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CHAPTER I
INTRODUCTION

The principle aim of this research has been to characterize and investigate the
nonlinear optical behavior of various semiconductors and modified silicate glasses.
These materials possess particularly interesting as well as potentially exploitable
optical properties and as such have recently attracted a great deal of attention
from both a pure research standpoint as well as the basis for new device technolo-
gies. Because of this potential for practical applications it is necessary that their
properties be thoroughly examined so as to quantify their nature and limits of
operation.

Because our goal has been to research the optical properties of various mate-
rials, the principle method of experiment relies on optical sources (lasers), related
optical measurement devices (spectrographs, detectors, ect.), and the associative
electronics. Once the experimental findings have been identified, a theory is orig-
inated to hopefully explain these findings, and finally the theory is simulated by
computer modeling.

This work is divided into three parts covering three separate projects. Each
component stands on its own and has little relation to its neighbors. As such
there is little importance as to the organization of these respective chapters, thus
arbitrarily they have been arranged in reverse chronological order.

An important and exciting technology beginning to realize itself is that of
optical computing. Here the goal is to replace all existing electronic components
with an optical analog. The benefits of such a leap are immense; an increase in
computational speed and bandwidth in orders of magnitude. A key component in
this technology is the switch. Specifically one requires a stable and fast all opti-

cal bistable device capable of residing in two optically unique states. This is the



subject matter of optical bistability and is a huge field in itself. In Chapter II we
investigate the bistable behavior in bulk ZnSe. The form of bistability is resonator-
less absorptive bistability. Here the feedback mechanism stimulating the bistable
property occurs through a temperature dependent absorption and an absorption
dependent temperature mediated by a temperature dependent band gap. We use
a relatively simple single beam transmission type geometry. The transmitted and
reflected power are monitored on a microsecond to ~ CW time scale. In addition
we have measured beam profiles. In most cases we see an eventual switching to
an off-state (one of low transmission) and subsequent damage. However in some
samples a rare form of bistable behavior, regenerative pulsations, has been iden-
tified and a possible explanation, including simulation, has been put forth. This
phenomenon seems to be very rare as only a few other authors have reported on
such findings however without any quantitative explanation. We have made such
an analysis and hope that this reveals new insight into optical switching, thermal
wave motion, and the role of electronic/thermal surface effects on the bistable be-
havior of semiconductors. As this phenomenon is seemingly rare it is likely our
understanding has only begun. Many questions still exist and the possibility of
controlling and stabilizing this effect is certainly an intriguing one.

In addition to such phenomenon as optical bistability there has been a huge
push for all optical limiting devices. This is essentially the optical analog of the
zener diode, a voltage clamping device. This was the motivation for the work pre-
sented in Chapter I1L In particular we characterize the thermal lensing behavior of
a lead oxide modified silicate glass. We report on such measurements as the pop-
ular Z-scan and optical limiting scans. We carry out these measurements on both
a millisecond and nanosecond time scale. On a millisecond time scale beam undu-
lations have been experimentally and theoretically seen to manifest themselves in
a new way (i.e. via Z-scans).

Lastly we report on the transmission characteristics in bulk CdS (Chapter
IV). This project was originally initiated as an investigation of the thermo-optic

character of CdS on a long time scale (seconds). We use a relatively simple two



beam (pump-probe) transmission type geometry. The results indicate the presence
of thermal lensing and interference (Fabry-Perot) effects.

Finally we summarize all of our results and offer suggestions for future work.



CHAPTER II
OPTICAL BISTABILITY IN BULK ZnSe

Introduction

Optical bistability has received a great deal of interest because of its po-
tential for all-optical logic elements as well as being a fundamentally interesting
phenomenon. A common definition of optical bistability is offered by Figure 1. A
system having such a transmission curve is said to be optically bistable between
the light intensities i; and i;, This definition of bistability is restricted in that the
hysteresis is controlled by the light intensity, as opposed to some other parame-
ter. It may be that the hysteresis is a function of, for example, temperature, but
the temperature is a function of the light intensity. Such feedback is an inherent
property of all bistable systems. Optical bistable systems are generally classified
as dispersive or absorptive and intrinsic or hybrid. A bistable system is dispersive
if the feedback results from an intensity dependent refractive index (light inter-
ference), while absorptive bistability occurs when the feedback is supplied by an
intensity dependent absorption. It may be that both mechanisms are present in
a given system thus this distinction is not always clear. Intrinsic systems posses
some feedback mechanism which is completely controlled by the light intensity.
These systems rely strictly on the light-matter interaction. Because this form of
bistability is intrinsic this can result from a single pass of the light beam through
the system, that is it does not require any interference. Such systems have been
referred to in the literature as mirrorless, cavityless, or resonatorless. (We will use
the latter name.) Hybrid systems rely on some form of external electronics as the

feedback mechanism. These systems sample the output light intensity and then
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adjust some external parameter, for example the strength of an applied electric
field, which changes the material properties.

The form of bistability of interest here is resonatorless absorptive bistability.
Such bistability may result from the thermal properties of the band gap[1-3] or the
various effects resulting from the creation of an electron-hole plasma such as band
filling, plasma screening, or resonance broadening[4-7]. This form of bistability has
been investigated by numerous workers (see H. M. Gibbs([8] (1985) for an extensive
review). As a result of increasing absorptive bistability, such phenomenon as kinks
in the transmitted power have been observed[9] and the formation and motion
of high absorption domains[10-14]. In addition to the bistable switching, trans-
verse effects become important due to the non-plane wave nature of any excitation
source. Such beam distortions resulting from increasing absorptive bistability may
form rings in the intensity profile[8,15].

In this chapter we present theoretical and experimental results of absorptive
switching, the formation of transverse structures, and regenerative pulsations in
Imm thick samples of ZnSe at room temperature. The ﬁrst.pa,rt discusses the
results of absorptive switching. Here, with a constant input, the sample switches
to an off-state and subsequently damages. The off-state implies that the trans-
mission has dropped to less than a few percent of the maximum. Here we show
the results of switching on a time scale spanning microseconds to seconds. In ad-
dition we show theoretical simulations showing the effect of various parameters,
such as sample thickness or ambipolar diffusion, on the switching characteristics.
In the second part we discuss transverse structures. Here we show theoretical and
experimental beam profiles. At low input intensities, when the time for switching
is on the order of ~ lsec, we observe through computer simulation that during
switching either longitudinal or transverse heat diffusion allows the formation of a
local minima on axis (hole). However heat diffusion in all three dimensions is nec-
essary for the further development of a local maxima on axis with a local minima
off axis (rings). At higher input intensities more complex transverse structures

result whereby multiple rings may be identified. In all cases such beam distortions



resemble switching waves[16]. Lastly we discuss regenerative pulsations. Here in-
stead of immediately damaging upon switching to the off-state the transmission
will pulse, meaning the output will repeatedly switch between an off-state and an
on-state. The off-state is typically less than 5% the maximum while the on-state
ranges from ~ 30%-80% the maximum. We will show a variety of example output
along with our theoretical results, including beam profiles. OQur theory of this phe-
nomenon is essentially identical to that concerning the absorptive switching alone
however with the further stipulation that the thermal conductivity be enhanced at
the surface. We note that this phenomenon seems extremely rare as few authors
have reported on such results.

As a final comment, the theory section has been divided into three parts.
The first part, Theory I, is essentially a succinct version of the much more detailed
version in Theory II.A. and Theory II.B.. Much of Theory II.A. is an analysis of
the numerical technique employed in solving a system of couple partial differential
equations (PDE’s). Section Theory IL.B. is a quantum mechanical theory for the
absorption spectra and the effects of temperature and electron-hole density. Thus
the detail of Theory II.LA. and Theory II.B. is not essential to understanding the

model and thus Theory I was included merely as a convenience to the reader.
Experiment

Our experiment consists of a very simple transmission type geometry (see
Figure 2). We use the 476.5nm output of a CW Ar*-ion laser operating in the
TEMoo mode. The light is switched on (and at some time later, switched off) via
an acousto-optic modulator (AOM) and focused along the optical axis on to the
front face of the sample using a 5cm focal length lens, L1 (although later we give
an example of regenerative pulsations using a 3.5cm lens). All the transmitted
light is collected. We use a beam splitter prior to the focusing lens to measure the
reflection off the front face. Additionally we focus a 543.5nm HeNe laser through
the sides of the sample such that the two beams cross in the interior. The results

of three types of experiments are discussed. 1) The total transmitted power as a
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Experimental arrangement for optical bistability in ZnSe.
AOM-acousto-optic-modulator, M-mirror, ND-neutral density filter,
BS-beam splitter, P-photodiode, L1-focusing lens, CCD-charge cou-
pled device. El, E2, E3, and E4 refer to the electric field at the
indicated regions.




function of time. Here detection is accomplished via a fast photodiode and digital
storage oscilloscope. 2) Beam profiles. Here a 120x120 pixel CCD array and beam
profiler are used in place of the photodiode (in the case of the transmitted light).
3) Side beam experiment. We monitor the transmission of the side (HeNe) beam
beyond an iris simultaneously with the Art-ion beam. The labels E;-E, identify
the electric fields at the respective loca.tioﬁs. These are simply convenient markers

for the discussion of section Theory ILA..
Theory 1

In this section we offer a succinct version of the more detailed outline of
Theory II.A. and Theory II.B. The purpose of this section is to establish the basic
idea of the theory so that one may understand our approach to the problem and
move on to the results and discussion section, and then if interested seek the more
detailed version of the theory afterwards. This is merely offered as a matter of
convenience as it makes this chapter somewhat more readable.

We know from an analysis of the transmission and reflection as a function
of time that the solution to the problem lies in finding the absorption coefficient
in space and time. The time scale of the results is conducive to a thermal effect.
We also know the band gap is temperature dependent. In addition we know the
temperature change results from the radiationless relaxation of induced electron-
hole pairs, of which are a function of the light intensity and the absorption. Thus
the problem is modeled as a thermal and e-h density transport process coupled with
a light diffraction process. Thus the governing equations are the wave equation |
for the electric field, heat flow equation for the temperature, and rate equation for
the e-h density. We prefer to know these quantities in three dimensions (or four
including time). Due to the high nonlinearity of our system and the preference for
multidimensionality, we have sought a numerical solution.

The wave equation is,

V2E + E2n*E =0 (1)
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where E is the complex electric field strength, k, the wavevector in vacuum, and

n the complex refractive index. The heat flow equation is,
LT _ gap g, Vi @
TRth

where T is the temperature, 7, is the thermal diffusivity, ki, the thermal conduc-
tivity, ¢.ss the percent of e-h recombination events which are radiationless, N the
e-h density, hw the photon energy, and 7 the e-h pair recombination time. Finally

the rate equation for the e-h density is given by,

ON ae N al
ot = DVN-—+ 55 (3)

where D, is the ambipolar diffusion coefficient, o the coeflicient of linear absorp-
tion, and I the light intensity. Again, Eq.1, Eq.2, and Eq.3 will be solved numeri-
cally. This is the content of section Theory IL.A..

The following values for ZnSe have been used: D, = 10~*m?sec ~![17], 7 =
10n sec[17], ke = 6.3Wm~1°K~1{18], 9 = 10~°m?sec ~![11], and gesy = 1.

In Eq.1 the refractive index is written as,

«

2k,

n=n,+énmn=n,+An—:

where n, is the background dielectric constant and An is given by,

An = (g%) AT + (An),. (5)
of f

The of f term is a background (off-resonant) change in the index of refraction
due to a change in temperature while the on term is a resonant enhancement due
to changes in the band gap (and is a function of temperature). The off term
was used as a fitting parameter while the on term was determined by a kramers-
Kronig transformation of the absorption spectra as a function of temperature. The
on term is determined in section Theory II.B. and is given by,

2.571

AT-36.79
32.45

x1072 | (6)

An) = |1.546 —
( )o'n. cosh (
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The expression for the absorption coefficient found in Theory II.B. could not
be used for the simulation when solving these equations. It was only used for
calculating the absorption spectra, of which was only used to identify the above
on-resonant contribution to the change in the refractive index. The reason for
not using that expression is simply because the computational effort would have
slowed the program run time from, for example, five minutes to five weeks. Thus in
solving the above equations we have used the simple closed form expression known

as Urbach’s rule for the absorption coefficient. The expression is,

o 0E,
-’s;—f (hw + E,,- -— Ego bt 'a—fAT)} (7)

where a, = 293/m, o = 2.108, E; = 64meV, E,, = 2.67ev (energy gap at room

a= aoexp[

temperature), 0E,/0T = —.85meV /K, and kg is Boltzmann’s constant. The con-
stants a,, o, E;, and 0E,/0T were essentially used as fitting parameters however
we attempted to find values consistent with literature values[19]. In Figure 3 we

show the temperature dependent absorption spectra and the theoretical fit.
Theory II.A.
Introduction

As discussed in Theory I the essential problem of our model is to solve the
three governing equations, namely the wave equation, heat flow equation, and
electron-hole density, or rate‘ equation. The difficulty of this task is that these
equations are all coupled, nonlinear, and multidimensional. One could relax some
of these requirements (e.g. the number of dimensions) but with a proper numerical
scheme such restrictions are unnecessary. We have sought a very general multi-
dimensional solution whereby few approximations are invoked. This numerical
procedure is however only applied to the contents of this chapter. In later chap-
ters, where similar transmission type studies are undertaken, the nature of the
experiment was éuch that either the time scale was too great and/or the spatial
extent (computational grid size) was such that this thechnique was computation-

ally inefficient.
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Figure 3. Absorption spectra for ZnSe. The filled circles are theoretical fit using
Urbach’s rule while the solid lines are experimental data.
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In what follows we first outline our solution to the wave equation inside the
sample (internal fields). This will give an expression for the real and imaginary
part of the electric field of which must be solved numerically. Such a numerical
technique is then used to propagate this field from immediately within the front
face of the sample to immediately beyond the back interface. Next we show how
to find the fields external to the sample (external fields). This essentially begins
with a gaussian TEMgg incident beam of which is focused into the sample. The
third section discusses the numerical scheme which is used to solve the three gov-
erning equations. Finally we derive some stability conditions for the numerical

approximations.

Solution to Internal Fields

Beginning with Maxwell’s Equations and invoking the following approxima-

oE

tions: 1) zero free volumetric charge, 2) linear polarization, and 3) wE >> &

(slowly varying envelope approximation), we arrive at the scalar Helmholtz Equa-

tion,
0*E + 0*E N 0’E
0z?  Oy? = 022

where k, = w/¢, w is the radiation frequency, c is the speed of light in a vac-

+ En’E =10 (8)

uum, n = n, + én, n, is the linear index of refraction and én is the complex
nonlinear component of the index of refraction. In this particular application of
the Helmholtz equation én is coupled to the heat flow equation and thus depends
on three spatial variables as well as time. Thus a numerical technique is used to
propagate the fields. A variety of solution techniques have been attempted. The
following technique, which proved to be most accurate in our computational model,
is as follows.

The method of solution for the scalar Helmholtz equation for some arbitrary
on follows that of the split-operator scheme[20,21] for solving the paraxial equation
but then rather than invoking a fast Fourier transform technique[22-24], a com-

mon approach, we use a simple explicit finite difference technique. The following
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operators are introduced,
‘ 0
P = e——
e (9)

1
2
’

Q= (Vi +#n?) (10)

where V3 = 5% + 5‘%. Eq.8 may now be written as,
(P2 + Qz)E =0, (11)
which can further be written as,

{(P +:1Q)(P —1Q) +1[P,QI}E =0, (12)

where [P,Q] = PQ — QP. If [P,@] = 0, then Eq.12 has the solutions,

8E . |
5 = £iQE. (13)

The approximation [P, Q] = 0 is good if the variation in én along the z-axis is suffi-
ciently weak. The solution to Eq.13 represents a wave propagating along the z-axis.

For a wave propagating in the positive z-direction over some small z increment,

Az, is,
Az

E(z,y,Az) = exp [—i / (V3 + kgnz)% dz} E(z,y,0). (14)

0
For Az sufficiently small and the fluctuation in én along the z-axis sufficiently

weak, the integral in Eq.14 may be approximated and Eq.14 becomes,

E(z,y,Az) = exp [—iAz (Vi + kfn,z) E] E(z,y,0). (15)

1
We now use the following "trick” to rewrite the expression (V2 + kZn?)? which

operates on E(z,y,0). We make the following substitution,
én

Mo

A2 = V2 4 k22 = V2 4 E2n2(1 + —)2. (16)
1 [ 1 0o'Yo

Now, we wish to replace A with the approximation,

1
Ay = (V3 +En2)® + kybn. (17)
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We may test this approximation by operating on E(z,y,0) with both A% and A?

and comparing. First we express E(z,y,0) in a 2-dimensional Fourier series,

E(m, y, 0) = E E Emﬂ(o)ei(kzz‘i'kvy)ﬂo' (18)
Operating on E(z,y,0) by A? is equivalent to rewriting A? as,
2 2 4 1.2\,.2 2,2 sn)?
A® = —(k; + k;)n; + k)n; 1+n— . (19)

For the operator A; we first square and then use the expansion

3 v: Vv
2 2,,2\2 __ L L
(V2 +k2n2)* = kon, (1 + Tt~ Fhint T ) (20)
giving,
én (k24 k2) én on\’
2 _ (k2 4 k2)p2 om_BaThy) 2,2 on
A} = —(k; + k;)n; (1 + ~ B in, + +knl (14 - (21)

where (....) signifies the higher order terms in the expansion given by Eq.20 We
thus see that as long as f—f‘; << 1 the replacement of A by A, is justified. Note, for
k. real, that is a propagating field, k2 + £2 < k2. Our solution for the electric field

at z = Az becomes,
‘ - l .
E(z,y,Az) = ¢—ia2( Vi +kEn3)* E(z,y,0)etA%kebm, (22)

This final form states that the solution is given by propagating the field through
the linear medium (6n = 0) and then updating the phase by the nonlinearity,
-Azk,6n. Computationally this is very significant.

The remaining portion of this development is then to decide how to propagate
the fields through the linear medium. It was found, essentially by trial and error,
that a étra.ight forward explicit finite difference technique worked best. Other
methods, such as the fast Fourier transform technique, implicit methods, ect. were
attempted, however they were either too computationally time consuming, required
to much memory storage, or simply were numerically inaccurate. Recall that
the equation for the electric field is coupled with either the rate equation for the
electron-hole density, the heat flow equation, or both. Thus the implicit schemes

which may otherwise be preferred, in this system are not.
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Eq.22 is rewritten as,

E(z,y,Az) = E°(z,y, Az)e""A”“’&‘ (23)

where E°(z,y, Az) represents the field propagated through the linear medium. For

E°(z,y,Az) we have again the scalar Helmholtz equation,

52
2 0 2210 __
(VJ_ + _622) E° 4+ knlE° =0. (24)
We assume the following solution,
E° = Yetkomor (25)

where ¥ is complex. Inserting Eq.25into Eq.24 we arrive at,

- 2ikono?9—\f +VIU=0 (26)

where the slowly varying envelope approximation has been assumed, namely,

ov 0*v

konogs >> 57

(27)

We have chosen cylindrical coordinates with azimuthal symmetry as this is
conducive with the experiment#l geometry whereby a TEMgo gaussian beam has
been used. First we separate ¥ into its real and imaginary components, Y® and
U! respectively, and upon substitution into Eq.26 and identifying the real and

imaginary parts we obtain,

R
kono% =Vv2yl (28)
gl

kono%z— =-V2gR (29)

The transverse laplacian is written as,

19 02

2 _

Vi=lartom (30)

Eq.28 and Eq.29 are then solved numerically. This is discussed in a later section.
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Propagation of External Fields

In this section we establish an expression for the electric field profile im-
mediately within the front face of the sample. Referring to Figure 2 we wish to
propagate some incident field through a focusing lens, some distance Z,4p, in vac-
uum and then through some dielectric interface. (Z;ump is not explicitly identified
in Figure 2 due to congestion. It is simply the distance between the sample front
face and the principle plane of lens L1.)

The electric field profile incident on the lens L1, E;(r,0), is transformed in

the thin lens approximation to Ey(r,0), by a phase factor expressed as,
i kar?.
Ea(r,0) = Ey(r,0)e" % (31)

where k, = ?\—’:, A, is the free space wavelength and f is the focal length. E;(r,0)is
determined by the mode of the incident laser light and is assumed to be a perfectly

collimated gaussian TEMgo mode. Thus we have that,

',2
Ey(r,0)=E,e v} (32)
where FE, is the magnitude of the incident field and w, the characteristic waist size
(spot size).
The incident field magnitude, E,, is found by knowing the incident power,

Pin ’ namely,

P / (|B:(r,0)P) i )

s Mo
where 7, = | /42 = 377(Q) and is the impedance in a vacuum. Substituting in Eq.32

and integrating over all space in cylindrical coordinates we arrive at,

4}){11 [o]
|Bo| = o[ 2P (34)
1rwo

We find the electric field ‘immediately within the sample, E5(r, 2samp), located
a distance zsump from the focusing lens, by propagating Ez(r,0) using the Huygen-
Fresnel diffraction integral[25]. Namely,

E3(7', zsamp) = —3 2:aa’;np /E2(ro, 2z,¢mp JO (korro) Todro (35)

zsamp Zsamp
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where we have used cylindrical coordinates and the azimuthal integration has al-

ready been carried out.Using Eq.31 and Eq.32, we obtain,

E3(7, 2samp) = U,e® (36)
where,
E 92
U, = ———exp|———— 37
VT [ e+ 7)%] (31)
6%~ 1,y 02 o
r

= (39)

_ 2zsamp

1 _ zaafm
y= el (41)

To find the field immediately inside the sample medium, ¥(r, zsamp), Wwe multiply

E3(r, 2samp) by the transmittance, ¢, given by,

2
n+1

(42)

t1=

Here n is given by,
a

2k,

n=n,+ém=n,—1

(43)
and the transmittance becomes,

t, = \/(no - 1)22 - (5‘-,:—)2 exp [z'tan -1 (é'(rzaT)k)] (44)

where a = a(r, Zsemp). The time averaged power density immediately inside the

sample, I(r, zsamp), is given by,

W(r, Zsamp)| Mo
I(T, zsamp) = I ( 21, P)l (45)

The fields are then propagated to the back side of the sample numerically. The
field then emerging out the back interface, E4(r, Zsamp+ Lo), Where L, is the sample
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thickness, is given by multiplying the field at the back interface U(r, zyamp + Lo)
by the transmittance, ¢, where,

L 2R

2T A1

(46)

which becomes,

214
oy @) R (i fin (o) - 51 ()]

(47)

and a = a(r, Zsamp + L,). The total power transmitted out the sample, T, is

determined by integrating over the transmitted time averaged power density,

Touwt = 27r/ ([ Ea(r, z”mr;’ t Lo)l)“’"‘ rdr (48)
0 [+

In Eq.35 the bessel function is approximated as [26],

N 2 4 6
Jo(z) =1 -2.2499997 (2) +1.2656208 () — .3163866 (Z) +
0444479 (£)° — .0039444 ()" + 0002100 (£)

Jo(z) = \/gcos (:c - Z—) (50)

(49)

for 0 < z <3 and,

for z > 3.
Finite Difference Schemes

In this section the explicit finite difference technique[27] is established for the
heat flow equation, rate equation for the electron-hole density, and the real and
imaginary components of the wave equation, previously separated. Cylindrical
coordiﬁa.tes are used in order to take advantage of azimuthal symmetry.

The heat flow equation is, |

_1_6(AT) _19(AT) + 0} AT) 0%AT) 4 Nhw
e Ot  r Or or? 0z? Tk
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where 73, is the thermal diffusivity, AT is the change in temperature (from room
temperature), N is the electron-hole density, iw is the photon energy, 7 is the
electron-hole recombination time, and k., is the thermal conductivity. For the

electron-hole density we use the following rate equation,

r Or or? 022

aN(ns) 1 aN(na) a2N(ns) a2N(ns) N(ns) al
o™ _ p, L BN UL e
ot T hw

where D, is the ambipolar diffusion coefficient, « is the linear absorption coefli-
cient, and I the intensity. Here the superscript (ns) will be used to indicate a
nonstationary solution for the electron-hole density. In order to isolate the car-
rier dynamics we will also have occasion to use the steady-state, diffusion free

electron-hole density, indicated by N(*), which can be seen to be,

(o) - oIt
N© = 22 (53)

Numerically, we use an explicit finite difference technique. For the electric field we

use the following approximations,

QU Wi, j +1) — V(4,5 — 1)

0z = 2Az 7 >1 (54)
{ { 0 - _ { . .
0z Az

where £ stands for R or 1. For the wave equation, heat flow equation, and electron-

hole density we have that,

102 L EG+1,5,k) —E( - Ljk)

ror 26 — 1)Ar 8> 1 (56)
19z 0°= .
ny el = (57)

= _ E(i+1,5,k) - 22,5, k) + (6 — 1,5, k)

oy = Ar? > 1 (58)
625 ~ E(z+1’],k)_5(z,]ak) .

67'2 = 2 AT2 1= 1 (59)
 0E L EGygk+1) —E(,4, k)

— 60

ot At (60)
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where = may be B ¥ AT, or N. For the heat flow equation and electron-hole

density,

0’z _ =4, +1,k) — 22(,4,k) + E(3,5 — 1, k) ..
57 = N ,1 <7 < Jmax (61)

where = may be either AT or N. At the boundaries j = 1 and j = jyax We have

for the change in temperature the following expressions,

O*(AT) o AT(,j+1,k) — AT(,j,k)  HAT(i,5,k) . _

922 A2 A (62)
OAT)  AT(i,j = 1,k) — ATG,j,k)  HAT(,j,k) . _ . (63
922 Az? kpAz ] T Jmax

where H is the convective heat transfer coefficient representing cooling at the

boundary by convection. For the electron-hole density we have the boundary

conditions,
0*°N _ N(i,j+1,k)—2N(,j,k) .
022 Az? g =1 (64)
0*N _, —2N(i,j,k)+ N(3,j - 1,k) . .
022 N%) yJ = Jmax (65)

For the real and imaginary components of the wave equation the boundary condi-

tion at the front face, j = 1, is given by the incident field,
VR = Re{Es(r, 2Zsamp) } Re{t1} — IM{E3(r, Zeamp) } Im{t1} (66)

Ul = Im{Es(r, zsamp) } Re{t1} + Re{Es(r, Zsamp) } Im{t1} (67)

where E3(T, Zsamp) and t; are given by Eq.36 and Eq.44 respectively.

In Eq.52 the recombination term, — & (TM), is evaluated at (z,7,k+ 1). In all
these approximations the indices ¢,j,k have the following meaning: r = (: — 1)Ar,
z=(j-1)Az t=(k—1)At, and ¢ = {1,%max}, J = {1, Jmax}- Jmax Of course is

governed by the sample thickness and Az.

Stability of Numerical Schemes

In this section we will consider some requirements for the stability of the

numerical solution to the wave equation, heat flow equation, and rate equation.
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Here stability refers to the unstable growth or stable decay of errors introduced
by the arithmetic operations necessary to solve the finite difference equations. If
the finite difference scheme is stable then in principle the computational errors
can be made arbitrarily small. Stability is a necessary condition for an accurate
numerical solution. Most explicit schemes are conditionally stable, while most
implicit schemes are unconditionally stable. However when choosing a finite dif-
ference scheme one must also consider the computation time. Many methods have
been attempted here and it has been found that in reference to computational
speed and memory storage requirements the relatively simple ”classical” explicit
schemes have worked best. (Most implicit schemes yield matrix algebra equations
which were found computationally inefficient.)

Perhaps the most widely used procedure for establishing stability require-
ments for a finite difference scheme is called von Neumannn stability. Consider a
two dimensional problem with independent variables (x,t). The method introduces
a line of errors along x at t=0 and test the growth or decay of these errors along
t. The method applies to linear, constant coefficient, finite difference approxi-
mations. In the case of nonlinear problems some local linearization is necessary.
According to the authors of a highly cited text on finite difference techniques[28],
71t is difficult, if not impossible, to generate results on stability, convergence, and
consistency for nonlinear PDE approximations; the best that one can usually do
is obtain results on a local basis in which certain terms are averaged or even held
constant.”

First we will consider the wave equation in the linear medium,

0% _10¥%  8*¥

Bnokege = vor Vo (68)
From before we use the following finite difference approximation,
inoko\y(z,]-l-l)_‘l’(z,]_l) — \IJ(Z+1,])—\I/(Z—1,])+ . (69)

Az 2rAr

B +1,5) — 290, 5) + ¥ — 1,5)
(Ar)z
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which reduces to,
UG5 +1) = 9(6,5 - 1) + & [§(i +1,5) — ¥ - 1,5)] + (70)

& [¥(i+1,5) - 28, 5) + ¥ - 1,5)]

where,
. 1Az
= Gy ()
. 1Az
= A "

We now define §¥ (s, j) as the error difference between the exact solution and the
finite difference approximation. That is the solution \il(z, J) may be represented in

our finite difference approximation as,
U(i,5) = U=, 5) + 69 (i, ) (73)
Substituting Eq.73 into Eq.70 yields,
80 (i, +1) = 89,5 — 1) + & [69G +1,5) — 69(i — 1,5)] + (74)
& [69(i +1,5) — 2693, 5) + 69(i — 1,5)]
Our goal is to establish the condition on Az and Ar such that given some §¥(, 5),

6¥(i, 7 + 1) does not grow without bound. This von Neumann stability is carried
out by expanding 69(%, ) by a Fourier series,

§¥(m,j) = Z a-z’;eiﬁp"‘A’ (75)
)
We will also make the definition,
§0(m, j) = §¥(m,j — 1) = 3 bjeiemar (76)
P

Upon substituting into Eq.74 our Fourier series representation and recognizing that
all Fourier terms add linearly, we note we need only to consider one such term.

Eq.74 thus reduces to,

a;; +1_ a,’;" n [61 (e.‘ppmA,- _ e—iﬁpmAr) + & (eiﬁpmAr 4+ e~ iPpmAr _ 2)] a:" (77)
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Which after some simplification and Eq. 76 becomes in matrix form,
alt? [22'61 sin(B,mAr) — 4¢; sin 2 (E’Z;A')] 1) (a
> ) = ; (78)
5 1 0 ) \b

In order for the errors to not grow the eigenvalues of the 2x2 matrix must be < 1.

The eigenvalues ), are given by the solution of,

M-~ [22'61 sin(B,mAr) — 4&;sin 2 (ﬂpn;Ar)l Ad—1=0 (79)

and the stability condition, [A\;| < 1, becomes,

(60 sin(¢) + 2i |G| sin? (-g-) +\l [[éllsin(C) + 2i |&]| sin? (%)] +1<1 (80)

where { = fB,mAr. This condition must hold for all r thus we may set |é| =0 as

well as all ¢, thus we set { = 0. Eq.80 then becomes,

% & + /1 — 46

If the argument of the square root is positive we are guaranteed stability. If the

<1 (81)

argument is negative we arrive at,

. 1
|&2] < 3 (82)
Backing up slightly we must recall that at r = 0 we have that,
10 i
ror o (%)

which translates here to é, — 0 and é; — 2é; and thus Eq.?? is further restricted

(in the sense that |&;| is further restricted), giving,
4|6 <1 (84)

or,

Az < i—nokaArz | (85)

Eq.85 is the stability requirement for the finite difference approximation to

the linear wave equation. One should keep in mind however that this stability
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criteria is merely a necessary condition, but perhaps insufficient condition. What
we really desire is a stable ﬁnite difference solution to the nonlinear wave equation
of which is further complicated by its coupling to the heat flow equation. Thus
Eq.85 merely suggests an upper limit on Az, given some sufficient Ar. Ar has
been chosen merely from insight into the physical problem, desired resolution,
computation time, and ”trial-and-error”.

Of the three governing equations under consideration (wave equation, heat
flow equation, and rate equation) the linear wave equation is the only one with-
out any explicit time dependence, thus we have used it to establish our stability
requirement amongst the spatial variables r and 2. Next we must establish a sta-
bility condition relating the time variable with the spatial variables. This problem
is greatly simplified by observing the relative time scales for the heat flow equation
and the rate equation. If we assume a steady state solution to the rate equation
then the heat flow equation will dictate the stability criteria. If we do not use a
steady state solution to the rate equation then we approximate the temperature as
a constant over any small time interval and use the rate equa.tibn to establish our
stability criteria. This turns out to be justified in that the time scales amongst the
two phenomenon are orders of magnitude apart. In both cases we must assume
that the intensity is constant over the respective time intervals.

. First we will consider the heat flow equation with a steady state carrier
density. We must linearize the expression for the absorption coefficient in order to
invoke the von Neumann stability analysis. Our expression for the coefficient of

absorption (Urbach’s rule) is,

z hwtEz~E, -%AT)
a= aoekaTo+ATi ( z 9o~ 8T (86)

which by a Taylor series expansion about AT = 0 is approximated as,

a o+ a AT (87)

(Aw+Ez-Eg,) (88)

-
a) = ekt

o

kT2

Qy = —0

(hw + B, —E, - %ﬂ,) (89)
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Here T, would be continuously updated as to keep this first order expansion accu-
rate. Using this linearization the heat flow equation becomes,

_]_._a_fr _ la_T + 62T + 62T + (al - agT)I
Nin Ot T rdr  Or? 922 ki

(90)

where now it should be understood that T is actually AT. Again we will approx-
imate the exact partial differential equation with a finite difference representation
and consider the growth in the error. Let the error introduced by our finite differ-
ence approximation be éT'. The equation for the error becomes,

1 6(6T)_13(6T) (8T)y O éT) «aql
mr Ot T r Or or? 0z ke 6T (91)

We will analyze the following finite difference approximation to Eq.91,

167Gy, k+1) = 6TGug k) _ 187G+ L, k) = 8T~ L. k) ,

9
Ntk At r 2Ar (92)
8T(i+ 1,5, k) — 26T(3,5,k) + 6T (i - 1,7, k)+
Ar?
8§T(1,7 +1,k) — 26T (2,7,k) + 6T (2,5 — 1,k) aql ..
Az2 - kth 6T(Z, Js k)

Again we now express the error in a Fourier series representation (in this case a

two dimensional series),
6T(m, n, k) — E E a:’qeiﬁpmAreiﬁanz (93)
P g

Substituting are Fourier series representation into Eq.92 and realizing that only a
single Fourier term in each dimension need be analyzed we arrive at,

k+1 _ K YAV —iB,Ar\ K
apht = apgt ot (€T — e af (94)

Nen At iBpAr —iBpA Nt iBqAz ~iBgAz Nnaz] k
[Ar2 (e e T-2)+v(e e ™ _2)_ ko At ay,

which simplifies to,

n At At . o [BpBr
aktl = a’;‘q[l + z%m sin (BpAr) — 47]th—A-;; sin (—’?—) - (95)
At . B, Az\  nmnasl
dnp——sin® | —| —
Nth ALz sin ( 2 ) Fon At)
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The stability condition must now be modified slightly. That is a parabolic PDE
with a source term must allow for solutions which grow in time. This is known as
the von Neumann necessary condition[28] and is written as,

aktl

Zpa _ KAt' <1 (96)

k
apvq

where K is some constant. Our stability condition then becomes,

Men Al At B,Ar
{1414 _ﬁz—z sin (B,Ar) — 4""‘F sin ( p2 (97)

Az? 2 ke

After a tedious calculation one can show that the magnitude of the left side of

4ny— At sin 2 (ﬂqu) - nthazIAt - KAt|<1

Eq.97 has a maximum (worst case scenario) and minimum when the arguments of

the trigonometric functions are 0 or 7. Thus Eq.97 reduces to,

nehQa ] ( 1 1 )
-1< - —_—t - t<
1<1- ™ ———At — 4c; At A 2+A ) — KAt <1 (98)
Upon setting K = —-mﬁﬁ we arrive at,
At< ! (1 + 1)—1 (99)
= 2 \Ar2  AZ22

This is our stability condition for the heat flow equation. Note, the final result
is independent of the source term as well as the first derivative term. This is a
common result.

Finally we must consider the rate equation, or rather the error, 6V, associ-
ated with the finite difference approximation to the rate equation,

0(6N) D l@(&N) 4 0%(6N) 4 0*(6N) _ 6_N
o~ *\r Or or? 022 T

(100)

Note because the source term is not written explicitly as a function of the carrier
density it does not appear in the differential equa.tfon for the error. Referring to
the finite difference scheme from before and again using the von Neumann stability
analysis we arrive at,

S
—151—4Da(—Al—£+1) (—1—+—1—)51 (101)
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Here K was set equal to zero because the source term did not appear in the finite
difference scheme for the error term. In other words the source term was not
written explicitly as a function of the carrier density, but has been treated as a
constant over some small time At. From Eq.101 our stability condition is,

At < [2D (L + —1—) - l]_l (102)
= “\Arz = Az? T

Conclusion

We have outlined our numerical scheme for finding a solution to the three
governing equations: namely the electric field (wave equation), heat flow equation,
and electron hole density. Although the classic explicit scheme used is perhaps not
the most perfect scheme one could contrive, the justification here is the justification
for any numerical approximation, namely that it works. Computational speed was
perhaps the most vexing consideration. Implicit schemes were developed along
with numerical algorithms to solve the subsequent matrix algebra problems but
the computational effort way exceeded the gain in stability. We have used the
well known and most often applied, von Neumann stability analysis to establish
a guideline for the choice of our numerical grid. These results should however
only serve as a guideline as certain approximations have been invoked in order to
decouple the respective equations.

The program developed was simulated on the Oklahoma State University

VMS (vax) mainframe. The program lines are the contents of Appendix A.
Theory I1.B.

In this section we will present the results of a quantum mechanical theory for
the absorption coefficient in a two band semiconductor for arbitrary wavelength,
temperature, and e-h density. The motivation for this is to essentially be able to
compute the absorption spectra accurately as a function of these variables so as to
be able to compute through the Kramers-Kronig relations any resonant enhance-

ment of the refractive index. As previously mentioned, section Theory I, we only
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employ this calculation for that purpose, as this calculation is computationally
time consuming and could not feasibly be applied to the numerical simulations
outlined in section Theory IL.A.. ,

Below the band gap the induced electron-hole (e-h) density is relatively small,
however as the temperature is slowly elevated due to the radiationless recombi-
nation of these e-h pairs, the band gap is tuned to longer wavelengths. Upon
completely temperature tuning the band gap such that interband transitions be-
come possible, an e-h plasma may result. Each e-h pair then interacts with this
plasma greatly influencing the optical properties of the semiconductor. A partly
phenomenological theory of the nonlinear optical properties of semiconductors in
the spectral vicinity of the absorption edge as a function of temperature and e-h
density has been offered by Binyai and Koch(1986)[29]. The theory is an ex-
tension of the well known Elliott formula[30] and is based on the many particle
Hamiltonian of a system of interacting electrons and holes in a two band semi-
conductor. The attractive coulomb potential is replaced by a screened one, the
Yukawa potential whereby the écreening length is dependent on both tempera-
ture and e-h density. The relative motion amongst the e-h pair is then described
by Schroedinger’s equation. This is the modified Wannier equation. In order to
solve the Wannier equation the Yukawa potential is approximated by the Hulthén
potential.

The theory is a nontrivial one and many details have been omitted here.
Our goal has been to use this theory and not necessarily argue its merits. Many
authors have shown excellent agreement amongst this theory and experimentally
determined absorption spectra and index of refraction spectra as a function of
both temperature and e-h density. Again, our purpose for using this theory is to
accurately fit the absorption spectra as a function of temperature and e-h den-
sity and then by means of the Kramer’s-Kronig relations determine the change in
the refractive index as the energy gap is temperature tuned to the wavelength of

interest. This effectively gives the on-resonant contribution to the change in the

refractive index. We will do this for both ZnSe and CdS.
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The final expression for the absorption coefficient is[29],

o~

o

Ime(w
c\/— (w) (103)

Ime(w) = Ztanh [ (3 e — ﬁ,,)] [B(w) + C(w)] (104)

&, [N (-2 —g)] = n?[n2—(g— )]
Ble) =2 or [“’*(2‘3)“ re—Y 1L, "erd—oh

=1 n=1(#£)
(105)
C(w) = / dz\/3 H 2"”2'92 §e(z — &) (106)
oot —g)?+n2g2z| ¥
where,
__ r,  _ hw-E, ksT = T pen—% 12
6_27ra§ER’w Er T = Egr’ L= Egr Eg teh = kT == T2a,K

B(w) represents the bound (exciton) states and ,/g indicates that the sum
extends over the existing bound states, i.e. up to the largest integer number
L < V- If g is less than one there is no contribution from the bound states. The
value of g comes from the Bargmann theorem[31] which gives an upper limit on

the number of bound states for a given potential. C(w) represents the continuum.
%2

2m a2

Definitions: Egp = =Rydberg energy, a, =Bohr radius, m, =reduced
effective e-h mass, £ =screening length, u.n =electron,hole chemical potential,
E, =energy gap at some temperature, T, and zero e-h density, Aw =incident
radiation energy per photon, and kg =Boltzmann’s constant. The following values
were used:

CdS[32]: a, = 30.14, m} = .235m,, mjy, = 1.35m,, E,(290°K) = 2.44¢V,
22 = —5meV/°K, T = Eg.

ZnSe[32]: "a, = 44.4A, m! = .16m,, m} = .6m,, E,(290°K) = 2.70¢V,
%ﬂ = —.72meV/°K, T = Egp and m}, is the effective mass of the particle & where
« stands for either e (electron) or A (hole).

The delta function, 6, represents a broadened delta function used to fit

exciton lineshapes and is given by[33],

1

r(e) = 7T cosh (if-) (107)
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where the T in our definition of T is used to describe the spectral width and
is used as a fitting parameter. The chemical potentials are determined by the
temperature and e-h density. By assuming they behave as an ideal Fermi gas we

have the following relation,

1 a2 [ N
—_ 'a 2 d — 3 .
55 (Tria)} 0/ ey e R (108)
- My
Mg = — (109)

and N, is the density of the particle a. For a given temperature and particle density

Eq.108 is approximated with the use of the Padé approximate technique[34]. The

result is,
fo =In(Q) + by In(k2Q + k3) + ks + ks (110)
r \?
Q=4N¢,,cu§'(~~ ) (111)
Ty

k, = 4.8966851, k; = 3.3105795, k3 = 73.6264033, k4 = .1333760, ks = —21.0508644
(112)
Once the chemical potentials have been found the plasma screening length, «, is

determined by,

Qe

(a,k)? = il—\/%/o?dxﬁza: m

1 1
w [1 + exp(z — ﬁa)] [1 " 1+ exp(z — fia) (113)

Finally, by phenomenologically forcing a constant exciton ground state energy,
which is a well known experimental fact for a highly excited semiconductor, the

change in the band gap, 6 F,, due to the creation of a plasma is,

SE, ( 1)2

—Z=-14+(1--) ,g21 114

Fn = 7) g (114)
§E, 1
= _—g<l1 115
Bn = Y (115)

This effectively stems from equating the change in the exciton binding energy to |
the magnitude of the change in the band gap, rendering the exciton ground state

energy constant.
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Obviously the necessary calculations are lengthy. It was found that the
infinite products required limits up to approximately 1000 for the bound states
and 4000 for the continuum, depending on the value of ¢ (which is determined
by the temperature and carrier density). In the foregoing the integrals which had
to be treated numerically were approximated by a simple Riemann sum. More
progressive techniques had been examined, however the éomputational speed of
a simple Riemann sum outweighed the negligible accuracy gained from a more
involved algorithm. As a final note to calculate the absorption coefficient given
the temperature, e-h density, and wavelength requires approximately 1.5 minutes.
Thus for a computational grid of say 15x70 points would require approximately
17.5 hours for a single data point in time! Hence the reason for not employing this
calculation in the simulations of section Theory II.A.. The calculation has been
simulated on the Oklahoma State University VMS (vax) mainframe. The Program
lines are the content of Appendix B.

Once a theoretical fit to the absorption coefficient has been established one
can then invoke the Kramers-Kronig relations to find the change in the index of
refraction spectra as a function of temperature and e-h density. This has proven
fruitful in the evaluation of the change in the index of refraction as the band gap is
temperature tuned (resonant enhancement). The change in the index of refraction
may be approximated by a first order Taylor series expansion,

an= () Az () Ars (22)" an (116)
~\aT/,,, oT ON

on on

In Eq.116 of f and on refer to off-resonance (background or phonon assisted) and
on-resonance respectively. The on-resonance terms result from band edge effects
where the properties of a semiconductor are very different from those away from
the band edge. The term containing the e-h density is effectively an on-resonant
term due to the fact that a negligible number of e-h pairs are created far from the
band edge. The superscripts on the on-resonant terms imply that these respective
quantities are evaluated at a given point. The index of refraction is a function of

the temperature and e-h density. We are merely applying a first order expansion.
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We note that in Eq.116 we are not concerned with the change in optical path
length, merely the change in the refractive index. There is no cavity resonance
consideration in our model because we are not dealing with a dispersive form of
bistability, thus in this context the optical path length is not of importance but
rather the refractive index change alone. Thus the change in length of the sample
due to thermal expansion has been ignored.

It is the on-resonance terms we get from a Kramers-Kronig transformation of
the absorption spectra. The change in the index of refraction spectra as a function

of temperature is given by,

1 Ta(X,T,N,) - a(XN,T,, N,)
; - ’ b ) 2 dA’ 11
An(\,T, N,) = 5= PV 0/ O (117)
and as a function of e-h density,
! !
An(), Ty, N) = PV / o, T"’N ) “(A’T"’N")dx (118)

where PV indicates the principle value. In Figure 4 we show the absorption spectra
for ZnSe as a function of temperature. (The results for CdS are included in Chapter
IV.) Included are the experimental spectra for the first five temperatures. Figure 5
is the Kramers-Kronig transformation of the absorption spectra for an e-h density
of 102!m™3 giving the index of refraction spectra as a function of temperature.
For e-h densities less than 1023m=3 these spectra changed negligibly while the
computational effort significantly increased. In the bottom figure we show the
change in the index of refraction as a function of the change in temperature at the
476.5nm wavelength for low (102’m™3) e-h densities. We see as the band gap is
temperature tuned to this wavelength the index of refraction initially drops and
then rises to some equilibrium, or final value. We have empirically fitted this
curve to a hyperbolic secant function. This function was chosen merely because it

possesses the proper character. Qur expression for An is,

2.571

AT--36.79
32.45

Anjpy, = |1.546 — 1073 (119)

cosh (



34

100000 ¢
80000
60000

E
o 40000
20000
0
460

Figure 4. Experimental and theoretical absorption spectra. The filled circles
are experimental points while the solid lines are theoretical. The
temperatures are room temperature (290K)+ 0, 20, 40, 60, 80, 100,
120, 140, 160, 180 for plots 1 thru 10 respectively.
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In Figure 6 we show the theoretical absorption spectra as a function of e-h
density at room temperature. In Figure 7 we show the associative refractive index
spectra (top) along with the change in the refractive index at the wavelength
476.5nm (bottom). From this picture it is clear the index change due to the e-h
density is small (compared to the temperature effects) for e-h densities less than
~ 102m~3. In Figure 8 we show the absorption as a function of temperature and
e-h density. Both graphs (top and bottom) represent the same data, only oriented
differently for ease of perspective. This shows that at relatively high temperatures
the absorption drops off rapidly near e-h densities beyond ~ 10>*m~3. This is due to
band-filling. The steady-state value for the electron-hole density, for the simplest
of rate equations, is given by,

) _ edr

N = == (120)

As a approaches zero the intensity, I, would have to approach infinity for finite
N An unphysical result. Thus there exist some maximum electron-hole density
achievable using a single exciting beam. Also as N(*) increases a decreases which
in turn decreases N(¥), It is somewhat unclear what e-h densities are achievable
in our experiment. The simple rate equation allows e-h densities beyond 1025m™3
at high excitation levels. However this does not include such nonlinear effects as
band-filling, nonconstant ambipolar diffusion, nonconstant thermal conductivity,
or higher order recombination terms. At high excitation levels it is likely these
quantities become a fuﬁction of temperature and e-h density. It seems possible
that such high e-h densities may never be reached on a usec time scale (meaning
after thermalization and relaxation). For this reason we have ignored the effect of
the e-h pairs in the evaluation of the on-resonant enhancement of the refractive

index.
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Results and Discussion

Absorptive Switching

Figure 9 illustrates three example cases of the normalized power transmis-
sion as a function of time for both the experimental results (left) and theoretical
simulations (right). We stress that in all cases the input intensity remains constant
from t=0 to beyond the point of switching (i.e. the switching to an "off” state
is due to the sample, not the AOM). The powers noted were the actual powers
used in the experiment and model. Because one cannot know exactly the location
of the sample with respect to the focusing lens this location has been identified
theoretically and is given by zsamp. A theoretical value of 5x107° K~! was used for
the off-resonant contribution to the thermo-optic coefficient, (0n/8T),;, .

The experimental results indicate a very similar temporal profile over a dif-
ference in time scale of five orders of magnitude. This would seem to indicate that
the same dynamical processes are responsible for the bistable behavior. Using the
previously discussed model we were able to theoretically simulate the experimental
results to a fair degree of accuracy. Only in the case of the very long time scale,
Figure 9.(c.2), does the model begin to resemble less that of the experimental re-
sult. Here the model shows a relative fast decrease in transmission at the onset
and a near equilibrated regime prior to switching. The experimental result would
indicate a gradual decrease in transmission from the onset until switching. In this
example we only include the stationary case for the e-h density as this allows for
a much greater step size in time.

In Figure 10 we simulate the effects of various parameters on the switching
characteristics. In Figure 10.(a) we show the effect of the electronic dynamics.
Namely, (a.1) assumes the full non-stationary solution of the e-h density equation
while (a.2) assumes a stationary solution. Obviously the effects of diffusion and
temporal dynamics are minimal. Therefore the major dynamical process is gov-
erned by the heat flow equation. In the five other graphs we have used a stationary

e-h density.
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Figure 9. Normalized power transmission vs. time. The powers are (a) 640mW, (b)
470mW, (c) 330mW. The sample location, Zsamp, was theoretically
determined to be (a.2) f-.17mm, (b.2) {-.2317mm, and (c.2) f-.18mm
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Figure 10. Absorptive switching characteristics as a function of (a) electronic dy-
namics, (b) dn/dT, (c) longitudinal and transverse heat diffusion,
(d) ambipolar diffusion, (e¢) sample thickness, and (f) sample place-
ment along the z-axis.
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In Figure 10.(b) we show the effect of self-focusing. (b.1) assumes both the
on-resonant and off-resonant contributions to the change in the index of refraction
due to temperature changes (low e-h density). This is the case used to fit the
data. (b.2) ignores both contributions, thus the diffraction here is solely due to
the already present diffraction caused by the external focusing. (b.3) ignores the
on-resonant term, which effectively gives a larger value for dn/dT and (b.4) simply
reverses the sign of both terms. Interestingly it would seem the more positive the
total dn/dT the less the transmission until the time of switching, however the time
of switching still remains roughly the same.

Figure 10.(c) shows the effect of the heat diffusion terms. (c.1) contains both
the longitudinal and transverse diffusion terms. In (c.2) we turn off the longitudinal
heat diffusion term and in (c.3) we turn off the transverse heat diffusion. Due to
the similarity amongst curves (c.1) and (c.2) in comparison to curve (c.3), one
may conclude that heat diffusion transverse to the direction of beam propagation
exceeds that along the direction of propagation. This is due to the fact that
the temperature gradient is greater transverse to the beam then along the beam.
The transmission profile of curve (c.3) is unique. Because there is no radial heat
diffusion and negligible radial carrier diffusion, the temperature profile, and hence
the absorption profile, follows that of the intensity profile. Thus the center portion
of the intensity profile switches sooner than in the case of diffusion in all dimensions
because of the heat confinement. In addition, the total transmitted power does not
switch to zero spontaneously. The heat generated near the center of the beam is
not shared with that portion of the beam outside this region. Thus initially only a
finite portion of the beam completely switches, the remaining portion, extracting
less energy from the beam, decays slowly.

In Figure 10.(d) we examine the effect of ambipolar diffusion. In (d.1) we
have D, = 10~*m?sec !, in (d.2) we set the diffusion term to zero, and in (d.3)

we raise D, to 1073m2sec ~!. Clearly the electronic diffusion term has little effect.
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In Figure 10.(e) we show the effect of translating the sample along the optical
axis. In (e.1) thru (e.3) we have that z4m, is equal to f-.17mm, f-.18mm, and f-
.16mm respectively (f=5cm). Clearly as the sample is moved closer to the focal
plane the time of switching decreases. It would seem in comparing this figure with
Figure 10.(b) that external focusing effects more the time of switching whereas
internal self-focusing effects the overall structure.

Lastly in Figure 10.(f) we adjust the thickness of the sample from 1mm in
(£.1), to 0.5mm in (f.2), to 2mm in (£.3). The position of the front face relative to
the focusing lens is constant. (£.2) seems to rise above (f.1) similarly to how (b.2)
is elevated from (b.1). Perhaps in the thinner sample self-focusing becomes less
significant. (£.3) appears similar to (f.1) indicating that most of the dynamics are
taking place towards the front portion of the sample, thus extending the back end
has little effect.

In Figure 11 we show the time necessary for switching to take place as a
function of input power at a fixed z value. The inset is a reproduction of the same
graph using a common logarithmic scale for the vertical axis. The inset would seem
to indicate two linear regimes. Thus the time of switching approximately decreases

exponentially with power at a "rate” corresponding to the respective regime.
Transverse Structures

Figure 12 illustrates theoretical beam profile calculations for transverse heat
diffusion only (a), longitudinal heat diffusion only (b), and three dimensional heat
diffusion (c). All three cases show the output intensity profile when their respective
temporal profiles in Figure 10.(c) reach normalized power transmission values from
0.6 to 0.1. We observe that when either transverse or longitudinal heat diffusion
is restricted only a local minima on axis results. This local minima (hole) forms
at earlier transmissions in the case of no transverse heat diffusion compared to no
longitudinal heat diffusion, further showing that heat diffusion in the transverse
direction is greater than that along the beam path. Three dimensional heat diffu-

sion is required to observe the formation of a local minima on axis (hole) followed
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Figure 12. Output beam profiles during switching as a function of transmittivity
and longitudinal and transverse heat diffusion. (a) no longitudinal
heat diffusion, (b) no transverse heat diffusion, and (c) both longi-
tudinal and transverse heat diffusion.
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by a local maxima on axis and local minima off axis (rings). This resembles that
of a switching wave in that the local minima begins on axis and propagates ra-
dially outward. Thus while Figure 10.(c) would seem to indicate that transverse
heat diffusion dominates the dynamics, Figure 12 clearly shows the importance of
longitudinal heat diffusion in the formation of these beam profiles.

Figure 13 illustrates the experimental far field beam profile measurements
and the comparison with theory in the case of the long time scan, Figure 9.(c).
Here only a cross sectional slice through the center (near azimuthal symmetry) is
shown. The model utilizes the stationary (s) electron-hole density and three di-
mensional heat diffusion. The experimental power transmission was not measured
simultaneously with that of the beam profile measurements, thus it is not exactly
known at what normalized power transmissions these profiles were taken. However
when comparing to the model we found good agreement at theoretical normalized
power transmissions of 0.4 (c) and 0.38 (d). The experimental and theoretical
results of Figure 13 show the very same structures as the computer simulation of
Figure 12.(c), namely a hole followed by rings.

In Figure 14 we show the intensity throughout the bulk of the sample at six
different transmittivities for the case of Figure 9.(a.2). The respective axes are the
same for all graphs. Z=0 represents the front face while Z=1mm represents the exit
face. Initially the beam is focused near the rear of the sample (a). In (b)-(f) the
sample is switching to its off-state. A number of interesting structures result. Quite
clear is the appearance of self-focusing already present in (b). One can observe an
increase in the on-axis intensity and a narrowing of the beam "width”. This self-
focusing also gives rise to undulations in the beam "width” clearly identifiable in
(c). In (d)-(e) one can see the ring and hole structures throughout the bulk of the
sample. At this higher power multiple rings result. Such structures have previously
been theoretically predicted[35]. And lastly one can see from (d)-(f) the gradual
localization of tlie beam at the front face. As a final note, beam profile calculations

were carried out in previous work[36] whereby all diffraction was ignored. There
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the single hole and ring type structures occurred on all power and time scales.
Thus diffraction is essential to the further development of multiple ring formation.

In Figure 15 and Figure 16 we similarly show the temperature and e-h density
profiles respectively. In these figures we can see the formation and localization of an
excitation domain at the front face. Without any additional relaxation mechanism
the result is a runaway process. Here the temperature soars well beyond the
melting point (* 1700K) and extremely high e-h densities result. With such levels
of excitation a highly complex nonlinear problem at the surface surely results. In
all samples the resulting damage appeared at the surface. It would seem plausible

that such excitation localization would be responsible.

Regenerative Pulsations

A very interesting phenomenon has been observed in a few samples. Perhaps
the most vexing consideration in attempting to understand this phenomenon is 1)
it only occurs in a single batch of our samples and 2) the data was rarely consistent,
thus trends and dependencies on controllable parameters were difficult to identify.
This phenomenon, known as regenerative pulsations, seems to posses a great deal
of structure. That is the character of the pulsing seems to be highly varied and
not always reproducible. The absorption spectra, and this spectra as a function
of temperature were identical amongst the various samples investigated. Their
thicknesses were the same. Their bulk thermal properties were specified to be the
same. All samples were grown by the Seeded Vapor Phase Transport (SVPT). All
samples had been similarly polished and none were etched. Experimentally, the
absorptive switching characteristics were the same. The only difference is that in
some samples the material immediately damaged following the switching to the
off-state whereas in one particular batch of samples the material would switch to
an off-state and then self-pulse for a period of time and then damage. Because of
the time scale of this phenomenon it seems the effect must be thermal in nature.
That is the effect must be a function of the heating and cooling rates throughout

the sample.
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Several hybrid studies of regenerative pulsations have been reported in the
literature[37-42] These experiments utilized a piezoelectric Fabry-Perot cavity. Re-
generative pulsations have also been seen in intrinsic bistable systems by some
workers([43,44,37]. However these intrinsic forms of regenerative pulsations are all
dispersive in nature, requiring some form of cavity resonance, and thus could not
explain our results (absorptive bistability). Only the work by Stadnik[11,12] is
similar to our results. There they see similar structures in bulk ZnSe utilizing
an equivalent excitation source and experimental geometry. However these results
lack any quantitative theory. The qualitative explanation is based on the concept
of excitation domains and there unstable propagation. Some collaborative theoret-
ical work[13,10,14,46-49] has been reported and essentially involves the calculation
of hysteresis phenomenon, excitation domains, and domain structure and velocity.
Although such theories may apply, without a direct simulation and comparison
amongst theory and experiment, it is unclear.

Perhaps the easiest means of understanding what is meant by regenerative
pulsations is offered by Figure 17. The experiment is identical to that used in the
previous sections (Figure 2). In figure 17.(a) we show the normalized transmission
as a function of time. Below in Figure 17.(b) we show the simultaneous normalized
reflection (P=375mW). Because there is no obvious phase difference we conclude
that the regenerative pulsations are indeed a form of absorptive bistability as op-
posed to dispersive bistability. As mentioned the structure of these pulses varies.
Some appear more square top shaped as in Figure 18.(a) while others more saw-
tooth in character, as in Figure 18.(b). Experimentally both structures may result
without any modification to the dpparatus. Thus it was very difficult to identify
trends. In addition to this anomaly it was difficult to predict how many after pulses
would occur. After some unforeseen number of pulses the material would damage.
Thus while trying to identify trends, one would have to occasionally translate the
sample transverse to the beam. This also effected the experimental results. Merely
thumping the sample mount would effect the results. Using a 3.5cm focusing lens

as opposed to a 5cm focusing lens, extremely clear square top pulses result (Figure
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19). (Here the power used is 430mW). It would seem the square top structures
favor a tighter focusing geometry. Using a 10cm focusing lens and the range of
power available, regenerative pulsations never occurred.

Briefly summarizing the most significant parameters responsible for the ap-
pearance and structure of these pulses seems to be 1) focusing geometry. There
had to be sufficient fluence and proper diffraction. Thus power, beam size, time,
and focusing were all important. 2) Sample homogeneity. Translating the sample
perpendicular to the beam effected the results. 3) Hysteresis. The sample did not
always respond the same at the same location. 4) The sample properties them-
selves. Not all samples reveal such pulsing and the phenomenon is seemingly rare
in the scientific literature.

By computer simulation its seems that the effect is essentially a surface prob-
lem. That is, the effect occurs due to some relaxation of the thermal domain at
the surface. We have theoretically simulated regenerative pulsations by stipulat-
ing that at the front surface there is a reduced heating effect. Numerically this is
accomplished by reducing the forcing function for the temperature by a factor of

12. The forcing function is,
Nhw

Tkth

FT = qeff (121)

The inhomogeneity at the surface results in many dangling bonds which manifest
themselves as a tremendous perturbation in the band structure. Essentially the
band gap is replaced by a near continuous distribution of states[50]. Any change in
gess and 7 would most likely be an increase in ¢.ss and a decrease in 7. The thermal
conductivity could increase or decrease but certainly not increase by a factor of 12
(from a bulk value of 5.6Wm™!K~1). The only other parameter is the e-h density.
It was shown earlier that the ambipolar diffusion coefficient had little effect on
the switching and furthermore an increase in D, by a factor of 10 did not reveal
any self-pulsing. The forcing function for the e-h density is proportional to the
absorption coefficient. Perhaps some form of saturation (band-filling or dynamic
Burnstein-Moss effect) causes a reduction in the absorption however all attempts

to include such a mechanism failed. In any case, the net outcome is to bring the
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heating and cooling rates into close competition resulting in thermal waves at the
surface. These thermal waves modulate the absorption coefficient and the index
of refraction. This causes the intensity, and hence heating rate, to undulate. In
Figure 20 we compare the experiment with theory. The