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CHAPTER I 

INTRODUCTION 

The principle aim of this research has been to characterize and investigate the 

nonlinear optical behavior of various semiconductors and modified silicate glasses. 

These materials possess particularly interesting as well as potentially exploitable 

optical properties and as such have recently attracted a great deal of attention 

from both a pure research standpoint as well as the basis for new device technolo

gies. Because of this potential for practical applications it is necessary that their 

properties be thoroughly examined so as to quantify their nature and limits of 

operation. 

Because our goal has been to research the optical properties of various mate

rials, the principle method of experiment relies on optical sources (lasers), related 

optical measurement devices (spectrographs, detectors, ect.), and the associative 

electronics. Once the experimental findings have been identified, a theory is orig

inated to hopefully explain these findings, and finally the theory is simulated by 

computer modeling. 

This work is divided into three parts covering three separate projects. Each 

component stands on its own and has little relation to its neighbors. As such 

there is little importance as to the organization of these respective chapters, thus 

arbitrarily they have been arranged in reverse chronological order. 

An important and exciting technology beginning to realize itself is that of 

optical computing. Here the goal is to replace all existing electronic components 

with an optical analog. The benefits of such a leap are immense; an increase in 

computational speed. and bandwidth in orders of magnitude. A key component in 

this technology is the switch. Specifically one requires a stable and fast all opti

cal bistable device capable of residing in two optically unique states. This is the 
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subject matter of optical bistability and is a huge field in itself. In Chapter II we 

investigate the bistable behavior in bulk ZnSe. The form of bistability is resonator

less absorptive bistability. Here the feedback mechanism stimulating the bistable 

property occurs through a temperature dependent absorption and an absorption 

dependent temperature mediated by a temperature dependent band gap. We use 

a relatively simple single beam transmission type geometry. The transmitted and 

reflected power are monitored on a microsecond to ~ CW time scale. In addition 

we have measured beam profiles. In most cases we see an eventual switching to 

an off-state ( one of low transmission) and subsequent damage. However in some 

samples a rare form of bistable behavior, regenerative pulsations, has been iden

tified and a possible explanation, including simulation, has been put forth. This 

phenomenon seems to be very rare as only a few other authors have reported on 

such findings however without any quantitative explanation. We have made such 

an analysis and hope that this reveals new insight into optical switching, thermal 

wave motion, and the role of electronic/thermal surface effects on the bistable be

havior of semiconductors. As this phenomenon is seemingly rare it is likely our 

understanding has only begun. Many questions still exist and the possibility of 

controlling and stabilizing this effect is certainly an intriguing one. 

In addition to such phenomenon as optical bistability there has been a huge 

push for all optical limiting devices. This is essentially the optical analog of the 

zener diode, a voltage clamping device. This was the motivation for the work pre

sented in Chapter III. In particular we characterize the thermal lensing behavior of 

a lead oxide modified silicate glass. We report on such measurements as the pop

ular Z-scan and optical limiting scans. We carry out these measurements on both 

a millisecond and nanosecond time scale. On a millisecond time scale beam undu

lations have been experimentally and theoretically seen to manifest themselves in 

a new way (i.e. via Z-scans). 

Lastly we report on the transmission characteristics in bulk CdS ( Chapter 

IV). This project was originally initiated as an investigation of the thermo-optic 

character of CdS on a long time scale (seconds). We use a relatively simple two 



3 

beam (pump-probe) transmission type geometry. The results indicate the presence 

of thermal lensing and interference (Fabry-Perot) effects. 

Finally we summarize all of our results and offer suggestions for future work. 



CHAPTER II 

OPTICAL BISTABILITY IN BULK ZnSe 

Introduction 

Optical bistability has received a great deal of interest because of its po

tential for all-optical logic elements as well as being a fundamentally interesting 

phenomenon. A common definition of optical bistability is offered by Figure 1. A 

system having such a transmission curve is said to be optically bistable between 

the light intensities i! and ir. This definition of bistability is restricted in that the 

hysteresis is controlled by the light intensity, as opposed to some other parame

ter. It may be that the hysteresis is a function of, for example, temperature, but 

the temperature is a function of the light intensity. Such feedback is an inherent 

property of all bistable systems. Optical bistable systems are generally classified 

as dispersive or absorptive and intrinsic or hybrid. A bistable system is dispersive 

if the feedback results from an intensity dependent refractive index (light inter

ference), while absorptive bistability occurs when the feedback is supplied by an 

intensity dependent absorption. It may be that both mechanisms are present in 

a given system thus this distinction is not always clear. Intrinsic systems posses 

some feedback mechanism which is completely controlled by the light intensity. 

These systems rely strictly on the light-matter interaction. Because this form of 

bistability is intrinsic this can result from a single pass of the light beam through 

the system, that is it does not require any interference. Such systems have been 

referred to in the literature as mirrorless, cavityless, or resonatorless. (We will use 

the latter name.) Hybrid systems rely on some form of external electronics as the 

feedback mechanism. These systems sample the output light intensity. and then 

4 
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adjust some external parameter, for example the strength of an applied electric 

field, which changes the material properties. 

The form of bistability of interest here is resonatorless absorptive bistability. 

Such bistability may result from the thermal properties of the band gap[l-3] or the 

various effects resulting from the creation of an electron-hole plasma such as band 

filling, plasma screening, or resonance broadening[4-7]. This form of bistability has 

been investigated by numerous workers (see H. M. Gibbs[8] (1985) for an extensive 

review). As a result of increasing absorptive bistability, such phenomenon as kinks 

in the transmitted power have been observed[9] and the formation and motion 

of high absorption domains[l0-14]. In addition to the bistable switching, trans

verse effects become important due to the non-plane wave nature of any excitation 

source. Such beam distortions resulting from increasing absorptive bistability may 

form rings in the intensity profile[S,15]. 

In this chapter we present theoretical and experimental results of absorptive 

switching, the formation of transverse structures, and regenerative pulsations in 

1mm thick samples of ZnSe at room temperature. The first part discusses the 

results of absorptive switching. Here, with a constant input, the sample switches 

to an off-state and subsequently damages. The off-state implies that the trans

mission has dropped to less than a few percent of the maximum. Here we show 

the results of switching on a time scale spanning microseconds to seconds. In ad

dition we show theoretical simulations showing the effect of various parameters, 

such as sample thickness or ambipolar diffusion, on the switching characteristics. 

In the second part we discuss transverse structures. Here we show theoretical and 

experimental beam profiles. At low input intensities, when the time for switching 

is on the order of - 1sec, we observe through computer simulation that during 

switching either longitudinal or transverse heat diffusion allows the formation of a 

local minima on axis (hole). However heat diffusion in all three dimensions is nec

essary for the further development of a local maxima on axis with a local minima 

off axis (rings). At higher input intensities more complex transverse structures 

result whereby multiple rings may be identified. In all cases such beam distortions 
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resemble switching waves[l6]. Lastly we discuss regenerative pulsations. Here in

stead of immediately damaging upon switching to the off-state the transmission 

will pulse, meaning the output will repeatedly switch between an off-state and an 

on-state. The off-state is typically less than 5% the maximum while the on-state 

ranges from - 30%-80% the maximum. We will show a variety of example output 

along with our theoretical results, including beam profiles. Our theory of this phe

nomenon is essentially identical to that concerning the absorptive switching alone 

however with the further stipulation that the thermal conductivity be enhanced at 

the surface. We note that this phenomenon seems extremely rare as few authors 

have reported on such results. 

As a final comment, the theory section has been divided into three parts. 

The first part, Theory I, is essentially a succinct version of the much more detailed 

version in Theory II.A. and Theory II.B.. Much of Theory II.A. is an analysis of 

the numerical technique employed in solving a system of couple partial differential 

equations (PD E's). Section Theory II.B. is a quantum mechanical theory for the 

absorption spectra and the effects of temperature and electron-hole density. Thus 

the detail of Theory II.A. and Theory II.B. is not essential to understanding the 

model and thus Theory I was included merely as a convenience to the reader. 

Experiment 

Our experiment consists of a very simple transmission type geometry (see 

Figure 2). We use the 4 76.5nm output of a CW Ar+-ion laser operating in the 

TEM00 mode. The light is switched on ( and at some time later, switched off) via 

an acousto-optic modulator (AOM} and focused along the optical axis on to the 

front face of the sample using a 5cm focal length lens, 11 (although later we give 

an example of regenerative pulsations using a 3.5cm lens). All the transmitted 

light is collected. We use a beam splitter prior to the focusing lens to measure the 

reflection off the front face. Additionally we focus a 543.5nm HeNe laser through 

the sides of the sample such that the two beams cross in the interior. The results 

of three types of experiments are discussed. 1) The total transmitted power as a 
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function of time. Here detection is accomplished via a fast photodiode and digital 

storage oscilloscope. 2) Beam profiles. Here a 120x120 pixel CCD array and beam 

profiler are used in place of the photodiode (in the case of the transmitted light). 

3) Side beam experiment. We monitor the transmission of the side (HeNe) beam 

beyond an iris simultaneously with the Ar+-ion beam. The labels E1-E4 identify 

the electric fields at the respective locations. These are simply convenient markers 

for the discussion of section Theory II.A .. 

Theory I 

In this section we offer a succinct version of the more detailed outline of 

Theory II.A. and Theory II.B. The purpose of this section is to establish the basic 

idea of the theory so that one may understand our approach to the problem and 

move on to the results and discussion section, and then if interested seek the more 

detailed version of the theory afterwards. This is merely offered as a matter of 

convenience as it makes this chapter so~ewhat more readable. 

We know from an analysis of the transmission and reflection as a function 

of time that the solution to the problem lies in finding the absorption coefficient 

in space and time. The time scale of the results is conducive to a thermal effect. 

We also know the band gap is temperature dependent. In addition we know the 

temperature change results from the radiationless relaxation of induced electron

hole pairs, of which are a function of the light intensity and the absorption. Thus 

the problem is modeled as a thermal and e-h density transport process coupled with 

a light diffraction process. Thus the governing equations are the wave equation 

for the electric field, heat flow equation for the temperature, and rate equation for 

the e-h density. We prefer to know these quantities in three dimensions (or four 

including time). Due to the high nonlinearity of our system and the preference for 

multidimensionality, we have sought a numerical solution. 

The wave equation is, 

(1) 



10 

where E is the complex electric field strength, k0 the wavevector in vacuum, and 

n the complex refractive index. The heat flow equation is, 

1 aT 2 Nnw --- = V T + qe11-
T/t1i. at T kth. 

(2) 

where T is the temperature, T/th. is the thermal diffusivity, kth. the thermal conduc

tivity, qe// the percent of e-h recombination events which are radiationless, N the 

e-h density, nw the photon energy, and r the e-h pair recombination time. Finally 

the rate equation for the e-h density is given by, 

aN = D,,_ V2 N _ N + al 
at T nw (3) 

where D,,_ is the ambipolar diffusion coefficient, a the coefficient of linear absorp

tion, and/ the light intensity. Again, Eq.l, Eq.2, and Eq.3 will be solved numeri

cally. This is the content of section Theory II.A .. 

The following values for ZnSe have been used: D,,. = 10-4 m2 sec - 1 [17], r = 
10nsec[l7], kth. = 6.3Wm-1°K-1 [18], T/th. = 10-5m2 sec-1 [11], and qe// = 1. 

In Eq.l the refractive index is written as, 

(4) 

where n0 is the background dielectric constant and .6.n is given by, 

.6.n = (!;) .6.T + (.6.n) 0n 
o/1 

(5) 

The off term is a background (off-resonant) change in the index of refraction 

due to a change in temperature while the on term is a resonant enhancement due 

to changes in the band gap (and is a function of temperature). The off term 

was used as a fitting parameter while the on term was determined by a kramers

Kronig transformation of the absorption spectra as a function of temperature. The 

on term is determined in section Theory II.B. and is given by, 

) [ 2.571 l -3 
(.6.n on= 1.546 - (ll.T-36.79) xlO 

cosh 32.45 

(6) 
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The expression for the absorption coefficient found in Theory II.B. could not 

be used for the simulation when solving these equations. It was only used for 

calculating the absorption spectra, ofwhich was only used to identify the above 

on-resonant contribution to the change in the refractive index. The reason for 

not using that expression is simply because the computational effort would have 

slowed the program run time from, for example, five minutes to five weeks. Thus in 

solving the above equations we have used the simple closed form expression known 

as Urbach's rule for the absorption coefficient. The expression is, 

a= aoexp [k;T (nw + Ex - Ego - ~~ D.T)] (7) 

where a 0 = 293/m, u = 2.108, Ex = 64meV, Eg0 = 2.67ev (energy gap at room 

temperature), 8Eg/8T = -.85meV /K, and kB is Boltzmann's constant. The con

stants a 0 , u, Ex, and 8Eg/8T were essentially used as fitting parameters however 

we attempted to find values consistent with literature values[l9]. In Figure 3 we 

show the temperature dependent absorption spectra and the theoretical fit. 

Theory II.A. 

Introduction 

As discussed in Theory I the essential problem of our model is to solve the 

three governing equations, namely the wave equation, heat fl.ow equation, and 

electron-hole density, or rate equation. The difficulty of this task is that these 

equations are all coupled, nonlinear, and multidimensional. One could relax some 

of these requirements ( e.g. the number of dimensions) but with a proper numerical 

scheme such restrictions are unnecessary. We have sought a very general multi

dimensional solution whereby few approximations are invoked. This numerical 

procedure is however only applied to the contents of this chapter. In later chap

ters, where similar transmission type studies are undertaken, the nature of the 

experiment was such that either the time scale was too great and/or the spatial 

extent (computational grid size) was such that this thechnique was computation

ally inefficient. 
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Figure 3. Absorption spectra for ZnSe. The filled circles are theoretical fit using 

Urbach's rule while the solid lines are experimental data. 
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In what follows we first outline our solution to the wave equation inside the 

sample (internal fields). This will give an expression for the real and imaginary 

part of the electric field of which must be solved numerically. Such a numerical 

technique is then used to propagate this field from immediately within the front 

face of the sample to immediately beyond the back interface. Next we show how 

to find the fields external to the sample ( external fields). This essentially begins 

with a gaussian TEM00 incident beam of which is focused into the sample. The 

third section discusses the numerical scheme which is used to solve the three gov

erning equations. Finally we derive some stability conditions for the numerical 

approximations. 

Solution to Internal Fields 

Beginning with Maxwell's Equations and invoking the following approxima

tions: 1) zero free volumetric charge, 2) linear polarization, and 3) wE >> ~~ 

(slowly varying envelope approximation), we arrive at the scalar Helmholtz Equa

tion, 
{)2E 82E 8 2E 
8x2 + {)y2 + {)z2 + k;n2E = 0 (8) 

where k0 = w/c, w is the radiation frequency, c is the speed of light in a vac

uum, n = n 0 + 8n, n 0 is the linear index of refraction and 8n is the complex 

nonlinear component of the index of refraction. In this particular application of 

the Helmholtz equation 8n is coupled to the heat flow equation and thus depends 

on three spatial variables as well as time. Thus a numerical technique is used to 

propagate the fields. A variety of solution techniques have been attempted. The 

following technique, which proved to be most accurate in our computational model, 

is as follows. 

The method of solution for the scalar Helmholtz equation for some arbitrary 

8n follows that of the split-operator scheme[20,21] for solving the paraxial equation 

but then rather than invoking a fast Fourier transform technique[22-24], a com

mon approach, we use a simple explicit finite difference technique. The following 



operators are introduced, 
. a 
P=-

8z 

where v'1 = :;2 + :;2 • Eq.8 may now be written as, 

(P2 + Q2)E = 0, 

which can further be written as, 

{(P + iQ)(P-iQ) + i[P,Q]}E = 0, 

where [P, Q] = PQ - QP. If [P, Q] = 0, then Eq.12 has the solutions, 

8E = ±iQE. 
8z 
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(9) 

(10) 

(11) 

(12) 

(13) 

The approximation [P, Q] = 0 is good if the variation in 8n along the z-axis is suffi

ciently weak. The solution to Eq.13 represents a wave propagating along the z-axis. 

For a wave propagating in the positive z-direction over some small z increment, 

ll.z, is, 

E(z,y,Llz) = exp [-i l (vi+ k!n')i dz] E(z,y,O). (14) 

For ll.z sufficiently small and the fluctuation in 8n along the z-axis sufficiently 

weak, the integral in Eq.14 may be approximated and Eq.14 becomes, 

E(x, y, ll.z) = exp [-ill.z (Vi+ k~n2) 1] E(x, y, 0). (15) 

We now use the following "trick" to rewrite the expression (Vi+ k~n2)t which 

operates on E(x, y, 0). We make the following substitution, 

(16) 

Now, we wish to replace A with the approximation, 

(17) 
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We may test this approximation by operating on E(x, y, 0) with both A2 and A~ 

and comparing. First we express E(x, y, 0) in a 2-dimensional Fourier series, 

E(x, '!/, 0) = I: I: Emn(O)i(k.,a:+k11t1)no. (18) 
m n 

Operating on E(x, y, 0) by A2 is equivalent to rewriting A2 as, 
. 2 

A2 = -(k~ + k!)n! + k:n! (1 + !:) (19) 

For the operator A1 we first square and then use the expansion 

(20) 

giving, 

A2 (k2 k2) 2 (1 8n (k; + k:) 8n ) k2 2 (l 8n) 2 

1 = - a: + !I no + ~ - k2 . 4n + . . .. + o no + ~ 
0 o O 0 

(21) 

where ( .... ) signifies the higher order terms in the expansion given by Eq.20 We 

thus see that as long as !: << 1 the replacement of A by A1 is justified. Note, for 

kz real, that is a propagating field, k; + k! < k:. Our solution for the electric field 

at z = az becomes, 

(22) 

This final form states that the solution is given by propagating the field through 

the linear medium (8n = 0) and then updating the phase by the nonlinearity, 

-azk0 8n. Computationally this is very significant. 

- The remaining portion of this development is then to decide how to propagate 

the fields through the linear medium. It was found, essentially by trial and error, 

that a straight forward explicit finite difference technique worked best. Other 

methods, such as the fast Fourier transform technique, implicit methods, ect. were 

attempted, however they were either too computationally time consuming, required 

to much memory storage, or simply were numerically inaccurate. Recall that 

the equation for the electric field is coupled with either the rate equation for the 

electron-hole density, the heat fl.ow equation, or both. Thus the implicit schemes 

which may otherwise be preferred, in this system are not. 
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Eq.22 is rewritten as, 

E(x, Y; Az} = Eo(x, Y, Az)e-iAzko6n (23} 

where E 0 (x, y, Az} represents the field propagated through the linear medium. For 

E 0 (x, y, Az} we have again the scalar Helmholtz equation, 

( v2 + a2 ) Eo + k2n2 Eo = 0 
l. {)z2 o o • 

We assume the following solution, 

where W is complex. Inserting Eq.25into Eq.24 we arrive at, 

where the slowly varying envelope approximation has been assumed, namely, 

(24} 

(25} 

(26} 

(27) 

We have chosen cylindrical coordinates with azimuthal symmetry as this is 

conducive with the experimental geo~etry whereby a TEM00 gaussian beam has 

been used. First we separate \If into its real and imaginary components, q,R and 

'111 respectively, and upon substitution into Eq.26 and identifying the real and 

imaginary parts we obtain, 
· {Jq,R 2 I 

k0 n0 {)z = v' l. '11 

{Jq,I .. 
k0 n 0 {)z = -Vi q,R 

The transverse laplacian is written as, 

l {) {)2 
v2 =--+

l. r or 8r2 

(28} 

(29} 

(30} 

Eq.28 and Eq.29 are then solved numerically. This is discussed in a later section. 
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Propagation of External Fields 

In this section we establish an expression for the electric field profile im

mediately within the front face ·of the sample. Referring to Figure 2 we wish to 

propagate some incident field through a focusing lens, some distance Z11amp in vac

uum and then through some dielectric interface. (Z.samp is not explicitly identified 

in Figure 2 due to congestion. It is simply the distance between the sample front 

face and the principle plane oflens LI.) 

The electric field profile incident on the lens Ll, E1(r, 0), is transformed in 

the thin lens approximation to E2(r, 0), by a phase factor expressed as, 

. Jcor2 
E2(r, 0) = E1(r, O)e' 21 (31) 

where k0 = t, Ao is the free space wavelength and / is the focal length. E1 ( r, 0) is 

determined by the mode of the incident laser light and is assumed to be a perfectly 

collimated gaussian TEMoo mode. Thus we have that, 

(32) 

where E0 is the magnitude of the incident field and w0 the characteristic waist size 

(spot size). 

The incident field magnitude, E0 , is found by knowing the incident power, 

Pin, namely, 

p,. = j (IE,{r,0)1'),;m,dS 

S T/o 
(33) 

where T/o = I& ::'. 377fl and is the impedance in a vacuum. Substituting in Eq.32 V (o 

and integrating over all space in cylindrical coordinates we arrive at, 

4PinT/o (34) 

We find the electric field immediately within the sample, E3(r, Z.samp), located 

a distance Z.samp from the focusing lens, by propagating E2 (r, 0) using the Huygen

Fresnel diffraction integral[25]. Namely, 

(35) 
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where we have used cylindrical coordinates and the azimuthal integration has al

ready been carried out.Using Eq.31 and Eq.32, we obtain, 

where, 

r 
0= -

1 _ Zoamp 

"Y = f e 

(36) 

(37) 

(38) 

(39) 

(40) 

(41) 

To find the field immediately inside the sample medium, W(r, Zsamp), we multiply 

E3(r, Zsamp) by the transmittance, ti, given by, 

Here n is given by, 
C • O'. 

n = n0 + vn "' n0 - i-k 
2 0 

and the transmittance becomes, 

2 [· 1 ( a )] t1 = exp i tan -
Jeno+ 1)2 + (2~J2 2{no + l)ko 

(42) 

(43) 

(44) 

where a = a(r, Zsamp). The time averaged power density immediately inside the 

sample, I(r, Zsamp), is given by, 

I( ) _ IW(r, Zsamp)I no 
r, Zsamp - 2 T/o 

(45) 

The fields are then propagated to the back side of the sample numerically. The 

field then emerging out the back interface, E4(r, Zsamp+ L 0 ), where L 0 is the sample 
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thickness, is given by multiplying the field at the back interface \lf(r, Zsamp + L 0 ) 

by the transmittance, t2 where, 

(46) 

which becomes, 

[n!+(~/] 1 
(·[ _1 ( o ) 1 _1 (o)]) 

t2 = 2 [( . )2 ( . ...!L)2] t exp i tan 2(no + l)ko - 2 tan 2ko 
no+ 1 + 2ko 

(47) 

and o = a(r, Zaamp + L 0 ). The total power transmitted out the sample, Tout, is 

determined by integrating over the transmitted time averaged power density, 

T. _ 2 /00 {IE4(r, Zaamp + Lo)l)time d 
out - 7r r r 

0 qo 

In Eq.35 the bessel function is approximated as [26], 

Jo(x)"' 1 - 2.2499997 (~)2 + 1.2656208 (~)4 - .3163866 (~)6 + 
.0444479 (f )8 - .0039444 (f )1° + .0002100 (f )12 

for O :::; x :::; 3 and, 

Jo(x) ~ ff cos (x - :f) 
for X > 3. 

Finite Difference Schemes 

(48) 

(49) 

{50) 

In this section the explicit finite difference technique[27] is established for the 

heat flow equation, rate equation for the electron-hole density, and the real and 

imaginary components of the wave equation, previously separated. Cylindrical 

coordinates are used in order to take advantage of azimuthal symmetry. 

The heat flow equation is, 

1 8(D..T) 1 8(D..T) 82(D..T) 82(D..T) Nnw 
- =- .+ + +--
qth 8t r 8r 8r2 8z2 Tkth 

(51) 
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where T/th is the thermal diffusivity, fiT is the change in temperature ( from room 

temperature), N is the electron-hole density, 1iw is the photon energy, r is the 

electron-hole recombination time, and kth is the thermal conductivity. For the 

electron-hole density we use the following rate equation, 

---=Do. - + + ---+-
8N(ns) (1 8N(ns) a2N(ns) a2 N(ns)) N(ns) al 

8t . r 8r 8r2 8z2 r 1iw 
(52) 

where Do. is the ambipolar diffusion coefficient, a is the linear absorption coeffi

cient, and I the intensity. Here the superscript ( ns) will be used to indicate a 

nonstationary solution for the electron-hole density. In order to isolate the car

rier dynamics we will also have occasion to use the steady-state, diffusion free 

electron-hole density, indicated by N(s), which can be seen to be, 

(53) 

Numerically, we use an explicit finite difference technique. For the electric field we 

use the following approximations, 

awe ,..., we(i,j + 1) - we(i,j - 1) . 
8z = 2~z ,J > 1 (54) 

awe ,..., we(i,j + 1) - we(i,j) ,j = 1 
8z ~z 

(55) 

where! stands for R or I. For the wave equation, heat flow equation, and electron

hole density we have that, 

183 ,..., 3(i + 1,j, k) - 3(i - 1,j, k) . l -- = ,i > 
r 8r 2(i - l)~r2 

! a2 _ a22 i _ 1 
r 8r - 8r2' -

a22 ~ 3(i + 1,j, k) - 22(i,i, k) + 3(i - 1,j, k) . 1 
8r2 - ~r2 ,i > 

a22 ~ 22(i + 1,j, k) - 3(i,i, k) . _ 1 
8r2 - fir2 ' 2 -

83 ~ 3(i,j, k + 1) - 3(i,j, k) 
at - ~t 

(56) 

(57) 

(58) 

(59) 

(60) 
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where Smay be wR, 'lli1, AT, or N. For the heat flow equation and electron-hole 

density, 

a23 ~ S(i,j + 1, k) - 2S(i,j, k) + S(i,j - 1, k) 1 . . 
8z2 - Az2 ' < J < Jmax (61) 

where Smay be either AT or N. At the boundaries j = 1 and j = imax we have 

for the change in temperature the following expressions, 

82(AT) :: AT(i,j + 1, k) - AT(i,j, k) _ HAT(i,j, k) ,j = 1 (62) 
8z2 Az2 kthAz 

82(AT) - AT(i,j -1, k) - AT(i,j, k) HAT(i,j, k) . . (63) 
8z2 = · Az2 - kthAz 'J = }max 

where H is the convective heat transfer coefficient representing cooling at the 

boundary by convection. For the electron-hole density we have the boundary 

conditions, 
a2 N ~ N(i,j + 1, k) - 2N(i,j, k) . _ 1 
8z2 - Az2 ,J -

82N - -2N(i,j, k) + N(i,j -1, k) . . 
8z2 = A"z2 'J = Jmax 

(64) 

(65) 

For the real and imaginary components of the wave equation the boundary condi

tion at the front face, j = 1, is given by the incident field, 

where E3(r, Zaamp) and t1 are given by Eq.36 and Eq.44 respectively. 

In Eq.52 the recombination term, _N~•>, is evaluated at (i,j, k + 1). In all 

these approximations the indices i,j,k have the following meaning: r = (i - l)Ar, 

z = (j - l)Az, t = (k - l)At, and i = {1,imax}, j = {1,imax}. imax of course is 

governed by the sample thickness and Az. 

Stability of Numerical Schemes 

In this section we will consider some requirements for the stability of the 

numerical solution to the wave equation, heat flow equation, and rate equation. 
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Here stability refers to the unstable growth or stable decay of errors introduced 

by the arithmetic operations necessary to solve the finite difference equations. If 

the finite difference scheme is stable then in principle the computational errors 

can be made arbitrarily small. Stability is a necessary condition for an accurate 

numerical solution. Most explicit schemes are conditionally stable, while most 

implicit schemes are unconditionally stable. However when choosing a finite dif

ference scheme one must also consider the computation time. Many methods have 

been attempted here and it has been found that in reference to computational 

speed and memory storage requirements the relatively simple "classical" explicit 

schemes have worked best. (Most implicit schemes yield matrix algebra equations 

which were found computationally inefficient.) 

Perhaps the most widely used procedure for establishing stability require

ments for a finite difference scheme is called von N eumannn stability. Consider a 

two dimensional problem with independent variables (x,t). The method introduces 

a line of errors along x at t=O and test the growth or decay of these errors along 

t. The method applies to linear, constant coefficient, finite difference approxi

mations. In the case of nonlinear problems some local linearization is necessary. 

According to the authors of a highly cited text on finite difference techniques[28], 

"It is difficult, if not impossible, to generate results on stability, convergence, and 

consistency for nonlinear PDE approximations; the best that one can usually do 

is obtain results on a local basis in which certain terms are averaged or even held 

constant." 

First we will consider the wave equation in the linear medium, 

. a~ 1 a~ a2~ 
2moko-a = --8 +-a 2 z r r r 

(68) 

From before we use the following finite difference approximation, 

. k ~(i,j + 1) - ~(i,j - 1) _ ~(i + 1,j) - ~(i - 1,j) (69) 
mo O ~z - 2r~r + 

~(i + 1,j) - 2~(i,j) + ~(i - 1,j) 
(~r)2 
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which reduces to, 

~(i,j + 1) = ~(i,j -1) + c1 [~(i + 1,j) - ~(i -1,j)] + (70) 

c2 [~(i + 1,j) - 2~(i,j)+ ~(i - 1,j)] 

where, 
_ iflz 
C1=-----

2n0k0rflr 
_ iflz 
C2 = -

n0k0(Llr) 2 

(71) 

(72) 

We now define 8~(i,j) as the error difference between the exact solution and the 

finite difference approximation. That is the solution ~(i,j) may be represented in 

our finite difference approximation as, 

~(i,j) = we:i:act(i,j) + 8~(i,j) (73) 

Substituting Eq. 73 into Eq. 70 yields, 

8~(i,j + 1) = 8~(i,j - 1) + c1 [8~(i + 1,j) - 8~(i -1,j)] + (74) 

c2 [s~(i + 1,j) - 28~(i,j) + 8~(i - 1,j)] 

Our goal is to establish the condition on Llz and Llr such that given some 8~(i,j), 

8~(i,j + 1) does not grow without bound. This von Neumann stability is carried 

out by expanding 8~( i, j) by a Fourier series, 

8~(m,j) = L atei{3pmAr (75) 
p 

We will also make the definition, 

c50(m,j) = c5~(m,j -1) = L~ei/3pmAr (76) 
p 

Upon substituting into Eq. 74 our Fourier series representation and recognizing that 

all Fourier terms add linearly, we note we need only to consider one such term. 

Eq.74 thus reduces to, 
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Which after some simplification and Eq. 76 becomes in matrix form, 

( ~::) = ( ( 2iC, sin(/9,m~r) ~ 4C, sin 2 
( "'";"')] ~ ) ( ~) ( 78) 

In order for the errors to not grow the eigenvalues of the 2x2 matrix must be ~ 1. 

The eigenvalues A.t are given by the solution of, 

>.: - [ 2ic1 sin(,Bpm~r) - 4c2 sin 2 (,BP~~r)] >.t - l = 0 (79) 

and the stability condition, l>..tl ~ 1, becomes, 

1<,I sin( O + 2; 1<>1 sin 2 ( ~) + [1ei I sin(()+ 2; 1<,I sin 2 ( ~) r + 1 ::; 1 (80) 

where ( = ,Bpm~r. This condition must hold for all r thus we may set lc1 1 = 0 as 

well as all(, thus we set ( = 0. Eq.80 then becomes, 

(81) 

If the argument of the square root is positive we are guaranteed stability. If the 

argument is negative we arrive at, 

(82) 

Backing up slightly we must recall that at r = 0 we have that, 

1 a a2 
---+-
r ar 8r2 

(83) 

which translates here to c1 -+ 0 and c2 -+ 2c2 and thus Eq. ?? is further restricted 

(in the sense that lc2 1 is further restricted), giving, 

(84) 

or, 

(85) 

Eq.85 is the stability requirement for the finite difference approximation to 

the linear wave equation. One should keep in mind however that this stability 
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criteria is merely a necessary condition, but perhaps insufficient condition. What 

we really desire is a stable finite difference solution to the nonlinear wave equation 

of which is further complicated by its coupling to the heat flow equation. Thus 

Eq.85 merely suggests an upper limit on Az, given some sufficient Ar. Ar has 

been chosen merely from insight into the physical problem, desired resolution, 

computation time, and "trial-and-error". 

Of the three governing equations under consideration ( wave equation, heat 

flow equation, and rate equation) the linear wave equation is the only one with

out any explicit time dependence, thus we have used it to establish our stability 

requirement amongst the spatial variables r and z. Next we must establish a sta

bility condition relating the time variable with the spatial variables. This problem 

is greatly simplified by observing the relative time scales for the heat flow equation 

and the rate equation. If we assume a steady state solution to the rate equation 

then the heat flow equation will dictate the stability criteria. If we do not use a 

steady state solution to the rate equation then we approximate the temperature as 

a constant over any small time interval and use the rate equation to establish our 

stability criteria. This turns out to be justified in that the time scales amongst the 

two phenomenon are orders of magnitude apart. In both cases we must assume 

that the intensity is constant over the respective time intervals . 

. First we will consider the heat flow equation with a steady state carrier 

density. We must linearize the expression for the absorption coefficient in order to 

invoke the von Neumann stability analysis. Our expression for the coefficient of 

absorption (Urbach's rule) is, 

which by a Taylor series expansion about AT = 0 is approximated as, 

(86) 

(87) 

(88) 

(89) 
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Here T0 would be continuously updated as to keep this first order expansion accu

rate. Using this linearization the heat flow equation becomes, 

_!_ 8T = !_ 8T + 82T + 82T + (a1 - a2T)I 
T/th at r 8r 8r2 8z2 kth 

(90) 

where now it should be understood that T is actually 6.T. Again we will approx-

imate the exact partial differential equation with a finite difference representation 

and consider the growth in the error. Let the error introduced by our finite differ

ence approximation be 6T. The equation for the error becomes, 

_!_ 8( 6T) = !_ 8( 6T) + 82( 6T) + 82( 6T) _ a2I DT 
T/th at r 8r 8r2 8z2 kth 

(91) 

We will analyze the following finite difference approximation to Eq.91, 

1 6T(i,j, k + l) - 6T(i,j, k) = !_ 6T(i + 1,j, k) - 6T(i - l,j, k) + (92) 
T/th 6.t r 26.r 

6T(i + 1,j, k) - 26T(i,j, k) + 6T(i - l,j, k) 
6.r2 + 

6T(i,j + 1, k) - 26T(i,j, k) + 6T(i,j - 1, k) _ a2I {:T( . . k) 
A 2 k V 't,J, 

L.Ji.Z th 

Again we now express the error in a Fourier series representation (in this case a 

two dimensional series), . 

(93) 

Substituting are Fourier series representation into Eq.92 and realizing that only a 

single Fourier term in each dimension need be analyzed we arrive at, 

(94) 

[T/th6.t (ei/Jp/::;.r + e-i{Jp/::;.r _ 2) + T/th6.t (i/Jq/::;.z + e-i/Jq/::;.z _ 2) _ T/tha2I 6.t] ak 
6.r2 6.z2 kth p,q 

which simplifies to, 

k+i k [ . T/th 6.t . ( f.l ) 6.t . 2 ((3p6.r) 
ap,q = ap,q l + i-;:; 6.r2 sm /Jp6.r - 4TJth 6.r2 sm - 2- - (95) 
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The stability condition must now be modified slightly. That is a parabolic PDE 

with a source term must allow for solutions which grow in time. This is known as 

the von Neumann necessary condition[28] and is written as, 

ak+l 
T-K~t ~l 
ap,q 

(96) 

where K is some constant. Our stability condition then becomes, 

I .1/th ~t . (/3 ) ~t . 2 (/3p~r) 1 + i--- sm ~r - 41/th-- sin -- -
m ~r2 P ~r2 2 

(97) 

41/th ~t sin 2 (/3q~z) - T/th<X2I ~t - K ~t I~ 1 
~z2 2 kth 

After a tedious calculation one can show that the magnitude of the left side of 

Eq.97 has a maximum (worst case scenario) and minimum when the arguments of 

the trigonometric functions are O or 1r. Thus Eq.97 reduces to, 

1/th<l'.2! ( 1 1 ) - 1 < 1 - ~t - 4c2~t - + - - K ~t < l - kth ~r2 ~z2 -

Upon setting K = -~ka 1 we arrive at, : 
th 

~t < _1_ (-1- + _1_)-l 
- 21/th ~r2 ~z2 

(98) 

(99) 

This is our stability condition for the heat flow equation. Note, the final result 

is independent of the source term as well as the first derivative term. This is a 

common result. 

Finally we must consider the rate equation, or rather the error, bN, associ

ated with the finite difference approximation to the rate equation, 

8(hN) = Da (! 8(hN) + 82(hN) + 82(hN)) _ hN (lOO) 
8t r 8r 8r2 8z2 T 

Note because the source term is not written explicitly as a function of the carrier 

density it does not appear in the differential equation for the error. Referring to 

the finite difference scheme from before and again using the von Neumann stability 

analysis we arrive at, 

( 1 1 )-I ( 1 1 ) -l<l-4D -+- -+- <1 
- a ~t T ~r2 ~z2 -

(101) 
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Here K was set equal to zero because the source term did not appear in the finite 

difference scheme for the error term. In other words the source term was not 

written explicitly as a function of the carrier density, but has been treated as a 

constant over some small time l:lt. From Eq.101 our stability condition is, 

[ ( 1 1 ) 1]-1 
l:lt ~ 2Da - + - - -

f:lr2 l:lz2 T 
(102) 

Conclusion 

We have outlined our numerical scheme for finding a solution to the three 

governing equations: namely the electric field (wave equation), heat fl.ow equation, 

and electron hole density. Although the classic explicit scheme used is perhaps not 

the most perfect scheme one could contrive, the justification here is the justification 

for any numerical approximation, namely that it works. Computational speed was 

perhaps the most vexing consideration. Implicit schemes were developed along 

with numerical algorithms to solve the subsequent matrix algebra problems but 

the computational effort way exceeded the gain in stability. We have used the 

well known and most often applied, von Neumann stability analysis to establish 

a guideline for the choice of our numerical grid. These results should however 

only serve as a guideline as certain approximations have been invoked in order to 

decouple the respective equations. 

The program developed was simulated on the Oklahoma State University 

VMS (vax) mainframe. The program lines are the contents of Appendix A. 

Theory II.B. 

In this section we will present the results of a quantum mechanical theory for 

the absorption coefficient in a two band semiconductor for arbitrary wavelength, 

temperature, and e-h density. The motivation for this is to essentially be able to 

compute the absorption spectra accurately as a function of these variables so as to 

be able to compute through the Kramers-Kronig relations any resonant enhance

ment of the refractive index. As previously mentioned, section Theory I, we only 
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employ this calculation for that purpose, as this calculation is computationally 

time consuming and could not feasibly be applied to the numerical simulations 

outlined in section Theory II.A .. 

Below the_band gap the induced electron-hole (e-h) density is relatively small, 

however as the temperature is slowly elevated due to the radiationless recombi

nation of these e-h pairs, the band gap is tuned to longer wavelengths. Upon 

completely temperature tuning the band gap such that interband transitions be

come possible, an e-h plasma may result. Each e-h pair then interacts with this 

plasma greatly influencing the optical properties of the semiconductor. A partly 

phenomenological theory of the nonlinear optical properties of semiconductors in 

the spectral vicinity of the absorption edge as a function of temperature and e-h 

density has been offered by Ba.nyai and Koch(l986)[29]. The theory is an ex

tension of the well known Elliott formula(30] and is based on the many particle 

Hamiltonian of a system of interacting electrons and holes in a two band semi

conductor. The attractive coulomb potential is replaced by a screened one, the 

Yukawa potential whereby the screening length is dependent on both tempera

ture and e-h density. The relative motion amongst the e-h pair is then described 

by Schroedinger's equation. This is the modified Wannier equation. In order to 

solve the Wannier equation the Yukawa potential is approximated by the Hulthen 

potential. 

The theory is a nontrivial one and many details have been omitted here. 

Our goal has been to use this theory and not necessarily argue its merits. Many 

authors have shown excellent agreement amongst this theory and experimentally 

determined absorption spectra and index of refraction spectra as a function of 

both temperature and e-h density. Again, our purpose for using this theory is to 

accurately fit the absorption spectra as a function of temperature and e-h den

sity and then by means of the Kramer's-Kronig relations determine the change in 

the refractive index as the energy gap is temperature tuned to the wavelength of 

interest. This effectively gives the on-resonant contribution to the change in the 

refractive index. We will do this for both ZnSe and CdS. 
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The final expression for the absorption coefficient is[29], 

a "' __!::_ I mf.( w) ( 103) 
cFo 

Imf.(w) = ltanh rn- (~ - ile - ilh)] [B(w) + C(w)] {104) 

B(w) = ~21rS- [w + (!- {)2] [(g-£2)(2£2 - g)l Iloo n2 [n2£2 - (g-£2)2] 
~ r £ g £3g2 (n2£2)(n2£2 _ g2) 
i=l n=l(;,!:i) 

{105) 

Joo oo [ 2gn2 - g2 l 
C ( w) = dx Jx IT 1 + ( 2 _ ) 2 2 2 h"r ( x - w) 

0 n=l n g + n g X 
{106) 

where, 

_ r~ _ 1iw - Eg - kBT - r _ µe,h - t 12 
f. = 21r 3 E , w = E , T = -E 'r = E 'µe,h = k T , g = -2 -a0 R R R R b 11" aoK-

B( w) represents the bound (exciton) states and J"g indicates that the sum 

extends over the existing bound states, i.e. up to the largest integer number 

l ~ J'g. If g is less than one there is no contribution from the bound states. The 

value of g comes from the Bargmann theorem[31] which gives an upper limit on 

the number of bound states for a given potential. C(w) represents the continuum. 

Definitions: ER = 2 1i2 
2 =Rydberg energy, a0 =Bohr radius, mµ =reduced 

mµa0 

effective e-h mass, K- =screening length, µe,h =electron,hole chemical potential, 

E9 =energy gap at some temperature, T, and zero e-h density, 1iw =incident 

radiation energy per photon, and kB =Boltzmann's constant. The following values 

were used: 

CdS[32]: a0 = 30.1.4., m: = .235m0 , mh(II) = l.35m0 , E9 (290° K) = 2.44eV, 

88~ = -.5meV/° K, r = ER. 

ZnSe[32): · a0 = 44.4.4., m: = .l6m0 , m;: = .6m0 , Eg{290° K) = 2.70eV, 

8
8~ = -.72meV/° K, r = ER and m~ is the effective mass of the particle a where 

a stands for either e (electron) or h (hole). 

The delta function, h"r, represents a broadened delta function used to fit 

exciton lineshapes and is given by[33), 

1 
h't( X) = -_---,--,-

7r f cosh (f:) 
(107) 
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where the r in our definition of r is used to describe the spectral width and 

is used as a fitting parameter. The chemical potentials are determined by the 

temperature and e-h density. By assuming they behave as an ideal Fermi gas we 

have the following relation, 

- ma ma=
mµ. 

(108) 

(109) 

and Na is the density of the particle a. For a given temperature and particle density 

Eq.108 is approximated with the use of the Pade approximate technique[34]. The 

result is, 

foa = ln(O) + k1 ln(k20 + ka) + k40 + ks 
3 

n = 4Naa~ ( - : ) 
2 

Tma 

(110) 

(111) 

k1 = 4.8966851, k2 = 3.3105795, k3 = 73.6264033, k4 = .1333760, k5 = -21.0508644 

(112) 

Once the chemical potentials have been found the plasma screening length, "', is 

determined by, 

00 [ ][ l 4 G. J. 1 1 
aoK, 2 = -yT dx X m& . - 1- -

( ) 7r J vx~ l+exp(x-µa) l+exp(x-µa) 
0 

(113) 

Finally, by phenomenologically forcing a constant exciton ground state energy, 

which is a well known experimental fact for a highly excited semiconductor, the 

change in the band gap, SE9 , due to the creation of a plasma is, 

(114) 

SE9 1 - = --,g < 1 
ER g 

(115) 

This effectively sterns from equating the change in the exciton binding energy to 

the magnitude of the change in the band gap, rendering the exciton ground state 

energy constant. 
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Obviously the necessary calculations are lengthy. It was found that the 

infinite products required limits up to approximately 1000 for the bound states 

and 4000 for the continuum, depending on the value of g (which is determined 

by the temperature and carrier density). In the foregoing the integrals which had 

to be treated numerically were approximated by a simple Riemann sum. More 

progressive techniques had been examined, however the computational speed of 

a simple Riemann sum outweighed the negligible accuracy gained from a more 

involved algorithm. As a final note to calculate the absorption coefficient given 

the temperature, e-h density, and wavelength requires approximately 1.5 minutes. 

Thus for a computational grid of say 15x70 points would require approximately 

1 7 .5 hours for a single data point in time! Hence the reason for not employing this 

calculation in the simulations of section Theory II.A .. The calculation has been 

simulated on the Oklahoma State University VMS (vax) mainframe. The Program 

lines are the content of Appendix B. 

Once a theoretical fit to the absorption coefficient has been established one 

can then invoke the Kramers-Kronig relations to find the change in the index of 

refraction spectra as a function of temperature and e-h density. This has proven 

fruitful in the evaluation of the change in the index of refraction as the band gap is 

temperature tuned (resonant enhancement). The change in the index of refraction 

may be approximated by a first order Taylor series expansion, 

( on) (8n)N° ( on )T0 

.6.n = tJT .6.T + tJT .6.T + tJN .6.N 
off on on 

(116) 

In Eq.116 off and on refer to off-resonance (background or phonon assisted) and 

on-resonance respectively. The on-resonance terms result from band edge effects 

where the properties of a semiconductor are very different from those away from 

the band edge. The term containing the e-h density is effectively an on-resonant 

term due to the fact that a negligible number of e-h pairs are created far from the 

band edge. The superscripts on the on-resonant terms imply that these respective 

quantities are evaluated at a given point. The index of refraction is a function of 

the temperature and e-h density. We are merely applying a first order expansion. 
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We note that in Eq.116 we are not concerned with the change in optical path 

length, merely the change in the refractive index. There is no cavity resonance 

consideration in our model because we are not dealing with a dispersive form of 

bistability, thus in this context the optical path length is not of importance but 

rather the refractive index change alone. Thus the change in length of the sample 

due to thermal expansion has been ignored. 

It is the on-resonance terms we get from a Kramers-Kronig transformation of 

the absorption spectra. The change in the index of refraction spectra as a function 

of temperature is given by, 

~n(.\ TN)= _!_pvj00 a(N,T,Na) - a(N,Ta,N0 ) d,\' (l17) 
' ' 0 271"2 0 ( ~) - 1 

and as a function of e-h density, 

where PV indicates the principle value. In Figure 4 we show the absorption spectra 

for ZnSe as a function of temperature. (The results for CdS are included in Chapter 

IV.) Included are the experimental spectra for the first five temperatures. Figure 5 

is the Kramers-Kronig transformation of the absorption spectra for an e-h density 

of 1021m-3 giving the index of refraction spectra as a function of temperature. 

For e-h densities less than 1023m-3 these spectra changed negligibly while the 

computational effort significantly increased. In the bottom figure we show the 

change in the index of refraction as a function of the change in temperature at the 

476.5nm wavelength for low (1021m-3 ) e-h densities. We see as the band gap is 

temperature tuned to this wavelength the index of refraction initially drops and 

then rises to some equilibrium, or final value. We have empirically fitted this 

curve to a hyperbolic secant function. This function was chosen merely because it 

possesses the proper character. Our expression for ~n is, 

[ 2.571 l -3 ~n1ow = 1.546 - ( AT- ) xlO cosh ... 36.79 
. 32.45 

(119) 
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In Figure 6 we show the theoretical absorption spectra as a function of e-h 

density at room temperature. In Figure 7 we show the associative refractive index 

spectra (top} along with the change in the refractive index at the wavelength 

476.5nm (bottom). From this picture it is clear the index change due to the e-h 

density is small (compared to the temperature effects} for e-h densities less than 

- 1023m-3 • In Figure 8 we show the absorption as a function of temperature and 

e-h density. Both graphs (top and bottom) represent the same data, only oriented 

differently for ease of perspective. This shows that at relatively high temperatures 

the absorption drops off rapidly near e-h densities beyond - 1024m-3 • This is due to 

band-filling. The steady-state value for the electron-hole density, for the simplest 

of rate equations, is given by, 

(120) 

As a approaches zero the intensity, I, would have to approach infinity for finite 

N(s). An unphysical result. Thus there exist some maximum electron-hole density 

achievable using a single exciting beam. Also as N(s) increases a decreases which 

in turn decreases N(s). It is somewhat unclear what e-h densities are achievable 

in our experiment. The simple rate equation allows e-h densities beyond 1025m-3 

at high excitation levels. However this does not include such nonlinear effects as 

band-filling, nonconstant ambipolar diffusion, nonconstant thermal conductivity, 

or higher order recombination terms. At high excitation levels it is likely these 

quantities become a function of temperature and e-h density. It seems possible 

that such high e-h densities may never be reached on a µ sec time scale (meaning 

after thermalization and relaxation). For this reason we have ignored the effect of 

the e-h pairs in the evaluation of the on-resonant enhancement of the refractive 

index. 
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Results and Discussion 

Absorptive Switching 

Figure 9 illustrates three example cases of the normalized power transmis

sion as a function of time for both the experimental results (left) and theoretical 

simulations (right). We stress that in all cases the input intensity remains constant 

from t=O to beyond the point of switching (i.e. the switching to an "off" state 

is due to the sample, not the AOM). The powers noted were the actual powers 

used in the experiment and model. Because one cannot know exactly the location 

of the sample with respect to the focusing lens this location has been identified 

theoretically and is given by Zaamp· A theoretical value of 5x10-5 K-1 was used for 

the off-resonant contribution to the thermo-optic coefficient, (8n/8Tt11 . 

The experimental results indicate a very similar temporal profile over a dif

ference in time scale of five orders of magnitude. This would seem to indicate that 

the same dynamical processes are responsible for the bistable behavior. Using the 

previously discussed model we were able to theoretically simulate the experimental 

results to a fair degree of accuracy. Only in the case of the very long time scale, 

Figure 9.( c.2), does the model begin to resemble less that of the experimental re

sult. Here the model shows a relative fast decrease in transmission at the onset 

and a near equilibrated regime prior to switching. The experimental result would 

indicate a gradual decrease in transmission from the onset until switching. In this 

example we only include the stationary case for the e-h density as this allows for 

a much greater step size in time. 

In Figure 10 we simulate the effects of various parameters on the switching 

characteristics. In Figure 10.(a) we show the effect of the electronic dynamics. 

Namely, (a.I) assumes the full non-stationary solution of the e-h density equation 

while ( a.2) assumes a stationary solution. Obviously the effects of diffusion and 

temporal dynamics are minimal. Therefore the major dynamical process is gov

erned by the heat flow equation. In the five other graphs we have used a stationary 

e-h density. 
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Figure 9. Normalized power transmission vs. time. The powers are (a) 640m W, (b) 
470mW, (c) 330mW. The sample location, Zsamp, was theoretically 
determined to be (a.2) f-.17mm, (b.2) f-.2317mm, and (c.2) f-.18mm 
where f=5cm. · 
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Figure 10. Absorptive switching characteristics as a function of (a) electronic dy
namics, (b) dn/ dT, ( c) longitudinal and transverse heat diffusion, 
(d) ambipolar diffusion, (e) sample thickness, and (f) sample place
ment along the z-axis. 
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In Figure 10.(b) we show the effect of self-focusing. (b.l) assumes both the 

on-resonant and off-resonant contributions to the change in the index of refraction 

due to temperature changes (low e-h density). This is the case used to fit the 

data. (b.2) ignores both contributions, thus the diffraction here is solely due to 

the already present diffraction caused by the external focusing. (b.3) ignores the 

on~resonant term, which effectively gives a larger value for dn/dT and (b.4) simply 

reverses the sign of both terms. Interestingly it would seem the more positive the 

total dn/ dT the less the transmission until the time of switching, however the time 

of switching still remains roughly the same. 

Figure 10.( c) shows the effect of the heat diffusion terms. ( c.1) contains both 

the longitudinal and transverse diffusion terms. In ( c.2) we turn off the longitudinal 

heat diffusion term and in ( c.3) we turn off the transverse heat diffusion. Due to 

the similarity amongst curves (c.1) and (c.2) in comparison to curve (c.3), one 

may conclude that heat diffusion transverse to the direction of beam propagation 

exceeds that along the direction of propagation. This is due to the fact that 

the temperature gradient is greater transverse to the beam then along the beam. 

The transmission profile of curve ( c.3) is unique. Because there is no radial heat 

diffusion and negligible radial carrier diffusion, the temperature profile, and hence 

the absorption profile, follows that of the intensity profile. Thus the center portion 

of the intensity profile switches sooner than in the case of diffusion in all dimensions 

because of the heat confinement. In addition, the total transmitted power does not 

switch to zero spontaneously. The heat generated near the center of the beam is 

not shared with that portion of the beam outside this region. Thus initially only a 

finite portion of the beam completely switches, the remaining portion, extracting 

less energy from the beam, decays slowly. 

In Figure 10.(d) we examine the effect of ambipolar diffusion. In (d.1) we 

have Da = 10-4m2 sec -1, in ( d.2) we set the diffusion term to zero, and in ( d.3) 

we raise Da to 10-3m2 sec-1 • Clearly the electronic diffusion term has little effect. 
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In Figure 10.(e) we show the effect of translating the sample along the optical 

axis. In (e.1) thru (e.3) we have that Zsamp is equal to f-.17mm, f-.18mm, and f

.16mm respectively (f 5cm). Clearly as the sample is moved closer to the focal 

plane the time of switching decreases. It would seem in comparing this figure with 

Figure 10.(b) that external focusing effects more the time of switching whereas 

internal self-focusing effects the overall structure. 

Lastly in Figure 10.(f) we adjust the thickness of the sample from 1mm in 

(f.1), to 0.5mm in (f.2), to 2mm in (f.3). The position of the front face relative to 

the focusing lens is constant. (f.2) seems to rise above (f.1) similarly to how (b.2) 

is elevated from (b.1). Perhaps in the thinner sample self-focusing becomes less 

significant. (f.3) appears similar to (f.1) indicating that most of the dynamics are 

taking place towards the front portion of the sample, thus extending the back end 

has little effect. 

In Figure 11 we show the time necessary for switching to take place as a 

function of input power at a fixed z value. The inset is a reproduction of the same 

graph using a common logarithmic scale for the vertical axis. The inset would seem 

to indicate two linear regimes. Thus the time of switching approximately decreases 

exponentially with power at a "rate" corresponding to the respective regime. 

Transverse Structures 

Figure 12 illustrates theoretical beam profile calculations for transverse heat 

diffusion only (a), longitudinal heat diffusion only (b), and three dimensional heat 

diffusion ( c). All three cases show the output intensity profile when their respective 

temporal profiles in Figure 10. ( c) reach normalized power transmissio11 values from 

0.6 to 0.1. We observe that when either transverse or longitudinal heat diffusion 

is restricted only a local minima on axis results. This local minima (hole) forms 

at earlier transmissions in the case of no transverse heat diffusion compared to no 

longitudinal heat diffusion, further showing that heat diffusion in the transverse 

direction is greater than that along the beam path. Three dimensional heat diffu

sion is required to observe the formation of a local minima on axis (hole) followed 
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Figure 12. Output beam profiles during switching as a function of transmittivity 
and longitudinal and transverse heat diffusion. (a) no longitudinal 
heat diffusion, {b) no transverse heat diffusion, and ( c) both longi-
tudinal and transverse heat diffusion. 
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by a local maxima on axis and local minima off axis (rings). This resembles that 

of a switching wave in that the local minima begins on axis and propagates ra

dially outward. Thus while Figure 10.(c) would seem to indicate that transverse 

heat diffusion dominates the dynamics, Figure 12 clearly shows the importance of 

longitudinal heat diffusion in the formation of these beam profiles. 

Figure 13 illustrates the experimental far field beam profile measurements 

and the comparison with theory in the case of the long time scan, Figure 9.(c). 

Here only a cross sectional slice through the center {near azimuthal symmetry) is 

shown. The model utilizes the stationary {s) electron-hole density and three di

mensional heat diffusion. The experimental power transmission was not measured 

simultaneously with that of the beam profile measurements, thus it is not exactly 

known at what normalized power transmissions these profiles were taken. However 

when comparing to the model we found good agreement at theoretical normalized 

power transmissions of 0.4 (c) and 0.38 {d). The experimental and theoretical 

results of Figure 13 show the very same structures as the computer simulation of 

Figure 12.(c), namely a hole followed by rings. 

In Figure 14 we show the intensity throughout the bulk of the sample at six 

different transmittivities for the case of Figure 9.(a.2). The respective axes are the 

same for all graphs. Z=O represents the front face while Z=lmm represents the exit 

face. Initially the beam is focused near the rear of the sample (a). In (b)-(f) the 

sample is switching to its off-state. A number of interesting structures result. Quite 

clear is the appearance of self-focusing already present in (b ). One can observe an 

increase in the on-axis intensity and a narrowing of the beam "width". This self

focusing also gives rise to undulations in the beam "width" clearly identifiable in 

(c). In {d)-(e) one can see the ring and hole structures throughout the bulk of the 

sample. At this higher power multiple rings result. Such structures have previously 

been theoretically predicted[35]. And lastly one can see from ( d)-{f) the gradual 

localization of the beam at the front face. As a final note, beam profile calculations 

were carried out in previous work[36] whereby all diffraction was ignored. There 
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the single hole and ring type structures occurred on all power and time scales. 

Thus diffraction is essential to the further development of multiple ring formation. 

In Figure 15 and Figure 16 we similarly show the temperature and e-h density 

profiles respectively. In these figures we can see the formation and localization of an 

excitation domain at the front face. Without any additional relaxation mechanism 

the result is a runaway process. Here the temperature soars well beyond the 

melting point C 1700K) and extremely high e-h densities result. With such levels 

of excitation a highly complex nonlinear problem at the surface surely results. In 

all samples the resulting damage appeared at the surface. It would seem plausible 

that such excitation localization would be responsible. 

Regenerative Pulsations 

A very interesting phenomenon has been observed in a few samples. Perhaps 

the most vexing consideration in attempting to understand this phenomenon is 1) 

it only occurs in a single batch of our samples and 2) the data was rarely consistent, 

thus trends and dependencies on controllable parameters were difficult to identify. 

This phenomenon, known as regenerative pulsations, seems to posses a great deal 

of structure. That is the character of the pulsing seems to be highly varied and 

not always reproducible. The absorption spectra, and this spectra as a function 

of temperature were identical amongst the various samples investigated. Their 

thicknesses were the same. Their bulk thermal properties were specified to be the 

same. All samples were grown by the Seeded Vapor Phase Transport (SVPT). All 

samples had been similarly polished and none were etched. Experimentally, the 

absorptive switching characteristics were the same. The only difference is that in 

some samples the material immediately damaged following the switching to the 

off-state whereas in one particular batch of samples the material would switch to 

an off-state and then self-pulse for a period of time and then damage. Because of 

the time scale of this phenomenon it seems the effect must be thermal in nature. 

That is the effect must be a function of the heating and cooling rates throughout 

the sample. 
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Several hybrid studies of regenerative pulsations have been reported in the 

literature[37-42] These experiments utilized a piezoelectric Fabry-Perot cavity. Re

generative pulsations have also been seen in intrinsic bistable systems by some 

workers[43,44,37]. However these intrinsic forms of regenerative pulsations are all 

dispersive in nature, requiring some form of cavity resonance, and thus could not 

explain our results (absorptive bistability). Only the work by Stadnik[ll,12] is 

similar to our results. There they see similar structures in bulk ZnSe utilizing 

an equivalent excitation source and experimental geometry. However these results 

lack any quantitative theory. The qualitative explanation is based on the concept 

of excitation domains and there unstable propagation. Some collaborative theoret

ical work[13,10,14,46-49] has been reported and essentially involves the calculation 

of hysteresis phenomenon, excitation domains, and domain structure and velocity. 

Although such theories may apply, without a direct simulation and comparison 

amongst theory and experiment, it is unclear. 

Perhaps the easiest means of understanding what is meant by regenerative 

pulsations is offered by Figure 17. The experiment is identical to that used in the 

previous sections (Figure 2). In figure 17.(a) we show the normalized transmission 

as a function of time. Below in Figure 17.(b) we show the simultaneous normalized 

reflection (P=375mW). Because there is no obvious phase difference we conclude 

that the regenerative pulsations are indeed a form of absorptive bistability as op

posed to dispersive bistability. As mentioned the structure of these pulses varies. 

Some appear more square top shaped as in Figure 18.(a) while others more saw

tooth in character, as in Figure 18.(b ). Experimentally both structures may result 

without any modification to the apparatus. Thus it was very difficult to identify 

trends. In addition to this anomaly it was difficult to predict how many after pulses 

would occur. After some unforeseen number_ of pulses the material would damage. 

Thus while trying to identify trends, one would have to occasionally translate the 

sample transverse to the beam. This also effected the experimental results. Merely 

thumping the sample mount would effect the results. Using a 3.5cm focusing lens 

as opposed to a 5cm focusing lens, extremely clear square top pulses result (Figure 
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Figure 17. Normalized transmission and reflection showing regenerative pulsations. 
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Figure 18. Two examples of regenerative pulsations showing the two forms of 

pulsing structures. Square top ( top, 430m W) and sawtooth (bot
tom, 510mW). 
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19). (Here the power used is 430mW). It would seem the square top structures 

favor a tighter focusing geometry. Using a 10cm focusing lens and the range of 

power available, regenerative pulsations never occurred. 

Briefly summarizing the most significant parameters responsible for the ap

pearance and structure of these pulses seems to be 1) focusing geometry. There 

had to be sufficient fluence and proper diffraction. Thus power, beam size, time, 

and focusing were all important. 2) Sample homogeneity. Translating the sample 

perpendicular to the beam effected the results. 3) Hysteresis. The sample did not 

always respond the same at the same location. 4) The sample properties them

selves. Not all samples reveal such pulsing and the phenomenon is seemingly rare 

in the scientific literature. 

By computer simulation its seems that the effect is essentially a surface prob

lem. That is, the effect occurs due to some relaxation of the thermal domain at 

the surface. We have theoretically simulated regenerative pulsations by stipulat

ing that at the front surface there is a reduced heating effect. Numerically this is 

accomplished by reducing the forcing function for the temperature by a factor of 

12. The forcing function is, 
N1iw 

FT= qeJJ-
Tkth 

(121) 

The inhomogeneity at the surface results in many dangling bonds which manifest 

themselves as a tremendous perturbation in the band structure. Essentially the 

band gap is replaced by a near continuous distribution of states(50]. Any change in 

qeJ J and T would most likely be an increase in qeJ J and a decrease in T. The thermal 

conductivity could increase or decrease but certainly not increase by a factor of 12 

(from a bulk value of 5.6Wm-1 J(-1 ). The only other parameter is the e-h density. 

It was shown earlier that the ambipolar diffusion coefficient had little effect on 

the switching and furthermore an increase in Da by a factor of 10 did not reveal 

any self-pulsing. The forcing function for the e-h density is proportional to the 

absorption coefficient. Perhaps some form of saturation (band-filling or dynamic 

Burnstein-Moss effect) causes a reduction in the absorption however all attempts 

to include such a mechanism failed. In any case, the net outcome is to bring the 
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heating and cooling rates into close competition resulting in thermal waves at the 

surface. These thermal waves modulate the absorption coefficient and the index 

of refraction. This causes the intensity, and hence heating rate, to undulate. In 

Figure 20 we compare the experiment with theory. The arrows in the theoretical 

scan are used as markers related to the three following figures. Some features com

pare quite convincingly. (The "fingernail" like spikes impressed on the individual 

pulses in the theoretical scan, as well as the noise following the initial switching to 

the off-state, are believed to be a numerical manifestation.) Figures 21,22, and 23 

show the (radial) intensity, temperature, and e-h density profiles respectively as a 

function of time at the surface ( or rather within the first hypothetical "slice" of the 

sample). The time period corresponds to the region between the arrows in Figure 

20. Obviously under such high excitation very complex structures result. The in

tensity profile clearly shows the undulations present across the entire beam, as do 

the temperature and e-h density profiles. It is the network of feedback amongst the 

intensity, heating/ cooling, absorption, and diffraction responsible for this interest

ing competition amongst heating and cooling. Beyond this first slice the excitation 

is much reduced however these complex structures continue to deform due to the 

effects at the surface layer. 

Figure 24 shows the results of the side-beam experiment (refer to Figure 2). 

The top figure shows the incident (square pulse) and transmitted signals (both 

along the optical axis). Below are the incident pulse (same as above, along the 

optical axis) and the side beam ( transverse to the optical axis). The side beam is 

at a wavelength of 543.5nm, well below the band edge. The change in absorption 

at this wavelength is negligible thus any changes in its propagation will be detected 

by the deflection of its beam path, hence the use of the iris. As the transmitted 

signal switches to the off-state and subsequently pulses, the side beam steadily rises. 

Qualitatively this may be understood as follows. Initially the side beam is incident 

upon the iris slightly to its right side, thus not at the maximum transmittivity. 

The incident beam comes to focus near the rear of the sample while the side beam 

traverses roughly through the middle. The two beams cross in the interior. As the 
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switching takes place a temperature gradient forms such that the front portion of 

the sample ( along the z-axis) is at a greater temperature than the back portion. 

The subsequent refractive index gradient steers the side beam towards the center of 

the iris steadily increasing the transmission. During the pulsing a region localized 

at the front face steadily rises in temperature. When the incident Ar+ -ion beam 

turns off the middle portion of the sample readily cools and the side beam is steered 

back towards the right side of the iris reducing for a moment the transmission. 

The strong excitation domain at the surface now begins to diffuse throughout the 

bulk of the sample. As this heat traverses the side beam a steering of the side 

beam towards the center of the iris again occurs and the transmission rises for a 

period before again descending as the sample state approaches equilibrium. The 

important observation is that the pulsing mechanism would appear to exist at 

the surface, as opposed to some process occurring throughout the bulk. This is 

evidenced by the lack of any modulation in the side beam transmission during the 

pulsing. 

Conclusion 

We have presented experimental and theoretical evidence of absorptive 

switching, transverse structures, and regenerative pulsations in bulk ZnSe. By 

using the Kramers-Kronig transformation we have been able to calculate the ef

fect of temperature and e-h density on the resonant enhancement of the refractive 

index as the absorption spectra is altered. Utilizing Urbach's rule for the absorp

tion, three dimensional spatial as well as time dependent transport equations, and 

a numerical scheme for solving this system of equations, we have been able to 

simulate the effect of longitudinal and transverse heat diffusion, ambipolar diffu

sion, self-focusing due to background as well as on-resonant contributions, sample 

thickness and location, and lastly the effect of a nonstationary e-h density. We 

have also been able to simulate the 3-dimensional profiles of the governing vari

ables throughout the bulk of the sample. From this we see the formation of hole 

and ring type structures at relatively low power (330m W) and slow time scale C 
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1sec) and multiple rings, as well as further complex structures at a higher power 

( 640m W) and shorter time scale C µsec). The bistable property of our system 

manifests itself through the positive feedback amongst the absorption and heating 

mediated by the production and radiationless recombination of electron-hole pairs. 

However in the case of regenerative pulsations, it would seem some form of thermal 

relaxation is necessary. We have simulated such pulsing by unjustifiably reducing 

the heating rate at the surface. This phenomenon still has many questions. 
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Figure 19. Example of regenerative pulsations using a 3.5cm focal length lens. 
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Figure 24. Results of side beam experiment. (top) Incident exciting beam (square 
pulse) and transmitted exciting beam. (bottom) Incident exciting 
beam ( square pulse) and side HeN e beam. 



CHAPTER III 

THERMAL LENSING IN A LEAD SILICATE 

GLASS 

Introduction 

The trapping of a laser beam due to self-induced changes in the index of 

refraction is known as self-focusing and is a phenomenon of which has been studied 

extensively for over two decades[55,56]. This effect has been observed in a variety 

of optical materials[57-59,61-69] When this change in the refractive index is due to 

a change in the local temperature then it is referred to as thermal lensing. Thermal 

lensing has been studied in a great number of optical glasses[62-65,67]. Extensive 

research has been collected concerning this phenomenon, most of which applies 

to the effect of self-focusing on the propagation characteristics of laser light and 

the various mechanisms responsible for this effect. Our aim has been to study the 

relative strength of the thermal lensing effect in a variety of optical glasses[70]. Of 

these materials, we only report here the results for a lead oxide modified silicate 

glass with the following constituents: 57% Si02, 34% PbO, 5% Eu3+, and 3.3% 

BaO. Similar experiments are carried out using a lOmsec square pulse at 514nm 

and a - I Onsec gaussian pulse at 532nm. The effect of sample thickness is also 

discussed. Two types of measurements using the same experimental setup were 

taken. The first measurement involves the output vs. sample location, or Z-scan. 

The second is simply output vs. input with the sample location being fixed. For 

the nanosecond experiments the output and input are expressed as :fluence where 

as for the millisecond experiments these are normalized transmittance and power 

respectively. As will become clear later, the Z-scan enables us to see at what 

location the thermal lensing is greatest whereby the second type of measurement 

66 
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allows us to see the effect of the lensing on the transmittance characteristics of the 

output. 

On the millisecond time scale the beam undulates within the sample. This is 

predictable from the ray tracing theory of quadratic index media[77] and has been 

investigated early on by Dyshko et. al.[71,72], Kerr[61], Zverev and Pashkov[67], 

Fiet et. al.[72,73,20],Wagner et. al.[21], and more recently for GRIN lenses[74] 

and laser crystals such as Nd:YAP[75,76]. These studies primarily focus on the 

characteristics of wave propagation in such media, catastrophic self-focusing, and 

filament formation. These references are consistent in identifying beam waist un

dulations.Finally we point out that it has been our attempt to study the effects of 

self-focusing in order to understand its potential as a light controlling mechanism 

in these lead silicate glass materials. 

Thermo-optic Effect 

The change in the index of refraction is approximated ( to first order) as that 

solely due to the thermo-optic effect, 

dn 
n = n0 + dT~T (122) 

where n0 is the background index of refraction, ~T the change in temperature, 

and dn/ dT is the total change in the index of refraction with temperature. Any 

nonlinearities resulting from thermal expansion have been omitted due to their 

negligible contribution in these lead glasses[70]. The change in temperature arises 

from the absorption of light energy and is governed by the heat diffusion equation. 

Ignoring any diffusion along the optical axes, in 2-dimensions the heat diffusion 

equation is, 

!. ar~r, t) = v 2T(r, t) + 47rQ(r, t) 
TJ t 

(123) 

where T/ is the thermal diffusivity, T the temperature, and Q the heat source. Using 

the following Green's function, 

( ... -f ') 1 [ Ir - r'l 2 j 
G r, t; r, t = 47r(t _ t') exp - 4r,(t _ t') (124) 
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' 

we find the change in temperature at time t and position r to be[78], 

t oo 211'exp [- !r-r'l2 ] 

~T(r,t) = j j j (t ~~~tt') Q(r',t')r'dr'dcp'dt' (125) 
0 0 0 

The forcing function Q(r',t') is written as, 

Q(r', t') = I(r', t')a = 20: exp [- 2r'2] P0 (t') (126) 
kth 1rw2 kth w2 

where a is the coefficient of linear absorption, kth the thermal conductivity, w the 

beam waist size, and P0 (t') the peak power at time t'. 

In our experiments we have used a lOmsec square pulse derived from an 

Ar+-ion laser and acousto-optic modulator (AOM) and a - lOnsec gaussian pulse 

from a pulsed YAG laser. The form of the forcing function is dependent on the 

temporal profile of the exciting pulse. In the case of the square pulse the peak 

power is merely a constant, P0 (t') = P0 =constant. Figure 25 shows the peak 

power of a cross-sectional slice versus time for the 1 Onsec pulse. Because a closed 

analytical solution is not possible for the case of a gaussian temporal profile we 

have approximated the gaussian by two linear equations ( dashed triangle in Figure 

25). At t = t 0 the pulse reaches its peak power. We thus have for its temporal 

profile the following expressions, 

{ 
11.t' 

P(t') = to 

P. (2 - r.) 
0 to 

, t' ::5 t0 

, t0 ::5 t' ::5 2t0 

(127) 

Using the above expressions for the temporal profiles in the expression for the 

forcing function Eq.126, solving for the temperature Eq.125 with the parabolic 

approximation, and using Eq.122 one arrives at the following expressions for the 

index of refraction, 

1 Omsec square pulse: 

n(r, t) = n. + : ~: [ In ( 1+ :J -:: ( 1 ! {;)] (128) 

1 Onsec triangular pulse: 

· dn P0 a { t tc ( t ) 2r2 tc [ ( t ) f ] } n(r, t) = n0 + -- - + - ln 1 + - - -- ln 1 + - - _c_t 
dT kth to t 0 tc w2 t0 tc 1 + i;: 

(129) 
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for t < t0 and, 

dn P0 a [ t ( tc) ( t) 4r2 (t - t 0 )] n(r,t) = n0 + --- 2- - + 2 + - In 1 + - - - 2 --dT kth to t0 tc W t + tc 
(130) 

for t > t0 • In the above expressions, tc = · :; and t << I.Collecting terms for 

either Eq.128 or Eq.129 one can write the index of refraction as, 

(131) 

Gaussian Beams in Quadratic Index Media 

Following the development by Kogelnik[79], the propagating characteristics 

of an electric field in an isotropic charge-free medium is governed by the wave 

equation, 

(132) 

where by arriving at Eq.131 the fractional change in the index of refraction over 

one optical wavelength is assumed negligible. From Eq.131 k2 is given by, 

· k2(r) = n2(r)k2 = k2(n2 - 2n n r 2 + n2) ,...., k2(n2 - 2n n r 2 ) o o3 34 4,....,o3 34 (133) 

where k0 = t· 
In reference to the development in Kogelnik, we will now use the definition 

of k2 given by 133. 

Assuming near plane-wave like propagation in the paraxial approximation 

one writes, 

E=~(x,y,z)exp(-ikz) 

Using Eq.132, Eq.133, and Eq.134 one gets, 

(134) 

(135) 

where~,=~ and~" is assumed negligible compared to the other terms. Eq.135 

is a parabolic equation with an exact solution. Writing ~ in terms of a complex 

phase parameter P and a complex beam parameter Q such that, 

~=exp [-i(P + ~Qr2)] (136) 
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one arrives at the following relationships, 

(137) 

and, 

(138) 

where the term 8<~;3 > has been omitted. The problem of the wave equation has 

now been converted into the problem of the solutions to Eq.137, c!,nd Eq.138. 

The solution to Eq.138 yields the gaussian q-parameter defined by q = k~s, 

q(z) = cos(cpz)q(O) + (1/cp) sin(cpz) 
-cpsin(cpz)q(O) + cos(cpz) 

(139) 

where cp = J2n4/n3. Here, q(O) represents the q-parameter at the first interface. 

Using the well known technique of ray matrices one can identify from Eq.139 the 

following ABCD ray matrix representation, 

ABCD::;:} ( cos(cpz) 

-cpsin(cpz) 

(1/cp) sin(cpz) ) 

cos(cpz) 

Experiment 

(140) 

Figure 26 shows the experimental setup. In the case of thelOmsec square 

pulse experiments an argon ion laser operating at 514.5nm was used together with 

an acousto-optic modulator (AOM). The detection was accomplished with the 

use of fast photodiodes and a digital storag~ oscilloscope. For the lOnsec exper

iments, an Nd+:YAG pulsed laser operating at 532nm was used with detection 

accomplished via an energy meter. (Here in place of the AOM above we have an 

attenuator.) In both cases, a focusing lens of 5cm was used to focus the beam 

down to - 40µm. Zl represents the distance from the focal plane of the focusing 

lens to the front face of the sample. An iris was set 10cm away from the focusing 

lens with its diameter being equal to the diameter of the beam prior to this lens 

(giving rise to a transmittance of - 88% at very low light levels). The second lens 

is used to collect all the light past the iris. 
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Figure 26. Experimental arrangement for both nanosecond and microsecond exper
iments in the lead glasses. M-mirror, P /E-photodiode/energy me
ter, AOM/ ATTN-acousto-optic modulator/ attenuator, ND-neutral 
density filter, BS-beam splitter, S-sample 
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Results and Discussion 

The ray matrix method was used to model the experimental results whereby 

a gaussian TEM00 mode was assumed. Because the ray matrix representation for 

the sample depends on the waist size of the beam of which continuously changes, 

an iterative method of carrying out the necessary calculations was used whereby 

the sample is hypothetically sliced m times and the beam is assumed to have an 

unchanging waist size as it traverses each thin slice. Using eq.138 the waist is then 

recalculated after each slice. 

Figure 27 illustrates the 1 Omsec temporal response for the 1.5mm thick sam

ple. Similar results were obtained for the 1mm thick sample. In these four graphs 

the power of the laser is held constant (275m W) and temporal profiles are collected 

at four different values of Zl. Here the output is not time integrated but rather 

monitored as a function of time. These plots illustrate the effect of sample location 

on the time-dependence of the· output pulse. 

Figure 28 (top) shows the Z-scans for sample thicknesses of 1mm and 1.5mm. 

In the bottom of Figure 27 are the respective plots of normalized output vs. input 

power for two different values of Zl. Here the output is the time-integrated output 

of the pulse. The open and closed cirdes represent experimental data and the solid 

line the theory. The open circle data refers to a Zl value just before the first minima 

on the respective Z-scan and the closed circle data, centered at the minima. These 

plots show features which have not been previously observed in the literature using 

similar experiments. These are the characteristic second dip in the Z-scans (top 

graphs) and the oscillatory behavior in the transmission (bottom graphs). In the 

case of the Z-scans the drop in the transmittance is due to defocusing at the iris. 

Generally one sees a single minima. However due to the very strong thermo-optic 

effect in these samples, the beam waist is undulating within the sample. This gives 

rise to a second minima. 

Referring to the Z-scan at the top of Figure 28, the graphs in Figure 27.(a

d) correspond to Zl values just before the first minima (3a and 3b), right at the 
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minima (3c}, and just passed the minima (3d}. The response is representative of 

the change in transmittance at the iris due to the defocusing of the beam. From 

our theoretical fit our model seems to correctly identify the time dependence. 

Figure 29.(a) shows the theoretical Z-scans at three different powers. Adja

cent to each Z-scan, Figure 29.(b }, is a theoretical plot of the waist size of the beam 

within the sample after lOmsec (i.e. Z=O refers to the front face and Z=.001m the 

back face} whereby the sample is fixed at Zl corresponding to the first minima. As 

can be seen the undulating of the waist increases with increasing power. For a sin

gle minima in the Z-scan there are no undulations in the beam with the exception 

of that which is due simply to the focusing of the beam prior to the sample. As the 

power increases, so does the undulating of the beam. It is this undulation within 

the sample which gives rise to the multiple minima in the Z-scans[81] as well as 

the oscillatory behavior in Figure 28. The presence of these undulations is very Zl 

dependent as it is determined by the input intensity and the radius of curvature of 

the phase front. This propagating characteristic occurs for the same reason as the 

undulating of a laser beam in a fiber optic waveguide with a parabolic transverse 

index of refraction profile. This can be clarified by the following analysis. 

The q-parameter, Eq.139, by definition, can be expressed as, 

1 1 . A 
--=---i---
q(z) R(z) 1rw2(z) 

{141} 

where R(z) is the radius of curvature of the phase front and w( z) is the beam 

waist. Expanding Eq.139 into its real and imaginary parts and using Eq.141 we 

arrive at the following expressions for the beam waist and radius[80], 

2 2 [( 1 sin{cpz)) 2 
( A sin{cpz)) 2

] 
w (z) = w {O) cos{cpz} + R(O} 'P + 1rw2(0) 'P , {142) 

1 cos 2{cpz) - sin 2{cpz} . [ 1 1 ( A ) 2
] 

R(z} = R(O) + sm(cpz) cos(cpz) cpR2 (0) - 'P + cp 1rw2(0) 

{143) 

where cp = cp[w(O)]. 

Both the beam waist and radius continuously change and are dependent on 

each other. Clearly these quantities are oscillatory, albeit nonperiodic. For the 
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index of refraction governed by Eq.128, <pis given by, 

<p[w(z)] = 4Poa dn i; 
now2(z)kth dT l + t; (144) 

Because of the interdependence of <p, w, and R, as well as their dependence 

on time, an iterative method is required to calculate these quantities. Such a cal

culation for w is shown in Figure 29. From this figure and eq.144, we see that the 

number of undulations increases with power, accompanied by a dramatic decrease 

in the beam waist. One conclusion from this is that filament formation is oscilla

tory, that is, the filament diameter :fluctuates. This is consistent with references 

cited in section 1. Given the values for thermal diffusivity, thermal conductivity, 

dn/dT, the coefficient of absorption, and the operating time scale, <p for this ma

terial is sufficient enough to allow for the undulations within the thickness of our 

samples. <p determines the "frequency" of these undulations and from Eq.144 one 

can immediately recognize the effect of the various material parameters. Increases 

in the beam power, coefficient of linear absorption, and nonlinear change in the 

refractive index, dn/ dT, all have the effect of increasing <p, where as an increase in 

the waist size or thermal conductivity decreases <p. The ratio of these quantities 

is directly proportional to the nonlinear change in the refractive index, Eq.128. 

Thus the greater the nonlinearity, the greater the number of undulations over a 

given path length. An increase in the thermal diffusivity, T/ ( tc = w2 /Sr,), decreases 

tc, and <p reaches steady state in a shorter time. Or conversely, the less the heat 

diffusion, the more the nonlinearity will continue to grow, and thus the greater the 

time for steady state. Finally we note that for shorter times <p decreases. On a 

nanosecond time scale, <p becomes very small, and the distance between the mul

tiple foci is greater than the thickness of our samples, and thus no undulations are 

detected. 

By making an approximation for the trigonometric quantities, as well as 

R(O), in Eq.142 we are able to compare with the early work by Akhmanov et. 
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al.[56]. Assume the beam is incident such that R(O) is infinite. Eq.142 becomes, 

w2(z) 2 [ ( ,\ ) 2] ( ,\ ) 2 
w2(0) = cos (<pz) 1 - <p1rw2(0) + <p1rw2(0) (145) 

Using Eq.144 we get, 

(146) 

where, 

P. _ n 0 kthA2 (1 + t) 
er - 471'2w2(0)a~; t . (147) 

Letting t become very large we have for Per at steady-state (ss), 

p(ss) = nokthA2 • 

er 41r2w2 (0)a~; 
(148) 

We can always choose some z such that <pz is small. Thus we expand cos( <pz )~ 

1 - <p2z2. Eq.146 at steady state now reads, 

w2(z) -. - 2 2 ( - pJ:s)) 
w2(0) - 1 'fl z 1 Po . 

For P0 << PJ:a) , w(z) will always be greater than w(O) and as such is divergent. 

Beam trapping occurs when w(z) is no longer a function of z. This condition 

translates into P0 = PJ;a). For P0 >> PJ:s), w(z) will always be less than w(O) 

and thus in the limit of an infinite number of iterations, approach zero. In the clas

sical work by Akhmanov et. al., they have defined the nonlinearity in terms of the 

permittivity as opposed to the refractive index. Also in arriving at their solution 

for the beam waist a different phase factor for 1/J, Eq.135, was chosen. However, 

despite these differences, our results and theirs are consistent with regard to the 

limiting behavior of the beam waist for gaussian beams in quadratic index media. 

The optical behavior is determined by the nonlinearity of the refractive index. We 

note that for an increase in the nonlinearity (increase in the absorption or dn/ dT 

and decrease in the thermal conductivity), the critical power, PJ:s), decreases. In 

other words, less power is necessary to achieve the same optical behavior by proper 

adjustment of the other material parameters. By decreasing the thermal conduc

tivity the heat is further localized and thus the nonlinearity increases. Similarly, 
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by increasing the absorption, more heat is supplied to the medium, and this also 

enhances the nonlinearity. dn/ dT has the property of increasing the refractive 

index for an increase in temperature. The greater dn/dT, the sharper the change 

in the refractive index, and thus the greater the self-focusing. 

The results of the nanosecond experiments are given in Figure 30 and ar

ranged as in Figure 28. In Figure 30 we do not see a second minima in the Z-scan 

nor any oscillatory behavior in graphs Figure 30. On this time scale the change in 

temperature, and hence change in the index of refraction, is insufficient to bring 

about any undulations of the beam. However as is apparent in both graphs the 

thermal lensing is still quite significant and our model, utilizing the same param

eters, fits the results fairly well. In Figure 30 the effect of increased thickness 

results in a lowering of the output fluence. This would be expected merely from 

the increase in absorption. However, by dividing out the effect of absorption we 

have seen it is due primarily to an increase in the lensing. This can be understood 

by considering the medium as a continuous distributed lens system. The greater 

the number of lenses, the greater the defocusing, unless the beam begins to undu

late, which it does not on this time scale. Thus by utilizing a thicker sample one 

sacrifices visibility for greater limiting of the transmittance. Similar to Figure 28, 

Figure 30 shows how these glasses may prove useful as a light controlling device. 

We note that in Fig.30.(b) the glass is being damaged beyond - 2J/cm2. Thus 

upon each pulse the sample is translated in the xy-plane. Even though the sample 

experiences damage, the limiting property of this material is still active. 

In fitting the data the following constants were used: n0= 1.82, kth = .5W m-1 K-1 , 

a=800m-1 , 77=1x10-6m2 sec - 1 , and dn/ dT=lxIQ-5 K-1 • On both time scales we 

see that the model fits the experimental results quite well. This would seem to 

indicate that the same physical phenomenon is responsible for the results, namely 

a change in the refractive index due to thermal heating. 
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Conclusion 

Basing our model on thermal changes in the refractive index and fitting 

the experimental results we have found a value of dn/dT - 10-5 K-1 for the lead 

silicate glass in our study. Although other nonlinear mechanisms may be occurring 

on either time scales(57-60] the fits resulting from our analysis indicate that the 

thermal lensing mechanism is prominent enough to describe the results at least 

to first order. One application of thermal lensing is in the controlling of light; 

Figure 28 and Figure 30. From our modeling we see that a number of physical 

parameters strongly influence the relative strength of the thermal lensing effect. 

For strong thermal lensing dn/ dT should be relatively large. This is because n 

is directly proportional to dn/dT. A small value for the thermal diffusivity and 

thermal conductivity is also necessary. If the heat generated readily diffuses then 

the change in temperature at a fixed point will be relatively small as will its 

gradient. Once a temperature gradient is established, small heat conduction is 

necessary for maintaining the gradient: For strong lensing one would like the 

index of refraction profile· to follow that of the exciting beam. This can only 

happen if the heat is localized (small 77) and the heat conduction minimal {small 

kt1,,). The order of magnitude for these three parameters together with the ease by 

which silicate glasses may be fabricated make these materials attractive as light 

controlling devices. 

There is a trade-off between the coefficient of absorption and sample thick

ness and that of visibility (transmittance prior to any thermal lensing). Increasing 

the absorption increases the heating and thus increases the thermal lensing. In

creased sample thickness increases the extent of the active medium. However both 

these variables decrease the level of throughput, lowering the visibility through the 

sample. The results of the millisecond experiments have allowed for the undula

tions of the laser beam to be investigated in a new way. Here we see that the 

front portion of the input pulse readily establishes a quadratic index profile such 

that the portion of the pulse to follow not only enhances this profile but is guided 
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through the sample much in the same way as a gaussian beam in a quadratic or 

gaussian index fiber optic waveguide. 
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CHAPTER IV 

NONLINEAR TRANSMISSION IN CdS 

Introduction 

Much work has been done in CdS over the past few decades. More recently 

however has been the investigation of the thermal and electronic nonlinearities as

sociated with the bistable behavior of both bulk and thin film CdS[3,82,83,1,84,85]. 

Our investigation is on a much slower time scale and involves a two beam geom

etry. Specifically, modulation of a HeNe probe beam has been observed in CdS 

by exciting the material with a CW argon ion source operating at a strongly ab

sorbed wavelength. The surface effect tesulting indicates the formation of a lens 

due to 1) the distortion of the front face and 2) a transverse gradient in the index 

of refraction. In addition to the induced positive lens a Fabry-Perot interferome

ter is recognized, due to thermal expansion, yielding a temporal variation in the 

transrnittivity of the probe beam. 

Experiment 

The experimental setup for these measurements is shown in Figure 31. The 

exciting source is an argon ion laser operating at 514.5nm. At this wavelength the 

absorptance is - 4.5. The argon beam is completely absorbed and thus a lm W 

HeNe laser is used to probe the response of the sample. This weak probe beam at 

a wavelength of 632.8nm lies well below the absorption edge and does not perturb 

the optical properties of the sample. Both beams operate continuously. A thin 

glass plate is used as a beam splitter to collinearize the two beams. A 5cm focal 

length lens focuses both beams perpendicular to the z-axis of the sample. The 
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time scale is on the order of 90 seconds. The transmission of the HeNe beam was 

recorded as a function of time for a fixed power of the Argon beam. Experimental 

results indicate that the strong absorption of the Argon beam at the surface of 

the material causes sufficient heating that thermal expansion results in a bulging 

of the front face. This end distortion establishes a positive lens as well as a time 

varying interferometer. Because the index of refraction varies with temperature a 

transverse gradient in the refractive index also acts to produce a positive lens. To 

account for the observed modulation of the probe beam, a model based on these 

mechanisms is offered. 

Theory 

Because all the light beyond the iris is collected it is only necessary to cal

culate the transmittance beyond this point. The sample is partitioned into two 

sections. The front section is that section over which the exciting beam is com

pletely absorbed. In this section thermal expansion takes place as well as a radial 

change in the index of refraction. This section is modeled as a thin lens and time 

varying interferometer. The rest of the sample is modeled as having a uniform 

index of refraction and fixed thickness. The input plane of the optical system is 

taken to be the principal plane of the focusing lens and the output plane of the 

system is the plane containing the iris. The approach is to 1) approximate the front 

section as a thin lens 2) use ray matrices to find the waist size of the probe beam 

at the iris 3) calculate the transmittance through the iris 4) and finally multiply 

this transmittance by the transmittivity of the sample governed by the expansion. 

Heating of the sample results from the absorption of the argon ion laser 

beam. The change in temperature is governed by the heat fl.ow equation, 

!_BT~r, t) = v 2T(r, t) + 411"Q(r, t) 
T/ . t 

(149) 

where T/ is the thermal diffusivity and Q the forcing function. As in Chapter III 

the Green's function is[78], 

G( ... ,,,, ') 1 [ lr-r"l2
] 

r, t; r 't = 411"(t - t') exp - 411(t - t') {150) 



and the change in temperature is then given by, 

t 00 211' exp [- w-r12 
] 

dT(r t) = j j j · 411<t-t') Q(r')r'dr'd¢ldt' 
' (t - t') 

0 0 0 . 
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(151} 

The forcing function is due to the absorption of light energy and is written as, 

Q( ') _ I(r')a _ 2Pa ( 2 r'2 ) r- - . exp-
kth 1rwi kth wi (152} 

where kth is the thermal conductivity, a the coefficient of linear absorption for the 

argon laser, WA the waist size of the argon beam inside the sample, and Pits peak 

output power. The final result for the change in temperature is, 

dT(r, t) = Pa [1n (1 + .!.) -2~ (~)] 
kth tc wi 1 + tc 

(153} 

where tc = ~- Here we used a constant value for the absorption coefficient for 

both the Ar+-ion (514.5nm} beam and HeNe (632.8nm} beam. At the 632.8nm line 

the absorption is negligible and is neither effected by the increased temperature 

nor induced electron-hole density. The 514.5nm line is just below the band gap 

and as such the absorption is elevated slightly as the temperature is raised. We 

have used a constant optical density of five. Referring to the absorption spectra 

in Figure 34 we see that the absorption at ,\ = 514.5nm is tuned above the gap 

for dT > 25K. Such a temperature change occurs very shortly after the beam is 

turned on thus justifying the use of a constant. (This will be addressed once more 

later.) 

The change in length (bulging} at the front face due to thermal expansion is, 

(154} 

where O!th is the linear coefficient of thermal expansion and L1 the region at the 

front end of the sample over which expansion takes place ( taken to be the depth 

through which the intensity drops to e-5 of its peak value). The lens resulting 

from the bulging of the front face has a focal length given by[66], 

(155} 
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where R is the radius of curvature given by, 

R - - (<P!l.L)-l - kthW1 (1 + t) 
- dr2 - 8PaathL1 t; (156) 

and the index of refraction at the surface, excluding the radial variation, is assumed 

to be unchanged by the thermal expansion. 

A second lens is formed due to the radial dependence on the index of refrac

tion. The index of refraction is written as, 

(157) 

where, 

b2 = nokthW1 (1 + t;) 
4dn Pa .1. 

dT tc 

(158) 

A thin lens approximation yields a focal length given by, 

b2 
h=-

L1 
(159) 

Upon superimposing the two lenses one gets a single thin lens with a combined 

focal length given by, 

+ _ (-1 _1 )-l _ 4kthW1 (1 + i;) ( 1 dn )-l 
Jnet - + - · t --- + 40.th(no - 1) 

ft h Po.Li t"; no dT 
(160) 

Using ray matrices the waist size of the probe (HeNe) beam at the iris is calculated 

whereby the normalized transmittance through the iris is given by, 

( R~-) 1-exp -2 ~i11 (161) 

where ~ri11 is the radius of the iris and WH is the waist size of the HeNe beam at 

the iris. 

The transmittivity for the time varying Fabry-Perot interferometer is ap

proximated by that of a parallel plate interferometer. Although the bulging of the 

front face must have some effect only the center portion of the beam is collected. 

The transmittivity for a parallel plate Fabry-Perot interferometer is, 

1 
T= 2 

1 + (i~R) sin 2 (~/2) 
(162) 



where R is the reflectivity at the front and back interface and, 

0 = 211' no (Lo + L1 + l!:,.L) 
AH 
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{163) 

and AH is the wavelength of the HeNe laser.The following values for CdS were 

used[86]: n 0 = 2.48, C:Xth = (4.2 ± .l)x10-6mK-1, kth = {17.4 ± l)Wm-1K-1 , and 

11 = {9.05 ± . 78)x10-6m2 sec - 1 • 

Results and Discussion 

Experimental and theoretical results are shown in Figure 32 and Figure 33 

respectively. The essential features to note are 1) the number of oscillations in

creases with power 2) the mean value decreases with increasing power and 3) the 

peak to peak amplitude decreases with increasing power. 1) may be understood by 

noting that the degree of expansion will increase with the amount of heat supplied 

over a given time scale. Hence the number of wavelengths over which the interfer

ometer expands increases as the power increases, thus the number of oscillations 

increases. Features 2) and 3) are very dependent on the location of the sample. 

Here the sample is placed such that the two beams are focused into the sample, 

beyond the front face. The induced lens intercepts the HeNe beam as it is con

verging causing the beam to become diverging at the iris. From Eq.155, Eq.158 

and Eq.159 both fl and f2 decrease with increasing power. Note from Eq.160 and 

the material properties that these quantities make roughly equal contributions. 

fl decreases with increasing power because the radius of curvature of the bulging 

decreases, increasing the angle of incidence and refracting the light even greater. 

f2 decreases with increasing power because the parabolic profile for the index of 

refraction becomes sharper, further refracting the light. As a result the net focal 

length for the induced positive lens decreases as the power increases causing the 

beam at the iris to become increasingly defocused. The energy density protruding 

the iris thus decreases with increasing power resulting in a ~rop in the mean value 

as well as a decrease in the peak to peak value. Had the two beams reached their 

focal point prior to penetrating the sample the light at the iris would have become 
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increasingly focused, yielding an increase in the amount of light protruding the 

IrlS. 

A number of approximations have been invoked. Of those some of the most 

significant may perhaps be 1) that the model allows for unrestrained thermal ex

pansion. Restraining forces prevent the bulging from expanding indefinitely, thus 

eventually some point of equilibrium is approached. 2) The thermal and optical 

properties 'Were assumed independent of this expansion. 3) z-directed heat flow 

was neglected. Certainly the sample bulk beyond the first hypothetical layer is a 

good heat conductor and will act as a heat sink to some extent. As can be seen by 

comparing Figure 33 to Figure 32, these mechanisms perhaps gain greater signif

icance at the higher powers. At the higher powers, the time dependence becomes 

increasingly less accurate. 

In Figure 34 we show the absorption spectra for CdS. The theoretical curves 

(solid lines) are calculated as described in Chapter II, section Theory II.B. while 

the filled circles are experimental. In Figure 35 we show the refractive index 

spectra (top) and the refractive index as function of the change in temperature 

at the wavelength 514.5nm (N=I021m-3)(bottom). This illustrates the result of 

the resonant enhancement of the change in the refractive index due to band gap 

shrinkage. We have empirically fitted the refractive index change at 514.5nm by a 

natural logarithm, the result being, 

~n = 5.3081n (1 + l~~s) x10-4 (164) 

Because we are exciting the beam very near the band gap there is not a 

significant contribution from thermal band gap shrinkage. Consider the following. 

For temperature changes much beyond IOOK the change in the refractive index 

with temperature approaches a value given by. the slope of that portion of the 

curve, namely; 

( 
{) ) .6.T> lOOK 

0; on ~ 2. 78xl0-6 K-1 (165) 

which is - 5% the background term (5.5x10-5 J(-l ). For temperatures changes less 

than approximately IOOK the on-resonant term is given by Eq.164. From Eq.153 
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we can estimate the time for the sample to reach 100K above room temperature. 

The change in temperature on-axis is given by, 

Pa ( t) t!:..T=-ln 1+-
kth tc 

(166) 

and tc = ~. The longest time occurs at the lowest power, so we will examine 

the case of P equal to 21.SmW. Using the previously defined values for the other 

material parameters and assuming a waist size of 40µm the time necessary to 

elevate the sample 100K is - 1.4sec. Thus the on-resonant term is relatively short 

lived in comparison to the entire scan. This term would only reveal itself in the 

initial drop (see Figure 32) about t=O. No such "spike" is detected. In fact the 

largest change in the refractive index for changes in temperature less than 1 OOK 

occurs at t!:..T = 0 ( or equivalently t=O). Here the slope is given by a first order 

expansion of Eq.164 giving, 

(;.) :=DK = 2.87x10-5 K-1 

which is approximately 50% the background contribution, of which is certainly not 

insignificant. However the temporal resolution of our experiment at t=O is limited 

by the speed of the electronic shutter, which is roughly lOmsec . In this time the 

change in temperature is approximately 55K. At this point the on-resonant term 

1s, 

(;.) :=S5K = 0. 722x10-5 K-1 

which is approximately 13% the background term. Thus any significant on

resonant contribution is so short lived relative to the experiment that we are 

justified in assuming a constant dn/dT, that is, 

dn (an) 
dT~ 8T . 

off 

Conclusion 

The model served to verify the proposed mechanisms responsible for the 

observed modulation of the probe beam. The model allows for the dependence of 
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the sample location to be simulated. Experimentally it is very difficult to measure 

the exact location of the sample relative to where both the argon and HeNe beams 

come to focus. The model predicts that the two beams must have been focused into 

the sample by approximately 1mm. With the formulation worked out in Chapter 

II we were able to identify both an on-resonant enhancement of the refractive index 

as well as off-resonant (background) contribution. We were able to qualitatively 

justify the negation of the on-resonant term, due to a shifting of the band gap, 

because at the onset are excitation wavelength is already nearly above the gap. 

Any significant contribution from the resonant term occurs within a time span 

comparable to the resolution of the experiment. Lastly it is seen in our formulation 

that the contributions to the lensing from a change in the refractive index and 

bulging at the surface are approximately equal. 



CHAPTER V 

SUMMARY AND FUTURE WORK 

The optical bistability experiments of chapter II in bulk ZnSe illustrated ab

sorptive switching from microseconds to seconds with incident powers of - 600m W 

to - 300m W respectively. Transverse structures were also measured and revealed, 

at low powers, the development of ring and hole type structures. The evolution 

of these structures results from switching, or thermal waves as a result of heat 

diffusion transverse to the incident beam. We have theoretically simulated such 

transverse waves on all time scales. The model suggest that the single hole and 

ring type structures result at low powers, however at the higher powers multiple 

ring patterns occur. By plotting the intensity throughout the bulk of the sample 

as the output is switching one may clearly identify a myriad of structures. As the 

system evolves the multiple rings move outwards transverse to the beam, resem

bling switching waves. The far field beam pattern would then presumably manifest 

multiple ring patterns moving outward giving the image of a wave. Our model is 

based on thermal band gap shrinkage. This is the necessary feedback mechanism 

of which any bistable system requires. We have included electronic effects as it is 

the radiationless recombination of induced e-h pairs responsible for the elevation of 

the lattice temperature. The three governing variables are thus the temperature, 

e-h density, and electric field strength (intensity). Thus this problem is essentially 

a heat and particle transport and light diffraction problem. We have employed 

an explicit finite difference technique to solve the resulting 4-dimensional, cou

pled, nonlinear partial differential equations. In the case of the diffraction problem 

we have included a thermal change in the refractive index (phonon assisted, off

resonant) as well as a change in the refractive index due to a temperature tuning 

97 
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of the band gap (on-resonant). The wavelength employed initially while the sys

tem is at room temperature lies at the Urbach tail. As the temperature rises a 

large resonant enhancement of the refractive index occurs due to a shifting the 

band edges. Eventually this wavelength is completely temperature tuned across 

the energy gap and the refractive index change approaches some final value. The 

effect of the resonant enhancement is theoretically determined to be significant. 

Our model suggest that once the system has switched to the off-state the 

excitation has essentially become localized at the front surface. This occurs as fol

lows. If the beam is focused near the rear of the sample this is where the intensity 

is greatest. As the temperature rises the absorption increases. As the absorption 

increases in the region prior to this back region less light reaches that portion of 

the sample and thus the heating rate decreases. Thus the region of greatest inten

sity, and thus greatest excitation, eventually moves forward ( towards the incident 

beam). This has been coined as domain motion. Our model suggest this domain 

is not sharp until localized at the surface. Experimentally all samples eventually 

damage. By inspection using a microscope it appears all damage points are at the 

surface. Our model further suggest that once this excitation domain is localized at 

the surface thermal runaway ensues. The exact nature of the damage is unclear. 

The damage marks are visible to the naked eye, albeit opaque. The model suggest 

temperatures are reached in excess of the melting point C 1700K). Perhaps the ma

terial melts or maybe at such temperatures some chemical reaction occurs with the 

ambient (oxidation?). However in some samples, all from the same batch, the ma

terial does not immediately damage following switching. Here the material pulses 

for a period of time and then damages. This pulsing has been named regenerative 

pulsations and initially was detected in hybrid systems. Later this phenomenon 

was measured in intrinsic, however a dispersively bistable systems. Rarely has 

regenerative pulsations been encountered in intrinsic absorptive bistable systems. 

Our model for such a phenomenon is based on the previously stated mechanism, 

however we further suggest an increase in the thermal conductivity at the surface. 

Because the absorptive switching is very similar in all samples the implication is 
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that the mechanism is the same and as such should apply to the case of regen

erative pulsations with an additional mechanism to reverse the switching process 

(negative feedback). The switching is stimulated by a heating of the sample, that 

is the heating rate exceeds the cooling rate. (The ambipolar diffusion of the e-h 

pairs is seen to be negligible.) Thus to reverse the system and stimulate pulsing 

some mechanism is necessary to allow the cooling rate to exceed the heating rate. 

Initially it was felt that the diffraction of the beam would give rise to a changing 

intensity throughout the sample such that the motion of the excitation domain 

would propagate towards the front portion of the sample until finally the reduced 

intensity would be insufficient to combat the cooling and the domain would relax 

and the process would repeat itself. This is essentially the motivation for a 4-

dimensional solution to the governing equations. We hoped by properly modeling 

the diffraction of the beam, with the inclusion of self-focusing, that such a result 

would exist. Our model however suggest that this never occurs and thus we had to 

investigate other means of an increased cooling rate (or a decreased heating rate). 

At the level of excitation in this system the material parameters are presumably 

nonconstant. The exact dependence on temperature and e-h density is however 

unclear. The problem is further complicated by the likelihood that this nonlin

earity is present at the surface where little is known about these samples. We 

phenomenologically stipulated a decrease in the heating rate by a factor of twelve 

at the surface and the result was surprisingly similar to the experiment, at least for 

the sawtooth type pulsing structures. We have no quantitative argument for this 

stipulation. Thus the phenomenon of regenerative pulsations remains curious. Our 

ideas of this phenomenon are not as yet conclusions, but rather potential points 

of investigation. More work on this problem is certainly required. 

We have also made measurements of Z-scans and optical limiting scans on a 

millisecond and nanosecond time scale in a lead oxide modified lead silicate glass. 

The popular Z-scan is a relatively simple experiment which allows one to identify 

self-focusing. The optical limiting scans possess the real application of an optical 

limiting, or clamping device (the electronic analog being the zener diode). The 
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motivation for this project began as an investigation to quantify the potential of 

these materials as optical limiters on a nanosecond time scale. The millisecond 

trials were carried out to further our understanding of the thermal lensing effect in 

these materials. On this time scale new forms of Z-scans were identified, namely a 

characteristic second dip. Generally one only sees a single minima. These materials 

however possessed a sufficient thermo-optic effect that beam undulations within 

the bulk gave rise to multiple minima in the Z,.scari.. The Z-scan in this case allowed 

such beam undulations to manifest themselves in a new way. Our model for these 

experiments was based on a thermo-optic effect, namely a thermal change in the 

refractive index. A parabolic approximation of the change in temperature was 

made, which was calculated using Green's function for the 2-d heat flow equation, 

giving a parabolic profile for the refractive index. Such an approximation was 

motivated so that gaussian optics could then be employed to propagate the beam. 

This is a common technique. The model worked successfully in predicting the Z

scans on both time scales, as well as fitting the temporal transmission profiles on 

the millisecond time scale. However the modeled failed when attempting to fit the 

optical limiting scans using the same parameters used to fit the respective Z-scans. 

This indicates that some improvement in the modeling is required. Perhaps the 

parabolic approximation could be improved, or relaxed, and some other form of 

propagating the beam should be invoked. 

Lastly we have made measurements of the transmission properties using a 

two beam geometry in bulk CdS. This project was initiated to investigate the 

thermo-optic character of this material on a long time scale (seconds). The experi

ment essentially involves using a strongly absorbed wavelength to heat the material 

and subsequently change its · refractive index and then measure the transmission 

of a collinear weakly absorbing probe beam. Here a CW Ar+-ion and HeNe laser 

were employed respectively. The experiment indicated a thermal lensing process 

to be present as well as a time varying Fabry-Perot effect. The transmitted HeNe 

beam is measured beyond an iris. The thermal lensing manifested itself by an 

initial drop in the transmission as a result bf defocusing at the iris. Such thermal 
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lensing was successfully modeled by accounting for the radially dependent bulging 

at the surface, forming a lens, and the thermo-optic change in the refractive index 

as a result of a radially dependent temperature change. The thermo-optic effect 

was considered to have both a background, off-resonant, contribution as well as an 

on-resonant contribution. The conclusion was that the on-resonant contribution 

(resonant enhancement) was due to thermal band gap shrinkage however was so 

short lived that could be neglected .. The argon laser line (514.5nm) is so close to the 

band gap at room temperature that it becomes temperature tuned above the gap 

within - 1sec in this experiment. Thus a constant background thermo-optic coef

ficient was sufficient to properly model the experimental results. The Fabry-Perot 

effect was seen as time varying oscillations in the transmission. The "wavelength" 

of these oscillations dilated in time, indicated the approach to equilibrium. The 

oscillations were sufficiently characterized by modeling the change in the optical 

path length. The sample expands due to the elevation in lattice temperature and 

the refractive index changes as described before. This change in the optical path 

length gives rise to time varying interference within the cavity. Any future work 

on these results should probably involve the investigation of 1) heat flow along the 

optical axis. This was neglected in our model. 2) The effect of the bulging on 

the interference structure within the cavity. 3) The effect the induced e-h density 

has on the thermal and optical properties of the material. Here a high density of 

e-h pairs is expected and the role of such a plasma is as of yet uninvestigated. 4) 

Lastly one might investigate the role of the expansion of the thermal and optical 

properties. 
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APPENDIX.A 

PROGRAM FOR THEORY II.A., CHAPTER Il 

real *8 nO,hnewt,kth,10,lam,kb,knot,taun,hw, 
laplzt,laplrt,intold,laprr,lapri,laplzn,laplrn, 
nehmax, 2 dtemp(50,700),alpha(50,700),elecr(50,700), 
nnot, eleci(50,700),intens(50,700),tnew(50,700), 
neh(50,700) 
open(unit=l,file='datal.dat',status='new') 
open(unit=2,file='data2.dat',status='new') 
iwrite=O 
iss=2 
da=l.e-4 
jcool=O 
n0=2.8 
pin=.64 
dndt=9.e-6 
taun=40.e-9 
jjmax=O 
nehmax=O. 
310 format(lx,el5.3,lx,il) 
diff=8.e-6 
hnewt=lO. 
qeffmin=l./12. 
kth = 6. 
10 = .001 
pi= 3.14 
alphath=7 .e-6 
ao = 293. 
sig = 2.108 
eh= 2.61 
hw=2.61 *1.6e-19 
ego= 2.67 
ex= .0644 
dedt = -.0008519 
kb = 1.38E-23 / 1.6E-19 
tempO = 290. 
alpham = 5.e6 
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w01=1.7e-3 
lam=4 76.5e-9 
knot=2. *pi/lam 
focal=.05 
zOl=pi*wOl **2/lam 
zsamp=focal-.17* .001 
rad=( (l.-zsamp/focal)**2+(zsamp/z01 )**2)/, 
(-1./n0/focal+zsamp/n0*(1./focal**2+ 1./zOl **2)) 
wl=sqrt(lam/pi*((l.-zsamp/focal)**2+(zsamp/z01)**2)*nO*z01), 
xintens=2.*pin/pi/wl **2 
dr=3.e-6 
imax=12 
dz=.5 / 4. *dr**2*knot 
jmax=lO/dz 
dxsq=l./(1./dz**2+1./dr**2) 
if(iss.eq.1 )then 
dt=l ./ 4. / diff / (1./ dr**2+ 1./ dz**2) 
else 
dt=.8*taun 
endif 
print * ,'dt=',dt*le6,'usec dz=' ,dz*le6,'um jmax=' ,jmax 
do 300 tinit=-50. *dt,-dt,dt 
write(l,310)tinit*l.e6,0 
300 continue 
kmax=le6 
alphaO=ao*exp( sig/kb /tempO*( eb+ex-ego)) 
do 71 j=l,jmax 
do 72 i=l,imax 
alpha(i,j)=alphaO 
dtemp(i,j)=.0 
tnew(i,j)=O. 
neh(i,j)=O. 
72 continue 
71 continue 
print * ,'input waist=' ,wl 
xi=2.*zsamp/knot/w01 **2 
gam=l.-zsamp/focal 
x=gam/xi 
enot=2./w01 *sqrt(377. *pin/pi) 
kkk=O 
do 20 k= 1,kmax 
time=(k-1 )*dt 
pout=O 
t=(k-l)*dt 
kkk=kkk+l 
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do 30 j=l,jmax 
if(j.eq.l)then 
do 40 i=l,imax 
r=(i-l)*dr 
tpsi=2./sqrt( (nO+ 1. )**2+( alpha(i,j)/2./knot )**2) 
tphas=atan(alpha(i,j)/2./(nO+l.)/knot) 
theta=r /wOl 
phas=-theta**2/xi-pi/2.+theta**2*x/xi**2/ 1 (1.+x**2)**1.5-atan(x) 
psi=enot/xi/ (1.+x**2)*exp(-theta **2/xi**2/ 1 {1.+x**2)**1.5 )*tpsi 
elecr(i,1 )=psi*cos(phas) 
eleci(i, 1 )=psi*sin(phas) 
intens(i,1 )=psi**2/377. *nO 
40 continue 
endif 
do 50 i=l,imax r=(i-l)*dr 
if(k.eq.l)then 
goto 111 
else 
if(i.eq.l)then 
laplrn=4./dr**2*(neh(i+lj)-neh(ij)) 
laplrt=4./dr**2*{ dtemp(i+ 1 j)-dtemp{i,j)) else 
laplrn={neh{i+ 1,j)+neh{i-1 j)-2. *neh(i,j)) / dr**2+ 
1 1./(2. *r*dr)*(neh{i+ lj)-neh(i-lj)) 
laplrt=(dtemp(i+lj)+dtemp(i-1,j)-2.*dtemp(ij))/dr**2+, 
1./(2. *r*dr )*( dtemp(i+ lj)-dtemp(i-lj)) 
endif 
if(j.eq.1 )then 
laplzn=(neh(ij+ 1 )-neh(i,j) )/ dz**2 
laplzt=( dtemp(ij+ 1 )-dtemp(i,j) )/ dz**2-hnewt*dtemp(ij)/ dz/kth else 
laplzn=(neh(ij+ 1 )+neh(i,j-1 )-2. *neh(ij) }/ dz**2 
laplzt=( dtemp(ij+ 1 )+dtemp(ij-1 )-2. *dtemp{i,j) )/ dz**2 
endif 
if(j .eq .jmax )then 
laplzn= ( neh(i,j-1 )-neh( i,j)) / dz* *2 
laplzt=( dtemp(i,j-1 )-dtemp(i,j) )/dz**2-hnewt*dtemp(i,j)/ dz/kth 
endif 
if(j.eq.jcool)then 
qeff-qeffmin 
else 
qeff=l. 
endif 
neh(ij)=l./ (l .+dt/taun)*(neh(i,j)+ 1.e-lO*da *dt*( 
1 laplrn+laplzn)+alpha(ij)*intens{ij)*dt/hw*l.e-10) 
if(neh(ij).gt.nehmax)then 
iimax=i 
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.. . 
JJmax J 
nehmax=neh(i,j) 
endif 
if(iss.eq.2)then 
qt=neh(i,j) *eb * 1.6e-l 9 / taun/kth * 1.elO 
else 
qt=qeff*alpha(i,j)*intens(i,j) /kth 
endif 
tnew(i,j)=dtemp(i,j)+dt*diff*( qt+laplzt+laplrt) 
alpha(i,j)=ao*exp(sig/kb/(tempO+tnew(i,j))*, 
( eb+ex-ego-dedt*tnew(i,j))) 
if(alpha(i,j).gt.alpham)then 
alpha(i,j)=alpham 
endif 
111 endif 
50 continue 
30 continue 
do 51 j=l,jmax 
do 31 i=l,imax 
dtemp(i,j)=tnew(i,j) 
phi=knot*dz*dndt*dtemp(i,j) 
if(i.eq. l )then 
laprr=( elecr(i+ 1,j)+elecr(2,j)-2*elecr(i,j) )/ dr**2 
lapri=( eleci(i+ 1,j)+eleci(2,j)-2*eleci(i,j)) / dr**2 
else 
laprr=( elecr(i+ 1 J)+elecr(i-1,j)-2*elecr(i,j) )/ dr**2+ 
1./r*( elecr(i+ 1 ,j)-elecr(i-1,j)) /2./ dr, 
lapri=( eleci(i+ 1,j)+eleci(i-1 ,j)-2*eleci(i,j) )/ dr**2+, 
1./r*( eleci(i+ 1,j)-eleci(i-1,j)) /2./ dr 
endif 
if (j .eq .1 )then 
elecr(i,j+ 1 )=elecr(i,j)+dz/knot/nO /2. *lapri 
eleci(i,j+ 1 )=eleci(i,j)-dz/knot/n0/2. *laprr 
else 
elecr(i,j+ 1 )=elecr(i,j-1 )+dz/knot/nO*lapri 
eleci(i,j+ 1 )=eleci(i,j-1 )-dz/knot/nO*laprr 
endif 
ab=exp(-.5* alpha(i,j)*dz) 
elecr(i,j+ 1 )=( elecr(i,j+ 1 )*cos(phi)+eleci(i,j+ 1 )*sin(phi) )*ab 
eleci(i,j+ 1 )=( eleci(i,j+ 1 )*cos(phi)-elecr(i,j+ 1 )*sin(phi) )*ab 
intens(i,j+ 1 )=( elecr(i,j+ 1 )**2+eleci(i,j+ 1 )**2)/377. *nO 
31 continue 
51 continue 
do 52 i=l,imax 
r=(i-l)*dr 
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pout=pout+pi*(intens(i,j)*r+intens(i+ 1,j)*(r+dr) )*dr 
52 continue 
if(k.eq. l .and. iwrite.eq.1 )then 
do 62 j=l,jmax+l,(jmax+l)/10 
do 63 i=l,2*imax-1 ic=-imax+i 
do 61 ism=l,2 
if(ic.lt.1 )then 
if(ism.eq.l )then 
write(2,911) ism+ic*2-2,(j-l )*dz/10,intens(-ic+2,j) 
write(l,911) ism+ic*2-2,(j-1 )*dz/10,dtemp(-ic+2,j) 
else 
write(2,911) ism*ic,(j-1 )*dz/10,.5*(intens(-ic+2,j)+ 
1 intens(-ic+l,j)) 
write(l,911) ism*ic,(j-l)*dz/10,.5*(dtemp(-ic+2,j)+ * 1 dtemp(-ic+l,j)) 
endif 
else 
if(ism.eq.l )then 
write(2,911) ism+ic*2-2,(j-1 )*dz/10,intens(ic,j) 
write(l,911) ism+ic*2-2,(j-1 )*dz/10,dtemp(ic,j) 
else 
write(2,911) ism*ic,(j-1 )*dz/10,.5*(intens(ic,j)+ 
1 in tens( ic+ 1,j)) 
write(l,911) ism*ic,(j-1 )*dz/10,.5* ( dtemp(ic,j)+ * 1 dtemp(ic+ 1,j)) 
endif 
endif 
61 continue 
63 continue 
62 continue 
endif 
911 format(lx,i4,lx,el5.6,lx,el5.6) 
912 format(lx,i3,lx,el5.6) 
if(k.eq. l )then pold = pout 
endif 
tran= pout/pold 
if(kkk.gt.l.e-6/dt .or. k.eq.l )then 
kkk=O 
slope=tran-tranold 
tranold=tran 
if( t.gt.1.e-3)then 
goto 366 · 
endif 
write(l,200) time*l.e6,tran 
200 format(lx,el5.6,lx,e15.6) 
endif 
20 continue 
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366 print * , , 
' stop 

end 



APPENDIX B 

PROGRAM FOR THEORY H.B., CHAPTER II 

real mo,me,mh,mr ,kb,ne,nh,lambda,kl ,k2 ,k3 ,k4 ,k5, 
lam(lOO),alph(lOO),deln(lOO) 
open( unit=l ,file='datal .dat ',status='new') 
dgamn=2.5e~24 
dedt=-7 .5e-4 
nmaxb= 1000 . 
nmaxc=4000 
h=6.63E-34/1.6E-19 
mo=9.11E-31 
me=0.16*mo 
mh=.6*mo 
mr=l/(1/me+l/mh) 
pi=3.14159 
kb=l.38e-23 /1.6e-19 
etilda=me / mr 
htilda=mh/ mr 
er=0.015 
k1=4.8966851 
k2=3.3105795 
k3=73.6264033 
k4=.133376 
k5=-21.0508644 
delt=O 
ego=2. 70+dedt*delt 
temp=290+delt 
ne=l.e21 
nh=ne 
ttilda=kb*temp/er 
ao=44e-10 
constie=4 *ne*ao**3*(pi/ttilda/ etilda )**1.5 
constih=4 *nh*ao**3*(pi/ttilda/htilda)**l.5 
uetild=log( constie )+kl *log(k2*constie+k3)+k4 *constie+k5 
uhtild=log(constih)+kl *log(k2*constih+k3)+k4*constih+k5 
ue=uetild *kb*temp+ego /2 
uh=uhtild *kb*temp+ego /2 
gam=er*( 1.+dgamn *ne) 
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gamtil=gam/ er 
i=O 
do 400 lambda=500,450,-1 
i=i+l 
lam(i)=lambda 
call gsub(g,uetild,uhtild,etilda,htilda,ttilda,pi,ao) 
if (g.lt .1 )then 
deg=-er/g 
else 
deg=er*((l-1/g)**2-1) 
endif 
eg=ego+deg 
uetild= ( ue-eg/ 2) /kb/ temp 
uhtild=(uh-eg/2)/kb/temp 
wtildo= (h *3 .e8 /(lambda* 1.e-9 )-ego)/ er 
wtild=( er*wtildo-deg) / er 
w=l/h*2*pi*(eg+wtild*er) 
if(g.lt.1 )then 
bw=O.O 
else 
call bwsub(bw ,nmaxb,g, wtild,gamtil) 
endif 
call cwsub( cw ,nmaxc,g,wtild,pi,gamtil) 
arg=.5*(wtild/ttilda-uetild-uhtild) 
alpha=49.87e-15*w/er*TANH(arg)*(bw+cw) 
alph(i)=alpha 
print *,'lambda=' ,lambda, 'a=' ,alpha 
write (1,300) lambda,alpha 
300 format(lx,el5.6,lx,e15.6) 
400 continue 
,· . 
1max=1 
do 660 i=l,imax 
pvint=O 
do 661 j=l,imax 
if(j.eq.i)then 
goto 661 
endif 
pvint=pvint+( alph(j)-alph(l) )/ ( (lam(j)/lam(i) )**2-1 )*le-9 
661 continue 
deln(i)=pvint/2/pi**2 write(l,666) lam(i),alph(i),deln(i) 
print * ,'lam=' ,lam(i),'alpha=',alph(i),'deln=',deln(i) 
660 continue 
666 format(lx,el5.6,lx,el5.6,lx,el5.6) 
stop 
end 
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subroutine bwsub(bw ,nmaxb,g, wtild,gamtil) 
bw=O.O 
do 1200 l=l,int(sqrt(g)) 
conlg=2*(g-1**2)*(2*1**2-g)/1**3/g**2 
prod=l.0 
do 800 n=l,nmaxb 
if( n.eq.l)then 
goto 800 
endif 
prodold=prod 
prod=prod*n**2*(n**2*1**2-(g-1**2)**2) / (n**2-1**2)/, 
(n**2*1**2-g**2) 
800 continue 
bw=bw+l/gamtil/cosh((wtild+(l/l-1/g)**2)/gamtil)*prod*conlg 
1200 continue 
return 
end 
subroutine cwsub( cw ,nmaxc,g,wtild,pi,gamtil) 
real intl ,int2 
cw=O.O 
xmax:=40.0 
dx=0.02 
do 1400 x=O.O,xmax,dx 
prodl=l.0 
prod2=1.0 
do 2000 n= 1,nmaxc 
poldl=prodl pold2=prod2 
prodl=prodl *(1+(2*g*n**2.,g**2)/((n**2-g)**2+n**2*g**2*x)) 
prod2=prod2*(1+(2*g*n**2~g**2)/((n**2-g)**2+n**2*g**2*(x+dx))) 
2000 continue 
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2001 intl =sqrt ( x) *prodl / (pi *gamtil * cosh( ( x-wtild) / gamtil)) 
int2=sqrt(x+dx)*prod2/(pi*gamtil*cosh((x+dx-wtild)/gamtil)) cwold=cw 
cw=cw+.5*dx*(intl +int2) 
1400 continue 
1402 return 
end 
subroutine gsub(g, uetild,uhtild,etilda,htilda, ttilda,pi,ao) 
real intgl,intg2,intg,intold 
xmax:=50 
dx=.02 
intg=O.O 
do 2200 x=O.O,xmax,dx 
xl=x 
x2_:.x+dx 
fexl=l/(l+exp(xl-uetild)) 



fuxl=l/(l+exp(xl-uhtild)) 
fex2= 1 / ( 1 +exp( x2-uetild)) 
fux2=1/(l+exp(x2-uhtild)) 
intgl=sqrt(xl )*( etilda **1.5*fexl *(1-fexl )+htilda **l .5*fuxl *(1-fuxl)) 
intg2=sqrt(x2)*( etilda**l .5*fex2*(1-fex2)+htilda **l .5*fux2*(1-fux2)) 
intold=intg 
intg=intg+ .5*dx*(intgl +intg2) 
2200 continue 
2201 screen=sqrt(l / ao**2*4/pi*sqrt( ttilda )*intg) 
g=12/pi**2/ao/screen 
return 
end 
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