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CHAPTER I 

INTRODUCTION 

A recent technology, Kerr Lens Modelocking (KLM) in a 

Ti:sapphire laser, first demonstrated by Spence, et al. [1], 

has led to the development of solid-state lasers that are 

capable of producing pulses as short as 17-fs [2]. KLM 

lasers (also known as self-modelocked lasers, since ini­

tially they seemed to modelock 'by themselves' [1]) have 

certain advantages over those femtosecond lasers that use 

other passive modelocking technologies in terms of ease of 

operation and lower maintenance. For example, there need 

not be saturable dye-jets in a KLM laser, as is the case in 

colliding pulse femtosecond lasers [3]. Added to the advan­

tage of operational simplicity is that of wide tunability. 

With a bandwidth spanning from 750nm to 1050nm [4], a 

Ti:sapphire KLM laser is a fairly versatile tool for the 

production of ultra-short pulses. With the application of 

Optical Parametric Oscillator (OPO) techniques, KLM Ti:sap­

phire lasers have been built from which it is possible to 

produce sub-100 fs pulses across the wavelength range of 

from O. 9 to 4. 5 µm [ 5] [ 6]. KLM Ti: sapphire lasers have 

also been used to produce femtosecond pulses amplified up to 

TW powers [7][8]. Since the announcement of the success of 

1 
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Spence, et al. in 1990 until today, no less than four com­

panies have begun marketing some version of the KLM Ti:sap­

phire femtosecond laser [9]. Thus it would seem that KLM 

Ti:sapphire lasers, currently widely available commercially, 

would become the laser of choice for those requiring rela­

tively high power, ultra-fast and highly tunable pulses. 

However, there is still room for improvement in these 

lasers. First is that of an expensive, relatively high 

power pump laser required for femtosecond operation. Though 

the Ti:sapphire KLM laser is itself a solid-state laser, it 

is most often pumped with an argon-ion laser. Because many 

Ti: sapphire KLM lasers require between ·6 and 10 W of pumping 

power to allow femtosecond operation, these argon-ion lasers 

tend to be rather large and expensive. This adds to the 

overall expense of the femtosecond pulse generation system. 

A second concern is that of self-starting in KLM lasers. 

A self-starting KLM laser is one that has the ability to 

modelock without additional modelocking methods being 

employed. Typically, a Ti:sapphire KLM laser will not self­

start. Tamura, et al.,[10) announced recently a unidirec­

tional KLM Ti:sapphire ring-laser that will, self-start. 

This is done by reducing back reflections, which are thought 

to compete in a linear cavity in the modelocking process. 

In linear cavity KLM Ti:sapphire lasers, there are no known 

reports of a method that results in consistent self­

starting, except for that described in this report. 
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There have been numerous other solutions to the self­

starting issue in linear cavity KLM Ti:sapphire lasers. 

These including the use of an intracavity saturable dye jet 

[11], coupling with a cavity that contains a slowly modu­

lated high reflection mirror [12) [13), the use of an intra­

cavity acousto-optic modulator [14), coupling with a cavity 

that contains a nonlinear multi-quantum well reflector [15], 

coupling to a cavity that contains a semiconductor saturable 

absorber [16], the precise alignment of the Ti:sapphire cav­

ity length (to within 10 microns) to the length of the pump 

argon ion laser [17], and the use of a shaker [18]. 

However, each of these methods requires an added level of 

complexity either in additional maintenance, as is the case 

when dye jets are used, an added expense, as when a custom 

made semiconductor is used, or more difficult alignment is 

required, as when a coupled cavity is employed. 

Related to the issue of self-starting is that of the 

stability of modelocked operation of these lasers. For, 

without some kind of additional modelocking mechanism or an 

active 're-modelocking' mechanism, the typical KLM laser 

will remain modelocked only for relatively short periods of 

time, on the order of a half-hour or so [1]. 

Earlier work by Chen and Wang [11] showed that these 

three problems found in most KLM Ti:sapphire lasers: high 

pump power requirements, lack of self-starting, and poor 
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long term stability, were related to the small nonlinear 

response of the modelocking medium, Ti:sapphire. The non­

linear index of refraction, n2, is equal to 3.0 x 10-20 m2/W 

[19] at a wavelength of 800 nm, the location of peak gain 

for Ti:sapphire [4]. (Note that Appendix F gives the 

details of how the values for n2 were arrived at in this 

study.) This compares to a material like ZnS, which has a 

nonlinear index of refraction roughly 30 times higher than 

that of Ti:sapphire. Briefly, KLM lasers use a combination 

of self-focusing in a nonlinear medium and an intracavity 

aperture to act as a modelocking mechanism. In the KLM 

modelocked laser, an intensity dependent lens and an intra­

cavity aperture are aligned such that for high power pulses, 

self-focusing results in a decrease in loss at the aperture 

[20]. Because the self-focusing effect is proportional to 
; 

the nonlinear index of refraction, n2, a weakly nonlinear 

material like Ti:sapphire requires a relatively high intra­

cavity intensity to self-modelock. 

Although the n2 of Ti:sapphire can not be increased, the 

overall n2 of the cavity can be increased. This can be 

accomplished by the addition of an element with higher n2 

into the cavity. Note that the addition of a highly nonlin­

ear element was first used by Malcolm and Ferguson [21] to 

self-modelock a picosecond Nd:YLF laser using a piece of 

intracavity SF57 glass as a self-focusing lens. The addi­

tion of a highly nonlinear element to make the cavity more 
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nonlinear can be likened to making the overall dispersion of 

a given laser cavity more negative by the addition of an 

intracavity negative dispersion prism pair [22). 

The main thrust of this report will be an examination of 

the use of an additional highly nonlinear intracavity self­

focusing element in a Ti:sapphire self-modelocked laser as a 

technique to assist in the modelocking of a linear cavity 

KLM Ti:sapphire laser. By the addition of an intracavity 

highly nonlinear element that acts as a self-focusing lens, 

this report will show that it is possible to: 

1) lower pump power requirements for modelocked 

operation, 

2) make a linear cavity Ti:sapphire KLM laser self­

starting, and 

3) improve the long term stability of the laser. 

The first part of this report is a summary of the numer­

ical simulations accomplished that showed for the first time 

that self-focusing modelocking is quite unlike a saturable 

absorber [23], which it has been very often modelled as by 

other researchers [11)[17]. Note that the numerical results 

summarized in this report have since been replicated by 

Heatley, et al. [24). 

The second part of this report is a summary of the 

experimental work done at the OSU Laser Research Center to 

test various types of nonlinear materials for use as an 
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additional self-focusing lens in a KLM Ti:sapphire laser 

[25]. The best results were obtained using a 3.75 mm thick 

piece of monocrystalline ZnS, which has a calculated nonlin­

ear index of refraction of n2 = 90 x 10-20 m2/W. The use of 

ZnS allowed for the construction of the first linear cavity 

Ti:sapphire KLM laser that consistently self-starts and 

remains self-modelocked for periods up to at least 12 hours 

without restarting. Additionally, the minimum pump power 

requirement to sustain self-modelocking was reduced by more 

than a factor of 2 when ZnS was placed in the cavity. It 

should be noted that the results obtained here at osu using 

monocrystalline ZnS in a linear cavity KLM Ti:sapphire laser 

have since been partially replicated elsewhere [26]. Addi­

tionally, it is important to point out that while the work 

that has gone on here at osu is directed at the use of an 

additional self-focusing lens in a Ti:sapphire laser, the 

method may in future also be applied to the passive mode­

locking of all solid-state (diode pumped) femtosecond KLM 

systems, such as Cr:LiSAF lasers [27] [28]. 



CHAPTER II 

MODELOCKING IN KERR LENS 

MODELOCKED LASERS 

Accurate modelling of the propagation of a beam through 

a nonlinear medium presents a reasonable challenge. This is 

because, except for very specific waveforms (i.e., solitons 

[29]) general analytical solutions for this problem do not 

exist. Therefore, in order to model an arbitrary waveform 

propagating through a nonlinear medium, one is forced to 

employ numerical methods. 

Mode-locking is the process of forcing the relative 

phases of the many longitudinal modes in a continuous wave 

(cw) laser to zero [3]. The result is that the output of a 

mode-locked laser becomes a train of short pulses with the 

period between the pulses equal to the cavity round trip 

time. Since a very narrow pulse requires a very wide spec­

trum [30], the narrowness of the modelocked pulse is limited 

by the bandwidth spanned by the longitudinal modes. Thus, a 

material like Ti:sapphire, with a gain bandwidth of over 300 

nm, has the capability of supporting pulses in the femtose­

cond range. As an estimate to the limit the gain bandwidth 

of Ti:sapphire imposes on pulse duration in a KLM laser, we 

may use the relation for a transform-limited Gaussian zero­

chirp pulse [4] 

7 
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0.441 
,: =-­

p 6.v (Eq. 1) 

where ,:Pis the 1/e pulse width and 6.v is the gain bandwidth 

of Ti:sapphire equal to [4] 

C C 
6.v= -----

750 nm 1050 nm 

= 128 THz 

This means that the shortest pulses one can achieve 

directly from a modelocked Ti:sapphire laser are roughly ,:P 

= 3.4 fs. Note that the shortest pulses from a KLM Ti:sap­

phire laser reported thus far are 14.5 fs [31). There are 

many processes in the laser that might act to broaden a 

femtosecond pulse, including: 

1) first and second order group velocity dispersion 

{GVD) [ 32], 

2) Self-Phase Modulation {SPM) [17], 

3) the bandwidth limit of the·mirrors used in the 

cavity, 

4) the gain limited bandwitdh of the laser, and, 

5) self-focusing in the nonlinear medium [22). 

The first two limitations listed above, GVD and SPM, can 

occur when the intracavity pulse propagates through the 

prisms, the gain medium, and even the output coupler in a 

laser [31). A combination of GVD and SPM such that pulse 

spreading does not occur even for femtosecond pulses has 

been called a soliton effect [33). Some researchers 
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describe the multi-pulsing phenomena seen in KLM Ti:sapphire 

lasers as evidence for higher order solitons in an over­

pumped lasers [34]. Krausz, et al., have shown that the 

pulse width varies greatly from one side of the laser to the 

other, and choose to describe the lasers as soliton-like, or 

'solitary' lasers [17]. For mirrors with multi-layered 

dielectric mirrors, the many layers can act something like a 

Fabrot-Perot, thus broadening the pulse with each reflec­

tion. The solution often sought is to employ only single­

layered mirrors. The effect of gain bandwidth has already 

been discussed above. The ability of self-focusing to limit 

the modelocking ·process was first shown by Pearson, Radze­

wicz, and Krasinski [23], and will be discussed further in 

this report. 

All passive modelocking methods employ some kind of 

intensity dependent gain in the laser cavity to produce 

short pulses from the initially almost random intracavity 

beam intensity envelope that one would expect to see in a cw 

laser running on many longitudinal modes simultaneously. 

The view that self-focusing is the major modelocking mecha­

nism in a KLM laser cavity was originally developed by 

Piche' [20]. According to this view, KLM lasers use 

self-focusing as a modelocking mechanism in the following 

manner. For high optical field intensities, the index of 

refraction, n, of a nonlinear medium is given as 

(Eq. 2) 
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where n 0 is the linear index of refraction, n 2 is the non­

linear index coefficient, and I is the intensity of the 

optical field [35]. For a beam with the maximum intensity 

on axis, and a beam distribution in which the inte11sity 

decreases monotonically with the distance from the beam axis 

(e.g.; Gaussian or hyperbolic secant beam profile} the 

higher intensity found on axis results in a greater phase 

change of the beam as it travels through the nonlinear 

medium. In this manner, a flat nonlinear element acts as a 

power dependent lens. 

According to Piche', KLM lasers exploit the power depen­

dence of the self-focusing effect to discriminate in favour 

of high instantaneous power. An aperture is placed in the 

cavity in such a way that initially it blocks a few percent 

of the intracavity beam power. Fig. 1, in Appendix H, shows 

a simplified KLM laser cavity in which two beam profiles are 

shown, one for low power and one for high power. The high 

power beam profile experiences less loss at the aperture due 

to self-focusing. Note that, on a time scale of femtose­

conds, even a cw beam will display a rapidly varying inten­

sity profile for a laser operating on many longitudinal 

modes, since we have beating between many, many modes (on 

the order of 104-1os). Therefore, higher power portions of 

the rapidly varying pulse envelope will experience more 

self-focusing compared to the lower power temporal portions 

of the beam. For a properly placed aperture, this slight 
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focusing results in a smaller beam diameter at the aperture, 

and thus translates into lower losses for these high power 

portions of the rapidly varying cw envelope. Piche' dis­

cusses two kinds of apertures in his work: hard and soft. A 

hard aperture could be an edge of a prism or an actual slit 

placed in the cavity, while a soft aperture is seen as the 

interaction of pump and cavity beam profiles in the gain 

medium. For either hard or soft apertures, self-focusing 

results in larger gain for the high intensity portions of 

the beam. 

In the absence of any competing effects, the ability of 

even a seemingly small discrimination between intensities to 

force a laser to modelock can be seen ih the following 

first-order modelocking computer simulation example. Appen­

dix A shows more of the details of this numerical simu­

lation. Note that the loss vs. power relation for a KLM 

laser is not linear, a point that will be developed further 

in the text. However, as a first-order approximation, one 

may take the differential loss in an initially free-running 

laser to be: 

loss= loss 0 +yP (Eq. 3) 

where loss0 is aperture loss per cavity round-trip at zero 

power, which might be typically be 4% for a high gain laser, 

y is the slope of the loss vs. power curve, and Pis instan­

taneous intracavity power. In this case, the slope found in 
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the simulations presented in this report of very highly 

nonlinear self-focusing elements, where initially y = 10-s 

w-1, was used. 

Assuming that pulse envelope of the combination of some 

104 to 10s longitudinal modes present within the cavity of a 

free-running Ti:sapphire laser will closely resemble noise, 

the simulation was started with a random distribution of the 

intracavity power with an average power of 15 W (shown in 

Fig. 2). For a 10% output coupler, this would translate 

into a 1.5 W laser, which is.about typical for KLM Ti:sap­

phire lasers. After 2000 round trips through the cavity 

using the linear loss rule above and normalizing power at 

each step, we see that what before resembled noise has prog­

ressed into the beginnings of a modelocked laser as a number 

of distinct peaks have developed (shown in Fig. 3). Lower 

intensity portions of the time domain intracavity beam are 

eventually eliminated by their higher loss, while higher 

intensity portions of the beam tend to grow, until finally, 

only one pulse remains in the intracavity beam. After 5000 

round trips (shown in Fig. 4) we see that only one narrow 

peak remains, and the numerical laser is now fully mode­

locked. 

Of course, even if the initial phase of modelocking is 

described well by a linear relation between loss vs. intra­

cavity power, one would expect that the differential gain 

for high power pulses would eventually saturate. This is 
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the case of the classic saturable absorber, as will be dis­

cussed more in a later section. Otherwise, the loss vs. 

power curve would eventually cross the zero loss axis (i.e., 

the nonlinear element would produce gain in the cavity.) 



CHAPTER III 

GAUSSIAN THIN LENS MODEL OF SELF-MODELOCKING 

Though the one of the goals is to develop a more com­

plete model of Kerr lens modelocking, it will instructional 

to begin with a much simpler' method. The simplest model 

------woulc:l be to approximate the effects of a self-focusing lens 

with a Gaussian thin lens model. In this section, we will 

look at the effect of placing a Gaussian thin lens with a 

power dependent focus in a cavity of a laser with an intra­

cavity aperture. Fig. 5 shows a schematic of the unfolded 

non-symmetric cavity that was used in the thin-lens 

modelling of a self-focusing element in a KLM laser cavity. 

The cavity used for the thin-lens self-focusing simu­

lation contained four mirrors, with an initial beam waist 

between mirrors M2 and M3 of approximately 30 µm. Mirrors 

M1 and M4 were flat, while mirrors M2 and M3 had a radius of 

10 cm. In this cavity, an aperture was placed directly in 

front of mirror M4 to act as a modelocking discriminator. 
'~ 

The distance between M1 and M2 was 50 cm, and the distance 

from M3 to M4 was 75 cm. The optical distance between M2 

and M3 was about 10.5 cm. As was previously found by Chen 

and Wang [11], placing the nonlinear lens slightly away 

from the waist resulted in the desired decrease in aperture 

14 
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loss for higher intracavity powers for this particular cav­

ity. Thus, the power dependent Gaussian thin lens, Lp, used 

to give a first-order approximation of the effects of 

self-focusing in this cavity was placed slightly (1 mm) away 

from the location of the beam waist between M2 and M3 • 

The Gaussian approximation is based on the propagation 

of the complex beam parameter, q, in a self-consistant man­

ner such that [36) 

qA+B 
q=qD+C (Eq. 4) 

where A, B, c, and Dare the elements of the Gaussian ABCD 

matrix 

The ABCD matrix for propagation through a homogeneous 

medium is simply [36) 

M/ree-space=[~ ~] . (Eq. 5) 

where dis the optical length of the material. 

The distance matrices for the particular cavity studied 

become 

D =[I 0.5] 
1 0 I 

[ 1 0.01515] 
D2= 0 

D =[I 0.75] 
4 · 0 I 

The ABCD matrix of a thin lens/mirror is given as 
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M lens/mirror= [ _ // f ~] (Eq. 6) 

where f is the focal length of the lens or mirror. Using 

MKS units throughout, the matrices for mirrors M1 , M2 , M3 

and M4 are given as [36) 

M 1 =[~ ~] 

M2=[_;/R ~] 

= [ _ ~o ~] 

M 3 = [ _ ~O ~] 

M 4 =[~ ~] 
and that of the self-focusing (power dependent focus) thin 

lens is given as 

(Eq. 7) 

To examine the change in the beam radius at the aperture 

in from of mirror M4 , the round trip cavity matrix, Mcavity, 

of the cavity studied is calculated as 

M cavity= D 4M 3D3L pD2 (Eq. 8) 

x M 2D 1 M 1D 1 M 2D 2 LpD 3 M 3 D 4 M 4 

Note that because the matrices for M1 and M4 are the 

indentity matrix, simplification can be achieved by leaving 

them out of the calculation, reducing the cavity round trip 

matrix to 



The complex beam parameter q is obtained from the 

resulting ABDC matrix as (36] 

1 (A-D) i~ 2 
-=- --l-[(A+D)/2] 
q 2B B 

where the complex beam parameter is given as (36] 

1 1 . A 
-= -- z 
q R nw(z) 2 

17 

(Eq. 9) 

(Eq. 10) 

(Eq. 11) 

Beam radius w(z) is then extracted from the beam parame­

ter q 

( ~ -Im(q)n w z)= 
A 

(Eq. 12) 

where Im(q) is the imaginary portion of q. 

Using a computer program to perform the matrix multipli­

cation and the above algebra, it is a simple matter to 

examine the beam radius, w(z), at the aperture as a function 

of the focal length of the thin self-focusing lens Lp• 

Table 1 shows a comparison of these two parameters of ,inter­

est. The focal length of infinity is equivalent to low 

power operation of the laser. Shorter and shorter focal 

lengths correspond to higher and higher instantaneous intra­

cavity power in the laser. 



Table I 

GAUSSIAN THIN-LENS APPROXIMATION 

focal length (cm) of Lp 

00 

100 

50 

25 

15 

5 

1 

0.5 

0.2 

0.15 

0.14 

0.13 

0.128 

0.127 

0.1265 

0.1260 

beam radius at M4 (mm) 

0.680 

0.668 

0.657 

0.637 

0.615 

0.542 

0.405 

0.354 

0.323 

0.361 

0.397 

0.523 

0.626 

0.767 

0.995 

unstable cavity 

18 
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From Table 1, one can see that there is an initial 

decrease of the beam radius at the aperture with a decrease 

in focal length of self-focusing lens Lp, which corresponds 

to an increase in intracavity power. However, as the focal 

length of the self-focusing lens Lp becomes very small, a 

condition that would correspond to very high pulse peak 

power, the beam radius, at M4 starts to grow rapidly. Even­

tually, for a focal length of about 0.126 cm in this exam­

ple, the cavity becomes unstable. 

Keeping in mind the limitations of this simple model, 

such as the thin lens approximation as well as beam diffrac­

tion at the aperture being ignored, one could interpret the 

results as follows. Initially, for a properly placed 

aperture, higher power portions of the intracavity temporal 

waveform experience lower loss, and therefore see a larger 

gain in a cavity with amplification (e.g., a laser). This 

is consistent with Piche's model of self-focusing modelock­

ing. 

However, it is interesting to note that even in this 

simplest model of a KLM laser, the relationship between 

increase in intracavity instantaneous power (modelled here 

as the shortening of the focal length of Lp) and intracavity 

loss (here modelled as beam radius at the aperture) is non­

monotonic. As such, a minimum loss power exists for a given 

cavity configuration. Further increases in instantaneous 

intracavity power result in higher losses. This suggests 
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that for a given laser configuration and average intracavity 

power, self-focusing will act eventually to limit the pulse 

shortening process. Also, very high focusing power results 

in an unstable resonator cavity. This is perhaps of less 

interest, since one generally assumes that a laser tends to 

run where losses are the least. This might mean that once 

the minimum loss power is reached, pulse shortening ceases. 

Thus the higher, unstable pulse power regimes are never 

reached. 

These two characteristics of the self-modelocking pro­

cess in a KLM laser make self-focusing modelocking a funda­

mentally different kind of passive modelocking device, quite 

different from a classic saturable absorber. One will 

recall that a classical saturable absorber will 'bleach' 

[4], such that higher and higher pulse powers will result in 

essentially the same loss once bleaching has occurred. Put 

most simply, a self-focusing lens does not bleach. However, 

due to the small amount of faith one can put in this overly 

simplified model, this idea was pursed more fully using more 

accurate models of the KLM laser. 



CHAPTER IV 

PARABOLIC GRIN LENS RAY MATRIX APPROXIMATION 

OF SELF-MODELOCKING 

A higher order model that takes into account the thick­

ness of the nonlinear medium that was used to model beam 

propagation through a nonlinear medium was to approximate 

the medium as a power dependent parabolic index of refrac­

tion profile GRIN lens (19)(20)(37)(38). In Appendix Bit 

is shown how the parabolic profile ABCD matrix is obtained 

for a self-focusing lens as 

(Eq. 13) 

where dis the optical length of the material and f3 depends 

on the beam radius, w(z), intensity, I, and the linear and 

nonlinear index of refraction, n 0 and n2 respectively, 

according to 

f3=w(z) 
2 

(Eq. 14 ) 

For an estimate of the focusing power of a typical self­

focusing lens in a KLM Ti:sapphire laser we can look at a 

practical example. Lemoff and Barty report a Ti:sapphire 

laser with an output peak pulse power of 0.5 MW using a 10% 

21 
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transmission output coupler [39]. This means that the 

intracavity pulse peak power in their laser was about 5 MW. 

Using a more moderate intracavity pulse peak power of 1 MW, 

a linear index of refraction of Ti:sapphire of n 0 = 1.76, a 

nonlinear index of refraction of n2 = 3.0 x 10-20 m2/W, and 

a beam radius at the focus of 20 µm, we see that in a typi­

cal KLM Ti:sapphire laser 

20X 10-6 

13 = ----,---
2 

= 1.36mm 

1.76+(3.0X 10-20 m 2 /W)(3.18X 10 15 W/m 2 ) 

(3.0 X 10-20 m 2 /W)(3.18X10 15 W /m 2 ) 

For an extremely short piece of Ti:sapphire, for example 

a 0.1 mm piece, the ABCD matrix (using MKS units) becomes 

L -[ cos(0.0736) 
0 · 1 mm - - 735sin(0.0736) 

= [0.997 
-54 

0.1 X 10- 3 ] 

0.997 

0.0014 sin(0.0736 )] 
cos(0.0736) 

If we compare this matrix to that of a simple thin lens, 

given as 

(Eq. 15) 

we see that the focal length of this self-focusing lens 

example when modelled as a simple thin-lens is about 1.85 

cm. In a laser cavity that is often more than a meter long, 

this may represent considerable beam re-shaping, depending 

on the placement of the nonlinear lens. 
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Note that the actual rod length in a Ti:sapphire laser 

is typically between 4 mm [31] and 20 mm [1]. Additionally, 

the beam radius, w(z), and the intensity of the beam on 

axis, Io, vary considerably from one end of the rod to the 

other. One method used to treat this variation in w(z) and 

Io is to divide the rod up into a number of parabolic lens 

[19]. Such a process is iterative in nature, since the 

effect of the lens is to change Io for the following para­

bolic lens segment, which of course changes the focusing 

properties of that lens segment. 

Another method used that has been used is to simply use 

the beam confocal parameter, z 0 , given as [36] 

rcw~ 
z =--

0 A (Eq. 16) 

as an effective nonlinear length of the laser rod [12] along 

with an average intensity. The philosophy here is that only 

the area near the focus of the beam contributes signifi­

cantly to the nonlinear phase shift, since this is where the 

beam intensity is highest. 

It should be noted that a fit of an exponential index 

profile to that of a parabolic profile leads to a poor esti­

mate of the self-focusing effect in the wings of the beam. 

Fig. 6 shows a comparison of the parabolic fit to a 

normalized Gaussian distribution with both Io and w0 equal 

to unity. As can be seen from the figure, the parabolic fit 

works well on axis, where the intensity is the greatest for 
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a TEM00 Gaussian beam. However, even before the beam 

radius, w0 , is reached, the parabolic profile approximation 

actually gives the wrong sign for the nonlinear index of 

refraction term. Referring to Fig. 7, which shows the same 

comparison extended out to a radius equal to 3w0 , we again 

see that the parabolic approximation gives the wrong sign, 

and in addition gives a larger magnitude for the intensity 

than is found on axis. The result is that the focusing of a 

beam estimated from the parabolic approximation of self­

focusing is greater than actually occurs in a nonlinear 

material. 

An additional limitation that one finds in using the 

parabolic GRIN lens approximation of self-focusing is that 

this method is restricted to an approximation of the TEM00 

mode. Higher order spatial modes have been reported (39] in 

KLM Ti:sapphire lasers, especially before modelocking 

occurs. Also, quite un-parabolic index profiles resulting 

from higher order spatial modes, which appear in the cavity 

due to intracavity aperture diffraction, can not be modelled 

well at all. Siegman (3] has shown that a circular aperture 

placed in the path of a TEM00 Gaussian mode such that only 

1% of the power of the beam is blocked results in a 17% on 

axis intensity ripple in both the near and far field. Since 

many apertures used in practice in KLM Ti:sapphire lasers 

are designed to block more than 1% of the power of the beam 

in cw operation [11], this inability of the parabolic ABCD 
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method to approximate self-focusing in other than TEM00 mode 

distributions is another good reason to seek a more exact 

analysis of beam propagation in nonlinear media. 



CHAPTER V. 

USE OF FOURIER TRANSFORM TO 

MODEL SELF-MODELOCKING 

For a higher level of accuracy in modelling beam propa­

gation in a nonlinear medium, one of the often used methods 

is called the split-step Fourier method, first used to 

examine the combination of self-focusing and diffraction in 

a high power laser beam propagating through air [40). The 

method has since been used to examine many nonlinear propa­

gation problems, including fiber optic pulse propagation 

[43] and unstable laser design [42]. 

There are two basic steps in this method: 

1) linear propagation and 

2) nonlinear phase correction. 

The entire distance across which the beam is propagated 

is divided up into small, discrete linear propagation steps. 

In between each linear propagation step, the nonlinear phase 

correction step is performed. Fig. 8 shows graphically how 

a beam is numerically propagated using this method. The 

number of steps required to accurately model a nonlinear 

propagation depends on the nonlinear response term. One 

26 



often models a given nonlinear propagation problem using 

successively shorter and shorter discrete linear distances 

until the results converge to a given degree of accuracy. 

Linear propagation of a field through a linear medium 

can be modelled using Huygens' integral in the Fresnel 

approximation as [3] 
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E unCx, Y, Z 0 + 6z) = +J"'f E(X 0 , Yo, Z 0 ) 
6Zl\.o "' 

(Eq. 17) 

X [ 
.k· (x-xo)2+(y-yo)2Jd d exp - z O x o Yo 

26z 

where 6z is the distance parallel to the z-axis from the 

entrance plane at z = z 0 to the exit plane at z = z 0 + 6oz. 

To this linear propagation term the nonlinear phase correc­

tion is applied as 

[ 4inn 2 / 6z J 
E ( X, y , Z) = E Lin ( X , Y , Z) ex P A 

0 
(Eq. 18) 

In the modelling of self-focusing in a Ti:sapphire 

laser, a digital method was sought to perform the Huygens' 

integral. However, it was soon realized that not all digi­

tal methods are equally useful. Keeping in mind that 

because of the Nyquest criteria, there is a minimum number 

of discrete points that one must include to retain a given 

amount of 'information' in the waveform [43), the question 

of estimating the computation power required to solve this 

nonlinear problem needed to be addressed. 

I 
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Assume a square grid that contains N x N discrete sam­

ples. In order to perform the above double integral as a 

discrete summation, for each sample on the exit plane, 

E(xm,Yn,zo+~z), a distance ~z from the input plane one would 

need to calculate N2 complex exponentials. Since there are 

N2 such points on the exit plane, the total number of such 

sums to be performed is N4 for every step in the z direc­

tion. Even a relatively loose grid of N = 128 samples would 

require the summing of 1284 = 268 million complex 

exponential for each discrete step of ~z in the linear prop­

agation. Note that in the numerical modelling of the 

Ti:sapphire laser, for a moderate peak power (over 10 kW for 

highly nonlinear materials, and over 100 kW for Ti:sapphire) 

it was necessary to use a minimum of 25 discrete linear and 

nonlinear steps in order to converge, and to pass the wave 

form back and forth through the cavity 50-100 times to 

establish a stable mode. Use of a digital summation to 

perform Huygens' integral for the linear portion of the 

propagation would have required about 300 billion complex 

exponential calculations per point on the power vs aperture 

loss curve. This represents a prohibitively large amount of 

computer time, making the method useless for a research 

tool. 

A much more efficient method was found that uses the a 

two-dimensional Fourier Transform, which can be calculated 

numerically using any number of public domain Fast Fourier 
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Transform {FFT) routines, to perform the integral [44][45]. 

Since the Huygens' integral is a convolution integral, it is 

possible to perform a convolution in the spatial domain as a 

multiplication in the spatial frequency domain[46]. Appen­

dix C shows the derivation of the application of the Fourier 

transform to perform the linear portion of the split-step 

beam propagation through a nonlinear medium. 

There are two very large savings in using a 2 dimen­

sional Fourier transform {2DFFT) method when compared to 

that of a 2 dimensional convolution. The first is that a 1 

dimensional Fourier transform can be performed digitally in 

a very efficient manner. According to Pratt (45], a 1 

dimensional FFT of a sequence of N discrete samples can be 

performed in Nlog 2 (N) steps, instead of the N2 steps 

required for the single dimension convolution. Pratt states 

that the second great savings in computational effort is 

that a 2DFFT can be performed as a combination of 1 dimen­

sional Fourier transforms. This means that a 2 dimensional 

FFT on a N x N size grid requires not N4, as is- the case in 

the 2 dimensional convolution, but only 2N 2 log 2 (N). The sav­

ing in computational effort scales as 

comp. savings with 2D-FFT (Eq. 18) 

For a N size of 128 

N 4 = 268X 10 6 
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Thus, for a relatively small grid size, the savings in 

computational effort is on the order of 1000. Note that 

this savings becomes much greater if more numerical accuracy 

is required. 

However, there are two important problems that were 

found with using the 2DFFT method directly to model laser 

cavities. The first was that something like one quarter of 

a million exponential sums per discrete step 6z was still a 

sufficiently larger number of calculations to perform, when 

128 points were sufficient to accurately describe a given 

laser cavity. This problem was overcome by using a differ­

ent transform, the Hankel transform, which will be examined 

in the following section. 

The second problem was that for a laser cavity with any 

kind of focusing, 128 points in each dimension did not give 

sufficient accuracy. This is because the same grid size 

that describes a beam at a mirror or lens, where the beam is 

perhaps 1 mm in diameter, must be used to describe the beam 

in a very tightly focused region, such as in the laser rod, 

where the diameter was sometimes a tenth as wide. There­

fore, when a 128 x 128 grid sufficiently described the beam 

at the focus, then 1024 x 1024 grid was need to describe the 

beam when at the mirror because of the larger area covered 

by the beam at the mirror. Note that most of the 1024 x 

1024 samples at the mirror contain redundant information, if 

we assume a properly scaled 128 x 128 grid spaced further 
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apart is sufficient. Again, this meant that only the numer­

ical solution to the problem of beam propagation, though 

numerically correct, was too slow to be useful as a research 

tool. 

This second problem was solved by using a space trans­

formation algorithm developed by Sziklas and Siegman [47] in 

their study of mode calculations in unstable resonators. 

Their solution was to 'bend' the spatial dimension z to con­

form with the expanding and contradicting beam. This can be 

accomplished by making a z' axis expand with the phase 

radius of the beam, R(z). Referring to Fig. 9, the optical 

field in normal spatial coordinates, E(x,y,z), can be.trans­

formed to an equivalent optical field in primed coordinates, 

Y(x',Y',z'), as 

where the conversion to prime co~rdinates is given by 

·x'(x,y)=(axlz) 

y'(x,y)=(ay/z) 

, a 2 (z - z 0 ) 
z =----

ZZo 

(Eq. 19) 

(Eq. 20) 

(Eq. 21) 

(Eq. 22) 

where z0 is input plane and a is an arbitrary scaling con­

stant. It is convenient to set a to unity. Sziklas and 

Siegman show that the transformed equivalent field 

Y(x',Y',z') also obeys the paraxial waveform equation. This 

means that the 2DFFT method can be used on the primed coor-
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dinate field as well. In the study of self-focusing in a 

Ti:sapphire laser, when the primed coordinates were scaled 

such that beyond the confocal parameter, the z' axis is par­

allel to the diverging angle of the beam, it was found that 

one can reduce the variation in beam diameter significantly. 

In this manner, the requirement for a 1024 x 1024 grid size 

was reduced to a 128 x 128 grid size in many cases. None­

theless, the numerical model was still found to be too slow. 



CHAPTER VI 

USE OF HANKEL TRANSFORM TO 

MODEL SELF-MODELOCKING 

For beam profiles that are radially symmetric, most of 

the information in a 2D grid sampling of the intracavity 

beam is redundant. A significant savings in computational 

effort can be made if, for radially symmetric beams, a lD 

description is used that looks at the radial dimension, r, 

instead of dimensions x and y. A radially symmetric version 

of the 2D Fourier transform method is available based on the 

Hankel transform beam propagation method [48][49][50][51]. 

Appendix D summarizes the derivation of the Hankel transform 

beam propagation method in a nonlinear medium and shows and 

example program used in this study. 

Using the Hankel transform split-step beam propagation 

method, just as in the case of the FFT version of the split­

step beam propagation method, requires the linear and non­

linear steps to be repeated many times to propagate the 

field through the nonlinear crystal. For accurate modelling 

of a 8 mm crystal used in this study, as many as 100 steps 

per pass through the crystal were used to ensure conver­

gence. Propagation through the linear portions of the 

33 
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diffraction at the aperture, was done using the Hankel 

transform and the space transformation algorithm of Sziklas 

and Siegman. 

Similar to the method used by Fox and Li [52], an ini­

tial field distribution was propagated around the cavity 

until the field converged to a mode. The initial field 

distribution used was the TEM00 Gaussian beam found by solv­

ing the linear (zero-power) cavity without an aperture. 

Using the Hankel transform beam propagation method, the 

initial field was sent through many round cavity round trips 

(between 25-200, depending on the strength of the nonlinear­

ity) until a mode formed. Once a stable mode was estab­

lished in the cavity, aperture loss per pass was calculated. 

Two kinds of KLM laser cavities were analyzed. The 

first cavity studied was a standing wave KLM Ti:sapphire fs 

laser, the same cavity presented in Fig. 5. This is a 

fairly typical design, in which the Ti:sapphire crystal acts 

as both a gain medium and an intensity dependent lens. A 

ring cavity with an additional highly nonlinear self­

focusing element was studied as well. In both cavities, the 

wavelength used was Ao= 800 nm, which is near the peak gain 

of Ti:sapphire. 

Figure 10 shows the KLM ring laser simulated in the 

study. It is idealized in the sense that, of the two media, 

only the highly nonlinear crystal is explicitly modelled, 



since the nonlinear refractive index of the gain medium is 

often one or two orders of magnitude less than th,at of the 

self-focusing element. 
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In the ring cavity, the radius of curvature of the two 

mirrors, M1 and M2, was 10 cm, and the distance between the 

two mirrors was 11.1 cm for a nonlinear crystal length of 8 

mm. For shorter nonlinear crystal lengths, the distance 

between mirrors was varied to keep the linear beam waist the 

same (i.e., the optical distance between M1 and M2 is kept 

constant). The distance from mirror M2 to the adjustable 

aperture was set to 25 cm. Note that many other aperture 

positions were simulated for this cavity, including 5, 10, 

15, 20, 30, and 35 cm from mirror M2. However, the 25 cm 

distance was found to have the optimum loss characteristics 

of the positions tried. The total round trip physical 

length of the ring laser was set to 1.11 m. This resulted 

in a waist radius between M1 and M2 (before self-focusing) 

of about 25 µm. 

For the purposes of simulations of the ring cavity with 

an additional nonlinear element, the n2 of the nonlinear 

material used was 537 x 10-20 m2/W esu (which is the n2 of 

CdS [53]). CdS is used here as an example only. There are 

many other strongly nonlinear materials (e.g.; zns, znse, 

SF57 glass) to which this study applies equally well. 
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For both the standing wave and the ring laser cavities 

studied, the diameter of the aperture used was set so that 

the zero-power loss at the aperture was about 4%. For the 

results presented below, the aperture in the Ti:sapphire 

standing wave cavity was 1.7 mm in diameter, while the 

results presented for the ring cavity are those for an aper­

ture diameter of 1.25 mm. The distance dl on the ring cav­

ity figure is the distance in mm from the mid-point of the 

two curve mirrors to the center of the nonlinear crystal. 

For a symmetric placement of the crystal, dl = o. A posi­

tive dl indicates that the crystal was moved closer to M2 • 



CHAPTER VII 

NUMERICAL RESULTS AND DISCUSSION 

Figure 11 shows the relation between aperture loss and 

instantaneous intracavity power for the linear cavity KLM 

Ti:sapphire laser studied in the numerical simulations using 

the Hankel transform beam propagation method. Note that 

these results are quite similar to those found by Chen and 

Wang [11]. An important difference is that the previous 

study by Chen and Wang did not examine the relation between 

loss and power beyond 100 kW intracavity peak power. This is 

not necessarily the maximum peak power seen in real KLM 

Ti:sapphire lasers, which can produce pulses with an intra­

cavity pulse peak power of 5 MW [39]. When higher intracav­

ity peak powers are taken into account, one finds that the 

relation between pulse peak power and aperture loss is 

hardly linear, as was found previously by Chen and Wang. 

Also, the relation between loss and power no longer 

resembles the saturable absorber dye loss vs. power relation 

[4]. Instead, as seen before in the simple Gaussian thin 

lens approximation, self-focusing initially narrows the beam 

radius seen at the aperture. But at very high intracavity 

powers, self-focusing actually results in a beam broadening, 
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and thus acts to limit the pulse narrowing process. For 

this particular example, minimum aperture loss is found at 

an intracavity peak power of approximately 450 kW. 

Fig. 12 shows aperture loss vs. intracavity instanta­

neous power in the KLM ring cavity studied using the Hankel 

transform beam propagation method for a d1 = 3 mm and a CdS 

crystal of 8 mm in length. For this particular crystal 

location, the initial slope of the loss vs. power curve is 

-1.0 x 10-s w-1, which is two orders of magnitude larger 

than that of the KLM laser that uses Ti:sapphire for a self­

focusing element. For this particular example, the minimum 

loss power is 7 kW. From Fig. 12, it is clear that for this 

nonlinear crystal position, power higher than 7 kW results 

in higher aperture losses. For comparison, Fig. 12 also 

includes the results from the standing wave single crystal 

(8 mm in length) Ti:sapphire KLM cavity. Following the pub­

lication of the numerical results summarized in this report 

[23), Heately, Dunlop and Firth [24) have also reported a 

similar relation between aperture loss and intracavity power 

in their numerical study of a KLM ring laser with an addi­

tional highly nonlinear intracavity element, thus replicat­

ing the results presented here. 

It is important to note that the numerical results pres­

ented in this report can be jasily applied to other nonlin­

ear materials, since the nonlinear medium reacts to the 

product of the nonlinear index of refraction and the 
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intensity of the field. Thus, by properly re-scaling the 

power axis, one can find the relation between power and 

aperture loss for any given nonlinear material of the same 

thickness in the cavities presented. For example, calcula­

tion of the relation between loss and power in a similar 

cavity that uses SF57 glass, which has a n 2 that is 1/25 

that of eds, is accomplished by multiplying the power of the 

values presented by 25. Thus, for the ring cavity presented 

in Fig. 12 and a d 1 = 3 mm using a SF57 glass sample of 8 mm 

in length, the minimum loss power would be 25 x 7 kW= 175 

kW. 

Fig. 13 shows a family of curves showing loss vs. power 

for the same KLM ring laser with dl varied from Oto 5 mm 

for a 8 mm length of CdS. Not shown in Fig. 13 is the loss 

vs. power curves for negative dl values, since the simu­

lations of such cavities showed aperture losses increasing 

with intracavity power so that the lowest loss was found to 

be at zero intracavity power. This implies that in such 

cavities, self-focusing would tend to work against mode­

locking. The possibility that self-focusing, because of 

crystal positioning, can therefore act to prevent 

mode-locking has been reported previously by Chen and Wang 

[11]. As the distance from the waist to the center of the 

crystal, d 1 , is moved from d1 =Oto d 1 = 3 mm, the magni­

tude of initial slope in the loss vs. power relation, y, 

increases. For this particular cavity configuration, 
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positioning the crystal center at d 1 = 3 nun results in the 

largest magnitude for y and the lowest losses. For d 1 > 3 

nun, the magnitude of y decreases and the curves become shal­

lower. However, notice that the minimum loss power 

increases with increasing d 1 • Moving d 1 from 2 nun to 4 nun 

results in the minimum loss power moving from 5.5 kW to 8.5 

kW. 

This shift in minimum loss power with changing d 1 is 

even more pronounced with a thinner (1 mm) CdS crystal. 

Fig. 14 shows a family of curves for the same ring cavity 

with a 1 mm thick CdS crystal. Note that symmetric posi­

tioning of the nonlinear crystal with respect to the waist 

of the beam gives higher losses for increased intracavity 

power. Again, for comparis.on purposes, the loss vs. power 

curve for standing wave 8 mm Ti:sapphire KLM laser is shown. 

As can be seen from Fig. 14, the steepest initial slope, y, 

occurs when the center of the nonlinear crystal is placed 

1.5 nun from the center of the waist. The parameter y is 

then -2.33 x 10-6 w-1, and the minimum loss power is about 

25 kW. This results in a minimum aperture loss equal to 

1.2%. When d 1 is increased to 2 mm, the minimum loss power 

increases to about 35 kW, while the minimum loss decreases 

to about 0.5%. Moving the crystal farther from the waist 

increases the minimum loss power and the minimum loss as 

well. Moving the crystal beyond 4 mm has little impact on 

the minimum loss power, but significantly increases the 
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losses at the aperture and the initial slope, y. Thus, with 

a 1 mm piece of CdS as a self-focusing element, the minimum 

loss power can be varied from 18 kW to 70 kW by adjusting 

the crystal position. 

The results of the numerical simulations can be inter­

preted as follows. First, note that a laser will tend to 

operate where gain is maximum. Assuming that the GVD of the 

intracavity laser pulse is compensated properly and the 

laser bandwidth is large enough, the above numerical results 

imply that the laser will tend to operate at a peak power 

corresponding to the minimum loss power. Under these condi­

tions, the minimum loss power represents the operating point 

of the modelocked laser. This is because, as a modelocking 

mechanism, self-focusing can act to discriminate against the 

highest power pulses, thus prevent further pulse narrowing. 

It is interesting to compare of the loss vs. power curve 

found in this report and that of the classic dye saturable 

absorber. Note that a dye saturable absorber, which the 

self-focusing mechanism is often modelled as [11] [20][54], 

has the ability to 'bleach' so that essentially no losses 

are experienced. The relation between input intensity, I, 

at a dye jet or cell and the absorption coefficient of the 

dye, y, is given as [4] 

Yo 
(Eq. 23) 

y= 1 +(III.) 
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where y 0 is the absorption coefficient at zero intensity and 

I 8 is the saturation intensity. Thus, setting the inten­

sity to infinity results in zero absorption in an ideal dye 

saturable absorber. 

However, the results presented here suggest that there 

may be no similar saturation effect in self-focusing mode­

locking. To the contrary, as the intensity of a given beam 

increases, so does the focusing power of the nonlinear lens. 

At an extremely high intensity (higher than that seen in a 

mode-locked KLM laser) the beam would experience self­

trapping, where the beam diameter collapses and material 

damage results (55]. Up to this limit, the focusing power 

of the self-focusing element increases monotonically, with­

out saturation. Thus, one might suspect, without going 

through the task of numerically simulating such a system, 

that one can not 'bleach' a self-focusing modelocking mecha­

nism. As the numerical simulations described in this report 

have shown, the focusing power of the nonlinear lens simply 

increases. Initial beam narrowing at the aperture is, at 

high enough powers, followed by beam expansion, until the 

cavity becomes unstable. This instability was seen in the 

simulations when, for powers much higher than those pres­

ented in the figures, no stable mode was formed after 200 

round trips through the cavity. Instead, the beam seem to 

oscillate between a high loss and a low loss 'mode'. Thus, 



self-focusing modelocking represents a fundamentally new 

kind of mode-locking device, which does not operate like a 

classical saturable absorber. 
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As seen in Figs. 13 and 14, the minimum loss power of a 

KLM laser, and therefore its operating point, is adjustable. 

A given laser can be optimized to maximize y, and thus maxi­

mize the probability of stable self-modelocked operation. 

This is especially important in a laser material that has a 

very wide gain bandwidth, but operates at a lower intracav­

ity power than found in Ti:sapphire lasers. This suggests, 

for example, that self-modelocking in a diode pumped 

Cr:LiSAF laser is possible. Since different elements are 

responsible for the gain and self-focusin9 in a laser with a 

separate nonlinear focusing element, the position of the 

nonlinear element can be optimized without sacrificing gain. 

This feature gives an additional degree of freedom in 

designing a KLM laser, which can not be accomplished in a 

Ti:sapphire KLM laser where a single crystal performs both 

functions. 

One will recall that in the statement of the problem, 

three particular goals for improvement in the current design 

of KLM Ti:sapphire lasers were listed: 

1) lower pump power requirements for modelocked 

operation, 

2) make a linear cavity KLM Ti:sapphire laser self­

starting, and 
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3) improve the long term stability of the laser. 

We have seen, based on the numerical simulations in the 

preceding sections, that the initial slope of the loss vs. 

power curve can be significantly increased by the addition 

of a highly nonlinear intracavity element to a KLM laser. 

This could be interpreted to suggest that the addition of a 

highly nonlinear element would make self-starting more 

likely, and that once modelocking is achieved, modelocking 

would be more stable. 

The fact that the minimum loss power can be shifted to a 

much lower instantaneous power by the addition of a highly 

nonlinear material to the cavity was also seen. This sug­

gests that modelocking can be achieved in a KLM Ti:sapphire 

laser with a significantly lower intracavity average power. 

This could be achieved by using higher output couplers, or 

by lower pump power, or some combination of both. The sug­

gestion is that such a laser would produce femtosecond 

pulses with a lower peak power. Note that this is 

consistent with the view of the laser as a soliton-like 

(solitary) laser, as is the view of Krausz, et al. (17]. 

This can be seen by noting that for a soliton, pulse peak 

power and pulse width are related as (33] 

(Eq. 24) 

where P0 is the pulse peak power of a first order soliton, 

n2 is the nonlinear index of refraction of the medium, ,:Pis 
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the pulse width and K depends on the effective area of the 

optical field, GVD and the wavelength of the pulse. Simi­

larly, an increase in the nonlinearity in a KLM laser cavity 

allows for a proportional decrease in the pulse peak power 

of soliton for a given pulse width. Note also from the 

numerical results that the effective nonlinearity of the 

cavity depends not only on nonlinear index of refraction of 

the materials used, by also on the position of these nonlin­

ear materials with respect to aperture position and beam 

focus. 

One question that the numerical model present above can 

not answer is: ''What will occur in a modelocked KLM laser at 

higher intracavity average power?" One will note that 

beyond the minimum loss power, aperture loss increases for 

higher instantaneous power. Thus, we assume this is a 

regime that the laser does not operate, since a laser tends 

to run where losses are least. But, suppose we have aligned 

a given KLM laser such that it is operating at this minimum 

loss power and the power is then increased? 

A possible result is that the pulse will broaden, so 

that the minimum pulse peak power still is equal to the 

minimum loss power for that particular cavity configuration. 

In light of the relation between soliton pulse power and 

pulse width, as presented above in equation Eq. 24, this 

would seem to be a reasonable result. Thus, increasing 
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power in a femtosecond modelocked KLM laser that is operat­

ing at the minimum loss power could result in pulses broad­

ening to picosecond pulses. 

Multi-pulsing has been observed in KLM lasers that are 

pumped too high [39). Some researchers have interpreted 

these multi-pulses as evidence of higher order solitons in 

the laser [34). However, the numerical model developed to 

investigate KLM modelocking presented in the above sections 

offers an alternative explanation to multi-pulsing in KLM 

Ti:sapphire lasers that are pumped too hard. Note that a 

higher-order soliton is a periodic waveform with a peak 

pulse power that exce.eds the lowest order soli ton pulse peak 

power at least once per soliton period [33). However, the 

numerical study presented int this report would suggest that 

higher-order solitons may be prevented from occurring in a 

laser cavity where the minimum loss power is less than that 

required to form a higher order soliton. Thus, a soliton­

like pulse travelling in a KLM laser may be split into two 

separate lower order solitons when pump power is increased, 

instead of a single higher order soliton. This would 

explain why the peak power from a multi-pulsing KLM laser is 

less than that of a single-pulsing KLM laser. However, 

since the power required for a higher order soliton depends 

on the GVD of a given cavity, this limitation may not apply 

to all cavities, and thus depends precisely on the cavity 

configuration. 



CHAPTER VIII 

EXPERIMENTAL LINEAR CAVITY KERR LENS 

MODELOCKED TI:SAPPHIRE LASER 

Fig. 15 shows a schematic of'the experimental Ti:sap­

phire laser used to test the effect of the addition of a 

highly nonlinear intracavity element in a KLM laser. 

Mirrors M1 , M2 , M3 , and M4 had a radius of 10 cm. The cen­

ter wavelength of the operating laser was 766 nm. Mirrors 

M1 through M4 were placed in mirror mounts that allowed two 

dimensional tilt adjustment. These mirror mounts were then 

placed on single dimension translation stages. The high 

reflectors, HR1 and HR2 were flat. 

There were two output couplers tested in the experimen­

tal KLM laser. The Low Transmission output Coupler (LTOC) 

had a 1.1% transmission, while the High Transmission output 

Coupler (HTOC) had a 10% transmission. Both the LROC and 

the HROC were flat. The output couplers and the higher 

reflectors H1 and H2 were placed in tiltable mirror mounts 

and bolted onto fixed, low vibration 2 inch diameter pylons 

made in the ECEN machine shop here at osu. 
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GVD corrections prisms, P1 and P2 , were made of SFll 

glass cut for minimum deviation at the Brewster angle. 

Appendix E shows the method used to calculate the zero GVD 

cavity position for these prisms, depending on the material 

being tested. The calculation is based on the method devel­

oped by Gordon, Fork, and Miller [21]. The distance was 

varied from 30 to 56 cm. These prisms are mounted on single 

dimension translation stages. Note that by moving prism P1 

out of the path of the cavity beam, HR1 becomes the high 

reflector for the system. Conversely, when P1 is placed in 

the path of the cavity beam, high reflector HR2 is used. 

Thus, the laser can be used as either a cw Ti:sapphire laser 

when HR1 is used, or as a modelocked KLM laser when HR2 is 

used. 

A Brewster cut 20 mm length Ti:sapphire rod was placed 

in the astigmatically corrected 'z' between mirrors M1 and 

M2• Appendix G shows the method. as well as an example of 

the astigmatism correction calculations used. The figure 

of merit of the Ti:sapphire rod was greater than 250, where 

figure of merit for Ti:sapphire is defined as the ratio of 

the absorption coefficient at the central pump wavelength 

(approximately 514 nm) over the absorption coefficient at 

the center gain wavelength (approximately 800 nm [4]). The 

laser was end pumped through mirror M1 by an argon ion laser 

using all available visible lines. The laser rod was set in 

an aluminium, water-cooled block with thermal compound used 
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to bring the surface of the Ti:sapphire rod into contact 

with the aluminium block designed and built by Czeslaw Rad­

zewicz in the ECEN machine shop. The aluminium block was 

then mounted on a rotatable X-Y-Z translation stage for fine 

adjustment. 

In the second 'z' (between mirrors M3 and M4 ) was where 

the nonlinear intracavity element was placed at a Brewster 

angle. The astigmatism correction angle, 0, shown in the 

figure was adjusted to minimize astigmatism for the differ­

ent types of nonlinear elements that were tested. The non­

linear element was mounted on a precise X-Y-Z translation 

stage for fine adjustment, since previous [11] as well as 

the numerical simulations presented in above sections had 

shown that the distance, d 1 , from the focus to the center of 

the crystal, was a critical parameter for self-modelocking 

performance of the laser. When birefringent nonlinear ele­

ments were tested, it was necessary to mount them such that 

the cavity beam was polarized along only one axis of the 

nonlinear element. In one case, when a nonlinear glass, 

SFll, was tested, it was necessary to slowly rotate the sam­

ple such that the rotation axis of the glass sample was 

parallel to the plane of the optical table to eliminate the 

effects of thermal lensing. In the case of the crystals 

tested, this was not necessary. 
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The figure also shows a Slowly Modulated Brewster Plate 

(SMBP) which was used to modelock the laser. The technique 

of using a SMBP (also called a shaker (18]) is well estab­

lished in the modelocking of Ti:sapphire KLM lasers. In 

this study it was used to modelock the laser in the absence 

of a nonlinear response strongJenough to produce self­

starting, as in the case of the Ti:sapphire laser without 

the additional nonlinear,element, or to help align the laser 

for peak nonlinear response when the laser cavity included a 

highly nonlinear element. The SMBP was turned off when this 

alignment was found. 

The aperture shown in the figure was a variable vertical 

slit aperture, with the slit perpendicular to the plane of 

the optical table upon which the laser was constructed. The 

aperture itself was used as an option, since often, as will 

be explained in the following section, the laser modelocked 

without this aperture in the system. The position of the 

aperture shown in the figure is that which was found to have 

the most impact, though other positions were tested. Note 

that in placing the aperture between the GVD correction 

prisms, the aperture could be moved such as to act as a 

wavelength tuner as well. 

output pulses were monitored by the use of an intensity 

autocorrelator. The autocorrelator, built by Czeslaw Radze­

wicz, used a thin piece of KDP and a slowly rocking retro­

reflector on one arm of a standard Michelson interferometer 
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to monitor pulse widths. The second harmonic generated 

signal was appropriately filtered to remove pump and cavity 

beams, and the output amplified .by a PMT. The PMT amplified 

autocorrelator signal was then displayed on a digital stor­

age scope, which could download the waveform displayed to a 

plotter for record keeping purposes. The digital scope was 

switched to operate in the x-y mode, where the sinewave 

(roughly 1 to 20 Hz) driving signal to the rocking retro­

flector arm was used for the x input, and the output of the 

PTM was used as they input. The duration of the 

autocorrelation pulse was calibrated by comparing the move­

ment of one of the retro-reflectors on the autocorrelator 

interferometer arms with the movement of the waveform on the 

digital scope. By making one arm longer or shorter, the 

position of the autocorrelation pulse waveform is shifted in 

time. The ratio of the shift of the waveform on the digital 

scope to the distance the retro-reflector has been moved can 

then be used to create a time scale along the x axis. Note 

that the change in the distance the beam travels on one arm 

is twice the distance the retro-reflector is moved, since 

the beam is reflected back along the same path. 

In addition to the autocorrelator, a cravat of R6G dye 

in solution, which does not absorb at 766 nm, was placed in 

a focused portion of the laser output. When the laser was 

modelocked, two-photon absorption in the dye allowed one to 

observe a strong fluorescence in the orange-yellow portion 



52 

of the spectrum. When the system was not modelocked, the 

dye did not fluoresce, since there was little light 

absorbed~ Since this response was much faster than the 

autocorrelator waveform on the digital scope, this simple 

'modelock detector' was often used to provide quick feedback 

when aligning the laser for strong modelocking output. 

The nonlinear elements tested were made of SFll glass, 

CdS, ZnSe, polycrystalline and monocrystalline ZnS, and 

cubic zirconia (CZ). The nonlinear index of refraction, n2 , 

of these materials is listed in Table 2. Appendix F shows 

the method used to calculate the n2 of the materials. This 

method is based on an empirical relation found by Boling, et 

al. [56]. 



material 

quartz 

Ti :Al20 3 

CZ 

SFll 

zns 

ZnSe 

CdS 

Table II 

LINEAR AND NONLINEAR INDEX 
OF REFRACTION 

no n2 (x10-20 m2 /W) 

1. 53 3.0 

1. 76 2.9 

2.1 27.7 

1. 7 29.5 

2.29 90 

2.7 383 

2.34 537 
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For each nonlinear element, the angle~' is calculated 

to correct for astigmatism. For the control case (where no 

additional nonlinear element is contained in the laser cav­

ity) the SMBP, made of quartz, was placed in the second 'z' 

between mirrors M3 and M4 . Note that the nonlinear index of 

refraction of quartz is very close to that of Ti:sapphire, 

which is very small compared to the other materials. Thus, 

the nonlinear impact of the quartz on the laser is minimal, 

while the astigmatism is corrected. In this manner, such 

factors as loss due to the addition of mirrors M3 and M4 as 
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well as astigmatism are the same for the case where there is 

no additional highly nonlinear element in the cavity as well 

as for the cases where an additional highly nonlinear ele­

ment was tested is used. 



CHAPTER IX 

TESTING OF THE EXPERIMENTAL 

TI:SAPPHIRE LASER 

There was a particular output beam pattern that seemed 

to indicate that the cw laser was very close to modelocking. 

A rough sketch of this beam pattern is shown in Fig. 16. 

This pattern obviously contains higher order spatial modes, 

since it had such a definite structure. When this output 

beam mode was present, the laser could be brought into self­

modelocking by slowly tilting the output coupler, or by mov­

ing mirror M4 very slightly in closer to the center of the 

'z'. When the laser switched from cw to modelocked 

operation, the output beam mode went from the one presented 

in Fig. 16 to one that is presented in Fig. 17. This is 

also a higher order mode, but it can be seen that the four 

circular portions of the cw mode located away from the cen­

ter of the beam have disappeared. Although a complete anal­

ysis of the beam pattern was not performed, it would seem 

that the modelocked pattern had more power concentrated in 

the center of the beam compared to the cw pattern. This is 

consistent with the view that through self-focusing, the 

modelocked beam is focused through an intracavity aperture, 
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first discussed by Piche' (20]. Pulses produced from the 

modelocked laser ranged from 5 ps to 50 fs, depending on the 

position of the GVD prisms. 

It was found that modelocking could be initiated without 

the vertical slit aperture in the cavity. In this case, the 

aperture in the laser that seemed to control modelocking was 

often the edge of prism P2 • Because the beam was directed 

through the upper portion (closest to the apex) of prisms P1 

and P2 , there was some amount of the beam that spilled over 

the edge, and was thus not directed towards HR2 • The path 

through the prisms was kept to a minimum in general to mini­

mize chromatic dispersion. When laser alignment was such 

that the laser was very close to modelocking, there was a 

significant portion of the beam spilling over this edge, and 

was seen as a bright red dot against a screen set near prism 

P2 • Once modelocked, the beam path changed slightly so that 

the amount of light that spilled over the edge of prism P2 

was largely diminished, such that the bright red dot on the 

screen disappeared. This indicates that the prism edge 

could have been acting as a discriminator between cw and 

modelocked operation, with self-focusing re-directing the 

beam path to one that moves away from the apex of P2 a small 

amount, thus reducing intracavity losses for this mode. 

Interestingly, Spence, et al. (1], note that a prism edge 

was also the discriminator in the first self-modelocked 

Ti:sapphire laser. 
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When the vertical slit aperture was used to modelock the 

laser, the change in beam path, which was so noticeable in 

the case of the prism edge acting as a modelocking discrimi­

nator, was impossible to monitor. However, using the verti­

cal slit aperture was helpful in controlling a 'strobing' of 

the beam across the surfaces of prisms P1 and P2 due to 

thermal lensing from the prisms. Thus, the vertical slit, 

though not necessary to modelock the laser, made the output 

much more stable, in the sense that modelocking was less 

likely to switch off suddenly. 

Testing of the linear cavity Ti:sapphire KLM laser was 

done to characterize KLM modelocking with and without an 

additional highly nonlinear intracayity element. The 

Ti:sapphire KLM laser was characterized in term of the fol­

lowing parameters: 

1) minimum pump power required to sustain self­

modelocking, 

2) self-starting and 

3) long-term stability of modelocked operation. 

The following sections summarize the procedures used to 

characterize the laser in these terms and the results. 



CHAPTER X 

SELF-MODELOCKING PUMP POWER THRESHOLD 

RESULTS AND DISCUSSION 

The search for the minimum power required to sustain 

self-modelocking was accomplished in the following manner. 

After the laser was warmed-up (which could take up to 30 

minutes because of the warming time of the argon ion tube) 

the SMBP was engaged and the laser aligned until self­

modelocking was seen to occur. Modelocking was monitored 

using a fast photodiode, a cravat of R6G dye, and the 

autocorrelator. Note that the procedure was begun at rela­

tively high pump power (around 9 to 10 W) even in the case 

where highly nonlinear element was used. 

Once the laser was aligned to produce a modelocked out­

put with the SMBP turned on, the power was reduced slightly 

(in increments of roughly 0.1 W) and the SMBP turned off. 

If the laser remained modelocked, then it was considered to 

be sustaining self-modelocking. This was done to ensure 

that the modelocking mechanism was the optical Kerr effect 

alone, and not the shaking SMBP action itself. However, if 

the laser output did not remain modelocked after the SMBP 

was turned off, the SMBP was re-engaged, and the procedure 

repeated. The Self-Modelocking Pump Power Threshold (SMPPT) 
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for each laser cavity configuration was defined to be the 

lowest power at which the laser remained modelocked after 

the SMBP was switched off. 
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Table 3 summarizes the results of this comparison. The 

SMPPT is shown for the 1.1% output coupler and the 10% out­

put coupler, as well as the n2 of each material for the 

quartz SMBP, which is used as a control case, SFll glass, 

cubic zirconia (CZ) __ , monocrystalline ZnS and polycrystalline 

zns. Note that znse (n2 = 383 x 10-20 m2/W) and CdS (n2 = 

537 x 10-20 m2/W) were also tested. However, the laser was 

not successfully modelocked when these two very highly non­

linear materials were used. 

As shown in the table, the Ti:sapphire KLM laser with 

the quartz (n2 = 3.0 x 10-20 m2/W) SMBP in the 'z' between M3 

and M4 had a SMPPT of 5.4 W when the 10% output coupler was 

used, and 4.8 W when the 1.1% output coupler was used. 

Thus, by using an output coupler with a lower transmission, 

it is seen that the intracavity power is significantly 

raised. Thus, the laser could be modelocked with a lower 

pump power. The difference between the SMPPT for the dif­

ferent output couplers is as expected, since we assume that 

the self-modelocking power threshold is based on the 

intracavity power, not the pump power per se. 

This compares with the Ti:sapphire laser when a 3.75 mm 

thick piece of monocrystalline zns (n2 = 90 x 10-20 m2/W) 

was placed in the cavity. When the 10% output coupler was 
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used, the laser with monocrystalline ZnS had a SMPPT of 3.7 

W. When the 1.1% output coupler was used, the SMPPT dropped 

to 2.3 W. It should be noted that the lasing threshold of 

the laser increased from 1.8 W to 2.1 W when the monocrys­

talline ZnS was added to the cavity compared to when the 

quartz SMBP was placed in the second 'z'. Thus, for both 

output couplers, the SMPPT of the laser was significantly 

lowered when the additional nonlinear element was added to 

the cavity, even though the ZnS crystal added more linear 

loss to the system. 

The results obtained from other nonlinear elements 

tested show a relation between the SMPPT and the n2 of the 

material for each of the two different output couplers. For 

example, using a sample of SF11 glass (n2 = 30 x 10-20 m2/W) 

in the second 'z' resulted in a SMPPT that was between .that 

of the monocrystalline ZnS sample and that of quartz. How­

ever, losses in the crystal due to two-photon absorption 

resulted in a higher than expected SMPPT for CZ (n2 = 28 x 

10-20 m2/W) and for polycrystalline zns. When CZ was used 

in the cavity, modelocking occurred simultaneously with a 

bright green fluorescence in the CZ crystal. In the case of 

the polycrystalline ZnS, there was a bright purple glow from 

the crystal when the system became modelocked. Thus, it 

would seem that two~photon absorption in these crystals 

worked to raise the SMPPT of the laser when the laser was 

modelocked. 



material 

quartz 

SFll glass 

CZ 

ZnS (m) 

ZnS (p) 

Table III 

SELF-MODELOCKING PUMP POWER 
THRESHOLD 

SMPPT SMPPT n2 ( 10-20 m2 /W) 
{1%) {10%) 

4.8 w 5.4 w 3.0 

3.0 w 4.3 w 29.5 

3.4 w 4.7 w 27.7 

2.3 w 3.7 w 90 

2.5 w 4.i w 90 
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CHAPTER XI 

SELF-STARTING RESULTS AND DISCUSSION 

The experimental Ti:sapphire KLM laser built was tested 

for self-starting with and without an additional highly non­

linear self-focusing element. The test for self-starting 

was done after the laser was aligned as explained above and 

without the SMBP engaged. A card was used as a beam block 

in the cavity between M3 and the output coupler. If the 

laser returned to modelocked operation without re-engaging 

the SMBP or table banging (essentially a cruder but similar 

technique) the laser was then said to be self-starting. 

Consistent self-starting implies that out of a large number 

of trials, the laser returned to modelocked operation in a 

reasonable length of time each time. 

Without an additional nonlinear element in the cavity, 

the results were very similar to that of previous 

researchers [1]. The Ti:sapphire laser without an addi­

tional nonlinear element in the laser would only occasion­

ally self-start. When monocrystalline ZnS was used as the 

additional nonlinear element, the laser was found to 

self-start consistently. This would seem to be the first 

linear cavity KLM Ti:sapphire laser that self-starts using 

self-modelocking alone reported. 
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The self-staring response of the laser seemed to depend 

on the pump power in the following manner. For a rather 

high pump power of 5.6 Wand using the 10% output coupler 

with monocrystalline zns used as a modelocking element, the 

laser self-started in less than a second 50 times out of 50 

trials. When the pump power was reduced to 4.6 W, the laser 

also self-started consistently, but the delay from the time 

the card was removed and the laser began to modelock was 

often more than a second. When the pump power was reduced 

further to 4.2 W, it was seen that the laser self-started 

roughly half of the time if one waited for up to a few 

seconds. 

Self-starting was also observed when CZ was used as a 

self-focusing element as well. For example, when the laser 

was seen to consistently self-start when it was pumped with 

5.3 W, using the 1.1% output coupler and CZ as the self­

focusing element. 

These results seem to imply that self-starting should be 

viewed as a random event. Thus, the highly nonlinear cavity 

created when the monocrystalline ZnS was placed in the cav­

ity makes it more likely that some random fluctuation in the 

intracavity beam power distribution would be large enough to 

eventually force the laser into modelocked operation. The 

intracavity instantaneous power threshold required to mode­

lock the laser is lowered when the cavity as a whole is made 

more nonlinear. As the pump power is reduced, the size of 
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the intracavity beam power spike required to overcome the 

various losses and back-scattering working against modelock­

ing may well remain the same. But such an event becomes 

less likely when the average intracavity beam power 

decreases. Thus, as pump power is reduced, there is often a 

longer delay before the laser self~starts. 

Compare this to the case when there is no additional 

nonlinear element in the cavity. Now, it would seem that 

the self-starting threshold has been significantly 

increased, since at all pump powers tried (up to 12 W) mode­

locking in the laser without the additional nonlinear ele­

ment was only very occasionally self-starting. Thus, it 

might be that the peak instantaneous power required to 

self-start modelocking operation in the laser may indeed be 

quite large, since it seems that this event was very rare. 

However, since there was no way to actually monitor the 

instantaneous intracavity beam distribution on a femtosecond 

time scale, this interpretation nonetheless remains somewhat 

speculative. 



CHAPTER XII 

STABILITY RESULTS AND DISCUSSION 

Comparison of the stability of the Ti:sapphire KLM laser 

with and without an additional nonlinear modelocking element 

was tested. The laser was first modelocked, and the SMBP 

was turned off. The length of time the laser remained mode­

locked was observed. It was found that the laser, when no 

additional nonlinear element was included in the cavity, 

would often remain modelocked for periods up to about one 

half hour, but not beyond that time. This is consistent, 

again, to the findings of other researchers [1] who report 

that modelocking would remain unassisted for a short period 

of time if the laser was left undisturbed (no table banging 

or mirrors tapped). 

When the laser was tested with the intracavity monocrys­

talline ZnS element, modelocked was maintained without 

assistance for longer periods of time. One test of 

stability showed that the laser remained modelocked for 12 

hours, at which point the laser was shut down due to the 

fatigue of the researcher. Thus, the additional ZnS element 

made the laser significantly more stable. 
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These results might best be interpreted by assuming that 

switching from modelocked to cw operation requires some dis­

turbance threshold which is dependent on the nonlinearity of 

the cavity. The higher the nonlinearity, the higher the 

disturbance threshold becomes. Small vibrations present in 

the system, through shaking equipment, water pumping vibra­

tions, fluctuations in the argon ion laser focusing and out­

put power, or dust particles passing through the pump and 

the cavity beam, all could act as small, temporary, 'beam 

blocks', either complete or partial. It the disturbance 

threshold is raised by increasing the nonlinearity of the 

laser, and if large disturbances are less likely than small 

ones, the likelihood of disturbance large enough to surpass 

this threshold is decreased. 

Additionally, if the laser is designed such that mode­

locking is self-starting, then the system will readily 

recover from such temporary interruptions without detection, 

even when disturbance threshold is exceeded. This may have 

been the case when monocrystalline ZnS was in the cavity. 

We have already seen that this makes self-starting much more 

likely. However, if the nonlinearity of the laser is not 

strong enough to make modelocking self-starting, then a 

brief interruption in the operation of the laser, if long 

and complete enough, could easily end modelocking operation 

completely. Again, this seems to be the case when Ti:sap­

phire alone is used as a self-focusing modelocking element. 



CHAPTER XIII 

CONCLUSIONS 

Numerical simulations of the relation between aperture 

loss and intracavity instantaneous power in standing wave 

and ring cavities show that the combination of self-focusing 

and aperture loss used as a modelocking mechanism is a dif­

ferent sort of passive modelocking mechanism than a satu­

rable absorber dye. This is the case in both single crystal 

and two crystal KLM lasers, and was seen in both standing 

wave and ring laser cavities as well. Thus, along with SPM, 

GVD, gain bandwidth, and the bandwidth of the cavity mirrors 

used in lasers, self-focusing can act as a limiting factor 

on achievable pulse widths in ps and fs KLM lasers. The 

minimum loss intracavity power in a KLM laser, first estab­

lished here at the osu Laser Center, is observable in a 

running KLM laser as multi-pulsing. Thus, a better 

understanding of KLM modelocking has been achieved. 

This report also has summarized experiments done here 

at the OSU laser Center on a linear cavity KLM Ti:sapphire 

laser with an additional highly nonlinear intracavity self­

focusing element. By the additiQn of monocrystalline ZnS, 

for example, it is possible to: 
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1) lower pump power requirements for sustained self­

modelocked operation, 

2) make a linear cavity Ti:sapphire KLM laser self­

starting, and 

3) improve the long term stability of the laser. 

The method has led to development at the CSU Laser Cen­

ter of the first known consistently self-starting linear 

cavity KLM Ti:sapphire. 
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APPENDIX A 

LINEAR LOSS MODELOCKING 

MODEL PROGRAM 

The following is an example program which simulates the 

modelocking of an initially un-modelocked intracavity beam. 

The program starts by filling the time samples array x with 

random values between o.o and 100 w. The zero power loss 

parameter b = 10%. The power dependent loss parameter a= 

-1 x 10-4 w-1. Gain is accomplished as a simple re­

normalization. This program is run for 50,000 'passes' 

through the cavity, and results in a single-modelocked 

output. 

c -modelock.f - simulates modelocking using a linear 
loss rule 
c implicit none 

parameter (N=4096) 
real*S x,a,b,loss,norm,norm orig,gain 
dimension x(N) -
integer seed,i,j,steps 

steps= 50e3 
seed= 13457 
OPEN(UNIT=10,FILE='modestart2',STATUS='UNKNOWN') 
REWIND(lO) 
OPEN(UNIT=ll,FILE='modeend3',STATUS='UNKNOWN') 
REWIND(ll) 
do 100 i=l,N 

x(i) = 100.0*rand(seed) 
norm orig= norm orig+ x(i)*x(i) 
write(lO,*) x(i)-

100 continue 
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b = 0.1 
a= -le-4 
write ( *, *) ' ' 
write(*,*) 'begin linear loss' 
write ( *, *) ' ' 
do 500 j=l,steps 

norm= 0.0 
do 300 i=l,N 

loss= a*x(i) + b 
if (loss.LT. o.o) then 

loss= 0.0 
endif 

c write(*,*) 'loss=',loss 
x(i) = x(i) - loss*x(i) 
norm= norm+ x(i)*x(i) 

300 continue 
gain= sqrt(norm_orig/norm) 
norm= o.o 
do 400 i=l,N 

x(i) = x(i)*gain 
norm= norm+ x(i)*x(i) 

400 continue 
500 continue 

do 600 i=l,N 
write(ll,*) x(i) 

600 continue 
CLOSE(lO) 
CLOSE(ll) 
end 
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APPENDIX B 

DERIVATION OF PARABOLIC APPROXIMATION 

OF SELF-FOCUSING LENS 

If we assume a TEM00 Gaussian distribution, then the 

intensity of a field, I(r,z), is [36] 

l(r, z) = I 0 exp{-2~} 
w (z) 

(Eq. B.l) 

A Taylor's expansion of the exponential function pro­

duces 

so that 

for 

-x 1 2 e =1-x+-x"· 
2 

r2 
a.=2-­

w2(z) 

(Eq. B.2) 

(Eq. B.3) 

(Eq. B.4) 

The relation between intensity, I, and radius, r, is 

modelled as 

/(r,z)=/ 0{1-2~} 
w (z) 
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(Eq. B.5) 
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For a nonlinear index of refraction, n2 , the relation 

between ·index of refraction, n, and radius, r, is then 

approximated for a Gaussian pulse as 

(Eq. B.6) 

(Eq. B.7) 

For a lens of thickness d with a parabolic index of 

refraction profile that varies as 

. ·( r2 ) n(r)= n l--
2r32 

(Eq. B.8) 

the ABCD matrix is [36] 

(Eq. B.9) 

where for f3 = 00 the index of refraction is homogeneous. 

For the self-focusing lens using the parabolic approxi­

mation, 

(Eq. B.10) 

(Eq. B.11) 

The following program is written in C++. It is an exam­

ple of a program that uses the parabolic approximation to 

model self-focusing in a laser. The program uses the ABCD 

ray matrix approach to propagate a Gaussian beam through a 2 

cm length of Ti:sapphire. Note that the E field is propa­

gated, and thus the n2 used is in units of m2/v2. For this 
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example, n0 = 1.76 and n2 = 1.22 x 10-22 m2/V2, x0 = 500 nm, 

peak pulse power is 80 kW, and waist size is 40 µm. The 

waist is assumed to be in the center of the 2 cm long crys­

tal. 

The routine 'main' is used to set the complex beam 

parameter, q, based on initialized values stated above and 

then to call a function 'nonlin'. The function 'nonlin' 

uses the parabolic GRIN lens approximation for propagation 

of the complex beam parameter, q, through the 2 cm length of 

Ti:sapphire in 2048 increments. The resulting beam diameter 

for each step for the linear and nonlinear propagation of q 

are both stored for comparison. 

Functions 'input_data', which is commented out in the 

example below, allow data to be input from the. screen for a 

laser cavity containing linear mirrors, free-spaces, and 

lenses as well. The function 'stab_check', also commented 

out in the example below, checks to make sure the linear 

cavity that data inputed in the 'input_data' routine results 

in a stable linear cavity. The function call to screen fix 

sets the screen to allow the results to be displayed on a 

standard VGA screen for graphical viewing of beam changes. 

#include <stdlib.h> 
#include <graphics.h> 
#include <dos.h> 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include <time.h> 
#include <complex.h> 
FILE *in file, *out file, *stream; 
int steps,check; 
double m1[2][2], m2[2][2], m3[2][2], 



WW1[2048],WW2[2048]; 
complex q lin,q nonlin,qp,i(0,1); 
double deI z,z,zo,wo,R,Rz,Rf,wz,wzf,zf,zfl, 

EO,EO 2,EO 2w0 2,no,n2,10,c,pi,d,gamma,some,lz; 
double MM[2][2][11]; -
double A,B,C,D,stab; 
double dl,d2,d3,fl,f2,l; 
double nonlin(void); 
double input data(void); 
double stab check(void); 
double screen fix(void); 
double P,PO, Per, P Pcr,zfd,zfn,P PO; 
double max mult(double m1[2)[2J,double m2[2][2],double 
m3 [ 2 ] [ 2 ] ) ; -
main() { 

int j,k; 
pi= 4.0*atan.(1.0); 
lz = 0.02; /* crystal length is 2 cm 

*I 
no= 1.75; /* linear index of 

refraction */ 
n2 = 1.6e-22; /* nonlinear index of 

refraction MKS units*/ 

*I 

*I 

10 = 500.0e-9; /* wavelength in MKS 

P = 0.8e5; /* average pulse power 

E0_2W0_2 = P*4*1.26*300/pi; 
z = -0.01; 
WO= 40e-6; 
EO = sqrt(EO 2w0 2/wO/wO); 
zo =pi* WO-* WO/ 10; 
gamma= 4.0*n2*EO 2w0 2/nO; 
d = 2*sqrt(z*z); - -
wz = sqrt(wO*wO*(l.O+z*z/zO/zO)); 
R = z*(l.O + zO*zO/z/z); 
q_lin = q_nonlin = 1.0/complex(l.O/R,-10/pi/wz/wz); 
steps= 2048; 
del z = d/steps; 
/*input data(); 
stab check();*/ 
check= nonlin(); 
screen fix(); 
setcolor(2); 
settextstyle(0,0,1); 
outtextxy(520,460,"end of process"); 
getch(); 
closegraph(); 
return(O); 
} /* end main*/ 
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/******************************************************/ 
double input data(void){ 

int j,k; -
for(j=O; j<=9; j++){ 

MM[O] [O] [j] = 1.0; 
MM[O] [1] [j] = o.o; 
MM[l][O][j] = o.o; 
MM[l][l][j] = 1.0; 
} 

/* propagation from space 
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MM[1][1][2] = 1.0/nO; 
to crystal*/ 

MM[1][1][4] = no; /* propagation from crystal 
to space*/ 

/*printf("what is .fl? "); 
scanf("%lf",&fl);*/ 
fl= 0.1/2.; 
MM[l][O](O] = -1.0/fl; 
/*printf("what is f2? "); 
scanf("%lf",&f2);*/ 
f2 = 0.1/2.; 
MM[l][0](6] = -1.0/f2; 
/*printf("what is dl? "); 
scanf("%lf",&dl);*/ 
dl = 0.105; 
MM[O][l][l] = dl; 

crystal*/ 
/*printf("what is d2? "); 
scanf("%lf",&d2);*/ 
d2 = 0.105; 
MM[0][1][5] = d2; 

to mirror M2 */ 
/*printf("what is d3? "); 
scanf("%lf",&d3);*/ 
d3 = o._5; 
MM[0][1][7] = 2.0*d3; 

flat mirror*/ 
/*printf("what is 1? "); 
scanf("%lf",&l)i*/ 
1 = 0.02; 
MM[0][1][3] = l; 
for(j=O; j<=7; j++){ 

/* Rl = 10 cm*/ 
/* Ml mirror matrix*/ 

/* R2 = 10 cm*/ 
/* M2 mirror matrix*/ 

/* dl = 10.5 cm*/ 
/* distance from Ml to 

/* d2 = 10.5 cm*/ 
/* distance from crystal 

/* d3 is half a meter*/ 
/* distance from M2 to 

/* 1 = 2 cm*/ 
/* length of crystal*/ 

·printf("MM[O][O][%d]=%lf\tMM[0][1][%d]=%lf\n",j,MM[O][ 
O][j],j, 

MM[O] [1] [j]); 
printf("MM[l](O][%d]=%lf\tMM[1][1][%d]=%lf\n",j,MM[l][ 

O][j] ,j, 
MM[l] [1] [j]); 

} 
return(O); 
}/* end of input_data */ 



/**********************************************/ 
double nonlin(void){ 
int j; 
double zz; 
q lin = q lin*nO; /* change at medium boundry */ 
q=nonlin ;;- q_nonlin * no; 
zz = o.o; 
for(j=O; j<steps; j++){ 

z = z + del z; 
zz += del z; 
if (zz > Iz) return(O); /* check to see if we ran over 

crystal len */ 
q lin = q lin + del z; 
q-nonlin ;;- q nonlin-+ del z; 
some= -imag(l.O/q nonlin}; 
wz = sqrt(lO/pi/soie/nO); 
WWl[jJ = wz; 
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q nonlin = 1.0/{l.O/q nonlin - gamma*del_z/wz/wz/wz/wz); 
some= -imag(l.O/q lin); 
WW2[j] = sqrt(lO/pi/some/nO); 
} 

return{O); 
} /* end nonlin() */ 

/****************************************************/ 
double max mult(mml,mm2,mm3) /* 2x2 matrix mult 
*/ -
double mm1[2][2J,mm2[2][2J,mm3[2)[2]; 
{ 
int 

} 

i,j; 
mm3[0)[0] = 
mm3 [ o J [ 1] = 
mm3 [ 1] [ o) = 
mm3 [ 1) [ 1] = 
return{l); 

mml[O)[O)*mm2[0)[0] + mml[O)[l]*mm2[1)[0]; 
mml[O)[O]*mm2[0][1] + mml[OJ[l)*mm2[1][1]; 
mml [ 1 J [ o J *mm2 [ o J [ o J . + mml [ 1 J [ 1 J *mm2 [ 1] [ o] ; 
mml[l][O]*mm2[0][1] + mml[l][l]*mm2[1][1]; 

/******************************************************/ 
double stab check(void){ 

/* start-at the surface of mirror one, and find the 
round-trip 

*I 
matrix for this cavity 

int j,k,l; 
m2 [ o J [ o J = 1. o ; 
m2[0J[l] = o.o; 
m2[1J[1J = o.o; 
m2 [ 1 J [ 1 J = 1. o ; 
for(j=l; j<=7; j++){ 

printf("j=%d\n",j); 
ml [ 0 ] [ 0 ] = MM [ 0 ] [ 0 ] [ j ] ; 
ml [ 0] [ 1] = MM [ 0 ] [ 1 J [ j ] ; 
ml [ 1] [ 0] = MM [ 1 ] [ 0 ] [ j ] ; 
ml [ 1] [ 1] = MM [ 1] [ 1] [ j J ; 
max_mult(m2,ml,m3); 



for(k=O; k<=l; k++){ 
for(l=O; 1<=1; l++){ 

m2[k][l]=m3[k][l]; 
} 

} 
} 

for(j=6; j>=O; j--){ 
printf("j= %d\n",j); 

ml [ 0] [ 0] = MM [ 0] [ 0 ] [ j ] ; 
ml[O][l] = MM[OJ[l][j]; 
ml [ 1 ] [ 0 ] = MM [ 1 ] [ 0 ] [ j ] ; 
ml [ 1] [ 1] = MM [ 1] [ 1] [ j ] ; 
max mult(m2,ml,m3); 
for(k=O; k<=l; k++){ 
for(l=O; 1<=1; l++){ 

} 
} 

m2[k][l)=m3[k][l]; 
} 

A= m2[0][0]; 
B = m2[0][1]; 
C = m2[1][0]; 
D = m2[1)[1]; 
printf("A= %lf\t B= %lf\n",A,B); 
printf("C= %lf\t D= %lf\n",C,D); 
stab= (A+D)/2; 
printf("\n\tstab = %f",stab); 
if ((stab> -1.0) && (stab< 1.0)) { 

printf("\tcavity stable\n"); 
return(!); 
} 

else{ 
printf("\tThis is an unstable cavity\n"); 
return(-!); 
} 

} /* end stab check()*/ 
/**************************************************/ 
double screen fix(void){ 
char key[80J,Iabel[80]; 
int gdriver = DETECT, gmode, errorcode; 
int xcenter,ycenter; 
long j,jj,offset,N; 
int x,y; 
double ymax,ymin,ylen,yscale,xscale,tscale,P m; 
initgraph(&gdriver, &gmode, "c:\\borlandc\\bgi"); 
errorcode = graphresult(); 
if (errorcode != grok){ 
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printf("graphics error: %s\n", grapherrormsg(errorcode)); 
printf("press any key to halt:"); 
getch(); 
exit(l); 
} 

rectangle(20,40,620,440); 



offset= oo; 
N=steps; 
sprintf(label,"N = %ld offset= %ld",N,offset); 
outtextxy(l0,10,label); 
xscale = 600.0/N; 
ymax=ymin=WW2[offset]; 
/*sprintf(label,"WW2[%ld] = %e ymax = %e",offset,WW2[off­
setJ,ymax); 
outtextxy(l0,20,label) ;*/ 
jj = 10; 
for(j=offset;j<(offset+N); j++){ 

if (WW2[j] > ymax) ymax = WW2[j]; 
if (WW2[j] < ymin) ymin = WW2[j]; 
} 

yscale = 400./200e-6; 
Pm= P/(pi*WO*wO)*le-4; 
sprintf(label,"power/cm2 = %e",P_m); 
outtextxy(40,50,label); 
sprintf(label,"EO = %e V/m",EO); 
outtextxy(40,70,label); 
sprintf(label,"wO = %e microns",wO*le6); 
outtextxy(40,90,label); 
sprintf(label,"P = %e W",P); 
outtextxy(40,110,label); 
jj = o; 
setcolor(6); 
moveto(20,440); 
for(j=offset;j<(offset+N);j++){ 

x= jj*xscale+20; 
y= 440.0 - yscale*WW2[j]; 
/*sprintf(label,"y=%e",y); 
outtextxy(lOO,lO+jj,label); 
sprintf(label,"WW2[%ld] = %e x=%d y=%d",j,WW2[jJ,x,y); 
outtextxy(10,20+jj,label) ;*/ 
jj ++; 
lineto(x,y); 
} 

moveto(20,440); 
setcolor(4); 
jj = o; 
for(j=offset;j<offset+N;j++){ 

x= jj*xscale+20; 
y= 440-yscale*WWl[jJ; 
lineto(x,y); 
jj ++; 
} 

return(l); 
} /* end screen fix() */ 
/**************************/ 
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APPENDIX C 

DERIVATION OF FOURIER TRANSFORMS TO 

MODEL SELF-FOCUSING 

In one dimension, the paraxial wave equation, using 

retangular co-ordinates, is [3] 

i)£ i i)2£ 
-=---
i)z 2k 0 i)x 2 

(Eq. C.l) 

The Fourier transform pair for the spatial domain field, 

E(x,z), and the spatial frequency domain field, E(K,z), is 

[3] 

.;. 1 f"' E(K,z)= ~ . E(x,z)exp(-ixK)dx 
v2n _., 

(Eq. C.2) 

1 f"' -' E (x, z) = ~ · E (K, z)exp(ixK)dK 
v 2n _., 

(Eq. C.3) 

where K is the spatial frequency. 

Taking the Fourier transform of both sides of the one 

dimensional paraxial equation, we get 

d.E(K,Z)_i'K 2 E-( ) 
------ K,Z 

dz 2k 0 

(Eq. C.4) 

This is a simple differential equation, with solution 

- - [iK2Llz] E(1<,z+Liz)=E(1<,z)exp 2 ko (Eq. C.5) 
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where again 6z is the distance in the z direction the wave 

is propagated. To recover the spatial domain field at the 

exit plane, one simply takes the inverse Fourier transform 

of the result. 
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1 f" _ [ix 2 ~z J E(x, z + ~z) = ~ E(x, z)exp + ixx dx 
v 2rc _., 2ko 

(Eq. 6) 



APPENDJ;:X D 

DERIVATION OF HANKEL TRANSFORM TO 

MODEL SELF-FOCUSING 

A field is propagated through a given medium using the 

Hankel transform in the following manner. Let us start with 

the Hankel transform pair of a field, E(r,z), and its Hankel 

transform function, H(r,z), given as [50] 

H(p, z) = 2n i'° E(r, z)J 0 (2npr)rdr (Eq. D.l) 

E(r, z) = 2n i"' H(p, z)J 0 (2npr)pdp (Eq. D.2) 

where r is the radial distance, pis the radial spatial Bes­

sel frequency, and z is the longitudinal distance. 

The Hankel transform its.elf was calculated using Sieg­

man's method [48]. This allows one to use an FFT to find 

the Hankel transform in the following manner. For a given 

function, f(r), the Hankel transform, g(p), is given as [48] 

g(p) = 2n i"' r f (r)J 0 (2npr)dr 

The change of variables is made [48] 

85 

(Eq. D.3) 

(Eq. D.4) 

(Eq. D.5) 
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converts the Hankel transform integral into a convolution 

integral, ~iven as 

where 

g'(y)= J:rcx)j'(x+y)dx 

g'(y)=pg(p) 

f'(x) = r f (r) 

j'(x + y) = 2na.rp J 0 (2nrp) 

(Eq. D.6) 

(Eq. D.7) 

(Eq. D.8) 

(Eq. D.9) 

Since this is a convolution integral, the convolution 

was performed as a multiplication in Fourier space. 

F(w) = bf"' f'(x)exp[-iwx]dx 
y2n _., 

1 f"' J(w) = r,:;:: j'(y)exp[-iwy]dy 
y2n - 00 

Then, in Fourier space, 

G(w) = F(w)J(w) 

For 

(Eq. D.10) 

(Eq. D.11) 

(Eq. D.12) 

The Hankel transform is recovered by using an inverse 

Fourier t~ansform on the above result as [48] 

1 f'° g(y) = r,:;:; G(w)exp[iwy]dw 
v2n _., 

(Eq. D.13) 

The the paraxial wave equation in cylindrical coordi­

nates is given as [50] 

0 i 2 
-E(r,z)= --V7 E(r, z) oz 2k 

(Eq. D.14) 

where k is the wave number and v~ is the transverse Lapla-

cian. 



On taking the Hankel transform of both sides of Eq. 

(D.14), one gets [50] 
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(Eq. D.15) 

This is a simple differential equation, with solution 

( i2n 2 2 ) H(p,z+ti.z)=H(p,z)exp k P ti.z (Eq. D.16) 

where 6z is the longitudinal distance the field is propa­

gated. 

Taking the Hankel transform of Eq. (D.16) gives a for­

mula for the paraxial propagation by a distance 6z of a 

cylindrically symmetric field, E(r,z), as 

("' (i2n 2 2 
) E(r,z+ti.z)=2n)

0 
H(p,z)exp kp ti.z (Eq. D.17) 

x J 0 (2npr)pdp 

The following program is an example of a program the 

numerically models a beam propagating.through a Kerr lens 

modelocked cavity. The beam is ·propagated using a Hankel 

transform version of the beam propagation method. Siegman's 

[48] method of using a FFT to perform a Hankel transform is 

used. The converging-diverging transformation of Szilkas 

and Siegman [47] is used as well. The cavity simulated is a 

ring cavity with two explicit curved mirrors, one nonlinear 

crystal, and one aperture. In this particular example, a 2 

cm long nonlinear crystal with n0 = 1.75 and n2 = 250 x 

10~20 m2/W is used. The aperture diameter in this example 

is 1.27 mm. The aperture is located 150 cm from mirror M3 • 
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An initially Gaussian beam is circulated through the 

cavity 100 times. The field is the square-root of the inten­

sity and stored in a complex array E wave. There are 70 

nonlinear steps through the crystal. After propagation 

through the cavity 100 times, the program measures the per 

pass loss at the intracavity aperture, and writes it out, 

along with the current peak power tested. The program is 

written to actually perform 21 different power level tests, 

starting at 1 Wand increasing in increments of 500 W to 10 

kW. 

Variables rs and roes are used to convert between scaled 

and unscaled beams. This is necessary when the diverging­

converging transformation is used. Variables zo, zl, and z2 

are used for diverging-converging transformations as well. 

This is scaled to match the mirror focus so that the trans­

formation and mirror phase change can happen at one step. 

The function BESSJO finds the Bessel function of a given 

input x. The subroutine FOURl takes a FFT of an array DATA 

of length NN. These programs are taken directly from Press, 

et al., Numerical Recipes [44]. 

Since in the Hankel space domain, all propagations are 

matrix multiplications, arrays primespace, dlspace, d2space, 

gaincryspace, llspace, l2space, and l3space are used to 

,store these matrix propagation values. Otherwise, the same 
( 

complex numbers would have to be calculated for each pass 

through these regions. The primespace array propagates the 
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complex beam through the diverging-converging z' co-ordinate 

nearest to the mirrors in the focused portion of the cavity. 

Arrays dlspace and d2space propagate the beam through the 

free-space region between the ends of the nonlinear crystal 

and the primed space. The array gaincryspace is a linear 

segment of the nonlinear crystal. In this example, it rep­

resents 1/70 of the distance through the 2 cm crystal. 

Arrays llspace, 12space, and 13space are free-space 

propagations through the longer portions of the ring cavity. 

Note that the aperture appears between 12space and l3space. 

c singcr.f single crystal ring cavity 
c this version places the nonlinear crystal in the focus 
c direction of propagation is counter-clockwise 
c last changes made April 5, 1992 
c all rights reserved 

implicit none 
integer steps,j,jj,crys steps,N,NN,kk,jk,hops,jjj 
parameter (N=8192,NN=16384) 
real*S dl,d2,cdzl,cdzg,P init,P fin,powersca-

le,loss,gain,delP - -
real*S 

zl,z2,focal len,cav len,dzp,dz,lambdanl,lambdang 
real*S lambda~ z,zo,wo,wz,r,del r,pi,r final,alpha 
real*S omega,b,rprime,El,E2,Ec,croe,Hc~Kl,K2,wOp,zf 
real*S ro, roe, roeo, roe final,del z,exp step,thrash 
real*S ros,roes,roeos,lo,I1,12,13,scale,aperture 
real*S PO,n2g,nOg,gammag,dead_len,delta_len,crys-

tal leng 
- real*S n21,nOl,gammal,crystal lenl 

complex*16 J nsf,J sr,J sf,J nsr 

ce(N) 

complex*16 llspace~l2spa6e,primespace,dlspace,d2space 
complex*16 gaincryspace,lenscryspace,13space 
complex*16 i, k, phi,E wave, Cord,temp 
dimension llspace(N),12space(N),primespace(N),dlspa-

dimension 
d2space(N),gaincryspace(N),13space(N),lenscryspace(N) 

dimension J sr(NN),J nsr(NN) 
dimension J-sf(NN),J-nsf(NN) 
dimension Cord(N),E_wave(NN) 



i = (0.0,1.0) 
pi= 4.0*atan(l.O) 

steps= 100 
crys steps= 70 
hops-= 21 
nOg = 1 .. 75 
n2g = 3.0e-18 
nOl = 1.75 
n21 = 2.5e-18 
lambda= 830e-9 
lambdanl = lambda/nOl 
lambdang = lambda/nag 
k = 2*pi/lambda 
gammag = 2.0*n2g*pi/lambda 
gammal = 2.0*n2l*pi/lambda 
focal len = 0.05 
crystal Tenl = 0.020 
crystal-leng = 0.008 
cav len-= 0.111428571 
cdzI = crystal lenl/crys steps 
cdzg = crystal-leng/crys-steps 
write(*,*) 'cdzl=',cdzl -
write(*,*) 'cdzg=',cdzg 
dead len = 0.004 
delta len = 0.001 
11 = 0.5 
10 = 0.5 
12 = 0.35 
13 = 10 - 12 
dl = dead len + 3.0*delta len 
d2 = dead-len - 3.0*delta-len 
delP = 500 
PO = 1. 0 
write(*,*) 'dl =',dl 
write(*,*) 'crystal length =',crystal_leng 
write(*,*) 'n2 =',n2g 

c for this method, r is scaled by 2 pi 
WO= 0.272e-3 
aperture= 0.635e-3 
scale= sqrt(2.0)/2/pi/w0 
ros = 0.0001/scale 
roeos = O.OOOl*scale 
r final= 30.0/scale 
write(*,*) 'rm (scaled) = ', r final/2/pi 
alpha= ( log ( r final/ ros)) / ( N - 1) 
write(*,*) 'alpha-= ',alpha 
write(*,*) 'roeOs = ',roeOs , 
zo = 0.004 + dead len + (focal_len - cav_len/2.0) 
zl = zo 
z2 = focal len 
write(*,*) 'zl=',zl 
write ( * , *) ' z 2 =' , z 2 
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dzp = zO*(z2-zl)/z2 
write(*,*) 'dzp=',dzp 

c scale nonlinear factor gamma 
gammal = gammal*zl*zl/z2/z2 
call init J(NN,J sf,rOs,roeos,alpha) 
call init-J(NN,J-sr,roeos,ros,alpha) 

C scaler axis -
c scale roe as well 

ro = rOs*zl/z2 
roeo = roe0s*z2/zl 

dang) 

call init J(NN,J nsf,rO,roeO,alpha) 
call init-J(NN,J-nsr,roeO,rO,alpha) 
call initcoord(N~rO,alpha,lambda,cord,zl) 
call init space(llspace,N,roeos,alpha,11,lambda) 
call init-space(l2space,N,roeos,alpha,12,lambda) 
call init-space(l3space,N,roeOs,alpha,13,lambda) 
call init-space(primespace,N,roeO,alpha,dzp,lambda) 
call init-space(dlspace,N,roeO,alpha,dl,lambda) 
call init~space(d2space,N,roeO,alpha,d2,lambda) 
call init=space(gaincryspace,N,roeO,alpha,cdzg,lamb-

open (UNIT=13,, FILE=' singer. 35cm+3d1CdS+', STATUS='UNKNOWN') 
rewind(13) 
do 1313 jjj=l,hops 

c initialize waveform 
call init_wave(N,NN,alpha,ros,E_wave,zl,z2,PO,w0) 
powerscale = zl/z2 · 
call powercalc(E wave,N,P init,ros,alpha,powerscale) 
write(*,*) 'initial power-=',P init 
do 999 kk=l,steps -

write(*,*) 'steps' ,.kk 
call prop(E wave,J sf,N,NN,rOs,roeOs,alpha,llspa-

ce,J sr) - -
- call 

prop(E wave,J nsf,N,NN,rO,roeO,alpha,primespace,J nsr) 
- . call coord (N, .E wave, Cord) -

call prop(E wave,J nsf,N,NN,rO,roeO,alpha,dlspa-
ce,J nsr) - -
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- do 62 jj = 1,crys steps 
call prop(E wave~J nsf,N,NN,rO,roeO,alpha,gaincry-

space,J nsr) - -
- call nonlin(E wave,N,gammag,cdzg) 

62 continue -
call prop(E wave,J nsf,N,NN,rO,roeO,alpha,d2spa-

ce,J nsr) - -
- call coord(N,E wave,Cord) 

call prop(E_wave,J_nsf,N,NN,rO,roeO,alpha,prime­
space,J nsr) 

-call 
prop(E wave,J sf,N,NN,rOs,roeos,alpha,13space,J sr) 

- do 63-j=l,N -
r=rOs*exp(alpha*(j-1)) 



rprime = r/2/pi 
if (rprime .GT. aperture) then 

E wave(j) = o.o 
end-if 

63 continue 
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call powercalc(E wave,N,P fin,ros,alpha,powerscale) 
gain= sqrt(P init/P fin)-
write(*,*) 'gain =',gain 
loss= 1.0 - P fin/P init 
write(*,*) 'loss=',loss 
do 66 j=l,N 

66 E wave(j) = gain*E wave(j) 
call prop(E wave,J sf,N,NN,rOs,roeOs,alpha,12spa-

ce,J sr) - - · · 
999 - continue 

write(13,*) P0/1000.,loss 
PO= PO+ delP 

1313 continue 
c output follows 

open(UNIT=ll,FILE='singcre',STATUS='UNKNOWN') 
rewind(ll) 
do 15 j=N/4,N,8 

r = rOs*exp(alpha*(j-1)) 
rprime = r/2/pi 
temp= E wave(j) 
temp= zl/z2*temp 
write(ll,*) rprime,abs(temp)**2 

15 continue 
626 write(*,*) 'end of process' 

close(lO) 
close(ll) 
close(13) 
end 



93 

The subroutine hankel performs the Hankel transform on a 

complex array E_wave with stored Bessel coefficients in 

J_coeff, of length N and 2*N = NN for a starting values of 

ro and roeo and for a giving scaling factor of alpha. The 

method is based upon that of Siegman [48] and uses an FFT to 

calculate the Hankel transform for an exponential scale. 

subroutine hankel(E wave,J coeff,N,NN,rO,roeo,alpha) 
implicit NONE - -
integer N,NN,j,isign 
real*8 pi,rO,roeO,alpha,omega,exp step,r,thrash 
real*8 roe -
complex*16 E wave, i, Ec,Croe 
complex*16 J-coeff 
dimension E wave(*),J coeff(*) 
i = (0.0,1.0) -
pi= 4.0*atan(l.O) 

c Ee is used for the correction step 
Ee= E wave{l) 
do 1 j;;l,N 

omega= alpha*(j-1) 
exp step= exp(omega) 
r =-rO*exp(alpha*(j-1)) 
E wave(j) = r*E wave(j) 

1 continue -
do 2 j=N+l,NN 

E wave(j) = o.o 
2 continue 
c FFT{fm) 

isign = 1 
call fourl(E wave,NN,isign) 

C gm= FFT{FFT(fm) * FFT*(jm)) 
do 3 j = 1,NN 

E wave(j) = E wave(j)*J coeff(j) 
3 continue - -

isign = 1 
call fourl{E wave,NN,isign) 
do 40 j=l,N -

omega= alpha*(j-1) 
roe= roeO*exp(omega) 
Cree= Ec*0.5*rO*rO*{l-0.125*roe*roe*rO*rO) 
E wave(j) = E wave(j)/roe/NN + Cree 

40 continue -
do 5 j = N+l,NN 

E wave(j) = o.o 
5 continue 

return 
end 
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The subroutine init wave initializes the beam distribu­

tion. Notice that the distribution is assumed to be TEMoo 

with a given beam waist, w0 , of wo and power of PO. The 

variables alpha and ro are required for the exponential dis­

tributed sample points used in the FFT method to find the 

Hankel transform. Variables zl and z2 are used to, scale the 

beam from the diverging-converging method. 

subroutine init wave(N,NN,alpha,rO,E wave,zl,z2,PO,wO) 
implicit none - -
integer j,N,NN 
real*B PO,omega,pi,EO,alpha,ro,z1,z2,wo,exp step 
real*B r,rprime -
complex*16 E wave, temp 
dimension E wave(*) 
pi= 4.0*atan(l.O) 
open(UNIT=lO,FILE='singcri',STATUS='UNKNOWN') 
rewind(lO) 
EO = sqrt1P0*4.0/pi/wO/wO)*z2/zl 
write(*,*) 'EO = ',EO 
write(*,*) 'z2/zl= ',z2/zl 
do 1 j=l,N 

omega= alpha*(j-1) 
exp step= exp(omega) 
r =-rO*exp step 
rprime = r/2/pi 
E wave(j) = EO*exp(-rprime*rprime/wO/wO) 

1 continue 
do 2 j=N+l,NN 

E wave(j) = o.o 
2 continue 

do 3 j=N/4,N,8 
omega= alpha*(j-1) 
exp step= exp(omega) 
r =-rO*exp step 
rprime = r/2/pi 
temp= E wave(j) 
temp= zl/z2*temp 
w:r:ite(lO,*) rprime,abs(temp)**2 

3 cemtinue 
return 
end 
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The subroutine init J is used to store the Bessel coef-

ficients for the Hankel transform. 

subroutine init J{NN,J coeff,rO,roeO,alpha) 
implicit none - -
integer j,NN,isign 
real*S rO,roeO,alpha,r,thrash,exp step,bessjo 
complex*16 J coeff -
dimension J coeff{*) 
do 1 j=l,NN-

exp step= exp{alpha*(j-1)) 
r =-rO*exp step 
thrash= rO*roeO*exp step 
J coeff(j) = alpha*thrash*bessjO(thrash) 

1 continue 
c FTT* (jm) 

isign = -1 
call fourl{J coeff,NN,isign) 
return -
end 
subroutine coord(N,E wave,Cord) 
implicit none -
integer N,j 
complex*16 E wave,Cord 
dimension E iave(*) ,cord(*) 
do 1 j=l,N -

E wave(j) = E_wave(j)*Cord(j) 
1 continue 

return· 
end 
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The subroutine initcoord stores the exponentially dis­

tributed radial sample points required for the FFT method of 

calculation of the Hankel transform. 

subroutine initcoord(N,rO,alpha,lambda,Cord,zl) 
implicit none 
integer N,j 
real*8 pi,rO,alpha,lambda,zl,r,rprime 
complex*16 i,phi,Cord 
dimension Cord(*) 
i = (0.0,1.0) 
pi= 4.0*atan(l.O) 
do 10 j=l,N 

r = rO*exp(alpha*(j-1)) 
rprime = r/2/pi 
phi= i*pi/zl/lambda*rprime*rprime 
Cord(j) = cdexp(phi) 

10 continue 
return 
end 



The subroutine init_space stores values for Hankel 

domain beam propagation by matrix multiplication. 

subroutine init space(space,N,roeO,alpha,dz,lambda) 
implicit none -
integer j,N 
real*8 alpha,roeO,roe,lambda,pi,dz 
complex*16 i,phi,space 
dimension space(*) 
i = (0.0,1.0) 
pi= 4.0*atan(l.O) 
do 4 j = 1,N 

roe= roeO*exp(alpha*(j-1)) 
phi= i*dz*pi*lambda*roe*roe 
space(j) = cdexp(phi) 

4 continue 
return 
end 
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The subroutine nonlin performs the nonlinear phase cor-

rection on the complex beam. 

subroutine nonlin(E,N,gamma,cdz) 
implicit none 
integer j,N 
real*S gamma, cdz 
complex*16 E, i,.phi 
dimension E(*) 
i = (0.0,1.0) 
do 1 j=l,N 

phi= -i*gamma*cdz*E(j)*conjg(E(j)) 
E(j) = E(j)*exp(phi) 

1 continue 
return 
end 



The subroutine powercalc calculates the power lost per 

pass at the aperture. 

subroutine powercalc(E,N,power,rO,alpha,scale) 
implicit none 
integer j,N 
real*8 power,rO,alpha,r,dr,pi,scale,rp,drp 
complex*16 E,temp 
dimension E(*) 
pi= 4.0*atan(l.O) 
power= o.o 

r = ro 
rp = r/2/pi 
dr = rO*exp(alpha) - r 
drp = dr/2/pi 
temp= E(l)*scale 
power= power+ temp*conjg(temp)*rp*drp 

do 1 j=2,N 
r = rO*exp(alpha*(j-1)) 
rp = r/2/pi 

99 

dr = (rO*exp(alpha*(j)) - rO*exp(alpha*(j-2)))/2.0 
drp = dr/2/pi 
temp= E(j)*scale 
power= power+ temp*conjg(temp)*rp*drp 

1 continue 
power= power*pi 
return 
end 
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The subroutine prop performs the matrix multiplication 

in the Hankel domain for linear complex beam propagation. 

subroutine prop(E,Jf,N,NN,ro,roeo,alpha,space,Jr) 
implicit none 
integer j,N,NN 
real*S rO,roeO,alpha 
complex*l6 E,Jf,Jr,space 
dimension E(*)jJf(*),Jr(*),space(*) 
call hankel(E,Jf,N,NN,rO,roeo,alpha) 
do 4 j = l,N 

E(j) = E(j)*space(j) 
4 continue 

call hankel(E,Jr,N,NN,roeO,rO.,alpha) 
return · 
end 



APPENDIX E 

CORRECTION FOR GROUP VELOC!TY DISPERSION 

USING PRISM PAIR 

Correction for Group Velocity Dispersion {GVD) using a 

prism pair is one method of reducing the effects of first 

order dispersion in the fs Ti:sapphire laser. The method 

used is based upon the earlier work of Fork, et al. [21]. 

Their work showed how a prism pair, made of a material with 

positive dispersion, can be arranged such that the cavity 

has negative dispersion. 

Fork, et al., give the dispersion of the cavity, 

where 

d 2 P [d 2n ( 1 )(dn) 2
] --= 41{ -+ 2n-- -.- sin~ 

d"A. 2 d"A. 2 n 3 d"A. 
(Eq. E.l) 

(dn) 2 

-2 d"A. cos~} 

l is the distance between the apex of the prisms, 

n is the index of refraction of the prisms, 

"A. is the free space wavelength of interest, and 

~ is the propagation angle of a ray with respect to 

a reference line drawn between the apex of the two 

prisms. 
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The angle J3 is assumed to be small such that 

lsin J3 ~ 2mm 

cosJ3 ~ 1 
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(Eq. E.2) 

(Eq. E.3) 

Such a small path through the prisms is necessary to 

minimize the thermal effects of the prisms and to minimize 

the distance l. With the assumptions above, Eq. (E.1) sim­

plifies to: 

d 2 P [d 2n ( 1 )(dn) 2
] -=0.008 -+ 2n-- .-

d"/,.,2 d"/,., 2 n 3 d"/,., 
(Eq. E.4) 

( dn ) 2 

- 0.004 l d"/,., 

For example, for prisms made of SFlO glass, at a wave­

length of 800 nm, this glass has (2] 

n = 1.71125 

dn/d'),.., = -0.04958µm- 1 

d 2 n/d'),.., 2 = O. l 755µm - 2 

Then Eq. (E.4) gives 

d 2 P sFJold'),.., 2 = 8mm {O. l 755µm -2 + [2( 1.77125)- 1 /( 1.77125)3 ] 

X (-0.04958µm- 1 ) 2 } 

- 8 lsFJo(- 0.04958µm -I ) 2 

2 2 -2 -2 
d PsFJold"/,., =l.467-lsFJo(l.967xlO )mm·µm (Eq. E.5) 

Distance l required for correction of GVD passing 

through a given length of material in the cavity is calcu-
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lated dividing dispersion in the cavity, d 2 P/dA 2 , by the 

product of the second order dispersion of the material, 

d 2 nM/dA 2, and the thickness of the material, t. Then, 

-d 2 riMI dA 2 t = d 2 p I dr.:. 2 (Eq. E.6) 

which, for SFlO reduces to, 

(Eq. E.7) 

Then, for d 2 nM/dA2 given in µm- 2 and t and l in mm, the 

distance between prism apex (using SFlO glass) is 

lsFio = 74.62+ 50.87d 2 nM/dA 2 t (Eq. E.8) 

For example, for 6.5 mm sample of zns, with 

d 2 n/dA 2 =0.7µm- 2 , we find that lsF,o is about 306 mm, or 12 

inches. 



APPENDIX F 

CALCULATION OF NONLINEAR INDEX 

OF REFRACTION 

The numerical values of the nonlinear index of refrac­

tion for a materials presented in this report were obtained 

either through references or by calculations based on the 

method of Boling, et al. [56]. In the case of ZnS, CdS, 

quartz and Ti:sapphire, the work of Adair, et al. [53] was 

used as a reference. In this reference, n2 was measured at 

1.06 µm. For CZ, ZnSe, and SFll glass, the values were 

calculated. In the case of calculations of n2 , the method 

of Boling, et al., gives an estimate of n2 at 486 nm. Note 

that Boling, et al., state that the variations in measured 

results and calculations often give answers that vary more 

than a factor of two. Thus the values for n2 presented in 

this report are to be used to estimate the relative strength 

of the nonlinearity of the materials only. 

One of the more confusing problems encountered is that 

of the units for n2 • Note that the units will depend on 

first exactly which n2 is being referred to as well as which 

system of units (MKS or cgs) is being used. 

The relation between the linear and the nonlinear index 

of refraction can be presented as 
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=no+n'2<E2> 

n '2 2 
=n 0 +-IE I 

·2 
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(Eq. F .1) 

(Eq. F .2) 

(Eq. F.3) 

Using the relation between the intensity, I, and optical 

field, E, as [36] 

/=!<£2> 
Tl 

= _1 I £2 I 
2ri 

(Eq. F .4) 

(Eq. F.5) 

where the characteristic impedance of a dielectric, ri, is 

related to the permittivity of a medium, E, the permittivity 

of free space, Eo, the permeability of free space, µ 0, and 

the index of refraction of the medium, n, as [57] 

ri= ("µ;, (Eq.F.6) . \j e 

= ! ("µ;,.µ0 (Eq. F.7) n\J;: 

Note that, in MKS units, ri = 377 n. The relation 

between the two variations of n2 (n2 and n' 2) is given as 

, 377.0 
n 2 = n 2-- (Eq. F.8) 

n 

The units for n' 2 presented in many texts is esu. The 

conversion to n' 2 in MKS units is given as [58] 

(Eq. F .9) 

Thus the conversion from n' 2 in esu presented in most 

texts to n2 in MKS units of m2/W is 
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(Eq. F.10) 

The following program is used estimate the nonlinear 

index of refraction, .n2 , for ZnS, based on the method of 

Boling, et al. (56]. The result is in units of 10-13 esu. 

The linear index of refraction is estimated using the dis-

persion formula given by Weber (59]. 

implicit none 
integer i,j,k,steps 
real*S l,n,n2,nsq,power,c 
real*S Atemp,A, nn,disp,gvd 
real*B lf,ld,lc,nf,nd,nc,vd, numer, denom 
steps= 10 
C = 299.792458e6 

c wavelength dimensions must be in microns 
c program reads dispersion formula coefficients from 
file 'ior.coef' 
c and writes index of refraction result to file 
'ior.data' 

lf = 4861 
ld = 5875 
le= 6563 
1 = lf 
nsq = 5.131 + 1.275e7/(l*l-0.732e7) 
nf = sqrt(nsq) 

write(*,*) 'nf=',nf 
1 = ld 
nsq = 5.131 + 1.275e7/(l*l-0.732e7) 
nd = sqrt(nsq) 

write(*,*) 'nd=',nd 
1 = le 
nsq = 5.131 + 1.275e7/(l*l-0.732e7) 
nc = sqrt(nsq) 

write(*,*) 'nc=',nc 
vd = (nd-1)/(nf-nc) 
numer = 68.0*(nd-l)*((nd*nd+2)**2) 
denom = 1.517 + vd*(nd*nd+2)*(nd+l)/6/nd 
denom = vd*sqrt(denom) 
n2 = numer/denom 
write(*,*) 'n2 = ',n2 
write(*,*) 'end of process' 
end 



APPENDIX G 

CALCULATION OF ASTIGMATISM CORRECTION 

Calculation of the proper angle to correct for astigma­

tism of a element placed at the Brewster angle near the 

focus of a beam was based upon the method developed by 

Kogelnik, et al. [60]. The half angle e for proper astig­

matic correction is given as 

N t = R sin 8 tan 8 (Eq. G.l) 

where tis the thickness of the Brewster plate, R is the 

radius of the mirrors, and N is given as 

n 2 - 1 
N=--~ n4 (Eq. G.2) 

For example, to correct for the astigmatism in a 6.3 mm 

thick piece of SFll glass (n = 1.77), we get for N 

N = 1.772 - 1 ~ 1.772 
1.77 4 

= 0.442 

For R = 10 cm, 

. e e Nt sm tan = R 

= 0.0278 

for which 29 = 19 degrees is a valid solution. 
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The following fortan program calculates N for astigma­

tism correction 

c capn.f calculate N for astigmatism 
implicit none 
integer i 
real n, capn, t, theta, pi, error, del, R 
real RHS,LHS 

pi= 4.0*atan(l.O) 
del = 0.001 
write(*,*) 'enter index of refraction' 
read(*,*) n 
capn = (n*n-l)*sqrt(n*n+l)/n/n/n/n 
write(*,*) 'N = ',capn 
write(*,*) 'enter thickness of material (cm)' 
read(*,*) t 
R = 10 
RHS = capn*t/R 
write(*,*) 'Nt/R = 1 ,RHS 
theta= pi/180 
do i=l,20 

LHS=s.in (theta) *tan (theta) 
write(*,*) theta*lSO/pi,LHS 
theta= theta+l.O*pi/180 

end do 
end 
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APPENDIX H 

FIGURES 

Nonlnear material (TI:sapptire) 

Low power beam is high loss 

Nonlnear material (TI:sapphire) 

High power beam is low loss 

aperue 

Figure 1. Beam profiles in simplified KLM laser 
cavity. Low power beam suffers larger 
losses due to aperture losses. Higher 
power beam has less loss at aperture 
due to self-focusing. 
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Figure 2. Simulation results for linear loss model 
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Figure 5. Schematic of cavity simulated in thin­
lens approximation of self-modelocking 
in a KLM laser. 
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Figure 6. Comparison of parabolic fit to exponen­
tial function in parabolic GRIN lens 
approximation of self-focusing. The 
curve 'exp' is the exponential curve 
function while the curve 'para' is the 
parabolic approximation. 
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Figure 8. Schematic of split-step beam propagation 
method used for numerical simulations. 
The nonlinear element is divided up 
into a large number of segments of 
length h. Within each segment, the 
effect of self-focusing is included as 
a phase correction. (After Ref. (33]). 
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pling of tightly focused beam. (After 
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SELF-FOCUSING ELEMENT. 

=:w,------,Ml Apertur& 
ld=l.25 mm 

I 

Figure 10. Ring KLM laser with highly nonlinear 
element used in Hankel transforms beam 
propagation.simulations. Curved .arrow 
shows direction of beam propagation. 
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Figure 11. Aperture loss per round trip vs. intra­
cavity power in linear cavity Ti:sap­
phire KLM laser using Hankel transform 
beam propagation method. 
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Figure 12. Aperture loss per round trip vs. intra­
cavity power in ring cavity KLM simu­
lations using Hankel transform beam 
propagation method. 
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Figure 13. Aperture loss per round trip vs. intra­

cavity power for various crystal posi­
tions for same laser shown in Figure 10 
using Hankel transform beam propagation 
method. 
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Figure 15. Schematic of experimental linear cavity 
KLM Ti:sapphire laser with additional 
self-focusing element in cavity. 
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Figure 16. Sketch of beam pattern from laser shown 
in Figure 15 when system was operating 
in cw mode, but very close to self­
modelocked. 

Figure 17. Sketch of beam pattern from self­
modelocked KLM laser shown in Figure 
15. 
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