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CHAPTER I 

INTRODUCTION 

My interest in optimization arises from involv~ment 

in quality improvement problems. Quality improvement can be 

achieved by determining optimum combinations of various 

control variables for producing a specific product. If the 

quality of a product is measured by only one property, we 

deal with optimization of one property (response). 

Actually, however, the quality of a product is measured by 

several properties. Therefore, the decision for choosing an 

appropriate combination of control variables become 

difficult, since many (sometime all) properties are affected 

simultaneously. 

Optimization of one response (property) has been 

discussed and published widely by many researchers for both 

linear and nonlinear optimization (Wismer and Chattergy, 

1979; Steuer, 1986; Mockus and Mockus, 1991). Kirkpatrick 

et al (1983) have proposed optimization by using simulated 

annealing for finding a global maximum point if the response 

function has at least one local maximum. Simulated 

annealing has been discussed in more detail by Bertsimas and 

Tsitsiklis (1992). Mockus and Mockus (1991), have proposed 

a Bayesian approach for global optimization for both 

1 
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unconstrained and constrained optimization. 

Optimizing only one property does not seem good enough, 

since it often happens that optimizing one property 

adversely affects the other properties. It may happen that 

this optimization yields a product that has lower quality 

than before, therefore it is necessary to optimize all 

properties (responses). 

Some researchers optimize the most important response 

and put constraints on the others • The solution for this 

optimization often lies on at least one of the boundaries of 

the constraints. Thus, this approach may not always give an 

optimum solution. 

Taguchi (Ross 1988) was the first to introduce a 

two-step optimization for two-response cases (response mean 

and its variance). First, he minimizes the variance; then 

he sets the response mean close to a target value (Baker, 

1986; Leon et al, 1987; and Ross, 1988). Taguchi's method 

has had great success in Japan. Many American manufacturers 

use his method while some scientists and statisticians have 

criticized or modified it (Leon et al 1987; Box 1988). 

Most recently, scientists have paid attention to 

simultaneous optimization for several responses. Yet, it is 

still a perplexing problem and the procedure is complicated. 

A simultaneous optimization method usually cannot optimize 

all the responses. In general, there can be no single best 

optimum point for all individual responses. However, some 

points are definitely better than others. Consequently, we 



adopt a compromise, which leads to a consideration of 

the term "admissible points." The set of all admissible 

points is called the admissible set. 

* Every point x that belongs to an admissible set (in 

* the sense of maximization) gives value Y.(x) > Y.(x) for 
~ ~ 
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all i and for all x that lie outside the admissible set. 

Therefore, the characterization of sets of admissible 

solutions for optimizing multiple response functions is of 

particular interest. We may choose a point from many points 

in the admissible set. The chotce is governed by decision 

makers, who will consider the advantages of trade-off among 

the responses. 

One way to simplify the simultaneous optimization 

process is to apply a univariate approach. All original 

responses are combined into a single new response. Thus, 

using this approach reduces the multiple response problems 

to a single response situation, for which the methods of 

optimization are widely available. 

Some combined response functions have been introduced 

for simultaneous optimization for several responses. 

Harrington (1965) introduced desirability functions and 

computed the geometric mean as a combined response function. 

Then Derringer and Suich (1980) extended the desirability 

functions to find better performances. Khuri and Conlon 

(1981) used a distance function as a measure of the 

deviation from the ideal optimum along with the 

variance-covariance matrix. Mockus and Mockus (1991) used a 
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Bayesian approach to maximize .r a.Y.Cx), the weighted sum 
\. = :l \. \. 

of the original responses Y.(x), where a. > O. Steuer 
\. \. 

(1986) discussed the weighted sum of original responses 

(first-order polynomial functions). Vos C 1.990) has 

introduced linear utility functions for choosing decisions 

in education cases. However, none of the researchers 

mentioned above has discussed the characterization of sets· 

of admissible points for optimizing several second-order 

polynomial functions. 

4 

The main objectives of this thesis are to characterize 

sets of admissible points for several kinds of surfaces of 

the original responses and to determine conditions under 

which maximizing a combined response leads to an admissible 

solution. For this purpose, some lemmas, theorems, and 

definitions are developed in this thesis. The 

characterization is developed for both unconstrained and 

constrained optimization. The feasible region for 

constrained optimization is assume to be a closed convex set 

and that the original responses are limited to second-order 

polynomial functions of vector x. 

Each of the original responses has either a maximum, a 

minimum, or a saddle points. Since a combined response is 

derived from several original responses, we have several 

combinations of surfaces of the original responses. Those 

combinations are considered for characterizing the sets of 

admissible points. The characterization for two or three 

original responses as functions of x and x, can be 
:l z 
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illustrated by graphs, otherwise by algebraic notations. 

Chapter II contains some d~finitions related to 

optimization and the review of some earlier work in 

simultaneous optimization using a univariate approach. The 

characterization of sets of admissible points and the 

determination of conditions under which optimization of a 

combined response leads to an admissible point are developed 

in Chapter III. Chapter IV contains inferences related to 

the optimum point of maximization, using the convex 

combination method as a special case of the weighted sum 

method. This chapter also presents numerical examples about 

the confidence region of x for fixed~ and the region of x 
1. 

if we impose constraints on~. Chapter V presents 
1. 

comparisons of the admissibility of 4 methods: the convex 

combination, Harrington's, Derringer-Suich's, and 

Khuri-Conlons's methods. Then the summary and conclusions 

are presented in Chapter VI. 



CHAPTER II. 

LITERATURE REVIEW 

In this chapter some definitions for optimization and 

admissibility will be given. Before discussing optimization 

problems, it will be necessary to give some mathematical 

notation and definitions. The literature review is 

focused on multiple response optimization using a univariate 

approach. 

Mathematical Preliminaries 

Throughout this thesis a vector is denoted by a bold 

small letter and a matrix is denoted by a bold capital 

letter. Also the transpose of a vector x or a matrix A is 

denoted by x' or A'. 

Some definitions that relate to optimization and 

admissibility are presented in this section. For 

constrained optimization, we assume that the feasible region 

is a closed bounded convex set. The convex combination 

method is discussed later. 

Definitions for a convex set and a convex combination 

are given below: 

Definition II.1. A set Sis convex if and only if for 
k 

x. e s, a point x = . I: a.x. is also in set s, where 
'I. 'I.= i. 'I. 'I. 

6 



k 
a. > 0 and .I:.a. = 1. 

1. 1.=1. 1. 

De:tinit.ion II.2. Wis said to be a convex combination of 

Y.(x), i = 1, 2, ... , k, if ,. 
k k 

W = . I: a. Y. ( x ) , a. > 0 and . I: a. = 1 • 
1.=:l 1. ,. ,. . 1.=:l 1. 

A second order polynomial response have. three kinds of 

stationary points: maximum, minimum, and saddle. Their 

definitions are as follows: 

De:tinit.ion II.3. Let Y(x) be a function over a closed 

set A in En. Y(x) is said to have a global maximum point, 

• at x if and only if 

• Y(x) ~ Y(x) for all x e A. 

If Y(x*> > Y(x) for all x e A, then the global maximum 

point is unique and is called the proper global maximum. 

7 

De:tinit.ion II.4. Let Y(x) be a function over a closed set A 

in En. Then Y(x) is said to have a global minimum point at 

X if 
0 

Y(x) ~ Y(x), for every x e A. 
0 

If Y(x) < Y(x) for all x e A, then the global minimum is 
0 

unique and is called the proper global minimum. 

De:tinit.ion II.5. Let Y(x) be defined at all points in 

some 6 neighborhood of x0 e En. Then Y(x) is said to 

have a local maximum point at x if there exists 
0 



an i, O < c < 6, such that for all X, 0 < ~ X -x0 ~ < i, 

Y(x) ~ Y(x). 
0 

6 neighborhood of X 
0 

is the region that has radius 6 from 

x. If Y(x) > Y(x), then the local maximum is unique and 
0 0 

is called the strong local maximum. 

Definition II.6. Let Z = f(x,y) be a differentiable 

function. Then Z is said to have a saddle point at (x0 ,y0 ) 

if there exists an & >O, such that for all x, ~x - x 0 ~ < & 

and for all Y, IIY - Y0 II < c, 

f(x, y) ~ f(x, y) ~ f(x, y). 
0 0 0 0 
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Admissibility become a particular focus in this thesis. 

We need to define the definition of admissible point and the 

set of admissible points. 

Definition II.7. x 0 e R is an admissible point for 

y(x), ye Ek and x e EP, if and only if there does not exist 
A A 0 
x e R, such that xis better than x. In the sense of 

maximization, the above definition can be stated as x 0 e R 

is admissible for y(x) = {Y~(x), .. , Yk(x)}, x e EP, if and 

only if there does not exist x e R such that 

"' 
Y. ( x) ~ Y ( 0 ) V i and 'I. i. X , 

0 Y.(x) > Y.(x ), for·at least one i. 
'I. 'I. 

Definition II.a. k sis an admissible set for y(x), ye E 

and x e EP, if and only if Sis the set of all x 0 , such 



that x0 is admissible for y(~). 

The gradient of Y(x) is important in determining the 

direction of the path of steepest ascent, the stationary 

point, the tangent path of Y (x) and Y (x). and the Hessian 
~ 2 

matrix, etc. Definitions for gradient and other related 

terms are given here. 

Definition II.9. Let Y (x) be differentiable function 

of x e EP. The gradient of Y(x), denoted by 7Y(x) is 

define as 

7Y(x) ( 8Y i 8Y 
i BY i ) = 

8x2 
2 ' • • • • • • • , ax ~, 8x p ' 

~ p 

where i ~' i 
2' • • • • I i are their coordinate axis. 

p 

Definition II.10. Let Y(x) be differentiable. A 

stationary point of Y(x) is a point that satisfies 

7Y(x) = O. 

Definition II.11. The Hessian matrix of Y(x), denoted 

by HY(x)' is the matrix of second derivative of Y(x) with 

82y 

respect to x. The element of HY(x) is Hi.j = ax. 8x . . 
... J 

9 

As has been mentioned above, there are three kinds of 

stationary points: maximum, minimum, and saddle points. Let 

x be the stationary point. The nature of the stationary 
0 

point for each response is determined by its Hessian matrix, 

as follows: 

(1). Local maximum, if HY(x) lxo is negative definite. 



(2). Local minimum, if HY(x) lxo is positive definite. 

(3). Saddle point, if HY(x) lxo is indefinite. 

"Criterion cone" is generated by gradients of Y.(x), 
'L 

i = 1, 2, ... , k. In a univariate approach, k original 

responses are combined into one combined response. The 

gradient of the combined response should lie in the 

criterion cone of the original responses, so that the 

solution for maximizing the combined response leads to an 

admissible solution. 

10 

A criterion cone is important for optimizing several 

responses. Steuer (1986) defined the criterion cone as a 

convex cone generated by k response gradients (gradient of 

Y~, Y2 , ••• , Yk or VY;.(x)). The size of the criterion cone 

is defined by the number of linearly independent VY.(x), 
'L 

i = 1, 2, •.• , k. If the number of linearly independent 

VY.(x) is j ~ k, then the criterion cone is of dimension j. 
'L 

The null vector condition is in effect if there exists 

a.> O, :Ea.= 1, such that :Ea.'ii'Y.(x) = o, i = 1, •• , k. The 
'L 'L 'L 'L 

criterion cone and the null vector condition are shown in 

Figure 1 and Figure 2. 

Some Methods for Multiobjective 

Optimization 

Each of the original responses Y, Y, ••• , Yk is 
~ z 

considered as a function of p control variables, x~, X , • z 

•• , x. This function may be unknown or sometimes it may 
p 

be known from the engineering, physics, or chemistry. 



Figure 1. Criterion ·cone of VYi 

VY 
1 

Figure 2. Null Vector Condition 
of a Criterion Cone 

11 
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Maximizing an unknown function is attempted either (1) by 

fitting a function to experimental data and then maximizing 

the fitted function or (2) by using some empirical search 

procedure to try to find the maximum. Sometimes we may 

follow the search procedure and fit a function with a 

subsequent maximization of the fitted function. 

Harrington (1965), Derringer and Suich (1980), and 

Khuri and Conlon (1981) used a single experimental design 

to estimate the function of Y.(x), i = 1, •. , k and x e EP. 
I. 

Then they defined transformations based on Y.(x), the 
I. 

estimator of Y. (x). 
I. 

Harrington's Method 

Let Y. be the i t.h response, Y. * be the upper 
I. I. 

specification limit and Yl* be the lower specification 

limit of Y.. Y. (x) is the estimator of Y. (x) by using 
I. I. I. 

regression analysis (usually a second-order polynomial 

equation). Harrington's desirability functions are 

where 

( 2 . 1 ) 

Then he maximizes the geometric mean of d. defined by 
I. 

k 

D = c n d. > S./k , 1· = 1 2 k I I • • • • I 
;. ... I. 

( 2 . 2 ) 
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The choice of n is subjective and is governed by the 

importance the engineer places on each of the responses. We 

may choose a different value of n for every response. The 

greater values of n are assigned to the more important 

responses. More discussion concerning the admissibility of 

this method is presented in Chapter V. 

Derringer-Suich's Method 

Derringer and Suich (1980) modified Harrington's 

desirability functions to find better performances. Two 

cases will arise: one-sided and two-sided desirability 

functions. For one-sided cases, they considered the 

desirability functions given by 

0 Y. < Yi.* ,. 
.... 

[ Y.- Yi.* r d. 
1. 

= ,. * y - Yi.* ,. 
1 

Yi.* :5 < * Y. y .• ,. ,. 
.... 

* Y. > Y. 

( 2. 3) 

,. ,. 

The engineer specifies the value of rand the minimum 

acceptable value of Yt•· For one-sided cases, there is no 

highest acceptable value for Y. However, from practical 

* experience one may think that a value greater than Y. lacks ,. 

additional worth. on each of the responses. The more 

important the responses, the greater values of rare 

assigned to them. The values of r also define the speed of 

increase ind .• If r = 1, the increase ind. is constant. ,. ,. 

If r > 1, first di. increases slowly when Yi. near Yi.*' then 

* d. increases rapidly when Y. approach Y. • ,. ,. ,. If r < 1, the 



increase ind. is opposite to that when r > 1 as shown in ,. 
Figure 3a. 

For two-sided cases, the desirability functions are 

[Y,- Yi.* r. ,.. 

Yi.• Yi.* ~ Y.~ C. c.- ,. ,. ,. 
,.. • r. [ Y.- Y. ,.. • d. 

,. ,. 
~ ( 2 • 4 ) = C. < Y. Y. ,. • ,. ,. ,. 

c.- Y. ,. ,. ,.. ,.. 
0 I Y. < Yi.* or Y. ,. ,. 

D i. = ( TI d.i. ) s./k , i = 1, 2 , . . . . , k • 

Again, the values of sand tare specified by the 

engineer. If all the responses are equally important or 

the increase ind. are constant, thens= t = 1. The ,. 

14 

greater values of sort are assigned to the more important 

responses. Figure 3b shows the relationship between d. and ,. 
sort. Ifs or tis greater than 1, then the increase in 

• d. is slow, when Y. is closer to Y. ( for s) or Y,... ( for t) ,. ,. ,. 
than c,.. is. In contrast, the increase in d. is fast when Y. ,. ,. 

is closer to c. than Y. • or Y .• is. ,. ,. ,. Ifs or t less than 1, 

the increase ind. is opposite to that if r ors is greater ,. 
than 1. More discussion concerning the admissibility of 

this method is presented in Chapter V. 

Khuri-Conlon's Method 

Khuri and Conlon (1981) minimized the weighted 

distance of Y.(x), the estimator of Y.(x), considered as a ,. ,. 



d. 1 
]. 

0.5 

0 

d. 1 
]. 

0.5 

0 

Yi* 
a. One-sided Specification Limit ·· 

Yi* Ci 
b. Two-sided Specification Limit 

y; 
]. 

Y. 
]. 

Figure 3. Effects of r, s, or ton di 
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point in r-dimensional space, from~' the vector of 

individual optima. The distance function is denoted by 
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"' "' "' -t "' t/Z 
p[y(x), <f>J=({y(x) - <J>l'{var(y(x))} {y(x) - <J>ll • (2.5) 

They used a polynomial regression function for Y.(x). From 
\. 

k responses they chose r linearly independent responses for 

simultaneous optimization. The polynomial equation for 

each Y.(x) is found by using multiple regression analysis. 
\. 

If the elements of vector y(x) are independent, then 

var{y(x)} can be assumed to be a diagonal matrix. 

min p 2 
X 

"' 
Minimizing p[y(x),<f>J is equivalent to minimizing 

A Z -t -t A 

= [{y(x)-A-}'{diag(O'. z.'(x)(X'X) z.(x))} {y(x)-A-}J 
't' \. \. \. 't' 

r 

= 
z z E { y. ( X) - A-, } / ( O'. C. ) 

\. 't'\. \. \. 
i. = t 

-t 
where c. = z.' (x) (X' X) z. (x)}, and z.' (x) is a row vector 

\. \. \. \. 

of dimension m whees first element is 1 and the remaining 

elements consist of power and cross-product of powers x1 , 

.• , x as dictated by the polynomial model. Xis the 
p 

matrix of control variables x in constructing the 

regression analysis, whose first column is vector 1. 

In minimizing p[y(x), 4>1 in the above equation, 4> was 

treated as a vector of constant. Khuri and Conlon (1981) 

also considered the randomness of <J>. Here, if <f> is the 

vector of individual optimum values of the random vector 
A 

y(x), then <J> is also a random vector. Let the true value 

of the individual optimum be a vector{; then the objective 

is to minimize p[y(x),(J. Since ( is unknown, Khuri and 
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Conlon (1981) have decided to minimize the upper bound of 

the distance. They set up a confidence region about C with 

a certain degree of confidence. The region is denoted by 

De· For a fixed value of x in the experimental region R, 

then 

p[y(x),(J s max p[y(x),nJ 
nene 

( 2 . 6 ) 

where n is a point in De· The right side of the equation 

overestimates the distance p[y(x),(J. However, the minimum 

of p[y(x),(J over R cannot exceed the corresponding minimum 

of the upper bound, so 

min p[y(x) ,( J 
xeR 

S min 
xeR 

{max p C y ( x > , n J } 
neD( 

Let d = min{ max p[y(x),nJ}. 
0 

xeR neOe 

( 2. 7) 

( 2 . 8 ) 

Then the minimum over R of the distance between y(x) and e 
is less then or equal to d . More discussion concerning the 

0 

admissibility of this method is presented in Chapter V. 

Linear Utility Function 

Vos (1990) proposed a linear utility function for 

optimizing four different type of decision problems in 

education: selection, mastery, placement, and 

classification. The optimization is based on Bayesian 

decision theory, to search for a decision that maximizes 

the expected utility. 
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Let x. and y. denote the cut-off scores for 
C\. · C\. 

sub-population ion observed test score variables X and Y, 

respectively. Lett be the cut-off score on the criterion 
C 

score T, which is assumed to be equal for each population 

and which £he decision maker set before the optimization 

process. The objective is to optimize x . and y . 
C\. C\. 

simultaneously, for a given t. 
C 

In his example, Vos defines the following decision 

f ao, 
for X <x ci 

a .. , for X > x ..... , y < yci. 6(X,Y) = 
la:, 

..... ( 2. 9) 
for X ~ X . , y ~ yci C\. 

where a 0, a 1 , a 2 stand for the actions to reject a student, 

to retain an accepted student, and to advance an accepted 

student, respectively. He states a combined decision 

problem as a linear functions int for sub population i: 

{ b . ( t -t) +d . , for X < X ci. 0\. C 0\. 

u .. ( t) = b .(t-t)+d., for X ~ X Ci. I 
y < yci. (2.10) 

J\. ~ \. C ~\. 
b .(t-t)+d., for X ~ X C ;_ I 

y ~ Yci. 21. C 2\. 

where d .. < O is the cost and b .. is the slope of the 
~ ~ 

linear regression, j = O, 1, 2 and i = 1~ 2. The parameters 

d .. and b .. have to be fixed before optimization. 
JI. J\. 

Using the above utility function, he maximizes 

E [ u. ( T IX . y . ) ]. 
\. Cl. Cl. 

(2.11) 

After several integrations, differentiations, and 

computations he found that the optimal cut-off scores (the 

boundaries of scores for making actions), x . and y . can be 
C\. C\. 



found by solving the following equations via numerical 

approximation methods. 

; {. (b. -b.)[E.(Tlx, y.)-t J + d2 . - d.} 
2\. :l\. \. C\. C \. :l\. 

X . 
C\. 
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(2.12) 

; { ( b . - b . ) [ E. (TIX . ' y) -t J + d . - d . } 
2\. :ll. 1. Cl. C 2\. :ll. 

Yci. . 

{ mi.(yjxci.) dy} = 0, (2.13) 

where z.(xjy .) and m.(yjx ;) are the posterior probability 
\. C\. 1. C\. 

function of x given Y = y. and the posterior probability 
Cl. . 

function of X = x . , respectively. 
Cl. 

He applies this procedure, for one or more of the 

following restrictions: (i) multiple populations, (ii) quota 

restrictions, (iii) multivariate test data, and (iv) 

multivariate criteria. 

Taguchi's Method 

This method is a two-step optimization of two responses 

(means and variance of a function of x). Taguchi classifies 

the control variables x, into two categories: dispersion 

factors and adjustment factors. ·Dispersion factors are 

control variables that affect the va.riance or both variance 

and means. Adjustment factors are control variables that 
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affect only the means. 

First, Taguchi (Baker, 1986; Byrne 1987; and Ross 1988) 

minimizes the variance with respect to dispersion factors, 

by maximizing a certain criterion called "signal-to-noise 

ratio" (later it is written as SN ratio). Then, he adjusts 

the adjustment factors, such that the mean value of the 

response is close to a given target value. Taguchi also 

claims that his method will lead to minimization of a 

quadratic loss function, 

L(y, T) = C(y - T) 2 , 

where C is a constant, y is the value of a response Y, and T 

is a given target value. 

There are three kinds of SN ratio: 

k 
= -10 log!.~ 1/y.~ where the higher value of (1). SNH n ~=t ~ 

the response of interest is better. 

(2). SNL = -10 log 1 
~ 

n 

better. 

k 
~ 

J~~ ~-• 
~· y., where the lower value is 

~ 

(3). SNT = 10 log (E2 (y)/var y), where the target value. 

is the best. 

Taguchi's method can only be applied if there are 

adjustment factors. Leon et al. (1987) have proven that 

Taguchi's method will lead to minimization of a quadratic 

loss function only if Y(x) can be written as 

Y = µ(d, a)s(N, d), (2.14) 

where E(Y) = µCd, a) is a strict monotone function of each 



component a for each d; a are adjustment factors, dare 

dispersion factors, and N are noise factors. The Noise 

factor affects the output of a response, but is difficult 

to control or its control causes high production costs. 

21 

Leon et al (1987) stated that model (2.14) holds, for 

example, if the noise affects the output, Y, uniformly over 

increments of time and distance. He also stated that model 

(2.14) gives the var(Y)/E2 Y which does not depend on a. In 

contrast, if the function of Y is replaced by 

Y = µ(d, a) + &(N, d), (2.15) 

2 with E(e(N, d) = O and L(y, T) = (y - T), then under model 

(2.15), SN ratio depends on a. Therefore, Leon et al 

(1987) suggest using var(Y) instead of the SN ratio. 

Box (1988) gives another alternative of the SN ratio 

for general cases. Suppose that Y = g(y) is a "variance 

stabilizing transformatioh" such that a ~ a g' (µ) ls 
y y 

. 2 
independent ofµ and suppose further that a is only . y 

affected by d. Then minimizing the quadratic loss 

2 . -2 2 · 2 
C(y - T) = min {g' (µ)} a + (µ(x)-T) 

y 

is possible iij two steps. By using second-order Taylor 

expansion, then he found 

(2.16) 

where g' and g'' denote the first and the second derivative 

of g, respectively and Tis the target value. In a 

particular case, if Y = y'Y Cr~ O), then 
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z 
1) 0 

YO 

Jj· (2.17) 

If y = O, the transformation is Y = ln y, then 

3 2 
µYO~ ln T - 2 O'YO 

In his article, Box (1988) explained how to find y. 

Some Methods for Single Response 

Optimization 

After we combined the original responses into a 

combined response, the problem be~omes one of single 

response optimization. The methods or procedures for 

single response optimization are reviewed briefly. 

(2.18) 

There are two branches of optimization: linear 

programming (for linear functions of vector x) and nonlinear 

programming (for non linear functions of vector x). The 

popular method for computing linear programming is the 

simplex method. Nonlinear programming may use gradient 

methods or quadratic programming if the response is a 

quadratic function. 

A simple algorithm for optimization is the "dichotomous 

search". With this method we can choose x n and x n to be 
s. 2 

symmetric or not with respect to the mid point of interval 

[an, bn]. In each iteration we can choose 2 or 3 points 

with equal intervals. Wismer and Chattergy (1979) discuss 

the algorithm and its expansion in detail. 

If the response is a differentiable and a continuous 
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function, then the gradient method can be used. In this 

method, the fastest search for maximization is in the 

direction of the path of steepest ascent. This direction 

is the positive gradient direction. Searching is continued 

until the gradient vector equals zero. To avoid reaching a 

local maximum -or local minimum point, we shall repeat the 

search at various starting points. This method can be used 

for both unconstrained and constrained optimization (Wismer 

and Chattergy 1979). 

Kirkpatrick et al (1983) proposed the simulated 

annealing algorithm for global optimization, to prevent 

optimization from reaching a local optimum. This method is 

based on a physical process whereby a solid is slowly 

cooled and spends a long time at temperatures near the 

freezing point. This prociess yields a stable configuration 

structure. In their example, the annealing schedule starts 

at a high temperature CT = 10), then cools exponentially, 
0 

where 

Tn = ( T /T ) n T , 
1 0 0 

(2.19) 

with the ratio T1 /T0 = 0.9. 

More explanation about simulated annealing has been 

reported by Bertsimas and Tsitsiklis (1992). They show 

that the simulated annealing algorithm will converge in 

probability to the set of global optima, s*, if and only if 

lim T(t) = 0 and 
t -* (X) 
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00 

L exp [-d*/T(t)J = co, (2.20) 
l=:t. 

where d* is the smallest number such that every i e S 

communicates withs* at height d*. They state that "state 

* i communicates with S at height h if there exists a path 

ins (with each element of the path being a neighbor of the 

preceding element) that starts at i and ends at some 

* elements of S, and such that the largest value of J (cost 

function) along the path is J(i) + h." Bertsimas and 

Tsitsiklis (1992) are more interested in the probability 

* that no state in S is visited during the execution of the 

algorithm than the value of P(x(t*) ~ s*). They found that 

* a it is at most A/(t) , for a given cooling schedule T(t) = 

* d/log t, where d > d, and A and a are some positive 

constant. Therefore, it converges to zero if t---+ co. 

Mockus and Mockus (1990) use a Bayesian approach for 

optimization. They use this method for both linear and 

nonlinear constraints. They show that the solution of this 

method converges to a global minimum for any continuous 

function Y(x) defined on a compact set R. For 

multiobjective optimization, they minimize the weighted sum 

of the objective function Y.{x), but do not explain the 
\. 

functions (whether linear, quadratic, or others). They also 

state that the result of minimization converges to the 
k 

global minimum of .La. Y., where a. > 0 and i = 1, .... , k, 
\.=:t. \. \. \. 

for any continuous function Y.(x) and a compact feasible set 
\. 

R. 
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Confidence Region for Optimum Points 

After the optimum point of a response is estimated in 

any optimization process, the next task is to determine its 

confidence region. From the regression analysis, we can 

estimate the vector (3, the regression coefficients of the 

response. We can also estimate the variance-covariance 
A 

matrix of (3. The procedure for constructing the confidence 

region for the stationary point of the response or any 

g((3), has been suggested by Calter et al (1984, 1986). 

This construction is based on the 100(1 - a)% confidence 

region about g((3), indicated by Rao (1973) as given below 

where 

min 
(3eU 

g((3) s g((3) S max g((3)} ~ 1 - a, 
(3eU 

U = {(3:(~-~)' (X'X)((3:(3)/gs2 SF } • a, g, n-g 

Let Y(x) be a second-order polynomial function of x. 

It can be written as a general linear model, 

y = X (3 + £, 
nx~ nxq qx~ nx~ 

£ - N ( 0, a 2 I ) , 

or in a quadratic form, 

Y = (3 + x'b + x'Bx + s, 
0 

where b = ((3, (3, ... , (3 ), g = (p+l)(p+2)/2, and 
~ z p 



/1 . /2 
:ip'I. 

/1 . /2 
2p'I. 

B = 

symetric 
/1 . 

PP" 

* The stationary point x can be written as a function of (1; 

it is defined as 

* X 

For simplifying the computation, Carter et al (1984 

and 1986) transform the confidence region about /1 to a 

multi-dimensional spherical region of radius 

The transformation is done by defining 

(/1-/1)' (X'X)(/1-/1) = ((1-/1)'PP'(X'X)PP' (/1-/1) 
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= z•z. (2.1) 

P = matrix of eigenvectors of X'X, 

A= diag(eigenvalues of X'X), 

z = ( z ' z 
2' • • • I z ) ' :i q 

z = p cos 8 I 0 ~ p ~ r, 
:i :i 

z = p cos e sin e 
2' 2 :i 



z = p cos e,. cos e2 ••••• cos e sin e • 
q-t aa. q-2 q-f.. 

....... cos e cos e , 
q-2 q-f.. 

-0.5 n ~ e. ~ 0.5 n, i = 1, 2, ... , g-2, and 
\. 

-rr ~ e ~ rr. 
q-f.. 

Then, every point of~ e U can be defined. By evaluating 

any g(~), we can construct the confidence region for g(~). 
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The nature of the stationary point is determined by 

the eigenvalues of matrix B. If all the eigenvalues of B 

are positive, then the response has a minimum point. If 

all negative, then the response has a maximum point. If 

the eigenvalues have different signs, then the response has 

a saddle point. If one of the eigenvalues is very small or 

zero, then the response may not have a unique stationary 

point, but rather a stationary ridge. Therefore, 

information about the eigenvalues of B· is useful for 

characterization of the stationary point. 

Since A, the eigenvalues of B, are computed from a 

random matrix B, then A are also random variables. Carter 

et al. (1990) proposed a procedure to construct the 

confidence region for A, the eigenvalues of B. They give 

an approximate 100(1- a)% confidence region for A as 

(2.22) 

where A= the vector of eigenvalues of B, 



I\ 

V = p x p matrix of variance-covariance of vec(B), 

[
vec' ( 2d d' 

s. s. 
H, - . - . 

vec'(2dd 
p p 

- diag(d d '))] s. s. 
, and 

- diag(d d ')) 
p p 

d ( . l 2 ) th . t.h • t f B . 1 = ·, , •• , p = e 1 e1genvec or o . 
\. 

The confidence interval for the ith ordered eigenvalue of 

Bis given by 

~ ~ A 

<" + Z [ e' H'VHe]o.!5 
- ""<1.") S.-Ot/2 i. i. ' 

(2.23) 

where "A. < "A. < • • • < "A. , and e. is a p x 1 vector of 
(S.) (2) <p> \. 

zeros with a 1 in the ith row. For a small sample size, 

they recommend using 

g = (p+l)(p+2)/2. 

F s.-a,p,n-g, 
2 

instead of xp,s.-a' where 

28 



CHAPTER III 

ADMISSIBLE SETS 

Characterization of Sets of 

Admissible Points 

When considering problems as a multivariate one, it is 

obvious that, in general, there can be no single best 

solution for all individual responses. Still, some 

solutions are definitely better than others. We are drawn 

naturally to consider the sets of points for which there are 

no "better" points. "Admissible points" and "admissible set" 

are defined in Definition II.7 and Definition II.8 in 

Chapter II, respectively. 

"Admissible set" is a terminology standard in much of 

statistical decision theory. In mathematical economics the 

term "pareto optimal set" is used, for example in models of 

welfare economics where no consumer can be made "better off" 

without making another consumer "worse off." Mockus and 

Mockus (1991} also used the term "pareto optimal set" in 

multiobjective optimization using the Bayesian approach. 

Another term for admissible points is "efficient points," 

used by Karlin (1959}. Folks and Antle (1965} also used the 

term "efficient points" in arriving at an optimum allocation 

of units to strata when there were multiple responses. 

29 
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We shall now describe the sets of admissible points in 

a case where we have k response variables, Y., i = 1, 2, 
1. 

.•. , k as a function of p control variables, x,, • • • I X • 
p 

Characterizations are developed for both unconstrained and 

constrained optimization, also for several cases of surfaces 

of Y.(x). Geometric visualizations are shown fork= 2, 3 
1. 

and p = 2. 

Unconstrained Optimization 

z Let Y.(x), i = 1, 2 and x e E be 
1. 

second-order polynomial functions of x. We want to maximize 

The tangent path of Y and Y seems like a 
i 2 

natural candidate as the admissible set. The part of the 

tangent path of Y, and Y2 that is admissible depends on the 

nature of the surfaces of Y and Y, described in Theorem 
i z . 

III.I. 

The equation of the tangent path can be derived from 

the function of Y, and Y2 • Let Y, = a 0 + a'x + x'Ax, and Y2 

• = b + b'x + x'Bx. Let x belong to the tangent path of 
0 

Y (x) and Y (x). Then 3 a number~, such that 
i z 

(3.1) 
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Then the equation of the tangent path of Y and Y is s. 2 

given by 

a +2a x +2a x 
2 S.2 S. 22 2 

= 
b +2b X +2b X 

S. S.S. S. S.2 2 

b +2b X +2b X 
2 S.2 S. 22 2 

( 3 . 2 ) 

Since Y(x) is a quadratic form, if Y(x) has a maximum 

or a minimum point, then its contours are close. The set 

bounded by the closed contour is a closed convex set. 

Theorem III.1. Let Ys.(x) and Y2 (x) be second-order 

polynomial functions. 
2 Let x e E • The admissible region 

for Ys.(x) and Y2 (x) is a part of their tangent path, 

described as follows: 

(1). If both Y.(x) have maximum points, then the admissible 
\. 

region is the part of the tangent path between the 

stationary points of Ys.(x) and Y2 (x). 

(2). If Y (x) has a maximum point and Y (x) has a minimum s. 2 

point, then the admissible region is the part of the 

tangent path of Y (x) and Y (x) from the maximum s. 2 

point of Y (x) to infinity, when Y (x) lies on the s. s. 

right sides of Y (x). 
2 

(3). If Ys.(x) has a maximum point and Y2 (x) has a saddle 

point then the admissible region is the part of the 

tangent path from the maximum point of Y (x) to s. 

infinity. 

(4). If both Y (x) and Y (x) have saddle points, then the s. . 2 

admissible region may or may not exist. If it exists, 

it is the tangent path that does not pass through 

their stationary points. 



( 5). If Y (x) has a minimum point and Y (x) has a saddle 
i 2 

point, then the admissible region is an empty set. 

(6). If both Yi(x) and Y2 (x) have minimum points, then 

the admissible region is an empty set. 

Proof. Suppose x * is not admissible for Y. ( x); then 
\. 

0 there exists x such that 

0 * . Y.(x) ~ Y.(x ), Vi and 
\. \. 
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0 * Y.(x ) > Y.(x ), for at least one i. ( 3. 3) 
\. \. 

First, we consider case (1). From Figure 4a, let a part of 

the tangent path of Yi and Y2 between their maximum points 

be the set S. * Take any x e S. * * * At x, ~Y (x) and ~Y (x) 
i 2 

are perpendicular to the tangent line of their contours. 

Every other point 0 
X that lies on the left side of or on the 

. 0 * tangent line gives value Yi(x) < Yi(x ). Every other point 

that lies on the right side of or on the tangent line gives 

value y (x0 ) < y ex*). 
2 2 

. * 0 So, 1f we move from x to any x, 

then 

0 * Y.(x) < Y.(x ), for at least one i, 
\. \. 

which is a contradiction. 

For case (2), suppose Y has a maximum point and Y has 
i 2 

a minimum point. Let a part of the tangent path of Y and 
i 

Y from the maximum point of Y to infinity be the sets, as 
2 i 

shown in Figure 4b. Every other point x0 that lies outside 

the contour of Yi drawn from x* gives value Yi(x0 ) < Yi(x*). 

Every other point x 0 that lies inside the contour of Y2 
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/ 

a. Maximum-maximum 

x, 
b. Maximum-minimum 

Figure 4. Admissible Tangent Path 



c. Maximum-saddl~ 

I 

d. Saddle-saddle 

Figure 4. (Continued} 

X 
1 

34 
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X,. 

e. Minimum-saddle (S = 0) 

X 

' 

f •· Minimum-minimum (S = 0) 

Figure 4. (continued) 
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* 1 Y (x0 ) y·c *> drawn passing th.rough x gives va ue 2 < 2 x . So, 
• 0 

if we move from x to any x, then 

0 • 
Y.(x) < Y.(x ), for at least one i, 

'I. 'I. 

which contradicts Equation (3.3). By the same way as case 

(1) or as case (2), we can show for the other cases that if 
. • 0 

we move from x to any x, then 

0 • 
Y.(x) < Y.(x ), for at least one i, 

'I. 'I. 

which contradicts Equation (3.3). 

Let Y.(x), i = 1, 2 and x e EP, be 
'I. 

second-order polynomial functions. For p = n, the contours 

of Y• (x) and Y2 (x) lie in n-dimensional space; therefore, 

their tangent path also lies inn-dimensional space. So, 

Theorem III.l can be extended for p = 3, 4, .•••... , n. 

Admissible regions when p = 3 and k = 2, for two kinds of 

surface combinations, maximum-maximum and maximum-saddle, 

are shown in Figure 5. 

For determining the equation of the tangent path of 

Y (><) and Y (x), x e EP, we recall Equation (3.1). From 
• 2 

that equation, then 

• • (a+ 2Ax) + A(b + 2Bx) = 0 or 

• 2(A + AB)x = - (a+ Ab). 

Then, the general equation of the tangent path of Y• and 

Y is given by 
2 

(3.4) 



I / 

I ,' 
x, 

-------Ji 

a. Maximum-maximum in 3-dimensional Space 

s 

b. Maximum-maximum in 3-dimensional Space 
with Constraint x 3 > a 

Figure 5. Admissible Region for Y1 (x) and 

Y2 (x) in 3-dimensional SpacA 
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c. Maximum-saddle in 3-Dimensional 
Space 

xl 
d. Maximum-saddle with Constraint x3 = a 

Figure 5. (Continued) 

38 
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E ~~and~~ l· Here we have three responses and 

three pairs of tangent paths. We are only interested in the 

admissible part of these tangent paths for characterizing 

the admissible region for Y.(x). The following theorem 
I. 

characterizes the admissible region. 

Theorem III. 2. z Let Y.(x), i = 1, 2, 3 and x e E, be 
I. 

second-order polynomial functions of x. If at least two 

pairs of Y.(x) and Y., (x) have admissible tangent paths, 
I. I. 

then the admissible region for Y.(x) is the closed region 
I. 

bounded by the admissible tangent path of each pair of 

Y.(x) and Y.,(x), i < i'. 
I. I. 

Proof. When p = 2 and k = 2, a pair of Y.(x) and 
I. 

Y., (x) will have an admissible tangent path if one of 
I. 

Y.(x) has a maximum point and the other has either a 
I. 

maximum, a minimum, or a saddle point. Let the closed 

region bounded by the admissible tangent paths of Y.(x) 
I. 

and Y., (x), i < i', be the set S. 
I. 

• Take any x es. Suppose 

* 0 x e Sis not admissible; then 3 x such that 

0 * Y.(x) ~ Y.(x ), Vi and 
I. I. 

0 * Y.(x) > Y.(x ), for at least one i. 
I. I. 

First we consider that all Y.(x) have maximum points, as 
I. 

shown in Figure 6a. The contours of Y.(x) are drawn passing 
I. 

* through x. Every other point x that lies outside the 



a. Maximum-maximum-maximum 

b. Maximum-maximum-minimum 

Figure 6. Admissible Region for 
Three Responses 

40 
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c. Maximum-maximum-saddle 

d. Maximum-minimum-minimum 

Figure 6. (Continued) 
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x, 
e. Maximum-minimum-saddle 

f. Maximum-saddle-saddle 

Figure 6. (Continued) 
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contours of Y. (><) gives value Y. (><) < • Y.(>< ). Let T. be the 
1. 1. 1. 1. 

set of all >C that lie outside the contour of Y .• Then we 
1. 

that ,co ;a! • to U T .• It implies that 0 can see >< belongs X E 
1. 1. 

T. for at least one i. So, if we move to any other point 
1. 

0 . 
x, then 

0 • 
Y. (x ) < Y. (x ) , for at least one i, 

1. 1. 

which is a contradiction. By the same way, we can show 

for the other combinations of surfaces that, if we move from 

x* to other point x0 , then 

0 • 
Y.(x) < Y.(x ), for at least one i, 

1. 1. 

which is a contradiction. 

£~rand k ~ l• For more than 3 responses, we can 

look at a group of 3 distinct responses at a time. Then 

the admissible region can be figured out easily. It is 

described in the following theorem. 

Theorem III.3. Suppose there are k responses Y.(x). 
1. 

Let S. be the admissible region for every group of three 
J . 

responses. Then the admissible region for all Y.(x), i = 1, 
1. 

2, •. , k is defined by 

s = 

Proof. 

m k! 
U S., where m = 

J j=s (k-3)!3! 

• Take any point x es. • . t Suppose x 1s no 

admissible for Y.(x), i = 1, ... , k; then there exists 
1. 

such that 

(3.5) 

0 
X , 
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Y. (x0 ) :?: Y. (x*), for Vi and 
1. . 1. 

0 • 
Y.(x) > Y.(x ), for at least one i. 

1. 1. 

• • Since x es, then x belongs to at least one S. ~ 0. 
J 

It 

implies that 

. • 0 
Y.(x) > Y.(x ), for at least one i, 

1. 1. 

which is a contradiction. 

p ~~and k ~ ~- In general cases when x belongs to 

p-dimensional space, p > 3, it is impossible to characterize 

the admissible set geometrically. One possibility to 

characterize the admissible set is by algebraic notation 

or equations, stated in the following theorem .. 

Theorem III.4. Let Y. ex), i = 1, 2, •• , k and x e EP 
1. 

be second-order polynomial functions of x. Take any a. > 0. 
1. 

If S = {x*: x* satisfies '9(. ~ a. Y. ex*>) = 0 and . ~ a.A. is a 
1.=:t 1. 1. 1.=:t 1. 1. 

negative definite matrix}, then Sis admissible region for 

all Y. (x). A. is the Hessian matrix of Y. ex), i = 1, •• , k. 
1. 1. 1. 

Proof: Since x* satisfies '9(. ~ a. Y. ex*>) = O and 
1. = :t 1. 1. 

k • . l: a.A. is a negative definite matrix, then x is a maximum 
1.=:t 1. 1. 

k • Suppose x e Sis not admissible; then point of . l: a. Y. ex). 
1. = :t 1. 1. 

3 x0 such that 

0 • 
Y. (x ) ~ Y. (x ) , Vi and 

1. 1. 

0 • 
Y.(x) > Y.(x ), for at least one i. 

1. 1. 



Since a. > O, then 
" 

k • k O 
. I: Ol. Y. ( X ) ( . I: Ol. Y. ( X ) 

"=' " " "=' " " 

which contradicts the fact.that 
k 

. I: a. Y. ( X ) • 

"=' " " 
Then, by Definition 

admissible region for all Y.(x). 
" 
k 

(3.6) 

·• is maximum point of >< a 

II.8, the set s is an 

Corollary III.l. If . l: a . Y. (x) attains its global 
"=' " " 

maximum value at x•, then x• es. 

Constrained Optimization 

Let Y.(x), i = 1, 2, •• , k and x e EP be second-order 
" 

polynomial functions of x. Let the feasible region R be a 

nonempty, closed, convex set bounded by g (x) = O, n = 1, 
n 

2, ••• , m. Let S be an admissible region for Y.(x) for 
" 

unconstrained optimization. Then two cases arise; Rn S 

is either an empty set or a nonempty set. 
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Rn Sis a Nonempty Set. Before we develop theorems 

concerning admissible sets, we need to present two 

definitions and four lemmas. As mentioned in Chapter II, 

if at least of Y.(x) has a saddle point, then it may happen 
" 

that the subset of the admissible region lies in the 

interior of R, but outside Rn s. Definition III.land 

III.2 will help the description of such a subset. 



Definition III.1. Let one of Y.(x) have a saddle 

point. 

,. 
Let none of Y.(x) have a minimum point. A ,. 

pseudo-admissible tangent path is a part of the 

inadmissible tarigent P. ath, for which "IY. (x) and "IY., (x), ,. ,. 
i~i', have the opposite direction. 

Definition III.2. Let Y.(x) have a saddle point. A ,. 

pair of opposite contours is a pair of contours of Y.(x) ,. 
that have the same value but lie on different sides of the 

stationary point of Y~(x). 
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Since Y(x) has a saddle point, its.contours are open • 

A contour of Y(x) is drawn passing through • X • If the 

• direction of "IY(x) does not go toward the stationary point 
0 . 

of Y(x), then any x that lies in between a contour and its 

opposite contour give~ value 

Y(x0 ) < Y(x*> ( 3 • 7 ) 

Part of the boundary of R is also a candidate for a 

subset of the admissible region. The following three lemmas 

will describe it. All Y.(x) in the following lemmas and ,. 

theorems are second-order polynomial functions of x. 

.. 
Lenuna III.1. Let Y.(x) have the highest value at x.e ,. ,. 

boundary of R, g (x) = O, i = 1, ••. , k and n = 1, 2, •• , m. 
n 

Suppose Y.(x) does not have a tangent point on x. e g (x) 
. 1. 0\. n 

... 
= O, where x. ~ x .• Let the boundary of R that contains 

01. ,. 

... 
x. intersect Sat point T .• Let the part of the boundary ,. ,. 

,... 
of R between x. and T. be the set A.. Then A. is a subset ,. ,. ,. ,. 



of the feasible admissible region for Y Cx). 
i. 

Proof. • From Figure 7.a, Suppose x e A. is not 
\. 

admissible for Y.(x);then there exists x0 e R such that 
\. . 

0 • 
Y.(x ) 2: Y.(x ), Vi and 

\. \. 

0 . • 
Y.(x) > Y.Cx ), for at least one i. 

\. \. 

First, we tonsider that both Y.Cx) have maximum points. 
\. 

Since x. is the maximum point of Y.Cx), then Y.Cx0 ) ~ 
\. \. \. 

Y.(x.). If x* = x., it is obvious that Y.(x0 ) ~ Y.Cx*). 
\. \. \. \. \. . ... 

If x ~ x, look at the contours of Y~(x) and Y2 (x) drawn 

* passing through x. Let the set of all points that lie 

outside the contour of Y Cx) be T and the set of all 
~ ~ 

points that lie outside the contour of Y2 (x) be T2 • For 

every x e CT u T) then 
~ z 

• • Y C x) < Y ( x ) or Y C x) < Y ( x ) or both. 
~ ~ z z 

• • We can see that CR-x) c CT u T ); if we move from x 
~ z 

to any x0 e (R-x*> then x0 e (T u T ); it implies that 
~ z 

Y. (x0 ) < Y. ex*>. for at least one i, 
\. \. . 

which is a contradiction. By the same way we can prove 

this theorem for the other combinations of surfaces. 

Lemma III.2. Let Y.Cx), i = 1, 2, have the highest 
\. 

value at x.e boundary of R, g (x) = 0 and X. ~ s. Let this 
"' n "' 

Y. (x) have a tangent point x .e g (x) = O, where x . ~ x .. 
"' O\. n O\. \. 
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Let g Cx) = O which contains this point be the smooth curve n 



a. Maximum-maximum 

b. Maximum-minimum 

Figure 7. Admissible Region for two Responses with 
Constraints 
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~ . 2 

c. Maximum-saddle 

· d. Saddle-saddle 

Figure 7. (Continued) 

X 
1 
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e. Minimum-saddle 

f. Minimum-minimum 

Figure 7. (Continued) 



-Qi.- xi.. Let the contour of Yi. (x) that passes through Qi. 

intersect this curve at a point P .• 
\. 

• Let set A. be 
J 

defined as: 

(1). The curve P.-x. (excluding the point P.), if the 
\. \. \. 

curve Q.-x. does not contain another 
\. \. 

-xi.., ijjlll!i •, and 

Q. is closer to S than x. is. 
\. . \. 

(2). The curve P.-x. unfons the curve Q.-x.,, if the curve 
\. \. \. \. 

Q. -x. contains another 
\. \. 

-and x . lies between x. and 
0\. \. 

( 3) • The curve x. -x .. , 
\. \. 

if the curve Q.-x. contains 
\. \. 

another x.. and x . 1 ies between Q. and x .. , ijjlll!i • • 
\. . 0\. \. \. 

• Then the set A. is a subset of the feasible admissible 
J 

region for all Y. (x). 
\. 

Proof. • • Suppose x e R~ or x e R2 is not admissible 

for Y.(x); then there exists 0 such that X 
\. 

0 • V Y. (x ) ~ Y. ( X ) ' i and 
\. \. 

0 • Y. (x ) > Y. (x ) , for at least one i. 
\. \. 

From Figure 7b, take any point x*e curve P.-x. (excluding 
\. \. 

• point P.), then Y (x ) > Y (Q.). 
\. 2 2 \. 

If x 0 = Q. or 
\. 

• X = X , it 
2 

· 0 * 0 * -is obvious that Y (x) < Y (x ). If x jjlll! Q. and x jjlll! x., 
2 2 \. \. 

then look at the contours of Y~(x) and Y2 (x) drawn passing 
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through • X • Let the set of all points that lie outside the 

contour of Y~(x) be T~ and the set of all points that lie 

inside the contour of Y2 (x) be T2 (since Y2 (x) has a 

minimum point). For every x e (T u T) then 
.. 2 
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• • Y ( x) < Y ( x ) or Y ( x) < Y ( x ) or both. 
i i 2 2 

• • We can see that (R-x) c CT u T ); so that if we move from x 
· i . 2 

-o • 
to any x e (R-x ). then 

which is a contradiction. Look at R in Figure 7b; it 
2 

is shown that x 1 ies between x and x . 
02 i 2 

Take any x e 

curve Q.-x.,. The c6ntour of Y (x) and Y (x) are drawn 
\. \. i 2 

passing through x. By the same way as above, for any 
,.. 

x0 e Rand x 0 ~ X' then 

,.. ,.. 
y ( x 0 ) < y ( X) or y ( x 0 ) < y ( X) or both 

i i 2 2 

which is a contradiction. 

Lenuna III.3. Let any boundary of R intersect the 

admissible tangent path of Y.(x) and Y., (x), i~i', at 
\. \. 

point T. Let the part of this boundary that does not lie 

between Sn Rand both contours of Y.(x) and Y., (x), i~i', 
\. \. 

which are drawn through T, be the set B .. 
\. 

Then B. is a 
\. 

subset of the feasible admissible region for Y.(x). 
\. 

P f T k . t • roo • a e any po1n x e B .. 
\. 

S • • t uppose x 1s no 

admissible for Y.(i); then there exists x00e R such that 
\. 

Y. (x00 ) > Y ( *> V · = \. _ i. X 1 1 1, 2 and 

Y.(x00 ) > Y.<x*>, for at least one i. 
\. \. 

Since B. does not lie between Sn Rand both contours of 
\. 

Y (x) and Y (x), then B. and (Sn R) lie on different 
i 2 \. 
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sides of the tangent line drawn from T. * Take any x c B .• 
1. 

Suppose B. lies on the right side, as shown in Figure 7b. 
1. 

The contours of Y (x) and Y (x} are drawn passing through 
1 2 

* x. Let the set df all points that lie outside the contour 

of Y (x) be T and the set of all points that lie inside the 
1 1 

contour of Y (x) be T (since Y (x) has a minimum point). 
2 2 2 

For every x e (T u T) then 
1 2 

* * Y (x) < Y (x ) or Y (x) < Y (x ) or both. 
1 1 2 2 

* if We can see that (R-x) C (T u T ) • so that we move from 
1 2 , 

* 00 * X to any x '= (R-x ), then 

y ( xoo) * y (xoo) * < y (x ) or < y (x ) or both, 
1 1 2 2 

which is a contradiction. 

The following lemma describes the subset of the 

admissible region in the interior of R, but outside Rn S. 

This kind of subset may exist if at least one Y.(x) has a 
1. 

saddle point. 

Lenuna III. 4. Let at least one of Y. (x) have a saddle 
1. 

point. Let none of Y. have a minimum point. 
1. 

Let the 

region bounded by pseudo-admissible tangent paths be the set 

S. Let Y.(x) have the highest value on Rat x .. Every 
2 1. . 1. 

contour of Y.(x) that passes through S has its opposite 
1. 2 

contour on the other side of the stationary point. Let the 

highest value of these opposite contours that intersect Rat 

x. be c .. Let the set of the contours that pass through S 
1. 1. 2 

of the boundary of R between -X.' 
1. 

and X., 
1. 

i~i', be a set C. 



If the contour of Y., (x) drawn passing through x. does not 
~ ~ 

intersect S, then set C is also a subset of the feasible a 

admissible region. 

Proof. First we want to prove thats* is admissible. 

. • * 
Take any point x e S, as shown in Figure 7c. 

0 is not admissible for Y.(x); then 3 x such that 
~ 

0 • 
Y. ( x ) ~ Y. ( x ) , V i and 
~ ~ 

0 • 
Y. ( x ) > Y. ( x ) , for at least one i. 
~ ~ 

Suppose * X 

By the same way as the proof in Lemma III.1, the contours 

. h * of Y (x) and Y (x) are drawn passing trough x. 
i 2 . 

Every 

point x 0 that lies outside the contour of Y (x) or in 
i 

between the contour of Y (x) and its opposite contour 
2 

(because Y2 (x) has a saddle point then x 0 satisfies 

Inequality (3.7)), gives value 

y ( x 0 ) < y ( X *) or y ( x 0 ) < y ( X *) or both 
i i 2 2 

which is a contradiction. 
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Secondly, we want to prove that C is admissible. Take 

* 
A. 

any X e C. Since X is the maximum point of y (x) on 2 2 

Y2(x)o) 
A. 

0 
(R n SC) it is obvious that < y (x). for all X e a , 2 

S C) • * 
A. 

(R n If X ';,I! X I then look at the contour of y (x) 
9 2 i 

* and Y (x) drawn passing through x. Let the set of all 
2 

points that lie outside the contour of Y,(x) be T, and the 

set of all points that lie in between the contour of Y (x) 
2 

and its opposite contour be T (since Y (x) has a saddle 
2 2 
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point). By the same way as the above proof, every x E 

(T u T) satisfies 
1 2 

* * Y ( x) < Y ( x ) or Y ( x) < Y ( x ) or both. 
i i · 2 2 

* We can see that (R-x) c (T u T ); so that if we move from 
i 2 

* X to any 0 
X e R, then 

Y (x0 ) < Y.(x*), for at least one i, 
L L 

which is a contradiction. 

Note: Instead of S, S 0. S, can be applied to Lemma III.l, 
2 3 

III.2, III.3 and III.5 for defining whether a part of the 

boundary of Risa subset of an admissible region. 

Now we can develop a theorem, based on those lemmas for 

characterizing the admissible region for Y.(x). 
L 

Theorem III. 5. Let S be an admissible region for 

unconstrained optimization. Let the feasible region R be a 

* * closed convex set. Let A., A., B., and S be defined as 
L J L 

those in Lemma III.1, III.2, III.3, and III.4. Then the 

feasible admissible region for Y.(x) is the union of 
L 

( s 0. 

* * R), all A., all A., all B., and S . 
L J L 

Illustrations are 

shown in Figure 7a and 7b. 

~~~is an Empty Set. The following definition 

defines 4 kinds of boundaries for feasible region R, which 

will be used in the next lemma and theorem. 

Definition III.3. The upper, lower, right, and left 

boundaries of Rare described sequentially as follows: 



( 1) • The upper part of the boundary of R, from A, B, to c, 

shown in Figure Ba. 

( 2) • The lower part of the boundary of R, from A, B, c, 

to D, shown in Figure Bb. 

( 3) • The right part of the boundary of R from A, B, c, 

to D, shown in Figure Be. 

(4). The left part of the boundary of R from A, B, c, 

to D, shown in Figure Bd. 

-Lenuna III.5. Let Y.(x) have the highest value at x.e 
~ ~ 
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boundary of R, g (x)=O. 
n 

• Let S, as defined in Lemma III.4, 

be an empty set. Let none of Y.(x) have a tangent point at 
~ 

* * -x .e g (x)=O, where x. ~ x .. If R lies below, above, on 
~ n ~ ~ 

the left side, or on the right side of s, then the subset of 

the feasible admissible region for Y.(x) is a part of the 
~ 

upper, lower, right, or left boundaries of R from;,, 
:i 

-...... , xk,, respectively, where 1', 2', ... , k' are 

permutations of 1, 2, •••. , k. Let this set be denoted as 

set C. 

Proof. From Figure 7d, take any point * XE C. 

* 0 x is not admissible for Y.(x), then 3 x such that 
~ 

0 * Y. ( X ) ~ Y. ( X ) , V i and 
~ ~ 

0 * Y.(x) > Y.(x ), for at least one i. 
~ ~ 

Suppose 

By the same way as the proofs in previous lemmas, if we 

* 0 move from x to any x, then 
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A 
C A 

B C 

a. Upper Boundary b. Lower Boundary 

D 

C 

A C A 

B 

c. Right Boundary d. Left Boundary 

Figure 8. Four Kinds of the Boundaries of R 



Y.(x.0 ) < Y.<x*), for at least one i 
~ ~ 

which is a contradiction. 

The following theorem uses the previous lemmas for 

characterizing the admissible region for constrained 

optimization. The proof is obvious, so that it is not 

included here. 

Theorem III.6. Let S be an admissible region for 

unconstrained optimization. Let a feasible region R be a 

closed convex set. Let Rn S be an empty set. Let C, A., 
~ 

* * A., and S be defined as those in Lemma III.5, III.l, 
J 
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III.2, and III.4. Then, the feasible admissible region for 

* * Y. (x) is the union of c, all A., all A. , and s . 
~ ~ J 

Illustrations are given in Figure 7 (c through f). 

!!. p = 2 and k ~ 3 

The following lemma shows the property of the union of 

admissible sets. The purpose of this lemma is to explain 

the characterization of the admissible set for multiple 

responses (more than 2). The characterization is developed 

by expanding the previous theorems that are available for 

two or three responses. 

Lenuna III.6. Let set A be the admissible region for 

Y~ and Y2 • Let set B be the admissible region for Y2 and 

Y9 • Then Au Bis a subset of the admissible region for 

Y , Y , and Y . 
~ 2 9 
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Proof. Take any point x 0 e Au B. Suppose x 0 is not 

admissible for Y.(x), i = 1, 2, 3; then there exists x•, such 
\. 

that 

• 0 
Y.(x) ~ Y.(x). for i = 1, 2, 3 and 

\. \. 

• 0 
Y.(x) > Y.(x ), for at least one i. 

\. \. 

Since x0 e Au B, then x 0 belongs to either A or B, or both. 

It implies that 

0 • 
Y.(x) > Y.(x ), for at least one i, 

"L "L 

which is a contradiction. 

~~~is~ Nonempty Set. By using the previous 

lemmas, the following theorem can be developed. Since the 

proof is obvious by using Lemma III.6, we shall not include 

it here. This theorem characterizes the admissible region 

for constrained optimization if Rn Sin a nonempty set. 

Theorem III.7. Let S be an admissible region for 

unconstrained optimization. Let the feasible region R be a 

closed convex set. • • Let sets A., A. , B. and S be defined 
\. J \. 

as those in Lemma III.1, III.2, III.3, and III.4. Then the 

feasible admissible region for Y.(x) is the union of Sn R, 
\. 

• • all A., all A. , all B., and S . Illustrations are given 
\. J \. 

in Figure 9. 



a. Maximum-maximum-maximum 

b. Maximum-maximum-minimum 

Figure 9. Admissible Region for 
Three Responses with 
Constraints 
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X 
2 

c. Maximum-maximum-saddle 

d. Maximum-minimum-minimum 

Figure 9. (Continued) 
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X 
2 

e. Maximum-minimum-saddle 

f. Maximum-saddle-saddle 

Figure 9. (Continued) 

/ 

,I 

~ 

/ 

X 
1 
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s n R is an Empty Set. By using previous lemmas, 

the following theorem can be developed. It characterizes 

the admissible region if Sn R is an empty set. Since the 

proof is obvious by using Lemma III.6, we shall not 

include it here. Illustrations are given in Figure 9. 
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Theorem III.a. Let S be an admissible region for 

unconstrained optimization. Let the feasible region R be a 

closed convex set. Let Rn S be an empty set. Let C, A., ... 
• * A., ands be the sets as defined in Lemma III.5, III.l, 

J 

III.2, and III.4, respectively. Then, the feasible 

admissible region for Y.(x) is the union of c, all A:, all ... ... 
• * A. , and s • 

J 

E. ~~and k > 2 

Since there are more than 2 responses and x belongs 

top-dimensional space, in general, characterization of 

sets of admissible points cannot be shown geometrically. 

We can characterize them by algebraic notation or 

equations. The characterization is given in the following 

theorem. 

Theorem III.9. Let Y.(x), i = 1, .••• , k and x e EP be ... 

second-order polynomial functions of x. Suppose the 

feasible region Risa compact set. Then the set of all 
k 

the maximum points of . I: a. Y. ( x), for every possible a. >O, \. = ~ \. \. \. 



is a feasible admissible region for all Y.(x). 
\. 
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Proof. Take any a. > 0. Since Risa compact set, we 
\. 

• k . k 
can find a point x e R, such that .E a.Y.cx*> ~ .E a.Y.Cx0 ), 

\.=:l \. \. \.=:l \. \. 

for all x 0 ER. • By Theorem III.4, then the set of all x 

is an admissible region for all Y.(x). 
\. 

For a special case that R = {x: 
admissible region for·all Y.(x) is 

\. 

-~ x.2 ~ r 2}, then the 
J = :l J 

s1 = {x*: x* satisfies"'(-~ a.Y.(x• )-uI) = 0 and 
C C \.::l I. I. C 

( . ~ a.A.-uI) is a negative definite matrix}, \. = :l \. I. . 

where u is a Lagrangian multiplier that satisfies the 

constraints; I is an identity matrix. 

The Existence of Admissible Sets 

Necessary Conditions 

The following theorem describes the condition of a., 
' \. 

for the global maximum point of a combined response to be 

an admissible point. The necessary condition is the first 

requirement for maximizing a combined response that leads 

to an admissible point. 

Theorem III.10. Let Y.(x), i = 1, 2, .. , k, be second­
'-

order polynomial functions of x. Then the global maximum 
k • of .Ea. Y.(x) at x 

1.=:l I. \. 
is an admissible point for Y.(x) if 

\. 

and only if a. > O, for all i. 
\. 



Proof. If there exists a global maximum po_!nt of 
k • 

,L a.Y.(x) at X in RC EP, then 
1, = :l 1, 1, 

k • k 
.La. Y.(x) 2:: .La. Y.(x ), Vx e R 
1.=:l 1, 1, 1.=:l 1. 1, 0 0 

First, we want to prove. the· "only if" part. Suppose x* is 

not admissible for Y.(x); then there e~ists x such that 
1, 0 

• Y.(x) 2:: Y.(x ), Vi and 
1, 0 1, 

• Y. (x ) > Y.(x ), for at least one i. 
1, 0 1, 

Since a. >O, then 
1, 

k k • 
. L a. Y. (x ) > . L a. Y. (x ) , 
1.=:l 1, .1, 0 1.=:l 1, 1, 

which is a contradiction. 

Then we want to prove the "if" part. • • x 1s an 

admissible point for Y.(x). Let us consider any point 
1, 

• x ~ x; then either 
0 

( 1) • 

( 2 ) • 

that 

Y. (x ) s • Vi Y. (x ) , or 
1, 0 1, 

Y. (x ) 2:: • for Y. ( X ) ' some i and 
1, 0 1, 

• Yi., (x0 ) < Y.,(x), for i ~ i, • 
1, 

Suppose a. < O, for some i. For (1), it may happen 
1, 

k k • 
L a. Y. ( x ) > . L a. Y. ( x ) , 
=:l 1, 1, 0 1.=:l 1, 1, 

which is a contradiction. For (2), if the corresponding 
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Yi. (x) has ai. > 0 and the corresponding Yi., has ai., < O, then 

k k • 
. La.Y.(x) > .La.Y.(x ), 
1.=:l 1, 1, 0 1.=:l 1, 1, 
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which is a contradiction. 

Suppose a.~ O, Vi, and a. = O, for at least one i. 
\. \. 

For ( 2), if the corresponding Y. (x) has a. > O and the 
\. \. 

corresponding Y., (x) has~. = O, then 
\. \. 

k k • 
. I: a. Y. ( X ) > . I: a. Y. ( X ) ' 
1..=t \. 1.. 0 1..=t \. 1.. 

which is a contradiction. 

From the above theorem, if some a.~ O, then the 
k \. 

maximization of .I: a.Y.(x) does not always lead to an 
1..=t \. \. . 

admissible point. Thus, we can.indicate that the necessary 
k 

condition under which maximizing 

an admissible point is 

a. > O, for a 11 i • 
\. 

.I: a.Y.(x) always leads to \. = t \. \. 

Necessary and Sufficient Conditions 

The necessary and sufficient conditions under which 

optimizing a combined response leads to an admissible point 

will be considered for two cases, unconstrain~d and 

constrained optimization. The solution for maximizing 
k 

.I: a.Y.(x) will lead to an admissible point if 3 a. > O, Vi, 
1..=t \. \. k \. 

and 3 x• on R c EP, a global maximum point of .I: a. Y.(x). 
\. = t \. \. 

If both requirements are satisfied, then the solution of 

maximizing a combined response guaranty to be an admissible 

point. Since the second requirement that x• be a global 

maximum point, cannot be known before we perform the 

maximization, we need to simplify such a requirement. 
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Unconstrained Optimization. A global maximum point of 

a combined response exists if its Hessian matrix is negative 

definite. The following theorem connects the existence of 

a.> O, Vi, with the existence of the admissible region for 
\. 

all Y. (x). 
\. 

Theorem III.11. Let Y.(x), i = 1, 2, •.. , k, be 
\. 

second-order polynomial functions of (x). If the admissible 

region of Y.(x) for unconstrained optimization exists, then 
\. k 

there exist a. > O for all i, such that .L a.Y.(x) has a \. \. = :l \. \. 

maximum value at its stationary point. 

then 

( 1) • 

( 2 ) • 

* Proof. Let x es. 

either 

* Vi Y. (x ) s Y. (x ) , 
\. 0 \. 

* for y. (x ) ~ Y. ( x ) , 
\. 0 \. 

Let us consider any point x 
0 

or 

some i and 

• Y .• (x) < Y.,(x ), for i ;,,e 
\. 0 \. 

. . 
1 • 

For (1), it is obvious that for every a. > O, then 
\. 

k k • 
. L a.Y.(x) S .L a.Y.(x ). 
\.=:l \. \. 0 \.=:l \. \. 

• ;,,e X i 

For (2), we can find a set of numbers a. > O, for all i, 
\. 

such that 

k k • 
. L a.. Y. ( X ) s . L a.. Y. ( X ) • 
\.=:l \. \. 0 \.=:l \. \. 

Since Y.(x) is second order polynomial functions, so is 
\. 

k 

* .L a.Y.(x). Then x is a maximum point and also a 
\.=:l \. \. k 

stationary point of .L a.Y.(x). \. = :l \. \. 

Moreover, we need to combine the conditions for the 
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existence of the solution for maximizing a combined response 

with the conditions for the solution to be an admissible 

point for all Y.(x). We also need to connect the conditions 
1. 

with the surface of Y.(x) . . ,. 

Y.(x) can be written .as Y.(x) = a + a 'x + x'A.x, 
1. 1. 0 i. 1. 

where a , 
i. 

k 

a •I 
21. 

• • • •Ia . ) 
p1. 

symetric 

and 

Then.La. Y.(x) can be written as 
1.=t 1. \. 

k 
.L a.Y.(x) = b + b'x + x'Bx 
1.=t 1. 1. 0 

where b0 = 

k k 

b = \. = :l \. :l\. 
[' L a. a . 1 .La.a., . . . . . . 

\.=:l \. Z\. 

k 
B = ( . :r a. A. ) • 

1. = t \.. \. 

k 

k 

a ./2 
tpl. 

a ./2 
Zp1. 

a . 
PP" 

. L a. a ·)' \. = :l \. pl. and 

The solution for maximizing .L a.Y.(x) is given by 
1.=t 1. 1. 

• X 

. k -1 k k ' 

= -0. 5 (. L a. A. ) (. L a. a . , ••.•• , . L a. a . ) 
\. = t \. 1. \. = t \. ti. \. = t \. p1. 

The solution for maximization exists and is unique if 
k 

.I: a.A. is a negative definite matrix. 
L=t 1. \. . 

(3.8) 
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By Theorem III.11, if Sexists, then there exist a. > 
k \ 

O, for all i, such that .E a.Y.(x) has a maximum value at 
\=~ \ \ . 

• • its stationary point x. Since x is a global maximum point 
k k 

of .E a.Y.(x) and admissible for Y.(x); then (.Ea.A.) is a 
\=~ \ \ \ \=~ \ \ 

negative definite matri~. By Theorem III.1, the admissible 

region (S) exists if at least one of the .Hessian matrices of 

Y.(x) is negative definite. Therefore, we can conclude that 
\ 

for unconstrained optimization, the necessary and sufficient 
k 

conditions under which maximizing.Ea. Y.(x) leads to an 
\=~ \ \ 

admissible point are 

a. > O, Vi, and H.._ is negative definite, \ --y_ 

for at least one HY .• 
\ 

\ 

(3.9) 

Constrained Optimization. Let R be a compact set 

(closed and bounded). Let a. > O, Vi. From Theorem III.9, 
\ k 

• x e R, the maximum point of .Ea. Y.(x), belongs to the \ =~ \ \ 

admissible region for Y.(x). It implies that if Risa 
\ 

compact set, then the necessary and sufficient conditions 

are~> 0. However, if Risa closed convex set, but not 
\ 

bounded, then we need additional conditions that are 

described in the following theorem. 

Theorem III.12. Let a feasible region R be a closed 
k 

convex set. Let .E a.Y.(x), a. > O for all i, be a 
\=~ \ \ \ 

continuous function on R. If at least one of the Hessian 

matrices of Y.(x) is neg~tive definite, then there exist x* 
\ k 

e R, the maximum point of .E a.Y.(x), which is admissible 
\ = ~ \ \ 



for Y (x). 
i. 
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Proof. Let S be the admissible region for 

unconstrained optimization. By Theorem III.1, if at least 

one Y.(x) has a maximum value at its stationary point, then 
I. 

Sexists. 
k 

Then, by Theorem III.11, there exist a. > O, such 
I. 

• that .L a.Y.(x) has a maximum point at x es. If we move 
1.=~ I. I. k 

farther from x*, the value of .L a.Y.(x) will decrease. 
I.=~ I. I. 

There arises two cases: Rn S = 0 and Rn s ~ 0. 

Let Rn s = 0. Suppose there does not exist a maximum 

"' . 0 point of .L a.Y.(x), x e R; then 3 x e R such that 
1.=~ I. I. 

k 
0 

.La.Y.(x) --+oo, 
I.=~ I. I. 

which contradicts the fact that x• < oo is a global maximum 
k 

point of . L a. Y. (x). 
1.=~ I. I. k 

Then we want to show that x e boundary 

of R. Maximizing .L a.Y.(x) with constraints g.(x) SO, 
1.=~ I. I. J 

j = 1, 2, •.• , n, is given by 

k n 
ma X f ( X, >.., 8 ) = . L Ol. y. ( X ) - . L >... ( g . ( X) - 8~ ) 

X 1.:~ I. I. J=~ J J J 

k n 
8f/8x = 8. !: a. Y. (x)/8x - 8 .E "A. g.(x)/8x = O, 

1.=~ I. I. J=~ J J 

8f/ ii>.. = ( g.(x) - 8~)= O, 
J J 

8f I 88. = 2>.. .8 . = o • (3.10) 
J J J 

For the last equation, either>..~= O or 8~ = O or both. 
J J 

If>..*= O and 8• p! o, then the constraints g.(x) SO are 
j j J . 
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ignored. If >... = 0 and 8. = O, Vj, then the boundaries 
J J 

pass through the solution for unconstrained optimization. 

It implies that Sn R ~ 0, which is a contradiction. If >... 
J 

jlf! 0 and 8. = O, then g.(x) = O. 
J J 

So that the solution • X 

belongs to the boundary of R. 

Let Rn S jlf! 0. By Theorem III.11 and Corollary III.1, 3 ~ 
k \. 

> O, Vi, such that the value of .L a.Y.(x) is maximum at x* 
\.=:l \. \. 

• es. Then, x lies either on Rn Sor on the boundary of R 

if x* ~Rn s (look at (1)). 

By Theorem III.9 to III.12, we can conclude that the 

sufficient and necessary conditions under which maximizing 
k 

.L a.Y.(x) leads to an admissible point are 
\.=:l \. \. 

• k 
a. > o, and 3 X , a global maximum of .La.Y.(x) or 

\. \.=:l \. \. 

a. > o, Vi and the feasible region is a compact set or 
\. 

a. > O and at least one HY. is a negative definite matrix. 
\. 

\. 

(3.11) 



CHAPTER IV 

CONVEX COMBINATION METHOD 

The convex combination method is one way of combining 

several original responses into a single new response. It 

is an extension from the weighted sum linear combination of 

several responses. Any optimization will be done on this 

new response. Let us define 

k 
ot, > 0 , . I: ot, = 1. 
" "= :i " 

k 
The transformation of y is denoted by W = . I: a. Y. (x}. 

"= :i " " 

Then, the optimization of all Y.(x} is transformed into the " ' 

optimization of W. Since Wis a single response, the 

optimization becomes simpler than the optimization of 

vector y. Also methods and computer software for 

optimizing one response are widely available. In this 

thesis Y.(x}, i = 1, 2, •• , k and x e EP, are limited to 
" 

second-order polynomial functions. The choice of a. might 
" 

be governed by engineers, based on the importance of the 

corresponding response. If the value of a certain Y.(x} is 
" 

more important than the others, then the we assigned a 

higher corresponding value of a .. 
" 

If the objective of optimization is that the higher 

value is better, we have a maximization problem. If the 

objective is that the lower value is better, we have a 

72 
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minimization problem. If the objective is getting close to 

a target value, then we deal with minimizing the deviation 

from the target value. Thus, this deviation is considered 

as one of the responses. The responses, as a vector of 

y(x), may be known or unknown functions. 

Properties of the Maximum Point of W 

In this thesis we only discuss maximization, since 

minimization of Y(x) is equivalent to maximization of 
k 

(-Y(x)). If y(x) are known, maximizing W = .E a.Y. by using 
1. =' 1. 1. 

differential method.is as follows: 

IJW/llx 
8 k k 

= ~( ) E a.Y. (x) = E a.8Y./8x. 
X . 1. 1. • 1. 1. 

1.=t 1.=t 

The solution of x, that satisfies 

8 
8(x) 

k 
E a.Y. (x) 

i. =' 1. 1. 

k 

= E a.8Y./8x = o 
. 1. 1. 
1. =t 

is the stationary point of w. 

Where 

Let Y. be a second-order polynomial equation 
1. 

a , 
i. 

Y = a . + a ·x + x' A x 
i. 01. i. i. 

8Y./8x = a + 2A.x 
1. i. 1. 

k 
IJW/itx. = E a. (a. + 2A.x) = 0 

. 1. 1. 1. 
1.= 

k 

Ea.a. + 2 
• 1. 1. 
1. =t 

= ( a .• ,,. 

{ ~ a.A.} X = 0 
i.=t 1. 1. 

a . , •••• ' 
21. 

a . ) 
p1. 

, a. 
1. 

is a scalar, 

(4.1) 

( 4 . 2 ) 

(4.3) 



and 

A. = 
'I. 

k 
Ea.a. 

i.=:l 'I. .\. 

a 
:l :li. 

a ./2 
S.2\. ••• 

a ./2 
:lp'I. 

a ./2 a . . . a 2 ./2 :1.2'1. zzi. p'I. 

a ./2 a ./2 ... a 
ppi. :lp'I. :lp'I. . 

[ 
k k ] , 

= E a.a . , •• , E a.a . , 
. 'I. :l'I. • 'I. p'I. 
'1.=:l '1.=:l 

i = 1, 2, ••.. , k. Then 

k 
X - ..-Q. 5 

0 
I: a ... 
i. = :l 'I. 'I. 
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( 4 . 4 ) 

where A ... :1. is the inverse of A. The solution (x0 ) is unique 

k 

if the matrix (· E a.A.) is nonsingular; otherwise there are 
• 'I. 'I. 
'I.= :l 

an infinite number of solutions or the solution may not 

exist. 

It is necessary to check the eigenvalues of the matrix 
k 

I: a.A.. If all the eigenvalues are greater than zero, then 
i. = :l 'I. 'I. 

W has a minimum point. If all the eigenvalues are less than 

zero then W has a maximum point. If the eigenvalues have 

different signs, then W has a saddle point. If at least one 

of the eigenvalues equals zero, then W has an increasing, a 

decreasing, or a stationary ridge. For an increasing or 

decreasing ridge, there is no solution for unconstrained 

optimization. 

If y(x) are unknown, maximization is attempted by 

either (1) fitting a function to experimental data or (2) 

using some empirical search procedure to try to find the 



maximum point. Sometime we also follow both alternatives. 
,. 

When we fit a function to experimental data, then y(x) are 
k 

estimators for y(x), and W =.~ a.Y. is an estimator of w. \, = t \, \, 

Maximizing Wis different from maximizing W. The solution 

for optimizing Wis 

X 
0 

= -o. s [ ~ a.A. ]-t . \, \, 

\, = t . 

k 

Ea.a .. 
i.=t \, \, . 

E(x) 
0 

= E [-o.s[~a.A. ]-t ~a.;.] 
i.=t \, \, i.=t \, \, 

~ -o.s[ ~ a.A.]..:.t . \, \, 
\, =t 

k 
Ea.a .. 

i.=t \, \, 

(4.5) 

( 4 . 6 ) 

The following theorems related to the properties of the 

stationary point of W, an estimator of W. 
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Theorem IV.1. Let W be a convex combination of Y.(x), 
\, 

i = 1, ... , k and x e EP. The solution for maximizing W, if 

it exists, converges in probability to the solution for 

maximizing W. 

P~oof. We know from the least square estimator that 

E(a.) = a., 
\, \, 

E(A.) = A .• 
\, \, 

If A is a nonsingular matrix, then the solution exists and 

n ,. n "' 
it is unique. Let { a. } = E a. . /n and { A. } = E A . . l /n 

. \.n m= t "J m "n m= :l \. J m 

be sequences of random variables. where a .. 
\, J 

is the element 

of vector a. and A. · t is the element of matrix A.. 
~ \.J \, 

Suppose 

the estimated value and variance of a. and A are finite. 
\, \. 



By Chebychev's inequality, then 

p p 

a. a. and· A. 
\.n . n .. oo " \.n n -+ oo A.. 

\. 

By Slutsky's theorem, then 

[;.in]-:l 
p 

[ A. J-:l and n .. 00 \. 

r J-:l~ 
p 

-:l 
A. a. .CA. J a. \.n \. n .. 00 \. \. 

... E(x) 
0 

p 

-0.5 [ ~ a.A.]-:l ~ a.a. = 
i=:l \. \. i=:l \. \. 

-:l 
where [AJ is the inverse of A. 
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( 4 . 7 ) 

( 4 . 8 ) 

One criterion for maximizing a combined response which 

leads to an admissible solution is that the gradient of the 

combined response belongs to the criterion cone of the 

gradient of the original responses. The following theorem 
k 

shows that the gradient of t~:taiYi belongs to the 

criterion cone of 'i/Y..(x), i = 1, 2, .•. , k. 
\. . 

Theorem IV. 2. Let. W be a convex combination of Y. (x), 
\. 

x e EP~ If the null vector condition of the criterion cone 

of 9Y.(x) does not hold, then 'ilW belongs to the criterion 
\. 

cone of 9Y.(x), i = 1, 2, ••.• , k. 
\. 

Proof: 

k k 
W = .r: a.Y.(x), x e EP, a.> 0 and .r: a.= 1 

\.=:l \. \. \. \.=:l \. 

'ilW = (:. 
:l 

aw 
ilx' 

2 

. . . . . . . . . , : ) 
p 
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( !!Yi. 
Ay Ay 
"' . "' . ) "lY.. ( X) 

\. \. = ilx ilx \. ilx 
, , • • • • • • • • I 

:1 2 p 

8W ilY. k 8Y. k ilY. 
(.; a. ) . \. 

.La. 
\. 

.La. 
\. 

8x = 8x, 8x , • • • • • • I 8x \. =:t 'I. 'I. =:1 'I. 'I. =:t \. 
( 4 . 9 ) 

:1 2 p 

At point P(x ), let PA. be "IY..(x) and PQ be VW. It can be 
0 'I. 'I. 

considered that A. has coordinates 
\. 

'I. 'I. ( 
ilY. 8Y. 
ax' 8x , •••••••• , 

:1 2 

and Q has coordinates 

( 
k ilY. 

. L a. :A..1., 
'l.=:1 'I. UA 

:1 

k ·8Y. 
.La. 1. 
\. ::t 'I. 8x I 

2 
• • • • • I 

(4.10) 

k 8Yi.) 
. L a. :A.. • 
'1.::1 'I. UA 

p 
(4.11) 

By Definition II.l, then PQ belongs to the criterion cone 

of 'ilY. (x). 
'I. 

When we follow the second alternative in searching for 

the maximum point, the steepest ascent method is usually 

applied. In cases with one response, the path of the 

steepest ascent is found as usual by calculating ~Y(x). 

The experiment is continued by taking a point on the path 

of the steepest ascent as the center of the experiment. 

The experiment is repeated several times until we find a 

maximum point (Myers 1976). 

Here we have k responses which have to be maximized 

simultaneously. From Theorem IV.2, we know that '9W 

belongs to the criterion cone of ~Y.(x). This indicates 
'I. 

that the solution for maximizing W leads to an admissible 

point, if the global maximum point exists and is finite. 

Now by using the steepest ascent method, the search for 



the maximum point will follow the path of the steepest 

ascent of w. Since we have k original responses, from· 

which Wis derived, we also have the path of the steepest 

ascent of each individual response. A convex combination 

of these paths yields the direction of simultaneous 

optimization. The following theorem shows that the path 

of the steepest ascent of Wis similar to the combined 

paths from the original responses. 

Theorem IV. 3. Let W be a convex combination of Y. (x) 
'I. 

= a.'x, i = 1, 2, .. , k. An experiment starts at several 
'I. 
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points and we calculate the path of the steepest ascent of 

W. The experiment is continued by adding some points along 

the path of the steepest ascent of w. Then the revised 

path of the steepest ascent of W, recalculated from revised 

a.', equals its original path (without adding some points). 
'I. 

Proof. Let P. be starting points in p-dimensional 
'I. 

space of the steepest ascent method. Let the original 

steepest ascent path of W be 0 0 0 
(Ca> , (a) , ••••• w ). 

:l 2 p 
After 

adding some points along the steepest ascent path of W, the 

revised steepest ascent path of Y. will be 
'I. 

* * * ( a. , a. , ...•.. , a. ) • i = 1, 2, ... , k . 
'1.:l '1.2 'I.I) 

The revised path of the steepest ascent of W recalculated 

* * from ( ai.:a. , ai.2 , * ..... ,a. ) is the combined path of Y. (xl 
'I.I) 'I. 

denoted by 

( 
k * 

. I: a. a. , 
'1.=:l 'I. '1.:l 

.k * 

. I: a.a. , 
'I.= :l 'I. '1.2 

* ) . •••••••. 2: a.a. 
'I.= :l 'I. 'I.I) 

k 



The revised steepest ascent path of W, calculated from 

revised W itself is ( w,, w, 
2 

••• ,w ). where 
p 

w = cw , w , •• , w > = c x· X) -tx, w. 
0 t p 

Since w is a convex combination of Y., then 
'I. 

k k 
(A) = (X' X)-tX' (~~t a. Y. , •••• -. , ~~t 'I. 'l.t )' a. Y. 

'I. 'l.n 

• + ••• + X(ak~)J 

and we can write 

k • 
w = . L a.a ..• 

j 'I.= t 1. 'I.J 

(4.12) 

(4.13) 

Where a.• is a ( p+l) xl vector whose elements are a .. *, w is 
'I. 'I.J 

a (p+l)xl vector, i = 1, 2, •. , k and j = O, 1, .•• , p. 

Johnson and Folks (1964) have proved that 

0 0 0 
( w , w , ••••• w . ) 0( ( w .. , w , •••••• , w ) • 

t 2 p ,,. 2 p 

This implies that 

( k * . L a.a . . , 
'l.=t 'I. 'l.t • • • I 

• . L a.a. 
'l.=t 'I. 'l.p 

k 
0 

(w , 
t 

0 . 
(.)2 , ••• , 

0 w ) • 
p 
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Remark IV.1. From Theorem IV.3, the process of 

reaching Wmax in the steepest ascent method, can be based on 

the steepest ascent path of W itself without predicting the 

coefficients of regression for individual Y.(x). 
1. 

Searching for the maximum point of W = 

k 

k 
. L a. Y. , ot. > 0 
'l.=t 'I. 1. 1. 

and .L a= 1, by using the steepest ascent method leads to 
1.=t ~ 



an admissible point. Two reasons support this statement: 

a. > 0 and W has a global maximum point, which satisfy the 
\. 

necessary and sufficient conditions under which maximizing 

a combined response leads to an admissible solution. 

Let a. > 0 
\. 

Confidence Region about the Optimum 

Points of W 

k k 
and . I: a. = 1. Let w = .I: a.Y.(x), 

t.=i \. \. = i \. \. 
i = 1, 
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2, .. , k and X e EP. Let Y. (x) be a second-order polynomial 
\. 

function of x. Y.(x) can be written as 
\. 

where a , 
t 

Y. (x) = a + a' x + x' Ax 
l. 0 t t 

: ( a • I 
it. 

A. = 
\. 

a . , 
2\. • • • • I 

symetric 

a. 
pl. 

) and 

Then W can be written as 

W = b + b'x + x'Bx 
0 

a . /2 
ipl. 

a ./2 
2pl. 

a . 
ppl. 

k k 

where b0 = t~/:i"taot' b = (t~tatatt' 
k 

. :r: a. a., 
t. = i t. 2\. 

k 

••••. I: a.a.) \. = i \. pl. 

k 
and B = (. :r: a. A). Let W = ( W , W , W , • . . • . , W ) , where 

t.=i t. t. i 2 a n 

n is the number of observations. Then the jth observation 

of W for a fixed a. is 
\. 
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k 

W. = .I: ot.Y .. , j = 1, 2, ••• , n. 
J "I.= :I. "I. "I.J 

For a general linear model 

W = X f3 + & 

nx:I. nxq qx:I. nx£ 

z 
& N(O,O"I) 

Using the SAS program for regression analysis or for 
f' 

response surfac.e analysis, we can estimate the coefficients 

of regression and the mean square error as 

~ = ( X' X )-:a. X' W 

A A 

s 2 = (W'W - (3'X'X(3)/(n-g). 

For this model, 

Then, we define b0 = f3 , b = 
0 

B = 

symetric 

( f3 , f3 , ••• , (3 > and 
:I. z p 

• Let x be the solution for maximizing W. For 

unconstrained optimization, then 

8W/ltx = 0 .. b + 2 Bx= 0 

(4.14) 

(4.15) 

•• ,(3 ). 
pp 
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V .... * = -0.5 * and W(x) = b 
0 

- h' R-th/4 ..... ..., ..., . (4.16) 

For constrained optimization with feasible region 

R = {x: p 2 2 } 
.~X. ::5r, j =1, 2, .. , p 
J=t J 

we need to maximize 

f ( X, U, e ) = b + b • X + X • Bx - U ( . ~ X . 2 - r 2 - e2 ) • 
0 J=t J 

Then, 

Df/Dx = b + 2 Bx - 2 u X = 0 (4.17) 

p 
2 2 e2 bf/Du = j.~txj - r - = 0 (4.18) 

bf/De = 2ue = o. (4.19) 

There are 3 possibilities: 

(1). u = O and e ~ O .. The constraints can be ignored; then 

the solution is x*. 

(2). Both u and e 

(3). u ~ o, e = o. 

of R. 

* = 0. The boundary of R passes through x 

The solution will lie on the boundary 

If e = O and u ~ O, then the solution is 

and 

x * = -0. 5 ( B - uI )-t b 
C 

W(x *> = b - O.Sb' (B-uI)~b+0.25b' (B-uI)-tB(B-uI)-tb, (4.20) 
C 0 

where u = the Lagrangian multiplier. The value of u is 

chosen to be greater than the largest eigenvalue of Band 
p 

2 < 2 satisfies .I: x. _ r . 
J = t J 
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As mentioned in Chapter II, Rao (1973) showed that for 

g((,)' 

P{min(,eU g(f,) ~ g(f,) ~ maxf,eU g((,)} ~ 1 - a. (4.21) 

Where 
A A 

U = {n:cn-n)'X'X(n-n)/ . z < F } 
'" '" '" '" '" gs - a, g, ( n-q) (4.22) 

is the 100(1-a)\ confidence region for(,, 

2 A 

s = (W'W- (,'X'X(,)/(n-g), and(,= (b0 , b~- .. , bP, b:l2 , ••• , 

b ,b, •••••• b ). 
p-:l,p u pp 

Carter et al (1984 and 1986) suggested a procedure for 

computing the confidence region aboµt g(f,) and about 

eigenvalues of(,, as mentioned in Chapter II. Once the 

elements of U have been determined, the confidence 

interval/region about g(f,) can be constructed (conservative 

confidence interval). By using this approach and evaluating 

Equation (4.16) and (4.20) we can construct the confidence 

* * * * region for x, W(x ), x , or W(x ) for a given ~>O, 
k . C C \. 

.La. = 1, and a fixed u if x* e R. 
\. = :l \. 

Restrictions on~ 
\. 

If we impose restrictions on a., i = 1, 2, .. , k, then 
\. 

the admissible region of Y.(x) with restrictions on a is a 
\. 

subset of the admissible region of Y.(x). We will evaluate 
\. 

both cases, without a constraint on x and with constraints 

on x. 
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For p = 2 and k = 2 

Without a constraint on x. In this case for i = 1, 2 

and x = (xt, x 2 ), the solution for maximizing W lies on the 

admissible tangent path of Yt(x) and Y2 (x). Suppose we 

impose a restriction on a, such that 

p S a S g, 
t 

where p, g, > 0 and a = 1..,.a . 
2 t 

. . . 
Let x be the solution for 

maximizing W for any possible value of a. 
t 

• • If x exists, 

it always lies on s, the admissible tangent path of Y (x) 
t 

Let x* e S be the maximum point of W for a = 
q t 

• g. Let x Pe S be the maximum point of W for at= p. Then 

the admissible region for Y (x) and Y (x) with the 
t 2 

restriction p Sa S g, where p, 
t 

• • part of S between x and x • 
q p 

g, > O and a= 
2 

1-a 
t 

is the 

With constraints on x. Here, the admissible region for 

Y., denoted by set S, may lie in the interior of R or on 
~ t 

the boundary of R or both. First, we take a = g; then we 
t 

. * find x e R, as the maximum point of W. Secondly, we take 
q 

a = p; then we find x* e R as the maximum point of W. 
t p 

Two possible situations will arise: 

For situation 1, • • x and x lie on a connected subset of 
q p 

st; then the admissible region for Yi(x) is S2 , the part of 

• • s between x and x 
t q p 

• • For situation 2, Figure 10b shows that x and x that lie 
q p 

• • on disjoint subsets of S. Suppose x e (Sn R) and x e 
t q p 

A.*; then the admissible region for Y.(x) is a part of S 
J . ~ t 



x4 
I 

.,, 

lie on joint subsets 

* * b. Xp and Xq 
subsets 

x, 
lie on disjoint 

Figure 10. Admissible Region for 
Y 1 and Y 2 with 
Constraints on~~ 
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from x* to point o* union a part of A.* from point P to 
q J 

* x P (excluding point P), denoted by set S2 • Illustrations 

are given in Figure 10b. 

Without any constraint£!!_~ 
k 

Let W = . I: a. Y. 
'l.=:1. 'I. 'I. 

be a second-order polynomial function of x. It can be 

written as 

W = b0 + b'x + x'Bx 

• Let x be the solution for maximizing W; then 

ilW/itx = 0.,. b + 2 Bx= 0 

k 
where b = . I: a. a . , 

0 'l.=:1. 'I. 0'1. 

k k k 

'I.= :1. 'I. :1.'I. 'I.= :1. 'I. 2'1. 
b = (· I: a. a . , . I: a. a . , 

'l.=:1. 'I. 'I. 
. I: a. ak·)' and 

B = (. ~ a. A. ) • 
'I.= :1. 'I. 'I. 

k-:1. 

Let O < p Sa. Sq. < 1, i = 1, •. , k-1, and .I: q. < 1. 
t 'I. 'I. 'l.=:1. 'I. 

k-:1. 
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Let 0t.. = 1- .I: a .. Let set V be the set of every possible 
k 'l.=:1. 'I. 

a. > O; then 
'I. 

V = { a: O < P/= at~ qt < 1, i = 1, 2, •• , k-1, 

k-:1. k-:1. } 

and .I: q. < 1, 0t.. = 1- .I: a .. 
'l.=:1. 'I. k 'l.=:1. 'I. 

(4.23) 



Once we have determined the elements of set V, we can 

• • • evaluate x and W(x ). So we can define 

k k 
= {x*:x*= - 0.5 (.L a.A.J--:t(.L a.a., \. = :t \. \. \. = :t \. t.1. 

k )' .. , .. La.a. , i.=:t \. pi. 

a. e V and (. ~ a. A.J-:t = a negative definite }· \. 1.::t \. L 
matrix 

(4.24) 

The admissible region of Yt is the set Vx. 

With constraints on x. Let the feasible region R be 

the set R = {x: -~ x. 2 ~ r 2 }. By the same way, we can 
J=:t J 
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evaluate the maximum point of W. If the solution lies in R 

then the maximum point of Wis x*. If not, the maximum 

• point is x e R denoted by 
C 

• X 
C 

k k 
= - 0.5 (.L ot.A.-uIJ-:t(.L a.a., L : :t \. L \. : :t 'I. :tL 

k ) , 
• .• , . E ot. a . 'l.=:t 'I. pi. 

where u = a Lagrangian multiplier. The value of u is 

chosen to be greater than the largest eigenvalue of 

k 

( . E a. A.-uI) and satisfies 
p 2 < 2 

.E X. - r . Then the admissible 'l.=:t 'I. 'I. J=:t J 

region Vxc is defined by 

where 

V = V n R U V , 
XC X X* 

• :x - -
C 

k k 

0. 5 (. E a. A.-uIJ-:t (. E a. a . , 
'I. = :t 'I. 'I. 'I. = :t 'I. t.'I. 

(4.25) 

... , k )' . E a. a . , 
'I.= :t 'I. p'I. 

a.e V, and 
\. 

k 

( . E a. A.-uI) 
'I.= :t 'I. \. 

= a negative definite} or 
matrix 

( 4. 26) 
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V = {x*c: x*c e R is the maximum point of -~ a. Y.(x), a".e v}. x. 1.=t I. I. 

Numerical Examples 

Several Kinds of Surface Combinations 
I 
I 

There are four cases to be considered as follows: 

( 1). Both Y and Y have maximum points. 
:I. z 

( 2). Yt has a maximum point and Y2 has a minimum point. 

(3). Y1 has a maximum point and Y2 has a saddle point. 

( 4). Both Y and Y have saddle points. 
:I. z 

Suppose both Y and Y have maximum points. Then 
:I. z 

let Y = 10 + 2x + x - x2 + 2x x - 3x2 
:1. :1. z :1. :1. z z' 

Y = 15 + x - 0. 5x - 2x2 - 3x x - 2. 5x2 , 
2 :I. 2 t :1.2 Z 

W = 0.5 (Y +Y) = 0.5 (25+3x -0.5x -3x2 -x x -5.5x2 ). 
:I. Z :I. 2 :I. 12 Z 

The stationary points are as follows: 

Y has a maximum point at (1.75, 0.75), 
t 

Y has a maximum point at (0.59, -0.4545), and z 

W has a maximum point at (0.5, 0.0). 

(4.27) 

From the above equations, the tangent path of Y1 and Y2 can 

be computed as follows: 

2 + 3x + 2x - 14x2 + 12x x 
:I. 2 :I. :I. 2 

2 + 28x = O. 
2 

By substituting the coordinate of W in the equation for 
ma.x 

the tangent path, it can be shown that the point (0.5, 0) 

lies on this path, since 



2 + 2(0.5) - 14(0.52 ) + 0 = 0 

and it also lies on the admissible tangent path of Yi and 

Y2. 

Suppose Y has a maximum and Y has a minimum point. 
i 2 

Let Y = 10 + 2x + x - x 2 + 2x x - 3x2 
i i 2 i i 2 2' 

Y = 15 + x - O. 5x + 2x2 + 3x x + 2. 5x2 , 
2 i 2 i i2 2 

W = 0.5 (Y + Y ) 
i i 2 

= O. 5 ( 25 + 3x + 0. 5x + x 2 + 5x x 
i 2 i i 2 

2 - 0.5x ), and 
2 

W = 0.9Y + O.lY 
2 i 2 

= 2.4 + l.9x + 0.85x - 0.7x2 + 2.lx x 
i 2 i i 2 

The stationary points are as follows: 

Y has a maximum point at (1.75, 0.75), 
i 

Y2 has a minimum point at (-0.59, 0.45), 

W has a saddle point at (-0.2039, 0.5185), and 
i 

W has a maximum point at (4.53, 2.11). 
2 

2 - 2.45x • 
2 

The tangent path of Y and Y can be computed as 
i 2 

2 - X 
i 

- 12x + 14x2 - 14x x 
2 i i 2 

2 
- 28x = O. 

2 

By substitution, it can be shown that the coordinate of W 
i 

and W both lie on the tangent path of Y and Y • 
2 i 2 

However, only W lies on the admissible tangent path. 
2ma.x 

Suppose Y has a maximum and Y has a saddle point. 
i 2 

L t Y 10 2 2 2 - 3 x 2 e = + x.. + x2 - X + X X 
i A i i 2 2 1 

Y = 15 + x - 0. 5x - 2x2 - 3x x + 2. 5x2 , and 
2 i 2 i i2 2 

W = 0. 5 ( Yi + Y2 ) 

= 0. 5 ( 25 + 3x + 0. 5x - 3x2 - 5x x 
i 2 i i 2 

2 - 0.5x ). 
2 
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The stationary points are as follow~: 

Y has a maximum point at (1.75, 0.75), 
:1 

Y has a saddle point at (0.1207, 0.1724), and 
2 

W has a maximum point at (0.5, 0.0). 

The equation of the tangent path of Y and Y is 
:1 2 

2 + 3x - 18x 
. 2 

- 14x + 34x x 
:1 2 :1 :1 2 

2 
+ Bx 

2 
= o. 
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ma.x 
(0.5, 0 .. 0) also lies on the admissible tangent path of w 

Y and Y • 
:1 2 

· Suppose both Y and Y have saddle points. 
:1 2 

Let Y = 10 + 2x + x 
2 

1. 5x + 4x x 

The 

:l :l 2 

Y = 15 + X 
2 :l 

- 0.5x 
2 

W = 0.5 (Y+ Y) 
:1 2 

2 
+ X 

:I. 

= 0.5 (25 + 3x + 0.5x 

:l :1 2 

- 3x X 
:I. 2 

2 

:I. 2 
- 0. 5x + 

:I. 

stationary points are: 

2 
xz, 

2 
2x, and 

2 

xx 
:I. 2 

2 
3x . 

2 

y has a saddle point at (-0.80, -1.11), 
:I. 

y has a saddle point at (0.32, 0.12), and 
2 

W has a maximum point at ( 3 . 7, 0 . 7) . 

The equation of the tangent path of Y and Y is 
:I. 2 

2 + 10. 5x + 5x 
:I. 2 

2 
- X 

:I. 
- 16x X 

:I. 2 

2 
+ 22x 

2 
= o. 

The maximum point of W also lies on the admissible tangent 

path of Y and Y. 
:l 2 

Confidence Region of x 

If the uncertainty of the optimum points is considered, 

then their confidence regions should be constructed. For 



this purpose, a numerical example is given for the 
k 

optimum point of . ~ a. Y. (x), i = 1, 2, 3, 4, x & EP and 
'l.=:I. 'I. 'I. 

fixed a., by using Carter's procedure. 
'I. . 
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Suppose we have 4 responses, as function of x:a. and x2 • 

The estimate of second-order polynomial equations are as 

follows: 
,.. 
Y = 6.15 - l.5283x - 0.1586x + 0.138lx 2 - 0.0094x 2 • 

:I. :I. z, :I. z 
,.. 
Y2 = 17. 495-1. 4603x -1. 4596x +0. 5125x x -0. 6263x 2 -0. 6288x 2 

:I. z :I. z :I. z 

Y = 18 - 0.7292x a :a. 
2 2 

+ 1 • 2 5 9 3 X 2 + X + 0 • 7 5 X 
:I. 2 

Y ... = 4.4775+1.1106x +0.1874x +0.0075x x +0.1031x 2 -0.0019x 2 
- :I. z :I. z :I. z 

Y is moisture content in\; Y is irregularity in "uster" 
:I. . z 

units, Y8 is cost of production, and Y4 is yarn strength in 

grams per denier. Yarn manufacturer want to maximize Y , 
:I. 

minimize Y2 , minimize Y and maximize Y, for producing 
9 4 

better yarn quality. The Textile engineer specifies a. 
. 'I. 

based on the importance of each response for a particular 

use of the yarn. Let 

W = 0. 35 Y + 0 .15 ( -Y ) + 0. 30 (-Y ) + 0. 20 Y . 
:I. Z 9 4 

After data collection and analysis, then the estimate 

coefficients of regression for Ware 

~· = (-4.9763, 0.1250, -0.1772, -0.0754, -0.1371, -0.1343). 

The X'X is defined as 

2 0 0 0 8 8 

X'X 0 8 0 0 0 0 = 0 0 8 0 0 0 
0 0 0 4 0 0 
8 0 0 0 12 4 
8 0 0 0 4 12 
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Let A be the diagonal matrix of eigenvalues of X'X and P be 

the correspond eigenvectors. From Equation (2.21), we can 

define 

where~ e U, as defined in Equation (4.22). For a= 0.10, 

g = 6, n = 12, and s 2 = 0.0013, we compute 

0.1273 0 0 0 0 -0.4835 
0 0 0 0.3532 0 0 
0 0 0.3536 0 0 0 

PA-~/z = 0 0 0 0 0.5 0 
0.1073 0.25 0 0 0 0.2868 
0.1073 -0.25 0 0 0 0.2868 

Let e = (-90, -45, o, 45, 90), for i = 1, 2, 3, 4. 
i. 

e = c-150, -105, -60, -15, 30, 75, 120, 165). 
!S 

Based on the ab-0ve combinations fore, we have 5000 sets 

of values for~, for constructing the simultaneous 

confidence region for x~ and x2 , the coordinates of the 

maximum point of W. The plot of x~ versus x2 is shown in 

Figure 11. It seems that we need many more values for~, 

to get a "good" shape of the plot. 

Restrictions on a 

Based on data in sub (2), suppose we restrict 

follows: 

0.32 ~ a:!:i 0.38, 0.12 ~ a ~ 0.18, 
~ 2 

0.26 ~ a ~ 0.34, a = 1- (a +a a ... ~ 

Let a = (0.32, 0.34, 0.35, 0.36, 0.38), 
~ 

2 
+a ) . 

a 

a. as 
1. 
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a = 
2 

(0.12, 0.14, 0.15, 0.16, 0.18), and 

ot = (0.26, 0.28, 0.30, 0.32, 0.34). 
9 

From the above combinations, we have 125 sets of values for 

(3, so that we have 125 maximum points of w. Figure 12 

shows the plot of x versus x . :l . 2 If we develop very large 

number of values for (3, we can construct the region of x, 

for certain restrictions on ot. 
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Figure 12. Plot of Optimum Points for Given Intervals of o(i 
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CHAPTER V 

COMPARISONS OF THE ADMISSIBILITY OF SOME 

COMBINED RESPONSE METHODS 

Convex Combination Method 

Let Y.(x), i = 1, 2, ... ,k and x e EP be second-order 
'L 

polynomial functions. Let W be a convex combination of 

Y.(x), denoted by 
'L 

k 
W = . I'. Ol. Y. ( X ) , X E Ep 

'L=:l 'L 'L 

k 

where a. > 0 and . I: a. = 1. 
'L 'L=:l 'L 

k 

Steuer (1986) has proved that if . I'. Ol. Y. ( X ) , Ol. ) 0 , 
'L=:l 'L 'L 'L 

has a global maximum at x*; then x* is admissible for Y .. 
k 'L 

However, if .I: a.Y.(x) has a saddle point at x 0 then this 
'L=:l 'L 'L 

point is inadmissible for Y.(x). 
'L 

Let W satisfies the above conditions. Let a feasible 

region R be a compact set. We shall describe the method 

with zero error. Let x 0 be the maximum point of Won R, 

despite the nature of the surface of W or Y .. Since R is 
'L 

a compact set, we can find a point x e R, for which W(x) 
0 0 

has the highest value on R. Then by Theorem III.9, the 

maximum point of W, x 0 e R, is admissible for all Yi(x). 

So that the solution for maximizing W always leads to an 
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admissible point. 

Harrington's Method 

Harrington (1965) maximized the estimated response 

Y.(x). We shall describe the method with zero error. Let 
I. 

the feasible region R be a compact set. The desirability 

functions are 

d,.= exp(-jZ,.ln>, n >O, i= 1,2, •• ,,k 

• where Z.= Y,.Cx)- (Yi. + Y,..>12 
I. 

, i= 1, 2, •• , k, 

k 
D = ( n d. ) ~/k , i = 

• I. 
I. = ~ 

1, 2, ••. , k, 

1 k 
log D = -k .I:a.C-l{Y.(x) - a.}/b.ln>, 

I.=~ I. I. I. I. 

• where Y,. = the upper specification limit, Y,.. = the lower 

specification limit, and 

Maximizing Dis equivalent to maximizing log D. If n 

is an odd number, then we can rewrite 

k 
log D n = . I: a./3. ( {Y. (x) - a. }/b.) 

I.=~ I. I. I. I. I. 
(5.1) 

{
-1/k, if {Y.(x)-a.} > 0 

I. I. where /3. = 
'" 1/k, if {Y.(x)-a.} < 0. 

I. I. 

Thus, sometimes /3. may be positive and sometimes negative, 
I. 

so that the global maximum of D may not be admissible for 

all Y.(x). If we consider a. as a target value that lie in 
I. I. 



the center of the specification limit, then the global 

maximum of Dis admissible for IYi(x) - ail, since the 

objective is to minimize the deviation from the target 

value. Therefore, maximizing Dusing Harrington's method 

may not always lead to an admissible solution for Y.(x). 
\. 

Derringer- Suich's Method 

In this method, two cases will arise: one-sided and 

two-sided desirability functions (Derringer and Suich 

1980). Let the feasible region be a compact set. For 

one-sided cases, the desirability functions are given 

(again with zero error) by 

0 Y. < Yi* \. 

[ y - Yi* r * d.= 
\. 

Yi*~ Y.~ Y . • \. 
Y.- Yi* 

\. \. 

\. • 1 Y. > Y. 
\. \. 

For two-sided cases, the desirability functions are given 

by 

[Y,- Yi* r Yi* ~ Y.~ 
Yi* 

c. 
C - \. \. i 

[ 
• r Y.- Y. • \. \. 

~ d = C . < Y. Y. 
\. • \. \. \. 

c.- Y. 
\. \. • 0 Y. < Yi* or Y. > Y. 

\. \. \. 

and 
k 

D = (n d. )Uk 
I i = 1, 2, • • I k, 

i=~ \. 
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log D 
1 k 

= k .l:a.log d .• 1. =:1 1. 1. 

Supposes= t = 1; then for two-sided cases 

k 
log D = E log{ (c.-Y .• )-:1(Y. (x) - Y,. .• )}, if Y,. .• S Y. (x) . 1. 1. 1. 1. s c. 1. 1. = :1 

k 

= J: log{ (c.-Y~)-:1(Y. (x)-Y~)}, if c. S Y. (x) 1. 1. 1. 1. 1. 1. 
• S Y .• 1. 
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(5.2) 

Equation (5.2) implies that for c. S Y.(x) SY~, if Y.(x) 1. 1. 1. 1. 

increases, then log D will decrease. We can rewrite log D 

as 
le 

{ «. I: a. Y. < Xl , Ol. > 0 for Yi.• s Y.S C. 1.=:1 1. 1. 1. 1. 1. 
log D = 

CK. ; ~. Y . ( X ) , 

( 5. 3) • ~- < 0 for c. s Y. < y .• -1. = :1 1. 1. 1. 1. 1. 1. 

Therefore, maximizing Dusing Derringer-Suich's method may 

not always lead to an admissible solution for all Y.(x). 
1. 

Yet, if we consider c. as a target value, then the global 1. 

maximum of Dis admissible for jYi.(x)-ci.j. 

Khuri-Conlon's Method 

Optimization by Khuri and Conlo~ (1981) is done by 

minimizing 

p[y(x), 4>1 = [ {y(x) - <J>}' {var (y(x)) }-:1{y(x) - <J>} 1:1/Z or 

[p{y(x), <J>}1 2 = [{y(x) - <J>}'{var(y(x))}-:1{y(x) - <J>}] 

Again, we describe the optimization without error. Let 

the feasible region be a compact set. Suppose vector <J> is 



treated as a vector of constant. Let x 0 e R be a global 

minimum of p. • Then for all x e R, 
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• . • -1. • 
{y(x )-<J>}'{var y(x )} {y(x )-<J>}. ( 5 . 4 ) 

In this method, Y.(x) are assumed to be linearly 
\. 

independent, hence the var{y(x)} can be assumed to be a 

diagonal matrix. 

var{y(x)} = diag{Vu.(x), V22 (x), ... , Vkk(x)}. (5.5) 

Then the Inequality (5.4) can be written as 

k k 
2 < * 2 * .I: (Y.(x )-"-) /V .. (x) _ .I: (Y.(x )-<J>) /V .. (x ). 

\. = 1. \. 0 't' \.\. 0 \. = 1. \. \.\. 
( 5 . 6 ) 

Suppose x 0 is admissible for Yi(x); then there does not 

exist x* such that 

• Y. ( x ) ~ Y. ( x ) , for all i and 
\. \. 0 

• Y.(x) > Y.(x ), for at least one i. 
\. \. 0 -

• Let us consider any x "ifl X • 
0 

Then either 

(Y.(x )-"-), Vi or 
\. 0 't' 

• (Y.(x.>-"-) > (Y.(x )-"-), for some i and \. . 't' \. 0 't' 

Since (Yt(x)-<J>) ~ O, then either 

(5.7) 



* 2 2 CY. Cx )-"') < CY. (x )-"') , for some i and 
~ 't' ~ 0 't' 

(Y .• cx*)-"') 2 ~ CY .• (X )-"') 2 , for i jlll! i'. ~ 't' ~ 0 't' 

• • If V .. (x) S V .. (x ), for all i, then it may happen that 
u O ~~ 

Let a. have the same value, Vi; then it may happen that 
~ 

k . ' k 
.I: (Y.(x*)-"') 2 /V .. (x*> S .I: (Y.(x >-"') 2 /V .. (x ), (5.9) 
~ = :l ~ 't' u ~ = :l ~ 0 't' ~~ 0 
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which contradicts Inegualiiy (5.6). · Therefore, simultaneous 

optimization using Khuri-Conlon's method may not always lead 

to an admissible solution for Y.(x). 
~ 

Numerical Comparisons 

·-
Comparisons between the desirability functions versus 

the convex combination method apply a set of data, 

developed by computer, based on second order polynomial 

regression. We consider three responses as follows: 

y = 10 + 2x:s. + 2 + 2x:s.x2 3x 2 + ( maximum) X - X - e 
:l 2 :l 2 :l 

y = 15 + 0.5x 2x 2 3x X + 2.5x 2 + (saddle) X - - - e 
2 :l 2 :l :l 2 2 2 

y = 12 + 0.5x + 2x 2 + 3X X + 2.5x 2 (minimum) X - + e 
9 :l 2 :l :l 2 2 9 

e is assumed to be distributed as N( O, 0.001) 
:l 

e is assumed to be distributed as N(O, 0.0064) 
2 

e is 
9 

assumed to be distributed as N(O, 0.0225). 

The specification limits of Y. are y~ 4, 5 s y s 15, 
~ :l 2 

with C = 10, and 20 SY S 30 with C = 25. 
2 9 9 

For optimizing W we can choose several sets of a. > 
~ 

o, 

as long as W has a global maximum point. In this example 



we choose 3 sets of a. to produce W , W , and W . 
l. 1 2 9 

Where W = 0.60Y + 0.25Y +0.15Y, W =0.55Y +0.30Y +0.15Y 
1 ~ 2 9 2 ~ 2 9 

and W9 = 0.5718834Y1 + 0.2792704Y2 + 0.1488462Y9 . 

All W has global maximum points. The solution of 

optimizing W9 is similar to the result of Derringer's 

method. Any choice of~ > 0 can be used in the 
l. 

optimization of W, as long as W has maximum point. This 

choice will determine the value of Y .. The solution of 
l. 

optimization is shown in Table I. 
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The comparison of Khuri and Conlon's versus the convex 

combination method applies an example from Khuri and 

Conlon's paper (1981). In that paper they gave the 

solutions of optimization for both cases: if the vector of 

individual optima is treated as a vector of constant and if 

it is treated as a vector of random variable. 

There are 4 responses: 

... 
Y = 0.660-0.092x -0.0lOx -0.070x x -0.096x 2 -0.058x 2 (max) 

2 ~ 2 12 1 2 

Y = 1 . 7 7 6 - 0 . 2 5 0 x - 0 • 0 7 8 x + 0 • 010 x x - 0 . 15 6 x 2 - 0 . 0 7 9 x 2 ( max ) 
9 1 2 12 1 2 

Y = 0.468+0.131x +0.073x -0.083x x +0.026x 2 +0.024x 2 • (sadd) 
4 1 2 ~2 1 2 

The solution of optimization and the values of Y. at the 
l. 

optimum point are shown in Table II. All W have global 

maximum points. The solution of maximizing W4 is similar 

to that of of minimizing p if tis treated as a random 

vector, but the solution of maximizing W9 is slightly 

different from that of minimizing p, if tis treated as a 

vector of constant. 



TABLE I 

COMPARISONS AMONG CONVEX COMBINATIONS, HARRINGTON'S, 
AND DERRINGER-SUICH'S METHODS 

Methods X X y y 
t z t z 

Harrington, n=3 1.2670 1.4426 9.825 12.069 
Derringer, r=s=l 1.4436 1.1167 11.446 10.000 
c.c. method, w 

t 
1.6585 1.1811 11.518 8.174 

w 1.3451 z 1.1411 11.236 10.825 

w 1.4436 1.1167 11.446 10.000 
9 

TABLE II 

COMPARISONS BETWEEN KHURI-CONLON'S AND 
CONVEX COMBINATION METHODS 

Methods X X y y y 
t z t z 9 

Khur i, * as 
r.v -.57 -1.29 2.54 0.55 1.84 

Khur i, as const. -.46 -1.38 2.47 0.55 1.83 
C.C method, w -1.40 -1.86 3.46 0.24 1.72 

t 

w -.41 -1.16 2.36 0.58 1.84 z 
w -.46 -1.31 2.47 0.55 1.83 

a 
w -.57 -1.29 2.54 0.55 1.84 

4 

4 

Where w = 0.25 . I: Y., w = 0.15Y .+ 0.15Y + O.lY 
t \. = t \. 2 t 2 9 

y 
a 

26.411 
25.000 
27.940 

24.186 

25.000 

y 
4 

0.29 
0.31 
0.07 

0.33 

0.31 

0.29 

+ 0. 6Y , 
4 

w = 0.1578Y + 0.1342Y + 0.0995Y + 0.6985Y, and 
9 t 2 9 4 

w = 0.163Y + 0.153Y + 0.103Y + 0.581Y . 
4 t 2 9 4 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

This thesis discusses the simultaneous optimization of 

several responses. The discussions focus on the 

characterization of sets of admissible points and 

determination of the existence of the admissible region. 

The responses are limited to second order polynomial 

functions of x. We observed several kinds of surfaces of 

the original responses and the combination of the surfaces 

in forming a combined response. 

Several lemmas and theorems is developed for 

characterizing the sets of admissible points for both 

constrained and unconstrained optimization. If the number 

of responses is less than or equal to three and the control 

variables x lie in 2-dimensional space, the characterization 

is well defined and can be shown by graphs; otherwise by 

algebraic notations. 

The admissible region will exist if a. > 0 and at least 
~ 

one of the Hessian matrices of Y.(x) is negative definite. 
~ 

If the feasible region is a compact set (closed and bounded) 

the condition for the existence of the admissible point is 

only a. > 0. 
~ 
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For unconstrained optimization, the admissible region 

for two responses in 2-dimensional space is a particular 

part of their tangent path. For three responses in 

2-dimensional space, the admissible region is the closed 

region bounded by the admissible tangent paths. 

For con~trained optimizatidn, the admissible region 

may lie in the interior of feasible region R, that is Rn s, 

and on some parts of its boundary or only on some parts 

of its boundary. The last position happens if R does not 

intersect S, the admissible region for unconstrained 

optimization. If at least one response has a saddle point, 

the subset of admissible region may lie in the interior of 

R, but outside Rn S. If the number of responses or 

control variables is greater than two, the admissible 

. * 
region is S the set of all x denoted by 

:l 

(1) for unconsctrained optimization 

S = { x * : x * sat is f i es 9' ( I:a. Y. ( x * ) ) = 0 , a. > O 
1 \. \. \. 

and La.A. is a negative definite matrix}, 
\. \. 

where A is the Hessian matrix of Y.(x). 
\. \. 

2 < 2 } (2) for consctrained optimization with R = { x: I:x. - r , 
J 

s = { x*: x* satisfies 9'(I:a.Y. cx*>-uI) = O, a.> o, 
:l \. \. \. 

and (I:a.A.-uI) is a negative definite matrix }. 
\. \. 

If the uncertainty of the optimum points is considered, 

then their confidence regions can be constructed by using 

Carter's procedure. For this purpose, a numerical example 

is given in this thesis for the optimum point of W = 
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-~ a..Y.(x), i = 1, 2, 3, 4, x eEP and fixed::::. .. 
\. = 1 \. \. \. 

We also compare the admissibility of the solutions of 

four combined response functions: convex combination, 

Harrington's, Derringer-Suich's, and Khuri-Conlon's 

methods. In these comparisons the feasible region is a 

compact set. It can be proven that the convex combination 

method always leads to an admissible solution, but the other 

three methods do not always lead to an admissible solution. 

We recommend using the convex combination method in 

searching for the optimum point. If the functions of 

responses of interest are not known, the steepest ascent 

method can be used for maximizing the convex combination 

function of the original responses. In experiments, the 

feasible region is usually a compact set; then the solution 

for optimizing the covex combunation function will always 

lead to an admissible point. Also it can be proven that 

the solution converges in probability to the true value. 

It will be interesting for future research to discuss 

simultaneous optimization for general functions of vector x, 

the confidence region of the admissible region and to 

investigate the rate of convergence. 
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