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CHAPTER 1
INTRODUCTION

Problem

During the past several yearé, digital imaging has become more popular. As the
number of image-enabled applications grows, the demand for high quality images also
grows. However, a problem exists f(;r imaging applications running on today's hardware.
A typical digital image requires a large amount of storage space. If a source image with a
size of 8.5 by 11 inches is scanned (digitized) at 300 dots per inch, the resulting digital
image is 2550 by 3300 pixels, or 8.4 million pixels. Depending on the number of colors
needed, each pixel contains from 1 to 24 bits of color resolution. Today, a high quality
color image has 24 bits (8 bits for each primary color; red, blue, and green). The
resulting digital image has a size of just over 25 million bytes. Obviously, today's typical
computer cannot store many of these images nor can the images be transmitted or
processed rapidly.

Image compression is an area that has seen considerable interest for just this
reason. The total size of the stored image can be reduced, saving storage requirements
and transmission time. There have been several image compression methods proposed,
each with different qualities and each with varying degrees of acceptance. Currently, no
still frame image compression method offers a greater potential than the transform
compression method; the most popular being the Joint Photographic Experts Group
(JPEG) standard [JPEG Draft 92] which is based on the discrete cosine transform (DCT).



The JPEG algorithm, the transform and supporting coding, is CPU intensive, both
in the compression stage and in the decompression stage. To make matters worse, once
the original image is decompressed, the image must often be scaled in size to match a
particular output device such as a video monitor. The scaling step is often an inaccurate
approximation that involves errors from interpolation. Aliasing is often apparent if the
scaling algorithm results in minifying the image. A similar problem is encountered under
magnification, where pixelization occurs.

The process for reducing these distortions requires two steps: First, reconstruct
the continuous image signal from the discrete image, and second, resample the new
continuous image signal at desired output positions to match the output device
characteristics. The decompression, reconstruction, and resampling steps all contribute to
a longer than desired delay before the image can be viewed. Although the JPEG
algorithm uses only the discrete image samplés, the continuous image signal is needed for
the scaling and resampling. The original discrete samples are usually thought of as a
sampling of the original continuous image. A high quality scanning device or digital
camera usually provides the first continuous to discrete operation.

A fast method to view a JPEG image is needed. However, the JPEG algorithm is
intended to provide a high quality image but still maintain good compression. The
tradeoff is between maintaining the high quality level of the original image, qnd

providing a fast algorithm for decompression, reconstruction, and resampling.

Proposed Research

Previous research focuses on three main areas, image compression using
transform coding, reconstruction functions, and scaling algorithms. Although the discrete
cosine transform has been around for some time [Ahmed 74}, and has been suggested as

part of an image compression process, its use in a widely accepted international standard



is very recent. While there is reference to the possibility of combining these three steps
using the Fourier transform [Wolberg 90], there is no research using the cosine transform.
This is due to two main reasons. First, the JPEG algorithm is new, therefore few people
have investigated its properties. Second, while Fourier analysis is often used to show the
* frequency properties of a particular reconstruction algorithm, the algorithm is usually
implemented in the spatial domain for performance reasons and clarity. When a
frequency domain study is performed in the literature, it is performed in the Fourier
domain. The most likely reason seerhs to be that the Fourier transform and domain are
clearly understood, and are a useful reference across many disciplines.

There are now several implementations of a JPEG decompression algorithm, but
the reconstruction and scaling steps have been ignored, either because of performance
reasons or because the original characteristics of the image are already matched to the
output device and no reconstruction or scaling is required.

e gl

The ideas presented here describe a umq/ue a;faproach to this process. The
proposed ;esga;éh is to combine the reconstruction with the scaling, and to operate
directly on the compressed image data in the cosine-frequency domain before the
decompression. In this manner, the reconstruction and scaling process will involve only
the compressed image data, not the decompressed image data. This research determines
if the operations required in the frequency domain are more complex and time consuming
than those required in the time domain. As will be seen, the complexity of each operation

is somewhat adjustable, depending on the interpolation and reconstruction algorithm

used.



CHAPTER 2
BACKGROUND

Image Definitions

Pratt [Pratt 91] defines an image as a continuous, infinite extent field whose value
represents some aspect of a scene. The values are often considered to represent some
known physical property, such as luminance, absorption, reflection or some range of
energy [Jain 89], [Pearson 91]. The data is not required to have such meaning, but it
often helps in conceptualizing the process involved.

In an image sampling system, the sampled discrete image, Fg(x,y), can be
obtained by multiplying the continuous image, F(x,y), by a sampling function, S(x,y),
such as the comb function, or a two-dimensional grid of Dirac delta functions, spaced Ax

and Ay apart.

S(xy)= 3 3 8(x - jAx,y—kay) @-1)

j=—ok=—a0

where S(x,y) is the spatial sampling function based on a grid of Dirac delta functions.

The sampled image then becomes



E(x,9)=F(x,y)8(x,y) =F(x,5) Y ) 8(x— jAx,y-kAy)
je—ook=-o (2"2)
where F(x,y) is the continuous ideal image, and Fy(x,y) is the sampled image.

Moving the continuous image function, F(x,y), inside the summation, yields

F(xy)=3 3 F(jdx kay)x 3(x - jAx, y - kAy)

j=~wk=—00

(2-3)
where F(jAx, kAy) is determined at only the sample points jAX, kAy.

Fourier Analysis

The Fourier transform is a well known linear transform [Andrews 70], [Russ 92],
[Goodman 68]. The Fourier transform decomposes a signal into an infinite set of
coefficients of orthogonal complex waveforms. The Fourier transform is just one of a
number of ways of decomposing the signal into coefficients of orthogonal waveforms.
Ahy orthogonal transformation will provide a similar decomposition. In particular the
cosine transform, which is an orthogonal transformation, has similar properties as the
Fourier transform, and was originally derived from the Fourier transform [Ahmed 74].

If the Fourier transform of the continuous image, F(w,, w,), is convolved with

the Fourier transform of the sampling function, S(w,, w,), the result,

1
Fs((’)lsf’)z)=FF((’)1’(’)2)®S((’)1=(’)2) (2-4)

is the Fourier transform of the sampled image. This equation for the Fourier sampled

image, F5(w),, w,), from the Fourier continuous image reduces to



1 o0 o0
F.(o,, = Flo,-jo.,0,-k -
s(0,,0,) AXAYJ-;}(;Q (0, - jo5,0, — ko) (2-5)

where W g, and W,g, are the discrete sampling frequencies corresponding to the
sample spacing Ax, and Ay, used in the sampling function.

Let R(x,y) be a reconstruction function. Then, in order to reconstruct the
continuous image from the sampled image, the sampled image can be spatially
interpolated using F¢(x,y), and R(x,y), or it can be filtered with a reconstruction function
using Fy(w,,w,), and R(w,w,). where R(w,,w,) is the Fourier response of the
reconstruction function. In this case the reconstructed image, Fy(x,y), can be written as

the convolution of the sampled image, Fg(x,y), and the interpolation function, R(x,y), as
F(%.y)=E(xy)®R(x,y) (2-6)

or, using the Fourier transform of this equation, we have
FR(ml,é)z)=Fs(coi,coz)R(m,,mz). (2-7)

Using the same properties as before in the continuous to sampled case with

Equation 2-5, the transform of the reconstructed image becomes

1 © & X
Fn(co,,mz):mR(m,,mz)z > F(o,-jo,,0,-ko,). . (2-8)

j=—ook=—w

From [Pratt 91}, and ignoring aliasing problems, the reconstructed image is equal

to the ideal image if R(w,,w,) removes all the values except where j, k =0.



Reconstruction

Image reconstruction is an area of research concerned with recreating an image
after some spatial manipulation or spatial scale function has been applied to the original
sampled image [Andrews 72], [Fant 86]. Many times an image starts as a one-to-one
mapping of pixels in the sampled image to pixels on a display device. But, this one-to-
one spatial Ihapping often changes, either because the original display device is no longer
available, or the image is rendered under some different spatial mapping function.
Magnification and minification are examples.

When the image is magnified, pixel duplication can be used to render the image
[Andrews 76]. For example, if one were to render the image at half its normal resolution
(doubling its physical size), one image pixel would be translated into 4 identical pixels (a
2 by 2 square). This process leads to a phenomenon known as pixelization.

/Likewise, under minification, the simplest method is to drop pixéls, or decimate
the image. In a similar example, if the image were rendered at twice its normal physical
resolution (making the image half its size), every other pixel value would be dropped.
This simple process leads to aliasing, which is well documented in the signal processing
area‘.

Thus, image reconstruction should render the image in a new coordinate system,
while these artifacts, such as pixelization and aliasing [Heckbert 86]. There are two steps
to the reconstruction stage.(The first step is to establish a continuous image, and the
second step is to resample the new continuous image at some interval that will minimize
the distortions, while lending itself to the output grid. Once a continuous image is
correctly produced, the resampling grid can be of any interval, without causing the
distortion artifac@

In order to recreate the continuous image signal, a continuous function is matched

to two (or more) image sample points. The missing image values between the two points



are assumed to be equal to the continuous function. Once the continuous signal is
recreated in this manner, the image signal can be sampled wherever a value is needed. In
contrast, if the original sampled image is used, image data is available only at the original
sampling interval. Fitting a function to a set of data points is similar to using a low pass
filter on the data signal. Since, the continuous function smoothes the original image
sample data. As expected, the resulting image under magnification will not exhibit the
same pixelization artifacts, since these high frequency changes have been smoothed by
the interpolation function.

Interpolation functions can be implemented as a convolution in the spatial
domain, but this approach in not usually applied because o.f time requirements. Usually,
interpolation is performed by evaluating the interpolation polynomial. Interpolation can
also be performed as a multiplication in the frequency domain. In order to use this
frequency approach, the image data and the spatial interpolation function must both be
transformed into a particular frequency domain, then multiplied, and the inverse -
transformation applied to the result. This frequency filtering process also has significant
time penalties, because the computétional requirements for the forward and inverse
transformation of the entire image are usually substantial. However, examination of the
frequency filtering method proves to be useful when developing a spatial interpolation
function. Ideal interpolation in the frequency domain is a simple rectangle function
[Ratzel 80], [Parker 83]. The frequency rectangle function filters out frequencies higher
than one-half the sampling frequency, while passing unchanged the frequencies less than
this cutoff frequency. If this ideal frequency function is transformed to the spatial

domain, the result is the sinc function.

Sinc Function

The sinc function is defined as



sin(7x)

sinc(x) = (2-9)

X

and is an the ideal spatial interpolation function, corresponding to the ideal rectangle
function in the frequency domain. While this function, shown in Figure 2-1, is the exact

function needed for reconstruction, it has computational problems that prohibit its use.

t1 R{x)

4+ 2 0 2 ¢ X

Figure 2-1.
The Sinc Function

From the gréph of the sinc function, Figure 2-1, it is easy to see that it has
significant energy iﬂ the side bands, which have infinite extent in the space domain. If
this function is truncated in the space domain [Ratzel 80], [Parker 83], then the loss of the
sideband energy produces ringing in the frequency domain. In Ratzel's comparisons, this
method of truncating the sinc function proved to be inferior to some of the other

interpolation functions like the cubic B-spline approach, which is discussed below.

Nearest Neighbor Interpolation.

This is the simplest method of interpolation. Since it represents the zero-order
polynomial, it is computationally the quickest, but has corresponding accuracy

drawbacks.
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Figure 2-2. Nearest Neighbor Interpolation

As Shown in Figure 2-2, each output pixel takes on the value of its nearest
neighbor on the input grid. This is also called the point shift algorithm, and is defined as

X1 X,

F.(x)=F(x,), for 5 <x < B K

(2-10)

In the spatial domain, nearest neighbor interpolation can be achieved by convoluting the

image with

R(x)=1, 0<[x|<0.5

R(x)=0, 055y (2-11)

This is a simple rectangle, as shown in Figure 2-3. It is also called the box filter, Fourier

window, or the sample-and-hold function.
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4 ) 1 X

Figure 2-3.
The Rectangle Function

The nearest neighbor function results in pixelization in magnification, and when
doing minification, the image is sampled, and produces aliasing artifacts. The image is
also subject to position errors of up to one half of a pixel width (or height). For example,
if the new sample falls between two of the original samples, the new pixel takes on the
value of one of the original pixel values, but its location on the new grid is half way
between the original points. This results in the new pixel position having a phase error of
one half a pixel width. For minor scaling changes, nearest neighbor is usually considered
adequate given its computational efficiency. For large scaling changes, nearest neighbor
results in either aliasing or pixelization.

This method has seen much general use in the academic image processing field,
and the commercial document imaging field. It is still used todéy where quick estimates
are needed [Asal 86], [Eldon 90], such as in real time magnification. However, it is being

replaced by more sophisticated algorithms.

Linear Interpolation

Linear interpolation uses a first-order polynomial function, as shown in Figure 2-
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Figure 2-4. Linear Interpolation
For a linear interpolation function, the interpolated point lies on a straight line
defined by the neighboring two image samples. The value of the function at the

interpolated point is

X—X,

o (%) = F(x, )+ 5 [F(x,,,) ~ F(x,)] @-12)

k+l - Xk
which is the equation for a line passing between the two sample points.
In the spatial domain, linear interpolation is achieved using convolution with a

triangle funiction

R(x)=1-)x, 0<[x|<1
(2-13)
R(x)=0, 1<%
which is shown in Figure 2-5.
This interpolation function is a simple, but reasonable low pass filter in the
frequency domain. It is useful to note the triangle function in Figure 2-5 is the

convolution of two box functions.
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4 0 1 X

Figure 2-5.
The Triangle Function

Second Order Interpolation

If the triangle function is the convolution of two box functions, convolution with

another box function yields a second order bell shaped wave form defined as

R(x)=$(x+3)?, —3<x<-}
=3-x*, -l<x<i (2-14)
:-%—(X—-g- 2, %SXS%.
and shown in Figure 2-6.

Rix)

11254

051

o]

15 505 15 X

Figure 2-6.
The Bell Curve
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If this process of convoluting rectangle functions is continued, the eventual result

is a gaussian shaped bell curve, shown in Figure 2-7.

R(x)
l:0 T
o — —— b S
. o X
Figure 2-7.

The Gaussian Curve

However, there are a few more functions of interest before the convergence to this
curve.

Second order polynomials are shown to be space variant [Schafer 73], [Abdou 82]
and. exhibit a phase distortion. In fact, this problem exists with all even number
polynomials. Therefore, even powered polynomials are not used for interpolation.
Further, higher order polynomials may not converge, so these are not used. However,
higher order polynomials can be approximated by using a low order polynomial on

repeated subintervals.

Cubic B-Spline Interpolation

If rectangle functions are continuously convolved together a B-spline will be
created [Hou 87], [Lee 83]. Although the general n-degree B-spline is defined as B, = B,

* B_ , the cubic B-spline the most uséful here. A B-spline of degree one is the triangle

n-1s
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function, degree two is the bell function, and degree three is the cubic B-spline, as shown

in Figure 2-8.

R(x)

065

Q.16 4

Figure 2-8.
The Cubic B-Spline

In interpolation appliéations, a B-spline is used to join data samples into a
continuous function. Interpolation with a first degree B-spline (the triangle) is to join the
data samples with straight lines (linear interpolation). Second order B-splines (bell
functions) join the data samples with parabolas, with the span limited to three samples.
Cubic B-splines are typically limited to matching four data samples, as shown in Figure
2-9.
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Figure 2-9. Cubic B-Spline Interpolation
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Cubic B-splines are used in image interpolation because the first and second order

derivatives are continuous, and they provide smoothing. The cubic B-spline is defined as

R(x) =2+ ~(x)?, 0<[x/<1

=12-[)y,  1sj<2 @1

Cubic Convolution

Rifman and McKinnon [Rifman 74] originally suggested the cubic convolution
algorithm as an approximation to the sinc function. It was developed at TRW to help in
the reconstruction of Landsat digital images and is known as the TRW cubic algorithm.

It has been shown [Pratt 91] that if the digital image is band-limited and
sufficiently sampled, then it can be reconstructed‘ completely by using the ideal

interpolation function from Equation 2-9,

sin(wx)
X

sinc(x) = (2-16)

The spatial sinc function in Equation 2-17 corresponds to the rectangle function in the
frequency domain. The rectangle function is a low-pass or band-pass filter that does not
introduce any distortions inside the passband.

However, Equation 2-17 is not a pfactical function to implement in the spatial
domain, due to its infinite extent. In practice, the number of samples used to reconstruct
one new sample point must be limited, and a limited approximation to the sinc function is
needed. If the sinc function is limited to five points, there is a slope discontinuity at the
end points, -2, and 2 [Park 82a]. This produces ripples in the frequency spectrum. Cubic
convolution [Keys 81] is an attempt to eliminate these ripples by making the slope zero at

the end points. This produces an approximation to the sinc function in the area of interest



(-2 <x < 2), while preserving the continuous end points. This cubic curve, which is

actually a range of piecewise continuous functions, is given by

R(x)=(a+2)x —(a+3)x+1, |x|<I1
=alx - 5afx] +8ajx|-4a, 1<|x/<2 (2-17)
=0 otherwise.

The parameter o is an adjustable variable. This parameter corresponds to the slope at
x=1. The ideal sinc function has a slope of l-1 at x=1, thus the parameter o is usually set
to -1 to duplicate the ideal function. However, Park shows that a choice of -0.5 is
actually a better choice than either the standard -1, or -0.75, which is also used at times.
This choice of a gives a frequency response superior to nearest neighbor, and linear
interpolation. This method can also be incorporateci into an adaptable scheme, where the
parameter o is based on local image statistics. In particular, for an image with edges as
its main point of interest, Park suggests a value of -0.666 is an optimal choice for

minimizing error.

Filter Choice

Several authors have studied various filters used in the reconstruction of discrete
images [Maeland 88], [Mitchell 88], [Park 82a], [Park 82b], [Naiman 87]. Schreiber and
Troxel [Schreiber 85] emphasized the importance of a perceptual based evaluation of the
filters. In this study, which compared the nearest neighbor, truncated sinc, linear, B-
spline, gaussian, and a sharpened gaussian, the results showed a subjective preference for
the sharpened gaussian filter. This study is of particular interest because it emphasizes a
real world approach. In the sharpened gaussian case, separable filter were cascaded

together to form a combined sharpened gaussian function. The sharpening portion of this
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filter is used to emphasize the high frequency edges in an image, mimicking the human

eye. By using a separable filter, the authors kept the computations relatively short.

Coding

There are many different methods to encode image data. This research is
concerned with the two types used in the JPEG DCT image compression scheme. The
JPEG algorithm uses transform coding (DCT-based) to encode the image samples, and

uses predictive coding to encode transform coefficients.

Predictive Coding

Predictive coding makes use of redundancy in the data. In image compression,
redundancy is highly dependent on the type of image being compressed. For example, an
image of a constant blue sky will be highly predictable, as will an image of a starfield. Of
course, most images of interest are much more random. In predictive coding, the
algorithm can either base its predictions on some fixed value, or on a adaptive value.
Adaptive values commonly include the average pixel value, the previous pixel value, or a
local average pixel value.

Most images contain some form of structure to them. Fer example, a natural
scene image may contain a man-made building, a person, a tree, or other objects which
are likely to contain similar colors and textures. Within that area of the image, the pixels
may be highly predictable. However, when considered as a whole, the image may not
contain elements that lead themselves to prediction. An adaptive algorithm [Arps 88]
always makes more accurate predictions because of this. However, the tradeoff in

algorithm complexity and speed may make a non-adaptive algorithm more suitable.



19

Transform Coding

The Fourier transform discussed above and other frequency space transforms,
such as the cosine transform, are used in image processing for many different reasons.
The use of transforms in image coding first began about 1970 [Chen 84], [Wintz 72].
However, because of the computational difficulties and resulting large delays, transform
image coding did not receive much attention. Recently, due in part to advances in digital
computers, there has been renewed interest in using frequency transforms for image
compression and coding. It has proven to be an efficient means of image compression
[Lohscheller 84]. The algorithm for computing the discrete cosine transform (DCT) has
been an area of concentrated research over the last twenty years [Duhamel 90], [Chen 77],
[Narasinha 78], [Ahmed 74], [Suehiro 86], [Lee 84] and [Vetterli 84]. Some of this
research is directly applied to computing small (16 by 16, and 8 by 8) subblocks of two
dimensional image transform data. The resulting speed improvements have helped make
the DCT an acceptable solution for time-constrained image compression problems.

In a typical image coding algorithm_, the original image is divided into small
subblocks, 8 or 16 pixels per side. Each block undergoes a two-dimensional
transformation, producing an equal size block of transform coefficients. Each block of
coefficients is converted into an one-dimensional array, and then quantized and coded.
Generally the low frequency components are quantized most finely, and the higher
frequency coefficients are quantized more coarsely. Finally the quantized coefficients
may be compressed further using some form of predictive coding, usually Huffman

coding or arithmetic coding [Langdon 84], [Pennebaker 88].
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The JPEG Draft

Background

The Joint Photographic Expeﬁs Group (JPEG) draft [JPEG Draft 92] is the
accepted method for compression of natural scene images, and is likely to become an ISO
standard. It includes four modes of compression; sequential, progressive, lossless, and
hierarchical. In sequential encoding, each image pixel is encoded in a single left-to-right,
top-to-bottom stream. Progressive encoding operates across the image in multiple scans,
allowing the viewer to watch the restoration in multiple passes. The lossless encoding
mode sacrifices compression ratio for iniage quality, guaranteeing an exact recovery of
the compressed image. Finally, hierarchical encoding creates multiple images of
differing resolutions, so that low resolution versions may be accessed without
decompressing the full image at high resolution.

The lossy method includes the discrete cosine transform (DCT), to be formally
defined below. The simplest process is called the baseline sequential process. The
coding pathway shown in Figure 2-10 starts by grouping the image data into 8x8 blocks
of a single color component. Each color component of the image is handled
independently, and there can be up to 255 separate components. Each 8x8 block is then
transformed into a set of 64 discrete cosine coefficients with the forward DCT (FDCT).

The coefficients are quantized using a predetermined quantization table, and are
then prepared for the entropy encoder. The coefficients are passed through the one of two
possible entropy encoders (either a Huffman encoder or an arithmetic encoder). Both

again use a predetermined table (not specified in the JPEG draft).
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Figure 2-10. The JPEG Compression Process

The decoding steps in Figure 2-11 are essentially the inverse of the coding steps.
The compressed image data is first passed through the entropy decoder. The coefficients
are reorganized into the proper order (2-D), and the difference encoding is reversed. The
data continues to the dequantization step, which converts the data back into DCT

coefficients. Finally the inverse DCT reconstructs the 8x8 block of image data.

Entropy Organization Pequantizer IDCT : : o
_B Decoder _B : :

Compressed Image Reconstructed Image

Including tables Crouped into &x& blocks
Figure 2-11. The JPEG Decompression Process

Forward and Inverse Discrete Cosine Transform
The FDCT used in the JPEG draft is:
7 7
F(u,v)= %cucv 3> Y F(x, y)cos(lll%(Zx + 1))005(%(2y + 1)) (2-18)

x=0 y=0

and IDCT used in the JPEG draft is:
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F(x,y)= %iicucv f(u,v)cos(‘l‘—’;-(zm 1))cos(%(2y+ 1)) (2-19)

where:

C,=C, =+ foru,v=0

and C,=C, =1, otherwise.

Quantization and Dequantization
A single DCT coefficient, F(u,v), is quantized by a uniform quantization formula:

wV

Fou,v)= round(%z(g’l?) . ' : (2-20)

The step size Q(u,v) comes from the quantization table, and rounding is done to the
nearest integer. F,(u,v) is the quantized DCT coefficient. Inside the decoding process,

the normalization is removed by an inverse process:
Fra(0,v) = Fo (0, v)x Q(u,v) (2-21)

where F,,,(u,v) is the unquantized DCT coefficient.

Data Preparation

The first (DC) coefficient of the block is encoded with the difference equation:

DIFF = DC~PRED _ (2-22)
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The PRED value is the unquantized value of the DC component of the preceding block,

Fuq(0,0). The remaining AC components are arranged in a zig zag sequence as show in

Table 2-1.
TABLE 2-1
ORGANIZATION OF COEFFICIENTS
0 1 5 6 14 15 27 28
2 4 7 13 16 26 29 42
3 8 12 17 25 30 41 43
9 11 18 24 31 40 44 53
10 19 23 32 39 45 52 54
20 22 33 38 46 51 55 60
21 34 37 47 .50 56 59 61
35 36 48 49 57 58 62 63

Compression Ratio and Image Quality

All frequency transform-based éompression schemes can produce varying levels
of image quality. Basically, the more high frequency components that are discarded in
the quantization step, the better the compression, at the expense of the image qualify. For
DCT-based compression schemes, the levels shown in Table 2-2 haye been found by
[Wallace 91], [Legef 91] and [Mitchell 89] to be a consistent framework for image

quality measurements.
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TABLE 2-2

COMPRESSION VERSUS QUALITY

Bits Per Subjective Quality

Pixel

0.25t0 0.5 moderate to good, sufficient for some applications

0.5 t0 0.75 good to very good, sufficient for many applications

0.75t0 1.5 excellent, sufficient for most applications

1.5t02.0 usually indistinguishable from the original, sufficient for the most

demanding applications

From this information it is possible to predict the amount of compressed data

needed for a given level of quality. For a quick example, a image 512 by 512 and 24 bits

deep (6.3 Megabytes) could be reduced to 65 Kilobytes, while maintaining a moderate

image quality. For the JPEG algorithm, this is an intermediate result. The DCT

coefficients are further compressed using the zig zag organization and Huffman coding.

According to [Mitchell 89], this allows for a ISDN network to display a recognizable

image in less than one second. This assumes the decompression can be done in real time,

which is 64 Kilobits per second for ISDN. An excellent quality image would be achieved

in 5 to 10 seconds, and a visually indistinguishable image in 20 seconds.



CHAPTER 3
RESEARCH OUTLINE

Background
* Traditional image reconstruction begins with a digitized image and includes the
following steps: First, interpolation between the original image samples recreates the
continuous image signal, then scaling of this continuous signal produces an image of the
correct size. Finally resampling the scaled continuous image creates a new digitized
image. The traditional method is shown in Figure 3-1a. Figure 3-1a includes the IDCT

b

operation for later comparison.
o

4:/Thls research examme§the possibility of performing the interpolation and scaling
operati;)ns in the frequency dorf;ain, rather than the spatial domain. This idea fits nicely
with the JPEG image compression algorithm, because the JPEG algorithm uses the
discrete cosine frequency transform to compress the image. The goals of this research are
first to determine if this approach is feasible, and second,. if feasible, to determine what
benefits this approach can offer. The new frequency reconstruction method shown in
Figure 3-1b. The new method uses the transformed image data and produces a scaled,

resamp]ed image stream by applying the reconstruction process to the DCT transform

coefficients.

25
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Figure 3-1. Reconstruction Methods: a) Traditional Method,;
b) New Method

If the reconstruction can be done in the frequency domain as a multiplication
(filtering), rather than in the spatial domain as a convolution, the resulting reconstruction
algorithm will be much faster. The new cosine domain-based reconstruction algorithm
requires three related operations‘. They are filtering, scaling, and resampling. The
filtering operation multiplies the DCT coefficients with the reconstruction kernel. The
scaling operation adjusts the frequencies used in the IDCT operation. The resampling
operation samples the scaled DCT basis frequencies at the new sample locations. Of the

three steps in the process, the filtering operation is the only separate module. The scaling

~,
N,

and resampling steps are integrated into the IDCT process.' J

#

Spatial Implementation

o

' { The first phase of the research covers the spatial implementations of the cubic,

) . LN . C oy
and the sharpened gaussian reconstruction ﬁmctlonsf.ﬁ(l'hese two spatial functloné}are well

hosen because of their wide

documented in previous research literature, and g%ve
acceptance as high quality image interpolation functions. Although both functions are

used in a two-dimensional manner, both are implemented in a one-dimensional fashion.}

oA
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The separable implementation matches the previous research in the literature. {A
'separable function operates in a two-pass method, the data is interpolated first the
horizontal direction, then in a vertical direction. The result is a rectangular two-
dimensional interpolation function:} These spatial implementations, developed in Chapter
4, are needed for error analysis in later steps, as well as implementation guides during the
frequency domain development presented in Chapter 5.

k: As part of the first phase to develop a suitable reconstruction process, the
interp;i;tion function will be combined with the scaling process. *ﬁ'he interpolation
function is used to interpolate between samples of the original image and the second
function, the scaling function, scales the image to the correct size. The combined
reconstruction function will contain an adjustable parameter, C, to specify the degree of
scaling (either spatial magnification, £>1, or spatia} minification, £<1) desired?} Details of

#

the spatial implementation is presented in Chapter 4.

Frequency Implementation

o

'The second phase covers the frequency domain investigations, starting in the
Fourier frequency domain, then extending the results to the discrete cosine frequency
domain. The purpose of the Fourier work is to provide a basis of understanding and

i

comparison, since little research of this nature is available in the cosine domain;;gil'he
frequency phasé;of the research, presented in Chapter Sﬂfroduces two individual
reconstruction filters (cubic and sharpened gaussian) which are implemented and
documented in the discrete cosine domain, as well as the Fourier domain for reference.
As part of the Fourier analysis, the ideal reconstruction filter is also examined. The ideal
filter is used to calculate and predict the cutoff frequencies used to prevent aliasing.

Using the ideal filter in the cosine domain, an ideal image of the correct size is generated

and used as a basis for numerical error analysis.
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The result of the frequency domain implementation phase is three filters, the
combined cubic-scaling filter, the combined sharpened gaussian-scaling filter, and the
ideal-scaling filter, all implemented and documented in the cosine domain. These
functions are independeht of any specific implementation which constrains the frequency
range. In particular, they do not depend on the JPEG implementation of an 8x8 DCT
block, which limits the possible frequencies to those represented by the 64 DCT

frequency coefﬁcients.ﬂ“’%?

Application to the JPEG Data Stream

The third phase, presented in Chapter 6, demonstrates the use of these filters
during JPEG decompression. The JPEG algorithm constraints the raﬁge of frequencies
that are available to the reconstruction process because it uses an 8x8 block of
coefficients. Only 64 discrete frequencies are allowed and the higher frequencies are set
to zero. During this phase, two well known test images will be used; the Lena and
mandrill images. A black and white reproduction of each image is shown in Figures 3-2

and 3-3.



Figure 3-2. The Lena Test Image

29
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Figure 3-3. The Mandrill Test Image

Much of Chapter 6 is devoted to a discussion of differences (both subjective and
quantitative) between the spatial and frequency versions of the images. This includes a
discussion of the impact of filtering out the high frequencies (anti-aliasing) during the
frequency reconstruction. This chapter includes a documentation of the implementation
differences between the spatial and frequency research, primarily centering on the
differences in circular and rectangular filters. Speed comparisons are also discussed for
each process path. Finally, in the error analysis section of Chapter 6, the numerical errors

are plotted for varying scaling factors, for both the Lena and mandrill images.
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Evaluation

The research summary in Chapter 7 presents conclusions found in this research.
The conclusions are largely subjective for two reasons. First, when applying the
magnification and miniﬁéation algorithms, the original correct image may not be
available for any error analysis, although if possible, the ideal filter is used for this
purpose. Secondly, there is no single quantitative measure that mimics the human visual
system, the eventual receiver.

For exarﬁple, in similar works [Ratzel 80, Ready 72] it is suggested that a
numerical error evaluation, such as a minimum meanb square error (MSE), may not be an
appropriate choice when the actual receiver is the human eye. As an example, consider a
small grayscale image with a range for each pixel from 0 to 255. If the value of 1 is
added to every pixel value, the resulting MSE will be quite large, however the visual
effect is not too disturbing. The same MSE results if 1 is added to every even numbered
pixel in even numbered lines, and odd number pixels in odd numbered lines, and 1 is
subtracted from all other pixels. This results in a checkerboard pattern that is more

disturbing to the human visual system, yet yields the same MSE value.
Summary

Using the convolution and scaling properties of the discrete cosine frequency
transform, this research implements and evaluates a new method of manipulating the
transform data directly, before the final inverse transformation of the image data is
accomplished. Three operations (filtering, scaling, and resampling) are combined into a

single, adjustable reconstruction process.



CHAPTER 4
SPATIAL IMPLEMENTATION
Notation

Image Coordinates

Th1s research uses three coordinate systemvs in the description of an image. It is
useful to use three different sets of variables to help clarify these descriptions. First, the
normal, unscaled image is described using x (horizontal) and y (vertical) dimensions, as
shown in Figure 4-1. Each pixel represents one unit in these coordinates. For purposes
of the JPEG DCT, this means that x and y are limited to the block size, N=8. The
variables x and y then vary between 0 and 7.

In the discrete cosine frequency space, the frequency coordinates are u and v.
When referring to the JPEG DCT algorithm, the DCT is limited to an 8 by 8 block, so u
and v also vary from 0 to 7. In the Fourier frequency domain, the variables w,, and w,
are used to distinguish the Fourier frequency space from the cosine frequency space.

The third description of an image is the scaled IDCT output space (the
reconstructed image space). This output space is given coordinates r and s. This
coordinate system is the same as x and y when the scaling is 1. However, when the
scaling is not 1, the new scaled space does not have the same range as the original 8 by 8
block. Instead, each block is scaled to a new size, described in terms of rand s. As
indicated in Figure 4-1, the range or block size (N) is 8 for the JPEG DCT. The scaled
(reconstructed) block size is M = round(NC), where £ is the scaling factqgidiscussed in

Chapter 2.
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Figure 4-1. Coordinate Spaces

- Interpolation

Interpolation functions use values of surrounding sample points to estimate the
value of an intermediate interpolated point between the samples; (Separable interpolation
functions are implemented in a one-dimensional manner, and operate in a two-pass
fashion. In this research, the spatial reconstruction functions are implemented in a
separable fashion. The first pass interpolates horizontally and produces four intermediate
points, the second pass interpolates in the vertical direction using the intermediate points
and produces the final interpolated péintBSeparable functions are advantageous for speed
of computation and simplicity during the implementation phase.

<When the interpolated point lies directly on an original data sample, it is usually

. assumed the interpolated point will exactly match the original sample. However, in the

o

Q{;
1A
)

\J? / will produce a sharpened version of the data set instead. In the case of the cubic function,

é case the sharpened gaussian, the interpolated point will not match the original data, but

{

the new interpolated point will exactly match the original data.

Interpolation functions have the general form
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2000

g(x)= chz(x - xk): d

where g(x) is the interpoléting function applied to a sampled function f(x) (the sampled
image), x, corresponds to the sample data points, z is the interpolation function (i.e., the
cubic function). The c,'s are parameters based on the sampled data, so that g(x) =f(xp)

for each x,. The sampling increment is assumed to be normalized to one.

Parametric Cubic Convolution

Conditions and Restrictions

/LThe parametric cubic kernel, described in Chapter 2,'contains four segments, (-2, -
1), (-1,0), (0,1), and (1,2) [Rifman 74} {Park 82a]-{Keys 81]. It is defined to be zero
outside ﬂ;is interval. However, since the kernel must be symmetric to avoid phase shifts,
the domain can be limited to (0,1) and (1,2), and reflected about the zero axis. With this

simpliﬁcation, the kernel has the form:

| PR A
N !\&ﬁgﬁgv‘ y ?‘;‘3&3@&-“)
b u 3ty £
ot A
v
-
A1X3+B1X2+C1X+D1, 0<x<1
Z(x)=1A,x’ +B,x*+C,x+D,, 1<x<2 4-2)

0, 2<x.

~where x is measured as an offset distance from the interpolated point.
By imposing additional conditions on the interpolation kernel, z(x), the
coefficients in Equation 4-2 can be established. Since the value of the kernel function

must be equal to the sampled data at the interpolated point when the offset is zero;

zZ(x)=1, x=x, o 43)

z(x)=0, Xx#X,
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thus, using x, instead of x,

g(x,)= Z ¢ z(Xy — xk) ' (4-4)

Since z(x)=0 unless x=0, and z(x)=1 at x=0, then g(x,) = ¢, Combining this result with

the requirement g(x,) = F(x,), the end result is
¢, =F(x,). ' (4-5)

And:

1=2z(0)=D,
0=z1")=A,+B,+C, +D,
. 0=z(1')=A,+B,+C,+D,
0=2(2")=8A,+4B, +2C, +D,

(4-6)

Park-fPark-82a]-also-imposes-that-the interpolation kernel, z(x), has a continuous
This Wn Be ) >
derivative, Z'(x), for all x. Keys [Keys 81] translates this to the cubic family as:

~-C,=7'(07)=2'(0") = G
3A,+2B,+C,=z'(1")=2'(1")=3A,+2B, +C, 4-7)
12A,+4B,+C,=2'(27)=2'(2%) =0.

The first condition implies C,;=0. Putting the results of Equation 4-6 and Equation 4-7 in

— . /
matrix form gives /

N
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-
/ 0001 00 0 0TA7 [1]
1111 00 0o0|B/|]o
06000 11 11[c]|o
0000 84 21|D| [0
0010 0 0 0 0JA,l|7]o0 (4-8)
3210 -3 =2 -10|B,]| |0
0000 124 10]c]| o
0000 10 00|D,]| |a

This gives seven equations in eight unknowns plus the relation A, = &. For this last
equation, a range of values has been proposed for . The value A, corresponds to the
slope at x=1>lﬁfman [Rifman 74] originally proposed a value of A,=-1, to match the
sinc function; However, Keys [Keys 81] selects(é value of -0.5, to make the Taylor series
expansion of R(x) in Equation 2-17 match the interpolation function g(x) to as many
terms as possible. The same value, -0.5, was used in this implementation. The result is a

function based on the four surrounding points, the parametei' &, and x, the offset from the

interpolation point. 47,y = E €z >
. -
g(x)= "[a(ck+z =cy)+(a+2)(cp —cy )]x3 + // 0, = o
W/ [za(ck+l —¢,)+3(e —¢) +aley, —¢, )]xj - (49

L \\\ [Ot(cm -Cy )]x +c, )

3

¥

Equation 4-9 can be rewritten as a reconstruction kernel, R(x), by removing the sample
data points, and separating the two functions, the first from 0 to 1, the second from 1 to 2,

then reflecting these two functions about the axis. This is the same as Equation 2-18.
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R(x)= (o +2)x —(@+3)xf +1, |x|<1

=afx]’ ~5afx +8alx|~4a, 1<|x/<2 (4-10)
=0 otherwise.
Sharpened Gaussian

Conditions and Restrictions

(I‘he sharpened gaussian function is a combination of three gaussian functions, one
central and two side lobes. The two side lobes have a negative gain, and are displaced by
the amount of scaling. The gains of the central and side lobes are arbitrary set to provide
a pleasing visual result. This is a change from the cubic function, where the gain is
determined by minimizing numeric difference between the sinc function. The sharpened
gaussian is designed by subjective measures, where the cubic is designed by numeric
measurey

Ratzel [Raztel 80] investigates the subjective quality of the image versus filter
width. In particular, he studies the tradeoff between filter width in the frequency domain
versus filter width in the spatial domain. One of the results of this paper is that a filter
width given by 0=0.375 gives ggod results.

Thi;s» value of O':is :szg ign thigimplementation of the sharpened gaussian filter for
the cenﬁal and gm the side lobes) However, the gains for the central and side lobes are
different than the gains Schreiber [Schreiber 85] or Ratzel used. Schreiber starts out with
the same gaussian parameters, however, he implements it in a discrete fashion. First he
convolves the entire image with a sharpened filter given by

0 -7 0
-7 49 -7|. (4-11)
0 -7 0
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This removes most of the intersample interference, or dependence. After the entire image
is sharpened in this manner, a two pass convolution, first horizontal, then vertical, is used

as the interpolation step. The discrete interpolation filter he uses is

[..0136111620212016116310..J/135 (4-12)

S N

I ——

which is his approximation to a central gaussian. The data is scaled to reduce the gain
introduced by the interpolation and sharpening filters.

Schreiber results are used in this research, the same value for o is used, but the
two functions are combined into one, and a constant test image is used help fine-tune the
gains of the central and the side lobes. The resulting filter is shown in Figure 4-2. It is
identical to the previous sharpened gaussian filters, except it is a single continuous filter,

and the adjusted gains used here eliminate the final scaling step done in Schreiber's work.

R(x)

0 tme—t ' + '
ozl X

Figure 4-2.
Sharpened Gaussian



39

The central lobe is described as

1.5 -0.5%2
Central(x) = ex 4-13
el = 5066 0375 [(0.375)2J “
and the two side lobes are
. ~0.27 ~0.5%>
Side(x) = ———— . 4-14
)= 5 5066 03757 ((0_375)2J @

These are consistent with the modified gaussian curves presented by Ratzel, and
Schreiber. The final curve shown in Figure 4-2 is a result of adding the three curves
together. The central gain, 1.5, and the side lobe gain, -0.27, were selected using a

constant test image, to be discussed in the error analysis section.

Error Analysis

To test and adjust these functions and their parameters (particularly the gain of the
sharpened gaussian function), different two-dimensional functions were used to simulate
the image data. The first function used was a constant image (each pixel value equal to
100). The otherb artificial image used was a linearly varying image. Each pixel value was

computed with the function

Pixel Value = (Row Number) + 10 x (Column Number). (4-15)
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Using these functions as test data, the cubic function performed as expected, and needed
no further modifications. However, the gains of the sharpened gaussian were adjusted to
1.5 and -0.27 to produce a subjective minimum distortion using the constant test image.
In this research, there is a slight distortion introduced by round off errdrs. A four point
window is used, which can lead to a phase distértion when centered the interpolated point
lies on a sample data point. This problem is caused by the right most point of the
window does not evaluate to zero. This is shown in Figure 4-3a. The four dark vertical

lines in both figures represent the sample data points, X, _;, Xy, X+, and Xy

i

—“\\'/ N 'x
2 4 ) 1 2

R{x)

Figure 4-3a
On-Center Interpolation

R{x)

Figure 4-3b
Off-Center Interpolation
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When the interpolated point is not centered on a data sample, x,, as in Figure 4-3b, there
is the balancing left sample, x,_;. However, in Figure 4-3a, the right most sample point,
X+2, does not evaluate to zero because the interpolation kernel, R(x), is not quite zero.
This amount of distortion turns out to be significant. On the constant image test, this
right most sample contribufed a distortion of 3.6 percent. For separable horizontal and
vertical implementations this is magnified because of the two pass implementation. The
first pass contributes 3.6 percent, then the second pass adds another 3.6 percent. One

method of compensating for this would be to decrease the width of the filter. To match

Schreiber's work on spatial versus frequency filter width tradeoffs, the filter width was
not changed. However, this idea could be subject to subsequent study. A typical
interpolated (one dimensional) line is below in @, sho/wi g these ripple-like
distortions. The odd pixel locations are the on-center values/th/e even are the off-center

interpolated values.
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Figure 4-4. Sample Sharpened Gaussian Response

Using these values, a numerical estimate for the error can be computed. Both the on and

off center interpolated are supposed to have a value of 100. The error can be measured

against this artificial image.

_ 2 4 - 99.8)
crror = J(100 - 100.8)> + (100 - 99.8) 04123 @16

2

Summary

This chapter covers the first phase of the research, the spatial implementation of
two interpolation kernels, the parametric cubic convolution, and the sharpened gaussian.
This phase is important because it gives a method of comparing this research to other
research in the literature. It will also be used later to compare the spatial implementation

to the frequency implementation. Deviations from the literature include a one-pass
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combined method, rather than the two-pass sharpen-interpolate scheme. Both functions
perform 2 dimensional interpolations, first hqrizontally, then vertically.

Beéause of the on-center/off-center problem, the implementation of the sharpened
gaussian function gave an error based on the scaling value. If the function is aligned (on-
center) with a data sample, the error is about 3.5 percent greater than if the function is

half way between the data samples (off-center).



CHAPTER 5
FREQUENCY IMPLEMENTATION

JPEG DCT Definition

(The JPEG draft [JPEG Draft 92] specifies the forward and inverse discrete cosine
transforms to be used for image compression and decompression} Recalling Equations 2-

18 and 2-19, @e forward (FDCT) and inverse (IDCT) transforms are defined as

FDCT: _’}-'s(u,v)— ZZF(X y)cos( (2x+1))cos(‘1,—76r-(2y+1)) ,

x=0 y=0

u-—O v=0

IDCT: Fs(x,y)——ZZC f;(u,v)cos( (2x+1))cos(l6( y+1)) -1

where C,,C, = L foruorv=0; C,C,6 =1 otherwise.
V2

where an 8x8 block of image samples is assumed\

Scaling

( Using the linear scaling pfoperty, the original image transform data is scaled to
anothef size. By contracting the two axes in the frequency domain, the spatial axes are
expanded. Likewise, by expanding the frequency axes, the spatial axes are contracted.
This relationship [Jain 89] between a spatial function and its frequency transform is

expressed as

44
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F(Cx,Cy)@C%f(g,g). (52)

N\,

where ( is the scaling factor, and £ > 1 produces spatial magnification. "The two axis™
could be scaled independently by different ”amounts, but this research/makes useofa ( |v=’
single scaling factor, corresponding to the scaling factor applied to the entire image.

(By inserting this scaling property into the inverse discrete cosine process, the

resulting spatial data is, in effect, scaled to the correct size, or sampling rate.

u=0 v=0

F, (&x, Cy)<:> ZZ u “j—"s(u v)cos( C(2x+l))éos(%€(2y+l)) (5-3)

The impact of scaling the basis frequencies is illustrated in Figures 5-1 and 5-2. These

figures show plots of the cosine terms in the summation
Zcos[ 2x ¥ 1)) (5-4)

for three different values of x and two different values of €. Figure 5-1 shows the case of

£=1; the original, unscaled case.

As the scaling factor - € is increased to l 25 as in Figure 5-2, the frequency axis is

;\waﬁ 1@)\' :
effectively compressed.” This inverse relationship between the spatial axis and the

frequency axis\)is used to scale the image data in this research.



amplitude

[ x=0

W x=1
W x=2

Figure 5-1. Unscaled Cosine Frequencies, =1

[0 x=0
H x=1
W x=2

Figure 5-2. Scaled Cosine Frequencies, £=1.25.

By scaling the frequencies in the discrete cosine transform, the image in the spatial

domain is effectively scaled in the inverse manner.

46



As an example, consider the spatial magnification scaling process shown in

Figure 5-3.

=x,‘l
Figure 5-3a. Figure 5-3b.
The Continuous Image. The Initial Sampled Image.
"i * =
K2 “x-l: ?)( XX
o M o
o | xx"
Figure 5-3c. The Scaled (Magnified)
Sampled Image.
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! I [l oot sty I I - B
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o s I B
il iy RIS~~~ — -1 i
| [ XRXX i [ o S
E___'; e SR %.u.u
! 1 | | [
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: H ::,: | ) KX ) toy 2
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Figure 5-3d. Resampling the Scaled Image to Fit
the Output Requirements.

Figure 5-3a and Figure 5-3b show the original continuous and sampled image for a 6x5

pixel array for a display device of a given size. The scaling step in Figure 5-3c scales

47
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both spatial axes uniformly. In Figure 5-3b, the first sampling step, the image is sampled
to 6x5 pixels, as it is in Figure 5-3c. However the size of each pixel is larger in Figure 5-
3c than 5-3b. The image is still 6x5, but each unit has been scaled. In Figure 5-3d, the
units are returned to the original size, but now the image is resampled to 7.5x6.25 pixels.

Qhe expansion by 25 percent in Figure 5-3 corresponds to the contraction of the
frequency axis by 25 pércent in Figure 5-2)

Each pixel in an image has frequency information associated with it. The edges
of the letter in Figure 5-3a have very high frequencies, while the white areas have only
DC frequency content. As the image in Figure 5-3c is scaled, the edges still retain the
high frequencies, only the position (relative to the top left corner of the image) is
changed. Likewise, as the FDCT is computed over a block of image samples, the
positional relationship of the samples to the DCT basis frequencies is encoded in the
resulting 8x8 DCT coefficients. By changing the basis frequencies during the IDCT
process to match a new sampling grid, the positional information is interpreted as

matching that new grid als/o)

Spatial and Fourier Domain Reconstruction

In order to resample the sampled image, the original image, F(x,y), can be
convolved with a reconstruction kernel, R(x,y). Using the convolution property [Jain 89],
the transform of the convolved functions is equal to the product of the transforms of the

functions. This relationship can be written as
F(x,y)®R(x,y) & F(0,,0,)R(0,,0,) (3-5)

Recalling Equation 2-2,
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F(x,y) =F(x,y)S(x,y). (5-6)

The sampled image, Fg(x,y), is the product of the continuous image, F(x,y), and the
sampling function S(x,y). The sampled image, Fy(x,y), is termed the ideal image, F/(x,y),
if the sampling function used exactly matches the desired sampling function needed to
match a given display device. The initial sampling function used to digitized the image is
normally assumed to be different than the sampling function desired for the displaying
the image on the output device.

The convolution of the sampled image, F(x,y), and the spatial sampled

reconstruction kernel, R¢(x,y) is the sampled reconstructed image, Fg(r,s).
Fp(1,8)=E(X,y)® R (x,y) (5-7)

Using the Fourier transform on Equation 5-7, but ignoring the change in variables from

X,y to 1,8 gives

-2

FR(ml’mz)zFS(ml’QZ)R.;(ml’mz) (5-8)

where F(w,,) is the transform of the sampled image, F¢(x,y), defined in Equation 2-5

as

Fo(0,,0,)= ZZF(ml—jm1Ssmz_kmzs)a (5-9)

je—ook=-c0
and the Fourier domain sampling frequencies, (g, and (0,g are defined as

O = and © = ' ‘ (5-10)
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Rg(w;,w,) is the transform of the sampled reconstruction kernel.

If the original sampled image, Fq(x,y), is bandlimited and sufficiently sampled,
the spectrum of the reconstructed image, Fp(w),,t0,), can be made equal to the spectrum
of the ideal image, F;(w;,w,) by using an ideal reconstruction function, Ry(w,,w,). In
this case the spatial versions, Fg(x,y) and F,(x,y), of the images can be made equal. To
show this, recall Equation 5-6. The sampled image Fg(x,y) is the product of the
continuous image and the sampling function S(x,y). Using Equation 2-1, the sampling
function is the summation of dirac delta functions, located on a grid spaced Ax and Ay

apart,

S(x,y)= ) 3 8(x jAx,y—kay). (5-11)

j=—ook=—c0

Using Equation 5-11 in Equation 5-6, and moving the continuous image function inside

the summations, yields

E(6y)= 3 3 F(Ax KAY)x 8(x jAx,y - kay). (5-12)

j=—ook=—c0

Taking the continuous two dimensional Fourier transform of Equation 5-12 above gives

Fs(w,,w,), the Fourier transform of the sampled image [Pratt 91].

Fy(0,,0,) = [ By (x, y)e @ dxdy (5-13)
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The Fourier transform of the sample image, Fy(tw,,w,), can be expressed as the
convolution of the Fourier transform of the continuous image and the Fourier transform

of the sampling function.

Fs(0,,0 2)— F((Dl’ 2)®S((D1,(D2) (5-14)

The Fourier transform of the spatial sampling function, Equation 2-1, is an infinite array

of Dirac delta functions.
S(0,,0,)= 4n” iiﬁ(m —i®,0, ko) (5-15)
1>Y2 AXAy Fraod 1 1S>%2 287°

Performing the convolution in Equation 5-14 as a multiplication in the spatial domain

gives

F((D], 2)_
HF(‘DI o0, — B)xzzﬁ(a 05, — Ko, )dadp.

j=—ok=-e0

(5-16)

Using the sifting property of the delta function and combining the integration and

summation:

Fs(o,,0 z)‘_ZZF(ml JO 5,0, —koy). (5-17)

J——ook-—uo
Finally, Equation 5-17 can be compared to the reconstructed image spectrum

Fr(0,,0,)= A S(('ol’ 2)ZZF((D1 Jog, 0, —ko). (5-18)

jE—ook=—wm
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which is Equation 5-8, with Equation 5-9 used to expand the image spectrum.

The only difference is the presence of the transform of the sampled reconstruction
function, Rg(w;,w,). Since by definition a reconstruction function filters out the image
samples j, k=0, the two spectrums, F¢(w,,w,), and Fp(w,,w,) are equal, except for the
weighting of the reconstruction function. Differences will exist in the form of aliasing
problems if either image is insufficiently sampled. In the discrete transform domain, the
image spectrum is replicated at the sampling ﬁequency. These replications can overlap if
the sampling increments, Ax or Ay, are too large, resulting in aliasing errors.

In order to prevent the replicated spectrums from overlapping, the spatial
sampling increment is chosen so that the region bounded by the cutoff frequencies, W,

and W,, is inside the region bounded by one-half of the sampling frequency:

O <25 and O 5c <2 . (5-19)
2 2
or
Ax<-L-, and Ay<-2—. (5-20)
Wy Wy

For image acquisition systems, this means the sampling increments must not be
larger than one-half of the smallest detail in the image.(In the case of the reconstruction,
the higher frequencies (greater than one half the sampling frequency) can be filtered ouT}
during the calculation of Equation 5-17, by limiting the range of the summation terms to

only include one spectrum.



Ideal Reconstruction

Ideal reconstruction changes the originai sample spacing to match the desired
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sample spacing for the final output device. There are two simple reconstruction filters to

be examined as represented in Figure 5-4. The first is a rectangular area enclosing the

cutoff frequencies, ¢, and W,.. This is the simplest extension of the one-dimensional

case. The second filter is a circle enclosing the same cutoff frequencies. The spatial

versions of these filters are sinc functions and first order Bessel functions, respectively.

02 - Rectangular
Wog/2
0)20 , ’ ’
poT T eETATERI T T ! .~ Circular
- ~ t
: /// \\\ : - -
e N | Spectra of
L/ 2 \ Interest
1/ :,’: |
:ll ‘\'
T : ;
Il\ e 3 /,: 0)1C 0)18/2 0)1

BRI

XX

‘)(

S

This rt?e’arch uses a circular reconstruction filter for

Figure 5-4..Reconstruction Filter Shapes

fhe DCT frequency

implementation in this chapter} because the offset from the DC coefficient in Table 2-1 is

used to calculate the reconstruction function. \Iéowever, the rectangular filter is examined

in order to determine cutoff frequencies. Both the circular and rectangular filters have

the same cutoff frequencies, but the rectangular filter is easier to describe mathematically

and conceptualize.
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The Fourier frequency response [Pratt 91] of the rectangular reconstruction

function is

R(0,,0,)=K, for|o|<o,, and|o,|<0,

5-21
R(0w,,0,)=0, otherwise (5-21)
where w),; and w,; are between the cutoff frequencies and one half the ‘sampling
frequencies. The inverse Fourier transform of R(w,w,) is
R(x,y)= K(olecoZL sin(®,; X) s1n(c02Ly). (5-22)

n O X Oy

Equation 5-22 is not a practical filter to implement in the spatial domain because
the sinc functions are infinite in extent. However, in the frequency domain, this function

reduces to a scaling constant K.

/ Parametric Cubic Convolution

Used as an approximation to the ideal interpolation function in the spatial domain,
the cubic kernel is a limited extent function design to match the sinc function at up to two
points away from the center. It is described [Keys 81] as two functions, the first
extending from zero to one, the second from one to two, reflected about the y axis.
Equation 5-23 is the two dimensional form, with the offset from the central point

weighting both axis equally.
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R(X,y) = (a0 +2)(x* + ¥*)F = (0 +3)(x2 +¥2) +1,

for 0< \x*+y* <1
' (5-23)
R(%,y) = a(x? +y*)F - Sa(x? +y*) +8a(x’ +y°)! -4,

fori< {x*+y* <2

- Taking the continuous Fourier transform of R(x,y) in Equation 5-23, and ignoring

the limits of integration for now, these two functions are:

R(e,0,)=
[Jlt@+2)(x + ¥yt = (0 +3)(x +y) +1Je ™ dxdy,

for 0< x> +y* <1

(5-24)
R(®,,0,)=

” [a(x? +¥%)? =5a(x> + %) +8au(x’ + y*)? — daJe @ e dxdy,

for1< (x> +y* <2

Equation 5-24 is given as a reference for now, and is used later to compare the cosine
frequency domain implementation of the parametric cubic convolution algorithm. The
cosine frequency domain implementation of the parametric cubic convolution function is

used in Chapter 6 during the reconstruction of JPEG compressed images.

Sharpened Gaussian

The sharpened gaussian function was developed is Chapter 4 and offers a balance

between the computational problems inherent in a high order interpolation filter or spline,
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and the pixelization problems of a low order function. Ratzel [Ratzel 80] compared this
function to other common functions by visual methods but did not compare it to the cubic
convolution or ideal reconstruction functions. The results of this comparison determined
the best width of the spatial kernel compared to the width of the frequency kernel. Ratzel

defined the spatial function as

R(x,y) = Ce @)/’ _ Se—os((x’+&2>+l)/c’ — e 0 +y Do (5-25)

where C and S are gains applied to the central and side lobes, respectively,

_ 1.5 andS= 0.27 (5:26)
2.50660 2.5066c
and
o =0.375. (5-27)

As discussed in Chapter 4, the values of C and S are modified in this research by the
central gain, 1.5, and the side gain, 0.27. The value of O is also modified by the scaling
factor, all in an effort to keep the filter width consistent with results in the literature.

The Fourier frequency domain counterpart for Equation 5-25 is

R(w,,0,)=
JJ [C e—05(x2+yz)/ o’ _ S e—OS((x2+yz)+l)/c:2 -S e-()j((xzﬂr’)—l)/c:z ] e—i(m,x+m2y) dx dy (5-28)
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using Equations 5-26 and 5-27 as definitions for the gains and o. As with Equation 5-24,
Equation 5-28 is provided as a reference for later cosine frequency domain
implementations of the sharpened gaussian reconstruction function. The cosine domain

versions of these reconstruction functions are used to reconstruct JPEG images.

Cosine Domain Reconstruction

Ideal Reconstruction

During the initial digitization of a continuous image, one sampling function is
used to produce the image for compression and storage. During reconstruction, a
different sampling function is often desired to produce a sampled image which matches
the output device characteristics. No practical reconstruction function can exactly
reproduce the original image data lost during the initial digitization, a reconstruction
function can only interpolate between known image data samples to estimate the
intermediate points. An ideal reconstruction function exactly reconstructs the original
continuous image from the digitized version, and resamples this image to match the
output device.

The ideal reconstruction function in the frequency domain is defined in Equation
5-21. It shows a scaling constant defined over a limited frequency range, and zero
outside that range. This research is concerned with scaling images to different sizes. In
order to define where to set cutoff frequencies, this section examines the ideal
reconstruction case. The cutoff frequencies developed here will be applied to the cubic
and sharpened gaussian reconstruction cases.

Thé first case to explore is magnification, the second is minification. The
continuous image is assumed to be bandlimited and sufficiently sampled during
digitization to prevent aliasing. However, as the image is reconstructed it is possible to

reintroduce aliasing problems. Figure 5-5 illustrates a one-dimensional case of the
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original sampled image spectra. The spectra is repeated each integer multiple of

sampling frequency, (Wgq.

Hw) _. Ideal
Fo---- e 1 _-~" Reconstruction
P Filter

]
Y (O]
“0g -0¢ 0 Oc g

Figure 5-5. Original Spectra

During magnification, the new sampling rate is higher than the original sampling
rate. Since the spectra is fixed (and bandlimited) at this point, the effect of the higher

sampling rate is to spread out these repeated spectra. This is shown below in Figure 5-6.

Increased

S L N Sampling —>
. v = I y ! l ) =« »
1

Figure 5-6. Increasing Sampling Rate

Clearly, in the case of magnification, no adjustment of the reconstruction filter
cutoff frequencies is needed (at least the cutoff frequencies do not have to be restricted).
In fact, the reconstruction filter can be relaxed to include higher frequencies, if they are
available. Although this may seem to reduce aliasing, this is not an accepted method of
anti-aliasing. If the image is not bandlimited, the individual spectra extend beyond wp.

No matter how far the spectra are moved out by magnification, there will still be aliasing
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problems. In fact, depending of the frequency content of the image, aliasing may become
more apparent.

In the case of minification, the filter cutoff frequencies do need to be restricted.
This is shown in Figure 5-7. As the sampling rate decreases, the repeated spectra move in

toward the center, causing the spectra to overlap, resulting in aliasing.

Decreased

T T é Sampling

adjusted filter cutoff “original filter cutoff

Figure 5-7. Decreasing Sampling Rate

By adjusting the cutoff frequency, ¢, to one-half the new sampling frequency,
W, the aliasing problem is reduced (zilthough not eliminated). If the new cutoff
frequency is moved in further, aliasing can be further reduced, and eventually eliminated,
at the cost of reducing the high frequencies inside the paésband.

In order to find the new correct cutoff frequency, the new sampling frequency

must be known. Recalling Equation 5-19 and 5-20,

® s%, and o, s%@i (5-29)

and

Ax<-E and Ay<-Z-. (5-30)
Oy O,
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the new cutoff frequencies ), and W, are available from either the new sampling
frequency, or the new sampling spacing.

These new cutoff frequencies are applied to the JPEG algorithm during
reconstruction. During minification, the high frequency coefficients are set to zero,
effectively filtering out the higher DCT ﬁequéncies. To get a better idea of the actual
cutoff frequencies used during a JPEG reconstruction, it is useful to examine the JPEG
algorithm more clbsely.

The algorithm starts with either 8 or 12 bits of precision (unsigned) per color
component sample. These repfesent the magnitude of a particular chrominance
component, or luminance field. These numbers are level shifted to be centered about
zero, by subtracting 2P-1, where P is the precision used. For 8 bits the shift is 128, for 12
bits the shift is 2048. These signed numbers (-128 to +127 and -2048 to +2047) are
transformed into DCT coefficients using the FDCT algorithm in Equation 5-1, which may
include a loss of precision. In order to achieve (lossy) compression, the DCT coefficients
are then quantized using one of four tables. The two recommended tables are shown
below (Table 5-1 and Table 5-2), one for the luminance channel, and one for the different
chrominance components. Because the coefficients are rounded to the nearest integer
after division, the quantizing tables reflect the relative importance (visually) of the
frequencies for both luminance channels and chrominance channels. Using these tables

as a heuristic guide, different cutoff frequencies can be set for the respective channels.



TABLE 5-1.

JPEG LUMINANCE QUANTIZATION FACTORS
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16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
TABLE 5-2
JPEG CHROMINANCE QUANTIZATION FACTORS
17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 - 99 99 99 99 99
99 99 . 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99

The DCT coefficients for all channels are quantized (and later unquantized) using the

above tables and Equations 2-20 and 2-21,

, V)= d
F.(u,v)=roun (Q

F(u,v)

(u,v)

), and F, (u,v)=F (0,v)xQ(u,v)

(5-31)
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where Q(u,v) is a quantization value from a table, fq(u,v) is a quantized DCT coefficient,
and F,(u,v) is the recovered (unquantized) DCT coefficient.

When performing the inverse operation, the data is first unquantized, then the
shifted image values are generated using the IDCT in Equation 5-1, and the shifted values
are level shifted back to their unsigned representation. This ignores the entropy coding,
and other formatting opérations, since this does not affect the data used in this research.
Since the JPEG algorithm uses 8x8 DCT blocks, there is an obvious limitation on the
high frequencies one block cén represent. Each color component can also be sampled at
a different rate. In order to locate which coefficients represent which frequencies, the
respective contribution for each coefficient must be known. The coefficients are ordered
as shown in Table 2-1. The higher transform frequencies of the JPEG algorithm are
located in the lower right corner, and thus, are encountered last in the data stream. Using

the FDCT portion of Equation 5-1,

F(u,v)= %CUCV iiFs(x, y)coS(lll%(Zx + 1))cos(‘1’—’63(2y + 1)) (5-32)

x=0 y=0

and ignoring the input Fg(x,y) for the moment, the transform frequency coefficient
output, Fs(u,v), is the coefficient of a particular transform frequency set by the
coordinates (u,v). The frequency referenced by (u,v) is not the Fourier frequency, but
rather the cosine transform frequency. The difference is important when comparing these
results to the Fourier transform (or any other transform). The high cosine frequencies in
the lower right corner do not relate directly to the high frequencies in either the
continuous Fourier, or the discrete Fourier. In fact, the high frequencies in one transform

may include the low frequencies of another.
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To find the actual frequency corresponding to a particular coefficient, the original
sampling frequency must be known in order to relate the units. It is not necessary to |
assign units to the frequency term, all that is needed is a relative measure, using the value
of one as a normalized, unscaled case. Since the frequency is related to the number of
zero crossings for a particular transform (a generalization for the Fourier), the transform
frequency is related in the same manner to the row and column indices of the JPEG
algorithm. As the row (or column) indices increase, the number of zero crossings in that
dimension increase linearly. Thus the product of the indices, divided by the entire space,

is an accurate relative frequency term. Thus, the cutoff frequencies

U, =%us, and v,. ={I—vs | (5-33)

are relative to the original sampling frequency, ugand vg. The original sampling
frequencies, ug and v, are assumed to have a value of one for simplicity in this research.

The new cutoff frequency can also be calculated directly from , the scaling
factor. Since the cutoff frequency is one-half the sampling frequency, the new cutoff
frequency is the product of the scaling factor and the Nyquist frequency. Using Equation
5-29,

ucsgxl‘ii,andvcsgx%s. (5-34)

For example, if the original sampling frequency is one, the Nyquist frequency is one-half.
Is § = 1, there is no change needed, assuming the original was sufficiently sampled and
bandlimited. If £ < 1, the cutoff frequencies are reduced by that amount. Using a circular

filter centered on the DC coefficient with £=0.25, only three (0, 1, and 2) low frequency
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coefficients are non-zero in Table 2-3. Depending on the extent of aliasing allowable,
higher frequencies (4, 3, and 5) can still be included.

Thus, as in the Fourier case, Equation 5-21, the cosine domain ideal
reconstruction filter is a simple scaling constant defined over thé passband, and zero

elsewhere.

R(u,v)=K, forfu/<u,, and|v|Sv,

. (5-35)
R(u,v)=0, otherwise

Parametric Cubic Convolution

Using Equation 5-23, the spatial definition for the cubic kernel, and Equation 5-1,

the definition of the JPEG DCT, the corresponding cosine reconstruction filters are:

R(u,v)= %CUCV X
7 17

3 [ +2)x? +_y2)% —(a+3)(x* +y?)+1]x

x=0 y=0

cos(%(Zx + 1))cos(%(2y + 1))
for 0<x*+y* <1

(5-36)
R(u,v)= %CUCV X -
7 7

3 lax+y ) = 5a(x> +y%) +8a(x® +y°)! —4a]x

x=0 y=0

u v
— —(2
cos( T (2x+1))cos( T: ( y+1))
for 1< x*+y? <2

This is the cubic convolution reconstruction kernel used in the reconstruction of the JPEG

image data. Equation 5-36 does not include the scaling and resampling portion of the
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algorithm. This 8x8 array of DCT coefficients is used to multiply the image DCT

coefficients, resulting in a cubic filtered 8x8 array of image coefficients.

Sharpened Gaussian

Using Equation 5-25, the spatial definition of the sharpened gaussian
reconstruction function, and the definition of the JPEG DCT, the cosine domain

reconstruction function is defined as:

R(u,v)= %CuCv X
7

z i [C e OS0! _g e—os((x%‘fyzyl)/&2 G 05y Ix (5-37)

x=0 y=0

cos(%(zx + 1))cos(—?—;—(2y + 1))

The 8x8 DCT coefficient array produced from Equation 5-37 is used to filter the image

data with the sharpened gaussian kernel.

Error Analysis

Ideal reconstruction in the spatial domain requires an infinite-order interpolation
between the sample points. In the freqﬁency domain, ideal reconstruction can be
achieved if the image is bandlimited, sufficiently sampled, and a proper reconstruction
filter is used. For image reconstruction systems applied to existing images, the
continuous image has already been sampled at a predetermined increment. Often the
original sampling increment is unknown and all that is available are the actual image
samples. If the image is not sufficiently sampled for the limits of the passband, aliasing
will result, and contribﬁte to the total error. The amount of initial aliasing depends on the

image, the original sampling increment, and the cutoff frequency used. This initial
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aliasing is ignored in this research because the image is assumed to be correctly sampled
when it is digitized.

For purposes of error analysis, the ideal image is used as a basis to measure
against. The total error resulting from a non-ideal reconstruction filter is the difference
between the ideally reconstructed image and the non-ideally reconstructed image.
Relating the total error measured to the non-ideal filter, the total error measured has two
components. The non-ideal passband response, Ep, resulting in a modification of the low
and mid frequencies, and the non-ideal stopband response, Eg, resulting in aliasing or

excessive high frequency reduction. These two components are shown in Figure 5-8.

F(o)  ldeal
[~ 77 lperfect

{ I N
-Mg . 0 . Og ®
Stopband Error Passband Error

Figure 5-8. Components of the Total Error

The passband error affects frequencies less than the cutoff frequency, while the
stopband error affects frequencies greater than the new cutoff frequency.
Using energy as an error estimation value, the ‘energy of the ideally reconstructed

image, is

w0 © 2
energy= Y. D |[F(e;,0,) . (5-38)

®=~00 ) =—0

Since the ideal reconstruction filter stops at the Nyquist frequencies, the summation terms

in Equation 5-38 can be limited to those frequencies,
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energy = Z Z]Fl(a)l,a)z)l . (5-39)

The passband error, Ep,of the non-ideal reconstruction filter is also limited to the
new cutoff frequencies. The passband error can be written as the difference in the energy

of the ideal, Fy(w,,w,), and non-ideal, Fp(w;,0,), reconstructed image spectra,

18 @28 “‘IS @28
2 2

Z ZIF(‘DP‘DZ)I Z Z‘F (0,,0 2)| (5-40)

ml—_-_._.m —_m u__‘“lS v=—
The stopband error, Eg, is the energy in the non-ideally reconstructed image

spectra, Fp(w,,w,), above the cutoff frequency wg,

‘“’lS “"2
0

Z ZIF (0,0 2)1 Z ZIF (0,0 z)l (5-41)

W[=—00 W) g=—0 a)l:— m‘— 2

Both the passband error, E;, and the stopband error, Eg, are usually normalized by
dividing by the total energy in the ideally reconstructed image as defined in Equation 5-
39.

During ideal reconstruction only the passband aliasing is present. During non-
ideal reconstruction, both passband and stopband aliasing are present. One method of
reducing aliasing is to reduce the cutoff frequency below one-half the samplihg
frequency. However, as the cutoff frequency is reduce, more high frequency information
is lost. The tradeoff is to allow some aliasing, and retain more of the high frequencies, or
to eliminate the passband aliasing by reducing the cutoff frequency, and thus, more high

frequencies.
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The passband error is due both to passband aliasing (if present), and attenuation or
amplification due to the non-ideal gain of the reconstruction filter. When considering the
case of JPEG, there are other sources of error that should be included. JPEG is a lossy
compression scheme, due to round-off errors in both the forward and inverse DCT, and
quantization errors. Only the inverse DCT round-off error is part of the reconstruction
stage. The inverse quantization step does not introduce any new errors. The quantization
error is assumed to be entirely contained in the forward process. The error introduced in
the cosine terms is more difficult to determine for all implementations. In this research,
the cosine terms are computed with an accuracy of 19 digits. Because of this, the error
resulting from inaccurate calculations of the cosine terms is negligible.

Although not part of the reconstruction process, the forward cosine calculations
are also accurate enough not to be a factor. The calculation errors then can be assumed to
lie entirely in the forward quantization step. Recalling Equation 5-31, the forward

quantization of

F.(u,v)= round(—g((ui:yv—)l) | (5-42)

reduces the accuracy of the coefficient to two or three (in the higher frequency -
luminance case) decimal places. Considering the DC case which is quantized into 16
steps and has a range from -16384 to +16384, the step size is about 2048. Therefore the
maximum error will be half the step size, or 1024. Normalized, this is just over three
percent. This is a useful maximum error due to quantization using the default tables,
Table 5-1 and 5-2. Thése default tables were derived in this manner [JPEG Draft 92], and
if the values are divided by two, the results are designed to be indistinguishable from the

original source image.



CHAPTER 6
RESULTS

Background

The purpose of this research was to investigate the feasibility of using the discrete
cosine transform (DCT) image data directly while performing basic dperations on the
image. Of particular interest was interpolation and the subsequent reconstruction of the
scaled image using two of the proven interpolation filters, the cubic filter, and the
sharpened gaussian filter. In order to investigate the properties of these two filters, a
baseline image of the correct size was created with an ideal filter to measure errors
against.

In the spatial implementation of this research, the JPEG DCT coefficients
representing the image were uncompressed with the standard JPEG IDCT algorithm,
described in Chapter 2. This decompression results in the original spatial sampled image,
Fy(x,y). The traditional approach to reconstruction spatially convolves the original
spatial sampled image with a sampled reconstruction kernel, Rg(x,y), such as the cubic or
sharpened gaussian. The result is the reconstructed spatial image, Fg(r,s). The spatial
sampled reconstruction kefnel, Rq(x,y), is defined by Equation 4-10 for the cubic kernel,
or Equations 4-13 and 4-14 for the sharpened gaussian kernel.

This research introduces a new frequency implementation of the reconstruction
process, beginning with the JPEG compressed image. The frequency image is composed
of several 8x8 DCT coefficient blocks, termed F(u,v). Each coefficient block of the

image is multiplied with the reconstruction filter, R(u,v). This multiplication is the

69
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equivalent of convolution in the spatial domain, and performs either the cubic or
sharpened gaussian filtering. The cosine domain reconstruction filter R(u,v) is obtained
by first computing the spatial reconstruction filter, R(x,y), and second computing the
cosine reconstruction filter, R(u,v). The spatial cubic reconstruction filter is defined by
Equation 5-23, and the spatial sharpened gaussian reconstruction filter is defined by
Equation 5-25. Using the FDCT process in Equation 5-1, the cosine reconstruction filter,
R,v) is CompUted. The IDCT process in Equation 5-3 is used to scale and resample the

image.

Reconstruction

As indicated earlier, the JPEG DCT uses a value of 8 for the range or block size
N. The scaled block size is M = round(NZ), where ( is the scaling factor. Recalling
Equation 5-1, the JPEG draft gives the DCT definition as:

FDCT: F.(u,v)= %CuCV ﬁjﬁj}?s(x, y)cos(%g—(2x + 1))cos(11’-’63(2y + 1))

x=0 y=0

IDCT: E(x,y)= %iﬁ:cucv ﬂ(u,v)cos(—;l—g—Qx + 1))cos(31’%(2y + 1)) (6-1)

u=0 v=0

where C,C, = L foruorv=0; C,C, =1 otherwise.

V2

The image space (X,y) is replaced with the reconstruction space (r,s), giving a slightly

more general definition of the DCT process, defined in Equation 6-2.
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FDCT: F.(u, v)_lcuchZF (x, y)cos(m (2x+1))cos(16 (2y+1))

x=0 y=0

IDCT: E(r, s)—_— ZZC _‘F(u v)cos( (2r+l))cos(l6 (25+1)) (6-2)

u=0 v=0

where C,,C, = T foruorv=0; C,C,6 =1 otherwise.

Equation 6-2 is used as the starting point for the new DCT process developed in

this research, before the scaling and filtering operations are added.

Idea] Reconstruction

The ideal reconstruction filter fbr the IDCT process was developed to provide a
baseline image to measure errors against, and to help establish the cutoff frequencies
needed during reconstruction. Scaling is accomplished by adjusting the frequency axis in
the opposite direction as the spatial axié with the scaling factor €. This is defined in

Equations 5-3 and 6-3, where Fq(t,s) is the reconstructed image.

F(1,8) = 7 ZZC JFs(u, v)cos( §(2r+1))cos[1 C(2s+l)) (6-3)

u=0 v=0

Cosine Domain Reconstruction

The two spatial reconstruction filters, cubic and sharpened gaussian are applied to
the JPEG DCT data in the following manner. First, the circular spatial filter, R(x,y), is
calculated, then the FDCT is applied to the filter, resulting in the cosine domain version
R(u,v). R(u,v) is multiplied with each JPEG DCT coefficient block, and the scaled-
IDCT process is used to reconstruct the sampled image, Fg(r,s).

The cosine domain filter is defined as
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R(u,v)=~ ZZR(X y)cos[ 2x+1))cos(16 (2y+1)) (6-4)

x=0 y—

where R(x,y) is the spatial filter, either the cubic, or the sharpened gaussian. The spatial

version of the reconstructed and scaled image, Fy(r,s), is

Fi(1,8) = ——ZZC Jr(u, v)cos( C(2r+1))c0s(%(25+1)) (6-5)

u=0 y=0

where Fr(u,v), the reconstructed DCT coefficient block, is defined as

Tz (u,v) = Fs(u,v)R(u,v). (6-6)

Fs(u,v) is the FDCT of the original sampled image given by Equation 6-2.

Parametric Cubic Convolution

The cubic interpolation filter is developed in Chapter 4 and Chapter 5. The spatial
version of the cubic reconstruction filter, R(x,y), is defined in Equation 5-23. Using
Equation 5-23 and Equation 6-4, R(u,v) can be calculated. This cosine frequency cubic
filter, ’R(u,v), in Equation 6-4 is shown in Figure 6-1.



R(u,v)

Figure 6-1b. Top view of the DCT Cubic Filter

From Figure 6-1, it is easy to see that the cubic filter, R(u,v), attenuates the higher
frequencies of a JPEG DCT block as expected, and thus can be described as a low pass

filter.
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Sharpened Gaussian

The spatial version of the sharpened gaussian function, R(x,y), is developed in
Chapter 4. Chapter 5 includes development of the frequency version of this filter.

Equation 5-25 gives the definition of R(x,y).

R(u,v)

Figure 6-2b. Top view of the DCT Sharpened Gaussian Filter
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Using Equation 5-25 with Equation 6-4, the cosine frequency version, R(u,v), of
the sharpened gaussian filter can be calculated. The sharpened gaussian filter R(u,v), is
shown in Figure 6-2. As in the case of the cubic function, the sharpened gaussian filter is
a one pass filter, based on the radiai distance from the interpolated point. The sharpened
gaussian is slightly different than the cubic filter shown in Figure 6-1, but is also

essentially a low-to-mid pass filter.

Implementation Differences

In this section, the differences between the spatial implementation and the cosine
domain implementation are examined. In the figures below, a simple image represented
by a pulse function (Figure 6-3) is filtered and reconstructed with a scaling factor of one.
The cubic and the sharpened gaussién functions in both the DCT domain and in the
spatial domain are applied and the percent error is evaluated. The spatial version of the
cubic function has no errors, since that is how the cubic function is defined for a scaling

value of one.
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Figure 6-3.
The Pulse Function as the Original Image

Figure 6-4 shows the pulse function after reconstruction (£=1) with the new DCT-
based method. Notice that the pixel value of the reconstructed pulse function extends past
the original value (255). If this reconstruction process were part of an imaging
application, the pixel value would be subjected to clipping or normalization. In either
case, the resulting percent error would not be as severe. In the test images processed in
this research, the clipping method produced a ﬁore visually pleasing image, because of
the sharpening effect of the spurious noise, and the overall brightening of the image. Test
images processed with normalization reduced both the percent error at the pulse location,
and the spurious noise introduced by reconstruction, as well as reducing the apparent
brightness of the image.

The pulse function reconstructed with the traditional spatial method did not have
any measurable errors. The cubic spatial function exactly reconstructs the original data
when the scaling factor is one, because the new interpolated points coincide with the

original sample points.
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In Figure 6-5a, the reconstructed pulse function is shown, this time after

processing with the DCT-based sharpened gaussian function. When compared to Figure
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6-4a, the sharpened gaussian function obviously introduces more distortion. However,
the purpose of the sharpened gaussian function is to produce a pleasing visual result, not
to produce a numerically correct result. Figure 6-5b shows the percent error for the
reconstructed pulse, before clipping or normalization. The maximum percent error, near
100 percent, is reduced after limiting the range of the pixel value. As in the case of the
cubic function, clipping the values produced a visually pleasing image with the Lena and
mandrill test images. However, the images that were processed with normalization after
the sharpened gaussian function were subjectively better than the normalized images
reconstructed with the cubic function. By clipping the values in the sharpened gaussian
image, the spurious noise is not sufficiently reduced, and begins to interfere with the
image.

Figure 6-6a shows the pulse function after sharpened gaussian reconstruction in
the spatial domain using the traditional approach. The pulse value in F igure 6-6a has a
greater percent error than the pulse value in the DCT case, but the noise introduced is
reduced to the sharpening range of the function. Subjectively, there was little apparent
difference in the quality of the two sharpened images. These subjective evaluations
should only be used a heuristic guide for later research, there was no attempt to employ

outside observers, and the evaluation was not done under ideal conditions.
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Figure 6-5a. The Pulse Function
after DCT Sharpened Gaussian Filtering
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Figure 6-5b. Pulse Function Percent

Error for DCT Sharpened Gaussian Filtering
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Figure 6-6a. The Pulse Function
after Spatial Sharpened Gaussian Filtering
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As mentioned previously, both reconstruction filters can be described as low-mid
pass filters that attenuate the high frequencies. It is useful to explore how this attenuation
results in errors. The effect of this truncation, and the overall high frequency attenuation
can be seen in the next set of figures where £=1. These figures also serve to help explore
the high frequency truncatioﬁ introduced by minification. During minification, £<1, the
cutoff frequency is reduced to avoid aliasing problems.

Figure 6-7a shows the DCT transform coefficients produced by the pulse depicted
in Figure 6-3. After the 8x8 block of DCT coefficients are calculated, the high
frequencies are set to zero, simulating the low-pass filter, and the reduced cutoff
frequency used during minification. The radial distance is used in these figures as the
cutoff frequency. The second figure, Figure 6-7b, shows the resulting percent error,
measured against the original pulse in Figure 6-3. Figure 6-7b clearly shows the ringing
in the spatial domain as a result of truncating in the frequency domain. For this first
cutoff frequency, the resulting maximum error is approximately one percent, which is
below the JPEG three percent threshold before errors are considered noticeable.

Figures 6-8 through 6-11 follow the same description. The cutoff frequency is
reduced by steps to a radial distance of 1, in Figure 6-11. As the cutoff frequency is
reduced in the remaining figures, the maximum erfor’grows quickly, and is centered at
the original pﬁlse location. The rest of the block shows an increasing percent error, but it
is relatively small compared to the maximum. Since the 'high frequencies in the pulse test
image are located at the origin, that is the locafion of the resulting errors as the high
frequencies are truncated. This is to be expected s‘inceb by truncating the high frequencies,
the resulting filter smoothes the data over the entire block. By truncating the high
frequencies during minification, the resulting image is smoothed in this manner. Thus the
effect of the sharpening filters is reduced during minification, and may not be worth the
computation. The minification-sharpening tradeoff is not pursued in this research, but

would prove interesting for future study.
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Rectangular and Circular Filters

During reconstruction, a convolution is performed with the reconstruction kernel
(filter) and the image data. The traditional spatial method performs this convolution in
the spafial domain with a rectangular kernel. In the new method, the convolution is
performed as a multiplication in the DCT domain with a circular filter. This difference
may seem to be trivial, but on closer examination these two similar cases turn into two
different filters. In Figure 6-12, the two cases are shown in the spatial domain. First, the
rectangular case receives a positive (smoothing) weight from the inner rectangle, and a
negative (sharpening) weight from the area between the two rectangles. Outside the outer
rectangle, the weights are zero. Likewise, the circular filter receives a positive smoothing
weight inside the inner circle, and a negative sharpening weight between the two circles.

As Figure 6-12 shows, the rectangular filter is influenced by 16 points, while the
circular is influenced by at most 12 points. Because of this, the rectangular cubic filter
will be more of a sharpening filter and less of a smoothing filter when compared to its
circular counterpart. However, before that can be assumed for all cases, the actual
weighting of each point must be considered. Note that if the radial distance for the
circular filter is increased slightly, the four corner points left out previously will be
included, and the circular bﬁlter will be influenced by all 16 samples, although at a

different weighting than the rectangular case.



88

O O O O O O

_ - - Rectangular
- 4

Circular

O
O
Original Sampled
Points
O . o O
New Interpolated
Point
O O
O O O O O O

Figure 6-12. Rectangular and Circular Filters

Results

Speed Comparisons

In Figure 6-13, the two different methods of reconstruction are shown. The
traditional method is shown in Figure 6-13a, and the new reconstruction process
developed in this research is shown in Figure 6-13b. The primary difference between the
two methods is when the reconstruction activity is performed relative to the IDCT
operation. If the reconstruction is done after the inverse discrete cosine transform (IDCT)
is computed, the spatial image is processed using the traditional method. If the
reconstruction is done before the IDCT, the DCT coefficients are processed by the new

method.
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N Reconstructed
DCT Coefficients p o Image Data Traditional
IDCT Reconstruction method (a)
' N Reconstructed
DCT Coefficients b b0 Image Data New
Reconstruction IDCT method (b)

Figure 6-13. Reconstruction Methods: a) Traditional Method;
: b) New Method

Consider the algorithms in the two IDCT blocks (al and b2) in Figure 6-13. If the
IDCT algorithms are the same and equally optimized, the speed of these blocks is directly
related to the amount of data processed. For a standard JPEG algorithm, this means that
for every new pixel produced, the algorithm processes the entire scaled DCT block once.
In block al of the figure, the input block size is 8x8 and the output is 8x8. Thus 64
passes over 64 DCT coefficients, or 4096 operations are required. In block b2, the
reconstruction has been completed and the input block size is 8x8, but the output block
size is 8Cx8C. For block b2, this means 64§2 passes over the 8x8 DCT coefficients, or
4096¢2 operations. This gives a sense of the difference in the amount of computation
required for the IDCT blocks in the two methods. All things being equal, if it takes 1
time unit to perform the IDCT operation in block al, it will take &2 units to perform it in
the new IDCT block b2, ignoring the M = N{ round off.
The two reconstruction blocks in Figure 6-13 are labeled a2 and bl. The
traditional method, a2, takes an 8x8 block of image pixels, and processes to an 8£x8C
‘block of image pixels. The new reconstruction block, b1, takes an 8x8 block of DCT
coefficients, and processes it to an 8x8 block of DCT coefficients. If we stop here, we

can say that if the scaling factor is less than one (minification), the IDCT process is
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improved by a factor of 2 (from the IDCT operation). If the scaling factor is greater
than one (magnification), the same factor of a power of 2 slows down the new IDCT
process. In the reconstruction blocks, if the scaling is less than one, the speed of the
traditional method is improved by &2, while if the scaling is greater than one, the power
of 2 slows down the speed of the traditional method.

However, before reaching any final conclusions, the two reconétruction blocks
should be examined in more detail. In the traditional spatial case, a2, in order to generate
one new pixel, the cubic convolution function must be evaluated five times (four times
horizontal, and once vertical) with four points on each curve. To compute the cubic
function, there are 5 multiplies and 4 adds in the center, where the inner two points are
evaluated. There are 9 multiplies and 3 adds in the outer function, where the sharpening
occurs. This equals 28 multiplies, and 14 adds per intermediate point generated. Since
there are 5 intermediate points per new pixel, this gives 20 intermediate points generated
for each pixel, for a total of 560 multiplies and 280 adds per new pixel generated.

In the frequency reconstruction'case, b1, if the image is sufficiently large, the
effect of computing the filter can be ignored, since it is done only once, before processing
begins. The reconstruction is a multiply of each 8x8 DCT block. Each coefficient (and
thus each new pixel) is one multiply, with no adds, compared to 560 multiplies and 280
adds in the traditional method. This is a dramatic difference, but should be considered a
best guess only, since the actual implementation can vary these results. Several
optimized algorithms [Duhamel 90][Chen 77][Lee 84][Narasinha 78][Suehiro
86][Vetterli 84] exist for IDCT evaluation as well as cubic function evaluation. Table 6-1
presents the average times to perform the reconstruction of the Lena image, using the
cubic filter and the sharpened gaussian filter. Times for both the traditional spatial
method, and the new cosine method are given. All of the times in Table 6-1 include
reading the compressed image off the local disk, decompression, reconstruction, and

writing the final image back to the local disk. The traditional method includes the time to



91

decompress the original JPEG image using a non-optimized IDCT algorithm. The JPEG

IDCT definition is given in Equation 6-1.

TABLE 6-1

RECONSTRUCTION TIMES

Reconstruction Time (seconds)?

£=0.50 £=0.75 ¢=1.00 =125 £=1.50
Spatial Cubic? 41 84 301 707 1205
Spatial Cubic 976 1019 1236 1642 2140
Spatial Sharpened Gaussian® 292 706 1156 1967 2823
Spatial Sharpened Gaussian 1227 1641 - 2091 2902 3758
Cosine Cubic 237 516 944 1447 2090
Cosine Sharpened Gaussian 237 517 945 1449 2095

9For the Lena image (512x512), on a 80486 33MHz computer.
Reconstruction time not including the IDCT process.

If an optimized IDCT is used, the reconstruction times for the spatial algorithms would be

less. However, the spatial reconstruction time, not including the IDCT process, would be

the same. For scaling values less than one, the new method is significantly faster. This is

due to the reduced number of IDCT operations needed. For scaling values greater than

one, the difference is not as large and diminishes, because the time to evaluate the

expanded IDCT grows faster than the time to evaluate the spatial reconstruction curves.

Error Analysis

The method used for determining the error was to compute both the ideal and the

reconstructed version of the test image at a given scale factor. Then a pixel-by-pixel

comparison was performed, with the error being measured as a percentage of the total
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pixel range. Both the spatial and the frequency interpolated images were rounded in the
same manner, and both were subjected to clipping at 255, with negative values set to
zero. The method used earlier in Figures 6-7b through 6-11b measures the response of
the algorithms to a known mathematical function, a pulse at location zero. That method
compares the results of the two filters without subjecting them to any clipping.

The individual component pixel percent error is:

2
P, —P
erTor = ‘\/[ Ideal Interpolated] ' 7 ( 6-7)
255 ,

This was computed for each pixel and each color component (red, green, blue),
and averaged to find the final interpolation percent error. In the case of posiﬁonal errors,
this was averaged over each block of the entire image, then plotted based on pixel
position in the scaled block. The percent error was also computed for the DC image for
comparison. The DC version was computed by only using the first coefficient (the DC
coefficient) during the block reconstruction. This DC coefficient is the average of the
8x8 block.

Figure 6-14 shows the percent error averaged over the entire Lena image. The
actual numbers given for percent error are somewhat misleading. The numbers indicate
an error of about 3.5 percent for the DC coefficient image. According to the JPEG
specification, 3 percént is regarded as the minimum difference the human eye can detect.
However, the image reconstructed with just the DC coefficient is very noticeably
distorted. Likewise, the other two images have noticeable imperfections. These

numbers do give an idea of the relative distortion between the two different methods. As



expected, the cubic filter outperforms the sharpened gaussian filter when comparing

average numerical errors.
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Figure 6-14. Total Error versus Scaling Factor for the Lena Image

Figure 6-15 shows the same error measures computed for the mandrill image. The
mandrill image has more high frequencies than the Lena image. As expected, the DC

mandrill image has a larger average error than the DC version of Lena.
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Figure 6-15. Total Error versus Scaling Factor for the Mandrill Image

In both cases (cosine cubic and cosine sharpened gaussian), the major
objectionable visual distortion is the loss of high frequency information. Both of the
reconstruction filters serve as low-to-mid pass filters because they smooth the data. This
smoothing is related to the power of the interpolation function. For example, the cubic
| function can match a quadratic curve, but smoothes the higher frequencies. The high
frequencies corresponding to those abrupt changes are lost.

This gives a good indication of where the visual artifacts can be expected.
Numerically, even the highest distortion within a block is not bad (usually about 3
percent -- or in the just-noticeably-different range). If the entire block had a uniform
error distribution, the images would be much better visually, even at the higher percent
error. However, since each block has this error pattern, with the high frequencies having
a higher than average distortion, the blocking is noticeable when viewing areas
containing strong sharp lines that curve through several blocks, as in parts of the Lena

image. Figure 6-16 shows the Lena image (£=1) after reconstruction in the cosine
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domain using the cubic filter. The blocking artifacts are particularly noticeable along the
mirror edge, and the shoulder edge. Figure 6-17 shows the mandrill image ({=1) after
cubic cosine reconstruction. No blocking artifacts are visible because there are no high

frequency edges that span several blocks.

Figure 6-16. The Cosine Cubic Lena



Figure 6-17. The Cosine Cubic Mandrill
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Figure 6-18 shows the Lena image (=1) after cosine domain reconstruction using the
sharpened gaussian filter. Although the same blocking artifacts are present, the high
frequencies are slightly enhanced compared to the cubic version. Both the cubic and
sharpened gaussian versions are enhanced compared to the original, Figure 3-2. Again,
the blocking artifacts are a result of working with the JPEG 8x8 DCT block, not a result

of performing the reconstruction in the DCT domain.

Figure 6-18. The Cosine Sharpened Gaussian Lena
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Figure 6-19 shows the mandrill image (£=1) after cosine domain reconstruction, using the
sharpened gaussian filter. As with Figure 6-17, there are no blocking artifacts visible,
and like Figure 6-18, the high frequencies are enhanced compared to the cubic version in

Figure 6-17. The original mandrill image is shown in Figure 3-3.

Figure 6-19. The Cosine Sharpened Gaussian Mandrill
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Figure 6-20 shows a difference image for the Lena image ({=1). Figure 6-20 was
generated by taking the difference between the ideal image and the cubic cosine image.
Because the differences were too small to be visible, each pixel value was multiplied by
10. For reproduction purposes, the image was reversed, so the darker the pixel, the
greater the error. The high frequency blocking artifacts are clearly visible in Figure 6-20.

The low frequency background does not show the artifacts, which is as expected.

Figure 6-20. The Difference Image for Cosine Cubic Lena

The parts of the Lena image that do not contain strong inter-block edges, like the
background, do not exhibit any noticeable blocking. The blocking was not noticeable in
any region of the mandrill image, because the image is busy, and does not contain high

frequency edges that span several blocks.



CHAPTER 7
SUMMARY
Problem

As the availability of higher-quality images increases, the need for mass storage
of these images also incréases. One method of increasing the capacity of mass storage
devices is to compress the images before storage. The Joint Photographic Experts Group
(JPEG) has proposed a method of compressing natural scene image data. The JPEG
algorithm is based on a discrete cosine transform (DCT) that moves the spatial image data
into the cosine frequency domain. The DCT coefficients can be quantized and
compressed without adyersely affecting the original image data.

However, the time needed to decompress the image back to a displayable format
can be substantial. Once the image is decompressed, the image data frequently needs to
be scaled to fit a particular display device or resolution. This last scaling step can be
extremely time consuming if the reconstruction uses a high quality cubic, or gaussian
curve to interpolate the data in two dimensions. This scaling delay can be a significant

prohibiting factor in the use of high quality imaging systems.

Proposal Review

Traditional image reconstruction involves beginning with a digitized image,

interpolating between the original image samples to recreate the continuous image signal,

100
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scaling that continuous signal to the correct size, then resampling the scaled continuous
image to create a new digitized image.

This research developed a method for performing the interpolation and scaling
operations in the frequency domain, rather than the spatial domain. This idea fits nicely
with the JPEG image compression algorithm, because the JPEG algorithm uses the
discrete cosine frequency transform to compress the image. The goal of the research was
first to determine if it was feasible, and second, if feasible_, to determine what benefits this
approach could offer.

If the scaling step can be done in the frequency domain as a multiplication, rather
than in the spatial domain as a convolution, the resulting algorithm will be much faster.
The new cosine domain-based reconstruction algorithm required three related operations.

They are:

o filtering, which reconstructs the continuous image from the sampled image,
e scaling, which scales the continuous function to the new dimensions, and

o resampling, which samples the continuous function at the new locations.

The first phase of the research covered the spatial implementations of the cubic,
and the sharpened gaussian reconstruction functions. These two spatial functions are well
documented in previous research literature, and were chosen because of their wide
acceptance as high quality image interpolation functions.

The second phase covered the frequency investigations. The frequency research
starts in the Fourier domain, then extends the results to the discrete cosine domain. The
purpose of the Fourier work was to provide a basis of understanding and comparison,
since little research of this nature is available in the cosine domain. The frequency phase
research produced two individual algorithms (cubic and sharpened gaussian) which were

implemented and documented in the discrete cosine domain.
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The third phase was the application of these algorithms to the JPEG data stream.
There are some restrictions imposed on the algorithms by the JPEG standard, and this

phase investigated the consequences of these restrictions.

Conclusions

This research has shown thaf performing the interpolation and scaling in the
cosine domain is completely feasible. This method of reconstruction requires both the
image and the reconstruction filter be implemented in the discrete cosine domain.
Therefore, this method is particularly attractive for use with images compressed with the
JPEG DCT algorithm. Otherwise, the computational cost of transforming the entire
image to the cosine domain will likely be greater than the computational beneﬁfs
produced by this method.

“ The new reconstruction method uses a precalculated filter, and the time to
calculate the filter can be ignored if the image is of large enough size. While the speed-
up of the new method is potentially large, the data observed in this research assumes the
IDCT operation is a non-optimized version. If an optimized version of the IDCT were

‘used in the traditional method, the observed speed-up would be smaller.

Using either method, a mégniﬁed image (&>1) takes more time to produce and a
minified image (£<1) takes less time to produce. The computational time in both the
traditional method and the new method are affected by the scaling factor, but not to the
same degree. In the new method, the IDCT operation is slowed by §2, while in the
traditional method, the reconstruction operation is slowed by the same factor of §2. Since
the time to calculate the IDCT in the new method is less than the time to calculate the
reconstruction curves in the traditional method, the new method is not influenced by the

scaling factor to the same degree as the traditional method.
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Depending on the image, there are visible artifacts that result from working in the
JPEG DCT space. Since the DCT reconstruction filters are low-mid pass filters, the high
frequencies are‘ attenuated, as they are in the traditional method. However, the difference
is that in the spatial domain, the entire image is processed. In the JPEG DCT domain,
only an 8x8 block is processed at any one time. The result is that if the image has strong
sharp lines (high frequencies) that span several blocks, as in the Lena image, the |
distortion introduced by high frequency loss (per block) may be noticeable. The
distortion is also present in the spatially reconstructed image, and it can be numerically
larger, however, the distortion is not patterned in blocks and is usually not apparent to the
eye. This is the only case found where the cosine reconstructed images were visually
different from the spatially reconstructed images. This type of distortion is a result of the
8x8 block imposed by the JPEG algorithm, and is not a result of operating in the
frequency domain. Also, this distortion is image dependent. It is not apparent in the
mandrill image, for example. Thus it is unlikely that the images produced by the new
method and the traditional method will be distinguishable. Except in special cases (£=1),
the new method resulted in numerically lower percent errors than the traditional method.

Unlike the traditional spatial case, the errors do not increase with the scaling
factor. For both cosine filters, the percent errors for the new method varied less than one
percent ovér a wide range of scaling factors. In the traditional method, the percent error
increased with the scaling factor, and also exhibited significant fluctuations. Also in the
traditional method, computational speed can be improved if the reconstruction curves are
simpler (nearest neighbor, etc.). In the new method, the time to calculate the
reconstruction filter is negligible compared to the rest of the process, so there is no
computational benefit in using a simpler filter.

As expected, both methods introduced errors in the reconstructed image.
Depending on the application and the image, the distortions (the loss of high frequencies)

introduced may or may not be objectionable. For an average natural scene image, the
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distortions are not objectionable. It is possible to perform an ideal reconstruction directly
in the cosine domain, and bypass the reconstruction filter altogether. This special case of
the new method has several advantages over the traditional method, and can offer
improvements to the cosine reconstruction method. The speed of computation is
improved because no cosine reconstruction filter is needed, and the resulting image has
about 5 percent less error. However, the image may be prone to aliasing errors if the high
frequencies are niot removed in some manner.

As expected with the new method, pixelization was reduced, giving a better image
when compared to nearest neighbor or other lower-order interpolation methods. Aliasing
was not apparent (although it was not altogether eliminated) when viewing the images
during minification, since the higher frequencies were reduced in this process.

Finally, the total percent error rates were much better than expected, usually
within 3 percent (or less). The DCT based JPEG algorithm is lossy, and usually lies in
this region of distortion (within 3 percent), although the quality is adjustable at the

expense of the compression ratio.

Future Work

There are four areas of suggested future work; speed improvements to the current
process, reducing reconstruction errors in the current process, evaluating reconstruction
results, and improvements to the entire process.

The scaling and resampling portions of the new reconstruction method would be
very useful for all imaging applications, except for the present requirement of using a
non-optimized IDCT process. If the scaling and resampling capability case could be
applied to one of the optimized IDCT algorithms, it would be possible to improve the
speed of the entire process. This process could lead to fewer errors if applied to the

subsampled components in a JPEG image.
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Future study in the error reduction area should make use of a panel of viewers and
evaluation should be carried out under controlled viewing conditions. Potential subjects
for error reduction include clipping versus normalization tradeoffs, rectangular versus
circular ﬁlters (or other possible filter shapes), and methods of interblock sampling when
the sampling increment is larger than the block size.

Possible improvements to the process include cutoff frequency determination
based on the frequency content of an individual block. Also, methods of varying
individual block sizes during reconstruction would allow any size image to be

reconstructed.
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