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CHAPTER I 

INTRODUCTION 

In the past decade, the object-oriented approaches set a new direction in most 

computer research and application areas such as programming languages, artificial 

intelligence, databases, and distributed systems. This rapid growth is attributed to its four 

significant properties: the principles of program modularity, information hiding, data 

abstraction, and code reusability. Studies of the contributions of the object-oriented 

approach are prolific such as in [Zhu et al. 91], [Alpert et al. 90], and [Ramamoorthy 88]. 

The objectives of this research are to apply the object-oriented approach to expert systems, 

and to develop a new flexible model (PAD-BASED model) based on the concept of 

prototype and delegation mechanism proposed as an alternative architecture to designing, 

maintaining and/or interfacing expert systems in both macro and micro levels. 

This new approach is derived to overcome the problem of lengthy development 

time in expert system design, limited knowledge sharing and re-use in expert system 

applications [Mitrpanont et al. 94], developing an expert system in a small computer 

system with restricted internal memory [Mitrpanont et al. 94], and complexity in expert 

system maintenance. This approach is applied to the problems in agricultural applications. 

This application area is broad and significant for human life. Therefore, expert system 

techniques have been used successfully as a key tool for developing and delivering 
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knowledge to the farmers. However, the main problems in this area are the lengthy 

development time, limited knowledge sharing among the experts and re-use, and the 

limited distribution among the major users (i.e., the farmers). 

In general, knowledge in a PAD-BASED expert system is organized as a collection 

of prototypes. The interactions among these prototypes utilize the delegation and simple 

message passing mechanisms. Prototype structure is used because it increases 

structurability and modularlity without the class-subclass complexity. Delegation and 

simple message passing mechanisms play the significant role to increase knowledge 

sharing and reusability in PAD-BASED expert system. As stated by Lieberman 

[Lieberman 86a], prototype and delegation mechanism provide high opportunity on 

knowledge sharing. Furthermore, delegation mechanism is also the key to organize 

internal memory usage in a small computer during the consultation process or during the 

interactions among prototypes. 



CHAPTERn 

LITERATURE REVIEW 

2.1 Expert Systems 

Expert system research has been a prominent field in artificial intelligence (AI). 

It has been used as a new set of tools to develop applications in business, education, 

industry, and government areas. Furthermore, it is a special tool to integrate different 

types of knowledge and to deliver knowledge fro~ the experts to the common users who 

need but do not possess the knowledge for problem solving and decision support. 

As defined by Martin and Oxman, an expert system is a computer-based system 

that used knowledge, facts, and reasoning techniques to solve problems that normally 

require the abilities of human experts [Martin and Oxman 88]. As a result, expert system 

is a necessary tool to provide knowledge for the users who seek for the advice from the 

human experts. Currently there are variety of expert system development tools available 

as an alternative to programming languages such as LISP, PRO LOG, and SMALLTALK. 

These tools are easier to use and provide more flexibility on different methods for 

knowledge representations and inference strategies. Knowledge engineer can select the 

particular knowledge representation method for the specific problem. These knowledge 

representation methods generally include rule-based system, structure-based system, frame

based system, and shell-based system. For examples, ROSIE [Klahr and Waterman 86] 
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is a programming environment for expert systems which integrates two programming 

paradigms--rule-based modeling and procedure-oriented computation. KEE [Kehler 84], 

Knowledge Engineering Environment, integrates frame-based and rule-based systems. 

LOOPS, by Xerox Corporation, includes data, object, rule-based and procedure-oriented 

programming languages (Interlisp-D: a dialect of the LISP programming language) 

[Bobrow and Stefil( 83]. The systems that provide more than one way of knowledge 

representations are called hybrid environments. In addition, they also offer more features 

on different inference engines, several user interfaces including interface to databases, 

spreadsheets, graphics, hypermedia, and multimedia. In general, these hybrid systems are 

> 

outstanding and very convenient for expert system design and development. However, 

users always pay the price by investing excessive money and time to learn how to use 

them and even more time to develop an application in a new environment. Hardware 

support for these systems is also another problem since some of them require a larger 

memory system, higher processing speed, or m<;>re specific devices such as mouse or a 

high resolution color monitor. 

2.1.1 A Simple Expert System Architecture 

In the conventional expert system, there are three main parts: user interface, 

knowledge database, and inference engine as shown in figure 1 [Martin and Oxman 88]. 

The user interface allows the knowledge engineer to enter knowledge as rules and facts 

into the system, allows the user to query and obtain knowledge from the system, and 

supports several communication (interface) between users and the system. 
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USER 

I 
USER 

INTERFACE 

ADVICE, 
FACTS, CONSULTATION, 
QUERIES JUSTIFICATIO N 

KNOWLEDGE- INFERENCE 
BASE ENGINE 

Figure 1. A Simple Expert System Architecture (Source: Martin and Oxman, "Building 
Expert Systems", Prentice Hall, Englewood Cliffs, NY, 1988, p. 26) 

The knowledge-base contains the knowledge obtained from experts. This knowledge is 

usually represented in some particular format depending on the structure used. The 

knowledge representation method must be compatible in format to allow the inference 

engine to access. The inference engine provides the inference strategy to access the 

knowledge obtained from the user and knowledge from expert stored in the 

knowledgebase to infer some new facts. In other words, inference engine performs the 

deduction mechanism to generate some advice for the user by using the specific 

knowledge and information. 

2.2 Object-Oriented Systems 

In the conventional object-oriented approach, program consists of a collection of 

fundamental elements called objects. Each object has a unique identity, contains a private 

data structure, and can be accessed or modified by its predefined methods upon receiving 
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a proper message. The data structure is invisible to any other objects. In other words, 

the object maintains the principle of information hiding through the encapsulation concept 

which prohibits direct access to the private data and operations of each object. Operations 

define the behavior of an object in two aspects: 1) how it behaves in response to receiving 

a message from an external object; 2) how it controls the internal state transitions [Zhu 

et al. 91]. In general, an operation consists of a definition and an implementation. The 

definitions of the operations form an object's public interface which are accessible to 

other objects. Changes in implementations do not affect how the object is used. The 

internal data of an object is accessed via a set of message selectors stored in a public 

interface or protocol. Upon receiving a validated message, an object performs an 

operation by some internal state transitions or by initiating new messages to other objects 

including itself. This information hiding concept also improves data security and 

integrity. 

Objects are grouped into classes or types according to their structure and behavior. 

In other words, objects with the same data structure and public interface (or same set of 

operations) belong to the same class or type. Classes are organized in a hierarchical 

manner in which the data structures and operations from the superclass are inherited to 

the subclasses. A mechanism called inheritance implements this feature. It takes the 

advantage of the set inclusion of objects' data structures and operations in superclasses 

and subclasses to provide code reusability. 

There are three major mechanisms used in object-oriented systems: Inheritance, 

Delegation, and Polymorphism. However, inheritance and delegation have been studied 

as an alternative to each other such as in [Lieberman 86a] and [Stein 87]. The next three 
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sections describe the characteristics of these three mechanisms. 

2.2.1 Inheritance and Set Approach 

Inheritance is an important machanism for sharing behavior among objects in 

conventional object-oriented programming languages. It represents concepts as abstract 

sets or classes. By constructing the concept of the set, the objects or instances are 

classified by their common data structures and operations ( or methods or behaviors) into 

classes or types. An object is created to represent the description (or common data 

structures and operations) of the class. Operation definitions form a class public interface 

which are accessible to other objects. A class body specifies code for implementing the 

operations defined in the class interface. Each class can have one or more interfaces. A 

new subclass can be generated by a class to extend additional data and behavior. These 

classes and subclasses are organized in a class hierachy. Therefore, the behavior sharing 

is inherited thru this classification from a superclass to subclasses via the inheritance 

mechanism. The principle of inheritance [Zhu et al. 91] states that: 

A class is defined to be a subclass of an existing class, then any data 

structure or operation in the superclass is also defined in the subclass. 

Furthermore, the definitions of the inherited data or operations are 

unchanged unless they are explicitly overwritten. 

Inheritance from a single superclass is called a single inheritance while inheritance from 

multiple superclasses is called multiple inheritance. Basically, operation redefming (in 

single inheritance) and conflict resolution (in multiple inheritance) by subclasses are error 

prone because semantic inconsistencies are difficult to detect and complicated to control. 
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This difficulty is the most controversial problem in inheritance. In addition, inheritance 

requires two different kinds of interface between objects: subclass interface and instance 

interface. 

2.2.2 Delegation and Prototype Approach 

A delegation mechanism is proposed as an alternative to inheritance. It is said to 

be a generalization of inheritance [Wegner 87]. In a system using delegation, objects are 

not represented in terms of a class or subclass but as a concrete prototype containing its 

own data structures and methods. By defining a prototypical object to represent 

individual concepts, a new object ( called an extension object) is defined by the concepts 

that are different or variable from the prototype [Lieberman 86a]. This new object can 

also reuse part of the knowledge in a prototype. In addition, every object in this system 

can behave as a prototype for the creation of a new object. Objects share the common 

behavior using the delegation mechanism. Delegation removes the distinction between 

classes and instances. An object forwards or delegates a message to another object ( called 

the prototypical object) to execute the operation corresponding to that message. All the 

possible paths of delegation must be specified in an extension list. In other words, an 

extension object has a list containing all its possible prototypes and a part containing its 

own personal data. When an extension object receives a message, first it checks its own 

personal data. If it cannot respond to that message, then it forwards the message to its 

prototypes on the list to find one that can repond to the message. Furthermore, when a 

delegated object receives a message, it also obtains a component called the client which 

specifies the object originally receiving the message. Thus, the delegated object is able 
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to identify this specific object that needed the operation. 

Because any object can be defined as a prototype, and any message can be 

forwarded at any time, Lieberman specifies that delegation is more flexible than 

inheritance in which it is more powerful for combining behaviors from multiple sources 

and it is advantageous for highly interactive and incremental software development. 

In addition to Lieberman, others [Aksit et al. 91] agree that delegation is very 

useful in building extensible and open systems. Borning [Boming 86] uses prototypes as 

an alternative to resolve the complexity of classes and metaclasses in Smalltalk. Instead 

of performing a class-subclass initiation, a new object is created by simply copying or 

cloning from a prototype. He introduces the concept of using inheritance constraints as 

the object hierarchies to manipulate inheritance relations. He also mentions that 

prototypes are often used in visual programming, and artificial intelligence representing 

languages. Wegner [Wegner 87] gives a broader concept of delegation as one of the six 

orthogonal dimensions of object-oriented language design. A general term, class

independent, is used to define delegation for dynamic hierachical resource sharing. To 

use class as an orthogonal dimension that spans the object-oriented design space, 

delegation is determined as a mechanism that allows objects to delegate responsibility for 

performing an operation, or finding a value, to one or more designated ancestors. Then, 

inheritance is viewed as a specialization of delegation in which the entities that inherit are 

classes. Ungar and Smith [Ungar and Smith 87] implement the concepts of prototypes 

and inheritance as a new object-oriented programming language called "Self' which uses 

slots to contain the variables and procedures. Almarode [ Almarode 89] presents a 

mechanism to model the various semantics of delegation in which he believes it is one 
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drawback of delegation. The proposed mechanism called rule-based delegation uses rules 

to control the delegation of messages. It is used to implement classical single and 

multiple inheritances. Moreover, rules can be created dynamically to model application

specific semantics. In Johnson and Zweig [Johnson and Zweig 91], delegation is added 

into C++ language with the belief that it has advantages over inheritance. For instance, 

delegation simplifies the programming model; it is easier to implement the one-of-a-kind 

object and make programming more concrete; it is easier for objects to change their 

behavior. 

In response to Lieberman, Stein [Stein 87] · argues on behalf of inheritance that on 

a particular view of classes, inheritance can be used to implement delegation and its 

prototype-based systems. These two points of view indicate that inheritance and 

delegation are very little different in terms of implementation. However, much research 

has been done to define and to compare on these two controversial mechanisms. 

Tomlinson [Tomlinson et al. 89] characterizes object-oriented systems by the sharing 

protocol and the organization protocol. They present a detailed contrast of inheritance and 

delegation by analyzing the basic performance characteristics of simple delegation and 

inheritance protocols, and some optimizations of these protocols. They summarize that 

in most situations, inheritance has a better speed than delegation, and the speed and space 

optimization for inheritance usually outweigh the need of flexibility offer by delegation. 

However, they point out that: 

The prototype approach is more applicable in those cases where most 

objects have different structure or sharing requirements. Knowledge-based 

applications, in particular, exhibit these properties to a degree. 
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Aksit [Aksit et al. 91] presents a technique called atomic delegation that allows an object 

to delegate a sequence of request messages to one or more designed objects as an atomic 

action. By changing the delegation relation between objects or by modifying the 

functionality of an object that the messages are delegated to, you can dynamically change 

the set of atomic actions supported by an object. 

2.2.3 Polymorphism in Object-Oriented Systems 

Cardelli and Wegner [Cardelli and Wegner 85] define two kinds of polymorphism: 

universal polymorphism and ad hoc polymorphism. Universal polymorphism is a general 

term used to cover any mechanism which works on an infinite number of types. Ad hoc 

polymorphism covers techniques which work on a limited, specified set of types. 

In object-oriented languages, there are two forms of polymorphism. The first form 

is concerned with typing; i.e. an object can have more than one type. Thus, a particular 

object can be manipulated by operations associated with any of those types. The second 

form is independent to type and the operations can be applied to distinct types which 

correspond to disjoint sets. 

Based on Wegner's definition, Blair [Blair et al. 89] proposes a new definition for 

object-oriented systems that the systems should embody the notions of encapsulation, and 

set-based abstraction; and should also support two forms of polymorphism: inclusion 

polymorphism and operation polymorphism. Inclusion polymorphism implies that objects 

can belong to more than one set by set intersection. There are two aspects of inclusion 

polymorphism. First, as-if polymorphism features the objects that belong to one set but 

can be used as if they belong to another set through inclusion. Second, behavior sharing 
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features the objects that belong to one set but can share behavior (operations) of another 

set through the property of inclusion. Implicit behavior sharing occurs as a direct result 

of inclusion while explicit behavior sharing is explicitly described in the language or 

system. 

Operation polymorphism deals with the operations with the same name that can 

be applied to different objects which have no relationship in terms of inclusion. These 

operations are interpreted in the context of the particular object. Two ways are used to 

achieve this feature: an ad hoc mechanism, and a form of universal polymorphism. In the 

first one, methods are overloaded on the same name but map to the different code bodies. 

The second method is called parametric polymorphism. Operations are accessible on a 

range of types implementing the same behavior irrespective to object type. They use this 

new paradigm to map inheritance and delegation mechanisms. They conclude that there 

are good alternatives to inheritance that provides more degrees of freedom in 

implementation especially in the context of distributed system architectures. 

2.3 Object-Oriented Approaches and Expert Systems 

The impact of the object-based computation on expert systems is investigated by 

Ramamoorthy and Sheu [Ramamoorthy and Sheu 88.] Object-oriented programming is 

merged into AI programming languages such as Lisp, Prolog, Flavors, Loops, 

CommonLoops, and Concurrent Prolog. The availability of these tools provides two 

additional features: object abstraction for hierarchical reasoning, and expert cooperation 

for distributed problem solving. A typical example of integrating distributed experts to 

achieve a common goal is found in KEE [Fikes and Kehler 85] where rules are grouped 
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into classes, and invoked by methods. Loops [Stefik and Bobrow 86] is another language 

integrated rule-based and object-oriented approaches. Rules in Loops are grouped into 

rule sets, and invoked by message sending. Leonardi [Leonardi et al. 89] applies the 

concepts of prototypes and delegation to Prolog called the Prolog-Prototypes. The 

concepts such as modularity, information hiding, information sharing, and knowledge 

structuring are fundamental to the application domains of logic programming languages 

such as knowledge-based systems. Therefore, combining logic and object-oriented 

programming in Prolog-Prototypes provides a new tool that is very useful in building 

knowledge-based systems. Franke [Franke 90] defines an object-oriented protocol as a 

set of messages to perform both forward and backward chaining inferencing that allows 

the integration of an inferencing mechanism with CAD tools. Ibrahim and Woyak 

[Ibrahim and Woyak 90] use the EDS/OWL environment to define behaviors (methods, 

slot access, etc.) as objects adhering to a common protocol. Another approach asserts that 

a knowledge-based task can be accomplished by decomposing it into several agents; each 

contains and represents a chunk of the complete knowledge needed to accomplish the 

overall task [ Alpert et al. 90]. This approach has been used to construct many AI systems 

including system development environments and domain-specific knowledge-based 

applications. Lieberman [Lieberman 87] points out that because objects encapsulate both 

state and behavior, and because they possess the inherent communication capabilities; 

therefore, an object-oriented approach is a natural candidate for the implementation of 

distributed, multiple-agent environments. Moreover, Barghouti and Kaiser [Barghouti and 

Kaiser 90] explore the use of object orientation in multiple-agent environments, and 

provide a central issue of how to support cooperation among a team of software 
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developers working on the same project. They propose a method using object-oriented 

database with a concurrency-control mechanism using the object-oriented representation 

semantics. Leung and Wong [Leung and Wong 90] present a new architecture for an 

expert system shell that enables the mixing of rules and procedures, allows the automatic 

extraction of data from a database system, and provides a fuzzy database query facility. 

They use an object-oriented approach for knowledge representations and inferences in 

expert system shell, and conclude that this approach improves the. consistency, 

maintainability, and structurability of the knowledge base. Narayanan and Jin [Narayanan 

and Jin 91] propose an object-oriented expert diagnostic system approach for the domain 

of hardware fault location and diagnosis. This approach emphasis is on its architecture 

and the role of diagnosis rule-based reasoning designed to provide a precise and powerful 

diagnostic system. Polymorphism is also introduced into expert systems to improve expert 

system maintainability [Yen et al. 91]. Polymorphism allows object-oriented system to 

separate a generic function from its implementation. Thus, it is introduced into rule-based 

paradigm to separate a rule's function from its implementation details by replacing a 

rule's action with a generic operation. 



CHAPTER III 

PROBLEM STATEMENT 

3.1 Common Problems in Expert System Design 

From the previous studies, the common problems in expert systems involve their 

structures and complex nature which increase the difficulty in expert system maintenance 

and extension. There are many approaches and architectures designed to solve these 

problems. Presently, the main idea is to apply the object-oriented approaches and· 

techniques on the concepts of encapsulation (i.e., information hiding), and program 

modularity (i.e., system structurability) to the problems in expert systems. Most of the 

emphasis is on designing new . techniques, new languages, or new environments for 

designing new expert systems based on applying object-oriented approach to the 

knowledge representation techniques such as rule-based system and expert system shell. 

Therefore, using these new approaches usually requires new languages, new environments, 

or new developing tools which means that users need to obtain new products (or tools) 

and learn how to utilize them while wasting previous resources such as man-power, 

money, and time that were invested. Consequently, money is needed to buy new 

resources and tools, and to rebuild the application software. However, in the real world, 

users want services such as expertise knowledge, problem solving methodology, diagnostic 

results, planning, or minimal explanation from expert systems. Furthermore, there are 

15 
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many applications that once expert systems have been developed for use, they are used 

again and again. Most of them only need to be maintained either by extending them for 

a wider scope, or by modifying them for better usage and results. However, in practice, 

modifying and extending an expert system may introduce new problems such as a system 

error, a complex and unstructured system, and an internal memory limitation problem in 

a small machine such as in a 640K microcomputer system ([Schwartz 87], [Baran 89], 

[Malloy 89], [Bertolucci 90]). Users must weigh between the cost of maintenance of 

existing systems and the cost of new machines and new development tools. 

3.2 Objectives 

In the past decade, although expert system development tools and techniques have 

been prolific and each of them has its distinguishing features, it would be beneficial to 

the users if they could use a simple designing technique to design and develop an expert 

system. It would be beneficial if we could use the same technique to easily maintain and 

expand the expert systems without creating all the above problems. 

In this dissertation, a new expert system architecture using the object-oriented 

approach based on prototype and delegation mechanism (the PAD-BASED model) is 

presented. There are three main reasons for using an object-oriented approach based on 

the prototype and delegation technique. First, the four features of object-oriented system: 

information hiding, program modularity, data abstraction, and code reusability are the 

major contributions to expert system design. Secondly, the prototype approach in 

knowledge organization increases the expert system modularity and structurability which 

obviously simplifies the expert system maintenance. Finally, the delegation mechanism 
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is dynamic, more powerful, and more flexible to apply to the expert systems. The PAD-

BASED model is used as a knowledge organization technique in expert system design 

which simplifies the developing process because knowledge representation can be any 

technique. It is demonstrated that using this model can help solving the above problems. 

Moreover, it also provides more advantages to simplify expert system maintainability and 

also support knowledge sharing and re-use. 

The objectives of this dissertation are the following: 

1) to provide a detailed description of the PAD-BASED model presented as 

a new architecture for knowledge organization technique in expert system 

design using the prototype and delegation approach; 

2) to use this architecture as a new technique for designing an expert system; 

3) to apply the PAD-BASED model to design and develop an expert system 

in agricultural application; 

4) to demonstrate the advantages of the PAD-BASED model as a simple and 

powerful technique in designing and maintaining an expert system that 

helps increase its structurability and modularity, reduce its designing and 

development time, support knowledge sharing and re-use, provide an 

alternative to memory organization in small computer implementation. 



CHAPTER IV 

PAD-BASED: 

PROTOTYPE AND DELEGATION-BASED APPROACH 

TO KNOWLEDGE ORGANIZATION IN EXPERT SYSTEM DESIGN 

4.l Prototype and Delegation Conceptual Model 

PAD-BASED is an acronym for a new architecture presented as a knowledge 

organization technique in expert system design based on the concepts of prototype and 

delegation approach. Figure 2 depicts the conceptual model of the prototype and 

delegation mechanism. In this system, knowledge is organized as a prototype. New 

prototypes can re-use part or all of the knowledge stored in or derived from the shared 

behaviors of the prototype. The mechanism to utilize the shared knowledge and behaviors 

of the prototype is called delegation mechanism. Prototype Pl sends a message to 

prototype P2. P2 checks its data structures and behaviors and finds that it cannot answer 

to that message. Therefore, P2 delegates the message to prototype P3 which contains the 

behavior corresponding to that message. P3 also obtains the knowledge from the 

delegator, P2, and uses this knowledge for the operation. Finally, P3 sends the response 

back to the object, Pl, that initiated the message in the first place via a simple message 

passing. 
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Figure 2. Prototypes and Delegation Conceptual Model. 

4.2 PAD-BASED Expert System Architecture 
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In general, an expert system is defined as a computer-based system that uses 

knowledge, facts, and reasoning techniques to solve problems that normally require the 

abilities of human experts [Martin and Oxman 88]. Knowledge in an expert system using 

PAD-BASED is classified into two types: static knowledge, and dynamic knowledge. 

Static knowledge involves certain facts that are unchanged such as knowledge represented 

in the rule-based system. Dynamic knowledge changes from one situation to another 

situation such as knowledge obtained from the computational procedures. Knowledge 

representation in the PAD-BASED system can be any technique such as rule-based, 

semantic networks, frames, shell, external procedures, or a hybrid system. Figure 3 

displays the PAD-BASED technique used as a knowledge organization in a PAD-BASED 

expert system. 



INFERENCE 
ENGINE 

EXPLANATION 
FACILITY 

PAD-BASED 

P1 

USER INTERFACE 

USER 

Menus 
Dialogues 
graphics 
etc. 

INTERFACE TO 
EXTERNAL 

KNOWLEDGE 

_ invokes 
__. delegates to 
....,.. interface to 
- message and information 

paeaing 
( reeu I ts ,cone lue ions, 
consultations, 
recommendations, 
explanation, 
etc.) 

Figure 3. A PAD-BASED Expert System Architecture 

In PAD-BASED system, the expert system consists of five basic components: 
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1) a knowledge database (facts and problem-solving methodology) organized 

in the PAD-BASED structure, 

2) an inference engine, 

3) an explanation facility, 

4) an interface to external knowledge, and 

5) a user interface. 

Knowledge database in the PAD-BASED system is defined as a collection of 

prototypes. The interactions among prototypes are generated via delegation mechanism, 

and simple message passing. Delegation is a mechanism that allows prototype to delegate 

responsibility to another prototype to perform a task, or operation for the delegator. A 
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simple message passing is a mechanism that provides information transfering among 

prototypes. Invoking is a mechanism that initiates an operation of a prototype. An 

inference engine is a control structure in an expert system that is used to perform the 

inference reasoning tasks or to make deductions. The inference engines widely used in 

expert system are such as forward chaining and backward chaining. Furthermore, an 

inference engine also supports various knowledge acquisition, explanation facility, and 

user interface subsystems. An explanation facility provides access for a user to query the 

expert system on why and how the particular recommendation is derived. An interface 

to external knowledge is used to provide communication (retrieve or store) for the expert 

system and external knowledge such as databases, external computing modules, and 

others. Finally, a user interface is a component that a user communicates with the expert 

system by giving facts and queries to the system, and receiving result, recommendation, 

and explanation from it. 

4.2.1 Prototype Basic Elements 

Knowledge database in the PAD-BASED system consists of a collection of 

prototypes. Each prototype is comprised of four basic parts: name, knowledge, basic 

behaviors, and interfaces as shown in Figure 4. Name is a unique identification for the 

prototype such as "TRACTOR". A prototype contains a piece of knowledge describing 

the concepts or the characteristics of the prototype. For instance, Horse power=50, 

Begining age=NEW, and Purchasing price=$20,000 are the knowledge describing a 

tractor. Basic behaviors are general behaviors relevant to the knowledge of the prototype. 

Typically, behaviors in a prototype are basically the same as behaviors of any expert 
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system, i.e., to accomplish a goal or subgoal, to give diagnosis, to provide 

recommendation or consultation, or to evaluate new situation. For instance, the basic 

behaviors of TRACTOR are "TRACTOR INFO", and "FACT ABOUT TRACTOR". 

"TRACTOR INFO" contains a method to retrieve a tractor list from an external file and 

present it to the user who in turn provides the facts to the prototype. This feature makes 

the prototype act slightly different from the conventional prototype since it contains 

another part called interfaces. Via its interfaces, a prototype must be able to: 

PROTOTYPE 

NAME 

DEFAULT KNOWLEDGE 

BASIC BEHAVIORS 

INTERFACES 
to user 
to other prototypes 
to inference engine 
to active prototype 

TRACTOR 

HORSE POWER: 50 HP 
BEGINING AGE: NEW 
PURCHASE PRICE: $20,000 

TRACTOR INFORMATION 
FACT ABOUT TRACTOR 

Figure 4. Basic Elements of a Prototype 

communicate with the user through the user interface such as using menus, 

dialogues, graphics, or others; 

access a reasoning technique such as using an inference engine to make 

inferences; 

delegate to other prototypes that share knowledge to this prototype, i.e., 
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contains a link to the other prototypes; and 

provide a simple message passing from the delegatee back to the object 

who first sends the message. 

4.2.2 Interaction among Prototypes 

In this section, an example is given to illustrate the interaction among prototypes 

in the PAD-BASED system. Four prototypes are used. They are MACHINERY, 

HARVESTING, TRACTOR, and IMPLEMENT. The structure of these prototypes is 

described in. Figure 5. To simplify the illustration, let the user invoke the MACHINERY 

prototype. The user would like to obtain some knowledge about machinery for a 

harvesting operation. The following messages are sent to ask the HARVESTING 

prototype. 

1) What is your operation? 

2) What is the information about your equipment? 

3) What is the minimum horse power recommended for your equipment? 

The HARVESTING prototype looks up in its default knowledge and answers the first 

question that its operation is "Cutting". However, it cannot answer the second question, 

thus it delegates the message to the IMPLEMENT prototype. The delegatee 

(IMPLEMENT) obtains the knowledge about operation type (Cutting), equipment name 

(Pt-swather) from the delegator (HARVESTING), and the original message sender 

(MACHINERY). IMPLEMENT then invokes its method called "IMPLEMENT INFO" 

to infer the knowledge about implement equipment based on the cutting operation using 

pt-swather equipment. This knowledge is sent back to MACHINERY via message passing. 



Prototype A================================ 

Name: Tractor 
Default knowledge 

Horse Power: 50 HP 
Purchasing Price: $20,000 
Tractor Age: NEW 

Basic behaviors 
Tractor info 
Facts about Tractor 

Prototype B======================================~ 

Name : Implement 
Default Knowledge 

Operation Type 
Equipment Name 
Purchasing Price 
Age : NEW 
Size : 3 0 . 0 0 Ft 
Speed: 7 MPH 
Efficiency: 
Capacity: 

Basic Behaviors 
Implement Info 

Baling 
Large Square Baler 
: $54,000 

Prototype C=======================================~ 

Name : Harvesting 
Default Knowledge 

Operation: Cutting 
Field acre : 80 acre 
Number of Cuttings : 4 
Cutting Equipment : Pt-swather 

Basic Behaviors 
Harvesting Costs 

Prototype D===========================il 

Name : Machinery 
Default Knowledge 

Tractor Horse Power : 125 
Tractor Age : 3 years 
Price : $46,000 

Basic Behaviors 
Machinery info 

Figure 5. Example of Prototypes in PAD-BASED System 
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HARVESTING has one more question to answer. This message is delegated to 

the TRACTOR prototype to invoke the behavior called "FACTS ABOUT TRACTOR". 

This behavior requires only the equipment name from HARVESTING to look up in its 

knowledge about minimum horse power for that particular equipment. The answer is sent 

back to MACHINERY prototype. Figure 6 illustrates the delegation mechanism and 

message passing for the given example. 

invoke 

"' 
HARVESTING 

===~ message passing 

Question 1 

What is your operation 
type? 
No delegation 

invoke 

"' 
HARVESTING 

delegate 
"' to 

IMPLEMENT 

Question 2 

What is the information 
about your equipment? 
HARVESTING delegates 
to IMPLEMENT 

invoke 

"' 
HARVESTING 

delegate 
"' to 

TRACTOR 

Question 3 

What is the minimum tractor 
horse power for your 
equipment? 
HARVESTING delegates to 
TRACTOR 

Figure 6. Delegation Mechanism and Message Passing 



CHAPTERV 

IMPLEMENTATION OF THE PAD-BASED MODEL 

The PAD-BASED model is implemented in an agricultural application of an expert 

system for weed management. The following sections describe the nature of agricultural 

applications and introduce the PAD-BASED development life cycle model to design and 

develop an expert system called WEEDPLUS which will be employed by Oklahoma 

farmers. The KnowledgePro® by Knowledge Garden Inc. is used as a development tool. 

This implementation highlights three important advantages of the PAD-BASED model: 

minimizing the development time for an expert system, increasing knowledge sharing and 

re-use among the structured expert systems, and providing an alternate memory 

management scheme to develop an expert system in a small system with limited internal 

memory. 

5.1 Agricultural Applications 

Agriculture is an important area for human life since it serves the basic needs of 

food. Proper integrated pest management practices are mandatory for the safety of human 

life based on food supply. Because this area contains several domains of expertise 

(Agricultural Engineering, Agricultural Economics, Entomology, Agronomy, Soil and 

Fertility Science), the main problem in this area is how to incorporate and deliver 
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knowledge from these experts to farmers and agribusinesses. These common problems 

in agricultural applications such as crop and livestock production involve a decision 

support system, a scheduling system, and an integrated pest management system. As 

stated by Naegele and others [Naegele et al. 89, Coulson et al. 89], the concept of 

integrated pest management (1PM) is essential and has been developed to the point that 

it is advanced and very well established among the experts in the area. This IPM 

fundamental concept is composed of analytical models, management models, technical 

information, and expert recommendations which are entirely too complicated to be 

investigated by the farmers. As a result, the critical issue appears to be how to use 

efficiently and effectively this knowledge to solve the real problem. In fact, the major 

problem is how to integrate, implement, and deliver this knowledge for problem solving 

and decision making. 

Based on the complex nature of the problem and the knowledge interactions 

among the experts, expert system has been chosen to solve this problem. Because an 

expert system contains the facility to organize the knowledge such that it is able to draw 

a conclusion and an explanation on the result, the expert system technique has been 

successfully used in the agricultural area. Furthermore, expert systems provide an 

interactive environment to deliver knowledge to the users who mostly have the limited 

knowledge about computer. Knowledge acquisition technique provides a means for the 

knowledge engineer to acquire and capture knowledge from the experts, while knowledge 

representations such as rule-based, semantic network, frames, and shell systems are used 

to organize and represent the knowledge. In the last decade, hundreds of expert systems 

have been developed for many crops such as cotton, wheat, barley, com, soybean, and 
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alfalfa. The first goal for developing these expert systems is to provide the farmers with 

sound management advice, especially in an area that is hard to seek advice from an expert 

directly. The second goal is to use the expert system as an educational tool by the 

extension people to give advice to the farmers. 

Developing the expert systems for farming management and decision support has 

been very successful. However, there are three significant issues left out. First, 

developing an expert system is time consuming. For instance, PROF ALF [Limsupavanich 

et al. 92], HA YMACH$ [Huhnke et al. 90], NPK$PLUS [Johnson and Nofziger 90], and 

WEEDALF [Stark et al. 89] are expert systems being used by the alfalfa growers 

providing information about alfalfa pest management and alfalfa economics. Each system 

required years of design and development, because of the interactions among several 

disciplines. Second, the concepts of knowledge sharing and re-use are ignored. For 

example, two expert systems are developed for the same crop (alfalfa) in different states. 

PROF ALF expert system has been developed at Oklahoma State University while Alfalfa 

Management Expert System has been developed at Purdue University [Rhykerd et al. 92]. 

Both expert systems are designed to incorporate information on site, soil texture, drainage 

conditions, soil fertility, seed variety, pest control management, machinery and operation 

cost. If the concepts of knowledge sharing and re-use had been developed, it would 

optimize the usage of expert systems while minimizing the effort and the amount of 

development time. As in the above example, instead of building two different expert 

systems, the common knowledge such as pest control management, machinery 

information, and operation cost can be shared and re-used both in Oklahoma and Indiana. 

The different knowledge such as location and weed types can be added as a separate 
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module or prototype. Consequently, years of the effort on development time can be 

minimized and the common knowledge can be shared and re-used. Furthermore, 

knowledge sharing and re-use concept not only applies to a particular crop but also 

applies to the system as a whole. For example, considering a crop production system, 

each crop consists of a similar system such as planting ( seedbed preparation, seeding 

process, and fertilization), pest management practices (insecticide and herbicide 

applications), harvesting, and marketing. Knowledge about insecticide, herbicide, and 

machinery information is common. This knowledge can be organized into separate 

modules for sharing and re-use. Then the different knowledge is defined for a specific 

crop or a particular location. 

Finally, expert systems usage among the farmers is limited because of the small 

PCs that they own could not run most of the applications delivered. To increase the 

expert systems usage among the farmers implies that an expert system needs to be 

developed for this limited internal memory environment. Although the computer 

technology has changed tremendously in this decade, there are still a number of users who 

are struggling due to the memory limitation of small PCs such as computer systems based 

on the Intel 286 CPU microchip. Among these users are the farmers who face this 

limitation. Thus, one of the basic problems in the expert system area is dealing with how 

to design and implement the expert system to run on small PCs. Particularly, how to 

implement WEEDPLUS in a small PC is yet another crucial issue in this chapter. 

In the following sections, the development process of a PAD-BASED expert 

system is illustrated. The advantages of the PAD-BASED model toward the cited 

problems are described in the next chapter. 



5.2 PAD-BASED Expert System Development Life Cycle 

Software life cycle is a term generally used as the process of developing and 

maintaining software. In conventional software development life cycle, waterfall model 

[Royce 70, Boehm 81] is one of the popular phased model being used in software 

engineering. This model consists of five phases: Analysis, Design, Implementation, 

System Testing, and Maintenance. Rapid prototyping approach, a prototyping model, is 

another model used for fast implementation of a part of the system to demonstrate its 

functionality, and to meet user and manager requirements. 

In expert system development, knowledge engineering is a term describing the 

process of developing and maintaining expert systems [Turban 92]. Knowledge 

engineering involves the cooperation of human experts and knowledge engineers to 

explicitly extract and implement the knowledge and methods that the human experts use 

to solve real problems. Many of these problems are termed knowledge-intensive problems 

because their data and problem-solving methods are not explicit knowledge [McGraw and 

Harbison-Briggs 89]. 

In general, a typical conceptual structure of an expert system development is 
--- •' ' ' . --~-·~·--~---··~·-~·-•--•"-'··~--~-~,_.,~,,_m_,_~,=-=--'=-<-·~_,,._,...,,...,,.,.,~,,.,•....,_......,_,.....__.~~•"•_,.....,._-,~.,,-«<,_,.. • 

viewed in figure 7JMcQraw and Harbison-Briggs 89]. Its development process consists 
-~·~--"~'~'7c•~- -"°'"'''""~ • 

of the knowledge engineer acquiring knowledge from the human experts while gathering 

more information from the documented knowledge such as book. The knowledge 

engineer then selects the building tools and languages to be used in implementation. 

Finally, the expert system is developed and tested. This expert system development life 

cycle is similar to the conventional software development life cycle described above. 

However, knowledge acquisition from human experts is more complicated and usually 



31 

needs extensive time. In addition, building and testing expert systems are lengthened 

because of their complex interaction and unstructured nature. 

Expert 1 

Documented 
Knowledge 

Expert 2 Expert n 

Knowledge Acquisition 

Knowledge,__~__, 
Engineer 

Expert System 

Building 
Tools & 
Languages 

Figure 7. A Simple Conceptual Structure for Expert System Development 
(Source: Adapted from E. Turban, Macmillan, New York, NY, 1992, p. 120) 

Rapid prototyping approach has been widely used in developing expert systems 

[Redin 87], [Cholawski 88]. A rapid prototyping entails the selection of knowledge 

representation tools and techniques to perform rapid development of a section of the 

expert system, testing on the initial system, iterative refinement, and further development 

[McGraw and Harbison-Briggs 89]. In particular, rapid prototyping is used for quick 

development of an initial version of a small part of the expert system to test the 

effectiveness of the knowledge representation and inference mechanisms to solve a 

particular problem. Then the prototype system is refined or modified several times until 

the system is acceptable or meets the requirement. As stated by McGraw and Harbison

Briggs, rapid prototyping can be used successfully in developing solutions to knowledge

intensive problems if the problem is sufficiently small, does not require maintenance or 
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modification. In addition, a tool should be available for developing the prototype. 

Figure 8 illustrates the application of the PAD-BASED model to the expert system 

development structure. The experts and knowledge engineers agree on the task 

organization [Chandrasekaran et al. 92], i.e., tasks/subtasks division (Tl 1, T12, ... , Tin; 

T21, T22, ... , T2n; ... ; Tnl, Tn2, ... , Tnn) of the application. The knowledge engineer 

then uses any approach to perform knowledge acquisition on each subtask, for instance, 

the model approach (using the existing model that is well-suited to that particular domain 

to develop a set of facts and rules) or the team approach (the domain experts and 

knowledge engineers work closely together for an extended period of time and develop 

a model and computer program for that problem) [McGraw and Harbison-Briggs 89]. 

Consequently, the task organization reduces the size of the problem into several small 

subtasks which directly reduces the time and effort in knowledge acquisition on each 

subtask. In addition, the prototype structure ( see figure 4) is recommended to be used as 

the knowledge acquisition method on each subtask so that knowledge on each subtask will 

be very well organizaed and highly structured. 

Then each of the knowledge engineers constructs the prototypes (Pl 1, P12, ... , 

Pin; P21, P22, ... , P2n; ... , Pnl, Pn2, ... , Pnn) for the subtasks with complete information. 

In this stage, the strategy adopted from Walter and Nielson [Walter and Nielson 88] is 

used to build a separate prototype for each subtask and the integration is performed in the 

final stage. Prototype testing is executed via delegation mechanism and message passing. 



Expert 1 Expert 2 Expert n 

TASK ORGA N I Z A T I O N 

Tll T22 T2n Tnl Tn2 ... Tnn 

K N O W L E D G E A C Q U I S I T I 0 N 

Cooperators Knowledge Building 
Engineers Tools & 

Languages 

PROTOTYPES & INTERFACES CONSTRUCTION 

I E X P E R T s y s T E M 
N Knowledge Organized as a collection 
T of prototypes; 
E Interactions via delegation and 
G message passing. 
R 
A Pll P12 Pln Pal Pa2 Pan 
T P21 P22 P2n Pbl Pb2 Pbn 
I 
0 Pnl Pn2 Pnn Pzl Pz2 Pzn 
N 

PROTOTYPES & INTERFACES CONSTRUCTION 

Cooperators Knowledge Building 
Engineers Tools & 

Languages 

K N O W L E D G E A C Q U I S I T I O N 

Tal Ta2 Tbn Tzl Tz2 Tzn 

TASK ORGA N I Z A T I O N 

Expert a Expert b Expert z 

Figure 8. The PAD-BASED Expert System Development Structure; 
Tij represents a Task; 
Pij represents a Prototype 
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Because each prototype contains complete knowledge of a subtask together with its 

interface to other prototypes, knowledge acquisition, knowledge representation, prototype 

development, and testing can be performed concurrently. Thus, both the experts and the 

knowledge engineers can work in parallel. Finally, the integration of the prototypes is 

performed. This development process is fully described below. 

From the above demonstration, the PAD-BASED expert system development life

cycle model is presented to develop a PAD-BASED expert system. This development 

life-cycle model consists of five phases: System Requirements, Conceptual System Design 

and Analysis, System Development, System Integration and Evaluation, and System 

Maintenance. Figure 9 exhibits this model. 

SYSTEM REQUIREMENTS 
I ... 

CONCEPTIJ~ SYSTEM DESIGN AND ANALYSIS 

... 

~i SYSTEM D~LOPMENT 

... 

SYSTEM IN~EGRATION AND EVALUATION I · 
... 

SYSTEM MAINTENANCE 

Figure 9. The PAD-BASED Expert System Development Life-Cycle 
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System Requirements explore the general view of the problem, problem-solving 

strategies, the selected expert system techniques and tools, and the analysis of risks and 

benefits before developing the expert system. Conceptual System Design and Analysis 

involves detailed study of the problem and its scope, problem-solving methodology, 

system interface and structure. In this phase, the conceptual design of the system is 

completed. Techniques such as flow diagram or psuedocode can be used to present the 

design of the system. Also, the analysis of the system complexity, the appropriation of 

selected techniques and tools, and the cost/benefit of the development are seriously 

evaluated. In addition, the development time frame is proposed as well. 

System development is the main phase in which the PAD-BASED structure is 

particularly involved. This phase is comprised of: Task Organization, Task Knowledge 

Acquisition, Prototypes and Interfaces Construction, and Prototype Testing. Task 

Organization includes task division and task identification. In this step, the problem is 

divided into small subtasks (Tij in figure 8). The scope of each subtask, knowledge, 

problem-solving technique, and the interaction to other subtasks are all defined in this 

step. The prototype structure (see figure 4) is used as a means for knowledge acquisition 

on each subtask. Consequently, the default knowledge and basic operations of a subtask 

are acquired, and the interactions or interfaces to other subtasks are drawn. Prototypes 

and interfaces construction deals with the system implementation. The selected 

development tool and knowledge representation techniques are used for prototype 

construction corresponding to the subtask division and identification in the previous step 

(Tij ==> Pij in figure 8). The interface section of each prototype is constructed to 

provide the path for delegation and message passing mechanisms. For instance, prototype 
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Pl (delegator) delegates to prototype P2 (delegatee) to use the method m2. Interface 

section of P 1 is constructed to provide a delegation path to P2 while sending all the 

necessary information to P2 to activate method m2. Then the result is passed back to Pl 

which requires this shared operation. Prototype Testing can be done after the complete 

construction of each prototype and interface except if it required shared 

knowledge/operations from the prototype that has yet to be constructed. This restriction 

is generally minimized by building the prototype ( delegatee) that contains sharing 

knowledge/operations before building the prototype (delegator) that requires shared 

knowledge. Thus, system development in this model provides a parallel or a concurrent 

environment between the task knowledge acquisition, prototypes and interfaces 

construction, and prototype testing as demonstrated in figure 10. 

SYSTEM DEVELOPMENT 

I ... 

TASK ORGANIZATION 

SUBTASK Tl SUBTASK T2 SUBTASK T3 

... ... ... 
I ' I 

I I I 

KNOWLEDGE KNOWLEDGE KNOWLEDGE 
ACQUISITION ACQUISITION ACQUISITION 

I I I ... ... ... 
I I I 

PROTOTYPE& PROTOTYPE& PROTOTYPE& 
INTERFACE INTERFACE INTERFACE 

CONSTRUCTION CONSTRUCTION CONSTRUCTION 
I I I ... ... ... 
I I I 

PROTOTYPE 

I 
PROTOTYPE PROTOTYPE 

TESTING TESTING TESTING 

I I I 
I I I 

I ... 
SYSTEM INTEGRATION 

Figure 10. System Development Phase in the PAD-BASED Development Life Cycle 
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System integration and evaluation focuses on the interfaces between the prototypes 

and the interfaces to the external module (if required). The emphasis here deals with the 

interfaces among prototypes. These interfaces are defined via delegation and message 

passing mechanisms. All the paths providing for these mechanisms are previously defined 

in the prototypes and interfaces construction. Thus, system integration among prototypes 

is minimal. System evaluation is the testing stage of the whole system to determine the 

degree of accuracy and degree of usage which directly involves satisfaction of both the 

experts and the users. System maintenance includes system modification and system 

augmentation. This phase is comparable to the maintenance phase in the waterfall model. 

System modification and augmentation are primarily done repeatedly from the system 

development phase. Each prototype can be modified without interfering with the function 

of other prototypes. Also, adding a prototype to the system can be done easily by 

constructing the prototype and the paths to access this prototype and to the other 

prototypes to which it needs to delegate. 

The PAD-BASED development life cycle model provides three advantages to the 

rapid prototyping model. First, it reduces the iterative refinement step which implies 

decreasing an amount of development time. Second, it produces the actual expert system 

that is ready for delivery while rapid prototyping produces the operational prototype and 

a rather small system. Finally, it produces a highly structured system which simplifies 

system maintainability as described above. 
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5.3 WEEDPLUS: Weed Management Expert System 

In this section, the PAD-BASED model and the PAD-BASED development 

process are used to design and develop an expert system called WEEDPLUS [Mitrpanont 

et al. 93] which will be delivered to Oklahoma farmers for weed management. Weeds 

can be very harmful to crop production. If not properly controlled, weeds can reduce 

more than half of the crop production. In general, a weed scientist uses his expertise 

incorporated with field history and status, soil fertility information, crop status, weed 

status, weed management, and herbicide information to determine weed problem, and to 

estimate yield loss based on the management practice of the farmers. Because there are 

thousands of weeds and each of them has its own characteristics, its competitiveness to 

different crops and to field status, knowledge about weed management is usually 

developed as a part of a specific crop management system. For example, WEEDALF 

[Stark et al. 89] is designed for a weed management system for alfalfa established stands 

and contains only a subset of weeds and herbicides. To extend WEEDALF for use with 

weed management in alfalfa seedling (preplanted) stands is complicated because of its 

non-structured knowledge organization. Moreover, to share or re-use knowledge such as 

herbicides in WEEDALF to the other crops needs even more work. 

5.4 Designing WEEDPLUS Expert System 

To design WEEDPLUS expert system, three main steps are concerned: task 

organization, prototypes and interfaces construction, and system integration (i.e., 

interactions among prototypes in WEEDPLUS). Based on the PAD-BASED development 

process, a problem is divided into small subtasks. Each subtask consists of: 
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knowledge about the task, 

basic behaviors/operations such as problem-solving methods, and 

its interactions to other subtasks. 

Knowledge acquisition is performed according to each subtask. After a knowledge 

engineer obtains a complete detail of that subtask, a prototype is developed and tested 

while knowledge for another subtask can be acquired. 

5.4.1 Task Organization 

WEEDPLUS system is divided into three main tasks: weed management, weed 

information, and herbicide information. Figure 11 demonstrates the organization of the 

main tasks in WEEDPLUS. 

I WEEDPLUS I 
I 

I I l 

WEED MANAGEMENT WEED HERBICIDE 
INFORMATION INFORMATION 

Figure 11. Organization of the Main Tasks in WEEDPLUS. 

Weed management contains knowledge about weed management for alfalfa. It is divided 

into weed management for alfalfa seedling stands, weed management for alfalfa 

established stands, weed problems in both seedling and established stands, and economics 

or cost/benefit of the herbicide control. Weed information contains knowledge about 

weeds such as type, characteristics, and control. For simplicity, weed information 

contains only Oklahoma weeds. Similarly, herbicide information contains knowledge on 
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all herbicides that effectively control alfalfa weeds, their usage, their use rate and their 

application cost. Weed management for alfalfa subsystems can delegate to weed 

information and herbicide information to retrieve and access information on a specific 

weed and herbicide. Figure 12 elaborates this task/subtasks hierarchy. 

TASK 1 

WEED MANAGEMENT 
FOR ALFALFA 

SEEDLING 
STANDS 

TASK 2 

WEED INFORMATION 

OKLAHOMA WEEDS 

ESTABLISHED 
STANDS 

WEED PROBLEM 

ECONOMICS 

TASK 3 

HERBICIDE INFORMATION 

CONTROL ALFALFA WEEDS 

Figure 12. Subtasks Organization in Weed Management, Weed Information, and 
Herbicide Information 
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5.4.2 Prototypes and Interfaces Construction 

Prototypes and interfaces construction is the next step in developing a PAD

BASED expert system. The knowledge engineer organizes knowledge in each prototype 

according to the task/subtask organization. Figure 13 illustrates the prototype construction 

corresponding to the task/subtask organization in figure 12. MAIN PROTOTYPE, 

WM_PROTOTYPE (Weed Management), SL PROTOTYPE (Seedling Stands), 

ES PROTOTYPE (Established Stands), WP PROTOTYPE (Weed Problem), 

EC PROTOTYPE (Economics), WI PROTOTYPE (Weed Information), and 

HI_PROTOTYPE (Herbicide Information) are the basic prototypes in WEEDPLUS. 

MAIN PROTOTYPE 

I 
I I I 

WM PROTOTYPE .wI PROTOTYPE HI PROTOTYPE 

I 
I I 

SL PROTOTYPE ES PROTOTYPE 

I I 
I 

WP PROTOTYPE 

I I EC PROTOTYPE 

Figure 13. Prototypes Constructure Corresponding to Task Organization 

In this example, the MAIN_PROTOTYPE is developed to provide the main 

interface to switch the task among the WM_PROTOTYPE, WI_PROTOTYPE, and 

HI PROTOTYPE. MAIN _FROTOTYPE is considered to be the original delegator for 
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each task. In addition, in small system knowledge and methods of MAIN_PROTOTYPE 

should be minimized because MAIN_PROTOTYPE will be active in the main memory 

as an original delegator. However, its interface section always plays the most important 

role in the application. 

Figure 14 shows the basic components of some prototypes in WEEDPLUS. As 

an example, a prototype containing knowledge about weed management for alfalfa 

(WM_PROTOTYPE) consists of knowledge about the task (STAND_INFO, 

SEEDLING_GEN-'--INFO, ESTABLISH_GEN_INFO), and the basic operation 

(FIND_RECM). STAND_INFO contains knowledge about alfalfa stand status such as 

seedling or established stands. SEEDLING_ GEN_ INFO contains general information of 

the seedling stands such as planting time, previous crop, and previous weed problem. 

ESTABLISH_GEN_INFO contains general information of established stands such as 

current weed problem (perennial broadleafweed, perennial grass, or dodder) and previous 

weed problem. FIND_ RECM utilizes the knowledge about stand information and 

previous weed problem in the field to determine the group of rules that can be used to 

provide the general recommendation. 

DELEGATE TO SEEDLING and DELEGATE TO ESTABLISH are the 

interfaces that provide the paths for delegation mechanism to either SL_PROTOTYPE 

(seedling) or ES_PROTOTYPE (established). If the stand status is seedling stand then 

WM_PROTOTYPE delegates to SL_PROTOTYPE, ortherwise to ES_PROTOTYPE. 



NAME: 
KNOWLEDGE: 

METHOD: 
INTERFACE: 

NAME: 
KNOWLEDGE: 
METHOD: 

INTERFACE: 

NAME: 
KNOWLEDGE: 
METHOD: 

INTERFACE: 

NAME: 
KNOWLEDGE: 
METHOD: 

INTERFACE: 

NAME: 
KNOWLEDGE: 
METHOD: 

WM PROTOTYPE 
STAND INFO 
SEEDLING GEN INFO - -
ESTABLISH GEN INFO 
FIND RECM 
DELEGATE TO SEEDLING 
DELEGATE TO ESTABLISH 

SL PROTOTYPE 
FIELD INFO 
DISPLAY FIELD INFO 
FIND RECM 
FIND SP RECM 
FIND FA RECM 
DELEGATE TO WEEDPROBLEM 

WP PROTOTYPE 
CS IN FALL 
HERB CHOICE 
H OPTION 
PPI OPTION 
POST OPTION 
DELEGATE TO HERBUNIT 
DELEGATE TO ECONOMIC 

HI PROTOTYPE 
HERB INFO 
HERB LIST 
HERB SCREEN 
FIND HERBFILE 
HERBCOST 
MIX HERBICIDE 
HERBFILE 

EC PROTOTYPE 
ECONOMIC INFO 
SEEDLING ECONOMIC 
ESTABLISH ECONOMIC 
WHAT NEXT 
FIND EST YIELD 

Figure 14. Examples of Prototypes in WEEDPLUS. 
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5.5 Interactions among Prototypes in WEEDPLUS 

In this section, an example of the interactions among prototypes in WEEDPLUS 

is illustrated'. To simplify the illustration, WEEDPLUS is consulted on weed management 

in alfalfa seedling stands. The following provides the consultation process: 

1) WEEDPLUS queries the user about the basic information of the alfalfa 

stands. 

2) WEEDPLUS gets more specific information of seedling stands and give 

basic recommendations. 

3) WEEDPLUS queries on the specific weed problem and provides the proper 

herbicide option. 

4) WEEDPLUS presents information on the selected herbicide and determines 

the cost-benefit on weed control. 

WEEDPLUS starts the process by invoking MAIN_PROTOTYPE which requests 

basic information from the user so it can delegate to the proper prototype. For alfalfa 

weed management, MAIN _PROTOTYPE delegates to WM _PROTOTYPE which queries 

the general information for alfalfa stands and determines the fundamental recommendation 

based on the specific situation. WM_PROTOTYPE delegates to SL_PROTOTYPE to 

obtain the information of the seedling stands and the recommendations for the alfalfa 

seedling stands by using FIND_ RECM method. SL_ PROTOTYPE delegates to 

WP _PROTOTYPE to perform CS_IN_FALL method to consult on a fall-planted cool

season weed problems and also to provide the herbicide option for that particular weed 

problem. WP_PROTOTYPE delegates to HI_PROTOTYPE to use FIND_HERBFILE 

method to obtain the information of the specified herbicide. Finally, WP _PROTOTYPE 
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delegates to EC PROTOTYPE to use SEEDLING ECONOMIC method to determine the - -

cost-benefit of the weed control. 

In the above interactions, MAIN_ PROTOTYPE is the original delegator that 

needed the consultation. Therefore, MAIN_PROTOTYPE receives all information from 

the delegatee that performed the operation for WM_PROTOTYPE. 

demonstrates part of the delegation mechanism of the above consultation. 

Figure 15 

,.. MAIN PROTOTYPE 

delegate to 

WM PROTOTYPE 

,.. delegate to 
,.. message passing 

active 
D prototype 
IDI inactive 

prototype 

MAIN PROTOTYPE delegate 
to WM PROTOTYPE to 
obtain basic information 
of alfalfa stands. 

,.. MAIN PROTOTYPE 

"' 
I WM_ PROTOTYPE 

delegate 
to 

"' 
SL PROTOTYPE 

WM PROTOTYPE delegate 
to-SL PROTOTYPE to 
obtain seedling 
stands information. 
WM PROTOTYPE is 
inactive. 

,.. MAIN PROTOTYPE ,.. MAIN_PROTOTYPE 

"' "' 
I SL_ PROTOTYPE jwP_PROTOTYPE 

delegate delegate 
to to 

"' "' 
WP PROTOTYPE HI PROTOTYPE -

SL PROTOTYPE WP PROTOTYPE delegate 
delegate to to-HI PROTOTYPE to 
WP PROTOTYPE to obtain the information 
consult on weed and cost of a specific 
problem and herbicide. WP PROTOTYPE 
herbicide option. is inactive. 
SL PROTOTYPE is 
inactive. 

Figure 15. Delegation Mechanism in WEEDPLUS. 



CHAPTER VI 

ADVANTAGES OF THE PAD-BASED MODEL 

In this chapter, the advantages of the PAD-BASED model are presented. The 

emphasis is on three main issues: to reduce development time, to provide an alternate 

memory management scheme in small computer system, and to increase knowledge 

sharing and re-use internally and externally. Internal knowledge sharing and re-use 

means knowledge sharing and re-use in a PAD-BASED expert system, while external 

knowledge sharing and re-use implies knowledge sharing and re-use between a PAD

BASED expert system and a structured existing expert sytem. 

6.1 Reducing Development Time 

In general, the development process of an expert system can be lengthy [Turban 

92]. In particular, developing a large expert system involving many human experts in 

several areas requires years of design and development. Although, the expert system 

development life cycle is similar to the conventional software development life cycle, 

knowledge acquisition from human experts is complex and needs excessive time. In 

addition, expert system developing, integration, and testing processes are lengthened by 

its complex interactions and unstructured nature. 

In order to reduce the expert system development time, the modularity and 

structurability of the expert system must be increased in each level such as the knowledge 
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acquisition, system design, system development, knowledge representation, system testing, 

and system integration. In section 5.2, the PAD-BASED expert system development life 

cycle model has been described. The system development phase (see figure 10) is fully 

elaborated in such a way that it clearly elucidates the concurrency of task knowledge 

acquisition, knowledge organization (i.e., prototypes and interfaces construction), and 

prototype testing. This process directly helps reduce the development time. First, 

knowledge acquisition, knowledge representation, system development, and system testing 

are performed parallelly not sequentially. Second, the knowledge engineers and the 

experts have the same clear picture of the whole system from the task/subtask organization 

(in the large scale) and the knowledge organization (in the small scale, i.e., the prototype 

structure) which helps keep them in the same consistant format. Third, since the 

prototype structure is used as a means to knowledge acquisition on each subtask, the 

structurability and modularity concepts have been introduced into the early phases such 

as the system design. The implication is that the PAD-BASED structure can be used to 

increase the structurability in expert system· design. Fourth, using the prototype structure 

and the delegation mechanism simplifies expert system testing and system integration. 

Because each prototype in the PAD-BASED expert system typically contains knowledge 

about subtask, its methods/operations, and interfaces or the paths for its interactions to 

other subtasks, this particular structure makes the prototype a self-defined unit. Testing 

can be done in a miniature scale; i.e, in each prototype which implies more accuracy in 

the integration stage. Besides, system integration is performed in a more direct fashion 

because most of the delegation paths which provide the interactions among the prototypes 

have been defined at the prototypes and interfaces construction step. This construction 
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directly simplifies system integration. Finally, maintaining a PAD-BASED expert system 

is simplified because of its highly structured organization. 

6.2 Providing an Alternate Memory Management Scheme 

for Small Computer System 

Although computer technology has changed tremendously in this decade, there are 

still a number of users who are struggling due to the memory limitation of small PCs such 

as the 286 computer systems. Specifically, designing an expert system to run on the 

system with limited internal memory is one of the critical issues in delivering expert 

systems to their general users who mostly own small PCs. 

A design objective ofWEEDPLUS is to run on small systems with limited internal 

memory. Therefore memory usage is critical issue in this expert system development. 

Delegation mechanism is the key approach to memory management in WEEDPLUS to 

run in the 286 system. The interface section of the delegator plays the most important 

role in memory management since it provides the paths or links to the delegatees which 

contain the shared knowledge/operations. The main idea of this memory management 

scheme is to keep the original delegator which requires the shared knowledge active in 

the memory. The delegatee prototype is loaded into the main memory to perform the 

requested services and is removed after it has completed the operation. Figure 16 shows 

the memory organization in WEEDPLUS. 
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RESIDENT MEMORY 

TRANSIENT MEMORY 

Figure 16. Memory Organization in WEEDPLUS 

Memory in WEEDPLUS is divided into two parts: resident memory and transient 

memory. Resident memory basically contains the delegator prototype, its knowledge, 

methods and its interfaces. In addition, it also contains all the knowledge derived or 

obtained from the other prototypes either by the invoking or delegation mechanism. 

Transient memory is used as a temporary or working space for the delegatee prototype to 

perform the specific methods for the de le gator. After it has completed the requested 

operations, it is then removed out of the transient memory. The new knowledge obtained 

from the delegatee is stored in the resident memory for other usage. The following 

illustrates this memory management scheme ·during this consultation in WEEDPLUS: 

1) a user invokes WEEDPLUS. 

2) WEEDPLUS queries the user about the basic information of the alfalfa 

stands. 

3) WEEDPLUS gets more specific information of seedling stands and gives 

basic recommendation. 

4) WEEDPLUS queries on the specific weed problem and provides the proper 

herbicide option. 



STEP 1: MAIN PROTOTYPE IS ACTIVATED 

===> MAIN PROTOTYPE is active 

!MAIN 
* MAIN PROTOTYPE 

WEED MANAGEMENT FOR ALFALFA 
DELEGATE TO WEEDMGMT 

STEP 2: MAIN PROTOTYPE DELEGATES TO WM PROTOTYPE - -

===> MAIN PROTOTYPE is resident 
WM PROTOTYPE is transient 

MAIN PROTOTYPE 

DELEGATE TO WEEDMGMT 
MANAGEMENT 

* WM PROTOTYPE 

DELEGATE TO SEEDLING 
DELEGATE TO ESTABLISH 

STEP 3: WM PROTOTYPE DELEGATES TO SL PROTOTYPE - -

===> WM PROTOTYPE is removed 
MAIN PROTOTYPE is resident 
SL PROTOTYPE is transient 

MAIN PROTOTYPE 

DELEGATE TO WEEDMGMT 
MANAGEMENT 
DELEGATE TO SEEDLING 

SEEDLING 
* SL PROTOTYPE 

DELEGATE TO WEEDPROBLEM 
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STEP 4: SL_PROTOTYPE DELEGATES TO WP_PROTOTYPE 

===> SL PROTOTYPE is removed 
MAIN PROTOTYPE is resident 
WP PROTOTYPE is transient 

MAIN PROTOTYPE 

DELEGATE TO WEEDMGMT 
MANAGEMENT 
DELEGATE TO SEEDLING 

SEEDLING 
DELEGATE TO WEEDPROBLEM 

* WP PROTOTYPE 

DELEGATE TO HERBICIDE 
DELEGATE TO ECONOMICS 
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The partial code above shows that only the original delegator which required the 

operation is staying alive or active in resident memory (MAIN_PROTOTYPE). Figure 

17 shows the active and inactive prototypes during the above consultation. The delegatee 

that uses the transient memory as working space is removed after it has performed the 

requested operation. The new knowledge or result is passed to be stored in the resident 

memory as the global variables for later usage. If these global variables use too much 

space, they are stored in the information file which will be used later. This information 

file can be used as the knowledge passing or sharing vehicle to the other expert systems. 

Particularly in WEEDPLUS, the information file is intended to share knowledge to 

PROF ALF expert system in the section of weed management for alfalfa. For the best 

memory usage especially in the 286 system, the knowledge engineer should work very 

carefully in both the task organization, and the prototypes and interfaces construction 

steps. 
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TIME ACTIVE INACTIVE 
PROTOTYPE PROTOTYPE* 

STEPl tl MAIN PROTOTYPE 

STEP2 t2 MAIN PROTOTYPE 
WM PROTOTYPE 

t3 MAIN PROTOTYPE WM PROTOTYPE 

STEP3 t4 MAIN PROTOTYPE 
SL PROTOTYPE 

ts MAIN PROTOTYPE SL PROTOTYPE 

STEP4 t6 MAIN PROTOTYPE 
WP PROTOTYPE 

t7 MAIN PROTOTYPE WP PROTOTYPE 

* is removed out of the main memory 

Figure 17. Active and Inactive Prototypes during the Consultation 

Delegation mechanism is implemented by using a simple technique of loading and 

removing the prototypes in and out of the memory. In KnowledgePro®, the command 

such as LOAD() is used to load the prototype into the memory and the command 

REMOVE_TOPIC() is used to remove the prototype (or topic) and its variables out of the 

main memory. The following is a sample set of instructions of the interface section called 

DELEGATE_TO_SEEDLING in step 3 above which removes WM_PROTOTYPE and 

delegates to SL_PROTOTYPE. A partial code in the SL_PROTOTYPE is also provided. 

TOPIC DELEGATE TO SEEDLING. 
REMOVE_TOPIC(WM_PROTOTYPE). 
LOAD('SEEDLING.HKB'). 
DO(SEEDLING). 
REMOVE_ TOPIC(SEEDLING). 

END. 



="SEEDLING.HKB"== 

TOPIC SEEDLING. 
DO(SL _PROTOTYPE). 
REMOVE_ TOPIC(SL _PROTOTYPE). 
DO(DELEGATE_TO _ WEEDPROBLEM). 

. REMOVE_TOPIC(DELEGATE_TO _ WEEDPROBLEM). 
END. 

TOPIC SL PROTOTYPE. 
DO(FIELD _ INFO). 
DO(DISPLA Y _FIELDINFO). 
DO(FINDRECM). 

TOPIC FIELD INFO. 

END. 
TOPIC DISPLAY FIELDINFO. 

END. 
TOPIC FINDRECM. 

END. 
TOPIC FIND SP REC. 

END. 
TOPIC FIND FA REC. 

END. 
END. (* end sl_prototype *) 

TOPIC DELEGATE TO WEEDPROBLEM. 
REMOVE_TOPIC(SL_PROTOTYPE). 
LOAD('WEEDPROBLEM.HKB'). 
DO(WEEDPROBLEM). 
REMOVE_TOPIC(WEEDPROBLEM) 

END. 
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This code is abstracted from the actual code in WEEDPLUS to illustrate the memory 

organization implemented by using the REMOVE_TOPIC() and LOAD() commands of 

the application language. 
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6.3 Increasing Knowledge Sharing and Re-use 

Because the PAD-BASED expert system utilizes the concepts of prototype and 

delegation, it fully supports knowledge sharing by its structure. In addition, the delegation 

mechanism also increases the flexibility of knowledge sharing among the prototypes. 

In the object-oriented programming, reusability is defined as self-sufficiency of an 

object which enables it to be used independently and repeatedly. In the PAD-BASED 

system, each prototype is also self-defined, because it contains knowledge about the 

problem, basic behaviors such as problem-solving methodology, and the interfaces to the 

other prototypes that provide shared knowledge/operations to this prototype. These 

properties imply the self-sufficiency of the prototype for reusability. Although each 

prototype cannot be used independently in the sense that it requires the shared knowledge 

from the other prototypes, a group of prototypes consisting of the delegator and delegatees 

can be used independently and repeatedly. 

In the following two sections, knowledge sharing and re-use is described from two 

perspectives: internal knowledge sharing and re-use (in a PAD-BASED expert system), 

and external knowledge sharing and re-use (between a PAD-BASED expert system and 

a structured expert system). 

6.3.1 Internal Knowledge Sharing and Re-use 

Internal knowledge sharing and re-use in a PAD-BASED expert system is explicit. 

As an example, WEEDPLUS is designed to be used individually to provide 

recommendations for alfalfa growers and to provide educational information on a set of 

specific weeds (in Oklahoma) and a set of herbicides. The internal knowledge sharing 
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among the prototypes in WEEDPLUS is illustrated in figure 18. First, the 

WP _PROTOTYPE is designed to share knowledge about weed problems for both the 

seedling stands (SL_PROTOTYPE) and the established stands (ES_PROTOTYPE). 

Because WP _PROTOTYPE contains knowledge about weed problems for both situations, 

SL _PROTOTYPE and ES _PROTOTYPE can delegate to WP _PROTOTYPE to activate 

the proper method. Second, WP_ PROTOTYPE can delegate to .either WI _PROTOTYPE 

to use its knowledge about specific weed type or to HI_ PROTOTYPE to use its 

knowledge about the recommended herbicide for controlling that particular weed. 

WI_PROTOTYPE and HI_PROTOTYPE can be used independently to provide 

knowledge about Oklahoma weeds and herbicides controlling alfalfa weeds directly by the 

users via MAIN PROTOTYPE. 

WM PROTOTYPE 

<11(------L--~ 

SL PROTOTYPE ES PROTOTYPE 

~·-----<Ill 

WP PROTOTYPE 

Knowledge in WP_PROTOTYPE is Shared 
between SL_PROTOTYPE and ES_PROTOTYPE 

WP_PROTOTYPEI 

... __ _._I __ ~ 

MAIN_PROTOTYPEI 

... __ _._I __ ~ 

WI PROTOTYPE HI PROTOTYPE WI PROTOTYPE HI PROTOTYPE 

Knowledge in WI_PROTOTYPE and HI_PROTOTYPE are Re-used 
by WP_PROTOTYPE and MAIN_PROTOTYPE 

Figure 18. Internal Knowledge Sharing and Re-use in WEEDPLUS 
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To increase knowledge sharing and re-use, WEEDPLUS can be easily extended 

to share the knowledge on weed management, weed information, and herbicide 

information. The new prototypes containing new knowledge or knowledge that is 

different from knowledge in WEEDPLUS are created and interfaced to WEEDPLUS via 

delegation mechanism. 

For instance, to use WEEDPLUS as an alfalfa weed management expert system 

for alfalfa growers in Indiana, Indiana weeds prototype (INWD _PROTOTYPE) which 

contains Indiana weed information is added. The farmer re-uses the same weed 

management knowledge in WM_PROTOTYPE (WEED MANAGEMENT) but 

WM_PROTOTYPE delegates to the appropriate weed information based on what state the 

farmer specified (Oklahoma or Indiana); Figure 19 shows the modification of TASK 2 

(in figure 12) after the information on Indiana weeds is added. Only the interface 

components of WI_PROTOTYPE (WEED INFORMATION) are modified to provide a 

path to delegate to INWD_PROTOTYPE (Indiana weeds prototype). 

TASK 2 

WEED INFORMATION 

OKLAHOMA WEEDS INDIANA WEEDS 

Figure 19. Modification of TASK 2 after Adding INDIANA Weeds 

Figure 20 demonstrates the prototypes and delegation construction after Indiana 

weeds prototype is added. The Indiana farmers re-use the knowledge about weed 
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management for seedling and established stands, and knowledge on weed problem in 

WP PROTOTYPE. If the farmer indicates that ST ATE_ INFO is Indiana, 

WP PROTOTYPE delegates to WI_PROTOTYPE which in turn delegates to 

INWD _PROTOTYPE to provide knowledge about Indiana weeds. Otherwise, 

WI_PROTOTYPE delegates to OKWD_PROTOTYPE for Oklahoma weeds. 

WM PROTOTYPE 

'4-----'----~ 

SL PROTOTYPE ES PROTOTYPE 

'----~ .,. _ ___, 

WP_PRO~OTYPE 

... 

WI_PROtOTYPE 

OKWD PROTOTYPE INWD PROTOTYPE 

Figure 20. Prototypes Construction after Adding Indiana Weeds Prototype; 
Indiana Farmers Re-use Knowledge in WEEDPLUS 

Typically, to add new prototypes for knowledge sharing and re-use, the interface 

section of the delegator plays the most important role. In the above example, interface 

sections of WP _PROTOTYPE and WI_PROTOTYPE are modified to provide the proper 

delegation paths. WP _PROTOTYPE is modified to add a delegation path to 

WI_PROTOTYPE (DELEGATE_TO_WEEDUNIT) while WI_PROTOTYPE needs to 

have a path to INWD_PROTOTYPE (DELEGATE_TO_INWEED). Figure 21 shows the 

structure of the WP _PROTOTYPE and WI _PROTOTYPE after modifying their interfaces. 
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WP PROTOTYPE 
CS IN FALL 
HERB CHOICE 
H OPTION 
PPI OPTION 
POST OPTION 
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DELEGATE-TO-ECONOMIC 

WI PROTOTYPE 
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WEED NAME 
WEED LIST 
WEED SCREEN 
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DELEGATE TO INWEED * 
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Figure 21. Modification in the Interface after Adding a New Prototype 

Figure 22 displays the delegation mechanism after INWD _PROTOTYPE is added. 

~ MAIN PROTOTYPE 

delegate to 

WM PROTOTYPE 

~ delegate to 
~ message passing 
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D prototype 
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prototype 

MAIN PROTOTYPE delegate 
to WM PROTOTYPE to 
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of alfalfa stands. 

... 
WM PROTOTYP 

delegate 
to 

... 

SL PROTOTYPE 

... 
SL_PROTOTYPE 

delegate 
to 

... 

WP_PROTOTYPE 

WM PROTOTYPE delegate SL PROTOTYPE 
to-SL PROTOTYPE to delegates to 
obtain seedling stands WP PROTOTYPE to 
information and the get information 
general recommendation on Indiana weeds. 
for seedlind stands. SL PROTOTYPE is 
WM PROTOTYPE is inactive. 
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MAIN PROTOTYPE 

... 
PROTOTYPE 

... 
WI PROTOTYPE 

delegate 
to .,. 

INWD PROTOTYPE 

WP PROTOTYPE delegates 
to-WI PROTOTYPE which 
in turn delegates to 
INWD PROTOTYPE to 
obtain Indiana weeds. 
WI PROTOTYPE is 
inactive. 

Figure 22. Knowledge Re-use in WEEDPLUS Via Delegation Mechanism 
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Indiana farmers re-use knowledge in WEEDPLUS on the weed management 

(WM _PROTOTYPE) in seedling stands (SL_ PROTOTYPE). They also re-use knowledge 

about weed problems (WP _PROTOTYPE). The new knowledge on Indiana weeds is 

accessible via the delegation path provided in the weed unit (WI_PROTOTYPE). 

The above example demonstrates that knowledge organized in the PAD-BASED 

structure fully supports internal knowledge sharing and re-use. Conceptually, only the 

interface section of the prototype needs to be modified when a new prototype is added for 

knowledge sharing and re-use. 

6.3.2 External Knowledge Sharing and Re-use 

In this section, the external knowledge sharing and re-use is decribed in two 

aspects: 1) between a PAD-BASED expert system and a structured existing expert system 

(incompatible structure) and 2) between two PAD-BASED expert systems (compatible 

structure). This advantage is demonstrated by using WEEDPLUS and PROFALF. 

6.3.2.1 PROF ALF--an Expert System to Estimate Profitability of Alfalfa. 

PROF ALF is an expert system used as an educational tool for extension people and the 

alfalfa growers. It is designed to incorporate detailed information about alfalfa production 

regarding site, soil, machinery, management levels, and yield information to simulate the 

annual costs and returns over the alfalfa projected stand life. The system requires 

information from several domains of expertise such as Agronomy, Entomology, 

Agricultural'Engineering, and Agricultural Economy. It generates a soil fertility profile 

from the site information and projects the annual alfalfa yields based on the user's 

fertilitity and liming plans. It projects the annual weed and insect control costs based on 
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typical systems plan. 

PROF ALF is one of the expert systems in Alfalfa Integrated Management (AIM) 

system which consists of four units: ALFWEEV, HAYMACH$, PROFALF, and 

WEEDPLUS as displayed in Figure 23. Each unit of AIM system is a stand-alone 

system. ALFWEEV is the alfalfa weevil insect management expert system designed to 

provide recommendations on insect management cost and practice. HA YMACH$ is a hay 

harvesting and machinery expert system providing a cost analysis of specific hay 

harvesting operation (cutting, raking and baling). PROFALF [Limsupavanich et al. 94] 

is developed in a hybrid structure of shell-based (FIKES and KEHLER, 1985), hypertext 

(CONKLIN, 1987), and conventional subprogram system (MARAN and BECK, 1989). 

ALFALFA INTEGRATED MANAGEMENT SYSTEM 

I 
I I I I 

ALFWEEV HAYMACH$ PROFALF WEEDPLUS 

Figure 23. Components of the AIM System 

Figure 24 illustrates PROF ALF schematic diagram. It is also developed in the 

KnowledgePro® environment. It manipulates the facts and the knowledge base via the 

expert system shell; and provides explanations, recommendations, and results via the 

hypertext system. Figure 25 shows the subsystem organization in PROF ALF. 
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Figure 24. PROF ALF Schematic Diagram 
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Figure 25. Subsystem Organization of PROF ALF 
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6.3.2.2 Incompatible Structure. The knowledge sharing and re-use between two 

expert systems with incompatible or different structures involves a PAD-BASED expert 

system (WEEDPLUS) and anon-PAD-BASED expert system (PROFALF). In particular, 

a non-PAD-BASED expert system must be designed and developed in a highly structured 

fashion. For simplicity, two expert systems which are created by the same developing tool 

will be used. The knowledge in WEEDPLUS can be re-used in the task herbicide 

practices of PROF ALF (see figure 25). Conceptually, both expert systems are treated as 

two big prototypes. Despite its knowledge organization, PROF ALF is a prototype with 

its interface section missing. Figure 26 shows the conceptual structure to provide a bridge 

for PROFALF to re-use knowledge in WEEDPLUS. To create the bridge for this 

knowledge sharing and re-use, the delegator prototype is added to define the paths for 

delegation and message passing between PROFALF and WEEDPLUS. In other words, 

PROF ALF activates the delegator prototype to delegate to WEEDPLUS to re-use its 

knowledge. Then the result is sent back to PROF ALF via the message passing 

mechanism. 

~= NON-PAD-BASED 
EXPERT SYSTEM 

I ... 
I 

DELEGATOR 
PROTOTYPE 

I 

delegate I 
to ... 

I 

PAD-BASED 
EXPERT SYSTEM 

~ delegate to 
~ message passing 

D prototype 

11 n expert system 

Figure 26. Conceptual Idea for Non PAD-BASED Expert System to Re-use 
Knowledge from a PAD-BASED Expert System 
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In fact, the delegator prototype serves as the interface unit for PROF ALF. The 

structure of this delegator prototype (X_PROTOTYPE) is elaborated in figure 27. It 

contains information from PROF ALF, information about what is needed and where to 

incorporate new knowledge to PROF ALF. Its basic behaviors consist of STORE INPUT, 

SA VE_ OUTPUT, and RETRIEVE_ OUTPUT. Its interface section provides the delegation 

path to WEEDPLUS, and the interface to input and output information file. These input 

and output information files are used as a working space or blackboard for the message 

passing mechanism. 

NAME: X PROTOTYPE 
KNOWLEDGE: information from PROFALF to WEEDPLUS 

information needed from WEEDPLUS 
where to incorporate new knowledge to PROFALF 

INTERFACES: delegate to WEEDPLUS 
interface to input information file 
interface to output information file 

Figure 27. The General Structure of the Delegator Prototype 

To treat PROF ALF as a prototype, consider that .PROF ALF does not have the 

delegation path to the new prototype (X_PROTOTYPE). In this case, another path must 

be added into PEST MANAGEMENT UNIT in PROF ALF as a delegation path to access 

the X PROTOTYPE. This modification requires the high structurability in PROF ALF, 

otherwise it would be more complicated to change something in the existing expert system 

without interfering with its functionality .. 

The delegation mechanism from PROFALF to WEEDPLUS can be designed in 

two levels: macro and micro levels. Macro level means that PROF ALF treats 

WEEDPLUS as one uniform prototype and utilizes the delegation paths that have already 

been designed in WEEDPLUS to provide knowledge sharing and re-use. As illustrated 
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in figure 26, X_PROTOTYPE delegates to MAIN_PROTOTYPE in WEEDPLUS. Micro 

level means that the delegator prototype (X_PROTOTYPE) can be designed to contain all 

the major delegation paths to the prototypes in WEEDPLUS that PROF ALF needs to 

obtain for shared or re-used information. However, in this case macro level is 

recommended since PROF ALF can re-use most of the knowledge in WEEDPLUS. With 

incompatible structure, the micro level is possible in one way, i.e., from a non-PAD

BASED expert system to re-use knowledge in a PAD-BASED expert system. In the 

opposite direction, knowledge sharing and re-use in the micro level from a PAD-BASED 

expert system to a non-PAD-BASED expert system is impossible because there are no 

delegation paths provided. 

6.3.2.3 Compatible Structure. Knowledge sharing and re-use between two PAD

BASED expert systems can be designed in both macro and micro levels because of its 

compatible structure. In addition, knowledge sharing and re-use can be fulfilled in both 

ways. First, in the macro level the same concept as in section 6.3.2.1 is applied. A 

delegator prototype is defined to join two PAD-BASED expert systems. Each expert 

system is treated as a big prototype to perform one big task. The conceptual idea is 

demonstrated in figure 28. 

I DELEGATOR PROTOTYPE I 
I 

I I 
PAD-BASED PAD-BASED 

EXPERT SYSTEM 1 EXPERT SYSTEM 2 

Figure 28. Knowledge Sharing and Re-use between Two PAD-BASED 
Expert Sytems in the Macro Level 
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The delegator prototype has the same structure as X_PROTOTYPE in the previous 

section. It also utilizes the information file for message passing among two expert 

systems. Knowledge sharing and re-use is accomplished via the delegation paths in both 

expert systems. 

In the micro level, for instance, if TASK 1 in the first PAD-BASED expert system 

wanted to re-use the operation in SUBTASK 3.1 of the second PAD-BASED expert 

system in figure 29, a new prototype (Y _PROTOTYPE) can be created and added directly 

to delegate to the SUBTASK 3 .1 prototype. This augmentation concept helps keep the 

modification in both expert systems minimal. The function of this new augmented 

prototype will not interfere with the existing functionality of both expert systems. The 

modification is limited to the interface section of TASK 1 in the first expert system to 

provide delegation path to the Y _PROTOTYPE. 

X PROTOTYPE 

MAIN PROTOTYPE 1 MAIN PROTOTYPE 2 

TASKl TASK2 TASK3 TASKl TASK2 

'--~~~~~, Y_PROTOTYP~~~~~~ ~~~--1SUBTASK3.1 

... 

11.!::I ===========ti INFORMATION FILE Fl========= =========!.I 

Figure 29. Knowledge Sharing and Re-use in the Micro Level 
between Two PAD-BASED Expert Systems 



CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Object-oriented approaches are dominant development methods in this decade. In 

this dissertation, the studies of these approaches applied to expert systems are presented. 

The fundamental concepts, advantages and disadvantages of class/subclass and prototypes 

are reviewed. In addition, the descriptions of three mechanisms: inheritance, delegation, 

and polymorphism are pointed out. The research shows that the concepts of class/subclass 

via inheritance and polymorphism mechanisms can be applied successfully to expert 

system design and maintenance. However, delegation mechanism still remains 

unexplored. 

In response to the above study and the problems confronted in designing and 

developing the expert systems in agricultural applications, it brings about a new expert 

system designing model called the PAD-BASED model. This model utilizes the concepts 

of prototypes (without class/subclass hierarchy) and the delegation mechanism to provide 

the knowledge organization in expert system design. The description of the PAD-BASED 

model, its architecture, applications, and advantages have been described. 

In summary, the PAD-BASED model is beneficial to expert system design and 

development. There are five major contributions. First, the PAD-BASED expert system 

contains a high modular structure. This benefit is obtained directly from the property of 
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its organization as a collection of prototypes. Second, the PAD-BASED development life 

cycle model provides a means to the knowledge acquisition on each subtask in the 

task/subtask organization. In addition, it provides a parallel environment for the experts 

and the knowledge engineers in the knowledge acquisition, prototypes and interfaces 

construction, and prototype testing steps. This parallel environment directly helps reduce 

the development time and generate a high quality outcome. Third, the PAD-BASED 

model provides an alternate memory management scheme to remedy the limited internal 

memory problem in small computers. This problem is the factor to limit the expert 

system distribution among the general users who gain access to small PCs. In this 

scheme, the delegation mechanism plays the most important role because only the original 

de le gator remains active in the main memory. This space benefit is the most important 

advantage of the delegation mechanism as compared to the speed benefit that inheritance 

provides. Fourth, knowledge sharing and re-use among the PAD-BASED expert systems 

are fully supported. However, only a non PAD-BASED expert system can re-use sharing 

knowledge from a PAD-BASED expert system. Finally, maintenance and extension of 

the PAD-BASED expert system are simple, since another prototype can be designed and 

interfaced to the existing system without interfering with its functionality. 

The above contributions show that the PAD-BASED model is a simple, but 

powerful, technique in designing and maintaining expert systems. Furthermore, the PAD

BASED model is generally applicable, although the emphasis of this dissertation is on the 

agricultural applications. With the PAD-BASED model, other areas such as machine 
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simulation, modeling, manufacturing systems, and diagnostic system could be applied. 

Another research opportunity is to use the PAD-BASED model as a maintaining model 

for the non-structured existing expert systems to generate a new expert system in the 

PAD-BASED structure. This research would be another major contribution to reduce the 

complexity in expert system maintenance .. 
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GLOSSARY 

Backward Chaining: a goal-driven reasoning technique in which search continues 
working backward through successive subgoals until it works back to the facts of 
the problem. 

Class: the description of a group of objects that have common characteristics and 
behaviors/methods. 

Decision Support System (DSS): the computer-based information system that is used 
to provide knowledge or information in supporting decision making or solving the 
nonstructured problems. 

Delegation: a mechanism that allows prototype to delegate responsibility to another 
prototype to perform the task or operations for the delegator. 

Domain Expert: a person with expertise in the domain in which the expert system is 
being designed and developed. 

Forward Chaining: a data-driven search scheme in which the search begins with the 
facts of a problem and proceeds by applying rules to the solution. 

Frame: a knowledge representation scheme that organizes knowledge in various slots and 
utilizes the class/subclass concepts and the inheritance mechanism. 

Hybrid Environment: a software developing environment that is used to develop an 
expert system and provides several knowledge representation schemes. 

Hypertext: an approach to manipulate text or information by utilizing nodes and links 
to allow an unstructured presentation. 

Inference Engine: a mechanism that actually performs the deduction process or the 
reasoning process in an expert system. 

Inheritance: a mechanism that allows sharing methods/operations among classes, 
subclasses, and objects. 
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Integrated Pest Management (IPM): a comprehensive, systematic approach to 
commodity protection that emphasizes increased information for improved decision 
making to reduce purchased inputs and optimize social, economic, and 
environmental consequences. 

Invoking: a mechanism that initates an operation of a prototype. 

Knowledge Engineering: a term that describes the process of developing and 
maintaining expert systems which involves the cooperation of human experts and 
knowledge engineers to explicitly extract and implement the knowledge and 
methods that the human experts use to solve the problem. 

Object: the primitive entity in the object-oriented programming which has a unique 
identity, contains a private data structure, and can be accessed or modified by its 
predefined methods upon receiving a proper message. 

The PAD-BASED Model: an expert system development methodology that is based on 
the concepts of the prototypes and delegation mechanism. 

Polymorphism: a mechanism that provides different interpretations of the same 
message when received by different objects. 

Prototype: a concrete structure that is used to organize knowledge in the PAD-BASED 
expert system 

Rapid Prototyping: an expert system development methodology for a rapid development 
of a part of an expert system to demonstrate its functionality and to meet user and 
manager requirements. 

Reusability: a self-sufficiency property of an object which enables it to be used or re
used independently and repeatedly. 

Simple Message Passing: a mechanism that provides information transferring among the 
prototypes 

Software Development Life Cycle: a term generally used to describe the process of 
developing and maintaining software. 

Stand: a term that is used to describe a growth of plants particularly soon after 
germination with regard to the distribution of the plants in a given area. 

Weed Management: the integration of the various weed control options into a 
management system that is effective, environmentally sound, and profitable. 
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