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PREFACE 

The automatic test pattern generation for single stuck-at faults in practical digital 
I 

circuits is a search process which must be accelerated. 
I 

Like many other research works [Goel 1981, Fujiwara and Shimono 1983, 

Agrawal et al. 1985, Schulz et al. 1987, Cheng and Chakraborty 1989, and Auth and! 

Schulz 1991 ], the goal of this research is to obtain efficient ways for accelerating the: 

automatic test pattern generation algorithm. 

Presently, there are few reliable acceleration tools available. Some of these tools 
' 

are probabilistic measures called "signal probabilities." Unfortunately, the computatibn of 

signal probabilities is expensive because it exponentially intensifies as the number of fanout 

input variables and the number oflogic gates in the circuit increases. As a result, many 
i 

researchers have tried to find efficient ways to evaluate the signal probabilities [Savir et al. 

1984, Seth et al. 1985, and Chakravarty and Hunt 1990], but the result is still far fr~m 

being satisfactory. 

Instead of trying to approximate the signal probabilities, this research introduces 
I 

new probabilistic measures called "signal priorities," whose computation relies on th~ 

"minimum-value distributions" of fanout input variables of the circuit. The signal priprities 

serve the same purpose as do the signal probabilities. That is, they are used to accel~rate 
! 

the automatic.test pattern generation algorithm. However, their computation requir~s 

much less effort. 
I 
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CHAPTER! 

INTRODUCTION 

1.1 Motivation 

In recent years, the cost and time associated with the testing of digital systenis 

continue to increase .as their complexities increase. The testing and support costs fut 
complex electronic circuits currently accoun! for more than 70% of the life cycle coi of 

these products [Hanna and Horth 1991]. A large portion of this cost is due to testing 

techniques. Presently, at some large testing facilities across the United States, it is nbt 

uncommon to see test engineers still manually generate sequences of input test pattehis. 
I 

(i.e., sequences of digital signal sets or vectors to be applied to the circuit under test~ to 

detect the faulty components of digital circuit boards. This manual test pattern generation 

is a very tedious and time-consuming process and, very often, a large number of faul~s 

remain undetected. As a result, it is worthwhile to seek more efficient testing techni~ues 

that can reduce the overall cost and produce· high-quality sequences of input test pa I ems 

that detect a high percentage of faults. 

1.2 Overview of Test Pattern Generation (TPG) 

This section is intended to give the reader an overview of TPG, which includes 

testing objectives in different types of digital circuits, various TPG methods, the tes , g 

level, and the computer model of the physical defects in digital circuits. During the 

discussion, the need for this research will be pointed out. 

1 



1.2.1 TPG Objectives in Combinational and Sequential Circuits 

In a combinational circuit ( one with no memory elements), each input pattern or 

vector applied to the circuit produces exactly one output response pattern. On the other 

hand, in a sequential circuit ( one with memory elements), a sequence of input patterns is 

typically required to get the circuit's output to a desired state. Consequently, for a given 

fault, the objective of the TPG is to obtain a single input test pattern in a combinational 

circuit, and a sequence of input test patterns in a sequential circuit. 

1.2.2 Test Pattern Generation Methods 

2 

There are several ways sequences of input test patterns can be created. First, test 

engineers can manually generate these sequences for detecting faults (i.e., making fault 

effects observable at the external output connections of the circuit). However, as 

mentioned earlier, this manual approach is time-consuming and often gives a low fault 

coverage. This is specially true when dealing with sequential circuits that often have faults 

requiring long sequences of test patterns to detect. 

Second, by using a computer, sequences oftest patterns can be created 

automatically based on a fault-oriented analysis of the circuit. When the test generation is 

completed, the automatically created test patterns are transferred to an Automatic Test 

Equipment (ATE) unit for the tests to be physically carried out. This computer-based 

process is referred to as Automatic Test Pattern Generation (ATPG). The ATPG method, 

of course, is much faster than the manual one. It also provides clear information on ;the 

fault coverage (i.e., information on how many faults have been detected). 
I 

Third, with today's advanced technologies in circuit design and fabrication, ~ 

digital circuit can be built to generate sequences of pseudorandom input patterns to ~est 

itself. Such a circuit is said to have a built-in self test (BIST). More information ! 

regarding the pseudorandom testing will be given in the next section. For now, the reader 

should note that pseudorandom patterns work very well with a combinational circuit 

because any fault effect can be observed immediately after applying an input test paJtern. 

I 
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However, this is not true for a sequential circuit. To get the circuit to a desired staJ very 
I 

often a specific, and sometimes unique, sequence of patterns is required at the inputs:l 

Such a characteristic of the sequential circuits makes it very hard for pseudorandom ; 

testing to perform efficiently. To overcome this problem, the circuit design industry :has 
i 

initiated a new design method called "scan design" that essentially converts a sequential 

circuit into a combinational one to prepare for the pseudorandom testing. 

However, BIST and scan features, according to Cheng and Chakraborty [1989], 

have several drawbacks: a) they require additional circuitry for storing input/output : 
I 

patterns (for a later comparison purpose) which increases the production cost, b) thi$ 

additional circuitry can slow down the circuit performance, and c) it is difficult to 

determine the exact fault coverage. 
i 

Although BIST and scan-based circuits are gaining acceptance in the industry, the 

need for the ATPG has not been eliminated. One of the main reasons is because 

electronics products designed for commercial and military applications in the late sevtenties 
' 

and early eighties are still in use, and most of these products normally do not have BJST 

and scan features. Furthermore, these older products cannot be easily replaced and tihey 
i 

have to be maintained and tested on a regular basis. Based upon the need for improving 

the performance of the ATPG methods, this research was directed toward this area. : 

1.2.3 Testing Level and Fault Model 

I 
I 

Generally, TPG methods can be classified according to the component level being 

tested. For example, there are gate-level testing, board-level testing, system-level te~ting, 

etc.. This research is concerned with the gate-level testing of Printed Circuit Board~ 

(PCB's), each of which may consist of a combination of both combinational and seq11 ential 

circuits. 

This research refers to "primary" inputs (outputs) on the PCB as those circu~t lines 

or signals that are externally controllable (observable). Usually, the numbers of priniary 

inputs and logic gates of a PCB are large. These two factors can complicate the TP9". 
! 

Some circuit boards have more than 100 primary inputs and about 3000 gates each. [ 

I 
I 

i 
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At the gate-level testing, the objective is to determine input test patterns that can 

identify any faulty gates on the circuit board. A gate is considered faulty when it does not 

function correctly due to physical defects such as broken connections at its inputs anlld/or 

output. 

There are many fault models that can represent various physical defects of thb 

circuit lines ( see [ Abramovici et al. 1990, pp. 93-126]); however, the single stuck-at lfault 

model is among the most commonly assumed model in many theoretical and commercial 

test generators. In the single stuck-at fault mode~ it is assumed that there can only ~e one 

fault of either stuck-at-0 (saO) or stuck-at-I (sal) type occurring on one circuit line at any 

given time. This research ~11 assume the single stuck-at fault model. The justificatioll n for 

this assumption will be provided in Chapter 2. , 
I 

1.3 Major Issues in Automatic Test Pattern Generation 

1. 3 .1 Complexity in the ATPG 

As stated earlier, a sequential circuit often requires a sequence of patterns to I 

propagate a fault effect to the output of the circuit (this fault propagation activity is 

necessary for fault detection). The problem is that when the sequence is long and/ol 

unique, the ATPG requires a lengthy fault processing time. Very frequently, the pro'cess 

takes so long that a large number of faults have to be abandoned. Another problem is 

that when a special circuit line called "fanout" is present in the circuit, signal 
I 

interdependencies are introduced. These signal interdependencies make the search 1or 

input test patterns very time-consuming. Therefore, the efficiency of an ATPG algorithm 

is very critical when the circuit's size and the number offanouts are large. 

The effect of fanout signals will be clearly illustrated in Chapter 2. For now, an 

example of fanout signals is shown in Figure 1.1. In this figure, the junction formed by 

lines t1, t2, and t3 is a fanout point or stem, line t1 is called the fanout head, and lines t2 
I 

and t3 are called fanout branches. There is also another fanout stem formed by t4, t5, and 

t6. Note that when a fanout signal propagates on different paths and reconverges aJ some 
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Figure I. I. Fanouts and reconvergent fanout 



point later in the circuit, it is referred to as a reconvergent fanout. The line where the 

fanout branches meet is called a reconvergent line. In Figure I.I, t4 is a reconvergertt 

fanout, and t9 is a reconvergent line. As will be seen, reconvergent fanouts create many 
I 

problems in the'ATPG. 

1.3.2 Deterministic ATPG vs. Pseudorandom Testing 

6 

In deterministic ATPG (DATPG), information inputs to a computer are the 

description of the circuit and the list of faults to be checked. The fault list is usually · 

provided by the maker of the circuit under test. The process of test generation takes place 

according to well-defined algorithms that ultimately generates necessary sequences of 

input test patterns for detecting faults on the list. 

After the DATPG is completed, for each of the specified faults, the computer will 

store the input test patterns, the corresponding output patterns, and information regarding 

which faulty components are identified when each of the tests fails. These input/output 

patterns and other necessary information are then transferred to an ATE unit that will 

actually carry out the test on the circuit board. 

In pseudorandom testing, as discussed in Section 1.2.2, the circuit under test is 

combinational. The fault-free circuit is first simulated. The resulting input/output patterns 

are then stored in the form of a look-up table to prepare for the actual pseudorandorn 

testing on the ATE unit [Wagner et al. 1987]. 

During the actual pseudorandom testing, a computer, which is normally a built-in 

component of an ATE unit, applies a pre-defined number of pseudorandom input test 

patterns to the circuit. For each of the input patterns, the output response of the cir~uit is 

collected, and a comparison is made with the stored information to determine w~ the 

circuit functions correctly. The circuit is considered failed when one of the comparisons 
! 

fails. 

The total number of pseudorandom input test patterns generated by the computer 

is referred as a "test length," which varies depending how high a test engineer wants: the 

test quality to be. More faults are likely to be detected for a longer test length. 



Obviously, pseudorandom testing is faster to work with compared to the 
i 

deterministic technique. However, the problem with the pseudorandom testing is th*t the 
I 

fault coverage is very difficult to evaluate. That is, the circuit under test still cannot pe 

considered fault-free even after the pseudorandom testing is completed without any : 

failure. This is because it is possible that a prescribed test length may not be long enbugh 
I 

7 

or may not include the appropriate input patterns to detect some faults in the circuit.: This 

problem leads to the need for further statistical analysis on the quality of pseudorandpm 

testing (see [Wagner et al. 1987]) which is beyond the scope of this research. As a ~esult, 

the deterministic ATPG method, which has greater utility, will be the method of choice in 

this research. 

1. 3. 3 Methods for Handling Sequential Circuits 

As mentioned before, a PCB may consist of a combination of both sequential and 
I 

combinational circuits. There are two methods for handling the ATPG for sequentia:l 

circuits: a) simulation-based approach, and b) feedback-cutting approach. 

In the first method, a circuit simulator is used to simulate the faults so that a , 

sequence of input test patterns are determined. It is necessary that the fault simulatibn be 
I 

guided by some criterion to prevent the process from becoming exhaustive. This i 

simulation-based approach was recently seen in [Cheng and Chakraborty 1989 and ~heng 

et al. 1990]. Although the simulation-based approach can produce hazard-free input test 

patterns, it is very difficult to find a control criterion that can guide the simulation 

efficiently. More about this approach will be presented in Chapter 2. 

In the second method, a sequential circuit is viewed as an array of identical 

combinational circuits. This array is referred to as an "iterative array model" of the 

original sequential circuit. The array is constructed by cutting the feedbacks in the original 

circuit. At the points where the cuts are made, pseudo inputs and pseudo outputs Je 
! 

created. Thus, the new combinational circuit will have the primary inputs and outptits of 

the original circuit as well as the pseudo inputs and outputs. 



Each copy of the array circuit, which is identical to the original sequential circuit 

but with the feedbacks cut, is referred to as a "time frame" that represents a state oflhe 
I 

circuit after one input pattern is applied. The pseudo inputs of the current time framf are 

the same as the pseudo outputs of the previous time frame. Figure 1.2 shows a typiaal 

model of a sequential circuit and its equivalent iterative array constructed by cutting the 

feedbacks. 

8 

The approach for handling sequential circuits by the iterative array model haj been 

preferred by many researchers [Putzolu and Roth 1971, Muth 1976, Cheng and I 

Chakraborty 1989, and Auth and Schulz 1991]. This is mainly because, whenever tlie 

iterative array model is assumed, test pattern generation algorithms designed for 

combinational circuits can be directly applied to sequential circuits. Using this approach, 

there is no need for specific algorithms for sequential circuits. 

1. 4 Accelerating Deterministic Automatic 

Test Pattern Generation 

I 

Many DATPG algorithms for combinational circuits have been developed oier the 

years. However, because of the increasing complexity of digital systems, current reiearch 

activity has focused on the acceleration of the already-existing DATPG algorithms. [With 

this in mind, the following presents a brief look at the progress that has been made sr far. 

One of the very first DATPG algorithms called "D-algorithm" was designed by 

Paul Roth in 1966 [Roth 1966]. The D-algorithm was considered a landmark reseanllch 

work because it was formally proven to be a complete algorithm, which, for a given ,fault, 

guaranteed to find an input test pattern if one existed. One of the basic features of ~e 

D-algorithm was that its fault processing started at the fault's location, and advanced 

toward the primary outputs and inputs of the circuit. However, for certain types of 

combinational circuits, such a fault processing strategy is very inefficient due to an 

excessive number of signal value selections being repeated during the determination iof the 

desired input test patterns. For these circuits, the D-algorithm was an exhaustive 

algorithm. 
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In 1981, an algorithm called "PODEM" (path-oriented decision making) was I 

developed to overcome the deficiency of the D-algorithm [Goel 1981]. The features! that 

made PODEM differ from the D-algorithm were: 
I 

a) Instead of starting the fault processing at the fault's location, PODEM started at 
i 

the primary inputs of the circuit and advanced toward the primary outputs 

of the circuit. 

b) PODEM imposed several conditions for early termination of the search prbcess 

whenever the fault's effect was found not observable. 

By employing the above features, Goel showed that, for a certain type of 

combinational circuit, PODEM potentially could prevent the search for input test patterns 
! 

from degenerating into an exhaustive process. Thus, the performance of PODEM w:as 
i 

sometimes more efficient compared to that of the D-algorithm. However, PODEM ~till 

faced the same problem as did the D-algorithm for a more general class of combinati
1
bnal 

circuits. 

Two years later, FAN (fanout-oriented test generation algorithm), developeq by 
I 

Fujiwara and Shimono [1983], introduced a new search strategy that further improved the 

performance of the test generation. Based on the fanout structure of the circuit, F AN's 

features were: 
i 

a) FAN's search mechanism could take on multiple paths in the circuit to sp~ed up 
i 

the fault processing. 

b) Upon encountering a fanout signal that was fed by a fanout-free sub-circutt and 
I 

not accessible by the fault effect, F AN's search process could be postponed 

so that the time it borrowed could be used for processing other tasksj 

Basically, efforts on accelerating the already-existing DATPG algorithms disbussed 

so far have been about how the search process can be guided so that it will not degeherate 

into an exhaustive procedure. These search strategies are directly based on a topolo~ical 

analysis of the circuit. This approach still has some drawbacks, which will be pointe~ out 

in Chapter 3. 

Other search acceleration techniques were developed which relied on probabilistic 

measures such as the signal probabilities of the lines in the circuit. Agrawal et al. [1985] 



were pioneers in promoting the probabilistic guidance for the search process in the 

DATPG. In his paper, titled "Probabilistically Guided Test Generation," Agrawal 

experimentally showed that the signal probabilities guided the search process more 

efficiently than did the search strategy of PODEM. 

The probabilistic approach of Agrawal seemed very promising, but, another 

problem surfaced. The computational effort for evaluating the exact signal probabilities 

increased exponentially with the number of fanout input variables of the circuit. I 

11 

Researchers such as [Savir et al. 1984, Seth et al. 1985, and Chakravarty and Hunt tb90] 

have proposed ways to improve the efficiency aspect of the signal probability 

computation, but the results are still far from being satisfactory. 

1. 5 Goal and Contribution of The Research 

Prior research has shown that accelerating the search process is a difficult tas: in 
. I 

the DATPG. However, a probabilistic approach has proven to be one way to acceletate 

the search process. The contribution of this research is that, instead of trying to 

approximate the signal probabilities as many other researchers have done, it introducrs 

new parameters called "signal priorities," which serve the same purpose as do the sir 

probabilities, but their computation requires much less effort. 

Chapter 2 reviews the major ideas and tools used in DATPG in both combin~tional 

and sequential circuits. Chapter 3 closely examines the current efforts in the accel,tion 

of the search process in DATPG, and in the computation of signal probabilities. C~pter 4 

examines the deficiencies of some existing probabilistic techniques discussed in ChaRter 3, 

and then presents the development of signal priorities, a new probabilistic concept 

p.roduce~ b~.this research. Cha~ter 4 also gives examples of the calculation and.utir of 

signal pnont1es. Chapter 5 provides a summary of the research results and provides 

conclusions and ideas for future work. 



CHAPTER II 

CONCEPTS AND TOOLS USED IN DATPG 

2.1 Single Stuck-at Fault Model and Logic Systems 

2.1.1 Single Stuck-at Fault Model 

The main types of faults considered in this research are the short and open. IA 
short is a connection between two points that is not designed to be connected. An open, 

on the other hand, is an unintended break between two points. The short and open lan 

modify the interconnections between the circuit components, and thus logically affit the 

function of the circuit. When there is either a short or an open between two pointsJ the 

result will always be some fixed values at these points. If these fixed values are ma~ped 

into the two logic levels { 0, I}, these faults can be logically modeled as stuck-at-0 rl d 

stuck-at-I faults. 

Of course, stuck-at faults can occur simultaneously in a circuit. However, in most 
. . I 

cases, multiple stuck-at faults can be detected by tests designed for single stuck-at faults. 
I 

It has been shown by Jacob and Biswas [1987] that at least 99.67% of all multiple 1aults 

will be detected by single fault tests if the circuit has at least 3 primary or observable 

outputs. Therefore, this thesis will only consider testing for single stuck-at faults. 

2.1.2 Systems of Logic Values 

The commonly-known 2-value (binary) logic system is used to represent th 

values in a circuit when it is in a normal mode (fault-free) of operation. When a 

"don't-care" value is added to the binary logic to represent an unspecified or unkno 

12 
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signal value, the result is a 3-value logic system. When a fault is present, some oth r logic 

systems must be used to represent the fault and its effect. Two of the logic systems used 

in this research are the 5-value and the 9-value which are described as follows. 

The 5-value logic was originally introduced by Roth [1966] when he desig 
1
ed the 

DATPG algorithm. The 5-value logic uses the set of five symbols {O, 1, D, D', X} there 

D represents a composite signal valu.e of a line in the circuit, D' is the complement l.f D, 

and X is a value for don't-care. Thus D can take on either a O or a 1 value. Its use rs to 

simultaneously represent the good and the faulty behaviors of a line in the circuit. If or 
I 

example, when a line carries a symbolic value ofD, and ifit is physically observed tf be a 

1 (0), it means that the line is a good (faulty) one. The actual use of these composir1 e 
values will be demonstrated in Chapter 3. Logic operations such as AND, OR, 

EXCLUSIVE-OR (XOR), and NOT or INVERT, etc., can be performed in the 5-,alue 

system. Some of the basic logic operations, which are also commonly referred to ar the 

D-propagation rules, on a gate with 2 inputs are shown in Figure 2.1. The symb]o'X" 

denotes the don't care condition. 

The 5-value logic system works well for the DATPG in combinational cir ,its. 

However, for sequential circuits, it was found by Muth [1976] that the 5-value logicll was 

not sufficient to represent the repeated effect of a fault over the time frames of the 

iterative array model. In order to take care of the repeated fault eflect, Muth 4ced 
the 9-value logic system to improve the performance of the D-algorithm in sequential 

circuits. The 9-value system and its 5-value equivalence are shown in Figure 2.2. in 
Figure 2.2, the corresponding binary values are shown as ordered pairs whose valu~s on 

the left and on the right correspond to the "good machine" and the "faulty machineJ" 

respectively. The use of these composite values will be discussed in Chapter 3. TJe basic 

operations in the 9-value logic system are defined in Figures 2.3-4. In each ofthes~ 

figures, the top row and the left most column are input values, and the remaining ebtries 

are the results of the corresponding operation. It should be mentioned that these 

operations are component-wise. For example, 

GO n so = (o, X) n (O, 1) = (o n o, x n 1) = (o, X) = GO 
where n denotes the logic AND operation. 
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AND OR INVERTER XOR 

IN OUT IN OUT IN OUT IN OUT 
-· 

ox 0 IX I 0 I 00 0 
DC o 0 X I I I 0 0 I I 
I D D OD D D D' OD D 
ID' D' 0 D' D' D' D OD' D' 
D I D DO D 10 I 
D' I D' D'O D' I I 0 
DD D DD D ID D' 
DD' 0 DD' I ID' D 
D'D 0 D'D I DO D 
D'D' D' D'D' D' Dl D' 

DD 0 
DD' I 
D'O D' 
D' I D 
D'D I 
D'D' 0 

Figure 2.1. D-propagation rules for AND, OR, INVERTER, & XOR gates 
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The 9-value Corresponding Corresponding 
Symbols Binary Values: 5-Value Logic 

(b8,br)=(good value, Used in the 
faulty value) D-algorithm 

0 (0,0) 0 

GO (O,X) 

so (0,1) D' 

FO (X,O) 

ru (X,X) X 

Fl (X,1) 

Sl (1,0) D 

Gl (1,X) 

1 (1,1) 1 

Figure 2.2. Definition of the 9-value logic system 
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2-input AND 0 GO so FO u Fl Sl Gl 1 

I operation 

0 0 0 0 0 0 0 0 0 0 
I 

GO 0 GO GO 0 GO GO 0 GO GO 
I 

so 0 GO so 0 GO so 0 GO so 
I 

FO 0 0 0 FO FO FO FO FO FO 
I 

u 0 GO GO FO u u FO u u 
I 

Fl 0 GO so FO .u Fl FO u Fl 
I 

Sl 0 0 0 FO I FO FO · Sl Sl Sl 
I 

Gl 0 GO GO FO u u Sl Gl Gl 
I 

1 0 GO so FO u Fl Sl Gl 1 

Figure 2.3. AND operation for 2-input gate on 9-value logic system 



2-input OR 0 GO so FO u Fl SI GI I 
operation 

0 0 GO so FO u Fl SI GI I 
GO GO GO so u u Fl GI GI I 
so so so so Fl Fl Fl I I I 
FO FO u Fl FO u Fl SI GI I 
u u u Fl u u Fl GI · GI I 
Fl Fl Fl Fl Fl Fl Fl I I I 
SI SI GI I SI GI I SI GI I 
GI GI GI I GI GI I GI GI I 
I I I I I I I I I I 

(a) 

Input 0 GO so FO u Fl SI GI I 
Output I GI SI Fl u FO so GO 0 

(b) 

Figure 2.4. (a) OR operation for 2-input gate on the 9-value logic 
system; (b) NOT operation 

17 
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2.2 DATPG in Combinational Circuits 

2.2.1 Fault Detection and Line Sensitization 

A fault in a circuit is said to be detected whenever it is activated and propag~ted to 

at least one of the primary outputs of the circuit. Fault activation and propagation i 
i 

techniques vary depending on which logic system is being used. However, the basi~ idea 

is to send the fault effect to the outputs of the circuit so that the behavior of the fau~ty 

circuit can be distinguished from that of the good one. For example, if the 5-value logic is 
i 

used, a saO (sal) fault on a line xis said to be activated when xis set to D (D'). Th~ fault 
. I 

' 
symbol on x is then propagated according the D-propagation rules defined in Figur~ 2.1. 

I 

As an example, in Figure 2.5, line t6 has a saO fault. The first step is to actiyate 

the fault. Since the fault is a saO, (tl, t2) is set to (0, X) to produce a 1 (a D value)[on line 

t6 for activating the fault. The next step is to propagate the fault to t9, which is th~ 
I 

primary output for this circuit, for external observation. In order to do this, (t7, tS)! is set 

to (0, 1), and this implies that (t3, t8, t9) = (0, D', D'). From this example, it follo~s that 

the fault is detectable if there exists an input test sequence which can activate and i 

i 
propagate it to at least one of the primary outputs. Otherwise, the fault is said to be 

undetectable. · J 

! 

If a line's value changes corresponding to a situation in which a fault is pres+nt and 

the test for that fault is applied at the primary inputs of the circuit, it is said to be i 

sensitized. A path that consists of the sensitized lines is called a sensitized path. Tlµs path 
i 

will be designated by signal values ofD or D'. In Figure 2.5, t6 is a sensitized line,• d the 

path composed of t6, t8, and t9 is a sensitized path. 

2.2.2 The Implication and Justification Processes 

I 
When a signal value is assigned to a line in the circuit, it usually results in scime 

i 

fixed values to be determined at some other lines. Signal implication refers to a pr4cess of 

computing these fixed values and, at the same time, making sure that these values te 



t7 

0 

t8 

D' 

NOTE: D-PROPAGATION RULES 
ANDGATE 

Inputs XO 1D lD' DD DD' 
Outputs O D D' D 0 

ORGATE 
Inputs Xl OD OD' DD DD' 
Outputs 1 D D' D 1 

INVERTER 
Input D D' 
Output D' D 

Figure 2.5. Example circuit for fault detection and line sensitization 
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consistent with other values that were previously determined. The signal implicatio 

process can either take on a forward direction tow. ard the output or backward d~~on 

toward the input(s) of a logic gate. For example, when one of the inputs of an ::....,I gate 

is set to 0, it implies that the gate's output is a 0. This is a forward implication. When the 

output of an AND gate is assigned to 1, it implies that the gate's inputs are all l's. Tls is 

a backward implication. 

Signal justification refers to a process of determining a particular input 

combination to a gate for achieving a given value at its output. The cost of the 

justification process depends upon the complexity of the logic system being used. Fpr 

example, to justify a O at the output of a 2-input AND gate using the 5-value logic, ~ne 

has to consider two choices: OX, and XO. But if the 9-value logic is used, one hast! 

consider four choices: (0/0, XIX), (XIX, 0/0), (0/X, X/0), and (X/0, 0/X). In gener¥, to 

justify for a O at the output of a N-input AND gate, there will be N choices in the s+alue 

logic, and N2 choices in the 9-value logic. So when the number of gates in the circuit is 

large, the signal justification process can be extremely lengthy. 

2.2.3 Backtracking and Decision Tree 

Very often there is more than one choice of input combinations to be selectl 
during the justification of a signal. When the selection is incorrectly made, the contihuing 

justification may lead to an inconsistency or a conflict. When this situation occurs, iost 

DATPG algorithms will go back to the most recent decision point to remake the sel~ction 

and resume the justification from there. This is referred to as a backtracking proces I _ The 

backtracking process is illustrated in Figure 2.6. In Figure 2.6(a), suppose that t7 is 

required to be O. Then one choice of the justified values of the primary inputs are ( t 1, t2, 

t3, t4) = (0, 0, 0, 0). Now suppose that tlO is also required to be 0. This implies th t (t8, 

t9) should be either (0, 1) or (1, 0). However, either one of these two choices will dreate 

a conflict with the already-set primary input values. Therefore, a backtracking will Jake 

place as seen in the decision tree of Figure 2.6(b ). In this case, backtracking will 

eventually lead to trying different values for t5 and t6. 



t1 0 
t5 

0 XOR 
t2 I 

t7 ............... 

t3 0 0 

XOR 
t6 

0 t4 I 
0 to be justified 

NOTE: TRUTH TABLE XNOR 

XNO~ 

OF AN XOR GATE 
IN OUT t8 

00 0 Oil 
0 I I tlO 

XNOR 
............... 

I 0 I 0 
I I 0 t9 

1/0 these choices will 
~ create conflicts at 

(a) the primary inputs 

t8=1,t9=0 

(b) 

Figure 2.6. a) Example circuit illustrating backtracking process; 
b) corresponding decision tree 
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2.2.4 Signal Probabilities 

Two types of signal probabilities commonly used in DATPG are controllability, 

and observability. 

22 

First, the controllability of a signal line (not necessarily an output line) in a 

combinational circuit is defined as the probability that the line is set to a specified wt• ( 0 

or 1) when an input pattern, which is randomly selected, is applied to the circuit. When 

the specified value is O ( 1 ), the controllability is referred to as 0-controllability 

(I-controllability). As an example, if the circuit has N primary inputs, and if there arj P 

input combinations that can set line t1 to 0, then the 0-controllability oftl is P/2N, and the 
I 

I-controllability oftl is 1-P/2N. The controllabilities play an important role in accelclrating 

the test generation. In fact, many researchers have tried to find more efficient ways lo 

compute the controllabilities [Savir et al. 1984, Jain and Agrawal 1985, Seth et al. 1 i85, 

and Chakravarty and Hunt 1990] so that it can be efficiently used to guide the test I 

generation. More will be said about the signal controllabilities in Chapters 3 and 4. 

Second, the observability of a signal line in a combinational circuit is defined as the 

probability that the line is set to a specified value, and this specified value is observable on 
I 

at least one of the primary outputs when a randomly-selected input pattern is applieq to 

the circuit. This parameter is mainly used to guide the fault propagation process. That is, 

when there is more than one fault propagation path, the path with highest observabiiity 

will be selected. 

The computation of the observability is beyond the scope of this research. For a 

detailed study on the use of this parameter, the reader is referred to [Jain and AgraJal 

1985]. 

2.2.5 The Effect ofFanouts in Digital Circuits 

As mentioned in Chapter 1, the DATPG for faults in a digital circuit become~ very 

difficult when fanout signals are present. Consider the circuit in Figure 2. 7. The fa~t 

propagation path happens to be on the reconvergent fanout which, in all cases, bloc I s the 



t1 t6 

t2 
t3 
t4 

t8 

t5 

D' 

t9 

t1 I 

D 

tlO 

NOTE: D-PROPAGATION RULES 
ANDGATE 

Inputs XO 1D lD' DD DD' 
Outputs O D D' D 0 

ORGATE 
Inputs Xl OD OD' DD DD' 
Outputs 1 D D' D 1 

INVERTER 
Input D D' 
Output D' D 

Figure 2. 7. Example circuit illustrating the difficulty of fault detection when 
fanout is present ( t12 can never be D or D') 
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fault effect from being seen at tl2. This is because in order to activate the fault at tV 
I 

(producing t7 = 0), (t2, t3, t4) must be set to (I, I, I). This combination implies that t6 = 

1 which naturally makes the signal t9 part of a fault propagation path. In order to 

propagate the fault to tl2 through line t9, tl I must be 0. This requires (t4, t5) = (I~ 0). 
i 

But this combination makes (t9, tl I)= (D', D), which cancels the fault effect on t14 (tl2 = 
i 

I). Further analysis shows that tl2 can never take a value ofD or D'. Therefore, tlie fault 
I 

is not detectable. In this case, the problem is that the test generator would waste it~ time 
I 

to perf~rm fruitless signal justification, which requires backtracking, if its search algbrithm 

were not properly guided. 

2.2.6 Implicit and Explicit Enumerations 

One of the most obvious properties of a complete DATPG algorithm is the 
1 

I 

exhaustiveness. A DATPG algorithm is said to be complete when·it enumerates all bf the 
i 

possible solutions for detecting a fault; therefore, it will definitely find a solution if i~ 
! 

exists. However, there is a difference between explicit and implicit enumerations. the 

difference between the two concepts is that implicit enumeration attempts to limit tJe 
! 
I 

enumeration space (or search space)whereas the explicit enumeration does not. For 

example, when a saO fault at the output of a N-input AND gate is to be activated, +licit 

enumeration will enumerate all of the 2N possible input combinations, but the implicit 
I 

enumeration technique will start examining only the all-ones input combination bec3r~se 
I 
I 

other input combinations will not lead to the fault activation. As a result, the implicft 
I 

enumeration technique reduces the search space before fault processing begins. Generally, 

the explicit enumeration should be avoided because of its exhaustive search prope I _ 



2.3 DATPG Concepts and Tools 

in Sequential Circuits 

2.3.1 DATPG Using Iterative Array Model 

25 

As mentioned in Chapter 1, using the iterative array model for DATPG in 

sequential circuits is preferred by many researchers. The main reason is that every ~opy of 

the array circuit is a combinational circuit. Hence all of the algorithms available for i 

combinational circuits can be used. 

However, the biggest problem with this approach is that the delays in the cir~uit 
- I 

are ignored due to the feedback cutting. Therefore, when testing is physically carried out 

on an A TE unit, the tests found may not detect anything because hazards may have been 

created when the circuit delays were ignored. 

Fortunately, the tests found by the test generator can be very simply validated by 

using the Eichelberger's simulator [Eichelberger 1965] which can efficiently screen out the 
i 

test patterns that create the hazards. Therefore, if the Eichelberger's simulator is used in 
I 
I 

the post-processing part of the DATPG, the tests generated can be considered relia~le, 
i 

provided that they pass the simulation. Note that the procedure for cutting the feedbacks 

and the general DATPG algorithm for handling sequential circuits were carefully pr6vided 
I 

by Putzolu and Roth [1971]. In Chapter 3, examples of feedback cutting and DAT~G will 

be given. The Eichelberger's simulator is described next. 

2.3 .2 Eichelberger's Simulator 

i 

The Eichelberger's simulator was designed to detect various types ofhazardll and 

race conditions. For a detailed study on hazards and races, the reader is referred to [Mano 

1984]. Basically, when the output(s) of a circuit does not behave as predicted, the ~ircuit 

is said to contain a hazard, and when there are two or more feedback signals changi1;1g 

their values at the same time, a race condition is said to exist. Although the Eichelb~rger's 

simulator can be used to detect hazards and races, it is customary to assume that a tcuit 
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designer would have followed simple design procedures, such as those in [Mano I J84, pp. 
! 
I 

372-390] to prevent hazards and races from occurring. However, for the sake of ! 
I 

reliability, the Eichelberger's simulator is included in the post-processing part of a OATPG 

algorithm [Putzolu and Roth 1971 and Muth 1976]. The Eichelberger's simulation I 
I procedure is described as follows. , 

Given a sequential circuit whose model is shown in Figure 1.2, the procedu~e for 

determining the final response of the output has two parts: a) determine all feedbac* 

signals that may be changing as a result of the input change, and b) determine wh~er or 
I 

not these feedback signals will eventually stabilize in some predetermined states. Ifithe 
I 

final responses of the feedback signals are not stabilized ( or not defined), the circuiti is said 

to contain a hazard. 
' 

Procedure 2.1 uses a 3-value logic system in which U represents the undefiO:ed 
I 

value of a signal. That is, the value of the signal cannot be determined from the cirtjuit. 
I 

Several logic operations in a 3-value logic system are shown in Figure 2.8(a). ! 

Procedure 2.1 : 

Part a: Determining next states of primary outputs. 

Step I: Set the primary inputs x's and the primary outputs Yi (the cuq-ent 

values) to O's to get the circuit to a known state. 
I 

' 

I 

Step 2: Set primary inputs x's to U's, and evaluate primary outputs )ii (the 

future values) to find out if one or more have changed from t~eir 

current values to U. 
i 
I 

Step 3: If one or more Yi have changed from their current values to p. 
change the corresponding primary outputs Yi from their current 

values to U, and evaluate Yi again. Repeat Step 3 of Part a llntil no 

additional changes in the Yi are found. 

Part b: Determining which Yi is not defined. : 
i 

Step 1: Set primary inputs x's to new values (0 or 1 ), and evaluate the Yi. 
I 

Step 2: If one or more of these Yi changes from U to other values (01 or 1), 

change the corresponding Yi variables from U to O or 1, and 



Truth Table for Three-value Logic 
AND GATE 

Inputs ox 
Outputs 0 

OR GATE 
Inputs IX 
Outputs 1 

INVERTER 
Input u 
Output u 

current-state ~~ables~ y 1 
•···•·· .... 

••·•••··•······ .... 
... 

gl 

g2 

OU 
0 

OU 
u 

(a) 

x2-------------I 

(b) 

lU uu 
u u 

lU uu 
1 u 

g3 

g4 

· next-state variables 
·· .. 

g5 

g6 

Figure 2.8. a) Operations in 3-value logic system (U= undefined); 
b) Asynchronous circuit for Example 2.1 
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evaluate Yi again. Repeat Step 2, Part b until no additional changes 

in the Yi are found. I 

Step 3: If any Yi remains undefined, the circuit is said to contain a Jzard. 
! 

Example 2.1: The final response of the asynchronous circuit in Figure 2.8(b )! is 
I 

now determined using the procedure outlined above. The result can ~e 
! 

easily followed in Figure 2.9. Note that the final value ofY1 (in the l~st 

column) is U. This means that this feedback signal is not stabilized, ~hus 

the circuit contains a hazard. 

2.3.3 Simulation-based DATPG 

Instead of using the iterative array model on sequential circuits, some DATPiG 

algorithms rely on a fault simulator to determine the sequence of input test patterns tor 
: 

specified faults. Given a fault, a simulation-based DATPG algorithm simulates the qircuit 
! 

until the fault is detected. Of course, the simulation is not supposed to be an exhau~tive 

process. Instead, it is controlled by a pre-defined cost function which guides the 1 

simulation into the direction that is closer to the fault detection. The simulation stJs with 

any trial input pattern, and based on the simulated results, the cost function is comp+ted to 
I 

evaluate the "closeness" of the current trial input pattern to the fault detection. The~, 

based on the current result of the cost evaluation, the test generator decides whethei it 
! 

wants to keep the current trial pattern. The process will continue in a similar fashion:. At 
I 

the end, the trial patterns that meet the criteria set by the cost function will then be ~ept as 
i 

the test sequence. i 

The simulation-based DATPG technique was recently used by Cheng and f wal 

[1987], and Cheng et al. [1990]. The advantage of the method is that the sequence 
1

ound 

will naturally be free of hazards and races because the test patterns are all created through 
I 
I 

simulation. However, the time complexity of the algorithm and computation overhe~ 
I 

I 

intensifies since, for each of the trial input patterns, a simulation of the entire circuit Fd an 

evaluation of the cost function are required. Moreover, the criterion for selecting thb 
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Part a Step I Part a Step 2 Part a Step 3 Partb Step I Partb Ste~ 2 

(initialize the (set x's =U, (sety2=Y2=U, (set x's = 1, 
I (sety2 =Y2 =r 1, 
I 

circuit) evaluate the re-evaluate Y's evaluate Y's and re-evaluate Y's 
next state and other other signals) and other ! 

variables Y's signals) signals) I 

and other 
I 

I 

xl 0 u u I I I 
! 

x2 0 u u I I 
I 

! 

yl 0 0 0 u u 
I 

y2 0 0 u u I 
I 

gl I u u 0 0 I 
I 

g2 I u u 0 0 

g3 0 0 0 u u I 
I 

g4 0 0 u 0 0 
I 

g5 0 0 u u I 
I 

g6 0 u u I I 
I 

YI 0 0 u u u i 
I 
I 

Y2 0 u u I I 
I 

Figure 2.9. Results from Example 2.1 
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"good" trial input patterns has not been well defined. For example, in [Cheng et al. 1990], 

the selection of trial patterns depended only on a Hamming-distance heuristic which could 

not guarantee good guidance of the simulation. 



CHAPTERill 

CURRENT EFFORTS IN THE ACCELERATION 

OF DATPG AND IN THE COMPUTATION 

OF SIGNAL CONTROLLABILITIES 

This chapter presents more detail of the current research work mentioned in 

Section 1.4. The first two sections focus on the DATPG acceleration techniques in poth 

combinational and sequential circuits. As various algorithms are discussed, the effo~s 

being made for accelerating the test generation process are clearly pointed out. The last 

section examines some of the current techniques for computing the signal controllab1lities. 

Wherever appropriate, examples are given to clarify the basic ideas of these method . 

Also, the limitations of these methods are identified. 

3 .1.1 The D-algorithm 

3.1 Acceleration ofDATPG Algorithms 

in Combinational Circuits 

The D-algorithm [Roth 1966] is a path-sensitizing and complete algorithm wrch is 

guaranteed to find an input vector for detecting a given fault, if it exists. The algoritr 

uses the 5-value logic system to represent the fault effect, and the mixed process of signal 

implication and justification to determine input test patterns for single stuck-at faults in 

combinational circuits. The three main tasks performed by the D-algorithm are: a) 

activate the fault, b) propagate it to at least one of the primary outputs of the circuit for 

observation, and c) determine a primary input combination that will justify the first o 

actions. 
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Starting at the fault's location, the D-algorithm activates and propagates the flrult 

forward toward the primary outputs by using the implication process. It then goes 

backward toward the primary inputs of the circuit to determine the correct primary input 

combination by using the justification process. The test generation is considered 

successful if a D or a D' is observed on at least one of the primary outputs and there ;s no 

signal conflict found during the signal justification. Procedure 3 .1 gives the basic steps of 

the D-algorithm. 

Procedure 3 .1: 

Step 1: Set the values of all circuit lines to don't-cares and activate the fault. 

Step 2: Starting at the fault's location, propagate the fault to at least one of the 

primary outputs using appropriate D-propagation rules, and extend th 

signal justification all the way to the primary inputs. 

Step 3: Continue the process in Step 2 until: 

a) at least one of the primary outputs has.a Dor a D', and no signal 

conflicts are found during the justification process or 

b) all possible primary input combinations have been tried and there is 

neither a D nor a D' observed at the outputs. 

Example 3 .1 : The steps described in Procedure 3 .1 are now applied to the cir I uit 

shown in Figure 3.1. In this figure, the stuck-at-I fault is on line t6, thus the fault 

is activated by setting the value of line t6 to D' (Step 1). That is, D' implies a 

"good" value ofO and a faulty value of 1 for line t6. Following Step 2, D' is 

propagated through U4 by using an appropriate D-propagation rule for the 2-]nput 

NANO gate ( set t3 = 1 ). A D now appears on line t9. Since t9 is not a prilllf}' 

output, fault propagation continues with setting (tlO, tl 1, t12) = (1, 1, 1). A lo• is 
then observed at line t 13 which is the primary output. The fault propagation , an 

now stop. The next task is to perform the signal justification to determine th 

primary input combination will produce the current values at lines t9, tlO, tl 1, 1:12, 

and t13. The required primary input combination is found to be (tl, t2, t3, t4J t5) 



t1 
1 

t2 1 
t3 1---

t7 

t 1 

t5 t8 
1 0 

0 

t9 

D 

tlO 

1 t13 

D' 

tl 1 

1 

t12 

I 
NOTE: D-PROPAGATION RULES 

NANDGATE 
Inputs XO ID lD' DD DD' 
Outputs 1 D' D D' 1 

INVERTER 
Input D D' 
Output D' D 

Figure 3 .1. Circuit for Example 3 .1 ( the D-algorithm) 
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= (1, 1, 1, 1, 1). Note that this result is not unique. The steps performed in his 

example can be easily followed in Figure 3 2. 
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In Example 3 .1, it so happens that the· signal justification process was perfoJed 

without any conflict. However, not every circuit is that straightforward. When worlng 

with a special type of combinational circuit that is comm. only designed to implement rrror 

correction and translation functions in computer systems, the performance of the 

D-algorithm can become very inefficient due to a large number of decisions that have to be 

remade during the justification process [ Goel 1981]. The following example will 

demonstrate the inefficiency of the D-algorithm. 

Example 3.2: The objective is to find an input test pattern for the fault in Fi e 

3.3 by using the D-algorithm. The fault is activated by setting m = D. This r· ! plies 

(e, f) = (1, 1) .. From the D-propagation rules in Figure 2.1, k is set to Oto 

propagate the fault through US. Next, 1 is set to Oto propagate the fault to the 

primary output z. Now the signal justification starts from line k to justify the I 

current assignments. A primary input combination (a, b, c, d) are found to bJ (0, 

0, 0, 0). 

However, for these values of (a, b, c, d), line 1 will not have a value ofO as 

originally requested. Therefore, the D-algorithm has to remake its decision o~ 1 by 

choosing another D-propagation rule for gate U9 (1 = 1 ). The signal justificaton is 

now started all over again. The correct input test pattern for the fault is fountl to 

be (a, b, c, d, e, f) = (0, 0, 0, 1, 1, 1). The overall result for this example is s I own 

in Figure 3.4. 

As seen in Example 3.2, a conflict found during the signal justification can er ate a 

large number ofbacktrackings. This problem mainly accounts for the inefficiency of he 

D-algorithm. Additionally, when the fault is not detectable, the D-algorithm will 

degenerate into an exhaustive search process which becomes prohibitive as the size 

circuit increases. 
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ASSIGNMENTS IMPLICATIONS NOTES/RESULTS 

lt6=D' Activate the sa 1 fault on t6 
tl=l (force t6 = 0) 

t3=1 
t9=D Propagate to t9 

~10=1 
~11=1 
tl2=1 

t7=0 
t4=1 
t5=1 
t2=1 
tl3=D' D' is at tl3. No signal 

conflict found. The test is 
(tl,t2,t3,t4,t5) = (1,1,1,1,1). 
This result is not unique. 

Figure 3 .2. Results for Example 3 .1 
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XNOR 
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XOR 
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XOR 
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D' 

NOTE: D-PROPAGATION RULES 
XORGATE 
Inputs OD OD' 1D ID' DD DD' D'D' 
OutputDD'D'DO 1 0 

Figure 3.3. Example circuit 3.2 with XOR gates and reconvergent 
fanout 
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ASSIGNMENTS IMPLICATIONS RES UL TS/NOTES 

m=D Activate the fault 
e-f-1 

k=O 
n=D, i=j=O Fault propagated ton 
a=b=O c=d=O 

' 
l=O 

z=D 
g=O,h=l 
a=O,b=l b has a conflict 

l=O 
z=D Fault propagated to z 
g=l, h=O 
c=O,d=l d has a conflict 

l=l 
z=D' 
g=h=O 
a=O,b=l b has a conflict 
c=O,d=l d has a conflict 

k=l Get another D-propa. 
rule for US 

n=D' Fault propagated ton 
i=O, j=l 
a=b=O 
c=O,d=l 

l=O 
z=D' Fault propagated to z 
g=O,h=l 
a=O,b=l b has a conflict 

l=O 
z=D' Fault propagated to z 
g=l,h=O 
a=b=O 
c=O,d=l 

AD' is observed at z. 
No conflict found. Stop. 

Figure 3.4. Results for Example 3.2 



3 .1.2 Path-oriented Decision Making (PODEM) 

I 
Unlike the D-algorithm, PODEM [Goel 1981] begins the processing of a fault 

directly at the primary inputs rather than at the fault's location, and only propagates the 

fault in one direction toward the primary outputs of the circuit. When a fault is founU to 
I 
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be neither activated nor propagated, PODEM uses a technique called "backtracing" ~o go 

back to the primary inputs and try a new input assignment. A backtrace is similar to :a 
I 

signal justification except that, during a backtrace, no values are assigned to internal lines. 

Signal values are assigned only to the primary inputs. 

Recall that a backtracking takes place when a conflict is found during the signal 
I 

justification. Since PO DEM does not justify for values of internal lines of the circuit) it 

can overcome the problem of a large number of backtrackings in the D-algorithm, 4d can 

accelerate the test generation. Note that, however, PODEM may require some 

backtrackings during the primary signal justification. Procedure 3.2 below describesithe 

basic steps ofPODEM. 

Procedure 3.2: 

Step 1: Set the values of all circuit lines to don't-cares. 
' 

Step 2: Beginning at the primary inputs of the circuit, arbitrarily assign a value to 

one unassigned primary input at a time. For each assignment, use the; 
i 

forward implication to propagate the fault to at least one of the prim¥Y 

outputs. If the fault fails to appear at the primary outputs, backtrace to the 

primary inputs to choose an untried assignment. Also, stop the forward 

implication and backtrace to the primary inputs to choose an untried 

assignment if either one of the following propositions is true: 

Proposition 1: The faulty line has the same value as the stuck-at level, i.e., 

the fault is not activated. 

Proposition 2: The fault propagation path(s) becomes blocked, i.e., Di or D' 

disappears along the propagating path(s). 

Step 3: Continue Step 2 until 



a) the fault effect is seen at a primary output or 

b) all primary input combinations have been tried and no fault effect hrs 

been successfully propagated. 
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I 

The.propositions in Step 2 of PODEM can be viewed as heuristic rules whichi stop 

the furward implication and start the backtracing to the primary inputs when the fiwl1 is 
neither activated nor propagated. This feature prevents PODEM from performing a 

1 

I 

fruitless forward implication. From the use of the two propositions, it is clear that ! 

PODEM's enumeration technique is implicit, and its efficiency is measured by how q~icl<ly 

the fault is found to be neither activated nor propagated. [ 

I 

Example 3.3: For the circuit in Figure 3.3, PODEM is used to demonstrate it~ 

efficiency over the D-algorithm. The steps that PODEM performs can be easdy 

followed in Figure 3.5. The required input test pattern is found to be (a, b, c,ld, e, 

f) = (0, 0, 0, 0, 1, 1). Note that this answer is different from that in Example 3.2 
. I 

I 

because the solution is not unique. 

I 

3.1.3 Fanout Oriented Test Generation Algorithm 

In PODEM, once the fault is neither activated nor propagated, the backtracing will 
I 

begin on a single path back to the primary inputs to choose an untried primary input ! 

combination. This process cari be improved for a faster test generation. FAN (fanoui~ 
I 

oriented test generation algorithm) [Fujiwara et al. 1983] introduces several extensiohs in 

order to accelerate PODEM. These extensions are: 1 
a) If there is more than one propagation path found, choose the path which h. s the 

shortest distance between the fault's location to one of the primary ouiputs. 

b) Backtracing can take on multiple paths to save time. I 

c) Instead ofbacktracing all the way to the primary inputs, the backtracing can 

stop at some selected internal fanout stems which are fed by fanout-fr~e 

circuits and are not reachable by the fault. I 
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ASSIGNMENTS IMPLICATIONS NOTES 

e=O 
m=O Proposition 1 is violated. 

Reject e=O. 

e=l m is still undefined. Set f. 
m=undefined 

f=O 
m=O Proposition 1 is violated. 

Reject f=O. 

f=l 
m=D Fault is activated. 

, 

a=O i=g=undefined i and g are undefined. Setb. 

b=O 
i=O, g=l 

c=O j=h=undefined j and h are undefined. Set d. 

d=O 
j=O k=O n=D ' ' ' ' 
h=l, l=l, z=D' Fault is detected. 

Figure 3.5. Results for Example 3.3 with PODEM 
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The first extension is clearly a popular heuristic because the shorter the dist ce 

from the fault's location to the primary outputs, the more likely the fault will be 

propagated through. The second extension, as suggested by Fujiwara and Shimono, can 

be easily implemented by using the breadth-first search (see [Cormen et al. 1990] for an 
. I 

excellent discussion on the breath-first search algorithm). The third extension, howeyer, 

requires some extra work to determine which fanout points in the circuit can be used I as 
. I 

breaking points for the backtracing process. This last extension is discussed in furth~r 
I 

detail. I 

The third ofFANs extensions originates from the observation that for a si~ that 
I 

is fed by a fanout-free combinational sub-circuit, it is straightforward to justify for ani 

arbitrary assignment. Therefore, a backtracing can stop at a selected internal fanout point, 

which must be fed by a fanout-free sub-circuit and not reachable by the fault being l 
processed. When that fanout point is encountered during a backtracing, an assignme

1 
t 

can be made to it, and its justification can be deferred to a later time. The time FAN 1
1 

borrows from such a postponement is used to concentrate on other processes. I 

The.fanout point that is selected as a location for the backtracing process to srop is 
I 

hereafter referred to as a backtrace stop. The backtrace stop is determined by a critepon 

that will be described after another example, which briefly shows how the F ANs thirJi 

extension can be incorporated into PODEM to accelerate the test generation. I 
I 

I 
Example 3.4: Referring to the circuit in Figure 3.6, the objective is to demon~trate 

how FAN can accelerate PODEM by employing the backtrace stop. Assume lthat 
I 

the saO fault on line h has been activated (h=D). To propagate this fault ~~tgh 
U4, j must be set to 1. IfPODEM were used, additional effort must be reqied to 

set j=l since PODEM achieves this objective by manipulating the primary inprts 

(a, b, c). On the other hand, by realizing thatj is a backtrace stop, FAN 

immediately sets signal j to 1, postpones the justification of j to a later time, and 

continues the fault propagation process from there. j 

I 



A fanout-free sub-circuit. 
An arbitrary value on j can 
be easily justified. 

A selected internal fanout point 
called "backtrace stop" 

Figure 3.6. Circuit for Example 3.4 
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The process of finding the backtrace stop is mainly based on the controlling 1alues 

of the logic gates on the paths that FAN backtraces. The controlling value of a gate Is an 

input value that is most easily used to control the assigned output of the gate. For · • 

example, for an AND gate whose assigned output is a 0, the controlling value is a 0. I For 

an OR gate whose assigned output is a 1, the controlling value is a 1. 

During the multiple-path backtracing, the controlling values of each of the gates on 
' 

each of the paths are computed and stored. When the backtracings on different path$ 

meet at a fanout point, say F 1, FAN counts how many times the O and 1 are requested on 

the fanout branches. If both O and 1 are requested, backtracing will continue; otherwise, 

backtracing will stop. Upon stopping the backtracing, FAN assigns the requested value to 

F 1, and postpones the justification for F 1 to a later time. 

Example 3. 5: Refer to Figure 3. 7 for the computation of a backtrace stop. F Qr any 

signal line x, let no(x) denote the number of times that the value O is requesteq at x, 

and n1(x) denote the number of times that the value 1 is requested at x. Initially, 

suppose that during the multiple-path backtracing (which might have begun at 

some other location not shown in the figure) some signal values are requesteq at 

lines q and r. Let the notation (q, no(q), ni(q)) = (q, 0, 1) imply the value 1 is: 

requested once at line q, and (r, no(r), n1(r)) = (r, 1, 0) imply the value O is 

requested once at liner. 

Based on the two known requests at lines q .and r, and the controlling; 

values of the NAND and NOR gates (0 and 1, respectively), the values ofn and p 

are set to O and 1, respectively. The corresponding notations are (n, 1, 0) and (p, 

0, 1 ). Note that lines n and p are examined before lines j, k, 1, and m because jthe 

multiple backtracing, as discussed earlier, is implemented by using the breadth-first 
I 

search algorithm. Since (n, p) = (0, 1), it implies that (j, k) = (1, 1), and (1, m~ = 
! 

' 
(1, 1). 

At this time, FAN encounters the fanout point F 1. By examining the : 

requested values on lines k and 1, FAN finds that k requests the value 1 once, ;and 1 
' 

requests the value 1 once. Therefore, n1(h) is computed by adding the n1(k) a'nd 
I 

I 



(a, 1,0) 

b 

C 

(d,2,0) 

(e,0,1) 

f 
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number of times a I 
number of times a o is requested on line q 

is requested on line q~ t 
{j,0,1) (q,0,1) 

u----,.__..:.;.....;.....a..--, ~IO 
(g,0,1) 

(k,0,1) ___ ..... < 
(h,0,2) (1,0,1) 

FI (backtrace stop) 

(m,0,1) 

Figure 3.7. Circuit for Example 3.5 
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ni(l) together. The result at h is (h, 0, 2). Since only l's are requested at h, i.e., no 

conflict is found, the fanout point Fl is chosen to be the backtrace stop. I 

The idea ofusing the multiple-path backtracing and the backtrace stop is quiJ 
I 

innovative. However, the idea of the controlling value of a logic gate, in fact, is based on 

an assumption that the controllabilities of the inputs of a gate at any location in the circuit 

are equally likely. Based on such an assumption, Fujiwara and Shimono argued that ~he 

controlling value of an AND (OR) gate was O (1). This assumption cannot always be 

justified. For instance, consider an AND gate whose inputs have small 0-controllabilities 

(<< 0.5). In this situation, it is obvious that O is no longer a controlling value of the AND 

gate because it is now easier to set the gate's output to 1. 

3 .1.4 Probabilistically Guided Test Generation 

The extensions introduced by FAN are some of the many ways used to accelerate 

the test generation. In this section, another technique called "probabilistically guided test 

generation" [Agrawal et al. 1985] is presented. 

In FAN, recall that the controlling values of logic gates are used to compute the 

backtrace stops if they exist to reduce the number ofbacktrace to the primary inputs of the 

circuit, and that the path with the shortest distance from the fault to the primary outputs is 

chosen to be the propagation path. Similar ideas are employed here, but the difference is 

that the computed values of controllability and observability of the lines in the circuit ~e 

used to accelerate PODEM. For example, when justifying a O output ofa 2-input AND 

gate, there are two choices at the inputs: Ox and xO. If the 0-controllabilities of each of 
I 

the two inputs are known, the one with higher 0-controllability will be assigned a O. I 

During the fault propagation, when there is more than one line that the fault can be 

propagated through to the primary outputs, the line with the highest observability is ' 

selected. 

Obviously, the use of the signal probabilities is of great help in accelerating the test 

generation. It was staled in Chapter I that this probabilistic approach would be follTe<l 



in this research. However, instead of using the signal controllabilities, this research ·11 

use newly-introduced signal priorities whose computation requires much less effort tman 

that of the signal controllabilities. The intrnduction and development of the signal I 

priorities will be presented in Chapter 4. 

1

1

11 

3.2 Acceleration ofDATPG Algorithms 

in Sequential Circuits 

3.2.1 The Heuristic Algorithm I 

I 
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The Heuristic Algorithm [Putzolu and Roth 1971] is the D-algorithm extendetl to 

work for sequential circuits through the use of the iterative array model. The algoritk is 
. I 

heuristic in the sense that it is not a complete algorithm. That is, it does not guarantde 
I 
I 

finding a test pattern for any given fault, even if one exists. The algorithm performs the 

test generation in three steps: .. I 

1) Cut the feedbacks in the sequential circuit to form the iterative array of an I 

arbitrary length p (pis the rtumber of the time frames). I 

I 

2) Generate a potential test sequence T for a given fault. I 

3) Simulate this potential test sequence using the Eichelberger's simulator to Jee if 
I 

the sequence creates races and hazards. I 

Before closely examining the Heuristic Algorithm, there are several points tha]t 

should be mentioned: First, at least for asynchronous sequential circuits, there has be~n no 

known method for predicting what p will be prior to the test generation [ Abramovici let al. 

1990, p. 251]. Second, since every copy of the array circuit is identical, the test gene ator 

does not have to maintain all p copies of the circuit in the computer memory. 

Nevertheless, the signal values in each of the time frames must be separately stored. 

Given a sequential circuit S and a fault F in S, the objective is to find a seque~ce of 

primary input patterns that can detect F. The basic steps of the Heuristic Algorithm Jre 

. I shown in the following procedure. 
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Procedure 3 .3: 

Step 1 : Choose an arbitrary number of time frames p, and remodel the sequential 

circuit as a pseudo-combinational iterative array (see Figure 1.2). I 

Step 2: Choose pas the last time frame, use the D-algorithm to compute a te~t 
I 

pattern T(p) for detecting F in the pth time frame. Perform the fault I 

propagation on only one path at a time. The shortest propagation patb 

should be given the highest priority. T(p) can depend on primary inpuJs and 
I 

pseudo outputs coming from the previous time frame (p-1) which are .I 

I 

denoted as SOs(p-1 ). I 

a) IfT(p) depends on only primary inputs, the test generation succeed~, 
I 

and the test sequence consists of only one pattern T(p ). Stop the 

test generation and return T(p). 

b) If T(p) also depends on some SOs(p-1 ), then these SOs(p-1) must be 
! 

justified in their own time frame. This means that the test generator 
I 

now has to determine the test pattern T(p-1 ). The justificatioq 
I 

i 
process is considered successful if no conflict (in the D-algorithm's 

sense) is found, and the pattern T(p-1) does not depend on anJ of 

the Sls(p-1) (pseudo inputs in the (p-1 t time frame); otherwi,e, 

the justification fails. If the justification succeeds and T(p-1) does 

not need further justification, i.e., T(p-1) does not depend on ~y of 

SOs(p-2), then stop the test generation and return the sequenc~ 
i 

T(p-1 ), T(p) as a potential test sequence T; otherwise, go to step 3. 

Step 3: If necessary, continue to justify for T(p-1) until the test generator lint a 

pattern T(p-r) (r is a positive integer) in some (p-r)th time frame that no 

longer depends on any of the SOs(p-r-1). The final result is the poten1ial 

test sequence T which consists of the patterns T(p-r}, T(p-rH}, T(p-t2}, 

... , T(p-1), T(p). 
1 

I 

Step 4: Simulate (using the Eichelberger's simulator) the potential test sequente T 
I 

found in Step 2 or Step 3 to see if it is free of races and hazards. Rejel t 

the sequence if it does create races and hazards. 
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Example 3.6: The example sequential circuit is shown in Figure 3.8. For Steg 1 of 

Procedure 3.3, pis arbitrarily chosen to be 2, i.e., there would be 2 copies of~he 

original circuit, and the original circuit is remodeled as seen in Figure 3.9. NJte 
I 

that the numbers inside the parentheses are the time frame indicators. The inJ?Ut 

pattern that carries the largest time frame indicator (in this case, it is 2) 

corresponds to the last input pattern of the test sequence to be applied to the ! 

circuit. For Step 2, the D-algorithm is used and the result is shown in Figure$ 
' 

3.10-11. The Eichelberger's simulation (not shown here) was carried out by ! 

. I 

Putzolu and Roth, and the test sequence T in Figure 3 .11 was indeed a good test 
i 

for the fault. 

The problems with the Heuristic Algorithm are that, first, it is based on the I 

D-algorithm which is inefficient in handling the backtracking process. Therefore, it c~ be 
r 

slow. Second, it is not a complete algorithm. Third, it does not address the repeate~ fault 
I 
I 

effect which refers to the indeterminate values at the pseudo outputs at the start of th~ 

test. That is, it is possible that some patterns of the test sequence found may be deperident 
i 

on some assumed values of the pseudo outputs of the previous time frame. But one · 

cannot really tell what these values are when the actual test begins on an A TE unit. If 
I 

these values are not the same as those assumed, the test may fail. This problem is 

eliminated by the next algorithm. 

3.2.2 The 9-value Algorithm 

I 

The 9-value Algorithm [Muth 1976] is very much the same as the Heuristic [ 

Algorithm described previously except that it uses the 9-value logic system instead of the 

5-value logic one. It is a complete algorithm, and it can handle the repeated eflects +the 

fault, which were not addressed by the Heuristic Algorithm. The incompleteness of the 
I 

Heuristic Algorithm and its lack of consideration for the repeated fault effect are 

demonstrated in the following examples. 
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t3 

tl 

Figure 3. 8. Circuit for Example 3. 6 



t3(1) 
SI 

tl(l) 

so 

tl3(1) 

t1(2) 

Figure 3.9. Two copies (p=2) of example circuit in Figure 3.8 

NOTE: D-PROPAGATION RULES 
ANDGATE 

Inputs XO 1D lD' DD DD' 
Outputs O D D' D 0 

ORGATE 
Inputs Xl OD OD' DD DD' 
Outputs 1 D D' D 1 

INVERTER 
Input D D' 
Output D' D 

Vl 
0 
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ASSIGNMENTS IMPLICATIONS RE SUL TS/NOTES I 
I 

' 
I 

t7(2)=D' t1(2)=1 Fault is activated. 

tl 1(2)=D t14(1)=1, tS(2)=0, Fault is propagated 
t13(1)=0 through US because US is 

closer to primary output. 

t12(2)=0 t13(2)=D', t14(2)=D, Fault is propagated 
t9(2)=1, through UIO. Start the 
t10(2)=t4(2)= t5(2)=1 justification process. 
t2(2)=0, t6(2)=0 

tl 1(1)=1 SI=O Conflict. Pseudo input SI 
I 
I 

I must be a don't care. I 

t12(1)=1 t9(1)=0 or tlO{l)=O I 
I 

t9(1)=0 t4(l)=tS(l)= t7(1)=0 Conflict. t7(1) cannot be 
set to O since it is a 
stuck-at- I fault. Fault 
propagation through US is 
not possible. Try another 
propagation path. 

Figure 3 .10. Test generation of Example 3. 6 (first trial) 
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ASSIGNMENTS IMPLICATIONS RE SUL TS/NOTES 
AND/OR 

JUSTIFICATION 

~7(2)=D' t1(2)=1 Fault is activated. 

~8(2)=D' t13(1)=1, t14(1)=0, Fault is now propagated 
tl 1(2)=0 through U4 because the 
tl l(l)=t12(1)=0, path through US was 
t7(1)=1, tl(l)=O, blocked as seen in the 
t9( 1 )=t 10( 1 )= 1 first trial. 

t4(2)=0 t9(2)=D' Fault is propagated 
through U6. 

t10(2)=1 t12(2)=D, t13(2)=D', Fault is propagated to 
t14(2)=D, t5(2)=1, the primary output. 
t2(2)=t6(2)=0 Now perform the 

justification process. 

t4(1)=t5(1)=1 t2(1)= t6(1)=0, t3(1)=1, Justification is 
t3(2)=X completed without 

conflict. Test sequence 
does not depend on any 
pseudo input. Test 
generation is successful. 
The desire test sequence 
Tis (tl(l), t2(1), t3(1}, 
t4(1)) = (0, 0, 1, 1) 
(t1(2}, t2(2}, t3(2), 
t4(2)) = (1, 0, X, 0) 

Figure 3 .11. Test generation of Example 3. 6 ( successful trial) 
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Example 3. 7: The circuit shown in Figure 3 .12 will demonstrate the I 

incompleteness of the D-algorithm. The iterative array model for the circuit ~f 

Figure 3.12 is shown in Figure 3.13. Because of the incompleteness of the I 

I algorithm, the test sequence cannot be found as shown in Figure 3.14. 

Example 3. 8: For the same circuit in Figure 3 .12, the 9-value Algorithm is applied 
I 

- I 

and the test sequence is found. The definition of the 9-value logic system and its 

operations are shown in Figures 2.2-4. The overall result of this example is shown 
I 

in Figure 3 .15. Note that the result in Figure 3 .15 is based on the assumptioni that 
- I 

k(l) (a pseudo output) can be a 1 (or GI in the 9-value logic). In fact, it was!set 

to GI when h(2) wasjustified. But ifit happens to be a Oat the start of the t~st on 
I 

an ATE unit, then in order for the test to remain valid, according the algoritlup, all 

of the G-values on (g(l), h(l), k(l), h(2), k(2)) can be changed to S-values. 

The 9-value Algorithm successfully finds the test in Example 3. 8 because it 
i 

simultaneously represents the good and faulty values of all signal lines in the circuit '\\('hile 
I 

the Heuristic Algorithm only does this for the stuck-at line. However, since the 9-value 
I 
I 

Algorithm uses the 9-value logic system, the search space for the justification proces~ is 

much larger compared to that of the Heuristic Algorithm. To overcome this disadva.Atage, 

a test generator called Gentest [Cheng and Chakraborty 1989] introduced a techniqu~ to 
i 

reduce the 9-value search space. 
1 

Gentest first splits the 9-value logic model into two 3-value logic models. Orie is 
I 

for the good machine, and the other is for the faulty machine. Gentest then performs!the 
I 

justification process for the good and the faulty machines separately. After finishing the 
I 
I 

separate justifications, the results are then combined to obtain the final 9-value mode~ by 

using the relationship between the two 3-value models. However, the search space cl be 

further reduced if parameters such as signal controllabilities are incorporated into the1test 

generator. 
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f 

Figure 3.12. Circuit for Example 3.7 



pseudo input pseudo output 

a(l) 
h(l) 

a(2) 

b(l) ------t-~ b(2) ...... ~~---+~-.I 

k(l) k(2) 
d(l) .._ ___ __, i(l) d(2) ......... ~~~~-, 

c(l) -t-~~--+-~~~~.......J 

f(l) f(2) 

Figure 3.13. Iterative combinational circuit for Example 3.7 

NOTE: D-PROPAGATION RULES 
NANDGATE 

Inputs XO 1D ID' DD DD' 
Outputs 1 D' D D' 1 

NORGATE 
Inputs Xl OD OD' DD DD' 
Outputs O D' D D' 0 

INVERTER 
Input D D' 
Output D' D 

V. 
V. 
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ASSIGNMENT IMPLICATION NOTES/RESULTS 
AND/OR 

JUSTIFICATION 

d(2)=D' a(2)=1 Fault is activated. 

e(2)=0, c(2)=1 ft2)=D, b(2)=1, g(2)=0, Fault is chosen to 
i(2)=0 propagate only through 

U4 (shortest path). 

k(2)=1 y(2)=D', h(2)=0, Fault is at the primary 
k(l)=l, h(l)=i(l)=O, output. Pseudo input 

-· g(l)=l, c(l)=l, b(l)=O, should be don't-care 
d(l)=O whenever possible. A 

conflict found at d( 1) 
since g( 1 )= 1 requires 
b(l)=d(l)=O, but d(l) 
cannot be a O since it is 
a sal fault. Try the 
propagation path 
through U6. 

c(2)=0, b(2)=1 g(2)=0, e(2)=0, ft2)=D, 
i(2)=D 

h(2)=0 k(2)=D' (ft2),k(2))=(D,D') gives 
y(2)=0. The 
propagation path is 
blocked. Try the path 
through U3. 

b(2)=0, c(2)=1 g(2)=D, e(2)=1, ft2)=0 The propagation path is 
again blocked due to 
ft2)=0. Procedure 
terminates with no test 
sequence found. 

Figure 3 .14. Example demonstrating the incompleteness of the Heuristic 
Algorithm 
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ASSIGNMENTS IMPLICATION NOTES/RESULTS 
AND/OR 

JUSTIFICATION 

d(2)=SO a(2)=Gl Fault is activated (see 
Figures 2.3-5 for fault 
activation and operations 
in 9-value logic system). 

e(2)=GO, c(2)=G I b(2)=GI, i(2)=GO, Fault is propagated 
ft2)=Sl, g(2)=0 through U4. 

k(2)=Gl y(2)=Sl, h(2)=GO, Fault is propagated to the 
k(l )=GI, h( I )=i( I )=GO, primary output y(2). No 
g(I)=Gl, conflict is found during 
d( I )=b( I )=GO, the justification process. 
a(l)=Gl, c(l)=Gl The test sequence is 

(a(l), b(l), c(l)) = (GI, 
GO, GI)= (I, 0, 1), and 
(a(2), b(2), c(2)) = (GI, 
GI, GI)= (I, I, I). 

Figure 3.15. Test generation using 9-value Algorithm 



3.3 Current Techniques in the Computation 

of Signal Controllabilities 

3 .3 .1 Cutting Algorithm 

I 

For a fanout-free circuit, the computation of 1-controllabilities can be perfo,ed 

directly using the simple probability expressions shown below. . 1 

a) An AND gate U with output g and N inputs (X1, Xi, ... , XN): I 

Prob{ Output ofU is 1} = Prob{U(g) = 1} I 
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= (Prob{X1 = 1 })(Prob{Xi = 1}) ... (Prob{XN = 1}) (3.1) 

b) An OR gate U with output g and N inputs (X1, Xi, ... , XN): 

Prob{U(g) =I}= 1 - (1 - Prob{X1 = 1}) ... (1 -Prob{XN = 1}) (3.2) 

c) A NOT gate U with input i and output g: 
I 

Prob{U(g) = 1} = 1 - Prob{U(i) = 1} 
I (3.3) 

I 
d) XOR and XNOR gates: 

The I-controllability of the output of each of these gates is calculated f n 

terms of the 1-controllabilities of the outputs of AND, OR, and NOT gates 

that implement the XOR or XNOR function. 

By taking advantage of the above properties (Equations 3.1-3), the Cutting 

Algorithm [Savir et al. 1984] turns a general combinational circuit into a fanout-free 

circuit by cutting all but one of the fanout branches that reconverge, then calculating the 

lower and upper bounds of the 1-controllabilities of the reconvergent signals. The cubn
1 

· g 

rule is depicted in Figure 3.16. 

Recall that the I-controllability of a line is defined as the ratio of the number if 

input patterns that set the line to I to the number of all possible input patterns that can be 

applied to the circuit. The underlying assumption of this definition is that the line's vtue is 

controlled through all possible paths, some of which may be created by fanouts, fromf the 

primary inputs to the line's location. Therefore, the ratio of the number of the input I 

patterns that set a line to I through only a single fanout path to the number of all possible 

input patterns can be viewed as the lower bound of the I-controllability. Assuming t~at 



Arbitrary internally 
fanout-free circuit. Fanout branches that will 

reconverge at some point \ 
~____,wl 

in the circuit. 

Reconvergent 
line whose lower & 
upper bounds of 
the 1-controllabilty 
are to be evaluated. 

w2 

w3 

I 
wl 

------!w2 ..... . 
j w3 

) 

J 

Lower & upper 
bounds of the 
I-controllability 

:::after\ 
l [O,l]v 

--,- w2 
[0,1] w3 

Only branch w I remains uncut. 
No probability range is assigned to wl. 
Probability ranges are assigned to w2 & 
Exact probability for w I will be calculated. 

Figure 3.16. Cutting rule for the Cutting Algorithm 
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the signal probabilities of the primary inputs are all equal to 0.5, the basic steps ofthl 

Cutting Algorithm are described in Procedure 3.4 below. 

Procedure 3. 4: I 

Step 1: Assign a I-controllability of O. 5 to each of the primary inputs. 
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Step 2: Cut the reconvergent fanout branches to turn the circuit into a fanout~free 

circuit. After cutting, assign a range of the 1-controllabilities, i.e., valµes in 

the continuous interval [O, l], to each of the cut fanout branches and i 

establish the I-controllability of the uncut branch. Then compute the lower 

and upper bounds of the 1-controllabilities of all reconvergent lines using 
I 

the probabilities defined irt Equations 3 .1-3. 

Example 3.9: Referring to Figure 3.17(a), the fanout branches are wl, w2, an~ w3 
' 

and the reconvergent lines are rl, and r2. The objective is to compute the lower 
i 

and upper bounds of the 1-controllabilities ofrl and r2. Following Procedur~ 3.4 

step by step, one cuts all the fanout branches except w3 (see Figure 3. l 7(b)). ! 

Then 

I-controllability for w3 = 1 - (0.5)(0.5) = 0. 75 

Lower bound for tl's I-controllability = 1 - (0.5)(1) = 0.5 

Upper bound for tl 's I-controllability = 1 - (0.5)(0) = 1 

Lower bound for t2's I-controllability = 1 - (0.5)(1) = 0.5 

Upper bound for t2's I-controllability = 1 - (0.5)(0) = 1 

I-controllability for t3 = 1 - (0.75)(0.5) = 0.625 

Lower bound for t4's I-controllability = 1 - (0.5)(1) = 0.5 

Upper bound for t4's I-controllability = 1 - (0.5)(0.5) = 0.75 

Lowerboundforrl's I-controllability= 1-(0.75)(1)=0.25 

Upper bound for rl's I-controllability = 1 - (0.5)(0.5) = 0.75 

Lower bound for r2's I-controllability = 1 - (0.625)(0. 75) = 0.5313 

Upper bound for r2's I-controllability = 1 - (0.625)(0.25) = 0.8438 



xl 

wl t1 t4 

x2 

x3 rl 
t2 

x4 
w3 

x5 t3 

(a) 

Assign these I-controllability ranges after cutting the fanout branches. 
Calculate 1-controllabilities of other signals in terms of these ranges. 

x4 
0.5 0.75 

x5 0.5 

0.5 

t1 

[0.5,1] 

[0.5,1] 

t2 

0.625 

t3 

(b) 

t4 [0.5,0. 75] 

[0.25,0.75] 

rl 

[0.5313,0.8438] 

Figure 3.17. Illustration of Cutting Algorithm (Example 3.9). a) Original 
circuit; b) Computation of I-controllability ranges for 
rl &r2 
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Note that if one forms a truth table of six inputs xl, x2, x3, x4, x5, an x6, 

and then determines the number of times r 1, and r2 in Figure 3 .17( a) are set t , 1 

with no fanout branches cut, one will find that the exact 1-controllabilities for r 1, 

and r2 are 0.5938, and 0.6406, respectively. This shows that the lower bound 
I 

• I 

values for r 1 and r2 evaluated above are indeed less than the exact values four'. d 

when the cut fanout branches are restored. 

Since the Cutting Algorithm turns a general combinational circuit into a 
1 

fanout-free circuit, the estimate of the lower bound of the I-controllability of a line i~ 

performed directly. However, very often, the estimate is zero although the true valu , is 

much larger [Chakravarty and Hunt 1990]. 

3.3.2 The PREDICT Algorithm 
I 

I 
PREDICT (Probabilistic Estimation of Digital Circuit Testability) [Seth et al. I 

1985] is a graph-based method for computing the controllabilities of the lines in a I 

combinational circuit. PREDICT includes three different techniques. The first one isl an 

exact computation, and the last two are approximation methods. ! 

Seth uses the notion of a "supergate." A supergate of a signal line g, an outp~t of 
I 

some logic gate, denoted as SG(g), is defined as a sub-circuit with independent input~ 

feeding g. This sub-circuit, by definition, must be internally fanout-free except fanou~ 

inputs are allowed, has all of its inputs logically independent, and possesses only one I 

output. Figure 3 .18 shows the definition of several example supergates. 

Basically, PREDICT divides the circuit under consideration into a number of 

supergates, then represents the original circuit with a directed graph whose nodes are the 

supergates, and whose edges are the interconnections between the supergates with thl 

arrows pointing in the direction of flows of the signals (see Figure 3.18). Note that a 
I 

supergate itself can be represented as a directed graph whose nodes are the logic gat~s, 

and whose edges are the interconnections between the gates. The controllabilities ofJ~he 

signal lines are then computed within one supergate at a time. The· overall order oft e 
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SG(t8) 

SG(t9) SG(tl I) 

SG(tlO) 

Figure 3 .18. Supergates and corresponding circuit graph 
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computation is according to the interrelationships between the supergates, i.e., supergates 

with known input controllabilities are considered first. The first of the three methodJ ( an 

exact method) presented by Seth is reviewed in the following. 

For a supergate with no fanout inputs, the computation of the 1-controllabilitles in 
I 

that supergate is straightforward by using Equations 3 .1-3. I 

For a supergate which has K fanout inputs F1, F2, ••• , FK, the exact computatiQn of 

the I-controllability, Prob{SG(g) = 1 }, where g is the output line of the supergate, I 

K . I 

requires an exhaustive enumeration of2 K-tuples. In Figure 3.18, K = 0, 0, 1, and t for 
. I 

SG(t8), SG(t9), SG(tlO), and
2
!G(tl 1), respectively. The Prob{SG(g) = l} is definer as 

Prob{SG(g) = I} =.L Prob{SG(g) = 1 n Hi} ! (3.4) 
1=1 I 

where Hi is the ith K-tuple of the fanout inputs to the supergate. Note that, for each~. the 

computation ofEquation 3.4 also requires the fixed controllabilities of all non-fanouJ 

mputs. -1 

ForSG(tlO)inFigure3.18, . I 

HI= (t2 = 0) 

Hi=(t2=1) 

and for SG(tl 1), 

HI =(t9=0, tlO=O) 

Hi= (t9 = 0, tlO = 1) 

H3 = (t9 = 1, tlO = 0) 

H4 = (t9 = 1, tlO = 1) 

Using the definition of the conditional probability, Equation 3.4 is rewritten¥ 
2K 

Prob{SG(g) = 1} =.L Prob{SG(g) = 1 IHi} X Prob{Hi} (3.5) 
1=1 

where the conditional term Prob{ SG(g) = 1 I HJ for each i can be computed directl for 

any gate using Equations 3 .1-3, and 

Prob{~}= Prob{F1 = v n ... n FK = v} 
=(Prob{F1 =v}) ... (Prob{FK=v}), v E {O, I} 

with the assumption that F1, F2, ••• , FK are independent. 

As an example, Prob{SG(tlO) = 1} in Figure 3.18 is found as follows. 

Prob{SG(tlO) =I}= 1 -Prob{SG(tlO) = O} 

(3.6) 



Prob{SG{tlO) = O} = (Prob{SG{tlO) = 0 I H1 })(Prob{H1}) + 

(Prob{SG(tIO) = O I Hi })(Prob{H2}) 

where H1 = (t2 = 0), and Hi= (t2 = 1 ). Assuming that Prob{ tl = 1} = Prob{ t2 = 1 = 

Prob{ t3 = 1} = 0.5, one has 

and 

Prob{H1} = 0.5 

Prob{Hi} = 0.5 

Prob{U3 = 0 I H1} = 0 

Prob{U3 = 0 I Hi} = 0.5 

Prob{U3 = 1 I H1} = 1 

Prob{U3 = 1 I Hi} = 0.5 

Prob{U4 = 0 I H1} = 1 

Prob{U4 = 0 I Hi} = 0.5 

Prob{U4 = 1 I H1} = 0 

Prob{U4 = 1 I Hi} = 0.5 

Prob{SG(tlO) = O} = (Prob{SG{tlO) = 0 I H1 })(Prob{H1}) + 

(Prob{SG(tlO) = O I Hi })(Prob{Ili}) 
I 

= (Prob{U3 = 0 I H1})(Prob{U4 = 0 I H1})(Prob{H1}) + i 

(Prob{U3 = 0 I Hi} )(Prob{U4 = 0 I Hi} )(Prob{Hi}) 

= (0)(1)(0.5) + (0.5)(0.5)(0.5) = 0.125 

Prob{SG{tlO) = 1} = 1 - 0.125 = 0.875 

65 

An obvious drawback with the exact method of the PREDICT Algorithm abQ~e is 
i 

that the computation of Equation 3. 5 increases exponentially as the number of fanout! 

inputs increases. To avoid this problem, Seth proposed an approximation method fo ! 

evaluating the signal controllabilities. The approximation is based on the topological 

analysis of the supergate. These exact and approximate methods will be further anal zed 

in Chapter 4. 

In 1990, Chakravarty and Hunt argued that the intensive computation of the ~xact 
I 

i 
signal controllabilities can be avoided. Their argument relied on the idea that the 1 

I 

Prob{l\} can be zero for some l\. By employing such a condition, the enumeration bf2K 
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K-tuples may become an implicit process. Hence the computation of Equation 3.5 tn4y be 
I 

reduced. This implicit process is what Chakravarty and Hunt referred to as the "Effictent 
I 

Enumeration" Algorithm. Nevertheless, it will be shown in Chapter 4 that the argum,nt 
I 

made by Chakravarty and Hunt is not valid. 

3.3.3 Matrix Notation for Computing Exact Controllabilities 

I 

I 

. ! 

For convenience in later discussion and computer simulations, the definition of 
! 

Equation 3.5 is extended for all signal lines in a supergate (including the supergate's i 

inputs), and its conditional and unconditional terms are rewritten in a matrix notation.I Let 
I 

g be any signal line in a supergate ( a signal line can be an input to the supergate ), and i let 

C(l,g) denote a lx2K conditional I-controllability row-vector whose elements correspond 

to the conditional terms in Equation 3.5. The row-vector C(l,g) for any line gin a 

supergate is then defined as 

Prob{g=l} I H1 
Prob{g=l} I H2 

T 

i 

C(l,g)= • 1(3.7) 
• j 

Prob{g=l} I H2K I 

where [Y denotes the matrix transpose operator, and ~ (i = 1 ... 2K) is the ith K-tuplel As 
. I 

an example, H1 = (F1 = 0, F2 = 0, ... , FK = 0), ~ = (F1 = 0, F2 = 0, ... , FK = 1), etc.. 1 

Using Equation 3. 7, the corresponding 1 x2K conditional 0-controllability I 

row-vector, C(O,g), can be easily found by subtracting every element ofC(l,g) from~-, 
! 

Let H(F) be a 2~1 fanout probability column-vector, whose elements correspond 
I 

to the unconditional terms in Equation 3.5. H(F) is defined as I 

H(F)= 

Prob{H1} 

Prob{H2} 

• 
• 

I 

(3.8) 



where Prob{HJ is specified in Equation 3.6. As an example, Prob{H1} = Prob{F1=d} x 

Prob{F2=0} x ... x Prob{FK=O}, and Prob{Hi} = Prob{F1=0} x Prob{F2=0} x ... x 

Prob{FK=l}, etc .. 

By using Equations 3.7-8, the I-controllability of any line gin a supergate is 
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Prob{g = 1} = C(l,g) * H(F) (3.9) 

where the symbol * denotes the vector inner product. The 0-controllability, Prob{g O}, 

is calculated by replacing C(l,g) in Equation 3.9 with C(O,g), or using the relation 

Prob{g = O} = 1 - Prob{g = l} 

Recall that the computation of Equation 3. 9, for each ~ , requires the controllability 1 

i 
values of all non-fanout inputs to the supergate to be included in the evaluation ofC{!l,g). 

Also, the conditionafcontrollability row-vector for the output of a logic gate in a 

supergate can be expressed in terms of the conditional controllability row-vectors o~ its 

input lines: ! 

a) A T-input AND gate with output g: 

C(l,g) = C(l, input 1) ® C(l, input 2) ® ... ® C{l, input T) (3.10) 
where the symbol ® denotes array element-by-element multiplication'. For 
example, if array A and array B have the same dimensions, then A ® n 

I 
. I 

denotes the array whose elements are the products of the individual l 

elements of A and B. 

b) A T-input OR gate with output g: 

C(O,g) = C(O, input 1) ® C{O, input 2) ® ... ® C{O, input T) (3.11) 

c) A NOT gate with output g: 

C(l,g) = C(O, input) (3.12) 
i 

As an example, Prob{ t 10 = 1} in Figure 3 .18 is calculated again using the ma~rix 
i 

notation. Assuming that Prob { t1 = 1 } = Prob{ t2 = 1 } = Prob { t3 = 1 } = 0. 5 as before, 
I 

one has from Equation 3 .8: 

H(F) = [Prob{Hl} Prob{H2}r = [0.5 O.sr 

To correctly implement the matrix approach for non-fanout inputs such as t1 Fd 

t3 in the supergate SG{tlO), the conditional 1-controllabilities for tl and t3 must talc¢ the 
' 

form of 2-dimensional vectors as follows: 

C{l,tl) = [Prob{tl = 11 t2 = O} Prob{tl = 11 t2 =1}] = [0.5 0.5] 



Also, 

C(I,t3) = [Prob{t3 =II t2 = O} Prob{t3 =II t2 =I}]= [0.5 0.5] 

C(I,t2) = [Prob{t2 =II t2 = O} Prob{t2 =II t2 =I}]= [O I] 

C(I,U3) = [I I] - C(I,t3) ® C(I,t2) 
= [I I] - [0.5 0.5] ® [O I] 

= [I I] - [O 0.5] = [I 0.5] 

C(I,U4) = C(I,t2) ® C(I,tl) 
= [O I] ® [0.5 0.5] = [O 0.5] . 

C(O,tlO) = ([I I] - C(I,U3)) ® ([I I] - C(l,U4)) 
= [O 0.5] ® [I 0.5] = [O 0.25] 

Since C(I,tlO) = [I I] - C(O,tlO), then 

C(I,tlO) = [I I] - [O 0.25] = [I 0.75] 

Therefore, applying Equation 3.9, one has 

Prob{tlO =I}= C(I,tlO) * H(F) = [I 0.75] * [0.5 0.5Y 

= 0.5 + 0.375 = 0.875 

which is the same result as found with the non-matrix method. 
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CHAPTERIV 

SIGNAL PRIORITIES 

4 .1 Exact Controllability Computation Using 

Matrix Notation 

For the same circuit seen in [Seth et al. 1985], Example 4.1 below will compute 

the exact 1-controllability of every signal line in the second supergate of the circuit ~sing 

the matrix notation. I 

I 

I 

Example 4.1: For the circuit in Figure 4.1, it is assumed that the supergates ~ave 

been found by using the procedure described in [Seth et al. 1985]. The exac1 

1-controllabilities for all signal lines in the 2nd supergate are computed by usin.g 

matrix notation introduced at the end of Chapter 3. Note that K=l in the 2nd 

supergate. 

First, assume that all the fanout-free primary inputs have probabilities of 

occurrence of O. 5. That is, Prob { t 1 = 1 } = ... = Prob { t6= 1 } = 0. 5. This impli~s 

Prob{t7=0} = 0.25 and Prob{t7=1} = 0.75. Using these known quantities arid 

Equations 3. 7-10, the conditional 1-controllabilities vectors for the lines in Je 2nd 

supergate are 

C(l, t 1) = [Prob { tl = 1 } I t7 = 0 Prob { tl = 1 } I t7 = 1] 

= [0.5 0.5] 

C(l,t2) = C(l,t5) = C(l,t6) = C(l,tl) = [0.5 0.5] 

C(l,t7) = [Prob{t7 = I} I t7 = 0 Prob{t7 = l} I t7 = l] 

= [O 1] 

C{O,t8) = C(l,t2) ® C{l,t7) = [0.5 0.5] ® [O 1] = [O 0.5] 
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Figure 4 .1. · Circuit for Example 4 .1 
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C(l,t8) = [I I] - C(O,t8) = [I 0.5] 

C(l,t9) = C(l,tlO) = C(l,t8) = [I 0.5] 

C(O,tl I)= C(l,t8) ® C(l,tl) 
= [I 0.5] ® [0.5 0.5] = [0.5 0.25] 

C(l,tl I)= [1 I] - C(O,tl I)= [0.5 0.75] 

C(O,t12) = C(l,tl 1) ® C(l,t9) 
= [0.5 0.75] ® [I 0.5] = [0.5 0.375] 

C(l,t12) = [I I] - [0.5 0.375] = [0.5 0.625] 

C(O,t13) = C(l,tl2) ® C(l,tlO) 
= [0.5 0.625] ® [I 0.5] = [0.5 0.3125] 

C(l,t13) = [I I] - [0.5 0.3125] = [0.5 0.6875]. 

From Equation 3.8, 

H(F) = [Prob{t7 = O} Prob{t7 = I}Y = [0.25 0.75Y 

and from Equation 3. 9, the exact 1-controllabilities are 

Prob{t8 =I}= C(l,t8) * H(F) = [I 0.5] * [0.25 0.75Y 

= 0.25 + 0.375 = 0.625 

Prob{t9 =I}= Prob{tlO =I}= Prob{t8 =I}= 0.625 

Prob{tll = I} = C(l,tll) * H(F) 

= [0.5 0.75] * [0.25 0.75Y = 0.6875 

Prob{t12 =I}= C(l,t12) * H(F) 

= [0.5 0.625] * [0.25 0. 75]T = 0.5938 

Prob{tl3 =I}= C(l,t13) * H(F) 

= [o.5 o.6875] * [0.25 o.15Y = o.6406. 

4.2 Current Methods for Approximating Controllabilities 

4.2.1 Distance-based Approximation Method in PREDICT 
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As with the Cutting Algorithm in Section 3.3.1, the objective of the distance-based 

approximation method is to approximate the I-controllability of a reconvergent signa{ in a 
I 

supergate (i.e., output of the supergate). I 
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Let t be the reconvergent signal whose controllabilities are to be approximat I , 

and let Lm be the maximum distance measured backward from t toward the first fanoyt 

point in terms of signal lines. Lm is counted from the reconvergent line farthest to th~ first 

fanout point. The distance-based approximation method is described as follows: / 

a) Evaluate the 1-controllabilities for all non-reconvergent signals in the supetgate 

using Equations 3.1-3. These signals carry no. effect from the fanout 1

1

. 

signals. 
I 

b) Choose a value L < Lm , where L is counted from the reconvergent line clo
1 

.. sest 

to the first fanout point, and evaluate the I-controllability oft by using 
i 

either one of the two following rules: I 

b.1) When none of the possible paths ofL distance measured from t t~ward 

the fanout point meet at a· fanout point, use Equations 3 .1-3 t1 

evaluate directly the I-controllability oft as if t carried no effept 

from the fanout. I 

b.2) When two or more paths of L distance measured from t toward ~e 

fanout point meet at a fanout point, apply Equation 3. 5 to ev~uate 
! 
I 

the I-controllability.oft with the assumption that the fanout eyect 

is shared only by those paths that meet at the fanout point. Treat 

those paths that do not meet at the fanout point as if they c1\ no 

effect from the fanout. 
I 

Seth justified this approximation method by arguing that when the circuit's s~e is 
I 

large, the fanout effect ignored on those paths that do not meet at the fanout point wbuld 
I 

likely become weakened due to the influence of other signals. Thus, under such a 

condition, those paths can be considered independent of the fanout inputs. This 

approximation method is now illustrated by an example. 

Example 4.2: For a comparison purpose, the same circuit in Example 4.1 is u ed. 
I 

Since the longest path (path t7-t8-tl 1-t12) from t13 to the fanout point is 4 s~gnal 

lines long, then Lm = 4. Using Step a, the 1-controllabilities for all [ 

non-reconvergent signals in the second supergate are: 



Prob{tl=l} =Prob{t2=1} =Prob{t5=1} =Prob{t6=1} =0.5 

Prob{t7=1} = 0.75 

Prob{t8=1} = 1 - (Prob{t2=l})(Prob{t7=1}) 

= 1 - (0.5)(0.75) = 0.625 

Prob{t9=1} = Prob{tlO=l} = Prob{t8=1} == 0.625 

Prob{tl 1=1} = 1 - (Prob{tl=l})(Prob{t8=1}) 

= 1 - (0.5)(0.625) = 0.6875 

73 

! 

For L = 1, all the paths of 1 signal line away from t12 (paths tl 1 and tb), 
I 

and from tl3 (paths t12 and t10) do not meet at t7, so Step b.1 is applied and! one 

~ i 

Prob{t12=1} = 1 - (Prob{tl 1=1 })(Prob{t9=1}) 

= 1 - (0.6875)(0.625) = 0.5703 

Prob{tl3=1} = 1 - (Prob{tlO=l })(Prob{t12=1}) 

= 1 - (0.625)(0.5703) = 0.6436. 

For L = 2, only one of the paths of 2 signal lines away from t 12 (path ! 

t7-t9), and from tl3 (path t7-t10) meet at t7, therefore, the approximate valu~s 
! 

' ! remain the same as in the case L = 1. 
I 

For L = 3, all the paths of 3 signal lines away from t12 meet at t7, I 

therefore, Step b.2 is applied with the assumption that paths t7-t8-tl 1 and t7-f9 

both share the fanout effect, and the I-controllability oft 12 will be the same as that 

found in Example4.1 (Prob{t12 = 1} = 0.5938). 

For signal t13, not all ofits paths meet at t7 (i.e., the missing path is ! 

! 

t8-tl 1-t12). Therefore, Step b.2 is applied with the assumption that only pat~s 
I 

t7-tl0 and t7-t9-tl2 share the fanout effect. The I-controllability oftl3 is fotiind 
I 

as follows: j 

As found earlier, the exact I-controllability oftl 1 was 0.6875. Since ti he 

path t8-tl 1-t12 carries no fanout effect, then 

C(l,tl 1) = [0.6875 0.6875] 

On paths t7-t10 and t7-t9-t12, from Example 4.1, one has 

C(l,t9) = [1 0.5] 

' 



C(l,tlO) = [1 0.5] 

also, from Example 4 .1, 

H(F) = [0.25 0. 75r 

Therefore, 

C(l,t12) = [1 1] - C(l,t9) ® C(l,tl 1) 
= [1 1] - [1 0.5] ® [0.6875 0.6875] 

= [0.3125 0.6563] 

C(l,t13) = [1 1] - C(l,tlO) ® C(l,t12) 
= [1 1] - [1 0.5] ® [0.3125 0.6563] 

= [0.6875 0.6719] 

Prob{tl3 = l} = C(l,t13) * H(F) 

= [0.6875 0.6719] * [0.25 0.75r 

= 0.6758 
I 
I 
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For L = 4, all the paths of 4 signal lines away from t12, and from t13 ~eet 

at t7. Therefore, Step b.2 is applied, and the 1-controllabilities oft12 and tl~ will 
i 

be the same as those found in Example 4 .1. 

By comparing results in Example 4.1 and Example 4.2, one can see that the 

approximate values are close to the exact controllabilities. However, as stated by Se~h, 
i 
i the approximation error on a signal line does not converge to the exact value , 
I 

monotonically as L increases. Moreover, the error fluctuates unpredictably as seen in. 
I 

Examples 4 .1-2 (lines t 12 and t 13). That is, for a signal line, there is no assurance t~t the 
I 

approximate I-controllability will be larger or smaller than the exact one. 

4.2.2 "Efficient Enumeration" Algorithm 

The "Efficient Enumeration" Algorithm in [Chakravarty and Hunt 1990] relie~ on 

a possibility that some of the probabilities, Prob{~}, in Equation 3.8 are zero. UsinJ this 
I 
I 

situation as the key to control the enumeration, these researchers expected the 

computation of Equation 3.9 would be reduced. However, it is found by this researcp that 

such an argument is not valid for two reasons: 
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a) For a supergate whose fanout inputs F1, F2, •.. , FK are all primary inputs to the 

circuit, the term Prob{~} can never be zero for any i simply because 

Prob{Fk=O} = Prob{Fk=l}= 0.5 for all i (k = I ... K). Therefore, int ,·s 

case, the performance of the "Efficient Enumeration" Algorithm is thJ same 

as that of the exact method previously reviewed, which requires an I 

I 

exhaustive enumeration to evaluate Equation 3. 9. I 
I 

b) For a supergate whose fanout inputs come from other supergates (see Fi~e 

4 .1 ), the probability distributions of these fanout inputs are not necessr,nly 

identical as are those in case (a) above. However, will any of those I 

Prob{HJ ever be zero? The answer is no since this situation implies trat 

some supergate can output only one logic level. By definition, such a I 
I 

supergate is a redundant circuit that can always be replaced by a constant 

signal [Hayes 1976). According to Hayes, circuit redundancy, in ma+ 

situations, is unintentional and undesirable because it will make some faults 

undetectable. With this in mind, one can expect that a well-designed Jircuit 

will not have any redundancy; therefore, fur all practical purposes, onf 

should assume that Prob{~} ¢ 0 for all i. I 

4.3 Signal Priorities Development and Computation I 

I 

There are two types of signal priorities: 0-priority and I-priority. The definitibn 
. I 

and use of signal priorities are equivalent to that of signal controllabilities. That is, die 
I 

priority of a signal is defined as an estimate probability of setting that signal to a specified 

value when an input pattern is randomly selected and applied to the circuit. When th~ 

0-priority is higher than the I-priority for a given signal line, it implies that the O valul is 

more justifiable than is the I value, and vice versa. 

However, this research does not introduce signal priorities as approximations to 

signal controllabilities. Instead, the signal priorities reflect the relationship between the 
I 

0-controllability and I-controllability of a given signal line. That is, most of the time,i for a 

given signal line, the 0-priority will be higher than the I-priority whenever the 



0-controllability is higher than the I-controllability, and vice versa. As with 

controllabilities, ihe signal priorities can be used to effectively guide the justification 

process so that the number of backtrackings is reduced. The development and 

computation of signal priorities are described in the following sections. 

4.3.1 Minimum-value Distributions ofFanouts 
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I 

i 

I 
Consider a supergate with K fanout inputs F 1, F 2, ••• , FK, and v E { 0, 1 } . Ld ~ 

denote an event which is defined as 1

1 

~={at least one Fk = v} 
1

(4.1) 

where k = 1 ... K. For v = 0, one has 
I 

Prob{Mo} = Prob{at least one Fk = O} 

=Prob{F1 =O U ... U FK=O} 
= 1 -Prob{F1 = I n ... n FK= I} I 

= 1 - [1 - Prob{F1 = O}] x ... x [1 - Prob{FK = O}] j (4.2) 
where the signal controllabilities ofFk for all k are assumed to be independent. Wheq. the 

probability distributions of all Fk are identical, Equation 4.2 becomes 

Prob{Mo} = 1 - [1 - Prob{FK = O}t 

I 

(4.3) 

The corresponding expressions for Prob{M1} can be easily obtained by changing the p's to 

l's in each of the equations 4.2 and 4.3. That is, [ 

Prob{M1} = 1-[1-Prob{F1 = l}] x ... X [1-Prob{FK= l}] (4.4) 

and 

Prob{M1} = 1 - [1 -Prob{FK = l}t I (4.5) 

when the probability distributions ofFk are identical. The probability distributions of1~ 

are termed the minimum-value distributions [Soong 1981] of the fanout input variablls. 

It is useful to determine the relationship between Prob{Mo}and Prob{M1}. en 

Prob{Mo}> Prob{M1}, from Equation 4.2 and Equation 4.4, one has 

I - [1 - Prob{F1 = O}] X ... X [1 - Prob{FK = O}] > 
1 - [1 -Prob{F1 = I}] X ... X [1 -Prob{FK = l}] (4.6) 

Subtracting 1 from both sides of Inequality 4. 6 and multiplying both side by -1 yield 

[1 - Prob{F1 = O}] x ... x [1 - Prob{FK = O}] < I 

[1-Prob{F1 = 1}] X ... X[l-Prob{FK= I}] (4.7) 

but [1 -Prob{Fk = O}] = Prob{Fk = I}; therefore, the Inequality 4.7 can be rewritten s 
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I 

I [Prob{F1 = 1 }] x ... x [Prob{FK = l}] < 
[Prob{F1 = O}] X ... X [Prob{FK = O}] (4.8) 

From Inequalities 4.6 and 4.8, one can see that when Prob{Mc,} > Prob{M1}, the 

probability of the event that·all of the fanout inputs is equal to O is greater than that dfthe 

event that all of the fanout inputs is equal to 1. Also, note that the greater the differe~ce 

between the two sides oflnequality 4.6, the greater the difference between the two s~des 
! 

of Inequality 4. 8. If one performs a similar analysis for the case Prob {M1} > Prob{~}, 
I 

one will find that the opposite of the above result is also true. i 
I 

This research heuristically extends the above result. That is, when Prob{Mc,} i> 
Prob{M1} with K reasonably large, from Inequality 4.8, one can expect that, among ~he 2K 

K-tuples, the probabilities of occurrences of the K-tuples (i.e., Prob{~}) that have a I 
I 

majority ofO signals are likely larger than those of the K-tuples that have a majority df 1 
I 

signals, and vice versa. Consequently, when Prob{Mc,} > Prob{M1} and as the differ~nce 
I 

between the two quantities gets larger, the sum of the Prob{HJ corresponding to th~ 

0-majority tuples will likely get larger than that of the Prob{Hi} corresponding to thel 
I 

I-majority tuples, and vice versa. i 

As an example, suppose that a supergate has 3 fanout inputs F1, F2, and F3 (i.d., K 
I 
I 

= 3). IfProb{Mc,} > Prob{M1}, then the probabilities of occurrences of those 3-tuplqs 

that have a majority ofO such as 000, 001, 010, and 100 will likely be greater than thbse 

3-tuples with a majority of l's such as 011, 101, 110, and 111. Consequently, as the I 

difference between Prob{Mc,} and Prob{M1} gets larger, the sum of the Prob{~} 
i 
i 

corresponding to the tuples 000, 001, 010, and 100 will likely get larger than that of the 
I 

Prob{~} corresponding to the tuples 011, 101, 110, and 111. 

4 .3 .2 Computation of Signal Priorities 

I 
I 
I 

As presented in Section 4.3.1, when Prob{Mc,} > Prob{M1}, the quantities 

Prob{HJ corresponding to the 0-majority fanout input combinations will likely be l ger 

than those of the I-majority fanout input combinations, and vice versa. To illustrate ihls 
I 

point, two calculations are performed on an arbitrary supergate that has 5 fanout input 
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variables whose signal probabilities are randomly generated ( the internal structure of µtis 

supergate is not relevant at this point). I 
I 

a) The signal probabilities of the fanout inputs are generated such that Prob{¥o} < 

Prob{M1} as seen in Figure 4.2. In this figure, the probabilities Prob{~fJ 
! 

of the 5-tuples are listed in ascending order. The entries in the first ctjlumn 
i 

are listed according to the binary values of the tuples in the second column. 
I 

Note that the probabilities of occurrences ofO-majority tuples are gen~rally 
! 

small compared to the others. Most (11 of 16) of the 0-majority tupl~s are 

shown in the upper half of this figure. The sum of the probabilities o~these 
I 

0-majority tuples contributes a maximum of about 16% to the compu~ation 

of Equation 3. 9 with the assumption that each of the elements of C( 1,~) is 
I 

equal to 1. i 
! 

b) The signal probabilities of the fanout inputs are generated such that Prob{M:1} < 
I 

. i 
Prob{Mo} as seen in Figure 4.3. In this figure, the probabilities Prob{~} 

of the 5-tuples are listed in ascending order. Note that the probabiliti~s of 

occurrences of I-majority tuples are generally. small compared to the I 

others. Most of the I-majority tuples are shown in the upper half of t~s 

figure. The sum of the probabilities of these tuples contributes a m~um 
I 

of about 15% to the computation of Equation 3.9 with the assumptioi that 
! 

each of the elements of C( 1,g) is equal to 1. ' 

·in either case, one can simply ignore the rows ofH(F) that correspond to theismall 

' Prob{HJ, and the value of Prob{g = 1} calculated from Equation 3.9 will not be I 

significantly affected. Additional computational savings can be achieved if the I 

probabilities of the fanout variables are used directly. For example, since Prob{F3 = b} 
and Prob{F5 = O} of Figure 4.2 are very small, tuples with F3 = 0 and F5 = 0 could alJo be 

ignored. This additional step cannot be implemented when the probabilities of all of ihe 

fanout variables are about O. 5. I 
I 

Let H(F)r denote the row-reduced H(F), and let C(l,g)r denote the column-retluced 
I 

C(l,g). When one performs the calculation of Equation 3.9 with H(F) replaced by H(F)r 
i 

and C( l ,g) replaced by C(l ,g)r , one has 
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Hg 
Hi1 
Hu 
H11 
HI 
H19 
~ 
Hzc, 
H10 
Hzs 
H12 
His 
Hz 
Hzo 
H4 
lizg 
H13 
~1 
His 
Hz1 
Hs 
~ 
~ 
~o 
H14 
~2 
H16 
Hzz 
H6 
~ 
Hs 

FiF:zF'l4Fs Prob{~} Notes 

11000 3.0512844e-005 Prob{F1=0}=.5297 
01000 3.4366715e-005 Prob{F2=0}=.671 l 
11010 4.9068790e-005 Prob{F3=0}=.0077 
01010 5.5266337e-005 Prob{F4=0}=.3834 
10000 6.2273493e-005 Prob{F 5=0 }=.0668 
00000 7.0138836e-005 Prob{Mo}=.9117 
10010 1. 00 l 4422e-004 Prob{M1}=.9999 
00010 l .1279276e-004 
11001 4.2597762e-004 
01001 4. 7977997e-004 
11011 6.8502976e-004 
01011 7. 7155124e-004 
10001 8.6937534e-004 
00001 9. 79 l 8026e-004 
10011 l .3980734e-003 
00011 l .5746546e-003 
11100 3.9331278e-003 
01100 4.4298946e-003 
11110 6.3250028e-003 
01110 7.1238711e-003 
10100 8.0270986e-003 
00100 9. 04094 71 e-003 
10110 l .2908663e-002 
00110 1.4539069e-002 
11101 5. 4908826e-002 
01101 6. l 843988e-002 
11111 8.8300836e-002 
01111 9.9453517e-002 
10101 l.1206312e-001 
00101 1.262l705e-001 
10111 1.8021268e-001 
00111 2.0297413e-001 

Figure 4.2. Relationship between Prob{~} and Prob{~} 
(Prob{Mi} > Prob{Mo}) 
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HIS 
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H11 
Hi1 
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H14 
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~ 
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HIO 

H19 
Ri6 
~ 
~ 
Hi 
HIS 

H13 
Hi9 
~ 
His 
Hs 

Ri1 
HI 
H11 

FiF:zF'f 4Fs Prob{HJ Notes 

01111 5. 7517 402e-004 Prob{F1=0}=.4175 
11111 8.0253458e-004 Prob{F2=0}=.6868 
01011 8.2419662e-004 Prob{F3=0}=.5890 
11011 1.1499933e-003 Prob{F4=0}=.9304 
00111 1.2611092e-003 Prob{F 5=0 }=.8462 
10111 1.759613 le-003 Prob{Mo}=.9992 
00011 1.8071087e-003 Prob{M1 }=.8670 
10011 2.5214407e-003 
01110 3.1637741e-003 
11110 4.4143 825e-003 
01010 4.5335357e-003 
11010 6.3255972e-003 
00110 6.9367958e-003 
01101 7. 6931560e-003 
10110 9.6788421e-003 
00010 9. 940093 7 e-003 
11101 1.0734184e-002 
01001 1.1023921e-002 
10010 1.3869314e-002 
11001 1.5381568e-002 
00101 1.6867782e-002 
10101 2.3535448e-002 
00001 2.4170718e-002 
10001 3 .3 725162e-002 
01100 4.2316598e-002 
11100 5.9043928e-002 
01000 6. 063 7644e-002 
11000 8.4607101e-002 
00100 9.2782098e-002 
10100 1.2945794e-001 
00000 1.3295227e-001 
10000 1.8550698e-001 

Figure 4.3. Relationship between Prob{~} and Prob{~} 
(Prob{Mo} > Prob{M1}) 
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I 

1(4.9) 

P 1 (g) is the definition of the I-priority of a line g, as developed in this research. 

The 0-priority, denoted as P0 (g), can be obtained by replacing C(l,g)r in Equ,tion 
I 

4.9 with C(O,g)r. That is, i 
i 
I 

Po(g) = C(O,g)r * H(F)r (4.10) 

where C(O,g)r is found by subtracting every element ofC(l,g)r from 1. 
! 

Now, assuming that the supergate structure of a circuit has been determined, j 
I 

Procedure 4.1 below describes the basic steps for obtaining the I-priorities in each o~the 

supergates of the circuit. 

Procedure 4 .1 : 

Step I: With the known probability distribution of the fanout input variables, i 
I 

evaluate Prob{Mo} and Prob{M1} from Equation 4.2 and 4.4. ! 

Step 2: Construct H(F)r, and C(l,g)r according to following rules: 
1 

I 

a) IfProb{Mo} > Prob{M1}, form H(F)r, and C(l,g)rby enumerating pnly 

fanout input combinations that carry a majority of O's. 
i 

I 
i 
' ' 

b) Elseif Prob{M1} > Prob{Mo}, form H(F)r, and C(l,g)rby enumera~mg 
! 

only fanout input combinations that carry a majority of l's. i 

c) Elseif Prob{M1} = Prob{Mo}, form H(F)r, and C(l,g)rby enumerat~ng 

only fanout input combinations that carry about the same numpers 

of O's and l's. This last case is rarely seen except when the fatiout 
. I 

inputs are primary inputs to the circuit. ! 

Step 3: Use H(F)r, and C(l,g)r found in Step 2 and Equation 4.9 to obtain th~ 

I-priority for each of the lines in the supergate under consideration. I 
I 

From Procedure 4.1, one can make the following observations: 

a) The enumeration process required to calculate Equation 4.9, for all cases lljl 
I 

Step 2, is an implicit one (does not require full enumeration). I 
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i 

b) For all cases in Step 2, the computation ofEquation 4.9 (in terms of the nupiber 

of multiplication and addition operations) is reduced approximately by! half 

compared to that of the exact method. 

c) For any signal line, the I-priority (0-priority) is always smaller than the 

corresponding I-controllability (0-controllability). 

For any given signal line in a supergate, it is useful to develop some general 

relationships between the I-controllability and the I-priority, and between the 

I-controllability and the 0-controllability. 

I 

Suppose that a supergate has 2 fanout inputs. Let x be any signal line in this : 

supergate, let c1, c2, c3, and c4 be the elements of C(l,x), and let h1, ~.~.and h4 be t4e 
I 

elements ofH(F). Using Equation 3.9, the I-controllability and 0-controllability ofx:are 

Prob{x = l} = c1h1 + c2~ + c3~ + c4h4 G4.ll) 

Prob{x = O} = (l-c1 )h1 + (l-c2)~ + (l-c3 )~ + (l-c4)h4 (4.12) 

Suppose that~ is the quantity one omits in calculating the I-priority ofx. From 

Equation 4. 9, one has 

P1 (x) = c1h1 + C2~ + C4h4 

Then, the difference between the I-controllability and I-priority ofx is 

Prob{ X = 1 }- p I.x = c1h1 + C2~ + C3h3 + C4h4 - { C1h1 + C2~ + C4h4 } = C3~ 

This difference is maximum when c3 = 1. But 

h3 = 1 - {h1 + h2 + h4} = 1 - sum(H(F)r) 

~4.13) 

G4. t4) 
I 

where the notation sum(A) denotes the algebraic sum of all elements of vector A. If pne 

performs the above the analysis for a larger number of fanout inputs, one will see tha~ the 

maximum difference defined in Equation 4 .14 is independent of the number of the fan:out 

inputs. Therefore, in general, the maximum difference between the I-controllability and 

I-priority of any signal line in the supergate, denoted as Dmax, is 

D max = 1- sum(H(F)r) 
i 
~4.15) 
I 

This maximum difference will get smaller as the difference between Prob{Mo~ and 

Prob{M1} gets larger (see Section 4.3.1). As an example, for any signal x in a supergate 
I 

whose fanout inputs have the probability distributions identical to those in Figure 4.2; Dmax 
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ofx is about 0.16. If the fanout inputs have the probability distributions of Figure 4.t 
i 

where the difference between Prob{Mo} and Prob{M1} is greater, Dmax ofx is about ~.15. 

By following a similar analysis, it can be shown that the maximum difference ' 

between 0-controllability and the 0-priority of any signal is the same as that of Equation 

4.15. 

Let D(x) be the absolute difference between the I-controllability and 

0-controllability of the signal x, then from Equation 4 .11 and Equation 4 .12, one has , 

D(x) = lc1h1 + c2hz + c3h3 + c4h4 - {(l-c1 )h1 + (l-c2 )hz + (l-c3 )h3 + (l-c4 )h4 }I , 

= l2c1h1 + 2c2hz + 2c3~ + 2c4h4 - (h1 + hz + h3 + h4 )1 

= l2c1h1 + 2c2hz + 2c3~ + 2c4h4 - 11 

By using Equation 4.9 in Equation 4.16, one gets 

D(x) = l2(P1 (x)) + 2c3~ - 11 

{4.16) 

(4.17) 

If c3 is equal to 1, then Equation 4.17 is maximum, and is denoted as Dmax(x). : One 

can replace h3 with the result in Equation 4 .14. That is, 

Dmax(x) = l2(P1 (x)) + 2(1 - sum(H(F)r)) - 11 
= l2(P1 (x))- 2(sum(H(F)r)) +11 (4.18) 

Clearly, as Dmax(x) gets smaller, both of the I-controllability and 0-controllability of 
' 

x approach 0.5. 

When Dmax(x) is large then the difference between the controllabilities is also large, 
' 

and the priorities will correctly estimate which one of the controllabilities is larger. When 

Dmax(x) is small it is unlikely the priorities can accurately predict such a relationship. In 

this case, a user-defined threshold value V can be used to distinguish between these cases. 
i 

Let 

Dmax(x) < V < 1 (4.19) 

Experience shows that V = 0.3 is effective. This choice is rather heuristic since V 

represents the maximum difference between the controllabilities of a signal, and if : 

Inequality 4 .19 holds for V = 0.3, it means that the true difference will be more likel~ less 

than that. This point will be clarified further by examples later in this section. 

Since only signal priorities are calculated for guiding the test pattern generati0n, 

one needs some way to interpret the result so that one can monitor how closely the s~gnal 

priorities reflect the relationship between the two controllabilities. Procedure 4.2 belpw 

I 



(the corresponding flowchart is in Figure 4.4) provides useful rules for such a 

interpretation. 

I 
Procedure 4.2: : 

I 
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Step 1) If the I-priority of signal line x, P1(x), is equal or greater than 0.5, the~ the 

corresponding I-controllability is greater than 0.5. t 

Step 2) When the I-priority P1(x) is less than 0.5, one cannot definiteiy state tpat 

the corresponding I-controllability is less than 0.5. Then, perform thei 

following test: 1 

P1(x) + Dmax < 0.5 

where Dmax is-defined by Equation 4.15. 

G4.20) 
I 
I 

' I 
2.1) If Inequality 4.20 holds, then the corresponding I-controllability i!s less 

I 

than O. 5. Else, 

2.2) If Inequality 4.20 does not hold, then calculate the correspondingi 
I 

0-priority, P o(x), from Equation 4.10, and perform the test: 

0.5 <P0(x) 

i 

rj4.21) 
l 

i 2.2.1) Iflnequality 4.21 holds, then the corresponding 
I 

0-controllability is greater than 0.5. Else, perform the (est: 
I 

Po(x) + Dmax < 0.5 ~4.22) 

2.2.2) If Inequality 4.22 holds, then the corresponding 

0-controllability is less than 0.5. Else, go to Step 3. 

Step 3) Iflnequality 4.22 does not hold, then one can consider 2 choices: 

3.1) Pick a threshold value Vas discussed above, evaluate Dmax(x) in 

i 

! 

Equation 4.18. Iflnequality 4.19 holds with the selected V, t~en 

one can assume that both of the controllabilities are about the !ame. 

If the inequality does not hold, go to Step 3 .2. I 

3.2) Compare the priorities. IfP1(x) > Po(x), then assume that the I 

I-controllability is greater than the 0-controllability. Otherwise, 
I 

assume that the 0-controllability is greater than the 1-controllapility. 



Start 

Calculate P1(x) 

Calculate Po(x) 

ChooseV 
Evaluate Dmax(x) 

y 

y 

I-controllability > 0.5 

Stop 

t-----~ I-controllability< 0.5 

y 

Stop 

Stop 

Controllabilities are 
about the same 

Figure 4.4. Flowchart for Procedure 4.2 
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I 

I 

In Procedure 4.2, Step 1 and Step 2.1 are rather obvious. In Step 2.2, for a given 
I 

signal, the computation of the 0-priority is needed only when Inequality 4.20 does ndt 
I 

hold. In Step 3, note that the test for Inequality 4.19 is performed only after other tests in 

Step 1 and Step 2 have been performed. Clearly, at this point, it becomes very likely that 

neither of the controllabilities is extremely high or low because, if this is not the case,. the 

I-controllability of x would have been correctly predicted by the first two steps of the 

procedure. Therefore, if Inequality 4.19 holds with selected value V (0.3 is suggested), it 

is likely that the controllabilities are about the same. 

In the following examples, the computation of the I-priorities is demonstrated. 

The controllabilities are also computed for reference purpose but these values would ·not 

be available during an actual test generation. The 0-priorities are also shown but they are 

computed only when needed as discussed in Procedure 4.2. 

Example 4.3: Using Procedure 4.1, the I-priority for every internal line of the 

circuit in Figure 4.5 is computed. The results for different randomly generated 

fanout input probability distributions are shown in Figures 4.6-8. 

In these figures, one can see that Step 1 of Procedure 4.2 applies to the 

results for: 

a) tl, t2, t4, t5, t6, t9, and tlO ofFigure 4.6 

b) tl, t2, t4, t5, t8, and t9 ofFigure 4.7 

c) tl, t2, t4, and t5 of Figure 4.8. 

That is, the 1-controllabilities of all of these signals will be correctly predicted to 

be greater than O. 5. 

Step 2.2.1 of Procedure 4.2 applies to the results for: 

a) t7, t8, tl 1, and t13 of Figure 4.6 

b) t6, and t13 of Figure 4.7 

c) t13 of Figure 4.8 

That is, the 1-controllabilities of all of these signals will be correctly predicted to 

be less than O. 5. The result of the above analysis is summarized in Figure 4. 9: 
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Figure 4.5. Circuit for Example 4.3 
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: 

Figure# I -controllability I-controllability Dmax(x) Notes 
correctly correctly 
predicted to be predicted to be I 

> 0.5 by Step I < 0.5 by Step I 

of Procedure 2.2.1 of 
4.2 Procedure 4.2 

4.6 tl, t2, t4, t5, t6, t7, t8, tl 1, tl3 Dmax(t3) = 0.2732 Step 3 .1 appl~es 
t9, tlO Dmax(tl2) = 0.1332 to t3, and t12'. 

4.7 tl, t2, t4, t5, t8, t6, t13 Dmax(t3) = 0.0312 Step 3 .1 applies 
I 

t9 Dmax(tl 0) = 0.2312 to t3, tlO, tl 1\, 
Dmax{tl I) = 0.1312 and tl2. I 

Dmax{tl2) = 0.1512 

4.8 tl, t2, t4, t5 tl3 Dmax(t3) = 0.0576 Step 3 .1 applies 
I 

Dmax(t6) = 0.3376 to t3, t8, t9, ! 

Dmax(t7) = 0.3376 tlO, tl 1, and I 
Dmax(t8) = 0.1376 tl2. i 
Dmax(t9) = 0.1376 Step 3 .2 applies 
Dmax(tlO) = 0.2176 to t6, and t7 t 

I 

Dmax{tl I)= 0.2576 ( signals with [ 
D~{tl2) = 0.2376 Dmax(x) > 0.3). 

Figure 4.9. Overall result for Example 4.3 
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I 

Step 3.1 of Procedure 4.2 applies to some signals in these figures. D~(x), 
' 

the left side oflnequality 4.19, is evaluated for these signals (see Figure 4.9). 
1 
Note 

! 
that if one chooses V = 0. 3, Inequality 4 .19 will hold for all signals in Figures 

I 

4.6-7, and most of the signals in Figure 4.8. This means that the controllabilities of 

these signals are predicted to be about the same. For t6 and t7 of Figure 4.8,: 
l 

DmaxCt6) and Dmax(t7) are both> V = 0.3. In this case Step 3.2 can apply, and the 
. . I 

relative magnitudes ofthe priorities P1(x) and Po(x) can be used. Thus, from· 

Figure 4. 8, the 1-controllabilities of both t6 and t7 are predicted to be greater than 

the 0-controllabilities. Note that Procedure 4.2 fails to identify the fact that the 
! 

controllabilities of both t6 and t7 are about the same. However, such a failure is 

not significant since it will not seriously matter which values of t6 and t7 the ~est 

generator chooses to guide the signal justification process. 

Keep in mind that to accelerate a test generation, only signal priorities (not 

signal controllabilities) are calculated. These values will be used to guide the :fault 

propagation and signal justification processes to prevent the test generation fitom 
I 
I 

becoming exhaustive. For instance, if tl2=0 in Figure 4.5 is to be justified, o,e has 
I 

two choices for (t5, tlO). They are (0, 0) and (1, 1). In this case, and if the t¢st 
I 

generator is set up to examine the inputs of a logic gate based on a top-down I 
i 

procedure (i.e., the input signal located on the topmost of the schematic of a logic 
I 

gate is examined first), and if the signal priority values shown in Figure 4. 8 is :used, 
I 

t5=1 will be chosen because the I-priority oft5 is greater than 0.5, which predicts 

that the actual I-controllability is greater than 0.5 (see Step 1 of Procedure 4.;2). 

In summary, the new approach of calculating the signal priorities for i 
I 

predicting the controllabilities gives accurate information on all but 2 out of 319 
I 

signals (t6 and t7). If the exact controllabilities were calculated, roughly 100% 

more computation would have been required. 

Example 4.4: This example uses a part of an actual circuit that is now maintai~ed 
I 

at the Oklahoma City Air Logistics Center, Tinker Air Force Base. The circuit has 
I 

7 fanout input variables (see Figure 4.10). The simulated results are shown~ 

I 
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· Figure~~rn:· Circuit for Example 4.4 ··· --· 
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Figures 4 .11-13. In these figures, similar analysis using Procedure 4 .2 is 

performed as in Example 4.3, and the overall result is shown in Figure 4.14. 

4.4 Preferred Overall Procedures ofDATPG 

Given a digital circuit of either combinational or sequential type and a fault lisf 
' 

containing single stuck-at faults, the necessary steps to obtain an input test sequence to 

detect each of the faults are described in Procedures 4.3-4 below. 

Procedure 4.3 (for a combinational circuit): 
I 

Step 1: Determine the supergate structure of the circuit, and compute the si~al 

priorities for all internal signals for each supergate of the circuit. The : 

necessary procedure for determining the supergates is adapted from 

PREDICT [Seth et al. 1985]. 

94 

Step 2: Using the D-algorithm [Roth 1966], and the 5-value logic, activate an~ 

propagate the fault to at least one of the primary outputs. Control theifault 

propagation and signal justification processes by employing the signal i 

priorities found in Step 1. 

Procedure 4.4 (for a seguential circuit): 

Step 1: Cut the feedbacks to obtain an equivalent iterative array circuit of arbi~rary 
I 

length p by using the procedure described by Putzolu and Roth [ 1971 ]I ( see 
. ! 

Section 3 .2). i 

Step 2: From one copy of the array, determine the supergate structure of the ) 

circuit, and compute the signal priorities for every line in this copy of $e 

array. The necessary procedure for determining the supergates is adaJted 
I 

from PREDICT [Seth et al. 1985]. 1 

Step 3: Using the D-algorithm [Roth 1966], and the 5-value logic, activate an~ 

propagate the fault to at least one of the primary outputs. Control theifault 

i 
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Figure 4.12. Controllabilities and priorities ofExample 4.4; Prob{MO}>Prob{Ml}; 
Prob{MO }=0.9996, Prob{Ml }=.9953, Prob{Fl =O }=.0668, 
Prob{F2=0}=.4175, Prob{F3=0}=.6868, Prob{F4=0}=.589, 
Prob{F5=0}=.9304, Prob{F6=0}=.8462, Prob{F7=0}=.5269; 
Dmax = 0.2967 
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Figure 4.13. Controllabilities and priorities ofExample 4.4; Prob{MO}=Prob{l\11}; 
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Prob{F7=0}= 0.5; Dmax = 0.4531 , 
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Figure# I -controllability I-controllability Dmax(x) Notes 
correctly correctly 
predicted to be predicted to be 
> 0.5 by Step 1 < 0.5 by Step ' 

of Procedure 2.2.1 of 
4.2 Procedure 4.2 

4.11 tl, t2, t3, t4, t7, t5, t6, t15, t20, Dmax(t9) = 0.2058 Step 3 .1 applies 
t8, tl l, tl2, t23 Dmax(tlO) = 0.1958 to t9, tlO, t13~ 
t14, t16, t17,· Dmax(t13) = 0.1158 and t18. 
t19, t21, t22, . Dmax(t18) = 0.1058 
t24 

4.12 tl, t2, t4, t5, t8, t3, t6, t7, t13, Dmax(t9) = 0. 7538 Step 3 .2 applies 
tlO, tl 1, t12, t15, t23 Dmax(t17) = 0.7538 to t9, t17, t19~ 
t14, t16, t18, Dmax(t19) = 0.8338 and t21. 
t20, t22, t24 Dmax(t21) = 0.7138 

4.13 t4, t8, t12, tl6, t23 Dmax(tl) = 0.8062 Step 3 .1 appli¢s 
t22, t24 Dmax(t2) = 0.8062 to t6, t7, tl3, • 

' Dmax(t3) = 0.3062 t15. Step 3.2, 
Dmax(t5) = 0.8062 applies to : 

Dmax(t6) = 0.0862 signals with 
Dmax(t7) = 0.1262 Dmax(x) > 0.3. 
Dmax(t9) = 0.4462 
Dmax(tlO) =0.7262 
Dmax(tl 1) = 0.8062 
Dmax(t13) = 0.2062 
Dmax(tl4) = 0.8062 
Dmax(t15) = 0.1262 
Dmax(tl 7) = 0.6062 
Dmax(t18) = 0.6062 
Dmax(t19) = 0.5062 
Dmax(t20) = 0. 7062 
Dmax(t21) = 0.5062 

Figure 4.14. Overall result for Example 4.4 



propagation and signal justification processes by employing the signal 

priorities found in Step 2. 

Step 4: If necessary, perform the justification process according to justification 

criteria specified in [Putzolu and Roth 1971] by using the 9-value logic 
! 
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instead of the 5-value logic system. Use the signal priorities compute~ in 

Step 2 to guide the fault propagation and signal justification. 

Step 5: Perform the Eichelberger's simulation [Eichelberger 1965] to validate the 

test sequences. Reject any sequence that creates races and hazards. 

In the above procedures, the signal priorities are used to replace the 

controllabilities. For details of other steps, the reader is referred to the respective 

references summarized in Chapter 3. 

Example 4. 5: To show additional detail on how the signal priorities are used to 

accelerate the test generation, Procedure 4.3 was used to detect the sal fault on 

line tl3 of the circuit used in Example 4.3 (see Figure 4.4). In this test pattern 

generation example, there are three cases to be considered: 

a) The test generation is performed without using signal priorities. The . 
I 

backtracking effort in this case is unguided and depends only tjn the 

topology of the circuit. 

b) The test generation is guided by only one signal priority and that priority 

incorrectly predicts the exact controllability. The signal priority for 

line t5 is incorrectly used in this example. The backtracking effort 

in this case is shown to be exhaustive and greater than Case a. : 
I 

' 

c) The test generation is guided by only one signal priority that corre~tly 
i 

predicts the exact controllability. As in Case b, the signal priof ty 

of line t5 is used. Compared to the other two cases, the ' 

backtracking effort in this case is found to be significantly less. 

In all cases, first, the backtracking effort made by the test generator is. 
' 

described in terms of the number of the combinations of all signal lines that th~ test 
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generator tries before it finds a primary input combination for detecting the faµlt. 
I 

Second, it is assumed that the signal distributions of the fanout inputs are ideittical; 
. i 

therefore, the signal priority values shown in Figure 4.7 will be used. Refer to the 
' 

Appendix for detailed results. In the Appendix, Figures A.1-3 show the resulfs for 

three cases presented below. 

Case a: The test generation is performed without using the priority, i.~., 

there is no guidance. The test generator first sets line tl3 to OJ then 

performs the signal justification toward the circuit's inputs. When a 

conflict is found, the test generator backtracks toward the output of 
I 

the circuit to reselect different values to resolve the conflict. The 

process continues until the test pattern that can set line t 13 to O is 

found. The result of the entire process can be followed in Figure 
i 

A. I in the Appendix. The desired test pattern is (Fl, F2, F3, F4, 

F5, pl, p2, p3) = (I, 0, 0, 0, I, 0, 0, I ). The total number of · 

all-signal combinations the test generator tries before the valid jinput 

test pattern above is 298. This number depends on the topology of 

the circuit. 

Case b: In this case, t5 will•be set to a fixed value to guide the test 
' 
I 

generation. · Suppose that, for some reason, the priority incorr~ctly 
I 
I 

predicts the exact I-controllability of line t5. Instead of using ts= I, 
I 

the test generator uses t5=0 to guide the search. The result is that 

the test generation degenerates into an exhaustive process, anq 
I 
I 

finds no input pattern for detecting the sal fault on line tl3. Fpr 

this test generation, the total number of all-signal combination~ is 

576 (see Figure A.2 in the Appendix). I 

After finding no input pattern to detect the fault on, !13, 

the test generator, by default, will have to backtrack, switch t5, to I, 
! 
' 

and resume the test generation. 

Case c: In this case, the test generator uses t5=1 according to the val1.1e in 
i 

Figure 4. 7. Since the test generation is correctly guided this Te, 

I 

I 
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the total number of all-signal combinations that the generator tries 

is 11. This number is the smallest compared to other two case$. 
I 

The input test pattern required to detect the fault is the same as that 

of Case a. This test generation can be followed in Figure A.3 tn the 

Appendix. 

Example 4.6: Two more test generations are performed in this example. The same 

circuit, fault, and signal priority values as those in Example 4. 5 are used. The 

difference is that the signal priority ofltne t9 is used. This example considers '.two 

cases: a) t9=0, and b) t9=1. Refer to Figures A.4-5 in the Appendix for detailed 

results of the two cases presented below. 

Case a: With t9=0, as the higher value of 0-priority in Figure 4. 7 would 

suggest, the test generator tries 261 all-signal combinations before 

it terminates the process (see Figure A.4 in the Appendix). The 

desired test pattern is (1, 0, 0, 0, 1, 0, 0, 1). 

Case b: With t9=1, 455 all-signal combinations are examined before the 

test generation is finished (see Figure A.5 in the Appendix). The 

desired test pattern is (1, 0, 1, 0, 0, 0, 0, 1). Note that the soltjtion 
I 

to this test generation will not be unique. Compared to Case ~ 
I 

more signal combinations are examined with t9 = I because the 

I-priority oft9 is smaller than its 0-priority as shown in Figure: 4.8. 



CHAPTERV 

CONCLUSIONS AND FUTURE WORK 

5 .1 Summary and Conclusions 

The goal of this research was to seek a more efficient technique for accelera~ing an 

existing Automatic Test Pattern Generation (ATPG) algorithm for detecting single : 

stuck-at faults in digital circuits. The effort was directed at reducing the overall testing· 

cost and producing high-quality input test patterns that would detect a high percentage of 
I 

faults. 

Chapters 1 and 2 provided an overview of the test pattern generation process. In 
I 

Chapter 1, major issues such as deterministic versus pseudorandom ATPG, method~ for 

handling sequential circuits, and research trends in the DATPG were discussed. In 

Chapter 2, important ideas and tools such as the single stuck-at fault model, various logic 
i 

systems, signal probabilities, the iterative array model, and the Eichelberger's simulafor 
i 

were reviewed. 

Chapter 3 presented a number ofDATPG algorithms that had been develop~d over 
I 

the years. Because of the increasing complexity of digital systems, current research! 
' 

activity has focused on the acceleration of the existing DATPG algorithms. With this in 
I 

mind, Chapter 3 investigated the progress that had been made so far. This progress is 
I 

briefly summarized below. ·. · I 

One of the very first DATPG algorithms called the "D-algorithm" was designed by 

Roth [1966]. The D-algorithm was considered significant because it was formally pfoven 

to be a complete algorithm, which, for a given fault, guaranteed to find an input test ; 

pattern if one existed. The basic feature of the D-algorithm was that its fault proces~ing 

started at the fault's location, and advanced forward to the primary outputs and bacKWard 
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to the inputs of the circuit. However, for a certain type of combinational circuit, thisl 

processing strategy became very inefficient due to the excessive number of backtrackings 

required during the determination of the desired input test patterns. This problem made 

the D-algorithm potentially an exhaustive algorithm. 

In 1981, an algorithm called 11PODEM11 (path-oriented decision making) was 

developed to overcome the deficiency of the D-algorithm [ Goel 1981]. Instead of sU;Uting 

the fault processing at the fault's location, PO DEM starts at the primary inputs of the 

circuit and advances toward the primary outputs of the circuit. PO DEM also imposes 

several conditions for early termination of the search process whenever the fault's effect is 

found not observable. 

By employing the above features, Goel showed that, for a certain type of 

combinational circuit, PODEM potentially could prevent the search for input test patterns 

from degenerating into an exhaustive process. Thus, the performance of PO DEM was 

more efficient compared to that of the D-algorithm. However, POD EM still faced the 

same problem as did the D-algorithm for a more general class of combinational circui~s. 

Two years later, FAN (fanout-oriented test generation algorithm), developed by 

Fujiwara and Shimono [ 1983 ], introduced a new search strategy that further improved the 

performance of test generation. Based on the fanout structure of the circuit, F AN's search 

mechanism performs on multiple paths in the circuit to speed up the fault processing. · 

Upon meeting a fanout signal that is fed by a fanout-free sub-circuit and not accessible by 

the fault effect, FAN postpones the search process for this signal so that it can work on 

other tasks. 

Efforts to accelerate existing DATPG algorithms summarized so far have focused 

on how to guide the search process so that it would not degenerate into an exhaustive 

procedure. These acceleration strategies were based on a topological analysis of the 

circuit. This research has shown that these search strategies also had a weakness. T~t is, 

the topological analysis wasted time examining test patterns which might never occul1 due 

to their small probabilities of occurrence. 

Nevertheless, there were other search acceleration techniques available. These 

techniques rely on probabilistic measures such as the signal II controllabilities II of signal 
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! 
lines in the circuit. Agrawal [1985] was one of the pioneers in promoting the probabilistic 

guidance of the search process in the DATPG. In his paper, titled "Probabilistically 

Guided Test Generation," Agrawal experimentally showed that signal controllabilities 

guided the search process more efficiently than did the search strategy of POD EM. 

The major problem with Agrawal's probabilistic approach is that the computation 

of the exact signal controllabilities increases exponentially with the number of fanout input 

variables of the circuit. Research by [Savir et al. 1984, Seth et al. 1985, and Chakravarty 

and Hunt 1990] proposed ways to improve the efficiency of signal controllability 

computation, but the result was still far from being satisfactory. For example, very often, 

the controllability was severely underestimated by using the method proposed by Savir. 

Also, the method proposed by Chakravarty and Hunt relied heavily on redundant 

subcircuits which, as as discussed in this research, will not normally appear in 

well-designed circuits. 

Chapter 4 presented the major contribution of this research. Instead of trying to 

approximate the signal controllabilities as many other researchers had proposed, this 

research introduced new parameters called "signal priorities" which serve the same 

purpose as signal probabilities (i.e., guiding the test generation process), but require 

significantly less computational effort. 

The new signal priorities utilize the "minimum-value distributions" [Soong 1981] 

of the fanout input variables of the circuit. Based on these distributions, only those input 

test patterns which contribute a significant weight to the computation of the controllability 

of a signal line are enumerated; the other input test patterns are totally ignored in the , 

process. As a result, the computation process is obviously not exhaustive. 

This research shows that the amount of computation for evaluating a signal 

priority is about half that of the exact signal controllability. For a large digital circuit ~th 

many fanout input variables, such a reduction in the computation can significantly 

accelerate the overall test pattern generation process. Also, this research has produced 

two methods for evaluating the maximum difference between the I-priority and the exact 

I-controllability for any given signal, and the maximum difference between the 
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controllabilities of a signal in terms its I-priority. These allow a more precise estimat~ of 
I 

the exact controllabilities from the priorities. i 
i 

To demonstrate the computation and utility of the I-priority, Chapter 4 included 

several examples. One example is a part of a real circuit which has been maintained * the 

Oklahoma City Air Logistics Center, Tinker Air Force Base. The results consistentl)i 

show that signal priorities can replace the traditional exact controllabilities and 

significantly accelerate the test pattern generation process. 

5.2 Future Work 

There are at least two issues that should be examined in future research: 

I) Although the computation of signal priorities is far more efficient than that 1of 

the exact signal controllabilities, this research has shown that the amount of the 

computation can be further reduced. Experimental results have shown that as the 

difference between Prob{M1 } and Prob{Mo} becomes larger, then more rows ofthe 1 

matrix H(F) can be neglected in the computation of signal priorities. Also, the use ofhhe 

probabilities of individual fanout input variables may improve the process. Thereforel 
' ' 

further reduction in the computation may be accomplished if the effect that the I 

minimum-value distributions have on the construction of matrix H(F)r is more thoroughly 

analyzed. 
' 

2) It was·shown that the enumeration of fanout input variables in the computation 

of the signal priorities was an implicit process in all cases. Nevertheless, it is a concern 

that the enumeration process may still be lengthy when the number of fanout input 

variables is extremely large. Therefore, it is worthwhile to look into the complexity cif the 
I 
I 

computation under such a condition. 
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(fl,f2,f3,f4,f3,pl,p2,p3,tl,t2,t3,t4,t5,t6,t7,t8,t9,t10,tl l,tl2,tI3) = I 

( x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0 ), ( x,x,x,x,x,x,x,x,x,x,x,x, 0 ,x,x,x,x, 0, 0, 0, 0 ), : 
( x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0,x,x, 0, 0, 0, 0 ), ( x, 0, 0,x,x,x,x,x,x,x,x,x, 0, 0, O,x,x, 0, 0, 0, 0 ), i 
(x,O,O,O,O,x,x,x,x,x,x,x,0,0,0,x,x,0,0,0,0), (x,0,0,0,0,x,x,x,x,x, 1, l,0,0,0,x,x,0,0,0,0),i 
(x,0,0,0,0,x,x,x,O,O,l,l,O,O,O,x,x,O,O,O,O), (0,0,0,0,0,x,x,0,0,0,l,l,0,0,0,x,x,0,0,0,0), 
(0,0,0,0,0,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (l~0,0,0,0,x,x,O,O,O, 1, l,0,0,0,x,x,O,O,O,O)~ 
(x,O,O,O,O,x,x,x,O,l,l,l,O,O,O,x,x,010,0,0), (O,O,O,O,O,x,x,O,O,l,l,l,O,O,O,x,x,O,O,O,O)i 
(0,0,0,0,0,x,x, 1,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (l,O,O,O,O,x,x,0,0, 1, 1, l,0,0,0,x,x,O,O,O,O)~ 
(x,0,0,0,0,x,x,x, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (0,0,0,0,0,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O)~ 
(O,O,O,O,O,O,x,O,l,O,l,l,0,0,0,x,x,0,0,0,0), (O,O,O,O,O,l,x,O,l,O,l,l,O,O,O,x,x,O,O,O,O)~ 
(0,0,0,0,0,x,x, 1, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (0,0,0,0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(0,0,0,0,0, l,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (l,0,0,0,0,x,x,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0)~ 
(l,0,0,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (l,0,0,0,0,0, 1,0, 1,0, 1, l,O,O,O,x,x,0,0,0,0)l 
(l,O,O,O,O,O,l,O,l,O,l,l,O,O,O,O,l,O,O,O,O), (l,O,O,O,O,O,l,O,l,O,l,l,O,O,O,l,O,O,O,O,O), 
(l,0,0,0,0, l,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (l,0,0,0,0, 1, 1,0, 1,0, 1, l,0,0,0,x,x,O,O,O,O)~ 
(l,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (l,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0j, 
(x,0,0, 1, l,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), (x,0,0, 1, l,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O),: 
(x,0,0, 1, l,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x,0,0,0, 1, l,0,0,0,x,x,0,0,0,0); 
(0,0,0, 1, 1, l,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l ,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O)l 
(O,O,O,l,l,l,x,l,O,O,l,l,0,0,0,x,x,0,0,0,0), (l,O,O,l,l,x,x,O,O,O,l,l,O,O,O,x,x,O,O,O,O)i 
(l,O,O,l,l,l,x,O,O,O,l,l,0,0,0,x,x,0,0,0,0), (l,O,O,l,l,l,l,O,O,O,l,l,O,O,O,x,x,0,0,0,0)l 
(1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,0, 1,0,0,0,0), (1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0), 
(x,0,0, 1, l,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x,0,0, 1, 1, l,O,O,O,x,x,0,0,0,0); 
(O,O,O,l,l,l,x,O,O,l,l,l,O,O,O,x,x,O,O,O,O), (O,O,O,l,l,l,O,O,O,l,l,l,0,0,0,x,x,O,O,O,O)~ 
(0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), (0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0t 
(0,0,0, 1, 1, 1, 1,0,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), 
(O,O,O,l,l,l,l,O,O,l,l,l,O,O,O,l,O,O,O,O,O), (O,O,O,l,l,x,x,l,O,l,l,l,0,0,0,x,x,0,0,0,0)~ 
(0,0,0, 1, 1, l,x, 1,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1,1,0, 1,0, 1, 1, 1,0,0,0,x,x,0,0,0,0)~ 
(0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), (0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0~, 
(O,O,O,l,l,l,l,l,O,l,l,l,O,O,O,x,x,O,O,O,O), (O,O,O,l,l,l,l,l,O,l,l,l,O,O,O,O,l,O,O,O,O)r 
(O,O,O,l,l,l,l,l,O,l,l,l,O,O,O,l,O,O,O,O,O), (l,O,O,l,l,x,x,O,O,l,l,l,0,0,0,x,x,0,0,0,0)~ 

Figure A. I. Testpattern generation without guidance 
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: 
(1,0,0, I, I, l,x,0,0, I, I, l,0,0,0,x,x,O,O,O,O), (1,0,0, I, I, l,0,0,0, I, I, l,0,0,0,x,x,O,O,O,O); 
(l,O,O,l,l,l,O,O,O,l,l,l,O,O,O,O,l,O,O,O,O), (l,O,O,l,l,l,O,O,O,l,l,l,O,O,O,l,O,O,O,O,O)l 
(x,0,0, I, l,x,x,x, 1,0, I, l,O,O,O,x,x,0,0,0,0), (0,0,0, I, l,x,x,0, 1,0, I, l,O,O,O,x,x,0,0,0,0),I 
(0,0,0, I, 1,0,x,O, 1,0, I, l,O,O,O,x,x,0,0,0,0), (0,0,0, I, l,x,x, I, 1,0, I, 1,0,0,0,x,x,O,O,O,O)J 
(0,0,0, I, 1,0,x, I, 1,0, I, l,0,0,0,x,x,O,O,O,O), (1,0,0, I, l,x,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O)J 
(1,0,0, I, 1,0,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O), (1,0,0, I, 1,0, 1,0, 1,0, I, 1,0,0,0,x,x,O,O,O,O); 
(l,O,O,l,l,O,l,O,l,O,l,l,O,O,O,O,l,O,O,O,O), (l,O,O,l,l,O,l,O,l,O,l,l,O,O,O,l,O,O,O,O,O)~ 
(x, I, l,x,x,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), (x, I, l,O,O,x,x,x,x,x,x,x,O,O,O,x,x,0,0,0,0), • 
(x, I, 1,0,0,x,x,x,x,x, I, l,O,O,O,x,x,O,O,O,O), (x, I, 1,0,0,x,x,x,0,0, I, l,0,0,0,x,x,O,O,O,O), 1 

(0, I, 1,0,0,x,x,O,O,O, I, l,0,0,0,x,x,O,O,O,O), (0, I, 1,0,0,x,x, 1,0,0, I, l,0,0,0,x,x,0,0,0,0),: 
(1, I, 1,0,0,x,x,O,O,O, I, 1,0,0,0,x,x,O,O,O,O), (x, I, 1,0,0,x,x,x,O, I, I, 1,0,0,0,x,x,O,O,O,O),i 
(0, I, 1,0,0,x,x,O,O, I, I, l,0,0,0,x,x,0,0,0,0), (0, I, 1,0,0,x,x, 1,0, I, I, l,0,0,0,x,x,O,O,O,O),: 
(I, I, 1,0,0,x,x,O,O, I, I, 1,0,0,0,x,x,O,O,O,O), (x, I, 1,0,0,x,x,x, 1,0, I, 1,0,0,0,x,x,O,O,O,O),i 

I 

(0, 1, 1,0,0,x,x,O, 1,0, I, l,O,O,O,x,x,0,0,0,0), (0, I, 1,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),[ 
(0, I, 1,0,0, l,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x, I, 1,0, I, l,O,O,O,x,x,0,0,0,0),1 
(0, 1, l,0,0,0,x, I, 1,0, I, 1,0,0,0,x,x,O,O,O,O), . (0, 1, 1,0,0, 1,x, 1, 1,0, I, l,0,0,0,x,x,O,O,O,O),i 
(I, I, 1,0,0,x,x,O, 1,0, 1, l,O,O,O,x,x,O,O,O,O), (1, I, 1,0,0,0,x,O, 1,0, I, 1,0,0,0,x,x,0,0,0,0),i 
(1, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (I, 1, 1,0,0,0, 1,0, 1,0, I, 1,0,0,0,0, 1,0,0,0,0); 
(1, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (I, I, 1,0,0, 1,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O)J 
(1,1,l,0,0,1,l,O,l,O,l,1,0,0,0,x,x,O,O,O,O), (1,1,1,0,0,1,1,0,l,O,l,1,0,0,0,0,l,O,O,O,O)~ 
(1, I, 1,0,0, I, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, I, I, 1, l,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O),; 
(x, I, I, I, l,x,x,x,x,x, I, l,O,O,O,x,x,0,0,0,0), (x, I, I, I, l,x,x,x,0,0, I, 1,0,0,0,x,x,O,O,O,O),: 
(0, I, 1, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, I, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
(0, I, I, I, l,x,x, 1,0,0, 1, 1,0,0,0,x,x,0,0,0,0), (0, 1, I, 1, I, l,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
(1, I, I, I, l,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O),! 
(1,1,1,1,l,l,1,0,0,0,1,l,0,0,0,x,x,O,O,O,O), (1,1,1,1,1,1,1,0,0,0,1,1,0,0,0,0,1,0,0,0,0); 
(I, 1, I, 1, 1, I, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, 1, 1, 1, 1,x,x,x,O, I, 1, 1,0,0,0,x,x,O,O,O,O),( 
(0, 1, I, I, l,x,x,0,0, I, I, l,O,O,O,x,x,0,0,0,0), (0, I, 1, I, I, l,x,0,0, I, I, 1,0,0,0,x,x,O,O,O,O),i 
(O,l,1,1,l,l,O,O,O,l,l,l,0,0,0,x,x,O,O,O,O), (O,l,l,l,l,l,O,O,O,l,l,l,O,O,O,O,l,O,O,O,O)J 
(O,l,l,1,1,1,0,0,0,l,l,l,0,0,0,1,0,0,0,0,0), (O,l,l,l,l,l,l,O,O,l,l,l,O,O,O,x,x,O,O,O,O)J 
(0,1,1,l,l,l,l,O,O,l,l,1,0,0,0,0,l,O,O,O,O), (O,l,l,l,l,l,l,O,O,l,l,l,O,O,O,l,0,0,0,0,0)t 
(0, 1, I, I, l,x,x, 1,0, I, I, 1,0,0,0,x,x,O,O,O,O), (0, I, I, I, I, l,x, 1,0, I, I, l,0,0,0,x,x,0,0,0,0),I 
(0, I, I, I, I, 1,0, 1,0, I, I, 1,0,0,0,x,x,O,O,O,O), · (0, I, I, I, I, 1,0, 1,0, I, I, 1,0,0,0,0, 1,0,0,0,0)J 

. . I 

(O,l,l,l,l,l,O,l,O,l,l,l,O,O,O,l,O,O,O,O,O), (O,l,l,l,l,l,l,l,O,l,l,l,O,O,O,x,x,O,O,O,O)~ 
(0, I, I, I, I, I, I, 1,0, I, I, 1,0,0,0,0, 1,0,0,0,0), (0, I, I, I, I, I, I, 1,0, I, I, 1,0,0,0, l,0,0,0,0,0)11 

(I, I, I, I, l,x,x,0,0, I, I, l,0,0,0,x,x,O,O,O,O), (1, 1, I, I, I, l,x,0,0, I, I, 1,0,0,0,x,x,O,O,O,O), 
(l,l,l,l,l,l,O,O,O,l,l,l,O,O,O,x,x,O,O,O,O), (l,l,l,l,l,l,O,O,O,l,l,l,O,O,O,O,l,0,0,0,0)~ 
(I, I, I, I, I, l,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), (x, I, I, I, l,x,x,x, 1,0, I, 1,0,0,0,x,x,O,O,O,O),i 
(0, I, 1, I, l,x,x,O, 1,0, I, l,0,0,0,x,x,O,O,O,O), (0, I, I, I, 1,0,x,O, 1,0, I, l,O,O,O,x,x,0,0,0,0),f 
(0, 1, I, I, l,x,x, I, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (0, I, I, I, 1,0,x, I, 1,0, I, l,O,O,O,x,x,0,0,0,0),] 
(1, I, I, I, l,x,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O), (I, I, I, I, 1,0,x,O, 1,0, I, 1,0,0,0,x,x,O,O,O,O),i 
(I, I, I, I, 1,0, 1,0, 1,0, I, 1,0,0,0,x,x,O,O,O,O), (I, I, I, I, 1,0, 1,0, 1,0, I, 1,0,0,0,0, 1,0,0,0,0); 
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(1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
I 

(x,O, 1,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x,0, 1,0, 1,x,x,x,x,x,x,x,0, 1, 1,x,x,0,0,0,0), 
(x,O, 1,0, 1,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),. 
(0,0, 1,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0)/ 
(1,0, 1,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),; 
(0,0, 1,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),, 
(0,0, 1,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 1 

(0,0, 1,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(1,0, 1,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0),! 
(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1,0, 1,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),i 
(1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0),: 
(1,0,1,0,1,1,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0), (x,0,1,1,0,x,x,x,x,x,x,x,0,1,l,x,x,0,0,0,0), 
(x,O, 1, 1,0,x,x,x,x,x, 1, 1,0, 1, 1:·x,x,O,O,O,O), . (x,0, 1, 1,0,x,x,x,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 

I 

(0,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), ! 
(0,0, 1, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(1,0,1,1,0,x;x,0,0,0,1,1,0,1,1,x,x,O,O,O,O), (1,0,1,1,0,1,x,O,O,O,l,1,0,1,1,x,x,O,O,O,O); 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0,0,0,0),: 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,0, 1, 1,0,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), i 
(0,0, 1, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),. 
(0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, l,0,0,0,0), 1 

(0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),[ 
(0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0),: 
(0,0, 1, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),' 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0),! 
(1,0, 1, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), · 
(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 1 

(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,O, 1, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), ! 
(O;O, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(0,0, 1, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), i 

I 
(1,0, 1, 1,0,x,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), ·1 

(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x, 1,0,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), I 

(x, 1,0,0, 1,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), ! 

(0, 1,0,0, 1,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
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(x, 1,0,0, 1,x,x,x, 1,0, 1, l,O, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, l,O,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,O,O,O,O), (1, 1,0,0, 1,x,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, l,0,0,0,0), (1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(1, 1,0,0, 1, 1,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0)~ 
(x, 1,0, 1,0,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x, 1,0, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x, 1,0, 1,0,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x,0,0,0, 1, 1, 0, 1, 1,x,x, 0,0, 0, 0), (0, 1, 0, 1, O,x,x, 1, 0, 0, 1, 1, 0, 1, 1,x,x, 0,0, 0, 0), 
(0, 1,0, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1, 0, 1,0, 1,x, 0,0, 0, 1, 1,0, 1, 1,x,x,0,0,0,0), ( 1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0, 0), 
(1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x,1,0,1,0,x,x,x,0,1,1,1,0,1,1,x,x,O,O,O,O), (O,l,0,1,0,x,x,0,0,1,1,1,0,1,1,x,x,O,O,O,O), 
(0, 1,0, 1,0, 1,x,0,0, L 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, l,0,0,0,0), (0, 1,0, 1,0, l,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0, 1,0, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1, 1,0, 1,0,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x, 1,0, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,x,x,O, 1,0, l, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
( 1, 1,0, 1,0, 0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), ( 1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x,x,x,x,x,x,x,x,x,x,x,x,1,x,x,x,x,1,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x,1,0,1,x,x,1,0,0,0), 
(x,0,0,x,x,x,x,x,x,x,x,x, 1,0, l,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0,0, 1,x,x,x,x,x,0,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0,0, 1,x,x, 1, 1, 1,0,0, 1,0, l,x,x, 1,0,0,0), (1,0,0,0, 1,0,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0),. 
(1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), 
(1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1, 1,0, 1,0,0,0) 
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(fl ,:t2,fl,f4,5,p 1,p2,p3,tl ,t2,t3,t4,t5,t6,t7,t8,t9,tl O,tl 1,tl2,t13) = 
( x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0 ), ( x,x,x,x,x,x,x,x,x,x,x,x, 0,x,x,x,x, 0, 0, 0, 0 ), 
( x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, O,x,x, 0, 0, 0, 0 ), ( x, 0, 0,x,x,x,x,x,x,x,x,x, 0, 0, O,x,x, 0, 0, 0, 0 ), 
(x, 0, 0, 0, O,x,x,x,x,x,x,x, 0, 0, O,x,x, 0, 0, 0, 0), (x, 0, 0, 0, O,x,x,x,x,x, 1, 1, 0, 0, O,x,x, 0, 0, 0, 0), 
{x,0,0,0,0,x,x,x,O,O, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,O,O,O, 1, 1,0,0,0,x,x,O,O,O,O),: 
{0,0,0,0,0,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0,0,0,x,x,O,O,O, 1, 1,0,0,0,x,x,0,0,0,0), 1 

{x,0,0,0,0,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,O,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), ! 
{0,0,0,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), {l,0,0,0,0,x,x,0,0, 1, 1, l,O,O,O,x,x,0,0,0,0), 1 

{x,0,0,0,0,x,x,x, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
{0,0,0,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0, 1,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0),l 
{0,0,0,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0;0~0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),i 
(0,0,0,0,0, 1,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), {l,0,0,0,0,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),! 
{l,0,0,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0),: 
{l,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (1,0,0,0,0,0, 1,0, 1,0, 1, l,0,0,0, 1,0,0,0,0,0),! 
{l,0,0,0,0, 1,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), {l,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
{l,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (1,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0),: 
(x,0,0, 1, 1,x,x,x,x,x,x,x,0,0,0,x,x,0,0,0,0), (x,0,0, 1, 1,x,x,x,x,x, 1, 1,0,0,0,x,x,0,0,0,0), \ 
(x,0,0, 1, 1,x,x,x,0,0, 1, 1,0,0,0,x,x,Q,O,O,O), (0,0,0, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
{0,0,0, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), i 
{0,0,0, 1, 1, 1,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
{l,0,0, 1,1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,x,x,0,0,0,0), 
{l,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,0, 1,0,0,0,0), (1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0),! 
(x,0,0, 1, 1,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0,1,1,1,x,0,0,1,1,1,0,0,0,x,x,O,O,O,O), (0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,x,x,0,0,0,0), 
{0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, l,0,0,0,0), (0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0),i 
(0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0),; 
(0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), (0,0,0, 1, 1,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O),i 
(0,0,0, 1, 1, 1,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O),: 
(0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), (0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0),i 
(0,0,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0),i 
(0,0,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), (1,0,0, 1, 1,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O),i 
(1,0,0, 1, 1, 1,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O),: 
{l,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), (1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0),! 
(x,0,0, 1, 1,x,x,x, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), ( 
(0,0,0, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,Q), (0,0,0, 1, 1,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), I 
{0,0,0, 1, 1,0,x, 1, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (1,0,0, 1, 1,x,x,0, 1,0, 1, l,O,O,O,x,x,O,O,O,O), I 
{l,0,0, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), {1,0,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0),I 
c1.o,o, 1, 1,0, 1,0, 1,0, 1, 1,0,o,o,o, 1,0,o,o,o), c1,o,o, 1, 1,0, 1,0, 1,0, 1, 1,0,0,o, 1,0,o,o,o,o),I 
(x, 1, 1,x,x,x,x,x,x,x,x,x,O,O,O,x,x,O,O,O,O), (x, 1, 1,0,0,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), I 
(x, 1, 1,0,0,x,x,x,x,x, 1, 1,0,0,0,x,x,0,0,0,0), (x, 1, 1,0,0,x,x,x,O,O, 1, 1,0,0,0,x,x,O,O,O,O), I 
(0, 1, 1,0,0,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O),: 
(1, 1, 1,0,0,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), {x, 1, 1,0,0,x,x,x,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), i 

Figure A.2. Test pattern generation with incorrect guidance using t5=0 

114 



(0, 1, 1,0,0,x,x,O,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O),' 
(l,l,l,0,0,x,x,O,O,l,l,l,O,O,O,x,x,O,O,O,O), (x,l,l,O,O,x,x,x,1,0,l,l,O,O,O,x,x,O,O,O,O),' 
(O,l,1,0,0,x,x,O,l,O,l,l,O,O,O,x,x,O,O,O,O), (O,l,l,0,0,0,x,O,l,O,l,l,O,O,O,x,x,O,O,O,O), 
(0, 1, 1,0,0, l,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(0, 1, 1,0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0, l,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(l,l,l,0,0,x,x,O,l,O,l,l,O,O,O,x,x,0,0,0,0), (l,l,l,O,O,O,x,O,l,O,l,l,O,O,O,x,x,0,0,0,0), 
(I, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (1, 1, l,0,0,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), 
(l,l,l,O,O,O,l,O,l,O,l,l,O,O,O,l,0,0,0,0,0), (l,l,l,0,0,l,x,O,l,0,l,l,O,O,O,x,x,O,O,O,O), 
(l,l,l,O,O,l,l,O,l,O,l,l,O,O,O,x,x,0,0,0,0), (l,l,l,O,O,l,l,0,1,0,l,l,O,O,O,O,l,O,O,O,O), 
(1, 1, 1,0,0, 1, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, 1, 1, 1, l,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), 
(x, 1, 1, 1, l,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), (x, 1, 1, 1, l,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), · 
(0, 1, 1, 1, l,x,x,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, 1, l,x,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), 
(O,l,l,l,l,x,x,l,O,O,l,l,0,0,0,x,x,0,0,0,0), (O,l,l,l,l,l,x,l,0,0,l,l,0,0,0,x,x,0,0,0,0), 
(1, 1, 1, 1, l,x,x,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), (I, 1, 1, 1, 1, l,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(I, 1, 1, 1, 1, 1, 1,0,0,0, 1, l,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,0, 1,0,0,0,0), 
(1, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, 1, 1, 1, l,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O),. 
(0, 1, 1, 1, l,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, l,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(O,l,l,l,l,l,O,O,O,l,l,l,O,O,O,x,x,0,0,0,0), (O,l,l,l,l,l,O,O,O,l,l,l,O,O,O,O,l,O,O,O,O), 
(O,l,l,l,l,l,O,O,O,l,l,l,O,O,O,l,0,0,0,0,0), (O,l,l,l,l,l,l,O,O,l,l,l,O,O,O,x,x,0,0,0,0), 
(0, 1, 1, 1, 1, 1, 1,0,0, 1, 1, l,0,0,0,0, 1,0,0,0,0), (0, 1, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0, 1, 1, 1, l,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, l,x, 1,0, 1, 1, l,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), 
(0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), (0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, l,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), (0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(I, 1, 1, 1, l,x,x,0,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (I, 1, 1, 1, 1, l,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(I, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), 
(1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, l,0,0,0,0,0), (x, 1, 1, 1, l,x,x,x, 1,0, 1, l,O,O,O,x,x,0,0,0,0), 
(0, 1, 1,1, l,x,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O),. 
(0, 1, 1, 1, l,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1,0,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(l,l,l,l,l,x,x,O,l,O,l,l,0,0,0,x,x,0,0,0,0), (l,l,l,l,l,O,x,O,l,O,l,l,O,O,O,x,x,O,O,O,O), 
(I, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), 
(1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x,O, 1, l,x,x,0,0,0;0), . 
(x,0, l,x,x,x,x,x,x,x,x,x,O, 1, l,x,x,0,0,0,0), (x,0, 1,0, l,x,x,x,x,x,x,x,0, 1, l,x,x,0,0,0,0), 
(x,O, 1,0, l,x,x,x,x,x, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1,0, l,x,x,x,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(O,O,l,O,l,x,x,O,O,O,l,l,O,l,l,x,x,O,O,O,O), (O,O,l,O,l,x,x,l,O,O,l,l,O,l,l,x,x,O,O,O,O),: 
(1,0, 1,0, l,x,x,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1,0, l,x,x,x,O, 1, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1,0, l,x,x,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, l,x,x, 1,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0),; 
(1,0, 1,0, l,x,x,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1,0, l,x,x,x, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0),: 
(0,0, 1,0, l,x,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0),: 
(0,0, 1,0, 1, l,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, l,x,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), ! 

(0,0, 1,0, 1,0,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, 1, l,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0),. 
(1,0, 1,0, l,x,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
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(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0)J 
(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1,0, 1,0, 1, l,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0)~ 
(1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0)J 

I 

(1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,0, 1, 1,0,x,x,x,x,x,x,x,0, 1, l,x,x,0,0,0,0),i 
(x,0, 1, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1, 1,0,x,x,x,O,O, 1, 1,0, 1, l,x,x,0,0,0,0),: 

. . I 

(0,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, l,x,x,0,0,0,0), (O;O, 1, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0),! 
(0,0, 1, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x, 1,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(1,0, 1, 1,0,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0),[ 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0,0,0,0),i 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,O, 1, 1,0,x,x,x,O, 1, 1, 1,0, l, 1,x,x,0,0,0,0),i 
(0,0, 1, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),i 
(0,0, 1, 1,0, 1,0,0,0, 1,1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0),: 
(0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0),1 

(0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0),; 
(0,0, 1, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0),: 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0, 1, l, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),; 
(0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0),: 
(1,0, 1, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), I 
(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0)) 
(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,O, 1, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(0,0, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 

I 

(0,0, 1, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(1,0, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),: 
(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x, 1,0,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x,x,x,x,x,0, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x,1,0,0,1,x,x,x,O,l,1,1,0,1,1,x,x,O,O,O,O), (0,l,0,0,1,x,x,0,0,1,l,l,O,l,1,x,x,O,O,O,O), 
(0, 1,0,0, l,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x,0, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0, 1,0,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0, 1,0,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,0,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,1,0,0,1,0,1,0,1,0,1,1,0,1,1,0,l,O,O,O,O), (1,l,0,0,1,0,1,0,1,0,1,1,0,1,1,1,0,0,0,0,0), 
(I, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0,1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0,0, 1, 1, l,O, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x, 1,0, 1,0,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x, 1,0, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(x, 1,0, 1,0,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
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(0, 1,0, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1, l,0,0,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x, 1,0, 1,0,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0, 1,0, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1, 1,0, 1,0,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x,1,0,1,0,x,x,x,1,0,1,1,0,1,1,x,x,O,O,O,O), (0,1,0,1,0,x,x,0,1,0,1,1,0,1,1,x,x,O,O,O,O), 
(0, 1,0, 1,0,0,x,O,l,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0,0,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, 1, 1,0), (x,x,x,x,x,x,x,x,x,x,x,x,O,x,x,x,x, 1, 1, 1,0), 
(x,x,x,x,x,x,x,x,x,x,x,x,0,0, 1,x,x, 1, 1, 1,0), (x,0,0,x,x,x,x,x,x,x,x,x,O,O, 1,x,x, 1, 1, 1,0), 
(x,0,0,0, 1,x,x,x,x,x,x,x,O,O, 1,x,x, 1, 1, 1,0), (x,0,0,0, 1,x,x,x,x,x, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(x,0,0,0, 1,x,x,x,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0,0, 1,x,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0,0, 1,x,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0,0, 1,x,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(x,0,0,0, 1,x,x,x,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0,0, 1,x,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0,0, 1,x,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0,0, 1,x,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(x,0,0,0, 1,x,x,x, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0,0, 1,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0,0, 1,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0,0, 1, 1,x,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), · 
(0,0,0,0, 1,x,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0,0, 1,0,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0,0~ 1, 1,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0,0, 1,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1,0,0,0, 1,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1,0,0,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (1,0,0,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1,1,0), 
(1,0,0,0, 1, 1,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1,0,0,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (1,0,0,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), 
(x,0,0, 1,0,x,x,x,x,x,x,x,O,O, 1,x,x, 1, 1, 1,0), (x,0,0, 1,0,x,x,x,x,x, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(x,0,0, 1,0,x,x,x,O,O, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0,x,x,O,O,O, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0, 1,0, 1,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0,x,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0, 1,0, 1,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0, 1,0,x,x,O,O,O, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1,0,0, 1,0, 1,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0, 1,0, 1, 1,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), I 

(1,0,0, 1,0, 1, 1,0,0,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (1,0,0, 1,0, 1, 1,0,0,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), 
(x,0,0, 1,0,x,x,x,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0,x,x,O,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,0,0, 1,0, 1,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0, 1,0,0,0; 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 

Figure A.2. Test pattern generation with incorrect guidance using t5=0 (continued) 



I 11s 

(0,0,0, 1,0, l,0,0,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (0,0,0, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0)~ 
(0,0,0, 1,0, 1, 1,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0, 1, 1,0,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0),1 

(0,0,0, 1,0, 1, 1,0,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (0,0,0, 1,0,x,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0},i 
· (0,0,0, 1,0, 1,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0),i 
(0,0,0, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (0,0,0, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0),i 
(0,0,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0),! 
(0,0,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (1,0,0, 1,0,x,x,O,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0),: 
(1,0,0, 1,0, 1,x,0,0, 1, 1, 1,0,0, l~x,x, 1, 1, 1,0), (1,0,0, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, l,0), 1 

I 

(1,0,0,l,O, 1,0,0,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0}, (1,0,0, 1,0, 1,0,0,0, 1, l, 1,0,0, 1, 1, 1, 1, 1, 1,0),i 
(x,0,0, 1,0,x,x,x, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), '. 
(0,0,0, 1,0,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0,0,0, 1,0,x,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0},, 
(0,0,0, 1,0,0,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0, 1,0,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 1 

I 

(1,0,0, 1,0,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1,0,0, 1,0,0, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0),, 
(1,0,0, 1,0,0, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), (1,0,0, 1,0,0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0},i 
(x, 1, 1,x,x,x,x,x,x,x,x,x,O,O, 1,x,x, 1, 1, 1,0), (x, 1, 1,0, 1,x,x,x,x,x,x,x,0,0, 1,x,x, 1, 1, 1,0), 
(x, 1, 1,0, 1,x,x,x,x,x, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (x, 1, 1,0, 1,x,x,x,0,0, 1, 1,0,0, 1,x,x,l, 1, 1,0), , 
(0, 1, 1,0, 1,x,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1,0, 1,x,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0),; 
(1, 1, 1,0, 1,x,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (x, 1, 1,0, 1,x,x,x,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), • 
(0, 1, 1,0, 1,x,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1,0, 1,x,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, i 
(1, 1, 1,0, 1,x,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (x, 1, 1,0,1,x,x,x, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0),: 
(0, 1, 1,0, 1,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, (0, 1, 1,0, 1,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0},: 
(0, 1, 1,0, 1, 1,x,O, 1,0, 1, 1,0,0, 1,x,x,l, 1, 1,0), (0, 1, 1,0, 1,x,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0},, 

I 

(0, 1, 1,0, 1,0,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, (0, 1, 1,0, 1, 1,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, · 
(1, 1, 1,0, 1,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1,0, 1,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0),: 
(1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), ! 
(1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1 ~O}, (1, 1, 1,0, 1, 1,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1, 1, 1,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1~0), (1, 1, 1,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), 
(1, 1, 1,0, 1, 1, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (x, 1, 1, 1,0,x,x,x,x,x,x,x,O,O, 1,x,x, 1, 1, 1,0), 
(x, 1, 1, 1,0,x,x,x,x,x, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (x, 1, 1, 1,0,x,x,x,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), · 
(0, 1, 1, 1,0,x,x,O,O,O, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0, 1, 1, 1,0,x,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,x, 1,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1, 1, 1, 1,0,x,x,O,O,O, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1, 1,0, 1,x,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, 
(1, 1, 1, 1,0, 1, 1,0,0,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0}, (1, 1,1, 1,0, 1, 1,0,0,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0), 
(1, 1, 1, 1,0, 1, l ,0,0,0, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (x, 1, 1, 1,0,x,x,x,O, 1, 1, 1,0,0, 1,x,x, 1,1, 1 ;O}, 
(0, 1, 1, 1,0,x,x,O,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0), 
(0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (0, 1, 1, 1,0, 1, 1,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0,1,l,l,O,l,1,0,0,l,1,l,0,0,1,0,0,1,1,1,0), (0,1,1,1,0,1,1,0,0,1,1,1,0,0,l,l,l,l,l,1,0), 
(0, 1, 1, 1,0,x,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,x, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0, 1, 1, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1,0,0, 1, 1, 1,0), 
(0, 1, 1, 1,0, 1,0, 1,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0}, (0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0, l,x,x, 1, 1, 1,0}, 
(0,1,1,l,0,1,1,1,0,1,1,1,0,0,1,0,0,l,1,1,0), (0,1,1,1,0,1,1,1,0,1,1,l,O,O,l,l,l,1,1,l,O), 
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(1, 1, 1, 1,0,x,x,O,O, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1, 1,0, 1,x,0,0, 1, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
o. 1. 1. 1.0. 1.0.0.0. 1. 1. 1.0.0. 1.x.x. 1. 1. 1.0>. o. 1. 1. 1.0. 1.0.0.0. 1. 1. 1,0,0. 1.0.0. 1. 1. 1,0). 1

1 (1, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0,0, 1, 1, 1, 1, 1, 1,0), (x, 1, 1, 1,0,x,x,x, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(0, 1, 1, 1,0,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0,0,x,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), l 
(0, 1, 1, 1,0,x,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (0, 1, 1, 1,0,0,x, 1, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0),: 
(1, 1, 1, 1,0,x,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1, 1,0,0,x,O, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), 
(1, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0, 1,x,x, 1, 1, 1,0), (1, 1, 1,1,0,0, 1,0, 1,0, 1, 1,0,0, 1,0,0, 1, 1, 1,0),: 
(1, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1, 1, 1,1,0), (x,x,x,x,x,x,x,x,x,x,x,x,0, 1,0,x,x, 1, 1, 1,0), ; 
(x,O, 1,x,x,x,x,x,x,x,x,x,O, 1,0,x,x, 1, 1, 1,0), (x,O, 1,0,0,x,x,x,x,x,x,x,O, 1,0,x,x, 1, 1, 1,0), 
(x,O, 1,0,0,x,x,x,x,x, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (x,O, 1,0,0,x,x,x,O,O, 1, 1,0, 1,0,x,x, 1, 1, 1,0), : 
(0,0, 1,0,0,x,x,O,O,O, l, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1,0,0,x,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), ! 
(1,0, 1,0,0,x,x,O,O,O, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (x,O, 1,0,0,x,x,x,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), : 
(0,0, 1,0,0,x,x,O,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1,0,0,x,x, 1,0, 1, 1, 1,0, 1,0,x,x,1, 1, 1,0), · 
(1,0, 1,0,0,x,x,O,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (x,O, 1,0,0,x,x,x, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), ! 

(0,0, 1,0,0,x,x,O, 1,0, 1, 1,0, 1,0,x,x,1, 1, 1,0), (0,0, 1,0,0,0,x,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 1 

(0,0, 1,0,0, 1,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1,0,0,x,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1,0,0,0,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1,.0,0, 1,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1,0,0,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0,.1,0,0,0,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1,0,0,0, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1,0,0,0, 1,0, 1,0, 1, 1,0, 1,0,0,o, 1, 1, 1,0), 
(1,0, 1,0,0,0, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (1,0, 1,0,0,1,x,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0,1,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(1,0, 1,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (x,O, 1, 1, 1,x,x,x,x,x,x,x,0, 1,0,x,x, 1, 1, 1,0), 
(x,0, 1, 1, 1,x,x,x,x,x, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (x,O, 1, 1, 1,x,x,x,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1, 1,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1,1, 1, 1,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1, 1, 1,x,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, 1, 1,x~0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1, 1, 1, 1,l,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, 1, 1, 1,0,0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(1,0, 1, 1, 1, 1, 1,0,0,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (x,O, 1, 1, 1,x,x,x,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1, 1,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (0,0, 1,1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (0,0, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1, 1,x, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (0,0, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (0,0, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(1,0, 1, 1, 1,x,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, l, 1,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(1,0, 1, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (x,O, 1, 1, 1,x,x,x, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1,0,x,0, 1,0,l, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0,0, 1, 1, 1,x,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0,0, 1, 1, 1,0,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1,0, 1, 1, 1,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, 1,0,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
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(1,0, 1, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1,0, 1, 1, 1,0, 1,0, 1,0, 1, 1,0, l,0,0,0, 1, 1, 1,0), . 
(1,0, 1, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (x, 1,0,x,x,x,x,x,x,x,x,x,0, 1,0,x,x, 1, 1, 1,0), 
(x, 1,0,0,0,x,x,x,x,x,x,x,O, 1,0,x,x, 1, 1, 1,0}, (x, 1,0,0,0,x,x,x,x,x, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(x, 1,0,0,0,x,x,x,O,O, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0,0,0,x,x,O,O,O, 1, 1,0, 1,0,x,x, 1, 1, 1,0), , 
(0, 1,0,0,0,x,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0}, (1, 1,0,0,0,x,x,O,O,O, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(x, 1,0,0,0,x,x,x,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0,0,0,x,x,O,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0, 1,0,0,0,x,x, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0,0,0,x,x,O,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(x, 1,0,0,0,x,x,x, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, l,0,0,0,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0, 1,0,0,0,0,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0,0,0, l,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(0, 1,0,0,0,x,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0,0,0,0,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(0, 1,0,0,0, 1,x, 1, 1,0, 1, 1,0, 1,0,x,x,1, 1, 1,0), (1, 1,0,0,0,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0,0,0,0,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0,0,0,0, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0,0,0,0, 1,0, 1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (1, 1,0,0,0,0, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), · 
(1, 1,0,0,0, l,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0}, (1, 1,0,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (1, 1,0,0,0, 1, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(x, 1,0, 1, 1,x,x,x,x,x,x,x,O, 1,0,x,x, 1, 1, 1,0), (x, 1,0, 1, 1,x,x,x,x,x, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(x, 1,0, 1, l,x,x,x,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1,x,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1,x,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), • 
(0, 1,0, 1, 1, 1,x, 1,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0, 1, 1,x,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(1, 1,0, 1, 1, 1,x,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0, 1, 1, 1, 1,0,0,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(1, 1,0, 1, 1, 1, l,0,0,0, 1, 1,0, 1,0,0,0, 1, 1;1,0), (1, 1,0, 1, 1, 1, 1,0,0,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), · 
(x, 1,0, 1, 1,x,x,x,O, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1,x,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(0, 1,0, 1, 1, 1,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), · 
(0, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (0, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (0, 1,0, 1, 1,x,x, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0),. 
(0, 1,0, 1, 1, 1,x, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (0, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0}, (0, 1,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), 
(0, 1,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), (1, 1,0, 1, 1,x,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0, 1, 1, 1,x,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,x,x, 1, 1, 1,0),' 
(1, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (1, 1,0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0), 
(x, 1,0, 1, 1,x,x,x, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, 1,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), • 
(0, 1,0, 1, 1,0,x,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (0, 1,0, 1, l~x,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(0, 1,0, 1, 1,0,x, 1, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0, 1, 1,x,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0, 1, 1,0,x,O, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), (1, 1,0, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0,x,x, 1, 1, 1,0), 
(1, 1,0, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0), (1, 1,0, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1, 1, 1, 1, 1,0) 

Figure A.2. Test pattern generation with incorrect guidance using t5=0 (continued) 
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,f2,f3,f4,f5,pl,p2,p3,tl,t2,t3,t4,t5,t6,t7,t8,t9,tl0,tl l,tl2,t13) = 
(x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0), (x,x,x,x,x,x,x,x,x,x,x,x, 1,x,x,x,x, 1, 0, 0, 0), 
(x,x,x,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0}, (x,0,0,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0,0, 1,x,x,x,x,x,x,x, 1,0, i,x,x, 1,0,0,0}, (x,0,0,0, 1,x,x,x,x,x,0,0, 1,0, 1,x,x, 1,0,0,0), : 
(x,0,0,0, 1,x,x,x, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1,x,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0}, 
(1,0,0,0, 1,0,x, 1, 1, 1,0,0, 1,0, 1,x,x,l,0,0,0), (1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0}, 
(1,0,0,0,l,0,0,1,1,1,0,0,1,0,1,0,1,1,0,0,0), (1,0,0,0,1,0,0,1,1,1,0,0,1,0,1,1,0,1,0,0,0) 

Figure A.3. Test pattern generation with correct guidance using t5=1 
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(fl,f2,f3,f4,f5,pl,p2,p3,tl,t2,t3,t4,t5,t6,t7,t8,t9,tl0,tl l,tl2,t13) = 
( x,x,x,x,x,x,x, x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0 ), (x,x,x,x,x,x,x,x,x,x,x,x, 0 ,x,x,x,x, 0, 0, 0, 0 ), 
( X,X,X,X,X,X,X,X,X,X,X,X, 0, 0, 0 ,X,X, 0, 0, 0, 0 ), ( X, 0, 0 ,X,X,X,X,X,X,X,X,X, 0, 0, 0 ,X,X, 0, 0, 0, 0 ), 
(x,O,O,O,O,x,x,x,x,x,x,x,O,O,O,x,x,0,0,0,0), (x,0,0,0,0,x,x,x,x,x, 1, 1,0,0,0,x,x,0,0,0,0), 
(x,0,0,0,0,x,x,x,O,O, 1, l,O,O,O,x,x,O,O,O,O), (0,0,0,0,0,x,x,O,O,O, 1, l,0,0,0,x,x,0,0,0,0), 
(0,0,0,0,0,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (l,0,0,0,0,x,x,O,O,O, 1, l,O,O,O,x,x,0,0,0,0), 
(x,0,0,0,0,x,x,x,O, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0,0,0,x,x,O,O, 1, 1, l,O,O,O,x,x,O,O,O,O), 
(0,0,0,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0,0,0,x,x,O,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(x,O,O,O,O,x,x,x,1,0,1,1,0,0,0,x,x,O,O,O,O), (O,O,O,O,O,x,x,0,1,0,1,1,0,0,0,x,x,O,O,O,O), 
(0,0,0,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0, l,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0,0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), · 
(0,0,0,0,0, l,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (l,0,0,0,0,x,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), 
(1,0,0,0,0,0,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (l,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(1,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (l,0,0,0,0, l,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(1,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), 
(x,0,0, 1, 1,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), (x,0,0, 1, 1,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), 
(x,0,0, 1, 1,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), . 
(0,0,0, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0, 1, 1, l,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1,0,0, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,0,0,0,0), (1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x,0,0, 1, 1,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0, 1, l,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, l,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0,0,0, 1, 1, 1, 1,0,0, 1, 1, l,O,O,O,x,x,0,0,0,0), (0,0,0,l, 1, 1, 1,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0,0,0, 1, 1,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1,x, 1,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), 
(0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0,0,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(1,0,0, 1, 1,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1, 1,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(x,0,0, 1, 1,x,x,x, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0, 1, l,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0,0,0, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1,x,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(0,0,0, 1, 1,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1,0,0, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), . 
(1,0,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, 1, 1,x,x,x,x,x,x,x,x,x,O,O,O,x,x,0,0,0,0), i 

. . I 
(x, 1, l,O,O,x,x,x,x,x,x,x,O,O,O,x,x,O,O,O,O), (x, 1, 1,0,0,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), , 
(x, 1, 1,0,0,x,x,x,O,O, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, l,O,O,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), ; 
(0, 1, 1,0,0,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0,x,x,O,O,O, 1, l,O,O,O,x,x,0,0,0,0), · 
(x, 1, 1,0,0,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x,O,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), ) 
(0, 1, 1,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(x, 1, 1,0,0,x,x,x, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,x,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), : 
(0, 1, 1,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0, 1,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), . 
(0, 1, 1,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 

Figure A.4. Guided test generation using t9=0 
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(0, 1, 1,0,0, 1,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1,0,0,0,x,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (1, 1, 1,0,0, 1,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0, 1, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), 
(x, 1, 1, 1, 1,x,x,x,x,x,x,x,O,O,O,x,x,0,0,0,0), (x, 1, 1, 1, 1,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), 
(x, 1, 1, 1, 1,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1,x,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1, 1, 1, 1,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x, 1, 1, 1, 1,x,x,x,O, 1, 1, 1,0,0,0,x,x,O~O,O,O), 
(0, 1, 1, 1, 1,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0, 1, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, I, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0, 1, 1, 1, 1,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0~x,x,O,O,O,O), (0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(1, 1, 1, 1, 1,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1,x,0,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), 
(1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0, 1,0,0,0,0,0), 
(x, 1, 1, 1, 1,x,x,x, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1,0,x,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(1, 1, 1, 1, 1,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0, 1,0,0,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
(x,O, 1,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
(x,O, 1,0, 1,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,0,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(1,0, 1,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,O, 1, 1,0,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
(x,O, 1, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x,O, 1, 1,0,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), · 
(x,O, 1, 1,0,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, l,O,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
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(0,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), . 
(0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0,0, 1, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(0,0, 1, 1,0, 1,x, 1,0, 1,1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, l,0,0,0,0,0), (0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), . 
(0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1,0, 1, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(1,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1~ 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), , 
(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, l,0,0,0,0,0), (x,O, 1, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), , 
(0,0, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(1,0, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0,x,O, 1,0,1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
(x, 1,0,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), · 
(x, 1,0,0, 1,x,x,x,x,x, 1, 1,0, l, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(0, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), ; 
(1, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(0, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(1, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(0, 1,0,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0,l,O,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0;0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), : 
(1, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x,1,0, 1,0,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), : 
(x, 1,0, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x, 1,0, 1,0,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), · 
(0, 1,0, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), . 
(1, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1, 1,0,0,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), . 
(x, 1,0, 1,0,x,x,x,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(0, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0, 1,0, 1,0, 1,1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0, 1,0, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), ! 
(0, 1,0, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), ! 

I 

(0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), i 

(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (1, 1,0, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1,J, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1, 1,0,0,0,0,0), (x, 1,0, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0;0,0), , 
(0, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), i 

(0, 1,0, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(1, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0,x,O, 1,0, 1,1,0, 1, 1,x,x,0,0,0,0), ( 
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(1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1, 1,0,0,0,0,0), 
I 

(x,x,x,x,x,x,x,x,x,x,x,x, 1,x,x,x,x, 1,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x,x,x,x,x, 1,0, 1,x,x, l,0,0,0), 
(x,0,0,0, 1,x,x,x,x,x,0,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x, 1, 1,0,0, 1,0, 1,x,x,1,0,0,0), 
(1,0,0,0, 1,x,x, 1, 1, 1,0,0,l,O, 1,x,x, 1,0,0,0), (1,0,0,0, 1,0,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), , 
(1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (l,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1, 1,0, 1,0,0,0) , 
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(fl,f2,f.3,f4,f5,pl,p2,p3,tl,t2,t3,t4,t5,t6,t7,t8,t9,tl0,tl l,tl2,t13) = 
( x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x,x, 0, 0, 0 ), ( x,x,x,x,x,x,x,x,x,x,x,x, O,x,x,x,x, 0, 0, 0, 0 ), 
(x,x,x,x,x,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), (x,O,O,x,x,x,x,x,x,x,x,x,O,O,O,x,x,O,O,O,O), 
(x, 0, 0, 0, O,x,x,x,x,x,x,x, 0, 0, O,x,x, 0, 0, 0, 0), (x, 0, 0, 0, O,x,x,x,x,x, 1, 1, 0, 0, O,x,x, 0, 0, 0, 0), 
(x,0,0,0,0,x,x,x,O,O, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,O,O,O, 1, 1,0,0,0,x,x,0,0,0,0), : 
(0,0,0,0,0,x,x, 1,0,0, 1, l,O,O,O,x,x,0,0,0,0), (1,0,0,0,0,x,x,O,O,O, 1, l,0,0,0,x,x,O,O,O,O), 
(x,0,0,0,0,x,x,x,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), : 
(0,0,0,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (l,O,O,O,O,x,x,O,O, 1, 1, l,O,O,O,x,x,0,0,0,0), : 
(x,0,0,0,0,x,x,x, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0,x,x,O, 1,0, 1, l,O,O,O,x,x,O,O,O,O), ' 
(0,0,0,0,0,0,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0,0,0, l,x,O, 1,0, 1, l;O,O,O,x,x,0,0,0,0), : 
(0,0,0,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (0,0,0,0,0,0,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), · 
(0,0,0,0,0, l,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (l,0,0,0,0,x,x,O, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), · 
(l,0,0,0,0,0,x,O, 1,0, 1, l,0,0,0,x,x,0,0,0,0), (1,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), : 
(l,0,0,0,0,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (l,0,0,0,0, l,x,O;J,O, 1, l,0,0,0,x,x,O,O,O,O), : 
(l,0,0,0,0, 1, 1,0, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (1,0,0,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), : 
(x,0,0, 1, l,x,x,x,x,x,x,x,0,0,0~x,x,O,O,O,O), (x,0,0, 1, l,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), 
(x,0,0, 1, l,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), 1 

(0,0,0, 1, 1, l,x,0,0,0, 1, l,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l1x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), : 
(0,0,0, 1, 1, l,x, 1,0,0, 1, l,O,O,O,x,x,O,O,O,O), (1,0,0, 1, l,x,x,0,0,0, 1, l,0,0,0,x,x,0,0,0,0), , 
(1,0,0, 1, 1, l,x,0,0,0, 1, 1,0,0,0,x,x,0,0,0,0), (1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), : 
(1,0,0, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,0, 1,0,0,0,0), (x,0,0, 1, l,x,x,x,O, 1, 1, 1,0,0,0,x,x,0,0,0,0), : 
(0,0,0, 1, l,x,x,0,0, 1, 1, l,0,0,0,x,x,0,0,0,0), (0,0,0, 1, 1, l,x,0,0, 1, 1, 1,0,0,0,x,x,0,0,0,0), I 

(0,0,0, 1, 1, 1,0,0,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), ; 
(0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), : 
(0,0,0, 1, l,x,x, 1,0, 1, 1, l,0,0,0,x,x,O,O,O,O), (0,0,0, 1, 1, l,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), : 
(0,0,0, 1, 1, 1,0, 1,0, 1, 1, l,O,O,O,x,x,0,0,0,0), (0,0,0, 1, 1, 1,0, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), : 
(O,O,O,l,l,l,l,l,O,l,l,l,O,O,O,x,x,O,O,O,O), (O,O,O,l,l,l,l;l,O,l,l,l,O,O,O,O,l,O,O,O,O),; 
(1,0,0, 1, l,x,x,0,0, 1, 1, l,0,0,0,x,x,0,0,0,0), (1,0~0, 1, 1, l,x,0,0, 1, 1, l,O,O,O,x,x,O,O,O,O), : 
(1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), I 
(x,0,0, 1, l,x,x,x, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), : 
(0,0,0, 1, 1,0,x,O, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (0,0,0, 1, l,x,x, l,J,O, 1, 1,0,0,0,x,x,O,O,O,O), : 
(0,0,0, 1, 1,0,x, 1, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (1,0,0, 1, l,x,x,O, 1,0, 1, l,0,0,0,x,x,O,O,O,O), : 
(1,0,0, 1, 1,0,x,O, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (1,0,0, 1, 1,0, 1,0, 1,0, 1, l,0,0,0,x,x,0,0,0,0), : 
(1,0,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (x, 1, l,x,x,x,x,x,x,x,x,x,0,0,0,x,x,O,O,O,O), . 
(x, 1, l,O,O,x,x,x,x,x,x,x,O,O,O,x,x,O,O,O,O), (x, 1, 1,0,0,x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), : 
(x, 1, l,O,O,x,x,x,0,0, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1,0,0,x,x,O,O,O, 1, l,0,0,0,x,x,O,O,O,O), : 
(0, 1, 1,0,0,x,x, 1,0,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1,0,0,x,x,O,O,O, 1, 1,0,0,0,x,x,O,O,O,O), : 
(x, 1, 1,0,0,x,x,x,O, 1, 1, 1,0,0,0,x,x,0,0,0,0), (0, 1, 1,0,0,x,x,O,O, 1, 1, 1,0,0,0,x,x,O,O,O,O), l 
(0, 1, 1,0,0,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0,x,x,O,O, 1,1, 1,0,0,0,x,x,O,O,O,O), I 

(x, 1, 1,0,0,x,x,x, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), (0, 1, 1,0,0,x,x,O, 1,0, 1, l,0,0,0,x,x,0,0,0,0), i 
(0, 1, 1,0,0,0,x,O, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0, l,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), : 
(0, 1, 1,0,0,x,x, 1, 1,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1,0,0,0,x, 1, 1,0, 1, l,0,0,0,x,x,0,0,0,0), • 

Figure A. 5. Guided test generation using t9= 1 

126 



(0, 1, 1,0,0, l,x, 1, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1,0,0,x,x,O, 1,0, 1, l,0,0,0,x,x,O,O,O,O), 
(1, 1, 1,0,0,0,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1,0,0,0, 1,0, 1,0, 1, l,O,O,O,x,x,0,0,0,0), 
(1, 1, 1,0,0,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (1, 1, 1,0,0, l,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(1, 1, 1,0,0, 1, 1,0, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (1, 1, 1,0,0, 1, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), 
(x, 1, 1, 1, l,x,x,x,x,x,x,x,0,0,0,x,x,0,0,0,0), (x, 1, 1, l,},x,x,x,x,x, 1, 1,0,0,0,x,x,O,O,O,O), 
(x, 1, 1, 1, l,x,x,x,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, l,x,x,0,0,0, 1, l,0,0,0,x,x,0,0,0,0), 
(0, 1, 1, 1, 1, l,x,0,0,0, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, l,x,x, 1,0,0, 1, 1,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, 1, l,x, 1,0,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1, 1, l,x,x,0,0,0, 1, l,0,0,0,x,x,O,O,O,O), 
(1, 1, 1, 1, 1, l,x,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1, 1, 1, 1, 1,0,0,0, 1, l,O,O,O,x,x,0,0,0,0), 
(1, 1, 1, 1, 1, 1, 1,0,0,0, 1, 1,0,0,0,0, 1,0,0,0,0), (x, 1, 1, 1, l,x,x,x,O, 1, 1, l,0,0,0,x,x,O,O,O,O), 
(0, 1, 1, 1, l,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, l,x,0,0, 1, 1, l,O,O,O,x,x,0,0,0,0), 
(0, 1, 1, 1, 1, 1,0,0,0, 1, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, 1, 1,0,0,0, l; 1, 1,0,0,0,0, 1,0,0,0,0), . 
(0, 1, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, 1, 1,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), · 
(0, 1, 1, 1, l,x,x, 1,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, 1, l,x, 1,0, 1, 1, l,O,O,O,x,x,0,0,0,0), 
(0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, 1, 1,0, 1,0, 1, 1, 1,0,0;0,0, 1,0,0,0,0), · 
(0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, 1, 1, 1, 1,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), . 
(1, 1, 1, 1, l,x,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), (1, 1, 1, 1, 1, l,x,0,0, 1, 1, 1,0,0,0,x,x,O,O,O,O), : 
(1, 1, 1, 1, 1, 1,0,0,0, 1, 1, l,O,O,O,x,x,O,O,O,O), (1, 1, 1, 1, 1, 1,0,0,0, 1, 1, 1,0,0,0,0, 1,0,0,0,0), ; 
(x, 1, 1, 1, l,x,x,x, 1,0, 1, l,0,0,0,x,x,O,O,O,O), (0, 1, 1, 1, l,x,x,O, 1,0, 1, 1,0,0,0,x,x,0,0,0,0), 
(0, 1, 1, 1, 1,0,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (0, 1, 1, 1, l,x,x, 1, 1,0, 1, l,O,O,O,x,x,0,0,0,0), 
(0, 1, 1, 1, 1,0,x, 1, 1,0, 1, l,0,0,0,x,x,O,O,O;O), (1, 1, 1,1, l,x,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), • 
(1, 1, 1, 1, 1,0,x,O, 1,0, 1, l,O,O,O,x,x,0,0,0,0), (1, 1, 1, 1, 1,0, 1,0, 1,0, 1, l,O,O,O,x,x,0,0,0,0), . 
(1, 1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0,0, 1,0,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x,O, 1, l,x,x,0,0,0,0), 
(x,O, l,x,x,x,x,x,x,x,x,x,O, 1, l,x,x,0,0,0,0), (x,O, 1,0, l,x,x,x,x,x,x,x,0, 1, l,x,x,0,0,0,0), 
(x,O, 1,0, l,x,x,x,x,x, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1,0, 1,x,x,x,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1,0, l,x,x,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, l,x,x, 1,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(1,0, 1,0, l,x,x,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), (x,0, 1,0, l,x,x,x,O, 1, 1, 1,0, 1, l,x,x,0,0,0,0), 1 

(0,0, 1,0, l,x,x,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0,1,x,x, 1,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), : 
(1,0, 1,0, l,x,x,0,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1,0, l,x,x,x, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1,0, l,x,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, 1,0,x,0, 1,0, 1, 1,0, 1, l,x,x,O,O,O,O), 
(0,0, 1,0, 1, l,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, l,x,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1,0, 1,0,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1,0, 1, l,x, 1, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(1,0, 1,0, l,x,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1,0,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(1,0, 1,0, 1, l,x,O, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, l,x,x,0,0,0,0), · 
(1,0, 1,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), (x,O, 1, 1,0,x,x,x,x,x,x,x,O, 1, l,x,x,0,0,0,0), 
(x,O, 1, 1,0,x,x,x,x,x, 1, 1,0, 1, l,x,x,0,0,0,0), (x,O, 1, 1,0,x,x,x,O,O, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1, 1,0, l,x,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x, 1,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1, 1,0, l,x, 1,0,0, 1, 1,0; 1, l,x,x,0,0,0,0), 
(1,0, 1, 1,0,x,x,O,O,O, 1, 1,0, 1, l,x,x,0,0,0,0), {1,0, 1, 1,0, l,x,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0),. 
(1,0, 1, 1,0, 1, 1,0,0,0, 1, 1,0, 1, l,x,x,0,0,0,0), (1,0, 1, 1,0, 1, l,0,0,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(x,O, 1, 1,0,x,x,x,0, 1, 1, 1,0, 1, l,x,x,0,0,0,0), (0,0, 1, l,O,x,x,O,O, 1, 1, 1,0, 1, l,x,x,0,0,0,0),. 
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(0,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, l,0,0,0,0), (0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), : 
(0,0, 1, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), ; 
(0,0, 1, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1,0, 1, 1,0,x,x,0,0, 1~ 1, 1,0, 1, 1,x,x,0,0,0,0), '. 
(1,0, 1, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, l, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (x,0, 1, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0,0, 1, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0,0, 1, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0,x,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1,0, 1, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), : 
(x, 1,0,x,x,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), 
(x, 1,0,0, 1,x,x,x,x,x, 1, 1;0, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,x,x,0,0,0, 1, 1,0,1, 1,x,x,O,O,O,O), (x, 1,0,0, 1,x,x,x,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,x,x, l;O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (x, 1,0,0, 1,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,x,x,O, 1,0,1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), · 
(0, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0;0, 1,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0,0, 1,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0,0, 1, 1,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), • 
(1, 1,0,0, 1,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(1, 1,0,0, 1, 1,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0,0, 1, 1, 1,0, 1,0, 1, 1,0, 1,1,0, 1,0,0,0,0), (x, 1,0, 1,0,x,x,x,x,x,x,x,O, 1, 1,x,x,0,0,0,0), • 
(x, 1,0, 1,0,x,x,x,x,x, 1, 1,0, 1, 1,x,x,0,0,0,0), (x, 1,0, 1,0,x,x,x,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,x,x,O,O,O, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,x,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,x, 1,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), · 
(1, 1,0, 1,0,x,x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (l, 1,0, 1,0, l~x,0,0,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1, 1,0,0,o, 1, 1,0, 1, 1,x,x,o,o,o,o), (1, 1,0, 1,0, 1, 1,0,0,o, 1, 1,0, 1, 1,0, 1,0,o,o,o), • 
(x, 1,0, 1,0,x,x,x,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,x,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0,x,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0, 1,x, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),; 
(0, 1,0, 1,0, 1,0, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0),. 
(0, 1,0, 1,0, 1, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (1, 1,0, 1,0,x,x,O,O, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,x,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0,0,0,0), (x, 1,0, 1,0,x,x,x, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,0,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(0, 1,0, 1,0,x,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (0, 1,0, 1,0,0,x, 1, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), 
(1, 1,0, 1,0,x,x,O, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0,x,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0),. 
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(1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,x,x,0,0,0,0), (1, 1,0, 1,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0,0,0,0), 
(x,x,x,x,x,x,x,x,x,x,x,x, 1,x,x,x,x, 1,0,0,0), (x,x,x,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), : 
(x,0,0,0, 1,x,x,x,x,x,0,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), ' 
(1,0,0,0, l,x,x, 1, 1, 1,0,0, 1,0, l,x,x, 1,0,0,0), (1,0,0,0, 1,0,x, 1, 1, 1,0,0, 1,0, l,x,x, 1,0,0,0), : 
(1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,0, 1, l,0,0,0), 
(1,0,0,0, 1, 1,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0,0, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), (x,0,0,0,1,x,x,x,x,x,O, 1, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0,0, 1,x,x,x, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0,0, 1,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0;0,0), (0,0,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (0,0,0,0, 1, 1,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0,0, 1, 1, 1,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1, 1, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0,0, 1,x,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1,0,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0,0, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0,0, 1,0, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0, 1,0, 1, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0,0, 1, 1,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0,0,1, 1,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0),. 
(0,0,0,0, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (0,0,0,0, 1, 1, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 0,0,0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1,0, 1, 1,0,0, 0), ( 1,0,0,0, 1,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), . 
(1,0,0,0, 1,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 0, 1,0, 0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0, 0), (1,0, 0,0, 1, 1,x, 0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), i 
(1,0,0,0, 1, 1, 0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1, 0,0,0, 1, 1,0, 0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0, 0,0), · 
(x,0,0,0, 1,x,x,x,x,x, 1,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), · 
(1,0,0,0, 1,x,x, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x,O, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0,0, 1,x,x, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0,0, 1,x,x,x, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0,0, 1,x,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1,0,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), • 
(l,0,0,0, 1,0, 1, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (l,0,0,0, 1,0, 1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), 
(1,0,0,0, 1, 1,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0,0, 1, 1, 1, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0,0, 1, 1, 1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), (x,0,0, 1,0,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x,0,0, 1,0,x,x,x,x,x,O,O, 1,0, 1,x,x, 1,0,0,0), (x,0,0, 1,0,x,x,x, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,x,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,0,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,0,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), 
(x,0,0, l,O,x,x,x,x,x,O, 1, 1,0, 1,x,x, 1,0,0,0), (x,0,0, 1,0,x,x,x, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0, 1,0,x,x,O, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), (0,0,0, 1,0,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, l,0,0,0), (0,0,0, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0, 1,0,0, 1,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0, 1,0,0, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0, 1,0,x,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0, 1,0,0,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0,0,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0,0,0, 1,0,0, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0,0,0, 1,0,0, 1, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(1,0,0, 1,0,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
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(x,0,0, 1,0,x,x,x,x,x, 1,0, 1,0, 1,x,x, 1,0,0,0), (x,0,0, 1,0,x,x,x,O,O, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,x,x, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0, 1,x, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), 
(x,0,0, l,O,x,x,x,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,x,x, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0, 1,x, 1, 0, 1, 1, 0, 1,0, 1,x,x, 1, 0,0,0), (1, 0, 0, 1,0, 1, 0, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), ' 
(1,0,0, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0), (x,0,0, l,O,x,x,x, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,x,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1,0,0, 1,0,0,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1,0,0, 1,0,0, 1, 1, 1,0, 1,0, 1,0, l,x,x, 1,0,0,0), (1,0,0, 1,0,0, l, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), • 
(x, 1, 1,x,x,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), (x, 1, 1,0, 1,x,x,x,x,x,x,x, 1,0, 1,x,x, 1,0,0,0), 
(x, 1, 1,0, 1,x,x,x,x,x,0,0, 1,0, 1,x,x, 1,0,0,0), (x, 1, 1,0, 1,x,x,x, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1,0, 1,x,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1,0, 1,0,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1,0, 1,0,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), ' 
(1, 1, 1,0, 1, 1,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1,0, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1,0, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), (x, 1, 1,0, 1,x,x,x,x,x,O, 1, 1,0, 1,x,x, 1,0,0,0), 
(x, 1, 1,0, 1,x,x,x, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1,0, 1,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 1, 1,0, 1,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, l,0,0,0), (0, l, 1,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 1, 1,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (0, 1, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), ; 
(0, 1, 1,0, 1,0, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (0, 1, 1,0, 1, 1,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), • 
(0, 1, 1,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), ; 
(0, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), (0, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), • 
(0, 1, 1,0, 1,x,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1,0, 1,0,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), ' 
(0, 1, 1,0, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1,0, 1,0,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0, 1, 1,0, 1,0, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1,0, 1,0, 1, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), ' 
(0, 1, 1,0, 1, 1,x, 1, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), (0, 1, 1,0, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 1, 1,0, 1, 1,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (0, 1, 1,0, 1, 1, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 1, 1,0, 1, 1, 1, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (l, 1, 1,0, 1,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), : 
(1, 1, 1,0, 1,0,x,O, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), (1, 1, 1,0, 1,0,0,0, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), 
(1, 1, 1,0, 1,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), (1, 1, 1,0, 1, l,x,O, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), . 
(1,1, 1,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1,0, 1, 1,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), • 
(x, 1, 1,0, 1,x,x,x,x,x, 1,0, 1,0, l,x,x, 1,0,0,0), (x, 1, 1,0, l,x,x,x,0,0, 1,0, 1,0, l,x,x, l,0,0,0), 
(1, 1, 1,0, l,x,x, 1,0,0, 1,0, 1,0, l,x,x, 1,0,0,0), (x, 1, 1,0, l,x,x,x,O, 1, 1,0, 1,0, l,x,x, 1,0,0,0), 
( 1, 1, 1, 0, 1,x,x, 1, 0, 1, 1, 0, 1, 0, 1,x,x, 1, 0,0,0), (x, 1, 1,0, 1,x,x,x, 1, 0, 1,0, 1,0, l ,x,x, 1,0,0, 0), 
(1, 1, 1,0, 1,x,x, 1, 1,0, 1,0, 1,0, l,x,x, l,0,0,0), (1, 1, 1,0, 1,0,x, 1, 1,0, 1,0, 1,0, l,x,x, 1,0,0,0), 
(1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0, 1,0, l,x,x, 1,0,0,0), (1, 1, 1,0, 1,0, 1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), 
(1, 1, 1,0, 1, 1,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1,0, 1, 1, 1, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1,0, 1, 1, 1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), (x, 1, 1, 1,0,x,x,x,x,x,x,x, 1,0, l,x,x, 1,0,0,0), 
(x, 1, 1, 1,0,x,x,x,x,x,O,O, 1,0, l,x,x, 1,0,0,0), (x, 1, 1, l,O,x,x,x, 1, 1,0,0, 1,0, l,x,x, l,0,0,0), 
(1, 1, 1, 1, O,x,x, 1, 1, 1,0,0, 1,0, l ,x,x, 1,0,0, 0), (1, 1, 1, 1,0,0,x, 1, 1, 1,0,0, 1,0, 1,x,x, 1,0, 0,0), 
(1, 1, 1, 1,0,0,0, 1, 1, 1,0,0, 1,0, l ,x,x, 1,0,0,0), (1, 1, 1, 1,0,0,0, 1, 1, 1,0,0, 1,0, 1,0, 1, 1,0,0,0), I 

I 

(x, 1, 1, 1,0,x,x,x,x,x,O, 1, 1,0, 1,x,x, 1,0,0,0), (x, 1, 1, 1,0,x,x,x, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), ! 

(0, 1, 1, 1,0,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1, 1,0,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, l,0,0,0), 1 

(0, 1, 1, 1,0,0,0,0, 1, 1,0, 1, 1,0, l,x,x, 1,0,0,0), (0, 1, 1, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 

Figure A.5. Guided test generation using t9=1 (continued) 
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(0, 1, 1, 1,0,0, 1,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1, 1,0,0, 1,0, 1, 1,0, 1, 1,0, 1,0, 1, l,0,0,0), 
(0, 1, 1, 1,0,x,x, 1, 1, 1,0, 1, 1,0, 1,x,x, l,0,0,0), (0, 1, 1, 1,0,0,x, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1, 1,0,0,0, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(0, 1, 1, 1,0,0, 1, 1, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (0, 1, 1, 1,0,0, 1, 1, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(1, 1, 1, 1,0,x,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1, 1,0,0,x,O, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1, 1,0,0,0,0, 1, 1,0, 1, 1,0, 1,0, 1, 1,0,0,0), 
(x, 1, 1, 1,0,x,x,x,x,x, 1,0, 1,0; 1,x,x, 1,0,0,0), (x, 1, 1, 1,0,x,x,x,O,O, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0,x,x, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1, l, 1, 1,0, 1,x, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1~ 1, 1, 1,0, 1, 1, 1,0,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), 
(x, 1, 1, 1,0,x,x,x,0, 1, 1,0, 1,0, 1,x,x, l,0,0,0), (1, 1, 1, 1,0,x,x, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0, 1,x, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0, 1,0, 1,0, 1, 1,0, 1,0, 1,0, 1, 1,0,0,0), (x, 1, 1, 1,0,x,x,x, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0,x,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), (1, 1, 1, 1,0,0,x, 1, 1,0, 1,0, 1,0, 1,x,x, 1,0,0,0), 
(1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0, 1,0, 1,x,x, l,0,0,0), (1, 1, 1, 1,0,0, 1, 1, 1,0, 1,0, 1,0, 1,0, 1, 1,0,0,0), 
(x,x,x,x,x,x,x,x,x,x,x,x, 1, 1,0,x,x, 1,0,0,0), (x,O, 1,x,x,x,x,x,x,x,x,x, 1, 1,0,x,x, 1,0,0,0), 
(x,O, 1,0,0,x,x,x,x,x,x,x, 1, 1,0,x,x, 1,0,0,0), (x,O, 1,0,0,x,x,x,x,x,O;O, 1, 1,0,x,x, 1,0,0,0), 
(x,O, 1,0,0,x,x,x, 1, 1,0,0, 1, 1,0,x,x, 1,0,0,0), (1,0, 1,0,0,x,x, 1, 1, 1,0,0, 1, 1,0,x,x, 1,0,0,0), 
(1,0, 1,0,0,0,x, 1, 1, 1,0,0, 1, 1,0,x,x, 1,0,0,0), (1,0, 1,0,0,0,0, 1, 1, 1,0,0, 1, 1,0,x,x, 1,0,0,0), 
(1,0,1,0,0,0,0,1,1,1,0,0,1,1,0,0,1,l,O,O,O) 

Figure A.5. Guided test generation using t9=1 (continued) 
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