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CHAPTER I 

INTRODUCTION 

With its introduction as a highly efficient thermoluminescent radiation 

dosimeter by Ginther and Kirk[l] in 1957, CaF2:Mn has been the subject of much 

study because of the wide range linearity of its thermoluminescent response to ra­

diation dose and the location of a major glow peak well above room temperature. 

Much of the early work centered around the operational importance of CaF2:Mn 

and its use in dosimeter applications. For instance, Schulman et. al. [2-4] discuss 

such issues as anomalous fading and Lucas et. al. [5] consider the various heating 

treatments designed to enhance reusability. However, it was not until the last two 

decades that detailed studies became available as to the role 3d ions play in alter­

ing the optical properties of CaF2. In fact the physical properties associated with 

transition metal ions and rare-earth ions in crystals of the fluorite structure have 

only been extensively studied since the 1970's. Gehlhoff and Ulrici[6] present an 

excellent review of this subject. 

In general, the purpose of these more recent studies has been to examine the 

processes of energy storage in this material following irradiation and the subse­

quent release of this energy in the form of luminescence. With regard to Mn in 

particular, optical absorption[7-10], photoluminescence[7,11-13] and thermolumi­

nescence (TL)[l,9,14-16] studies have led to a wealth of experimental data from 

which different models and energy level assignments have been put forward. For 

instance, CaF2:Mn irradiated at room temperature is characterized by one main 

TL glow peak near 550 K. If irradiated at 80 K a second more intense peak be­

comes present at 200 K[16]. The emission spectra of both peaks indicate a process 

which involves the relaxation of an excited *Mn2+ ion to a ground state Mn2+ ion 
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producing an emission peak at 495 nm. A peak at this same wavelenght from pho­

toluminescence measurements has been assigned to a transition from the 4 T19 ( 4 G) 

level of the Mn2+ ion[ll ). X-ray-induced luminescence has also been shown to emit 

at the same wavelength [7,12) 

Of particular interest is the work of McKeever et. al. [10) in which they 

describe a series of Mn absorption studies in CaF 2 with varying levels of Mn dopant 

before and after irradiation. Before irradiation they observe optical absorption 

spectra characteristic of internal Mn2+ transitions. After irradiation they observed 

not only an order of magnitude increase in the spectra but also the creation of new 

structure which they explain in terms of substitutional Mn2+ becoming associated 

with radiation-induced defects such as F-centers[lO). The model they present is 

that the adjacent F-centerbreaks the Oh symmetryofisolated substitutional Mn2+ 

impurities and the additional F-center electron couples with the 3d5 electrons in 

Mn2+ thus removing the spin and parity forbiddeness of optical transitions resulting 

in a greatly enhanced and more complex absorption pattern[lO). 

This idea is further enhanced by the observed thermal quenching of the 

absorption bands and the appearance of an intense TL signal at 495 nm during 

heating following irradiation. This is the same wavelenght that had previously been 

assigned to a transition from the 4T19 ( 4 G) excited state to the 6 A19 ground state 

in Mn. This model envisions several types of Mn-defect complex each differing 

as to the location of the radiation-induced defect with respect to the Mn2+ ion, 

the type of the radiation-induced defect, and the number of Mn2+ ions within the 

complex[lO). However, a remaining question is whether the observed spectra are 

due to internal Mn2+ transitions or whether the transitions actually take place 

within the F-center. 

According to the internal transition model, the association of the Mn2+ ion 

with the F-center gives rise to a spin exchange coupling which in turn increases 

the oscillator strength of the Mn2+ transitions by a factor of 103 • Since the ground 

state of the 3d5 electrons in Mn2+ is a spin sextet the excited state transitions all 

require a spin reversal and hence are spin forbidden. This and parity considerations 
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lead to excited state lifetimes greater than 10-3 s and oscillator strengths of the 

order 10-6 - 10-7 . Thus this theory relies on the perturbation of the neighboring 

defect to increase the oscillator strengths so that the internal Mn2+ transitions 

become visible and give measurable absorption peaks. 

The alternative model to explain the observed spectra and its annealing 

behavior does not rely on the enhancement of the oscillator strengths as such. This 

model stems mainly from the observation that a 564 nm absorption band quenches 

at the same temperature as the lower wavelength bands leading to the conclusion 

that the 564 nm band is due to the same defect as the lower wavelength Mn-related 

absorption bands. Since the quenching of the Mn-related bands is accompanied 

by a TL emission at 495 nm, and since this emission has already been confirmed 

as being due to the first excited state to ground state transition in Mn2+[10], it 

follows that the 564 nm band is not due to Mn2+ transitions. Therefore, the 

lower wavelength absorption bands are also not due to internal Mn2+ transitions. 

A model that could explain this behavior is that the transitions actually occur 

within an F-center perturbed by one or more Mn2+ ions. 

The above two models notwithstanding, optical dichroism measurements[l 7] 

indicate that the optically active defect possess C2v symmetry with an alignment 

along the (100)-direction. While several defect structures could posses this sym­

metry[18] (such as M-centers or Mn/ H-centers), this alignment indicates that the 

center could consist of an F~center perturbed by two Mn2+ ions. This model pro­

posed by McKeever et. al. [17] is shown as Fig. 1. 

While the available experimental data has gone far in illuminating the pro­

cesses involved and has even been responsible for a plausible qualitative model, 

the present state of research has reached a point where quantum chemical cal­

culations can begin to contribute insight. The employment of quantum chemical 

computational techniques now represent the next logical step in the understand­

ing of these processes. Molecular orbital calculations of defect clusters within the 

Hartree-Fock formalism and its extensions such as configuration interaction (CI), 
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Figure 1. Model for the Mn-perturbed F-center in CaF2 proposed by McKeever 
et. al. [17]. 
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many-body perturbation theory to second (MP2) and fourth order (MP4) and mul­

ticonfigurational self-consistent field (MCSCF) techniques have been incorporated 

into the Gaussian 92[19] general purpose quantum chemical program. With the 

recent incorporation of external charge distributions and an effective treatment of 

d electrons, large scale calculations of the electronic structure of both the ground 

state and excited states of defect clusters in crystals containing 3d ions can now 

be accomplished. This is also facilitated by the recent widespread availability of 

relatively inexpensive high-speed electronic computers. 

The ultimate purpose of this dissertation therefore is to analyze the Mn ab­

sorption spectrum in CaF 2 by the calculation of both the ground state and excited 

states of Mn-related defect structures. To model the absorption spectrum before 

irradiation we will perform calculations on the (MnF 8 ) 6 - cluster. This cluster is 

chosen to represent the isolated Mn substitutional impurity in an otherwise per­

fect, undamaged crystal. To model the spectrum after irradiation we will perform 

calculations on the F-center cluster, ( Ca4F 6)1+, and the Mn-perturbed F-center 

cluster, (MnCa3 F 6 Vac) 1+. These two clusters involve an electron trapped in a va­

cancy represented by diffuse electronic states and is therefore more sensitive to the 

external field due to the surrounding crystal lattice. As a consequence, a major 

part of this research project involved the development of a method to mathemat­

ically embed the cluster in a perfect crystal lattice and represent this external 

electrostatic field by a finite arrangement of charge. 

The methods employed include Unrestricted Hartree-Fock (UHF), Restricted 

Open-Shell Hartree-Fock (ROHF), CI, MP2 and MP4. The main questions center 

around cluster geometry, electron correlation and the effects of the basis set and 

the external field due to the surrounding ionic lattice. With this groundwork, 

the method of MCSCF is used for the calculation of excited state energy levels. 

The resulting mulitplet levels will then be compared to the experimental optical 

absorption spectra. To our knowledge, this will be the first time the MCSCF 

technique has been applied to 3d ions in crystals. 
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In addition to the above calculations, the ligand field Tanabe-Sugano[20] 

diagrams of the eight-fold coordinated Mn2+ impurity with Oh symmetry will be 

developed. It is to be noted that while ligand field theory has been applied to 

this system before[l0,11], the Tanabe-Sugano diagrams used in the analysis were 

for six-coordinated Oh Mn2+. From group theory the same terms will arise from 

both the six- and eight-coordinated systems, however, the spacing of the terms 

in energy will be effected by the coordination number and we will show that this 

leads to a larger value for the crystal splitting parameter Dq than has thus far 

been reported[l0,11 J. While ligand field methods provide a useful approach for 

analyzing the multiplet structure of the Mn2+ impurity, it must be noted that this 

approach cannot be accurately extended to more complicated defect structures 

such as a Mn-F-center complex. For this reason the MCSCF technique (which can 

be extended to the more complicated defect structures) must first be shown to 

work for the eight-coordinated Oh Mn2+ system. 



CHAPTER II 

LIGAND FIELD THEORY 

Introduction 

The lowest lying electronic level in Mn2+ is 6 5 arising from the configuration 

3d5 • In the free ion this configuration also gives rise to 4 G, 4 P, 4 D, and 4 F 

terms which lie 25000 to 50000 cm-1 above the ground level[21]. In a crystal 

the quartet levels are split by the influence of the surrounding ions, the most 

important of which are those immediately adjacent to the central Mn+ 2 ion ( "the 

ligands"). If the ligands are arranged at the corners of a regular tetrahedron, 

octahedron or cube then the strength of the ligand field may be specified by a single 

parameter, usually called Dq, from which it is possible to calculate the positions 

of the energy levels in the crystal arising from this perturbed Mn2+ ion. The bulk 

of the theoretical development surrounding the application of ligand field analysis 

to transition-metal ions in crystals rests in a series of early papers by Tanabe and 

Sugano[22] and Orgel[23] in which they discuss the splitting in the free ion terms 

of 3d ions for fields with various symmetries. Several books and review articles 

have also appeared in the literature most notably by Tanabe and Sugano[20] and 

Gliemann and Schlafer[24]. 

Some of the earliest work on Mn2+ surrounded by F-1 ions was carried out 

by Stout[21] in his analysis of Manganous Fluoride. Some of the first experimental 

results and applications of ligand field theory to the substitutional Mn2+ impurity 

in CaF2 , however, was performed by Alcala and Alonso[ll] in their analysis of 

photoluminescence excitation spectra and Bagai and Warrier[25] from ultraviolet 

optical absorption. However, these results lead to disagreement as to the value of 

Dq and the assignment of energy levels. One reason for this is that the analysis 
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of excitation spectra is limited in the sense that these measurements are only 

able to observe those absorptions that give rise to luminescence. It was not until 

1986 when optical absorption in the visible region was measured by McKeever 

et. al. [10] that the Mn2+ absorption transitions were observed directly. From 

the application of ligand field theory, McKeever et. al. suggest a value for Dq 

of 420 cm-1 . This was in agreement with Alcala and Alonso[ll] but differed 

significantly with the value of 810 cm-1 suggested by Bagai and Warrier[25]. The 

420 cm-1 value for Dq obtained by Alcala and Alonso, and McKeever et. al. is 

considered to be too low for it is only about 60% of those values for Dq obtained 

for compounds such as RbMnF3 , NaMnF3 and MnF2 [26]. For instance, an analysis 

of MnF 2 spectra led Stout[21] to assign a value of approximately 800 cm-1 for this 

system. Barriuso and Moreno[26] were the first to point out that the application 

of the published Tanabe-Sugano diagrams to the Mn impurity in CaF2 may not 

be valid while it remains valid for the RbMnF3 , NaMnF3 and MnF2 compounds. 

The reason for this is that while the symmetry of Mn2+ in these compounds and 

in CaF2 is Oh, Mn2+ is eight-coordinated in CaF2 instead of six-coordinated as in 

the other compounds. Furthermore, since the published Tanabe-Sugano diagrams 

were calculated assuming the six-coordinated Oh ligand field[20], their application 

to eight-coordinated systems may lead to a sizable error. Since both systems 

have Oh symmetry, the terms arising from the ligand field will remain the same. 

However, since group theory can only identify the symmetry and hence the number 

of the resulting terms, the remaining question as to the ordering of the terms and 

the magnitude of the splitting as a function of Dq remained unresolved. 

In this section we will briefly outline some of the principles behind ligand 

field theory and describe the calculation of the term splitting diagram for a 3d5 

ion in the presence of an electrostatic field of Oh symmetry. The field will be 

produced by eight point ions arranged as on the corners of a cube with the 3d5 

ion in the center. We will denote this field as 0~8). It is clearly impossible in this 

dissertation to provide in the space and time available an exhaustive treatment 

of ligand field theory; nor would it be desirable to do so. The full theory of 
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ligand fields is sufficiently rich and complicated so as to fill several dissertations. 

Instead the approach will be to establish the fundamentals for one and two electron 

systems*, provide a justification for the Racah parameters, and indicate how one 

would proceed to get the wave functions for 3d5 systems. The energy matrices for 

the 3d5 system will then simply be presented and diagonalized to provide the 0~8) 

term splitting diagrams. For the details several texts have been written on the 

subject, most notably by Tanabe and Sugano[20] and, Gliemann and Schlafer[24]. 

In addition there are numerous books on molecular group theory and quantum 

chemistry the reader may refer to. For group theory this should include texts by 

Cotton[27] and Tinkham[28], for quantum chemistry this may include the classic 

by Eyring, Walter and Kimball[29]. In addition, the theory of atomic spectra is 

treated extensively in the classic book by Condon and Shortley[30]. 

Group Theoretical Preliminaries 

In general, the wave functions of a state are the bases of an irreducible rep­

resentation of the group whose symmetry operations leave the system unchanged. 

Consider the Schrodinger equation for a given system, 

(1) 

where k = 1, 2 .... Say the system is invariant to symmetry operations R of group 

g. The Hamiltonian operator is invariant when it is transformed by R, thus, 

RHR- 1 = H. (2) 

Operating on Eq. (1) from the left with R we obtain, 

(3) 

So if ¢k is an eigenfunction of H with eigenvalue Ek then so is R¢k an eigenfunction 

with the same eigenvalue. Therefore in order to satisfy Eq. (1), R¢k must at most 

*by this we will mean 3d1 and 3d2 electron systems outside closed shells. 
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simply be equal to a constant times the same function back again. This is the case 

of non-degeneracy, that is, one eigenfunction ci>k for one eigenvalue t.k. 

For the case of degeneracies, the Schrodinger equation is written, 

(4) 

where, k = 1, 2 ... and i = 1, 2, ... gk with gk denoting the number of eigenfunctions 

that produce the same eigenvalue Ek. Operating with R in the group g we get, 

(5) 

Here we have gk eigenfunctions per eigenvalue Ek. The functions are said to span 

the kth degenerate subspace*. To satisfy Eq. (5), any operation R in the group g 

on c/>ki will transform it into another function which must lie in the kth degenerate 

subspace. That is, 
9k 

Rc/>kj = I: c/>kiri?(R), (6) 
i=l 

where riJ\R) are the numerical coefficients. This means that the new function 

Rc/>kj must at most be a linear combination of the set of functions within the kth 

degenerate subspace corresponding to the eigenvalue Ek. The matrix r(k)(R) is the 

representation for the operator R for the bases { c/>kii i = 1, 2, ... gk}. 

The connection between group theory and quantum mechanics can be now 

be stated. Given a group 9 which is the symmetry group of the system (i. e. 

RHR- 1 = H) the solutions to the Schrodinger equation, c/>ki, form the basis of the 

kth irreducible representation of this group. Every energy level (i. e. eigenvalue t.k) 

corresponds to an irreducible representation. Therefore, every energy level may be 

labeled by an irreducible representation of the symmetry group. Furthermore, the 

dimension of an irreducible representation is the degeneracy of its corresponding 

energy level. Since spectra measures energy levels we can denote spectra peaks by 

the irreducible representations of the symmetry group of the complex. 

* also called the ph manifold. 
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Representations that are irreducible for one symmetry group frequently be­

come reducible as the environment reduces symmetry. For example, an isolated 

atom has the symmetry of the full rotation group, R00 • The solutions to the 

Schrodinger equation are therefore basis of the irreducible representations of the 

full rotation group denoted {rs, r p, rd,···} having dimensions {1, 3, 5, · .. } respec­

tively. If the atom is placed in an environment of Oh symmetry the representations, 

{rs, r p, rd,···} become reducible. Given a reducible representation, group theory 

provides a method by which one may always reduce it to its constituent irreducible 

representations[27]. Specifically, rs---+ a19 , rp---+ t1u and rd---+ e9 (£d 29 • The results 

of group theory are exact. From symmetry arguments alone we can say that for 

the case of a single d electron outside closed shells, if the isolated atom is placed 

in an environment of Oh symmetry the 5-fold degenerated orbitals break up into 

a 3-fold degenerate and a 2-fold degenerate level. As far as the magnitude of the 

splitting is concerned group theory cannot answer this. This is because group 

theory does not allow one to actually solve the Schrodinger equation. It simply 

gives us information concerning the symmetry of the solutions once the symmetry 

of the Hamiltonian is known. In order to get the magnitude of the splitting one 

must at least approximately solve the Schrodinger equation. In this dissertation 

we will discuss two approaches, (1) ligand field perturbation theory and, (2) the 

method of Hartree-Fock. The method of ligand field perturbation theory will now 

be discussed. 

One electron in a cubic field 

Following the development of Tanabe and Sugano[20] we will first consider 

the case of a single d electron outside otherwise closed shells in a cubic six­

coordinated ( Oi6)) field. While we wish to consider the eight-coordinated ligand 

field, it turns out that the formalism is simplified if one works through the develop­

ment for the six-coordinated system and then introduce the necessary corrections 

to convert to the eight-coordinated field at the end. For our purposes we will 

denote the six- and eight-coordinated oh fields by Oi6 ) and ots) respectively. 
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Figure 2 defines the coordinate system. The 3d ion is located at the origin 

with six point charges arrayed along the axis as shown a distance a from the center. 

Each point ion has charge Z. The Schrodinger equation for this system is, 

[-:~ V2 + U(r) + Vc(r)] ¢(r) = tcp(r), (7) 

where U(r) is the potential energy due to the electrostatic field of the nucleus. 

Vc ( r) is the potential energy of an electron in the ligand ( or crystal) field and is 

written, 
6 ze2 

Vc(r) = L JR·_ rj, 
i=l ' 

(8) 

where r is the electron coordinate and Ri is the position of the ith point ion. The 

potential energy is usually expanded in terms of Legendre polynomials, thus, 
6 00 

Vc(r) = Ze 2 L L a-1 (r/alPk(coswi), (9) 
i=l k=O 

where Wi is the angle between R; and r. Using the addition theorem for spherical 

harmonics, Vc(r) can be written[20], 
00 k 

Vc(r) ~ L L rkqkmc~)(Ocp), (10) 
k=O m=-k 

where, 

(11) 

and, 

(12) 

The coordinates ( r, 0, ¢) locate the electron and the coordinates ( a, O;, <Pi) locate 

the ligand point ions. Since {(01, ¢i), (02, ¢2), · · ·} = {(i, 0), (i, i), ···},we know 

the qkm's. These are given by, 

qko = ( 2 ) 1/2 z 2 
2k+l ak:l [ek0(0)+48ko(i) +ek0(7r)] 

(m : even =f. 0) 
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>y 

/ X 

Figure 2. A 3d atom surrounded by six point charges, -Ze; Oh symmetry. Here 
Z > 0 · for the negative charge and Z < 0 for the positive charge. 
The distance between the 3d atom and each point charge is a, so 
that the system has cubic symmetry. 
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here 8km(B) is defined by, Ykm(B¢) = (21r)-1!2ekm(B)eim<t>. We are thus able to 

expand the potential energy due to the ligand field in terms of the spherical har­

monics, thus, 

Ye(r) = 6~e' + 7!~' r 4 { cl4)(0<p) + ( 1:) 
112 [Cj')(O<p) + C~~(O¢)]} 

+ 3f.:' r6 { cJ6)(e¢) - ( D 112 
[Cj6\e,p) + C~6)(0¢)]} 

+ (13) 

This field giving rise to the potential energy whose angular dependence is given 

by this equation is called a cubic field. The first term is a constant and represents 

the potential energy of the electron at the origin and elevates all the energy levels 

by the same amount, 6Ze2 / a. As we will see the other terms split some of the 

degenerate levels. Since the first term in Eq. (13) is independent of the electron 

coordinate and since we will only be interested in the relative energy differences 

we will shift the energy origin by 6Z e2 / a. In what follows we shall work with the 

potential energy function V:,0 ( r) given by, 

i~o(r) = Vc(r) ~ 6Ze2. 
a 

(14) 

V:,0 (r) will act as the perturbation on the isolated atom. 

The unperturbed wave function may be written, 

<Pnlm(r) = Rn1(r)Yzm(B¢). (15) 

From perturbation theory[29], the first order correction to the energies is given 

by diagonalizing the matrix consisting of elements formed from the perturbing 

operator, V:,0 (r), and the unperturbed states. These matrix elements are, 

(16) 

It may be demonstrated [20] that Eq. (16) is nonvanishing only when, 

k + l + l' = even and 1 z - l' I s:; k s:; z + z'. (17) 
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The matrix elements of 11;;0 between the s(l = l' = 0) and p(l = l' = 1) vanish. For 

the s states k = 0 and the expansion of 11;;0 does not include a k = 0 term. For the 

p states k = 0, l, 2 and again 11;;0 does not include k = 0, l or 2 term. Therefore the 

s and p states do not split in a cubic field. This result agrees with that predicted 

from group theory. Between the d states (l = l' = 2), k = 0, l, 2, 3, 4 so we see 

that terms for k > 4 vanish. So setting n = n' and l = l' = 2 we get the following 

matrix elements, 

( ¢nd±2 I 1/;;0 I ¢nd±2) 

(¢nd±1 l"V;;0 1¢nd±l) 

( ¢nd0 I 1/;;0 I ¢nd0) 

( ¢nd±2 I 1/;;0 I ¢nd-:r:-2) 

where D = 35Ze2 /4a5 and q = (2/105)(r4 )nd *. 

Dq 

-4Dq 

6Dq 

5Dq (18) 

From degenerate perturbation theory, the perturbed energies, E, of the 3d 

level due to the presence of the point charges is given by solving the secular equa-

tion, 

E~ + Dq - E 0 0 0 5Dq 

0 E~ - 4Dq - c 0 0 0 

0 0 E~ + 6Dq - c 0 0 =0 

0 0 0 E~ -4Dq - c 0 

5Dq 0 0 0 E~ + Dq - E 

(19) 

where c~ = Ed + ( 6Z e2 /a). From this secular equation we get the following five 

roots; three are the same and two are the same. 

c(1), c( 2), c(3 ) = E~ - 4Dq = c( t29 ) 

c(4), c(5) = E~ + 6Dq = c( e9 ) 

(20) 

(21) 

Figure 3 shows that for the six-coordinated Oh field, the energies of the 3d levels, 

Ed, is first raised by a constant factor 6Z e2 / a to E~ and then split into c( e9 ) and 

*(rm)nd = Jr2+m1Rnd(r)l 2dr 
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c( i29 ) as the angular perturbation of the Oh field is accounted for. We find that 

the magnitude of the splitting is lODq. 

Also from degenerate perturbation theory we find that diagonalizing the per­

turbation matrix ( that is, solving the secular equation), leads to the wave functions 

of the split levels. For the t29 state: 

For the e9 state: 

( i I h)( <P3d1 + <P3d-1 ), 

-(1 / V2)( <P3dl - <P3d-1), (22) 

(23) 

The functions {<Pl, <PrJ, <Pc:} form the basis for the t29 irreducible representation and 

the functions { 1)µ, <Pv} form the basis of the e9 irreducible representation of the Oh 

group. 

Two electrons in a cubic field 

The two-electron wave functions 

For the case of the one d electron in a cubic field* we treated the interaction 

with the ligand field as the perturbation. Also for the one electron case we did not 

include spin explicitly nor did we have to consider antisymmetry. In this section 

will introduce the methods required to treat two or more 3d electrons in the ligand 

field. We will work out much of the detail for two electrons and then argue that 

by using the same methods one may successfully treat the 3d5 case. 

The general plan of attack in constructing the two-electron wave function 

will involve the following five elements. 

• Explicitly include spin. 

* again, by this we actually mean one d electron outside otherwise closed shells 
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,..-...-- €(e9) 2-fold degenerate 
, , 6Dq , 

eo ----~: ______ _ 
d • ......... 4Dq / ......... _____ e{t

29
) 

,' 6Ze2/a 
I 

I 
I 

I 

Ed-·---' 

3-fold degenerate 

Figure 3. The splitting of one-electron energy levels for the six-coordinated Oh 
field. td is first raised by a constant factor 6Ze2 / a to t~ and then 
split into t(e9 ) and t(t 29 ) as the angular perturbation of the Oh field 
is accounted for. 
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• Include the principle of antisymmetry. 

• Construct the two-electron wave functions out of the perturbed one-electron 

wave functions from the previous section. In this way we build in the ligand 

field effects. 

• Construct the two-electron wave functions in such a way that they maintain 

symmetry. That is, the two-electron wave functions must form the basis for 

the irreducible representations of the symmetry group; in this case Oh. 

• Treat the inter-electron coulombic interaction as a perturbation. 

Notice that we will assume here that the ligand field is much stronger than the 

inter-electron interaction. This is the so-called strong field approach[20]. 

For a stationary nucleus and two electrons, the Schrodinger equation is, 

(24) 

where c,i ( i = 1, 2) is the spin coordinate of electron i and takes on two values 1 /2 

and -1/2. In accordance with perturbation theory, we split the Hamiltonian as, 

H = Ho+H1. (25) 

Ho is the unperturbed ( or "core") Hamiltonian and is, written H 0 = f1 + f2 where 

fi = -fv'; + Vc(ri)- The perturbation is produced by H1 = 912 = l/r12 where 

r12 = lr1 - r2 I and represents the inter-electron coulombic interaction in atomic 

units. 

The standard way to proceed is to first solve the unperturbed problem. The 

unperturbed Schrodinger equation is, 

(26) 

Since Ho = f1 + f2 , the solution to this equation can be obtained if the solution to 

the single electron problem is known. This equation is, 

(27) 
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Since the operator f does not include the spin-coordinate, <Pk(r, a) is given by a 

simple product of a spatial orbital function, <Pk(r) obtained from solving Eq. (27), 

and a spin function a(a) or /3(a). Thus <Pk(r, a) is called a spin-orbital. The spin 

functions are defined as, 

a(a = 1/2) = 1 

f3(a = 1/2) = 0 

a(a = -1/2) = 0 

f3(a = -1/2) = 1. (28) 

One could construct the unperturbed two-electron wave function as a simple 

. product of the spin-orbital solutions to the one-electron problem. However a simple 

product is not antisymmetric. Another choice is to construct the unperturbed two­

electron solution, Wok1(r1, a1, r2, a2), as an antisymmetrized product of the spin 

orbitals. The simplest antisymmetrized product is a single Slater determinant, 

thus, 

(29) 

It can be shown that the Slater determinant is an eigenfunction of H0 with eigen­

value Eo =Ek+ tz. 

For the one electron case only two configurations are possible, t 29 and e9 • 

If we add one electron but do not let the. two electrons interact, the possible 

configurations become, t~9 , e; and t 29e9 • Since, 

Et2 9 (ef>elflef>e) = (ef>7)1flef>7)) = (<t>,lflef>c) = c~ - 4Dq, 

Ee9 (</>µlfl</>µ} = (<Pvlfl</>11) = E~ + 6Dq, 

the unperturbed two-electron energies then are, 

2(</>µlfl</>µ} = 2c~ + 12Dq, (30) 

(ef>elflef>e) + (</>µjfj</>µ) = Et29 + Ee9 = 2c~ + 2Dq. 

The next step is to determine the degeneracy of the three unperturbed two-electron 

states t~ , e2 and t 29e9 • Consider for example the t~9 state. We know that the or-
g g . 

bital functions associated with t29 are ef>e(r), ef>7J(r) and ef>c(r) which we will simply 
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write as e(r), ry(r) and ((r). Since we have two spin functions a(a-) and /3(0-) we 

have six spin orbitals e(r)a(o-),e(r)/3(0-),ry(r)a(o-),· · ·. So there are six ways of 

placing the first electron in the first t 29 single-electron state. However, because 

of the exclusion principle the second electron cannot be placed in the spin orbital 

where the first one is already accommodated, so the number of ways of accom­

modating two electrons is given by the binomial coefficient 6 C2 = 2~!! = 15*. 

Abbreviating the spin orbitals for example ea and e/3 as e and (, we get the 

following 15 unperturbed two-electron states for the t~9 configuration: 

1e,,,1 lliJI 1"7(1 liJCI 1ce1 1((1 

leiJI 1("71 1"7(1 liJ(I 1((1 1ce1 (31) 

1ee1 l'TliJI 1((1 

In the same way we get 4C2 = 6 for the e~ configuration and for t 29 e9 we need 

not worry about the exclusion principle so we get 6 x 4 = 24 different valid ar­

rangements. \Vhen the inter-electron interaction is neglected all the states arising 

from the different configurations are degenerate. This degeneracy will be partially 

removed when the inter-electron interaction is taken into account. We could pro­

ceed according to degenerate perturbation theory and diagonalize the H1 matrix 

formed from the unperturbed two-electron wave functions. These matrices would 

be 15 x 15 for t~9 , 6 x 6 fore~ and 24 x 24 for t 29 e9 • However, just as for the single 

electron case we can determine the splitting by group theory. 

\Ve note that the total Hamiltonian H 0 + H 1 is invariant under an operation 

R of the Oh group. Therefore, according to group theory the eigenfunctions as­

sociated with a certain energy level of this system are the basis of an irreducible 

representation, say r, of the Oh group. Therefore every energy level may be labeled 

by r. Also, the full Hamiltonian commutes with the spin operator S. Therefore 

S2 is a constant of the motion and has a definite value S( S + 1) in the eigenstate. 

As a whole, the energy levels are characterized by sr and have ( 2S + 1) x (r )­
fold degeneracy. Here (r) is the dimension of the irreducible representation r. The 

* C n! 
n k = k!(n-k)! 
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25 + 1 occurs because the eigenvalues Ms of Sz in the eigenstate take on values 

5, 5 -1, ... - 5 + 1, -5 and the energy eigenvalues are independent of these values 

of .Ms. The energy levels characterized by 5f are called terms and are denoted 

by 2s+1 r. The (25 + 1) x (f) wave functions of the 2s+i r term are expressed as 

w(a5I'M1 ) where, 

0:: denotes the parent configuration, t~9 , e;, t 29e9 in this case, 

5: is the spin angular momentum quantum number, 

f: is the irreducible representation of the symmetry group for which w( a5I' M 1) 

transforms, 

M: is an abbreviation of Ms, 

;: denotes the different functions which form the bases of r, that is, if r is 

three-dimensional , indexes the three different functions. 

From the Slater determinants for each configuration t~9 , e; and t 29e9 we 

must find linear combinations to construct the W ( 0:5f M 1 ) functions such that 

they satisfy the following requirements, 

Rw(a5I'M1 ) 

s 2 w(0:5rM1 ) 

Sz'll(a5I'M1 ) 

L w( asr M1 ')r ,,,,,(R), ,,, 
S(S + l)'ll(0:Sf M 1 ), 

Mw(aSI'M1). 

(32) 

(33) 

(34) 

We note that since the W(aSI'M1 ) functions are the unperturbed two-electron 

wave functions so they of course must be eigenfunctions of H 0 , but because they 

are being constructed out of linear combinations of the Slater determinants given 

above they already are. 

From group theory, the functions '11(0:Sf M,) will transform as basis of their 

respective product representations. That is, 

w(t~9 Sr M,) 

w(e;srM1) 

w(t 29e9 SI' M 1) 

will transform as 

will transform as 

will transform as 
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We will adopt a notation using capital letters to denote the irreducible repre­

sentations of the symmetry group under which the many-electron wave functions 

transform. 

We will not develop the theory of product representations here except to say 

that each of these product representations are reducible in the Oh group. That is, 

it can be shown[20,27,29] that, 

A19 EB E9 EB T19 EB T29 , 

A19 EB A29 EB E9 , 

(35) 

(36) 

(37) 

From group theory alone we have determined that the t~9 level splits into 4 levels, 

the e; level into 3, and the t 29e9 splits into 2 levels. 

Now to deal with spin multiplicity. For a two electron system S = 0, 1, this 

means for example that the t~9 configuration the following terms are possible, 

t 2 . 
2g. 

For the e; and t 29e9 configurations the following terms are possible, 

e2 • 
g • 

(38) 

(39) 

( 40) 

From group theory alone we cannot ascertain the spin multiplicity of each term. 

One must actually construct the wave functions. 

Without presenting the details, the formula for constructing the two-electron 

unperturbed wave function from the Slater determinants which is base I of irre­

ducible representation r of the Oh group and at the same time an eigenfunction 

of the S2 and Sz operators with eigenvalues S(S + 1) and M respectively is[20], 

\JJ(aSI'M,) = 
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( 41) 

where (!m1 !m2 1SA1) are the Wigner spin-coupling coefficients and (f 111f 212 lf,) 

are the Clebsch-Gordan vector coupling coefficients. They are tabulated in texts 

dealing with the subject of multiplet structure such as Condon and Shortly[30] 

or Tanabe and Sugano[20]. As one example we consider the specific case where 

a = t~9 . Equation ( 41) becomes, 

m1 ,m2=±1/2 'Yl ,'Y2={,77,( 

( 42) 

where, S = 0, l, M = -S, -S + 1,.;. S, r = A19, E9, T19 , T29 , and I denotes 

the different functions which are the basis of the irreducible representation r (for 

example, 1 takes on three values if r = T19 , say, a, /3, 1 ). By using this formula 

we find that of the eight possible sets of 25+1 r for t~9, the wave functions of 3 A19 , 

3 Eg, 1 T19 , and 3T2g are identically zero. This leaves only the four terms 1 A19 , 1 Eg, 

3T1g and 1T2g. So we find that the wave functions for the t~9 configuration are, 

1 A . lg. 

lE . g . 2-fold degen. 

3T lg: 9-fold degen. 

lT . 2g. 3-fold degen. 

w(t~/ A1g) = [1ee1 + 177n + 1cc1H1/h) 

{ \JJ(t~/ Egu) = [-le(l -177171 + 2l((l](l/V6) 

\JJ(t~/ Egv) = [le(l - l77iJl](l/V2) 

\JJ(t~/T1g111 = 1,) = le11I 

\JJ(t~/T1gM = O,) = [lenl -111(1](1/\1'2) 

\JJ(t~/T1gM = -1,) = l(iJI 

{ w(t~g 1T2gO = [len1 + l11!IJ(1/J2) 

( 43) 

( 44) 

( 45) 

( 46) 

In the same way the remaining terms from the e; configuration are 1 A1g, 3 A29 , 1 Eg. 

The remaining terms for the t2geg are 3T1g, 3T29 , 1T1g and 1T29 . Figure 4 shows the 

splitting of the two-electron configurations. 
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Figure 4. The surviving terms arising from the two-electron configurations, t~9 , e; 
· and t29e9 • Note that all the states possible from group theory are 

not manifested in the final term splitting. Also the total number of 
states must be conserved. 
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Term energies 

In this section we will develop some of the ideas behind the calculation of term 

energies and the definition of the Racah parameters. As a means of illustration we 

will continue with the two electron case. 

From first order perturbation theory, we get the first order correction to the 

energy by calculating the matrix elements of the perturbation operator H1 between 

the unperturbed wave functions found in the previous section. We get the final 

energies by diagonalizing the total Hamiltonian matrix, Ho + H1 . For instance, 

the first order correction to the energy of the state 1 A19 of the configuration t~9 is 

given by solving, 

( 4 7) 

Since \]i ( t~/ A19 ) 

type, 

[l~(I + 111111 + 1((1)(1/\/'3), we must evaluate integrals of the 

( 48) 

where ,\1 , ,\ 2 represent t 29 and/or e9 . The spin orbitals </>>..m-r(r(J') can be written, 

( 49) 

where the spin functions are defined in the usual sense, 

Oll(i) = 1 
2 2 

Bll(l) = 0 
2 2 

Since 1/r12 does not depend on spin coordinates, the spin part of each spin orbital 

can be summed over. It can be shown that an integral of this type may be written, 

for ,\1 = ,\~, 11 = 1~ and A2 = ,\;, 12 = 1~, as[20), 

(50) 
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where, 

J(.\111.\212) j dr1dT2<PAni (r1)</>;2,,2 (r2) 

X (2-) <P,\rn(r1)<P,\n2(r2) = (.\111A212ll.\111A212), (51) 
1 12 

is called the Coulomb Integral, and where, 

K(.\111.\212) J dr1dr2</>t,,1 (r1)</>;2,,)r2) 

x (-1 ) </> ,\n2 ( r1 )c/>,\rn ( r2) = ( .\111 A212 I I .\212A111), ( 52) 
1 12 

is called the Exchange Integral. We note that J(.\111.\212) 2:: K(.\111.\212 ) 2:: 0[20]. 

Using the two-electron wave functions obtained for the various terms we may 

now express the first order correction to the energy in terms of the Coulomb and 

Exchange Integrals. Recall that .\1, .\2 represent t 29 and/or e9 and 11 , 12 index 

the functions associated with either .\1 or .\2 . For instance, if .\1 = t29 then 

11 = ~' 77, (. If .\1 = e9 then 1 1 = µ, 11. Lets consider the t~9 configuration. In this 

case ,\1 = .\2 = t 29 and 11 , 12 = ~' 77, (. If we only consider the t~9 configuration we 

can simplify the notation by writing J(t2911t2912) as Jbn2) and K(i2911i2912) as 

Kb112 ). With this notational convention we find for t~9 [20], 

It turns out that if the t 29 functions are d-functions, the 1 E9 and 1T29 terms are 

degenerate. Figure 5 shows a diagram of the splitting of the two-electron terms 

arising from the t~9 configuration. 
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Figure 5. Splitting diagram for the one- and two-electron states. Starting with 
the one-electron configurations, t2, and e,, as one more electron is 
added but ·not allowed to interact with the previous one we form 
the two-electron configurations, t~9 , t29e9 and e;. As shown is the 
splitting of the t~9 configuration under the inter-electron repulsion 
perturbation into the 3T19, ( 1 E,1T2,) and 1 A11 terms. 
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Slater Integrals and Racah Parameters 

VVe will assume that the t29 and e9 wave functions have a pure d character. 

However, this approximation does not necessarily mean that the radial part R3d(r) 

be that of a free atom or ion. In this sense we will write Rd(r) for R3d(r). Since the 

t29 and e9 wave functions are now assumed to be linear combinations of <Pdm(r) = 
Rd(r)Y2m( 0¢;) (m = 2, 1, 0, -1, -2), for instance, <Pc= (-i/v'2)( <P3d2 - ¢3d-2), etc. 

. For example, for J ( ( () in the previous section one has, 

J((() (t29 (t29 (11t29(t29 () = J dr1dT2 ( ~) [ef;d2(r1) - ef;d_2(r1)] ( ~) 

x [<Pd2(r2) - <Pd-2(r2)] ( r~J ( ~) [<Pd2{r1) - <Pd-2(ri)] ( ~) 

x [<Pd2(r2) - <Pd-2(r2)] 

i[(22ll22) + (-2 - 211- 2 - 2) + (2 - 2112 - 2) 

+ (-2211- 22) + (2 - 211- 22) + (-22112 - 2))' (57) 

where, 

One may expand 1/r12 in terms of Legendre polynomials, thus, 

where r < is the lessor and r> is the greater of r 1 and r 2 . One then finds[20], 

(221122) 

(2 - 211 - 22) 

where, 

(-2 - 211 - 2 - 2) = (2 - 2112 - 2) = (-2211 - 22) 

p(O) + i_ p(2) + _l_p(4) 
49 441 

(-22112 - 2) = :4°1 p(4l, 

(59) 

(60) 

(61) 
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are called Slater Integrals or Slater-Condon Parameters. To simplify the results, 

F/s are often used in place of the p(k)'s where, 

Fo = p(o), F = ~p(2) 
2 49 ' 

F = _l_p(4)_ 
4 441 

(62) 

We then find, J( (() = Fo+4F2 +36F4. We could also define the Racah Parameters 

A, B, C by, 

A= Fo - 49F4 

B = F2 -5F4 (63) 

then J ( ( () = A + 4B + 3C. Table I shows ten two-electron integrals in terms 

of Racah parameters[20]. With the definitions of the Racah parameters given in 

Eq. (63), it is possible to express all the matrix elements of H 1 in terms of the A, 

B, or C parameters. For instance Eqs. (53) -(56), now may be written, 

TABLE I. 

TEN TWO-ELECTRON INTEGRALS IN TERMS 
OF THE RACAH PARAMETERS 

J((() =A+ 4B + 3C 
J(('l) = A - 2B + C 
I<(('!) = 3B + C 
J((µ)=A-4B+C 
I<((µ)= 4B + C 
(~17\ \(µ) = v13B 

J(µv)=A-4B+C 
I<(µv) = 4B + C 

J ( ( v) = A + 4B + C 
I<((v) = C 

(64) 

(65) 

(66) 

(67) 
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Equations (64)-(67) are the diagonal elements of the H1 operator in the t~9 mani­

fold. However, the entire H1 matrix is not diagonal. For cases where two different 

configurations give terms with the same symmetry and spin multiplicity, their ma­

trix element will, in general, be nonzero. For instance, the t§9 and e~ configurations 

both give rise to a 1 A19 term. The matrix element between these terms, expressed 

in Racah parameters is, 

(68) 

In this way terms with the same symmetry and spin multiplicity arising from differ­

ent configurations interact. The act of diagonalizing the full H1 matrix including 

these off-diagonal matrix elements is called configuration interaction. Table II 

shows the complete set of Coulomb interaction matrices of the 3d2 system ex­

pressed in terms of Racah parameters. A common factor of A exists along the 

diagonal of each matrix and has been subtracted out since in the final analysis we 

are only interested in relative energy differences. 

Diagonalization of the two-electron energy matrices 

The final step in constructing the term splitting diagrams is to form the 

total energy matrix H 0 + H 1 and solve for the energy eigenvalues by dii:tgonalizing 

it. It should be noted that the construction of the Coulomb interaction matrix 

H 1 has nothing to do with the ligand field. It should be recalled that H 1 was 

constructed using first-order perturbation theory for the inter-electron interaction 

only. To take into account both the ligand field and the inter-electron interaction 

we must now add Ho and H1 and thereby construct the total energy matrix. 

From Eq. (30) we see that Ho consists of only diagonal elements in the electronic 

configuration. Therefore to construct the total energy matrix we need only add 

2c~ + ( -4n + 6m )Dq for configuration t;9 e;' along the diagonal of the Coulomb 

interaction matrices in Table IL As an example, the total energy matrix for the 



TABLE II. 

MATRIX ELEMENTS OF COULOMB 
INTERACTION FOR THE 

3d2 SYSTEM 

1 A19 (1G,1 S) 
t~ e2 

lOB + 5C V6(2B + C) 

t2 
2 

B+2C 

8B+4C 

e2 

-2~B 
2C 

1 T29 (1 D, 1 G) 
t~ t29e9 

B+2C 2~B 
2C 

3T1g(3 F, 3 P) 
t~ t29 e9 

-5B . 6B 

i29 e9 1T1 9 (1G) 
t29e9 3 T2g{3 F) 

e2 3 A2g(3 F) 

4B 

4B+2C 
-8B 
-8B 

31 
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IA . 
19 terms 1s, 

( 
10B+5C-8Dq v6(2B+C) ) 

v6(2B + C) 8B + 4C + 12Dq 

B ( 10 + 5g - 8(Dq/ B) v6(2 + g) ) 

v'6(2 + g) 8 + 4g + 12(Dq/ B) 
(69) 

where we have dropped the term 2E~ common along the diagonal since our concern 

is only with relative energies. To apply the theory to the analysis ofexperimental 

data it is convenient to plot the energies of the states as a function of the parameters 

involved in the energy matrices. For this purpose it has been found that the ratio 

C / B = g is almost independent of both the atomic number and the number of 

electrons in the iron-group ions[20]. It is therefore possible to reduce the number 

of parameters. 

This fact can be understood by the following discussion. If the radial part 

of the wave function Rd(r) is assumed to be that of a hydrogen-like or Slater-type 

wave function with an effective nuclear charge, then, 

(70) 

where, 

(71) 

then the Slater integral p(k) given in Eq. (61) is calculated as[20], 

(72) 

which is always proportional to tc. Therefore from Eqs. (62) and (63) we see that 

the ratio of B to C is independent of tc. Since tc is a measure of the ionic size both 

isolated and when placed in a crystal field, and since the ratio B / C is independent 
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of 1,;, it should show little variation from ion to ion and from crystal environment 

to crystal environment. From spectroscopic data for the Mn2+ free ion, g has been 

found to have a value of 4.48 by Stout[21], however, Tanabe and Sugano[20] report 

a value of 4.42. 

It is now a simple task to diagonalize the matrix of Eq. (69). Using g = 4.42 

the eigenvalues of Eq. (69) are, 

iA . lg. 
E(Dq/ B) 

B 
57.78 + 4(Dq/ B) ± J 5 [206.08 - 5l.36(Dq/ B) + 80(Dq/ B)2] 

2 
(73) 

In this fashion we are able to calculate E / B as a function of Dq/ B for each term 

arising from the two-electron system in the 0h6) ligand field. Figure 6 shows E / B 

versus Dq/ B for all the two-electron terms. The diagram is constructed so that 

the energies of the higher terms are measured with respect to the ground state 

term, 3T19 • 

The d5 System in Oh8) Symmetry 

With the theoretical background reviewed in the previous sections, the prob­

lem at hand is to calculate the crystal splitting diagram for the d5 system in 0h8) 

symmetry. As far as the change in the ligand field symmetry is concerned, this 

only enters the formalism by a change in the unperturbed Hamiltonian matrix 

H 0 . For the Oi6) system the Ho matrix consists of diagonal elements that de­

pend only on the configuration, namely, (6m - 4n)Dq for t29e;. As discussed by 

Gliemann and Schlafer[24], for the Oh8) system the matrix elements are given by 

. ( 4n - 6m) ~ Dq. We see will see this leads to an in version of the configurations 

in energy and produces a smaller magnitude in the splitting for a given value of 

Dq. This will then lead to larger Dq values for the Mn-impurity in CaF2 than has 

hitherto been reported in the literature. The matrices for the inter-electron inter­

action, H1 remain unchanged in going from Oh6) to 0h8) symmetry since they only 

reflect the Coulomb interaction between the electrons around the central nucleus. 
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Figure 6. Crystal field splitting diagram for the d:-, 016) system obtained from 
diagonalizing the total energy matrices. The diagram is constructed 
such that the energies of the higher term energies are measured with 
respect to the ground state term, 3T19 • 
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In this discussion we will be interested in the sextet ground state and the 

quartet excited states. While the d5 system will lead to many doublet states, 

experimentally transitions into them cannot be measured due to the highly forbid­

den nature of these transitions. It is true that transitions from the ground state 

sextet to excited state quartets are dipole forbidden, with proper experimental 

techniques these have been measured[lO]. For the d5 system the free ion terms 

in order of increasing energy are: 6 S, 4 G, 4 P, 4 D and 4 F. By the application of 

group theory and the spin and vector coupling methods discussed in the previous 

sections, we find that these free-ion terms break into multiplet terms that are the 

irreducible representations of the Oh group. However, not all the terms allowed by 

group theory actually manifest themselves. Table III shows the free-ion terms and 

the surviving Oh terms. Also shown are the configurations that give rise to those 

terms[20]. Note that the t39 and t29 e! configurations are not present since these 

will only lead to doublet terms. 

Considering just the sextet and quartet terms, the Coulomb interaction ma­

trices for the d5 system under Oh symmetry are given in Table IV. Again the 

common factor of A along the diagonal of each matrix is subtracted out. For a 

listing of the doublet Coulomb matrices, the reader is referred to Appendix A. 

TABLE III. 

THE SURVIVING Oh TERMS ARISING FROM THE 
SEXTET AND QUARTET FREE-ION TERMS 

Free-ion terms oh terms 

4p 
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Next the contribution due to the unperturbed Hamiltonian matrix, H0 is included 

by adding a factor of ( 4n - 6m) ~ Dq along the diagonals of the Coulomb matrices 

in Table IV. This done, the full energy matrices are diagonalized to find the energy 

eigenvalues as a function of Dq/ B. Figure 7 shows the full crystal field splitting 

diagram for the d5 system with Ol8) symmetry. This diagram includes the ground 

state sextet and all the quartet and doublet terms. The matrices for the doublet 

terms where quite large and had to be diagonalized numerically. This was easily 

accomplished using the Mathematica™[31] computer mathematics system. 

To complete the analysis this diagram must be compared to experimental 

data so that the crystal field splitting parameter Dq can be determined. Figure 8 

shows the optical absorption spectrum for CaF2 :Mn (3%) obtained by McKeever 

et. al. [10]. The figure shows the spectra peaks and their term assignments. From 

the Mn spectra for several hosts it has been found that the sharp peak at 395 nm is 

relatively independent of the crystal lattice. Therefore this peak has been assigned 

to a transition from 6 A 19 ( 6 S) to 4 A 19 ( 4G). From Table IV we see that the 4 A19 ( 4G) 

term is independent of Dq and the 4 A19 ( 4 G) - 6 A19 ( 6 S) separation is lOB + 5C. 

Then assuming a C / B ratio of 4-.48, McKeever et. al. calculate B = 781cm-1 and 

C = 3.498 x 103 cm-1 . With these values of B and C, the diagram of Fig. 7 is re­

calculated with Dq as the only independent parameter. Figure 9 shows the crystal 

field splitting diagram for these values of B and C. As in the other diagrams, 

the energies are presented with respect to the ground state 6 A 19 ( 6 S). For clarity, 

only the quartet excited states are represented in the diagram and since only spin 

.5/2 to 3/2 transitions can be observed. The dashed line shows the value of Dq 

that gives the best fit to the experimental data of McKeever et. al. [10]. With the 

proper crystal field splitting diagram for Ol8) symmetry the observed Dq value is 

now 570 cm-1 instead of the much lower value of 420 cm-1 which brings it more 

in line with expectations. 



TABLE IV. 

THE SEXTET AND QUARTET COULOMB 
INTERACTION MATRICES FOR 

THE d5 SYSTEM 

-l7B+6C 

4Tzg(4F, 4D, 4G) 
t~ e2 

-v6B 

-25B + 6C 

-22B + 5C 

3./iB 
-l6B + 7C 

-22B + 5C -2v3B 

t~9 e~ 4 A29 ( 4 F) 
t~9 e~ 4 A19 ( 4 G) 
t~ e2 6 A1g(6 S) 

-21B + 5C 

-l3B + 7C 
-25B + 5C 

-35B 

t2 e3 
2 

-4B-C 
-v6B 

-l7B + 6C 

-C 
-3./iB 

-25B + 6C 
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Figure 7. Full crystalfield splitting diagram for a d5 system with Oi8> symmetry. 
This diagram includes the ground state sextet and all the quartet 
and doublet terms. The energies are with respect to the ground 
state term 6 A19 • 
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Figure 8. Optical absorption of an unirradiated specimen of CaF2:Mn {3%). The 
absorption peaks have been assigned to the multiplet terms arising 
from the free-ion energy levels 4G, 4D, 4P and 4F as described in 
the text. {McKeever et. al. [101) 
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Figure 9. Crystal field splitting diagram for the d5 system in Oi8) symmetry 
for B = 781cm-1 and C = 3.498 x 103cm-1 • The energies are 
presented with respect to the ground state 6 A19 • The dashed line 
shows the value of Dq that gives the best fit to the experimental 
data of McKeever et. al. [10) 



CHAPTER III 

THE METHOD OF HARTREE-FOCK 

The Hartree-Fock Wave function 

The literature on the method of Hartree-Fock is extensive with numerous 

articles published on various aspects of the theory including several review articles 

and books[32-34]. While a full and detailed discussion of the underlying theory of 

the Hartree-Fock method and its extensions is outside the scope of this thesis, it 

will be worthwhile to briefly describe some of the essential features. 

The goal of ab initio electronic structure theory is the solution of the quantum 

electronic problem. That is, given a collection of nuclei and electrons, we would 

like to find accurate approximate solutions to the non-relativistic time-independent 

Schrodinger equation, 

Hl<I>) = El<I>), (74) 

where, H is the electronic Hamiltonian operator. In the Born-Oppenheimer ap­

proximation the electronic Hamiltonian describing the motion of N electrons in 

the field of M nuclear charges, in atomic units is, 

(75) 

If it were not for the last term involving (1/rij} in the Hamiltonian then Eq. (74) 

could be solved exactly. As a consequence we must look for approximate solutions. 

In this section we will be concerned with the nomenclature, the conventions and 

the procedure for writing down the wave functions that we use to describe many­

electron systems. However, before considering wave functions for many-electron 

systems, it is necessary to discuss wave functions for a single electron. 

41 
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For our present purposes, we will define the molecular orbital as the solution 

to the Schrodinger equation using the Hamiltonian of Eq. (75) without the (1/rij) 

term and only for a single electron where the single electron is under the influence 

of some averaged electrostatic potential due the presence of all the other electrons. 

This idea will be made more clear shortly. As we will see, in Hartree-Fock theory 

these molecular orbitals are combined together in the form of a Slater determinant 

and the molecular orbitals are then adjusted according to the variational principle 

such that this single Slater determinant is an approximate eigenfunction of the full 

Hamiltonian in Eq. (75). A spatial molecular orbital (simply referred to here as a 

spatial orbitan 1,U;(r) is a function of the position vector rand describes the spatial 

distribution of an electron in the averaged field of the other electrons such that 

j1,U;(r)l2dr is the probability of finding the electron in a small volume element dr 

surrounding r. Spatial orbitals are usually assumed to form an orthonormal set so 

that, 

(76) 

To completely describe an electron it is necessary to specify its spin. This is done 

by the way of a complete set of spin functions a(w) and /3(w ), where w is the spin 

coordinate and take on the values 1/2 (i or "spin up") or -1/2 (l or "spin down"). 

The spin functions themselves have the values: a(i) = 1, a(l) = 0, /3(i) = 0, and 

j3(l) = l. Since the electronic Hamiltonian of Eq. (75) does not include the spin 

coordinate we may write a wave function for an electron which describes both its 

spatial distribution and its spin as a simple product of the spatial orbital and a 

spin function, known as a spin orbital, x(x) . Therefore, from each spatial orbital 

one may form two spin orbitals*, namely, 

1,U(r)a(w) 

x(x) = or (77) 

1,U(r)/3(w) 

*for the unrestricted Hartree-Fock method (UHF) this restriction is relaxed and 
the spatial parts of spin up and spin down electrons are allowed to differ 
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where x = { r, w} indicates both spin and space coordinates. 

The wave function for an N electron system is then a function of x 1 , x 2 , ... , XN, 

That is, we write <I>(x1, X2, ... , XN ). A satisfactory theory of electronic structure 

can only be obtained if we impose the following additional requirement on a wave 

function: A many-electron wave function must be antisymmetric with respect to the 

interchange of the coordinate x (both space and spin) of any two electrons, thus, 

This is a very general statement of the Pauli exclusion principle and is an inde­

pendent postulate of quantum mechanics. Thus the exact wave function must not 

only satisfy the Schrodinger equation, it also must be antisymmetric in the sense 

of Eq. (78). We shall see that the requirement of antisymmetry is easily enforced 

by using Slater determinants. 

For our purposes, we will equate Hartree-Fock theory to a single determinant 

theory*. Within a molecular orbital picture, the Hartree-Fock approximation as­

sumes an antisymmetric wave function in the form of a single Slater determinant, 

x;(x1) Xi(x1) Xk(x1) 

1 

W(x1, X2, ... , XN) = (N!(2 
x;(x2) xAx2) Xk(x2) 

(79) 

Xi(XN) Xj(XN) Xk(XN) 

which is the simplest form of the wave function that satisfies the antisymmetry 

requirement. The factor (N!)-1/ 2 is a normalization factor. This Slater determi­

nant represents in the Hartree-Fock approximation N electrons occupying N spin 

orbitals (Xi,Xi,···,Xk). The coordinates, (x1,x2, ... ,xN) identify both the spin 

and spatial coordinates. It is convenient to introduce a short-hand notation for 

a normalized Slater determinant, which includes the normalization constant and 

*Hartree-Fock theory in special cases, such as for restricted open-shell wave 
functions involves a multideterminantal wave function. Also extensions of Hartree­
Fock theory such as Configuration Interaction use linear combinations of Slater 
determinants 
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only shows the diagonal elements of the determinant, 

(80) 

If we choose the electron labels to be in the order x 1 , x 2 , ... , XN then Eq. (80) can 

be further shortened to, 

(81) 

Antisymmetrizing the Hartree product as in the above Slater determinant 

introduces so-called exchange effects meaning that the motion of two electrons 

with parallel spins are correlated. However, this single determinant form leaves 

the motion of electrons with opposite spins uncorrelated.[33) As we will see, it 

is the purpose then of the various extensions to Hartree-Fock theory such as CI, 

MP2, MP4 and MCSCF to build in correlation effects.[32) So, since the motion of 

electrons with opposite spins remains uncorrelated, it is customary to refer to a 

single determinantal wave function as an uncorrelated wave function. 

To see how exchange correlation arises, consider a two-electron Slater deter­

minant in which spin orbitals Xi and X2 are occupied, 

(82) 

Say that the two electrons have opposite spins and occupy different spatial orbitals, 

Expanding the determinant, we have, 

1P1(ri)a(w1), 

7P2( r2) ,8( W2). 

(83) 

(84) 

as the simultaneous probability of electron 1 being in dx1 and electron 2 being in 

dx2 . Let P(r1r2 )dr1dr2 be the probability of finding electron 1 in dr1 at r1 and 
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simultaneously electron 2 in dr2 at r2. We get this probability by integrating over 

the spin coordinates w1 and w2 for the two electrons, 

P(r1, r2)dr1dr2 = j dw1dw2l'lll 2dr1dr2 

}[li,L,1(r1)l2li,L,2(r2)l 2 + li,L,1(r2)l 2l¢2(r1)12]dr1dr2. (86) 

The first term in this equation is the product of the probability of finding electron 

1 in dr1 at r 1 times the probability of finding electron 2 in dr2 at r 2 , if electron 1 

occupies i,L, 1 and electron 2 occupies i,i,2 • The second term shows the same product 

except that now electron 1 occupies i,i,2 and electron 2 occupies i,f,1 . The correct 

probability is the average of the two as shown since electrons are indistinguishable. 

The motion of the two electrons is therefore uncorrelated. For instance if i),1 = i,L,2 

then, 

(87) 

Note that P(ri, r 1 )-=/:- 0 so it turns out that there is a finite probability of finding 

two electrons with opposite spins at the same point in space. If the electrons have 

the same spin, say /3, then, 

x1(xi) = i,l,1(ri)/3(w1), 

x2(x2) = i,l,2(r2)/3(w2)-

By the same steps as before, we find, 

(88) 

(89) 

} { li,l,1(r1)12li,L,2(r2)12 + li,L,1(r2)l 2li,L,2(r1)1 2 

[i,L,;(r1)¢2(r1)¢;(r2)i,l,1(r2) + ¢1(r1)¢;(r1)i,l,2(r2)i,L,;(r2)]}. (90) 

We see that there is now a cross term making the probabilities correlated. This is 

exchange correlation between electrons of parallel spin. Note that P(r1 , r 1 ) = 0, 

and thus the probability of having two electrons with parallel spin at the same point 

in space is zero. A Fermi hole is said to exist around an electron. To summarize, 

within the single Slater determinantal description the motion of electrons with 

parallel spins is correlated but the motion of electrons with opposite spins is not. 
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One method to incorporate the missing correlation of electrons with opposite spins 

is to adopt a multideterminantal description. This method known as configuration 

interaction will be discussed in a latter section. 

Operators and Matrix Elements 

In this section we briefly review the problem of evaluating matrix elements 

between Slater determinants formed from orthonormal orbitals. Say we are given 

two N-electron determinants, IK) and IL) and some operator say, CJ. We would 

like to evaluate (KIOIL). By "evaluation" we mean reducing them to integrals 

involving the individual spin orbitals, Xi in IK) and IL), and then ultimately to 

the spatial orbitals 1Pi· In what follows, the operator of chief importance will be 

the full electronic Hamiltonian, H. 

If IWo) = IX1X2 · · · XN) is an antisymmetric trial wave function in a single 

Slater determinant form for an N-electron system in the ground state, then the 

variational principle states that the best wave function of this form is the one which 

gives the lowest possible energy,[33] 

(91) 

where H is the full electronic Hamiltonian which we will write as the sum of one­

electron and two-electron operators, 

N N N 

H=Lh(i)+LL 1 , 
; __ 1 . 1 .>. 112 
' i= J i 

(92) 

where, 
. 1 2 """' ZA h(z) = --Vi - ~ -, 

2 A i1A 
(93) 

is the core-Hamiltonian and describes the kinetic and potential energy of the ith 

electron in the field of the nuclei (the "core"). 

Before proceeding, it is important at this time to define the notation we will 

use for one- and two-electron integrals. In this thesis we will represent two-electron 
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integrals over spin orbitals by [ij lkl] which is given by, 

(94) 

This is typically referred to as the "chemists' notation" [33). You will note that the 

spin orbitals, which are functions of electron 1 appear side by side on the left and 

the complex conjugated spin orbital appears first. By interchanging the dummy 

variables of integration one has, 

[ijlkl] = [kllij). (95) 

In addition, if the spin orbitals are real*, then one has[33), 

[ijlkl] = [jilkl]::::: [ijllk] = [jillk]. (96) 

For one electron integrals the chemists' notation is, 

(97) 

Matrix elements between two-electron Slater determinants are fairly easy to 

evaluate. The N-electron case is more complicated, and here we will simply present 

a set of rules that can be used to evaluate matrix elements. For the derivation of 

these rules the reader is referred to Szabo and Ostlund[33]. In quantum chemistry 

there are two types of operators. The first type is a sum of one-electron operators, 

N 

01 = L h(i), (98) 
i=l 

where h( i) is any operator involving only the ith electron. One-electron operators 

involve dynamic variables that depend only on the position and/or momentum 

of the electron in question, independent of the position or momentum of other 

electrons. A second type of operator is a sum of two-electron operators, 

N N 

02 = L L v(i,j), (99) 
i=l j>i 

*which is almost always the case in molecular Hartree-Fock calculations 
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where, v(i,j) is an operator that depends on the position or momentum of both 

the ith and jlh electron. The sum is over all unique pairs of electrons. The coulomb 

interaction between two electrons, v(i,j) = r;/, is a two-electron operator. 

The rules for matrix elements such as (KIOIL) between determinants IJ() 

and IL) depends on whether O is a one-electron or two-electron operator and, in 

addition, it depends on the degree to which the two determinants, jJ() and jL) 

differ. It is possible to distinguish three cases. The first case is when the two 

determinants are identical, i.e., (KjOIJ(). For this case we choose the determinant 

to be, 

(100) 

The second case is when the two determinants differ by one spin orbital, say, Xm 

in IK) replaced by XP in IL), 

(101) 

The third case is when the determinants differ by two spin orbitals, say, Xm and 

Xn in IJ() replaced by XP and X~ in IL), 

(102) 

When the determinants differ by three or more spin orbitals the matrix element 

is always zero. Tables V and VI summarize the rules for the three cases for the 

one- and two-electron operators. To use the rules in Tables V and VI require that 

the two determinants be in maximum coincidence. To understand this, consider a 

matrix element between two determinants, IK) and IL) where, 

IK) jabcd) 

IL) icrds). 

It may appear that the two determinants differ in all four columns. However if 

we interchange the columns, keeping track of the sign, IL) = icrds) = -icrsd) = 



49 

lsrcd), we see that after being placed in maximum coincidence that differ by two 

columns. We can then use Tables V and VI for case 3 to obtain, 

(J<I01IL) 

(KI02IL) 

0 

[aslbr] - [arlbs]. 

Using the Tables V and VI we can now evaluate the matrix element 

(Wo!H!Wo) in Eq. (91). Using Case 1 in both tables we find, 

N l N N 
Eo = (Wo!H!Wo) = ~ [alhla] + 2 ~ ~ [aalbb] - [ablba], (103) 

where, N is the number of electrons and I\Jlo) = lx1X2 · · · XaXb · · · XN). 

The Hartree-Fock Equations 

With the ground state energy expressed as in Eq. (103) we will now summa­

rize the main results obtained in a derivation of the Hartree-Fock equation. The 

derivation itself, however, will not be presented. For the interested reader, the 

details of the derivation are presented in Szabo and Ostlund[33]. 

We are interested in finding the set of spin orbitals such that the single deter­

minant I\Jlo) formed from them gives the best approximation to the ground state of 

TABLE V. 

MATRIX ELEMENTS BETWEEN DETERMINANTS FOR 
ONE-ELECTRON OPERATORS IN TERMS 

OF SPIN ORBITALS 

01 = I: ;:1 h(i) 
Case 1: IK) = I··· mn · · ·) (KI01 IK) = I: ~[mlhlm] 

Case 2: IK) =I··· mn · · ·) 
IL) =I··· pn · · ·) 

Case 3: IK) = I··· mn · · ·) 
IL) =I· .. pq .. ·) 
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the N-electron system described by an electronic Hamiltonian H. According the 

variational principle, the best spin orbitals are those that minimizes the electronic 

energy given in Eq. (103)[33). The only constraint is that the spin orbitals remain 

orthonormal, 

(104) 

When this is done formally [29,33), one obtains an equation that when solved 

produces the best set of spin orbitals. The best spin orbitals are those which 

minimize E0 within the single determinantal approximation. That equation is 

known as the Hartree-Fock integro-differential equation, 

h(l )xa(l) + L [! dx2!Xb(2)1 2r1l] Xa(l) - L [! dx2xb(2)xa(2)r1l] Xb(l) 
b#a b#a 
EaXa(l), (105) 

where, 

(106) 

is the kinetic energy and potential energy of a single electron chosen to be electron 

1 in the field of the nuclei. 

The two terms involving sums over bin Eq. (105) represent electron-electron 

interactions in the Hartree-Fock single determinant approximation. Without these 

TABLE VI. 

MATRIX ELEMENTS BETWEEN DETERMINANTS FOR 
TWO-ELECTRON OPERATORS IN TERMS 

OF SPIN ORBITALS 

Case 1: jJ() = I··· mn · · ·) (J(I02IK) = f I:: I: ~[mmjnn) - [mninm) 

Case 2: IJ() = I··· mn · · ·) 
IL)= I··· pn · · ·) 

Case 3: IJ() = I··· mn · · ·) 
IL)= I· .. pq .. ·) 

(J<I02IL) = [mpjnq] - [mqjnp] 
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terms we have, 

h(l)xa(l) = EaXa(l), (107) 

which is just the one-electron Schrodinger equation and Ea is the one-electron 

orbital energy of the spin orbital Xa ( 1). The first of the two-electron terms is the 

coulomb term and has a simple interpretation. In an exact theory the coulomb 

interaction is represented by the two-electron operator r;/. In the Hartree-Fock 

theory Eq. (105) shows that electron 1 in Xa experiences the one-electron coulomb 

potential, 

V~0 u1(1) = L J dx21Xb(2)12rit (108) 
b-:f;a 

Suppose that electron 2 occupies Xb· We see from Eq. (108) that the two-electron 

potential r1l felt by electron 1 and associated with the instantaneous position of 

electron 2 has been replaced by a one-electron potential obtained by averaging the 

interaction r1l of electron 1 and electron 2 over the spin and space coordinates 

x 2 of electron 2, weighted by the probability dx21Xb(2)12 that electron 2 occupies 

the volume element dx2 at x 2 . When we sum over all b such that b -=f. a we obtain 

the total averaged potential acting on the electron in Xa arising from the N - 1 

electrons in the other spin orbitals. In this regard, it is convenient to define the 

coulomb operator as, 

(109) 

,'.h(l) represents the averaged local potential at x 1 arising from an electron in Xb· 

The second term involving a summation over bin Eq. (105) is the exchange 

term and arises from the antisymmetric nature of the wave function. Unlike the 

coulomb term, it does not have a classical interpretation. Nevertheless we may 

define an exchange operator, Kb(l), by its effect when operating on a spin orbital 

Xa(l ), 

(110) 

Operating with Kb(l) on Xa(l) involves an "exchange" of electron 1 and electron 

2 to the right of r1l Unlike the local coulomb operator, the exchange operator is 
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nonlocal since there does not exist a simple potential, say vgx(x1 ), uniquely defined 

at a local point in space x 1 . Operating with Kb(xi) on Xa(x 1 ) depends on the value 

of Xa throughout all space not just at x 1 . One could not, for instance, draw contour 

plots of the exchange potential as one can for the coulomb potential. 

The Hartree-Fock equation written with the coulomb and exchange operators 

1s now, 

[ h(l) + I: Jb - L Kb] Xa(l) = EaXa(l ), 
b b 

(111) 

where we have eliminated the restriction b -=j:. a in the summations by adding the 

term [Ja(l) - Ka(l )]xa(l) = 0 to both sides of Eq. (105). We then define the Pock 

operator, J, by, 

f(l) = h(l) + L Jb(l) - Kb(l). (112) 
b 

We see that f ( 1) is the sum of a core-Hamiltonian operator h ( 1) and an effective 

one-electron potential operator called the Hartree-Fock potential, vHF ( 1), where, 

VHF(l) = L Jb(l) - Kb(l). (113) 
b 

It is sometimes convenient to express the exchange potential in terms of the per­

mutation operator, P 12 which operates to the right and interchanges electron 1 

and 2. Thus, 

[! dx2x;(2)r1l Xa(2)] Xb(l) 

[J dx2x;(2)r1lP12Xb(2)] Xa(l) (114) 

The Fock operator is then, 

J(l) h(l) + VHF(l) 

h(l) + L j dx2x';(2)r1i (1 - P12)Xb(2), (115) 
b 

and the Hartree-Fock equation becomes, 

(116) 
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The exact solution of Eq. (116) will produce the exact Hartree-Fock spin orbitals. 

However, in practice, it is only possible to solve Eq. (116) exactly for atoms[33]. 

For molecular systems one normally introduces a set of basis functions for expan­

sion of the spin orbitals and solves a set of matrix equations. Only as the basis 

set approaches completeness will the spin orbitals obtained approach the exact 

Hartree-Fock spin orbitals. This is said to approach the Hartree-Fock limit. 

Equation ( 116) is written in the form of a linear eigenvalue equation. In fact it 

is really a pseudo-eigenvalue equation since the Fock operator itself has a functional 

dependence through the coulomb and exchange operators on the solutions {xa} of 

the pseudo-eigenvalue equation. The Hartree-Fock equations are thus non-linear 

and must be solved by iterative procedures. 

Restricted Closed-Shell Hartree-Fock: The Roothaan Equations 

In the previous sections we developed the Hartree-Fock equations from a 

formal point of view with a general set of spin orbitals {Xi}- For actual calculations 

the spin must be integrated out so that only spatial Hartree-Fock equations are 

solved. To do this we must be more specific about the type of system we are 

considering ( either open-shell or closed-shell) and the degree of flexibility in the 

spatial wave functions. There are essentially three cases: 

• Restricted closed-shell Hartree-Fock (RHF). For this case the all the elec­

trons are spin-paired, so that all the spatial orbitals are doubly occupied. In 

addition this case restricts the spatial parts of spin up and spin down orbitals 

to be the same. 

• Restricted open-shell Hartree-Fock (ROHF). In this case the spatial orbitals 

are also restricted to be the same for doubly occupied orbitals. By use of a 

multideterminantal wave function one may also treat systems that contain 

an odd number of electrons[34]. 

• Unrestricted Hartree-Fock (UHF). This method is also known as the "differ­

ent orbtials for different spins" or "spin polarized" method. The essential 
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feature is that the spatial orbitals for spin up and spin down electrons are 

solved independently yet simultaneously so that in general the spatial orbitals 

may differ whereas in the RHF or ROHF case they would be restricted to be 

identical. The UHF method uses two single determinantial wave functions, 

one for the spin up and orie for the spin down orbitals. 

In this review,· we will only consider in detail the RHF case and refer the reader 

to the literature for the UHF and ROHF cases[33,34]. 

For closed shell calculations our molecular states are thus allowed to have only 

an even number N of electrons, with all the electrons paired such that n = N/2 

spatial orbitals are doubly occupied. In essence this restricts our discussion to 

closed-shell ground states. 

A restricted set of spin orbitals has the form, 

Xi(x) = { 1Pi(r)a(w) 
1Pi(r)f3(w) 

and the closed-shell restricted ground state is, 

(117) 

We want to convert the general spin orbital Hartree-Fock equation, f(l)Xi(l) = 
EiXi( 1) to a spatial eigenvalue equation where each of the occupied spatial molecular 

orbitals { 1Pala = l, 2, ... N/2} is doubly occupied. To convert from spin orbitals 

to spatial orbital requires an integrating out of the spin functions. The details 

are quite straightforward[33] and the result is the closed-shell spatial Hartree-Fock 

equation, 

where the closed-shell restricted Fock operator is, 

N/2 

f(l) = h(l) + L 2Ja(l) - Ka(l), 
a 

(119) 

(120) 



and the closed-shell restricted coulomb and exchange operators are defined, 

J dr2'ljJ:(2)r·1}1Pa(2), 

[! dr2'ljJ:(2)r1l"Pi(2)] "Pa(l ). 

Introduction of a basis 
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(121) 

(122) 

With the elimination of spin the calculation of the molecular orbitals be­

comes equivalent to the problem of solving the spatial integro-differential equa­

tion f(r1 )'ljJi(r1 ) = Ei"Pi(r1). While one might attempt to solve this equation 

numerically-and this is indeed common in atomic calculations-at present no prac­

tical procedures are available for obtaining numerical solutions for molecules. The 

only practical method available for molecules was first introduced by C. C. J. 

Roothaan[35] who showed how by the introduction of a set of known spatial basis 

functions one may convert the Hartree-Fock integro-differential equations to a set 

of algebraic equations that may then be solved by standard matrix techniques. 

We therefore introduce a set of J{ known basis functions { q>µ(r) Iµ 
1, 2, ... , K} and expand the unknown molecular orbitals in a linear expansion, 

K 

"Pi = L Cµi(j)µ, (123) 
µ==l 

where i = 1, 2, ... , K. If { q>µ} were complete then Eq. (123) would be an exact 

expansion. In fact any complete set of functions { q>µ} could be used. However, 

for practical computational reasons one is always restricted as to the number and 

indeed type of basis functions used. As such, it is important to choose a basis set 

that will provide, as far as possible, a reasonably accurate expansion for the exact 

molecular orbitals { 'ljJ;}. Also since during the course of obtaining a solution one 

must evaluate many times multicenter integrals involving the basis functions, those 

types of basis functions that permit closed form expressions for these integrals have 

enjoyed the most widespread use. For example, Slater type basis functions have 

the radial form, exp(-kr), but Gaussian type basis functions have a radial form 
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exp(-kr2 ). While Slater type basis functions have the same radial dependence 

as the hydrogenic solutions and hence would provide a much better description 

of the charge density near the origin than Gaussians, multicenter integrals involv­

ing Slater type basis functions cannot be evaluated in closed form and hence are 

computationally expensive to determine. On the other hand, multicenter integrals 

involving Gaussian type basis functions do have closed form expressions. As a 

consequence, Gaussian basis sets have come to dominate the recent work in molec­

ular calculations. Even through more than three times as many Gaussian basis 

functions are required to achieve the same level of accuracy as with Slater type 

basis functions, the existence of closed form solutions for the multicenter integrals 

more than compensates for the larger basis set. 

From Eq. (123) the problem of calculating the Hartree-Fock molecular or­

bitals reduces to the problem of finding the expansion coefficients Cµi· By substi­

tuting this expansion into the closed-shell restricted spatial Hartree-Fock equation 

(Eq. (119)) gives, 

(124) 
I/ I/ 

By multiplying by 1>: (1) and integrating we turn the integro-differential equation 

into a matrix equation, 

I/ I/ 

We will now define two matrices. The first is the overlap matrix S with elements 

given by, 

(126) 

S is a J{ x ]{ Hermitian matrix. While the basis functions { </>µ} are assumed 

to be normalized and linearly independent, they are not in general orthogonal. 

They therefore overlap with a magnitude O ~ ISµvl ~ 1. The diagonal elements 

are unity and the off-diagonal elements are less than one in magnitude. If two 

off-diagonal elements approach unity in magnitude, that is, approach complete 
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overlap then the two basis functions approach linear dependence. Since the overlap 

matrix is Hermitian, it can be diagonalized by a unitary transformation as we will 

later do. The eigenvalues of the overlap matrix can be shown to necessarily be 

positive numbers[33], hence the overlap matrix is said to be positive-definite. As 

the functions in the basis set approach linear dependence the eigenvalues of the 

overlap matrix approach zero. 

The second matrix we will define is the Fock matrix F, which has elements, 

(127) 

F is also a J{ x J{ Hermitian matrix. The Fock matrix is the matrix representation 

of the Fock operator with the set of basis functions { fµ}, 

With the definitions of the overlap and Fock matrices we can now write 

Eq. (125) as, 

(128) 
I/ I/ 

where, i = 1, 2 ... K. These are the Roothaan equations which can be completely 

written as a single matrix equation, 

FC = SCE, (129) 

where C is a J{ x J{ matrix of the expansion coefficients Cvi, 

Cu C12 C1K 

C= 
C21 C22 C2K 

(130) 

CK1 CK2 CKK 

The columns in matrix C describe the molecular orbitals. The elements in column 

1 are the expansion coefficients of '!f'i, those in column 2 are the coefficients of '!{'2 
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etc .. f is a diagonal matrix of the orbital energies Ei, 

0 
f= (131) 

0 

By introducing a basis we have converted the problem into one solving the 

matrix equation, FC = SCt:. Before we can describe exactly how this is done we 

must first discuss a few additional preliminaries. 

The charge density 

Given an electron described by the spatial wave function ¢a(r), the prob­

ability of finding that electron in a volume element dr at point r is l¢a(r)j 2dr. 

The probability function is !¢a( r) 12 • If we have a closed shell molecule described 

by a single determinant wave function with each occupied molecular orbital ¢a 

containing two electrons, the total charge density is then, 

N/2 

p(r) = 2 L l¢a(r)l 2 , (132) 
a 

where we see that in atomic units, p(r)dr is the probability of finding any electron 

in dr at r. In fact, if we integrate the charge density we get the total number of 

electrons, thus, 

N/2 N/2 

j drp(r) = 2L J drl¢a(r)l 2 = 2 L l = N. (133) 
a a 

If we now insert the molecular orbital expansion Eq. (123) into Eq. (132) we find, 

N/2 

p(r) = 2 L ¢;(r)¢a(r) 
a 

N/2 

2 L L c:a<t>v(r) L Cµa</>µ{r) 
a II µ 



~ [ 2 ~' c,.c:.) ef,,(r)ef,,(r) 

= L Pµvc/>µ(r)<f>:(r), 
µv 

where we have defined the density matrix Pµv, 

N/2 

Pµv = 2 L Cµac:a· 
a 
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(134) 

(135) 

Given the basis functions { </>µ}, the density matrix P specifies the charge density 

p(r). Since the expansion coefficients C and the density matrix are directly related 

one could characterize the results of Hartree-Fock calculations by either Pµv or Cµi· 

The use of the density matrix gives an intuitive feel as to how the Hartree­

Fock procedure operates. We first make a guess of the density matrix P (that is, 

we guess the charge density p(r)). We then use the charge density to calculate 

the effective one-electron potential vHF(r). We thus have the Fock operator. We 

then solve the spatial Hartree-Fock equations for the molecular orbitals { 1,L,i}. We 

then use these molecular orbitals to calculate a new density matrix and thus new 

Hartree-Fock potential. We repeat this procedure until the Hartree-Fock potential 

field no longer changes at which point the procedure has converged. This, in 

general terms, is the self-consistent field (SCF) method. To understand the details 

as to how these calculations are actually performed we need an explicit expression 

for the Fock matrix F. 

Expression for the closed-shell restricted Fock matrix 

From the definition of the closed-shell restricted Fock operator from Eq. (120) 

and the Fock matrix from Eq. (127) and given a set of known basis functions { </>µ} 

we have, 

N/2 

J dr1<f>:(l)h(l)<f>v(l) + L J dr1<f>:(1)[2Ja(l) - Ka(l)]<Pv(l) 
a 
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N/2 

Hi~re + L 2(µvlaa) - (µajav) (136) 
a 

where (µv) index basis functions and a indexes molecular orbitals which are linear 

combinations of basis functions. In the final expression we have defined the core­

Hamiltonian matrix, 

(137) 

where, 

(138) 

We have also introduced a slightly modified notation for the two-electron integrals 

to indicate that now the integration is over spatial orbitals instead of spin orbitals, 

otherwise the notation is the same. For instance, as far the placement of ij kl is 

concerned, (ijlkl) = [ijlkl] except that, 

(ijlkl) = j dr1dr2¢;(r1)1Pi(r1)r1l¢Z(r2)¢1(r2), (139) 

is over the spatial orbitals. Another point is that, as far as the notation is con­

cerned, there is no distinction between integrations over molecular orbitals or basis 

functions. In general one must draw upon the context of the derivation and asso­

ciated discussion to ascertain the difference. For instance, in the last expression in 

Eq. (136), 

(140) 

so the integration involves the basis functions <pµ and </J11 and the molecular orbital 

To calculate the elements of the core-Hamiltonian matrix we must calculate 

the kinetic energy and nuclear attraction matrices, T and ynucl respectively, where, 

ynucl 
µ11 

J dr1</J:(1) [-tv~] </Jv(l), 

J dr1 </>~(l) [- E Jri :ARJ 4>,(l), 
A 

(141) 

(142) 
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so that, 

Heare = T + vnucl 
µv µv µv · (143) 

For the particular basis set { <7)µ} the integrals of T and ynucl must be calculated 

and the core-Hamiltonian rnatrix formed. Unlike the full Fock matrix, the core­

Hamiltonian matrix need only be evaluated once and remains constant throughout 

the iterative process. 

Returning to the full Fock matrix and substituting the linear expansion 

Eq. (123) for the molecular orbitals, 

N/2 

Fµv HZ~re +LL C,\ac:a[2(µvla,\) - (µ,\lav)] 

HZ~re + L P,\c; [ (µvia,\) - i(µ,\lav)] 
,\c; 

H eare+ G 
µv µv, (144) 

where Gµv is the two-electron part of the Fock matrix. We see therefore that the 

Fock matrix contains a one-electron part Heare which, for a given basis set, remains 

constant and a two-electron part G which depends on the density matrix P and a 

set of two-electron integrals, 

(145) 

It is the two-electron part of the Fock matrix that changes during the course of 

the solution iterations. Because of the large number of the two-electron integrals 

(µvl,\a) their evaluation and manipulation is the major difficulty in the Hartree­

Fock calculation. For example, if the basis functions are real and if we use the 

symmetry of the two-electron integrals ((µvl,\a) = (vµl,\a) = (,\alµv) etc. ), then 

for a basis set size K = 100 there are 12,753,775 unique two-electron integrals[33J. 

The Fock matrix depends on the density matrix or equivalently, on the ex­

pansion coefficients, 

F = F(P) or F = F(C). (146) 
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The Roothaan equations are therefore nonlinear, 

F(C)C = SCe. (147) 

If we had an orthonormal basis set then S would be the unit matrix and we would 

have the standard matrix eigenvalue problem at each iteration, 

FC = Ce, (148) 

where we would find the eigenvectors C and eigenvalues e by diagonalizing F. Since 

in general the basis is nonorthogonal, we first need to orthogonalize the basis. 

Orthogonalization of the basis: The transformed Roothaan equations 

In molecular calculations the basis functions are normalized but they are not 

orthogonal. This gives rise to the overlap matrix. In order to convert the Roothaan 

equations into the form of the usual matrix eigenvalue problem we need to consider 

orthogonalizing the basis. 

Given a set of functions { <,Dµ} that are not orthogonal then, 

(149) 

and we will always be able to find a transformation matrix X (not unitary) so that 

we may express a transformed set of functions { ¢>~} as, 

(150) 
II 

whereµ= 1, 2, ... K, that do form an orthonormal set, 

j dr</>~ *(r)</>~(r) = 8µ11· (151) 

We can determine the properties of X by the following, 

j dr</>~*(r)</>~(r) = j dr [ L Xlµ<Pt(r)] [ L Xuv<Pu(r)] 
A u 
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L L x;µ J dr<f>;(r)</>CT(r)XCTII 
). CT 

L L x;µs>.CTXCTII = bµv• (152) 
). CT 

The last expression in the equation can be written in matrix notation as, 

xtsx = 1 (153) 

Equation (153) expresses the relation that X must satisfy for the transformed basis 

functions to be orthonormal. Now since S is Hermitian, it can be diagonalized by 

a unitary matrix U, 

utsu = s., (154) 

where s is a diagonal matrix of the eigenvalues of S. 

One of the more common methods used for the orthogonalization of a set of 

functions is the method of symmetric orthogonalization*. This method uses the 

inverse square root of S for X, that is, 

X = s-1/ 2 = us-1/ 2ut. (155) · 

Equation (155) shows that we form s-1/ 2 by diagonalizing S to forms and then 

taking the inverse square root of each of the eigenvalues to form the diagonal 

matrix s-1/ 2 and then "undiagonalizing" to finally give s-1/ 2 . With this choice of 

X we verify that it satisfies Eq. (153) thus, 

s-11288-1;2 = s-1128112 = 80 = 1. (156) 

Since the eigenvalues of S are all positive[33] we have no difficulty taking square 

roots. However, if the basis set contains some linear dependence then some of the 

eigenvalues of S will approach zero, then by Eq. (155) we will have some elements 

divided by quantities that are nearly zero. Thus symmetric orthogonalization will 

lead to problems in numerical precision for basis sets with near linear dependence. 

*other methods such as the Schmidt or canonical orthogonalization are also in 
common use 
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With X determined by symmetric orthogonaliztion ( or Schmidt or canonical 

methods) we consider a new coefficient matrix C' related to the old coefficient 

matrix C by, 

C = XC'. (157) 

We assume that X will have an inverse. This will be true if we have eliminated 

any linear dependencies. If we substitute into the Roothaan equations we get, 

FXC' = SXC'e. (158) 

Multiplying by xt on the left gives, 

(159) 

Next we define a new matrix F' by, 

F' = xtFx, (160) 

and then use Eq. (153) to produce, 

F'C' = C'e. (161) 

Equation (161) is the transformed Roothaan equation. They are also known as 

the canonical Roothaan equations[33]. This matrix equation can be solved for C' 

and f by diagonalizing F'. Given C' we can find C by Eq. (157). In principle 

it is even unnecessary to transform back to the unprimed equations since the 

primed matrix equations represent the Fock matrix and expansion coefficients in 

the orthogonalized basis, 

'/Pi i = 1,2 ... ,I< (162) 
µ=1 

(163) 
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The SCF Procedure 

With the background reviewed in the previous sections we are now in position 

to present in more or less detail the SCF procedure. The actual computational 

procedure for obtaining restricted closed-shell Hartree-Fock wave functions, i. e. 

wave functions 1'110), is as follows[33]: 

1. Specify the molecular geometry {RA}, the atomic numbers {ZA}, the number 

of electrons N, a basis set { q\,} and the total spin. 

2. Calculate the molecular integrals necessary to determine, Sµv(Eq. (126)), 

Hi~re (Eq. (143)), and (µvl.\a) (Eq. (145)). 

3. Diagonalize the overlap matrix S and obtain the transformation matrix X 

using Eq. (155). 

4. Obtain a guess ofthe density matrix P. One common method is to diagonal­

ize Heare and use the core molecular orbitals to construct a starting density 

matrix. 

5. Calculate G from the density matrix P and the two-electron integrals (µvl.\a) 

using Eq. (144). 

6. Add G to the core-Hamiltonian to form the Fock matrix F =Heare+ G. 

7. Calculate the transformed Fock matrix F' = xtFx. 

8. Diagonalize F' to obtain C' and E. 

9. Calculate C = XC'. 

10. Form a new density matrix P from C using Eq. (135). 

11. Determine if the procedure has converged by determining whether the new 

density matrix of step (10) is the same as the previous density matrix to 

within a specified criterion. If the procedure has not converged then return 

to step (5) with the new density matrix. 
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12. If the procedure has converged use the solution represented by C or P to 

calculate expectation values and other quantities of interest. 

Configuration Interaction 

As already mentioned, in Hartree-Fock theory the motion of electrons with 

opposite spins are not correlated. This is a consequence of the single Slater deter­

minant form of the variational wave function and as a result even for an infinite 

basis set the ground state Hartree-Fock energy will always lie above the exact 

nonrelativistic Born-Oppenheimer ground state energy by the amount of energy 

involved in this missing correlation. One important method used to obtain this 

missing correlation energy is the method of configuration interaction (CI). While 

CI is a well known method and has been described in detail elsewhere[32,33], it 

will be useful to summarize the essential features. 

For a basis set consisting of K basis functions the Hartree-Fock procedure will 

produce 2K molecular spin orbitals. For N electrons, the ground state Hartree­

Fock wave function will be a single Slater determinant comprised of the N lowest 

energy spin orbitals. Representing this ground state wave function as[33], 

J\J!o) = IX1X2 · · · XaXo · · · XN), (164) 

where it is understood that the remaining 21{ - N spin orbitals are unoccupied. 

It is clear that the determinant given by Eq. (164) is but one of many N elec­

tron determinants that could be formed from the 2K spin orbitals. For instance, 

one could form a singly excited determinant by promoting an electron from the 

occupied spin orbital Xa into the previously unoccupied virtual spin orbital Xr 

producing the wave function, 

(165) 

where the notation I\J!:) designates that the spin orbital Xa in the ground state 

Hartree-Fock wave, function has been replaced by the virtual spin orbital Xr· A 

doubly excited determinant could be produced by exciting electrons from Xa and 



67 

Xb to Xr and Xs thus, 

(166) 

In fact the total number of determinants that could be produced in this way 

is (2K)!/[N!(2K - N)!]. While the excited determinants do not in themselves 

represent the excited states of the system, they do form N-electron basis functions 

in which the exact N-electron states may be expanded. If l<I>) is the exact wave 

function of the system for a given basis, then the CI expansion would be[33], 

Diagonalizing the CI matrix ('1iilHl'1ij), where {I\Jii)} = {l'1io), lw:), lw:b), ... }, 

gives not only the lowest possible upper bound to the ground state energy but 

also the lowest possible upper bounds to the excited states of the same spin and 

spatial symmetry for the given basis set. This is known as the Hylleraas-Undheim 

theorem[36]. While the CI approach is systematic, the number of determinants re­

quired to represent all excitations becomes extremely large for even small systems. 

For most practical calculations the CI expansion Eq. (167) is commonly truncated 

to include only up to at most triple excitations. 

A variation on this theme is the method of multiconfigurational SCF (MC­

SCF). This method is a combination of CI and SCF. It is in fact SCF with a 

multideterminantal wave function obtained from a full CI expansion within a se­

lected manifold of molecular spin orbitals known as the active space[32]. When 

the truncated CI expansion is constructed out of all possible configurations within 

the specified active space, the method is known as complete active space SCF 

( CASSCF). For MCSCF calculations presented in this thesis all possible config­

urations within the active space will be included in the CI expansion. With this 

understood, we will used MCSCF synonymously with CASSCF. Thus the MCSCF 

is a truncated CI expansion in which both the expansion coefficients and the orb­

tials are optimized[37]. The added advantage is that the orbitals may be optimized 

for an excited root and thereby, with the proper choice of the active space, one 



68 

may obtain accurate excited state energies of the same spin multiplicity. For this 

reason MCSCF is a powerful computational tool for the calculation of a system's 

multiplet structure and the correlation with observed optical spectra. 



CHAPTER IV 

CL UST ER EMBEDDING 

Introduction 

The main difference between molecular and crystal defect quantum chemical 

calculations rests in the treatment of the external field effects. Most molecular 

calculations deal with collections of atoms that when isolated maintain a stable 

geometry. That is, in a vacuum the forces on the atoms in a molecule are deter­

mined solely on the basis of their interaction with the other atoms and in the stable 

geometry these forces are exactly balanced in the ground state. Furthermore, it is 

typical for molecular calculations that all the atoms are treated at the same level 

of quantum chemical theory. This means that the forces, geometry, and electronic 

structure for the entire system is determined from a quantum mechanical solution 

to the Schrodinger equation at the same level of theory. The treatment of defects 

in solids in this fashion is clearly impossible. The ideal method would be to con­

struct a defect (such as a Mn substitutional impurity or an F-center or both in 

CaF 2 ) in an otherwise perfect infinite crystal and then solve the system quantum 

mechanically. While in principle this is possible, in practice this is computationally 

impossible. An alternative approach, is to define two regions: the quantum cluster, 

and an external charge distribution. The quantum cluster consists of the actual 

defect itself and it's nearest neighbors (typically around at most 10 to 15 atoms), 

to be treated quantum mechanically. The external charge distribution is designed 

in such a way so as to have the same symmetry as the crystal, and produce an 

electrostatic field within the region of the quantum cluster that approximates the 

field produced by an infinite crystal. The interactions within the charge producing 

the external field contributes to the overall energy of the system and are treated 
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classically. In this way the external charge distribution stabilizes the cluster so 

that in the ground state the net forces on the atoms within the quantum cluster 

are zero*. In this chapter will be described a method for stabilizing an impurity 

cluster by the variation of the external charge distribution. It should be noted that 

no variational principle exists with regard to this external distribution so that one 

could not, for· instance, vary the parameters describing it so as to minimize the 

total energy. 

It should be noted that what follows is an original approach published here 

for the first time. The method to be described in detail consists of the following 

stages. 

• Construct a "non-defect" cluster. This cluster is the quantum cluster without 

the particular defect and is therefore a small piece of the perfect crystal that 

is to be treated quantum mechanically. Its geometry is chosen to be that of 

the perfect crystal. 

• Construct around this cluster. a point ion field consisting of representative 

point charges for the atoms in the perfect crystal. These external point 

charges are assigned the valence charges of the ions in the crystal ( for in­

stance, +2 for Ca and -1 for F in CaF2) and arranged in the host lattice 

structure. The size of this external arrangement is chosen so that the elec­

trostatic forces produced by this arrangement best balance the forces on the 

atoms within the isolated non-defect cluster. 

• Perform an SCF calculation for the quantum cluster and external point ion 

arrangement and determine the new forces on the cluster atoms. Replace 

the point ions with "point Gaussians" with effective charges and vary the 

Gaussian exponents and effective charges on the external ions so as to balance 

these new forces. 

*in principle one could zero the forces in an excited state using the method of 
MCSCF -
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• Perform another SCF calculation to obtain the new forces on the quantum 

cluster atoms and then vary the effective charges and Gaussian exponents to 

balance these new forces. Continue the SCF force calculations and external 

charge variation until convergence. 

• Construct the defect within the quantum cluster by replacing one of the 

cluster atoms with the impurity atom or by removing one of the cluster 

atoms to form a vacancy or both. 

• With the external field unchanged, geometry optimize the defective quantum 

cluster. 

To illustrate this method we will consider the formation of the F-center de­

fect in CaF2 • First we will start with the non-defective cluster shown in Fig. 10. 

This figure shows the ( Ca4F 7 )+l S=O cluster that will be treated quantum me­

chanically and serves to define the coordinate system. The atoms are arranged at 

the experimental Ca-F distance of 2.731 A[l8). The F-center defect is constructed 

from this cluster by the removal of the central F atom to form a vacancy and the 

addition of one electron. Before proceeding it will be necessary to the develop the 

mathematical framework of the method. 

Mathematical Development 

We begin the mathematical development by considering an external charge 

density Pext(r) which produces an external electrostatic potential Yext(r). From 

classical electrostatics, the external potential is given by, 

V: ( ) _ J Pext(r')d , 
extr- I 1 r. . r - r' 

(168) 

If we assume that the external charge density is given as an arrangement of point 

Gaussians, then, 
JV 3/2 ( ) - ""' . ( O:i) -a;jr-Rfzl2 Pext r - L...., qi e , 

i=l 7r 

(169) 
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z 

Figure 10. The non-defective cluster (C44F1)+l S=O cluster used for the formation 
of the F-center defect in CaF2• The Ca-F distance is 2.731 A[18]. 
The F-center defect is constructed from this cluster by the removal 
of the central F atom to form a vacancy a.nd the addition of one 
electron. 
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where, N is the number of external lattice sites, Rt locates the external lattice 

sites, qi is the total charge associated with lattice point i, and O'i is the Gaussian 

exponent associated with lattice point i. The next step is to substitute Eq. (169) 

into Eq. (168) and perform the integration. This integration is carried out in detail 

in Appendix B, with the result that the external potential can now be written, 

V: ( ) _ ;., . erf[ y'ailRTx - rl] 
ext r - ~ q, IRex - rl ' 

i=l ' 

(170) 

where erf( x) is the error function and is defined, 

2 ix 2 erf(x)= r,;; e-udu. 
y7r 0 

(171) 

The quantum cluster electronic charge density, Pclus(r) is obtained from an SCF 

calculation and is given by, 

K K 

Pclus(r) = L L Pvµ<Pv(r)</>µ(r), (172) 
v=l µ=l 

where, I{ is the number of basis functions, Pvµ is the density matrix and <Pv(r) and 

</>µ(r) are the primitive Gaussians of type v andµ centered on cluster sites Rv and 

Rw The internal quantum cluster potential, Vc1us(r) is then, 

11 ( ) = J Pclus(r') d , = ~ ~ p J <Pv(r')</>µ(r') d , 
v clus r I I r ~ ~ vµ I I r , r-~ r-~ 

v=l µ=l 

(173) 

and the potential due to the atomic nuclei in the cluster is, 

(174) 

where M is the number of nuclei in the cluster and Zi is the nuclear charge on 

cluster atom i at site Ri. The total potential V ( r) is then written, 

V(r) = Vc1us(r) + V~ore(r) + Vext(r), (175) 



and the total electrostatic field E( r) as, 

Using the identity, 

we have, 

E(r) = -VVcius(r) - Vv~ore(r) - VVext(r). 

r - r' 

Ir - r'l3' 

K K 
E(r) '""" '""" p j <Pv(r')</>µ(r') ( _ ')d , 

~ ~ vµ Ir - r'l3 r r r 
v=l µ=l 
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(176) 

(177) 

+ ~ z. r - Ri _;. -Verf[y!ailRix - rl] (l 78) 
~ 'Ir - Ril 3 ~ q, IR~x - rl · 
i=l i=l . ' 

The first two terms in Eq. (178) contain information concerning the cluster only, 

therefore, define these first two terms to be Eclus(r), the total field due to the 

quantum mechanical electronic charge density and the nuclear charges. Next we 

evaluate Eq. (178) at one of the quantum cluster nuclear sites, say Rj, we then 

have, 

E(R) = E (R ·) - ;. ·V erf[y!ai!Rix - rl] I 
J clus J ~ q, IR~x - rl . ' 

i=l , r=R1 

(179) 

where it is understood that the nuclear core at Rj has been excluded from the sum 

over cores in Eclus(Rj ). Next we observe that if the total electric field is evaluated 

at one of the cluster sites as in Eq. (179) and if the origin is placed on the central 

atom as in Fig. 10 then, by symmetry, the total electric field vector must at most 

have only a radial componenL That is E(Rj) = (const.)r. Therefore, the() and 

J components of the V operator must vanish by symmetry when evaluated at Rj. 

We then may write, 

(180) 

(2 /F [ !Rex R 12] erf[jiijJRfx-RjlJ)· ~ - I (R ) 
X y ~ exp -0'.i i - j - IRfx-Rji r = i j · (181) 
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Equation (179) then becomes, 

N 

E(Rj) = Ec1us(Rj) - L qJi(Rj), (182) 
i=l 

At this point it will be useful to specialize the derivation to the specific system of 

CaF2. For CaF2 we will have two different types of external point Gaussians char­

acterized by the different charges and Gaussian exponents ( qp, ap) and ( qca, aca). 

From Eq. (182) the total electric field is then given by, 

NF . Nca 

E(Rj) = Ec1us(Rj) - qp L If(Rj) - qca L Ifa(R;), (183) 
i=l i=l 

where, Np and Nca are the number of F-type and Ca-type external point Gaussians 

respectively. If (Rj) is given by Eq. (181) with Rf· replaced by Rf and ai replaced 

by ap and similarly for Ifa(Rj), Rfx is replaced by Rfa and ai by aca, 

If we define the following vector functions, 

(184) 
i=l i=l 

and the following scalar functions, 

(185) 

we may simplify the notation. With these definitions, the total electrostatic field 

is now given by, 

(186) 

To stabilize the quantum cluster we must determine the forces on the cluster 

nuclei due to the electronic charge density and the other nuclei within the cluster, 

and the external distribution of charge. From Eq. (186) we see that the total force 
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on a nucleus with nuclear charge Zj at site Rj in the quantum cluster is given by 

the expression, 

where F clus(Rj) is the force on the nucleus at site j within the quantum cluster 

due to the cluster electronic charge density and the other nuclei within the cluster. 

The terms involving the K(Rj) functions represent the force on the nucleus at site 

j due to the external charge distribution. 

When the cluster is completely stabilized, the total force, F(Rj) = 0. Also, 

since Fc1us(Rj ), KF(Rj), and Kca(Rj) only have components along the r-direction, 

we can write Eq. (187) for the stable cluster as a scalar equation, thus, 

(188) 

where it is understood that positive(negative) forces mean that the vector is di­

rected outward(inward) along the r-direction. Referring to Eq. (170) and the J(Rj) 

functions in Eq. (185) we see that the electrostatic potential due to the external 

arrangement of F-type and Ca-type point Gaussians is, 

(189) 

This completes the formal mathematical development, we will now consider the 

application of the point Gaussian method to the F-center in CaF2. 

The Point Gaussian Method Applied to the (Ca4 F7 )+1 S==O cluster 

Choosing the external lattice size 

Equations (188) and (189) form the mathematical basis for the point Gaus­

sian method. In the next section we will apply it to the F-center defect in CaF2. 

The first step, however, is to stabilize the non-defect cluster shown in Fig. 10 and 

then form the F-center by the removal of the central F atom, the addition of an 
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electron and a geometry relaxation. From Fig. 10 we see that we have three sym­

metry distinct sites: (1) the central F-1 site at Rp0 , (2) an outer F-1 site at RF, 

and (3) a Ca+2 site at Rea· As a consequence, it is only necessary to evaluate 

Eqs. (188) and (189) at these sites and then by symmetry they are automatically 

satisfied at the other sites reachable by a symmetry operation. 

The first step in the point Gaussian procedure is to perform an SCF calcu­

lation for the ground state of the quantum cluster in a vacuum. This calculation 

produces Fclus(RF) and Fclus(Rca). Note that Fc/us(RFo) = 0 by symmetry. Then 

using the effective charges on the cluster nuclei obtained from a Mulliken popu­

lation analysis[33], the forces on the nuclei due to an arrangement of -1 and +2 

external point ions is calculated as a function of the external point ion distribution 

radius. The -1 and +2 point ions are arranged outside the quantum cluster in the 

perfect CaF2 lattice structure. The sum of the forces due to the cluster and due to 

the external point ion distribution form the net force on a cluster site. A x2 error 

between the net forces on the two symmetry distinct Ca and F sites and zero is 

then plotted versus the external point ion distribution radius. The x2 is defined, 

(190) 

where, for instance, Fext(RF, R~~t) is the force on the cluster site Rp due to the 

external arrangement of point ions with a radius of R~~t· The optimum external 

point ion distribution radius is then determined by that radius that produces the 

smallest x2 as shown in Fig. 11. From this figure we see that minima occur at two 

points, R:~t = 11.542 Bohr and R:~t = 21.282 Bohr. Based on this observation, 

we will choose the size of the external arrangement to be 21.282 Bohr. Excluding 

the quantum cluster atoms this includes 298 F-1 and 148 Ca+2 point ions. 

The force equations 

With the size of external distribution chosen using the point ion model, the 

point ions are replaced by point Gaussians and then Eqs. (188) and (189) are 
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Figure 11. x2 error between the net forces on the symmetry distinct cluster sites, 
RF and Rea and zero. The x2 is plotted as a function of external 
lattice size. We see that the smallest x2 occurs for R:~t = 21.282 
Bohr. This radius includes 298 F-1 and 148 Ca+2 external point 
IOnS. 
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solved for the qp, ap, qca, aca parameters. From the literature, the Madelung 

potential at a F-site is known to be 10.73 v[l8]. After subtracting the contribution 

to the Madelung potential due to the quantum cluster ions, the cluster subtracted 

Madelung potential is -0.1292 Hartrees. This is the value that the external charge 

distribution must produce at the central F-site so as to represent an infinite lattice. 

With V0 taken to be this value, we find that the parameters are found by solving, 

(191) 

(192) 

(193) 

where, ]{pp = J{p(Rp), KcaP = Kca(Rp), /{pea = Kp(Rca), KcaCa = 
Kca(Rca), ]po = ]p(Ro), and lcao = lca(Ro). Also we have written Fp for 

Fc1us(Rp) and Fca for Fc1us(Rca). We note that we cannot write a force equation 

for the central F ion since by symmetry the net force on this ion is always zero and 

therefore would not represent an independent condition. Observe that one must 

solve three equations (Eqs. (191)-(193)) for four unknowns (qp,ap,qca,aca). This 

leaves one parameter undetermined. To resolve this we may impose a neutrality 

condition namely, qca = -2qp. It should be noted that the above equations are 

linear in the qp and qca parameters while, the equations are highly non-linear in 

ap and aca· Therefore, from a computational point of view it is more convenient 

to use Eqs. (191) and (192) to eliminate the qp and qca parameters resulting in an 

expression that gives aca as a function of ap. Then, numerically, ap is scanned 

and aca, qp and qca are calculated and the solution that best gives the neutral­

ity condition is chosen. This method avoids having to solve the very complicated 

equations that result when all the parameters except ap or aca are eliminated. 

Following the above method we first solve Eqs. (191) and (192) for qp and 

qca, thus, 

(194) 
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(195) 

where, A= ZcaKcacaZF]{FF - ZpKcaFZcaKFCa· Next, these expressions for qp 

and qca are substituted into Eq. (193) to give, 

(196) 

which contains only the exp and aca parameters. The next step is to scan over 

the parameter exp, use Eq. (196) to calculate aca then calculate qp and qca using 

Eqs. (194) and (195). The solution chosen is the one that best satisfies qca = -2qp. 

Methodology and results 

Stabilizing the nondefective cluster at the experimentally determined geom­

etry requires an iterative procedure. The reason for this is that the altering of 

the external field changes the quantum cluster electronic charge density which in 

turn changes the cluster forces. If the external charge density is being adjusted so 

as to produce forces on the cluster atoms that exactly balance the internal cluster 

forces, then after each alteration of the external field a corresponding change in the 

cluster electronic charge density and cluster forces occurs. The method applied in 

this work is that first the cluster forces are calculated quantum mechanically at the 

Hartree-Fock level of theory for an isolated cluster* however, in general, correlated 

methods may be used such as MP2 or CL With an external lattice of F-type and 

Ca-type point Gaussians chosen in the fashion described in the previous section, 

the Gaussian exponents and effective charges are then determined by the solution 

of Eq. (196). These parameters produce an external field that exactly balances the 

cluster forces. The cluster forces are then re-calculated in the presence of the new 

external field. Because of the change in the electronic charge density due to the 

newly introduced field, new cluster forces are obtained. With these new cluster 

forces, Eq. (196) is then solved again to produce new parameters and hence a new 

*that is, the quantum cluster in vacuum 
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external field that would exactly balance the new cluster forces. The cluster forces 

are then calculated again. This process is continued until the calculated cluster 

forces match to within a specified tolerance the opposite of the external field forces 

of the previous iteration. At this point, the iterative process has converged. 

Table VII shows a series of calculations on the ( Ca4 F 7 )+1 S=O cluster shown 

in Fig. 10. Columns 2 and 3 show the cluster forces on a F and Ca site due to 

the electronic charge density and the other nuclei within the quantum cluster in 

the presence of the external electrostatic field produced by the external charge 

density specified by the parameters in columns 4 to 7. However, the cluster forces 

in columns 2 and 3 do not include contributions due to the external field directly, 

rather, the external field affects the cluster electronic charge density which in 

turn changes the cluster forces. In this table the cluster forces are calculated 

quantum mechanically at the Hartree-Fock level of theory. Columns 4 to 7 show the 

parameters obtained from solving Eq. (196) using the cluster forces for the previous 

iteration. For instance, the parameters in the iteration 1 row were obtained using 

the cluster forces from iteration 0. Columns 8 and 9 show the forces on the cluster 

sites due to the external charge distribution only. Columns 10 and 11 show the 

net forces on the cluster sites. This is nothing more than the sum of the cluster 

and external forces. 

We see from the results of Table VII the iterative scheme converges rather 

quickly with convergance achieved by the 5th iteration. The charges on the F-type 

and Ca-type point Gaussians do not vary significantly from the ionic charges in 

CaF2 • The average radius of the point Gaussians, however, is about half that 

of the ionic radii of F and Ca in CaF2 • The last row labeled CISD gives the 

cluster and net forces on the sites from a configuration interaction calculation 

using all single and double substitutions of the Hartree-Fock wave function. In all 

62 molecular orbitals were used in the CISD calculation so that this calculation 

was quite expensive computationally. We see that the incorporation of electron 

correlation does introduce significant changes in the net forces. However, even 

with correlation the net force on the cluster F-sites is still less by over an order of 
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magnitude from the isolated cluster forces. For the Ca-sites the net force is less by 

over three orders of magnitude from the isolated case. We show these results for 

comparison only since the use of CISD is too computationally expensive with the 

available machines to use in the iterative scheme. 

The Formation and Relaxation of the F-center 

With the (C~F1 )+1 S=O cluster stabilized by method described in the pre­

vious section, the defect cluster can now be formed. Using the parameters from 

iteration 5 in Table VII for the external field, the central ion is removed from and 

an electron is added to the quantum cluster thereby forming the (Ca4F6Vac)+l 

S=l/2 F-center cluster. The elimination of the central F ion will unbalance the 

forces on the outer Ca and F ions hence the positions of the outer Ca and F ions 

must be adjusted to the new equilibrium positions. Table VIII shows a series of 

SCF force calculations for the F-center cluster. Iteration O shows the forces in the 

isolated F-center cluster. Iterations 1 to 5 incorporate the external field produced 

by the parameters of iteration 5 in Table VII. Columns 6 and 7 show the external 

field forces in the outer F and Ca sites. It should be noted that these change as a 

result of the movement of the F and Ca cluster ions and are not the consequence of 

any change in the parameters used to generate the field since these remain constant 

TABLE VII. 

SUMMARY OF THE RESULTS FOR THE POINT GAUSSIAN METHOD 
. APPLIED TO THE (Ccl.4F1)+1 S=O CLUSTER 

F,:111.(R;)r (au) New Parameters (au) Faa(R;}r (au) Fna(R;)r (au) 
lter. F-site : Ca-site 9F OIF qc. oic. F-site Ca-site F-site Ca-site 

0 -0.0857 -0.2435 -isolated cluster- 0.0000 0.0000 -0.0857 -0.2435 
1 -0.0010 -0.0902 -0.710 · 0.030 1.432 0.018 0.0857 0.2435 0.0847 0.1533 
2 -0.0096 -0.1037 -1.067 0.025 2.142 0.020 0.0010 0.0902 -0.0086 -0.0136 
3 -0.0088 -0.1024 -1.028 0.025 2.065 0.020 0.0096 0.1037 0.0008 0.0013 
4 -0.0089 -0.1026 -1.032 0.025 2.073 0.020 0.0088 0.1024 -0.0001 -0.0001 
5 -0.0089 -0.1026 -1.032 0.025 2.072 0.020 0.0089 0.1026 0.0000 0.0000 

CISD -0.0048 -0.1024 -same as above- -same as above- 0.0041 0.0002 
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throughout the relaxation. From iteration 1 we see that even with the incorpora­

tion of the external field there still exists net inward forces in the outer F and Ca 

cluster ions. After several inward adjustments of the Ca-Vac and F-Vac distances 

we are able to obtain an order of magnitude decrease in the net forces on these 

ions. The final geometry, shown as iteration 5, required a 1.2% inward relaxation 

for the F ions and a 3.3% inward relaxation for the Ca ions. This is the relaxed 

geometry used for subsequent calculations on the Mn-perturbed F-center in the 

following chapter. 

lter. 
0 
1 
2 
3 
4 
5 

TABLE VIII. 

SUMMARY OF THE RESULTS FOR THE RELAXATION 
OF THE F-CENTER CLUSTER 

Vac-Ion Distance (A) Fdu•(R;)r (au) Fe:i(R;)r (au) F,..,(R;)r (au) 
Vac-F Vac-Ca F-site Ca-site F-site Ca-site F-site Ca-site 
2.7315 2.3655 -0.0918 -0.2707 0.0000 0.0000 -0.0918 -0.2707 
2.7315 2.3655 -0.0209 -0.1208 0.0089 0.1026 -0.0120 -0.0182 
2.7315 2.1304 -0.0346 -0.0439 0.0089 0.0930 -0.0257 0.0491 
2.7315 2.3019 -0.0239 -0.1066 0.0089 0.1001 -0.0150 -0.0066 
2.7000 2.3019 '-0.0157 -0.1100 0.0092 0.1001 -0.0065 -0.0099 
2.7000 2.2863 -0.0164 -0.1060 0.0092 0.0994 -0.0071 -0.0066 



CHAPTERV 

CALCULATIONS 

Introduction 

The main work for this thesis concentrated on electronic structure calcula­

tions for two clusters: (MnF8 )-6 , (MnCa3 F6 Vac)+1. Each of these clusters will be 

discussed in more detail in following sections. These clusters relate to the modeling 

of Mn defects in irradiated and unirradiated CaF2:Mn. The (MnF8)-6 cluster will 

serve to represent an isolated Mn2+ substitutional impurity in an otherwise per­

fect unirradiated CaF 2 lattice. Since the optical spectra of CaF 2 :Mn is known[lOl,' 

the calculation of the excited states of this cluster will serve as a benchmark for 

the MCSCF technique. By the comparison of the experimental and theoretical 

results, we will be able to judge the errors likely to be prevalent when we move 

to the larger Mn-perturbed F-center cluster: The smaller (MnF 8 )-6 cluster also 

represents a good starting point as far as choosing a basis set is concerned. Once 

a basis set is chosen and optimized for this cluster, it could then be transferred 

almost without change to the larger (MnCa3 F 6 Vac)+1 cluster. 

Programs and Computer Systems 

The main analytical tool used in this work is the Gaussian 92[19] quantum 

chemical program package. Gaussian 92 is a connected system of programs for 

performing semiempirical and ab initio molecular orbital calculations. Originally 

developed at Carnegie-Mellon University in 1970 to perform simple Hartree-Fock 

SCF calculations, Gaussian has been continuously upgraded so that today this 

system of programs is capable of performing several of the advanced calculations 

84 
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involving the various extensions of Hartree-Fock such as large scale configura­

tion interaction, many-body perturbation theory to second and fourth order, and 

complete active space multiconfigurational SCF. To name a few of its capabilities, 

Gaussian 92 can perform geometry optimization to either minima or saddle points, 

compute force constants, follow reaction paths, perform population analysis, har­

monic vibrational analysis, calculate electrostatic potentials, multipole moments 

and polarizabilities. Of particular interest to this work, Gaussian 92 can perform 

force and excited state calculations using the MCSCF technique in the presence 

of an external arrangement of either point charges or point Gaussians. Both of 

these capabilities are crucial for work on defects in solids since the cluster must 

first be stabilized in an electrostatic field that models an external infinite crystal 

and excited state calculations are required so that transition energies can be com­

puted for comparison with optical spectra. Presently Gaussian 92 is available for 

machines that use the VMS, UNIX, UniCOS and IBM MVS operating systems. 

The computing facilities presently available for computational solid state 

research include a VAX/VMS 3100/3900 VAXcluster, the university VAX/VMS 

6340 and the IBM 3090-200s vector facility. The present configuration utilizes the 

3900 Micro VAX as a front-end to the larger V AX6340 and IBM3090 machines. 

The 3900 MicroVAX is also used to perform the smaller calculations such as basis 

set optimization, geometry variation, and force calculations at the Hartree-Fock 

level of theory. In this way most of the preliminary work is accomplished before 

the larger CI and MCSCF calculations are performed on either the VAX6340 or 

IBM3090. 

Methodology 

In this section we will discuss the practical problems and methods involved 

in performing electronic structure calculations using the method of Hartree-Fock. 

We will also discuss the overall calculation sequence from setting up the cluster to 

performing and CI and MCSCF calculations. 
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The essential feature of Hartree-Fock theory is the search for the ground 

state. Once the ground state is accurately determined, extensions of Hartree-Fock 

theory such as CI or MCSCF may then be employed by which one may arrive 

at better ground state wave functions or calculate the electronic excited states. 

Given a system with the locations of the nuclei specified and the number electrons 

and the total spin known, the Hartree-Fock process starts from an initial guess 

of the density matrix* and through an iterative process arrives at the best single 

determinantal wave function for the description of the ground state for the given 

spin. In theory the method of Hartree-Fock as outlined in Chapter III will work, 

in practice it often will not converge to the ground state on the first attempt. For 

cluster calculations convergence problems may arise from basically three areas: (1) 

the chemical instability of the cluster, (2) the basis set, and (3) the initial guess. 

The chemical instability of the cluster stems from the fact that most often 

the cluster chosen to represent the defect does not correspond to a stable molecule 

in free space. In fact, if the cluster ions where allowed to move they would at best 

rearrange themselves into a lower energy geometry that would not represent the 

known defect structure or at worst simply dissociate. The method for stabilizing 

the cluster discussed in Chapter IV helps . alleviate this problem as far as the 

forces on the ions are concerned. However, since the part of the crystal that 

is treated quantum mechanically is quite small while a much larger portion is 

treated classically one expects to experience distortions in the wave function ( and 

hence density) near the boundary between the quantum cluster and the external 

charge distribution. This distortion in the wave function, which we call the cluster 

size effect, arises from the discontinuity associated with the abrupt termination of 

the cluster or the abrupt transition from the quantum treatment of charge to the 

classical. One consequence of the cluster size effect may be that the cluster either 

in isolation or in the presence of an external field may not be able to contain the 

charge so that the Hartree-Fock procedure may not converge to a negative energy. 

* arrived at usually by diagonalizing the core Hamiltonian matrix 
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Convergence problems relating to the initial guess and basis set are closely 

related. An initial guess obtained by diagonalizing the core Hamiltonian produces 

a certain density. In general, this starting density may be significantly different 

from the final SCF converged density. As a consequence, the SCF procedure may 

not converge to the ground state for a given basis. This problem may be helped 

somewhat by either expanding the basis set or by improving the initial guess. 

In practice, expanding the basis set may not be practical and at any rate the 

question as to exactly how the basis set should be modified is sometimes unclear. 

For some cases the addition of diffuse functions can resolve this problem. The 

addition of diffuse functions means that the basis set is no longer minimal, that 

is, the number of basis functions of a given symmetry is larger than the number of 

electrons occupying states with that symmetry. However, as we will see this may 

lead to charge exit under basis set optimizations when the external field is included. 

Another way to overcome convergence problems is to alter the initial guess. This 

may require a series of reduced convergence calculations. The molecular orbitals 

are then examined and the necessary alterations are made. Below we will discuss 

a systematic procedure we have developed for doing this. 

With the cluster geometry, choosing the number of electrons and the total 

spin is the first step toward choosing a basis. The choice of the variational basis set 

is perhaps the most important consideration when attempting to perform accurate 

SCF calculations. One attempts to choose a basis that, while limited enough in size 

for practical calculations is also flexible enough so as not to unduly bias the results. 

For the case of the CaF2 clusters, particular attention must be paid to the Mn 3d 

orbitals which are the ones primarily responsible for the observed transitions. 

The standard basis functions used for atomic calculations of the F- ion and 

the Ca and Mn atoms from Huzinaga et. al. [38] provide a good starting point. 

Starting with numerical solutions of the Hartree-Fock equations for atoms, Huzi­

naga et. al. then carried out a series of fits withs, p and d-type Gaussian functions 

to the numerical atomic solutions. The Gaussian basis functions are a product 

of a radial Gaussian and a real spherical harmonic of either the s, p or d-type. 
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These are called the primitive Gaussian basis functions. For a nucleus centered at 

R =Xx+ Yy + Zz, the normalized real primitive Gaussian basis functions of s, 

p and d-type symmetry are: 

9s,R(r) = 

9d,R(r) 

( 
3 ) 1/4 

4 ~ e-alr-R/2 

321r3 

(x -X) 

(y - Y) 

(z- Z) 

2./3 [2(z - Z) 2 - (x - X) 2 - (y - Y)2] 

! [(x - X) 2 - (y - Y)2] 

(x - X)(z - Z) 

(y - Y)(z - Z) 

(x - X)(y - Y) 

(197) 

-a/r-R/ 2 
e 

The atomic basis functions then consist of a linear combination (contraction) of 

the primitive Gaussians of the same symmetry. For instance, an s-type atomic 

basis function consists of a linear combination of s-type primitive Gaussians. The 

degree of contraction ( the number of primitive Gaussians in the linear combination) 

typically varies from just one to as many as six. By using linear combinations 

of the atomic basis functions, Huzinaga et. al. [38] fitted the numerical atomic 

Hartree-Fock solutions for a large number of atoms and tabulated the results. 

These tables then provide the starting basis functions for beginning the molecular 

calculations. Because these tables produced basis functions adequate for atomic 

calculations, they must be augmented by the addition of more diffuse s, p and d 

Gaussian atomic basis functions for molecular calculations. In total, nine atomic 

basis functions were used for fluorine, 13 for calcium and 23 for manganese. Since 

the molecular orbitals are then represented as linear combinations of atomic basis 

functions when the Roothaan equations are solved, this technique is best referred 

to as the linear combination of atomic basis functions method and not, as in usual 

parlance, as the linear combination of atomic orbitals method. 
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vVith the basis set chosen, one may begin the SCF calculations. For the 

calculations in this thesis the initial guess is determined by diagonalizing the core 

Hamiltonian matrix. As already stated above, this method of generating an initial 

guess generally produces a density that is significantly removed from the density of 

the Hartree-Fock ground state. Furthermore, since the basis set is finite, the SCF 

procedure generally will not converge to the ground state in the first attempt. The 

method used to overcome this problem is to perform a series of SCF calculations 

each time diagonalizing the CI singles matrix. This process gives the singles con­

figuration interaction ( CIS) energy spectrum and the leading coefficients for the 

singles CI expansion. From the energy spectrum one may determine the approx­

imate energy of those states with the same spin lying below the SCF converged 

result. From the leading coefficients in the CIS expansion one may determine 

which alterations need to be made to the guess for the next SCF-CIS calculation. 

This is continued until CIS does not produce an energy below the present SCF 

converged result. Of course, the ground state for some spin multiplicities are mul­

tideterminantal (such as 4T19), in this case CIS will always give a lower energy. 

For this case CIS will produce a lower energy eigenvalue, however, the CIS expan­

sion will contain several determinants with similar expansion coefficients indicating 

that the wave function is best described as a linear combination of determinants. 

At this point it is unlikely that further alterations will lead to a lowering of the 

Hartree-Fock energy. It is at this point that one has obtained the best Hartree-Fock 

ground state in a single determinantal form for the given basis. It should be noted 

that during this process that it may be necessary to relax the convergence criteria 

temporarily so that one may obtain the partially converged molecular orbitals. 

Once the ground state has been found for the given basis, the next step is 

to optimize the basis set. To understand how this process works, Eq. (198) below 

shows the form of ans-type atomic basis function </>µ(r), 

N 

,i,. (r) - """"' d· e-o.;µJ2r2 
'I-'µ - L..t iµ ' (198) 

i=l 
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where N is the number of primitive Gaussians composing the atomic basis func­

tion called the degree of contraction. The coefficients diµ are the contraction 

coefficients*. The quantities aiµ are the Gaussian exponents and f is the scale 

factor. Note that in the contraction sum, diµ and aiµ vary for each primitive 

Gaussian. The scale factor, however, is the same for all the primitive Gaussians. 

Thus changing the scale factor f scales the entire atomic basis function <l>w Opti­

mizing the basis set then involves varying the scale factors to minimize the energy. 

For practical reasons, this variation is performed at the Hartree-Fock level of the­

ory and only the basis functions representing the valence electrons are changed. 

Furthermore, has been found that this variation works best for the cluster in isola­

tion. Attempting to vary the valence basis functions in the presence of an external 

charge distribution tends to make the diffuse basis functions so extended that a 

significant amount of charge accumulates in the region of the nearest neighbor 

point Gaussians. The charge has then, in effect, exited from the quantum cluster. 

The next step is the introduction of the external charge distribution and the 

building in of correlation with singles and doubles CI ( CISD) and complete active 

space multiconfigurational SCP- (MCSCF). If it can be shown that the presence 

of an external field does not significantly affect the relative the spacing of excited 

state energy levels as in the case with the (MnF8)-6 cluster then the external field 

can be dispensed with. On the other hand, for systems where electrons are not 

bound tightly to a nuclear core as in the case of the F-center (Ca4 F6Vac)+1 or 

the Mn perturbed F-center (Mn4 F 6 Vac)+1 clusters where the vacancy electron is 

quite diffuse, then the external field must be carefully constructed. The details 

as to how the non-defective cluster is stabilized, the defect formed and the cluster 

atoms relaxed has already been discussed in Chapter IV. 

The final step is utilization of the MCSCF method for the systematic cal­

culation of the electronic excited states. Since the application of this technique is 

*the primitive Gaussian normalization factor is absorbed into the contraction 
coefficients and the contraction coefficients are chosen such that the entire atomic 
basis function is normalized 
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quite specialized to the particular system in question, a detailed discussion of its 

application will be made when the clusters themselves are discussed. 

The (MnF8 )-6 Cluster 

Cluster geometry and external field 

Mn2+ ions enter the CaF2 lattice substitutionally and are surrounded by 

eight F- ions arranged in Oh symmetry. To model the isolated Mn impurity, we 

construct a cluster consisting of a central Mn2+ ion and the nearest neighbor F­

ions as shown in Fig. 12. With the Mn2+ ion at the origin the F- ions are located 

at (±~, ±~, ±~), where a is the F-F distance. Recent experimental evidence in 

the form of x-ray absorption near-edge structure (XANES)[39] indicate a first 

shell at 2.20 A. This yields a value of 2.54 A for a and represents about a 7% 

inward relaxation from the perfect CaF2 lattice constant of 2.73 A[18]. It has been 

pointed out that in many cases the modeling of crystal defects by isolated cluster 

calculations can lead to inaccurate results[40]. While this may certainly be ttue for 

defect complexes where the electronic charge density is delocalized in, for instance, 

an F-center, or for materials exhibiting a large degree of covalent bonding, one 

expects this problem to be less severe for point impurities in ionic crystals. This 

assertion is born out by the success the method of ligand fields has had in its 

application to the transition metals in the alkali halides and alkali earth fluorides. 

Nevertheless, in every case it must be demonstrated to what degree the external 

field affects the calculated transitions. 

To a first approximation, an external arrangement of point ions must produce 

the Madelung potentials within the cluster. For a finite external arrangement, 

however, this requires a judicial choice of where the external cut-off radius should 

be. The Madelung potentials for CaF 2 available in the literature[18] are <pp = 10. 73 

V for a F site and <!>ca = -19.95 V for a Ca site. The 00 superscript is used to 

indicate the potentials for the infinite lattice. A finite external arrangement of 

point ions must be chosen such that it produces the cluster-subtracted Madelung 
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Figure 12. Diagram of the (MnF8) 6- cluster used to model the isolated Mn impu­

rity in CaF2. 
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potentials at the Mn and F sites within the quantum cluster. Accounting for the 

electrostatic contributions to the Madelung potential due to the cluster ions the 

cluster-subtracted Madelung potentials are, <pp'' = 1.051 Hartrees and ¢>Mn' = 

1.056 Hartrees. The external lattice size therefore will be chosen such that its 

potential reproduces the difference, ¢>Mn' - </>'p' = 0.005 Hartrees. 

For these calculations, the external field was produced by arranging outside 

the quantum cluster -1 and +2 point charges representing the F-1 and Ca+2 ions 

respectively. These external ions were situated so as to conform to the structure of 

a perfect CaF2 lattice. Figure 13 shows the potential difference ¢>Mn(R) - cp'p(R) 

as a function of the radius of the external arrangement of point ions from the 

central Mn ion. This figure shows that as the size of the external arrangement 

increases, the potential difference begins to converge as one would expect. As 

the size is further increased, one would expect the potential difference produced 

from the finite arrangement to approach the value for the infinite lattice, namely 

0.005 Hartrees. The goal of modeling the infinite lattice with a finite arrangement 

of point ions can be achieved by selecting the size of this finite arrangement so 

that the potential difference produced by it most closely matches the value for the 

infinite lattice. Figure 13 shows that this is accomplished with an external point 

ion radius of 20.65 Bohr consisting of 412 point ions. This arrangement produced 

the desired potential difference of 0.005 Hartrees. 

Calculations 

The Mn defect cluster shown in Fig. 12 has an overall charge of -6. Each F­

has closed 2p shells and the Mn2+ has a 3d5 configuration outside closed shells. 

The ground state is 6 A19 arising from the t~9 e~ configuration. The first excited 

state is 4T19 from the t~9 e~ configuration. The 6 A19 ground state Hartree-Fock 

wave function was obtained through the SCF-CIS procedure discussed in the pre­

vious sections with the SCF technique being the unrestricted Hartree-Fock (UHF) 

method. The basis set scale factors where then optimized. The first excited state, 

4T19 , was then calculated from the 8=5/2 ground state by flipping a spin. 
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Figure 13. The electrostatic potential difference between the central Mn-site and 
a F-site, <l>Mn(R)- </>'p(R), as a function of the radius of the external 
point ion arrangement, R, from the central Mn ion. As shown in the 
figure the arrangement actually used for SCF calculations consisted 
of those external point ions less than 20.65 Bohr from the central 
Mn-site. 
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The UHF wave functions for both the ground 6 A19 and first excited state, 

4T19 , were then improved upon by utilizing the correlated methods of MP2, MP4, 

CISD and MCSCF. The results are given in the next section. 

In particular, the MCSCF method was used to calculate the excited state 

energies within the spin 3/2 manifold of states. The choice of the proper active 

space for MCSCF is of utmost importance. For these calculations, the active 

space was chosen so that all orbitals in the active space correspond to the N­

electron problem. This was done in the following fashion. The method of MCSCF 

as implemented by Gaussian 92[19] is a spin-restricted procedure. Therefore a 

restricted open-shell Hartree-Fock (ROHF) calculation of the ground state is first 

performed. This state is spin 5 /2 with all five 3d electrons spin aligned. Choosing 

the active space to be these five spin-restricted 3d molecular orbitals (MO) and 

flipping one spin so as to produce the spin 3/2 first excited state, the active space 

now consists of five electrons and five MO's except that now one MO is doubly 

occupied and one MO is empty. Since the empty MO was obtained from the spin 

5/2 calculation, it still corresponds to the N-electron problem and is therefore, 

strictly speaking not a virtual MO. The complete active space expansion produces 

24 distinguishable determinants with which to represent the spin 3/2 states. The 

results of the MCSCF calculations are presented in the next section. 

Results 

In Table IX we present a summary of the ground state to first excited state 

transition energies obtained experimentally and from the various quantum chemical 

methods. One point to note is that at the UHF level of theory, the calculated 

transition energy both with and without the external field differ by only 0.05 eV. 

As we will point out later, this difference is slightly higher than the resolution 

obtainable in these calculations from the MCSCF technique for the excited states. 

We may conclude, therefore, that as far as the transition energies are concerned, 

the effect of the external field is quite small. This observation is consistent with 

studies of Mn centers in other hosts such as ZnS by Richardsen et. al. [41 ]. As 
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further evidence, Fig. 14 shows the percent change in the electron density about 

the quantum cluster arising due to the effect of the external field. The percent 

change is calculated by [(Pext(r)-p(r))/ Pext(r)] X 100, where Pext(r) is the electronic 

charge density in the presence of the external field. Figure 14(a) shows the percent 

change in the F plane of the cluster and Fig. 14(b) shows the same in the Ca plane. 

The location of the Mn ion and a F ion are indicated in the figures. Figure 14(a) 

also includes the presence of a +2 external point ion. In Fig. 14(b) the indicated 

location of the F ion is actually the location of its projection onto the Ca plane. 

Both figures show that within the confines of the quantum cluster, the percent 

change in the electron charge density arising from the introduction of the external 

point ion field is no more than approximately 1 %. Since the excited states are due 

to d- to-d transitions and since the d-orbitals are rather localized about the Mn ion, 

one expects the presence ofthe external field to have little effect. Therefore, having 

introduced an external field and finding its effects to be negligible for transition 

energies, we may now proceed without the external field for further calculations. 

The remaining results in Table IX were calculated without an external field. 

While the CISD method yields the best transition energy, it is still 0.59 eV above 

TABLE IX. 

VALUES OF THE TRANSITION ENERGY 
FROM THE GROUND STATE 6 A19 

TO THE FIRST EXCITED 
STATE 4T19 

Method 
Experimental 
UHF (with ext. field) 
UHF 
MP2 
MP4 
CISD 
MCSCF 

2.81 
3.71 
3.76 
3.53 
3.49 
3.40 
3.52 
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Figure 14. The percent change in the electronic charge density in (a) the F-plane 
and (b) the Ca-plane of the quantum cluster. Both figures show 
that within the confines of the quantum cluster the percent change 
in the electronic charge density arising from the introduction of the 
external point ion field is no more than approximately 1 %. 
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the experimental value. An error of this magnitude for d-to-d transitions in Mn­

related defects is quite common. Richardsen et. al. for instance, report a UHF 

error of 1.6 e V for the ground to first excited state transition for Mn defects in 

ZnS which they associate primarily with intra-atomic correlation effects[41]. For 

the Mn in CaF2, we see that the UHF error is 0.95 eV. Thus, the CISD method 

has accounted for approximately 0.36 eV of the missing correlation energy with 

the present basis. Since the main part of the correlation effects are accounted for 

at the MP4 and CISD level of theory for sufficently large basis sets[33], the likely 

explanation is that the 0.59 eV CISD error is mostly basis set related. A final 

observation from Table IX is that the MCSCF technique is at the same as MP2 as 

far as correlation is concerned. 

In Fig. 8 we show the optical absorption data by McKeever et. al. [10]. Their 

experimental values are presented in Table X as column four. The assigned term 

designations were made by them based on a ligand field analysis from fitting to 

the 3d5 Tanabe-Sugano diagram for an ion in the presence of a point ion field of 

Oh (six-coordinated) symmetry. This resulted in a Dq value of 420 cm-1 for the 

TABLE X. 

SUMMARY OF THE TRANSITION ENERGIES FROM THE 
GROUND STATE 6 A19 ROHF ENERGY 

OBTAINED BY MCSCF 

State Energy (eV) After rigid shift of -0.647 eV Experimental ( e V) 
4T1g(4G) 3.54 ± 0.02 2.89 ± 0.02 2.81 
4T2g(4G) 3.75 ± 0.01 3.10 ± 0.01 3.10 

4 Eg(4G) [4A1g]* 3.78 ± 0.01 3.13 ± 0.01 3.14 
4 A1g(4G) [4 Eg]* 3.81 3.16 3.16 

4T2g(4 D) 4.59 ± 0.01 3.94 ± 0.01 3.70 
4Eg(4D) 4.64 ± 0.03 3.99 ± 0.03 3.87 
4T1g(4P) 4.72 ± 0.03 4.07 ± 0.03 4.20 
4A2g(4F) 6.25 5.60 5.17 
4T1g(4 F) 6.39 ± 0.03 5.74 ± 0.03 5.17 
4T2g(4 F) 6.49 ± 0.02 5.84 ± 0.02 5.30 

*assignments made by McKeever et. al. [10]. 
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crystal field splitting parameter[lOJ. As discussed in Chapter II, we have reworked 

the Tanabe-Sugano diagram for a 3d5 eight-coordinated Oh system and presented 

the results as Fig. 9. The dashed line shows the Dq value that gives the best fit 

to the new diagram using the experimental data of column four of Table X. This 

results in a new Dq value of 570 cm-1 . 

Table X shows the results of MCSCF calculations. The second column gives 

the transition energies from the ground state calculated at the ROHF level of the­

ory t<? the excited states calculated at the MCSCF level of theory. The error values 

given indicate the spread in energy of the partners to the irreducible representa­

tions of the Oh group indicated in column one. The energy given in column two is 

taken as the average energy of these partners. From Fig. 8 we observe that exper­

imentally some energies are known better than others. Since the peak designated 

4 A 19 ( 4 G) is the sharpest and hence provides the most precise experimental energy, 

the calculated values are rigidly shifted by -0.64 7 e V to match the experimental 

4 A 1g(4G) level. These results are given in column three. Figure 15 shows graphi­

cally the calculated values of column three and experimental values of column four. 

Discussion 

There are essentially two ways to obtain the electronic excited states of de­

fects involving transition metal ions in crystals. One is the method of ligand fields 

developed in a series of papers by Tanabe and Sugano[22] and Orgel[23]. Later sev­

eral books and review articles appeared in the literature most notably by Tanabe 

and Sugano[20] and Schlafer and Gliemann[24]. These researchers discussed the 

splitting in the free ion terms of 3d ions for ligand fields with various symmetries. 

Essentially the ligand field approach centers around treating the d electrons of a 

central ion through a screened interaction with the otherwise closed shells. The 

d electrons then interact via perturbation theory with a point ion external field 

produced by the nearest neighbor ions ( or "ligands"). This interaction results in 
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Figure 15. Graphical representation of the MCSCF results presented in Table X 
for the (MnF8 ) 6- cluster after the -0.647 eV rigid shift. The exper­
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a splitting of the free ion terms into multiplets identified by the irreducible rep­

resentations of the symmetry group of the cluster (in this case Oh). This method 

has enjoyed considerable success when applied to ionic crystals, however, its lim­

itation is manifest when one begins to consider more complicated systems, such 

as an impurity ion adjacent to an F-center in CaF2 • For instance, if a Mn2+ ion 

enters substitutionally for Ca2+ and is adjacent to a vacancy in which an electron 

is trapped. The -1 charge of the electron in. the vacancy behaves in the ligand field 

point ion approximation exactly as another F- ion surrounding the Mn impurity. 

Therefore, ligand field theory would treat this system in the same way as it would 

treat the Mn impurity surrounded by the eight nearest neighbor F- ions in CaF2 • 

Clearly then, for these more complicated systems a more general quantum 

chemical method must be employed. Since large scale CI calculations are im­

practical for systems of this size, the only practical alternative is the complete 

active space multicon-figurational SCF method. It is then the intent of this work 

to demonstrate that the MCSCF technique produces reliable transition energies 

that are in good agreement with experiment. The active space chosen to calculate 

the excited states for the [MnF 8J-6 cluster within the spin 3 /2 manifold of states 

consists of the Mn d-like molecular orbitals. In all, this produced 24 con-figurations. 

The MCSCF technique then starts with the ROHF orbitals, diagonalizes the CI 

matrix consisting of the 24 con-figurations and produces the CI expansion coeffi­

cients and eigenvalues. Then, with the wave function represented by this truncated 

CI expansion, the orbitals are then varied so as to minimize the desired eigenvalue. 

With the new orbitals, the CI matrix is diagonalized again and the process is re­

peated until the desired eigenvalue converges. Since at every step of the way the CI 

eigenvalues are rigorous upper bounds to the excited state energy[36], by choosing 

to optimize the orbitals for one of the excited CI eigenvalues, one obtains the best 

possible excited state energy for the given active space. 

Table X shows the results of successively incrementing the optimized eigen­

value for each MCSCF calculation. Figure 15 shows the same results graphically. 

With regard to these results there two important points. First, it was found that 
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the MCSCF method does a much better job predicting the relative spacing of the 

energy levels within a given spin manifold. Column 2 in Table X gives the energies 

of the spin 3/2 states with respect to the spin 5/2 ground state. By comparing 

these values with the experimental results in this table, we see that they depart 

from the experimental values by on the average of about leV. By performing a 

rigid shift of -0.647 eV to match the experimental 4 A1g(4 G) level the agreement 

as shown in Fig. 15 is much better. The main reason for this, we believe, is that 

within an MCSCF approach, the 6 A1g(6 S) level can only be treated at the ROHF 

level of theory. Since this level is spin 5/2 with all five spins aligned, constructing 

the active space from the Mn d-like molecular orbitals produces only one possible 

configuration. This means that if the spin 3/2 and spin 5/2 levels are to be treated 

at the same level of theory ( as they must for purposes of comparison) the 6 A19 ( 6 S) 

is represented by a single determinantal wave function while the quartet levels are 

represented by a multideterminantal wave function consisting of 24 determinants. 

Since the 6 A 19 ( 6 S) state has all five spins aligned and since in Hartree-Fock theory 

electrons with parallel spins are correlated, the single determinantal wave function 

for the 6 A 19 ( 6 S) state includes more of the exchange correlation energy than does 

the 24 determinantal wave function of the spin 3/2 states. This, however, is only 

part of the story, in fact, this effect accounts for only approximately 0.12 eV of 

the 0.64 7 e V rigid shift. From Table IX we show the 6 A19 --+ 4T19 transition ener­

gies for the different levels of theory. We observe that the best calculated value is 

obtained from a large configuration interaction calculation involving all non-core 

single and double substitutions (CISD). The CISD calculations therefore include 

essentially all the correlation energy obtainable from the basis set employed in this 

study. The CISD result is 0.12 eV below the MCSCF result but is still approxi­

mately 0.59 eV above the experimental result. Based on the fact that CISD is a 

highly correlated method, we believe then that 0.59 eV of the 0.647 eV rigid shift 

is primarily associated with the basis set. That is, if the basis set were enlarged 

then the CISD could account for more of the missing 0.59 eV correlation energy. 
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The second point is that as one moves up in energy the calculated results 

begin to depart further and further from the experimental values. As one tries 

to calculate excited states with higher and higher energies the finite size of the 

active space becomes more and more relevant. This is because the higher roots, 

while rigorous upper bounds, are also orthogonal to the lower roots as determined 

using the same basis as that obtained by the MCSCF procedure for the optimized 

root. This, therefore, introduces an additional error into the result that increases 

as higher roots are optimized. The solution that could be consistently applied to 

all the states would be to increase the size of the active space to include some F s­

and p-like molecular orbitals and the virtual Mn 3d MOs and then re-calculate the 

states. However, we found that increasing the active space for this system would 

be computationally unfeasible. 

Another point concerns degeneracies and term assignments. As one moves 

up in energy with successive MCSCF calculations, one observes the clustering of 

the levels into the two- and three-fold degeneracies of the various 4 E9 , 4T19 and 

4 T29 terms. Because of the finite basis set and the fact that the Oh symmetry of 

the Mn impurity must be relaxed in the MCSCF calculations, these degeneracies 

will be broken. The errors shown in Table X indicate this spread in energy. Based 

upon the results of ligand field theory and the groupings of the levels calculated 

by the MCSCF technique, we where able to make the term assignments in column 

1 of Table X. 

According to ligand field theory, we see from Fig. 9 that the 4 E9 ( 4 G) and 

4 A19 ( 4 G) terms remain degenerate under variations in the crystal field splitting 

parameter Dq. Experimentally, of course one will observe a small separation in 

these terms. From Fig. 8 we observe that McKeever et. al. [10] assigns 4 A 19 ( 4 G) to 

be the lower energy of these two terms. From the grouping of the MCSCF energy 

levels, however, we find that 4 E9 ( 4 G) is the lower in energy of the two terms. 

Consequently, based on our MCSCF calculations we reverse the term assignments 

of these two levels relative to the published assignments[lO]. As one moves beyond 

ligand field theory the 4 A19 ( 4 G) and 4 E9 ( 4 G) terms will split. For instance, Ng 
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and Newman[42] examine a spin-correlated crystal field model designed to include 

covalency effects. They found that this model places the 4 Eg level below the 

4 Ag level. In addition, Ferguson, Krausz, and Guggenheim[43], using magnetic 

circular dichroism measurements found that in KMgF3 :Mn2+, the 4 Eg level lies 

approximately 90 cm-1 below the 4 Ag level. Thus MCSCF predicts the proper 

ordering of these levels. 

Cluster geometry, basis set and external field 

The Mn-perturbed F-center has been proposed as a model for the defect 

largely responsible for the absorption spectrum from CaF2 :Mn (3%) following ir­

radiation[lO]. While the model envisioned by McKeever et. al. [10] consists of an 

F-center perturbed by two Mn ions as shown in Fig. 1, we believe that a double 

Mn-perturbed F-center cluster may not be necessary to explain the observed ab­

sorption spectra. There are essentially two reasons for this. First, optical spectra 

on Mn2+ in MnF2 by Finlayson et. al. [44], in KMnF3 and KMgF3 :Mn by Sibley 

et. al. [45] and in NaMnF3 by Srivastava et. al. [46] show, to within a scaling fac­

tor, very similar Mn absorption structure. Therefore, since Mn absorption appears 

to be largely independent of the host and thus of the nature of the immediate 

surroundings of the Mn ion, this implies that the Mn related absorption would 

~ot change radically if the immediate surroundings consisted of another Mn ion. 

Second, given the photon density involved in absorption measurements, it is sta­

tistically unlikely that two adjacent Mn atoms would be simultaneously excited. 

Note that we are not claiming that double Mn F-centers don't exist (in fact they 

probably do exist at 3% concentration), we are merely asserting that within this 

cluster only one Mn ion is excited at a time and that the presence of the other Mn 

ion serves to provide only a perturbation to the system. From this reasoning, we 

believe that the general features of Mn absorption in irradiatied CaF2 :Mn can be 

explained in terms of a single Mn F-center cluster. 
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The analysis of the (Mn Ca3F 6 Vac )+1 cluster started with an analysis of the 

non-defective cluster shown in Fig. 10. As described in Chapter IV and shown in 

Table VII, the non-defective cluster is stabilized in the presence of an external field 

of point Gaussians. The F-center is then created by the removal of the central p­

ion and the addition of an electron to the system. The cluster is then relaxed as 

shown in Table VIII to stabilize the geometry. Next, one of the nearest-neighbor 

Ca2+ ions is replaced by a Mn2+ to form the Mn-perturbed F-center. Figure 16 

shows the final geometry used for the following calculations. It is to be noted that 

upon introducing a Mn in place of one of the Ca ions the cluster was not relaxed 

further, therefore, in Fig. 16 the vacancy-F distance is 2.70 A and the vacancy­

Mn(Ca) distance is 2.29 A. In addition, the external point Gaussian arrangement 

was maintained to be that which stabilized the non-defective cluster utilizing the 

parameters at the bottom of Table VII. 

The basis set for this cluster is the same as for the non-defect cluster for the 

p- and Ca2+ ions in Chapter IV. The basis set for the Mn2+ ion was taken from 

the (MnF8 )-6 cluster. To model an electron in the vacancy requires the placement 

of basis functions in a region of space for which no nuclear core exists. Within 

the Gaussian 92[19] set of programs this is accomplished by the use of a "ghost 

atom" at the origin. A ghost atom is merely a nuclear site with zero charge about 

which basis functions may be located. Ghost atoms may be located anywhere 

and have seen use in the description of covalency for molecular calculations where 

their placement between atoms allows for the placement of basis functions centered 

between the bonding atoms. This in turn allows for the possibility of charge build­

up between the atoms and the formation of a covalent bond. They are also useful 

for the calculation electrostatic quantities at locations other than at the nuclear 

sites within the quantum cluster. For our purpose, the ghost atom and associated 

basis functions will be used to model the electronic charge distribution within the 

vacancy. 

Figure 1 7 shows the atomic basis functions used for the vacancy. The atomic 

basis functions were chosen to physically occupy most of the vacancy region with 
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Figure 16. Cluster geometry representing the Mn-perturbed F-center, 
(MnCa3F6Vac)+l. The vacancy-F distance is 2.70 Aand the va­
cancy-Mn(Ca) distance is 2.29 A. Surrounding this cluster is an 
arrangement of point Gaussians utilizing the parameters at the bot­
tom of Table VII. 
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fours-type and two p-type uncontracted Gaussian functions centered at the origin. 

All the vacancy atomic basis functions have a scaling factor of one and the Gaussian 

exponents are shown in the figure. 

Calculations 

The Mn-perturbed F-center defect shown in Fig. 16 has an overall charge of 

+ 1. Each F- has closed 2p shells and each Ca2+ has closed 3p shells. The Mn2+ 

has a 3d5 configuration outside closed shells and, in addition, there is a single 

electron which in the lowest energy configuration resides in an s-like state within 

the vacancy. 

There are two spin configurations we must consider. One configuration con­

sists of the five Mn 3d5 electrons spin aligned. With the vacancy electron parallel 

to these electrons, the total spin is 6/2. Only the ground state of 6/2 spin will be 

important in these calculations. The reason for this is that to construct a state 

with 6 /2 spin other than the ground state would require transferring an electron 

from a nearby Ca2+ ion or the excitation of the F-center. The excited Ca electron 

would pair with either the vacancy electron or with one of the Mn 3d electrons. 

The remaining unpaired electron on one of the Ca2+ ions would give it a net spin 

of 1/2 but the total spin of the entire cluster would still be 6/2. Since excited 

states of spin 6/2 involving the Ca ions necessarily requires a charge transfer, the 

energies of these states would be well above the energy range required to explain 

the observed spectra. 

The next spin configuration is spin 4/2. The ground state of this spin consists 

of all five Mn 3d5 electrons spin aligned with the vacancy electron anti-parallel to 

these. This configuration produces the ground state of this spin since each electron 

occupies a different spatial orbital and hence the Coulomb repulsion is minimized. 

There will exist a whole manifold of states of spin 4/2. These states will consist of 

linear combinations of determinants representing different occupancies of the five 

d-like and vacancy molecular orbitals. For instance, an excited state may consist 

of doubly occupying the lowest d-like MO, leaving the highest d-like MO empty 
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Figure 1 7. Plot of the atomic basis functions used to model the charge distribution 
within the vacancy. The vacancy region consists of fours-type and 
two p-type uncontracted Gaussian functions centered at the origin. 
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and aligning the spin in the vacancy with the majority spin thus producing an 

overall 4/2 spin state. The reason this configuration would be higher in energy is 

that since a d MO is doubly occupied, the Coulomb repulsion would be greater. 

Thus, the excited configurations are produced by doubly occupying the different 

d-like and vacancy MOs while keeping an overall spin 4/2. The states themselves 

will consist of linear combinations of these different configurations. It is possible 

to identify three types of excited configurations within the spin 4/2 manifold. 

The lowest energy excited configurations consist of s and p admixture within 

the vacancy. From Fig. 1 7 we see that the region within the vacancy is spanned 

by s- and p-type atomic basis functions. In the ground state the vacancy electron 

will be represented primarily by ans-type MO and be anti-parallel to the Mn 3d5 

electrons. A configuration with slightly higher energy would consist of a promotion 

of the vacancy electron without change of spin into a state where the Mn 3d5 

electrons are essentially unchanged and the vacancy electron is described by a 

MO with a definite p-like character. Since this transition is localized within the 

vacancy, it will be known as the F-center transition. A transition of this sort was 

postulated by McKeever et. al. [10] to be responsible for the low energy 540 nm 

absorption peak observed in irradiated CaF2 :Mn. 

The next type of excited configurations consist of the various double occu­

pancies of the Mn 3d molecular orbitals. \,Vith one of the 3d MOs doubly occupied, 

the spin of the vacancy electron would have to be aligned with the majority spin 

so that the overall spin is 4/2. These configurations will be collectively referred to 

as the d-to-d transitions. 

The final type and most energetic of the spin 4/2 configurations consist of 

an electron transfer either out of the vacancy to form a 3d6 configuration or an 

electron transfer into the vacancy to form a 3d4 Vac2 configuration. The energy 

required to transfer an electron either into or out of the vacancy is expected to 

be such that absorption peaks arising from this process are not likely to occur in 

the visible region as measured by McKeever et. al. [10]. These are referred to as 

charge transfer transitions and will generally not be considered in this analysis. 
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The method of MCSCF will provide the mechanism by which states con­

structed from the excited configurations within the spin 4/2 manifold may be 

calculated. By choosing the active space to consist of the five d-like MOs and va­

cancy MO, the MCSCF method then is to construct the trial wave function from 

all possible configurations of spin 4/2 within this space. The orbitals and expan­

sion coefficients within this truncated CI expansion are then varied within an SCF 

iterative procedure to minimize either the lowest root or any desired higher root. 

The calculation sequence proceeds in much the same way as in the (MnF8 ) 6+ 

cluster. UHF calculations are performed for the spin 6/2 and 4/2 ground states. 

These are improved further by the incorporation of electron correlation at the MP2 

level of theory. CISD calculations were found to be computationally unfeasible for 

this cluster given the available computer resources. To form the active space for 

the MCSCF calculations, ROHF results were first obtained for the spin 6/2 ground 

state. In this way all six orbitals are singly occupied. The spin in the vacancy is 

flipped to form the spin 4/2 ground state and the active space is chosen to consist 

of these six molecular orbitals. The truncated CI expansion is then formed from 

distributing the six electrons over these six orbitals. As stated earlier this method 

of choosing the active space insures that all the molecular orbitals in the active 

space correspond to an N electron problem. Repeated MCSCF calculations each 

time incrementing the root to be optimized produces the energy spectrum. It must 

be pointed out that this particular choice of the active space-five d-like MOs and 

one s-like vacancy MO-means that only d-to-d transitions can be calculated. To 

calculate F-center transitions one must include in the active space a p-like vacancy 

MO. The results of the MCSCF calculations for both active spaces as well as the 

UHF, MP2 and ROHF results are presented in the next section. 

Results 

The calculations began with UHF results obtained for the ground states of 

6/2 and 4/2 spin. At the UHF level of theory it was found that the 6/2 ground 

state lies 0.11 eV above the 4/2 ground state. To test this unexpected ordering 
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of levels, MP2 calculations were performed to see if this ordering holds up when 

correlation is brought in. The MP2 results for the spin 6/2 and 4/2 ground states 

show the 6/2 state lies 0.17 eV above the 4/2 state. Thus the MP2 calculations 

show the same ordering with a slight increase in the separation when correlation 

is included. This particular ordering of the ground states (i. e. spin 4/2 below spin 

6/2), will be important in the description of the irradiated CaF2 :Mn absorption 

spectra. 

After a spin 6/2 ROHF calculation to set up the active space, a series of 

MCSCF calculations were performed within the 4/2 spin manifold. Table XI shows 

the transition energies from the spin 4/2 ground state to the excited states of the 

same spin calculated by the method of MCSCF. All of these excited states are 

due to d-to-d transitions. Also, since the same basis set is being used in this 

analysis as was used for the Mn ion within the (MnF8 ) 6+ cluster, we may use the 

same correction factor of -0 .64 7 e V. Column three shows the results of this rigid 

shift and column four shows these energies in terms of wavelength. In Fig. 18 we 

show the observed absorption spectrum by McKeever et. al. [10] of CaF2:Mn(3%) 

recorded at 77K after irradiation at room temperature. The calculated levels in 

column three of Table XI are indicated by the lines in the figure. 

Unlike the isolated Mn impurity one cannot identify the spectra peaks or en­

ergy levels by irreducible representations of the Oh group. In fact, the symmetry of 

the Mn-perturbed F-center cluster is C3v which consists of the A1 , A2 and E irre­

ducible representations. One should therefore observe at most 2-fold degeneracies 

in the calculated MCSCF energy spectrum. While Gaussian 92 has routines that 

can determine the symmetry of a given state once it is calculated, these routines 

are unable to determine the symmetry of a state in the presence of ghost atoms. 

As a consequence, group theory will play only a limited role in the analysis of this 

cluster. 
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Figure 18. Optical absorption of CaF2:Mn (3%) recorded at 77 K following 367-Gy 
gamma irradiation at room temperature. The lines indicate the 
calculated d-to-d transitions for the Mn-perturbed F-center cluster. 
(McKeever et. al. [10]) 
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Discussion 

In this final section we return to the original problem posed in the introduc­

tion of this thesis. We wish to explain, as far as possible, the optical absorption 

spectra of CaF2 :Mn following irradiation at room temperature. It should be noted 

that the spectrum presented in Fig. 18 cannot be obtained when the sample is 

irradiated at 77 K[lO]. Instead McKeever et. al. observe this spectrum only after 

irradiation at room temperature. Based on this observation they conclude that de­

fect migration and clustering is a necessary condition to form the defect complex 

or complexes responsible for the observed absorption structure in Fig. 18. A sec­

ond observation is that relative to the spectrum for unirradiated samples (Fig. 8), 

the spectrum for irradiated samples (Fig. 18) is not only completely different in 

peak shapes and locations but also enhanced by over two-orders of magnitude. A 

final important observation of McKeever et. al. [10] involves the appearance of a 

peak at approximately 540 nm in Fig. 18 and its thermal quenching behavior. By 

measuring the absorption spectra after irradiation at room temperature at various 

temperatures from 77 K to above room temperature they observed the transforma­

tion from the spectrum in Fig. 18 to the spectrum in Fig. 8. This transformation, 

however, is not continuous but occurs abruptly at approximately 250 °C. Theim­

portant point is that the 540 nm peak quenches at the same temperature as the 

other higher energy peaks. This indicates that the 540 nm and the other peaks are 

all due to the same defect. In addition, this decay step is related to the production 

of TL with an emission at 495 nm[lO]. Since this is the same wavelength observed 

in photoluminescence studies before irradiation and has already been confirmed to 

be due to the first excited state to ground state transition in Mn2+[11], the 540 

nm peak cannot be due to Mn2+ absorption. Since the 540 nm peak and the other 

higher energy peaks are due to the same defect, this would imply that these other 

peaks could not be due to Mn2+ absorption either[lO]. 

To reconcile these observations, McKeever et. al. suggest a model consisting 

of Mn-vacancy centers. In this model they propose that the 540 nm absorption 
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peak may be due to transitions within the Mn-perturbed vacancy while the other 

higher energy peaks are more closely related to the vacancy-perturbed Mn, that 

is, vacancy-perturbed Mn d-to-d transitions. Actually they propose a complex 

consisting of a vacancy perturbed by two Mn2+ ions as shown in Fig. 1, however, 

in this thesis we will try to explain the experimental observations based on the 

simpler single Mn2+ vacancy model shown in Fig. 16. 

vVe begin our explanation by referring to the diagram in Fig. 19. and the data 

and levels presented in Fig. 18. The MCSCF calculation for the d-to-d transitions 

uses a 35 configurational wave function*. The calculated energy levels seem to 

fall into three groups which are labeled 3d(a), 3d(b) and 3d(c) in Figs. 18 and 19. 

The locations of groups 3d( a) and 3d(b) correspond to the absorption peak groups 

around 400 nm and 300 nm indicating that these peaks are in large part due to 

d-to-d transitions. The group 3d( c) does not seem to line up with a clear peak 

structure. Since the higher levels calculated from MCSCF tend to have greater 

errors than the lower levels and since this error will always be too high we suspect 

that the 3d( c) levels may be responsible for the "hump" at around 260 nm ( see 

for example Fig. 15 for the (MnF 8 ) 6+ cluster). The 3d( c) group certainly should 

not be responsible for the peak at 200 nm since all MCSCF results correspond to 

upper bounds. 

In Fig. 19 we show graphically the levels from Table XI. The levels are 

with respect to the spin 4/2 ground state of configuration (3do:)5(s,8) 1 where (s,8)1 

indicates that the electron in the vacancy has ,8 spin (spin down) and occupies 

an s-like MO. Next comes the ground state of 6/2 spin. Following this comes 

the d-to-d transitions 3d( a), 3d(b) and 3d( c). These levels correspond to the 

various excitations within the Mn 3d manifold with configurations of the form 

(3da) 4 (3d,8)1 (sa) 1 with an overall spin 4/2. The fact that the ground state was 

found to be spin 4/2 is important in explaining the large increase in the absorption 

spectrum after irradiation. Not only are the transitions now parity allowed because 

*this is the number of ways of arranging six electrons over six orbitals such that 
the total spin is 4/2 
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Figure 19. Energy magram showing the results of MCSCF calculations for the 
(MnCa3Fs Vac)+l cluster. The levels are with respect to the spin 4/2 
ground state of configuration (3do )5 ( s{J)1• Choosing the active space 
to consist of five Mn d-like and one vacancy s-like molecular orbitals, 
the d-to-d excited states are represented by a 35 configurational wave 
function. 
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of the reduced symmetry of the cluster, but the transitions into the excited d 

states are now spin allowed as well. Following the d-to-d transitions comes the 

beginning of the charge transfer transitions representing configurations of the type 

(3da) 4 (sa) 1 (s,B) 1 or (3da)5(3d,B)1. 

As shown in Fig. 18, transitions within the Mn 3d manifold does not explain 

the presence of the peak at 540 nm. We suggest that this peak is due to either 

transitions from the spin 4/2 ground state to a state dominated by a configuration 

of the type (3da )5 (p,8) 1 or by transitions from the spin 6 /2 ground state to a state 

dominated by a configuration of the type (3da)5(pa) 1 . In either case, the MCSCF 

active space would have to be enlarged to include vacancy p-like MOs. Since the 

active space presently in use includes only the Mn 3d and a vacancy s-like MO, 

the present MCSCF calculations do not yield results for the F-center transitions. 

It must be remembered that the MCSCF states are multiconfigurational and 

hence one cannot, in general, associate an energy level with a single configuration. 

However, when certain energy levels are dominated by one or few configurations, 

then one can talk about a certain configuration giving rise to a particular transition. 

To explain the separations between the 3d( a), 3d(b) and 3d( c) groups of levels we 

refer to the diagram represented as Fig. 20. Since the molecular orbitals are the 

eigenfunctions of the Fock operator, and since the Fock operator has the same 

symmetry as the Hamiltonian, the eigenfunctions of the Fock operator must form 

a basis for the various irreducible representations of the symmetry group. In going 

from the full rotation group to C3v the d orbitals break up into e, a1 , and e in order 

of increasing energy. p orbitals break up into a1 and e and s orbitals transform as 

In Fig. 20 we show the dominate configurations representing the various 

states as determined by MCSCF calculations. The spin 4/2 ground state is shown 

as having two a electrons in the lower e MO, one a electron in the middle a1 MO, 

two a electrons in the highest e MO, and one ,B electron in the a1 MO within the 

vacancy. The next state is dominated by the configuration which is the same as 

for the spin 4/2 except now the electron in the vacancy a1 MO has a spin. Next 
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Figure 20. Diagram showing the dominate configurations representing the 
various states as determined by MCSCF calculations for the 
(MnCa3F6 Vac)+l cluster. Indicated are the dominate configurations 
for the 4/2 ground state, the 6/2 ground state and the proposed ex­
cited F-center state. Also shown are the dominate configurations of 
the starting and ending states of the 3d(a) group, the 3d(b) group 
and the starting state of the 3d(c) group. 
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we show the F-center transition which as the same arrangement among the e, a1 

and e MO on the Mn but the electron in the vacancy has now been promoted into 

the upper a1 MO in the vacancy. 

The first group of d-to-d transitions, 3d(a), are found from the MCSCF 

calculations to be dominated by double occupancies of the Mn molecular orbitals. 

In Fig. 20 we show the dominate configuration of the first 3d( a) excited state. All 

the various permutations of double occupancy are not shown except the last. After 

a gap in energy the first dominate configuration starting the 3d(b) group is shown. 

The transitions within the 3d(b) group correspond to mostly triple occupancies 

with some small admixture of double occupancies. We see some of this mixing 

in the last 3d(b) level. After another gap the mixing between double and triple 

occupancies becomes quite strong. This starts the 3d( c) group of states. In the 

diagram we see the first state of the 3d( c) group is a mixture of single and double 

occupancies and even some charge transfer configurations. From the calculations 

we find that the single and double mixing is almost equal in the 3d(c) group. The 

charge transfer mixing is quite small initially but near the high energy end of this 

group the charge transfer configuration takes on more and more dominance. 

Based on the evidence from these calculations, we find that with the excep­

tion of the peak at 540 nm, most of the other peaks can be explained in terms of 

d-to-d transitions taking place on the Mn ion perturbed by an adjacent vacancy. 

Thus, the group of peaks near 400 nm and 300 nm can be explained in this way. 

The small peak at approximately 360 nm is probably not a d-to-d transition. The 

transition responsible for this peak is unknown. The large peaks starting at ap­

proximately 200 nm may be due to the onset of the charge transfer transitions. As 

far as the origin for the peak at 540 nm, McKeever et. al. [10] are probably correct 

in saying that it may be due to transitions within the F-center perturbed by the 

adjacent Mn. The only question remaining is whether it is from the spin 4/2 or 

spin 6 /2 ground state. This question is discussed further in the next chapter. 
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TABLE XI. 

MCSCF TRANSITION ENERGIES FROM THE 
S=4/2 GROUND STATE 

MCSCF root Energy (eV) After rigid shift of -0.647 eV Wavelenght (nm) 
2 3.667 3.021 408 
3 3.706 3.059 403 
4 3.728 3.081 400 
5 3.823 3.176 388 
6 3.858 3.212 384 
7 3.904 3.257 379 
8 4.424 3.778 327 
9 4.544 3.897 317 
10 4.703 4.056 304 
11 4.767 4.120 299 
12 4.822 4.175 296 
13 6.122 5.475 225 
14 6.389 5.742 215 
15 6.482 5.835 211 
16 8.052 7.405 166 



CHAPTER VI 

SUMMARY AND CONCLUSIONS 

Discussion 

The work reported in this thesis is the theoretical/ computational component 

of an overall research effort to understand the optical properties of CaF2 :Mn when 

subjected to irradiation. In particular, this effort sought to explain the optical 

absorption spectra in terms of Mn-related defect structures which arise as a result 

of irradiation. The experimental component of this project made good headway 

with the measurement of Mn absorption in unirradiated CaF2 and its analysis 

within a ligand field theory framework[lO]. Also McKeever et. al. [10] from the 

measurement of optical absorption after irradiation was able to propose a model 

for a defect consisting of an F-center adjacent to one or more Mn ions. Since ligand 

field theory does not lend itself well to the analysis of structures of this symmetry, 

more advanced quantum chemical methods in the form of molecular orbital cal­

culations were needed to either verify or reject this model. This thesis reports on 

the results of molecular orbital calculations on Mn-related defect clusters within 

the Hartree-Fock formalism and its extensions such as configuration interaction, 

many-body perturbation theory and multiconfigurational self-consistent field. 

To model the absorption spectrum before irradiation, calculations were per­

formed on the (MnF 8 ) 6 - cluster which was chosen to represent the isolated Mn 

substitutional impurity.in an otherwise perfect crystal. The symmetry of this clus­

ter is eight-coordinated Oh designated Oi8) to distinguish it from six-coordinated 

Oh designated Oi6). Previous ligand field analysis was performed on the basis of 

Oi6) symmetry. Therefore, one aspect of this project was to re-work the ligand 

field analysis for the proper Oi8) symmetry. The result of this analysis showed a 
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narrowing of the multiplet terms in energy with respect to the Oi6) result. As a 

consequence, the crystal field parameter Dq increased from 420 cm-1 to 570 cm-1. 

Since the energy levels of Oi8) Mn in CaF2 are well known[lO], this cluster also pro­

vided a good test cluster for the MCSCF technique. After embedding the (MnF 8)-6 

in an external point ion field designed to reproduce the Madelung potentials within 

the quantum cluster, a series of MCSCF calculations were performed. The results 

showed that good agreement with experiment could be obtained only after a rigid 

shift of the levels by -0.647 eV. While some of this shift could be accounted for 

by the inclusion of electron correlation energy most of it was attributable to the 

finite basis set size. Because the same basis set was carried over for use in the Mn­

perturbed F-center cluster, this correction value for d-to-d transitions was used to 

analyze d-to-d transitions in that cluster as well. 

Unlike the (MnF8 ) 6- cluster, it was found that the external field played more 

important role in the Mn-perturbed F-center cluster (MnCa3F6Vac)H. Because 

of this, a method for embedding the cluster in an external arrangement of charge 

had to be developed. The method presented in this thesis involves starting from 

the "non-defective" cluster ( Ca4F 7 ) I+ then arranging outside this cluster charge 

represented by Gaussians located at the external lattice sites ("point Gaussians"). 

Through a series of SCF calculations the charge and Gaussian exponents of the 

external distribution were varied so as to minimize the forces on the atoms in the 

quantum cluster. With this done, the F-center defect was created by the removal 

of the central Ca and the addition of an electron. Without adjusting the external 

field, the defect cluster was then relaxed. Finally the Mn-perturbed F-center defect 

cluster is created by the replacement of one of the Ca ions with Mn. 

With the cluster embedded in the external field, UHF and MCSCF calcu­

lations were performed on the Mn-perturbed F-center·cluster (MnCa3F6Vac)H. 

The results showed that the ground state of the system is spin 4/2 with the lowest 

spin 6/2 state 0.17 eV above this. The results also show that the excited states of 

4/2 spin corresponding to d-to-d transitions can account for the optical absorption 
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peaks near 400 nm and 300 nm. Transitions involving the removal of an elec­

tron from the d-like MOs on the Mn to doubly occupy the vacancy site may be 

responsible for peak groups starting at approximately 200 nm. 

The origin of the peak at approximately 540 nm is still somewhat unresolved. 

McKeever et. al. [10] proposed that this may be due to transitions within the F­

center. In the model presented here, that could correspond to transitions from the 

spin 4/2 ground state (3do:)5(s,8) 1 to the excited spin 4/2 state (3do) 5 (p,8) 1 . Alter­

natively, it could correspond to transitions from spin 6/2 ground state (3do) 5 (so)1 

to the excited spin 6/2 state (3do) 5 (po) 1 . The alternative-that this peak has noth­

ing to do with Mn-appears to have been ruled out by the experimental work of 

McKeever et. al. [10]. They observed large variations in this peak under varia­

tions in Mn dopant concentration. Also, they observe this peak to quench at the 

same temperature as the other higher energy Mn-related peaks. Finally, another 

possibility is that this peak is due to an excited state that is unique to the F-center 

perturbed by two Mn ions. One argument against the double Mn F-center cluster 

being significantly different than the single Mn F-center cluster is that since the 

peaks identified in this thesis are due mainly to d-to-d transitions on a single Mn, 

the energy required to excite simultaneously both Mn ions to perform d-to-d tran­

sitions would be statistically unlikely. A likely scenario is that even in the double 

Mn cluster only one Mn is excited at a time. Thus, the levels calculated for this 

thesis would only be perturbed by the presence of the additional Mn. Since the 

double Mn F-center cluster is not considered in this thesis, this last possibility has 

yet to be investigated. 

Future Work 

Future work in this area should center around identifying the origin of the 

540 nm peak in the optical absorption spectrum of CaF2 :Mn following irradiation 

at room temperature. While the single Mn-perturbed F-center cluster has been 

successful in identifying the majority of peak groups in the spectrum, it would be 

useful to see if the double Mn-perturbed F-center produces states that also agree 
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with this spectrum. More importantly, it would be useful to see if this cluster 

is responsible for the 540 nm peak. Also, there is a peak of unknown origin at 

approximately 360 nm. This too might be explained in terms of the double Mn 

cluster. 

Another avenue for future work could involve usmg the point Gaussian 

method developed for this thesis to obtain the proper relaxed geometry of the 

isolated Mn cluster (MnF 8 ) 6+. For the calculations presented in this thesis, the ge­

ometry used was obtained experimentally by Barkyoumb and Mansour[39]. Their 

results show that when the larger Mn ion replaces the smaller Ca ion the cluster 

relaxes inward. Why or how there is an inward relaxation in this case is still unre­

solved. Perhaps by the careful modeling of the external field by the point Gaussian 

method as for F-center clusters and by the inclusion of correlation effects into the 

relaxation calculations, this question could be resolved. 
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APPENDIX A 

COULOMB INTERACTION MATRICES FOR THE DOUBLET TERMS 

In this appendix we present the Coulomb interaction matrices for the doublet terms 

arising from the d5 configuration. As before a common factor of A is subtracted 

from the diagonal. The quartet and the ground state sextet matrices are given in 

Table IV. To obtain the complete crystal splitting diagram shown in Fig. 7 for 

an Oi8) field, (4n - 6m)!Dq for t2ge;1' is added to the diagonals of the following 

matrices and then they are diagonalized using the Mathematica™[3l] program 

package. These matrices are reproduced from Tanabe and Sugano[20]. 

-23B + 9C 

-3B + 9C 

2 A2(a2 F, b2 F, 2 I) 

t~(2 E)e2 (1 E) 

-3y'2B 

-12B + 8C 

2B-C 

-3y'2B 

-23B+9C 

2 A1 (2S, a2G, b2 G, 2 I) 

t~(2 E)e2(1E) t~( 4 A2 )e2 ( 3 A2 ) 

3y'2B 0 

-12B + 8C -h/3B 

-6B-C 

3y'2B 

-l9B+8C 0 

-3B+9C 
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2E(a2 D b2 D c2D a2G b2G 2H 21) 
' ' ' ' ' ' 

t~(1 A1)e t~(1 E)e t~(2 E)e2 (1 A1) t~(2 E)e2 ( 3 A2 ) t~(2 E)e2(1 E) 

-4B + 12C -lOB 6B 6v'3B 6J'i,B 

-13B + 9C 3B -3v'3B 0 

-4B+ lOC 0 0 

-16B+8C 2V6B 

-12B+ 8C 

t~(1E)e3 t~(1 A1 )e3 

-2B 4B+2C 

-2B-C -2B 

-3B -6B 

-3v'3B 6v'3B 

0 6V2B 

-13B + 9C -lOB 

-4B + 12C 
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2T (2 P a2 F b2 F a2G b2G 2 H 2 I) 
1 ' ' ' ' ' ' 

ti(1T2)e t~(2T1)e2(1 A1) t~(2T1)e2(1 E) t~(2T2)e2(3 A2) 

-22B + 9C -3B 3\/'2B/2 -3\/'2B/2 3\/'2B/2 

-8B + 9C -3\/'2B/2 -3\/'2B/2 -15v'2B/2 

-4B + lOC 0 0 

-12B + 8C 0 

-IOB + lOC 

t~(2T2)e2(1 E) t~(1T2)e3 t~(3T1)e3 

3v'6B/2 0 -C 

-5y'6B/2 -4B-C 0 

10yi3B 3v'2B/2 -3\/'2B/2 

0 -3v'2B/2 -3\/'2B/2 

2vi3B 15\/'2B/2 -3\/'2B/2 

-6B + IOC 5y'6B/2 -3v'6B/2 

-8B+9C -3B 

-22B + 9C 



t5 
2 

-20B + lOC 

t~(2T2)e2(1 A1) 

4B+2C 

-3V6B/2 

-5V6B/2 

0 

-10vl3B 

2B + 12C 

2T2(a2 F, b2 F, a2G, b2G, 2 H, 2 J, a2D, b2 D, c2 D) 

ti(3T1)e ti(1T2)e t~(2T1)e2(3 A2) 

-30{B -\1'6B 0 

-SB+9C 3B -V6B/2 

-lSB + 9C -3V6B/2 
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-2./JB 

3\/'2B/2 

3v'2B/2 

-16B + SC 2vf3B 

-12B + SC 

t~(2T2)e2(1 E) t~(1T2)e3 t~(3T1)e3 t2e4 

2B 0 0 0 

-3\/'6B/2 0 -4B-C 0 

5V6B/2 -C 0 0 

0 -3\/'6B/2 -V6B/2 0 

0 3\/'2B/2 3v'2B/2 -2vl3B 

0 -5V6B/2 -3V6B/2 4B+2C 

-6B + lOC ~5\/'6B/2 3V6B/2 -2B 

-1SB+9C 3B -\1'6B 

-SB+9C -30{B 

-20B + lOC 



APPENDIX B 

EVALUATION OF THE GAUSSIAN INTEGRAL 

In this appendix we will detail the evaluation of the integral having the form, 

J -alr'-Rl2 

/(r) = e Ir' - rl dr'. (199) 

An integral of this form appears in the modeling of the electrostatic properties 

of charge distributions consisting of an arrangement of Gaussians. The derivation 

presented here follows along the similar lines as in the evaluation of multicenter 

integrals with Gaussian basis functions as presented in Szabo and Ostlund[33]. To 

evaluate the integral in Eq. (199) we will use the method of the Fourier transform. 

The Fourier transform, F(k), and its inverse, f(r), will be defined by, 

F(k) 

J(r) 

j f(r)e-ikrdr, 

(21rt3 j F(k)eikrdk. 

(200) 

(201) 

A useful result for this derivation is the following expression for the delta function, 

(202) 

Table XII gives a short list of Fourier transforms that will be necessary for our 

purposes. From this table we see that, 

(203) 

and, 

1 = (21r t3 J 41r eik(r'-r) dk. 
Ir' - rl k2 

(204) 
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Substituting Eqs. (203) and (204) into Eq. (199) and rearranging we obtain, 

J(r) = _1_ ( 7r) 3/2 j e-k?/4ae-ik1·Re-ik2·r (~) dk1dk2 
21r2 0: k~ 
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X ( (21rt3 j e-ir'-(k1+k2)dr') . (205) 

From Eq. (202) we identify the last term in parenthesis as 8(k1 + k2). Next 

we perform the integration over k2 . Because of the delta function we see that 

k1 = -k2 , this leads to the expression, 

{206) 

Rename the dummy integration variable k1 to k we then have, 

(207) 

If we arrange the coordinate system in k-space such that the vector (R - r) lies 

along the z-axis, then k · (R - r) = klR - rl cos 0. With dk = k2dk sin ()d()dcp and 

after integrating cp from O to 21r, Eq. (207) becomes, 

1 3/2 Joo /11" J(r) = -(7r) · e-k2 /4adk e-iklR-ricos8sin0d(J. 
7r0: 0 . 0 

(208) 

The integration over() is straightforward after the substitution of u = klR-rl cos() 

becoming kli-rl sin(klR - rl). Equation (208) then becomes, 

2 ( 7r) 3/2 1 / 00 2 ( 1) · J(r) = ....,. - IR I e-k / 4a -k sin(klR - rl)dk. 
7r o: -r o 

TABLE XII. 

A SHORT LIST OF USEFUL 
FOURIER TRANSFORMS 

f(r) F(k) 
1/r 41r / k2 

e-ar2 ( 7r / 0 )3/2e-k2 /4a 

8(r) 1 

(209) 



To evaluate Eq. (209) we must evaluate an integral of the form, 

J(x) = ~ 00 
e-ak2 (}) sin(kx)dk. 

Then, 
dJ(x) · Joo k2 -- = e-a cos(kx)dk, 

dx 0 

but if we note that cos( k( -x)) = cos( kx) then we can write, 

dJ(x) - 1 / oo -ak2 (k )dk. ---- e ·COS X . 
dx 2 _00 

Since cos() = Re( ei6) we have, 

134 

(210) 

(211) 

(212) 

(213) 

After completing the square in the argument of the exponential function, we have, 

dJ(x) = !e-x2/4aRe (Joo e-(vak-ira)2dk). 
dx 2 -oo (214) 

After making the substitution u = Jak - ix/(2.Ja) we may write Eq. (214) as, 

dJ(x) 1 -x2/4a -1/2R . ·(1 00 -u2d ) 1 v-; -x2/4a -- = -e a e e u = - -e , 
dx 2 _00 2 a 

(215) 

where, we observe Re (J~00 e-u2 du) = ,Ji. We may then write J(x) as, 

(216) 

where we note that J(O) = 0. With the substitution u = x' /(2y'a), Eq. (216) 

becomes, 

Jx/(2va) 
J(x) = ,J':i e-u2 du. 

0 . 
(217) 

With the definition of the error function, erf( x) = .}; f0x e-u2 du, we have, 

J(x) = ierf ( 2Ja) . (218) 
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We must now use this expression in Eq. (209). This is accomplished by setting 

x = IR - rl and a = 1/( 4a) in Eq. (218). With these substitutions, Eq. (209) 

becomes, 

( 7r)3/2 1 
J(r) = a IR- rlerf[Ja"IR- rJ]. (219) 

Thus, we have expressed the Gaussian integral in terms of the error function. J(r) 

can therefore be easily evaluated since the IBM and VAX FORTRAN compilers 

have highly efficient built-in erf( x) functions. 
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