. 

MAX k 63.73 17.25 

TABLE 31 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME,µ = 3 and k = 5 

MLE RE-WEIGHT 

% UNDER-DISPERSED 6.8 0 

AVE k 14.212 5.599 

MSE 5959.9 11.126 
,. 

MAX k 2305.6 25.18 

AVE N 35 36.28 

MME RE-WEIGHT 
,. 

AVE k 8.314 5.459 

MSE 107.4!?9 10.739 
.,.. 

MAX k 107.05 20.97 



TABLE 32 

COMPARISON OF RE-WEIGHTING TO THE 
MLE AND MME,µ= 5 and k = 5 

% UNDER-DISPERSED 

AVE k 

MSE 

MAX k 

AVE N 

AVE k 

MSE 

MAX k 

MLE RE-WEIGHT 

1.4 0 

10.051 5.695 

1744.41 15.715 

1319.98 37.21 

35 36.05 

MME RE-WEIGHT 

7.649 5.517 

106.14 13.36 

150.87 31.73 

Conclusions Regarding the 

Re-weighting Technique 
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Re-weighting provided successful results in simulation 

studies of sample size 35. The technique decreases the 

percent of under-dispersed samples, produces a smaller est­

imated bias as compared with the conventional MLE and MME, 

and produces a smaller estimated MSE as compared with the 

conventional methods. However, several problems arose with 

the new technique. The first being that re-weighting could 

not fix all samples. There are certain samples that cannot 

be over-dispersed by increasing the frequency of extreme 

observations. Another problem involved knowing when to 

stop the re-weighting process. Trial and error demon-



strated that re-weighting bad samples until the 

aforementioned ratio exceeds one, and then re-weighting 

once more, produced fairly good simulation results (good 

samples were also re-weighted one time). But some 

parameter combinations were more closely estimated when 

samples were re-weighted twice. Hence if a researcher 

used the technique, it is not obvious when to stop the 

process. These pitfalls in the re-weighting process led 

this author to look for another method of estimation 

which truly gives a reasonable k for all NB samples--
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this method being the large likelihood estimator which was 

discussed at length in previous chapters. 



CHAPTER VI 

DISCUSSION AND SUMMARY 

Success of the Three Estimation Methods 

The goal of this research was to develope methods to 

overcome the problems of under-dispersion and volatility 

which are encountered in MME and MLE approaches. All 

three of the techniques (re~weighting, LLE, and adjLLE) 

accomplished these goals with varying degrees of success. 

The technique of re-weighting reduced the fraction of 

samples that were under-dispersed, but it did not eliminate 

the problem entirely. As a result the method made partial 

gains against under-dispersion. On the positive side, re­

weighting does produce estimates that display smaller 

variability and smaller absolute bias as compared with the 

convention MME and MLE methods. 

An intuitive drawback to the method of re-weighting 

involves the excessive emphasis (or weight) given to the 

largest and smallest observations in the sample. If the 

frequency of each extreme observation is only boosted by 

one, and the original sample size is 50, then re-weighting 

probability causes very little change in the nature of the 

original sample. However, if it is necessary to re-weight 

each extreme value 30 times, then the heavy-ended new 
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sample is far removed from its original state. With exces­

sive re-weighting some would argue that the data tampering 

produces a new sample which bears little resemblance to the 

original. Still the overall results for the re-weighting 

technique are favorable. 

The large likelihood estimator goes much further 

in overcoming the obstacles of under-dispersion and vol­

atility. Since a finite positive LLE estimate is attain­

able for all NB samples, the problem of under-dispersion 

is eliminated. All NB samples give rise to a reasonable 

LLE estimate of k, regardless of the relative magnitude 

of the sample mean and variance. An additional bonus for 

the LLE is its smaller variability. Simulations demon­

strate the reductions (sometimes dramatic) in S~ and 

MSE for the LLE as compared with the MLE and MME 

approaches. Also the extremely large estimates that were 

seen with the two traditional methods simply are not 

present with the LLE. It is surprising that 'almost maxi­

mizing' a function gives better results than actually 

setting the derivative equal to zero and solving fork. 

Fixin~ C = 0.13 does render the LLE somewhat unre­

sponsive when estimating samples from populations 

having large k (in relation toµ= 1). Simulations show 

that the LLE tends to under-estimate the true value fork 

more than the average MME over-estimates the true k. The 

adjusted LLE was developed in order to overcome this 

problem. It was thought that the concavity of the log 



likelihood function could serve as a guide in choosing 

the small positive c-- in other words, adjusting C in 

response to the concavity could produce estimates whose 

average was closer to the true value than th~ LLE, MLE, 

or MME. Simulation results demonstrate that this goal 

is for the most part realized, but the improvement is not 

as dramatic as was hoped. Still when comparing the 

results of the adjLLE (and also the LLE) to the results 
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of the MLE or MME, the results for the new methods are 

very encouraging. It is possible that additional work on 

the adjLLE will improve its performance even more in 

regard to reducing the bias. Perhaps better models can be 

found that fit the nine grid points exactly (cubic splines 

were used with disappointing results). In the next 

section, ideas for further research are explored. 

Areas for Further Research 

In order to discuss applications of the LLE to other 

problems it helps to examine why the method works for the 

NB distribution. When viewing the log likelihood function 

of a NB sample of size n, the maximum in terms ofµ (for 

a fixed k) is the sample mean. This is true for any pos­

itive k (see figure 10). 



l 
Figure 10. Maximum of Log Likelihood 

Surface in terms ofµ 

So estimation of k is reduced to a one variable problem. 

This is evident from the partial derivative 

a L/ aµ= -nk /C µ+k + E x. ( 1/ µ - l/ ( µ +k ) ) . 
1 

Setting the derivative equal to zero and solving forµ 

yields x, which is independent of k. As a result, the 

estimation of k is essentially a problem of finding the 

root (ink) of 

8 • 

a L / a k = 0. Recall figures 7 and 

Another useful characteristic possessed by the NB 

is the unimodality of its likelihood function (Levin and 

Reeds). Hence the problem is well suited to solution by 

Newton's method--the iterative process is started with 

a preliminary k near zero, and the estimate is increased 

until if falls within the pre-determined tolerance. 

Examination of a log likelihood function and its cor-
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responding derivative function illustrates the usefulness 

of unimodality (see figures 11 and 12). If on the other 

hand the log likelihood function has more than one local 

maximum (see figure 13), then the problems of 

distinguishing the global max from the local maximums come 

into play. The LLE could still be used, but the algorithm 

would have to be modified so that the global max is found 

first, and then the large likelihood process would begin. 

So here is a summary of the characteristics of the NB 

log likelihood that make it suitable for large likelihood 

estimation. 

1. It is a univariate estimation problem. 

2. The log likelihood function for the NB is unimodal. 

3. The partial derivative of the log likelihood function 

does not yield a closed form solution for the parameter 

of interest. 

This list is not meant to preclude the use of the LLE 

for problems that violate one or more of the above con­

ditions. It would just be easier to apply the technique 

in its present state if these conditions hold. 



L(k) 

iJ L/iJ k 

k 

Figure 11. Log Likelihood Function 

k 

Figure 12. The Derivative Function for 
the Log Likelihood Function 
in Figure 11. 
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L(k) 

k 

Figure 13. Log Likelihood Function 
With Multiple Maxima 
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APPENDIX A 

APPROXIMATE PROBABILITY OF TYPE I 

AND TYPE II ERRORS 
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These numbers represent the approximate Type I and Type II 

probabilities encountered when under-dispersion is used to 

distinguish between negative binomial and Poisson distri­

butions. For the first row 0£ the table, 2000 samples of 

size 35 from a negative binomial distribution were classi­

fied (reject NB if the sample was under-dispersed and 

accept NB if the sample was over-dispersed). The negative 

binomial parameters wereµ= land k = 3. The second row 

of the table summarizes the same decision process when 

2000 samples of size 35 were generated from a Poisson 

distribution withµ= l. 

Reject NB Accept NB 

Ho: NB 0.2025 0.7975 

Ha: Poi 0.6050 0.3950 
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APPENDIX B 

BOX PLOT COMPARISON OF LARGE LIKELIHOOD, 

MAXIMUM LIKELIHOOD, AND METHOD OF 

MOMENTS ESTIMATION 
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Estimation Methods, 
µ = 3 and k = 5 
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Figure 20. Comparison of the Three 
Estimation Methods, 
µ = 5 and k = 1 
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Figure 21. Comparison of the Three 
Estimation Methods, 
µ = 5 and k = 3 
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Figure 22. Comparison of the Three 
Estimation Methods, 
µ = 5 and k = 5 
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Figure 23. Comparison of the Three 
Estimation Methods, 
µ = l and k = 1 
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Figure 24. Comparison of the Three 
Estimation Methods, 
µ=land k = 3 
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Figure 25. Comparison of the Three 
Estimation Methods, 
µ = 5 and k = 3 
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Figure 26. Comparison of the Three 
Estimation Methods, 
µ = 5 and k = 5 
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APPENDIX C 

SAS-IML SOURCE PROGRAM FOR THE 

SIMULATIONS 
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proc iml;reset noname; start main; 
ss= 50; big=SOO; seed=O; 

filename uuuu 'c:\rls\ulk3.dat'; 
file uuuu; 

valu = j( 4,1,0); 
valu (111) = 0 , 
valu (121) = 0.13; 

do iiii = 1 to big; 
x = j(ss,1,0); 
u=l; k=3; 
p= k/(u+k); 
do i = 1 toss; 
xx = O; zzz=O; 
pp= uniform(seed); 

do while ( zzz=O ); 
if pp< probnegb(p,k ,xx) then do; 

zzz=l; 
if xx=O then hold =O; 
else hold =xx; 

end; 
xx=xx+l; 
end; 

x ( I i I ) =hold; 
end; 

xbar = sum(x) / ss; 
square =(ssq(x)-sum(x)*sum(x)/ss)/(ss-1); 
squarel=(ssq(x)-sum(x)*sum(x)/ss)/(ss) ; 
rat= squarel/ xbar; 
maxx = max(x); 
£re= j( maxx, 1,0); 

do j = 1 toss; 
if x(ljl) > 0 then do; 
fre(I x(ljl) I)= fre(I x(ljl) I) +1; 
end; *Of do; 

end; *of j; 

if sguarel > xbar then do; 
ggo = 1; stopp= 4; 
mme = (xbar*xbar)/(sguare - xbar ); end; 
else do; ggo = 2; stopp = 3; valu( 131) = 0.09; 
mme = .; mle = .; end; 

do yyy = ggo to stopp; 
tol=0.000l;top=35;newk=0.08;oldk=newk+l;lim=O; 
do while (abs(newk-oldk)>tol & lim <top); 
lim = lim + l; 
hold= O; 
do j = 1 to maxx; 
sum=O; 
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do i = j to maxx; 
sum= sum+ fre(lil); 
end; 

hold= hold+ sum/( C newk+ j - 1 )); 
end; 

numer=hold-ss*log(l+xbar/newk)-valu(lyyyl); 
hold= O; 
do j = 1 to maxx; 

sum=O; 
do i = j to maxx; 

sum= sum+ fre(lil); 
end; 

hold= hold - sum /((newk+ j - 1 )**2 ); 
end; 
denom = hold +ss* xbar/((newk+xbar)*newk); 

oldk=newk; 
newk = oldk - numer/denom; 
end; if yyy =1 then do; mle = newk; 

newx = x'; 
do tt = 1 to 2; 
macx = max( newx ); 
minx= min( newx ); 
dot= 1 to ncol( newx); 
if newx(ttl) = macx then maci = t; 
if newx(ttl) = minx then mini= t; 
end; 
newx = remove( newx, macil lmini ); 
end; 
mu= sum( newx )/ ncol(newx) ; 

valu(l31)=(0.7050*(mu##0.2792)/(0.8639*(mu##l.0284) 
/(rat - 0.9752 ) )##1.0518 ) - 0 .. 0589; 
valu(l41)=(0.7050*(mu##0.2792)/(4.6379*(mu##0.6814)/ 
( - d~nom + 0.1863 ) )##0.4391 ) - 0.0589; 
if valu(l31) < < 0.025 then valu(l31) = 0.025; 

if valu(l31) > 5.50 then valu(l31) = 5.50; 
if valu(l41) < 0.025 then valu(l41) = 0.025; 
if valu(l41) > 5.50 then valu(l41) = 5.50; 

end; *.of do; 
else if yyy =2 then lle = newk; 
else if yyy =3 then llerat = newk; 
else if yyy =4 then llesec = newk; 

end; * of yyy; 
if xbar >= sguarel then llesec=llerat; 
put @1 xbar 5.2 +l mu 7.3 +l mme 8.4 +1 

mle 8.4 +1 lle 8.4 +1 llesec 8.4 +l llerat 8.4 . , 
end; * o f b i g 1 O O p ; 
closefile uuuu; 

finish; run main; 
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