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CHAPTER I 

INTRODUCTION 

Euphorbia pulcherrima Willd. ex. Klotzsch (poinsettia) is the number one 

potted floral crop in the United States. The United States Department of Agriculture 

estimated the wholesale value of poinsettias at $170 million for the top 28 floriculture 

crop producing states in 1991 (USDA, 1992). Poinsettias account for 25% of the total 

potted floral crop production for the same 28 states. 

Poinsettias are native to Southern Mexico and Northern Guatemala and were 

cultivated by the Aztecs before Christianity came to the Western Hemisphere (Ecke et 

al., 1990). This plant was first described by Spanish botanist Juan Balme during the 

seventeenth century. Joel Robert Poinsett, a botanist and United States ambassador to 

Mexico, introduced the poinsettia to the U.S. in 1825. He distributed the plant to 

various botanical gardens and to horticultural friends. 

By 1909, Albert Ecke was specializing in producing poinsettias for the cut 

flower market at Eagle Rock Valley, California (Ecke et al., 1990). However, the 

cultivars he grew were too tall and abscised their leaves when grown as a potted plant 

for the interiorscape (Shanks, 1981). The height control problem was solved in the 
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late 1950's by the introduction of growth retardants such as Cycocel (Larson, 1967). 

A major increase in poinsettia production took place after the release of 

Eckespoint C-1 (C-1) in 1968 (Ecke et al., 1990). This cultivar had good leaf 

retention, good bract color and horizontal bract orientation. 

2 

Annette Hegg (AH), a cultivar that had both free-branching and good leaf 

retention characteristics, was first grown in Norway in 1964. By 1968, all major 

producers in Europe were growing AH, and it was introduced to the United States and 

Canada. The introduction of AH increased U.S. poinsettia production. Other cultivars 

such as Gutbier V-10 and V-14, which had similar characteristics to AH, also helped 

increase poinsettia production in the U.S. (Shanks, 1981). 

Today most commercial poinsettias grown in the United States are free­

branching cultivars, which have weak apical dominance and relatively small stem 

diameters. Free-branching cultivars, including AH, Gutbier V-10 and Gutbier V-14 

series, are preferred by growers because. they allow production of many cuttings per 

plant when pinched, and numerous flower-bearing axillary shoots. Less frequently 

grown are restricted-branching cultivars such as Eckespoint series, which have strong 

apical dominance, large stem diameters, and relatively few axillary shoots and flowers. 

The free-branching trait in Annette Hegg Brilliant Diamond (AHBD) can be 

induced in the restricted-branching C-1 Red (C-1) poinsettia through grafting (Dole 

and Wilkins, 1991, 1992). An agent may be present in the leaves or stems of a free­

branching poinsettia which is translocated through the graft union to a restricted­

branching poinsettia, where it increases basal axillary bud growth. The free-branching 



agent moves both acropetally and basipetally through the graft union and can be 

· · serially transmitted from plant to plant by grafting (Dole and Wilkins, 1992). CB, 

(TR) a vegetative or graft-hybrid, was derived from grafting C-1 onto AHBD, 

resulting in transmission of the branching agent to C-1 (Dole and Wilkins, 1992). 

Vegetative hybridization is the process of grafting two plants together in order to 

obtain a unique phenotype from the grafted plant itself.· Thus, the presence of the 

agent in CB makes it different from C-1. 

Plant leaves play a role in graft transmission of substances that can alter the 

characteristics of the plants being grafted. Differences in dry weight and starch 

accumulation of grafted leaves of Nicotiana tabacum L. 'Burley' and 'Flue-Cured' 

plants were controlled by biochemical or physical factors within an individual leaf 

(Craft-Brander et al., 1988). 
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The transmission of the branching agent from CB donors to C-1 receivers may 

occur because of a source-sink mechanism with the movement of photosynthates from 

CB to C-1. Translocation of photosynthates from the rootstock to the scion buds has 

been demonstrated (Beeson and Proebsting, 1988). In addition, heterografting of 

Solanum tuberosum L. 'Sable' scions onto S. tuberosum 'Selection F58050' stocks 

resulted in a slight increase in reducing sugar and a reduction of tuber specific gravity 

as compared to tubers from autografts of 'F58050' (Tai et al., 1988). This provides 

evidence that scions (receivers) and stocks (donors) interact with each other and that 

both may control the performance of tuber traits. Stimart's (1983) research on 

poinsettia grafts between self-branching (free-branching) and non-branching (restricted-



branching) cultivars suggested that axillary growth is governed by some endogenous 

factors translocated from the roots across the graft union to the shoots. Interactions 

between the stocks (donors) of CB and scions (receivers) of C-1 may control 

movement of photosynthates and branching pattern in C-1. 

Changes in the branching pattern of C-1 are retained through a series of 

vegetative propagations and are considered permanent (Dole and Wilkins, 1992). The 

percentage of C-1 plants exhibiting the free-branching characteristic increased from 

0% for 0, 5, and 10 days of graft contact with AHBD to 100% after 30 days (Dole 

and Wilkins, 1992). A minimum of 10 days of contact with AHBD plants was 

required in order to transmit the agent (Dole and Wilkins, 1992). 

4 

Anatomical changes during the formation of the graft union between restricted­

branching and free-branching poinsettias may induce production of the agent, or allow 

translocation of the agent through the graft union. The anatomical changes occurring 

during graft union formation in plants may be involved in vegetative hybridization 

(Fajnbron, 1953). During graft union formation between CB and C-1 poinsettias, 

dictyosome activity and callus proliferation may promote the transmission of the 

branching agent from CB donors to C-1 receivers. In Sedum telephoides Michx., 

dictyosome activity and callus proliferation are pronounced along the graft interface at 

the 24th day after grafting and both functions are correlated with the initial adhesion 

(Moore and Walter, 1981). 

Wound vessel differentiation may occur during graft union formation in 

poinsettia and may be required for the production and/or translocation of the branching 
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agent. In tomato (Lycopersicon esculentum Mill. cv. Aisla Craig) autografts, wound 

vessels differentiate within the callus at the graft union, and are connected into the 

vascular system of stock and scion by wound vessels differentiating from vascular and 

cortical parenchyma (Jeffree and Yeoman, 1983). Picea sitchensis L. (Bong) xylem 

elements differentiate directly from vascular cambia of the rootstock and scion and ar~ 

· different from elements arising from parenchymatous callus derived from ray 

parenchyma (Weatherhead and Barnett, 1986). 

The transmission of the branching agent and the flowering hormones between 

CB donors and C-1 receivers may be correlated. Florigen (flowering hormones) is 

formed in leaves and transported to shoot meristems and is able to cross graft unions 

(Lang, 1989). Florigen is readily interchangeable between grafting partners of the 

same species. Dole and Wilkins (1992) found that the branching agent was also 

transmissible between AHBD and C-1 poinsettias through the graft union. However, 

the location of synthesis of the branching agent is not known. The branching agent 

may be produced in the leaves of poinsettia rootstocks (donors) and translocated 

through the graft union like florigen. 

Branching in C-1 · and CB poinsettias sometimes occurs during the flowering 

process under non-inductive long (LD) photoperiods. A physiological disorder, 

splitting, may occur in which the vegetative shoot tip becomes reproductive and is 

transformed into a flower bud ( cyanthum) under LD (Zrebiec and Tayama, 1985). 

Three shoots arise around the bud which normally does not reach anthesis. Splitting 

occurs more frequently in C-1 poinsettia plants than in CB poinsettia plants under LD 
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conditions (personal observation). 

A complex of growth regulators may control both flowering and expression of 

free-branching in poinsettias. The flowering and branching control systems in 

Lathyrus odonatus L. and Pisum sativum L. appear to involve the same or a very 

similar hormone(s) (Murfet, 1971; Murfet, 1977). Chailakhyan and Lozhnikova (1985) 

hypothesized that florigen is a. bicomponent complementary complex of two hormones 

consisting of gibberellins, which participate in formation of the flower stem, and 

anthesins, substances that affect flower formation. In contrast, poinsettias sprayed 

with gibberellic acid produce flowers later than nontreated poinsettias (Guttridge, 

1963; Evans et al., 1992). Furthermore, substances with gibberellin-like activity were 

detected in root exudates of poinsettias grown under LD conditions (Criley, 1970). As 

a result of studies on the regulation of tomato (Lycopersicon escu/entum Mill.) 

flowering through reciprocal top-root grafting, Phatak and Wittwer (1965) suggested 

the presence of a graft transmissible flower stimulator in the leaves of early cultivars 

and a transmissible flower inhibitor in the leaves of late cultivars. 

This research will further characterize the free-branching agent in poinsettia by 

determining in which organ(s) (stem or leaf) of the plant the agent is contained, if 

shading the donor stems and leaves prevents the transmission of the branching agent, 

if new cells or tissues may induce its production and/or translocation within the graft 

union, and if there is a correlation between flower induction and the branching agent. 
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CHAPTER II 

POINSETIIA LEAF AND STEM TRANSMISSION 

OF THE BRANCHING AGENT 
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Abstract. Euphorbia pulcherrima Willd. ex. Klotzsch 'Eckespoint C-1 Red' 

(C-1) a restricted-branching cultivar and 'CB' a free-branching vegetative or graft­

hybrid were homo and heterografted. Axillary shoot node numbers and lengths of C-1 

receiver plants were partially increased by CB donors with leaves removed (in 1990 

and 1990-1991) and with apical and basal parts removed (in 1990-1991 and 1991). In 

1991-1992, axillary shoot growth of C-1 receivers was only slightly increased by CB 

10 
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donor intemode. chips. However, CB donor node chips did not increase C-1 receiver 

axillary shoot node numbers and lengths. Shading of CB donors partially increased 

the axillary shoot node numbers and lengths of C-1 receivers above node 4 in 1991-

1992. Both stems and leaves of CB poinsettia donors may transmit the branching 

agent to C-1 poinsettia receivers. Shading CB donor leaves and stems did not prevent 

the transmission of the branching agent to C-1 receivers. 

Today most commercial poinsettias grown are free-branching cultivars, which 

have weak apical dominance and relatively small stem diameters. Free-branching 

cultivars include Annette Hegg, Outhier V-10 and Outhier V-14 series and are 

preferred by growers because they allow production of numerous axillary shoots and 

cuttings per plant when pinched. Less frequently grown are restricted-branching 

cultivars, such as the Eckespoint C-1 series, which have strong apical dominance, large 

stem diameters and few axillary shoots when pinched. 

The free-branching trait in 'Annette Hegg Brilliant Diamond' (AHBD) can be 

induced in the restricted-branching 'Eckespoint C-1 Red' (C-1) poinsettia through 

grafting (Dole and Wilkins, 1991, 1992). The free-branching agent moves both 

acropetally and basipetally through the graft union and can be serially transmitted from 

plant to plant by grafting (Dole and Wilkins, 1992). CB, (TR) a vegetative or graft­

hybrid, was derived from grafting C-1 onto AHBD, resulting in transmission of the 

branching agent to C-1 (Dole and Wilkins, 1992). Vegetative hybridization is the 
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process of grafting two plants together in order to obtain a unique phenotype from the 

· grafted plant itself. Thus, the presence of the agent in CB makes it different from 

C-1. 

An agent may be present in the leaves or stems of fre~-branching poinsettias 

which is translocated through the graft union to a restricted-branching poinsettia's 

axillary buds. Plant leaves play a role in graft transmission of substances that can 

alter the characteristics · of the plants being grafted. Differences in dry weight and 

starch accumulation in grafted leaves of Nicotiana tabacum L. 'Burley' and 'Flue­

Cured' plants were controlled by biochemical or physical factors within an individual 

leaf (Craft-Brander et al., 1988). 

The transmission of the branching agent from CB donors to C-1 receivers may 

occur concomitantly with the photosynthate movement from CB (the source) to C-1 

(the sink). Translocation of photosynthates from the rootstock to the scion buds has 

been demonstrated (Beeson and Proebsting, 1988). Interaction of photosynthates with 

scion buds may alter the plant's characteristics. Heterografting of Solanum tuberosum 

L. 'Sable' onto S. tuberosum 'Selection F58050' stock resulted in a slight increase in 

reducing sugar and a reduction of tuber specific gravity as compared to tubers from 

autografts of 'F58050' (Tai et al., 1988), indicating that materials from both scions 

(receivers) and stocks (donors) may control the expression of tuber traits. Stimart's 

(1983) research on poinsettia grafts between self-branching (free-branching) and non­

branching (restricted-branching) cultivars suggested that axillary growth is governed by 

some endogenous factors translocated from the roots across the graft union to the 
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shoots. Interaction between the stock (donor) of CB and scion (receiver) of C-1 may 

control movement of photosynthates and the branching agent in C-1. 

This research will further characterize the free .. bfanching agent in poinsettia by 

determining which organs (stems or leaves) of the free-branching poinsettia contain the 

agent and if shading the donor stems and leaves prevents the transmission of the 

branching agent. 

Materials and Methods 

Leaf removal experiments 

1990. Cuttings from C-1 and CB poinsettia plants were treated with 1 % IBA 

(lndole-3-Butyric Acid, Hormex Powder #1, Brooker Chemical, North Hollywood, 

Calif.) and planted in oasis rootcubes growing medium (Smithers-Oasis, Kent, Ohio) 

on 28 May 1990. After rooting under intermittent mist with a temperature of 21 C, 

plants were placed in 16.5-cm (1650 cc) pots filled with a commercial peat-based 

medium (Fafard #2, Springfield, Mass.) on 27 June 1990. Plants were approach 

grafted (Hartmann et al., 1990) on 22 to 25 Aug. 1990 and placed in a completely 

randomized design with a 2x2 factorial arrangement of treatments. Factor A was the 

CB and C-1 cultivars as the donor of the grafted pair (donor) and factor B was the CB 

and C-1 cultivars as the receiver of the grafted pair (receiver). Donor leaves were 

removed 30 days after grafting and periodically thereafter. CB and/or C-1 plants 

(donors and receivers) were pulled apart 40 days after grafting. Six single unit 

replicates were used for each treatment. 
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Vegetative growth was maintained by supplementary incandescent and high-

intensity-discharge (HID) lamps to provide long (LD) photoperiods (15 h). Light 

intensity averaged 780 µmol·m-2-sec-1 PAR during day·light hours. Air temperature in 

the greenhouse was kept at an average 31/21 C day/night. Standard fertilization and 

pest management practices were used (Ecke et al., 1990). 

Poinsettia receiver plants were pinched back to the twelfth node when plants 

developed at least twelve nodes above the graft union. Data were taken thirty days 

later on the receiver of each grafted pair. The number of nodes with leaves (including 

the terminal leaf blade separated from the apical cone) was determined and the length 

was measured from the base of each axillary shoot to the tip of the apical cone. 

1990-1991. Similar materials and methods and the same treatments as in 1990 

were used except that plants were propagated on 27 Aug. 1990, planted on 28 Sept. 

1990 and approach grafted on 5 to 7 Dec. 1990. However, in this study poinsettia 

donor leaves were periodically removed beginning 7 days after grafting and CB and/or 

C-1 plants were pulled apart 30 days after grafting. Six single unit replicates were 

used for each treatment. 

1991. Similar materials and methods as in 1990-1991 were used except that 

plants were propagated on 24 July 1991, planted on 26 Aug. 1991 and approach 

grafted on 27 to 30 Sept. 1991. In this year, an additional factor (2x2x2) was used in 

the treatments; CB and C-1 poinsettia donor leaves were periodically removed 

(beginning 7 days after grafting) or not removed. Twelve single unit replicates were 

used for each treatment. 
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Stem experiments 

Stem removal. Materials and methods and factorial arrangement of treatments 

. used were similar and performed simultaneously to the leaf experiments unless 

otherwise stated; In factor B, the apical and basal parts of poinsettia donor stems were 

removed 30 days after grafting (1990) or 15 days after grafting (1990-1991 and 1991). 

Ten single unit replicates were used for each treatment in 1990, 6 in 1990-1991, and 

12 in 1991 with no additional factor included. The 1991 trial was done at the Noble 

Research Center Growth Chambers, Stillwater, Okla., where vegetative growth was 

maintained by incandescent and fluorescent lamps from 0800 to 2200 HR. Light 

intensity was maintained at 210 µmol·m-2·sec-1 PAR from 30 Sept. 1991 to 15 Nov. 

1991 and reduced to 125 µmol·m-2·sec-1 PAR from 16 Nov. 1991 to 16 Dec; 1991 to 

prevent light blanching of the leaves. Air temperature was kept at 26/18 C day/night. 

Node and internode. CB and C-1 poinsettia plants were propagated as in the 

leaf experiments on 22 Sept. 1991, planted on 26 Oct. 1991 and grafted on 15 to 16 

Nov. 1991. A similar factorial arrangement of treatments as in the 1990 leaf 

experiment was used except that factor B was CB and C-1 node or intemode chip 

donors. A 7 mm node or intemode chip from the apical part of one grafted pair stem 

with a minimum diameter of 6 mm was grafted into the other grafted pair at the same 

node or intemode area. Grafts were not successful, so plants were cut back below the 

graft union and allowed to regrow. Plant growth was then thinned to one shoot and 

successfully grafted on 11 Jan. 1992. CB and C-1 poinsettia receiver plants split once 

in the node experiment and twice in the intemode experiment. Splitting is premature 
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flower initiation under long (LD) photoperiod; the vegetative shoot tip becomes 

reproductive and three shoots arise around the bud which. normally does not reach 

anthesis .. Therefore, to remove the undesired branching (splitting), plants were pinched 

at the 4th node above the graft union, allowed to regrow and thinned to one shoot. 

When plants reached twelve nodes, they were pinched again. Nine single unit 

replicates were used for each treatment in the node experiment and 8 single unit 

replicates in the intemode experiment. 

Shade experiment 

Similar materials and methods as in the 1990 leaf experiment were used except 

that CB and C-1 poinsettia plants were propagated on 3 Oct. 1991 and planted on 16 

Nov. 1991. Plants were approach grafted on 5 to 20 Apr. 1992 and placed in a 

completely randomized design with a 2x2x2 factorial arrangement of treatments. 

Factor A was the CB and C-1 cultivars as the donor of the grafted pair (donor), factor 

B was placement of donors under shade (95%, black polypropylene fabric, double 

layer) or no shade and factor C was CB and C-1 cultivars as the receiver of the 

grafted pair (receiver). Twelve single unit replicates were used for each treatment. 

Replications were divided into two blocks on one bench, alternating shade and no 

shade treatments. Black plastic was placed between the shaded donor and the 

unshaded receiver to isolate one treatment from the other. Light intensity averaged 

577 µmol·m·2-sec·1 PAR (unshaded side) and 15 µmol·m·2-sec·1 PAR (shaded side) 

during daylight hours. Supplementary incandescent light during the night (2000-0200 
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HR) with an intensity of 2.5 µmol·m·2-sec·1 PAR (unshaded side) and 0.8 µmol·m·2-sec·1 

PAR (shaded side) was used for all treatments to keep the plants vegetative. 

Results and Discussion 

Leaf removal experiments 

Plants from all graft combinations produced similar axillary shoot growth for 

nodes 10 to 12 in 1990 (Fig. 2.1 and 2.2). However, for CB/CB and CB/C-1 plants 

axillary shoot node numbers and lengths decreased from node 1 to node 9 in 1990. In 

contrast, C-1/CB axillary shoot growth increased from node 1 to 10 in 1990 (Fig. 2.1 

and 2.2). 

CB donors with leaves removed slightly increased the branching of C-1 

receivers for nodes 1-9 as compared to C- l/C-1 in 1990 (Fig. 2.1 and 2.2). Leaves 

were periodically removed from CB donors beginning 30 days after grafting. The 

agent in CB donor leaves may have been transmitted to C-1 receivers altering its 

branching pattern within those 30 days. In 1990-1991, leaves were periodically 

removed from CB donors beginning 7 days after grafting and the C-1 receivers 

branching pattern was slightly altered (Fig. 2.1 and 2.2). This indicates that the 

branching agent may have been present in CB donor leaves and was able to be 

transmitted to C-1 receivers by 7 days after grafting. However, in 1991, the C-1 

branching pattern was not altered by CB donors with leaves periodically removed 

beginning 7 days after grafting (Fig. 2.3 and 2.4). From July to September of 1991, 
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poinsettia plants were grown and grafted when air temperatures were above the 

threshold (21/29 C, day/night) for optimum vegetative poinsettia growth (Ecke et al., 

1990), which may have adversely affected the CB poinsettia donors capacity to 

transmit the branching agent to C"'.' 1 receivers by 7 days after grafting. High air 

temperatures are known to reduce the branching capacity of free-branching poinsettias 

(Dole and Wilkins, 1991). Also in 1991, CB donors with leaves not removed slightly 

increased C-1 receivers axillary shoot node numbers and lengths at nodes 5-7 (Fig. 2.3 

and 2.4). Thus, allowing the leaves to remain on CB donor plants resulted in some 

transmission of the branching agent despite high air temperatures. The leaf removal 

experiments results also suggest that the branching agent may not only be present in 

the leaves of CB poinsettias but also in other parts of the plants. More experiments 

are needed to determine the specific role of CB donor leaves in the transmission of the 

branching agent to C-1 receivers. 

Stem experiments 

Stem removal. As in the leaf removal experiments, plants from all graft 

combinations showed similar axillary shoot growth from nodes 10 to 12 in 1990, 

1990-1991 and 1991 (Fig. 2.5, 2.6, 2.7 and 2.8). However, from nodes 4 to 9 CB/CB 

and CB/C-1 had a pattern of decreasing axillary shoot node numbers and lengths as 

compared to C-1/C-1 and C-1/CB in 1990 and 1991 (Fig. 2.5, 2.6, 2.7 and 2.8). 

C-1/CB and C-1/C-1 had similar patterns of axillary shoot growth in 1990 (Fig. 

2.5 and 2.6). In 1990-1991 however, C-1/CB plants had a pattern of axillary shoot 

growth similar to CB/C-1 from nodes 5 to 12 (Fig. 2.5 and 2.6). Furthermore, C-1/CB 
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lengths than C-1/C-1 from nodes 1 to 8 in 1991 (Fig. 2.7 and 2.8). 
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In 1990, the apical and basal parts of CB donor stems were removed 30 days 

after grafting and the branching agent was not transmitted from CB donors to C-1 

receivers. However, in 1990-1991 and 1991 the apical and basal parts of CB donor 

stems were removed 15 days after grafting and transmission of the branching agent 

occured. This suggests the presence of an endogenous growth regulator in the apical 

and/or basal part of CB donor stems that may have prevented the transmission or the 

expression of the branching agent after 15 days of grafting. Stems and other parts of 

CB poinsettia plants may promote transmission of the branching agent. 

Nodes and internodes. As in the 1991 leaves and stem removal experiments, 

C-1/CB and C-1/C-1 plants had a similar pattern of increasing axillary shoot node 

numbers and lengths from nodes 4 to 10 (Fig. 2.9, 2.10, 2.11 and 2.12). Also, CB/CB 

and CB/C-1 had a similar pattern of decreasing axillary shoot growth from nodes 3 to 

10 (Fig. 2.9, 2.10, 2.11, and 2.12). CB donor node chips did not increase axillary 

shoot node numbers and lengths of C-1 receivers (Fig. 2.9 and 2.10). Only 20% of 

the nodes grafted actually developed into shoots. Lack of CB donor chips growth may 

have limited transmission of the agent from CB donors to C-1 receivers. However, 

80% of CB donor internode chip grafts succed and slightly increased C-1 receivers 

axillary shoot growth above node 6 (Fig. 2.11 and 2.12). The agent present in CB 

internode chips apparently moved to C-1 receivers increasing C-1 axillary shoot 

growth. The branching agent in CB internode donors (sink) may have moved against 
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a source-sink gradient of photosynthates to C-1 receivers (source) via another method 

of transmission which may have not been as effective as movement by source-sink. 

The partial transmission of the branching agent from CB internode donors to C-1 

receivers also suggested that a source-sink movement of the branching agent may not 

be the only mechanism of transmission. 

The results from the stem experiments and leaf experiments did not 

demonstrate clear evidence of the specific role of CB donor stems or leaves in the 

transmission of the branching agent to c.:.1 receivers (Fig. 2.1 to 2.12). Both stems 

and leaves of CB poinsettia donors may promote transmission of the branching agent 

to C-1 receivers. 

Shade experiment 

CB receivers with donors grown without shade had more axillary shoot nodes 

than C-1 receivers with donors under shade (Table 2.1, Fig. 2.13). However, CB 

receivers had higher axillary shoot lengths than C-1 receivers regardless of whether 

donors were shaded or unshaded (Table 2.1, Fig. 2.14). The difference in axillary 

shoot nodes between C-1 receivers (donors shaded) and CB receivers (donors 

unshaded) caused a receiver x shade interaction (Table 2.1, Fig. 2.13). 

C-1 and CB receivers with donors under shade had slightly lower axillary shoot 

node numbers as compared to C-1 and CB receivers with donors unshaded (Fig. 2.13). 

Photosynthates produced in the unshaded receiver plants may have moved to the 

shaded donor plants which may have partially reduced photosynthate level of the 

receiver plants. Reduced photosynthates in receiver plants with shaded donor plants 
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may have caused the reduction in growth compared to when the donors were unshaded 

(Fig. 2.13). 

Even though there was no significant main effect of CB and C-1 as donors, CB 

donors (unshaded) partially increased C-1 receiver axillary shoot growth above node 3 

as compared to C-l/C-1 (unshaded) (Fig. 2.13 and 2.14). Also, CB donors (shaded) 

slightly increased C-1 receivers axillary shoot node numbers and lengths above node 4 

as compared to C-l/C-1 (shaded) (Fig. 2.13 and 2.14). The lack of significant 

differences in C-1/CB axillary shoot growth below node 5 precluded the demonstration 

of a significant main effect of CB as a donor in the transmission of the branching 

agent. Shading CB donor leaves and stems did not prevent the transmission of the 

branching agent to C-1 receivers. 

If CB donors had been changed to a sink by shading and no transmission of 

the. branching agent to C-1 receivers had occurred, that would have shown that a 

source-sink relation was necessary for the transmission of the branching agent. 

However, the amount of shade under which CB donors grew may have caused CB 

donors to be only partially dependent on C-1 receivers. CB donor leaves grown under 

shade were green and thus were able to produce photosynthates. We cannot conclude 

from the results of this experiment that the transmission of the branching agent 

depends only on a source-sink relationship. 

Environmental factors such as light, temperature, inorganic nutrients and water 

may have affected the transmission of the branching agent between CB donors and 
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C-1 receivers and thus may have caused the variation in branching between years. 

Light intensity and duration (photoperiod) during C-1 and CB poinsettia growth may 

have adversely affected the transmission of the branching agent from CB donors to 

C-1 receivers. The light intensity in the greenhouse was reduced by a black 

polypropylene shade used to reduce temperature during the summer and by yellowing 

of the fiberglass-reinforced plastic glazing. Reduced light intensity in combination 

with high nitrogen levels is known to increase apical dominance in Linum 

usitatissimun L. var. Redwing (Gregory and Veale, 1957). C-1 receiver plants grafted 

on CB donors may have had strong apical dominance due to a reduced light intensity 

in the greenhouse, limiting the transmission or expression of the branching agent 

C-1 receivers and CB donors were grown under long (LD) photoperiods, which 

favors apical dominance in photoperiodically-sensitive species (Phillips, 1969). 

Transmission of the branching agent from CB donors to C-1 receivers may have been 

adversely affected by LD. Also, C-1 apical dominance may have been increased and 

CB branching capacity reduced by LD, thereby limiting the expression of the 

branching agent. · 

Air temperatures were above the threshold (21/29 C day/nigth) for optimum 

vegetative poinsettia growth during July to September in 1990, 1991 and 1992. High 

temperatures are known to reduce the branching capacity in free-branching poinsettias 

(Dole and Wilkins, 1991). The capacity of CB poinsettia donors to transmit the 

branching agent may have been adversely affected by air temperatures during July to 

September in 1990, 1991 and 1992. 
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In the 1990-1991 experiments, C-1 and CB poinsettia donors and receivers had 

salt toxicity symptoms.· Increased soil salinity may have reduced the water availability 

to the plants and may have reduced the branching pattern of C-1 receivers on CB 

donors. Apical meristems of C-1, with a strong apical dominance, may have competed 

for the available water with the axillary 'buds reducing the water and nutrients 

available for the axillary shoot.growth. Axillary bud growth in Helianthus annuus L., 

Phaseolus vulgaris L. and Pisum sativum L. has been promoted by water availability 

and high humidity, indicating that competition for water may play a critical role in 

apical dominance (McIntyre, 1977). 

Both stems and leaves of CB poinsettia donors may promote the transmission 

of the branching agent to C-1 receivers by influencing the movement of endogenous 

hormones between CB and C-1. Leaves, buds and the shoot apex may modify apical 

dominance by influencing the movement of endogenous hormones (Hillman, 1970). 

An increase in the ratio of endogenous cytokinin in C-1 plants to endogenous auxin 

may have released C-1 shoots from apical dominance, resulting in emergence of lateral 

buds (Bidwell, 1991 ). Furthermore, cytokinins (Sachs and Thimann, 1964; Williams 

and Stahly, 1968), and auxin-antagonists like 2,3,5-triiodobenzoic acid (Ansen and 

Hamner, 1953) have increased axillary shoot branching in other plant species. 
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Table 2.1. Axillary shoot growth of CB and C-1 poinsettia receivers after grafting on 

CB and C-1 donors with or without shade in 1991-1992. Shade treatment was 

provided by a 95% black polypropylene fabric (double layer). Black plastic 

was placed between the shaded donor and the unshaded receiver to isolate one 

treatment from the other. 

Factors 

Receiver 

Donor 

Shade 

Receiver x Donor 

Receiver x Shade 

Donor x Shade 

Receiver x Donor x Shade 

Receiver Shade 

C-1 yes 

CB yes 

C-1 no 

Number of 

nodes2 

** 

NS 

** 

NS 

* 
NS 

NS 

1.8a 

4.6ab 

3.2ab 

Axillary shoot 

Length 

(mm)2 

** 
NS 

** 

NS 

* 
NS 

NS 

19a 

73b 

28a 



CB no 7.lb 

zMeans followed by the same letter do not differ by LSD, P = 0.05. 

Ns.•,••Nonsignificant or significant at P = 0.05 or 0.01 respectively. 
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Fig .. 2.1. Axillary shoot node number of CB and C-1 poinsettia receivers after grafting 

on CB and C-1 donors with leaf removal in 1990 and 1991. All leaves were 

periodically removed from the donor beginning 30 days after grafting in 1990 

and beginning 7 days after grafting in 1990-1991. Grafted pairs were pulled 

apart 40 days after grafting in 1990 and 30 days after grafting in 1990-1991. 

Means were an average of data from 6 plants. 

Fig. 2.2. Axillary shoot length of CB and C-1 poinsettia receivers after grafting on 

CB and C-1 donors with leaf removal in 1990 and 1991. All leaves were 

periodically removed from the donor beginning 30 days after grafting in 1990 

and beginning 7 days after grafting in 1990-1991. Grafted pairs were pulled 

apart 40 days after grafting in 1990 and 30 days after grafting in 1990-1991. 

Means were an average of data from 6 plants. 

Fig. 2.3. Axillary shoot node number of CB and C-1 poinsettia receivers after grafting 

on CB and C-1 donors with or without donor leaf removal in 1991. Donor 

leaves were periodically removed beginning 7 days after grafting. Plants were 

pulled apart 30 days after grafting. Means were an average of data from 12 

plants. 

Fig. 2.4. Axillary shoot length of CB and C-1 poinsettia receivers after grafting on · 

CB and C-1 donors with or without leaf removal in 1991. Donor leaves were 

periodically removed beginning 7 days after grafting. Plants were pulled apart 

30 days after grafting. Means were an average of data from 12 plants. 
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Fig. 2.5. Axillary shoot node number of CB and C-1 poinsettia receivers after grafting 

and removal of the apical and basal parts of the. CB and C-1 donor in 1990 and 

l 990~ 1991. The apical and basal parts of the donor stem were removed 30 

days after grafting in 1990 and 15 days after grafting in 1990-1991. Means 

were ari average of data from 10 plants in 1990 and 6 plants in 1990-1991. 

Fig. 2.6. Axillary shoot length of CB and C-1 poinsettia receivers after grafting and 

removal of the apical and basal parts of the CB and C-1 donor in 1990 and 

1990-1991. The apical and basal parts of the donor stem were removed 30 

days after grafting in 1990 and 15 days after grafting in 1990-1991. Means 

were an.average of data from 10 plants in 1990 and 6 plants in 1990-1991. 

Fig. 2. 7. Axillary shoot node number of CB and C-1 poinsettia receivers after grafting 

and removal of the apical and basal parts of the CB and C-1 donor, Noble 

Center Growth Chambers, OSU in 1991. The apical and basal parts of the 

donor stem were removed 15 days after grafting. Means were an average of 

data from 12 plants. 

Fig. 2.8. Axillary shoot length of CB and C-1 poinsettia receivers after grafting and 

removal of the apical and basal parts of the CB and C-1 donor, Noble Center 

Growth Chambers, OSU in 1991. The apical and basal parts of the donor stem 

were removed 15 days after grafting. Means were an average of data from 12 · 

plants. 

Fig. 2.9. Axillary shoot node number of CB and C-1 poinsettia receivers after grafting 

node chips of the CB and C-1 donor in 1991-1992. The node portion closest to 
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the apical meristem of one grafted pair was grafted into the other grafted pair at 

the same node area. Means were an average of data from 9 plants. 

Fig. 2.10. Axillary shoot length of CB and C-1 poinsettia receivers after grafting node 

chips of the CB and C-1 donors in 1991-1992. The node portion closest to the 

apical meristem of one grafted pair was grafted into the other grafted pair at the 

same node area. Means were an average of data from 9 plants. 

Fig. 2.11. Axillary shoot node number of CB and C-1 poinsettia receivers after 

grafting internode chips of the CB and C-1 donor in 1991-1992. The 

internode portion closest to the apical meristem of one grafted pair was 

grafted into the other grafted pair at the same internode area. Means 

were an average of data from 8 plants. 

Fig. 2.12. Axillary shoot length of CB and C-1 poinsettia receivers after grafting 

internode chips of the CB and C-1 donor in 1991-1992. The internode portion 

closest to the apical meristem of one grafted pair was grafted into the other 

grafted pair at the same internode area. Means were an average of data from 8 

plants. 

Fig. 2.13. Axillary shoot node number of CB and C-1 poinsettia receivers after 

grafting on CB and C-1 donors with (Yes) or without (No) shade in 1991-1992. 

Shade treatment was provided by a 95 % black polypropylene fabric (double 

layer). Black plastic was placed between the shaded donor and the unshaded 

receiver to isolate one treatment from the other. Means were an. average of 

data from 12 plants. 



Fig. 2.14. Axillary shoot length of CB and C-1 poinsettia receivers after grafting on 

CB and C-1 donors with (Yes) or without (No) shade in 1991-1992. Shade 

treatment was provided by a 95% black polypropylene fabric (double layer). 

Black plastic was placed between the shaded donor and the unshaded receiver 

to isolate one treatment from the other. Means were an average of data from 

12 plants. 
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CHAPTER ill 

CORRELATION OF POINSETTIA GRAFf UNION DEVELOPMENT 

WITH TRANSMISSION OF THE FREE-BRANCHING AGENT 

Gerardo Ruiz-Sifre1, John M. Dole1, Paul E. Richardson2, Brian A. Kahn1 and Joana 

Ledford2 

Dept. of 1Horticulture and Landscape Architecture, and of 2Botany, Oklahoma State 

University, Stillwater, OK 74078 

Additional index words. Euphorbia pulcherrima, apical dominance, axillary 

branching, free-branching, restricted-branching, isolation layer. 

Abstract. Euphorbia pulcherrima Willd. ex. Klotzsch cv. 'Eckespoint C-1 Red' 

(C-1) a restricted-branching poinsettia and 'CB' a free-branching graft-hybrid were 

approach grafted. Graft unions were removed from poinsettia grafted pairs at 0, 5, 10, 

15, 20, 25 or 30 days after grafting for anatomical study and the portion below the 

graft union was allowed to regrow. By 10 days after grafting, C-1 receivers showed 

increased branching and C-1 and CB parenchyma cells were actively dividing, 

46 



47 

· producing new parenchyma cells (callus). Callus connected CB donors and C-1 

. receivers and may have allowed the transmission of the branching agent by 10 days 

after grafting. Parenchyma cells differentiated into nodules for the formation of new 

cambium by 25 days after grafting. CB donors and C-1 receivers were interconnected 

by new vascular tissue after 25 days of graft formation. CB donors may have 

controlled the differentiation of vascular tissue of the graft union and further 

transmission of the branching agent to C-1 receivers. 

Grafting a free-branching poin~ettia to a restricted-branching poinsettia increases 

the branching capacity of the restricted-branching poinsettia (Stimart, 1983; Dole and 

Wilkins, 1991, 1992). A branching agent present in Annette Hegg Brilliant Diamond 

(AHBD) (a free-branching cultivar) moves acropetally and basipetally through the 

graft union to Eckespoint C-1 Red (a restricted-branching cultivar) increasing C-1 

axillary bud growth (Dole and Wilkins, 1992). 

CB (fR), a vegetative or graft-hybrid, was derived from grafting C-1 onto 

AHBD (Dole and Wilkins, 1992). Vegetative hybridization is the process of grafting 

two plants together in order to obtain a unique phenotype from the grafted plant itself. 

Changes in the branching pattern of C-1 were retained through a series of vegetative 

propagations and are considered permanent (Dole and Wilkins, 1991, 1992). The 

percentage of C-1 plants exhibiting the free-branching characteristic increased from 

0% for 0, 5, and 10 days of graft contact with AHBD to 100% after 30 days (Dole 

and Wilkins, 1992). A minimum of 10 days were required for AHBD plants to be in 
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contact with C-1 plants in order to transmit the agent (Dole and Wilkins, 1992). 

Anatomical changes during the formation of the graft union between restricted­

branching and free-branching poinsettias may induce production of the agent, or allow 

translocation of the agent through the graft union. The anatomical changes occurring 

during graft union formation in plants may be involved in vegetative hybridization 

(Fajnbron, 1953). During graft union formation between CB and C-1 poinsettia, 

dictyosome activity and callus proliferation may promote the transmission of the 

branching agent from a CB donor to a C-1 receiver. In Sedum telephoides Michx., 

dictyosome activity and callus proliferation are pronounced along the graft interlace at 

the 24th day after grafting and both functions are correlated with the initial adhesion 

(Moore and Walter, 1981). 

Wound vessel differentiation may occur during graft union formation in 

poinsettia and may be required for the production and/or translocation of the branching 

agent. In tomato (Lycopersicon esculentum Mill. cv Aisla Craig) autografts, wound 

vessels differentiate within the callus at the graft union, and are connected into the 

vascular system of stock and scion by wound vessels differentiating from vascular and 

cortical parenchyma (Jeffree and Yeoman, 1983). Picea sitchensis L. (Bong) xylem 

elements differentiate directly from vascular cambia of the rootstock and scion and are 

different from elements arising from parenchymatous callus derived from ray 

parenchyma (Weatherhead and Barnett, 1986). 

The objective of this research was to correlate the development of new cells 

and tissues during the graft union formation with the movement of the branching agent 
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a free-branching poinsettia to a restricted-branching poinsettia. 

Materials and Methods 

Growth and grafting of the plants: Cuttings from C-1 and CB poinsettia plants 

were treated with 1 % IBA (lndole-3-Butyric Acid, Hormex Powder #1, Brooker 

Chemical, North Hollywood, Calif.) and planted in oasis rootcubes growing medium 

(Smithers-Oasis, Kent, Ohio) on 19 May 1991. After rooting under intermittent mist 

at a temperature of 21 C, plants were placed in 16.5-cm (1250 cc) pots filled with 

commercial peat based medium (Fafard #2, Springfield, Mass.) on 24 June 1991. 

Vegetative growth was maintained by supplementary incandescent and high­

intensity-discharge (HID) lamps (7.6 µmol·m-2-sec-1 PAR, 2200 to 0200 HR) to provide 

long photoperiods (LD) (15 h). Light intensity averaged 780 µmol·m-2•sec-1 PAR 

during daylight hours. Air temperature in the greenhouse was maintained at an 

average 31/21 C day/night. Standard fertilization and pest management practices were 

used (Ecke et al., 1990). 

C-1 and CB plants were approach grafted (Hartmann et al., 1990) from 11 to 14 

Aug. 1991 and placed in a completely randomized design. Graft unions for the 

anatomical study were removed from grafted pairs (donors and receivers) at 0, 5, 10, 

1:5, 20, 25 or 30 days after grafting. The lower portion of C-1 receiver plants below 

the graft union was allowed to regrow after removal of the graft unions and then 

thinned to one shoot per plant. CB donor plants were removed at the medium level. 

Ten single unit replicates were used for each treatment in the anatomical study and 5 
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were allowed to regrow. 

Shoot that regrew from each C-1 receiver plant was pinched at the twelfth 

node. Thirty days later the number of nodes and the length of the axillary shoots were 

determined. The number of nodes with leaves (including the terminal leaf blade 

separated from the apical cone) was determined and the length was measured from the 

· . base of each axillary shoot to the tip of the apical cone. 

Anatomical study: Ten graft unions were dissected from C-1/CB plants at 0, 5, 

10, 15, 20, 25 or 30 days after grafting. The graft union portions were killed and 

fixed in formalin-propionic acid-alcohol (FP A). They were dehydrated through five 

increasing concentrations of alcohols, ending in tertiary butanol (TBA) (Johansen, 

1940). Specimens were left in each solution (#1-5) for 2 hours. Erythrosin dye in 

solution #5 provided specimens with a temporary red color which allowed easier 

orientation during embedding and sectioning. Specimens were put through three 

consecutive changes of TBA: the first for 2 hours, the second for 24 hours and the 

third for 24 hours under vacuum. 

The material was gradually infiltrated with paraffin (Paraplast, Tissue 

Embedding Medium, Lancer, St. Louis, MO), by adding shavings of paraffin to 

stoppered vials containing the specimens in TBA while vials were held at 30 C. After 

24 hours, more paraffin was added to the unstoppered vials which were then held at 

45 C for 24 hours. After a third addition of paraffin, vials were held under vacuum at 

56 C for 24 hours. Vials were then moved to a 60 C oven and melted paraffin was 

replaced several times with fresh melted paraffin until the odor of TBA was gone. 
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Specimens were embedded in plastic molds (Polysciences Inc., Warrington, PA). 

Embedded graft unions were sectioned at 12 microns with a rotary microtome. 

Cross or longitudinal serial sections were affixed with Haupt's adhesive and then 

stained with safranin and fast green (Berlyn and Miksche, 1976). Cover slips were 

applied with Adams Histoclad mounting medium (Clay Adams, Parsippany, NJ). 

Graft union microscope slides were examined through a light microscope (x50, 

xlOO, x200 and x450). Anatomical features of the CB and C-1 graft union regions 

were observed at 0, 5, 10, 15, 20, 25 and 30 days after grafting. 

Results and Discussion 

A cross section of CB poinsettia at O days after grafting shows the tangential 

cut area that was made in preparation for grafting (Fig. 3.1). CB and C-1 graft union 

formation began with the secretion of latex fluid onto the wound surf ace. This latex 

initially adhered CB and C-1 plants and may have encouraged subsequent cellular 

interaction through the exchange of plant metabolites between the grafted pair. At 5 

days after grafting the formation of necrotic material from the cell contents and cell 

walls of cut CB donor and C-1 receiver plant tissue was observed (a wound healing 

response) (Fig. 3.2 and 3.3). This necrotic material consisted of dead cells at the cut 

surface of approach of both CB and C-1 and was at least a cell layer deep. However, 

at 5 days after grafting, CB and C-1 plants were not yet adhered and easily separated 

when the graft union was removed from the grafted pairs. 

At both sides of the necrotic material (isolation layer) 5 to 7 layers of 
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parenchyma cells were formed by enlargement and division of parenchyma cells at 10 

days after grafting (Fig. 3.4, 3.5 and 3.6). These parenchyma cells differentiated into 

ray parenchyma which acted as cambium and produced new parenchyma cells (callus) 

by 15 days after grafting (Fig. 3.7). 

Callus tissue penetrated the thin necrotic layer and filled the space between CB 

donor and C-1 receiver plants (Fig. 3.7) which became interlocked and provided some 

mechanical support where the isolation or necrotic layer was broken (Fig. 3.8). 

Discontinuous cell bridges were found perpendicular to the isolation layer between CB 

and C-1 plants (where the isolation layer was broken) at 15 days after grafting (Fig. 

3.9). 

Traces of the isolation layer were not evident within the cortex and vascular 

tissue of CB and C-1 plants at 20 days after grafting which indicated that the graft 

union was nearly complete in that area (Fig. 3.10). However, the isolation layer was 

evident near the pith area indicating that the graft union was still in the process of 

being formed at 20 days after grafting (Fig. 3.10). 

Nodules for the formation of new vascular tissue were formed between CB and 

C-1 by 25 days after grafting (Fig. 3.11). The newly formed vascular tissue (new 

xylem and phloem) between CB donor and C-1 receiver plants was evident at 30 days 

after grafting (Fig. 3.12). Production of new xylem and phloem permitted vascular 

connection between CB donor and C-1 receiver plants. Furthermore, CB and C-1 graft 

union formation was almost completed at 30 days after grafting (Fig. 3.13). Traces of 

the isolation layer were present only near the pith area of grafted pairs (Fig. 3.13). 
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The results from the anatomical study correlated with the transmission of the 

branching agent from CB donor to C-1 receiver plants after the graft union was 

:removed and C-1 receiver shoots allowed to regrow. At O and 5 days after grafting, 

C-1 receivers and CB donors did not have axillary shoot growth from node O to 9 

(Fig. 3.14 and 3.15). At O and 5 days after grafting, C-1 receiver and CB donor plants 

were easily separated when the graft union was removed, suggesting that a connection 

between the plants had not occurred and the transmission of the branching agent was 

not possible. 

At 10 days after grafting axillary shoot node numbers and node lengths 

increased significantly from node 1 to 9 in C-1 receiver plants (Fig. 3.14 and 3.15). 

C-1 receiver and CB donor plants did not separate when the graft union was removed 

and new parenchyma cells were formed at the C-1. and CB sides of the isolation layer. 

The new parenchyma cells formed at each side of the isolation layer may have been 

connected through plasmodesmata across parts of the isolation layer, thereby allowing 

the transmission of the branching agent between CB donor and C-1 receiver plants. 

Plasmodesmata connections between stocks (donor) and scions (receiver) has been 

demonstrated in reciprocal grafts of Helianthus annuus L. and Vicia faba L. 

(Kollmann and Glockmann, 1985; Kollmann et al., 1985). 

C-1 receiver axillary shoot node numbers and lengths increased from 10 to 25 

days after grafting (Table 3.1 and 3.2). Discontinuous cell bridges and callus were 

formed between CB donor and C-1 receiver plants at 15 days after grafting (Fig. 3.7 

and 3.9) and may have enabled symplastic and apoplastic movement of the branching 
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agent between CB and C-1 plants. Traces of the isolation layer were not evident 

between the vascular tissue of CB and C-1 grafted pairs at 20 days after grafting (Fig. 

3.10) which may have further allowed the transmission of the branching agent. The 

presence of nodules for the formation of new vascular tissue suggested the possibility 

of further movement of the branching agent between CB and C-1 through newly 

formed vascular tissue after 25 days of graft union formation (Fig. 3.11 and 3.12). 

According to previous research, between 10 and 15 days of graft union contact 

between AHBD plants and C-1 plants was required in order to transmit the branching 

agent (Dole and Wilkins, 1992). However, CB plants needed to be in contact with 

C-1 plants between 5 and 10 days for the transmission of the agent in the current 

research. CB and C-1 graft unions developed under high air temperatures during 

August and September in the current research. High air temperatures may have 

hastened. the development of the graft union and may have allowed the transmission of 

the agent in a shorter period of time than in the previous research. 

The CB side of the grafted pairs may have developed faster than the C-1 side 

after 10 days of graft union formation (Fig. 3.7 to 3.13). The isolation layer was more 

broken and more ray parenchyma was present in the CB side than in the C.;.1 side by 

15 days after grafting (Fig. 3. 7). More new vascular tissue was evident in the CB side 

than in the C-1 side by 30 days after grafting (Fig. 3.12). C-1, a restricted-branching 

poinsettia with a strong apical dominance, may have a higher endogenous 

concentrations of auxins than of cytokinins. Conversely CB, a free-branching graft­

hybrid with a weak apical dominance, may have a higher endogenous concentration of 
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cytokinins than auxins. Auxins and cytokinins from CB and C-1 poinsettias may have 

induced cell proliferation . and vascula.rization in the callus of the graft union between 

CB and C-1 grafted pairs. The dedifferentiation (reversal to a meristematic state of 

differentiated parenchyma cells) of the Oleaceae callus into vascular tissue by direct 

application of auxin (Wetmore and Rier, 1963) and the cell proliferation and 

cytodifferentiation (differentiation of parenchyma cells into xylem and phloem) of 

soybean (Glycine max (L.) Merrill) callus by cytokinins (Torrey et al., 1971) have 

been demonstrated. CB plants with higher cytokinins than auxin may have hastened 

the vascula.rization of the callus and connection between CB and C-1 grafted pairs and 

promoted the transmission of the branching agent between CB and C-1 plants. 

Increasing levels of cytokinins may have resulted in progressively increased cell 

proliferation and xylem and phloem differentiation from callus in soybean (Torrey et 

al., 1971). 

High concentrations of endogenous cytokinins in CB donor plants may not only 

have promoted vascula.rization during the graft union formation but may also have 

been transported to C-1 receivers inducing vascularization of C-1 axillary buds and 

connecting them to the stem. Vascularization and high levels of cytokinin in C-1 

axillary shoots may have been necessary to promote their growth. The correlation 

between vascular connection development and axillary bud outgrowth has been 

established by histological studies (Gregory and Veale, 1957; Sorokin and Thimann, 

1964; Panigrahi and Audus, 1966). Sorokin and Thimann (196_4) suggested that bud 

inhibition may be due to incomplete contact between the bud and the vascular bundles 
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of the stem, and the effectiveness of kinetin in releasing the inhibition would then be 

due to its action on xylem differentiation. High concentrations of endogenous auxin in 

C-1 plants may have prevented the development of vascular connections between C-1 

stems and axillary shoots. High auxin content of the stem tissue impedes or prevents 

the formation of provascular strands in the axillary shoots (Gregory and Veale, 1957). 

In summary, the development of new cells and tissues during CB and C-1 graft 

union formation was correlated with the movement of the branching agent between CB 

donors and C-1 receivers. C-1 axillary shoot growth was increased by CB donors at 

10 days after grafting. New cells and tissues were progressively formed in the graft 

union between CB and C-1 plants allowing the transmission of the branching agent by 

10 days of graft union formation. 
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Table 3.1. Axillary shoot growth of C-1 poinsettia receivers grafted on CB donors 

after removal of the graft unions and regrowth of the receiver plants at O to 30 

days after grafting in 1991. CB donor plants were removed at the medium 

level. Means were an average of 5 plants. 

Time after grafting 

(days) 

0 

5 

10 

15 

20 

25 

30 

Linear 

Quadratic 

Number of 

nodes 

1.4 

1.5 

2.4 

2.9 

3.2 

3.8 

2.5 

** 

* 

Axillary shoot 

Ns,*,**Nonsignificant or significant at P = 0.05 or 0.01, respectively. 

Length 

(mm) 

15 

14 

21 

25 

28 

37 

24 

* 
NS 



Table 3.2. Significance per node on the main stem for axillary shoot node number 

and length of C-1 poinsettia receivers grafted on CB . donors after removal of 

the graft union and regrowth of the receiver plants at O to 30 days after 
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grafting by LSD, in 1991. CB donor plants were removed at the medium level. 

Means were an average of data from 5 plants. 

Axillary shoot 

Node number 

Length 

Nodes 

1 2 3 4 5 6 7 8 9 10 11 12 

* NS * 

** NS NS 

* NS 

** NS 

** 
* 

** * 
* NS 

** NS NS NS 

* NS NS NS 

NS,*,*'Nonsignificant or significant at P = 0.05 or 0.01, respectively. 



Fig. 3.1. Cross section of Euphorbia pulcherrima 'CB' showing the surface (s) of 

approach for the graft at O days after grafting. x63. 
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Fig. 3.2. Cross section of Euphorbia pu/cherrima 'CB' showing the necrosis (n) along 

the surface (s) of approach for the graft at 5 days after grafting. x63. 

Fig. 3.3. Cross section of Euphorbia pu/cherrima 'Eckespoint C-1 Red' showing the 

necrosis (n) along the surface (s) of approach for the graft at 5 days after 

grafting. x63. 

Fig. 3.4. Cross section of Euphorbia pu/cherrim_a 'CB' showing five to seven layers 

of parenchyma cells (c) formed by enlargement and division along the isolation 

(i) layer at 10 days after grafting. x63. 

Fig. 3.5. Cross section of Euphorbia pulcherrima 'Eckespoint C-1 Red' (C-1) 

showing five to seven layers of parenchyma cells (c) formed by enlargement 

and division along the isolation (i) layer at 10 days after grafting._ x63. 

Fig. 3.6. Longitudinal section of Euphorbia pulcherrima 'CB' and 'C-1' poinsettia 

grafted pair graft union showing five to seven layers of parenchyma cells (c) 

formed by enlargement and division to either side of the isolation (i) layer at 10 

days after grafting. x118. 

Fig. 3. 7. Longitudinal section of 'CB' and 'C-1' poinsettias grafted pair graft union 

showing callus tissue (ct) formed by ray (r) parenchyma between the isolation 

(i) layers at 15 days after grafting. x63. 
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Fig. 3.8. Longitudinal section of the isolation (i) layer being broken (arrow) between 

a Euphorbia pulcherrima 'CB' and 'C-1' grafted pair at 15 days after grafting. 

x420. 

Fig. 3.9. Longitudinal section showing discontinuous cell bridges (cb) perpendicular 

to the isolation (i) layer between Euphorbia pulcherrima 'CB' and 'C-1' at 15 

days after grafting. x63. 

Fig. 3.10. Cross section of 'CB' and 'C-1' grafted pair graft union showing that 

isolation(i) layer was not evident at the cortex (ex) and vascular tissue (vt) at 20 

days after grafting. However, in the pith (p) area the isolation (i) layer was 

evident indicating that the graft union was still in the process of being formed. 

x63. 

Fig. 3.11. Longitudinal section showing nodules (no) for the formation of new 

vascular tissue were being formed between Euphorbia pulcherrima 'CB' and 

'C-1' at 25 days after grafting. x118. 

Fig. 3.12. Longitudinal section of 'CB' and 'C-1' poinsettia grafted pairs graft union 

showing a nodule (no) and beside it vascular tissue (vt) being formed between 

Euphorbia pulcherrima 'CB' and 'C-1' at 30 days after grafting. x118. 

Fig. 3.13. Cross section of the Euphorbia pulcherrima 'CB' and 'C-1' healed graft 

union. Isolation (i) layer was only present near the pith (p) area of the grafted 

pair. x63. 

Fig. 3.14. Axillary shoot node number of C-1 poinsettia receivers on CB donors after 

cutting back plants to below the graft union at O to 30 days after grafting in 



1991. CB donor plants were removed at the medium level. Means were an 

average of data from 5 plants. 
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Fig. 3.15. Axillary shoot length of C-1 poinsettia receivers on CB donors after cutting 

back plants to below the graft union at Oto 30 days after grafting in 1991. CB 

donor plants were removed at the medium level. Means were an average of 

data from 5 plants. 
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Figure 3.1 



66 

Figure 3.2 



Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure 3.6 
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Figure 3.7 
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Figure 3.8 

CB 
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Figure 3.9 
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Figure 3.10 
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Figure 3.11 



76 

Figure 3.12 
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Figure 3.13 
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CHAPTERN 

FLOWERING AND BRANCHING TRANSMISSION 

BETWEEN FREE AND RESTRICTED-BRANCHING POINSETIIAS 

Gerardo Ruiz-Sifre, John M. Dole and Brian A. Kahn 

Dept of Horticulture and Landscape Architecture, Oklahoma State University, 

Stillwater, OK 74078 

Additional index words. Euphorbia pu/cherrima, apical dominance, axillary 

branching, free-branching, restricted-branching, photoperiod. 

Abstract. Euphorbia pu/cherrima Willd. ex. Klotzsch cv. 'Eckespoint C-1 Red' 

(C-1) a restricted-branching cultivar, and 'CB,' a free-branching vegetative or graft­

hybrid, were homo and heterografted. C-1 and CB receivers of the grafted pair were 

kept in long (LD) photoperiods and C-1 and CB donors were exposed to short (SD) 

photoperiods or LD. C-1/CB (SD) plants for 1990-1991 produced similar axillary 

shoot node numbers and lengths to CB/CB (SD or LD) when pinched at the tenth node 

60 days after grafting. However, in 1991-1992, C-1/CB (SD) did not produce similar 

axillary shoots as CB/CB but were similar to CB/C-1 (SD) above node 5. The 
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probability of exhibiting flower induction in C-1/CB (SD) was high (0.5), splitting was 

low (0.07) and C-1 branching was increased in 1990-1991. In 1991-1992 the C-1/CB 

(SD) probability of exhibiting flower induction was low (0.04) splitting was high 

(0.98) and the branching pattern was not altered as in 1990-1991. The potential to 

branch and flower appear to be correlated, and both are adversely affected by splitting. 

Free-branching poinsettias are the predominant cultivars grown in the United 

States today rather than restricted-branching poinsettias. Free-branching poinsettias are 

preferred because they produce numerous axillary shoots and cuttings per plant when 

pinched. In contrast, restricted-branching poinsettias produce fewer axillary shoots and 

cuttings per plant when pinched. 

The branching capacity of restricted-branching poinsettias may be increased by 

grafting them to free-branching cultivars (Stimart, 1983; Dole and Wilkins, 1991, 

1992). A branching agent present in Annette Hegg Brilliant Diamond (AHBD) (a 

free-branching cultivar) moves acropetally and basipetally through the graft union to 

'Eckespoint C-1 Red' (C-1) (a restricted-branching cultivar) increasing C-1 axillary 

bud growth (Dole and Wilkins, 1992). Changes in the branching pattern of C-1 are 

retained through a series of vegetative propagations and are considered permanent 

(Dole and Wilkins, 1991, 1992). Thus, CB (TR), a vegetative or graft-hybrid, was 

derived from grafting C-1 onto AHBD (Dole and Wilkins, 1992). Vegetative 

hybridization is the process of grafting two plants together in order to obtain a unique 

phenotype from the grafted plant itself. 
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Florigen (flowering hormones) is formed in leaves and transported to shoot 

meristems and is able to cross graft unions (Lang, 1989). Florigen is readily 

interchangeable between grafting partners of the same species. Dole and Wilkins 

(1992) found that the branching agent was also transmittable between AHBD and C-1 

poinsettias through the graft union. However, the location of synthesis of the 

branching agent is not known. The branching agent may be produced in the leaves of 

poinsettia rootstocks (donor) and translocated through the graft union like the florigen. 

Branching in C-1 and CB poinsettias sometimes occurs during the flowering 

process under non-inductive long (LD) photoperiods. A physiological disorder, 

splitting, may occur in which the vegetative shoot tip becomes reproductive and is 

transformed into a flower bud ( cyan th um) under LD (Zrebiec and Tayama, 1985). 

Three shoots arise around the bud which normally does not reach anthesis. Splitting 

occurs more frequently in C-1 poinsettia plants than in CB poinsettia plants under LD 

conditions (personal observation). 

A complex of growth regulators may control both flowering and expression of 

free-branching in poinsettias. The flowering and branching control systems in 

La.thyrus odonatus L. and Pisum sativum L. appear to involve the same or a very 

similar hormone(s) (Murfet, 1971; Murfet, 1977). Chailakhyan and Lozhnikova (1985) 

hypothesized that florigen is a bicomponent complementary complex of two hormones, 

consisting of gibberellins, which participate in formation of the flower stem, and 

anthesins, which affect flower formation. In contrast, poinsettias sprayed with 

gibberellic acid produce flowers later than nontreated poinsettias (Guttridge, 1963; 
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Evans et al., 1992b). Furthermore, substances with gibberellin-like activity were 

detected in root exudates of poinsettias grown under LD_ conditions (Criley, 1970). As 

a result of studies on the regulation of tomato (Lycopersicon esculentum MiU.) 

flowering through reciprocal top-root grafting, Phatak and Wittwer (1965) suggested 

the presence of a graft transmissible flower stimulator in the leaves of early cultivars 

and a transmissible flower inhibitor in the leaves of late cultivars. 

This research will further characterize the free-branching agent in poinsettia by 

determining if there is a correlation between flower induction and the free-branching 

agent. --

Materials and Methods 

1990-1991. Cuttings from C-1 and CB poinsettia plants were treated with 1 % 

IBA (Indole-3-Butyric Acid, Hormex Powder #1, Brooker Chemical, North 

Hollywood, Calif.) and planted in oasis rootcubes growing medium (Smithers-Oasis, 

Kent, Ohio) on 3 Oct. 1990. After rooting under intermittent mist with a temperature 

of 21 C, plants were placed in 16.5-cm (1250 cc) pots filled with a commercial peat­

based medium (Fafard #2, Springfield, MA) on 16 Nov. 1990. Plants were approach 

grafted (Hartmann et al., 1990) on 6 and 7 Feb. 1991, and placed in a completely 

randomized design with a 2x2x2 factorial arrangement of treatments. Factor A was 

CB and C-1 cultivars as the donor of the grafted pair (donor); factor B was placement 

of the donor under short (SD) or long (LD) photoperiods and factor C was CB and 

C-1 cultivars as the receiver of the grafted pair (receiver). All receivers were kept in 



LO. Six single unit replicates were used for each treatment. 

Vegetative growth was maintained by supplementary incandescent and high­

intensity-discharge (HID) lamps (7.6 µmol·m·2-sec·1 PAR, 2200-0200 HR) to provide 

LO (15 h). SD (9h) were provided by black cloth (1700-0800 HR) to induce the 

reproductive stage on one of the grafted pairs from 7 Feb. 1991 to 8 May 1991. 

Average natural light intensity was 477 µmol·m·2-sec·1 PAR during daylight hours. 

Standard fertilization and pest management practices were used (Ecke et al., 1990). 
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Poinsettia receivers were pinched at the tenth node above the graft union 60 

days after grafting. Data were taken thirty days later on the receiver of each grafted 

pair. The number of nodes with leaves (including the terminal leaf blade separated 

from the apical cone) was determined on axillary shoots and the length was measured 

from the base of each axillary shoot to the tip of the apical cone. 

1991-1992. Similar propagation and planting procedures as in year 1990-1991 

were used except that C-1 and CB poinsettia plants were propagated on 7 Oct. 1991 

and planted on 18 Nov. 1991. C-1 and CB plants split once so they were pinched and 

allowed to regrow. Plant growth was then thinned to one shoot and approach grafted 

from 25 to 28 Mar. 1992. Grafted plants were placed in a completely randomized 

design with a 2x2x2 factorial arrangement of treatments. Factor A was the CB and 

C-1 cultivars as the donor of the grafted pair (donor), factor l3 was placement of the 

donor under SD. or LO and factor C was CB and C-1 cultivars as the receiver of the 

grafted pair (receiver). All receivers were kept in LO. Twelve single unit replicates 

were used for each treatment. Replications were divided into two blocks on one 
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bench, alternating LD and SD treatments. 

Vegetative growth was maintained by supplementary incandescent and HID 

lamps (2200-0200 HR) to provide LD. Light intensity during the light break (2200-

0200 HR) at night was 7.6 µmol·m·2·sec~1 PAR for block 1 and 3.9 µmol·m·2-sec·1 PAR 

for block 2. SD (10h) were provided by black cloth (2000-1000 HR) to induce 

reproduction on one member of the grafted pair from 31 Mar. 1992 to 28 July 1992. 

Temperature under the black cloth was maintained at an average of 25/22 C day/night 

by using fans blowing under the black cloth from 16 Apr. 1992 to 28 July 1992. 

Average natural light intensity was 477 µmol·m-2-sec-1 PAR during daylight hours. 

Standard fertilization and pest management practices were used (Ecke et al., 1990). 

Splitting and flower induction in the apical meristems of C-1 and CB poinsettia 

receiver main stems were determined before pinching. Bract and apical leaf color was 

measured with a colorimeter (Minolta Corporation, Ramsey, N.J.) by taking a 

representative color quality sample of 3 bracts or apical leaves per treatment. 

Poinsettia plants were then pinched at the eleventh node 90 days after grafting. Data . 

were taken thirty days later on the axillary shoots of the receiver of each grafted pair. 

Results and Discussion 

Poinsettia C-1 receivers grafted on CB donors (C-1/CB) had more axillary 

shoot nodes and greater shoot lengths from nodes 2 to 6 and nodes 1 to 8 than 

C-l/C-1 plants regardless of the donor photoperiod in 1990-1991 and 1991-1992 
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respectively (Fig. 4.1, 4.2, 4.3 and 4.4). Also, C-1/CB with the donor urider SD had 

si~ar axillary shoot node numbers and lengtlis as CB receivers on CB or C-1 donors 

under SD or LD in 1990-1991 (Table 4.1, Fig. 4.1 and 4.2). However, in 1991-1992 

C-1/CB (SD) had axillary shoot node numbers and lengths only similar to CB/C-1 

(SD) above node 5 (Table 4.2, Fig. 4.3 and 4.4). 

CB donors induced more axillary shoot growth in C-1 and CB receivers than 

C-1 donors regardless of photoperiod in 1991-1992 (Table 4.3). When C-1 was the 

receiver, the daylength exposure of the donor had no significant effect on axillary 

shoot growth (Table 4.3, Fig. 4.3 and 4.4). However, when CB was the receiver, 

donors kept under SD induced less axillary shoot growth than donors kept under LD 

in 1991-1992 (Table 4.3, Fig. 4.3 and 4.4). The increase in axillary shoot growth of 

CB receivers when donors were under LD caused a receiver x day length interaction 

in 1991-1992 (Table 4.3, Fig. 4.3 and 4.4). In 1990-1991 no receiver x day length 

interactions were evident because axillary shoot growth of CB receivers was similar 

regardless of the day length of the donor (Table 4.1, Fig. 4.1 and 4.2). Poinsettia 

donors were exposed to SD or LD for 120 days in 1991-1992 and for only 90 days in 

1990-1991. The longer period of time under altered day length of CB and C-1 donors 

in 1991-1992 may have allowed CB receivers to show more axillary shoot growth 

when donors were under LD than in SD as compared to 1990-1991. 

CB receivers had a higher probability of exhibiting flower induction than C-1 

receivers in 1991-1992 (Table 4.4). Also, CB receivers with C-1 donors under SD had 

the most positive tristimulus 'a' value in 1991-1992 (Table 4.5). The more positive 



tristimulus 'a' value in the bracts of the receivers with donors under SD means the 

bracts were more red than green. Also, CB receivers with donors under LD had 

relatively negative tristimulus 'a' values (that is, they were more green than red) in 
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1991-1992 (Table 4.5). Furthermore, CB receivers showed the lowest probability of 

exhibiting splitting during 1991-1992 (Table 4.6). In contrast, C-1 receivers with 

donors under SD had the lowest probability of exhibiting flower induction in 1991-

1992 (Table 4.4). Also, C-1 receivers had similar tristimulus 'a' values regardless of 

the donor photoperiod in 1991-1992 (Tables 4.5). However, in 1990-1991 C-1 

receivers with donors under SD had a slightly higher probability (nonsignificant at P = 

0.05) of exhibiting flower induction than CB receivers (Table 4.4). 

C-1/CB with the donors under SD had a low (0.07) probability of exhibiting 

splitting, a high (0.5) probability of exhibiting flower induction (C-1 receiver) and the 

axillary shoot growth was similar to CB receivers with donors under SD and LD in 

1990-1991 (Tables 4.4 and 4.6, Fig. 4.1 and 4.2). However, in 1991-1992 C-1/CB 

with the donors under SD had a high (0.98) probability of exhibiting splitting which 

may have caused a low (0.04) probability of exhibiting flower induction and lower 

axillary shoot growth as compared to 1990-1991 (Tables 4.4 and 4.6, Fig. 4.1, 4.2, 4.3 

and 4.4). CB and C-1 poinsettia donors were under altered day length for 120 days in 

1991-1992 and for 90 days in 1990-1991. The longer period of growth in 1991-1992 

increased the probability of splitting over the previous year (Table 4.6). The more 

mature the poinsettia shoots, the higher the probability of exhibiting splitting under LD 

conditions (Evans et al., 1992a). In C-1 poinsettia receivers with CB donors under 
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SD, the higher the probability of splitting, the lower the probability of showing 

flowering induction and the lower the branching transmission between the CB donors 

and the C-1 receivers (Tables 4.1, 4.2, 4.3, 4.4 and 4.6, Fig. 4.1, 4.2, 4.3 and 4.4). 

The branching pattern of C-1 receivers was significantly altered by grafting 

onto CB donors under SD (Tables 4.1, 4.2, and 4.3, Fig. 4.1, 4.2, 4.3 and 4.4). C-1 

apical dominance was reduced, increasing axillary shoot growth in the lower nodes · 

close to the graft union (basal nodes) in 1990-1991 (Table 4.2, Fig. 4.1 and 4.2). 

After grafting to CB, G-1 had a branching pattern similar to CB, which had long 

axillary shoots with many nodes (Table 4.1, Fig. 4.1 and 4.2). CB donors under SD · 

flowered and transmitted the flower induction to C-1 receivers under LD. Flowering 

of C-1 receivers under LD may have induced a strong source-sink relationship with 

CB donors under SD. C-1 was under LD, provided by a light break during the night 

(2200-0200 HR). This light break provided illumination for a prolonged period of time 

(natural day light + light break at night) and may have promoted a stronger sink in 

C-1. The effect of light quantity and quality on the developing rose bud in promoting 

sink strength has been described (Mor and Halevy, 1980; Mor et al., 1980; Zieslin and 

Halevy~ 1975). Assimilates and the flowering and branching agents in CB donors 

under SD (the source) may have moved to C-1 receiver (the sink) under LD and 

changed C-1 branching and flowering patterns. 

The probability of CB and C-1. receivers with donors under SD exhibiting 

flower induction was higher in block 1 than in block 2 in 1991-1992 (Table 4). In 

block 1, receivers were exposed to a higher light intensity during the light break 
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(2200-0200 HR) at night (7 .6 µmol·m·2-sec·1) than in block 2 (3.9 µmol·m·2-sec·1). The 

light intensity in block 1 may have caused a stronger sink activity in the receivers and 

a higher rate of flower induction than in block 2. 

Developing leaves and flowers have high cytokinin activity and are strong 

sinks (Salisbury and Ross, 1978). Cytokinins are known to enhance sink activity in 

grape vines (Vitis vinifera L.) (Shindy et al., 1973) and are implicated as inducers of 

direct transport of nutrients in plants (Mathes and Englebrecht, 1961). Flowering CB 

plants grafted onto C-1 plants induced flowering in C-1, and may have increased the 

cytokinin concentration in the C-1 apical meristems. Cycocel showed a promoting 

· effect in poinsettia 'Paul Milkkelsen' flower initiation under LD (16 h) and marginal 

photoperiods (Criley, 1970). Zieslin and Halevy (1976) observed that total cytokinin 

activity was higher in the leaf extracts from flowering than from non-flowering shoots 

of Rosa hybrida 'Baccara'. Furthermore, high flower production was correlated with 

high levels of cytokinin in the shoot tip of 'Golden Time' rose (Van Staden et al., 

1981). Cytokinins have also been observed to promote flower formation in several 

plant species (Salisbury and Ross, 1978) and inflorescence development in 

Bougainvillea 'San Diego Red' (Tse et al.,1974). A combination of a cytokinin (BA) 

and GA3 induced flowering in one SD variety of Chrysanthemum x morifolium Ramat 

(Salisbury and Ross, 1978) and BA with GA4 and GA7 (Promalin) applied to C-1 and 

V-14 Glory poinsettias a few weeks after flower initiation changed cyathia structure 

(Shanks, 1981). 

A high concentration of cytokinins in the apical meristems of C-1 receiver 
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plants grafted onto CB donor plants may release the shoots from apical dominance, 

resulting in development of lateral buds. The apical dominance release has been 

reported in both monocots and dicots and was due to an increased ratio of cytokinins 

to auxins (Bidwell, 1991). Kinetin (6-furfurylamino purine) applied directly to the 

poinsettia bud at 1 ppm was effective in inducing axillary shoot stimulation 

(Milbocker, 1972). Cytokinins and the flowering hormones may have moved with the 

assimilate stream from CB through the graft union to C-1, increasing their 

concentrations in C-1. 

Cytokinin and the flowering hormones may act together in promoting flowering 

and branching in C-1 poinsettia but their action may be affected by branching and 

flowering inhibitors. Auxin, more often than not, inhibits flowering (Salisbury and 

Ross, 1978). Auxin in high concentration is responsible for apical dominance, 

inhibiting axillary shoot growth. Thus, a balance of auxin and cytokinin in C-1 

meristems may determine if C-1 will flower and branch (high cytokinin concentration) 

or not flower and not branch (high auxin concentration). 

Inhibitory effects on flower induction are often due to influences on the 

translocation of assimilates (Salisbury and Ross, 1978). For example, a long-day leaf 

growing between an induced short day leaf and the bud may export assimilates 

directly to the bud and block movement of assimilates and the flowering hormones 

from the induced leaf to the bud (Salisbury and Ross, 1978). Assimilates, cytokinins 

and the flowering hormones moving from CB donor (SD) to C-1 receiver (LD) 

axillary buds may have been blocked by a LD leaf close to the axillary bud. 
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Cytokinins and the flowering hormones may have partially reached C-1 receiver 

axillary buds and flowering and branching was reduced as in 1991-1992 (Fig. 4.3 and 

4.4). 

This research suggests that flower induction and transmission of the branching 

agent between C-1 receivers and CB donors were correlated and that both processes 

were adversely affected by splitting. Thus, the lower the probability of splitting in 

C-1 poinsettias with CB donors under SD, the higher the probability of showing 

flower induction and the higher the branching transmission between the CB donors 

and the C-1 receivers. 
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Table 4.1. Photoperiod effect on axillary shoot growth of CB and C-1 poinsettia 

receivers after altering day length on CB and C-1 donors in 1990-1991. CB 

and C-1 receivers were kept in long (LD) photoperiods and CB and .C-1 donors 

were kept either in short (SD) photoperiods or LD. 

Factors 

Receiver 

Donor 

Day Length 

Receiver x Donor 

Receiver x Day Length 

Donor x Day Length 

Receiver x Donor x Day Length 

Receiver Donor Day Length 

C-1 C-1 SD 

CB CB SD 

CB C-1 SD 

C-1 CB SD 

Number of 

** 

* 
NS 

* 
NS 

NS 

NS 

4.4 

6.8 

7.1 

7.1 

Axillary shoot 

Length 

(mm)2 

** 
NS 

* 

* 
NS 

NS 

NS 

49 

76 

91 

86 



C-1 C-1 LD 3.9 

CB CB LD 7.6 

CB C-1 LD 7.4 

C-1 CB LD 5.5 

Receiver Donor 

C-1 C-1 4.2c 

CB CB 7.2a 

CB C-1 7.3a 

C-1 CB 6.4b 

Day Length 

Long day 6.1 

Short day 6.4 

zMeans followed by the same letter do not differ by LSD, P = 0.05. 

NS,*,**Nonsignificant or significant at P = 0.05 or 0.01 respectively. 

96 

34 

75 

80 

48 

42c 

75ab 

86a 

67b 

59 

76 
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Table 4.2. Significance per node for axillary shoot node number and length of CB 

and C-1 poinsettia receivers after altering day length on CB and C-1 donors in 

1990-1991 and 1991-1992. CB and C-1 receivers were kept in long (LD) 

photoperiods and CB and C-1 donors were kept either in short (SD) 

photoperiods or LD. Means were an average of 6 plants in 1990-1991 and 12 

plants in 1991-1992. 

Nodes 

Axillary shoot 1 2 3 4 5 6 7 8 

1990-1991 

Node number * * * NS NS ** NS NS 

Length * * ** NS NS ** NS NS 

1991-1992z 

Node number NS NS NS ** ** NS NS NS 

Length NS NS NS * ** NS NS NS 

zReceiver x donor x nodes was significant by LSD, P = 0.01. 

Ns,*.""Nonsignificant or significant at P = 0.05 or 0.01, respectively. 

9 10 11 

* NS 

NS NS 

NS NS NS 

* ** ** 
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Table 4.3. Photoperiod effect on axillary shoot growth of CB and C-1 poinsettia 

receivers. after altering day length on CB and C-1 donors in 1991-1992. CB 

and C-l ·1:eceivers were kept in long (LD) photoperiods and CB and C-1 donors 

were kept either in short (SD) photoperiods or LD. 

Factors 

Receiver 

Donor 

Day Length 

Receiver x Donor 

Receiver x Day Length 

Donor x Day Length 

Receiver x Donor x Day Length 

Receiver Donor Day Length 

C-1 C-1 SD 

CB CB SD 

CB C-1 SD 

C-1 CB SD 

Number of 

** 

** 

* 

NS 

** 

NS 

NS 

4.2 

11.1 

9.0 

8.3 

Axillary shoot 

Length 

(mm}' 

** 

** 

NS 

NS 

** 

NS 

NS 

73 

231 

172 

134 



C-1 C-1 LD 5.5 

CB CB LD 14.2 

CB C-1 LD 13.4 

C-1 CB LD 7.5 

Receiver 

C-1 6.3 

CB 11.3 

Donor 

C-1 7.5 

CB 10.1 

Day Length Receiver 

Long day C-1 6.5c 

Long day CB 13.8a 

Short day C-1 6.2c 

Short day CB 10.lb 

~eans followed by the same letter do not differ by LSD, P = 0.01. 

NS,*,**Nonsignificant or significant at P = 0.05 or 0.01 respectively. 
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73 

292 .. 

254 

109 

100 

225 

135 

189 

91c 

273a 

104c 

201b 
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Table 4.4. Probability of CB and C-1 poinsettia receivers exhibiting flower induction 

Factor 

after altering day length on CB and C-1 donors in 1990-1991 and 1991-1992. 

CB and C-1 receivers were kept in long ·(LD) photoperiods and CB and C-1 

donors were kept either in short (SD) photoperiods or LD. Only those 

receivers whose donors were under SD exhibited flower induction. Means 

... 

were an average of data from 6 plants in 1990-1991 and 12 plants for 1991-

1992. 

1990-199F 1991-1992 

Receiver NS ** 
Donor NS NS 

Block ** 
Receiver x Donor NS NS 

Receiver Block 1 

C-1 0.50 0.08 

CB 0.17 0.75 

Receiver Block 2 

C-1 0.01 

CB 0.08 
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zonly one block was used in 1990-1991. 

Ns, *"'Nonsignificant or significant at P = 0.01 respectively. 
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Table 4.5. Bracts or apical leaves color (tristimulus 'a' value) on CB and C-1 

poinsettia receivers after altering day length on CB and C-1 donors in 1991-

1992. CB and C-1 receivers were kept in long (LO) photoperiods and CB and 

C-1 donors were kept either in short (SD) photoperiods or LD. 

Factors Tristimulus 'a' Value 

·Receiver * 
Donor * 
Day Length NS 

Receiver x Donor * 
Receiver x Day Length * 
Donor x Day Length * 
Receiver x Donor x Day Length * 
Receiver Donor Day Length 

C-1 C-1 SD -12.Sbc 

CB CB SD -11. lc 

CB C-1 SD 2.5d 

C-1 CB SD -11.7c 

C-1 C-1 LD -12.7abc 

CB CB LD -14.8ab 

CB C-1 LD -15.Sa 



C-1 CB LD -ll.7bc 

zMeans followed by the same letter do not differ by LSD, P = 0.05. 

Ns,Nonsignificant or significant at P = 0.05 respectively. 

103 
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Table 4.6. Probability of CB and C-1 poinsettia receivers exhibiting splitting after 

altering day length on CB and C-1 donors in 1990-1991 and 1991-1992. CB 

and C-1 receivers were kept in long (LD) photoperiods and CB and C-1 donors 

were kept either in short (SD) photoperiods or LD. Means were an average of 

data from 6 plants in 1990-1991 and 12 plants for 1991-1992. 

Factors 1990-1991 1991-1992 

Receiver NS ** 
Donor NS NS 

Day Length NS NS 

Receiver x Donor * NS 

Receiver x Day Length NS ** 
Donor x Day Length ** NS 

Receiver x Donor x Day Length NS NS 

Receiver Donor Day Length 

C-1 C-1 SD 0.32 0.98 

CB CB SD 0.07 0.73 

CB C-1 SD 0.07 0.73 

C-1 CB SD 0.07 0.98 

C-1 C-1 LD 0.85 0.98 

CB CB LD 0.07 0.73 



CB 

C-1 

C-1 

CB 

LD 

LD 

0.48 

0~01 

Ns,•.•*Nonsignificant or significant at P = 0.05 or 0.01 respectively. 

0.73 

0.98 
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Fig. 4.1. Axillary shoot node number of CB and C-1 poinsettia receivers after altering 

day length on CB and C-1 donors in 1990-1991. CB and C-1 receivers were 

kept in long (LD) photoperiods and CB and C-1 donors were kept either in 

short (SD) photoperiods or LD. Means were an average of 6 plants. 

Fig. 4.2. Axillary shoot length of CB and C-1 poinsettia receivers after altering day 

length on CB and C-1 donors in 1990-1991. CB and C-1 receivers were kept 

in long (LD) photoperiods and CB and C-1 donors were kept either in short 

(SD) photoperiods or LD. Means were an average of 6 plants. 

Fig. 4.3. Axillary shoot node number of CB and C-1 poinsettia receivers after altering 

day length on CB and C-1 donors in 1991-1992. CB and C-1 receivers were 

kept in long (LD) photoperiods and CB and C-1 donors were kept either in 

short (SD) photoperiods or LD. Means were an average of 12 plants. 

Fig. 4.4. Axillary shoot length of CB and C-1 poinsettia receivers after altering day 

length on CB and C-1 donors in 1991-1992. CB and C-1 receivers were kept 

in long (LD) photoperiods and CB and C-1 donor were kept either in short 

(SD) photoperiods or LD. Means were an average of 12 plants. 
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CHAPTER V 

SUMMARY 

Euphorbia pulcherrima Willd. ex. Klotzsch (poinsettia) is the number one 

potted floral crop in the United States. Today most commercial poinsettias grown are 

free-branching cultivars, which have weak apical dominance and relatively small stem 

diameters. Free-branching cultivars including Annettte Hegg, Outhier V-10 and 

Outhier V-14 are preferred by growers because they produce numerous axillary shoots 

and flowers when pinched. Less frequently grown are restricted-branching cultivars 

such as the Eckespoint series, which have strong apical dominance, large stem 

diameters, and relatively few axillary shoots and flowers when pinched. 

The free-branching trait in 'Annette Hegg Brilliant Diamond' (AHBD) can be 

induced in the restricted-branching 'Eckespoint C-1 Red' (C-1) poinsettia through 

grafting (Dole and Wilkins, 1991, 1992). A free~branching agent moves both 

acropetally and basipetally through the graft union and can be serially transmitted from 

plant to plant by grafting (Dole and Wilkins, 1992). CB (TR), a vegetative or graft­

hybrid was derived from grafting C-1 onto AHBD (Dole and Wilkins, 1992). Thus, 

the presence of the agent in CB makes it different from C-1. The work herein 
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reported further characterized the free-branching agent in poinsettia by determining in 

which organ(s) (stem or leaf) of the plant the agent is contained, if shading the donor 

stems and leaves prevents the transmission of the branching agent, if new cells or 

tissues may induce its production and/or translocation within the graft union, and if 

there is a correlation between flower induction and the transmission of the branching 

agent. 

The role of CB donor stems and leaves in the transmission of the branching 

agent to C-1 receivers was investigated. 'C-1' a restricted-branching cultivar and 'CB' 

a free-branching vegetative or graft-hybrid were homo and heterografted. Axillary 

shoot node numbers and lengths of C-1 receiver plants were partially increased by CB 

donors with leaves removed (in 1990 and 1990-1991) and with apical and basal parts 

removed (in 1990-1991 and 1991). In 1991-1992, axillary shoot growth of C-1 

receivers was only slightly increased by CB donor intemode chips. However, CB 

donor node chips did not increase C-1 receiver axillary shoot node numbers and 

lengths. The branching agent in CB intemode donors (sink) may have moved against 

a source-sink gradient to C-1 receivers (source) via another method of transmission 

which may not have been as effective as movement by source-sink. The partial 

transmission of the branching agent from CB intemode donors to C-1 receivers also 

suggested that a source-sink movement of the branching agent may not be the only 

mechanism of transmission. Shading of CB donors partially increased axillary shoot 

node numbers and lengths of C-1 receivers above node 4 in 1991-1992. A source-sink 

mechanism in the transmission of the branching agent was not proved because shading 
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CB donor leaves and stems did not prevent the transmission of the branching agent to 

C-1 receivers. 

The results from the stem experiments and leaf experiments did not show clear 

evidence of the specific role of CB donor stems or leaves in the transmission of the 

branching agent to C-1 receivers. Both stems and leaves of CB poinsettia donors may 

promote the transmission of the branching agent to C-1 receivers. 

The development of new cells and tissues during CB and C-1 graft union 

formation was correlated with the movement of the branching agent between CB 

· donors and C-1 receivers. CB donor plants and C-1 receiver plants were approach 

grafted. Graft unions were removed from poinsettia grafted pairs at 0, 5, 10, 15, 20, 

25 or 30 days after grafting for anatomical study and the portion below the graft union 

was allowed to regrow. C-1 receiver branching was increased by 10 days after 

grafting to CB donors. New cells and tissues were progressively formed in the graft 

union between CB and C-1 plants which may have allowed the transmission of the 

branching agent to occur between 5 and 10 days after grafting. 

By 10 days after grafting, C-1 and CB parenchyma cells were actively 

dividing, producing new parenchyma cells (callus). Callus connected CB donors and 

C-1 receivers by 10 days after grafting. Parenchyma cells differentiated into nodules 

for the formation of new cambium by 25 days after grafting. CB donors and C-1 

receivers were interconnected by new vascular tissue after 25 days of graft formation. 

CB donors may have controlled the differentiation of vascular tissue of the graft union 

and allowed the transmission of the branching agent to C-1 receivers. 
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Flower induction and the transmission of branching between C-1 receivers and 

CB donors were correlated. C-1 and CB poinsettia plants were homo and 

heterografted. C-1 and CB receivers of the grafted pair were kept in long (LD) 

photoperiods and C-1 and CB donors were exposed to short (SD) photoperiods or LD. 

C-1 branching characteristics were altered when grafted onto CB donors (C-1/CB) kept 

under SD, making C-1 similar to CB in 1990-1991. C-1/CB (SD) produced similar 

axillary shoot node numbers and lengths to CB/CB (SD or LD) when pinched at the 

tenth node 60 days after grafting. In 1991-1992, C-1/CB (SD) did not produce similar 

axillary shoots as CB/CB but were similar to CB/C-1 (SD) above node 5. Assimilates 

and the flowering and branching agents in the CB donor under SD (the source) may 

have moved to the C-1 receiver (the sink) under LD and changed C-1 branching and 

flowering patterns through a source-sink mechanism. 

The probability of exhibiting flower induction in C-1/CB (SD) was high (0.50), 

splitting was low (0.07) and C-1 branching was increased in 1990-1991. However, in 

1991-1992 C-1/CB (SD) probability of exhibiting flower induction was low (0.04), 

splitting was high (0.98) and the branching pattern was not altered as in 1990-1991. 

The potential to branch and flower appear to be correlated, and both are adversely 

affected by splitting. 
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