
A FORMAL LANGUAGE MODEL FOR

DETECTING AMBIGUITY IN SGML.

By

RICHARD WALTER MATZEN

Bachelor of Science
University of Central Arkansas

Conway, Arkansas
1984

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1987

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 1993
1

\

A FORMAL LANGUAGE MODEL FOR

DETECTING AMBIGUITY IN SGML

Thesis Approved: ,

Dean of the Graduate College

ii

PREFACE

The Standard Generalized Markup Language (SGML) is the first document processing

standard to gain widespread acceptance. However, the lack of a formal language model

for SQML causes. problems. One such problem is detecting ambiguity in the document

type definitions (DTDs) that are used to define classes of documents. There are two kinds

of ambiguity that are defmed and prohibited by the standard (ISO 8879). However, no

complete methods have been shown for detecting and preventing these kinds of ambiguity.

The definitions of ambiguity in the standard were revised; the revisions formalize the

existing definitions and they clearly distinguish the kinds of ambiguity that can occur in a

DID. Then a language model was developed to recognize both DTDs and the classes of

documents they define. Based on this language model, algorithms were developed for

detecting ambiguity under the revised definitions. The revised definitions of ambiguity and

the algorithms for detecting ambiguity resolve open questions regarding the definitions

and their implementation.

I wish to express my appreciation to all who assisted me in this research and in my

course of study at Oklahoma State University. I wish to thank my major adviser, Dr. G.E.

Hedrick, for his contributions to this dissertation, for his expert instruction in language

theory, and for his invaluable guidance. I wish to express my gratitude and respect to my

dissertation adviser, Dr. K. M. George, for his guidance in this work and for the ideas and

the rigor that he has contributed to it. I also wish to thank the other members of my

advisory committee, Dr. W. B. Powell and Dr. B. E. Mayfield, for their advisement and

their interest.

I am grateful to my coworkers at TMS who have given me support; especially to Dr.

J. R. Phillips for his advice and encouragement and to Butch Taylor for the lively

iii

discussions on automata theory. I.am also grateful to my parents, to TMS Inc., and to the

McAlester Scottish Rite Foundation for providing financial assistance. A special thank­

you is due to my wife Jan for her help with the illustrations. I also wish to thank Anne

Brueggemann-Klein for providing a copy of her paper on ambiguous content models.

Special thanks are due to all of my family: to my wife and sons for their understanding

and patience, to my mother, sister, and brother for their support, and to the Chaneys for

their posiiive encouragement. I wish to express my deepest appreciation to my father for

his inspiration, his advice, and for believing in me.

iv

TABLE OF CONTENTS

Chapter

1. Introduction. . .
Page

1

2. Literature review 5

2.1. Review of Language Theory Concepts 5
2.2. SGML Background. 8

2.2.1. SGML Syntax Productions . . 10
2.2.2. Ambiguous Content Models. . 16
2.2.3. Ambiguity Caused By Omitted Tags. 19
2.2.4. Disambiguating Rules for SGML

Parsers 20
2.3. Related Work in Language Theory. . 21
2.4. Related Work on Ambiguity in SGML. 23

3. A Language Model for SGML DTDs. 29
3.1. Preliminary Definitions. 29
3. 2. Algorithms . 33

4. A Parser for DTDs 51
4.1. A System of Regular Expressions for DTDs 51
4.2. A System of Finite Automata for DTDs 52
4.3. A Parser for DTDs. 54

5. Ambiguous Model Groups. 58
5.1. Preliminary Definitions. 58
5.2. Algorithms 61

6. Ambiguous DTDs. 76
6.1. Systems of Finite Automata Recognizing

Document Instances . . . 77
6.2. Ambiguity Caused By Omitted Tags 84

7. Exceptions. 121
7.1. Preliminary Definitions. 121
7.2. The Effect of Exceptions on Content Models 124
7.3. A System of Finite Automata for

Document Instances. 129
7.4. Exceptions and Ambiguity 134
7.5. Exception Validation. 139

V

Chapter

8. Conclusions and Future Work
8.1. Conclusions
8.2. Recommendations for Future Work.

References

Vl

Page

140
140
142

143

LIST OF TABLES

Table

2.1. The·operators of syntax productions

4.1. DTD: parsing actions ..

4.2. Element_declaration: parsing actions.

4.3. Model_group: parsing actions ..

4.4. Content_token: parsing actions.

5.1. Model_group: indexing a model group

5.2. Content_token: indexing a model group

5.3. Model_group: constructing an equivalent
regular expression for an indexed
model group

5.4. Content_token: constructing an equivalent
regular expression for an indexed

Page

10

55

55

56

56

61

62

65

model group. 66

5.5. The NFA for (A AND BAND C) by Construction 2 70

5.6. Removing e-transitions ans inaccessible states. 72

6.1. DTD: constructing an explicit DTD

6.2. Element_declaration: constructing an
explicit DTD

6.3. Correspondence for Example 6.4.

6.4. Correspondence for Example 6.5 ..

6.5. Correspondence for Example 6.6.

6.6. Correspondence for Example 6.7.

6.7. Correspondence for Example 6.8.

vii

·•

79

79

92

94

95

97

99

Table

6.8. Correspondence for Example 6.9

7.1. Dynamic content models for Example 7.3.

7.2. Construct a DCM list for a DTD

viii

Page

101

124

126

LIST OF FIGURES

Figure Page

2 .1. Graph representations of NFAs. 6

2 . 2 . The NFA for b in :r 7

2 . 3 . The NFA for (sit). 7

2.4. The NFA for (st) 8

2.5. The NFA for (s*) 8

3 .1. The NFA for A in Example 3.2 32

3.2. The NFA for B in Example 3.2 32

3. 3. The NFA for A in Example 3.3 35

3.4. The NFA for B in Example 3.3 35

3 . 5. The .NFA for A1 in Example 3.4. 37

3 . 6 . The NFA for Bin Example 3.4 37

4 .1. The NFA for DTD. . 53

4.2. The NFA for element declaration. 53

4.3. The NFA for model group. 53

4. 4. The NFA for content token. 54

5 .1. The NFA for r' . . 67

5.2. The NFA for M(m1PLUS). 68

5.3. The NFA for (CIA)+ by Construction 1 68

5.4. The NFA for (CIA)+ by Thompson's Construction. 68

5 . 5 . The NFA for (A AND BAND C) by Construction 2. 70

ix

Figure Page

5. 6. Removing e-transitions and inaccessible states 71

6 .1. The NFA for TOP in Example 6.3 83

6. 2. The NFA for A in Example 6.3 83

6. 3. The NFA for B in Example 6.3 83

6 .4. The NFA for A in Example. 6 .. 4 . . . 90

6 . 5 . The NFA for B in Example 6.4 91

6. 6. The·NFA for C in Example 6.4 91

6.7. The ALA(l) tree for (A,2) in Example 6.4 91

6.8. The NFA for A in Example 6.5 92

6 . 9 . The NFA for B in Example 6.5 93

6.10. The NFA for C in Example 6.5 93

6.11. The ALA(l) tree for (A, 2) in Example 6.5 93

6.12. The NFA for A in Example 6.6 94

6.13. The NFA for B in Example 6.6 95

6.14. The ALA(l) tree for (B, 2) in Example 6.6 95

6.15. The NFA for A in Example 6.7 96

6.16. The NFA for B in Example 6.7 96

6.17. The NFA for C in Example 6.7 97

6.18. The ALA(l) tree for (A, 2) in Example 6.7 97

6.19. The NFA for A in Example 6.8 98

6.20. The NFA for B in Example 6.8 98

6.21. The ALA(l) tree for (A, 1) in Example 6.8 99

6.22. The NFA for A in Example 6.9 100

6.23. The NFA for B in Example 6.9 . . . 100

6.24. The ALA(l) tree for (A, 3) in Example 6.9 100

X

----- -- - ----- - ---

Figure Page

6.25. The NFA for E in Example 6.10. 102

6.26. The NFA for A in Example 6.10. 102

6.27. The NFA for B in Example 6.10. 102

6.28. The ALA(l) tree for (E, 3) in Example 6.10. 102

6.29. Thompson's Construction for ((<Ni> I e) s) . . . 105

6.30. Thompson's Construction for (s(</Ni>le)) 107

6. 31. Thompson's Construction for
((<Nile)s(</Ni>le)). . . 108

7 .1. The DCM tree for Example 7.4. 128

7.2. The DCM tree for Example 7 . 5 . 129

7. 3. The DCM tree for Example 7.6 131

7. 4. The NFA for A in Example 7 . 6 . 132

7 . 5 . The NFA for B in Example 7. 6. 132

7 . 6 . The NFA for C in Example 7. 6. . 132

7. 7. The NFA for X in Example 7. 6. 132

7. 8. The NFA for A1 in Example 7.6 133

7.9. The NFA for A2 in Example 7 .. 6 . 133

7 .10. The NFA for B1 ·in Example 7.6 134

7 .11. The ALA(l) tree for (A, 1) in Example 7.6. 135

7.12. The ALA(l) tree for (A1, 1) in Example 7.6 135

7.13. The NFA for A in Example 7 . 7 . 136

7.14. The NFA for B in Example 7. 7. 136

7.15. The NFA for C in Example 7 . 7 . 136

7 .16. The NFA for X in Example 7 . 7 . 137

7.17. The DCM tree for Example 7. 7. 137.

xi

Figure Page

7.18. The NFA for A1 in Example 7.7 137

7.19. The NFA for B1 in Example 7.7 138

7. 20. The NFA for X1 in Example 7.7 138

7. 21. The ALA(l) tre.e for (A1, 2) in Example 7.7 138

xii

1

1. Introduction

The Standard Generalized Markup Language (SGML) is a flexible framework for defining

document structure. It was adopted as in international standard, ISO 8879, in 1986 and it

is rapidly becoming accepted in industry and government [7 ,8,23]. The widespread

acceptance of SGML can be attributed to two distinguishing features: 1. It is based on

descriptive markup that separates the logical components of the document as opposed to

procedural markup that defines the physical appearance (formatting) of the document 2.

It is a meta-language system for document definition rather than a specific markup scheme

for document description. Almost any kind of document structure can be defined using

SGML; productions called element declarations are used to define arbitrary elements of

documents and to formally specify the context in which they can occur. A finite set of

element declarations called a document type definition (DID) defines the high level syntax

of a class of documents. Using DTDs, SGML approaches the maximum amount of

standardization that can be achieved in document design without sacrificing flexibility.

Although DTDs are elegant and powerful, they can be ambiguous. There are two kinds

of ambiguity that are defined and prohibited by the standard [13]. In this diss~rtation,

these definitions are revised and methods are shown for detecting the two kinds of
. . .

ambiguity while parsing the DTD.

DTDs are similar to context free grammars (CFGs) [2,3] in that they contain a finite set

of element declarations (productions), the left hand side of each element declaration is an

element name (a nonterminal symbol), and one element is declared as the DOCTYPE

element (the start symbol). The right hand sides of element declarations and the

productions of CFGs are similar in that they are expressions containing terminal and

nonterminal symbols. However, the right hand sides of element declarations are more

complex than the prod~ctions of CFGs. The primary component of the right hand side of

an element declaration is called a content model; each content model consists of a model

group and optional exceptions. The model group is an extended regular expression that

defines the content of the element named on the left hand side in terms of text and other

elements. Exceptions modify the effect of model groups by allowing elements to be

included in or excluded from the element named on the left hand side. The other

component of the right hand side is called the omitted tag minimization. Elements that

occur in a document are bounded by a begin tag and an end tag; the omitted tag

minimization allows for these tags to be omitted optionally.

Clause 11.2.4.3 of the standard defines and prohibits ambiguous content models.

2

However, the scope of the clause is not clear; the standard shows examples of model

groups that are ambiguous content models, but it does not state whether or not exceptions

and omitted tag minimization affect the clause. Thus, there are questions in the SGML
. .

community regarding the definition and its implementation. Following an article on

ambiguity [17], the editors comment: "We welcome your comments on this issue,

specifically, a paper that mathematically proves or disproves whether it is possible to find

all ambiguous content models ... " Methods are shown in the literature for detecting

ambiguous content models whe~ ?~itre.d tags and exceptions are not considered

[6,16,18,25].

Clause 7 .3.1 of the standard prohibits ambiguity caused by omitted tags. Ambiguous

documents are defined as opposed to ambiguous DTDs; this implies that detecting and

preventing ambiguities caused by omitted tags must be accomplished at the time of

document entry rather than during DTD design. There is no definition in the standard for

the term ambiguity as it is used in Clause 7.3.1, and there are no adequate methods shown

in the literature for defining, detecting, and preventing this kind of ambiguity. The

significance of this problem is described in a recent article [9] as follows: "Probably the

most misunderstood concept in SGML today is the use of the two characters, the hyphen

and the 'o' ... that indicate omitted tag minimization ... "

Annex H of the standard states that model group notation reduces to regular expression

notation and that " ... conformance to a content model is essentially equivalent to

3

recognizing ... regular expressions." However, it also states, "No assumptions should be

made about the general applicability of automata theory to content models." The standard

does not describe a formal language model for DTDs, and there is little work in the

literature on this topic. One article [25] shows a method for converting DTDs into LL(l)

context free grammars, butinconsistencies are noted in this conversion. The central

hypothesis of this dissertation is that the difficulties encountered in defining and detecting

ambiguity in DTDs arise from the lack of a suitable formal model for recognizing them.

In Chapter 2, background is provided for language theory and for SGML; the system of

syntax productions that define DTDs is reviewed and examples are shown. Then, the

relevant literature is reviewed. In Chapter 3, definitions are given for systems of regular

expressions and for a class of language recognizers, systems of finite automata. Then an

algorithm is given for constructing a system offinite automata, S, from a system of regular

expressions, R, such that L(S)=L(R). Useless states are defined for systems of finite

automata and an algorithm is shown for removing the useless states. In Chapter 4, the

syntax productions that define DTDs are converted to an equivalent system of regular

expressions, and then a system of finite automata recognizing DTDs is constructed. Using

this system of finite automata, a parser is constructed for DTDs; the parser is a

deterministic implementation of the inherently nondeterministic system of finite automata.

In Chapter 5, an implementation independent definition is given for ambiguous model

groups, and a generalized algorithm is presented for detecting them. In Chapter 6, an

algorithm is given for constructing a system of finite automata that recognizes the set of

documents defined by a DID when exceptions are not considered. A definition is given

for DTDs that are ambiguous by omitted tags. Then, using the system of finite automata

for DTDs an algorithm is given for detecting this kind of ambiguity. In Chapter 7 an

algorithm is given for enumerating all possible ways that exceptions can affect model

groups in a DTD. Then using this result, a second algorithm is given for constructing a

system of finite automata that recognizes the documents defined by a DTD when

4

exceptions are considered. Examples are shown to illustrate that the methods in Chapter 6

for detecting ambiguity caused by omitted tags still apply when exceptions are considered.

Chapter 8 states the conclusions drawn from this research and shows how the results can

be applied by the SGML community. Recommendations for future work are also made.

The formal language model derived for SGML (systems of finite automata from systems

of regular expressions) is applied in two ways: 1. A system.of finite automata is

constructed that recognizes DTDs, and then a parser for DTDs is constructed from this

system of finite automata. 2. An algorithm is shown for constructing a system of finite

automata that recognizes the set of documents defined by a DID.

Revised definitions are given for the two kinds of ambiguity defined in the standard.

The revised definitions formalize the existing definitions, they are consistent with them

where feasible, and they distinguish the kinds of ambiguity that can occur in DIDs. Thus,

they will resolve questions in the industry regarding ambiguity in DIDs. Algorithms are

given for detecting these kinds ambiguity while parsing the DID. The algorithm for

detecting ambiguous model groups is generalized, and thus is an improvement over

existing methods. The algorithm for detecting ambiguity caused by omitted tags is the

first complete method shown for detecting this kind of ambiguity; it shows that this is a

solvable problem, and it will be a useful tool for DTD design [9,11,12,17]. Thus, the

language model, the revised definitions of ambiguity, and the methods for detecting

ambiguity solve important open problems in SGML.

2. Literature Review

2.1. Review of Language Theory Concepts

In this section, some basic elements of language theory are briefly reviewed: regular

sets, regular expressions, and finite state automata (NFAs). The notation and definitions

from [2,3] are adopted with a few minor variations. Then a method is described for

constructing an NFA from a regular expression [3].

Definition 2.1. Languages. An alphabet, L, is a finite set of symbols. A language over

L is a set of strings consisting of symbols in L and possibly the empty string, e. The

concatenation of two languages L1 and L2, written as L1 L2, is the set of all strings xy,

such that xis in L1 and y is in L2. The closure of a language L, L *, is the empty string, e,

plus the set of all strings that can be derived by concatenating any number of strings in L.

5

Definition 2.2. Regular Expressions and Regular Sets. Regular expressions are used to

denote a class of languages called the regular sets. A regular expression over L is defined

as:

1. 0 is a regular expression denoting the regular set 0.

2. e is a regular expression denoting the regular set { e}.

3. a in L is a regular expression denoting the regular set {a}.
' '

4. If p and q are regular expressions denoting the regular sets P and Q:

a. (pig) is a regular expression denoting Pu Q.

b. (pq) is a regular expression denoting PQ.

c. (p*) is a regular expression denoting P*.

L(s) is the language denoted by the regular expression, s.

Definition 2.3. Nondeterministic Finite Automata. A nondeterministic finite automaton

(NFA) is a 5-tuple, M={Q,L,6,qo,F}, where:

1. Q is a finite set of states.

2. Lis a finite set of input symbols (the input alphabet).

3. 8 is the state transition functiOIJ. that maps (Q X (l: u e)) to subsets of Q.

4. qo is a state in Q: the start state ofM.

5. F is a subset of Q: the final (or accepting) states of M.

When 8 maps a state q and input symbol a to some subset of Q, {p,r}, the mapping is

denoted by: 8(q,a)--tp and 8(q,a)--tr. To illustrate concepts or proofs, NFAs are

sometimes represented in graph form as shown in Figure 2.1. The arrow into q indicates

that it is the start state, and the double circle around r indicates that it is a final state.

a
~

a
~

Figure 2.1. Graph representations of NF As.

If Mis an NFA, then a configuration of Mis (q,w), where q is the current state of Mand

w is the remaining input, a string of symbols in L*. An initial configuration is of the form

(qo,w) and a final configuration is of the form (q,e), where q is in F. A move by M,

denoted by 1-, is a binary relation (on the set of all possible configurations) such that if

8(q,a)--tp, then (q,aw) I- (p,wf The transitive closure of I- is denoted by I-+, the

reflexive-transitive closure by I-*, and ,~n denotes n moves. An input string w in l:* is

recognized (accepted) by M if (qo,w) I-* (q,e) for some q in F. L(M) denotes the

language recognized by M.

Thompson's construction derives anNFA from a regular expression, r, such that the

NFA recognizes L(r) [2]. Although there are other methods in the literature for

constructing NF As from regular expressions [4,5], this method is used because it has

properties that are important to some of the algorithms in this dissertation. The regular

expression r is first parsed into its constituent subexpressions. Then in a left to right,

innermost first order, NFAs are inductively constructed for the subexpressions of r by

combining the NF As of their respective subexpressions. There is one basis rule and four

inductive rules for the construction; these are described below. Each component NFA

6

7

derived during the course of the construction has important properties: there is exactly

one start state, one final state, and no transitions enter the start state or leave the final

state. In the illustrations of these constructions in Figures 2.2-2.5, for a subexpressions of

r, the NFA M(s) is denoted as an arc from the single start state q of M(s) to the single final

state f of M(s), and the label on the arc is M(s).

1. The basis rule constructs a separate NFA each time.thata symbol bin 1: occurs in r.

Construct the NF A for b as shown in Figure 2.2.

~@-b-~©

Figure 2.2. The NFA for b in L.

2. For the regular expression, sit, construct the composite NF A for M(slt) from the

component NFAs M(s) and M(t) as shown in Figure2.3. In Figure 2.3, states q' and q"

are the start states of M(s) and M(t) and states f' and f" are the final states of .M(s) and

M(t). These states are not start and final states of M(slt); the start state of M(slt) is q

and the final state is f.

Figure 2.3. The NFA for (sit).

3. For the regular expression, st, construct the composite NFA for M(st) from the

component NF As M(s) and M(t) as shown in Figure 2.4. The start state q of M(s)

becomes the start state of M(st), and the final state f of M(t) becomes the final state of

M(st). The start state q" of M(t) is merged into the final state f" of M(s) as follows:

remove q" from M(st) and for all transitions in M(t), 6(q",b)~p. for some pin M(t)

and bin~. add 6(f',b)~p to M(st).

----)®-M_(s)->®-M_(_t) -->©

Figure 2.4. The NFA for (st).

4. For the regular-expression, s*; construct the composite NFA for M(s*) from the

component NFA for M(s) as shown in Figure 2.5. The start state q" of M(s) is no

longer a start state in M(s*) and the final state f" of M(s), is no longer a final state in

e

~ ~®...,....-~e -© M(s) >C!:J--e -©

e

Figure 2.5. The NFA for(s*).

5. For (s), the NFA is the same as the NFA M(s) for s.

2.2. SGML Background

SGML is a meta-language system for defining the structure of documents; there are

separate features for defining the high level syntax (parsing) and the low level syntax

(token recognition). This paper does not consider token recognition; it is assumed that an

SGML parser can distinguish between text and markup. Markup in SGML is the codes

that are added to the text of a document to separate the logical components (elements)

[13].

A document type declaration, also called a document type definition (DID)

[8,9,ll,12,16,17,19,24,25], defines the high level syntax for a class of documents, the

8

9

document type. A DID contains a.set of element declarations that define the elements of a

document type and the context in which they may occur. One element is declared as the

top level or "DOCTYPE" element. There are other components of DIDs that do not

affect the high level syntax of document specifications. Only the DOCTYPE declaration

and the element declarations are considered in this paper.

A document that conforms to the requirements of the DID is called a document

instance. A document instance is a single occurrence of the DOCTYPE element and

everything that occurs within it: a stream of tokens consisting of markup (element begin

and end tags) and text. An element begin tag is written as "<element_name>" and an

element end tag is written as "<lelement_name>." Example 2.1 shows a DTD and a

document instance.

Example 2. l. A DID and a conforming document instance. Consider the DTD

<! DOCTYPE book

<! ELEMENT book (header, (header,chapter)+)>

<! ELEMENT chapter (#PCDATA)>

<! ELEMENT header (#PCDATA)>]>

The first line defines the document type as a book. The next three lines are element

declarations for the elements book, chapter, and header. The parenthesized expressions

are model groups, the only required components of content models. These declare that 1.

a book contains a header, followed by one or more chapters, each preceded by a header.

2. a chapter contains only text. 3. a header contains only text. A conforming document

instance for D is

<book>

<header>This is a header for the book

</header>

<header>This is a header for the first chapter

</header>

<chapter>This is the text of a chapter

</chapter>

</book>

10

2.2.1. SGML Syntax Productions

The syntax of DTDs is defined by a hierarchical system of syntax productions. Each

component of DTDs is defined by a production of the form "syntactic variabl~ =

expression", where the syntactic variable names the component and the expression defines

the component in terms of tokens and operators. The tokens are: 1. syntactic variables

(each of which has a corresponding syntax production), 2. keywords, and 3. other

tokens. The operators determine the ordering and selection of the tokens and are defined

in Table 2.1.

Table 2.1. The operators of syntax productions.

Operator Operator Operation
Class Symbol

Occurrence- ? Optional (0 or 1 time)
Indicators + Required and repeatable

(1 or more times)
II * Optional and repeatable

(0 or more times)
Connectors & All must occur in any order

II All must occur in the order ,
shown

II I One and only one must occur
Parenthesis () Precedence of operations

Although they are defined with a different terminology, the operators '* ', 'I', ',', and

parenthesis correspond to the regular expression operators, '*', 'I', concatenation, -and

parenthesis respectively. Expressions containing '?', '+', and '&' also have equivalent

regular expressions [13]. The following conventions are used to represent syntax

productions: syntactic variables are in lower case, keywords are in quotes, all other

tokens are in upper case, and the operators are unquoted characters.

There are over 75 syntax productions in the system of syntax productions defining

DTDs [13]. To eliminate unnecessary detail, the syntax productions shown below are

derived from the syntax productions in the standard as follows:

11

1. White space, some delimiters, and other items that do not affect the high level syntax of

document instances defined by DTDs are omitted.

2. Some occurrences of syntactic variables in the expressions of syntax productions are

replaced by their corresponding expressions. This replacement is similar to 'removing

single productions in context free grammars and does not affect the syntax defined for

DTDs.

3. This paper does not consider the optional SGML features: RANK, DATATAG, and

SHORTTAG. All tokens related to these features are removed from the syntax

productions.

The result of these transformations is a simplified system of syntax productions for DTDs

that is relevant to the scope of this research and for the purposes of this dissertation is

equivalent to the system of syntax productions defined in the standard. This simplified

system of syntax productions is defined in the following paragraphs.

Document type declarations,·also called document type definitions or DTDs, define the

high level syntax of the document instances. The syntax production for DTDs is:

DTD = "DOCTYPE", GI, element declaration*

A DTD consists of the keyword, "DOCTYPE", followed by a GI (element name),

followed by one or more element declarations. The GI names the DOCTYPE (or top

level) element of the document. Although it is not shown in the syntax productions, the

standard requires that there must be at least one element declaration for the DOCTYPE

element. The following syntax production implements this syntactic requirement:

DTD = "DOCTYPE", GI, element declaration+

12

Element declarations specify the high level syntax of document types by naming the

structural elements and defining the content of these elements. The syntax production for

element declarations is:

element declaration= MDO, "ELEMENT", element type, (omitted tag

minimization)?, (declared content I content model), MDC

MDO and MDC are delimiters for the declaration. Thus, an element declaration consists
. . : . . ' . .

of a keyword followed.by the~lement type, an option~ omitted tag minimization, and

either declared content or a content model. The syntax productions for element type,

content models, declared content, and omitted tag minimization are described below.

The element type is a list of elements that are defined by the element declaration. The

syntax production for element type is:

element type = GI name group

The element type is either a GI (element name) or a parenthesized list of (Gls). The

content of elements named by the Gls is defined by the remainder of the element

declaration.

Content models define the content of the elements named in the element type. The

syntax production for content models is:

content model.= model group, exceptions?

Model groups define the content of elements in terms of text and other elements.

Exceptions are optional; they modify the effect of the model group by allowing elements

to be included in or excluded from the elements named in the element type and from any

elements that occur within them in a document instance.

Model groups are expressions that are similar to the expressions of syntax productions.

Each model group defines the content of elements named by the element type. The system

of syntax productions for model groups is:

model group= GRPO, content token, ((AND I OR I SEQ), content

token)*, GRPC, (OPT I PLUS I REP)?

content token = "#PCDATA" I (GI, (OPT I PLUS I REP)?) I model

grotp

13

The tokens OPT, PLUS, REP, AND, SEQ, OR, GRPO, and GRPC represent the

operators for model groups. They are defined the same as the syntax production operators

shown in Table 2.1: '?', '+', '*', '&', ',', 'I', '(',and')' respectively. In Example 2.2,

which illustrates a model group, these default characters are used for the operators.

"#PCDATA" represents an occurrence of a character string (zero or more text characters)

in a document instance and Gl's, the names of elements, represent occurrences of the

named elements. The element names and "#PCDATA" that occur in a model group, m, are

the input symbols of the language L(m). Each distinct occurrence of "#PCDATA" or an

element name in a model group is a primitive content token. This term is used later in the

SGML definition of ambiguous content models.

Example 2.2. Consider the model group

(header, (header, chapter)+)

This group specifies a header followed by one or more chapters, each preceded by a

header. Header and chapter are Gis (element names), left and right parenthesis are GRPO

and GRPC respectively, and'?',',', ,and'+' are the default characters for the operator

tokens, OPT, SEQ, and PLUS respectively. There are three primitive content tokens: one

for each occurrence of an element name.

Although it is not shown in the syntax production for model group, the standard

requires the following: "Only one kind of connector can occur in a single model group

(but a model group nested within it could have a different connector)." The following

syntax production for model group implements this syntactic requirement:

model group= GRPO, content token, ((AND, content token)* I (OR,

content token)* I (SEQ, content token)*) GRPC, (OPT I PLUS I

REP)?

Exceptions modify the effect of model groups to which they apply. The syntax

productions for exceptions are:

exceptions= (exclusions, (inclusions)?) I inclusions

inclusions= PLUS, GRPO, GI, GI*, GRPC

exclusions= MINUS, GRPO, GI, GI*, GRPC

14

Thus, inclusions and exclusions are parenthesized Hsts of one or more element names;

inclusions are preceded by a PLUS and exclusions are preceded by a MINUS. Exceptions

apply anywhere in the instance of the elements named in the element type, including within

subelements of these elements. Exclusions oveni.de inclusions as illustrated in Example

2.3 below. Note that exceptions are optional within each element declaration.

Example 2.3. Consider tl?-e DTD

<!DOCTYPE TOP [

<!ELEMENT TOP (A, C?) >

<!ELEMENT A (BI C) - (X) +(Y)

<!ELEMENT B (C, X?) >

<!ELEMENT C (#PCDATA) + (X)

<!ELEMENT. x· (#PCDATA) >

<!ELEMENT y (#PCDATA) >

>

]>

In this DTD the included element, Y, may appear anywhere in an instance of an A, which

includes anywhere in a B or a C in an A The element X is excluded anywhere in an

instance of A. Thus, even though it is an optional element in B, it cannot occur anywhere

within a B. Exclusions have priority over inclusions. The exclusion of X oveni.des the

inclusion of an X within a C, when the C is within an A However, the standard is not

clear about the scope of exceptions: "The exceptions apply anywhere in an instance of the

element, including subelements ... " The subelements of an element are defined to be only

the elements contained immediately within the element, and not those at lower levels of

nesting [13]. Thus, either the phrase "including subelements" is redundant or the phrase

"anywhere in the instance of an element" is not precise. For.example, it is not clear

whether an X is allowed in a C within a B within an A Exceptions are discussed in more

detail in Chapter 7.

15

Declared content is the other alternative for defining the content of the elements named

by the element type. The syntax production for declared content is:

declared content = "CDATA" I "RCDATA" 'I "EMPTY"

"EMPTY" means that the element has no content. "CDATA" and "RCDATA" are similar

to "PCDATA" in model groups. However, the only markup recognized within "CDATA"

or "RCDATA" content is markup that would end the element. It is assumed that a token

recognizer can distinguish between markup and text. Thus, "CDATA",. ,"RCDATA", and

"PCDATA" each represent any string of zero or more text characters.

Omitted tag minimization allows. for start and en:d tags of elements to be omitted in the

document instance. The syntax productions for omitted tag minimization are:

omitted tag minimization= start-tag minimization, end-tag

minimization; .

start-tag minimization = 110 11 I MINUS

end-tag minimization = 11:0 11 I MINUS

"O" means that the tag may be omitted from an occurrence of the elementin the document

instance, and MINUS('..,') means that·the tag may not be omitted. All elements with

declared content of ''EMPTY" must not have an "O" specified for end tag omission .

. Example 2.4. Omitted tag minimization.

a. Start tag omission. · Consider the DTD · ·

<!DOCTYPE TOP [

<!ELEMENT TOP

<!ELEMENT A O -

<!ELEMENT B

and a document instance

<TOP>

Text of a B element

</TOP>

{A) >

{B) >

{#PCDATA)] >

The begin tag for A can be omitted because the begin tag minimization is set to "O".

b. End tag omission. Consider the DTD

<!DOCTYPE TOP [

<!ELEMENT TOP

<!ELEMENT A - 0

(A, B?) >

(B?) >

<!ELEMENT B - - 0 EMPTY , > .] >-

and a document instance

<TOP>

<:A>

</TOP>

16

The end tag for A can be omitted because the end tag minimization for Ais set to "O".

B is declared to have EMPTY content, and thus must have the end tag minimization set

to "O"; a B element cannot have any content or an end tag (it consists only ofa start

tag).

There are additional restrictions placed on the omission of start and end tags. These are

discussed in Section 2.2.3. ·

2.2.2. Ambiguous Content Models (Clause· 11.2.4.3)

Ambiguous content models are defined (and prohibited) in Clause 11.2.4.3 of the

standard as follows:

"A content model cannot be ambiguous; that is, an element or character string

that occurs in the document instance must be able to satisfy only one primitive

content token without looking ahead in the document instance. The priority rules

stated earlier in 11.2.4 are not considered in determining whether a content

model is ambiguous.

NOTE--For example, the content model in

<! element e ((a, b?), b)>

is ambiguous because after an 'a' element occurs, a 'b' element could satisfy either.

of the remaining tokens. The ambiguity can be avoided by using intermediate

elements, as in:

<!element e (f, b) >

<!element f (a, b?) >

Here the token satisfied by 'b'.is.determined unambiguously by whether the 'f

· · element ends before the 'b'. occurs.:."

Example 2.5 .. An ambiguous content model. Consider a variation of Example 2.1 as
follows. LetD,betheDTD: ':' ..

. <! DOCTYPE book

<! ELEMENT book (header?, (header,chapter)+)>

<! ELEMENT chapter (#PCDATA)>

<! ELEMENT header (#PCDATA)>]>

The book level header element is now optional (?). Consider the following document

instance for D:

<book>

<header>This is a header.

</header>

<header>This is a header.

</header>

<chapter>This.is the text of a chapter

</chapter>

</book>

The model group for book is an ambiguous content model. There are two primitive

content tokens for header. In this document instance, without looking ahead it cannot be

determined whether the first header element is the optional book level header or the first

required chapter level header.

17

Clause 11.2.4.3 shows by example that ambiguous model groups are ambiguous content

models, but it does not clearly state whether or not exceptions and omitted tags affect·

ambiguous content models. The following examples show that they can.

Example 2.6. Exceptions and ambiguous content models. Consider the following

element declaration.

<!ELEMENT A (X I A IX) -(X) >

18

If exceptions are not considered, the content model "(XI A IX) -(X)" is ambiguous,

because any occurrence of an X element within an A element could satisfy either primitive

content token for X in the model .group. However;· if exceptions are considered, an X

element can no longer occur in an A element in any valid document instance, and thus

there can be no X in a document instance that satisfies either of the primitive content

tokens for X in-the model .group. Therefore, when exceptions are considered, this.content

model is no longer ambiguous.

Example 2. 7. Omitted tags and ambiguous content models. Consider the DID

<!DOCTYPE TOP [

<!ELEMENT TOP

<!ELEMENT A - 0

<!ELEMENT B

<!ELEMENT C

and the document instance

<TOP>

<A>

(A, B?) >

(C, B?) >

(#PCDATA) >

(#PCDATA) >

<C>data characters</C>

data characters

</TOP>

When omitted tags are not considered, none of the individual model groups are ambiguous

content models. However, because the primitive content token for B in the model group

for A is optional (?), the B element that occurs in the example document instance can

satisfy either primitive content token for B in the DID. Clause 11.2.4.3 does not specify

that the primitive content tokens must be in the same model group for the conditions of

ambiguity to be met

2.2.3. Ambiguity Caused by Omitted Tags (Clause 7.3.1)

Clause 7.3.1 of the standard places additional restrictions ·on tag omission as follows:

"A tag can be omitted only as provided in this sub-sub-clause, and only if the omission

would not create an ambiguity ... "

19

Clause 7.3.1.1 lists specific rules for start tag:omission: '-'The start-tag can be omitted if

the element is a contextually required element and any other elements that could occur are

contextually optional elements, except if: a) the element type has a required attribute or

declared content; or b) the content of the instance of the element is empty ... "

Clause 7.3.1.2 lists specific requirements for end tag omission: "The end-tag can be

omitted for an element that is followed either a) by the end of the SGML document entity

or the SGML subdocument entity; b) by the end-tag of another open element; or c) by an

element or SGML character that is not allowed in its content. NOTE -- An element that is

not allowed because it is an exclusion has the same affect as one that is not allowed

because no token appears for it in the model group."

Thus, even if tag omission is permitted by an "O" in the omitted tag minimization of the

element declaration, a tag carlnot be omitted unless it conforms to the restrictions of

Clause 7 .3.1. For example, in Example 2.4.a if the model group (A) for TOP was

replaced by (A?), then the begin tag of A could not be omitted in the document instance

because A would not be a required element; the '?' operator makes it optional.

The term ambiguity in Clause 7.3.1 is not defined in the standard, and thus it cannot be

shown whether or not the rules in 7.3.1.2 and 7.3.1.2 are complete. It is not connected by

the standard to ambiguous content models that are prohibited by Clause 11.2.4.3. If it

were defined similarly, then Example 2.8. shows that the rules for start tag omission in

Clause 7 .3.1.1 are incomplete.

Example 2.8. Ambiguity caused by omitting start tags (adapted from [25]). Consider

theDTD:

<!DOCTYPE A [

<!ELEMENT A (B?, C) >

<!ELEMENT B (#PCDATA) >

<!ELEMENT C O - (D) >

<!ELEMENT D O - (B) >

and the document.instance

<A>

text o·f a B.

<IB>

<ID>

<IC>

<IA>

20

By the rules in Clause 7.3.1.1, the start tags for C and D can be omitted. However, when

encountering the B element, without looking ahead in the document instance it cannot be

determined which primitive content token for B in the DTD is satisfied.

Example 2.4.b illustrates end tag omission. By the rules in Clause 7.3.1.2, the

document instance is allowed. Even by looking ahead to the end of the document

instance, it cannot be determined which .P~mitive content token for B in the DTD is

satisfied. However, by using the rules of Clause 7.3.1.2 as disambiguating rules, SGML

parsers can resolve this ambiguity while parsing the document instance. This is discussed

iri more detail in the following subsection.

2.2.4. Disambiguating Rules for SGML Parsers

The priority rules in Clause 11.2.4, which are referred to in Clause 11.2.4.3, state

priorities for SGML document instance parsers as follows: "The elements and data

characters of the content must conform to the content model by satisfying model group

tokens and exceptions in the following order of priority: a) a repetition of the most recent

satisfied token, if it has a REP or PLUS occurrence indicator; orb) some other token in a

model group, possibly as modified by exclusion exceptions ... ; or c) a token in an inclusion

exceptions group ... "

21

The rules in Clause 7.3.1.2 for omitting end tags also imply priority rules for document

instance parsers. For instance, the ambiguity described in the preceding section for

Example 2.4.b could be resolved by the rules in 7.3.1.2 as follows: the B element in the

document instance must be within the A element or the document instance would violate

the rules in Clause 7.3.1.2 for omitting the end tag-of A. However, resolution of

ambiguity by this method would place the responsibilityJor correctness on data entry

rather than on DTD design. The rules in 7.3.1.1 for omitting starttags do not resolve the

ambiguity described in Example 2.8. .

There are other clauses that could also imply disambiguating rules, including Clauses ·

7.4, 7.5, and 7 .6. However, there is no precise statement or summary in the standard

regarding disambiguating rules for SGML parsers.

2.3. Related work in Language Theory

Woods describes the use of recursive transition networks for the analysis of natural

language sentences [26]. He defines a recursive transition network as a directed graph

with labeled states (nodes) and arcs that is similar to a finite set of NF As; one state is the

start state and there is a nonempty set of final states. The arcs are labeled with either input

symbols or with the names of states that are the start states of the individual NFAs. For

each transition on a state name, the state at the end of the arc is placed on a pushdown list

of states and control is transferred to the state named on the arc. The set of final states

are the final states of the individual NFAs. When a final state is entered, control is

transferred to the state on the top of the pushdown list and this state is popped from the

pushdown list. Accepting configurations occur when the input is exhausted, the stack is

empty, and the current state is a final state.

Woods observes that recursive transition networks describe the context free languages,

and that they are inherently nondeterministic because the pushes and pops are e-moves;

however, they may be optimized by removing all nondeterminism except for the e-moves

22

[26]. He also observes that many existing top down and bottom up parsing algorithms for

context free grammars apply directly to recursive transition networks, and for those that

do not, recursive transition networks have an analogous parsing algorithm. He argues that

recursive transition networks are superior to pushdown automata and context free

grammars in several respects; they allow for more efficient expression, more efficient

parsing algorithms, and they are more easily extensible to context dependent models.

LaLonde defines. an alternative to context free grammars called regular right part (RRP)

grammars [15]. An RRP grammar consists of a set of terminal, symbols, a set of

nonterminal symbols, a goal ~or start) symbol, and a finite set of productions. · The left side

of the production i~ a single ·nonterminal symbol, and the right side is a multiple entry NFA

(it may have more than, one start state) .. There may be more than one production with the

same left hand side. A variant form of an RRP-is that the right hand sides may ,be regular

expressions., LaLonde states that the two forms are equivalent because regular

expressions have equivalent NF As. However, he also states that this -does not necessarily

imply that each form can be mechanically constructed from the other. A language is

defined by an RRP as follows. A goal sentential form is any string that can be derived ·

from the goal symbol (or another goal sentential form) by replacing a nonterminal symbol

with an element of the language defined·by its right hand side. The set of words defined

by an RRP is the set of goal sentential forms that consist of only input symbols. ·

LaLonde gives an informal argument that RRPs are equivalent to the context free

grammars ·[15]. He then defines a subset of RRP grammars, the RRP LR(k) grammars.

He observes that it is equivalent to the definition of LR(k) grammars given in [3], and he

presents a generalization of the standard LR(k) parser for context free grammars. He also

argues that RRPs are more natural and easy to understand than context free grammars,

and he demonstrates this by showing that context free grammars require recursive

productions to define syntax that is not inherently recursive; the same syntax can be

23

described by RRPs without using recursion. Thus, RRPs can be reduced to contain only

recursion that is inherent in the language defined.

Aho, Sethi, and Ullman describe a method for constructing predictive parsers by

deriving state transition diagrams for the productions of a context free grammar [2]. They

show how to combine diagrams by substituting the arcs for nonterminal symbols with their

respective diagrams. The resulting system of state transition diagrams is similar to the

recursive transition networks described by Woods [26].

2.4. Related Work on Ambiguity in SGML

Ambiguity is discussed in two places in the standard: Clause 11.2.4.3 defines and

prohibits ambiguous content models and Clause 7.3.1 gives rules for tag omission that are

designed to prevent ambiguity. These two clauses are not precise and they give no

methods for detecting ambiguity. This leaves some open questions: 1. What kinds of

ambiguity are defined in SGML? 2. Are the kinds of ambiguity discussed in the two

clauses related? 3. Can these kinds of ambiguity be detected? In this section the related

work is reviewed to determine if these questions have been answered. The related work

for ambiguous content models (Clause 11.2.4.3) is reviewed first. All of the literature

reviewed considers only model groups, which are the only required components of content

models; the effects of exceptions and omitted tags on Clause 11.2.4.3 are not considered.

With the exception of [16], the papers reviewed assume that these other components of

content models do not affect Clause 11.2.4.3.

Warmer and van Egmond present a method for detecting ambiguous content models

[25]. They rewrite model groups as rules for an existing LL(l) parser generator and

conclude that: "The difference between the LL(l) property and the unambiguity

requirement for SGML is that there is one construct which is ambiguous for LL(l), but

unambiguous for SGML." They observe that for the LL(l) property to hold, any

nonterminal (primitive content token) that may be empty cannot have a'+' or'*'

24

occurrence indicator. Model groups containing this construct are not necessarily

ambiguous in SGML. There is also another construct that is not ambiguous in SGML and

is not LL(l). Any grammar that is left recursive cannot be LL(l) [2]. Thus, any

production of the form A -t Aa will not be LL(l), and consequently, element declarations

of the form <!ELEMENT a (a, ...)> cannot be LL(l). Although it is not a common

construct, recursion is allowed and it is used in some DTDs [22]. Thus, there are two

constructs for which LL(l) methods will detect ambiguity where SGML does not

Klein shows that for a regular expression, E, the Glushkov automaton (NF A) of E,

whose states correspond to the input symbols in E, · can be constructed in time quadratic. to

the size of E [5] and that this improves on the cubic time demonstrated for alternative

constructions in[2,4] .. She restates the definition of unambiguous regular expressions

from [4] as follows: 11 A regular expression Eis unambiguous if, for each word w, there is

at most one path through E that matches w ... " ·She then gives an algorithm for deciding

unambiguity of a regular expression in time quadratic to the size of the expression. This

method does not consider the model group operators, AND and OPT. ,

Klein shows a method for deciding if a coritent model is unambiguous in time linear to

the size of the model group [6]. Her approach is based on marking expressions (model

groups); each symbol (primitive content token) in an expression, E, is assigned a unique

position (index) that distinguishes it from other symbols. She restates the definition of

ambiguity in SGML in terms of marked expressions: an expression is unambiguous if and

only if given a marking E' of E, for any two words uxv and uyw -in L(E') where x and y

are marked symbols, symbol(x)=symbol(y) implies x=y. She then gives a decision

algorithm for this definition of unambiguity. For an expression E, with a marking E' and a

marked symbol, x, she gives functions first(E), last(E), and follow (E,x). These functions

are derived from similar functions used to construct a deterministic finite automata (DFA)

from a regular expression [2]; the DFA is not actually constructed. The expression Eis

unambiguous if and only if no two positions in E compete; two positions x and y compete

if and only if x and y are both in first(E) or are both in follow(E,z) for some position z in

E. The algorithm does not consider #PCDATA tokens.

25

L. Price outlines a method for detecting ambiguous content models [18]. She shows

NF As for model groups in which the labels of the arcs are subscripted symbols

representing primitive content tokens. She shows by example that a content model is

ambiguous "if two or more arcs with the same label but with different subscripts emanate

from the same node. 11
, and she observes that "Detecting ambiguity in content models is

similar to detecting nondeterminism in the FSAs that represent them. 11 Note that this use

of the term "nondeterminism in the FSAs" is equivalent to NF As that ate not deterministic

[3]. She also shows a significant space saving representation for NFAs of "AND" groups.

Matzen, George, and Hedrick present a complete algorithm for detecting ambiguous

model groups [16]. When the optional components of element declarations are not

considered, the algorithm detects ambiguous content models as defined in Clause 11.2.4.3.

The algorithm supports the methods outlined by L. Price in [18]. A parser is constructed

for model groups; indexed NFAs are defined and translation actions are added to the

parser to construct an indexed NF A recognizing L(m) for a model group, m, where the

arcs of the indexed NF A are indexed symbols denoting the primitive content tokens of m.

After removing e-transitions from the indexed NFA, the method for detecting ambiguity is

the same as the method outlined in [18] as described above. This method of detecting

ambiguity in expressions is different than the methods described in [4,5], where the states

of the NFA contain the information necessary to detect ambiguity.

Clause 7.3.1 gives rules for tag omission that are designed to prevent ambiguities.

However, the standard does not define the term ambiguity for this clause, and it does not

state that it is related to ambiguous content models. Other work also does not relate these

two types of ambiguity to each other [6,9,11,17,18,24,25]. In the four papers that show

methods for detecting ambiguous content models [6,16,18,25], only one [25] shows

methods for detecting ambiguity prohibited by Clause 7.3.1. This paper and other work

related to omitted tag minimization are discussed in the following paragraphs.

26

Because the term ambiguity is not defined for Clause 7.3.l, the specific rules in Clauses

7.3.1.1 and 7.3.1.2 for tag omission cannot be shown to be,equivalent to the general rule

prohibiting ambiguity in Clause 7.3.1. W amier and van Egmond give a restatement of the

rules of Clause 7 .3.1.1 for start tag omission, and they show by example that these are

unnecessarily ·restrictive [25]. They also give an example (similar to Example 2.8) that

shows for a reasonable interpretation of ambiguity, the rules for Start tag omission in

Clause 7.3.1.1 are not sufficient to·prevent ambiguity. They do not formally define this

kind of ambiguity.

Although the standard requires ambiguity caused by omitted tags to be detected, it does

not require static detection while parsing the DTD. It also does not give any method fo:r

detection, either while parsing the DTD or while parsing a document instance. Warmer

and van Egmond implement static detection of ambiguities caused by start tag omission

using a restatement of the rules of Clause 7.3.1.1 [25]. They state that 11 •• end tag

omission cannot be corrected during parsing of the DTD ... 11 ; ambiguities caused by

omitted end tags are resolved while parsing the document instances using disambiguating

rules derived from Clause 7.3.1.2 for end tag omission.

Because there is no definition in the. standard for ambiguity caused by omitted tags,

there are open questions in the SGML community regarding the implementation. The

problems with omitted tags are first summarized, and then the literature is reviewed to

illustrate how these problems are affecting the SGML community. 1. There is a significant

burden on DTD designers to use omitted tag minimization in a manner that does not

introduce ambiguity. 2. If ambiguity is not prevented in the DTD then the disambiguating

rules for SGML parsers can introduce error. 3. This places the responsibility for

preventing errors on the author or data entry personnel, who are least equipped to handle

it. 4. There is not a consensus in the SGML community on the disambiguating rules for

document instance parsers; this compounds the problems described in 1-3 above. 5.

There have been no complete methods shown for detecting ambiguity caused by omitted

tags.

27

Graf gives a number of examples of ambiguity introduced by omitted tags and illustrates

how some SGML parsers may interpret (disambiguate) a document instance differently

than others [11]. He also argues that SGML parsers can resolve ambiguities differently

than the author intended and warns authors accordingly: '\ .. you might find an important

part of your data missing when you went to retrieve it. These are the unexpected results."

He concludes the following:- "The only real cure for this kind of ambiguity, is to eliminate

or at least severely reduce the use of minimization."

McFadden and Wilmott [17] respond to Grafs article [l lJ and state that there are no

ambiguities in his examples. They summarize their view as follows: "All conforming

SGML parsers will perform the same way. SGML parsers are deterministic and never

'assume' anything. The examples may appear ambiguous to human readers who do not

know the rules. SGML parsers are programmed to know the rules, and DTD designers

are expected to know the rules." However, no references to the standard are cited for

these rules. Although they observe that effective use of minimization in DTD design

requires significant expertise, they conclude that there is no need to eliminate or restrict

the use of the omitted tag minimization feature.

Heath and Welsh recommend that start and end tag minimization be removed from

SGML [12] because "it places a high burden on both humans and programs that process

SGML documents." Davis describes difficulties with the omittag feature, and he observes

that parsers using the disambiguating rules of the standard can produce results that are

different than the author intended (no references are cited for the disambiguating rules)

[9]. He illustrates the current status of the problem when he begins this recent article as

follows: "Probably the most misunderstood concept in SGML today is the use of the two

characters, the hyphen and the 'o' ... that indicate 'omitted tag minimization' ... "

28

Waldt shows examples that illustrate how exceptions can affect ambiguity in SGML

[24]. In the literature there are no methods shown for detecting the effect of exceptions

on ambiguity; The difficulty of this problem is illustrated by the way that exceptions are

implemented in document instance parsers. L. Price outlines a document instance parser

based on stacks of NF As [18]. Exceptions are not implemented in the static model of the

NFAs; they are implemented dynamically while parsing the instance. Warmer and van

Egmond implement a document instance parser that is constructed by an LL(l) parser

generator [25]. Exceptions are not implemented as part of the LL(l) grammar; they are

implemented dynamically using a stack of currently applicable exceptions.

The literature review in this chapter shows that there are open problems related to

detecting ambiguity in SGML: 1. Although ambiguous model groups can be detected,

there are still open questions regarding the scope and interpretation of Clause 11.2.4.3. 2.

There is no precise definition for ambiguity caused by omitted tags (Clause 7.3.1), and no

complete methods have been shown for detecting'this kind ambiguity. 3. No method has

been shown for determining how exceptions affect ambiguity in SGML.

In the next chapter, a formal model is shown for recognizing DTDs and document

instances, and in Chapter 4 a parser is constructed for DTDs and model groups. In

Chapter 5 a definition is given for ambiguous model groups, and the parser is used to

show a generalized algorithm for detecting them. In Chapter 6, ambiguity caused by

omitted tags is defined, and an algorithm is given for detecting this kind of ambiguity when

exceptions are not considered. In Chapter 7 a language model is shown for document

instances when exceptions are considered, and examples are shown to illustrate that the

algorithm in Chapter 6 for detecting ambiguity caused by omitted tags still applies.

29

3. A Language Model for SGML DTDs

Input to an SGML parser is a DTD and one or more document instances. The parser

must parse the DTD and then construct a parser for document instances. The. system of

syntax productions shown in Chapter 2.2.1 defines the syntax of DTDs, and DTDs define

the high level syntax of document instances. In this chapter a model is developed that can

be used to construct a recognizer for DTDs and recognizers for the document instances

defined by DTDs.

In the first section, systems of regular expressions and a corresponding class of

recognizers, systems of finite automata, are defined. In the second section, an algorithm is

presented for constructing a system of finite automata S from a system of regular

expressions R, such that L(S)=L(R). Useless NFAs, inaccessible NF As, and useless states

in systems of finite automata are also defined, and algorithms are also given for removing

these from a system of finite automata ..

3.1 Preliminary Definitions

Definition 3.1. Systems of regular expressions. A system of regular expressions, R, is

defined to be a 4-tuple, R=(I:, N, No, P), where:

1. I: is a set of terminal symbols.

2. N is a set of nonterminal symbols.

3. No is a distinguished symbol in N, the start symbol.

4. Pis a set of productions, Ai~Cli, i=l, ... n, ~1. There is exactly one production for

each nonterminal in N; Ai, i=l , ... n, are the elements of N and each Cli is a regular

expression over (I: u N). No=Ai for some i=l, ... n.

A system of regular expressions defines a language over I: in a recursive manner using

strings called regular expression forms that are regular expressions over (I: u N). Regular_

expression forms are defined using a terminology similar to that used for sentential forms

in context free grammars in [3] as follows:

30

1. No is a regular expression form of R.

2. If yAf3 is a regular expression form of R, and A is in N where A~ex is in P, then ycxf3 is

a regular expression form of R.

A word of R is any string x such that xis in (L(ex) (') :t*) for some regular expression form

ex of R. The language generated by R is the set of words of R and is denoted as L(R).

A relation,=> (directly derives), is defined on the regular expression forms of Ras

follows: if yAf3 is a regular expression form of Rand A is in N where A~ex is in P, then

yAf3==>ycxf3. ==>+ denotes the transitive closure of Rand=>* denotes the reflexive­

transitive closure of R. If cxo==>ex1 ... ==>exn, n~l. this is denoted by cxo ==>fi exn.

Example 3.1. A system of regular expressions. Let R be the system of regular

expressions defined as follows:

1. :t={x,y}

2. N={A,B}

3. No=A

4. The productions in Pare:

A ~ ((x I B) * B)

B ~ (y I A)

Some derivations for regular expression forms of R are

* * * a. A==> ((x I B) B) ==> ((x I (y I A)) B) ==> ((x I (y I A)) (y I A))

* * b. A==> ((x I B) B) ==> ((x I B) (y I A))

Let A be exo. Notice that there are no words defined for R by ex 1 and ex2 in example a;

for each <Xi there are strings x, such that xis in L(exi). However, there are no x's such that

x is in :t* until ex3. In example b, using a different derivation sequence, this condition is

satisfied by ex2. For example, the strings xiy, for any i~O are in (L(ex2) (') :t*).

Definition 3.2. Systems of finite automata. Given the definition in Chapter 2 of a

nondeterministic NFA as a 5-tuple, M=(Q,:t,B,qo,F), then a system of finite automata Sis

defined to be a 7-tuple, S=(M,N,:t,Q,r,A,Mo) where:

31

1. Mis a finite set of NFAs, Mi, i=l...n. The components of each Mi are denoted as Qi,

l:i, Oi, qoi, and Fi.

2. N is a set of unique symbols (names) for Mi, i=l, ... n, such that (N n l:)=0. The

symbol for Mi is denoted as Ni.

3. l: is the input alphabet for S. Each l:i is a subset of (l: u N).

4. Q is the set of states of S; · {Mi,q), for all Mi and for each q in Mi, i=l, .. ;n.

5. r is a finite set of unique symbols representing the states in Q. The elements of rare

the alphabet of the pushdown list.

6. A is a mapping from (Q X (l: u e) X (I' u e)) to (Q X (rue)), and is defined by Bi,

i=l...n as follows: For each Bi, and for all Bi(q,b)~p and a. in r*:

A. if bis in (l: u e), then A((Mi,q),b,e)~((Mi,p),e).

B. if b=Nj for some j=l...n, then

1. A((Mi,q), e, e)~((Mj,qoj), (Mi,p)), and

2. for each final state fin Fj, A((Mj,t), e,(Mi,p))~((Mi,P), e)

7. Mo is the top level (or start) automaton, where Mo is some Mi, i=l...n: qo=qoi is the

start state of S and Fo=Fi is the set of the final states of S.

A configuration of Sis a triple ((Mi,q),w,a.), where (Mi,q) represents the current state

of the finite control, (Mi,q)a. in r+ represents the open NF As and their respective current

states, and win l:* represents the remaining input. An initial configuration of Sis

Co=((Mo,qo),w,e), for some.win l:*, and the final (accepting) configurations are

Cf=((Mo,t),e,e) for all fin Fo. An input string win l:* is accepted by S if Co I-* Cf, for

some f. The language recognized by Sis denoted by L(S). Moves are defined by A as

described above. For each Oi, and for all Bi(q,b)~p. a. in r*:

A. if bis in (l: u e), then ((Mi,q),b,a.) I- ((Mi,p),e,a.).

B. if b=Nj for some j=l...n, then

1. ((Mi,q),e,a.) I- ((Mj,qoj),e,(Mi,p)a.), and

2. for each final state fin Fj, ((Mj,t),e,(Mi,p)a.) I- ((Mi,p),e,a.).

32

The moves in A are local moves and the moves in B are pushdown moves. All pushdown

moves are e-moves. The moves in B.1 push (Mi,p), the current NFA and next state, onto

the pushdown list and move to the start state of the NFA for Nj. From the final states of

Nj, the moves in B.2 pop (Mi,P) from the pushdown list and it becomes the current state.

Because~ is completely defined by Oi, i=l,.;.n, n~l, and Q is completely defined by Qi,

i=l, ... n, a system of finite automata can be represented in graph form that consists of a

graph representation of each Mi in M. This is illustrated in Example 3.2.

Example 3.2. A system of finite automata. Let S be the system of finite automata:

1. Q = { (A,0), (A,l), (A,2), (A,3), (B,O), (B,1), (B,2)}

2. L = {x, y}

3. N={A,B}

4. r contains a unique symbol for each state in Q.

5. Mo= A, qo=(A,O), and Fo={ (A,3) }.

6. The NF As of M are shown in Figures 3.1-3.2.

B

Figure 3.1. The NFA for A in Example 3.2.

Figure 3.2. The NF A for B in Example 3.2.

7. A is completely defined by 6 of A, 6 of B, and Q. However, to illustrate this, the

individual mappings of A are shown below. In future examples, systems of finite

automata are represented in graph form as shown above, and the individual mappings

of A are not explicitly shown.

a. local moves in A. and B

((A, 0), X, e) ~ ((A, 1), e) local move on x

((A, 1) , X, e) ~ ((A, 1), e) local move. on x

((A,2), X, e) ~ ((A,1), e) local move on x

((B,0), y, e) ~ ((B, 1) , e) local move on y

b. Pushdown moves (pushes)

((A,0), e, e) ~ ((B, 0), (A, 2)) push (A, 2)

((A,0), e, e) ~ ((B, 0), (A, 3)) push (A, 3)

((A,1), e, e) -f ((B, 0), (A, 2)) push (A, 2)

((A,1), e, e) ~ ((B, 0), (A, 3)) push (A, 3)

((A, 2) , e, e) ~ ((B,0), (A, 2)) push (A,2)

((A,2), e, e) ~ ((B, 0) , (A, 3)) push (A,3)

((B,0), e, e) ~ ((A, 0) , (B, 2)) push (B,-2}

· c. pushdown moves (pops)

((A,3), e, (B, 2)) ~ ((B,2), e) pop (B, 2)

((B, 2), e, (A, 2)) ~ ((A,2), e) pop (A, 2)

((B, 2), e, (A, 3)) ~ ((A, 3), e) pop (A, 3)

((B, 1), e, (A, 2)) ~ ((A, 2), e) pop (A, 2)

((B,1), e, (A, 3)) ~ ((A, 3) , e) pop (A, 3)

3.2 Algorithms

33

ALGORITHM 3.1. Construct a system of finite automata, S, from a system of regular

expressions, R, such that L(S)=L(R).

Input: A system of regular expr.essions, R.

Output: A system of finite automata, S, such that L(S)=L(R).

Method:

Step 1: Let~ of S be ~ of R.

Step 2: Let N of S be N of R.

34

Step 3: For each production A~a. in R, construct an NFA for a. using Thompson's

construction [2]. Remove .thee-transitions from the NFA using Algorithm 5.2.a (in

Chapter 5). Add the NFA to M of S, and let A added to N of S in Step 2 be the name of

the NFA. Thus, M of S consists of a finite set of NF As, one constructed from the right

side of each production in R.

Step 4: Let the name of the top level NF A Mo of M be No, the start symbol of R. For

each Mi in M of S, and for each q in Qi of Mi, let CMi, q) be in Q. For each state (Mi,q) in

Q let CMi,q) be a symbol in r. A of S is completely defined by Oi, for all Mi in M of S.

PROOF. Proof is given by Theorem 3.1, after supporting definitions~ and lemmas.

Example 3.3. A system of automata constructed from a system of regular expressions.

Let R be the system of regular expressions from Example 3.1:

1. ~={a, b}

2~ N = {A, B}

3. No=A

4. The productions in P are:

A ~ ((x I B) * B)

B ~ (y I A)

The system of automata constructed from R by Algorithm 3.1 is S=(M,N,Q.~.r.A,Mo)

where:

1. N= {A,B}

2. ~ = {x, y}

35

3. Q = { (A,O),(A,1), (A,2), (A,3), (A,4), (A,5), (A,6), (A,7), (A,8), (B,0), (B,1), (B,2),

(B,3), (B,4), (B,5)}

4. I'=Q.

5. Mo=A

6. A is completely defined by the automata ofM below.

7. The NF As of M (before removing e-transitions) are shown in Figures 3.3-3.4.

e

. ,_ .} ·'.

e

Figure 3.3. The NFA for A in Example 3.3
~ . . -.

Figure 3.4. The NFA for Bin Example 3.3.

Definition 3.3. Expansions of systems of automata. Consider any system of regular

expressions R and the system of automata S constructed from R by Algorithm 3.1. Let

A~a.A be in P of R, where A is the start symbol of R. Then A is the first regular

expression form of any derivation sequence of R, and a A is the second regular expression

form in any derivation sequence of R. In S, the NFA for A is constructed from the regular

expression form, a.A. Construct a system of automata S' from Ras follows:

36

1. Let B be any nontenninal symbol in N, where B~cx.B is in R. In the regular expression

fonn CX.A, replace any one occurrence of B with CX.B. This is the first optional regular

expression fonn in any derivation sequence ofR. Denote this regular expression fonn

as A 1 · The derivation for A 1 is A==>CX.A >A 1 ·

2. Because A 1 is a regular expression fonn, it is a regular expression over (:E u N).

Construct an NFA by applying Thompson's construction to A1. Let this be the NFA

for Ain S'..

3. Let the rest of S' be exactly the same as S.

The resulting system of automata, S', is called a-first order expansion ofS, andis denoted

as S 1. Consider any occurrence of a nontenninal C in A 1, such that C~cx.c. C may be

replaced by cx.cto derive A2. Thus A==>aA=>A1=>A2. Step 2 is applied to A2 to

derive the NFA for A in the new S'. This S' is, a second order expansion of S, denoted as

S2. Expansions may be continued in this way, for any Sn, ~ 1, as long as An-1 contains

some nontenninal symbol to replace. cx.A,is called the zeroth order expansion of Sand is

denoted by so. Thus, for every regular expression fonn except for the start symbol of R,

there is a corresponding expansion of S, si, ,~O.

Example 3.4. A first order expansion of S. ·· Let R be the system of regular expressions

from Example 3.2:

A ~ ((X· I B) * B)

B ~ (y I A)

The NFA for A in Sis shown in Figure 3.3. Replace the second occurrence of Bin

CX.A=((xlB)* B) with CX.B=(ylA). This gives the regular expression fonn

A1=((xlB)*(ylA)). The NFAconstructed for A1 becomes the NFA of A in Sl as shown in

Figure 3.5. The states labeled B/0-B/5 are the states that are added to the NFA of A in Sl

by replacing the component NFA for B with the component NFA for cx.B. The NFA for

B is shown in Figure 3.6.

37

e

e

Figure 3.5; The NFA for A 1 in Example 3.4.

Figure 3.6. · The NFA for B in Example 3.4.

LEMMA 3.1. Lets be any regular expression, and lets' be a regular expression

derived from s by replacing any one occurrence of a symbol Bin s by a regular

expression r. Let M(s) and M(s') be the NF As constructedfor s ands' by. Thompson's

construction [2]. Then, M(s') will be exactly the same as M(s) except that the component·

NFA constructedfor.B in M(s) will be replaced in M(s') by the component NFA

constructed for r.

PROOF. The first step in Thompson's construction is to construct a parse tree for the

regular expression; each subtree represents a subexpression. Then the parse tree is

traversed and NF As are constructed inductively for each subexpression from the

component NF As for its respective subexpressions.

1. The subtree for B (a leaf node) in the parse tree of s will be replaced by the subtree for r

in the parse tree of s'.

38

2. The component NFA constructed for each subexpression has the following properties

[2]: a. There is exactly one start state, q, and one final state, p, distinct from q. b.

There are no arcs entering q and no arcs leaving p.

3. When the inductive rules are applied to a component NFA they are applied

independently of the value of the regular expression from which the component is

constructed; there are no arcs constructed that enter any state of the component NFA

other than the start state q, and there are no arcs constructed that leave any state of the

component NFA other than the final state p.

Let q and q' be the start states of M(B) and M(r) respectively and p and p' be the final ·

states of M(B) and M(r) respectively. Then M(s') is constructed exactly the same as M(s)

except that q' replaces q and p' replaces p. For all states t and u in Q of M(s) except for q

and p,-and any bin (l: u e), if O(t,b)~ in.M(s); then O(t,b)~q' in M(s'), and if O(p,b)~u

in M(s), then o(p',b)~u in M(s'); For the special case of B* in M(s), where o(p,e)~,

then o(p',e)~q' in M(s'). Thus for ally in L(r), all moves (t,bB) I- (q,B) I- (p,e) in M(s)

are removed and replaced by (t,by) I- (q',y) I-* (p',e) in M(s'), and all moves (q,Bb) I- (p,b)

I- (u,e) in M(s) are removed and replaced by,(q',yb) I-* (p',b) I- (u,e) in M(s').D

In the lemmas-and theorems that follow, this result will be applied to expansions of

systems of automata. · Figures 3.3 and 3.5 illustrate this application of Lemma 3.1. Figure

3.3 in Example- 3.3 shows the NFA constructed for the right side of the production for A,

<lA=((x IB)* B). Figure 3.5 in Example 3.4 shows the NFA constructed for A 1 =((x IB)*

(y I A)), in which <lB=(y I A) (the right side of the production for B) has replaced the

second occurrence of Bin <lA- The NFA for A in Figure 3.3, M(aA), is exactly the same

as the NFA for A 1 in Example 3.5, M(A 1), except that the component NFA constructed

for B in M(a A) is replaced in M(A 1) by the component NF A constructed for <lB.

In Figure 3.5 all states in M(A1) that are from M(aB) are shown as Bit, where twas the

name of the state in <lB· Thus, these states in S 1 are denoted by (A, Bit). This notation,

will be used in Lemma 3.2.

39

Lemma 3.1 shows that the transitions into state (A,7) in Figure 3.3 are exactly the same

as the transitions into (A,n/0) in Figure 3.5. It also shows that the transitions leaving state

(A,8) in Figure 3.3 are exactly the same as the transitions leaving state (A,n/5) in Figure

3.5. This result from Lemma 3.1 will be used in Lemma 3.2.

LEMMA 3.2. If Sn is an nth order expansion of S, for some n~l, then L(Sn)=L(S).

PROOF. The proof is by induction.

Basis:· First, the proof is shown for n=l. Let R be any system of regular expressions

and let S be the system of automata constructed from R by Algorithm 3.1. Let A....:,aA

and n....:,an be in P·of Rand letA·be the start symbol ofR. Let A1 be the regular

expression form derived from a.A by replacing some occurrence of n in a.A with an. Let

S 1 be the first order expansion of S defined by A 1 ·

Case A· Consider any word w in L(S). This implies S makes some sequence of moves

((A,qo),w,e) I-* ((A,f),e,e) for some fin F of M(aA). Suppose this sequence of moves

does not make a transition. on the occurrence of n that is in replaced in S 1. Then by

Lemma 3.1, S 1. has exactly the same sequence of moves as S, and thus w is in L(S 1).

Suppose the sequence of moves of S recognizing w makes some transition on the

occurrence of n that is replaced in S 1. Let w=xyz for some x, y, and z in .I;*; Then by ·

Definition 3.2, for some p and q in Q of M(a.A), fin F of M(a.A) and f' in F of M(an) ,

* * the moves of Sare of the form: ((A,qo),w,e) 1., ((A;q),yz,e) I- ((n,qo),yz,(A,p)) 1-

((B,f"),z,(A,p)) I- ((A,p),z,e) I-* ((A,f),e,e).

Let y=Yl,···Yn, n~l~ where each yimay bee. The subsequence of moves of S

recognizing yin w can be shown in expanded form as: ... ((A,q),yz,e) I- ((B,qo),yz,(A,p))

I- ((B,q1), Y2,···Ynz,(A,p)) ... I- ((B,qn),ynz,(A,p)) I- ((n,f"),z,(A,p)) I- ((A,p),z,e) ...

Then by Definition 3.2 and Lemma 3.1, Sl has a corresponding subsequence of moves

on y: ... ((AIB,qo),yz,e) 1- ((AIB,q1), Y2,···YnZ,e) .. .I- ((Afn,qn),ynz,e) 1- ((A/B,f'),z,e) ... ,

for ~. i=l, ... n in Q of M(an) and for qo the start state and f" in F of M(an). Also by

Lemma 3.1, the transitions into q in M(aA) are exactly the same as the transitions into

40

B/qo in M(A1), and the transitions from pin M(a.A) are exactly the same as the transitions

from B/f' in M(A1). Thus, Sl must make the sequence of moves: ((A,qo),xyz,e) I-*

((A,B/qo),yz,e) I-* ((A,B/f'),z,e) I-* ((A,f),e,e).

Thus if w is in L(S), w is in L(S 1), and therefore L(S) c L(S 1).

Case B: A similar proof holds for L(S 1) c L(S). Consider any word w=xyz in L(S 1).

This implies Sl makes some sequence ofmoves-((A,qo),w,e) I-* ((A,f),e,e) for some fin F

of M(A 1). Suppose this sequence of moves does not make a transition on the occurrence

of B that replaced in S 1. Then by Lemma 3.1, S 1 has exactly the same sequence of moves

as S, and thus w is in L(S).

Suppose the sequence of moves of S recognizing w makes some transition on the

occurrence of B that is,_replaced in Sl. Then by Definition 3.2, if w=xyz for some x, y, .

and z in I:* the moves of Slare of the form:. ((A,qo);xyz,e) I-* ((A,B/qo),yz,e) I-*

((A;B/f'),z,e) I-* ((A,f),e,e). Let y=yt,···Yn, 121, where any Yi may bee. The

subsequence of moves of Sl recognizing yin w can be shown in expanded form as:

... ((A,B/qo),yz,e) I- ((A,B/q1),y2,--·Ynz,e) ... I- {(A,B/~).ynz,e) I., ((A,B/f'),z;e); ..

Then by Defmition 3.2 and Lemma 3.1, S has a corresponding subsequence of moves on

y: ... ((A,q),yz,e) I- ((B,qo),yz,(A,p)) I- ((B,q1); Y2,···Ynz,(A,p)) ... I- ((B,qn).Ynz,(A,p)) 1-

((B,f'),z,(A,p)) I- ((A,p),z,e) ... Also by Lemma 3.1, the transitions into q in M(a.A) are

exactly the same as the transitions into Blqo in M(A 1), and the transitions from pin .

M(a.A) are exactly the same as the :transitions from B/f' in M(A1). Therefore, S must

make the sequence of moves ((A,qo),xyz,e) I-* ((A,q),yz,e) I- ((B,qo),yz,(A,p)) I-*

((B,f'),z,(A,p)) I- ((A,p),z,e) I-* ((A,f),e,e).

Thus, if w is in L(S 1), w is in L(S), and this implies L(S 1) c L(S).

Therefore, by A and B, L(S)=L(Sl).

Inductive step: Suppose L(S)=L(Sn), for any 121. Then by reapplying the proof used

for n=l, the same results show that L(SD)=L(sn+ 1).

Therefore, by the basis and inductive steps, L(S)=L(Sn) for 121.

41

THEOREM 3.1. For every system of regular expressions, R, there is a system of finite

automata, S, such that L(S)=L(R).

PROOF. Consider any R. Construct a system of automata, S, from R using Algorithm

3.1. The following proof shows that L(S)=L(R).

Case A: Prove L(R) is a subset of L(S). Suppose w is in L(R). By Definition 3.1 if w

is in L(R), then there is a regular expression form a. of R, such that w is in L(a.) and w is

in~*. Because a. is a regular expression form of R, there is some Cli, i=l, ... n, n~l. such

that N o==>a.1, ... =>CX.n-1 =>a., and one nonterminal in each CX.i-T is replaced in Cli· Then

by Definition 3.3, there is some expansion sn defined by Rand a.. The NFA for Mo in sn

(for No, the start symbol ofR) is constructed by applying Thompson's method to a..

Thus, Mo=M(a.) recognizes L(a.), and since w is in L(a.)and w is in~*, M(a.) must make

some sequence of moves (qo, w) I-* (f,e) for someJ in Mo, and therefore by Definition

3.2, sn must make a sequence of moves ((MQ,q(j),w,e) I-* ((Mo,f), e,e). This implies w is

in L(Sn). Then, by Lemma 3.2, L(Sn)=L(S). Thus, w is in L(S) and therefore, L(R) is a

subset of L(S).

Case B: Prove L(S) is a subset of L(R). To prove this it must be shown that if w is in

L(S), then w is in L(R). The method used is to show that there is an expansion of S, sn

for some n~ 0, such that the top NFA, Mo of sn recognizes w. For all sn, Mo is an NFA

constructed from some regular expression form a. of R such that L(Mo)=L(a.). Then if w

is in L(Mo) w is in L(a.), and thus w is in L(R).

Let A denote the start symbol of R. Thus A is also the name of Mo of S and Mo of any

sn. Suppose w is in L(S). This implies there is some sequence of moves of S, ((A,qo), w,

e) I-* ((A,t) e, e) for some final state f of A. If there are no pushdown moves in this

sequence, then so satisfies the requirements that w is recognized by the top NF A of some

sn; in particular, so. That is, if A~a. is in P of R, w is in L(a.), and thus w is in L(R).

Consider any sequence of moves of S recognizing w in which there are pushdown

moves. This implies that for some y and z in ~*there some j~l subsequences of moves of

42

* Son w of the form: ... ((A,q),yz,e) I- ((B,qo),yz,(A,p)) I- ((B,f),z,(A,p)) I- ((A,p),z,e) ...

where the sequence corresponds to some arc labeled B in A. For each configuration in the

sequence of moves recognizing w, the pushdown list has a finite number of symbols k,

~o.

Begin with the regular expression form ex.A, where A~cx.A is in R. Let cx.o denote ex.A.

Repeatedly construct regular expression forms CX.i, i=i+j by replacing all nonterminal

symbols in the regular expression form CX.i-j- The derivations are of the form

CXi-j=>CX.i-j+ 1, ... =>CX.i where all j nonterminals in «i"'j have been replaced in CX.i. Then

there are expansion of s, si-j, si-j+ I , ... Si, where si is constructed from CXi. Thus for each

CX.i, there is an expansion of S, Si.

By Lemma 3.1, in each Si constructed, for every sequence of moves in si-j there is a

corresponding sequence of moves in Si, except that the top level pushdown moves in Si-j

are removed in ·Si. Thus for each Si any sequence of moves recognizing w has the

following property: for each configuration in the sequence, if ~O. then in the

corresponding configuration of Si, the number of symbols on the stack is k-1.

Thus, by repeatedly deriving CX.i and constructing Si, it must eventually true for some Si

that k=O; every configuration in the sequence of moves recognizing w has an empty stack.

Then, because there are no pushdown moves in the sequence, and it must be true that the

top NFA, A, in Si recognizes w. Since A is Mo of Si, by the construction of Si, the NFA

for A in Si.recognizes L(cx.i). Thus, w is in CX.i, and by Definition 3.2, w is in.L(R).

Therefore, by A and B, L(S)=L(R)

Definition 3.4. Useless NF As in a system of finite automata. In a system of finite

automata S, an NF A Mj in M is useless iff there is no x in ~*, fin Fj, and ~ in r* such that

((Mj,qo,x,~) I-* ((Mj,f),e,~). An NFA is useful iff it is not useless.

Definition 3.5. Inaccessible NFAs in a system of finite automata. Let S be a system of

finite automata. An NFA Mj is inaccessible iff there is no x in~* and ~ in r* such that

((Mo,qo),x,e) I-* ((Mj,qo), e, ~). An NFA is accessible iff it is not inaccessible.

43

Definition 3.6. Useless states in a system of finite automata. Let S be a system of finite

automata. A state (Mi,P) in S is useless iff there is no x and y in l:* and ~ in r* such that

((Mo,qo),xy,e) I-* ((Mi,P), y, ~) I-* ((Mo,f),e,e) for some fin Fo.

ALGORITHM 32. Derive the set of useful NFAs in a system of finite automata.

Input: A system of finite automata S.

Output: The set U, the names of the useful NFAs in S.

Method:

Step 1: LetUo=0 and n=l.

Step 2:· LetUn=(Un-1 u U') where U' is derived as follows: for each Nj in (N--Un-1)

perform steps A-D:

A. Let Ao={ qo} where qo is the start state of Mj and let m=l.

B. Let Am=(Am:..1 u A') where A'. is derived as follows: for all q in Am-1, p in Qn, and b

in (l: u Un-1), such that for o of Mj, o(q,b)~p. add p to A'.

C. If Am*Am-1 then let m=m+ 1 and repeat Step R Else let A=Am.

D. A is the set of states in Mj that can be reached on either an input symbol in l: or on a

nonterminal in Un-1 · lfthere,is any state fin A such that f is in Fj, then add Nj to U'.

Step 3: If Un*Un-1, let n=n+l and repeat Step 2 .. Else let U=Un, output U, and halt.

-PROOF. Nj is in U iff Mj is useful.

Case 1: · Suppose Nj is in U. The following proof by induction shows that if Nj is in

Un, for some ~1. then Mj is useful. ·

Basis. Consider Uo. This holds vacuously because Uo=0.

Inductive step. Suppose for all Nj in Un-1, Mj is useful. Consider all Nk in Un. By

Step 2 of Algorithm 3.2, for Mk, either qo of Mk is in Fk or there is some string

x=x1, ... x~. m~l. in (l: u Un-1) such that o(qo,x1)~q1, ... o(~-l,Xm)~qm, such that~

is in Fj, and for each Xi, i= 1, ... m, Xi is either in l: or in U n-1 ·

If xi is in l:, then by Definition 3.2, ((Mk,qi-1),Xi,~) I- ((Mk,qj),e,~). If Xi is some Nj in

N, then by Definition 3.2, ((Mk,qi-1),e,~) I- ((Mj,qo),e,(Mk,qi)~) and for all fin Fj,

44

((Mj,f),e,(Mk,qi)P) I- ((Mk,qi),e,p). By the inductive assumption for Nj in Un-1, Nj is

useful and thus for some Yi in :E* and fin Fj, ((Mj,qQ,Yi,(Mk,qi)P) I-* ((Mj,f),e;(Mk,~)P).

Thus there is some v=v1, ... vm, such that each Vi, i=l, .. ,m is either Ui in :E or is some

string Yi in :E* and ((Mk,qi-1),vi,P) 1- ((Mk,qi),e,P). Therefore, ((Mk,qo),v,P) 1-+

((Mk,qm),e,P) where qm is in Fj- ·

If the result holds for any Un-1, it holds for Un, and therefore if Nj .is in some Un, for

some n~l. then Mj is useful.

Case 2: If Mj is useful, then Nj is in U. The following proof shows that if Nj is not in

U, then Nj is useless. Then because AQ implies AP if and only if P implies Q; ·the result

holds.

By.the last iteration of Step 2 of Algorithm 3.2, there is no Nj in N-U, such that there is

any stringy, such that y is in L(Mj) and y is in (:E u U)*. Thus any accepting sequence of

moves ofMj must be of the form (qo,x) I- (q1,x2, ... xm) I- (qi-1,Xm) 1-(qm,e) were qm is in

Fj, for some x=x1,--Xm, m~l. and such that for some i, i=l, ... m, Xi=Nk for some Nk in

(N-U). Thus (qi-1,xi) I- (~,Xi+l) for i=l, ... m, and some Xi is Nk in (N-U).

Then, for each Nj in N-U, it must be true for Nk that there is a transition in Mk on some

Ng in N-U, delta(q,Ng)~p. q and pin Qk. Then for some y, z in :E* if ((Mj,qi-1),y,p) 1-

((Mk,qQ),y,(Mj,qi)P) 1-+ ((Mk,q),e,(Mj,~)P) I- ((Mg,qo),e,(Mk,P)(Mj,qi)P), then the

moves ((Mk,qQ),y,(Mj,qi)P) I-+ ((Mk,q),e,(Mj,qi)P) contain no move of the form

((Mk,f),u,(Mj,qi)P) I- ((Mj,qi),u,P) for any u in :E* and any (Mk,f) in Q such that f is in Fk.

Thus any sequence of moves beginning with ((Mj,qo),y,p) for any yin :E, Pin r*, such

that Nj is in N-U, can never terminate. There will always be a symbol (Mk,qo) for Nk in

N-U placed on the stack before the previous stack top, (Mj,qi), can be popped.

Thus, if Nj is in N-U (AQ), then Mj is useless (AP). Then P implies Q, and thus if Mj is

useful then Nj is in U.

Therefore by 1 and 2, Nj is in U iff Mj is useful.

ALGORITHM 3.3. Remove useless NF As from a system of finite automata.

Input: A system of finite automata, S.

Output: A system of finite automata S' such that S' has no useless NFAs and

L(S')=L(S). The output is "undefined" if Mo is useless.

Method:

Step I: Remove thee-transitions from all NFAs in M of S using Algorithm 5.2.a.

Step 2. Use Algorithm 3.2 to- derive the set U, the names of the-useful NF As of S. If

45

No, the name of Mo of Sis not in U then halt, and outputlfundefined." Note that if No is

not in U, then L(S)=0.

Step 3: For each Nj in N-.U, remove Mj from M; remove Nj from N, remove all states

(Mj,q) for all q from Q, and remove the corresponding symbol for (Mj,q) from r.

Step 4: For each Nk in U and for each q and pin~. for all Nj in N-U such that

B(q,Nj)--tp, remove B(q,Nj)--tp from B ofMk. Remove all inaccessible states from Mk

using Algorithm 5.2.b and use Algorithm 5.2.c to remove all useless states from Mk. For

all states q removed from~. remove CMk,q) from Q and remove the·symbol for CMk,q)

fromr.

Step 5: Let M'=M, N'=N, L'=l:, Q'=Q, r '=I', M'o=Mo. A' is completely defined by all

Bi of Mi, for all Mi in M'. Let S'={M', N', l:', Q', r ', M'o, A'}

PROOF. No states or moves are added to S' so if x is in L(S') then x is L(S) .. Every Mj

removed by Step 3 is useless, and thus there is no xyz, x, y, and z in l:* such that

((Mo,qo),xyz,e) I-* ((Mj,qo),yz,~) I-* ((Mj,f"),z,~) I- ((Mo,f),e;e) for some f" in Fj and fin

Fo.

For every Nk in U, for each B(q,Nj)--tp in Mk removed by Step 4, because Nj is useless,

for any x, y, and z in l:* and Pin r* there is no sequence of moves ((Mk,q),y,p) 1-

((Mj,qo),y,(Mk,P)~) I-* ((Mj,f"),e,(Mk,P)~) 1- ((Mk,P),e,~). Thus, there is no sequence of

moves ((Mo,qo),xyz,e) I-* ((Mk,q),yz,P) I-* ((Mk,P),z,P) 1-((Mo,f),e,e) for fin Fo.

Therefore, if x is in L(S) then x is in L(S'), and therefore, L(S')=L(S).

ALGORITHM 3.4. Derive the set of accessible NF As in a system of finite automata.

Input: A system of finite automata S with useless NFAs removed by Algorithm 3.3,

such that Mo is in M of S.

Output: The set A, the names of accessible NF As in S.

Method:

Step 1: Let Ao={No} and n=l.

46

Step 2: Let An=An-1 U A' where A' is constructed as follows .. For each Nj in An-1, for

o of Mj and for all q and pin Qj, if o(q,Nk)~p, then add Nk to A'.

Step 3: If An:;tAn-1 then let n=n+l and repeat Step 2. Else let A=An.

PROOF. Nj is in A iffMj is accessible.

Case 1: Suppose Nj is in A. The following proof by induction shows that if Nj is in An,

for some n~, then Mj is accessible.

Basis. Consider Ao- Let m=O. If Nj is in Ao, then Mj=Mo and the result holds.

Inductive step. Suppose for all Nj in An-1 that Mj is accessible. The following proof

shows for all Nk in A0 that Mk is accessible. Consider Nj in An-1 · By Definition 3.5,

there is some x in :I:* and (3 in r* such that ((Mo,qo),x,e) I-* ((Mj,qo,),e,(3).

Consider any Nk in An. Then by Algorithm 3.4, there is some Mj in An-1 such that for

oof Mj and some q and pin Qj, o(q,Nk)~p. Then because all inaccessible states in Mj

have been removed by Step 3 ofAlgorithm3.2, there is some u=u1, ... um, m~l, such that

Um=Nk and o(qo,u1)~q1, ... ,o(~-2,um-l)~qm-l, o(qm-1,Um)~ ~- Then for i=l, ... m,

for each o(qi-1,Ui)~qi, qi is either in l: or in An. Choose u so that um is the first

occurrence of some Nk in u. Then by adding Nk to An-1 and choosing another

u=u 1, ... um•,m'>m, the following proof holds for any subsequent occurrences of Nk.

By Definition 3.2 if Ui is in l:, then ({Mj,~-1),ui,(3) I- ((Mj,qi),e,(3), and if Ui is in An-1,

({Mj,~-1),e,(3) I- ((Mk,qo),e,(Mj,qi)I3) and for all fin Fk, ((Mk,f),e,(Mj,qi)I3) 1-

((Mj,qi),e,(3). Then because all NFAs in Sare useful, by Definition 3.4 there is some Yi in

L* such that ((Mk,qQ,),Yi,(Mj,qi)J3) I- ((Mk,f),e,(Mj,qi)J3) for fin Fk. Thus, for Ui in L

((Mj,qi-1),ui,J3) I- ((Mj,qi),e,J3), and for Ui in An-1 ((Mj,qi-1),Yi,J3) I- ((Mj,qi),e,J3).

47

Let v=v1, ... vm, where Vi, i=l, ... m are in L*, and vis constructed as follows: if Ui is in

Lthen Vi=UiandifuiisinAn-1, then vi=yi. Thus, ((Mj,qo),v,J3) 1-* ((Mj,~-1),vm,J3).

Then by Definition 3.2 because um=Nk, {(Mj,qm-1),vm,J3) 1- ((Mk,qo),vm,(Mj,qm)J3).

Thus, for xv1, ... vm-l, ((Mo,qo),xv1, ... vm-l,e) I-* ((Mj,qo,),v1, ... vm-l,J3) l­

((Mj,qm-1),e,J3) I- ((Mk,qo),e,(Mj,qm)J3), and if Nj is in An for ~O, then Mj is accessible.

Case 2: Suppose Mj is accessible~ The following proof by contradiction shows that if

Nj is not in A, then Mj is inaccessible. Then because P 1mplies Q iff AQ implies AP, if Mj

is accessible, then Nj is in A ·

Suppose Nj is not in A and Mj is accessible. By Definition 3.5, Mj is accessible iff there

is some X in L* and J3 in r* such that ((Mo,qo),x,e) I-* ((Mj,qo),e,J3). Then, by Definition

3.2 there is some sequence of NF As in M, Mo, ... Mj, such that: for Mo and some qo and

PO in Qo, o(qo,N 1)~PO, for M 1 and some q1 and Pl in Q1, o(q1,N2)~Pl,····for Mj-1

and some qj-1 and Pj-1 in Qj-1, o(~j-1,Nj)~Pj-l- Note that qo does not necessarily

denote the start state_ of Mo. After the final iteration of Step 2 of Algorithm 3.4, N 1, ... Nj

must be in A This contradicts the assumption that Nj is not in A, and thus if Nj is not in

A, then Mj is inaccessible. Then because P implies Q if AQ implies AP, if Mj is accessible,

then Nj is in A

Therefore by 1 and 2, Nj is in A iff Mj is accessible.
I

ALGORITHM 3.5. Remove inaccessible NF As from a system of finite automata.

Input: A system of finite automata S.

Output: A system of finite automata S' with no inaccessible NF As such that L(S')=L(S).

Method:

Step 1: Use Algorithm 3.4 to derive the set A, the names of all accessible NF As in S.

Step 2: For each Nj in N-A, remove Nj from N, remove Mj from M, remove all states

CMj,P) for all p from Q of S, and remove the symbol for (Mi,P) from r.

48

Step 3: For each Nk in A, for Mk and for all q and pin Qic such that 6(q,Nj)~p. for Nj

in N-A, remove (q,Nj)~p from 6 of Mk. Use Algorithm 4.2.b to remove all inaccessible

states from Mk [3] and use Algorithm 4.2.c to remove all useless states from Mk. For all

states q removed from Qic, remove (Mk,q) from Q and remove the symbol for (Mk,q)

fromr.

Step 4: Let M'=M, N'=N, I:'=I:, Q'=Q, r '=r. M'o=Mo. A' is completely defined by all

Oi of Mi, for all Mi in M'. Let S'={M', N', I:', Q', r ', M'o, A'}·

PROOF.

Case 1: No states or moves are added to S' so if w is in L(S') then w is L(S).

Case 2: Every Mj removed by Step 2 is inaccessible, and thus there is no xy inL(S)

such that ((Mo,qo),xy,e) I-* ((Mj,qo),y,~) I-* ((Mo,f),e,) for fin Fo. For every Nk in A,

for each 6(q,Nj)~p removed by Step 3, because Mj is inaccessible, it is for any x, y and z

in I:*, ~ in r*, and (Mk,q) and (Mk,P) in Q, there is no sequence of moves

((Mo,qO),xyz,e) I-* ((Mk,qo),~z,~) I-* ((Mk,q),y,~) I- ((Mj,qo),y,(Mk,P)~) I-* ((Mo,f),e,)

for fin Fo. Thus, if w is in L(S) then w is in L(S').

Therefore, by 1 and 2, L(S')=L(S).

ALGORITHM 3.6. Remove useless states from a system of automata.

· Input: A system of finite automata S.

Output: A system of finite automata S ", with no useless states such that L(S ")=L(S)

Method:

Step 1: Remove useless NFAs from S using Algorithm 3.3 to derive S'.

Step 2: Remove inaccessible NFAs from S' using Algorithm 3.5 to derive S".

PROOF. After Step 2, there are no useless or inaccessible NFAs in S" and for all NFAs

Mj in M", by Step 3 of Algorithm 3.5, there are no useless or inaccessible states in Mj, and

by Step 1 of Algorithm 3.3 there are no e-transitions in Mj- Consider any state (Mi,q) in

S".

Part 1: Because all NFAs in S" are accessible, then for some x in I:* and 13 in r*,

((Mo,qo),x,e) I-* ((Mi,qo),e,l3).

49

Part 2: Because all inaccessible states have been removed from Mi, either qo=q or

there is some u=u1, ... um, m;;::1, such that Ui, i=l, ... m is in (I: u N) and for 8 of Mi,

8(qo,u1)~q1, 8(q1,u2)~q2, ... 8(qm-l,um)~q. If Ui is in I: then ((Mi,qi-l,Ui,13) l­

((Mi,q),e,13), and if Ui is some Nk in N. then by Definition 3.2, for each i, ((Mi,qi-1),e,!3) l­

((Mk,qo),e,(Mi,qi)l3) and for all fin Fk ((Mk,f),e,(Mi,qi)l3) I- ((Mi,qi),e,j3). Because there

are no useless NFAs in S", for each Ui=Nk in N, there is some Yi in I:* and 13' in r* such

that ((Mk,qo),Yi,(Mi,qi)l3) I-* ((Mk,f),e,(Mi,qi)l3). Thus (Mi,qi-1),Yi,13) I-+ ((Mi,q),e,j3).

Let v=v1, ... vm such that if Ui is in I:, Vi=Ui and if Ui is Nk in N, then Vi=Yi· Then,

((Mi,qo),v,j3) I-* ((Mi,q),e,l3.)

Part 3: The proof in 2 can be applied to show that there is some v' in (SIGMA u N)

such that ((Mi,q),v',13) I-* ((Mi,f"),e,13) for some f' in Fi.

Part 4: From 1, 2, and 3, there is a string xvv' in I:* such that ((Mo,qo),xvv',e) I-*

((Mi,qo),vv',13) 1-* ((Mi,q),v,13) 1- ((Mi,f),e,13) for f'.in Fi. It only remains to be shown that

there is a string z such that ((Mi,f"),z,13) I-* ((Mo,f),e,e) for fin Fo.

Case a: If 13=e, then Mi=Mo and by the proof in 3, there is some z=v in I:* such that

(Mo,q),z,e) I-* ((Mo,f),e,e) for fin Fo.

Case b: Consider 13=131, ... l3n, n;;::1, such that 131 is the top of the stack; 13k, k=l, ... n are

symbols denoting states (Mk,fk), k=l, ... n. Let fk, k=l, ... n be a final state in Fk. By

Definition 3.2, ((Mi,f"),z,13) I- ((M 1,q),z,l32, ... l3n) and by the proof in 3, for some

z=z1, ... zninI:* ((M1,q),z1, ... zn,132,···l3n) 1-* ((M1.fi),z2, .. Zn,132, ... l3n) l-

((M2,r2),z2, ... Zn,133,···l3n) ··· ((Mn-1,rn-1),Zn-1Zn,13n) I-* ((Mn-1.fn-1),zn,13n) 1-

((Mn,fn),zn,e).

The bottom symbol on the stack must always be some state in Mo, and thus (Mn.f n)

must be (Mo.fn) for some fn in Fo. The proof in 3 shows that for some Zn ((Mo.fn),zn,e)

50

I-* ((Mo,:f),e,e) for some fin Fo. Note that Zn may bee and fn may be f. Then it must be

true that for some z in :r.* that ((Mi,q),z,~) I-+ ((Mo,:f),e,e) for some fin Fo.

Therefore by Parts 1-4, there is some string xvv'z such that ((Mo,qo),xvv'z,e) I-*

((Mi,q),v'z,~) I-* ((Mo,:f),e,e) for fin Fo, and thus each (Mi,q) in Q" of S" is not a useless

state. The proof that L(S)=L(S')=L(S") is already given in the proofs of Algorithms 3.3

and 3.5.D

In this chapter, systems of regular expressions and a corresponding class of recognizers,

systems of finite automata, are defined, and an algorithm is given for constructing a system

of finite automata S from a system of regular expressions R, such that L(S)=L(R).

Useless NFAs, inaccessible NFAs, and useless states in systems of finite automata are also

defined, and algorithms are given for removing these from a system of finite automata. In

Chapter 4, this language model (systems of finite automata from systems of regular

expressions) is used to construct a parser for DTDs. The parser is used in Chapters 5 and

6 in algorithms to detect ambiguity in model groups and DTDs. Chapter 6 shows that the

high level syntax of document instances can also be represented by systems of regular

expressions, and thus systems of finite automata can be constructed that recognize

document instances.

51

4. A Parser for DTDs

In this chapter a parser is constructed for the high level syntax of D1Ds from the syntax

productions shown in Chapter 2.2.1. First an equivalent regular expression is derived for

the right hand side of each syntax production; the result is a system of regular expressions

defining the syntax of D1Ds. Using Algorithm 3.1, a system of finite automata

recognizing DID_s is constructed from this system of regular expressions. Then a parser is

constructed for D1Ds from this system of automata. There are tw_o purposes for

constructing the parser: 1. It demonstrates that parsers for SGML syntax productions can

be constructed using systems of finite automata derived from the syntax productions. 2.

The parser is used in Chapters 5 and 6 in the algorithms for detecting ambiguity in model

groups and ambiguity caused by omitted tags.

4.1 A System of Regular Expressions for D1Ds

The expressions of syntax productions have equivalent regular expressions [13]. Thus,

a system of regular expressions, R, that defines the syntax of D1Ds can be derived from

the syntax productions in Chapter 2.2.1 by the following steps:

1. In the syntax production for "element declaration", the syntactic variable "content

model" in the expression for "element declaration" is replaced by it's right hand side

(the expression for "content model"). This is similar to removing single productions in

context free grammars [3] and does not affect the language defined (D1Ds).

2. For each syntax production of the form, A= exprl, convert exprl to an equivalent

regular expression, expr2. Replace all occurrences of B?, where B is any subexpression

of exprl, with the equivalent regular expression (Ble) in expr2, and replace all

occurrences of B+ with BB* [13].

3. Add the syntactic variable A to N of R and add A~expr2 to P of R.

4. All tokens other than syntactic variables and operators in exprl represent terminal

symbols. Add each of these tokens to ~ of R.

5. Designate the syntactic variable, "DTD", as the start symbol of R.

By applying steps 1-4 to the system of syntax productions for DTDs given in Chapter

2.2.1, the following system of regular expressions for DTDs is derived.

DTD = "DOCTYPE", GI, element declaration, element declaration*

element declaration= MDO, "ELEMENT", element type, (omitted tag

minimization I e), (declared content I (model group, (exceptions

I e))), MDC

element type = GI I (name group)

omitted tag minimization= start tag minimization, end tag

minimization

start tag minimization= "0" I MINUS

end tag minimization= "O" I MINUS

exceptions= (exclusions, (inclusionsle)) I inclusions

exclusions= MINUS, GRPO, GI, GI*, GRPC

inclusions= PLUS, GRPO, GI, GI*, GRPC

declared content = "CDATA" I "RCDATA" "EMPTY"

model group= GRPO, content token, ((AND, content token)* I (OR,

content token)* (SEQ, content token)*) GRPC, ((OPT I PLUS I

REP) I e)

52

content token = "#PCDATA" I (GI, ((OPT I PLUS I REP) I e)) I model

group

4.2 A System of Finite Automata for DTDs

A system of finite automata recognizing DTDs can be constructed from the above

system of regular expressions by applying Algorithm 3.1. The resulting system of finite

automata is shown below in graph form. The only NFAs shown are for DID, element

declaration, model group, and content model; these are used in Chapters 5 and 6 in

algorithms for detecting ambiguity. Because of the hierarchical nature of systems of finite

53

automata, the parser for model groups can be used independently of the parser for DTDs

by considering only Figures 4.3-4.4 and Tables 4.3-4.4.

element
declaration

element element Q
~ (D DOCTYPE © __ G_I _~® declaration © declaration ©

Figure 4.1. The NFA for DID.

declared 6

element omitted

content ~

~CD-MD_o_0 ELEMENT 0 _ty_pe_0 tag ®

~~
.~faoc

Figure 4.2. The NF A for element declaration.

content
17'\ GRPO.....f:"'\ token
~~

SEQ

Figure 4.3. The NFA for model group.

#PCDATA

,__ __ G_I --~@J PLUS >©

·~

model
group

Figure 4.4. The NF A for content token.

4.3 A Parser for DTDs

54

A parser for DTDs can be implemented as a set of functions; each function implements

the NF A for a nonterminal symbol in the system of finite automata shown above. For each

transition b(q,by)-tp in the NFA for a function, moves are made as follows: 1. if bis a

terminal symbol then a local move is made. 2. If b is a nonterminal, then the current state

of the NFA is set top and a call is made to the function for the NFA named by b. For the

final states of each NF A either a local move is made, the function returns to its calling

function, or for the top level NF A, the parser may halt on a final configuration. Because all

pushdown list moves in a system of finite automata are e-moves, for many configurations

there may be more than one next move. Thus, systems of automata are inherently

nondeterministic [3]. The parser shown in Tables 4.1-4.4 is a deterministic implementation

of the above system of automata. This implementation requires a particular property: for

each configuration there is at most one possible sequence of moves on the next input

symbol. The parser uses a one symbol lookahead; the function next_symbol() returns the

next input symbol without advancing the input pointer. Only accepting moves are shown;

for any state in any NFA, if no move is defined for the current input symbol the parser

halts and does not accept the input. Tables 4.1-4.4 show the parser for DTDs; only the

functions for DTD, element declaration, content model, and model group are shown.

Tables 4.3-4.4 can also be considered independently as a parser for model groups.

Table 4.1: DTD: parsing actions.

states actions

1,2 local move
3/4 current state= 4 / 5

call element_declaration()
5 if next_syrnbol() = end of input

if pushdown list is empty
HALT: accept

else
current state= 5
call elernent_declaration()

NOTE 1: next_syrnbol() returns the next input
symbol without advancing the input pointer.
NOTE 2: calling element_declaration() pushes
(current_state,DTD) onto the pushdown list.

Table 4.2. Element_declaration: parsing actions.

states

1,2,6,8
3

4

5

7

Actions

make a lqcal move
current_state = 4
call element_type ()
if next_syrnbol() = ("O" or MINUS)

current_state = 5
call omitted_tag()

else if next_syrnbol () = ("CDATA" or
"RCDATA" or "EMPTY")

current state= 6
call declared_content()

else if next~syrnbol () = GRPO
current_state = 7
call model_group()

if next_syrnbol() = ("CDATA" or
"RCDATA" or "EMPTY")

current state= 6
call declared_content()

else if next_state = GRPO
current_state = 7
call model_group()

if next_syrnbol = (MINUS or PLUS)
current_state = 8
call exceptions()

else make a local move

55

Table 4.3. Model_group: parsing actions.

States

1,3,7,8,9
2,4,5,6

10

11, 12, 13

Actions

make a local move only
current_state = 3,7,8,9 respectively
call content_token()
if next_syrnbol()=(OPT or PLUS or REP)

make a local move.
else if next_syrnbol() = end of input

if· the pushdown list is empty
HALT and accept

else return()
return ()

NOTE 1: The Halt and accept action for state 10
is used only if the parser for model_jjroup·() · is to ·
be implemented independently from the DTD parser.
NOTE 2: Calling content_token () pushes
model_group,current_state) onto the pushdown list.
Return () pops the pushdown list.·

Table 4.4. Content_token: parsing actions.

States

1

3

Actions

if next_symbol() = ("#PCDATA" or GI)
make a local mov.e

else
current_state = 4;
call model_group()

if next_syrnbol()=(OPT orPLUS or REP)
make a local move

else
return ()

2,4,5,6,7 return()

NOTE 1: Calling model_group() pushes
(content token, current_state) onto the pushdown
list. Return() pops the pushdown list.

In this chapter, a system of finite automata is constructed from the system of syntax

productions defining DTDs, and a parser for DTDs is constructed from this system of

56

57

finite automata. The component of the parser for DTDs that parses model groups can be

implemented independently of the parser for DTDs. In the next chapter, the parser for

model groups is used in algorithms to detect ambiguity in model groups. In Chapter 6, the

parser for DTDs is used in algorithms to detect ambiguity caused by omitted tags.

58

5. Ambiguous Model Groups

In this chapter a method is shown for detecting model groups that are ambiguous content

models under Clause.I 1.2.4.3. of the standard. The first section gives preliminary

definitions for ambiguity in model groups. The second section contains algorithms:

Algorithm 5.1 shows the construction of an indexed model group from a model group.

Algorithm 5.2 describes the construction of an NFA from an indexed model group and

shows methods for optimizing the number of states during the construction of the NF A

and in the final NFA. Algorithm 5.3 uses the NFA constructed in Algorithm 5.2 to show a

method for detecting model groups that are ambiguous without lookahead. The method

of construction of the NFA in Algorithm 5.2 is generalized; a specific method is shown,

but any construction may be used as long as the resulting NF A has certain properties

required by the algorithm. This generalizes Algorithm 5.3 for detecting model groups that

are ambiguous without lookahead, and thus is an improvement over existing methods

[16].

5.1 Preliminary Definitions

Definition 5 .1. Indexed model group [16]. An indexed model group is a model group

in which each occurrence of a GI or #PCDATAtoken is assigned a unique index that

distinguishes it from all other occurrences of the same symbol. Let I={ l , ... n}, for some

~1 be the index set. Index the tokens from 1, ... n in order of occurrence from left to

right. If mis a model group, the indexed model group derived from mis denoted by m'.

I: denotes the input alphabet of m, the set of all Gls (element names) in m and

#PCDATA if it occurs in m. Then m' may be considered as an expression (model group)

over I:', where I:' denotes the set of indexed elements of I: that occur in m' [6]. Let L(m)

denote the language over I: defined by m and let L(m') denote the language over I:'

defined by m'.

59

Let symbol() be a mapping from :I:' to :I: as follows: if ai is an element of :I:' where a is in

:I: and i is in I, then a=symbol(aj) [6]. Symbol() is extended to apply to strings in :I:'*; if

x=x1 ... xn, for n~ 1 is a string such that each Xi is in :I:', then

symbol(x)=symbol(x1) ... symbol(xn), and symbol(e)=e. Example 5.1 illustrates an indexed

model group and the associated notation for :I:' and symbol().

Example 5.1. An indexed model group. Let m=((A, #PCDATA), (B I (B & A))) be a

model group. The corresponding indexed model group is m'=((A1,#PCDATA1), (B1 I

(B2 & A2))). Then l:={A,#PCDATA,B}, l:'={A1,#PCDATA1,B1,B2,A2}, ABA is in

L(m), A 1 B2A2 is inL(m'), symbol(A 1)=A, symbol(B2)=B, symbol(A2)=A, and

symbol(A 1 B2A2)=ABA

:I:' is a subset of (:I: XI) .. Symbol() is also extended to apply to strings in (r u (l: X

I))*, where r is any alphabet such that (Fn (LX 1))=0. ·· For any string x=x1 ... xn in (r

u (:I: XI))*, ifxk, k=1, ... n,js some ai in (l:X I), then symbol(xk)=a, and if xkis in r,

symbol(xk)=xk. For example: an indexed model group m' derived from a model group m

is a string in (r u (l: XI))*, where r={ "(", ")", "*", "+", · "?", "&", "I", "," }. Thus,

symbol(m')=m. This extension of symbol()is used in the proofs of Lemmas 5.1.and 5.2.

Definition 5.2. Ambiguous model groups. Let m be a model group over an alphabet :I:,

and let m' be the indexed model group derived from m: mis ambiguous iff there is a string

u in L(m) and strings v' and z' in L(m'), v'::t:-z', such that symbol(v')=symbol(z')=u.

Definition 5.3. Ambiguous model groups without lookahead (adapted from [6]). Let m

be any model group over an alphabet :I:, and let m' be the indexed model group derived

from m. If xay is in L(m) and x'aiY' is in L(m') such that ai is in :I:' and symbol(x'ai)=xa,

then the occurrence of a in xay satisfies the indexed token ai in m' without lookahead. If

there is also a string x'ajw' in L(m') such that symbol(x'aj)=xa, and if i::t:-j, then the

occurrence of a in xay also satisfies aj in m' without lookahead.

A model group, m, is ambiguous without lookahead iff there is some string xay in L(m)

such that a satisfies more than one indexed token in m' without lookahead.

60

Definition 5.3 clarifies the scope of Clause 11.2.4.3 by clearly restricting it to model

groups; this is consistent with the assumptions in the literature [5,18,25]. The following

paragraph is an informal restatement of Definition 5.3 that conforms closely to the style of

Clause 11.2.4.3 and is defined completely in SGML terms.

A model group is ambiguous if and only if there is any instance of an element defined by

the model group that contains an element or character string that satisfies more than one

occurrence of a GI or #PCDATA token in the model group without looking ahead in the

instance of the element NOTE: The only instances of elements considered are those

defined by the model group; the affects·ofexceptions, omitted tag minimization, and

other features of DTDs are not considered.

Example 5.2. Ambiguous model group (without lookahead). Let m=(X,B?,(AIB),C).

Then m'=(X1~Bl ?,(A1IB2);C1).

The string XBAC isin L(m) and the strings X1B1A1C1and X1B2C1 are both in L(m').

The B in XBAC satisfies B 1 · in m' without lookahead because X1 BI AI C 1 is in L(m') and

symbol (X1B1)=XB. B also satisfies B2 without lookahead because X1B2C1 is inL(m'),

and symbol(X 1 B2)=XB. Thus, m is ambiguous without lookahead.

THEOREM 5; 1. If a model group is not ambiguous without lookahead, then it is not

ambiguous.

PROOF. The following proof shows that if m is ambiguous, then m is ambiguous

without lookahead. Then since P implies Q iff "Q implies "P, the result holds. Suppose

m is ambiguous. Then there is some u in L(m) and v' and z' in L(m') such that

symbol(v')=symbol(z')=u. Because symbol(v')=symbol(z')=u, then u=u1, ... un, v'=v'1, ... v'n,

and z'=z'1, ... z'n, for n~O. Then v'-:f:.z' implies that ~1, and that there must be some first

occurrence of k=l, ... n such that v'k*Z'k·

Let x'=v'1, ... v'k-1=z'1, ... z'k-l· Because symbol(v')=symbol(z'), then

symbol(v'k)=symbol(z'k). Let v'k=ai and z'k=aj. Let y' denote v'k+l•···v'n, and let w'

d I I

enote Zk+l•···zn.

61

Then xay=u is in L(m) and v'=x'aiY' and z'=x'ajw' are in L(m') such that symbol(x'ai)=xa,

symbol(x'aj)=xa, and ai*3.j- Then, a satisfies ai in m' without lookahead and a satisfies aj in

m' without lookahead. Thus if m is ambiguous it is ambiguous without lookahead and

therefore, if m is not ambiguous without lookahead it is not ambiguous.

5.2 Algorithms

ALGORITHM 5.1. Construct an indexed model group m' from a model group m.

Input: A model group m.

Output: An indexed model group m'.

Method: Add translating actions to the parser for model groups that is shown in

Figures 4.3-4.4 and Tables 4.3-4.4. These actions are shown in Tables 5.1 and 5.2.

Table 5.1. Model_group: indexing a model group.

States Actions

1 expr = null
make a local move

2/4/5/6 expr = expr,symbol
current_state = 3 / 7 / 8 / 9 respectively
s = content_token()

3,7,8,9 expr = expr,s
make a local move

10 expr = expr,symbol
if next_symbol() = (OPT or PLUS or REP)

make a local move
else

if the pushdown list is empty
HALT: output expr

else return(expr)
11,12,13 expr = expr,symbol

return(expr)

NOTE 1: Expr ands are strings and symbol is the
current input symbol. All are local variables.
NOTE 2: The ',' operator denotes string concatenation
NOTE 3: The indexing is performed by content_token()
and is shown in Table 5.2.

Table 5.2. Content_token: indexing a model group.

States

1

2

3

4
5,6,7

Actions

if next_symbol () = ("#PCDATA" or GI)
make a local move

else
current_state = 4
s = model_group()

pas= lookup(symbol, names)
if pas= null

pas= insert(symbol, names)
index[pos] = 1

else
increment index[pos]

expr = #PCDATAindex[pos]
return(expr)
pas= lookup(symbol, names)
if pas= null

pas= insert(symbol, names)
index[pos] = 1

else
increment index[pos]

expr = Giindex[pos]
if next_symbol = (OPT or PLUS or REP)

make a local move
else

return(expr)
return(s)
expr = expr,symbol
return(expr)

NOTE 1: Expr ands are strings, pas is a counter, symbol
is the current input symbol, names[] is a list of symbols
(GI's and "#PCDATA"), and index[pos] is the index of the
symbol in names[pos]. Names[] and index[] are
initialized to null at program start. Expr, s, pas, and
symbol are local variables. The indexed symbols are
returned as Gii and #PCDATAi for some i~l.
NOTE 2: The ',' operator denotes string concatenation.
NOTE 3: Lookup(symbol,names) returns the position of
symbol in names[], and insert(symbol, names) inserts
symbol into names[] and returns the position.

62

Example 5.3. An indexed model group. Consider the model group m= (B?,(A & B)*).

The indexed model group form is m'=(Bl ?, (Al & B2)*).

ALGORITHM 5.2: Construct an NFA from an indexed model group.

Input: An indexed model group m'.

Output: An NFA, M', such that L(M') = L(m').

Method: Construct any NFA M' with the following four properties:

1. L(M')=L(m').

2. M' has no e-transitions.

3. M' has no inaccessible states.

4. M' has no useless states.

One method for constructing M' is shown in Steps 1-3 below. In Step 1 an equivalent

regular expression r' is derived from m', such that L(r')=L(m'). In Step 2, an NFA M', is

constructed from r' such that L(M')=L(r')=L(m)'. In Step 3, subalgorithms are given for

removing thee-transitions, inaccessible states, and useless states from M'.

63

Model groups containing'&' and'+' can result in a large number of states in M'. In Step

2, constructions are described for reducing the number of states during the construction of

M', and in Step 3 a method is described for optimizing the number of states in M'.

Step 1: Construct any regular expression r', such that L(r')=L(m'). One method is to

add the actions shown in steps a-c below to the parser for model groups.

a Modify the parser for model groups from Chapter 4 (Figures 4.3 and 4.4 and Tables 4.3

and 4.4) to recognize model groups containing symbols that are indexed GI and

#PCDATA tokens. Recognition of these indexed tokens can be handled by the token

recognizer for the parser. Thus, these modifications can be illustrated by replacing the

arcs labeled with GI and PCDATA in Figure 4.4 with arcs labeled as Gii and

PCDATAi, where i~l represents the index of the tokens.

b. Annex H of the standard states that each model group has an equivalent regular

expression, and it gives equivalent regular expressions for subexpressions of m

containing '?' and '&'. The model group operators ',', 'I', and '*' are equivalent to

the regular expression operators concatenation, 'I' and •*• respectively. Add

64

translating actions to the parser to replace each subexpression of m' with an equivalent

regular expression as follows:

- OPT. For A?,'?' Annex H gives an equivalent regular expression as A?= (Ale).

- AND. For (Al & A2 ... &An),'&' is defined in the standard to mean "All must occur

in any order". Annex H of the standard states the following: "AND groups reduce

to an OR group of SEQ group permutations; for example: (a & b) is equivalent to

the regular expression (or SGML model group:) ((a, b) I (b, a))." Thus (Al & ... &

An) is an or group, (Pl I P2 ... I Pn!), where each Pi, i=l, ... n! is a sequence group

permutation of :{Al, A2, ... ,An}. To construct this group use any algorithm for

generating the permutations of n items. One such algorithm is given in [14].

- SEQ. Annex H shows that the SEQ operator ',' is equivalent to regular expression

concatenation. Thus (Al, A2, A3, ... ,An)= (... ((A1A2)A3) ... An) [3].

- OR. Annex H shows that the OR operator 'I' is equivalent to the regular expression

operator 'I'. Thus (Al I A2 I A3 ... I An)= (... ((Al I A2) I A3) .. I An) [3].

- PLUS. The regular expression for A+ is derived directly from the definition of '+' as

"One or more occurrences." Thus A+= AA* [3].

- REP. The REP operator, '*' is defined in the standard to mean "Zero or more

occurrences."

c. Clause 11.2.4.2 of the standard states that#PCDATA has an implied '*' indicator.

Thus, #PCDATA=#PCDATA*.

Tables 5.3 and 5.4 shows the modifications to the parser to construct the equivalent

regular expression r' form'. It requires that the modifications to the token recognizer and

to Figure 4.4 that are described in a. above have been made. The functions OPT(),

PLUS(), AND(), SEQ(), OR(), and PCDATA implement the replacements defined in b.

and c. above. Output from the modified parser is a regular expression r' such that

L(r')=L(m'). If m' is the indexed model group from Example 5.3, m'=(B 1 ?, (Al & B2)*),

then r'= ((Bl I e) ((A1B2) I (B2A1))*).

Table 5.3. Model_group: constructing an equivalent regular
expression for an indexed model group.

States

1

2

3
4

5

6

7

8

9

10

11

12

13

Actions

expr = null
make a local move
expr = symbol
current_state = 3
i=l
Si= content_token()
make a local move
current_state = 7
i=i+l
Si= content_token()
current_state = 8
s2 = content_tciken ()
current_state = 9
s2 = content_token()
group_type = AND
make a local move
s1 = 11 (11 ,s1, 11 l 11 ,s2 11) 11
group_type = OR
make a local move
s1 = 11(11,s1s2,11)"
group_type = SEQ
make a local move
if group_type = AND

expr = expr,AND(s1, ... Si)
else

expr = expr,s1
expr = expr,symbol
if next_symbol() = (OPT or PLUS or REP)

make a local move
else

if the pushdown list is empty
HALT: output expr

else
return(expr)

expr = 11 (" , expr, " I e) 11
return(expr)

* expr = expr, expr, 11 11
return(expr)

* expr = expr, 11 11
return(expr)

NOTE 1: Expr is a string, s[] is a list of strings,
symbol is the current input symbol,and group_type
distinguishes AND groups from OR and SEQ groups.
NOTE 2: The ',' operator denotes string concatenation
NOTE 3: AND(s1, ... Si) returns an OR group of all
possible permutations of the SEQ groups, (s1, ... Si).

65

Table 5.4. Content_token: constructing an equivalent regular
expression for an indexed model group.

States

1

2

3

4

5

6

7

Actions

if next_symbol() = (#PCDATAi or Gii)
make a local move

else
current_state = 4
expr = model_group{)

expr = #PCDATAi + 11 "* 11

return(expr)
expr = Gii
if next_symbol() = (OPT or PLUS or REP)

make a local move
else

return(expr)
return(expr)
expr = II (II + expr + II I e) II

return(expr)
expr = expr + expr + 11 "* 11

return(expr)
expr = expr +
return(expr)

II A* II

NOTE 1: Expr is a local string variable. Gii and
#PCDATAi, i~l, are the current symbols returned by
the token recognizer.
NOTE 2: Setting current_state and calling
model_group() pushes (content token,current_state)
onto the pushdown list. Return() pops the pushdown
list.

66

Step 2. Construct any NFA M', such that L(M')=L(r'). One method is to use

Thompson's construction of an NFA from a regular expression [2], which is illustrated in

Chapter 2. For any input regular expression s, this method inductively constructs an NF A

recognizing L(s) by combining the component NF As for the subexpressions of s. For

example, Figure 5.1 shows an NFA recognizing r'=((B 1 I e) ((A1B2) I (B2A1))*)

constructed using Thompson's construction.

67

e

e

Figure 5 .1. The NFA for r'

The requirements for correctness of Thompson's method are that each component NFA

for a subexpression must 1. recognize the language defined by the subexpression, 2. have

exactly one start state and one final state, and 3. have no arc entering the start state and

no arc leaving the final state. Thus, any of the component NF As can be replaced by any

NF A that conforms to these three requirements.

One method for optimizing the space required by the resulting NFA M', is described

following Step 3. However, it does not reduce the peak storage requirements while

constructing M'. In particular, using the equivalent regular expressions for AND and

PLUS in Step 1 above will result in NF As that are unnecessarily large when Thompson's

construction is applied.

One method for solving this problem requires changes to Step 2 and Step 3. In Step 2

do not modify the parser to replace subexpressions A+ and AND groups. This implies

that Thompson's method must be extended in Step 3 as follows: 1. modify the parser for

regular expressions to recognize extended regular expressions containing A+ and AND

groups, and 2. supply constructions for these subexpressions that construct component

NF As that conform to the three requirements for correctness listed above. Constructions

that conform to these requirements are shown below.

Construction 1. PLUS(M1). Let M 1 be an NFA for the subexpression m 1 of M 1

respectively. Construct the NF A M(m 1 PLUS) as shown in Figure 5.2.

68

e

Figure 5.2. The NFA for M(m1PLUS).

Figure 5.3 and 5.4 illustrate the different results using the two methods for constructing

NFAs for A+. Figure 5.3 shows the NFA constructed for (CIA)+ by Construction 1, and

Figure 5.4. shows the NFA constructed by converting (CI A)+ to (CI A)(C I A)* and then

applying Thompson's construction.

e

Figure 5.3. The NFA for (CIA)+ by Construction 1.

e

e

Figure 5.4. The NFA for (CIA)+ by Thompson's construction.

When A in A+ is large, Construction 1 will result in approximately one half as many states

as converting the model group to a regular expression and then applying Thompson's

method.

69

Construction 2. AND(M 1, ... Mn). Let M 1, ... Mn be NF As for the subexpressions

m 1, ... mn. The construction for AND cannot be performed incrementally as for SEQ and

OR groups because AND is not an associative operator. To construct an NFA, M(m1

AND ... mn) use the composite NFAs M1, ... Mn for the subexpressions m1, mn

respectively.

Create 2n new states corresponding to all possible subsets of {M1, ... Mn}: We call

these the primary states, and each is denoted by the subset of {M 1, .. Mn} that it

represents. The primary state p={Mj, ... Mk} represents the state in which Mj, ... Mk have

been recognized in the input (no ordering is implied). Thus, the start state of Mis {} and

the final state is {M 1, .. ~Mn}. For each primary state p={Mj, ... Mk}, construct a transition

on Mi to each primary state p'={Mj, ... Mk,Mi}, for all Mi, i=l...n, not in p. For each such

transition, add a distinct copy of Mi to M. The copies of Mi are distinguished from each

other by the state p from which they emanate. Merge the start state of each (Mi,P) into p

and merge the final state of each (Mi,P) into p' as follows. To merge the start state qo of

(Mi,P) into p, remove all transitions 8(qo,a)~q' from Mand add 8(p,a)~q' to M. The

start state of (Mi,P) is now p. To merge the final state f of (Mi,P) into p', for each state q

in CMi,P), where q may be p, remove all transitions, 8(q,a)~f, from Mand add 8(q,a)~p·

to M. In the resulting NFA, M, each state is unambiguously denoted by (p,Mi,q), for q in

Mi. Figure 5.5 shows the NFA for the model group, (A AND BAND C) by Construction

2. The NF A constructed by converting (A AND B AND C) to the equivalent regular

expression ((ABC)l(ACB)l(BAC)l(BCA)l(CAB)l(CBA)), and then applying Thompson's

method has 34 states.

The NF As from Constructions 1 and 2 conform to the three requirements for

correctness for Thompson's method. Thus, after Step 2 is complete, regardless of the

method used, the NFA M' is constructed such that L(M')=L(r')=L(m').

Figure 5.5. The NFA for (A AND B AND C) by Construction 2.

Step 3: Remove thee-transitions, inaccessible states, and useless states from M' using

Algorithms 5.2.a-c below.

ALGORITHM 5.2.a. Removal of e-transitions from an NFA.

Input: An NFA, M.

Output: M with no e-transitions

70

Step 1: Derive a set of states Q' as follows: for each state q in Q, such that o(r,a)~.

for some rand for a:;ce, add q to Q', and add the start state of Q, go, to Q'. Q' is the set of

states in Q that can be reached by non e-transitions.

Step 2: For each state q in Q', compute e-closure of q, the set of all states that can be

reached from q one-transitions only [2].

Step 3: For each state q in Q' and for each state p i:ri e-closure of q, for all occurrences

of o(p,a)~p' for some p' and a:;ce, add (q,a)~p' too.

Step 4: For each state q in Q', for all pine-closure of q such that pis in F, add q to F.

Step 5: Remove all e transitions from o.

Algorithm 2 does not change the language, L(M). L(M) contains no new elements

because every state reached by a transition added in Step 3 was reached one-transitions

71

anyway, and all states added to Fin Step 4 already had e-transitions to final states. No

elements are removed from L(M) because all e-transitions removed by Step 5 are replaced

by direct transitions in Step 3.

Definition 5.4. Inaccessible states. In art NFAM, a state q is inaccessible iff {y I

(qo,Y) I-* (q, e) for qo the start state of M} = 0.

ALGORITHM 5.2.b. Removal of inaccessible states from an NFA.

Input: An NFA, M.

Output: M with no inaccessible states.

Method: This algorithm is derived from a method illustrated in [3].

Step 1: Let Ao={ qo} such that qo is the start state of M, and let i=l.

Step 2: Let Ai=(Ai-1 u A') where A' is derived as follows: for all states q in Ai-1 and

for all states p in Q of M, if o(q,b)--tp for some b in L, then add p to A'.

Step 3: If AiiAi-1, then let i=i+ 1 and repeat Step 2, else let A=Ai. A is the set of states

that is accessible from the start state qo: if q is in A, then there is some string x in 1:*,

such that (qo,x) I-* (q,e). If there is no state fin F, then L(M)=0.

Step 4: Let Q=A and for all states pin Q-A and bin L, remove all 6(q,b)--tp from 6.

Algorithm 5.2.b does not change L(M). Because no transitions or are added, no strings

are added to L(M). For all states that p that are removed, there is no x in 1:* such that

(qo,x) I-* (p,e), and thus there can be no string xy in 1:* such that (qo,xy) I-* (p,y) I-* (f,e)

for some fin F. Figure 5.6 shows the NFA from FigureS.1 after removing e-transitions.

~0--B_1 ___

Figure 5.6. Removing e-transitions and inaccessible states.

Definition 5.5. Useless states. In an NFA M, a state q is useless iff { y I (q,y) 1~*

(f,e), f is in F} = 0.

72

ALGORITHM 5.2.c: Removing useless states from an NFA. This algorithm is adopted

. from an algorithm in [3] for removing useless symbols from a context free grammar.

Input: An NFA M.

Output: An NFA with no useless states, recognizing L(M).

Method: First find the useless states, then remove them from Q of M.

Step 1: For each state q in Q of M, construct the set P of all states that can be reached·

from q: Pis the set of all states p such that (q, xy) I-* (p, x) for some x in .t*. Construct

sets No, N1 ... Ni until set Ni=P for some i.

a. Let No= the empty.set and i=l

b. Let Ni= {q' I o(q,a)~q' for some q in Ni-1, a in .t U e)} U Ni-1·

c. If Ni ct:. Ni-1, then set i=i+ 1 and go to Step 2, else P=Ni.

d. If P contains no final states of M, then q is a useless state.

Step 2: For a useless state q, remove q from Q, and for any a in (l: U e) and any pin Q,

remove all o(q,a)~p and all o(p, a)~q from o of M.

The language L(M) is unchanged by removing useless states. Removing any states and

transitions cannot add any words to L(M), thus there are no new words in L(M). By

Definition 5.4, if a state q was removed there was no sequence of moves (q, y) I-* (f, e)

for some final state f of M. Thus, in the input NF AM, there was no sequence of moves

(qO, xy) I-* (q, y) I-* (f, e). Thus, by removing q and all transitions into q and from q,

there are no words that are removed from L(M). Note that there are no useless states in

the NFA in Figure 5.6.

Removing e-transitions, inaccessible states, and useless states does not affect the

language recognized by M'. Therefore, L(M')=L(r')=L(m') still holds.D

Minimizing the number of states in the NFA M' is also a useful result This can be

accomplished simultaneously with the removal of inaccessible and useless states as

73

· follows. Construct the canonical finite automata for M' [3]. This NFA has the least

number of states of any NFA that recognizes L(M'). This NFA must have no inaccessible

or useless states, because removal of these states does not affect the language recognized.

Therefore, an inaccessible or useless state implies that there is an NFA that recognizes

L(M') but has fewer states, and this is a contradiction.

LEMMA 5.1. lf r' is a regular expression over (l: XI) and xis in L(r'), then symbol(x)

is in L(symbol(r')).

PROOF. Let M' be the NFA constructed from r' by Thompson's construction. Then

L(M')=L(r'). Replace all occurrences of indexed symbols x in r' with symbol(x). The

result is symbol(r'), a regular expression over :I:. Construct an NF A M from symbol(r')

using Thompson's construction, L(M)=L(symbol(r')). Mis exactly the same as M' except

that each transition o(q,x)~p in M' is replaced by o(q,symbol(x))~p in M.

Consider any string x=x 1, ... xn , n~, in L(r'). There is a sequence of moves in M' of

the form (go, x1, ... xn) I- (q1, x2, ... xn) .. .I- (qn, e) for~ in F, and this implies there is a

sequence of moves in M of the form (go, symbol(x1), ... symbol(xn)) I- (q1,

symbol(x2), ... symbol(xn)) .. .I- (qn, e) for qn in F'.

Therefore, if xis in L(r'), symbol(x) is in L(symbol(r')).

· LEMMA 5.2. lfm' is an indexed model group derived from m, then for all words x' in

L(m'), symbol(x) is in L(m).

PROOF.

1. Apply Step 1 of Algorithm 5.2 tom' to derive a regular expression r', such that

L(m')=L(r').

2. Apply Step 1 of Algorithm 5.2 to m to derive a regular expression r, such that

L(m)=L(r).

3. By Definition 5.1, m and m' are identical except that each ai in M' is replaced by

symbol(ai) in M. ·The constructions of Step 1 of Algorithm 5.2 are independent of any

particular symbols. Thus, the constructions in 1 and 2 above proceed identically,

except that each ai in some subexpression of r' is replaced by symbol(ai) in the

corresponding subexpression of r. Thus, symbol(r')=r.

74

Suppose xis in.L(m'). Then by 1, xis in L(r'), and then by Lemma 3.1, symbol(x) is in

L(symbol(r')). Thus, by 3, symbol(x) is in L(r), and therefore by 2, symbol(x) is in L(m).

ALGORITHM 5.4. Detecting model groups that are ambiguous without lookahead.

Input: a model group m.

Output: YES if m is ambiguous under Definition 5.3; else, output NO.

Method:

Step 1: Use Algorithm 5.1 to derive an indexed model group m' from m.

Step 2: Use Algorithm 5.2 to construct an NFA M' from m' such that L(M')=L(m').

Algorithm 5 .2 does not require any particular method of construction for the NF A; only

that the four properties hold for the NF A.

Step 3: Traverse the NFA M'. If for any state q in Q' of M', 8'(q, ai)--?p and

8'(q,aj)--?r for some p and r in Q', such that i:;cj, then mis ambiguous and output YES;

else, output NO.

PROOF.

Case 1: Suppose mis ambiguous without lookahead. By Definition 5.3 there is a string

xay in L(m) such that a in xay satisfies more than one indexed token in m' without

lookahead. Then there is a string xay in L(m) and strings x'aiY' and x'ajw' in L(m') such

that symbol(x'ai)=xa and symbol(x'aj)=xa and ht:j. Because x'aiY' and x'ajw' are in L(m')

and L(M')=L(m'), x'aiY' and x'ajw' are in L(M'). Thus M' must make sequences of moves

(qO, x'aiY') I-* (q, aiY') and (qQ, x'ajw') I-* (q, ajw') for some q in Q', such that 8'(q,ai)--?p

and 8'(q, aj)--?r for some p and r in Q' and i:;t:j. Thus, there is some state q in m' such that

8'(q, ai)--?p and 8'(q, aj)--?r for some p and r in Q', such that i:;t:j.

Case 2: Suppose there is some state q in M' such that 8'(q, ai)--?p and 8'(q, aj)--?r for

some p and r in Q', such that i:;t:j. Because Algorithm 5.2 removes all inaccessible states

from M', the state q is accessible from qQ. Thus there is some string x' such that M' makes

75

the sequence of moves (qo,x') I-* (q,e) such that o'(q,ai)~p and o'(q, aj)~r for some p

and r in Q', such that i;t:j. Because there are no useless states in M', and because

L(M')=L(m'), then there are strings x'ajy' and x'ajw' in L(M) such that i:;t:j (y' may equal w').

By Lemma 5.1, if z' is any string in L(m'), then symbol(z') is in L(m). This implies there

are strings xay and xaw in L(m) and strings x'ajy' and x'ajw' in L(m') such that

symbol(x'ai)=xa and symbol(x'aj)=xa, and i:¢:j. Then, there is a string xay in L(m) and a

string x'ajy' in L(11:1') such that a in xay satisfies ai in m' without lookahead and there is a

string x'ajw' in L(m') such that a in xay satisfies aj in m' without lookahead. Thus, there is

a string xay in L(m) such that a in xay satisfies more than one indexed token in m' without

lookahead. Therefore, m is ambiguous without lookahead.

Therefore, by 1 and 2 the algorithm is correct.D

The model group of Example 5.3, m= (B?, (A & B)*) is ambiguous. Example 5.3

shows the indexed model group derived from m, m'=(Bl ?, (Al & B2)*). The equivalent

regular expression form' is r'= (Bl I e) ((A1B2) I (B2Al))*. Figure 5.1 shows the NFA

M' constructed from r' using Thompson's method, where L(M'=L(r')=L(m'). Figure 5.6

shows this NFA after the removal of e-transitions, inaccessible states, and useless states.

The model group mis ambiguous, because the NFA M' in Figure 5.6 has outgoing

transitions from state 1 on both B 1 and B2, representing two different indexed tokens in

m'.

In this chapter, model groups that are ambiguous without lookahead are defined. The

definition is consistent with Clause 11.2.4.3 of the standard and resolves ambiguities in the

clause. An algorithm for detecting ambiguous model groups without lookahead is given

that is an improvement over existing methods. In the next chapter a definition is given for

ambiguity caused by omitting tags (as prohibited by Clause 7.3.1 · of the standard), and an

algorithm is shown for detecting this kind.of ambiguity while parsing the DTD.

76

6. Ambiguous DTDs

Clause 7 .3.1 of the standard prohibits ambiguity caused by omitted tags. However, the

standard does not precisely define this kind of ambiguity, and it does not provide complete

methods for detecting or preventing it. Clause 7 .3.1 consists of a set of rules to be applied

when creating a document instance; ambiguity is defined in terms of particular words

(document instances) in a language, rather than in terms of the language specification

(DTD). This is different than other definitions of ambiguity for languages [2,3,4] and for

ambiguous content models in Clause 11.2.4.3 [13]. It places the responsibility for

preventing ambiguity on data entry rather than on language design. This chapter shows a

method for detecting this kind of ambiguity while parsing the DTD.

In the first section an algorithm is shown for constructing a system of regular expression

R from a DTD, D, such that L(R)=L(D), and constructing a system of automata S, from

R, such that L(S)=L(R)=L(D). In the second section a definition is given for ambiguity

caused by omitted tags; ambiguous DTDs are defined rather than ambiguous document

instances. Then an algorithm is shown for detecting this kind of ambiguity while parsing

the DTD. The definition of ambiguity does not overlap with Definition 5.3 for ambiguous

model groups; in particular, ambiguous model groups do not cause a DTD to be

ambiguous by the definition given in this chapter. However, it is similar to Definition 5.3

in that it is based on a restricted lookahead in the input.

Only the high level syntax of document instances as defined by DTDs is considered; it

is assumed that a token recognizer can distinguish between markup (begin and end tags)

and text (#PCDATA, CDATA, and RCDATA). The methods in this chapter do not

consider the optional SGML features, SHORTTAG, DATATAG, and RANK, and

exceptions. Exceptions are considered in Chapter 7.

77

6.1. Systems of Automata Recognizing Document Instances

Definition 6.1: Explicit DTD. For each DID, D, there is an equivalent explicit

representation of D, D. If D is any DTD, then D is a set of productions of the form

Ai~CX.i, i=l, ... n, n~l. D has exactly one production for each element in the element type

list of some element declaration in D. Ai is the name of the element and CX.i is an

expression defining the content of Ai. The start tag minimization, end tag minimization,

and other implicit definitions of the element declaration for Ai are included explicitly in CX.i.

The expressions for CX.i below are italicized to distinguish them.

A CXi is derived from the element declaration for Ai as shown in 1-3 below. In the

expressions for CX.i the begin and end are variables denoting their respective values.

I. If Ai has declared content of "EMPTY", then CX.i=<Ai>· By Clause 7.3.1.1, all

elements with declared content of "EMPTY" must have a start tag and by Clauses

7.3 and 11.2.2, they must not have an end tag. By Clause 11.2.3, "EMPTY"

elements have no content other than the start tag.

2. If Ai has declared content of "CDATA" or "RCDATA", then CXi=<Ap,data

character*, end where end=<! Ai> if end tag minimization=MINUS and end=<! Ai>?

if end tag minimization="O". By Clause 7.3.1.1, all elements with declared content

must have a start tag, and by Clauses 9.1 and 9.2, "CDATA" and "RCDATA"

define occurrences of data character*.

3. If the content of Aris defined by a model group, m, then CX.i=begin,m,end. If start

tag minimization=MINUS, then begin=<Ai>, else begin=<Ap?. If end tag

minimization=MINUS, then end=<IAi>, else end=<Ai>?. For any occurrence of

"PCDATA" in the model group, replace "#PCDATA" by data character*. By

Clauses 7.6, 11.2.4, and 11.2.4.2, "PCDATA" is equivalent to "CDATA" and

"RCDATA" except for details of token recognition distinguishing between data and

markup.

B. If an element declaration has an element type of k> 1 names, then by Clause 11.2.1:

78

1. Each name is an element name (GI).

2. The content of each element named in the element type is defined by the remainder

of the element declaration.

3. An element can occur only once in an element type in a DTD.

Thus, by 2, for each element declaration with an element type of k> 1 elements, there is

an equivalent DTD in which the element declaration is replaced by k declarations, one

for each element, and by 3, there must be at most one element declaration per element

name.

Therefore, by A and B, there is an explicit representation· of D, D, that is equivalent to D,

and consists of a set of productions, Ai~ai, i=l, ... n, n~l. where some Ai is the

DOCTYPE element. Algorithm 6.1 shows how to construct an explicit DTD, and

Example 6.1 illustrates an explicit DTD.

Example 6. l: An explicit DTD. Let D be the DTD

<DOCTYPE TOP

<!ELEMENT TOP

<!ELEMENT A

<!ELEMENT B

(A, B?) >

- 0 (B?) >

(#PCDATA) >

Then the explicit DTD, D, for D is

DOCTYPE = TOP

TOP ---t <TOP>, (A, B?); </TOP>

A ---t <A>, (B?), ?

B ---t , (data character*),

ALGORITHM 6.1. Constructing an explicit DTD.

Input: A DTD, D.

Output: An explicit representation of D, D.

Method: Add translating actions to the parser for DTDs shown in Tables 4.1-4.4.

These actions are shown in Tables 6.1 and 6.2.

Table 6.1. DTD: constructing an explicit DTD

states actions

1 n=O;
local move

2 local move
3/4 DTD.doctype = symbol

5

current_state = 4 /5 repectively
productions= element_declaration()
i=l;
while productions[i] * null

n=n+l
dtd.productions[n] = productions[i]
i=i+l

if next_symbol() = end of input
if pushdown list is empty

HALT: output DTD
else

current state= 5
productions= element_declaration()
i=l;
while productions [i] * null

n=n+l
dtd.productions[n] = productions[i]
i=i+l

NOTE 1: DTD is an explicit DTD; DTD.doctype is
the document type. DTD.productions[] and
productions[] are lists of productions, where a
production, (production.GI,production.expr).
symbol is the current input symbol.

Table 6.2. Element declarations: constructing an explicit DTD.

states

1,2,6,8
3

4

actions

local move
content_type = null
current_state = 4
type_list = element_type()
if next_syrnbol () = ("O" or MINUS)

current_state = 5
tag_specs = omitted_tag_minimization()

Table 6.2. continued on next page.

79

Table 6.2 (cont.). Element declarations: constructing an explicit DID.

5

7

9

else if next_symbol()=(CDATA or RCDATA or EMPTY)
current_state = 6
content_:type = declared_content()

else if next_symbol() = GRPO
current_state = 7
m = model group()

if next_symbol()=(CDATA or RCDATA or EMPTY)
current_state = 6
content_type = declared_content()

else if next_symbol() = GRPO
current_state = 7

m = model group{)
m = replace_PCDATA(m)
content_type = model group

if next_symbol () b: (MINUS or PLUS)
current_state = 8
exceptions ()

else
local move

if tag_specs.beg = MINUS
beg_expr = <GI>,

else if tag_specs.beg = "O"
beg_expr = <GI>?,

if tag_specs.end = ~INUS
end_expr = </GI>,

else if tag_specs.end = "O"
end_expr = </GI>?,

if content_type = "EMPTY"
expr = <GI>

else if content_type = (CDATA or RCDATA)
expr = <GI>,data character*,end_expr

else if content_type = model group
expr = beg_expr,data character*,end_expr

i=l
while type_list[i] * null

productions[i] .GI= type_list[i]
productions[i] .expr = expr
i=i+l

return(productions[])

NOTE 1: Element_type() returns a list of one or more
element names, omitted_tag_minimization() returns an
(tag_spec.beg,tag_spec.end), declared_content() returns
CDATA, RCDATA, or EMPTY, model_group() returns a model
group in which each "PCDATA" is replaced by data
character*. Content_type is CDATA, RCDATA, EMPTY,or
model group. Expr, beg_expr, and end_expr are strings.

NOTE 2: The model group SEQ operator ',' denotes
string concatenation.

80

ALGORITHM 6.2. Construct a system of regular expressions for a DID.

Input: A DID, D.

Output: A system of regular expressions, R, such that L(R)=L(D).

81

Method: The method is to construct R such that R is equivalent to an explicit

representation of D, D, where each <Xi in ll is replaced by an equivalent regular expression.

Rather than develop a second algorithm to parse the <Xj's, R is constructed directly from

the non explicit form ofD by.modifying Algorithm 6.1 as follows:

Step 1: In Table 6.2, let the.variables expr, beg_expr, end_expr, m, and production.expr

denote regular expressions, and letthe model gi:oup SEQ operator ',' denote string

concatenation [13].

Step 2: In state 4 of Table 6.2, let the call to model_group() return a regular expression

·for.the model group.· This· construction is shown by Table 5 A. with ·the indexing removed

(replace Gli and #PCDATAi with GI and data.character* respectively). · ·

Step 3: In state 9 of Table 6.2,replaceeach occurrence of <GI>? and <!GI>? with

(<GI> I e) and<IGI> I e) respectively.

The result of these three steps is ·that"the·modified version of Algorithm 6.1 will output an

explicit form of D, D', where for each Ai~<Xi, <Xi is a regular expression. By Appendix H

of the standard [13], model groups have equivalent regular expressions, and thus, it can be

shown that L(D')=LQ2)=L(D).

Step 4: For each Ai~<Xi in D', add Ai~ <XjtO·P of R, and add each Ai to N of R.

Step 5: Let the element, DID.doctype, be No of R, and let~ of R be the set of all begin

tags, end tags, and data characters in <Xi, i=l, ... n.

Example 6.2. A system of regular expressions for a DID. Let D be the explicit DID

DOCTYPE = TOP

TOP~ <TOP>, {A, B?), </TOP>

A ~ <A>, (B?), ?

B ~ , (data character*),

82

Then the system of regular expressions, R, such that L(R)=LQ2) is:

1. N = (TOP, A, B}

2. No =TOP

3. L= { <TOP>, <!TOP>, <A>, <I A>, , <IB>, data characters}

4. P=

TOP~ <TOP> (A, (B I e)) </TOP>

A ~ <A> (B I e) (I e)

B ~ (data character*)

ALGORITHM 6.3. Construct a system of finite automata S from a DTD D such that

L(S)=L(D).

Input: ADTD, D.

Output: A system of finite automata S, such that S has no useless states, L(S)=L(D),

and each NF A in M of S has no inaccessible or useless states.

Method:

Step 1: Construct a system of regular expressions, R, from D such that L(R)=L(D)

using Algorithm 6.2.

Step 2: From R constructed in Step 1, construct a system of finite automata S', such

that L(S ')=L(R) using Algorithm 3.1. Algorithm 3.1 removes the e"'."transitions from each

NFA in M of S' using Algorithm 5.2.a.

Step 3: Construct a system of finite automataS from S' using Algorithm 3.1, such that

L(S)=L(S'). Remove the useless states from S using Algorithm 3.6. Algorithm 3.6 uses

Algorithm 3.3 and Algorithm 3.5 to remove useless and inaccessible NFAs from S.

Example 6.3. A system of finite automata for a DTD. Consider the system of regular

expressions, R, in Example 6.2 constructed from the DTD in Example 6.1 by Algorithm

6.2. Then the system of finite automata derived from R by Steps 2 and 3 of Algorithm 6.3

is:

1. N = {TOP, A, B}

2. l:= { <TOP>, <!TOP>, <A>, <I A>, , <iB>, data characters}

3. Mo=TOP

4. Q= { (TOP,l),(TOP,2),(TOP,3),(TOP,4),(TOP,5),(A,1),(A,2),(A,3),(A;4),

(B,1),(B,2),(B,3),(B,4)}

5. r=Q.

6. The NFAs of Mare shown in Figures 6.1-6.3.

· B /"(!_)~TOP>

-)G)-.-<T_O_P>-®--A~-©, <TOP> ~© .

Figure 6.1. The NFA for TOP in Example 6.3.

-)(D-<_A>-© __ s __ ©_<.1._A>-

<.IA>

Figure 6.2. The NFA for A in Example 6.3.

data
character

data n
-)(D-<_B_> -® _ch_a_ra_cte_r_>(i) ~-· _<.18_> _

<.18>

Figure 6.3. The NFA for Bin Example 6.3.

83

84

6.2. Ambiguity Caused by Omitted Tags

Definition 6.2. l: and LQ of D. If D is a DTD, then l: of D is the set of all symbols that

can occur in a document instance defined by D: the begin tags and end tags of all

elements defined in some element declaration of D and the set of data characters defined

for D. LQ is the set of all begin·and end tags in l: for which the omitted tag minimization

is set to "O" in D, except for the end tags of elements with declared content of "EMPTY".

If R is a system of regular expressions constructed from D by Algorithm 6.2, and if S is

a system of finite automata constructed from D by Algorithm 6.3, then l: of D is the same

as l: of Rand l: of S. In the remainder of this chapter, I: unambiguously refers to l: of D,

R, andS.

Definition 6.3. Completely tagged document instance. For a DID, D, a document

instance w is completely tagged iff w is also a document instance under D', where D' is the

DID derived from D by setting the omitted tag minimization to minus for all start and end

tags except the end tags of elements with declared content of '.'EMPTY".

Definition 6.4. Correspondence. For a DID, D, if there is a document instance, xy, x

and yin l:*, and a completely tagged documentinstance,x'y', x' and·y' in l:*, and x can be

derived from x' by omitting zero or more occurrences of symbols in LQ from x', then x

corresponds to x'. Note that when x corresponds to x' and y'=e, xis a document instance

and x' is a completely tagged document instance.

Definition 6.5. Ambiguous DTDs by omitted tags. A DID is ambiguous by omitted

tags iff there is any document instance w and completely tagged document instances w'

and w", such that w corresponds to w', w corresponds to w", and w':t:.w".

Definition 6.6. Ambiguous DTDs by omitted tags without lookahead. A DID is

ambiguous by omitted tags without lookahead iff there is a document instance w= Vby,

and completely tagged document instances, w'=V'by' and w"=V"by", such that:

1. either b is an input symbol in l: or by=by'=by"=e,

2. V corresponds to V' and V corresponds to V", and

85

3. V'¢.V".

An informal restatement of Definition 6.6 is as follows: a DTD is ambiguous by omitted

tags without lookahead if and only if for any document instance defined by the DTD, for

each symbol (a begin tag, end tag, or data character) or end of input encountered when

parsing the document instance, without looking ahead in the document instance there is

only one possible context for the symbol; that is, the ·prefix of the document instance up

to the current symbol can correspond to at most one prefix (followed by the same symbol)

of any completely tagged document instance.

Examples 6.4-6.10 illustrate Definition 6.6. Examples 6.4 and 6.5 are two examples

that clearly illustrate the difference between Definitions 6.5 and 6.6. Note that in

Definition 6.6 for the case when by=by'=by"=e, then D is ambiguous by Definition 6.5.

That is, D is ambiguous whenever there is ambiguity without lookahead on end of input in

some document instance. , · ·

THEOREM 6.1. If a DTD D is not ambiguous by omitted tags without lookahead,

then it is not ambiguous by omitted tags.

PROOF. Suppose D is ambiguous by omitted tags. Then by Definition 6.5; there is a

document instance w and completely tagged document instances w' and w", such that

w''#w" and w corresponds tow' and w corresponds tow". Let by=by'=by"=e, V=w,

V'=w', and V"=w". Then directly byDefinition 6.6, ifD is ambiguous then Dis

ambiguous by omitted tags without lookahead. Then, because P implies Q iff "Q implies

"P, if Dis not ambiguous by omitted tags without lookahead, it is not ambiguous.D

Definition 6. 7. Tree (adapted from [I]). A tree is a special case of a directed graph. A

tree consists of a set of elements called nodes and a set of directed arcs that define a

relation on the set of nodes; an arc is an ordered pair of nodes (v,w). The arc (v, w) can

be expressed as v~w or as "the arc from v tow."

A relation parenthood is defined on the nodes in a tree as follows. A node b is the

parent of a node c iff there is an arc from b to c. Conversely, a node c is the child of a

86

node b iff there is an arc from b to c. A node with no children is called a leaf node; all

other nodes are called interior nodes. Trees are defined recursively by the following rules:

1. A single node by itself is a tree. This node is called the root of the tree.

2. Ifn is a leaf node in a tree T, and T1, ... Tk are trees with roots n1, ... nk, &::1,

respectively, then a new tree T' can be constructed by adding arcs (n,n1), ... (n,nk).

If nl, ... nk, &::1, is a sequence of nodes in a tree such that for i=l, ... k-1, ni is the parent of
'

ni+l• then there is path from n1 tonk-- The length of the path from n1 to Ilk is k-1, the

number of arcs on the path. There is a unique path from the root node to every node in

the tree. A path from the root to a leaf node is called a full path. Inthis paper, a reference

to a path is a reference to a full path unless noted otherwise.

Trees can have labels associated with each arc and/or each node; the labels can be

values of any data type. Algorithm 6.4 constructs trees that have a label for each arc. If

n1, ... nk, are nodes on a path then there is a label, bi, on each arc ni-tni+l, i=l, .. k-1. The

sequence of labels on the path from n 1 to nk is defined to be b 1 ··. bk. The sequence of

labels on a path may also be referred to as the label on the path.

Definition 6.8. e-closure tree. For any system of finite automata S that contains no

local e-moves and for any state (Mi,q) in S, the e-closure tree for (Mi,q) is a tree in which

the nodes of the tree represent states in Q of S and the root represents (Mi,q). The paths

of the tree represent all possible sequences of e-moves from the state (Mi,q); each state

(node), (Mj,P), has exactly one child for each state (Mk,r) that can be reached from (Mj,P)

on one e-move (a push or a pop). The leaf nodes inane-closure tree are the states that

have no e-moves; some paths in an e-closure tree may be nonterminating (they have no

leaf node).

An abbreviated e-closure tree is an e-closure tree in which any path is terminated by the

second occurrence of some state on the path. Thus, because there are a finite number of

states in Q of S, all paths in an abbreviated e-closure tree must terminate.

87

Definition 6.9. lookahead(l) tr~e (LA(l) tree). An LA(l) tree is an extension of an e­

closure tree; each state (Mj,p) has exactly one child for each state (Mk,s) that can be

reached by a single e-move. A node for state (Mj,P) also has one child for each b in .I.

such that A({Mj,p),b,e)~((Mj,s),e) for some {Mj,s) in Q. The child is denoted by b. If

{Mj,P) is a final state (Mo,t) for some fin Fo, then (Mo,t) has one child representing end

of input The child for end of input is denoted by Z. Thus, the leaf nodes for an LA(l)

tree are either an input symbol b in .I. or Z representing end of input. Some paths in an

LA(l) tree may be nonterminating.

An abbreviated LA(l) tree, denoted ALA(l), is an LA(l) tree in which any state {Mj,P)

that occurs on a path from the root for the second time has no children that are states.

However, the node for (Mj,P) does have children denoting the next input symbol or end of

input (leaf nodes). Note that for each LA(l) tree, T, there is exactly one ALA(l) tree, T',

and it may be true that T=T'.

Algorithm 6.4 constructs ALA(l) trees for systems of finite automata constructed by

Algorithm 6.3. The arcs of these trees have labels that represent tags that are omitted in a

move from the parent to the child. Examples 6.4-6.10 each show a system of fmite

automata S constructed by Algorithm 6.3 and the ALA(l) tree for one state in S.

ALGORITHM 6.4. Detecting DTDs that are ambiguous by omitted tags without

lookahead.

Input: A DTD, D.

Output: If D is ambiguous by omitted tags without lookahead output YES, else output

NO.

Method:

Step 1: Construct a system of finite automata S from D using Algorithm 6.3.

Step 2: For each state (Mi,P) in S such that for some q in Qi and some a in .I., 6

(q,a)~p, or for (Mi,P)=(Mo,qo), construct an ALA(l) tree for (Mi,p). The paths of the

tree represent the possible sequences of moves on the next input symbol b in :I: or on the

first input symbol b when CMi,P)=(Mo,qo).

The root of the tree represents (Mi,P), the interior nodes represent states, and the leaf

nodes represent the next input symbol, end of input, or a state that has already occurred

on the path and which has no transitions on input symbols.

88

Step 3: For each interior node, (representing some state (Mj,r)), construct the children

of the node, which represent the possible moves from CMj,r) as described in cases a-e

below.

Each arc in the tree from CMj,r) to an input symbol b in :I:, to Z for end of input, or to a

state (Mk,s) in Q is assigned a label: a begin tag <Nj>; an end tag <INj>, <Nj><INj>, ore

representing no label. The sequence of labels on a path are the begin and end tags that are

omitted in the sequence of moves represented by the path. The labels for arcs are assigned

as described in cases a-e as follows:

a. Local Moves. .For each transition from r of Mj on some input symbol b to a state t in

Qj, B(r,b)~t. create a child node b for (Mj,r).

If CMj,r)=(Mj,qo) where qo is the start state of Mj and if b is in any symbol in :I:

except <Nj>, then add <Nj> to the arc from CMj,qo) to b. For any ex. in r* ,yin :I:*, and

b:;=<Nj>, in the move ((Mj,qo),by,cx.) I- ((Mj,t),y,cx.) the begin tag <Nj> is omitted.

b. Pushdown moves (pushes). For each transition from r of Mj on some Nk in N to some t

in Qj, B(r,Nk)~t. create a child CMk,qo) for CMj,r).

If CMj,r)=(Mj,qo) where qo is the start state of Mj, add the label <Nj> to the arc

from (Mj,qo) to (Mk,qo). For any ex. in r*, any yin :I:*, and b*<Nj>, in the move

((Mj,qo),y,cx.) I- ((Mk,qo),y,(Mj,t)cx.) the begin tag <Nj> is omitted.

c. Pushdown moves (pops). If r=f is a final state in Fj, for all Mk in M and t and q in Ok

such that there is a transition from q tot on Nj, B(q,Nj)~t. create a child CMk,t) for

CMj,f).

If f is in Fj and f is not entered by a transition on <INj>, then add <INj> to the arc

from (Mj,t) to (Mk,t). For any a in r* and yin l;*, in the move ((Mj,t),y,(Mk,t)a) 1-

((Mk,t),y,a) the end tag <INj> is omitted.

89

d. Pushdown moves (pops) from start states; This is a special case of case c, and should

be performed instead of case c whenever (Mj,r)=(Mj,qo), such that go is the start state

of (Mj) and go is also in Fj-

Add <Nj><INj> to the arc from (Mj,qo) to (Mk,t). In the move ((Mj,qo),y,(Mk,t)a)

I- ((Mk,t),y,a) both <Nj> and <INj> are omitted. This move can only occur when the

omitted tag minimization for the start and end tag are "O" and when the content of the

element Nj is optional as defined by the model group or declared content for Nj- In this

case e is in L(Mj)-

e. Accepting moves. If (Mj,r)=(Mo,t) for some fin Fo, create a child Z for (Mj,r) where Z

denotes end of input

If f is not entered by a transition on <INo>, add <INo> to the arc from (Mo,t) to Z.

In this accepting move, the enci tag <INo> is omitted.

For cases a-e, if (Mj,r) has already occurred on the path from the root, create children for

(Mj,r) for local moves and accepting moves (Steps a and e), but do not create children for

pushdown moves (Steps b, c, and d). Thus, the tree is an ALA(l) tree.

Step 4: All labels assigned to arcs in Step 3 are strings in l;o * (the set of all begin and

end tags of elements in D for which the omitted tag minimization is set to "0"). For each

tree constructed by Steps 2-3, concatenate the labels on each path from the root to a leaf

node. The result for each path is a string V in l;o *. V is called the sequence of labels on

the path. If there are any two paths in the tree, from the root to two leaf nodes for b in l;

or from the root to two leaf nodes Z such that the sequences of labels on the two paths are

not equal, then halt and output YES. If this condition is not met for any tree constructed

by Steps 2-3, then output NO.

90

Note that the tree is checked f01: two paths to leaf nodes Z with different sequences of

labels on the path. However, by the results of Lemma 6.1, Theorem 6.2, and Lemma 6.6,

detecting two paths to Z with different sequences of labels is not necessary for detecting

ambiguity. Thus, Step 3.e may be omitted ih Algorithm 6.4. However, by Definition 6.6, a

DTD is ambiguous without lookahead if there are two different sequences of moves on

end of input, and .thus Step 3.e is kept in Algorithm 6.4 to illustrate completeness.

Examples 6.4-6.10 show the tree construction by Algorithm 6.4. For each DTD, D, only

the tree of one state in Sis shown (to illustrate ambiguity).

Example 6.4. This example shows that when an element can satisfy two element tokens

in different model groups, the DTD is ambiguous. Consider the DTD, D:

<!DOCTYPE A [

<!ELEMENT A (B I C) >

<!ELEMENT B O - (C) >

< !ELEMENT C - 0 "EMPTY" >]

Then a system of finite automata recognizing L(D) is

1. N = {A,B,C}

2. 1: = {<A>,<IA>,,<.IB>,<C>}

3. No=A

4. Q = { (A, l),(A,2),(A,3),(A,4),(A,5),(B,l),(B,2),(B,3),(B,4),(C, 1),(C,2)}

s. r=Q.

6. A is defined by M.

7. The NF As in M are shown in Figures 6.4-6.6.

Figure 6.4. The NFA for A in Example 6.4.

/:;'\ ® C ~0---> 2 ---->

C

_<I_B_>_>©

Figure 6.5. The NFA for Bin Example 6.4.

~(D-<_C>->©

Figure 6.6. The NFA for C in Example 6.4.

The ALA(l) tree constructed for (A,2) by Algorithm 6.4 is shown in Figure 6.7. Dis

ambiguous because there are two paths in the tree to leaf nodes for <C> with different

sequences of labels (and e).

/A,2)
e

(8,1) (C,1)

/~ e

(C, 1)

el
<C>

Figure 6.7. The ALA(l) tree for (A,2) in Example 6.4.

Table 6.3 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

91

Table 6.3. Correspondence for Example 6.4.

V=<A>, VI =<A>, V" =<A>, b=<C>,
Y=, Y'=, Y"=.

w w' W"

-------------------------- -----------
<A> <A> <A>
<C> <C>
 <C>

Example 6.5. This example illustrates ambiguity caused by omitted begin tags.

Consider the DTD, D:

<!DOCTYPE A

<!ELEMENT A (B I C) >

<!ELEMENT B O - (#PCDATA) >

<!ELEMENT C O - (#PCDATA) >]

Then a system of finite automata recognizing D is:

1. N = {A,B, C}

2. I:= { <A>,<1 A>,<.B>,<IB>,<C>,<IC>, data characters}

3. No=A

4. Q = { (A,1),(A,2),(A,3),(A,4),(A,5),(B,l),(B,2),(B,3),(B,4)}

5. r=Q.

6. A is defined by M.

7. The NFAs in Mare shown in Figures 6.8-6.10.

Figure 6.8. The NFA for A in Example 6.5.

92

data
character

data
character

data Q
~(D--<_B_>_4 ®_ch_a_ra_ct_e_r 4 0 <IB>

<IB>

Figure 6.9. The NFA for Bin Example 6.5.

data
character

data
~(D--<_C_>_4 ®. character

<IC>

data
character

c[;J_4_C_>_4

<IC>

, Figure 6.10. The NFA for C in Example 6.5.

93

The ALA(l) tree constructed for (A,2) by Algorithm 6.4 is shown in Figure 6.11. D is

ambiguous because there are two paths in the tree to leaf nodes for data character, and the

paths have different sequences of labels (and <C>).

~
(8, 1) (C, 1)

7-1~ 71~
<18> data <C> data <IC>

character character

Figure 6.11. The ALA(l) tree for (A,2) in Example 6.5.

Table 6.4 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

Table 6.4. Correspondence for Example 6.5.

V=<A>, V'=<A>, V"=<A><C>, b=data character,
Y=, Y'=, Y"=</C>.

w w' w"

<A> <A> <A>
data character <C>
 data character data character
 <IC>

94

Example 6.6. This example illustrates ambiguity caused by omitted end tags. Consider

theDTD, D:

<!DOCTYPE A

<!ELEMENT A (BI #PCDATA) >

<!ELEMENT B - 0 (#PCDATA) · >

Then a system of finite automata recognizing D is:

1. N = {A,B}

2. I:= { <A>,<I A>,,<IB>,data character}

3. No=A

4. Q = { (A,l),(A,2),(A,3),(A,4),(A,5),(B,l),(B,2),(B,3),(B,4)}

5. r=Q.

6. A is defined by M.

7. The NFAs in Mare shown in Figures 6.12 and 6.13.

~(D-<_A_> -->® __ B __ >®

data
character

data 0
character>© <IA>

<IA>

Figure 6.12. The NFA for A in Example 6.6.

>©

data
character

data n
----)(i)--<_B_>_""*©-c_h_a_ra_ct_e_r ~@Ji/ <IB>

<IB>

Figure 6.13. The NFA for Bin Example 6.6.

95

The ALA(l) tree constructed for (B,2) by Algorithm 6.4 is shown in Figure 6.14. Dis

ambiguous because there are two paths to leaf nodes for data character with different label

sequences (<IB> and e).

(8,2)

/91~
data <18> (A,3)

character 7 ~
data <IA>

character

Figure 6.14. The ALA(l) tree for (B,2) in Example 6.6.

Table 6.5 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

Table 6.5. Correspondence for Example 6.6.

V=<A>, V'=<A>, V"=<A>,
b=data character, Y=, Y'=, Y"=.

w w' W"

<A> <A> <A>

data character data character <IB>
 data character

96

The standard specifies that any occurrence of #PCDATA (data character*) satisfies only

one token. However, this is a disambiguating rule applied by a parser. This example

shows that this kind of ambiguity can be detected statically, while parsing the DTD.

Example 6. 7. Ambiguity caused by elements that are optional and that can be empty.

Consider the DTD, D:

<!DOCTYPE A

<!ELEMENT A (B? I C) >

<!ELEMENT B O O (#PCDATA) >

< !ELEMENT C - 0 "EMPTY" >]

Then a system of finite automata recognizing L(D) is:

1. N = {A,B}

2. l: = { <A>,<I A>,,<IB>,<C>,<IC>,data charac~,rs}

3. No=A

4. Q = { (A,1),(A,2),(A,3),(A,4),(A,5),(B,1),(B,2),(B,3),(B,4),(C,l),(C,2)}

5. r=Q.

6. A is defined by M.

7. The NFAs in Mare shown in Figures 6.15-6.17.

~Q)--<A_>_~>® __ B~->®--C-- _<.!_A_>---+)©

C

-Figure 6.15. The NFA for A in Example 6.7.

data data
character character

data n
~0-<_B_> -@___:racter >@~ <18~

<IB>

Figure 6.16. The NFA for Bin Example 6.7.

~ (D-<_C>-------->©

Figure 6.17. The NF A for C in Example 6. 7.

The ALA(l) tree constructed for (A,2) by Algorithm 6.4 is shown in Figure 6.18. Dis

ambiguous because there are two occurrences of paths to leaf nodes for <C> in the tree

and each has a different sequence of labels, (,<IB> and e).

(8, 1) (C,1)

e

e

 data <IB> (A,3)
character

e

Figure 6.18. The ALA(l) tree for (A,2) in Example 6.7.

Table 6.6 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

Table 6.6. Correspondence for Example 6.7.

V=<A>,
Y=,

w

<A>
<C>

V'=<A>, V"=<A>,
Y'=, Y"=.

w'

<A>
<C>

b=<C>,

W"

<A>

<C>

97

Example 6.8. Ambiguity caused by omitted begin tags and recursion in the DID.

Consider the DTD, D:

<!DOCTYPE A

<!ELEMENT A O - (A I B) >

<!ELEMENT B - 0 "EMPTY" >]

Then a system of finite automata recognizing L(D) is:

1. N = {A,B}

2. ::r, = { <A>,<IA>,}

3. No=A

4. Q = { (A,1),(A,2),(A,3),(A,4),(A,5),(B,1),(B,2)}

s. r=Q.

6. A is defined by M.

7. The NFAs of Mare shown in Figures 6.19-6.20.

Figure 6.19. The NFA for A in Example 6.8.

----)(D-<_B>->©

Figure 6.20. The NFA for Bin Example 6.8.

98

The ALA(l) tree constructed for (A,1) by Algorithm 6.4 is shown in Figure 6.21. Dis

ambiguous because there are two occurrences of paths to leaf nodes for <A>, and each

path has a different sequence of labels (<A>and e). Recursion is not inherently

ambiguous. This is illustrated by setting the omitted tag minimization to minus for A in D.

(A, 1)

~I~
<A> (A, 1) (8, 1)

/ I·
<A>

Figure 6.21. The ALA(l) tree for (A,1) in Example 6.8.

Table 6.7 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

Table 6. 7. Correspondence for Example 6.8.

V =<A> I VI =<A> I VII =<A><A> I b= I
Y=, Y'=, Y"=.

w w• w"

<A> <A> <A>
 <A>

Example 6.9. Ambiguity caused by omitted end tags and recursion in the DID.

Consider the DTD, D:

<!DOCTYPE A [

<!ELEMENT A - 0 (A I B) >

< !ELEMENT B - 0 "EMPTY" >

Then a system of finite automata recognizing L(D) is:

1. N = {A,B}

2, :E = { <A>,<IA>,<.B>}

3. No=A

4. Q = { (A,1),(A,2),(A,3),(A,4),(A,5),(B,1),(B,2)}

s. r=Q.

99

100

6. A is defined by M.

7. The NF As in M are shown in Figures 6.22-6.23.

Figure 6.22. The NFA for A in Example 6.9.

--)G)_<_B>->©

Figure 6.23. The NFA for Bin Example 6.9.

The ALA(l) tree constructed for (A,3) by Algorithm 6.4 is shown in Figure 6.24. Dis

ambiguous because there are two occurrences of paths to leaf nodes for <I A> in the tree,

and each path has a different sequence of labels, (<I A>and e). Note that there are also

two different sequences of labels on the paths to Z. Lemma 6.6 shows that if there is a

tree with two paths to leaf nodes for Z with different sequences of labels, there will always

be some tree constructed for S that has two paths to leaf nodes for some b in L, with

different sequences of labels on the paths. Also note that the node for (A,3) terminates

because it is the second occurrence of a state on a path.

Figure 6.24. The ALA(l) tree for (A,3) in Example 6.9.

Table 6.8 shows a document instance w for D that corresponds to completely tagged

document instances w' and w".

Table 6.8. Correspondence for Example 6.9.

V=<A><A>, V'=<A><A>, V"=<A><A>,
b=, y=e, y'=, Y"=e.

w W' W"

<A> <A> <A>
<A> <A> <A>

.

Note that w' =W". When the b= in w is
encountered, it cannot be determined without
lookahead whether it is the end of the inner
<A>- or .~he end of. the outer .<A>.

101

Example 6.10. Ambiguous model groups. The ~lement declaration for E is an example

of an ambiguous content model from Clause 11.2.4.3 and is an ambiguous model group

without lookahead. by Definition 3.2. Consider the DTD, D:

<!DOCTYPE E [

<!ELEMENT E O - ((A, B?), B) >

<!ELEMENT A - 0 "EMPTY" >

<!ELEMENT B - 0 "EMPTY">

Then a system of finite automata recognizing L(D) is:

1. N = {E,A,B}

2. ~ = { <E>,<ffi>,<A>,}

3. No=E

4. Q = { (E,l),(E,2),(E,3),(E,4),(E,5),(E,6),(B,1),(B,2),(A,1),(A,2)}

5. r=Q.

6. A is defined by M.

7. The NF As in M are shown in Figures 6.25-6.27.

102

~(D-<_E>->® __ A __ ® __ B ->©--8 ->® <IE> >©

A 8

Figure 6.25. The NFA for E in Example 6.10

-4G)-· <_A>_>©

Figure 6.26. The NFA for A in Example 6.10.

-4G)-· _<_B_> ->© ..

Figure 6.27. The NFA for Bin Example 6.10.

The ALA(l) tree constructed for (E,3) by Algorithm 6.4 is showri in Figure 6.28.

(E,3)

/~
(8,1) (8,1)

e e

<8>

Figure 6.28. The ALA(l) tree for (E,3) in Example 6~10.

There are two paths to leaf nodes for . However, the paths have the same sequence

of labels, e. The trees for the other states of S also do not satisfy the requirements for

ambiguity. Thus Dis not ambiguous.

Lemma 6.1 supports Theorem 6.2 that follows. It is used to simplify the proof of

Theorem 6.3, and it can be used to simplify Algorithm 6.4. It shows that for any DTD,

that if there is a document instance with an ambiguity on end of input, then there is also

some document instance with an ambiguity on an input symbol in l:.

103

LEMMA 6.1. For a DTD, D, If there is a document instance V and completely tagged

document instances, V' and V", such that V corresponds to V' and to V" and V'-:t:.V", then

there is a document instance w= Vb and completely tagged document instances, w'= V'b

and w" = V''b, such that V corresponds to V' and to V", V':;c: V", and b is an input symbol

in'J:..

PROOF. Let V be a document instance and V' and V" be completely tagged document

instances such that V corresponds to V' and to V", and V':;c:V". Let V=v1, ... vn, n~O and

let V'=v'1, ... v'k and V"=v"1, ... vllm· Because V' and V" are completely tagged, ~2 and

~2, and v'k=v"m=<IDOCTYPE> ..

Case A: Suppose Vn:;c:<IDOCTYPE>. Let b=<IDOCTYPE>. Then because V can be

derived from V' and from V", Vb is a document instance that can be derived from V' and

from V" by not omitting b=v'k=v" m· Let V'=v' 1,; .. V'k-1 and V"=v" 1, ... v'm-1 · Thus,

w=Vb is a document instance, w'=V'b and w"=V''b are completely tagged document

instances, V corresponds to V' and to V", and V':;c:V".

Case B: Suppose Vn=<IDOCTYPE>. LetV=v1, ... vn-l and b=<IDOCTYPE>. Then

Vb= V is in L(D) and Vb corresponds to V' and to V". Let V'=v' 1,··· v'k-1 and

V"=v"1, ... v"m-l· Then because v'k=v"m=<IDOCTYPE> and V":;c:V', then V":;c:V'. Thus,

w= Vb is a document instance, w'= V'b and w"= V''b are completely tagged document

instances, and V corresponds to V' and to V".D

The results of Lemma 6.1 and Theorem 6.1 are similar but not identical. Theorem 6.1

shows that if a DTD D is ambiguous, then by Definition 6.6 (for the case of

by=by'=by"=e), D is ambiguous without lookahead. Lemma 6.1 shows that if D is

ambiguous, then there is a document instance in L(D) in which there is an ambiguity on an

input symbol bin 'J:.. Lemma 6.1 is used in Theorem 6.2 that follows to show a simplified

equivalent definition for Definition 6.6.

THEOREM 6.2. A DTD, D, is ambiguous by omitted tags without lookahead

(Definition 6.6) ijf there is a document instance Vby and completely tagged document

instances, V'by and V"by, such that:

1. b is an input symbol in L.

2. V corresponds to V' and to V", and

3. V':t:V",

104

PROOF. If D is ambiguous by omitted tags without lookahead, then all conditions of

Definition 6.6 hold such that either b is in :l: or by=by'=by"=e.

Case A: Lemma 6.1 shows that if conditions 2 and 3 of Definition 6.6 hold for

by=by'=by"=e, then conditions 2 and 3 also hold for some bin 1:.

Case B: If conditions 2 and 3 of Definition 6.6 hold and bis in 1:, then Dis ambiguous

without lookahead directly by Definition 6.6.D

Theorem 6.2 shows an alternate definition for Definition 6.6. It simplifies the proof of

correctness for Algorithm 6.4 that is shown in Lemmas 6.2-6. 7 and Theorem 6.3. The

definition in Theorem 6.2 is not given as the primary definition for DTDs that are

ambiguous by omitted tags without lookahead because it does not illustrate that ambiguity

can occur on end of input.

LEMMA 6.2. Let S be a system of finite automata constructed from a DTD, D, by

Algorithm 6.3. Let (Mj,q), (Mj,r), and (Mk,t) be in Q of S, a and B be in r*, y be in:l:*,

and b be in (1:: u e). Let a· be <Nj>, <INj>, or <Nj><INj> in 1::o*. Then S makes a

sequence of moves ((Mj,q),aby,a) I-+ ((Mj,r),by,a) I- ((Mk,t),y,B) iff ((Mj,q),by,a) 1-

((Mk,t),y,B) and in any tree constructed by Algorithm 6.4, if there is an arc from (Mj,q)

to (Mk,t) the label on the arc is a.

PROOF. There are 5 cases to be considered. These are given in Propositions 6.1-6.5

that follow. Propositions 6.1-6.5 correspond to cases a-e of Step 3 of Algorithm 6.4

respectively.

105

PROPOSITION 6.1. Let the omitted tag minimization for the begin tag of Nj in D be

"O", let qo be the start state of Mj, and let b be in~. b=#- <Nj>- Then

((Mj,qo),<Nj>by,a) I- ((Mj,r),by,a) I- ((Mj,t),y,a), if! ((Mj,qo),by,a) I- ((Mj,t),y,a) and

in any tree constructed by Algorithm 6.4 if there is an arc from (Mj,qo) to a leaf node for

b, the label on the arc is <Nj>.

PROOF. Because the begin tag for Nj is "O" in the DID, then in the NFA constructed

for Mj in Algorithm 6.3, for some rand tin Qj, O(qo,<Nj>)--tr and o(r,b)--tt for bin~ iff

o(qo,b)--tt. This result is direct by applying Thompson's construction to (<Nj>le) s) for

any regular expressions. The NFA constructed is illustrated in Figure 6.29; note that the

notation M(s) refers to the NF A for some regular expression s.

® <Nj> (A'\

. "/2 >6~e
~(D/. ' ~® M(s) >©
. ~--e->@Y/e,'7

Figure 6.29. Thompson's construction for ((<Nj>le) s)

In Figure 6.29 let r=4 and (Mj,qo)=l. .· After Algorithm 5.2.a for removing e-transitions,

O(l,<Nj>)--t4, and for all 0(6,b)-H in M(s) and bin~*. 0(1,b)--tt and 0(4,b)--tt in

M((<Nj>le) s). Then for all bin~. Scan make all moves from (Mj,qo) that it makes from

(Mj,r). Thus, ((Mj,qo),<Nj>by,a) I- ((Mj,r),by,a) I- ((Mj,t),y,a), iff ((Mj,qo),by,a) 1-

((Mj,t),y,a).

In the move ((Mj,qo),by,a) I- ((Mj,t),y,a), the begin tag <Nj> is omitted. This

corresponds to Step 3.a of Algorithm 6.4. Thus if there is an arc from (Mj,qo) to a leaf

node b in any tree constructed by Algorithm 6.4, the label on the arc is <Nj>.

106

PROPOSffiON 6.2. Let the omitted tag minimization for the begin tag of Nj in D be

"O", let qo be the start state of Mj, and let Nk be in N. Then ((Mj,qo),<Nj>Y,a.) 1-

((Mj,r),y,a.) I- ((Mk,qo),y,(Mj,t)a.), if! ((Mj,qo),y,a.) I- ((Mk,qo),y,(Mj,t)a.) and in any

tree constructed by Algorithm 6.4 if there is an arc from (Mj,qo) to (Mk,qo) the label on

the arc is <Nj>-

PROOF. Because the begin tag for Nj is "O" in the DTD, in the NFA constructed for

Mk in Algorithm 6.3, for some rand tin Qj, ·B(qo,<Nj>)~rand B(r;Nk)~t for Nk in N

iff B(qo,Nk)~t. The NFA constructed by.Thompson's construction is the same as the

NFA in case A above. After Algorithm 5.2.a·for removing e-transitions, 8(1,<Nj>)~4,

and for all 8(6,Nk)~t in M(s) and Nk in N, 8(1,Nk)~t and 8(4,Nk)~t in M((<Nj>le) s).

Then for all Nk in N, Scan make all e-moves (pushes) from CMj,qo) that it makes from

(Mj,r). Thus, ((Mj,qQ),<Nj>Y,a.) I- ((Mj,r),y,a.) I- ((Mk,qQ),y,(Mj,t)a.), iff ((Mj,qo),y,a.)

I- ((Mk,qQ),y,(Mj,t)a.).

In the move ((Mj,qo),y,a.) I- ((Mk,qo),y,(Mj,t)a.) the begin tag <Nj> is omitted. This

corresponds to Step 3.b of Algorithm 6.4. Thus if there isan arc from (Mj,qo) to (Mk,qo)

in any tree constructed by Algorithm 6.4, the label on the arc is <Nj>-

PROPOSITION 6.3. Let the omitted tag minimization for the end tag of Nj in D be

"O" and letf andf' be in Fj- Then for all (Mk,t) such that there is a transition into

(Mk,t) on Nj, · ((Mj,J,),<INj>Y, (Mk,t)a.) j,. ((Mj,f'),y,(Mk,t)a.) I- ((Mk,t),y,a.), if!

((Mj,J),y,(Mk,t)a.) I- ((Mk,t),y,a.) and in any tree constructed by Algorithm 6.4 if there is

an arc from (Mj,JJ to (Mk,t) the label on the arc is <INj>-

PROOF. Because the omitted tag minimization is marked "O" for the end tag of Nj, in

the NFA constructed for Mj by Algorithm 6.3, there must be states f and f" in Fj, such that

B(f,<INj>)~f' and f" has no outgoing transitions. This is direct by Thompson's

construction for (s (<INj>le)) for any regular expressions. The NFA is of the form

illustrated by Figure 6.30.

107

?
<INj>

>®~
~CD M(s) >® . m
~ >®/. e

Figure 6.30. Thompson's constructionfor (s (<INj>le)).

Then after Algorithm 5.2.a fore-removal, state 5 is a final states of M(s (<INj>le)) and

there are no transitions leaving state 5, and for any state fin M(s) such that state 2 is in e­

closure off [2],.then 6(f,<INj>)~5, andf and 5 are a final states in M(s (<INj>le)).

Because f and f" (5) are both in Fj, (Mj,f) and (Mj,f') can make all of the same e-moves

(pops), and thus ((Mj,f),<INj>Y,(Mk,t)a) I- ((Mj,f'),y,(Mk,t)a) I- ((Mk,t),y,a), iff

((Mj,f),y,(Mk,t)a) I- ((Mk,t),y,a).

In the move ((Mj,f),y,(Mk,t)a) 1-((Mk,t),y,a), the end tag <INj> is omitted. This

corresponds to Step. 3.c of Algorithm 6.4. Then in any tree constructed by Algorithm 6.4,

if there is an arc from CMj,f) to (Mk,t), the label on the arc is <INj>-

PROPOSITION 6.4. Let the omitted tag minimization for the begin and end tag of Nj

in D be "O" and qo be the start state of Mj and qo and f be in Fj- Then for p and fin Qj,

((Mj,qo),<Nj><INj>Y,(Mk,t)a) I- ((Mj,P),<INj>Y,(Mk,t)a) I- ((Mj,f),y,(Mk,t)a) 1-

((Mk,t),y,a) iff ((Mj,qo),y,(Mk,t)a) I- ((Mk,t),y,a) andin any tree constructed by

Algorithm 6.4 if there is an arc from (Mj,qo) to (Mk,t) the label on the arc is

<Nj><INj>-

PROOF. Because the omitted tag minimization for both the start tag and end tag of Nj

are "O", and qo is the start tag of Nj and is also in Fj, then in the construction of Mj by

Algorithm 6.3, it must be true that e is in Mj, as defined by the declared content or model

group for Nj in D. Thompson's construction for ((<Nj>le) s (<INj>le)) for any regular

expressions such that e is in L(s) is shown in Figure 6.31. The notation M(s) in Figure

6.31 refers to the component NF A for s, the model group or declared content of Mj.

108

~
<Nj>

>©~ ~
<INj>

>@~
~CD M(s) >0 @

~ >®/. ~ >®/. e e

Figure 6.31. Thompson's construction for ((<Nj>le) s (<INj>le)).

Thus, after e-removal, if e is in L(s), then 7 is in e-closure of 6 [2]and thus 1 is e-closure

of 12. Then 1 is a final state of ((<Nj>le) s (<INj>le)).

Then because qo is a start tag and also an end tag, (Mj,qo) can make the same e-moves

(pops) as (Mj,f). Thus, ((Mj,qQ),<Nj><INj>Y,(Mk,t)a) I- ((Mj,P),<INj>Y,(Mk,t)a) 1-

((Mj,f),y,(Mk,t)a) I- ((Mk,t),y,a) iff ((Mj,qo),y,(Mk,t)a) I- ((Mk,t),y,a).
. · ..

In the move ((Mj,qo),y,(Mk,t)a) I- ((Mk,t),y,a), both the start and end tag are omitted.

This corresponds to Step 3.d in Algorithm 6.4. Then in any tree constructed by Algorithm
. .

6.4, if there is an arc from (Mj,qo) to (Mk;t), the label on the arc is <Nj><INj>-

PROPOSITION 6.5. Let the omitted tag minimization for the end tag of No in D be
·'.

"O". Then ((Mo,f),<INo>,a) I- ((Mo,f'),e,a) for f andf' in Fo iff in any tree

constructed by Algorithm 6.4 if there is an arc from (Mo,f) to Z the label on the arc _is

<INo>.
. '

PROOF. Let the omitted tag minimization for the end tag of No in D be "O". The

result is shown by Thompson's construction for (s_(<INj>le)) for any regular expressions,

which is illustrated in Figure 6.30. Thus, ((Mo,f), <INo>, a) I- ((Mo,f'), e, a) iff f and f'

are inFo.

Then in any tree constructed by Algorithm 6.4, if (Mo,f) occurs as a node in the tree,

there is an arc from the node to Z for end of input. This corresponds to Step 3.e of

Algorithm 6.4. In this case the end tag <INo> is omitted. The label on the arc from

(Mo,f) to z is <INo>.

109

LEMMA 6.3. Let S be a system of finite automata constructed from a DTD, D, by

Algorithm 6.3, (Mg,s) and (Mh,t) be in Q of S, a and J3 be in r*, x and u be in :E*. If

((Mg,s),xu,a) I-* ((Mh,t),u,J3), then for some x'in :E*, ((Mg,s),x'u,a) I-* ((Mh,t),u,J3) and

there are no omitted tags in this sequence of moves.

PROOF. Let (Mj,q), (Mj,r), and (Mk,t) be in Q of S, a' and J3' be in r', y be in :E*, b be

in (:Eu e), and a be in :Ea+. Consider ((Mg,s),xu,a) 1-* ((Mh,t),u,J3). In this sequence of

moves, for each occurrence of a move ((Mj,q),by,a') I- ((Mk,t),y,J3') in which a is omitted,

as shown in Lemma 6.2 there is a corresponding sequence of moves ((Mj,q),aby,a') 1-+

((Mj,r),by,a') I- ((Mk,t),y,J3'), in which ais not omitted. Then, if there are n moves in .

which a tag is omitted in ((Mg,s), xu, a) I-* ((Mh,t), u, J3), by n applications of Lemma 6.2

(Propositions 6.1-6.5), it must be true for some x' in :E*, that ((Mg,s),x'u,a) I-*

((Mh,t),u,J3).

LEMMA 6.4. For each Mi inMof Sand for each state pin Mi, if there are states q

and r in Qi (q may equal r) and a and b·in (:E u N) such that 6(q,a)~p and 6(r;b)~p,

thena=b.

PROOF.. The following proof shows that each state in Qi is entered by transitions on.

only one symbol in :Ei c (:Eu N), and that this·property holds at each step of the

construction of Mi in Algorithm 6.3.

1: By Step 2 of Algorithm 6.2, Mi is constructed from a regular expression over~ using

Thompson's construction [2]. The property holds for all NFAs constructed by

Thompson's construction as follows.

Basis: For each symbol bin a regular expression r, the basis step constructs an NFA

consisting of a start state q, a final state f, and a single transition, 6(q,b)~f.

Inductive steps: For the inductive steps M(rls), and M(r*), only e transitions are

added. For the inductive step M(rs), the only transitions added are of the form,

6(f,b)~p for the final state f of M(r) iff q is the start state ofM(s) and 6(q,b)~p.

Thus, each state p in Qi is entered by transitions on one and only one b in ~-

110

2. Step 3 of Algorithm 6.3 removes e-transitions from each Mi using Algorithm 5.2.a.

Each transition added in this algorithm is of the form 6(q,a)~p', such that 6(p,a)~p'

for some q, p, p' in Qi and a in~. Thus the property holds after removing e-transitions.

3. In Step 4 of Algorithm 6.3, useless and inaccessible NFAs are removed from S using

Algorithms 3.3 and 3.5. Removing these NFAs does not affect the remaining NFAs

except in Step 4 of Algorithm 3.3 and Step 3 of Algorithm 3.5. In these steps for some

Nk that is useless orinaccessible, all transitions on Nk in each remaining Mi in M are

· removed; there are no transitions added to Mi. Then the inaccessible and useless

states are removed·from each Mi by Algorithms 5.2.b and 5.2.c. In these algorithms,

no transitions are added to Mi. Thus, the property holds after Step 4 of Algorithm 6.3.

By 1-3 for all Mi, each. state p in Qi is entered by transitions on only one symbol in Li.

LEMMA 6.5. Let S be a system of finite automata constructed by Algorithm 6.3 and

let T be an LA(l) tree for some state (Mi,PJ in Q of S, such thatAlgorithm 6.4 constructs

an ALA(1) tree for (Mi,P). If there is any state that is repeated on a path in T, then for

some state (Mg, t) in S there is an ALA(1) tree constructed for (Mg; t) by Algorithm 6. 4

that has two different paths from the root to leaf nodes for some input symbol b, and the

sequences of labels on the two paths to b are not equal.

PROOF. Suppose there is some state that is repeated on a path in T. Then there must

be some state {Mj,r) that is the first.occurrence ofa repeated state on the path, where it

may be true that (Mj,r)=(Mi,p). Consider the ALA(l) tree, T', constructed for (Mi,P) by

Algorithm 6.4. Because (Mj,r) is the first occurrence of a repeated state on a path in T,

(Mj,r) is repeated on a path in T'. Then for any yin L* and some ex., ex.', and~ in r*

((Mi,P),y,cx.) I-* ((Mj,r),y,cx.') I-+ ((Mj,r),y.~). where ((Mi,P),y,cx.) may be ((Mj,r), y, ex.') .

Then (Mj,r) must be either:

A. (Mj,qo), where qo is the start state of Mj-

B. (Mj,t), for some fin Fj, f*Qo.

C. (Mj,r) such that r is not qo of Mj or fin Fj-

111

Case A: Consider (Mj,r)=(Mj,qo). The next e-move from <Mj,qo) must be a push or a

pop. A push is a transition from <Mj,qo) on some Nk; for 8 of Mj, B(qo,Nk)~s. Then

for a in r*, ((Mj,qo),y,a) I- ((Mk,qo),y,(Mj,s)a). Then by Step 3.b of Algorithm 6.4, this

implies that <Nj> will be the label on the arc from (Mj,qo) to (Mk,qo). A pop must be an

e-move to some state (Mk,p') in.S such that for some a in r*, ((Mj,qo),y,(Mk;p')a) 1-

((Mk,p'),y,a) .. By Step 3.d of Algorithm-6.4, this implies that <Nj><INj> will be the label

on the arc from. (Mj,qo) to (Mk,p'). -

The path from .the root <Mi,P) to the first occurrence of <Mj,qo) has some sequence of

labels V, such .that V may be e .. Then .as shown above, the sequence of labels on the path

from the first (Mj,qo) to the second (Mj,qo) must be s.ome V.1 containing at least <Nj> or

<Nj><INj>. Thus, the path from ·<Mi,P) to the second occurrence of (Mj,qo) must be

VV1. Then Vr;teimplies V::t:.VV1.

Because (Mj,qo) is the start state of Mj, by the construction of Mj it must be true that

A((Mj,qo), <Nj>, e)~((Mj,S),e) for some sin MJ Then by Step 3.a of Algorithm 6.4, the

leaf node <Nj> is a child of each node for (Mj,qo) in the tree, and the label on the path

from each (Mj,qo) to <Nj> is e~ Thus,.the path from the root to the child node <Nj> of

the first occurrence of (Mj,qo) will be V and the path from the root to the child node <Nj>

of the second occurrence of <Mj,qo) will be VV 1 ·

Therefore,. there are two paths in the ALA(1) tree for (Mi,P) to leaf nodes for <Nj> and

the sequences of labels on the two paths are not equal. Thus, for Case A, (Mg,t)=(Mi,p).

Case B: Consider <Mj,r)=(Mj,f), for some fin Fj, f,t:.qo. Because (Mj,O is not the start

state of Mj, the only way that (Mj,f) can be reached is by a transition on some symbol in

(I: u N). By Lemma 6.4, there can only be transitions into <Mj,O on one symbol in

(I: u N). Then there cannot be a transition into <Mj,f) on some b in I: because there could

not be a sequence of e-moves ((Mj,f),y,a) 1-+ ((Mj,f),y,p) for some a, Pin r*, and this

would contradict the assumption that <Mj,O was a state repeated on a path. Then, <Mj,f)

must be entered only by transitions on one input symbol Nk in N. Thus, in any sequence

112

of moves to (Mj,f), the last move in the sequence must be a pop from a state (Mk,f')

where f" is in Fk. Then any sequence of moves from (Mj,f) to (Mj,f) must be of the form:

((Mj,f),y,a) I-* ((Mk,f'),y,(Mj,f)P) I- ((Mj,f),y,p) for some a and pin r* and yin :I:*.

By Lemma 6.4, (Mk,f') can be entered only by transitions on one symbol in (l: u N).

Then (Mk,f') must be a final state of Mk that is not entered by a transition on some b in l:,

because this would imply that there could not be a sequence of e-moves: -((Mj,f),y,a) I-*

((Mk,f'),y,(Mj,f)P) I- ((Mj,f),y,p). Thus (Mk,f") is not entered by a transition on <INk>,

and by Step 3.c of Algorithm 6.4, the arc from (Mk,f") to (Mj,f) must have a label <INk>.

The path from the root (Mi,P) to the first occurrence,of (Mff) has some sequence of

labels V, such that V may be e. The sequence of labels on the path from the first (Mj,f) to

the second (Mj,f) must be some V 1 containing at least <INk>. Thus, the path from (Mi,P)

to the second occurrence of (Mj,f) must be VV 1 · Then V 1 :;te implies V'#VV 1 ·

Because· (Mff) is not entered by a transition on some b in l: it is not entered by a

transition on <INj>- Then by the construction of Mj, because f is in Fj, there must be a

transition from (Mj,f) on <INj>. The construction of Mj is illustrated in Figure 6.30.

Thus, by Step 3.a of Algorithm 6.4. a leaf node <INj> must be a child of each occurrence

of (Mj,f) in the tree, and the label on each arc from (Mj,f) to <INj> is e.

Thus, the path from the root to -the child node <INj> of the first occurrence of (Mj,f)

will be V <INj> and the ·path from the root to the child node <INj> of the second

occurrence of (Mj,f) will be VV 1 <Nj>. Then because V'#VV 1, V <INj>'#VV 1 <INj>­

Thus there are two differentpaths in the ALA(l) tree for (Mi,P) to leaf nodes for <INj>

and the sequences of labels on the two paths are not equal. Thus, for Case B,

(Mg,t)=(Mi,p).

Case C: Consider (Mj,r) such that r is not qo of Mj or fin Fj- Because (Mj,r) is not a

final state of Mj, the first move in the sequence of e-moves, ((Mj,r), y, a) 1-+ ((Mj,r), y,p),

must be a push to some state (Mk,qo) as follows: ((Mj,r),y,a) I- ((Mk,qo),y,(Mj,s)a) I-+

((Mj,r),y,p) for some (Mp) and for some a and Pin r*.

113

If the begin tag for Mk, <Nk> is not optional, then the next move from (Mk,qo) cannot

be an e-move, and it cannot be true that ((Mj,r),y,a) I-+ ((Mj,r),y,!3), and this contradicts

the assumption that there is a path from {Mj,r) to (Mj,r) in the ALA(l) tree for (Mi,p).

Thus, the begin tag for Mk, <Nk>, must be optional and it must be true that ((Mj,r),y,a)

I- ((Mk,qo),y,(Mj,s)a) I-+ ((Mj,r),y,j3) I- (Mk,qo),y,(Mp)l3). Because (Mj,r) is the first

repeated state on some path in the ALA(l) tree for (Mi,P), there must be no other

repeated states in this sequence of moves. Then, there must be no repeated states other

than (Mk,qo) in the sequence of moves ((Mk,qo),y,(Mj,s)a)·I-+ ((Mj,r),y,13) l­

(Mk,qo),y,(Mj,S)j3)

Because (Mk,qo) is the start state of Mk, there will be an ALA(l) tree constructed for it

by Algorithm 6.4; and by the above result there is a path in the tree such that (Mk,qo) is

the first repeated state on the path. Then because qo is the start state of Mk, the proof in

Case A holds for the special case of the root=(Mk,qo). Thus, there is an ALA(l) tree

constructed for (Mk,qo) such that there are two paths in the tree to leaf nodes for <Nk>,

and the sequences of labels on the paths are not equal. Thus for Case C, (Mg,t)=(Mk,qo).

Therefore, for cases A, B,. and C, if. there is any occurrence of a state that is repeated on

a path in some LA(l) tree, then for some state (Mg,t) in S there is an ALA(l) tree

constructed by Algorithm 6.4 such that there are two paths from the root to leaf nodes for

an input symbol b and the sequences of labels on the two paths are not equal.

LEMMA 6.6. Let S be a system of finite automata constructed from a DTD by

Algorithm 6.3 and (Mi,P) be a state in S for which an AIA(1) tree is constructed by

Algorithm 6.4. If there are two paths in the tree for (Mj,p) from the root to leaf nodes for

Z such that the sequences of labels on the two paths are not equal, then there is some

state (Mg,t) of S, where (Mg,t) may be (Mi,PJ, for which a tree is constructed and there

are two paths in the tree to leaf nodes for some b in I: such that the sequences of labels

on the paths are not equal.

114

PROOF. In any ALA(l) tree'constructed by Algorithm 6.4, for any path to a leaf node

Z, the parent of Z must be a final state (Mo,f) for some fin Fo. In the ALA(1) tree for

<Mi,P), let the parents of the two leaf nodes for Z be (Mo,f) and (Mo,f'), f and f" in Fo ..

By the construction of the NFA, Mo, either (Mo,f) is entered by a transition on <INo> or

it is not entered by a transition on No, and either (Mo.f') is entered by a transition on

<INo> or it is not entered by a transition on <No>.

Case A: Suppose (Mo,f) is entered by a transition on <INo>. Then by Lemma 6.4, it is

only entered by transitions on <INo>. Thus, there are no e-moves to (Mo,f), and it can

only occur in the ALA(l) tree for (Mi,P) if itis the root. Then, the occurrence of (Mo,f')

in the tree for <Mi,P) must be on some path from the root. Because (Mo,f) is entered by

<INo> it is not the start state of Mo. Thus, the first move in the sequence of moves from

(Mo,f) to (Mo,f") must be a pop. Because (Mo,f) is the root and (Mo.f') is a node in the

tree that is not the root, then for ally in 1:* and for some ex. and ~· in r*, ((Mo,f),y,cx.) I-+

((Mo,f'),y,~). Then because (Mo,f') is also a final state in Fo, it makes the same e-moves

(pops) as (Mo,f), and thus for some ex.' and Win r, ((Mo,f'),y,cx.') I-+ ((Mo,f'),y,W).

Thus, the state (Mo,f") must be repeated on a path in the LA(l) tree for (Mo,f). Because

(Mo,f) is entered by a transition on <No>, thereis an ALA(l) tree constructed for (Mo,f)

by Algorithm 6.4. Then by Lemma 6.5,there is some state <Mg,t) in S, such that there is

an ALA(l) tree constructed for (Mg,t) by Algorithm 6.4 and there are two paths in the

tree to leaf nodes for b in l:, such that the sequences of labels on the two paths are not

equal. Thus, for this case, <Mg,t)=tl:(Mi,P).

Case B: The proof for (Mo,f) in A holds for (Mo,f') entered by a transition on <INo>.

Case C: Suppose (Mo,f) and (Mo,f") are both entered by transitions on <No>. This

implies a contradiction. By the proofs for A and B, (Mo,f) and (Mo,f") cannot both be the

root of the tree for (Mi,P). Thus, it cannot be true that both (Mo,f) and (Mo,f") are .

entered by transitions on <INo>.

115

Case D: Suppose (Mo,f) and (Mo,f") are not entered by transitions on <INo>. Then by

Step 3.e of Algorithm 6.4, the arcs from (Mo,f) and (Mo,f") to Z must both have a label

<!No>, and because the sequence oflabels on the two paths from (Mi,P) to Z are not

equal, the sequence of labels on the path from (Mi,P) to (Mo,f) is not equal to the

sequence of labels on the path from (Mi,P) to (Mo,f"). Let these paths be denoted V and

V' respectively.' Because (Mo,f) and (Mo,f'') are final states that are not entered by a

transition on <!No>, by the construction of Mo they must each have a child <INo> in the

tree, and by Step 3.a of Algorithm 6.4 the label on the arcs from (Mo,f) to <INo> and

from (Mo,f") to <INo> is e. Then the sequence of labels from the root CMi,P) to the child

<!No> of (Mo,f) is V ·and the sequence of labels from the root to the child <INo> of · ·

(Mo,f) is V'. Thus; the tree for (Mi,P) has two paths to leaf nodes for <INo> in l:, and the

sequences of labels on the paths are not equal. In this case; (Mg,t)=(Mi,p).

Therefore, by A-D, if there are two paths in the tree for (Mi,P) from the root to leaf

nodes for Z such that the sequences of labels on the two paths are not equal, then there is

some state (Mg,t) of S for which a tree is constructed and such that are two paths in the

tree to leaf nodes for b in l:, and the sequences of labels on the paths are not equal.D

The following lemma shows an equivalent definition for Definition 6.6 that is derived

from the equivalent definition shown in Theorem 6.2. · It is used in Theorem 6.3, which.

shows the proof of correctness for Algorithm 6.4; Algorithm 6.4 detects ambiguity

between an input symbol a in l: (or a start configuration) and the next input symbol bin l:.

LEMMA 6.7. A DTD Dis ambiguous by omitted tags without lookahead if/there is a

document instance xaby and completely tagged document instances xaV'by' and xaV"by"

such that:

1. b is an input symbol in 1:,

2. either a is an input symbol in 1: or xa=e.

3. V' and V" are in 1: o *, and

4. V':;t V".

116

PROOF. The proof is given for the equivalent definition of ambiguity in Theorem 6.2.

Case A: Suppose D is ambiguous by omitted tags without lookahead. By Theorem 6.2

there is a document instance w=Vby, and completely tagged document instances, w=V'by'

and w"= V"by", b is an input symbol in~. V corresponds to V' and to V", and V':#V".

Case A.1: Suppose V =e. Then V corresponds to V' and V" implies that V' and V" are

in ~O *. Let xa=e. Then xaby is a document instance and xa V'by' and xa V"by" are

completely tagged document instances.

Case A.2: Suppose V=v1, ... vn, n~l. Let V'=v'1, ... v'k and V"=v"1, ... v"m· Because V

corresponds to V' and to V", then ~1 and m~l. Consider the first i such that Vi:#V'i or

Vi:#v" i· Because V':#V", then either:

b. Vi:#V'i and Vi=v" i, or

Case A.2.a/b: The proof for a also holds for b. Because v' 1 =v" 1 =<DOCTYPE>, then

i> 1. Let xa=v l •··· Vi-1, b=vi=V'i, ,and V'=e. Because V corresponds to V", Vb

corresponds to V"b, and thus there must be a first occurrence of b=v"j in V" for some j,

j>i. Let V"=v"j; ... v"j-1; Then V":#e and thus V"¢V'. Lety=vi+l•···vnbY, y'=v'i+l, ... v'kby'

and y"=v"j+ 1, ... v" mby". Then xaby=Vby is a document instance and xa V'by'=V'by' and

xaV"by"=V"by" are completely tagged document instances, and V' and V" are in ~O *.

Case A.2.c: Let Vi:#V'i and Vi:#v" i·

Case A.2.c.1: Suppose v'i:#V"i. Let xa=v1, ... Vi-l (xa may bee), b=vi, and y=vi+l•···vn.

Because V corresponds to V' and to V" and by the conditions for i, there must be some

next occurrence of b=vi in V', v'h, h>i, and some next occurrence of bin V", v"j, j>i. Let

V'=v'i,···v'h-1, V"=v"j, ... v"j-1, Let y=vi+l•···vnbY, y'=v'h+l, ... v'kby', and

y"=v"j+l, ... v"mby". Because v'i:#V"i, V'¢V". Then xaby=Vby is a document instance,

xa V'by'= V'by' and xa V"by"=V"by" are completely tagged document instances, and V' and

V II "'t'* arem~o .

117

Case A.2.c.2: Suppose v'i=v"i· .Let b=v'i=v\. Then because V corresponds to V' and

to V", bis in Lo and v1, ... Vi-l bvi,···vn corresponds to V' and to V" (by not omitting b).

Step 1: The occurrence of b is now at position i in V and the old Vi is at position i+ 1.

Consider a new V, V=v1, ... vi-1bvi,···vn. Let i=i+l. V still corresponds to V' and to V".

Repeat Step 1 until one of the cases for A.2 is true for the new V and i. The only case

that remains to be proved is A.2.c.2: ConsiderV'=v'1, ... v'kand V"=v"1, ... v"m· Because

min(k,m) is finite and because V'¢.V", then it must eventually be true that either v'i¢V"i or

i=min(k,m). If v'i¢v" i , then the proof for Case A.2.c.1 holds. If i=min(k,m), by the

conditions for i either k>m or m>k. The same proof holds for either case: let m>k.

Because Vb corresponds to V'b and by the conditions for i, then n=k and V=V'. Let

xa=V, V'=e, and V"=v"i+l•··;v"m· Then xab=Vb corresponds to xaV'b=V'b and to

xa V''b=V"b, and thus V' and V" are in Lo*.

Case B: Suppose there is a document instance xaby and completely tagged document

instances xa V'by' and xa V"by" such that b is an input symbol in L, either a is an input

symbol in L or xa=e, V' and V" are in Lo*, and V'¢.V". Let V=x:a, · V'=xa V', and V"=xa V".

Then there is a document instance Vby and completely tagged document instances V'by'

and V''by", such that V corresponds to V'.and to V", bis in L, and V'¢ V". Then by

Theorem 6.2, D is ambiguous by omitted tags without lookahead.

Therefore, by A and B the result holds.

THEOREM 6.3. _Algorithm 6.4 detects all DTDs and only DTDs that are ambiguous

by omitted tags without lookahead (Definition 6.6).

PROOF. The proof is given for the equivalent definition of DTDs that are ambiguous

by omitted tags shown in Lemma 6. 7.

Case A: To show that Algorithm 6.4 detects all ambiguous DTDs it must be shown for

each ambiguous DTD, D, if S is a system of finite automata constructed by Algorithm 6.3,

then there is some state CMi,P) in S, such that Algorithm 6.4 constructs an ALA(l) tree

for CMi,P) and there are paths in the tree to two leaf nodes for bin L, and the sequences of

118

labels on the two paths are not equal, or there are paths in the tree to two leaf nodes Z for

end of input, and the sequences of labels on the two paths are not equal.

Suppose A DTD is ambiguous by omitted tags without lookahead. Then by Lemma 6. 7

there is a document instance xaby and completely tagged document instances xa V'by' and

xa V"by" such that b is an input symbol in I:, either a is an input symbol in I: or xa=e, V' .

and V" are in I:o *, and V'-:tN".

If a is an input symbol; then:for.some (Mi,q) and CMi,P) in Q of S, and a in r*, S makes

the following sequence of moves: ((Mo,qo),xaby,e) I-* ((Mi,q),aby,a) I- (Mi,P),by,a). If

xa=e, let (Mi,P)=(Mo,qo) and a=e. Consider the state CMi,p). Because it is either a state

entered by a transition on some input symbol a in I: or it is the start state·of S, Algorithm

6.4 constructs a tree for (Mi,p). Consider the LA(l) tree for CMi,p). Either it has a

repeated state on some path or it does not have a repeated state.

Case A.I: If there is some state that is repeated on a path in the LA(l) tree for CMi,P),

then by Lemma 6.5, for some state CMg,t) in S, Algorithm 6.4 constructs an ALA(l) tree

for (Mg,t), such that there are two paths in the tree to leaf nodes for b, and the sequences

of labels on the two paths are not equal.

Case A.2: If there is no state that is repeated on a path in the LA(l) tree for CMi,p).

Then each path in the tree terminates and by Definition 6.9 the ALA(l) tree for CMi,P) is

the same as the LA(l) tree. Consider the ALA(l) tree constructed for CMi,p). Because

xaby is a document instance, there is a path in the tree for (Mi,P) to a leaf node for b.

Because V' is in I:o *, if V'=v'1, ... vn, n~. then for i=l, ... n, Vi is omitted in the sequence of

moves accepting b that is represented by the path in the tree. Then by Lemma 6.2, Vi,

i=l, .. n will occur in order on arcs on the path from CMi,P) to band no other labels will

occur on the arcs of this path. Thus, there is a path to a leaf node b in the tree for CMi,P)

and the sequence of labels on the path is V'. The same proof holds for V". Then since

V'::t=V", the result is complete.

By Al and A.2, ,there is some state (Mi,P) or (Mg,t) in S, such that Algorithm 6.4

constructs an ALA(l) tree for the state and there are paths in the tree to two leaf nodes

for b in ~. and the sequences of labels on the two paths are not equal. Therefore,

Algorithm 6.4 detects all DTDs that are ambiguous by omitted tags without lookahead.

119

Case B: Algorithm 6.4 detects only ambiguous DTDs. Let D be a DTD and S be a

system of finite automata constructed from D by Algorithm 6..3. If Algorithm 6.4 outputs

YES for a DID, D, then thereis some state (Mi,P) in Q of S such .that there is a tree

constructed for (Mi,P) by Algorithm 6.4 and there are paths in the tree from the root to

two leaf nodes for bin l:. or to two-leaf nodes for Z (denoting end of input), and the

sequences of labels oti the paths are not equal. By Lemma 6.6, if the tree for (Mi,P) has

paths.to two.leaf nodes Z, such that the sequences of labels on the path are not equal, then

there is some state (Mg,t) in S, where (Mg,t) may be (Mi,P), such that Algorithm 6.4

constructs a tree for (Mg,t) and there are paths from the root to two leaf nodes for b in ~.

and the sequences of labels on the two paths are not equal. The following proof for

(Mi,P) also holds for (Mg;t). Thus, it is only necessary to consider the case of two paths

to leaf nodes for b in ~ to show that D is ambiguous by omitted tags without lookahead.

Let the sequences of labels on the two paths to b be V' and V". The following proof

shows that for V', there is a document instance xaby and a completely tagged document

instance xa V'by', such that either a is an input symbol in ~ or xa=e, b is an input symbol in

~. and V' is in ~O *. The same proof holds for V". The proof consists of 3 parts:

1. Because a tree is constructed for (Mi,P) by Algorithm 6.4, either (Mi,P)=(Mo,qo) or

(Mi,P) is entered by a transition on some symbol a in ~- If (Mi,P) is entered by a

transition on a, then because there are no useless states in S, there must be some string

x'aby in L(D) and some a in r* such that ((Mo,qo),x'aby,e) I-* ((Mi,q),aby,a) 1-

((Mi,P),by,a). Then by Lemma 6.3 there is some x in~* such that ((Mo,qo),xaby,e) I-*

((Mi,q),aby,a) I- ((Mi,P),by,a) and there are no tags omitted in this sequence of moves.

If (Mi,P)=(Mo,qo), then xa=e and ((Mo,qo,xaby,e) 1-0 ((Mi,P),by,e). Thus, for either .

xa=e or a in~. ((Mo,qo),xaby,e) I-* ((Mi,P),by, ex.), and there are no tags omitted in

this sequence of moves.

120

2. Consider the leaf node b on the path with the sequence of labels V'. Because b is a leaf·

node in the tree for (Mi,P), then for some (Mj,S) and (Mj,r) in Q of S and J3 in r* there

must be a sequence of moves ((Mi,P),by,cx.) I-* ((Mj,r),by,(3) I- ((Mj,S),y,(3). Then

because V' is the sequence oflabels on the path from (Mi,P) to b, xaV'by is in L(D) and

there is a sequence of moves ((Mi,P),V'by,cx.) I-* ((Mj,r),by,(3) I- ((Mj,S),y,(3) in which

there are no omitted tags.

3. Because xaV'by is in L(D) and because there are no useless states in S, ((Mj,S),y,cx.) I-*

((Mo,f),e,e) for some fin Fj- Then by Lemma 6.3, there is some y' in~* such that

((Mj,S),y',cx.) I-* ((Mo,f),e,e) and there are no omitted tags in this sequence of moves.

By the results from 1~3, ((Mo,qo),xaV'by',e) I-* ((Mi,q),aV'by',cx.) I- ((Mi,P),V'by',cx.) I-*

((Mj,r),by',(3) I- ((Mj,S),y',(3) I-* ((Mo,f),e,e), and there are no omitted tags in this sequence

of moves. Then xa Vby' is in L(D') where D' is derived from D by setting the omitted tag

minimization to minus for all elements. Therefore, xa V'by' is a completely tagged

document instance. Thus, for V', there is a document instance xaby and a completely

tagged document instance xaV'by, such that either a is an input symbol in~ or xa=e, bis

an input symbol in ~. and V' is in ~O *. The same proof holds for V". Then because

V'-::1:.V", if Algorithm 6.4 outputs YES for a DID, D, by Lemma 6. 7 D is ambiguous by

omitted tags without lookahead.

Therefore by A and B, Algorithm 6.4 detects all DTDs and only DTDs that are

ambiguous by omitted tags without lookahead.D

In this chapter a method is shown for constructing a system of finite automata

recognizing L(D) for a DID, D, when exceptions are not considered. A definition is

given for DTDs that are ambiguous by omitted tags without lookahead, and an algorithm

is shown for detecting these DTDs. In the next chapter, these methods are extended to

include exceptions.

121

7. Exceptions

In this chapter, the effect of exceptions on L(D) is shown by Algorithm 7.1 that

enumerates the ways that exceptions can apply to model groups in a particular DTD.

Then, Algorithm 7.2 uses Algorithm 7.1 to construct a system of finite automata, S',

recognizing L(D) when exceptions are considered. S' is an extension of S, the system of

finite automata constructed by Algorithm 6.3. Examples are shown that illustrate that

Algorithm 6.4 can be applied to S' to detect DTDs that are ambiguous by omitted tags

when exceptions are considered. Algorithm 7.1 is also used to implement the optional

SGML feature, VALIDATE EXCEPTIONS, for reporting exceptions that attempt to

remove a required element from a model group.

7 .1. Preliminary Definitions

The following three definitions are from the glossary of the standard [13].

4.130 exceptions: A parameter of an element declaration that modifies the effect of the

element's content model, and the content models of elements occurring within it, by

permitting inclusions and prohibiting exclusions.

4.131 exclusions: Elements that are not allowed anywhere in the content of an element

or its subelements even though the applicable content model or inclusions would permit

them optionally.

4.157 inclusions: elements that are allowed anywhere in the content of an element or

its subelements even though the applicable model does not permit them.

The subelements of an element A are defined to be only the elements that occur

immediately within A (at the first level of nesting) [13]. Thus, in Definitions 4.131 and

4.157, either the phrase "or in its subelements" is redundant, or the phrase "anywhere in

the content of an element" is not precise. However, the example shown in Section B.11.2

of the tutorial annex B [13] shows that the exclusions for an element A apply to elements

that are nested below the immediate subelements of A The algorithms that follow are

based on this interpretation: the exceptions for an element A apply anywhere in the

content of an A, including in any elements that occur within A at any level of nesting.

122

In addition to the above definitions, Clause 11.2.5 of the standard states: 11 At any point

in a document instance, if an element is both an applicable inclusion and an exclusion, it is

treated as an exclusion. 11

Definition 7 .1. Ancestors of elements. An element A is an ancestor of an element B

and B is a descendent of A iffB occurs within A at some level of nesting.

Definition 7 .2. Local exceptions. The inclusions declared in the content model of an

element A are local inclusions for A. The exclusions declared in the content model of an

element A are local exclusions for A. The local inclusions and local exclusions for A are

the local exceptions for A.

Example 7 .1. Local exceptions. Consider the element declaration:

<!ELEMENT A - - (A I B) -(C) +(X,Y) >

The local exclusions for A are {C} and the local inclusions for A are {X,Y}.

Definition 7 .3. Inherited exceptions. The inherited inclusions of an element A are the

union of the local inclusions of all ancestors of A. The inherited exclusions of an element

A are the union of the local exclusions of all ancestors of A. Note that a local inclusion,

X, for some ancestor B of A is still an inherited inclusion of A, even if X is a local

exclusion for some ancestor C of A. This definition is used in the algorithms that follow

and does not imply a contradiction to the rule in Clause 11.2.5, which states that

exclusions override inclusions. Inherited exceptions are illustrated in Example 7 .2.

Example 7 .2. Inherited exceptions. Consider the DTD:

<!DOCTYPE A [

<!ELEMENT A

<!ELEMENT B

<!ELEMENT C

(B) - (Y) + (X) >

(C) -(X) +(Z) >

(#PCDATA) -(Z) +(Y)>

The inherited exclusions for Care {X,Y} and the inherited inclusions for Care {X,Z}.

123

Definition 7.4. Applicable exceptions. The applicable inclusions for A are the inherited

inclusions for A plus the local inclusions of A The applicable exclusions of A are the

inherited exclusions of A plus the local exclusions for A The applicable exceptions are

denoted as -{}and+{} for exclusions and inclusions respectively. In Example 7.2, the

applicable exclusions for Care -{X,Y,Z} and the applicable inclusions are +{X,Y,Z}.

Definition 7.5. Effective exceptions. The effective inclusions for an element A are the

applicable inclusions for A minus the applicable exclusions. The effective exclusions are

the applicable exclusions. Thus, the effective exceptions are those that apply to the model

group of the element as defined by Clause 11.2.5 of the standard. In Example 7 .2, the

effective inclusions for Care {} and the effective exclusions are {X,Y,Z}.

Each element A defined in a DTD either has declared content or is defined by a content

model (model group and optional exceptions). The content of A elements in document

instances may vary depending on the context in which they occur, because exceptions

apply anywhere within an element, including within any descendent of the element (which

may be A). Model groups can introduce recursion into a DTD and inclusions imply

another level of recursion; by definition, an included element A can contain an A unless

otherwise excluded. Exclusions are frequently used to limit recursion [10].

Definition 1 .6. Dynamic content model. For a DTD, D, a dynamic content model

(DCM) for an element A defined in D, is the inodel group for A and a set of applicable

exceptions for A that apply to some occurrence of A in some document instance defined

by D. For the purposes of this definition, all elements are assumed to be defined by a

model group as follows: for elements with declared content ofCDATA or RCDATA, the

content definition is equivalent to a model group (#PCDATA). Thus, these elements are

considered to be defined by the model group, (#PCDATA). The model group for

elements with declared content of "EMPTY" is NULL. Exceptions do not apply to

elements with declared content [13]. Thus, the applicable exceptions for all DCMs with

124

declared content are empty. Because exceptions do not apply to elements with declared

content, they have only one DCM.

Each element in a DTD has a finite number of DCMs. This is clear as follows: let Y be

the set of all combinations of inclusions that occur in D and let Z be the set of all

combinations of exclusions. Then, because Y and Z are finite, (Y X Z) is a finite set of

ordered pairs. The DCMs of each element must be a subset of (Y X Z), and therefore is a

finite set. The DCMs for an element are distinguished from each other by their respective

sets of applicable exceptions. For notational purposes, a unique index is assigned to each

DCM as illustrated in Example 7.3.

Example 1.3. Dynamic content models (DCMs). Consider the DTD, D:

<!DOCTYPE A [

(B I C) >

(C) +(X) >

(#PCDATA) >

<!ELEMENT A

<!ELEMENT B

<!ELEMENT C

<!ELEMENT X (#PCDATA) -(X) >] >

The DCMs for D are shown in Table 7 .1.

Table 7.1. Dynamic content models for Example 7.3.

name/
index

model applicable applicable
group inclusions exclusions

(B I C)

(C)

(#PCDATA)
(#PCDATM
(#PCDATA)

0
{X}
{}

{X}

{X}

{}

{}

{}

{}

{X}

7 .2 The Effect of Exceptions on Content Models

Algorithm 7.1 that follows shows how exceptions affect L(D). In particular, a tree is

traversed such that each node in the tree is a DCM for some element in D. The nodes of

the tree enumerate all of the DCMs for all elements named in the element type of some

element declaration in D. The tree shows the context in which each DCM can occur in

125

relation to other DCMs of D. The name of each node in the tree is the element name plus

the index of the DCM, and each node has labels (attributes) for the applicable inclusions

and the applicable exclusions. The leaf nodes of the tree are one of the following:

1. DCMs that have no children. This can occur in one of the following ways:

a. the element has declared content.

b. the element has a model group that has no Gls (element names), and there are no

effective inclusions.

c. all GI's in the model group of the element and any included elements are excluded by

effective exclusions.

2. DCMs that have already occurred as some node in the tree.

For both of these cases the current path is terminated. The tree is traversed rather than

explicitly constructed. As the tree is traversed, a list of the DCMs of D is maintained.

The list is used to terminate paths when a DCM has already occurred in the tree, and this

guarantees that the algorithm terminates. The list of the DCMs is extended so that for

each DCM, there is a iist of the children of the DCM in the tree. For DCMs that are leaf

nodes (they have already occurred) the list of children is obtained from the list of children

for the first occurrence of the DCM; by the definition of DCMs, the children of all

· occurrences of a particular DCM in the tree must be the same. This list is then used by

Algorithm 7 .2 to construct a system of finite automata recognizing L(D).

ALGORITHM 7.1. Constructing a DCM list for a DID.

Input: A DTD, D.

Output: A list of all DCMs of D. For each DCM in the list, the list entry contains:

1. the name of the element.

2. an index that distinguishes the DCM from other DCMs for the same element.

3. the applicable inclusions and applicable exclusions.

4. The children of the DCM in the DCM tree traversed by this algorithm.

Method: Use the recursive function dcm_tree shown in Table 7.2.

Table 7.2. Construct a DCM list for a DTD.

The initial call to dcm_tree() is made with the name of
the DOCTYPE element and the inherited exceptions are{}.
Dcm_tree()returns the index of the current DCM.

D - the input DTD

dcm_list -
dcm_list.name - the name of the element of the DCM
dcm_list.index - an index that distinguishes the DCM

for the element from other DCMs of the same element
dcm_list.inclusions - applicable inclusions
dcm_list.exclusions - applicable exclusions
dcm_list.children[] -' list of· the children of the DCM

in the tree; entries in the list are an element
name and an index that identifies the DCM.

dcm_ list is initialized to NULL.

dcm_tree (A, inherited exceptions)
A - the name of the current element·
inherited exceptions - inherited_inclusions and
inherited_exclusions

BEGIN·

If A has declared content
{ insert_dcm adds the DCM to the list if not already

there and returns l'as the index- the applicable
exceptions and the child list are null }

index= insert_dcm(A, {}, {}, {})
return(l)

else
{ A is defined in D by a content model - construct

the applicable exceptions - the local exceptions
are globally available in D}

appl_inclusions - inher.ited_indlusions union
local inclusions

appl_exclusions = inherited_exclusions union
local exclusions

{lookup the index of the DCM in dcm_list[]. If
not already in the list, index=NULL}

index=lookup_dcm(A,appl_inclusions,appl_exclusions)
if index is not NULL

{ the DCM has already occurred in the tree}
return (index)

else
{ if index=null the DCM has not already occurred}
{ derive the effective exceptions}
eff_inclusions = appl_inclusions - appl_exclusions

Table 7.2 continued on next page

126

Table 7.2 (cont.). Construct a DCM list for a DTD.

eff_exclusions = appl_exclusions
{ determine the set of all possible subelements of

A in the current context - Gis() returns the Gis
in the model group for A in D}

subelements = (Gis () U eff_inclusions)
- eff_exclusions

if subelernents = {}
child_list = NULL

else
{ construct a list of subelernents of the DCM,

each list entry is an ordered pair (name of
child, index of child}

for each element, child, in subelernents
child_index = dcm_tree(child,appl_inclusions,

appl_exclusions)
insert_child(child_list, child, child_index)

end for.
end else
{ now insert the DCM into the list - the index

assigned is the next available index for a DCM
for A}

index= insert_dcm{A, appl_inclusions,
appl_exclusions, child_list)

return (index)
end else

end else
END

127

The function, dcm_tree() must halt because there are a finite number of DCMs for each

DID, D, and each path in the tree is terminated when a DCM is encountered that is

already in the tree. By the definitions and assumptions for exceptions and by the definition

ofDCMs, the tree contains all of the DCMs in I) and only DCMs in D. The DCMs

enumerate all possible ways that exceptions can effect model groups in D, because every

possible set of effective exceptions can be derived from some set of applicable exceptions.

Example 7.4. Constructing a DCM tree for a DTD D. Consider the DID, D:

<!DOCTYPE A [

<!ELEMENT A

<!ELEMENT B

<!ELEMENT C

<!ELEMENT X

(B C) + (X) >

(A #PCDATA) -(X) +(C) >

(B) -(C) >

"EMPTY" >

128

The DCM tree for D is shown in Figure 7 .1. The applicable exceptions are not shown for

nodes that are repeated occurrences of other DCMs in the tree.

-{X,C}
A +{X,C}

13
~

Figure 7.1. The DCM tree for Example 7.4.

-{}
+{X}

X2

The following example illustrates why it is necessary to define DCMs in terms of the

applicable exceptions rather than in terms of the effective exceptions.

Example 7.5. A DCM tree for a DTD. Consider the DTD, D:

<!DOCTYPE A [

<!ELEMENT A (B I D) >

<!ELEMENT B (C) +(X) >

<!ELEMENT C (A) - (X) >

<!ELEMENT D (E) + (X) >

<!ELEMENT E "EMPTY" >

<!ELEMENT X (#PCDATA) - (X) >]>

129

The DCM tree for D is shown in Figure 7 .2. If DCMs were defined by the effective

exceptions, then because A 1 and A2 have the same effective exceptions, the leftmost path

in the tree would terminate at A2, and thus the DCMs D1 and B2 would not be included

in the tree. Note that E 1 has no exceptions because it has declared content of "EMPTY".

-{}
+{}

A1

+iki /~ ;/ki
81 . D2

-{X} ~ -{X} /""-
+{X} /" ~ +{X} "'

Ci X1 E1 X1

-{X} I
+{X} A
. 2

-{X} /\ -{X}
+{X} D1 . . 82 +{X}

J ;g I
1 C1

Figure 7.2. The DCM tree for Example 7.5.

7 .3 A System of Finite Automata for Document Instances

The DCM list output from Algorithm 7 .1 can be used to construct a system of finite

automata for D when exceptions are considered. If S is a system of finite automata

recognizing L(D) constructed by Algorithm 6.3, then a system of finite automata S' can

be constructed from S, such that S' recognizes L(D) when exceptions are considered. This

is implemented in Algorithm 7.2, which constructs S' by creating one NFA for each DCM

for each element in D. The NFA for each DCM is created by replicating the NFA in M of

S for the element of the DCM. These NF As are then modified to recognize the language

130

defined by the model group of the element, when the effective exceptions (derived from

the applicable exceptions) are applied ..

ALGORITHM 7 .2. Constructing a system of finite automata for L(D).

Input: A DTD, D, and the DCM list for D from Algorithm 7 .1.

Output: A system of finite automata, S', such thatL(S')=L(D) when exceptions are

considered.

Method:

Step 1: Construct a system of finite automata, S, recognizing L(D) using Steps 1-2 of

Algorithm 6.3. Do not remove useless states with Step 3 of Algorithm 6.3.

Step 2: For each element A defined in some element declaration of D, if A has declared

content, then there is one DCM for A and there are no applicable exceptions and no

children for A. Add the name A 1 to N' of S', add the NF A for A in M of S to M' of S',

and let A 1 be the name of the NF A. If A is defined by a content model (model group),

then for each DCM for A in the DCM list do the following:

a. For every element B in the effective (applicable) exclusions of the DCM for A, if B does

not occur on some arc in the NF A for A, do nothing. If B occurs on some arc in the

NFA for A remove all states entered by a transition on A. By Lemma 6.4, for every

state in the NF A, the state is entered by transitions on at most one input symbol in I: of

the NF A. This removes all of the strings containing B and only strings containing B

from L(m), where m is the model group for A.

b. Derive the effective inclusions for the DCM from the applicable inclusions minus the

applicable exclusions. For every element B in the effective inclusions for A, add a new

state r for each state q in the NF A for A, except for the final state entered by a

transition on <I A> and for the start state if the omitted tag minimization is minus. Add

the following transitions to the NFA for each pair of states, q and r: 1. o(q,B)--tr. 2.

O(r,B)--tr. 3. for all pin Q and c in I: of the NFA, such that o(q,c)--tp, add o(r,c)--tp

(except for the case when q is the start state and c is the begin tag). This construction

131

allows a B to occur anywhere in the content of an A defined by the DCM. It does not

allow a B element to precede the start tag or follow the end tag.

c. For the modified NF A for A created in steps a-b, name the NF A Ai where i is the index

of the DCM for A, and add the name Ai to N', the names of the NF As of S'. In the

NFA for A, replace each element B inN of S, with Bj, where j is the index ofB in the

child list of the DCM for A. To replace B with Bj do the following: add Bj to ~ of the

NFA, and for all states q and p replace all occurrences of 6(q,B)~p with 6(q,Bj)~p.

Step 3: Let M'o of S' be A 1, where A is the DOCTYPE element of D and let~·=~ of

S. M' and N' of S' are constructed in Step 2. Q', r, and A' are completely defined by M'.

Step 4. Remove all useless states from S' using Algorithm 3.6.

Example 1 .6. A system of finite automata constructed by Algorithm 7 .2. Consider the

DTD,D:

<!DOCTYPE A

<!ELEMENT A 0 - (B I C) >

<!ELEMENT B 0 - (A) -(C) +(X) >

<!ELEMENT C - 0 "EMPTY" >

<!ELEMENT X (#PCDATA) - (X) >]>

The DCM tree constructed for D by Algorithm 7 .1 is shown in Figure 7 .3.

-{}
+{}

A1

-{C} /~ . -{}

+{X} / ~ +{}
S, C1

-{C} /\
+{X}

A2 X1

/ \ ·{X,C}
81 X1 +{X}

Figure 7 .3. The DCM tree for Example 7 .6.

132

The system of finite automata, S, constructed for D when exceptions are not considered

by Steps 1-2 of Algorithm 6.3 is:

1.N={A,B,C,X}

2. l: = { <A>,<1 A>,<.B>,<IB>,<C>,<X>,<IX>, data characters}

3.Mo=A

4. Q, r, and A are completely defined by the NF As of M as shown in Figures 7.4-7. 7.

8,_ __ _

Figure 7.4. The NFA for A in Example 7.6

~(D-_<B_>_·->® __ A __

A

Figure 7.5. The NFA for Bin Example 7.6

~(D-<_C>->(@)

Figure 7.6. The NFA for C in Example 7.6

~(D-<_X_> ->®

data
character

data Q .
character >® <IX>) ©

Figure 7.7. The NFA for X in Example 7.6

133

The system of finite automata, S', constructed by Algorithm 7.2 for D.

1. N' = {A1,A2,B1,C1,X1}

2. I:' = { <A>,<I A>,,<IB>,<C>,<X>,<IX>, data characters}

3. Mo'=A1

4. Q', r', and A' are completely defined by the NFAs ofM' as shown in Figures 7.8-7.10.

The NF As for C1 and X 1 are shown by Figures 7.6 and 7.7 respectively. They remain

unchanged except for the name of the NFA, because Chas declared content and X has

no GI's in its inodel group and no effective inclusions.

~~ ;>® .. ·. ©

~4
, Cc.-1---

Figure 7 .8. The NF A for A 1 in Example 7 .6.

Figure 7.9. The NFA for A2 in Example 7.6.

d1

x, ~
-)CD

\ 48> X1 A2
A2

® 0
xO Ox1

Figure 7.10. The NFA for B1 in Example 7.6.

Note that the following document instance is in L(S) but is not in L(S').

<A>

<A>

<C>

7.4. Exceptions and Ambiguity

134

Exceptions do not affect Definition 5.3 for ambiguous model groups without lookahead.

Although the DCMs constructed by Algorithm 7 .1 may be useful for extending this

definition, this is not considered in this dissertation.

Exceptions are not excluded from Definition 6.6 for DTDs that are ambiguous without

lookahead. Examples 7.7-7.9 show that this definition applies when exceptions are

considered. The examples also show that if Algorithm 6.4 is modified by replacing the

construction of Sin Step 1 with the construction of S' (by Algorithm 7.2), then the

modified algorithm detects ambiguous DTDs by omitted tags under Definition 6.6.

135

Example 7.7. A DID that is ambiguous for Sand still is ambiguous for S'. Consider

Example 7.6. The ALA(l) tree constructed for (A,l) of Sis shown in Figure 7.11; it

shows that Dis ambiguous when exceptions are not considered. There are two paths in

the tree to leaf nodes for <A> with different sequences of labels, <A> and e.

(A,1)

YI·~
(8, 1) (C,1)

Y/<9> /e
<8> <A,1>

I e

Figure 7.11. The ALA(l) tree for (A,1) in Example 7.6.

The ALA(l) tree for (A1,l) in Figure 7.12 shows that Dis ambiguous when exceptions

are considered. There are still two paths to <A> with sequences of labels <A> and e.

/l~
(S, ,1) <A> (C1,1)

/<B~ I·
<8> <X1,1> <~>

~,1>\>

<:A> <X>

<81,1> <X1 ,1>

e

e e

Figure 7.12. The ALA(l) tree for (A1,l) in Example 7.6.

136

Example 7.8. This example illustrates that inclusions can introduce ambiguity caused by

omitted tags into a DTD. Consider the DTD, D:

<!DOCTYPE A

<!ELEMENT A (B) +(X) >

<!ELEMENT B O - (C) -(X) >

< !ELEMENT C - 0 "EMPTY" >

<!ELEMENT X O - (C) -(X) >]>

When exceptions are not considered, the system of finite automata, S, constructed for D

by Algorithm 6.3 is:

1. N = {A, B, C, X}

2. :E = { <A>,<.IA>,,<IB>,<C>,<X>,<IX>}

3.Mo=A

4. Q, r, and~ are completely defined by the NFAs of Mas shown in Figures 7.13-7.15.

The NF A for X is shown in Figure 7 .16, although it is not in M, because it is removed

by Algorithm 6.3 as an inaccessible NF A. D is not ambiguous by omitted tags

(Definition 6.6) when exceptions are not considered.

--)G)-<_A_> ->® __ B_->)®

Figure 7.13. The NFA for A in Example 7.7.

f-1\ ® 00---) 2 --- <18> >©

C

Figure 7 .14. The NF A for B in Example 7 .7.

00)-<C_>_>©

Figure 7.15. The NFA for C in Example 7.7.

r:;'\ <X> ® C ~0---)2 --- <IX> >©
C

Figure 7 .16. The NF A for X in Example 7. 7.

The DCM tree constructed for D by Algorithm 7 .1 is shown in Figure 7 .17.

-{X}
+{X}

Figure 7 .17. The DCM tree for Example 7. 7.

The system of finite automata, S', constructed for D when exceptions are considered by

Algorithm 7 .2 is:

2. I:' = { <A>,<i A>,,<IB>,<C>,<X>,<IX>, data characters}

3. Mo' =A1

137

4. Q', r', and 11' are completely defined by the NF As of M' as shown in Figures 7.18-7.20.

The NF A for C 1 and remains unchanged from the NF A for C shown in Figure 7 .15.

Figure 7.18. The NFA for A1 in Example 7.7.

138

Figure 7.19. The NFA for B1 in Example 7.7.

~G)--<X_> _ __,>®--C_1 __ <IX> >©

Figure 7.20. The NFA for X 1 in Example 7.7.

Dis ambiguous by omitted tags when exceptions are not considered. When S' is

constructed under Algorithm 7 .2, the useless NF A for X in S is not removed. Then, the

ALA(1) tree for (A 1,2) in Figure 7 .21 shows that D is ambiguous. There are two paths in

the tree to leaf nodes for <C> and they have different sequences of labels, <X> and .

Figure 7.21. The ALA(l) tree for (A1,2) in Example 7.7.

Example 7.9. When exceptions are not considered the following DTD is ambiguous by

omitted tags without lookahead. When exceptions are considered, it is not ambiguous.

<!DOCTYPE A

<!ELEMENT A (B C) -(C) >

<!ELEMENT B O - (C D) >

< ! ELEMENT C - 0 "EMPTY" >

<!ELEMENT D - 0 "EMPTY" >] >

139

.7.5. Exception Validation

Clause 11.5.211 of the standard specifies that it is an error to try to remove an element

that is required: "Exclusions modify the affect of model groups to which they apply by

precluding options that would otherwise have been available .. .It is an error if an exclusion

attempts to modify the affect of model groups in any other way ... " SGML parsers are not

required to report this error unless they specify YES for the VALIDATE EXCEPTIONS

feature. It is easy to detect occurrences of this in single element declarations such as

<!ELEMENT A - - (B, D, E+) -(D) >

The element D is required and thus it is an error to try to exclude it. However, as

illustrated by Algorithm 7.1, applying only local exceptions is not sufficient for a complete

implementation of the VALIDATE EXCEPTIONS feature as defined in the standard. No

methods have been shown for implementing this feature while parsing the DID.

The DCMs for a DID constructed by Algorithm 7 .1 can be used for a complete

implementation of the VALIDATE EXCEPTIONS features as follows:

1. Construct a DCM tree for the DTD.

2. For each DCM apply the applicable exclusions of the DCM (the effective exclusions),

to the NFA in M of S for the DCM element, using Step 2.a of Algorithm 7.2.

3. For the NFA derived in Step 2.a (after the excluded elements have been removed), use

Algorithm 5.2.b to remove the inaccessible states of the NFA. If there is no final state

remaining in the NF A, a required element has been removed, and an exception error

has occurred. Note that when this occurs the NFA is useless by Definition 3.4. Thus,

it will be removed by Step 4 of Algorithm 7 .2 that removes useless states ..

This chapter shows how exceptions can affect L(D). An algorithm is shown for

enumerating the ways that exceptions can affect model groups in a DID. Then a system

of finite automata is constructed recognizing L(D) when exceptions are considered, and it

is shown by example that Algorithm 6.4 for detecting DIDs that are ambiguous by

omitted tags still applies.

140

8. Conclusions and Future Work

8.1. Conclusions

Although SGML is the first standard for text processing and document design to gain

widespread acceptance, there is one factor that is limiting its success: the lack of a formal

language model. This is described by Sperberg-McQueen in [21] as follows: "But the

biggest problem we face, I think, is that we need a clear formulation of a formal model for

SGML. If we get such a formal model, we will be able to improve the strength of SGML

in several ways."

This dissertation provides a formal model for SGML; systems of regular expressions

and a class of recognizers, systems of finite automata, are defined. These are variations of

language specifications found in the literature [15,26]. An algorithm is presented for

constructing a system of automata, S, from a system of regular expressions, R, such that

L(S)=L(R). This language model applies to SGML in two ways.

A system of finite automata is constructed from the syntax productions that define

DTDs, and then from this system of finite automata a parser is constructed for DTDs.

Using this method, it is probable that a parser can be constructed for the entire system of

syntax productions that define SGML; this includes the hierarchical components above

DTDs, as well as the components of DTDs that are not considered in this dissertation

because they are not relevant to the high level syntax of documents defined by DTDs.

There are no descriptions in the literature of this method for parsing SGML.

The language model also applies to the set of documents defined by a DID, the

document instances. Algorithms are shown for constructing a system of finite automata

recognizing the document instances defined by a DTD (when all required components of

DTDs that affect the high level syntax of document instances are considered). This is the

first description in the literature for including the exceptions and omitted tag minimization

features of SGML in a static language model.

141

The definitions of ambiguity in DIDs in Clauses 11.2.4.3 and 7.3.1 of the standard are

not precise, and no complete methods have been shown for detecting ambiguity as

prohibited by Clause 7.3.1. The lack of a formal language model for DTDs is the primary

reason that these problems have not been solved.

An implementation independent definition is given for ambiguous model groups that is

derived from [6] and is modified to conform closely to Clause 11.2.4.3. Based on this

definition, an algorithm is given for detecting ambiguous model groups. The algorithm is

generalized and is easier to understand than existing methods for detecting ambiguous

model groups [6,16]. Two specific methods are shown that significantly reduce the space

required during construction of the NF A, and due .to the generality of the algorithm the

resulting NF A may be optimized for space [3].

Ambiguity caused by omitted tags is prohibited by Clause 7.3.1, but the term ambiguity

in the clause is not defined. Ambiguous documents are prohibited as opposed to

prohibiting ambiguous DTDs. A set of rules is given for preventing ambiguous

documents, but the rules are incomplete and unnecessarily restrictive as shown in [25].

Even if a complete set of rules could be defined and applied while creating documents, this

would not be sufficient for the domain SGML is designed to serve; the responsibility for

correcting ambiguities would be on data entry personnel who may have the least technical

training [9,11,12]. A definition is given for DIDs that are ambiguous by omitted tags, and

an algorithm is shown for detecting this kind of ambiguity while parsing the DTD. This

algorithm solves a significant problem in implementing SGML, preventing ambiguity in the

DTD design phase [9, 11, 12, 17]. It is the first method shown for detecting this kind of

ambiguity.

The algorithms for removing useless and inaccessible NF As from a system of finite

automata can be used to show which elements declared in the DTD do not affect the

language defined by the DID. The algorithm for enumerating the ways that exceptions

affect model groups in a DID can be used for DID analysis and to implement the

142

VALIDATE EXCEPTIONS feature of SGML. Thus, these algorithms will be useful

tools in DTD design and verification. No methods have been shown in the literature for

solving either of these problems.

The two revised definitions of ambiguity formalize the existing definitions, they maintain

consistency with them where feasible, and they are independent of any particular language

model. They are also are independent of each other, and they clearly distinguish the kinds

of ambiguity that can occur in DTDs as a property of the DTD component for which they

are defined.

The language model, the revised definitions of ambiguity, and the algorithms for

detecting ambiguity resolve important open questions regarding the implementation of

SGML. Thus, the results of this dissertation will be useful to the publishing industry and

to the government which have a significant initial investment in SGML applications.

8.2. Recommendations for Future Work

In Chapter 4 a parser is constructed for DTDs from the system of finite automata for

DTDs. This should be investigated to see if an algorithm can be developed for

constructing parsers for document instances from the systems of finite automata

constructed for document instances.

The algorithms in this dissertation were developed to show solvability. The analysis of

the complexity of these algorithms is considered as future work.

References

1. Aho A. V., Hopcroft J. E., and Ullman J. D. Data Structures and Algorithms.
Addison-Wesley, 1983.

2. Aho A. V., Sethi R., and Ullman J. D. Compilers: Principles, Tools, and
Techniques. Addison-Wesley, 1986.

3. Aho A. V. and Ullman J. D. The Theory of Parsing, Translation, and Compiling
Volume 1: Parsing. Prentice-Hall Inc., N.J., 1972.

4. Book R., Even S., Greibach S., and Ott G. Ambiguity in Graphs and Expressions.

143

IEEE Transactions on Computers. Volume C-20(2) (February 1971), pp. 149-153.

5. Brueggemann-Klein A. Regular Expressions into Finite Automata. Proceedings of
LATIN '92: 1st Latin American Symposium on Theoretical Informatics. (April 6-10,
1992, S'ao Paulo, Brazil), Springer-Verlag, Berlin, 1992, pp. 87-98.

6. Brueggemann-Klein A. Unambiguity of SGML Content Models. working paper.
Universitat Freiburg, Institut fur Informatik, August, 1992.

7. Bryan M. SGML: An Author's Guide to the Standard Generalized Markup
Language. Addison-Wesley, 1988.

8. Cover R. Annotated Bibliography and List of Resources Standard Generalized
Markup Language ISO 8879:1986 (SGML). Version 2.1, Revised February 1992,
<TAG> The SGML Newsletter. Volume 5, (3-5), (March-May 92).

9. Davis W.W. OMITIAG Minimization. <TAG> The SGML Newletter. Volume 5(2)
(Feb 92), pp. 4-5.

10. Goldfarb C. F. The SGMLHandbook. Clarendon Press, Oxford, 1990.

11. Graf J. M. Ambiguity in the Instance. <TAG> The SGML Newsletter. Issue 7,
(1988), pp. 6-9.

12. Heath J. and Welsh L. Difficulties in Parsing SGML. Proceedings of ACM
Conference on Document Processing Systems, (Dec 5-9, 1988, Santa Fe, New
Mexico), ACM, New York, 1988, pp. 71-77.

13. International Standard ISO 8879 Information Processing - Text and office systems -
Standard Generalized Markup Language (SGML), International Organization for
Standardization, Switzerland, 1986.

14. Johnsonbaugh R. Discrete Mathematics. Macmillan, N.Y., 1990.

15. Lalonde W. R. Regular Right Part Grammars and Their Parsers. Communications of
the ACM, Volume 20(10) (October 1977), pp. 731-741.

16. Matzen R. M., George K. M., and Hedrick G. E. A Model for Studying Ambiguity in
SGML Element Declarations. Proceedings of the 1993 ACM/SI GAPP Symposium on
Applied Computing. (February 14-16, Indianapolis, Indiana), ACM, N.Y., 1993,
pp. 668-676.

17. McFadden J. R. and Wilmott S. Ambiguity in the Instance: An Analysis. <TAG>
The SGML Newsletter. Issue 9 (March-April 89), pp. 3-5

18. Price L.A. Graphic Representation of Content Models. <TAG> The SGML
Newsletter. Issue 10 (July 89), pp. 12-16.

19. Price L.A. and Schneider J. Evolution of an SGML Application Generator.

144

Proceedings of ACM Conference on Document Processing Systems, (Dec 5-9, 1988,
Santa Fe, New Mexico), ACM, New York, 1988, pp. 51-60.

20. Requests for contributions for review of ISO 8879 (SMGL). <TAG> The SGML
Newletter. Volume 5(2) (Feb 92), pp. 9.

21. Sperbeg-McQueen C. M. Closing Remarks at SMGL '92: the quiet revolution.
notes from the closing address given at the SGML '92 conference, (October 25-29,
1992, Boston MA, Graphics Communications Asociation), posted on Internet
newsgroup: comp.text.sgml, Novembere 2, 1992, message-ID:
<92307.171247U35395@uicvm.uic.edu>.

22. The Innerview DTD. TMS Inc., Stillwater, OK, 1992.

23. van Herwijnen E. Practical SGML. Kluwer Academic Publishers, 1990.

24. Waldt D. C. The Inclusion and Exclusion Confusion. <TAG> The SGML
Newsletter. Issue 12 (December 89), pp. 1-5.

25. Warmer J. and van Egmond S. The Implementation of the Amsterdam SGML Parser.
Electronic Publishing, Volume 2(2) (July 89), pp. 65-90.

26. Woods W. A. Transition Network Grammars for Natural Language Analysis.
Communications of the ACM, Volume 13(10) (October 1970), pp. 591-606.

Richard W. Matzen

Candidate for the Degree of

Doctor of Philosophy

Thesis: A FORMAL LANGUAGE MODEL FORDETECTING
AMBIGUITY IN SGML

Major Field: Computer Science

Biographical:

Personal Data: Born in Rochester, New York, May 12, 1948, the son of Walter T.
and Virginia Matzen.

Education: Graduated from Richardson High School, Richardson Texas, in May
1966; Received Bachelor of Science Degree in Computer Science with math
minor from the University of Central Arkansas in August, 1984; Received
Master of Science Degree in Computer Science from Oklahoma State
University in August 1987; Completed requirements for Degree of Doctor of
Philosophy, Oklahoma State University, December 1993.

Academic Honors: Presidents Honor Roll and Dean's List, University of Central
Arkansas, 1982-1984; McAlester Scottish Rite.fellowship, Oklahoma State
University, 1985-1986; Phi Kappa Phi, Oklahoma State University, 1987.

Professional Experience: Teaching Assistant, Department of Computer Science,
Oklahoma State University, August 1984 to May 1987; Software Engineer,
TMS Inc., Stillwater Oklahoma, February 1987 to present.

Professional Organizations: member, Association for Computing Machinery
(ACM); member, ACM Special Interest Group for Applied Computing.

