
OUTER MEMBRANE PROTEINS OF 

PASTEURELLA HAEMOLYTICA 

By 

REBECCA JANE BURDETTE MORTON 

Bachelor of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1970 

Doctor of Veterinary Medicine 
Oklahoma State University 

Stillwater, Oklahoma 
1972 

Master of Science 
Oklahoma State University 

Stillwater, Oklahoma 
1975 

Submitted to the Faculty of the 
Graduate College of the 

Oklahoma State University 
in partial fulfillment of 

the requirements for 
the Degree of 

DOCTOR OF PHILOSOPHY 
December, 1993 



C O P Y R I G H T 

by 

Rebecca Jane Burdette Morton 

December, 1993 



OUTER MEMBRANE PROTEINS OF 

PASTEURELLA HAEMOLYTICA 

Thesis Approved: 

7 6·~~ + (,,\'1"'-~. 

f 

ii 



ACKNOWLEDGEMENTS 

I wish to express my sincere appreciation to my major 

advisor, Dr. Robert Fulton, for his steadfast support, his 

faith in my abilities, his advice, and the fact that he was 

able to keep me on track throughout this project. I wish to 

thank Dr. Tony Confer who was my research advisor and under 

whose guidance and in whose laboratories I have learned so 

much. My sincere appreciation to Dr. Confer for his 

willingness to help me throughout this project, his advice 

on all aspects of my research, and his tempered response to 

my tedious progress. I wish to thank Dr. Sidney Ewing for 

his advice especially regarding the writing of my thesis. I 

will always be grateful to Dr. Ewing as a role model of 

academic excellence in this college and for helping me to 

visualize the "big picture" as well as the microscopic. I am 

especially grateful to Dr. Glynn Frank at the National 

Animal Disease Center in Ames, Iowa, for serving on my 

committee. Dr. Frank's willingness to share his knowledge 

and expertise are truly appreciated and his help on my 

thesis was invaluable. I am grateful to Dr. John Homer for 

serving on my committee and his willingness to remain on the 

committee after retirement from the University. I will 

always be grateful to Dr. Homer for the wonderful learning 

iii 



experiences in his graduate immunology courses. 

I wish to express my sincere appreciation to Dr. Roger 

Panciera who was the "challenger" in the cattle experiment 

and who has challenged me in a positive way throughout my 

career. I also wish to thank Janet Durham Gaskin and Rene' 

Simons for their patience and willingness to teach, or 

attempt to teach, me all the laboratory techniques needed 

for this research. I also wish to thank Dr. Jean d'Offay 

who was willing at the last minute to substitute for Dr. 

Glynn Frank who was unable to be here for my thesis defense. 

I thank Kathy Phillips and Judy Gibson for their help 

and guidance in printing and finalizing my thesis. I thank 

Cheryl Holesko for constructing the majority of tables in 

the thesis. 

I wish to thank Dr. Joseph Mccann, Michele Mitchell, 

and Sylvia Loo in Physiological Sciences for allowing me to 

use their facilites and for their help with the iodine

labeling experiment. 

There are so many people that have helped me throughout 

this program that I may not remember everyone, but I am 

appreciative of the willingness of all to help. Students 

and staff who helped with a variety of things including 

making outer membrane proteins, doing serology tests, 

washing glassware, and making media are Mark Davis, Holly 

Earnest, Marie Payne, Raymond Zinn, Chris Swearingen, Karen 

Melcher, and Nelda Sanders. And I thank those that helped 

iv 



with the cattle: Tommy Thompson, Rex Mott, Bobby Mccraw, 

and Phillip d'Offay. 

Finally I wish to thank those who in no small way have 

contributed to the attainment of this degree. I would like 

to thank my parents, Kathryn and Lawrence Burdette, who have 

always had the utmost faith in my abilities. And lastly, 

but most gratefully, I acknowledge the help, support, and 

love of my husband, Wendell, and my daughter, Kerry, which 

made all of this possible and worthwhile. 

V 



Chapter 

I. 

TABLE OF CONTENTS 

Page 

INTRODUCTION ................................... 1 

Literature Review ......................... 1 
Bovine Pneumonic Pasteurellosis ...... 1 
Serovars of Pasteurella haemolytica .. 4 
Virulence Factors of Pasteurella 

haemolytica ....................... 5 
Outer Membrane Proteins .............. 9 
Immunity to Pasteurella haemolytica .13 

Research Objectives ...................... 16 

II. COMPARISON OF THE MAJOR OUTER MEMBRANE 
PROTEINS OF PASTEURELLA HAEMOLYTICA 
SEROVARS 1 - 15 ............................... 18 

Abstract ...... ~ ..... ~ . ; ................... 18 
Introduction ............................. 19 
Materials and Methods .................... 20 

Bacterial Cultures .................. 20 
Total Membrane preparations ......... 21 
Sucrose Gradient 

Ultracentrifugation .............. 21 
Sarkosyl Insoluble Outer Membrane 

Preparations ..................... 22 
Radioiodination of Surface Membrane 

Proteins .......................... 2 3 
SDS-PAGE ............................ 25 
Protein Assays ...................... 25 
Densitometry ........................ 25 

Results .................................. 25 
Comparison of OMP Preparation 

Methods .......................... 2 6 
Comparison of Serovar OMPs .......... 27 
Radioiodination of Surface Membrane 

Proteins .......................... 27 
Discussion ............................... 32 

III. VACCINATION OF CATTLE WITH OUTER MEMBRANE 
PROTEIN-ENRICHED FRACTIONS OF PASTEURELLA 
HAEMOLYTICA AND RESISTANCE AGAINST 
EXPERIMENTAL CHALLENGE ........................ 38 

vi 



Abstract ........................................... 3 8 
Introduction ....................................... 38 
Materials and Methods .............................. 41 

Bacterial Cultures ............................ 41 
Outer Membrane Protein-

Enriched Preparations .................... 41 
Vaccine Preparation ........................... 43 
Serologic Evaluation .......................... 44 
Calves ........................................ 45 
Experimental Design ........................... 45 
Statistical Analysis .......................... 46 

Results ............................................ 46 
Discussion ......................................... 48 

IV. OUTER MEMBRANE PROTEIN ANTIGENS OF 
PASTEURELLA HAEMOLYTICA ASSOCIATED 
WITH RESISTANCE TO PNEUMONIC 
PASTEURELLOSIS ................................ 5 7 

Abstract ................................. 5 7 
Introduction ............................. 58 
Materials and Methods .................... 59 

Bacterial Cultures .................. 59 
Outer Membrane Protein-Enriched 

Fractions ...................... 59 
Serum Samples and Lesion Scores ..... 61 
Immunoblots ......................... 62 
Densitometry ........................ 63 
Statistical Analysis ................ 63 

Results .................................. 64 
Outer Membrane Protein-Enriched 

Vaccinated Calves ............... 64 
Bacterin with Adjuvant-

Vaccinated Calves .............. 65 
Discussion ............................... 66 

BIBLIOGRAPHY ............................................ 7 5 

APPENDICES .............................................. 86 

APPENDIX A.l - CPM and protein concentration 
of autoradiograph samples ........... 87 

APPENDIX A.2 - Mean peak area ..................... 88 

APPENDIX B.l - Calf FIAX titers .................... 89 

APPENDIX B.2 - Calf ELISA values ................... 90 

vii 



APPENDIX B.3 - Calf leukotoxin-neutralization 
titers .............................. 91 

APPENDIX B.4 - Calf lesion scores ................. 92 

APPENDIX C.l - Mean peak areas by vaccine group .... 93 

viii 



Table 

LIST OF TABLES 

Page 

Chapter III 

I. Mean antibody response of calves to 
whole cell antigens as measured by 
quantitative fluorometric assay (FIAX) ........ 50 

II. Mean antibody response of calves to 
carbohydrate-protein antigen as measured 
by ELISA ...................................... 51 

III. Mean antibody response of calves to 
leukotoxin as measured by visual 
leukotoxin-neutralization assay ............... 52 

IV. Mean lesion scores and antibody responses 
of calves at Day O and Day 21 ................. 53 

Chapter IV 

I. Correlation of band area and lesion 
scores of SKI vaccinated calves ............... 68 

II. Mean lesion scores for SKI-vaccinated 
calves with and without antibodies ............ 69 

III. Correlation of band area and lesion 
scores of bacterin-vaccinated calves .......... 70 

IV. Mean lesion scores for bacterin-vaccinated 
calves with and without antibodies ............ 72 

ix 



LIST OF FIGURES 

Figure Page 

Chapter II 

1. Sucrose gradient centrifugation of 
cell membranes of Pasteurella 
haemolytica Al prepared by 
sonication or passage through a 
French pressure cell ..................... 28 

2. SDS-PAGE of outer membrane preparations 
prepared by sonication (S) or French 
pressure cell (F) disruption followed by 
separation using Sarkosyl extraction (SK) 
or sucrose gradient centrifugation ....... 29 

3a. Densitometric analyses of SDS-PAGE gels of 
OMPs of Pasteurella haemolytica Al 
obtained by Sarkosyl extraction (SKI) or 
sucrose gradient centrifugation. Cells 
were disrupted by passage through a 
French pressure cell ..................... 30 

3b. Densitometric analyses of SDS-PAGE gels 
of OMPs of Pasteurella haemolytica Al 
obtained by Sarkosyl extraction (SKI) or 
sucrose gradient centrifugation. Cells 
were disrupted by sonication ............. 31 

4a. Outer membrane profiles of Pasteurella 
haemolytica serovars 1 through 15 
demonstrating major bands ................ 36 

4b. Outer membrane profiles of Pasteurella 
haemolytica serovars 1 through 15 
demonstrating major and minor bands ...... 36 

5. SDS-PAGE of radiolabeled whole cells of 
Pasteurella haemolytica serovars 2, 6, 
and 1, and OMPs of serovar Al (SKI 1) ......... 37 

X 



Chapter III 

1. Bar graph of mean lesion scores of the 
vaccine groups ........................... 5 4 

Chapter IV 

1. Graph of optical density versus lesion 
scores for proteins of 45.5, 63, 
and 84 kDa ............................... 71 

xi 



1 

CHAPTER I 

INTRODUCTION 

Literature Review 

Bovine Pneumonic Pasteurellosis 

Bovine pneumonic pasteurellosis is a severe, acute, 

fibrinous bronchopneumonia and pleuritis. The disease most 

commonly occurs in beef cattle especially associated with 

the stress of transportation and is commonly called shipping 

fever. It is one of the component diseases of "the bovine 

respiratory disease complex" and continues to be one of the 

most significant disease problems of the cattle industry 

(Church and Radostits, 1981; Martin et al., 1980). 

Shipping fever is a multifactorial disease; factors 

required for onset of disease have not been well defined, 

but a compromised respiratory immunity in conjunction with 

bacteria that are potentially pathogenic to the lung are the 

two most common criteria. Pasteurella spp. are the most 

common bacteria isolated from animals suffering from 

shipping fever, and pneumonic pasteurellosis is the most 

common form of shipping fever. Stress and/or viral 

respiratory infections are frequent precursors to pneumonic 
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pasteurellosis because of their negative effect on the the 

immune system (Frank, 1986). Cattle stressors most 

associated with shipping fever are transport, overcrowding, 

and inclement weather especially with sudden temperature 

declines. Exposure to low temperature can cause decreased 

mucociliary clearance and increased deposition of pathogens 

into the lungs of calves (Diesel et al., 1991). Increased 

glucocorticoid release as a result of stress affects 

leukocyte function, and increased plasma cortisol levels in 

cattle as a result of transport have been documented (Filion 

et al., 1984; Roth, 1984). Because stress affects a variety 

of neuroendocrine functions which interact in a complex way 

with the immune system, the possibility of other negative 

effects on immunity is likely (Khansari et al., 1990). 

Virus-induced suppression of immunity can be due to 

local damage in the respiratory tract resulting in decreased 

microbial clearance as well as a direct effect on pulmonary 

leukocytes resulting in decreased phagocytosis (Yates, 

1982). Bovine respiratory viruses that have been associated 

with pneumonic pasteurellosis are bovine herpesvirus-1, 

parainfluenza virus-3, and bovine respiratory syncytial 

virus (Rosenquist, 1984; Dyer, 1981). Indirect suppression 

of immunity can also occur with viral infections. Bovine 

viral diarrhea (BVD) virus, although not a respiratory tract 

virus, has often been associated with respiratory disease by 

virtue of its general immunosuppressive effects (Potgieter, 
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1988; Richer et al., 1988). 

Mycoplasmas are another group of organisms that may 

contribute to pneumonic pasteurellosis. Because mycoplasmas 

are isolated so commonly from the upper and lower 

respiratory tracts of cattle with and without clinical 

pneumonia, their role is difficult to evaluate. Mycoplasma 

bovis and Mycoplasma dispar, the two most common isolates, 

potentially may be important underlying factors because they 

are capable of causing subclinical pneumonia and are 

immunosuppressive (Allen et al., 1992; Howard et al., 1987; 

Boothby et al., 1983; Bennett and Jaspar, 1977). 

Pasteurella haemolytica has been the most frequently 

and consistently isolated bacterium from the lungs of cattle 

that have died with shipping fever and is considered the 

major etiologic agent of pneumonic pasteurellosis (Shewen, 

1988; Frank and Smith, 1983; Jensen, 1976; Lillie, 1974). 

Haemophilus somnus is a less frequent isolate from acute 

pneumonic lungs. The role of Pasteurella multocida is less 

clear. It appears be more significant as a cause of 

pneumonia in young calves less than 6 months of age. It is 

frequently isolated from both nasal secretions and 

bronchoalvelolar lavage specimens in acute respiratory 

disease of feedlot calves. These isolations suggest that 

under field conditions, it may be less capable than P. 

haemolytica of causing severe pneumonia resulting in death 

in older calves (Allen et al. 1991). However, challenge of 



weanling calves with P. multocida results in pulmonary 

lesions similar, if not identical, to those caused by P. 

haemolytica (Ames, 1985; Panciera and Corstvet, 1984; 

Corstvet et al., 1978). 

Serovars of Pasteurella haemolytica 

Pasteurella haemolytica is a parasite of ruminants. 

4 

Its role in disease has been clarified somewhat by 

differentiating isolates into biovars and serovars. There 

are two biovars, A and T, based on differences in sugar 

fermentations with most A biotypes able to ferment arabinose 

but not trehalose and T biotypes able to ferment trehalose 

but not arabinose (Smith, 1961). Biotype is related to 

clinical disease in that T strains are causative agents of 

ovine septicemia in older lambs while A biotypes have been 

isolated from animals suffering from bovine and ovine 

pneumonic pasteurellosis and ovine mastitis (Adlam, 1989). 

Recent evidence from numerical taxonomic analysis and DNA

DNA'hybridization supports the reclassification of the T 

biovar to a separate species, P. trehalosi (Sneath and 

Stevens, 1990). 

There are sixteen serovars of P. haemolytica based on 

capsular polysaccharides; serovars 3, 4, 10, and 15 are T 

biovars; the remaining 12 are A biovars (Fodor et al., 1988; 

Biberstein, 1960). Pasteurella haemolytica Al, (biovar A, 
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serovar 1), is the predominant isolate from the nasal 

passages of cattle with acute respiratory disease and from 

lungs of cattle that die from shipping fever (Purdy et al., 

1993 A; Frank, 1988). Other serotypes that are involved less 

frequently are as follows: A2, AS, A6, A7, A9, All, A12, and 

Al4 (Quirie et al., 1986; Reggiardo, 1979). 

In healthy, non-stressed cattle, P. haemolytica A2 is 

the serovar most frequently isolated from the nasal 

passages. When cattle are stressed or infected with a 

respiratory virus, a dramatic shift in the nasal flora 

occurs from serovar A2 to Al (Frank and Smith, 1983) with 

large numbers of Al colonizing the upper respiratory tract 

resulting in increased aerosolization of Al to the lower 

tract (Frank, 1988). The exact location of Al in carrier 

animals is unknown. Attempts to establish P. haemolytica Al 

in the ventral nasal meatus and the middle nasal meatus of 

calves have been unsuccessful (Frank et al., 1989; 1986). 

Tonsil colonization is a possibility but data are 

insufficient to support this location as a primary site 

(Frank and Briggs, 1992). 

Virulence Factors of Pasteurella haemolytica 

The factors that allow P. haemolytica Al to proliferate 

on the nasal mucosa are unknown. Loss of fibronectin, an 

adhesive glycoprotein, from upper respiratory tract 
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epithelial cell surfaces exposes receptors for gram-negative 

bacteria which increase their colonization (Woods, 1987). 

Loss of fibronectin in humans has been associated with 

stress. Leukocyte elastase has been identified as the 

enzyme that cleaves fibronectin from epithelial cells (Dal 

Nogare, 1987). In calves experimentally infected with P. 

haemolytica Al and IBR virus, increased nasal elastase 

activity was shown to precede bacterial colonization and 

decreased levels of elastase correlated with decreasing 

numbers of P. haemolytica Al in the nasal secretions (Briggs 

and Frank, 1992). These results suggest the presence of a 

specific receptor on P. haemolytica Al but not A2 that 

adheres to mucosal cells lacking fibronectin. 

Many gram-negative bacteria that colonize mucosal 

surfaces adhere via surface structures called pili or 

fimbriae. Although these hair-like appendages have been 

described on P. haemolytica (Morck et al., 1989; 1988; 

Potter et al.,1988), other researchers have been unable to 

demonstrate pili (Gonzalez et al., 1993; Confer et al., 

1990). Whether adherence is by pili or some other surface 

adhesin is controversial. 

Pasteurella haemolytica Al has a variety of virulence 

factors that contribute to infection and subsequent disease 

once the organism enters the lung. It should be noted that 

normal, unstressed calves rapidly clear the organism from 

the lungs. Stress and/or predisposing infections are 
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important for both nasal proliferation and establishment of 

the organism in the lungs. Corstvet et al. (1982) were the 

first to demonstrate a capsule on P. haemolytica Al and 

noted that a capsule was present on cells during the log 

phase of growth but diminished during the lag phase. 

Capsules may operate as virulence factors by preventing 

phagocytosis, by masking components such as LPS that 

activate the alternate complement pathway, or by restricting 

access of the complement membrane attack complex to the cell 

wall (Plaut, 1989; Brubaker, 1985). In vitro studies have 

shown that decapsulated P. haemolytica Al cells are more 

susceptible to complement-mediated serum killing and to 

phagocytosis by neutrophils (Chae et al., 1990). Capsular 

polysaccharide from P. haemolytica Al has been shown to 

directly affect bovine neutrophils in vitro resulting in 

decreased killing of ingested bacteria as well as decreased 

phagocytosis {Czuprynski et al., 1989). The presence of 

capsular material in the alveoli and on the bronchial 

surface of infected calf lungs (Whitely et al., 1990) and 

the lack of an inflammatory response to purified capsular 

polysaccharide in sheep lungs suggests that the capsule may 

serve to protect the organism from phagocytosis in the early 

stages of lung entry and/or may act as an adhesin in the 

lower airways (Brogden et al., 1989). 

Pasteurella haemolytica during log growth phase 

releases a leukotoxin which is cytotoxic to ruminant 



neutrophils and macrophages (Shewen and Wilkie,1985; 1982). 

The leukotoxin is a pore-forming cytolysin and has been 

demonstrated in all recognized serovars (Gentry et al., 

1988; Chang et al., 1987; Shewen and Wilkie, 1983). 

Leukotoxin has been demonstrated in association with 

degenerating leukocytes in the alveoli of calves 

experimentally infected with P. haemolytica Al (Whiteley et 

al., 1990). It is thought to play an important role in the 

pathogenesis of pneumonic pasteurellosis in two significant 

ways. Firstly, it contributes to the establishment of P. 

haemolytica in the lung by its direct toxic effect on 

pulmonary phagocytes, the major host defense against 

bacterial infection. Secondly, leukotoxin contributes to 

tissue damage indirectly by the release of lysosomal 

products from cytotoxin-damaged leukocytes which results in 

an enhanced inflammatory response in the lung (Clinkenbeard 

et al., 1990). 

8 

Lipopolysaccharide (LPS) or endotoxin found in the 

cell wall of P. haemolytica is·similar to that of other 

gram-negative bacteria and may play a major role in the lung 

lesions observed in pneumonic pasteurellosis. 

Vascular leakage as a result of endothelial damage is a 

possible mechanism to explain the rapid influx of 

neutrophils, fibrin deposition, edema, pulmonary hemorrhage, 

and vascular thrombosis seen in acute shipping fever 

(Brieder et al., 1990). There are two mechanisms by which 
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endotoxin may cause lung damage. One is by the activation 

of complement. Endotoxin is recognized as one of the 

initiators of the alternate complement system which, through 

a complex of interactions, results in inflammation, 

clotting, and leukocyte chemotaxis. A second means may be 

via a direct effct on bovine endothelium. There is in vitro 

evidence that LPS directly damages bovine endothelial cells 

(Brieder et al., 1990; Paulsen et al., 1989). In calves 

experimentally inoculated with P. haemolytica Al, LPS was 

localized in alveolar exudate, in endothelial cells, and in 

phagocytes located in the alveoli, in pulmonary interstitial 

tissue, and within capillaries (Whiteley et al., 1990). LPS 

from P. haemolytica Al has been shown to produce pulmonary 

hemorrhage, edema,_ and acute inflammation when given to 

calves via airway inoculation (Slocombe et al., 1990). 

Outer Membrane Proteins 

The cell envelope of P. haemolytica is typical of a 

gram-negative bacterium and is composed of an inner 

cytoplasmic membrane, a thin layer of peptidoglycan, and an 

outer membrane surrounded by a polysaccharide capsule. The 

outer membrane is an asymmetric bilayer in which the 

phospholipids of the outer layer are replaced by 

lipopolysaccharide molecules. Outer membranes contain an 

abundance of protein; there are usually from two to eight 
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major outer membrane proteins (OMPs) and a variety of minor 

proteins. The major outer membrane proteins are in high 

copy numbers making them the major source of bacterial cell 

protein (Hancock, 1991). 

One of the major types of OMP is porin protein. These 

proteins as trimers form channels or pores in the outer 

membrane allowing passage of small water-soluble molecules 

(including nutrients) and excluding a variety of large 

molecules including certain antibiotics, detergents, toxins, 

and degradative enzymes (Hancock, 1991; Osborn and Wu, 

1980). 

OmpA-like proteins constitute another major OMP class. 

These proteins, along with lipoproteins, anchor the outer 

membrane to the underlying peptidoglycan layer and are 

important structurally (Jeweltz et al., 1987). 

The outer membrane proteins of P. haemolytica were 

first described in serovar Al by Squire et al. (1984); by 

various extraction methods two major OMPs of 30 and 42 kDa 

molecular weight were demonstrated. Major OMPs of similar 

molecular weight (42, 30, and 16 kDa) have been described 

for P. haemolytica A2 (Donachie and Gilmour, 1988). More 

recent investigations have demonstrated OMPs for P. 

haemolytica Al of 18, 29-30, 39.5, 40.5, 42, 71, 77, 87, 

100, and 100.5 kDa (Davies et al., 1992; Confer and Durham, 

1992). Comparison of envelope and outer membrane proteins 

of P. haemolytica serovars 1 through 15 by SDS-PAGE 
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demonstrated distinctive differences between the A and T 

biovars and minor to moderate differences among serovars 

within each biovar (Rossmanith et al., 1991; Knights et al., 

1990; Thompson and Mould, 1975). 

The outer membrane is in contact with the environment 

and on its surface has receptors for binding a variety of 

substances. Of major importance relating to pathogenicity 

are receptors that bind iron-containing siderophores or 

iron-bound transferrin molecules. A major growth-limiting 

factor for invasive bacteria is iron, which for most 

bacteria is unobtainable from the host by virtue of iron 

chelation to the glycoproteins transferrin and lactoferrin. 

The importance of iron availability is emphasized by the 

evidence that many pathogenic strains of bacteria can be 

differentiated from nonpathogenic strains by the ability to 

obtain iron from host tissue and that host susceptibility to 

bacterial infection increases as iron availability 

increases. (Griffiths et al., 1988) . 

Three iron-repressible OMPs (100 kDa, 77kDa, and 71kDa) 

have been described in P. haemolytica Al (Morck et al., 

1991; Deneer and Potter, 1989). The 100 kDa protein has 

been identified as a transferrin receptor specific for 

bovine transferrin; it would not bind human, porcine, 

equine, or chicken transferrin (Ogunnariwo and Schryvers, 

1990). Calves infected with P. haemolytica Al produce sera 

that will react by Western immunoblot to the 100 kDa, 77 
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kDa, and 70 kDa protein bands indicating that these proteins 

are expressed in vivo (Deneer and Potter, 1989). 

A study comparing iron-repressible OMPs in serotypes 

1 through 12 showed that serotypes 2 through 12 also show an 

increase in the 71 and 77 kDa proteins under iron-restricted 

conditions, but the 100 kDa band is not produced by all 

serotypes (Deneer and Potter, 1989). There was antigenic 

cross-reactivity among the serotypes respective to the three 

proteins. A 100 kDa serotype-specific antigen has been 

cloned from P. haemolytica Al and shown to be a surface

exposed OMP which is immunogenic in rabbits (Lo et al., 

1991). Whether this is the 100 kDa iron-repressible protein 

described by others has not been determined. A 35 kDa iron

regulated protein associated with the periplasm has been 

described in P. haemolytica A2 (Lainson et al., 1991). 

Immunoblot studies have shown that sera from cattle 

resistant to experimental challenge to P. haemolytica Al 

react strongly to proteins of 86, 66, 51, 49, 34, 31, and 16 

kDa. Responses to the 86, 49, and 31 kDa proteins were 

considered most significant because of magnitude, constancy 

and relationship to protection (Mosier et al., 1989). A 

surface-exposed 30 kDa protein has been cloned from P. 

haemolytica Al; bovine antibodies to this protein correlated 

to resistance against experimental challenge (Craven et al., 

1991). Interestingly, rabbits inoculated with excised bands 

of the 30 kDa protein in polyacrylamide gels reacted to both 
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the 30 kDa and a 15 kDa protein which suggests that the 15 

kDa protein may be a cleavage product of the larger protein. 

Bacterial surface proteins are likely to be involved in 

the initial encounter of the bacterium with the host whether 

it be on the nasal mucosa or in the lung and are potential 

immunogens. Surface-exposed proteins of P. haemlytica Al 

identified by radioiodination of whole cells revealed 4 

major protein bands of 100 kDa, 45 kDa, 30 kDa, and 16 kDa. 

(Craven et al., 1991). Surface proteins of approximately 

54, 44, 42, 40, 38, 34, 33, 20, 19, 18, and <18 kDa of P. 

haemolytica A2 cells were identified -by a similar method 

(Knights et al., 1990). 

Immunity to Pneumonic Pasteurellosis 

Numerous vaccines have been used in an attempt to 

immunize cattle against pneumonic pasteurellosis (Mosier, 

Confer et al. 1989). Whole cell bacterins have been studied 

extensively often with equivocal results related in part to 

the various procedures used by different researchers for 

vaccine preparation and for inoculating and challenging 

cattle in vaccine studies. Generally bacterins have not 

conferred protection and in some cases have enhanced the 

disease (Confer, et al., 1985 B; Wilkie et al., 1980; Friend 

et al., 1977). ~lthough Jericho et al. (1990) were able to 

protect cattle against low-dose experimental infection using 



14 

a formalin-killed vaccine without adjuvant, others have 

demonstrated the necessity of adding particular adjuvants to 

bacterins to provide protection (Confer et'al., 1987;_ 

Cardella et al., 1987). Bacterins mixed with adjuvants 

that potentiate a cell-mediated response such as Freund's 

complete, Freund's incomplete or oil do enhance protection 

against experimental disease (Confer et al.,1987; Cardella 

et al., 1987). 

Live vaccines have proven to be efficacious in 

experimentally infected animals regardless of the route of 

inoculation (Corstvet et al., 1978; Newman et al., 1982, 

Confer et al., 1984; Panciera et al., 1984). Several 

commercial live vaccines have been marketed but inherent 

problems with live bacteria as vaccines negate their 

usefulness in the field (Zemen et al., 1993; Tizard, 1990; 

Wohler and Harris, 1990). 

Various antigenic components of P. haemolytica have 

been studied in an attempt to elucidate those which are 

important in stimulating a protective immune response in 

cattle in the hopes of incorporating these into an 

efficacious vaccine. Although LPS probably plays a major 

role in development of lesions of pneumonic pasteurellosis, 

serum antibodies to LPS have not been correlated to 

resistance (Confer et al., 1986). 

Leukotoxin has been promising as an immunogen because 

it is a protein capable of stimulating a good humeral 
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response, and it is possibly one of the factors contributing 

to the efficacy of live vaccines. Although early reports 

indicated that resistance to challenge was correlated to 

leukotoxin antibodies (Mosier et al., 1986; Gentry et al., 

1985 B; Cho et al., 1984;), additional studies have shown 

that leukotoxin titers are not correlated with protection, 

and animals with no detectable antibody to leukotoxin can be 

resistant to challenge (Purdy et al., 1993b; Jericho et al., 

1990; Confer et al., 1987). 

Early work using leukotoxin as a vaccine was hampered 

by the inability to obtain purified toxin for inoculation 

(Shewen et al., 1988). More recently it has been shown that 

recombinant leukotoxin (rLKT) was unable to enhance 

protection when used alone but did increase the efficacy of 

a "culture supernatant" vaccine when used as a supplement 

(Conlon et al., 1991). This supports the earlier evidence 

that leukotoxin antibodies alone are not protective.

However it does indicate that antibodies to leukotoxin may 

contribute to resistance. 

Antibodies to capsular polysaccharide (CP) can be 

detected after natural infection and have been produced by 

vaccination with live P. haemolytica Al, whole cell 

bacterins, surface-extracted carbohydrate-protein antigens 

and CP (Tigges and Loan, 1993; McVeyet al., 1990; Confer et 

al., 1989). Vaccination with capsular polysaccharide by a 

novel method of injecting CP-impregnated agar beads 
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intrathoracically into the lungs of goats produced partial 

resistance to experimental challenge indicating that capsule 

carbohydrate is a potential immunizing agent (Purdy et al., 

1993 B). 

Vaccination of calves with carbohydrate-protein subunit 

(CPS) antigens of P. haemolytica Al significantly enhanced 

resistance to experimental challenge (Confer et al., 1989). 

The CPS antigens were extracted from the surface of whole 

cells and contained carbohydrate, presumed to be of capsular 

origin, and protein presumably from the outer membrane 

(Confer et al., 1989; Durham et al.,1986; Lessley et al., 

1985). Antibodies to CPS antigens have been consistently 

associated with resistance to pneumonic pasteurellosis 

(Confer et al., 1989; 1987; 1985 B). High antibody titers 

to the protein portion (periodate-resistant) of the 

preparation rather than carbohydrate antigens were 

significantly correlated to resistance (Confer et al., 

1989), indicating a potential role for OMPs as immunogens. 

Research Objectives 

The pathogenesis of bovine pneumonic pasteurellosis is 

complex and many aspects remain to be elucidated. 

Efficacious vaccines to protect cattle against the disease 

have yet to be developed. The role of various virulence 

factors are being studied relative to contribution to 
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pathogenicity and to value as immunogens for vaccine 

production. Outer membrane proteins have excellent 

potential as immunogens especially those that are surface 

exposed, although little information is available on their 

role in eliciting a protective immune response. Serovar 

differences are important in development of both bovine and 

ovine pneumonic pasteurellosis. The role of OMPs in this 

regard is not known. Certain OMPs may be conserved among 

the species; some of these may be important immunogens which 

could stimulate a protective response to all serovars. 

This research was undertaken to better understand the 

relationship of OMPs of Pasteurella haemolytica to immunity. 

The research objectives were as follows: 

1. Compare the outer membrane proteins of Pasteurella 

haemolytica serovars 1-15 by SDS-PAGE; determine surface 

OMPs by iodine labeling. 

2. Evaluate the ability of OMPs to enhance resistance 

against pneumonic pasteurellosis and to determine serovar 

cross-protection by vaccinating cattle with OMP-enriched 

fractions of serovar Al, with a similar serovar (A6), and 

with a dissimilar serovar (A9) followed by challenge with P. 

haemolytica Al. 

3. Correlate the immmune response to major OMPs with 

resistance against experimental bovine pneumonic 

pasteurellosis for the purpose of selecting OMPs that 

stimulate humeral antibodies correlated with resistance. 



CHAPTER II 

COMPARISON OF THE MAJOR OUTER MEMBRANE PROTEINS 

OF PASTEUERELLA HAEMOLYTICA 

SEROVARS 1-15 

Abstract 
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The Sarkosyl method of obtaining outer membrane 

proteins (OMPs) from Pasteurella haemolytica Al was more 

efficient and less laborious than separating membranes by 

sucrose gradient centrifugation. More OMPs were recovered 

and major OMPs were present in greater concentrations in the 

Sarkosyl-derived preparations. Therefore, OMPs of P. 

haemolytica serovars 1 through 15 (serovars 3, 4, 10, and 15 

being T biotypes and the remainder being A biotypes) were 

prepared by the Sarkosyl method and compared by SDS-PAGE. 

Serovars 1, 2, 5, 6, 7, 8, 11, and 12 which are A biovars 

had similar OMP profiles characterized by major OMPs of 30.5 

and 43 kDa. Biovar T strains were characterized by doublet 

protein bands in the 26-28 kDa region and a major OMP in the 

38-40 kDa range. Serovars 9, 13, and 14 which are also A 

biovars had profiles more consistent, although not 

identical, with the T biovars. A 43 kDa protein was present 

in all serovars although concentration was greater in the A 

biovars. Surface-exposed proteins of P. haemolytica Al 
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determined by 125!-labeling of whole cells were 94, 84, 53.5, 

49, 43, 41, 29.5, and 16 kDa. Iodine-labeling of serovars 

A2 and A6 which have similar OMP profiles by SDS-PAGE 

resulted in autoradiographs indistinguishable from Al. 

Introduction 

Pasteurella haemolytica is an important pathogen of 

cattle and sheep causing shipping fever or bovine pneumonic 

pasteurellosis in cattle and pneumonia and septicemia in 

sheep. Several virulence factors of P. haemolytica Al, the 

major etiologic agent of shipping fever, have been 

identified, but the pathogenesis of this complex disease and 

the roles of these factors in producing disease have not 

been elucidated. Outer membrane proteins (OMPs) of 

bacteria, especially those that are surface-exposed, may 

play a role in pathogenesis and may be immunogens useful as 

vaccine components. Although P. haemolytica Al is the 

predominant serovar associated with shipping fever, other 

serovars are occasionally isolated from animals with 

pneumonic pasteurellosis. This is certainly true in ovine 

pneumonic pasteurellosis where a variety of serovars have 

been isolated even though P. haemolytica A2 is found most 

often. Serovars may share common antigens associated with 

OMPs that might be cross-protective against disease when 

used in vaccines in sufficient concentration; however, in 



one study vaccines against heterologous serovars were not 

protective (Gilmour et al.; 1983). 
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The first part of this study is an evaluation of two 

methods, Sarkosyl extraction and sucrose gradient 

centrifugation, for obtaining OMPs from P. haemolytica. The 

second part of the study is to compare the outer membrane 

proteins of serovars 1 through 15 to identify proteins that 

might be useful as serovar cross-protective immunogens. The 

third part of this study is to determine the surface-exposed 

OMPs of three selected serovars to identify potentially 

important immunogens. 

Materials and Methods 

Bacterial Cultures 

Pasteurella haemolytica serovars 1 and 6 were 

originally isolated from feedlot calves. The other 13 

serovars and serovar-typing antisera were kindly supplied by 

Dr. G.H. Frank (National Animal Disease Center, Ames, IA). 

Serovar identifications were confirmed by the rapid plate 

agglutination test (Frank and Wessman, 1978). All strains 

were maintained by harvesting 6-hour cultures from brain 

heart infusion agar with 5% citrated bovine blood (BHIB 

agar), suspending the harvests in BHI (BHI) broth with 15% 

glycerol, and storing at -70 C until ready to use. All 
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bacteria were cultured at 35-37 Cina 5% CO2 atmosphere. 

Total Membrane Preparations 

Each serovar was cultured from BHI glycerol stock on 

BHIB agar to check for purity. Six-hour cultures on BHIB 

agar were harvested into sterile phosphate-buffered saline 

(PBSS) (0.01M, pH 7.4) and frozen at -20 C until harvested 

cells were determined to be pure. The cells were thawed, 

washed once in PBSS (13,000 X g, 20 min, 4 C), and 

resuspended in PBSS to approximately one-half the original 

volume. The washed, whole-cell preparation was frozen at -

20 C until ready to use. 

Pasteurella haemolytica Al cells were disrupted by two 

methods, passage through a French pressure cell and 

sonication as previously described (Simons et al., 1989). 

Serovars 2 through 15 were disrupted by sonication. Cell 

membranes were collected by centrifugation, washed and 

stored as previously described (Simons et al., 1989). 

Sucrose Gradient Ultracentrifugation 

The sucrose gradient ultracentrifugation method was a 

modification of techniques described by Squire et al. (1984) 

and Cline and Ryel (1971). Cell membrane preparations 

(French pressured and sonicated) of P. haemolytica Al were 



diluted with an equal volume of HEPES buffer (0.01 M; pH 

7.4), and 1.5 - 2.7 ml volumes were layered onto tubes 

containing the following sucrose concentrations in HEPES 

buffer to form a gradient: 30%, 35%, 40%, 45%, 50%, and 
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55%. Tubes were centrifuged at 141,000 X g (SW 28 rotor, 

L8-60MR Beckman Ultracentrifuge) for 2 hours. The upper two 

layers were removed with a Pasteur pipet, and then the 

membrane layer was removed and diluted with an equal volume 

of HEPES buffer. Membranes (3-4 ml) were layered onto new 

sucrose gradients and centrifuged at 121,000 X g for 18 

hours. Tubes were fractionated into 1 ml aliquots, and 

absorbance at 280 nm (A280 ) was measured on each fraction. 

Aliquots with high A280 readings collected from the bottom or 

high density area of the gradients were pooled and washed 3X 

by centrifugation in cold, sterile, distilled water at 

226,000 X g (55.2 Ti rotor, L8-60MR Beckman Ultracentrifuge) 

for 2 hours. The final pellets (outer membranes) were 

suspended in 1-4 ml of sterile, distilled water and held at 

4 C for use within 24 hours or at -20 C for longer storage. 

Sarkosyl Insoluble Outer Membrane Preparations 

Sonicated cell membrane preparations of all 15 serovars 

in addition to the French pressure cell preparation of Al 

were extracted with Sarkosyl. To an aliquot of each total 

membrane preparation, 2 times the volume of 0.5% sodium N-



23 

lauroylsarcosine (Sarkosyl; Sigma Chemical Co., St. Louis, 

MO) in 0.01M Tris buffer was added to solubilize inner 

membranes (Squire et al., 1984). The solution was mixed 

gently for 30 minutes at room temperature, and insoluble 

(outer) membranes were collected by centrifugation at 

226,000 X g for 70 minutes. The membranes were then washed 

3x in cold, sterile, distilled water. The final pellet, 

referred to as Sarkosyl-insoluble preparation (SKI), was 

resuspended in 1-4 ml of sterile, distilled water and stored 

at -20 C. SKI prepared from Al cells contained 15.3 ug of 

2-keto,3-deoxyoctulonic acid per 1.0 mg of total protein. 

Analysis of succinate hydrogenase activity (an inner 

membrane enzyme) indicated <l~ contamination of the SKI with 

inner membranes. 

Radioiodination of Surface Membrane Proteins 

Whole cell preparations of P. haemolytica serovars 1, 

2, and 6 were labeled with 125I following the procedures 

described by Leyh and Griffith (1992) and Richardson and 

Parker (1985) as was an SKI preparation of P. haemolytica 

Al. Whole cells were incubated 18 hours before harvesting, 

then washed twice with PBSS and resuspended in PBSS to 0.1 g 

(wet weight) per ml. One mCi Na125I (Amersham Corp., 

Arlington, IL) and 4 rinsed Iodo-beads (Pierce, Rockford, 

IL) in glass vials were allowed to react at room temperature 
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for 5 minutes. One ml of whole cell preparation was added 

to each vial and allowed to react for five minutes. Whole 

cell preparations were removed from the vials by pipet and 

washed 3X in PBSS containing 1 mg NaI per ml to remove 

unreacted 1~I by centrifugation at 6000 X g (Sorvall-SS 34 

rotor). Sarkosyl-insoluble membrane preparation was diluted 

with PBSS to 50 ug of protein per ml. Iodination was 

performed as with the whole cell preparations except that 

1.0 ml of SKI prep containing 50 ug protein was labeled 

using 1.0 mCi Na125 I and 2 Iodo-beads. SKI prep was removed 

from the reaction by pipet and added to a desalting column 

(Excellulose GF-5; Pierce, Rockford, IL) to remove unreacted 

1~I. The first 5 ml void volume was diluted with PBSS 

containing 1.0 mg per ml NaI and centrifuged at 240,000 X g 

(55.2 Ti rotor, L8-60MR Beckman Ultracentrifuge) for 90 

minutes. Iodine-labeled preparations were stored at -20 C 

until ready to use. 

SDS-PAGE was done on the iodine-labeled preparations 

using 5 ug protein per lane of whole cell preparation and 

approximately 40,000 counts per minute (CPM) per lane of SKI 

preparation (Appendix Al). Counts per minute were determined 

by using a Micromedic Gammma Counter( Micromedic Systems, 

Inc, Horsham, PA). Kodak X-Omat XAR-2 film (Eastman Kodak 

Co., Rochester, NY) was exposed to dried, Coomassie blue

stained gels at room temperature to detect protein-labeling 

patterns. 
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SDS-PAGE 

Discontinuous SDS-PAGE was performed using 4% stacking 

gels and 10 to 12% resolving gels (Simons et al., 1989). 

Unlabeled samples were adjusted to 1.0 mg protein per ml and 

solubilized in sample buffer at 100 C for 90 sec before 

loading onto gels. Gels were stained with Coomassie 

brilliant blue. Apparent molecular weights of proteins 

were determined by comparison of relative mobilities in gels 

to known standards (Weber and Osborn, 1969). 

Protein Assays 

Protein concentrations were determined by either BioRad 

Protein Assay (Bio-Rad Laboratories, Inc., Hercules. CA) or 

Pierce BCA Protein Assay (Pierce, Rockford, IL). 

Densitometry 

Dried gels were analyzed by densitometry (Model 620 

Video Densitometer; Bio-Rad) as described (Simons et al., 

1989). Data are expressed as total area (mm2 ) of each peak. 

Results 

Comparison of OMP Preparation Methods 
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Although two distinct bands could not be seen in 

either cell disruption preparation after sucrose gradient 

centrifugation~ two bands were demonstrated in the French 

Pressure cell preparation by fraction collection and 

absorption at 280 nm with the largest protein peak in the 

high density range of the gradient (Figure 1). Sucrose 

centrifugation of sonicated preparations. resulted in one 

protein peak similar in concentration and density to the 

high density peak observed in the French pressure cell 

preparation. Electrophoretic profiles of P. haemolytica Al 

membranes recovered by the two disruption methods were 

remarkably similar (Figure 2). 

Comparison of outer membranes obtained by Sarkosyl 

exraction and sucrose gradient centrifugation revealed 

concentration differences of most of the major proteins 

(Figure 2) which was confirmed by densitometry (Figure 3a 

and 3b and Appendix A.2). Three major proteins of 30.5, 

38.5, and 96 kDa, and three minor proteins of 37, 44.5, and 

49 kDa were obtained by both methods. Higher concentrations 

of all bands were obtained by Sarkosyl extraction except for 

the 96 kDa band which had approximately the same total area 

of optical density by both methods (Figure 3a and 3b). The 

SKI preparations had additional minor proteins at 82 kDa and 

62.5 kDa that were of low concentration in the sucrose 

gradient preparations. 
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Comparison of Serovar OMPS 

Outer membrane protein preparations of P. haemolytica 

serovars 1 through 15 were prepared by Sarkosyl extraction 

of sonicated cells and compared by SDS-PAGE (Figure 4a and 

4b). There were at least two major OMPs observed in all 

strains. Serovars 1, 2, 5, 6, 7, 8, 11, and 12 which are A 

biovars had similar major OMPs; the remaining A biovars (9, 

13, and 14) had unique protein band patterns. Serovars 3, 

4, 10, and 14 were similar in having a doublet band at 

approximately 26-28 kDa and, along with serovar 15, were 

distinguished by a major band in the 38-40 kDa range. 

Radioiodination of Surface Membrane Proteins 

Autoradiographs of whole cells of P. haemolytica 

serovars 1, 2, and 6 showed labeled protein bands that were 

indistinguishable (Figure 5). Proteins that were labeled 

and presumably surfac·e-exposed were approximately 94, 84, 

53.5, 49, 43, 41, 29.5, and 16 kDa. Intensity of labeling 

was greatest with the 29.5 kDa protein, followed by the 49 

and 43 kDa proteins. Only two major proteins, 29.5 and 43 

kDa, were labeled in the SKI preparation; proteins of 16 and 

94 kDa were minimally labeled. The 49 kDa band which was 
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membranes of Pasteurella haemolytica Al prepared by 
sonication or passage through a French pressure cell. 
The bottom of the gradient is at left. 



116 -

66-

36-

29-

20-

S F S F 

SG SK 

Figure 2. SDS-PAGE of outer membrane preparations 

29 

of Pasteurella haemolytica Al prepared by sonication 
(S) or French pressure cell (F) disruption followed by 
separation using Sarkosyl extraction (SK) or sucrose 
gradient centrifugation (SG). Molecular weight markers 
are on t he l eft and expressed in thousands. 



30 

,:01» 

!:!rj 10 
15 

2.2 ~ ii SG-FPC u~I , 
l.Of I 
l.S fl I I II 
L6~ .. I ,I i:J.l 

1.4H i\ 7 ·a /I 21, I 
l Of 1 '. I s I ' I \ I u~I • 1 ,I \ 11 ! 
O·.a:~1 

· •. · 2 4 JI 1 •. 13 11 19 , 22 I 
r I l I / / 16 18 20 1' I 1'\ . 11 .• o. 6 l ,\ .·' ,.1 

3 .• I\ ,/t 6 11 9 .. _ ! .. ,i~, 2 ,r,1 
1.~ f\ "'\ \ L..... '. I \ I I \ 11 /"'·J'. \.j"'v,,/ ,\, i11·/"'v\ ,' .J \ ... ,''- .. :v,,,J\Jl...,w,,,,...l_.v """' 0, 4f i \ 1 ,' ' 1 1 /1 J _ 1, J :! ,,~ .. /, \ / , • • , / · ~ , v < 

0 2 L '. r-1\.r"·-.-·, ,, , ,1 11 / 1.r \ J ~ v , / 1/ ·11 1 1 • -., • ,, I rl' ' , , l 
. rUJ'.2.·1_:__:_i, _JJ_!. ,.-\·/-1 _;.1 _;..J ~r~'· -;..+· t-1 ~.,-,/-,' ~'1r' -n-r--i-r--i/-::---i--------o. oL ,L J l ' ' 

40 50 60 70 110 120 130 

P@ak MW(kDa) 

96.0 1e 36,0 

2 92, 0 13 34.:S 

3 <,9,0 14 ae.:s 
4 oe,s l:S 30,S 

:S 57,:S 16 26,:S 

.,, :se.:; 17 23,S 

7 49,0 18 2e.o 
B 44,5 19 20,:S 

9 42.0 20 17 .:s 
10 38,S 21 16,0 

11 37, 0 22 14.0 

SKl-FPC 

15 

40 so 60 

Figure 3a. Densitometric analyses of SDS-PAGE gels of 
OMPs of Pasteurella haemolytica Al obtained by Sarkosyl 
extraction (SKI) or sucrose gradient centrifugation 
(SG). Cells were disrupted by passage through a French 
pressure cell (FPC). 
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Figure 3b. Densitometric analyses of SDS-PAGE gels of 
OMPs of Pasteurella haemolytica Al obtained by Sarkosyl 
extraction (SKI) or sucrose gradient centrifugatioon 
(SG). Cells were disrupted by sonication. 



32 

labeled in the whole cell preparation was noticeably absent 

in the SKI preparation. 

Discussion 

The Sarkosyl extraction method of obtaining outer 

membrane-enriched protein preparations was less laborious 

and resulted in higher concentrations of proteins than 

sucrose density gradient centrifugation. In addition, 

Squire et al. (1984) showed that this method is more 

effective than Triton-X 100 in the extraction of inner 

membrane proteins. 

Sarkosyl-derived outer membrane bands of 30.5, 37, 

38.5, 44.5, 49, 62.5, and 82 kDa are similar to those of 

previous reports. Several investigators have reported OMPs 

for P. haemolytica Al at approximately 18, 29-30, 39.5, 

40.5, 42, 71, 77, 87, 100, and 105 kDa (Davies et al., 1992; 

Confer and Durham, 1992; Squire et al., 1984). Iron

repressible proteins (71, 77, and 100 kDa) were present but 

in small quantity as would be expected with the media used 

in these experiments in which iron was not restricted 

(Davies et al. 1992). 

Concentration of some bands varied and this was 

especially evident with the 38.5 kDa band. This band 

presented as a doublet with a less concentrated band of 37 

kDa. Stain variation, media differences, and incubation 
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time can alter expression of OMPs (Confer et al, 1992; 

Davies et al., 1992). Strain and incubation time were 

constant throughout the study. The same culture medium, BHI 

blood agar (Difeo), was used in these studies, although lot 

numbers did vary. The blood used to supplement the media 

was obtained from several different cattle. Whether the 

blood source affected OMP expression is not known, but it is 

worthy of future consideration. The amounts of proteins 

extracted by Sarkosyl might differ depending on the time of 

exposure to the detergent, the total volumes used, and the 

manner of mixing. Larger volumes may require longer 

exposure or different methods of mixing to ensure adequate 

extraction of inner membranes. In these experiments time of 

incubation with Sarkosyl and the mixing methods were 

constant, but total volumes varied greatly. 

Surface proteins of 16, 29.5, and 43 kDa detected by 

125!-labeling are similar to three previously reported for P. 

haemolytica Al of 15, 30, 45 by Craven et al. (1991). A 100 

kDa protein identified by Craven et al. (1991) as a surface 

protein was not evident in this experiment, although a high 

molecular weight protein (94 kDa) was labeled. Additional 

proteins labeled in this study and not previously reported 

for Al are 41, 49, 53.5, 84, and 94 kDa. Knights et al. 

(1990) reported that proteins of 92, 80, 73, 56.5, 53.5, 

43.5, 42.5, 39.5, 37.5, 34, 32.5, and 20.5 kDa were probably 

surface-exposed proteins of serovar 2, and they are probably 
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the same as the proteins labeled 94 (92), 84 (80), 53.5 

(53.5), 43 (43.5), 41 (42.5), and 29.5 (32.5) kDa in this 

experiment. 

Surface-exposed OMPs have the most potential for 

eliciting antibodies to enhance resistance to pneumonic 

pasteurellosis. Antibodies binding to surface proteins 

should result in opsonization and increased phagocytosis of 

the bacteria as well as initiating the classical complement 

pathway. The direct effect of antibody on function of 

surface proteins is not known; however, steric hindrance as 

a result of antibody attachment may be detrimental to the 

bacteria as a result of porin dysfunction, blocking of 

receptors for host cell adherence, or less effective iron 

uptake. 

The absence of labeled 49 kDa protein in the SKI 

preparation may be due to the overall lower concentrations 

of proteins in the SKI preparations in the gel, but a 49 kDa 

protein has been found consistently in SKI preparations of 

Al. Perhaps the tyrosine residues are better exposed on the 

whole cell than in the SKI preparations and are more 

accessible to iodine-labeling (Markwell, 1982). 

'Comparison of OMP profiles of P. haemolytica serovars 1 

through 15 demonstrated a protein of approximately 43 kDa; 

Although it varied in concentration, it was present in all 

15 serovars. This is likely the same protein as the 43 kDa 

that was found to be surface-exposed and may be a source of 
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serovar cross-protecting antigens. Serovars 1, 2, 5, 6, 7, 

8, 12 which are all A biovars had very similar profiles 

indicating that OMPs from these may be cross protective. 

Serovars 9 and 14 had unique profiles that were more similar 

to those of the T biovars, A9 having a major band of 26 kDa, 

A14 having the characteristic doublet at the 26-28 kDa 

range, and both having a major OMP in the 38-40 kDa range. 

These differences among some of the A biovars have not been 

reported previously and could result from strain variation, 

media differences, or differences in the stage of growth in 

which the cells were harvested (Davies et al., 1992; Confer 

and Durham, 1992; Rossmanith et al., 1991). In light of the 

various factors that affect OMP expression, comparisons of 

OMP profiles, especially among different investigators, is 

difficult and could be misleading. 
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Figure 4a. Outer membrane profiles of Pasteurella 
haemolytica serovars 1 through 15 demonstrating major 
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Figure 5. SDS-PAGE of radiolabeled whole cells of 
Pasteurella haemolytica serovars 2, 6, and 1, and 
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OMPs of serovar Al (SKI 1). Molecular weight markers 
are on the right . 



CHAPTER III 

VACCINATION OF CATTLE WITH OUTER MEMBRANE PROTEIN

ENRICHED FRACTIONS OF PASTEURELLA HAEMOLYTICA 

AND RESISTANCE AGAINST EXPERIMENTAL CHALLENGE 

Abstract 
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A Sarkosyl-derived outer membrane protein (OMP) 

fraction of Pasteurella haemolytica Al (SKI-1) induced a 

protective response in calves against intrathoracic 

challenge with the homologous serovar. Outer membrane 

proteins from heterologous serovars, A6 and A9, induced 

partial protection that was associated with their respective 

similarities to Al in OMP profiles by SDS-PAGE. Calves 

vaccinated with SKI preparations did not have detectable 

neutralizing antibody to P. haemolytica Al leukotoxin. 

Antibodies to whole cell antigens and carbohydrate-protein 

subunit (CPS) antigen were associated with resistance which 

indicates that protein antigens shared among whole cell 

surface, CPS and SKI preparations are immunogenic and 

enhance resistance to experimental challenge. 

Introduction 

Shipping fever or bovine pneumonic pasteurellosis 
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continues to be one of the most significant disease problems 

of the cattle industry (Church and Radostits, 1981; Martin 

et al., 1980). Pasteurella haemolytica Al is the 

predominant organism associated with this complex disease, 

although other serovars are occasionally involved (Quirie et 

al., 1986; Reggiardo, 1979). Attempts to immunize cattle 

with P. haemolytica bacterins have been unrewarding. 

Various antigenic components of P. haemoltica have been 

studied in an attempt to determine those which are important 

in stimulating a protective_immune response in cattle. 

Vaccines that contain leukotoxin or capsular material have 

been shown to produce partial protection against 

experimental disease (Purdy et al. 1993b; Conlon et al., 

1991; Shewen and Wilkie 1988). 

Outer membrane proteins are potential candidates as 

immunogens especially those that are surface-exposed (Kimura 

et al., 1985; Gulig et al, 1982). Culture supernantants of 

logarithmic-phase P. haemolytica Al have been shown to 

enhance resistance against experimental pneumonia 

pasteurellosis which is serovar specific (Conlon et al., 

1991; Shewen and Wilkie, 1988). Although the supernatant 

contains a large amount of leukotoxin, it has been 

demonstrated that components other than leukotoxin are the 

responsible immunogens. The supernatant elicits agglutinins 

to whole cells of P. haemolytica indicating that some of the 

components are probably soluble cell surface antigens most 



likely from the outer membrane and capsule (Shewen and 

Wilkie, 1988). 

40 

Soluble surface antigens from whole cells of P. 

haemolytica extracted by saline, sodium salicylate, or 

potassium thiocyanate have been shown to enhance resistance 

to experimental infection (Confer et al., 1989; Yates et 

al., 1983; Gilmour et al., 1982). The antigens extracted by 

these methods are similar and most appear to be surface 

proteins in association with polysaccharide components 

(Durham et al., 1986). Antibodies to proteins in a 

carbohydrate-protein subunit (CPS) preparation of P. 

haemolytica Al have been associated consistently with 

resistance to pneumonic pasteurellosis (Confer, et al., 

1989; 1987; 1985). Carbohydrate-protein subunit antigen is 

an extract from the cell surface and presumably contains OMP 

suggesting that P. haemolytica Al OMPs may be capable of 

elicting a protective immune response to pneumonic 

pasteurellosis. 

The present study was undertaken to determine if an 

OMP-enriched preparation from P. haemolytica serovar Al when 

used as a vaccine could protect calves from experimental 

challenge and to ascertain possible cross-protection of OMPs 

using OMP-enriched fractions of serovars A6, which has a 

similar OMP profile as Al, and A9, which has a dissimilar 

OMP profile, as vaccines. 
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Materials and Methods 

Bacterial Cultures 

Pasteurella haemolytica Al and A9 were originally 

isolated from feedlot calves. Serovar 6 and serovar-typing 

antisera were obtained from Dr. Glynn Frank (National Animal 

Disease Center, Ames, Iowa). Serovar identifications were 

confirmed by the rapid plate agglutination test (Frank and 

Wessman, 1978). The strains used for outer membrane protein 

preparations were harvested from 6-hour growth on brain 

heart infusion agar with 5% citrated bovine blood (BHIB 

agar), suspended in brain heart infusion (BHI) broth with 

15% glycerol, and stored at -70 C until ready to use. 

Serovar 1 used as the challenge strain had been passaged 

periodically in calves, lyophilized, and stored at -20 C 

prior to use (Newman et al., 1982). 

Bacterial cell counts [colony forming units (CFU)] were 

estimated photometrically and confirmed by a spot-plate

counting technique (Newman et al., 1982). 

Outer Membrane Protein-Enriched Preparations 

Pasteurella haemolytica serovars 1, 6, and 9 were 

cultured from the BHI glycerol stocks onto BHIB agar to 

check for purity. Six-hour cultures on BHIB agar were 
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harvested into sterile phosphate buffered saline solution 

(PBSS) (0.01M, pH 7.4) and frozen at -20 C until harvested 

cells were determined to be pure. The cells were thawed, 

washed once in PBSS (13,000 x g, 20 min, 4 C), and 

resuspended in PBSS to approximately one-half of the 

original volume. The washed, whole-cell preparations were 

frozen at -20 C until ready to use. Washed, whole-cell 

preparations of P. haemolytica were centrifuged at 20,000 x 

g for 20 min at 4 C, and the resulting pellets were weighed. 

Pellets were suspended in approximately 20 ml of 20% sucrose 

in 0.01 M HEPES bu£fer. RNase (Sigma Chemical Co., St. 

Louis, MO) and DNase (Sigma Chemical Co., St. Louis, MO) 

each were added at 1 mg per 4.2 gm (wet weight) of pellet. 

Bacterial cells were then sonicated (Simons et al., 1989), 

and the suspension was incubated at 37 C for 40 minutes. 

Remaining whole cells were removed by centrifugation at 6000 

x g for 20 minutes at 4 C. The supernatant was centrifuged 

at 226,000 x g (55.2 Ti rotor, L8-60MR Ultracentrifuge; 

Beckman Instruments, Inc.) for 70 minutes to collect the 

membranes, which were then washed 3 times in cold, sterile 

distilled water. The final pellet was suspended in 1-4 ml 

of sterile, distilled water and held at 4 C for use within 

24 hours or at -20 C for longer storage. 

To an aliquot of total membrane preparation, 2 times 

the volume of 0.5% sodium N-lauroylsarcosine (Sarkosyl; 

Sigma Chemical Co., St. Louis, MO) in 0.01M Tris buffer was 
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added to solubilize inner membranes (Squire et al., 1984). 

The solution was mixed gently for 30 minutes at room 

temperature, and insoluble (outer) membranes were collected 

by centrifugation at 226,000 x g for 70 minutes. The 

membranes were then washed 3 times in cold, sterile, 

distilled water. The final pellet, referred to as Sarkosyl

insoluble preparation (SKI), was resuspended in 1-4 ml of 

sterile, distilled water and stored at -20 C. The SKI 

preparation contained 15.3 ug of 2-keto,3-deoxyoctulonic 

acid per 1.0 mg of total protein. Analysis of succinate 

hydrogenase activity (an inner membrane enzyme) indicated 

<1% contamination of the SKI with inner membranes. 

Vaccine Preparation 

All vaccinations were given in a 2.0 ml volume, 

subcutaneously in the caudal cervical region. The live 

vaccine was a 22-hour culture of P. haemolytica Al grown on 

BHIB agar, harvested ·into sterile PBSS, and adjusted to a 

density of approximately lxl0 9 CFU/ml (Panciera et al., 

1984). The outer membrane protein preparations were 

adjusted to 2.0 mg/ml of protein (Bio-Rad Protein Assay, 

BioRad Laboratories, Richmond, CA) and mixed with an equal 

volume of Freund's incomplete adjuvant (Difeo Laboratories, 

Detroit, MI). Two ml volumes of sterile PBSS were used as a 

negative vaccine control and were injected in the same 
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manner as the other vaccines. 

Serologic Evaluation 

Sera were tested for antibodies to P. haemolytica whole 

cell antigens by a quantitative fluorometric immunoassay 

(FIAX; Fluorescent Immunoassay System, International 

Diagnostic Technology Inc., Santa Clara, CA) as previously 

described (Confer et al., 1983). Titer equivalents were 

calculated for each sample by comparison with a standard 

curve constructed with sera of known end-point titers. 

Antibodies to carbohydrate-protein subunit antigen 

(CPS) were determined by an enzyme-linked immunosorbent 

assay (ELISA) as previously described (Confer et al., 1985a; 

Lessley et al., 1985). Carbohydrate-protein subunit antigen 

is a partially purified, high molecular weight saline 

extract of whole cells of P. haemolytica Al (Lessley et al., 

1985). Antibody responses are expressed as the absorbance 

at 490 nm for test sera minus the absorbance at 490 nm for 

PBSS. 

Serum titers to P. haemolytica leukotoxin were 

determined by a visual microtiter neutralization assay (LN) 

as previously described (Gentry et al., 1985a). Titers are 

expressed as the reciprocal of the highest serum dilution 

that neutralized leukotoxin. 



Calves 

Twenty-two crossbred male and female beef calves 

approximately 12-14 months old were obtained from a closed 

herd and transported to holding pens. Husbandry of the 

calves was as previously reported (Newman et al., 1982). 

Experimental Design 
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Prior to the start of the experiment (Day -16), sera 

from all calves were tested for the presence of antibodies 

to whole cell antigens of P. haemolytica Al by FIAX (Confer 

et al., 1983). Only calves with titers of <10 were used in 

the experiment. Calves were randomly assigned to the 

experimental groups. Live, unattenuated P. haemolytica Al 

was used as a positive vaccine control as it has been 

previously shown to provide protection against the 

experimental challenge method used (Panciera et al., 1984). 

Calves were challenge-exposed by intrathoracic inoculation 

of each caudal lung lobe (Panciera and Corstvet, 1984) with 

5 ml of a 22-hour culture of P. haemolytica Al grown on 

BHIB, harvested into sterile PBSS, and adjusted to a density 

of approximately l.Oxl0 9 CFU/ml. 

The 22 calves were divided into 5 groups and 

vaccinated on Days O and 7 as follows: Group 1 (5 calves), 

SKI-1 preparation; Group 2 (5 calves), SKI-6 preparation; 
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Group 3 (5 calves), SKI-9 preparation; Group 4 (5 calves), 

PBSS; and Group 5 (2 calves), live P. haemolytica Al. Sera 

were collected from all calves on Days 0, 7, 14, and 21. 

All serum samples were tested for antibodies by FIAX, 

ELISA, and LN tests. Calves were challenge-exposed on Day 

21 with 5.5xl0 9 CFU of P. haemolytica Al per caudal lung 

lobe. On Day 25 lung lesions were evaluated grossly and each 

calf was given a lung lesion score (0-20) based on a 

previously described scoring system wherein higher scores 

indicate less resistance to challenge (Panciera et al., 

1984). Calves that died from severe pneumonia after 

challenge were assigned a score of 20 because of the diffuse 

nature of the pulmonary lesions (Confer et al., 1987). 

Statistical Analysis 

All data are reported as mean± SD. ANOVA was used to 

compare means for more than 2 groups. Student's t-test was 

used to compare mean values between groups (Shott, 1990). 

The relationship between lesion score and antibody response 

was evaluated by obtaining a Pearson correlation for each 

and calculating at statistic to evaluate the linear 

association (Shott, 1990). AP value of< 0.05 was 

considered statistically significant. 

Results 
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The mean FIAX antibody titers for each vaccine group on 

Days 0, 71 14, and 21 are presented in Table 1, and 

individual titers are presented in Appendix B.1. Calves 

vaccinated with SKI-9 did not have an antibody response to 

the whole cell antigen; titers were not different from the 

PBSS controls. The calves vaccinated with live P. 

haemolytica Al responded with high titers. Calves vaccinated 

with SKI-1 and SKI-6 had moderate titers that were 

statistically different from the PBSS controls and the live 

vaccinates. There was a significant correlation between 

high FIAX titers and low lesion scores, both on an 

individual basis (r = -0.5844; P < 0.001) and on mean titers 

and lesion scores (r = -0.9228; P <0.05). 

The mean ELISA values for antibody to carbohydrate

protein antigen are presented in Table 2, and individual 

values are presented in Appendix B.2. The SKI-1 calves were 

the only group to have values statistically different from 

the control group; however, the SKI-1 mean ELISA value was 

not statistically different from the mean value of the live 

vaccinate group. ELISA values in all groups, including the 

PBSS vaccinates, increased from Day 7 to Day 14 resulting in 

fairly high titers in the controls. High mean ELISA values 

of the vaccine groups were correlated with low mean lesion 

scores (r = -0.8379), although the correlation was not 

significant statisically nor demonstrated on an individual 

calf basis (r = -0.2428). 



Results of the leukotoxin-neutralization assay are 

presented in Table 3, and individual antibody titers are 

presented in Appendix B.3. Neutralizing antibody to 

leukotoxin was demonstrable only in the live vaccinates. 
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Mean lesion scores and antibody responses of each 

vaccine group at Day O and Day 21 are presented in Table 4, 

and individual calf lesion scores are presented in Appendix 

B.4. Mean lesion scores ranked from lowest to highest are 

as follows: live vaccinates< SKI-1< SKI-6 < SKI-9 < PBSS 

(Figure 1). Calves vaccinated with live P. haemolytica and 

SKI-1 had significantly lower lesion scores than the PBSS 

controls. 

Discussion 

The outer membrane protein preparation, SKI-1, induced 

a protective response in calves against challenge with the 

homologous serovar. The mean lesion score of the SKI-1 

vaccinates was significantly lower (P <0.05) than the PBSS 

control group demonstrating the presence of immunogenic, 

protective antigens in the outer membrane protein 

preparations. Antibodies to whole cell antigens and to 

carbohydrate-protein subunit antigens were associated with 

protection in the SKI-1 vaccinates. Both of these antigen 

preparations would be expected to have outer membrane 

proteins given that both contain components from the outer 
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layer of the organism. The degree of response to whole cell 

antigens (FIAX titers) was correlated with resistance to 

challenge. However, Confer et al., (1989) have previously 

demonstrated that bacterins elicit antibodies to whole cell 

antigens that are not correlated with resistance indicating 

that presence of whole cell antibodies merely indicates 

previous exposure to such antigens and is not a consistent 

indicator of resistance to infection. The mean antibody 

titer to whole cells of the live vaccinates was 

significantly greater than that of the SKI-1 vaccinates 

indicating that the SKI-1 preparation contains some, but not 

all, of the surface antigens found on whole cells. 

Mean antibody response to carbohydrate-protein subunit 

antigens was correlated with resistance to challenge. The 

correlation was not statistically significant due,in part, 

to the high ELISA values in the PBSS controls. Although the 

correlation was not demonstrable on individual calf data, 

perhaps because of animal to animal variation in antibody 

response, mean values were associated negatively with lesion 

scores. This observation is consistent with previous 

reports demonstrating that high antibody responses to 

carbohydrate-protein antigen are correlated with resistance 

to pneumonic pasteurellosis (Confer et al. 1989; 1987; 

1985a). It seems likely that the SKI-1 preparation, the 

carbohydrate-protein subunit, and surface components of 

whole cells share multiple antigens derived from outer 
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membrane proteins. Antibody responses to carbohydrate

protein subunit which are correlated with resistance are 

predominantly against the protein portion some of which are 

surface-exposed (Confer et al., 1989; 1988) indicating that 

they are outer membrane proteins. 

Only the live vaccine induced neutralizing antibodies 

to leukotoxin indicating absence of leukotoxin in the OMP 

preparations. Some calves that lacked demonstrable 

leukotoxin antibodies were significantly resistant to 

challenge-exposure-which is further evidence that leukotoxin 

alone does not confer protection (Purdy et al., 1993b; 

Jericho et al., 1990; Confer et al., 1987) and possibly may 

play only a minor role in inducing resistance. 

The partial cross protection afforded by the 

heterologous serovars was of interest. 

resistance to greater degree than SKI-9. 

SKI-6 enhanced 

Although the mean 

lesion scores of SKI-6 and SKI-9 vaccinates were not 

significantly different from the PBSS controls, a trend was 

evident. The mean titers to whole cell antigens were nearly 

the same for SKI-1 and SKI-6 vaccinates indicating shared 

antigens to surface components which was not evident in the 

SKI-9 vaccinates. OMP profiles of SKI-1 and SKI-6 are very 

similar but differ considerably from SKI-9 indicating that 

although some OMPs are cross-reacting and capable of cross

protection, certain OMPs are serovar specific, and both 

probably induce some protection against infection. 



Determination of specific OMPs and their role in 

resistance, as well as their ability to cross-protect, is 

needed in order to utilize specific OMPs as vaccine 

components. 
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Table I. Mean antibody response of calves to whole cell 
antigens as measured by quantitative fluorometric 
immunoassay (FIAX). Titers are expressed as 
geometric mean titers ± SD. 

Vaccine 
Group Day 0 Day 7 Day 14 Day 21 

Live 0.0 0.0 83.9 260.9 
(n=2l ± 0.0 ± 7.0 ± 1.7 ± 3.8 

PBSS 1.6 1.4 3.2 3.2 
{n=5) ± 2.8 ± 1.7 ± 4.2 ± 5.1 

SKl-1 0.0 3.8 15.2 24.4 
(n=5) ± 0.0 ± 3.5 ± 4.1 ± 3.2 

SKl-6 3.3 5.5 6.2 24.8 
(n=5) ± 3.5 ± 3.7 ± 9.0 ± 3.8 

SKl-9 3.0 2.4 2.7 2.4 
(n=5) ± 3.8 ± 3.4 ± 2.7 ± 3.3 
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Table II. Mean antibody response of calves to carbohydrate-protein 
antigen as measured by ELISA. Titers are mean absorbance 
at 490 nm ± SD. 

Vaccine 
Group Day 0 Day 7 Day 14 Day 21 

Live 0.409 0.743 1.277 1.414 
(n=2) ± 0.053 ± 0.053 ± 0.168 ± 0.272 

PBSS 0.435 0.453 0.900 0.827 
(n=5) ± 0.065 ± 0.354 ± 0.365 ± 0.164 

SKl-1 0.509 0.813 1.574 1.528 
(n=5) ± 0.157 ± 0.193 ± 0.494 ± 0.564 

SKl-6 0.317 0.314 0.792 1.094 
(n=5) ± 0.109 ± 0.216 ± 0.470 ± 0.293 

SKl-9 0.419 0.271 0.641 0.489 
(n=5) ± 0.158 ± 0.130 ± 0.262 ± 0.298 
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Table Ill. Mean antibody response of calves to leukotoxin as 
measured by visual leukotoxin-neutralization assay. Titers 
are expressed as geometric mean titers ± SD. 

Vaccine 
Group Day 0 Day 7 Day 14 Day 21 

Live 5.7 5.7 32.0 32.0 
(n=2l ± 1 .6 ± 1.6 ± 2.7 ± 2.7 

PBSS 1.5 1.3 1.5 3.5 
(n=5) ± 1.9 ± 1.4 ± 1.9 ± 2.1 

SKl-1 2.0 1.7 1.5 2.6 
(n=5) ± 2.7 ± 2.0 ± 1.4 ± 1.9 

SKl-6 1.5 1. 1 1 . 1 1.7 
(n=5l ± 1.7 ± 1.3 ± 1.3 ± 1.8 

SKl-9 2.0 2.0 2.0 3.0 
(n=Sl ± 2.0 ± 2.0 ± 1.6 ± 1.9 
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Table IV - Lesion scores and antibody responses of calves vaccinated with Pasteurella haemolytica outer membrane protein-enriched 
p__E~P~~ations (SKI-1, SKI-6, SKI-9), phosphate_buffered saline solution (PBSS), or live P. haemolytica serotype 1. 

Mean antibody response 

Carbohydrate-protein 
Whole cell antigen' subunit antigen' Leukotoxin1 

Vaccine Mean 
group (n) lesion score Day 0 Day 21 Day 0 Day 21 Day 0 Day 21 

SKI-1. (5) 5.3 ± 2.1* 1.0 ± 1.0 24.4 ± 3.2* 0.51, ± 0.18 1.53 ± 0.63* 2.0 ± 2.7 2.6 ± 1.9 
SKI-6 (5) 9.4 ± 6. 7 3.3 ± 4.1 24.8 ± 4.4* 0.32 ± 0.12 1.09 ± 0.33 1.5 ± 1.9 1.7±1.8 
SKI-9 (5) 12.2 ± 4.1 3.0 ± 4.4 2.4 ± 3.3 0.42 ± 0.18 0. 49 ± 0. 33 2.0 ± 2.0 3.0 ± 1.9 
PBSS (5) 15.0 ± 7.0 1.6 ± 2.8 3.2 ± 5.1 0.44 ± 0.07 0.83 ± 0.18 1.5 ± 1.6 3.5 ± 2.1 
Live (2) 2.3 ± 1.1* 1.0 ± 1.1 260.9 ± 3.8* 0.41 ± 0.08 1.41 ± 0.38 5.7±1.6 32.0 ± 2.7* 

*Significant difference from PBSS-inoculated group mean (P<0.05). 
'Geometric mean titer± SD as detected by quantitative fluorometric immunoassay (whole cell antigen) or visual 
leukotoxin-neutralization assay. 

fMean absorbance at 490nm ± SD as detected by ELISA; 

(.JI 
(.JI 
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Figure 1. Mean lesion score of each vaccine group. 
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CHAPTER IV 

OUTER MEMBRANE PROTEIN ANTIGENS OF PASTEURELLA HAEMOLYTICA 

ASSOCIATED WITH RESISTANCE TO PNEUMONIC PASTEURELLOSIS 

Abstract 

Irnmunoblotting data revealed that antibodies to outer 

membrane proteins of 84.5, 50.5, 45.5, 37, or 16.5 kDa from 

calves vaccinated with outer membrane protein-enriched 

fractions of Pasteurella haemolytica Al (SKI-1), A6 (SKI-6), 

or A9 (SKI-9) were significantly associated with resistance 

to experimental challenge. All three vaccines produced a 

similar antibody response to the 84.5 kDa protein while SKI-

1 and SKI-6 produced higher levels of antibodies as measured 

by densitometry to the 50.5, 37, and 16.5 kDa antigens than 

did the SKI-9 vaccine. SKI-1 produced higher antibody 

levels than either SKI-6 or SKI-9 to the 45.5 kDa protein. 

Irnmunoblots using sera from calves vaccinated with P. 

haemolytica bacterins or live organisms reacted against SKI-

1 antigens demonstrated that antibodies to outer membrane 

proteins of 82, 63, 45.5 and 29 kDa were significantly 

correlated to resistance. Based on these results, OMPs that 

appear to be protective irnmunogens are 45.5, 82-84.5, 16.5, 

37, 29, and 63 kDa. 
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Introduction 

Shipping fever or bovine pneumonic pasteurellosis 

continues to be one of the most significant disease problems 

of the cattle industry (Church and Radostits, 1981; Martin 

et al., 1980). Pasteurella haemolytica Al is the 

predominant organism associated with this complex disease, 

although other serovars are occasionally involved (Quirie et 

al., 1986; Reggardio, 1979). Various antigenic components 

of P. haemolytica have been studied in an attempt to 

elucidate those which are important in stimulating a 

protective immune response in cattle. Outer membrane 

protein-enriched fractions of P. haemolytica Al have been 

shown to protect cattle against experimental challenge 

(Chapter 3). Specific OMPs that are able to elicit 

antibodies that contribute to immunity have not been 

described. Previous studies have demonstrated association 

of resistance to experimental challenge to particular 

protein antigens in whole cell, leukotoxin, and 

carbohydrate-protein extract preparations of P. haemolytica 

Al by immunoblotting (Mosier et al., 1989b). This study was 

under taken in a similar manner to determine the outer 

membrane proteins to which antibodies are produced by 

vaccination with Sarkosyl-derived OMP-enriched fractions of 

P. haemolytica Al, A6, and A9, and to determine which 

antibodies are correlated with resistance to experimental 
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infection. 

Materials and Methods 

Bacterial Cultures 

Pasteurella haemolytica Al and A9 were originally 

isolated from feedlot calves. Serovar 6 and serovar-typing 

antisera were obtained from Dr. Glynn Frank (National Animal 

Disease Center, Ames, Iowa). Serovar identifications were 

confirmed by the rapid plate agglutination test (Frank and 

Wessman, 1978). The strains used for outer membrane protein 

preparations were harvested from 6-hour growth on brain 

heart infusion agar with 5% citrated bovine blood (BHIB 

agar), suspended in brain heart infusion (BHI) broth with 

15% glycerol, and stored at -70 C until ready to use. 

Serovar 1 used as the challenge strain had been passaged 

periodically in calves, lyopholized, and stored at -20 C 

prior to use (Newman et al., 1982). 

Outer Membrane Protein Enriched Fractions 

Pasteurella haemolytica serovars 1, 6, and 9 were 

cultured from the BHI glycerol stocks onto BHIB agar to 

check for purity. Six-hour cultures on BHIB agar were 

harvested into sterile phosphate buffered saline (PBSS) 

(0.01M, pH 7.4) and frozen at -20 C until harvested cells 
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were determined to be pure. The cells were thawed, washed 

once in PBSS (13,000 x g, 20 min, 4 C), and resuspended in 

PBSS to approximately one-half of the original volume. The 

washed, whole-cell preparations were frozen at -20 C until 

ready to use. Washed, whole-cell preparations of P. 

haemolytica were centrifuged at 20,000 x g for 20 min at 4 

C, and the resulting pellets were weighed. Pellets were 

suspended in approximately 20 ml of 20% sucrose in 0.01 M 

HEPES buffer. RNase (Sigma Chemical Co., St. Louis, MO) and 

DNase (Sigma Chemical Co., St. Louis, MO) each were added at 

1 mg per 4.2 gm pellet. Bacterial cells were then sonicated 

as previously reported (Simons et al., 1989), and the 

suspension was incubated at 37 C for 40 minutes. Remaining 

whole cells were removed by centrifugation at 6000 x g for 

20 minutes at 4 C. The supernatant was centrifuged at 

226,000 x g (55.2 Ti rotor, L8-60MR Ultracentrifuge; Beckman 

Instruments, Inc.) for 70 minutes to collect the membranes 

which were washed 3 times in cold, sterile, distilled water. 

The final pellet was suspended in 1-4 ml of sterile, 

distilled water and held at 4 C for use within 24 hours or 

at -20 C for longer storage. 

To an aliquot of total membrane preparation, 2 times 

the volume of 0.5% sodium N-lauroylsarcosine (Sarkosyl; 

Sigma Chemical Co., St. Louis, MO) in 0.01M Tris buffer was 

added to solubilize inner membranes (Squire et al., 1984). 

The solution was mixed gently for 30 minutes at room 
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temperature, and insoluble (outer) membranes were collected 

by centrifugation at 226,000 x g for 70 minutes. The 

membranes were then washed 3 times in cold, sterile 

distilled water. The final pellet, referred to as Sarkosyl

insoluble preparation (SKI), was resuspended in 1-4 ml of 

sterile, distilled water and stored at -20 C. The SKI 

contained 15.3 ug of 2-keto,3-deoxyoctulonic acid per 1.0 mg 

of total protein. Analysis of succinate hydrogenase 

activity (an inner membrane enzyme) indicated <1% 

contamination of the SKI with inner membranes. 

Serum Samples and Lesion Scores 

Twenty-two serum samples from calves vaccinated with 

outer membrane protein-enriched fractions of P. haemolytica 

Al, A6, A9, PBSS, or live Al bacteria were used in the 

first part of this study (Chapter III). Each calf was 

inoculated subcutaneously twice, one week apart, with 2.0 ml 

of vaccine. Each OMP.vaccine aliquot contained Sarkosyl

derived outer membrane protein preparation (2 mg protein) 

mixed with an equal volume of Freund's incomplete adjuvant 

(Difeo Laboratories, Detroit, MI). Serum was collected two 

weeks after the last vaccination which was the time of 

experimental challenge. The live vaccine was a 22-hour 

culture of P. haemolytica Al adjusted to a density of 

approximately 1 x 10 9 CFU/ml (Panciera et al., 1984). The 
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number of calves in each group were as follows: Al= 5, A6 = 

5, A9 = 5, PBSS (negative control) = 5, and live Al= 2. 

This group of calves was experimentally challenged 

intrathoracically with P. haemolytica Al (Panciera and 

Corstvet, 1984) the day the serum was collected (Day 21). 

Pulmonary lesions were evaluated grossly, and each calf was 

given a lung lesion score (0-20) based on a previously 

described scoring system wherein higher scores indicate less 

resistance to challenge (Panciera et al., 1984). 

An additional 40 serum samples were obtained from 

calves from a previous experiment that had been vaccinated 

with either PBSS (n=lO), P. haemolytica Al bacterin in 

Freund's incomplete adjuvant (FIA) (n=lO), P. haemolytica Al 

bacterin in aluminum hydroxide adjuvant (ALH) (n = 10), or 

live Al (n = 10) as previously described (Mosier et al., 

1989b). These calves were challenged and lung lesions 

scored in the same manner as described above. 

Immunoblots 

Sarkosyl insoluble preparations of P. haemolytica Al 

were adjusted to 1.0 mg protein per ml and solubilized in 

sample buffer containing sodium dodecyl sulfate at 100 C for 

90 sec before loading on gels. Four per cent polyacrylamide 

stacking gels and 10% resolving gels were used to separate 

proteins (Simons et al., 1989). Proteins from the gels were 
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transferred electrophoretically onto nitrocellulose 

membranes (Kirkegaard and Perry Laboratories, Inc., 

Gaithersburg, MD) which were cut into strips for 

immunoblotting. Each calf serum was diluted 1:25 and 

reacted with individual membrane strips for 1 hr. The 

strips were washed twice and Protein A-biotin diluted 1:400 

was added to each strip and allowed to react for 1 hr 

followed by two washes. Protein A was used instead of a 

secondary antibody to bind to IgG immunoglobulin. 

Streptavidin-horseradish peroxidase (Amersham Corp., 

Arlington Heights, IL) diluted 1:300 was added and allowed 

to react for 30 minutes. Color was developed with 4-chloro-

2-naphthol and hydrogen peroxide. Apparent molecular 

weights of proteins were determined by comparison of 

relative mobilities to that of known standards (Weber and 

Osborn, 1969). 

Densitometry 

Air-dried membrane strips were analyzed by densitometry 

(model 620 Video Densitometer; Bio-Rad) as described (Simons 

et al., 1989). Data are expressed as total area (mm2 ) of 

each peak. 

Statistical Analysis 



64 

The relationship between lesion score and optical 

density of each major protein band was evaluated by 

obtaining a Pearson correlation coefficient for each and 

calculating at statistic to evaluate the linear association 

between them (Shott, 1990). Student's t-test was used to 

compare mean optical densities of the major protein bands of 

the various vaccine groups. The mean lesion score of calves 

that had antibody for each protein band was compared by 

Student's t-test (Shott, 1990) to the mean lesion score of 

calves without detectable antibody. AP value of< 0.05 was 

considered statistically significant. 

Results 

Outer Membrane Protein-Enriched Vaccinated Calves 

Vaccination of calves with outer membrane protein

enriched preparations of serovars 1, 6, and 9 and live P. 

haemolytica Al resulted in IgG antibodies that reacted with 

at least 12 different outer membrane proteins as detected by 

immunoblotting. The major proteins identified were 84.5, 72, 

64.5, 61, 57, 50.5, 45.5, 41, 37, 32, 27, and 16.5 kDa. 

There was no correlation betweeen any protein and resistance 

as measured by lesion score relationship to total peak area 

(Table I). 

The mean lesion scores for each group of sera with 
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antibodies versus the mean lesion score for the group 

without antibodies are presented in Table II. Calves with 

detectable antibodies to proteins of 84.5, 50.5, 45.5, 37, 

or 16.5 kDa had significantly lower lesion scores than those 

calves that lacked detectable antibody on immunoblots. 

Mean values for protein peak areas of each vaccine 

group is presented in Appendix C.l. The mean peak area of 

antibodies from calves vaccinated with SKI-1 were 

significantly greater than the PBSS controls to the 84.5, 

61, and 37 kDa bands. Sera from the SKI-6 vaccinates had 

significantly greater peak areas than the PBSS controls to 

the 37 and 32 kDa bands. Sera from the SKI-9 vaccinates had 

significantly greater peak areas to the 84.5 and 32 kDa 

bands than the PBSS controls. SKI-1 vaccinates had 

antibodies to protein bands with mean peak areas that were 

greater than SKI-6, SKI-9, or PBSS vaccinates at 72, 61, 57, 

45.5 and 41 kDa although. differences were _not statistically 

significant. Sera from SKI-1 and SKI-6 vaccinates both had 

greater peak areas than SKI-9 and PBSS vaccinates at 50.5, 

37, and 16.5 kDa bands, although only the 37 kDa band 

difference was statistically significant. SKI-1 vaccinates 

were unique in producing antibodies to 57 and 41 kDa 

proteins. 

Bacterin With Adjuvant-Vaccinated Calves 
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Vaccination of calves with bacterins of P. haemolytica 

Al with Freund's incomplete adjuvant or aluminum hydroxide 

adjuvant or with live bacteria resulted in antibodies to 6 

outer membrane protein bands at 82, 63, 45.5, 30.5, 29, and 

15 kDa. High antibody responses to protein bands at 82, 63, 

and 45.5 kDa correlated with low lesion scores in a linear 

fashion (Table III and Figure 1). 

The mean lesion score for each group of calves whose 

sera contained antibodies was significantly different from 

the mean lesion score of the group without detectable 

antibodies to the 82, 63, 45.5, and 29 kDa protein bands 

(Table IV). 

Discussion 

Vaccination of ca.lves with Sarkosyl-derived outer 

membrane protein preparations (SKI) has been shown to 

enhance resistance to experimental challenge with homologous 

serovars (Chapter III). The results of that study and 

others (Confer et al., 1989) have demonstrated an 

association of protection against pneumonic pasteurellosis 

with antibodies to proteins derived from a surface-extracted 

preparation which presumably contains outer membrane 

proteins. By immunoblotting sera from calves vaccinated 

with SKI-1, SKI-6 or SKI-9 to membran~s with separated 

proteins from SKI-1, antibodies to 12 protein bands were 
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demonstrated. Although the magnitude of the antibody 

repsonse to none of these bands could be correlated to 

resistance, the presence or absence of antibodies to 

particular bands was correlated with resistance as measured 

by comparing mean lesion scores of those with antibody to 

those sera without antibody. This observation suggests that 

mere presence of antibodies may be more significant than 

quantity of antibodies. Antibodies positively correlated 

with resistance by this method were to OMPs of 84.5, 50.5, 

45.5, 37, and 16.5 kDa. Mosier et al. (1989b), in a study 

using similar sera in immunoblots against whole cell, CPS, 

and leukotoxin antigen preparations, found that antibodies 

to 86, 51, 34, 31, and 16 kDA of whole cell and CPS antigens 

were significantly related to resistance. These may be the 

same as the 84.5, 50.5, and 16.5 kDa antigens detected in 

this study. Possibly the 34 and 37 kDa antigens are the 

same. Some discrepancy occurred in 43-49 kDa range, and it 

would be difficult to determine if the two studies were 

detecting the same bands or not. 

SKI-1 elicited antibody responses that were unique or 

greatly enhanced to 72, 61, 57, 45.5, and 41 kDa proteins. 

SKI-1 and SkI-6 elicited increased antibodies compared to 

SKI-9 vaccinates to 50.5, 37, and 16.5 kDa antigens. All 

three SKI vaccines elicited antibodies to 84.5 and 32 kDa 

proteins. 

Sera from bacterin-vaccinated calves had fewer bands on 
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immunoblots than did those of the SKI-vaccinated calves. 

This was expected given that the SKI-preparations have 

greatly increased amounts of OMPs relative to the bacterins, 

and SKI preps may have certain epitopes displayed that are 

masked in the bacterins. Antibodies to proteins of 82, 63, 

45.5, and 29 were correlated significantly with protection. 

Mean lesion scores of calves from groups with antibody were 

significantly lower than calves without antibody to each of 

these same four proteins. The 82 kDa protein is assumed to 

be the same as the 84.5 kDa antigen demonstrated in the 

first study. Thus, antibodies to the 82-84.5 and 45.5 kDa 

again appear to be significantly related to resistance. 

Bacterins and SKI preparations both elicit antibodies 

to OMPS of 82-84.5, 63-64.5, 45.5, 30.5-32, 27-29 and 15-

16.5 kDa. In addition SKI fractions elicited antibodies to 

72, 61, 57 50.5, 41, and 37 kDa that were not detectable in 

sera from bacterin-vaccinates in this study. Of these, 

antibodies to the 50.5 and 37 kDa antigens were associated 

with enhanced resistance. 

The failure to demonstrate a correlation of protein 

peak area to resistance in the Sarkosyl-inoculated calves 

may be due to the smaller number of calves used in that 

study. Variability between individual calves within each 

vaccine group was large and use of increased numbers of 

animals should help to alleviate the variability problem. 

Differences noted between estimated molecuar weights of 
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protein bands detected in each study may be due in part to 

slight changes in relative mobility rf measurements and in 

molecular weight markers used. Using 10% acrylamide gels 

makes estimation of molecular weights in the higher range of 

80 kDa to >lOOkDa extremely vulnerable to error as very 

slight changes in rt can result in major changes in apparent 

molecular weight. 

Outer membrane proteins of P. haemolytica Al that have 

been shown to be surface exposed are 94, 84, 53.5, 49, 43, 

41, 29.5, and 16 kDa (Craven et al., 1991; Chapter II). 

Antibodies to the OMPs that correlate positively with 

resistance in this study and that are probably surface

exposed are 84.5, 50.5, 45.5, 29, and 16.5 kDa. These OMPs 

are worthy of continued study as potential components of 

efficacious vaccines for pneumonic pasteurellosis. 

Problems of identification of protein bands from one gel or 

blot to another may be alleviated by the use of monoclonal 

antibodies. Such an approach would be especially helpful in 

identifying proteins in ranges where there are several bands 

migrating within close proximity to one another. 



Table I. Correlation of peak area and 
lesion score for SKI-vaccinated 
calves. 

Band MW 
{kDa} r* 

84.5 - 0.1163 

72.0 - 0.2929 

64.5 - 0.4401 

61.0 - 0.2887 

57.0 - 0.3406 

50.5 - 0.2308 

45.5 - 0.4068 

41.0 - 0.1979 

37.0 - 0.4030 

32.0 - 0.0203 

27.0 - 0.2252 

16.5 + 0.0576 

* Pearson correlation coefficient. 
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Table II. Mean lesion scores for SKI-vaccinated 
calves with antibodies versus those 
without detectable antibodies to the 
various protein bands. 

Mean Lesion Scores 

Antibody Antibody 
Band Detected (n) Not Detected (n) 

84.5* 7.3 ± 5.4 (12) 12.6 ± 6.5 (10) 

72.0 8.9 ± 6.2 ( 6) 10.0 ± 6.6(16) 

64.5 10.2 ± 7.1 (13) 9.1 ± 5.4 ( 9) 

61.0 9.5 ± 6.2 (12) 10.1 ±6.8(10) 

57.0 7.8 ± 5.1 (12) 12.0 ± 7.2 (10) 

50.5 7.6 ± 6.2 (15) 14.3 ± 3.8 ( 7) 

45.5* 8.0 ± 5.8 (16) 14.3 ± 5.8 ( 6) 

41.0 7.6 ± 5.9 ( 8) 10.9 ± 6.5 (14) 

37.0* 6.8 ± 5.1 (14) 14.9 ± 4.9 ( 8) 

32.0 7.5 ± 5.7 (12) 12.4 ± 6.3 (10) 

27.0 9.9 ± 7.2 ( 8) 9.6 ± 6.1 (14) 

16.5* 6.0 ± 5.1 (11) 13.4±5.3(11) 

* Difference between mean lesion scores 
(p<0.05). 
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Table Ill. Correlation of peak area and 
lesion score for bacterin
vaccinated calves. 

Band MW 
(kDa) r* 

82.0 -0.4665** 

63.0 -0.4249** 

45.5 -0.3266** 

30.5 -0.0851 

29.0 -0.1733 

15.0 -0.1329 

* r = Pearson correlation coefficient. 
**Indicates linear relationship (p<0.05). 
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Figure 1. Optical density of antibodies to 82, 63, and 45.5 
kDa proteins and lesion scores of bacterin-vaccinated 
calves. 



Table IV. Mean lesion scores for bacterin
vaccinated calves with antibodies 
versus those without detectable 
antibodies to the various protein 
bands. 

Mean Lesion Scores 

Antibody Antibody 
Band Detected (n) Not Detected (n) 

82.0* 6.4 ± 5.9 (23) 11.6 ± 6.3 (17) 

63.0* 7.1 ± 6.0 (33) 15.1 ± 5.0 ( 7) 

45.5* 7.3 ± 6.1 (32) 13.7 ± 6.3 ( 8) 

30.5 6.7 ± 5.5 (16) 9.8 ± 7.0 (24) 

29.0* 6.2 ± 5.8 (23) 11.7 ± 6.4 (17) 

15.0 7.1 ± 6.2 (20) 10.0 ± 6.8 (20) 

* Difference between mean lesion scores 
(p<0.05). 
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APPENDIX 



Appendix A.1 

Counts per minute (CPM) and protein concentration 
of 1251-labeled samples used in autoradiography 

Sample 

P. haemolytica A 1 

P. haemolytica A2 

P. haemolytica A6 

SKl-1 

Protein (µg) 

5.00 

5.00 

5.00 

0.04 

CPM 

163,318 

53,190 

87,603 

40,005 

87 
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Mean peak area of outer membrane protein-enriched fractions 

Peak Area Optical Density 
Peak MW 
No. (kDa) FPC/SKI* FPC/SG* SON/SKI** SON/SG** 

1 96.0 2.591 2.512 2.678 2.078 
2 82.0 1.105 0.672 1.568 0.600 
3 69.0 0.980 0.599 1.053 0.417 
4 62.5 2.495 1.104 2.359 1.348 
5 57.5 0.764 0.906 0.540 0.873 
6 52.5 0.421 0.405 0.832 0.250 
7 49.0 1.590 1.179 1.829 1.372 
8 44.5 2.474 1.632 2.368 1.484 
9 42.0 0.583 0.504 0.789 0.464 

10 38.5 3.345 2.969 3.486 2.608 
11 37.0 1.244 0.565 0.921 0.547 
12 36.0 0.404 0.552 0.674 0.603 
13 34.5 1.521 1.053 1.573 1.009 
14 32.5 0.943 0.867 0.987 0.605 
15 30.5 4.544 3.924 4.576 3.520 
16 26.5 1.534 1.337 1.911 1.270 
17 23.5 1.899 1.241 1.830 1.218 
18 22.2 1.313 0.947 1.525 1.122 
19 20.5 2.191 2.814 2.808 2.414 
20 17.5 2.283 2.442 2.804 2.425 
21 16.0 2.879 1.705 2.914 1.847 
22 14.0 2.792 2.341 2.702 2.388 

*n = 2 
**n = 3 
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Antibody response of individual calves to whole cell antigens as 
measured by quantitative fluorometric immunoassay (FIAX) 

Vaccine Calf 
Group No. Day 0 Day 7 Day 14 Day 21 

Live 303 0.0 1.5 145.6 673.4 
313 0.0 72.8 48.3 101.1 

PBSS 300 0.0 0.0 17.2 27.2 
312 10.0 0.0 0.0 0.0 
317 0.0 1.5 20.1 0.0 
319 0.0 0.0 0.0 0.0 
H15 0.0 3.7 0.0 12.5 

SKl-1 299 0.0 9.5 51.5 84.9 
301 0.0 0.1 35.3 27.2 
309 0.0 24.2 23.2 22.5 
314 0.0 0.0 0.0 3.8 
322 0.0 3.3 19.1 43.8 

SKl-6 302 0.0 0.1 0.0 2.6 
305 31.3 16.9 1.4 19.3 
321 4.1 15.1 16.3 22.5 
323 2.9 16.0 27.7 137.9 
325 0.1 1.2 14.5 60.0 

SKl-9 304 0.0 0.1 0.0 0.0 
307 16.0 3.7 13.7 7.4 
310 0.0 0.0 0.0 0.0 
320 14.4 23.1 4.2 10.5 
324 0.0 0.1 2.6 1.0 
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Antibody response of individual calves to carbohydrate-protein 
antigen as measured by ELISA 

Vaccine Calf 
Group No. Day 0 Day 7 Day 14 Day 21 

PBSS 300 0.389 0.038 1.373 1.110 
312 0.432 0.285 0.694 0.877 
317 0.350 0.844 1.267 0.773 
319 0.540 0.907 0.764 0.617 
H15 0.465 0.193 0.402 0.759 

Live 303 0.356 0.796 1.444 1.685 
313 0.462 0.690 1.109 1.142 

SKl-1 299 0.407 0.726 1.680 1.585 
301 0.497 0.966 2.196 2.316 
309 0.727 0.698 1.882 1.813 
314 0.284 0.572 0.746 0.612 
322 0.628 1.103 1.367 1.315 

SKl-6 302 0.350 0.408 0.892 1.336 
305 0.308 0.202 1.658 1.422 
321 0.262 0.672 0.336 0.840 
323 0.167 0.017 0.596 0.663 
325 0.498 0.269 0.478 1.207 

SKl-9 304 0.242 0.101 0.722 0.767 
307 0.538 0.380 0.432 0.510 
310 0.284 0.193 1.082 0.846 
320 0.661 0.458 0.327 0.053 
324 0.372 0.225 0.644 0.268 
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Antibody response of individual calves to leukotoxin as measured 
by visual leukotoxin-neutralization assay 

Vaccine Calf 
Group No. Day 0 Day 7 Day 14 Day 21 

Live 303 8 8 .16 16 
313 4 4 64 64 

PBSS 300 4 2 2 4 
312 <2 <2 <2 <2 
317 <2 <2 <2 4 
319 <2 <2 <2 4 
H15 2 2 4 8 

SKl-1 299 <8 4 2 4 
301 <4 4 2 4 
309 <2 <2 <2 2 
314 <2 <2 <2 <2 
322 <2 <2 2 4 

SKl-6 302 <2 <2 <2 <2 
305 2 <2 <2 ·<2 
321 <2 <2 <2 2 
323 <2 <2 <2 2 
325 4 2 2 4 

SKl-9 304 2 2 2 2 
307 4 4 2 8 
310 4 4 2 2 
320 <2 <2 <2 2 
324 <2 <2 4 4 
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Lesion scores of calves following challenge 
with Pasteurel/a haemolytica A 1 

Vaccine Calf Lesion Mean 
Group No. Score ± SD 

Live 303 3.0 2.3 
313 1.5 ± 0.8 

PBSS 300 20.0 15.0 
312 20.0 ± 7.0 
317 13.5 
319 3.5 
H15 18.0 

SKl-1 299 3.0 5.3 
301 7.0 ± 2.1 
309 4.0 
314 8.0 
322 4.5 

SKl-6 302 20.0 9.4 
305 11.5 ± 6.7 
321 7.0 
323 2.5 
325 6.0 

SKl-9 304 9.0 12.2 
307 13.0 ± 4.1 
310 17.0 
320 7.0 
324 15.0 
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Mean peak area of antibody to OMPs for each vaccine group 

Vaccine Group 

Band MW SKl-1 SKl-6 SKl-9 PBS Live 
(kDa) {n=5) {n=5) (n=5) (n=5) (n-2) 

84.5 0.006 0.077 0.004 0.000 0.010 
± 0.002 ± 0.146 ± 0.002 ± 0.000 ± 0.003 

72.0 0.301 0.073 0.004 0.000 0.000 
± 0.313 ± 0.159 ±: 0.004 ± 0.000 ± 0.000 

64.5 0.000 0.000 0.140 0.076 0.271 
± 0.000 ± 0.000 ± 0.189 ± 0.164 ± 0.376 

61.0 0.219 0.085 0.003 0.003 0.001 
± 0.239 ± 0.103 ± 0.002 ± 0.003 ± 0.001 

57.0 0.209 0.000 0.004 0.001 0.159 
± 0.262 ± 0.000 ± 0.002 ± 0.002 ± 0.072 

50.5 0.075 0.110 0.001 0.109 0.003 
± 0.081 ± 0.153 ± 0.002 ± 0.026 ± 0.004 

45.5 0.269 0.075 0.140 0.102 0.095 
± 0.410 ± 0.096 ± 0.189 ± 0.127 ± 0.127 

41.0 0.234 0.000 0.000 0.000 0.101 
± 0.504 ± 0.000 ± 0.000 ± 0.000 ± 0.135 

37.0 0.141 0.126 0.001 0.001 0.005 
± 0.151 ± 0.113 ± 0.002 ± 0.002 ± 0.000 

32.0 0.064 0.072 0.116 0.000 0.010 
± 0.117 ± 0.010 ± 0.023 ± 0.000 ± 0.000 

27.0 0.000 0.107 0.005 0.000 0.003 
± 0.000 ± 0.158 ± 0.006 ± 0.000 ± 0.004 

16.5 0.069 0.082 0.000 0.000 0.005 
± 0.100 ± 0.123 ± 0.000 ± 0.000 ± 0.000 
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