
PAD-BASED: PROTOTYPES AND DELEGATION

BASED APPROACH TO KNOWLEDGE

ORGANIZATION IN EXPERT

SYSTEM DESIGN

By

JARERNSRI LIMSUPAVANICH-MITRPANONT

Bachelor of Science (Physics)
Mahidol University
Bangkok, Thailand

1980

Master of Science (Applied Mathematics)
Mahidol University

· Bangkok, Thailand
1983

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

DOCTOR OF PHILOSOPHY
December, 1993

PAD-BASED: PROTOTYPES AND DELEGATION

BASED APPROACH TO KNOWLEDGE

ORGANIZATION IN EXPERT

SYSTEM DESIGN

Thesis Approved:

~ -

ean of the Graduate College

11

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my dissertation advisor, Dr. K.M.

George, for his continual guidance, support, dedication, kindness, and giving invaluable time and

instruction toward this dissertation. With his encouragement and motivation, this dissertation has

been accomplished.

My sincere gratitude is due to my advisory committee chairman, Dr. G.E. Hedrick, for

his support and guidance particularly on my initial work. Special thanks are due to Dr. H. Lu for

her support, kindness and understanding throughout the completion of this work, and also to Dr.

P. Benjamin for his valuable suggestions as an expert in the field. Also my deepest gratitude is

expressed to Dr. G.W. Cuperus who supervises, inspires, and supports me both emotionally and

financially while I worked with him for five years, and Dr. R. Wright, Entomology Department,

for the assistantship. I am greatful to Dr. J. Stritzke, Agronomy Department, for his valuable time

and expertise, to all Computer Science staffs and Entomology staffs, and to Prof. H. E. Kaiser for

the English review.

Finally, my heartful love and appreciation are expressed to my beloved husband, Nakul

Mitrpanont, my dearest son, Toffy, for their invaluable mental and emotional motivations and

support which have been the driving force for this achievement. My love and heart belong to my

88-year old grandmother, to my father who dedicated his life raising and educating his six

children, and especially to my mother in heaven who passed away in March 13, 1990 while I was

working on this dissertation. My extended love and thanks are expressed to my brothers, sisters

and their family particularly Jaroenpom and Ekkehard Betsch for their support.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION.. 1

II. LITERATURE REVIEW ... 3

2.1 Expert Systems... 3
2. L 1 A Simple Expert System Architecture................................. 4

2.2 Object-Oriented Systems.. 5
2.2.1 Inheritance and Set Approach.. 7
2.2.2 Delegation and Prototype Approach..................................... 8
2.2.3 Polymorphism in Object-Oriented Systems........................ 11

2.3 Object-Oriented Approaches and Expert Systems 12

III. PROBLEM STATEMENT .. ; 15

3.1 Common Problems in Expert System Design 15
3.2 Objectives ... 16

IV. PAD-BASED: Prototypes and Delegation-Based Approach to
Knowledge Organization in Expert System Design.................................. 18

4.1 Prototype and Delegation Conceptual Model.. '............................ 18
4.2 PAD-BASED Expert System Architecture ... 19

4.2.1 Prototype Basic Elements .. 21
4.2.2 Interaction among Prototypes ... 23

V. IMPLEMENTATION OF THE PAD-BASED MODEL. 26

5 .1 Agricultural Applications.. 26
5.2 PAD-BASED Expert System Development Life-Cycle 30
5.3 WEEDPLUS: Weed Management Expert System 38
5.4 Designing WEEDPLUS Expert System .. 38

5.4.1 Task Organization .. 39
5.4.2 Prototypes and Interfaces Construction 41

5.5 Interactions among Prototypes in WEEDPLUS 44

iv

VI. ADVANTAGES OF THE PAD-BASED MODEL. 46

6.1 Reducing Development Time... 46
6.2 Providing an Alternate Memory Management Scheme for

Small Computer System... 48
6.3 Increasing Knowledge Sharing and Re-use.. 54

6.3.1 Internal Knowledge Sharing and Re-use 54
6.3.2 External Knowledge Sharing and Re-use 59

6.3 .2.1 PROF ALF--an Expert System to Estimate
Profitability of Alfalfa 59

6.3 .2.2 Incompatible Structure... 62
6.3.2.3 Compatible Structure ... 64

VIL CONCLUSIONS AND FUTURE WORK .. 66

BIBLIOGRAPHY ... 69

GLOSSARY ... 75

V

LIST OF FIGURES

Figure Page

1. A Simple Expert System Architecture.. 5

2. Prototypes and Delegation Conceptual Model... 19

3. A PAD-BASED Expert System Architecture ... 20

4. Basic Elements of a Prototype .. 22

5. Example of Prototypes in PAD-BASED System 24

6. Delegation Mechanism and Message Passing... 25

7. A Simple Conceptual Structure for Expert System Development.............. 31

8. The PAD-BASED Expert System Development Structure;
Tii represent a Task; Pii represents a Prototype .. 33

9. The PAD-BASED Expert System Development Life Cycle...................... 34

10. System Development Phase in the PAD-BASED Development Life Cycle 36

11. Organization of the Main Tasks in WEEDPLUS .. 39

12. Subtasks Organization in Weed Management, Weed Information, and
Herbicide Information.. 40

13. Prototypes Construction Corresponding to Task Organization 41

14. Example of Prototypes in WEEDPLUS .. 43

15. Delegation Mechanism in WEEDPLUS .. 45

16. Memory Organization in WEEDPLUS ... 49

17. Active and Inactive Prototypes during the Consultation.............................. 52

vi

Figure Page

18. Internal Knowledge Sharing and Re-use in WEEDPLUS......................... 55

19. Modification of TASK 2 after Adding INDIANA Weeds 56

20. Prototypes Construction after Adding Indiana Weed Knowledge;
Indiana Farmers Reuse Knowledge in WEEDPLUS 57

21. Modification in the Interface after Adding a New Prototype 58

22. Knowledge Re-use in WEEDPLUS via Delegation Mechanism............... 58

23. Components of the AIM System... 60

24. PROFALF Schematic Diagram ... 61

25. Subsystem Organization of PROF ALF .. 61

26. Conceptual Idea for Non PAD-BASED Expert System to Reuse
Knowledge from a PAD-BASED Expert System...................................... 62

27. The General Structure of the Delegator Prototype...................................... 63

28. Knowledge Sharing and Re-use between Two PAD-BASED
Expert Systems in Macro Level.. ... 64

29. Knowledge Sharing and Re-use in Micro Level between
Two PAD-BASED Expert Systems ... 65

vii

CHAPTER I

INTRODUCTION

In the past decade, the object-oriented approaches set a new direction in most

computer research and application areas such as programming languages, artificial

intelligence, databases, and distributed systems. This rapid growth is attributed to its four

significant properties: the principles of program modularity, information hiding, data

abstraction, and code reusability. Studies of the contributions of the object-oriented

approach are prolific such as in [Zhu et al. 91], [Alpert et al. 90], and [Ramamoorthy 88].

The objectives of this research are to apply the object-oriented approach to expert systems,

and to develop a new flexible model (PAD-BASED model) based on the concept of

prototype and delegation mechanism proposed as an alternative architecture to designing,

maintaining and/or interfacing expert systems in both macro and micro levels.

This new approach is derived to overcome the problem of lengthy development

time in expert system design, limited knowledge sharing and re-use in expert system

applications [Mitrpanont et al. 94], developing an expert system in a small computer

system with restricted internal memory [Mitrpanont et al. 94], and complexity in expert

system maintenance. This approach is applied to the problems in agricultural applications.

This application area is broad and significant for human life. Therefore, expert system

techniques have been used successfully as a key tool for developing and delivering

1

·2

knowledge to the farmers. However, the main problems in this area are the lengthy

development time, limited knowledge sharing among the experts and re-use, and the

limited distribution among the major users (i.e., the farmers).

In general, knowledge in a PAD-BASED expert system is organized as a collection

of prototypes. The interactions among these prototypes utilize the delegation and simple

message passing mechanisms. Prototype structure is used because it increases

structurability and modularlity without the class-subclass complexity. Delegation and

simple message passing mechanisms play the significant role to increase knowledge

sharing and reusability in PAD-BASED expert system. As stated by Lieberman

[Lieberman 86a], prototype and delegation mechanism provide high opportunity on

knowledge sharing. Furthermore, delegation mechanism is also the key to organize

internal memory usage in a small computer during the consultation process or during the

interactions among prototypes.

CHAPTERn

LITERATURE REVIEW

2.1 Expert Systems

Expert system research has been a prominent field in artificial intelligence (AI).

It has been used as a new set of tools to develop applications in business, education,

industry, and government areas. Furthermore, it is a special tool to integrate different

types of knowledge and to deliver knowledge fro~ the experts to the common users who

need but do not possess the knowledge for problem solving and decision support.

As defined by Martin and Oxman, an expert system is a computer-based system

that used knowledge, facts, and reasoning techniques to solve problems that normally

require the abilities of human experts [Martin and Oxman 88]. As a result, expert system

is a necessary tool to provide knowledge for the users who seek for the advice from the

human experts. Currently there are variety of expert system development tools available

as an alternative to programming languages such as LISP, PRO LOG, and SMALLTALK.

These tools are easier to use and provide more flexibility on different methods for

knowledge representations and inference strategies. Knowledge engineer can select the

particular knowledge representation method for the specific problem. These knowledge

representation methods generally include rule-based system, structure-based system, frame

based system, and shell-based system. For examples, ROSIE [Klahr and Waterman 86]

3

4

is a programming environment for expert systems which integrates two programming

paradigms--rule-based modeling and procedure-oriented computation. KEE [Kehler 84],

Knowledge Engineering Environment, integrates frame-based and rule-based systems.

LOOPS, by Xerox Corporation, includes data, object, rule-based and procedure-oriented

programming languages (Interlisp-D: a dialect of the LISP programming language)

[Bobrow and Stefil(83]. The systems that provide more than one way of knowledge

representations are called hybrid environments. In addition, they also offer more features

on different inference engines, several user interfaces including interface to databases,

spreadsheets, graphics, hypermedia, and multimedia. In general, these hybrid systems are

>

outstanding and very convenient for expert system design and development. However,

users always pay the price by investing excessive money and time to learn how to use

them and even more time to develop an application in a new environment. Hardware

support for these systems is also another problem since some of them require a larger

memory system, higher processing speed, or m<;>re specific devices such as mouse or a

high resolution color monitor.

2.1.1 A Simple Expert System Architecture

In the conventional expert system, there are three main parts: user interface,

knowledge database, and inference engine as shown in figure 1 [Martin and Oxman 88].

The user interface allows the knowledge engineer to enter knowledge as rules and facts

into the system, allows the user to query and obtain knowledge from the system, and

supports several communication (interface) between users and the system.

5

USER

I
USER

INTERFACE

ADVICE,
FACTS, CONSULTATION,
QUERIES JUSTIFICATIO N

KNOWLEDGE- INFERENCE
BASE ENGINE

Figure 1. A Simple Expert System Architecture (Source: Martin and Oxman, "Building
Expert Systems", Prentice Hall, Englewood Cliffs, NY, 1988, p. 26)

The knowledge-base contains the knowledge obtained from experts. This knowledge is

usually represented in some particular format depending on the structure used. The

knowledge representation method must be compatible in format to allow the inference

engine to access. The inference engine provides the inference strategy to access the

knowledge obtained from the user and knowledge from expert stored in the

knowledgebase to infer some new facts. In other words, inference engine performs the

deduction mechanism to generate some advice for the user by using the specific

knowledge and information.

2.2 Object-Oriented Systems

In the conventional object-oriented approach, program consists of a collection of

fundamental elements called objects. Each object has a unique identity, contains a private

data structure, and can be accessed or modified by its predefined methods upon receiving

6

a proper message. The data structure is invisible to any other objects. In other words,

the object maintains the principle of information hiding through the encapsulation concept

which prohibits direct access to the private data and operations of each object. Operations

define the behavior of an object in two aspects: 1) how it behaves in response to receiving

a message from an external object; 2) how it controls the internal state transitions [Zhu

et al. 91]. In general, an operation consists of a definition and an implementation. The

definitions of the operations form an object's public interface which are accessible to

other objects. Changes in implementations do not affect how the object is used. The

internal data of an object is accessed via a set of message selectors stored in a public

interface or protocol. Upon receiving a validated message, an object performs an

operation by some internal state transitions or by initiating new messages to other objects

including itself. This information hiding concept also improves data security and

integrity.

Objects are grouped into classes or types according to their structure and behavior.

In other words, objects with the same data structure and public interface (or same set of

operations) belong to the same class or type. Classes are organized in a hierarchical

manner in which the data structures and operations from the superclass are inherited to

the subclasses. A mechanism called inheritance implements this feature. It takes the

advantage of the set inclusion of objects' data structures and operations in superclasses

and subclasses to provide code reusability.

There are three major mechanisms used in object-oriented systems: Inheritance,

Delegation, and Polymorphism. However, inheritance and delegation have been studied

as an alternative to each other such as in [Lieberman 86a] and [Stein 87]. The next three

7

sections describe the characteristics of these three mechanisms.

2.2.1 Inheritance and Set Approach

Inheritance is an important machanism for sharing behavior among objects in

conventional object-oriented programming languages. It represents concepts as abstract

sets or classes. By constructing the concept of the set, the objects or instances are

classified by their common data structures and operations (or methods or behaviors) into

classes or types. An object is created to represent the description (or common data

structures and operations) of the class. Operation definitions form a class public interface

which are accessible to other objects. A class body specifies code for implementing the

operations defined in the class interface. Each class can have one or more interfaces. A

new subclass can be generated by a class to extend additional data and behavior. These

classes and subclasses are organized in a class hierachy. Therefore, the behavior sharing

is inherited thru this classification from a superclass to subclasses via the inheritance

mechanism. The principle of inheritance [Zhu et al. 91] states that:

A class is defined to be a subclass of an existing class, then any data

structure or operation in the superclass is also defined in the subclass.

Furthermore, the definitions of the inherited data or operations are

unchanged unless they are explicitly overwritten.

Inheritance from a single superclass is called a single inheritance while inheritance from

multiple superclasses is called multiple inheritance. Basically, operation redefming (in

single inheritance) and conflict resolution (in multiple inheritance) by subclasses are error

prone because semantic inconsistencies are difficult to detect and complicated to control.

8

This difficulty is the most controversial problem in inheritance. In addition, inheritance

requires two different kinds of interface between objects: subclass interface and instance

interface.

2.2.2 Delegation and Prototype Approach

A delegation mechanism is proposed as an alternative to inheritance. It is said to

be a generalization of inheritance [Wegner 87]. In a system using delegation, objects are

not represented in terms of a class or subclass but as a concrete prototype containing its

own data structures and methods. By defining a prototypical object to represent

individual concepts, a new object (called an extension object) is defined by the concepts

that are different or variable from the prototype [Lieberman 86a]. This new object can

also reuse part of the knowledge in a prototype. In addition, every object in this system

can behave as a prototype for the creation of a new object. Objects share the common

behavior using the delegation mechanism. Delegation removes the distinction between

classes and instances. An object forwards or delegates a message to another object (called

the prototypical object) to execute the operation corresponding to that message. All the

possible paths of delegation must be specified in an extension list. In other words, an

extension object has a list containing all its possible prototypes and a part containing its

own personal data. When an extension object receives a message, first it checks its own

personal data. If it cannot respond to that message, then it forwards the message to its

prototypes on the list to find one that can repond to the message. Furthermore, when a

delegated object receives a message, it also obtains a component called the client which

specifies the object originally receiving the message. Thus, the delegated object is able

9

to identify this specific object that needed the operation.

Because any object can be defined as a prototype, and any message can be

forwarded at any time, Lieberman specifies that delegation is more flexible than

inheritance in which it is more powerful for combining behaviors from multiple sources

and it is advantageous for highly interactive and incremental software development.

In addition to Lieberman, others [Aksit et al. 91] agree that delegation is very

useful in building extensible and open systems. Borning [Boming 86] uses prototypes as

an alternative to resolve the complexity of classes and metaclasses in Smalltalk. Instead

of performing a class-subclass initiation, a new object is created by simply copying or

cloning from a prototype. He introduces the concept of using inheritance constraints as

the object hierarchies to manipulate inheritance relations. He also mentions that

prototypes are often used in visual programming, and artificial intelligence representing

languages. Wegner [Wegner 87] gives a broader concept of delegation as one of the six

orthogonal dimensions of object-oriented language design. A general term, class

independent, is used to define delegation for dynamic hierachical resource sharing. To

use class as an orthogonal dimension that spans the object-oriented design space,

delegation is determined as a mechanism that allows objects to delegate responsibility for

performing an operation, or finding a value, to one or more designated ancestors. Then,

inheritance is viewed as a specialization of delegation in which the entities that inherit are

classes. Ungar and Smith [Ungar and Smith 87] implement the concepts of prototypes

and inheritance as a new object-oriented programming language called "Self' which uses

slots to contain the variables and procedures. Almarode [Almarode 89] presents a

mechanism to model the various semantics of delegation in which he believes it is one

10

drawback of delegation. The proposed mechanism called rule-based delegation uses rules

to control the delegation of messages. It is used to implement classical single and

multiple inheritances. Moreover, rules can be created dynamically to model application

specific semantics. In Johnson and Zweig [Johnson and Zweig 91], delegation is added

into C++ language with the belief that it has advantages over inheritance. For instance,

delegation simplifies the programming model; it is easier to implement the one-of-a-kind

object and make programming more concrete; it is easier for objects to change their

behavior.

In response to Lieberman, Stein [Stein 87] · argues on behalf of inheritance that on

a particular view of classes, inheritance can be used to implement delegation and its

prototype-based systems. These two points of view indicate that inheritance and

delegation are very little different in terms of implementation. However, much research

has been done to define and to compare on these two controversial mechanisms.

Tomlinson [Tomlinson et al. 89] characterizes object-oriented systems by the sharing

protocol and the organization protocol. They present a detailed contrast of inheritance and

delegation by analyzing the basic performance characteristics of simple delegation and

inheritance protocols, and some optimizations of these protocols. They summarize that

in most situations, inheritance has a better speed than delegation, and the speed and space

optimization for inheritance usually outweigh the need of flexibility offer by delegation.

However, they point out that:

The prototype approach is more applicable in those cases where most

objects have different structure or sharing requirements. Knowledge-based

applications, in particular, exhibit these properties to a degree.

11

Aksit [Aksit et al. 91] presents a technique called atomic delegation that allows an object

to delegate a sequence of request messages to one or more designed objects as an atomic

action. By changing the delegation relation between objects or by modifying the

functionality of an object that the messages are delegated to, you can dynamically change

the set of atomic actions supported by an object.

2.2.3 Polymorphism in Object-Oriented Systems

Cardelli and Wegner [Cardelli and Wegner 85] define two kinds of polymorphism:

universal polymorphism and ad hoc polymorphism. Universal polymorphism is a general

term used to cover any mechanism which works on an infinite number of types. Ad hoc

polymorphism covers techniques which work on a limited, specified set of types.

In object-oriented languages, there are two forms of polymorphism. The first form

is concerned with typing; i.e. an object can have more than one type. Thus, a particular

object can be manipulated by operations associated with any of those types. The second

form is independent to type and the operations can be applied to distinct types which

correspond to disjoint sets.

Based on Wegner's definition, Blair [Blair et al. 89] proposes a new definition for

object-oriented systems that the systems should embody the notions of encapsulation, and

set-based abstraction; and should also support two forms of polymorphism: inclusion

polymorphism and operation polymorphism. Inclusion polymorphism implies that objects

can belong to more than one set by set intersection. There are two aspects of inclusion

polymorphism. First, as-if polymorphism features the objects that belong to one set but

can be used as if they belong to another set through inclusion. Second, behavior sharing

12

features the objects that belong to one set but can share behavior (operations) of another

set through the property of inclusion. Implicit behavior sharing occurs as a direct result

of inclusion while explicit behavior sharing is explicitly described in the language or

system.

Operation polymorphism deals with the operations with the same name that can

be applied to different objects which have no relationship in terms of inclusion. These

operations are interpreted in the context of the particular object. Two ways are used to

achieve this feature: an ad hoc mechanism, and a form of universal polymorphism. In the

first one, methods are overloaded on the same name but map to the different code bodies.

The second method is called parametric polymorphism. Operations are accessible on a

range of types implementing the same behavior irrespective to object type. They use this

new paradigm to map inheritance and delegation mechanisms. They conclude that there

are good alternatives to inheritance that provides more degrees of freedom in

implementation especially in the context of distributed system architectures.

2.3 Object-Oriented Approaches and Expert Systems

The impact of the object-based computation on expert systems is investigated by

Ramamoorthy and Sheu [Ramamoorthy and Sheu 88.] Object-oriented programming is

merged into AI programming languages such as Lisp, Prolog, Flavors, Loops,

CommonLoops, and Concurrent Prolog. The availability of these tools provides two

additional features: object abstraction for hierarchical reasoning, and expert cooperation

for distributed problem solving. A typical example of integrating distributed experts to

achieve a common goal is found in KEE [Fikes and Kehler 85] where rules are grouped

13

into classes, and invoked by methods. Loops [Stefik and Bobrow 86] is another language

integrated rule-based and object-oriented approaches. Rules in Loops are grouped into

rule sets, and invoked by message sending. Leonardi [Leonardi et al. 89] applies the

concepts of prototypes and delegation to Prolog called the Prolog-Prototypes. The

concepts such as modularity, information hiding, information sharing, and knowledge

structuring are fundamental to the application domains of logic programming languages

such as knowledge-based systems. Therefore, combining logic and object-oriented

programming in Prolog-Prototypes provides a new tool that is very useful in building

knowledge-based systems. Franke [Franke 90] defines an object-oriented protocol as a

set of messages to perform both forward and backward chaining inferencing that allows

the integration of an inferencing mechanism with CAD tools. Ibrahim and Woyak

[Ibrahim and Woyak 90] use the EDS/OWL environment to define behaviors (methods,

slot access, etc.) as objects adhering to a common protocol. Another approach asserts that

a knowledge-based task can be accomplished by decomposing it into several agents; each

contains and represents a chunk of the complete knowledge needed to accomplish the

overall task [Alpert et al. 90]. This approach has been used to construct many AI systems

including system development environments and domain-specific knowledge-based

applications. Lieberman [Lieberman 87] points out that because objects encapsulate both

state and behavior, and because they possess the inherent communication capabilities;

therefore, an object-oriented approach is a natural candidate for the implementation of

distributed, multiple-agent environments. Moreover, Barghouti and Kaiser [Barghouti and

Kaiser 90] explore the use of object orientation in multiple-agent environments, and

provide a central issue of how to support cooperation among a team of software

14

developers working on the same project. They propose a method using object-oriented

database with a concurrency-control mechanism using the object-oriented representation

semantics. Leung and Wong [Leung and Wong 90] present a new architecture for an

expert system shell that enables the mixing of rules and procedures, allows the automatic

extraction of data from a database system, and provides a fuzzy database query facility.

They use an object-oriented approach for knowledge representations and inferences in

expert system shell, and conclude that this approach improves the. consistency,

maintainability, and structurability of the knowledge base. Narayanan and Jin [Narayanan

and Jin 91] propose an object-oriented expert diagnostic system approach for the domain

of hardware fault location and diagnosis. This approach emphasis is on its architecture

and the role of diagnosis rule-based reasoning designed to provide a precise and powerful

diagnostic system. Polymorphism is also introduced into expert systems to improve expert

system maintainability [Yen et al. 91]. Polymorphism allows object-oriented system to

separate a generic function from its implementation. Thus, it is introduced into rule-based

paradigm to separate a rule's function from its implementation details by replacing a

rule's action with a generic operation.

CHAPTER III

PROBLEM STATEMENT

3.1 Common Problems in Expert System Design

From the previous studies, the common problems in expert systems involve their

structures and complex nature which increase the difficulty in expert system maintenance

and extension. There are many approaches and architectures designed to solve these

problems. Presently, the main idea is to apply the object-oriented approaches and·

techniques on the concepts of encapsulation (i.e., information hiding), and program

modularity (i.e., system structurability) to the problems in expert systems. Most of the

emphasis is on designing new . techniques, new languages, or new environments for

designing new expert systems based on applying object-oriented approach to the

knowledge representation techniques such as rule-based system and expert system shell.

Therefore, using these new approaches usually requires new languages, new environments,

or new developing tools which means that users need to obtain new products (or tools)

and learn how to utilize them while wasting previous resources such as man-power,

money, and time that were invested. Consequently, money is needed to buy new

resources and tools, and to rebuild the application software. However, in the real world,

users want services such as expertise knowledge, problem solving methodology, diagnostic

results, planning, or minimal explanation from expert systems. Furthermore, there are

15

16

many applications that once expert systems have been developed for use, they are used

again and again. Most of them only need to be maintained either by extending them for

a wider scope, or by modifying them for better usage and results. However, in practice,

modifying and extending an expert system may introduce new problems such as a system

error, a complex and unstructured system, and an internal memory limitation problem in

a small machine such as in a 640K microcomputer system ([Schwartz 87], [Baran 89],

[Malloy 89], [Bertolucci 90]). Users must weigh between the cost of maintenance of

existing systems and the cost of new machines and new development tools.

3.2 Objectives

In the past decade, although expert system development tools and techniques have

been prolific and each of them has its distinguishing features, it would be beneficial to

the users if they could use a simple designing technique to design and develop an expert

system. It would be beneficial if we could use the same technique to easily maintain and

expand the expert systems without creating all the above problems.

In this dissertation, a new expert system architecture using the object-oriented

approach based on prototype and delegation mechanism (the PAD-BASED model) is

presented. There are three main reasons for using an object-oriented approach based on

the prototype and delegation technique. First, the four features of object-oriented system:

information hiding, program modularity, data abstraction, and code reusability are the

major contributions to expert system design. Secondly, the prototype approach in

knowledge organization increases the expert system modularity and structurability which

obviously simplifies the expert system maintenance. Finally, the delegation mechanism

17

is dynamic, more powerful, and more flexible to apply to the expert systems. The PAD-

BASED model is used as a knowledge organization technique in expert system design

which simplifies the developing process because knowledge representation can be any

technique. It is demonstrated that using this model can help solving the above problems.

Moreover, it also provides more advantages to simplify expert system maintainability and

also support knowledge sharing and re-use.

The objectives of this dissertation are the following:

1) to provide a detailed description of the PAD-BASED model presented as

a new architecture for knowledge organization technique in expert system

design using the prototype and delegation approach;

2) to use this architecture as a new technique for designing an expert system;

3) to apply the PAD-BASED model to design and develop an expert system

in agricultural application;

4) to demonstrate the advantages of the PAD-BASED model as a simple and

powerful technique in designing and maintaining an expert system that

helps increase its structurability and modularity, reduce its designing and

development time, support knowledge sharing and re-use, provide an

alternative to memory organization in small computer implementation.

CHAPTER IV

PAD-BASED:

PROTOTYPE AND DELEGATION-BASED APPROACH

TO KNOWLEDGE ORGANIZATION IN EXPERT SYSTEM DESIGN

4.l Prototype and Delegation Conceptual Model

PAD-BASED is an acronym for a new architecture presented as a knowledge

organization technique in expert system design based on the concepts of prototype and

delegation approach. Figure 2 depicts the conceptual model of the prototype and

delegation mechanism. In this system, knowledge is organized as a prototype. New

prototypes can re-use part or all of the knowledge stored in or derived from the shared

behaviors of the prototype. The mechanism to utilize the shared knowledge and behaviors

of the prototype is called delegation mechanism. Prototype Pl sends a message to

prototype P2. P2 checks its data structures and behaviors and finds that it cannot answer

to that message. Therefore, P2 delegates the message to prototype P3 which contains the

behavior corresponding to that message. P3 also obtains the knowledge from the

delegator, P2, and uses this knowledge for the operation. Finally, P3 sends the response

back to the object, Pl, that initiated the message in the first place via a simple message

passing.

18

PROTOTYPE delegates 10 PROTOTYPE
P2 ~-----•I P3

PROTOTYPE
P1

message passing

Figure 2. Prototypes and Delegation Conceptual Model.

4.2 PAD-BASED Expert System Architecture

19

In general, an expert system is defined as a computer-based system that uses

knowledge, facts, and reasoning techniques to solve problems that normally require the

abilities of human experts [Martin and Oxman 88]. Knowledge in an expert system using

PAD-BASED is classified into two types: static knowledge, and dynamic knowledge.

Static knowledge involves certain facts that are unchanged such as knowledge represented

in the rule-based system. Dynamic knowledge changes from one situation to another

situation such as knowledge obtained from the computational procedures. Knowledge

representation in the PAD-BASED system can be any technique such as rule-based,

semantic networks, frames, shell, external procedures, or a hybrid system. Figure 3

displays the PAD-BASED technique used as a knowledge organization in a PAD-BASED

expert system.

INFERENCE
ENGINE

EXPLANATION
FACILITY

PAD-BASED

P1

USER INTERFACE

USER

Menus
Dialogues
graphics
etc.

INTERFACE TO
EXTERNAL

KNOWLEDGE

_ invokes
__. delegates to
....,.. interface to
- message and information

paeaing
(reeu I ts ,cone lue ions,
consultations,
recommendations,
explanation,
etc.)

Figure 3. A PAD-BASED Expert System Architecture

In PAD-BASED system, the expert system consists of five basic components:

20

1) a knowledge database (facts and problem-solving methodology) organized

in the PAD-BASED structure,

2) an inference engine,

3) an explanation facility,

4) an interface to external knowledge, and

5) a user interface.

Knowledge database in the PAD-BASED system is defined as a collection of

prototypes. The interactions among prototypes are generated via delegation mechanism,

and simple message passing. Delegation is a mechanism that allows prototype to delegate

responsibility to another prototype to perform a task, or operation for the delegator. A

21

simple message passing is a mechanism that provides information transfering among

prototypes. Invoking is a mechanism that initiates an operation of a prototype. An

inference engine is a control structure in an expert system that is used to perform the

inference reasoning tasks or to make deductions. The inference engines widely used in

expert system are such as forward chaining and backward chaining. Furthermore, an

inference engine also supports various knowledge acquisition, explanation facility, and

user interface subsystems. An explanation facility provides access for a user to query the

expert system on why and how the particular recommendation is derived. An interface

to external knowledge is used to provide communication (retrieve or store) for the expert

system and external knowledge such as databases, external computing modules, and

others. Finally, a user interface is a component that a user communicates with the expert

system by giving facts and queries to the system, and receiving result, recommendation,

and explanation from it.

4.2.1 Prototype Basic Elements

Knowledge database in the PAD-BASED system consists of a collection of

prototypes. Each prototype is comprised of four basic parts: name, knowledge, basic

behaviors, and interfaces as shown in Figure 4. Name is a unique identification for the

prototype such as "TRACTOR". A prototype contains a piece of knowledge describing

the concepts or the characteristics of the prototype. For instance, Horse power=50,

Begining age=NEW, and Purchasing price=$20,000 are the knowledge describing a

tractor. Basic behaviors are general behaviors relevant to the knowledge of the prototype.

Typically, behaviors in a prototype are basically the same as behaviors of any expert

22

system, i.e., to accomplish a goal or subgoal, to give diagnosis, to provide

recommendation or consultation, or to evaluate new situation. For instance, the basic

behaviors of TRACTOR are "TRACTOR INFO", and "FACT ABOUT TRACTOR".

"TRACTOR INFO" contains a method to retrieve a tractor list from an external file and

present it to the user who in turn provides the facts to the prototype. This feature makes

the prototype act slightly different from the conventional prototype since it contains

another part called interfaces. Via its interfaces, a prototype must be able to:

PROTOTYPE

NAME

DEFAULT KNOWLEDGE

BASIC BEHAVIORS

INTERFACES
to user
to other prototypes
to inference engine
to active prototype

TRACTOR

HORSE POWER: 50 HP
BEGINING AGE: NEW
PURCHASE PRICE: $20,000

TRACTOR INFORMATION
FACT ABOUT TRACTOR

Figure 4. Basic Elements of a Prototype

communicate with the user through the user interface such as using menus,

dialogues, graphics, or others;

access a reasoning technique such as using an inference engine to make

inferences;

delegate to other prototypes that share knowledge to this prototype, i.e.,

23

contains a link to the other prototypes; and

provide a simple message passing from the delegatee back to the object

who first sends the message.

4.2.2 Interaction among Prototypes

In this section, an example is given to illustrate the interaction among prototypes

in the PAD-BASED system. Four prototypes are used. They are MACHINERY,

HARVESTING, TRACTOR, and IMPLEMENT. The structure of these prototypes is

described in. Figure 5. To simplify the illustration, let the user invoke the MACHINERY

prototype. The user would like to obtain some knowledge about machinery for a

harvesting operation. The following messages are sent to ask the HARVESTING

prototype.

1) What is your operation?

2) What is the information about your equipment?

3) What is the minimum horse power recommended for your equipment?

The HARVESTING prototype looks up in its default knowledge and answers the first

question that its operation is "Cutting". However, it cannot answer the second question,

thus it delegates the message to the IMPLEMENT prototype. The delegatee

(IMPLEMENT) obtains the knowledge about operation type (Cutting), equipment name

(Pt-swather) from the delegator (HARVESTING), and the original message sender

(MACHINERY). IMPLEMENT then invokes its method called "IMPLEMENT INFO"

to infer the knowledge about implement equipment based on the cutting operation using

pt-swather equipment. This knowledge is sent back to MACHINERY via message passing.

Prototype A================================

Name: Tractor
Default knowledge

Horse Power: 50 HP
Purchasing Price: $20,000
Tractor Age: NEW

Basic behaviors
Tractor info
Facts about Tractor

Prototype B======================================~

Name : Implement
Default Knowledge

Operation Type
Equipment Name
Purchasing Price
Age : NEW
Size : 3 0 . 0 0 Ft
Speed: 7 MPH
Efficiency:
Capacity:

Basic Behaviors
Implement Info

Baling
Large Square Baler
: $54,000

Prototype C=======================================~

Name : Harvesting
Default Knowledge

Operation: Cutting
Field acre : 80 acre
Number of Cuttings : 4
Cutting Equipment : Pt-swather

Basic Behaviors
Harvesting Costs

Prototype D===========================il

Name : Machinery
Default Knowledge

Tractor Horse Power : 125
Tractor Age : 3 years
Price : $46,000

Basic Behaviors
Machinery info

Figure 5. Example of Prototypes in PAD-BASED System

24

25

HARVESTING has one more question to answer. This message is delegated to

the TRACTOR prototype to invoke the behavior called "FACTS ABOUT TRACTOR".

This behavior requires only the equipment name from HARVESTING to look up in its

knowledge about minimum horse power for that particular equipment. The answer is sent

back to MACHINERY prototype. Figure 6 illustrates the delegation mechanism and

message passing for the given example.

invoke

"'
HARVESTING

===~ message passing

Question 1

What is your operation
type?
No delegation

invoke

"'
HARVESTING

delegate
"' to

IMPLEMENT

Question 2

What is the information
about your equipment?
HARVESTING delegates
to IMPLEMENT

invoke

"'
HARVESTING

delegate
"' to

TRACTOR

Question 3

What is the minimum tractor
horse power for your
equipment?
HARVESTING delegates to
TRACTOR

Figure 6. Delegation Mechanism and Message Passing

CHAPTERV

IMPLEMENTATION OF THE PAD-BASED MODEL

The PAD-BASED model is implemented in an agricultural application of an expert

system for weed management. The following sections describe the nature of agricultural

applications and introduce the PAD-BASED development life cycle model to design and

develop an expert system called WEEDPLUS which will be employed by Oklahoma

farmers. The KnowledgePro® by Knowledge Garden Inc. is used as a development tool.

This implementation highlights three important advantages of the PAD-BASED model:

minimizing the development time for an expert system, increasing knowledge sharing and

re-use among the structured expert systems, and providing an alternate memory

management scheme to develop an expert system in a small system with limited internal

memory.

5.1 Agricultural Applications

Agriculture is an important area for human life since it serves the basic needs of

food. Proper integrated pest management practices are mandatory for the safety of human

life based on food supply. Because this area contains several domains of expertise

(Agricultural Engineering, Agricultural Economics, Entomology, Agronomy, Soil and

Fertility Science), the main problem in this area is how to incorporate and deliver

26

27

knowledge from these experts to farmers and agribusinesses. These common problems

in agricultural applications such as crop and livestock production involve a decision

support system, a scheduling system, and an integrated pest management system. As

stated by Naegele and others [Naegele et al. 89, Coulson et al. 89], the concept of

integrated pest management (1PM) is essential and has been developed to the point that

it is advanced and very well established among the experts in the area. This IPM

fundamental concept is composed of analytical models, management models, technical

information, and expert recommendations which are entirely too complicated to be

investigated by the farmers. As a result, the critical issue appears to be how to use

efficiently and effectively this knowledge to solve the real problem. In fact, the major

problem is how to integrate, implement, and deliver this knowledge for problem solving

and decision making.

Based on the complex nature of the problem and the knowledge interactions

among the experts, expert system has been chosen to solve this problem. Because an

expert system contains the facility to organize the knowledge such that it is able to draw

a conclusion and an explanation on the result, the expert system technique has been

successfully used in the agricultural area. Furthermore, expert systems provide an

interactive environment to deliver knowledge to the users who mostly have the limited

knowledge about computer. Knowledge acquisition technique provides a means for the

knowledge engineer to acquire and capture knowledge from the experts, while knowledge

representations such as rule-based, semantic network, frames, and shell systems are used

to organize and represent the knowledge. In the last decade, hundreds of expert systems

have been developed for many crops such as cotton, wheat, barley, com, soybean, and

28

alfalfa. The first goal for developing these expert systems is to provide the farmers with

sound management advice, especially in an area that is hard to seek advice from an expert

directly. The second goal is to use the expert system as an educational tool by the

extension people to give advice to the farmers.

Developing the expert systems for farming management and decision support has

been very successful. However, there are three significant issues left out. First,

developing an expert system is time consuming. For instance, PROF ALF [Limsupavanich

et al. 92], HA YMACH$ [Huhnke et al. 90], NPK$PLUS [Johnson and Nofziger 90], and

WEEDALF [Stark et al. 89] are expert systems being used by the alfalfa growers

providing information about alfalfa pest management and alfalfa economics. Each system

required years of design and development, because of the interactions among several

disciplines. Second, the concepts of knowledge sharing and re-use are ignored. For

example, two expert systems are developed for the same crop (alfalfa) in different states.

PROF ALF expert system has been developed at Oklahoma State University while Alfalfa

Management Expert System has been developed at Purdue University [Rhykerd et al. 92].

Both expert systems are designed to incorporate information on site, soil texture, drainage

conditions, soil fertility, seed variety, pest control management, machinery and operation

cost. If the concepts of knowledge sharing and re-use had been developed, it would

optimize the usage of expert systems while minimizing the effort and the amount of

development time. As in the above example, instead of building two different expert

systems, the common knowledge such as pest control management, machinery

information, and operation cost can be shared and re-used both in Oklahoma and Indiana.

The different knowledge such as location and weed types can be added as a separate

29

module or prototype. Consequently, years of the effort on development time can be

minimized and the common knowledge can be shared and re-used. Furthermore,

knowledge sharing and re-use concept not only applies to a particular crop but also

applies to the system as a whole. For example, considering a crop production system,

each crop consists of a similar system such as planting (seedbed preparation, seeding

process, and fertilization), pest management practices (insecticide and herbicide

applications), harvesting, and marketing. Knowledge about insecticide, herbicide, and

machinery information is common. This knowledge can be organized into separate

modules for sharing and re-use. Then the different knowledge is defined for a specific

crop or a particular location.

Finally, expert systems usage among the farmers is limited because of the small

PCs that they own could not run most of the applications delivered. To increase the

expert systems usage among the farmers implies that an expert system needs to be

developed for this limited internal memory environment. Although the computer

technology has changed tremendously in this decade, there are still a number of users who

are struggling due to the memory limitation of small PCs such as computer systems based

on the Intel 286 CPU microchip. Among these users are the farmers who face this

limitation. Thus, one of the basic problems in the expert system area is dealing with how

to design and implement the expert system to run on small PCs. Particularly, how to

implement WEEDPLUS in a small PC is yet another crucial issue in this chapter.

In the following sections, the development process of a PAD-BASED expert

system is illustrated. The advantages of the PAD-BASED model toward the cited

problems are described in the next chapter.

5.2 PAD-BASED Expert System Development Life Cycle

Software life cycle is a term generally used as the process of developing and

maintaining software. In conventional software development life cycle, waterfall model

[Royce 70, Boehm 81] is one of the popular phased model being used in software

engineering. This model consists of five phases: Analysis, Design, Implementation,

System Testing, and Maintenance. Rapid prototyping approach, a prototyping model, is

another model used for fast implementation of a part of the system to demonstrate its

functionality, and to meet user and manager requirements.

In expert system development, knowledge engineering is a term describing the

process of developing and maintaining expert systems [Turban 92]. Knowledge

engineering involves the cooperation of human experts and knowledge engineers to

explicitly extract and implement the knowledge and methods that the human experts use

to solve real problems. Many of these problems are termed knowledge-intensive problems

because their data and problem-solving methods are not explicit knowledge [McGraw and

Harbison-Briggs 89].

In general, a typical conceptual structure of an expert system development is
--- •' ' ' . --~-·~·--~---··~·-~·-•--•"-'··~--~-~,_.,~,,_m_,_~,=-=--'=-<-·~_,,._,...,,...,,.,.,~,,.,•....,_......,_,.....__.~~•"•_,.....,._-,~.,,-«<,_,.. •

viewed in figure 7JMcQraw and Harbison-Briggs 89]. Its development process consists
-~·~--"~'~'7c•~- -"°'"'''""~ •

of the knowledge engineer acquiring knowledge from the human experts while gathering

more information from the documented knowledge such as book. The knowledge

engineer then selects the building tools and languages to be used in implementation.

Finally, the expert system is developed and tested. This expert system development life

cycle is similar to the conventional software development life cycle described above.

However, knowledge acquisition from human experts is more complicated and usually

31

needs extensive time. In addition, building and testing expert systems are lengthened

because of their complex interaction and unstructured nature.

Expert 1

Documented
Knowledge

Expert 2 Expert n

Knowledge Acquisition

Knowledge,__~__,
Engineer

Expert System

Building
Tools &
Languages

Figure 7. A Simple Conceptual Structure for Expert System Development
(Source: Adapted from E. Turban, Macmillan, New York, NY, 1992, p. 120)

Rapid prototyping approach has been widely used in developing expert systems

[Redin 87], [Cholawski 88]. A rapid prototyping entails the selection of knowledge

representation tools and techniques to perform rapid development of a section of the

expert system, testing on the initial system, iterative refinement, and further development

[McGraw and Harbison-Briggs 89]. In particular, rapid prototyping is used for quick

development of an initial version of a small part of the expert system to test the

effectiveness of the knowledge representation and inference mechanisms to solve a

particular problem. Then the prototype system is refined or modified several times until

the system is acceptable or meets the requirement. As stated by McGraw and Harbison

Briggs, rapid prototyping can be used successfully in developing solutions to knowledge

intensive problems if the problem is sufficiently small, does not require maintenance or

32

modification. In addition, a tool should be available for developing the prototype.

Figure 8 illustrates the application of the PAD-BASED model to the expert system

development structure. The experts and knowledge engineers agree on the task

organization [Chandrasekaran et al. 92], i.e., tasks/subtasks division (Tl 1, T12, ... , Tin;

T21, T22, ... , T2n; ... ; Tnl, Tn2, ... , Tnn) of the application. The knowledge engineer

then uses any approach to perform knowledge acquisition on each subtask, for instance,

the model approach (using the existing model that is well-suited to that particular domain

to develop a set of facts and rules) or the team approach (the domain experts and

knowledge engineers work closely together for an extended period of time and develop

a model and computer program for that problem) [McGraw and Harbison-Briggs 89].

Consequently, the task organization reduces the size of the problem into several small

subtasks which directly reduces the time and effort in knowledge acquisition on each

subtask. In addition, the prototype structure (see figure 4) is recommended to be used as

the knowledge acquisition method on each subtask so that knowledge on each subtask will

be very well organizaed and highly structured.

Then each of the knowledge engineers constructs the prototypes (Pl 1, P12, ... ,

Pin; P21, P22, ... , P2n; ... , Pnl, Pn2, ... , Pnn) for the subtasks with complete information.

In this stage, the strategy adopted from Walter and Nielson [Walter and Nielson 88] is

used to build a separate prototype for each subtask and the integration is performed in the

final stage. Prototype testing is executed via delegation mechanism and message passing.

Expert 1 Expert 2 Expert n

TASK ORGA N I Z A T I O N

Tll T22 T2n Tnl Tn2 ... Tnn

K N O W L E D G E A C Q U I S I T I 0 N

Cooperators Knowledge Building
Engineers Tools &

Languages

PROTOTYPES & INTERFACES CONSTRUCTION

I E X P E R T s y s T E M
N Knowledge Organized as a collection
T of prototypes;
E Interactions via delegation and
G message passing.
R
A Pll P12 Pln Pal Pa2 Pan
T P21 P22 P2n Pbl Pb2 Pbn
I
0 Pnl Pn2 Pnn Pzl Pz2 Pzn
N

PROTOTYPES & INTERFACES CONSTRUCTION

Cooperators Knowledge Building
Engineers Tools &

Languages

K N O W L E D G E A C Q U I S I T I O N

Tal Ta2 Tbn Tzl Tz2 Tzn

TASK ORGA N I Z A T I O N

Expert a Expert b Expert z

Figure 8. The PAD-BASED Expert System Development Structure;
Tij represents a Task;
Pij represents a Prototype

33

34

Because each prototype contains complete knowledge of a subtask together with its

interface to other prototypes, knowledge acquisition, knowledge representation, prototype

development, and testing can be performed concurrently. Thus, both the experts and the

knowledge engineers can work in parallel. Finally, the integration of the prototypes is

performed. This development process is fully described below.

From the above demonstration, the PAD-BASED expert system development life

cycle model is presented to develop a PAD-BASED expert system. This development

life-cycle model consists of five phases: System Requirements, Conceptual System Design

and Analysis, System Development, System Integration and Evaluation, and System

Maintenance. Figure 9 exhibits this model.

SYSTEM REQUIREMENTS
I ...

CONCEPTIJ~ SYSTEM DESIGN AND ANALYSIS

...

~i SYSTEM D~LOPMENT

...

SYSTEM IN~EGRATION AND EVALUATION I ·
...

SYSTEM MAINTENANCE

Figure 9. The PAD-BASED Expert System Development Life-Cycle

35

System Requirements explore the general view of the problem, problem-solving

strategies, the selected expert system techniques and tools, and the analysis of risks and

benefits before developing the expert system. Conceptual System Design and Analysis

involves detailed study of the problem and its scope, problem-solving methodology,

system interface and structure. In this phase, the conceptual design of the system is

completed. Techniques such as flow diagram or psuedocode can be used to present the

design of the system. Also, the analysis of the system complexity, the appropriation of

selected techniques and tools, and the cost/benefit of the development are seriously

evaluated. In addition, the development time frame is proposed as well.

System development is the main phase in which the PAD-BASED structure is

particularly involved. This phase is comprised of: Task Organization, Task Knowledge

Acquisition, Prototypes and Interfaces Construction, and Prototype Testing. Task

Organization includes task division and task identification. In this step, the problem is

divided into small subtasks (Tij in figure 8). The scope of each subtask, knowledge,

problem-solving technique, and the interaction to other subtasks are all defined in this

step. The prototype structure (see figure 4) is used as a means for knowledge acquisition

on each subtask. Consequently, the default knowledge and basic operations of a subtask

are acquired, and the interactions or interfaces to other subtasks are drawn. Prototypes

and interfaces construction deals with the system implementation. The selected

development tool and knowledge representation techniques are used for prototype

construction corresponding to the subtask division and identification in the previous step

(Tij ==> Pij in figure 8). The interface section of each prototype is constructed to

provide the path for delegation and message passing mechanisms. For instance, prototype

36

Pl (delegator) delegates to prototype P2 (delegatee) to use the method m2. Interface

section of P 1 is constructed to provide a delegation path to P2 while sending all the

necessary information to P2 to activate method m2. Then the result is passed back to Pl

which requires this shared operation. Prototype Testing can be done after the complete

construction of each prototype and interface except if it required shared

knowledge/operations from the prototype that has yet to be constructed. This restriction

is generally minimized by building the prototype (delegatee) that contains sharing

knowledge/operations before building the prototype (delegator) that requires shared

knowledge. Thus, system development in this model provides a parallel or a concurrent

environment between the task knowledge acquisition, prototypes and interfaces

construction, and prototype testing as demonstrated in figure 10.

SYSTEM DEVELOPMENT

I ...

TASK ORGANIZATION

SUBTASK Tl SUBTASK T2 SUBTASK T3

...
I ' I

I I I

KNOWLEDGE KNOWLEDGE KNOWLEDGE
ACQUISITION ACQUISITION ACQUISITION

I I I
I I I

PROTOTYPE& PROTOTYPE& PROTOTYPE&
INTERFACE INTERFACE INTERFACE

CONSTRUCTION CONSTRUCTION CONSTRUCTION
I I I
I I I

PROTOTYPE

I
PROTOTYPE PROTOTYPE

TESTING TESTING TESTING

I I I
I I I

I ...
SYSTEM INTEGRATION

Figure 10. System Development Phase in the PAD-BASED Development Life Cycle

37

System integration and evaluation focuses on the interfaces between the prototypes

and the interfaces to the external module (if required). The emphasis here deals with the

interfaces among prototypes. These interfaces are defined via delegation and message

passing mechanisms. All the paths providing for these mechanisms are previously defined

in the prototypes and interfaces construction. Thus, system integration among prototypes

is minimal. System evaluation is the testing stage of the whole system to determine the

degree of accuracy and degree of usage which directly involves satisfaction of both the

experts and the users. System maintenance includes system modification and system

augmentation. This phase is comparable to the maintenance phase in the waterfall model.

System modification and augmentation are primarily done repeatedly from the system

development phase. Each prototype can be modified without interfering with the function

of other prototypes. Also, adding a prototype to the system can be done easily by

constructing the prototype and the paths to access this prototype and to the other

prototypes to which it needs to delegate.

The PAD-BASED development life cycle model provides three advantages to the

rapid prototyping model. First, it reduces the iterative refinement step which implies

decreasing an amount of development time. Second, it produces the actual expert system

that is ready for delivery while rapid prototyping produces the operational prototype and

a rather small system. Finally, it produces a highly structured system which simplifies

system maintainability as described above.

38

5.3 WEEDPLUS: Weed Management Expert System

In this section, the PAD-BASED model and the PAD-BASED development

process are used to design and develop an expert system called WEEDPLUS [Mitrpanont

et al. 93] which will be delivered to Oklahoma farmers for weed management. Weeds

can be very harmful to crop production. If not properly controlled, weeds can reduce

more than half of the crop production. In general, a weed scientist uses his expertise

incorporated with field history and status, soil fertility information, crop status, weed

status, weed management, and herbicide information to determine weed problem, and to

estimate yield loss based on the management practice of the farmers. Because there are

thousands of weeds and each of them has its own characteristics, its competitiveness to

different crops and to field status, knowledge about weed management is usually

developed as a part of a specific crop management system. For example, WEEDALF

[Stark et al. 89] is designed for a weed management system for alfalfa established stands

and contains only a subset of weeds and herbicides. To extend WEEDALF for use with

weed management in alfalfa seedling (preplanted) stands is complicated because of its

non-structured knowledge organization. Moreover, to share or re-use knowledge such as

herbicides in WEEDALF to the other crops needs even more work.

5.4 Designing WEEDPLUS Expert System

To design WEEDPLUS expert system, three main steps are concerned: task

organization, prototypes and interfaces construction, and system integration (i.e.,

interactions among prototypes in WEEDPLUS). Based on the PAD-BASED development

process, a problem is divided into small subtasks. Each subtask consists of:

39

knowledge about the task,

basic behaviors/operations such as problem-solving methods, and

its interactions to other subtasks.

Knowledge acquisition is performed according to each subtask. After a knowledge

engineer obtains a complete detail of that subtask, a prototype is developed and tested

while knowledge for another subtask can be acquired.

5.4.1 Task Organization

WEEDPLUS system is divided into three main tasks: weed management, weed

information, and herbicide information. Figure 11 demonstrates the organization of the

main tasks in WEEDPLUS.

I WEEDPLUS I
I

I I l

WEED MANAGEMENT WEED HERBICIDE
INFORMATION INFORMATION

Figure 11. Organization of the Main Tasks in WEEDPLUS.

Weed management contains knowledge about weed management for alfalfa. It is divided

into weed management for alfalfa seedling stands, weed management for alfalfa

established stands, weed problems in both seedling and established stands, and economics

or cost/benefit of the herbicide control. Weed information contains knowledge about

weeds such as type, characteristics, and control. For simplicity, weed information

contains only Oklahoma weeds. Similarly, herbicide information contains knowledge on

40

all herbicides that effectively control alfalfa weeds, their usage, their use rate and their

application cost. Weed management for alfalfa subsystems can delegate to weed

information and herbicide information to retrieve and access information on a specific

weed and herbicide. Figure 12 elaborates this task/subtasks hierarchy.

TASK 1

WEED MANAGEMENT
FOR ALFALFA

SEEDLING
STANDS

TASK 2

WEED INFORMATION

OKLAHOMA WEEDS

ESTABLISHED
STANDS

WEED PROBLEM

ECONOMICS

TASK 3

HERBICIDE INFORMATION

CONTROL ALFALFA WEEDS

Figure 12. Subtasks Organization in Weed Management, Weed Information, and
Herbicide Information

41

5.4.2 Prototypes and Interfaces Construction

Prototypes and interfaces construction is the next step in developing a PAD

BASED expert system. The knowledge engineer organizes knowledge in each prototype

according to the task/subtask organization. Figure 13 illustrates the prototype construction

corresponding to the task/subtask organization in figure 12. MAIN PROTOTYPE,

WM_PROTOTYPE (Weed Management), SL PROTOTYPE (Seedling Stands),

ES PROTOTYPE (Established Stands), WP PROTOTYPE (Weed Problem),

EC PROTOTYPE (Economics), WI PROTOTYPE (Weed Information), and

HI_PROTOTYPE (Herbicide Information) are the basic prototypes in WEEDPLUS.

MAIN PROTOTYPE

I
I I I

WM PROTOTYPE .wI PROTOTYPE HI PROTOTYPE

I
I I

SL PROTOTYPE ES PROTOTYPE

I I
I

WP PROTOTYPE

I I EC PROTOTYPE

Figure 13. Prototypes Constructure Corresponding to Task Organization

In this example, the MAIN_PROTOTYPE is developed to provide the main

interface to switch the task among the WM_PROTOTYPE, WI_PROTOTYPE, and

HI PROTOTYPE. MAIN _FROTOTYPE is considered to be the original delegator for

42

each task. In addition, in small system knowledge and methods of MAIN_PROTOTYPE

should be minimized because MAIN_PROTOTYPE will be active in the main memory

as an original delegator. However, its interface section always plays the most important

role in the application.

Figure 14 shows the basic components of some prototypes in WEEDPLUS. As

an example, a prototype containing knowledge about weed management for alfalfa

(WM_PROTOTYPE) consists of knowledge about the task (STAND_INFO,

SEEDLING_GEN-'--INFO, ESTABLISH_GEN_INFO), and the basic operation

(FIND_RECM). STAND_INFO contains knowledge about alfalfa stand status such as

seedling or established stands. SEEDLING_ GEN_ INFO contains general information of

the seedling stands such as planting time, previous crop, and previous weed problem.

ESTABLISH_GEN_INFO contains general information of established stands such as

current weed problem (perennial broadleafweed, perennial grass, or dodder) and previous

weed problem. FIND_ RECM utilizes the knowledge about stand information and

previous weed problem in the field to determine the group of rules that can be used to

provide the general recommendation.

DELEGATE TO SEEDLING and DELEGATE TO ESTABLISH are the

interfaces that provide the paths for delegation mechanism to either SL_PROTOTYPE

(seedling) or ES_PROTOTYPE (established). If the stand status is seedling stand then

WM_PROTOTYPE delegates to SL_PROTOTYPE, ortherwise to ES_PROTOTYPE.

NAME:
KNOWLEDGE:

METHOD:
INTERFACE:

NAME:
KNOWLEDGE:
METHOD:

INTERFACE:

NAME:
KNOWLEDGE:
METHOD:

INTERFACE:

NAME:
KNOWLEDGE:
METHOD:

INTERFACE:

NAME:
KNOWLEDGE:
METHOD:

WM PROTOTYPE
STAND INFO
SEEDLING GEN INFO - -
ESTABLISH GEN INFO
FIND RECM
DELEGATE TO SEEDLING
DELEGATE TO ESTABLISH

SL PROTOTYPE
FIELD INFO
DISPLAY FIELD INFO
FIND RECM
FIND SP RECM
FIND FA RECM
DELEGATE TO WEEDPROBLEM

WP PROTOTYPE
CS IN FALL
HERB CHOICE
H OPTION
PPI OPTION
POST OPTION
DELEGATE TO HERBUNIT
DELEGATE TO ECONOMIC

HI PROTOTYPE
HERB INFO
HERB LIST
HERB SCREEN
FIND HERBFILE
HERBCOST
MIX HERBICIDE
HERBFILE

EC PROTOTYPE
ECONOMIC INFO
SEEDLING ECONOMIC
ESTABLISH ECONOMIC
WHAT NEXT
FIND EST YIELD

Figure 14. Examples of Prototypes in WEEDPLUS.

43

44

5.5 Interactions among Prototypes in WEEDPLUS

In this section, an example of the interactions among prototypes in WEEDPLUS

is illustrated'. To simplify the illustration, WEEDPLUS is consulted on weed management

in alfalfa seedling stands. The following provides the consultation process:

1) WEEDPLUS queries the user about the basic information of the alfalfa

stands.

2) WEEDPLUS gets more specific information of seedling stands and give

basic recommendations.

3) WEEDPLUS queries on the specific weed problem and provides the proper

herbicide option.

4) WEEDPLUS presents information on the selected herbicide and determines

the cost-benefit on weed control.

WEEDPLUS starts the process by invoking MAIN_PROTOTYPE which requests

basic information from the user so it can delegate to the proper prototype. For alfalfa

weed management, MAIN _PROTOTYPE delegates to WM _PROTOTYPE which queries

the general information for alfalfa stands and determines the fundamental recommendation

based on the specific situation. WM_PROTOTYPE delegates to SL_PROTOTYPE to

obtain the information of the seedling stands and the recommendations for the alfalfa

seedling stands by using FIND_ RECM method. SL_ PROTOTYPE delegates to

WP _PROTOTYPE to perform CS_IN_FALL method to consult on a fall-planted cool

season weed problems and also to provide the herbicide option for that particular weed

problem. WP_PROTOTYPE delegates to HI_PROTOTYPE to use FIND_HERBFILE

method to obtain the information of the specified herbicide. Finally, WP _PROTOTYPE

45

delegates to EC PROTOTYPE to use SEEDLING ECONOMIC method to determine the - -

cost-benefit of the weed control.

In the above interactions, MAIN_ PROTOTYPE is the original delegator that

needed the consultation. Therefore, MAIN_PROTOTYPE receives all information from

the delegatee that performed the operation for WM_PROTOTYPE.

demonstrates part of the delegation mechanism of the above consultation.

Figure 15

,.. MAIN PROTOTYPE

delegate to

WM PROTOTYPE

,.. delegate to
,.. message passing

active
D prototype
IDI inactive

prototype

MAIN PROTOTYPE delegate
to WM PROTOTYPE to
obtain basic information
of alfalfa stands.

,.. MAIN PROTOTYPE

"'
I WM_ PROTOTYPE

delegate
to

"'
SL PROTOTYPE

WM PROTOTYPE delegate
to-SL PROTOTYPE to
obtain seedling
stands information.
WM PROTOTYPE is
inactive.

,.. MAIN PROTOTYPE ,.. MAIN_PROTOTYPE

"' "'
I SL_ PROTOTYPE jwP_PROTOTYPE

delegate delegate
to to

"' "'
WP PROTOTYPE HI PROTOTYPE -

SL PROTOTYPE WP PROTOTYPE delegate
delegate to to-HI PROTOTYPE to
WP PROTOTYPE to obtain the information
consult on weed and cost of a specific
problem and herbicide. WP PROTOTYPE
herbicide option. is inactive.
SL PROTOTYPE is
inactive.

Figure 15. Delegation Mechanism in WEEDPLUS.

CHAPTER VI

ADVANTAGES OF THE PAD-BASED MODEL

In this chapter, the advantages of the PAD-BASED model are presented. The

emphasis is on three main issues: to reduce development time, to provide an alternate

memory management scheme in small computer system, and to increase knowledge

sharing and re-use internally and externally. Internal knowledge sharing and re-use

means knowledge sharing and re-use in a PAD-BASED expert system, while external

knowledge sharing and re-use implies knowledge sharing and re-use between a PAD

BASED expert system and a structured existing expert sytem.

6.1 Reducing Development Time

In general, the development process of an expert system can be lengthy [Turban

92]. In particular, developing a large expert system involving many human experts in

several areas requires years of design and development. Although, the expert system

development life cycle is similar to the conventional software development life cycle,

knowledge acquisition from human experts is complex and needs excessive time. In

addition, expert system developing, integration, and testing processes are lengthened by

its complex interactions and unstructured nature.

In order to reduce the expert system development time, the modularity and

structurability of the expert system must be increased in each level such as the knowledge

46

47

acquisition, system design, system development, knowledge representation, system testing,

and system integration. In section 5.2, the PAD-BASED expert system development life

cycle model has been described. The system development phase (see figure 10) is fully

elaborated in such a way that it clearly elucidates the concurrency of task knowledge

acquisition, knowledge organization (i.e., prototypes and interfaces construction), and

prototype testing. This process directly helps reduce the development time. First,

knowledge acquisition, knowledge representation, system development, and system testing

are performed parallelly not sequentially. Second, the knowledge engineers and the

experts have the same clear picture of the whole system from the task/subtask organization

(in the large scale) and the knowledge organization (in the small scale, i.e., the prototype

structure) which helps keep them in the same consistant format. Third, since the

prototype structure is used as a means to knowledge acquisition on each subtask, the

structurability and modularity concepts have been introduced into the early phases such

as the system design. The implication is that the PAD-BASED structure can be used to

increase the structurability in expert system· design. Fourth, using the prototype structure

and the delegation mechanism simplifies expert system testing and system integration.

Because each prototype in the PAD-BASED expert system typically contains knowledge

about subtask, its methods/operations, and interfaces or the paths for its interactions to

other subtasks, this particular structure makes the prototype a self-defined unit. Testing

can be done in a miniature scale; i.e, in each prototype which implies more accuracy in

the integration stage. Besides, system integration is performed in a more direct fashion

because most of the delegation paths which provide the interactions among the prototypes

have been defined at the prototypes and interfaces construction step. This construction

48

directly simplifies system integration. Finally, maintaining a PAD-BASED expert system

is simplified because of its highly structured organization.

6.2 Providing an Alternate Memory Management Scheme

for Small Computer System

Although computer technology has changed tremendously in this decade, there are

still a number of users who are struggling due to the memory limitation of small PCs such

as the 286 computer systems. Specifically, designing an expert system to run on the

system with limited internal memory is one of the critical issues in delivering expert

systems to their general users who mostly own small PCs.

A design objective ofWEEDPLUS is to run on small systems with limited internal

memory. Therefore memory usage is critical issue in this expert system development.

Delegation mechanism is the key approach to memory management in WEEDPLUS to

run in the 286 system. The interface section of the delegator plays the most important

role in memory management since it provides the paths or links to the delegatees which

contain the shared knowledge/operations. The main idea of this memory management

scheme is to keep the original delegator which requires the shared knowledge active in

the memory. The delegatee prototype is loaded into the main memory to perform the

requested services and is removed after it has completed the operation. Figure 16 shows

the memory organization in WEEDPLUS.

49

RESIDENT MEMORY

TRANSIENT MEMORY

Figure 16. Memory Organization in WEEDPLUS

Memory in WEEDPLUS is divided into two parts: resident memory and transient

memory. Resident memory basically contains the delegator prototype, its knowledge,

methods and its interfaces. In addition, it also contains all the knowledge derived or

obtained from the other prototypes either by the invoking or delegation mechanism.

Transient memory is used as a temporary or working space for the delegatee prototype to

perform the specific methods for the de le gator. After it has completed the requested

operations, it is then removed out of the transient memory. The new knowledge obtained

from the delegatee is stored in the resident memory for other usage. The following

illustrates this memory management scheme ·during this consultation in WEEDPLUS:

1) a user invokes WEEDPLUS.

2) WEEDPLUS queries the user about the basic information of the alfalfa

stands.

3) WEEDPLUS gets more specific information of seedling stands and gives

basic recommendation.

4) WEEDPLUS queries on the specific weed problem and provides the proper

herbicide option.

STEP 1: MAIN PROTOTYPE IS ACTIVATED

===> MAIN PROTOTYPE is active

!MAIN
* MAIN PROTOTYPE

WEED MANAGEMENT FOR ALFALFA
DELEGATE TO WEEDMGMT

STEP 2: MAIN PROTOTYPE DELEGATES TO WM PROTOTYPE - -

===> MAIN PROTOTYPE is resident
WM PROTOTYPE is transient

MAIN PROTOTYPE

DELEGATE TO WEEDMGMT
MANAGEMENT

* WM PROTOTYPE

DELEGATE TO SEEDLING
DELEGATE TO ESTABLISH

STEP 3: WM PROTOTYPE DELEGATES TO SL PROTOTYPE - -

===> WM PROTOTYPE is removed
MAIN PROTOTYPE is resident
SL PROTOTYPE is transient

MAIN PROTOTYPE

DELEGATE TO WEEDMGMT
MANAGEMENT
DELEGATE TO SEEDLING

SEEDLING
* SL PROTOTYPE

DELEGATE TO WEEDPROBLEM

50

STEP 4: SL_PROTOTYPE DELEGATES TO WP_PROTOTYPE

===> SL PROTOTYPE is removed
MAIN PROTOTYPE is resident
WP PROTOTYPE is transient

MAIN PROTOTYPE

DELEGATE TO WEEDMGMT
MANAGEMENT
DELEGATE TO SEEDLING

SEEDLING
DELEGATE TO WEEDPROBLEM

* WP PROTOTYPE

DELEGATE TO HERBICIDE
DELEGATE TO ECONOMICS

51

The partial code above shows that only the original delegator which required the

operation is staying alive or active in resident memory (MAIN_PROTOTYPE). Figure

17 shows the active and inactive prototypes during the above consultation. The delegatee

that uses the transient memory as working space is removed after it has performed the

requested operation. The new knowledge or result is passed to be stored in the resident

memory as the global variables for later usage. If these global variables use too much

space, they are stored in the information file which will be used later. This information

file can be used as the knowledge passing or sharing vehicle to the other expert systems.

Particularly in WEEDPLUS, the information file is intended to share knowledge to

PROF ALF expert system in the section of weed management for alfalfa. For the best

memory usage especially in the 286 system, the knowledge engineer should work very

carefully in both the task organization, and the prototypes and interfaces construction

steps.

52

TIME ACTIVE INACTIVE
PROTOTYPE PROTOTYPE*

STEPl tl MAIN PROTOTYPE

STEP2 t2 MAIN PROTOTYPE
WM PROTOTYPE

t3 MAIN PROTOTYPE WM PROTOTYPE

STEP3 t4 MAIN PROTOTYPE
SL PROTOTYPE

ts MAIN PROTOTYPE SL PROTOTYPE

STEP4 t6 MAIN PROTOTYPE
WP PROTOTYPE

t7 MAIN PROTOTYPE WP PROTOTYPE

* is removed out of the main memory

Figure 17. Active and Inactive Prototypes during the Consultation

Delegation mechanism is implemented by using a simple technique of loading and

removing the prototypes in and out of the memory. In KnowledgePro®, the command

such as LOAD() is used to load the prototype into the memory and the command

REMOVE_TOPIC() is used to remove the prototype (or topic) and its variables out of the

main memory. The following is a sample set of instructions of the interface section called

DELEGATE_TO_SEEDLING in step 3 above which removes WM_PROTOTYPE and

delegates to SL_PROTOTYPE. A partial code in the SL_PROTOTYPE is also provided.

TOPIC DELEGATE TO SEEDLING.
REMOVE_TOPIC(WM_PROTOTYPE).
LOAD('SEEDLING.HKB').
DO(SEEDLING).
REMOVE_ TOPIC(SEEDLING).

END.

="SEEDLING.HKB"==

TOPIC SEEDLING.
DO(SL _PROTOTYPE).
REMOVE_ TOPIC(SL _PROTOTYPE).
DO(DELEGATE_TO _ WEEDPROBLEM).

. REMOVE_TOPIC(DELEGATE_TO _ WEEDPROBLEM).
END.

TOPIC SL PROTOTYPE.
DO(FIELD _ INFO).
DO(DISPLA Y _FIELDINFO).
DO(FINDRECM).

TOPIC FIELD INFO.

END.
TOPIC DISPLAY FIELDINFO.

END.
TOPIC FINDRECM.

END.
TOPIC FIND SP REC.

END.
TOPIC FIND FA REC.

END.
END. (* end sl_prototype *)

TOPIC DELEGATE TO WEEDPROBLEM.
REMOVE_TOPIC(SL_PROTOTYPE).
LOAD('WEEDPROBLEM.HKB').
DO(WEEDPROBLEM).
REMOVE_TOPIC(WEEDPROBLEM)

END.

53

This code is abstracted from the actual code in WEEDPLUS to illustrate the memory

organization implemented by using the REMOVE_TOPIC() and LOAD() commands of

the application language.

54

6.3 Increasing Knowledge Sharing and Re-use

Because the PAD-BASED expert system utilizes the concepts of prototype and

delegation, it fully supports knowledge sharing by its structure. In addition, the delegation

mechanism also increases the flexibility of knowledge sharing among the prototypes.

In the object-oriented programming, reusability is defined as self-sufficiency of an

object which enables it to be used independently and repeatedly. In the PAD-BASED

system, each prototype is also self-defined, because it contains knowledge about the

problem, basic behaviors such as problem-solving methodology, and the interfaces to the

other prototypes that provide shared knowledge/operations to this prototype. These

properties imply the self-sufficiency of the prototype for reusability. Although each

prototype cannot be used independently in the sense that it requires the shared knowledge

from the other prototypes, a group of prototypes consisting of the delegator and delegatees

can be used independently and repeatedly.

In the following two sections, knowledge sharing and re-use is described from two

perspectives: internal knowledge sharing and re-use (in a PAD-BASED expert system),

and external knowledge sharing and re-use (between a PAD-BASED expert system and

a structured expert system).

6.3.1 Internal Knowledge Sharing and Re-use

Internal knowledge sharing and re-use in a PAD-BASED expert system is explicit.

As an example, WEEDPLUS is designed to be used individually to provide

recommendations for alfalfa growers and to provide educational information on a set of

specific weeds (in Oklahoma) and a set of herbicides. The internal knowledge sharing

55

among the prototypes in WEEDPLUS is illustrated in figure 18. First, the

WP _PROTOTYPE is designed to share knowledge about weed problems for both the

seedling stands (SL_PROTOTYPE) and the established stands (ES_PROTOTYPE).

Because WP _PROTOTYPE contains knowledge about weed problems for both situations,

SL _PROTOTYPE and ES _PROTOTYPE can delegate to WP _PROTOTYPE to activate

the proper method. Second, WP_ PROTOTYPE can delegate to .either WI _PROTOTYPE

to use its knowledge about specific weed type or to HI_ PROTOTYPE to use its

knowledge about the recommended herbicide for controlling that particular weed.

WI_PROTOTYPE and HI_PROTOTYPE can be used independently to provide

knowledge about Oklahoma weeds and herbicides controlling alfalfa weeds directly by the

users via MAIN PROTOTYPE.

WM PROTOTYPE

<11(------L--~

SL PROTOTYPE ES PROTOTYPE

~·-----<Ill

WP PROTOTYPE

Knowledge in WP_PROTOTYPE is Shared
between SL_PROTOTYPE and ES_PROTOTYPE

WP_PROTOTYPEI

... __ _._I __ ~

MAIN_PROTOTYPEI

... __ _._I __ ~

WI PROTOTYPE HI PROTOTYPE WI PROTOTYPE HI PROTOTYPE

Knowledge in WI_PROTOTYPE and HI_PROTOTYPE are Re-used
by WP_PROTOTYPE and MAIN_PROTOTYPE

Figure 18. Internal Knowledge Sharing and Re-use in WEEDPLUS

56

To increase knowledge sharing and re-use, WEEDPLUS can be easily extended

to share the knowledge on weed management, weed information, and herbicide

information. The new prototypes containing new knowledge or knowledge that is

different from knowledge in WEEDPLUS are created and interfaced to WEEDPLUS via

delegation mechanism.

For instance, to use WEEDPLUS as an alfalfa weed management expert system

for alfalfa growers in Indiana, Indiana weeds prototype (INWD _PROTOTYPE) which

contains Indiana weed information is added. The farmer re-uses the same weed

management knowledge in WM_PROTOTYPE (WEED MANAGEMENT) but

WM_PROTOTYPE delegates to the appropriate weed information based on what state the

farmer specified (Oklahoma or Indiana); Figure 19 shows the modification of TASK 2

(in figure 12) after the information on Indiana weeds is added. Only the interface

components of WI_PROTOTYPE (WEED INFORMATION) are modified to provide a

path to delegate to INWD_PROTOTYPE (Indiana weeds prototype).

TASK 2

WEED INFORMATION

OKLAHOMA WEEDS INDIANA WEEDS

Figure 19. Modification of TASK 2 after Adding INDIANA Weeds

Figure 20 demonstrates the prototypes and delegation construction after Indiana

weeds prototype is added. The Indiana farmers re-use the knowledge about weed

57

management for seedling and established stands, and knowledge on weed problem in

WP PROTOTYPE. If the farmer indicates that ST ATE_ INFO is Indiana,

WP PROTOTYPE delegates to WI_PROTOTYPE which in turn delegates to

INWD _PROTOTYPE to provide knowledge about Indiana weeds. Otherwise,

WI_PROTOTYPE delegates to OKWD_PROTOTYPE for Oklahoma weeds.

WM PROTOTYPE

'4-----'----~

SL PROTOTYPE ES PROTOTYPE

'----~ .,. _ ___,

WP_PRO~OTYPE

...

WI_PROtOTYPE

OKWD PROTOTYPE INWD PROTOTYPE

Figure 20. Prototypes Construction after Adding Indiana Weeds Prototype;
Indiana Farmers Re-use Knowledge in WEEDPLUS

Typically, to add new prototypes for knowledge sharing and re-use, the interface

section of the delegator plays the most important role. In the above example, interface

sections of WP _PROTOTYPE and WI_PROTOTYPE are modified to provide the proper

delegation paths. WP _PROTOTYPE is modified to add a delegation path to

WI_PROTOTYPE (DELEGATE_TO_WEEDUNIT) while WI_PROTOTYPE needs to

have a path to INWD_PROTOTYPE (DELEGATE_TO_INWEED). Figure 21 shows the

structure of the WP _PROTOTYPE and WI _PROTOTYPE after modifying their interfaces.

NAME:
KNOWLEDGE:
METHOD:

INTERFACE:

NAME:
KNOWLEDGE:

METHOD:

INTERFACE:

WP PROTOTYPE
CS IN FALL
HERB CHOICE
H OPTION
PPI OPTION
POST OPTION
DELEGATE TO WEEDUNIT *
DELEGATE-TO-HERBUNIT
DELEGATE-TO-ECONOMIC

WI PROTOTYPE
STATE INFO
WEED GROUP
WEED NAME
WEED LIST
WEED SCREEN
FIND WEEDFILE
DELEGATE TO OKWEED
DELEGATE TO INWEED *

58

Figure 21. Modification in the Interface after Adding a New Prototype

Figure 22 displays the delegation mechanism after INWD _PROTOTYPE is added.

~ MAIN PROTOTYPE

delegate to

WM PROTOTYPE

~ delegate to
~ message passing

active
D prototype
IOI inactive

prototype

MAIN PROTOTYPE delegate
to WM PROTOTYPE to
obtain basic information
of alfalfa stands.

...
WM PROTOTYP

delegate
to

...

SL PROTOTYPE

...
SL_PROTOTYPE

delegate
to

...

WP_PROTOTYPE

WM PROTOTYPE delegate SL PROTOTYPE
to-SL PROTOTYPE to delegates to
obtain seedling stands WP PROTOTYPE to
information and the get information
general recommendation on Indiana weeds.
for seedlind stands. SL PROTOTYPE is
WM PROTOTYPE is inactive.
inactive.

MAIN PROTOTYPE

...
PROTOTYPE

...
WI PROTOTYPE

delegate
to .,.

INWD PROTOTYPE

WP PROTOTYPE delegates
to-WI PROTOTYPE which
in turn delegates to
INWD PROTOTYPE to
obtain Indiana weeds.
WI PROTOTYPE is
inactive.

Figure 22. Knowledge Re-use in WEEDPLUS Via Delegation Mechanism

59

Indiana farmers re-use knowledge in WEEDPLUS on the weed management

(WM _PROTOTYPE) in seedling stands (SL_ PROTOTYPE). They also re-use knowledge

about weed problems (WP _PROTOTYPE). The new knowledge on Indiana weeds is

accessible via the delegation path provided in the weed unit (WI_PROTOTYPE).

The above example demonstrates that knowledge organized in the PAD-BASED

structure fully supports internal knowledge sharing and re-use. Conceptually, only the

interface section of the prototype needs to be modified when a new prototype is added for

knowledge sharing and re-use.

6.3.2 External Knowledge Sharing and Re-use

In this section, the external knowledge sharing and re-use is decribed in two

aspects: 1) between a PAD-BASED expert system and a structured existing expert system

(incompatible structure) and 2) between two PAD-BASED expert systems (compatible

structure). This advantage is demonstrated by using WEEDPLUS and PROFALF.

6.3.2.1 PROF ALF--an Expert System to Estimate Profitability of Alfalfa.

PROF ALF is an expert system used as an educational tool for extension people and the

alfalfa growers. It is designed to incorporate detailed information about alfalfa production

regarding site, soil, machinery, management levels, and yield information to simulate the

annual costs and returns over the alfalfa projected stand life. The system requires

information from several domains of expertise such as Agronomy, Entomology,

Agricultural'Engineering, and Agricultural Economy. It generates a soil fertility profile

from the site information and projects the annual alfalfa yields based on the user's

fertilitity and liming plans. It projects the annual weed and insect control costs based on

60

typical systems plan.

PROF ALF is one of the expert systems in Alfalfa Integrated Management (AIM)

system which consists of four units: ALFWEEV, HAYMACH$, PROFALF, and

WEEDPLUS as displayed in Figure 23. Each unit of AIM system is a stand-alone

system. ALFWEEV is the alfalfa weevil insect management expert system designed to

provide recommendations on insect management cost and practice. HA YMACH$ is a hay

harvesting and machinery expert system providing a cost analysis of specific hay

harvesting operation (cutting, raking and baling). PROFALF [Limsupavanich et al. 94]

is developed in a hybrid structure of shell-based (FIKES and KEHLER, 1985), hypertext

(CONKLIN, 1987), and conventional subprogram system (MARAN and BECK, 1989).

ALFALFA INTEGRATED MANAGEMENT SYSTEM

I
I I I I

ALFWEEV HAYMACH$ PROFALF WEEDPLUS

Figure 23. Components of the AIM System

Figure 24 illustrates PROF ALF schematic diagram. It is also developed in the

KnowledgePro® environment. It manipulates the facts and the knowledge base via the

expert system shell; and provides explanations, recommendations, and results via the

hypertext system. Figure 25 shows the subsystem organization in PROF ALF.

Default
parameter Ille

I
SITE

KNOWLEDGE PRO ENVIRONMENT

USER

Input update Output dlaplay

PROFALF

P1111 parameter file to
C•aubprogram and do calculatlon

Retrieve ••ch reault flle
& dlaplay It to the uaer

Parameter file

C-aubprogram RESULT FILES

Figure 24. PROF ALF Schematic Diagram

I
PROFALF

I

I I I I
SOIL MANAGEMENT YIELD/

INFORMATION INFORMATION
I MACHINERY'

LEVEL PRICE

I

I
I CALCULATION I

SEEDBED HAY FERTILITY PEST
PREPARATION HARVEST PRACTICES MANAGEMENT

&
HAUL

I
HERBICIDE INSECTICIDE
PRACTICES PRACTICES

Figure 25. Subsystem Organization of PROF ALF

61

62

6.3.2.2 Incompatible Structure. The knowledge sharing and re-use between two

expert systems with incompatible or different structures involves a PAD-BASED expert

system (WEEDPLUS) and anon-PAD-BASED expert system (PROFALF). In particular,

a non-PAD-BASED expert system must be designed and developed in a highly structured

fashion. For simplicity, two expert systems which are created by the same developing tool

will be used. The knowledge in WEEDPLUS can be re-used in the task herbicide

practices of PROF ALF (see figure 25). Conceptually, both expert systems are treated as

two big prototypes. Despite its knowledge organization, PROF ALF is a prototype with

its interface section missing. Figure 26 shows the conceptual structure to provide a bridge

for PROFALF to re-use knowledge in WEEDPLUS. To create the bridge for this

knowledge sharing and re-use, the delegator prototype is added to define the paths for

delegation and message passing between PROFALF and WEEDPLUS. In other words,

PROF ALF activates the delegator prototype to delegate to WEEDPLUS to re-use its

knowledge. Then the result is sent back to PROF ALF via the message passing

mechanism.

~= NON-PAD-BASED
EXPERT SYSTEM

I ...
I

DELEGATOR
PROTOTYPE

I

delegate I
to ...

I

PAD-BASED
EXPERT SYSTEM

~ delegate to
~ message passing

D prototype

11 n expert system

Figure 26. Conceptual Idea for Non PAD-BASED Expert System to Re-use
Knowledge from a PAD-BASED Expert System

63

In fact, the delegator prototype serves as the interface unit for PROF ALF. The

structure of this delegator prototype (X_PROTOTYPE) is elaborated in figure 27. It

contains information from PROF ALF, information about what is needed and where to

incorporate new knowledge to PROF ALF. Its basic behaviors consist of STORE INPUT,

SA VE_ OUTPUT, and RETRIEVE_ OUTPUT. Its interface section provides the delegation

path to WEEDPLUS, and the interface to input and output information file. These input

and output information files are used as a working space or blackboard for the message

passing mechanism.

NAME: X PROTOTYPE
KNOWLEDGE: information from PROFALF to WEEDPLUS

information needed from WEEDPLUS
where to incorporate new knowledge to PROFALF

INTERFACES: delegate to WEEDPLUS
interface to input information file
interface to output information file

Figure 27. The General Structure of the Delegator Prototype

To treat PROF ALF as a prototype, consider that .PROF ALF does not have the

delegation path to the new prototype (X_PROTOTYPE). In this case, another path must

be added into PEST MANAGEMENT UNIT in PROF ALF as a delegation path to access

the X PROTOTYPE. This modification requires the high structurability in PROF ALF,

otherwise it would be more complicated to change something in the existing expert system

without interfering with its functionality ..

The delegation mechanism from PROFALF to WEEDPLUS can be designed in

two levels: macro and micro levels. Macro level means that PROF ALF treats

WEEDPLUS as one uniform prototype and utilizes the delegation paths that have already

been designed in WEEDPLUS to provide knowledge sharing and re-use. As illustrated

64

in figure 26, X_PROTOTYPE delegates to MAIN_PROTOTYPE in WEEDPLUS. Micro

level means that the delegator prototype (X_PROTOTYPE) can be designed to contain all

the major delegation paths to the prototypes in WEEDPLUS that PROF ALF needs to

obtain for shared or re-used information. However, in this case macro level is

recommended since PROF ALF can re-use most of the knowledge in WEEDPLUS. With

incompatible structure, the micro level is possible in one way, i.e., from a non-PAD

BASED expert system to re-use knowledge in a PAD-BASED expert system. In the

opposite direction, knowledge sharing and re-use in the micro level from a PAD-BASED

expert system to a non-PAD-BASED expert system is impossible because there are no

delegation paths provided.

6.3.2.3 Compatible Structure. Knowledge sharing and re-use between two PAD

BASED expert systems can be designed in both macro and micro levels because of its

compatible structure. In addition, knowledge sharing and re-use can be fulfilled in both

ways. First, in the macro level the same concept as in section 6.3.2.1 is applied. A

delegator prototype is defined to join two PAD-BASED expert systems. Each expert

system is treated as a big prototype to perform one big task. The conceptual idea is

demonstrated in figure 28.

I DELEGATOR PROTOTYPE I
I

I I
PAD-BASED PAD-BASED

EXPERT SYSTEM 1 EXPERT SYSTEM 2

Figure 28. Knowledge Sharing and Re-use between Two PAD-BASED
Expert Sytems in the Macro Level

65

The delegator prototype has the same structure as X_PROTOTYPE in the previous

section. It also utilizes the information file for message passing among two expert

systems. Knowledge sharing and re-use is accomplished via the delegation paths in both

expert systems.

In the micro level, for instance, if TASK 1 in the first PAD-BASED expert system

wanted to re-use the operation in SUBTASK 3.1 of the second PAD-BASED expert

system in figure 29, a new prototype (Y _PROTOTYPE) can be created and added directly

to delegate to the SUBTASK 3 .1 prototype. This augmentation concept helps keep the

modification in both expert systems minimal. The function of this new augmented

prototype will not interfere with the existing functionality of both expert systems. The

modification is limited to the interface section of TASK 1 in the first expert system to

provide delegation path to the Y _PROTOTYPE.

X PROTOTYPE

MAIN PROTOTYPE 1 MAIN PROTOTYPE 2

TASKl TASK2 TASK3 TASKl TASK2

'--~~~~~, Y_PROTOTYP~~~~~~ ~~~--1SUBTASK3.1

...

11.!::I ===========ti INFORMATION FILE Fl========= =========!.I

Figure 29. Knowledge Sharing and Re-use in the Micro Level
between Two PAD-BASED Expert Systems

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Object-oriented approaches are dominant development methods in this decade. In

this dissertation, the studies of these approaches applied to expert systems are presented.

The fundamental concepts, advantages and disadvantages of class/subclass and prototypes

are reviewed. In addition, the descriptions of three mechanisms: inheritance, delegation,

and polymorphism are pointed out. The research shows that the concepts of class/subclass

via inheritance and polymorphism mechanisms can be applied successfully to expert

system design and maintenance. However, delegation mechanism still remains

unexplored.

In response to the above study and the problems confronted in designing and

developing the expert systems in agricultural applications, it brings about a new expert

system designing model called the PAD-BASED model. This model utilizes the concepts

of prototypes (without class/subclass hierarchy) and the delegation mechanism to provide

the knowledge organization in expert system design. The description of the PAD-BASED

model, its architecture, applications, and advantages have been described.

In summary, the PAD-BASED model is beneficial to expert system design and

development. There are five major contributions. First, the PAD-BASED expert system

contains a high modular structure. This benefit is obtained directly from the property of

66

67

its organization as a collection of prototypes. Second, the PAD-BASED development life

cycle model provides a means to the knowledge acquisition on each subtask in the

task/subtask organization. In addition, it provides a parallel environment for the experts

and the knowledge engineers in the knowledge acquisition, prototypes and interfaces

construction, and prototype testing steps. This parallel environment directly helps reduce

the development time and generate a high quality outcome. Third, the PAD-BASED

model provides an alternate memory management scheme to remedy the limited internal

memory problem in small computers. This problem is the factor to limit the expert

system distribution among the general users who gain access to small PCs. In this

scheme, the delegation mechanism plays the most important role because only the original

de le gator remains active in the main memory. This space benefit is the most important

advantage of the delegation mechanism as compared to the speed benefit that inheritance

provides. Fourth, knowledge sharing and re-use among the PAD-BASED expert systems

are fully supported. However, only a non PAD-BASED expert system can re-use sharing

knowledge from a PAD-BASED expert system. Finally, maintenance and extension of

the PAD-BASED expert system are simple, since another prototype can be designed and

interfaced to the existing system without interfering with its functionality.

The above contributions show that the PAD-BASED model is a simple, but

powerful, technique in designing and maintaining expert systems. Furthermore, the PAD

BASED model is generally applicable, although the emphasis of this dissertation is on the

agricultural applications. With the PAD-BASED model, other areas such as machine

68

simulation, modeling, manufacturing systems, and diagnostic system could be applied.

Another research opportunity is to use the PAD-BASED model as a maintaining model

for the non-structured existing expert systems to generate a new expert system in the

PAD-BASED structure. This research would be another major contribution to reduce the

complexity in expert system maintenance ..

BIBLIOGRAPHY

[Aksit et al. 91] M. Aksit, J.M. Dijkstra, and A. Tripathi, "Atomic Delegation:
Object-Oriented Transactions," IEEE Software, Vol. 8, No. 2, March 1991, pp.
84-92.

[Almarode 89] J. Almarode, "Rule-based Delegation for Prototypes," OOPSLA '89
Proceedings, ACM, New York, October, 1989, pp. 363-370.

[Alpert et al. 90] S.R. Alpert, S.W. Woyak, H.J. Shrobe, and L.F. Arrowood,
"Object-Oriented Programming in Al," IEEE Expert, Vol. 5, No. 6, December,
1990, pp. 6-7.

[Bapa Rao et al. 89] K.V. Bapa Rao, A. Gafni, and G. Raeder, "Dynamo: A Model
for a Distributed Multi-media Information Processing Environment," IEEE
Proceedings of the Hawaii International Conference on System Science, V. II,
1989, pp. 800-809.

[Baran 89] N. Baran, "The Loneliness of the Low-Budget User," BYTE, Vol. 14, No.
8, August, 1989, pp. 344.

[Barghouti and Kaiser 90] N.S. Barghouti, and G.E. Kaiser, "An Object-Oriented
Framework for Modeling Cooperation in Multi-Agent Rule-Based Development
Environments," Technical Report CUCS-017-90, Department of Computer Science,
Columbia University, New York, NY, May, 1990.

[Bertolucci 90] J. Bertolucci, "The 640-byte Solution?," BYTE, Vol. 15, No. 3, March
1990, pp. 208-214.

[Blair et al. 89] · G.S. Blair, J.J. Gallagher, and J. Malik, "Genericity vs. Inheritance
vs., Delegation vs. Conformance vs ," J. Object-Oriented Programming, Vol. 2,
No. 3, Sept/Oct. 1989, pp. 11-17.

[Bobrow and Stefik 83] D.G. Bobrow, and M. Stefik, The LOOPS Manual, Xerox
Palo Alto Research Center, December, 1983.

[Boehm 81] B. W. Boehm, Software Engineering Economics, Prentice Hall, Englewood
Cliffs, NJ, 1981.

69

70

[Doming 86] A. Borning, "Classes Versus Prototypes in Object-Oriented Languages,"
Fall Joint Computer Conference, ACM/IEEE, Dallas, Texas, November, 1986.

[Cardelli and Wegner 85] L. Cardelli and P. Wegner, "On Understanding Types,
Data Abstraction, and Polymorphism," ACM Computing Surveys, Vol. 17, No. 4,
December, 1985, pp. 471-522.

[Chandrasekaran, et al. 92] B. Chandrasekaran, T.R. Johnson, and J.W. Smith, "Task
Structure Analysis for Knowledge Modeling," CACM,Vol. 35, No. 9, September,
1992, pp. 124-137.

[Cholawski 88] E.M. Cholawski, "Beating the Prototype Blues," Al Expert, December,
1988.

[Corradi and Leonardi 91] A. Corradi, and L. Leonardi, "PO Constraints as Tools to
Synchronize Active Objects," J. Object-Oriented Programming, Vol. 4, No. 6,
October, 1991, pp. 41-53.

[Coulson et al. 89] R.N. Coulson,· M.C. Saunders, D.K. Loh, F.L. Oliveria, D.
Drummond, P.J. Barray, and K.M. Swain, "Knowledge System Evironment for
Integrated Pest Management in Forest Landscapes: The Souther Pine Beetle
(Coleoptera: Scolytidae)," Bulletin of the ESA, American Entomologist, Summer,
1989, pp. 26-32.

[Fikes and Kehler 85] R Fikes, and T. Kehler, "The Role of Frame-Based
Representation in Reasoning," CACM, Vol. 28, No. 9, September, 1985, pp. 904-
920.

[Franke 90] D. W. Franke, "lmbedding Rule Inferencing in Applications," IEEE
Expert, Vol. 5, No. 6, December, 1990, pp. 8-14.

[Freeman-Benson 90] B.N. Freeman-Benson, "Kaleidoscope: Mixing Objects,
Constraints, and Imperative Programming," ECDOPIOOPSLA '90 Proceedings,
October, 1990, pp.77-88.

[Hom 92] B. Hom,"Constraint Patterns as a Basis for Object Oriented Programming,"
OOPSLA '92 Proceedings, 1992, pp. 218-233.

[Huhnke et al. 90] R. Ruhnke, W. Bowers, J.A. Stark, and J. Limsupavanich,
"HAYMACH$: Hay Equipment Cost Estimation Software," Oklahoma State
University, Cooperative Extension Service, Computer Software Series, CSS-50,
1990.

[Ibrahim and Woyak 90] M.H. Ibrahim, and S.W. Woyak, "An Object-Oriented
Environment for Multiple AI Paradigms," Proceeding of IEEE International
Conference Tools for Artificial Intelligence, 1990, pp. 77-83.

71

[Johnson and Nofziger 90] G.V. Johnson and D.L. Nofziger, "NPK$PLUS: An
Interactive Microcomputer Program to Interpret Soil Test Results and to Evaluate
the Economics of Alternative Fertilizer Application Rates, " Oklahoma State
University, Cooperative Extension Service, Computer Software Series, CSS-47,
1990.

[Johnson and Zweig 91] R.E. Johnson, and J.M. Zweig, "Delegation in C++," J.
Object-Oriented Programming, Vol. 4, No. 7, November/December, 1991, pp. 31-
34.

[Kannan and Dodrill 90] R. Kannan, and W.H. Dodrill, "DAIS: A Distributed AI
Programming Shell," IEEE Expert, Vol. 5, No. 6, December, 1990, pp. 34-42.

[Kehler and Clemenson 84] T.P. Kehler and G.D. Clemenson, "An Application
Development System for Expert Systems," Syst. Softw., Vol. 3, No. 1, January,
1984, pp. 212-224.

[Klahr and Waterman 86] P. Klahr and D.A. Waterman, Expert Systems Techniques,
Tools, and Application, Addison-Wesley, Reading, MA, 1986

[Leonardi et al. 89] L. Leonardi, P. Mello, and A. Natali, "Prototypes in Prolog," J.
Object-Oriented Programming, Vol. 2, No. 3, September/October, 1989, pp.20-28.

[Leung and Wong 90] K.S. Leung, and M.H. Wong, "An Expert-System Shell Using
Structured Knowledge: An Object-Oriented Approach," Computer, Vol. 23, No.
3, March, 1990, pp. 38-47.

[Lieberman and Hewitt 83] H. Lieberman, and C. Hewitt, "A Real Time Garbage
Collector Based on the Lifetimes of Objects," CACM, Vol. 26, No. 6, June, 1983.

[Lieberman 86a] H. Lieberman, "Using Prototypical Objects to Implement Shared
Behavior in Object Oriented System," OOPSLA '86 Proceedings, September 1986,
pp. 214-223.

[Lieberman 86b] H. Lieberman, "Delegation and Inheritance: Two Mechanisms for
Sharing Knowledge in Object Oriented Systems," J. Bezivin, P. Cointe (editors),
3eme Journees d'Etudues Languages Orientes Objets, AFCET, Paris, France,
1986, pp. 79-89.

[Lieberman 87] H. Lieberman, "Languages, Object Oriented," Encyclopedia of
Artificial Intelligence, Vol. 1, S.C. Shapiro, ed., John Wiley & Sons, New York,
1987, pp~ 452-456.

72

[Limsupavanich et al. 92] J. Limsupavanich, J.A. Stark, G.W. Cuperus, C. Ward, G.
Johnson, R. Huhnke, J. Stritzke, and R. Berberet, ''PROF ALF: Profitability of
Alfalfa, 11 Oklahoma State University, Cooperative Extension Service, Computer
Software Series, CSS-51, 1992.

[Limsupavanich et al. 94] J. Limsupavanich, J.A. Stark, G.W. Cuperus, C. Ward, G.
Johnson, R. Huhnke, J. Stritzke, and R. Berberet, "An Expert System for
Estimating of Alfalfa Profitability," to be presented and published in the
Proceedings of the 5th International Conference on Computers in Agriculture,
ASAE, Orlando, Florida, February, 1994.

[McGraw and Harbison-Briggs 89] K.L. McGraw and K. Harbison-Briggs, Knowledge
Acquisition: Principles and Guidelines, Printice Hall, Englewood Cliffs, NJ, 1989.

[Malloy 89] R. Malloy, "VROOMM Goes the Spreadsheet," BYTE, Vol. 14, No. 10,
October, 1989, pp. 111-112.

[Martin and Oxman 88] J. Martin, and S. Oxman, Building Expert Systems, Prentice
Hall, Englewood Cliffs, N.J., 1988.

[Mitrpanont et al. 93] J.L. Mitrpanont, J. Stritzke, and G.W. Cuperus, 11WEEDPLUS:
Weed Management Expert System, 11 Oklahoma State University, Cooperative
Extension Service, Computer Software Series, CSS (In Press), 1993.

[Mitrpanont et al. 94] J.L. Mitrpanont, K.M. George, and P. Benjamin, "Prototype and
Delegation-Based Approach to Knowledge Organization in Expert System Design,"
to be presented and published in the Computer Applications Symposium Session
on Knowledge-Based Systems in Engineering, Energy-Sources Technology
Conference & Exhibition (ETCE), ASME, New Orleans, LA, January, 1994.

[Mitrpanont et al. 94] J.L. Mitrpanont, K.M. George, and G.W. Cuperus, "PAD-BASED
Expert System in Agricultural Applications," to be published.

[Mitrpanont et al. 94] J.L. Mitrpanont, K.M. George, and G.W. Cuperus, "PAD-BASED
Expert System in Small Computer System," to be presented and published in the
Proceedings of 1994 Symposium on Applied Computing (SAC'94), Phoenix,
Arizona, March, 1994.

[Narayanan and Jin 91] A. Narayanan, and Y. Jin, "An Object-Oriented Approach
to Expert Diagnostic Systems," J. Object-Oriented Programming, Vol. 4, No. 6,
October, 1991, pp. 19-29.

[Naegele et al. 85] J.A. Naegele, R.N. Coulson, N.D. Stone, and R.E. Frisbie, "The Use
of Expert Systems to Integrate and Deliver IPM Technology," CIPM Integrated
Pest Management on Major Agricultural Systems, Texas A&M University, 1985,
pp. 692-710.

73

[Noll and Scacchi 91] J. Noll, and W. Scacchi, "Integrating Diverse Information
Repositories: A Distributed Hypertext Approach," Computer, Vol. 24, No. 12,
December, 1991, pp. 38-45.

[Park 91] H. Park, "Abstract Object Types=Abstract Knowledge Types+Abstract Data
Types+Abstract Connector Types," J Object-Oriented Programming, Vol. 4, No.
3, June, 1991, pp. 37-52.

[Ping et al. 90] C. Ping, C. Xiyao, and J. Yimin, "An Approach to Introduce the
Reflection to C++," Proceedings of the 14th Annual International Computer
Software and Applications Conference-COMPSAC 90, 1990, pp. 52-56.

[Prerau et al. 91] D.S. Prerau, A.S. Gunderson, R.E. Reinke, and Adler, M.R.,
"Maintainability Techniques in Developing Large Expert System," IEEE Expert,
Vol. 6, No. 3, June, 1991, pp. 71-80.

[Ramamoorthy and Sheu 88] C.V. Ramamoorthy, and P.C. Sheu, "Object-Oriented
Systems," IEEE Expert, Vol. 3, No. 3, Fall 1988, pp. 9-15.

[Redin 87] P. Redin, "Developing ES on PC's--A Methodology," AI Expert, October,
1987.

[Rhykerd et al. 92] L.M. Rhykerd, R.L. Rhykerd, B.A. Engel, and C.L. Rhykerd, "Use
of Knowledge Engineering to Maximize Forage Production of MEDICAGO
SA TIV A L.," Proceedings of the 4th International Conference on Computers in
Agriculture, ASAE, Orlando, Florida, January, 1992, pp. 165-170.

[Royce 70] W.W. Royce, "Managing the Development of Large Software Systems:
Concepts and Techniques," Proceedings of WESCON, August, 1970.

[Schwartz 87] T. Schwartz, "PC Perspectives," IEEE Expert, Vol. 2, No. 3, FALL 1987,
pp. 80-84.

[Stark et al. 89] J.A. Stark, J. Stritzke, and G.W. Cuperus, "WEEDALF: An Alfalfa
Weed Management Software," Oklahoma State University, Cooperative Extension
Service, Computer Software Series, CSS-43, 1989.

[Stefik and Bobrow 86] M. Stefik, and D.G. Bobrow, "Object-Oriented Programming:
Themes and Variations,!' AI Magazine, Vol. 6, No. 1, Winter, 1986, pp. 40-62.

[Stein 87] L.A. Stein, "Delegation is Inheritance," A CM Conference Proceedings
OOPSLA '87, Orlando, Specialissue, SigPlan Notices, Vol. 22, No. 12, December,
1987, pp. 138-146.

74

[Tomlinson et al. 89] C. Tomlinson, M. Scheevel, and W. Kim, "Sharing and
Organization Protocols in Object-Oriented Systems," J. Object-Oriented
Programming, Vol. 2, No. 4, November/December, 1989, pp. 25-36.

[Turban 92] E. Turban, Expert Systems and Applied Artificial Intelligence, Macmillan,
New York, NY, 1992.

[Ungar and Smith 87] D. Ungar, and R.B. Smith, "Self: The Power of Simplicity,"
ACM Conference Proceedings OOPSLA '87, Orlando, pp. 227-242.

[van den Bos and Laffra 91] J. van den Bos, and C. Laffra, "PROCOL. A
Concurrent Object-Oriented Language with Protocols Delegation and Constraints,"
Acta Informatica, Vol. 28, No. 6, Jan., 1991, pp. 511-538.

[Wegner 87] H. Wegner, "Dimensions of Object-Based Language Design," OOPSLA
'87 Proceedings, ACM, Orlando, 1987, pp. 168-182.

[Yemini et al. 91] Y. Yemini, G. Goldszmidt, and S. Yemini, "Network Management
by Delegation," Integrated Network Management, II, I. Krishman and W. Zimmer
(Editors), IFIP, 1991, pp. 95-107.

[Yen et al. 91] J. Yen, R. Neches, and R. MacGregor, "Clasp: Integrating Term
Subsumption Systems and Production Systems," IEEE Trans. Knowledge and Data
End., Vol. 3, No. 1, March, 1991, pp. 25-32.

[Yen et al. 91] J. Yen, H. Juang, and R. Macgregor, "Using Polymorphism to Improve
Expert System Maintainability," IEEE Expert, Vol. 6, No. 2, April, 1991, pp. 48-
55.

[Zhu et al. 91] J. Zhu, R. Nassif, P. Goyal, and R. Mikkilineni, "A Perspective on
Object-Oriented Technology," 36th IEEE Computer Society International
Conference - COMPCON Spring 1991, pp. 546-552.

[Zucker 89] J. Zucker, "Engineering Design Computed by Prototypes and Descriptions, "
Ph.D. Disssertation, Open University, United Kingdom, 1989.

GLOSSARY

Backward Chaining: a goal-driven reasoning technique in which search continues
working backward through successive subgoals until it works back to the facts of
the problem.

Class: the description of a group of objects that have common characteristics and
behaviors/methods.

Decision Support System (DSS): the computer-based information system that is used
to provide knowledge or information in supporting decision making or solving the
nonstructured problems.

Delegation: a mechanism that allows prototype to delegate responsibility to another
prototype to perform the task or operations for the delegator.

Domain Expert: a person with expertise in the domain in which the expert system is
being designed and developed.

Forward Chaining: a data-driven search scheme in which the search begins with the
facts of a problem and proceeds by applying rules to the solution.

Frame: a knowledge representation scheme that organizes knowledge in various slots and
utilizes the class/subclass concepts and the inheritance mechanism.

Hybrid Environment: a software developing environment that is used to develop an
expert system and provides several knowledge representation schemes.

Hypertext: an approach to manipulate text or information by utilizing nodes and links
to allow an unstructured presentation.

Inference Engine: a mechanism that actually performs the deduction process or the
reasoning process in an expert system.

Inheritance: a mechanism that allows sharing methods/operations among classes,
subclasses, and objects.

75

76

Integrated Pest Management (IPM): a comprehensive, systematic approach to
commodity protection that emphasizes increased information for improved decision
making to reduce purchased inputs and optimize social, economic, and
environmental consequences.

Invoking: a mechanism that initates an operation of a prototype.

Knowledge Engineering: a term that describes the process of developing and
maintaining expert systems which involves the cooperation of human experts and
knowledge engineers to explicitly extract and implement the knowledge and
methods that the human experts use to solve the problem.

Object: the primitive entity in the object-oriented programming which has a unique
identity, contains a private data structure, and can be accessed or modified by its
predefined methods upon receiving a proper message.

The PAD-BASED Model: an expert system development methodology that is based on
the concepts of the prototypes and delegation mechanism.

Polymorphism: a mechanism that provides different interpretations of the same
message when received by different objects.

Prototype: a concrete structure that is used to organize knowledge in the PAD-BASED
expert system

Rapid Prototyping: an expert system development methodology for a rapid development
of a part of an expert system to demonstrate its functionality and to meet user and
manager requirements.

Reusability: a self-sufficiency property of an object which enables it to be used or re
used independently and repeatedly.

Simple Message Passing: a mechanism that provides information transferring among the
prototypes

Software Development Life Cycle: a term generally used to describe the process of
developing and maintaining software.

Stand: a term that is used to describe a growth of plants particularly soon after
germination with regard to the distribution of the plants in a given area.

Weed Management: the integration of the various weed control options into a
management system that is effective, environmentally sound, and profitable.

VITA

Jaremsri Limsupavanich-Mitrpanont

Candidate for the Degree of

Doctor of Philosophy

Dissertation: PAD-BASED: PROTOTYPES AND DELEGATION BASED APPROACH
TO KNOWLEDGE ORGANIZATION IN EXPERT SYSTEM DESIGN

Major Field: Computer Science

Biographical:

Personal Data: Born in Bangkok, Thailand, September, 1958, the daughter of
Chong-hung and Hoong-jaung Sae Lim.

Education: Graduated from Trium Udom Suksa High School, Bangkok, Thailand,
March, 1976; received the Bachelor of Science degree in Physics from Mahidol
University, Bangkok, Thailand, April, 1980; received the Master of Science
degree in Applied Mathematics from Mahidol University, Bangkok, Thailand,
November, 1983; completed the requirements for the Doctor of Philosophy degree
at Oklahoma State University, December, 1993.

Professional Experience:
1980-1981: Programmer at the Office of Registrar, Academic Affair section at
Mahidol University;
1983-1986: Software Developer at Mahidol University Computing Center
designed and developed Mahidol University student database system including
enrollment and grade report system. Lecturer at Mahidol University teaching
programming languages and data processing courses to Medical Science students
of both Ramathibodhi and Siriraj Hospitals.
1988-1993: Software Specialist, IPM Extension, Entomology Department,
Oklahoma State University, designed and developed expert system series:
HAYMACH$ (received the ASAE Blue Ribbon Outstanding Award in 1991),
PROF ALF, WHEA$CON, WEEDPLUS, and softwares for 4-H "Caring for Planet
Earth" program: WASTEMAN and FORESTRY games (recognized as a model
program of environmental excellence by the National Environmental Awards
Council (NEAC) in 1993 and listed in the 4th edition of Renew America's
Environmental Success Index). Ph.D. dissertation research was recognized as an
honorable mention for the OSU Graduate Research Excellent Award for Fall
1993.

