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CHAPTER I 

INTRODUCTION 

Large quantities of various chemicals are used routinely by 

industries and consumers. Production levels of man-made organic 

chemicals have increased tremendously in recent years (31). One of 

the problems inherent in the extensive use of chemicals is the 

release of large quantities of various toxic chemicals into the 

environment, causing serious pollution problems (16). 

Microorganisms play a major role in the breakdown and 

mineralization of many pollutants. Even though microbial 

degradation of the toxic chemicals is considered to be a very 

desirable process, this process is found to be too slow to satisfy many 

public health concerns. Many harmful organic compounds which are 

slowly degraded have been identified in laboratory experiments and 

field tests (16, 107). These chemicals include halogenated aromatics, 

halogenated aliphatics, and many pesticides. Many factors can have 

considerable effect on the biodegradation rates of these compounds. 

These factors might include unfavorable physicochemical conditions 

(such as temperature, pH, oxygen concentration, salinity, etc.) or the 

availability of other nutrients (41, 103). Limited degradation rates 

may likewise be due to the inability of microorganisms to metabolize 

synthetic chemicals whose structures are uncommon in nature. 

Many have been designated to be recalcitrant (107). 
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Microorganisms are, however, well known for their 

adaptability to extreme or novel environments. Microbial 

communities exposed to so-called xenobiotics, which are alien to 

existing enzyme systems, can also adapt to such compounds. The 

process of microbial adaptation to these compounds, although known 

to occur, is poorly understood at the molecular levels. Better 

knowledge about how metabolic pathways involved in 

biodegradation of these recalcitrant compounds evolve in nature and 

how they are regulated may enable us to produce the genetically 

engineered microorganisms which are capable of degrading novel or 

more complex compounds. 

The pathways involved m aromatic degradation have been 

extensively studied and form a good model for the genetics of 

xenobiotics degradation (1, 81, 90). The strain Alcaligenes eutrophus 

JMP 134 has been reported to degrade various aromatic compounds 

(such as phenol, benzoate, p-cresols, m-cresols) and many mono- and 

di-chlorinated aromatics (such as 3-chlorocatechol, 2,4-

dichlorophenoxy acetic acid, 3,5-dichlorocatechol) (84, 85). This 

strain possesses a plasmid-encoded pathway for the degradation of 

the herbicide, 2,4-dichlorophenoxyacetate (TFD). A number of 

studies have been performed to elucidate the genetic and molecular 

basis of the TFD pathway on this plasmid (26, 27, 44, 56, 82, 83, 

101). However, little is known about the chromosomally encoded 

aromatic ring cleavage pathways. Considerable studies have been 

performed to elucidate the regulatory mechanisms of phenol 

degrading meta-cleavage pathways at the protein level by using 

various mutant strains in other Alcaligenes eutrophus strains ( 48, 
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49) and Pseudomonas putida U (7, 8, 116). This may partly due to 

the absence of suitable genetic techniques. 

In th.is study, Alcaligenes eutrophus JMP 134 was found to 

cometabolize trichloroethylene (TCE), a highly toxic pollutant, by two 

sepatate 0 .Jmd distinct pathways under inducing conditions. One is a 

chromosomal phenol-dependent pathway and the other is a plasmid 

TFD-dependent pathway. Two enzymes, phenol hydroxylase and 

2,4-dichlorophenol hydroxylase from the chromosome and plasmid 

respectively, are likely candidates · because of similarity to other 

known TCE degrading enzymes. In this thesis, as a part of the global 

concern about bioremediation of xenobiotics, chromosomally encoded 

phenol catabolic pathway has been investigated in A. eutrophus 

JMP134. The gene responsible for TCE degradation was identified, 

cloned, and its regulatory mechanism characterized. A transposon 

induced mutant AEK301 which contains the cloned phenol 

hydroxylase gene was found to efficiently degrade TCE in the 

absence of the aromatic inducer when the gene is uncoupled from its 

regulatory gene. 

The Purpose of this Research 

The overall goal of this research is to create through 

recombinant DNA techniques a bacterium which can effectively 

degrade TCE in the absence of any inducer. This study requires the 

isolation, characterization and modification, if necessary, of the 

structural gene(s) and its regulatory system which are responsible 

for TCE degradation in Alcaligenes eutrophus JMP134. The 

understanding of regulatory mechanisms and isolation of the 
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structural gene may contribute to the construction, through the 

genetic engineering techniques, of "superbugs" which are capable of 

degrading more recalcitrant compounds with broader substrate 

specificity. 

Specific Objectives and Strategies of this Research 

Specific objectives and strategies for the accomplishment of 

this research are as follows; 

1. Screening of the strains for the ability to degrade TCE. 

Two different pathways in Alcaligens eutrophus JMP 13 4, 

the chromosomally encoded phenol pathway and, the plasmid-borne 

TFD pathway, are screened for TCE removal under the appropriate 

inducing conditions for each pathway. 

2. The identification and cloning of gene(s) involved in TCE 

degradation in plasmid pathway. 

The genetic organization of TFD pathway is well 

documented. Tf dB gene, which is . the likely candidate, is cloned, 

expressed m Pseudomonas aeruginosa, and checked for TCE removal. 

3. The identification and cloning of phenol hydroxy lase gene 

and its regulatory gene(s). 

* A. eutrophus AEO 106 is mutated to isolate mutants 

defective m phenol metabolism through transposon mutagenesis. 

* Each isolated mutant is characterized and screened for 

TCE removal. 

* Colony hybridization and replica triparental mating 

methods are used for the identification of the positive cosmid clones 

from the gene bank. For this experiment, a cosmid gene library is 
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prepared and transposon flanking DNA Is cloned and used as a probe 

for colony hybridization. 

* The cosmid clones isolated are characterized through the 

complementation test. These clones are mapped and subcloned to 

localize the structural and the regulatory genes. 

4. Characterization of regulatory mechanisms of phenol 

metabolism. 

Gene expression Is characterized under both heterogenetic 

and homogenetic background using subcloned structural and 

regulatory genes. 

5. The identification of the enzyme(s) responsible for TCE 

degradation 

Each cloned gene is screened for TCE degradation. 

6. Construction of a primary degrader of TCE. 

This goal is accomplished by uncoupling the structural gene 

from its regulatory system. 
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CHAPTER II 

LITERATURE REVIEW 

Overview of the Degradation of Phenol 

Phenol 

Phenols are present m the effluents of oil refineries, 

petrochemical plants, and other industrial processes (31). This 

chemical and structurally related . compounds, such as cresols, 

alkylphenols, xylenols, and catechol are listed by the U.S. 

Environmental Protection Agency as high priority pollutants (52). 

Phenol Metabolism in Microorganisms 

A number of microorganisms have been found to degrade 

phenol (3, 6, 42, 48, 59, 76, 84, 94, 102). These are shown in Table 1. 

Phenol is first metabolized into catechol by various phenol 

hydroxylases. Hydroxylases are monooxygenases. These enzymes 

have the property of incorporating one atom of molecular oxygen 

into their aromatic substrate while, the second oxygen atom is 

reduced to H20 by an appropriate hydrogen donor such as NADPH2 

(74 ). Catechol, which is formed· by phenol hydroxy lase, is a key 

intermediate in many aromatic degradation pathways, and is further 

metabolized by two distinct sets of enzymes. The ortho-cleavage 

pathway (beta-ketoadipate pathway) and the meta-cleavage 
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pathway (alpa-ketoacid pathway) convert catechol to TCA cycle 

intermediates. Typical phenol degradation pathway is depicted in 

Figure 1. Most phenol-degrading bacteria are known to catabolize 

catechol through meta-cleavage pathway. Involvement of ortho­

cleavage pathway for phenol degradation was recently reported in 

Pseudomonas sp. EST1001 (29). 

Phenol hydroxylase 

Phenol hydroxylase was originally purified from the soil yeasts 

Trichosporon cutaneum (30), and Candida tropicalis (32). The 

enzyme of Trichosporon cutaneum has been extensively 

characterized. This enzyme is a bright-yellow single flavoprotein 

with a molecular weight of 148,000 daltons. NADPH is needed as a 

hydrogen donor for this enzyme. 

Even though phenol metabolism m bacteria has been studied 

smce the 1930s, it was not until recent years that the 

characterization of bacterial phenol hydroxylases have been 

published owing to the cloning of phenol hydroxylase genes. Partial 

purification of bacterial phenol hydroxy lases has been reported in 

two pseudomonas strains. Olsen et al. (59) has isolated the phenol 

hydroxylase gene and characterized a novel polypeptide with a 

molecular mass of 80,000 daltons from Pseudomonas pickettii PKOl. 

Phenol hydroxy lase of this strain was found to share the similarity 

with that of T. cutaneum and many microbial hydroxylases, which 

are simple flavoprotein monooxygenases. The oxygenation 

mechanism of these enzymes has been known to be basically the 

same, attacking the enzyme-bound flavin-hydroperoxide by the 
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substrates which are activated by the electron-donating hydroxyl 

group (22). A multicomponent phenol hydroxylase has been 

reported by Singler et al. in Pseudomonas CF 600 (76, 86). This 

enzyme was demonstrated to be composed of six polypeptides 

encoded by six distinct genes on a 5.5 kb DNA fragment. One of 

these polypeptides was purified and found to be a flavin adenine 

dinucleotide containing iron-sulfur protein. Phenol hydroxylase from 

this organism . shares a number of similarities to other 

multicomponent oxygenase systems which consist of one or more 

redox components. Phenol is also shown to be metabolized by 

different enzyme systems. Gibson et al. (98) suggested that phenol 1s 

degraded by toluene dioxygenase, a multicomponent enzyme, 

through an alternative monohydroxylation which is different from 

conventional monohydroxylation in Pseudomonas putida Fl. A 

toluene-degrading bacterium, Pseudomonas cepacia G4 was known to 

metabolize phenol by the same enzyme which is responsible for the 

the degradation of toluene, p-cresol, and m-cresol (94). Phenol 

hydroxy lase of P. pickettii PKO 1 was also reported to degrade 

toluene, benzene, and cresols in addition to phenol (59). 

Regulation of Phenol Metabolism 

Although phenol metabolism has been extensively studied in 

Alcaligenes eutrophus and Pseudomonas putida U by using vanous 

mutant strains (7, 8, .48, 49, 116), little is known about the 

regulatory mechanisms of chromosomally encoded phenol pathway 

at the molecular level. Recently Olsen et al. (59, 60) have revealed 

the genetic organization of phenol pathway and characterized its 
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regulatory system from the chromosome of Pseudomonas pickettii 

PKOI. All these strains are known to degrade phenol through 

catechol meta-cleavage pathway. Bayly et al. (48) have proposed 

that the genes encoding phenol hydroxylase is in a separate operon 

from the genes encoding catechol meta-cleavage pathway in 

Alcaligenes eutrophus 335, with the former under positive control 

and the latter under negative control. They also proposed that at 

least one regulatory gene exerts a controlling effect over the 

expression of all phenol pathway enzymes. Wigmore et al. (116) 

have reported similar observations from P. putida U, suggesting the 

presence of two separate operons for phenol catabolic pathway. 

Molecular analysis of meta-cleavage pathway in P. pickettii PKOl has 

revealed that two different regulatory genes, tb uR and tbuS, act on 

the expression of phenol hydroxylase gene and of catechol meta­

cleavage pathway enzymes, respectively. These regulatory genes are 

localized within a 13 kb DNA fragment which contains all structural 

genes for phenol catabolic enzymes. It was suggested that the 

regulatory protein TbuR acts positively for the expression of tbuD, 

the gene responsible for hydroxylation of phenol, whereas TbuS acts 

as both an activator and a repressor for the tbuEFGKIHJ, the genes 

encoding enzymes for meta-cleavage of catechol (60). 

Genetic analysis of phenol catabolic pathway in P seudomonas 

sp CF600 has shown that the genes of the pathway may be encoded 

in a single operon. The dmpKLMNOP genes, which encode a 

multicomponant phenol hydroxylase in this strain, has been 

sequenced and the promoter region was analyzed (76). An inverted 

repeat was found upstream of the promoter region, which is similar 
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to the symmetrical recognition sequence proposed to be involved m 

the binding of E. coli repressors and activators. 

Although chromosomal encoded meta-cleavage pathway has 

not been well characterized, extensive studies of plasmid encoded 

pathways have been published (15, 35). Many regulatory genes in 

the plasmids appear to share similarities in sizes, DNA sequences and 

their modes of regulation. Most of the regulatory proteins encode 

transcriptional activator proteins (6, 43). 

Trichloroethylene 

Overview of the Degradation of 

Trichloroethylene (TCE) 

TCE is a low-molecular-weight, volatile chlorinated aliphatic 

hydrocabon which is one of the most commonly detected halogenated 

organic contaminants in groundwater along with tetrachloroethylene 

(PCE),l ,1,1-trichloroethane, carbon tetrachloride, and chloroform (23, 

40, 88). These compounds are commonly used in the manufacture of 

plastics,, as solvents in aerosols, and as degreasers. The 

Environmental Protection Agency has classified TCE as a priority 

pollutant due to its suspected carcinogenicity (105). TCE is degraded 

to vinyl chloride under anaerobic conditions through its incomplete 

transformation. Vinyl chloride is known to be tumorogenic and is as 

much a problem as TCE (50). 

TCE degradation in Microorganisms 

Biodegradation of TCE occurs m two different environments by 
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very different processes (Fig. 2). Aerobic or oxidative degradation 

occurs m surface waters or soils at contaminated sites prior to 

migration or transport of TCE to the groundwater. Anaerobic or 

reductive degradation occurs in anoxic environments within the 

underground water. 

Anaerobic Degradation of TCE 

~, TCE is degraded under the highly reducing environment by 

methanogens (58, 108, 114). Reductive dechlorinations are thought 

to be involved m this reaction. All of the polychlorinated ethenes are 

transformed to vinyl chloride which is a greater health threat than 

the original contaminants. 

Aerobic Degradation of TCE 

Oxidative transformation of TCE does occur among vanous 

bacteria which oxidize toluene, methane, ammonia, and propane ( 4, 

20, 29, 55, 61, 70, 94, 104, 110, 117). These microorganisms are 

shown in Table 2. All these microorganisms share a common feature 

that they posses enzymes called oxygenases. The oxidation by the 

enzymes is initiated by incorporating oxygen from the atmosphere 

into their substrates. There are two kinds of oxygenases, 

monooxygenases and dioxygenases. Both classes of oxygenases are 

implicated in bacterial TCE degradation. Aerobic degradation of TCE 

was first reported by a consortium of methylotrophs in the presence 

of methane (33, 115). Methane monooxygenase was found to 

degrade TCE. The enzyme performs both methane hydroxylation and 
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propylene epoxidation activities. The first isolation of single 

bacterium to aerobically degrade TCE was reported in an aromatic 

compound degrader, Pseudomonas cepacia 04 (71, 72). Toluene 

monooxygenase was found to be involved in TCE degradation in this 

bacterium. Toluene dioxygenase of Pseudomonas putida FI, which is 

also known to oxidize TCE degradation, is reported to have the ability 

to hydroxylate phenol (98). This fact suggests that the alternative 

mechanism of this mono-hydroxylation may be operational on TCE. 

The activity of monooxygenase-type enzymes toward TCE is thought 

to result in the formation of TCE epoxide (Fig. 3). TCE epoxide is 

extremely unstable and reactive. It spontaneously decomposes with 

a half life of 12 seconds at pH 7. 7 in phosphate buffer ( 67). Under 

basic conditions, the decomposition products of TCE epoxide 

hydrolysis are predominantly one carbon compounds such as 

formate and carbon monoxide whereas under acidic conditions, 

dichloroacetic acid and glyoxylate become major decomposition 

products. The fate of TCE degradation was monitored using 14C­

labelled TCE. Under the mixed culture conditions of methane 

utilizers, 34% of the label in biomass, 23% as CO2, and the remainder 

in non-volatile non-halogenated compounds were detected (33). The 

deleterious effect of TCE oxidation on the growth of cells was also 

reported (34 ). Inhibitory effect could be caused by the interaction 

between the natural substrates and the fortuitous substrate, TCE, 

through the competitive binding to the responsible enzymes. More 

basic and harmful effect reported was that cellular materials were 

covalently modified by the possible reactive intermediates of TCE 

oxidation such as glyoxylyl chloride and formyl chloride (87, 111). 
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These compounds are proposed to be the precursors of glyoxylic acid 

and formic acid in studies on the mammalian metabolism of TCE (67). 

Degradation of TFD by the pJP4 

Encoded Pathway 

TFD pathway on pJP4 

Alcaligenes eutrophus JMP134 possesses a plasmid pJP4. 

Plasmid pJP4 is an 80-kilobase, broad-host range, Pl incompatibility 

group plasmid ( 44 ). This plasmid carries the genes for the 

catabolism of 2,4-dichlorophenoxyacetic acid (TFD). TFD is a 

chlorinated aromatic hydrocarbon, used as an herbicide to kill broad 

leaf plants (63). Plasmid pJP4 carries genes essential for the 

degradation of 3-chlorobenzoate and expression of mercury 

resistance, in addition to the degradation of TFD. Extensive studies 

have been performed to elucidate the genetic organization and 

regulatory mechanisms of TFD pathway. These have been performed 

largely by transposon mutagenesis (26, 44, 82, 101,). The tfdA and 

tfdB gene products are TFD monooxygenase and 2,4-dichlorophenol 

(DCP) hydroxylase, respectively. TFD pathway is depicted in Figure 

4. TFD is first converted to DCP by TfdA, which is subsequently 

hydroxylated to chlorocatechol by the enzyme TfdB. Chlorocatechol 

is then further metabolized into an intermediate of the tricarboxylic 

acid cycle owing to a modified ortho-cleavage pathway on plasmid 

and chromosomally originated enzymes. Recently Hausinger et al. 

(37) reported that tf dA, which is generally known as 

monooxygenase, encoded a-ketoglutarate dependent dioxygenase, 
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converting TFD to 2,4-DCP and glyoxylate. They did not observe any 

reductant-dependent activity from this enzyme, suggesting that the 

enzyme is not a typical monooxygenase. 

2 .4-Dicholrophenol Hydroxylase 

Although chromosomally encoded phenol hydroxylase has not 

been purified yet, DCP hydroxylase has been purified and well 

characterized from both A. eutrophus JMP134 (62) and 

Acinetobacter species (10). The enzyme isolated from A. eutrophus 

JMP134 appeared to be a simple flavoprotein with molecular mass of 

224,000 daltons. NADH or NADPH is needed for the hydroxylation of 

various substituted phenol. However, the enzyme shows no activity 

toward the unsubstituted phenol. Similar enzyme activity was also 

observed from Acinetobacter species. The gene tfdB was found to 

exhibit significant sequence similarity to the gene pheA which 

encodes the phenol monooxygenase from pseudomoans sp. EST1001 

(78). 

Regulation of 2.4-dichlorophenol hydroxylase 

The gene tf dB was known to be under different regulatory 

control from tfdA and tfdCDEF operon. Studies on the regulatory 

mechanism for tf dB have come from Olsen et al. (56) who cloned and 

characterized the gene tf dS, the regulatory gene for tf dB. They 

proposed that tfdS gene product is a repressor-activator protein. 

This gene lies between tf dA and tf dR which is known to negatively 

regulate tfdA and tfdCDEF. In the presence of an effector molecule, 
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which is presumed to be one of the downstream-metabolites of 

chlorocatechol, the tf dS gene product activates the expression of tf dB, 

but in the absence of an effector, the regulatory protein completely 

represses tfdB gene activity. Recently it was found that the tfdS is 

an identical copy of tfdR by sequencing analysis (65). The physical 

map of pJP4 and the genes for TFD pathway are shown in Figure 5. 
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CHAPTER III 

MATERIALS AND METHODS 

Bacterial Strains and Plasmids 

Bacterial strains, plasmids and cloning vectors used throughout 

all the experiments in this study are described in detail in Table 3. 

All recombinant cosmids and plasmids generated in this study are 

described in Table 4. 

Biotransformation Assays 

Media and Growth Conditions. 

Cells were routinely grown on tryptone-yeast extract-glucose 

medium (TNA) (80). All strains were grown on minimal salts 

medium (MMO) (99) supplemented with the appropriate carbon 

sources (0.05% 2,4-D, 0.025% 2,4-DCP, 0.025% to 0.05% phenol or 

benzoate, 0.1 % ethanol, or 0.3% casamino acids). Antibiotics were 

used at the following concentrations (in micrograms per milliliter): 

tetracycline, 25 (A. eutrophus) and 50 (P. aeruginosa); carbenicillin, 

50 (A. eutrophus) and 500 (P. aeruginosa); kanamycin, 100 (A. 

eutrophus). Typically, 40 ml cultures in 250 ml Erlenmeyer flasks 

were grown at 30°C and 370c with shaking at 180 rpm for A. 

eutrophus and P. aeruginosa, respectively. Alternatively cells were 
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directly used for TCE degradation assay. 

Chemicals and Reagents. 

TCE, 2,4-D, 2,4-DCP, phenol, benzoate, and pentane were 

purchased from Aldrich Chemical Company. Casamino acids and all 

antibiotics were purchased from Difeo and Sigma, respectively. 

TCE Degradation Assay. 

Cells grown in an appropriate inducing medium were removed 

from cultures in mid-log phase, harvested by centrifugation at 

10,000 xg for 10 min, and suspended in MMO. These cells were used 

to inoculate into an appropriate fresh medium to an optical density 

(as determined at 425 nm) of approximately 1.0. For overnight 

analysis, cells were grown on TNA agar plates. Overnight-grown cells 

were suspended in MMO and diluted to an OD425 of 0.1. This 

suspens10n was used for the assay. 20 ml amount of the respective 

cell suspension was dispensed into 100-ml serum bottle and sealed 

with a Teflon-lined stopper. Various concentrations of TCE from 

stock solution in pentane was added by injection through the septa 

with a gas-tight syringe (Hamilton, Reno). The culture was incubated 

at 300c and 370c with shaking at 180 rpm for A. eutrophus and P. 

aeruginosa respectively. For interval analysis to measure the rate of 

TCE removal, 0.5 ml samples were removed every two hours and 

injected into sealed 2-ml serum vial containing an equal amount of 

pentane. The mixture was extracted by centrifugation at 10,000 xg 

for 10 min. 1 µl of pentane phase was removed and analyzed on the 
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GC. For overnight analysis, 1ml of sample after overnight incubation 

was extracted with the same volume of pentane and 1 µI of pentane 

phase was removed for GC analysis. 

Gas Chromatograhy. 

GC analysis was accomplished usmg a Hewlett-Packard 5890 

gas chromatograph equipped with a 25 m cross-linked methyl 

silicone gum capillary column (Hewlett-Packard) and electron 

capture or flame ionization detection systems. 1µ1 of each sample 

was injected with 10-ul syringe, and peak integrations were obtained 

with a Hewlett-Packard 3390A integrator. Operating conditions were 

as follows: injector temperature, 1500c; electron capture detector 

temperature, 300oC; oven temperature, 350 to 1000c at 150 / min 

interval; and nitrogen carrier gas flow, 25 ml/min. Under these 

conditions TCE had a retention time of 2.2 min. 

Mutant Isolation by Transposon Mutagenesis 

Transposon Mutagenesis. 

The recipient strain, A. eutrophus AEK101, was grown 

overnight in TNA broth (TNB) supplemented with rifampicin (150 

µg/ml) at 300c. The donor strains, E. coli S17 (pSUP2021) and E.coli 

HB101 (pUW964), were grown to exponential phase in Luria broth 

(LB) supplemented with kanamycin (50 µg/ml) at 37°C. 1 ml of 

each donor strain was mixed with 0.5 ml of recipient strain in an 1.5-

ml eppendorf tube. The mixture was centrifuged for 1 min in a 

Beckman microfuge and suspended in 100 µl of TNB medium. The 
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cell mixture was spread onto nitrocellulose filters (Milllipore Co.), 

which were placed on TNA plates, and incubated for 4 to 6 hours at 

300c. After incubation each filter was washed with 2 ml of MMO 

medium. Samples of 0.1 ml of the suspension were spread on TNA 

plates with rifampicin (150 µg/ml) and kanamycin (100 µg/ml). The 

plates were incubated at 300c. Kinr Riff colonies were visible after 

48 hrs. Alternatively, the donor and the recipient cells were 

streaked on LB plates and TNA plates with the appropriate 

antibiotics, respectively. A loopful of overnight grown donor and 

recipient cells were mixed in 0.5 ml TNB in an 1.5-ml eppendorf 

tube. An 100 µl aliquot was spread on TNA agar medium and 

incubated for 4 to 6 hours at 300c. After incubation, the lawn of 

bacterial growth on the plates was transferred by replica plating 

method using sterile velvet clothes onto the selective media. 

Screening of Phenol Hydroxylase 

Deficient Mutants. 

Transconjugants grown on selective media (TNA agar plate 

with rifampicin (150 µg/ml) and kanamycin (100 µg/ml) ) were 

transferred as patch streaks to the same media so that each plate 

had one hundred colonies. The resulting colonies were transferred by 

replica plating method to MMO agar plate containing Km (100 µg/ml) 

and Rif (150 µg/ml) with one of three different combinations of 

carbon sources, phenol (0.05% ), benzoate (0.05% ), and phenol (0.05%) 

plus casamino acids (0.3%). Casamino acids supported the growth of 

the cells on phenol-containing medium and the phenol utilizing cells 

turned a dark brown color on this medium due to the formation and 
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auto-oxidation of catechol. This was an effective preliminary screen 

for phenol non-utilizing mutants. Limited growth of the 

transconjugants on phenol as sole carbon source made clear isolation 

of mutants difficult. After two to three days incubation at 300c , 

mutants showing no growth on phenol but growth on benzoate were 

selected for further study. 

DNA Manipulation 

Plasmid DNA Isolation. 

Rapid isolation of plasmid DNA was done usmg the modified 

method of Birnboim and Doly (12) as follows. A loopful of freshly 

grown cells on plates was suspended in 100 µl to 200 µl of solution 

A (2 mg/ml lysozyme, 50 mM glucose, 10 mM EDT A, and 25 mM 

Tris-HCl, pH 8.0) in an eppendorf tube. After 5 min incubation at 

room temperature, two volumes of solution B (0.2 N NaOH, 1 % SDS) 

was added, mixed well and held . on ice for 10 min. 1.5 volumes of 

solution C (5 M potassium acetate) was added and incubated for 

further 5 min. The mixture was centrifuged for 2 min at room 

temperature. The supernatant was extracted with 2 volumes of 

ethanol, put on ice for 5 min and centrifuged for 2 min. The pallet 

was vacuum dried and suspended in 80 µl of TE buffer (0.05 M Tris, 

0.002 M EDTA, pH 7.5). Further purification of plasmid DNA from 

Alcaligenes and Pseudomonas strains was done by extraction with 1 

volume of the phenol-chloroform-isoamyalcohol solution before 

ethanol extraction. The DNA solution was used for plasmid 

identification, restriction mapping and in some cases, for cloning 
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experiments. 

Large scale isolation was basically the same as a mini-lysis 

protocol except for the scale-up preparation and the use of CsCl. Cells 

gathered from 5 to 10 plates were suspended in 5 to 10 ml of 

solution A in a 40-ml polypropylene tube, followed by adding of 

solution B and C. The cell mixture was centrifuged at 18,000 xg for 

20 min in a Sorvall SS34 rotor at 4°C. The supernatant was extracted 

by two volumes of 95% ethanol and incubated for 1 hour on ice. The 

mixture was centrifuged at 18,000 xg for 10 min at 40c and the 

pallet was suspended in TE buffer. 1.01 g of CsCl and 0.5 mg of 

ethidium bromide per 1 ml of TE solution were added and the DNA 

was separated by centrifugation at 60,000 rpm in a VTi80 rotor for 

16 hours or at 100,000rpm in a table top ultra-centrifuge (Optima 

TL, Beckman) for 4 hours at 150c . The plasmid DNA was extracted 

several times with 20 x SSC (3.0 M NaCl and 0.3 M NaCitrate) 

saturated isopropanol, added with three volumes of distilled water 

and precipitated with two volumes of · 100% ethnol. 

Chromosomal DNA Isolation. 

Chromosomal DNA for the construction of a gene library and 

cloning experiments was prepared essentially as described by 

Frederick et al. (5). Cells grown on TNB broth (100 ml in a 500-ml 

flask) were harvested by centrifugation at 8,000 xg for 10 min in a 

Sorvall SS34 rotor at 40c in a 50-ml polypropylene tube. The pellet 

was suspended in 9.5 ml TE buffer(lO mM Tris.Cl, 1 mM EDTA, pH 

8.0) with 0.5 ml of 10% SDS and 50 µl of 20 mg/ml proteinase K 

(Sigma). After mixing and incubating for one hour at 370c, 1.8 ml of 
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5 M NaCl and 1.5 ml of CTAB/NaCl solution (10% hexadecyltrimethyl 

ammonium bromide in 0.7 M NaCl) were added, mixed thoroughly 

and incubated for 20 min at 65oc. The mixture was extracted with 

an equal volume of chloroform/isoamyl alcohol and centrifuged at 

8,000 xg for 10 min at room temperature to separate phases. The 

aqueous phase was transferred to a fresh tube and DNA was 

precipitated with 0.6 volume of isopropanol. DNA pellet was 

transferred into an 1.5-ml eppendorf tube, washed with 1 ml of 70% 

ethanol, centrifuged in a microfuge for 2 min, and resuspended in 4 

ml of TE buffer. 4.3 g of CsCl and 200 µl of 10 mg/ml ethidium 

bromide were added in 4 ml DNA solution and the chromosomal DNA 

was banded in a 4-ml sealable centrifuge tube at 55,000 rpm for 

overnight at 150c in a Beckman VTi80 rotor. 

Chromosomal DNA band was removed using a 16-G needle and 

a 3-ml plastic syringe, extracted with 20xSSC saturated isopropanol 

and dialyzed overnight against 2 liters of TE buffer. The dialyzed 

DNA solution was precipitated by adding 1/10 vol of 3 M sodium 

acetate and 0.6 vol of isopropanol, and resuspend in STE buffer (10 

mM Tris.Cl, 10 mM NaCl, 1 mM EDTA, pH 7.5). 

Miniprep of genomic DNA for Southern blot experiment was 

done according to Frederick et al. (5). Cells grown on plates were 

suspended in 567 µl of TE buffer with 30 µl of 10% SDS and 3 µl of 

20 mg/ml proteinase K in an 1.5-ml eppendorf tube. After mixing 

and incubating for one hour at 370c, 100 µl of 5 M NaCl and 80 µl of 

CT AB/NaCl solution were added, mixed thoroughly and incubated for 

10 min at 650C. The mixture was extracted with an equal volume of 

chloroform/isoamyl alcohol and centrifuged for 5 min in a microfuge 
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at room temperature. After the aqueous phase was transferred to a 

fresh tube, DNA was precipitated with 0.6 volume of isopropanol, 

washed with 1 ml of 70% ethanol, centrifuged for 2 min, and 

resuspended in 4 ml of TE buffer. 

Construction of Genomic Library 

Partial Digestion and Size Fractionation 

Partial digestion and size fractionation of genomic DNA from A. 

eutrophus AEO 106 were performed according to Maniatis et al. ( 64 ). 

500 µI (0.1 mg/ml) of genomic DNA suspended in STE buffer was 

partially digested with 0.1 U of HindIII for 20 min at room 

temperature. This condition gave the best result to obtain the 

fragments in the range of 20 to 30 kb. Partially digested DNA 

solution was loaded on two 12-ml SW-41 tubes in which linear 10% 

to 40% sucrose gradient was prepared, and centrifuged at 25,000 

rpm for 20 hours at 200c in an SW-41 rotor (Beckman). The gradient 

was fractionated by carefully removing every 500 µI of aliquots 

from top to bottom of the tubes. The size of the collected DNA 

fractions was analyzed by electrophoresis of 40 µI samples of the 

gradient aliquots on a 0.7% agarose gel. The fractions containing 

correctly sized DNA were combined and divided into eppendorf 

tubes, each containing 180 µI of DNA solution. Each tube was added 

with 320 µI of water and 1 ml ethanol, and then incubated at -80°C 

for more than two hours. DNA was precipitated in a microfuge for 10 

min and resuspended in 100 µI of TE buffer. 
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Preparation of Vector DNA. 

100 µg of cosmid vector p VKl 02 was completely digested with 

5 U of H indIII for 2 hours at 37°C. After the reaction, the enzyme 

was inactivated by heating 15 min to 75°C. 5 U of calf intestinal 

alkaline phosphatase (CIP) (Promega) was added, and the mixture 

was incubated for 1 hour at 37°C. CIP was also inactivated by 

heating 15 min to 75°C. Vector DNA was extracted with an equal 

volume of phenol/chloroform solution, centrifuged for 5 min, 

precipitated the upper phase with 2 vol of 100% ethanol, washed 

with 1 ml of 70% ethanol, and resuspended in 50 µl of TE buffer. 

5 µg to 15 µg of chromosomal DNA were ligated with 5 µg of 

vector DNA using T4 DNA ligase and 5x buffer (30 mM Tris.HCl ,pH 

7.8, 10 mM MgC12, 10 mM DDT and 1 mM ATP) at 150c for 24 hours 

in a total volume of 50 µl in an eppendorf tube. 

Packaging and Transduction 

Ligated DNA was packaged with lambda DNA packaging 

extracts (Promega) according to manufacturer's recommendation. 25 

µl of Lambda packaging extracts was mixed with 10 µl of ligated 

DNA (-lµg ) in a microcentrifuge tube and incubated for 2 hours at 

room temperature. After incubation, 0.5 ml of phage buffer (20 mM 

Tris-HCl, pH 7.4, 100 mM NaCl, 10 mM MgS04) and 25 µl of 

chloroform were added, then it was mixed gently by inversion and 

allowed the chloroform to settle to the bottom of the tube. The 

supernatants were diluted in phage buffer. 

Bacterial cells for phage adsorption were prepared as follows. 
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0.5 ml of E. coli LE392 grown overnight on LB broth was inoculated 

into 50 ml of LB medium supplemented with 0.5 ml of 20% maltose 

(Difeo) and 1 M MgS04 in a 250-ml flask. This was shaken at 370c 

until the OD6oo has reached 0.6 to 0.7, then stored at 4°C until 

needed. 100 µl of prepared cells was mixed with 100 µl of 

appropriately diluted packaging reactions, and incubated at 370c for 

30 min for phage adsorption. The mixture was shaken at 370c for 1 

hour after adding 800 µl of NB medium for the expression of 

antibiotic resistance. The aliquots were spread on the LB agar plates 

supplimented with Tc20 and incubated at 37°C until cosmid clones 

appeared. 

Gene Amplification 

The cosmid clones were amplified as follows. The bacteria 

containing cosmids were spread on 85 mm nitrocellulose filters ( 5 x 

103 to 1.0 x 104 per each filter) (Millipore Co.) on LB plates with Tc20. 

15 independent plates were incubated for 12 to 14 hours until 

colonies (0.2-0.3 mm diameter ) appeared. The colonies were 

scraped from each plate and suspended in 50ml of LB medium with 

15% glycerol. Each aliquot (1ml) was dispensed into an 1.5-ml 

eppendorf tube and stored at - 800C. 

Alternatively cosmid libraries were amplified m liquid culture. E. 

coli LE392 infected with approximately 2 x 104 of the packaged 

cosmids were incubated in 20 ml of LB broth containing Tc20 at 370c 

until the culture has reached mid-log phase. The culture was then 

added with 15% glycerol and 1 ml of each aliquot was dispensed into 

an eppendorf tube, and then stored at - 80°C. 
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Mutant Complementation Test 

Triparental Replica Plating Method 

Triparental replica plating method was used to screen the gene 

bank for complementation of A. eutrophus mutants as described by 

Andersen et aL (2). An appropriate titer of gene bank (-1,000 to 

3000 colonies per plate) was spread on LB plate containing Tc20. 

After overnight incubation, the resulting colonies (0.5 to 1.0 mm) 

were transferred by replica plating onto TNA plates containing a 

newly spread lawn of E. coli HB101(pRK2013) plus A. eutrophus 

mutant to be complemented. The cells used for preparing the lawn 

were from overnight grown cells on TNA plate containing KmlOO plus 

Rif150 for A. eutrophus mutant and on LB plate containing KmlOO for 

E. coli. A loopful of each strain was mixed in 200 µl of TNB medium 

and 100 µl of the mixture was used to prepare for the lawn. The 

mating plates were incubated 4 to 6 hours at 30°C. Cells from the 

mating plates were then transferred to MMO plus 0.03% phenol 

plates supplimented with Km 100, Rif150 and Tc20 by replica plating. 

A. eutrophus colonies resulting from complementation appeared 

after incubation for 2 to 3 days at 30°C. The suspected area of E. coli 

clones, if too crowded, were scraped from the master plates, and then 

spread again on LB plates to obtain 50 to 100 colonies per plate. 

These plates were used for the same triparental mating experiment 

as described above. The complementing E. coli gene bank clones 

were then identified and purified for further study. 
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Triparental Conjugation 

Triparetal mating method (24) was performed to transfer the 

recombinant pVK102 plasmids or pMMB67 plasmids from E. coli to 

A. eutrophus in the presence of another donor strain E. coli HB 101 

(pRK2013). Loopfuls of parental cells which were grown overnight 

on the appropriate plates were mixed in TNB medium in the ratio of 

1:1:1. An aliquot was spread on TNA, then incubated for 3 to 5 hours 

at 30°C. Transconjugants were selected by streaking or plating 

dilutions of the mating mixture onto the appropriate selective media. 

Genetic Manipulation (Mapping, Cloning, 

and Transformantion) 

Cloning of Tn5 Flanking Sequences 

Tn5-flanking DNA was cloned from A. eutrophus mutants by 

completely digesting total DNA isolated with EcoRI. The vector 

plasmid, pGEM (Promega Co.) was completely digested with EcoRI, 

dephosphorylated with alkaline phosphatase and purified as 

described previously. 4 µg of chromosomal DNA was mixed with 1 

µg of pGEM in the presence of T4 DNA ligase overnight at 150c. 40 

µg of the ligated DNA was used to transform 90 µl of E. coli JM 109 

competent cells prepared as described below. Transformants were 

selected on LB medium containing kanamycin (50 µg/ml) and 

ampicillin (50 µg/ml). The plasmid from transformants was isolated 

and the presence of Tn5 was confirmed by the analysis of restriction 

mapping and southern hybridization. 

27 



Subcloning Procedure 

Cosmids and plasmids for cloning experiments were purified as 

described above. The purified recombinant cosmids were partially 

digested with the appropriate restriction enzymes, and the fragments 

to be cloned were isolated in 0.7% low melting agarose gel 

(SeaPlaque, FMC). Vector DNA was single- or double-digested with 

restriction enzymes. Single-digested vector DNA was treated with 

alkaline phosphatase as previously decribed. The digested vector 

DNA was also isolated in 0. 7% low melting agarose gel. After running 

the gels with different time interval at 40c, the gels were stained 

with ethidium bromide, visualized under UV light, and then the 

fragments of DNA to be cloned were excised from the gels. The gel 

slices containing the desired fragments were melted at 68°C for 10 

min in microcentrifuge tubes, and frozen quickly by putting the 

tubes at -80° C for 10 min These were rnicrocentrifuged for 5 min, 

and the supernatants were directly used for ligation or further 

purified by phenol/chloroform extraction and ethanol precipitation 

as described previously. 

DNA fragments cloned into pTZ18R or pGEM were transformed 

into E. coli HB101 or JM109 and transformants were selected on LB 

plates containing ampicillin (50 µg/ml), 0.5 mM IPTG and X-Gal (40 

µg/ml). White colonies were picked after 12 to 18 hours incubation 

at 370c. The presence of the recombinant plasmid DNA was 

confirmed by rapid isolation of plasmid and restriction endonuclease 

digestion. 

DNA fragments cloned into pMMB67 vector plasmid were 
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transformed into both P. aeruginosa PAOlc and E. coli HB101 or 

JM109. P. aeruginosa transformants were selected on TNA plate 

containing carbenicillin (500 µg/ml) and E. coli transformants were 

selected on LB plates containing ampicillin (100 µg/ml). 

DNA fragments cloned into pR01727, pR02321 and pR01769 

were transformed into P. aeruginosa. The transformants were 

selected on TNA medium containing carbenicillin (500 µg/ml) or 

tetracycline (50 µg/ml), trimetoprim (600 µg/ml), and 

gentamycine (20 µg/ml) for pR01727, pR02321 and pR01769, 

respectively. Transformants were initially picked up by insertional 

inactivation, and then confirmed by restriction enzyme analysis with 

isolated plasmids. 

Agarose Gel Electrophoreses and 

Mapping of Recombinant DNA 

Agarose gel electrophoresis was performed as described by 

Maniatis et al. (64). Various DNA samples, which were generated by 

partial digestion and/or double digestion with different restriction 

enzymes, were separated on 0.5 to 1.5% horizontal agarose gels 

(depending on the size of the fragments to be analyzed) using TAE 

buffer (pH 7.4, 40 mM Tris-acetate, 2 mM EDT A) at room 

temperature. After running, the gels were stained in deionized 

water containing ethidium bromide (1 µg/ml) and visualized under 

UV light. Fragment sizes were estimated by comparison with A DNA 

cleaved with HindIII or HindIII and EcoRI, which was used as a size 

standard. 
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Preparation of Competent Cells and Transformation 

competent cells for E. coli HB 101 and JM109 were prepared 

basically as described by Maniatis et al. (64). A single colony of cells 

was inoculated into 40 ml of LB medium, and grown at 37°C 

overnight with shaking. 2 ml of this culture was transferred to 400 

ml of fresh LB medium and grown at 37° C with shaking. When the 

culture reached an OD590 of 0.3 to 0.4, 40 ml of aliquots was 

dispensed into prechilled centrifuged tubes and left on ice for 10 

minutes. The tubes were centrifuged for 5 minutes at 2,000 xg at 

40c, and each tube was suspended in 10 ml of ice-cold, sterile 0.1 M 

CaC12 solution. The cells were centrifuged at 1,600 xg at 4°C, 

resuspended in the same solution, and the tubes were left on ice for 

30 minutes. These were centrifuged again at 1,600 xg at 4°C, and 

each tube was finally resuspended in 2 ml of 0.1 M CaC12 solution 

containing 15% of glycerol. 400 µl of aliquots of competent cells 

were dispensed into prechilled, sterile tubes and stored at -80°C 

until needed. For transformation, competent cell aliquots were 

rapidly thawed and then 90 µl of cells were mixed with 5 µl of 

ligated DNA. After 30 min incubation on ice, the mixture was heat­

shocked at 420c for 2 min, placed on ice for 2 min, added 1 ml of LB 

medium, and then shaken at 37°C for 1 or 2 hours. A portion of the 

cells was plated on the appropriate selective media. 

Competent cells for Pseudomonas aeruginosa were prepared 

basically as described by Mercer et al. (66). 1 ml of overnight grown 

cells was inoculated into 80 ml of TNB medium and incubated at 30° C 

by vigorous shaking. When the cells reached an OD425 of 0.4, these 
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were shifted into 42°C water bath and incubated without shaking 

until an OD425 reached at 0.8 to 0.9 to make the cells restrictionless. 

The cells were then dispensed into 40 ml centrifuge tubes and placed 

on ice for 10 min. These were centrifuged for 10 min at 2,000 xg at 

4 °C, and each tube was suspended in 10 ml of ice-cold, sterile 0.15 M 

MgC1 2 solution. The cells were again centrifuged for 10 min at 2,000 

xg at 4 ° C, resuspended in the same solution, and the tubes were left 

on ice for 30 minutes. These were centrifuged again at 2,000 xg at 

4 °C, and each tube was resuspended in 2 ml of 0.15 M MgC12 solution 

containing 15% of glycerol. 200 µl of aliquots of competent cells 

were dispensed into prechilled, sterile tubes and stored at -80° C 

until needed. For transformation, competent cells were rapidly 

thawed and then 60 µl of cells were mixed with 5 µl of ligated DNA. 

After 50 min incubation on ice, the mixture was heat-shocked at 

41 ° C for 2 min, placed on ice for 5 min, added 500 ml of TNB 

medium, and then incubated at 37°C for 2 hours without shaking. A 

portion of the cells was plated on the appropriate selective media. 

Southern Hybridization 

DNA-DNA hybridization experment was performed according to 

the method by Southern. (97). 

Preparation of Membrane-bound Denatured DNA 

Chromosomal DNA from A. eutrophus mutants was isolated as 

described before. DNA was completely digested with EcoRI or BamHI 

and run on 0.7% agarose gel at 4°C overnignt. After electrophoresis, 

DNA was depurinated by soaking the gel in 0.25 M HCl twice for 15 
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minutes each. It was then denatured by soaking the gel twice for 15 

minutes each in a solution containing 0.5 M NaOH and 1.5 M NaCl. It 

was neutralized in 0.5 M Tris and 1.5 M NaCl (pH 7.0) twice again for 

15 minutes each. The DNA was transferred to a Nylon membrane 

(Zeta probe GT, BioRad) with vacuum blotter (MilliBlot-V, Millipore) 

using transfer solution 20x SSC (3.0 M NaCl and 0.3 M sodium 

citrate). After transfer, the DNA-binding membrane was briefly 

rinsed in 2x SSC and air dried. It was then dried in a vacuum-oven 

at 80°C for 2 hours. 

Prehybridization and Hybridization 

Prehybridization was performed by sealing the membrane into 

a heat sealable plastic bag containing 10 ml of hybridization solution 

(0.25 M Na2HP04 [pH 7.2] and 7% SDS), and then the bag was 

incubated at 65°C for more than 4 hours. One corner of the bag was 

cut and the solution was removed and replaced with 2 ml of fresh 

hybridization solution. Heat denatured DNA probe was then added 

into the bag and air bubbles were removed as much as possible 

before resealing the bag. Hybridization was conducted by incubating 

the bag at 65 ° C for 16 hours with agitation. The membrane was 

removed from the bag and washed in 20 mM Na2HP0 4 (pH 7.2) and 

5% SDS solution at 65°C twice for 30 minutes each. It was washed 

again twice in 20 mM Na2HP04 (pH 7.2) and 1 % SDS solution at 65°C 

for 30 minutes each. After washing, the wet membrane was 

wrapped in a plastic wrap and exposed to X-ray film (Kodak XR) 

overnight at - 700c with an intensifying screen. The film was 

developed according to manufacturer's instructions. 
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Preparation of Probe DNA 

Plasmid pSUP2021 was digested with Hindlll and Cosmid 

pYK301 was cut with EcoRI. These were separately run on a 0.7% 

low melting agarose gel. Gel slices containing 3.7 kb Hindlll 

fragment or 5.5 kb EcoRI fragment was cut off each gel and the DNA 

fragments were purified by phenol/chloroform extraction and 

ethanol precipitation as described previously. DNA pellet washed 

with 70% ethanol was dissolved in TE buffer and used for nick 

translation. 

Nick Translation 

Nick translation was performed with a kit purchased from 

Promega. A typical reaction mixture contained 0.5 to 1.0 µg of the 

DNA, 10 µl of nucleotide mix (5 µM each of cold dCTP, dGTP, dTTP), 5 

µl of nick translation buffer (50 mM Tris-HCl, pH 7.2 and 10 mM 

MgS04), 7 µl of [a-32P] dATP (400 Ci/mM at 10 mCi/ml), 5 µl of 

enzyme mix (DNA polymerase I at 1 U/µl and DNase I at 0.2 ng/µl) 

and sterile water to attain a final volume of 50 µI. The reaction 

mixture was incubated at 15°C for 1 hour and then stopped by 

adding 5 µl of 0.2 M EDT A (pH 8.0). The labeled probe DNA was 

purified by ethanol precipitation after addition of 1/10 volume of 

3M ammonium acetate. The DNA pellet was washed with 70% 

ethanol and dissolved in TE buffer. The radiolabeled probe was 

immediately used for hybridization after denaturation by heating at 

95 to 100°C for 5 min or stored at -80°C until needed. 
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Colony Hybridization Experiment 

Colony hybridization to localize the cosmid clones which 

complement A. eutrophus mutant strains was performed as described 

by Frederick et al. (5). 

Preparation of Probe DNA 

DNA probe for colony hybridization was prepared as follows. 

Tn5 containing recombinant plasmid cloned from A. eutrophus 

mutant chromosomal DNA was isolated as described before. The 14.5 

kb pAEK201 was completely digested with EcoRI and HindIII, and 

then run on 0.7% low melting agarose gel. After running the gel, a 

gel slice containing 5.0 kb EcoRI-HindIII DNA fragment was excised 

and purified by phenol/chloroform extraction and ethanol 

precipitation, then used for nick translation as described previously. 

Alternatively a 14.5 kb HindIII insert DNA was used as a probe. 
Preparation of Membrane-bound Colonies 

82 mm nitrocellulose filters (Millipore, Triton-free, HATF) were 

used to prepare the cosmid clones. The appropriate dilution of 

cosmid clones (2,000 to 5,000 colonies per filter) from gene bank was 

grown on autoclaved nitrocellulose filters laid on LB plates plus 

ampicillin (100 µg/ml). When the sizes of the colonies were about 

0.1 to 0.2 mm, the filters were used as master filters to make replica 

filters. Both master and replica filters were laid on fresh agar plates 

and these were incubated at 37°C until 1 to 2 mm of colonies 

appeared. The master plates were sealed with parafilm and stored 
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at 4°C until needed. The replica filters were peeled off the plates 

and stored at 4°C for 20 min to cool down the colonies. The filters 

were then placed on 3 MM paper (Whatman) saturated with 10% SDS 

for 3 min, transferred onto the same paper saturated with 

denaturing solution (0.5 M NaOH, 1.5 M NaCl) for 5 min, and finally 

transferred onto the third sheet of 3 MM paper saturated with 

neutralizing solution (1.5 M NaCl, 0.5 M Tris. Cl [pH 8.0]) for 5 min. 

After drying DNA binding filters at room temperature, these were 

baked for 2 hours at 80°C in a vacuum oven. 

Prehydridization and Hybridization 

Hybridization was performed as follows. Five DNA-binding 

filters were prehybridized with 10ml of prehybridization solution 

(1 % SDS, 1 M sodium chloride, and 10% dextran sulfate) in a sealed 

plastic bag at 65°C overnignt with constant agitation. The 

prehybridization solution was discarded and a bag was refilled with 

5 ml of the same solution containing denatured salmon sperm DNA 

(100 µg/ml) and denatured radioactive probe (100 ng/ml) prepared 

by nick translation. A resealed plastic bag was incubated overnignt 

with constant agitation at 65°C. After hybridization, the filters were 

washed with 100 ml of 2x SSC (0.3 M NaCl and 0.03 M sodium 

citrate) twice for 5 min each at room temperature with agitation, 

with 200 ml of 2x SSC containing 1 % SDS twice for 30 min each at 

650C with agitation, and finally washed with 100 ml of O.lx SSC (15 

mM Na Cl and 1.5 mM sodium citrate) twice for 30 min each at 65°C 

with agitation. After washing, the filters were dried at room 

temperature, wrapped in a plastic wrap and exposed to X-ray film 
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(Kodak XR) overnight at -100c with an intensifying screen. After 

development the film according to manufacturer's instructions, the 

position of positive hybridization signals was located from the master 

plates. When the growth was too congested, the suspected area was 

cut and resuspended in LB medium, and then an appropriate dilution 

(-100 colonies per plate) was made on LB agar plate containing 

ampicillin (50 µg/ml). After the growth (2 to 3 mm of colonies), the 

plate was stored at 40c for 20 min, and then a nitrocellulose filter 

was contacted with the colonies grown on plates for 3 min. The filter 

on which colonies attached was treated for hybridization as 

described above. Each positive colony was picked and isolated. The 

cosmid DNA from each colony was isolated and characterized by 

mapping and complement test. 

Analysis of Enzyme Activities 

A. eutrophus and P. aeruginosa for enzyme assays were grown 

on MMO supplimented with various carbon sources at 30°C and 37°C, 

respectively, with vigorous shaking. The cells were harvested in 

late-log phase and washed twice with MMO. Phenol hydroxylase 

activity was assayed with the resting cells using a Clark oxygen 

electrode as described by Sala-Trepat et al. (91). The cells were 

suspended in MMO to an optical density (OD425) of 1.0. After shaking 

for 1 to 2 hours to remove any remaining carbon sources, cell 

suspens10n was added to the electrode chamber (Gilson Medical 

Electronics), and the concentration of dissolved oxygen measured 

with a Clark oxygen electrode (Yellow Springs Instrument Co.). Base­

line consumption of oxygen in MMO alone was established followed 
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by injection of 0.3 mM of phenol. Enzyme activity was expressed as 

the increase above basal levels of oxygen consumption upon addition 

of phenol in nmol per hour at a culture density of OD425 = 1.0. 

Catechol 2,3-dioxygenase was assayed by the method of Nozaki (77) 

and catechol 1,2-dioxygenase was measured by the modified 

procedure of Hegeman ( 46). Cells prepared as the above was 

resuspended in phosphate-acetone buffer (0.05 M potassium 

phosphate [pH 7 .5] and 10% acetone) for catechol 2,3-dioxygenase 

and in Tris buffer (20 mM Tris.Cl and 400 µM EDT A) for catechol 

1,2-dioxygenase. The cell was suspended in an appropriate buffer m 

an eppendorf tube (approximately 200 µg/ml) and disrupted by 

sonication (Branson Sonifier) while the cell was kept on ice. The cell 

debris was then removed by centrifugation at 13,000 x g for 15 min 

in microfuge (Beckman). The supernatant was immediately used to 

measure enzyme activities. Catechol 2,3-dioxygenase was assayed 

by measuring the increase in optical density at 375 nm due to the 

formation of the reaction product, 2-hydroxymuconic semialdehyde. 

Catechol 1,2-dioxygenase was assayed by measuring the increase in 

optical density at 256 nm due to the formation of cis-cis mucomc 

acid. The reaction was performed at room temperature in 1.0 ml 

quartz cuvettes with 1 cm light path. The final volume of 1 ml 

contained 970 µl of phosphate-acetone buffer for catechol 2,3-

dioxygenase or 970 µI of Tris buffer for catechol 1,2-dioxygenase, 

10 µl of 0.01 M catechol, and 20 µl of cell extact. The reaction was 

initiated by the addition of enzyme. One unit of enzyme is defined as 

the amount that oxidizes 1 µmole of catechol per minute. Specific 

activity is expressed as units per milligram of protein. Protein 
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concentration was determined by the Bradford procedure ( 14) with 

bovine serum albumin as the standard. UV absorbance was 

measured on a Shimadzu UV-160 spectrophotometer. 
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CHAPTER IV 

RESULTS 

Cloning of the Structural Genes for Phenol Hydroxylase and 

Catechol 2,3-dioxygenase from A. eutrophus AEKI06 

Isolation and Characterization ofTn5-Induced Mutants 

The plasmid pUW964 was used to generate Tn5-induced A. 

eutrophus AEK101 mutants defective in phenol metabolism. The 

plasmid pUW964 has a ColEl origin of replication and the broad­

host-range conjugation genes from RK2, so it can be transferred by 

itself into A. eutrophus. This plasmid is able to replicate in E. coli, 

but not in A. eutrophus due to the limited host range for ColEl origin. 

The recipient A. eutrophus AEKlOl was isolated after growth of the 

parental strain, A. eutrophus AEOI06, on TNA containing rifampicin 

(150 µg/ml), hence TNA agar plates containing kanamycin and 

rifampicin effectively selected A. eutrophus AEKI O 1 Tn5 

exconjugants and did not permit growth of the donor cells. Replica 

plating methods enabled the isolation of independent exconjugants 

from the selective medium. Over 6,000 Kmr Rif1. exconjugants was 

obtained by conjugation. These exconjugants were tested for their 

growth on phenol as a sole carbon and energy source. The resulting 

colonies were screened for their growth on benzoate to isolate 

mutants deficient in phenol hydroxylase which is the first enzyme 
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metabolizing phenol into catechol. This screenmg procedure was 

adopted because benzoate and phenol are catabolized via catechol, a 

common intermediate. Results of enzyme assays using these two 

metabolites demonstrated that both of catechol 1,2-dioxygenase for 

ortho-ring cleavage of catechol and catechol 2,3-dioxygenase for 

meta-ring cleavage pathway were induced in A. eutrophus AEOI06 

and AEK101 by phenol. Only catechol 1,2-dioxygenase activity was 

detected during growth on benzoate, indicating that benzoate is 

metabolized through ortho-cleavage pathway (Table 5). In light of 

these results, it was presumed that a mutation which allows growth 

on benzoate, but not on phenol, should be deficient either in the 

phenol hydroxylase structural gene or in its regulatory gene(s). 

Five mutants which showed growth on benzoate, but not on 

phenol, were isolated. All the mutants appeared to be sensitive to 

streptomycin which is encoded on pUW964, and no plasmid was 

detactable in these mutant strains. 

Some enzymes are subject to severe catabolite repress10n. 

Several carbon sources were screened for repression in order to find 

a primary carbon source which would minimally affect the enzyme 

activities (Table 5). The activity of phenol hydroxylase was slightly 

reduced by either. ethanol (0.1 % ) or benzoate (2.5 mM). Addition of 

5.0 mM benzoate decreased this enzyme activity about three fold. 

Other carbon sources such as casamino acid or glucose also repressed 

the phenol hydroxylase activity to a level similar to that of 5.0 mM 

benzoate (data not shown). Catechol 2,3-dioxygenase was severely 

affected by the presence of benzoate. 5.0 mM benzoate repressed 

this enzyme activity to levels over five hundred times less than that 
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of AE0106 grown on phenol only. Ethanol was less repressive. In 

contrast, catechol 1,2-dioxygenase was not affected at all. AEKl O 1 

appeared to be slightly more sensitive to catabolite repression than 

the wild type, AE0106. 

Enzyme activities in mutant AEK301 were analyzed (Table 5). 

Ethanol (0.1 % ) or benzoate (2.5 mM) was used as a carbon source to 

reduce the catabolite repression. AEK301 grown on ethanol 

expressed negligible amounts of three enzyme activities tested. But 

when grown on benzoate, catechol 1,2-dioxygenase was expressed in 

the same level as the wild type. Other mutants (AEK302 to AEK305) 

also showed similar results to AEK301 (data not shown). The loss of 

three enzyme activities caused by single site mutation in these 

mutants would imply that the genes specifying these enzymes lie m 

an operon or these genes are controlled by a single disrupted 

regulatory mechanism. 

Southern analysis for Tn5 · insertion. 

The physical characterization of the sites of Tn5 insertion was 

carried out by Southern blot analysis of the total genomic DNA 

isolated from the mutants. The genomic DNA was digested with 

EcoRI, which does not cleave within Tn5, and hybridized with 32p_ 

labeled internal HindIII fragment of Tn5. The hybridization pattern 

showed that all mutants contained Tn5 in the same 11.5 kb Eco RI 

fragment (Fig. 6). Further digestion of the genomic DNA with BamHI 

also showed two bands (7 .8 and 8.2 kb each) from all five mutants, 

suggesting that insertion of Tn5 occured at the same site in all 

mutants. 
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Cosmid Library of A. eutrophus DNA 

A. eutrophus AE0106 DNA was partially digested with Hindlll. 

A total of 10 µg DNA (-20 to 30kb) was ligated with 5 µg of 

Hindlll-digested and phosphatase-treated pVK102. A portion of 

ligated DNA was then packaged into lambda particles in vitro and the 

particles were transduced into E. coli LE392. The transductants were 

selected on tetracycline-containing LB plates. Approximately 1 µg of 

packaged DNA yielded 0.5 to 1.0 x 104 independent Tcr clones. These 

transductants were analyzed for their resistance to kanamycin. Only 

a few of these (2 or 3 out of 100 clones) were found to be kanamycin 

resistant, implying that most clones have chromosomal DNA inserts. 

A portion of clones were analyzed for the sizes of the inserted DNA. 

These were ranged from 17 to 35 kb, with an average of 25 kb. 

Identification of Cosmid Clones Complementing 

Mutant Strains 

Triparental replica plating method was employed to identify 

cosmid clones complementing phenol hydroxylase-defective mutants 

from E. coli LE392 gene bank. Complementing mutants were 

successfully identified on the selective medium which contained 

MMO plus 2.5 mM phenol in the presence of tetracycline (50 µg/ml) 

and rifampicin (150 µg/ml). Each positive clone was isolated from 

master plate and analyzed for the presence of cosmid. Three kinds of 

cosmids were isolated from all positive clones. These are designated 

pYK301, pYK302, and pYK303 after analysis of their restriction 
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enzyme cleavage patterns (Fig. 9). Both pYK302 and pYK303 were 

found to contain a common 16.8-kb HindIII fragment of pYK301. 

The three enzyme activities in the mutant strains were 

analyzed after transfer of the positive cosmids by triparental mating 

(Table 6). AEK301 harboring any one of three cosmids (pYK301 to 

pYK303) expressed both phenol hydroxylase and catechol 2,3-

dioxygenase activities. The activity of catechol 1,2-dioxygenase still 

remained repressed when grown on ethanol, but in the presence of 

benzoate this enzyme activity was expressed. Similar results were 

obtained with the other mutant strains (data not shown). Different 

induction mode of catechol 1,2-dioxygenase implies the existence of 

two isofunctional enzymes in AEKlOl. Bayly et al. ( 49) also reported 

that two or more isofunctional enzymes were present at various 

steps during the metabolism of phenol, p-cresol, and toluate in A. 

eutrophus 345. 

Although the mutants harboring these cosmids were initially 

identified for their growth on the selective media, it was found later 

that no cosmid would allow AEK301 to grow on phenol as a sole 

carbon and energy source. Growth on selective media is probably 

due to the presence of ethanol which was used for the preparation of 

antibiotics (Tc and Rif). Under this condition, complementing 

mutants were distinguished by the thick brown-yellowish growth, 

indicating accumulation of 2-hydroxymuconic semialdehyde or 

photo-oxidation of catechol. No detectable growth on phenol as a sole 

carbon source implies that intermediate genes responsible for the 

conversion of 2-hydroxymuconic semialdehyde are m1ssmg or not 

expressed enough to support the growth on phenol. 
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Though the activity of phenol hydroxylase in AEK301 carrying 

pYK301 is expressed in the similar level to that of AEK101 (24.15 vs. 

28.56), catechol formed by this enzyme does not seem to be 

channeled into the ortho-cleavage pathway. This indicates that 

catechol 1,2-dioxygenase on benzoate pathway is not induced by its 

substrate, catechol. 

Subcloning and Localization of the Genes for Phenol 

Hydroxylase and Catechol 2.3-dioxygenase 

To localize the genes for phenol hydroxylase and catechol 2,3-

dioxygenase, cosmid pYK301 was first cut with Hindlll. From the 

resulting 16.8 kb Hindlll fragment a series of BamHl deletions were 

made and subcloned into tac expression vector pMMB67EH (Fig. 12). 

Only plasmid pYK3011, a 11.2 kb Hindlll-BamHI fragment 

(coordinates O to 11.2 kb), allowed AEK301 to express the activities 

of phenol hydroxylase and catechol 2,3-dioxygenase. To further 

localize the gene specifying . phenol hydroxylase, various deletion and 

subclones were prepared from pYK3011 after mapping for restriction 

endonuclease sites (Fig. 13). Plasmid pYK3021, a 9.1 kb Xhol-BamHI 

fragment ( coordinates to 2.1 to 11.2 kb) expressed phenol 

hydroxylase activity, but catechol 2,3-dioxygenase activity was not 

detected in this plasmid. Neither plasmid pYK3022 (coordinates O to 

9.3 kb) nor pYK3020 (coordinates 2.6 to 11.2 kb) allowed AEK301 to 

restore phenol hydroxylase activity, indicating that more than 6.4 kb 

are needed for the activity. A large sized phenol hydroxylase gene 

complex (5.5 kb) has been reported in Pseudomonas CF600 strain by 

Shingler, et al. (76, 86). They haye demonstrated that this fragment 

44 



encoded six distinct proteins and all components were required for 

the growth on phenol in other Pseudomonas strains which lack this 

enzyme. A multi-component phenol hydroxylase enzyme similar to 

that of Pseudomonas CF600 might be operational in A. eutrophus 

AE0106. Plasmid pYK3022, though it failed to express phenol 

hydroxylase activity, allowed AEK301 to express catechol 2,3-

dioxygenase activity. Further deletion and subcloning of this plasmid 

resulted in plasmid pYK3024, which carries 4.1 kb Hindlll-EcoRI 

fragment. Because Xhol site (coordinates 2.6 kb) is needed for 

phenol hydroxy lase activity as shown in p YK3020 and p YK3021, the 

gene specifying catechol 2,3-dioxygenase should be present within a 

2.6 kb HindIII-Xhol fragment. 

Plasmid p YK3024 expressed high levels of catechol 2,3-

dioxygenase activity, comparable with those of AEK101 grown on 

phenol (Table 6). Generally as the size of DNA insert was decreased, 

higher activity of catechol 2,3-dioxygenase was observed. Plasmid 

pYK3021 also exhibited higher phenol hydroxylase activity than 

pYK3011 which contains 2.1kb more DNA. However, phenol 

hydroxylase activity was shown to be higher in cosmid pYK301 than 

in both subcloned plasmids (about two fold increase than pYK3011), 

even though the pYK301 is twice as large and much lower in copy 

number. This result implies that either promoter region for the 

binding of positive regulator is deleted or trans-acting activator is 

inactivated by deletion of 5.6 kb BamHI-Hindlll fragment from 

p YK301. It seemed that catechol 2,3-dioxygenase was not affected 

by the deletion of this portion, since little difference of this enzyme 

activity was observed in either plasmid. 
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Expression of Phenol Hydroxylase m 

Pseudomonas aeruginosa PAOlc 

Early attempts to isolate the phenol hydroxylase gene by direct 

insertion of chromosomal DNA of A. eutrophus AE0106 into P. 

aeruginosa PAOlc through the construction of a plasmid library 

failed. PAOlc cannot grow on phenol due to the lack of the phenol 

hydroxylase gene, but it possesses an ortho-cleavage pathway for 

catechol metabolism. It was thought that upon the addition of 

external source of active phenol hydroxylase, this strain would grow 

on phenol as a sole carbon and energy source. Olsen et al. (59) 

succeeded in isolating phenol hydroxylase gene from the 

chromosome of P. pickettii PKO 1 by using this simple strategy. Even 

the cosmid library did not allow us to isolate a positive transformant. 

Three cosmids (pYK301 to pYK303) which complemented mutant 

strains AEK301 were inserted into PAOlc by transformation and 

each transformant was analyzed for their growth on phenol. It was 

at first very surprising that none of the cosmids allowed PAOlc to 

grow on phenol. Phenol hydroxylase activity was also not detected 

in any cosmid in PAOlc. However, this enzyme activity was detected 

in pYK3011 and pYK3.021 at a comparable level to that of AEK301 

(Table 7). The activity was detected only in the presence of phenol, 

indicating the gene is transcribed from its own promoter. These facts 

have led us to suspect the existence of negative regulator which was 

inactivated by deletion of 5.6kb BamHI-HindIII fragment. 

PAOlc containing pYK3011 was able to barely grow on phenol 
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owing to the presence of catechol 1,2-dioxygenase. Very small 

colonies were visible on phenol containing MMO plate only after four 

or five days of incubation, but no growth was observed in liquid 

medium. An extraordinary fragment ( over 6.5kb) was needed for 

the expression of phenol hydroxylase activity in PAOlc, but catechol 

2,3-dioxygenase activity was not detected in any plasmids in PAOlc 

(Fig. 13, and Table 7). This indicates that the catechol 2,3-

dioxygenase gene is under different regulatory control from that of 

phenol hydroxylase gene. Separation of structural genes encoding 

phenol hydroxylase activity and the catechol meta pathway enzymes 

into different regulatory regions has been proposed by Wigmore et 

al. in Pseudomonas putida V (8, 11, 116) and by Bayly et al. in 

Alcaligenes eutrophus 335 ( 48). 

Regulation of Phenol Degradation Pathway 

in A. eutrophus AEO 106 

Isolation and characterization of Tn5-Induced 

Mutants 

A suicide plasmid pSUP2021 was used to generate Tn5-induced 

A. eutrophus AEK101 mutants defective in phenol metabolism. This 

plasmid is a derivative of pBR325 that carries a kanamycin 

resistance gene in Tn5 and a ColEl origin of replication, so it is able 

to replicate in E. coli, but not in A. eutrophus due to the limited host 

range for ColE 1 origin. The pSUP2021 was introduced into A. 

eutrophus AEK101 by plate matings with the donor strains E. coli S 1 7 

(pSUP2021) on TNA plates for 4 to 6 hours. E. coli S 17 has tra genes 
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integrated in its chromosome, so it can mobilize the plasmid 

pSUP2021 which carries the IncPl mop site (96). Over 4,000 Kmr 

Rifr exconjugants were obtained by conjugation. These exconjugants 

were tested for their growth on phenol as a sole carbon and energy 

source. Among thirty six colonies which failed to grow on phenol, 

one mutant, AEK201 was further isolated due to its ability to grow on 

benzoate according to the screening procedure described before. 

This mutant did not carry any plasmid, but it was resistant to 

ampicillin and chloramphenicol which are encoded on the plasmid 

pSUP2021. This mutant could have arisen by Tn5-promoted 

insertion of the entire plasmid through replicon fusion into the 

chromosomal DNA of A. eutrophus AEKlOl, leading two copies of 

Tn5. The physical characterization of the site of Tn5 insertion was 

carried out by Southern blot analysis of the chromosomal DNA 

isolated from AEK201. The genomic DNA was digested with EcoRI, 

which does not cleave within Tn5, and hybridized with 32P-labeled 

internal Hindlll fragment (3.3 kb) of Tn5. As expected, two EcoRI 

fragments (6.5 and 14.5 kb each) were detected (Fig.7). Further 

hybridization test with BamHI-digested DNA and the same probe 

exhibited three different fragments (3.4, 5.5, and 12.0 kb each). 

Because plasmid pSUP2021 contains two BamHI sites (one in the 

transposon Tn5 and the other near Tn5), four fragments should be 

hybridized. The reason for this discrepancy could be due to one 

BamHI site near Tn5 being disrupted during transposition or two 

BamHI fragments being the same in size. The results of cloning and 

mapping of the Tn5 flanking DNA with colony hybridization test 

suggested that the latter would be correct. 
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The results of the enzyme assays revealed that none of enzyme 

activities tested was detected in AEK201 grown on phenol plus 

ethanol (Table 5). Growth on benzoate is mediated through ortho­

cleavage pathway, evidenced from the presence of catechol 1,2-

dioxygenase. This enzyme might be different from the phenol­

induced catechol 1,2-dioxygenase. The existence of isofunctonal 

enzymes in aromatic degradation pathway is also discussed by Bayly 

et al. (49). 

Cloning of the Tn5-carrying EcoRl Fragments 

DNA isolated from AEK102 was digested with EcoRl, and ligated 

to EcoRI-cleaved pGEM vector DNA. The recombinant plasmids were 

transformed into E. coli JM109, and the transformants were selected 

on LB plates containing ampicillin and kanamycin. Two different 

plasmids from positive clones were isolated. When cutting with 

EcoRl, two insert EcoRl fragments, 6.5 kb and 14.5 kb each, were 

detected. These fragments were shown to be the same in size as 

those appearing on the Southern hybridization analysis performed 

earlier. pAEK201, which contains 14.5 kb insert DNA, was used for 

colony hybridization analysis. 

Identification of Cosmid Clones Complementing 

the mutant AEK201 

Both colony hybridization and triparental replica plating 

methods were employed to identify cosmid clones · complementing 

AEK201 from cosmid library. Using the 14.5 kb Tn5-containing 

49 



EcoRI fragment from pAEK201 as a probe in colony hybridization 

experiment, a number of positive clones were identified from master 

plates. These clones are divided into five groups according to their 

restriction patterns and designated pYK201, pYK202, pYK203, 

p YK204, and p YK205 respectively (Fig. 8). All these cosmid clones 

are over 30 kb in size and share a common 6.0 kb Hindlll-Xhol 

fragment which contains 4.3 kb EcoRl fragment. Approximately 4.2 

kb DNA out of 4.3 kb EcoRI fragment was found to be the same as 

that on pAEK201. The remaining 4.6 kb extra DNA, which is 

calculated by subtracting 5.7 kb (For Tn5) plus 4.2 kb from 14.5 kb 

insert DNA of pAEK201 was shown to share the same restriction sites 

as those of pSUP2021. 

The cosmids pYK201, pYK203, and pYK205 have incomplete 

Hindlll cut at an end of the insert DNA. Two other cosmids, pYK202 

and pYK204, were found to carry different Hindlll insert DNA and 

different restriction enzyme cleavage patterns except a common 6.0 

kb Hindlll-Xhol fragment, indicating the duplication of this fragment 

on the chromosome. When each cosmid was inserted into the mutant 

AEK201 by triparental mating using helper plasmid pRK2013, all 

cosmids allowed AEK201 to grow on phenol as a sole carbon source. 

Triparental replica plating method was also used to evaluate 

the efficiency for the identification of cosmid clones which 

complement AEK201. This method was found to be very efficient. 

It allowed us to directly isolate five cosmid clones from master 

plates, which are the same as those identified by colony 

hybridization. 

The enzyme activities m complementing mutant strains were 
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measured (Table 6). AEK102 harboring any one of five cosmids 

(pYK201 to pYK205) restored all three enzyme activities tested m the 

same levels as those of AEK101. Simultaneous induction and 

repression modes imply that the genes specifying these enzymes lie 

m an operon or are under the same regulatory control Previously we 

described the cloning of phenol hydroxylase and catechol 2,3-

dioxygenase structural genes from different source of chromosomal 

DNA of AE0106. Therefore, Tn5-interrupted region in AEK201 might 

encode a regulatory gene (s) rather than the structural genes. 

S ubcloning and Localization of 

the Regulatory gene, phlR 1 

To localize the region complemeting AEK201, vanous fragments 

of cosmid DNA (pYK201 to pYK205) were subcloned into tac 

expression vector pMMB67EH (Fig. 10). Two common fragments, 6.0 

kb Xhol-Hindlll and 4.3 kb Xhol-BamHI each, were cloned from 

p YK201 into multiple cloning site of the pMMB67 vector. The 

resulting plasmids pYK2013 and pYK2010 were transferred into 

AEK201 by triparental mating method. They allowed AEK201 to 

grow on phenol as a sole carbon source. Plasmid pYK2010 was 

further subcloned by digesting with various restriction enzymes m 

order to find the smallest fragment (Fig. 11). Plasmid pYK2020, a 

2.4 kb Sall-Pstl fragment, was finally isolated. When placed in 

AEK201, this plasmid allowed the mutant to grow on phenol while 

restoring all three enzyme activities to wild type levels. The 4.3 kb 

Xhol-BamHI fragments from other cosmids were also subcloned and 

tested for the enzyme activities. The same results as pYK2010 were 
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obtained with these cloned plasmids. We designated the gene 

encoding this trans-acting regulator phlR 1. 

Regulation of Phenol Hydroxylase and Localization 

of its Regulatory Gene. phlR2 

In the preceding · section, it was demonstrated that cosmid 

pYK301 did not express phenol hydroxylase activity when placed in 

P. aeruginosa PAOlc, but plasmid pYK3011, which is subcloned from 

pYK301 by deleting 5.6 kb BamHI-Hindlll fragment, permitted this 

strain to grow on phenol, expressing this enzyme activity. When 

pYK301 was in trans with plasmid pYK3011, the enzyme activity was 

not detected, indicating the existence of trans-acting factor which 

negatively functions on the expression of phenol hydroxylase in 

PAOlc. To determine which region carries this function, a series of 

deletions was made from cosmid pYK301 and subcloned into 

Pseudomonas vector pROl 727, pR02321, and pROl 769 (Fig. 14). 

Plasmids p YK3026 and p YK3029 completely inhibited the activity 

when in trans with pYK3011, whereas pYK3028 and pYK3031 did not 

affect at all, indicating the regulatory gene(s) spans over a 3.1kb 

BamHI-EcoRI fragment. Although this fragment completely inhibited 

phenol hydroxylase activity in PAOlc (Table 7), the presence of this 

region fully induced this enzyme activity in A. eutrophus AEK301 

(Table 6). Cosmid pYK301, which contains the intact regulatory 

region, expressed about twice as much of the activity as pYK3011 

did, even though the copy number of pYK301 is much lower than 

that of p YK3011. But the regulatory gene does not seem to act on 

catechol 2,3-dioxygenase. This gene(s) is, therefore, likely to encode 
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an activator-repressor protein specific for phenol hydroxylase in A. 

eutrophus AEK101. We have designated this regulatory gene as 

phlR2. It seems that some effector molecule is required for phlR2 to 

act as an activator in AEK101, which is absent in PAOlc. This could 

be either one of the downstream metabolites of the meta-pathway or 

other gene product(s). In other phenol-degrading bacteria such as 

Pseudomoans putida U (8, 116), P. pickettii PKOl (59, 60), and 

Alcaligenes eutrophus 335 ( 48), it is suggested that the gene 

specifying phenol hydroxylase is under positive transcriptional 

control. In A. eutrophus AEK101, other regulatory gene phlRl, which 

is derived from cosmid pYK201, was also found to positively control 

whole phenol-degrading pathway. In order to find whether or not 

phlR 1 has any effect on the expression of phlR2 and structural genes, 

plasmid pYK2027 was introduced in trans into PAOlc containing 

various plasmids. This plasmid was constructed by cloning a 2.4 kb 

HindIII-BamHI fragment from the multicloning sites of pYK2020, 

which contains phlR 1, into pR02321. Neither the phenol hydroxy lase 

activity nor the catechol 2,3-dioxygenase activity was affected by the 

presence of p YK2027, indicating that two regulatory genes, phlR 1 

and phlR2 function independently on the induction of phenol 

catabolic pathway enzymes in A. eutrophus AEK101 (Table 7). 

TCE Degradation 

TCE Degradation in A. eutrovhus JMP 134 

The ability of Alcaligenes eutrophus JMP134 (pJP4) to degrade 

TCE was first observed as substrate-dependent oxygen uptake. Cells 
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induced for the express10n of the 2,4-D pathway were placed in the 

electrode chamber and either 2,4-D (500 ppm) or TCE (3 ppm) was 

added. Both exhibited an immediate substrate-dependent response. 

Uninduced cells grown on casamino acids did not respond to the 

addition of 2,4-D or TCE. 

JMP134 expresses two monooxygenases which have activities 

analogous to those of enzymes from other organisms which have 

been demonstrated. to remove TCE. The two JMP134 

monooxygenases are the phenol hydroxylase encoded on the 

chromosome and the 2,4-dichlorophenol hydroxylase encoded as part 

of the 2,4-D pathway on plasmid pJP4. The response of each 

pathway to induction and aromatic-substrate activation was umque, 

indicating the absence of shared regulation or common substrates 

(Table 8). 2,4-D induced JMP134 (pJP4) exhibited substrate­

dependent oxygen responses to 2,4-D and 2,4-dichlorophenol but not 

to phenol. Phenol-induced AE0106 (plasmid-cured JMP134) 

exhibited a positive response to phenol but no response to 2,4-D or 

2 ,4-dichlorophenol. 

The results of direct measurement of TCE removal are shown in 

Figure 15. The initial rate of removal (0.2 nmol per min per mg of 

protein) for phenol-induced AE0106 is comparable to rates at similar 

concentrations obtained for Pseudomonas putida Fl (109). Phenol­

induced AEO 106 removed TCE to below detectable levels at a rate 

higher than that observed for 2,4-D induced JMP134. 2,4-D induced 

JMP134 removed about 60% of the TCE, with apparent cessation of 

activity at a rate approximately one-third that of the phenol­

dependent pathway. This is consistent with the results we obtained 
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m initial batch culture experiments analyzed by headspace GC 

analysis, in which only 40% of the TCE was consistently removed. 

Similar observations have been attributed to the action of a toxic 

intermediate which inactivates the monooxygenase responsible for 

activity (109, 111). Others have reported· complete removal of TCE 

as we observed for the. phenol-induced chromosomally encoded 

enzyme (70, 71). 

Identification of the Chromosomally Encoded 

Gene Responsible for TCE Degradation 

Various subclones constructed from cosmid pYK301 were 

analyzed for the capability of degrading TCE in A. eutrophus AEK301 

and in P. aeruginosa PAOlc (Fig. 16). Three plasmids including 

pYK301 were found to effect the degradation of TCE in AEK301 and 

only two plasmids, pYK3011 and pYK3021, endowed PAOlc with the 

ability to degrade TCE. All strains expressing the active phenol 

hydroxylase have been shown to remove TCE. PAOlc harboring 

pYK301 does not express phenol hydroxylase activity due to the 

presence of the regulatory gene phlR2, and therefore failed to 

remove TCE. Neither catechol 2,3-dioxygenase nor catechol 1,2-

dioxygenase degrades TCE. These results clearly demonstrate that 

only phenol hydroxylase is responsible for TCE degradation in 

AEKlOl. 
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Comparison of TCE Degradation by AEKl O 1 and 

AEK301 Containing Various Plasmids 

The extent of TCE degradation was observed in wild type and 

m complementing AEK301 under various culture conditions (Table 

9). AEK30l harboring pYK301 degraded TCE with the same pattern 

as that of AEK101. These strains completely removed TCE added (25 

µM) in the presence of 2.5mM of phenol and benzoate. The presence 

of ethanol or casamino acid reduced the rate of TCE degradation, 

implying the existence of catabolite repression by these metabolites. 

TCE was not removed under low concentration of phenol (0.5 mM) m 

these strains. The opposite results was obtained when plasmid 

pYK3011 or pYK3021 was introduced into AEK301. These plasmids 

were made by deleting phlR2 from pYK301. AEK301 harboring these 

plasmids (pYK3021 and pYK3011) removed TCE only at low 

concentration of phenol (0.5 mM). Furthermore these strains did not 

reqmre any aromatic inducer for the TCE removal, suggesting the 

constitutive expression of phenol hydroxylase in the absence of 

phlR2. However phenol hydroxylase activity in AEK301 containing 

these plasmids was expressed much higher when phenol was added 

into the medium than in the absence of phenol. This result 

demonstrates that phenol is still a strong inducer even m the absence 

of phlR2, implying secondary regulatory system might be 

operational. 

The extent of TCE degradation by AEK301 appeared to be 

different, depending on the plasmids and substrates employed. 

Plasmid p YK3021 enabled AEK301 to remove TCE with better 
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capability than p YK3011. This might be due to the different sizes of 

insert DNA, with higher activity in shorter DNA than in longer one. 

TCE degradation was somewhat reduced in enriched media such as 

LB or TNB. But minimal medium containing less than 0.05% ethanol 

allowed AEK301(pYK3021) to degrade TCE completely. 

TCE degradation by Pseudomonas aeruginosa PAOlc harboring 

pYK3021 is also shown in Table 9. This strain removed only 

restricted amounts of TCE and phenol is needed for TCE removal 

which is unlike to AEK301, suggesting a different induction 

mechanism for the phenol hydroxylase gene is functioning in this 

strain. 

The degree of AEK301 (pYK3021) to remove TCE was measured 

in the presence of various concentrations of TCE (Fig. 17). The cells 

were cultured in MMO plus 0.1 % casamino acid without any 

antibiotics. 200 µM of TCE was completely removed within two 

days. When the concentration of TCE increased up to 400 µM, TCE 

degradation had been continued until two days, then ceased with 

removal of 70% of detectable TCE. The same results were observed 

when the cells were cultured under selective pressure where 

carbenicillin (100 µg/ml) was added into the medium. 

Plasmid pJP4 Pathway of TCE degradation 

The tfdB gene which encodes 2,4-dichlorophenol hydroxylase 

was cloned from pJP4. 8.0 kb Hindlll fragment containing tfdB was 

first cloned into E. coli expression vector pVJ256, then 2.3 kb Sall 

fragment which contains tfdB was isolated from the resulting 

plasmid, pHKlOl and cloned into pMMB67EH. A schematic diagram 
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is shown in Figure 18. This plasmid (pYKlOl) was transferred into 

A. eutrophus AEK101 by triparantal conjugation. AEK101 containing 

pYKlOl expressed tfdB gene activity in the presence of inducer, but 

failed to degrade TCE. This enzyme activity was not detected in the 

absence of inducer. This result indicates that either TfdB is not 

responsible for TCE removal or the activity is not expressed enough. 

The latter would be more plausible considering the following aspects. 

JMP134 does not exhibit any TCE degrading ability even when grown 

on 2,4-D in the presence of other carbon source such as casamino 

acid. The activity of TfdB in such medium was also observed to be 

higher in JMP134 than that of AEK (pYKlOl). TfdB has been known 

to be a likely candidate due to its similarity to chromosomally­

encoded phenol hydroxylase. Both enzymes are monooxygenases 

which hydroxylate a substituted aromatic ring. Hausinger et al. (37) 

have reported that the tf dA gene product, which is generally known 

to be a monooxygenase and thus considered to be one of the likely 

candidates for TCE removal in 2,4-D pathway, is a-ketoglutarate 

dependent dioxygenase. P. aeruginosa and E. coli expressing activity 

of the cloned tfdA gene were also ineffective in TCE removal. These 

facts further support the hypothesis of the involvement of TfdB in 

TCE degradation. 
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CHAPTERV 

DISCUSSION 

Transposon Mutagenesis and Cloning of the Structural Genes 

for Phenol Hydroxylase and Catechol 2,3-dioxygenase 

from Alcaligenes eutrophus AEO I 06 

Although many papers have described the regulation of 

chromosomally encoded phenol metabolism, very little is known 

about the molecular genetics of phenol pathway in Alcaligenes 

eutrophus strains. In this study, we have isolated the 

chromosomally encoded phenol hydroxylase gene(s) and catechol 

2,3-dioxygenase gene(s) through transposon mutagenesis and 

complemetation test. 

As a first step to isolate phenol hydroxylase deficient mutants, 

transposon mutagenesis was performed in A. eutrophus AEK101, a 

Riff derivative of AE0106, using plasmid pUW964. Replica plating 

methods used for the isolation of Riff Kmf exconjugants in this study 

was found to be very convenient and efficient, enabling us to isolate 

more than 100 independent exconjugants per a plate. Over 6,000 

Riff Kmf exconjugants, approximately 3% of these exconjugants were 

unable to grow on phenol. Most of these did not show the growth on 

benzoate, either. Five independent mutants obtained from this study 

were analyzed for the restriction cleavage patterns of Tn5 tagged 

chromosomal DNA by Southern blot hybridization. The results 

59 



showed that all mutants have the same general sites interrupted by 

Tn5, implying that there would be a preferential site on the AEK101 

chromosome for Tn5 insertion. However, it could not be ruled out 

that proximal locations of Tn5 insertion sites would make it difficult 

to interpret the results without extensive detailed mapping. Cloning 

and further restriction analysis of Tn5 flanking DNA from each 

mutant will solve this problem. 

Most phenol-degrading bacteria are known to catabolize phenol 

through the meta-cleavage pathway (48, 59, 94, 95). In these 

bacteria, the enzymes for the ortho-cleavage pathway are shown to 

be strictly repressed when they grow on phenol. In this study A . 

eutrophus AE0106 was found to express both activities of catechol 

2,3-dioxygenase and catechol 1,2-dioxygenase when grown on 

phenol, suggesting that catechol formed by phenol hydroxylase 1s 

metabolized through both pathways. Pieper et al. (84) also reported 

that A. eutrophus JMP134 expressed high enzyme activities for the 

ortho-cleavage pathway as well as the activities for the meta­

cleavage enzymes from the phenol-grown cells. However, complete 

repression of catechol 2,3-dioxygenase activity was observed when 

grown on benzoate in AE0106, a plasmid cured derivative of JMP134. 

Repression of the meta-cleavage pathway enzymes was also 

demonstrated during the metabolism of the substituted phenol such 

as 2,4-dichloro- or 4-chloro-2-methyl phenol in JMP134 (85). 

Simultaneous induction of both catechol cleavage pathways by 

phenol has led us to employ a simple screening procedure for 

isolating mutants defective in phenol hydroxylase in AEK101. If the 

mutant can grow on benzoate but not on phenol, then this mutant 
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should be deficient in phenol hydroxylase structural gene or its 

regulatory gene, because Tn5-induced mutation impaired on either 

catechol ortho cleavage pathway or meta cleavage pathway would 

allow the mutant to grow on phenol. Five mutants isolated according 

to this screening procedure were also found to be defective in all 

three enzymes tested, phenol hydroxylase, catechol 1,2-dioxygenase, 

and catechol 2,3-dioxygenase. Both the simultaneous induction and 

repression indicates that the genes specifying these enzymes are 

coordinately regulated. If the mutation occured on the phenol 

hydroxylase gene, the genes encoding these enzymes could comprise 

an operon. But the mode of catabolite repression of catechol 1,2-

dioxygenase and catechol 2,3-dioxygenase appears to be different, 

strongly contradicting this assumption. The former was not affected 

by any catabolites, whereas the latter was severely affected by 

various catabolites (Table 5). So it is likely that mutants are 

impaired on the regulatory gene rather than on the structural gene 

of phenol hydroxylase. Further cloning and hybridization 

experiments confirmed this assumption. 

Complementation test allowed us to isolate three different 

cosmid clones. AEK301 harboring pYK301 restored the activities of 

phenol hydroxylase and catechol 2,3-dioxygenase. But incapability 

to grow on phenol as a sole carbon source and the formation of 

yellow color on the plate by this complementing strain suggest that 

the structural gene responsible for the conversion of 2-

hydroxymuconic semialdehyde is repressed. Catechol 1,2-

dioxygenase was also not induced in this strain. These observations 

also support that the regulatory gene, which controls the genes for 
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phenol pathway, would be interrupted by Tn5 m these mutant 

strains. 

Even though catechol 1,2-dioxygenase was not induced in 

AEK301 containing pYK301, this enzyme was expressed during 

growth on benzoate, indicating that a common intermediate, catechol 

does not act as an inducer. Independent induction of this enzyme by 

these two metabolites implies that two isofunctional enzymes may be 

operational in AEKl O 1. The existence of isofunctional enzymes for 

the degradation of aromatic compounds has also been describeed in 

many bacteria (49, 65, 83, 113). Bayly et al. (49) has reported that 

more than two isofunctional enzymes (including three catechol 2,3-

dioxygenase) are involved in phenol metabolism in A. eutrophus 345. 

Subcloning of pYK301 has led us to isolate a 9.0 kb Xhol-BamHI 

fragment (coordinates 2.0 to 11.0 kb) which encodes phenol 

hydroxylase. More than 6.5 kb Xhol-Pstl fragment (coordinates 2.6 

to 9 .1 kb) was shown to be required for complete phenol 

hydroxylase activity. This is confirmed under heterogenetic 

background experiment using Pseudomonas aeruginosa PAOlc. This 

strain, which lacks functional phenol hydroxylase gene, acquired the 

ability to grow on phenol in the presence of p YK3021 ( coordinates 

2.1 to 11.2 kb), but both pYK3020 (coordinates 2.6 to 11.2 kb) and 

pYK3022 (coordinates O to 9.3 kb) do not allow PAOlc to grow on 

phenol. The detection of substantial amount of catechol 1,2-

dioxygenase activity in PAOlc harboring either pYK3011 or pYK3021 

when grown on phenol has proved that these plasmids contain a 

phenol hydroxylase gene(s), metabolizing catechol through ortho­

cleavage pathway on the chromosome. Shingler et al. (76, 86) has 
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reported a multicomponent phenol hydroxylase in Pseudomonas sp. 

CF600. 5.5 kb DNA region encoding six different polypeptides for 

this enzyme were cloned·. and sequenced from megaplasmid pVI150 

in this strain. This enzyme is different from typical phenol 

hydroxylases or other bacterial hydroxylases, which are simple 

flavoproteins. · Gibson et al. (98) suggested that phenol is degraded 

by toluene dioxygenase, a multicomponent enzyme, through an 

alternative monohydroxylation in Pseudomoans putida Fl. Phenol 

hydroxylase in A. eutrophus might could be a multicomponent 

enzyme, judging from the large fragment required for 

complementation. It will be interesting to see whether this enzyme 

has a function toward other aromatic compounds such as toluene. 

Most phenol-degrading bacteria are known to degrade phenol 

through the meta-cleavage pathway and the genes specifying this 

pathway are often clustered. Plasmid pVI150 in Pseudomonas 

CF600 and the chromosomal genes encoding phenol pathway 

enzymes in P. pickettii PKOl are also found to metabolize phenol 

through the meta cleavage pathway and the genes for this pathway 

lie in a cluster. Likewise it is conceivable that the genes for the 

phenol catabolic pathway of A. eutrophus AEK101 are clustered. In 

this study we found that the genes for phenol hydroxylase and 

catechol 2,3-dioxygenase lie adjacent to each other in A. eutrophus 

AE0106. 

The gene encoding catechol 2,3-dioxygenase (C230) was 

localized in 4.1 kb HindIII-EcoRI (coordinates O to 4.1 kb) fragment 

from pYK301. Because 1.6 kb XhoI-EcoRI (coordinates 2.5 to 4.1 kb) 

fragment is required for phenol hydroxylase activity, less than 2.5 

63 



kb (HindIII-XhoI) is sufficient for this gene activity. It will be 

interesting to investigate whether pYK302 encodes the subsequent 

meta pathway genes, because this plasmid carries more than 9.0 kb 

extra DNA beyond this HindIII site. However, the cosmid pYK302 

does not allow AEK301 to grow on phenol as a sole carbon source, 

either. This result implies that e.ither the extra DNA has no these 

genes or the enzymes are not induced enough for AEK301 to grow on 

phenol. Further cloning and the analysis of enzyme activities will 

solve this problem. 

Overproduction of the C230 activity was observed in p YK3023 

and p YK3024 in which part of phenol hydroxy lase gene was deleted. 

Phenol strongly induced the activity of C230, implying this gene 

utilizes its own promoter for transcription. However, PAOlc 

harboring these plasmids· did not express C230 activity. Identical 

results were observed with pYK3011, which carries both genes for 

phenol hydroxylase and C230. PAOlc harboring pYK3011 expressed 

only phenol hydroxy lase activity, indicating that the gene for C230 is 

not cotranscribed with phenol hydroxylase gene. Different 

regulatory system, the ref ore, should be present for the induction of 

C230 activity. Bayly et al. (48) has proposed that the genes encoding 

phenol hydroxylase is in a separate operon from the genes encoding 

catechol meta-cleavage pathway in Alcaligenes eutrophus 335, with 

the former under positive control and the latter under negative 

control. They also proposed that at least one regulatory gene exerts 

a controlling effect over the expression of all phenol pathway 

enzymes. Wigmore et al. (8, 116) has reported similar observation 

from P. putida U, sugge~ting the presence of two separate operons for 
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phenol catabolic pathway. Molecular analysis of phenol-degrading 

pathway in P. pickettii PKO 1 suggested the existence of two different 

regulatory genes, tbuR, a positive regulator for the expression of 

phenol hydroxy lase and tbuS, an activator-repessor protein for 

meta-cleavage of catechol (60). In the next section, we described the 

cloning and characterization of two putative regulatory genes 

involved in phenol metabolism in A. eutrophus AEK101. One 

regulatory gene, phlRJ, positively controls the whole phenol 

pathway, whereas phlR2 acts as both an activator and a repressor 

specific for only phenol hydroxylase. Data obtained from this study 

also imply that the third regulatory gene is operational in phenol 

metabolism, placing the induction mechanism of phenol pathway 

under the complex regulatory circuit in this strain. Cloning and 

analysis of Tn5 tagged DNA from the mutants should be performed 

to characterize this regulatory mechnism. 

Fortnagel et al. (53, 54) has reported and sequenced two 

distinct genes encoding catechol 2,3-dioxygenase from A. eutrophus 

JMP222, a pJP4 cured derivative of A. eutrophus JMP134. These two 

catechol 2,3-dioxygenase genes were found not to share any 

sequence homology with each other. The genes are also different 

from the one isolated in this study, indicating that at least three 

different catechol 2,3-dioxygenases may exist on the chromosome of 

this strain. Though it has been well known that such isofunctional 

enzymes commonly appear for the degradation of structurally 

related aromatic compounds, the exact reason for the occurrence of 

these enzymes are not clear. These enzymes probably have 

significant impact on the total enzyme activity. Isofunctional 
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enzymes m A. eutrophus may also play a role in the global control of 

the phenol catabolic pathway by providing effector by-products. 

Regulation of Phenol Degradation Pathway 

in A. eutrophus AEKl O 1 

In this study, we isolated two regulatory genes involved in 

phenol metabolism. phlRJ, which is localized on a 2.4 kb SalI-PstI 

fragment from cosmid DNA complementing mutant AEK201, was 

found to positively control the whole phenol pathway. Restriction 

enzyme analysis of cosmid DNA revealed that this regulatory region 

is duplicated, evidenced from two different H indIII fragments which 

share the same regulatory region. The gene(s) cloned from each 

HindIII fragment complemented AEK201. Duplicates of regulatory 

genes were also identified on TFD degrading plasmid pJP4 in A. 

eutrophus JMP134 (65). In this plasmid, the tfdS was known to be 

an identical copy of tf dR by sequencing analysis, indicating the copy 

of regulatory gene is not uncommon in this strain. At present we do 

not know whether Tn5 is inserted at both sites. Simultaneous 

insertion of Tn5 resulted from homologous recombination between 

two fragments could be conceivable. If only one site is inten-upted, 

then there should be certain control mechanism by which the other 

intact fragment remains to be repressed. It is interesting that the 

extra copy of the genes or gene clusters seem to be unexpressed in 

many bacteria (9). 

Although the mutant AEK201 is very stable with reversion rate 

of approximately 1.0 x lQ-8 on TNA plates, sudden acclimation of the 

mutant strain to growth on phenol was often observed during growth 
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on benzoate. All these revertants remained Km resistant, indicating 

Tn5 insertion site was not changed. This result implies that 

regulatory system acting on benzoate metabolism may compensate 

for this mutation by some alternative mechanism. TcbR, a regulatory 

protein involved in chlorobenzene degradation pathway in 

Pseudomonas sp. strain P5 l, is known to cross-react with the 

promoter of tfdCDEF on pJP4 (106). The xylCAB operon, which is 

responsible for the 'upper' pathway of toluene degradation on the 

TOL plasmid in P. putida mt-2, has been shown to be activated by 

the heterologous regulatory genes ntrC or nif A, which are involved m 

nitrogen metabolism (28). It is very plausible that homologous 

regulatory protein working on one aromatic ring cleavage pathway 

could be operational on triggering the other. Sequencing of phlRl 

should be undertaken to compare any similarity of this protein with 

other regulatory proteins. 

phlR2, a regulatory gene specific for phenol hydroxylase, is 

localized on a 5.0 kb PstI-EcoRI fragment, which is just adjacent to 

the phenol hydroxylase gene. The modes of gene expression in two 

different strains, AEK301 and PAOlc, were found to be opposite. 

AEK301 with pYK301, which contains a regulatory gene phlR2, 

expressed twice as much phenol hydroxylase activity as that in 

AEK301 with pYK30ll, but the presence of phlR2 completely 

repressed the enzyme activity in PAOlc. Higher activity of phenol 

hydroxylase in AEK301 harboring pYK301 was confirmed by 

repeated measurement. The pYK301 was constructed in a low copy 

number vector (pVK102), whereas a high copy number vector 

(pMMB67) was used for p YK3011. p YK301 is also larger in size ( 40 

67 



kb vs. 20 kb). These results further support the idea that the 

presence of phlR2 increases the activity of phenol hydroxylase m 

AEK301, implying that phlR2 functions as an activator in AEK301, 

but as a repressor in PAOlc .. 

A single regulatory gene acting as both an activator and a 

repressor has been shown for merR (79), araC (92), oxyR (100), tbuS 

(60), and tfdS (56), which are involved in mercury ion resistance, 

arabinose operon, the expression of genes induced by oxidative 

stress in Salmonella typhimurium, catechol meta cleavage pathway 

in Pseudomonas pickettii PKO, and the expression of tfdB on TFD 

pathway in A. eutrophus JMP134, respectively. These regulators are 

generally known to function at the transcriptional level, acting as 

activators or repressors according to the availability of effectors. 

It is interesting that tf dB gene shares some similarities with 

phlH. Two genes encode monooxygenases which hydroxylate a 

substituted aromatic ring in JMP134, one encoding phenol 

hydroxylase on the chromosome and the other encoding 2,4-

dichlorophenol hydroxylase (DCPH) on plasmid pJP4 as part of TFD 

pathway. The tf dS was reported to require one of the downstream 

metabolites as an effector to activate the tfdB gene. Similar 

regulatory mode to that of tf dS on plasmid· would be imaginable for 

phlR2 on the chromosome, requiring one of the downstream 

metabolites of the meta-cleavage .pathway as an effector for the full 

induced activity of phenol hydroxylase. As predicted by Olsen et al. 

(59), under such a regulatory system, the absence of regulator would 

make the structural gene no longer fully repressed nor be induced, 

expecting constitutive expression of the gene in the basal level. This 
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model seems to be effective for tfdS. AEK301 containing plasmid 

pYK3021 and pYK3011, which have no phlR2, expresses phenol 

hydroxylase activity very weakly under non-inducing conditions, but 

phenol still acts as a strong inducer, eliciting ten times more enzyme 

activity. By the definition of Collins et al. (17), this enzyme activity 

is expressed 'semiconstitutively' in this strain. Pieper et al. (84) also 

used this terminology for the expression of tf dB in a mutant of A. 

eutrophus JMP134, JMP134-1. This mutant constitutively expressed 

DCPH activity, but at a significantly higher level when induced with 

TFD. 

The phenol hydroxy lase activity, however, was not detected in 

P. aeruginosa PAOlc harboring pYK3011 when the cell was grown in 

the absence of phenol. This phenomenon is clearly unlike the results 

with tf dS that the basal level of DCPH activity was detected in PAO le 

containing tf dB gene regardless of the previous culture conditions in 

the absence of tfdS. Phenol still acts as an inducer in PAOlc which 

contains phlH but not phlR2. It is predictable that a 9.1 kb Xho 1-

BamHI of pYK3011 fragment contains its own promoter and possible 

regulatory region on which secondary regulatory system exerts in 

such a way that phenol still acts as an inducer. 

Genetic analysis of promoter region of the dmpKLMNOP, the 

multicomponent phenol hydroxylase gene in Pseudomonas sp CF600, 

has revealed that upstream of this region contains the invariant -24 

GG -12 GC sequence which has been shown to require the rpoN gene 

product, a sigma factor in E. coli, for the expression from this 

promoter m P. putida (76). Another striking finding of this 

promoter 1s that upstream region also contains an inverted repeat, 
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which is similar to the symmetrical recognition sequence proposed to 

be involved in the binding of E. coli repressors and activators. It will 

be very interesting to see whether this kind of DNA sequence is also 

present in the promoter of phlH of A. eutrophus AEKlOl, considering 

the presence of the presumed repressor-activator gene, PhlR2. 

From this study it has been shown that expression of the genes 

involved in phenol pathway are tightly regulated by multiple 

systems in A. eutrophus AEK101. One regulatory gene, phlRJ 

appears to control the whole phenol pathway, whereas the other 

regulatory gene, phlR2 is implicated in the expression of phenol 

hydroxylase gene itself. Cloning analysis of catechol 2,3-dioxygenase 

gene revealed that other regulatory gene(s) exists for the expression 

of this gene and possibly the genes for the subsequent meta 

-pathway enzymes. 

Previously isolated Tn5-induced mutant strains (AEK301 to 

AEK305) are found to be deficient in three enzyme activities tested, 

phenol hydroxylase, catechol 2,3-dioxygenase and catechol 1,2-

dioxygenase. The pleiotropic effect of Tn5 insertion on the 

expression of phenol pathway enzymes implies that either a common 

positive regulator is mutated or the genes for this pathway lie m an 

operon. Southern blot analysis using a 5.2 kb EcoRI fragment 

(coordinates 6.3 to 11.5 kb of pYK301) as a probe revealed that 

neither the structural gene of phenol hydroxylase nor ·the regulatory 

gene phlR2 was interrupted by Tn5, implying that Tn5 insertion 

might be occurred on other regulatory gene which positively controls 

the expression of the whole phenol pathway enzymes in addition to 

phlRl (data not shown). The existence of another regulatory gene for 
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whole phenol pathway can also be deduced from the fact that mutant 

AEK301 harboring pYK301 does not grow on phenol as a sole carbon 

source, even though an adequate amount of enzyme activities of 

phenol hydroxylase and catechol 2,3-dioxygenase are detected. Both 

the repression of catechol 1,2-dioxygenase activity which is induced 

by phenol in wild type and the formation of yellow color on the 

phenol-containing plate due to the accumulation of 2-

hydroxymuconic acid semialdehyde strongly suggest this hypothesis. 

Cloning of Tn5 flanking DNA in these mutants along with the analysis 

of enzyme activities should be performed to elucidate the complex 

regulatory mechanisms involved in phenol degradation pathway in 

A. eutrophus strain. 

TCE Degradation by Phenol Hydroxylase 

Initially we demonstrated that phenol-metabolizing pathway 

induces TCE-degrading activity in A. eutrophus AE0106 and phenol 

hydroxylase was suspected as a likely candidate. Nelson et al. (71) 

have proposed that a single enzyme can accept molecular oxygen and 

oxidize TCE. This would be sufficient for the complete dechlorination 

of TCE due to the instability of TCE-oxide intermediates. Shields et al. 

(94) demonstrated that a single enzyme is involved in the 

hydroxylation of toluene, cresol, and phenol, and in TCE degradation 

in P. cepacia G4. 

In this study, we isolated the phenol hydroxylase gene(s) and 

confirmed this single enzyme is responsible for TCE degradation. 

AEK301, a Tn5-induced mutant defective in phenol metabolism, 

degrades TCE very efficiently in the absence of aromatic inducer 
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when this mutant harbors pYK3011 or pYK3021. These plasmids 

were constructed by deleting a DNA fragment which contains a 

trans-acting regulatory gene, phlR2 . This gene was found to have a 

repressor-activator function specific for the expression of phenol 

hydroxylase in A. eutrophus AE0106. The mode of TCE degradation 

of AEK301 harboring pYK301 is almost the same as that of the wild 

type AEKlOl, but totally different from that of AEK301 harboring 

pYK3021. The presence of aromatic inducer is prerequisite for TCE 

removal by the, wild type and the mutant AEK301 harboring pYK301, 

whereas pYK3011 enables AEK301 to degrade TCE without any 

inducer. 

Phenol concentration in medium also affects the degree of TCE 

degradation. Only under higher amount of phenol (2.5 mM) TCE 

degradation was observed in the wild type AEK101 and AEK301 

(pYK301). When phenol concentration was reduced into 0.5 mM, 

these strains did not degrade TCE any more. This observation is well 

correlated with the enzyme assay in which the activity of phenol 

hydroxylase was expressed only at 2.5 mM of phenol but repressed 

at 0.5 mM of phenol. When AEK301 (p YK3021) grows on phenol, 

catechol is accumulated, which in turn causes toxic effect on the 

growth. To prevent the toxic effects of catechol, benzoate was also 

added into medium so that catechol produced by phenol hydroxylase 

could be channeled through benzoate-induced ortho-cleavage 

pathway. Under this condition, AEK301 (pYK3021) degrades TCE at 

lower concentration of phenol ( 0.5 mM), but most of TCE remained 

unchanged at higher (2.5 mM). This phenomenon is obviously 

contradictory to that of the wild type or AEK301 (pYK301). This 
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result could be partly due to the inhibition of growth by catechol, 

because even in the presence of benzoate, the extent of dark brown 

color formation, which indicates the accumulation of catechol, was 

more obvious at higher phenol concentration (2.5 mM). Inhibition of 

TCE degradation by higher concentration of phenol in AEK301 

(pYK3021) could also be explained from possible competitive 

inhibition between the natural substrate, phenol, and the fortuitous 

substrate, TCE as described by Folsom et al. (34).. It is possible that 

the enzyme attack on TCE can be retarded under the circumstance 

where phenol hydroxylase activity is relatively low, which is the case 

in AEK301 (pYK3021), and the concentration of phenol is high. 

Further analysis should be performed to elucidate kinetics and 

interactions between phenol and TCE in AEK301 (pYK3021). 

Even though AEK301 (pYK3021) degrades TCE without phenol, 

indicating constitutive expression of phenol hydroxy lase activity, this 

activity was observed to be further inducible by phenol to levels a 

full order of magnitudes higher. According to the definition of Collins 

et at. (17) this enzyme activity is semiconstitutively expressed. 

Considering the multiple regulatory mechanisms of phenol catabolic 

pathway operating in AEKlOl, it is conceivable that a secondary 

regulatory system would be functional in such a way that phenol still 

acts as an inducer in the absence of phlR2. 

The activity of phenol hydroxylase was also observed to be 

significantly higher when AEK301 (pYK3021) grows on casamino acid 

(0.1 % ) in the presence of TCE than without TCE. It is possible that a 

secondary regulatory system may be arisen with the broad substrate 

(inducer) specificity for the induction of phenol hydroxylase gene so 
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that TCE acts like a gratuitous inducer under the environment where 

a strictly regulatory gene is not expressed. P. aeruginosa PAO 1 c 

harboring pYK3021 expressed phenol hydroxylase activity only m 

the presence of phenol and TCE was degraded only under this 

condition. This results demonstrate that a heterogenetic regulatory 

system is operational in P. aeruginosa PAO le, supporting the 

hypothesis of the existence of a secondary regulatory system in 

AEK301, which is totally different from that of PAO le. Analysis of 

promotor region with deletion and protein fusion will clearly 

elucidate these regulatory mechanisms. 

This secondary regulation model, once proved, then will 

provide invaluable information for the understanding how 

regulatory proteins have evolved to adjust new inducers, which will 

in turn be utilized for developing microorganisms that have 

increased substrate and/or inducer ranges for the degradation of 

more complex and toxic chemicals. In conjunction with this view and 

, it is also valuable to investigate the degradation by AEK301 

(pYK3021) of other chlorinated ethylenes and phenolic compounds. 

The onset of TCE degradation by AEK301 (pYK3021) is also 

different from that in wild type. TCE degradation was observed to 

occur sometime after the growth of AEK301(pYK3021), whereas it 

immediately follows the cell growth in AEK101. This phenomenon 1s 

consistent with the observation of higher phenol hydroxylase activity 

in the stationary phase than in the exponential phase in AEK301 

(pYK3021), which is the opposite in AEK101 (data not shown). 

Enriched media such as TNB partially reduced the degree of TCE 

removal, but minimal medium containing less than 0.05% ethanol as 
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a sole carbon and energy source enables AEK301 (pYK3021) to 

degrade TCE completely. It is conceivable that catabolite repression 

exists or certain regulatory mechanism related to carbon limited 

induction is operating. 

AEK301 (pYK3021) removed 200 µM of the TCE to below 

detectable level within two days , under non-selective pressure. 

When the concentration increased up to 400 µM, apparent cessation 

was observed after about 70% removal of added TCE in two days. 

This cessation would be related with toxic effect induced by TCE 

during its metabolism. Toxicity has been known to occur through 

covalent modification of cellular molecules by toxic intermediates 

produced during TCE mineralization in many TCE degrading bacteria 

(87, 111 ). The diminution in bi ode gradation rate would be severe if 

the enzyme responsible for TCE removal is sensitive to toxic 

intermediates. Phenol hydroxylase in AEK101 seems to be less 

sensitive to toxic intermediates, so the cessation might be caused by 

general cytotoxicity during the mineralization of high concentration 

of TCE. It should not be ruled out the possibility that this cessation 

could be partly due to the loss of enzyme activity resulted from 

homologous recombination between the plasmid-borne phenol 

hydroxylase gene and its chromosomal counterpart. Because phenol 

hydroxylase activity was observed to decrease with the prolonged 

culture of AEK301 harboring these plasmids. 

Although this soil recombinant bacterium should be tested 

under various physico-chemical conditions similar to nature and 

approved for the release into environment before its application in 

situ bioremediation of contaminant sites, it is likely to be an excellent 
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candidate owmg to the following merits. TCE mineralization does not 

require any aromatic inducers or antibiotics and is performed even 

under carbon-limited circumstance which is frequently encountered 

in natural environment. The capacity of TCE removal 1s very high 

with limited sensitivity to TCE-mediated toxicity. 
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TABLE I 

PHENOL DEGRADATION BY MICROORGANISMS 

Microorganism 

Bacteria 
Alcaligenes eutrophus 335 
A. eutrophus 345 
A.eutrophusJMPl34 

Bacillus s tearothermophilus 
Pseudomonas aeruginosa Tl 
P. cepacia G4 
P.pickettii PKO 1 
P. putida Fl 
P. putida U. 
P. sp. CF600 
P. sp. ESTlOOl 
Rhodococcus sp. Pl 
Streptomyces setonii 

Yeast 
Candida tropicalis 
Trichosporon cutaneum 

genetic organization aromatic degradation reference 
pathway 

chromosome 
chromosome 
chromosome(phl.H) 

meta-pathway 
meta-pathway 
meta-pathway 
ortho-pathway 

unknown unknown 
unknown meta-pathway 
chromosome meta-pathway 
chromosone ( tbuD) meta-pathway 
chromosome ( todABC) meta-pathway 
unknown meta-pathway 
plasmid ( dmpKLMNOP) meta-pathway 
plasmid (pheA) ortho-pathway 
unknown meta-pathway 
unknown meta-pathway 

unknown 
unknown 

ortho-pathway 
ortho-pathway 

48 
49 
84,85 

. 42 
89 
94 
59,60 
98,118 
7,30 
6, 76,95 
78 
102 
3 

75 
74 

'° N 



TABLE 2 

AEROBIC DEGRADATION OFTCE BY MICROORGANISMS 

Microorganism Inducer Enzyme 

Aromatic pathway 

PseudomocUJs putida Fl Toluene Toluene dioxygenase 

P. mendocina Toluene p-toluene monooxygenase 

P. cepacia G4 Toluene, cresol, phenol o-toluene monooxygenase 

P. pickettii PKOl Toluene m-toluene monooxygenase 

Pseudomonasspec. JRl Isopropylbenzene, toluene Isopropylbenzene dioxygenase 

Rhodococcus erythropolis BD1 Isopropylbenzene, toluene Isopropylbenzene dioxygenase 

Alipathic pathway 

Mycobacterium vaccae JOBS Propane Propane monooxygenase 

Al.caligenes deni trifi.ccUJs Isoprene Propene monooxygenase 

Rhodococcus erythropolis JE77 Isoprene 

Methanotrophs 

Methylosinus trichosporium OB3b Methane Methane monooxygenase 

Strain 46-1 Methane, methanol Methane monooxygenase 

Nitrosomonas europaea Ammonia Ammonia monooxygenase 

Source or Reference 

70,109,111 

117 

34,93,94 

55 

20 

20 

110 

29 

104 

61 

4, 87 
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Strain or 

Plasmid 

E.coli 

C600 
HB101 

JM109 

LS392 

S17 

TABLE 3 

BACTERIAL STRAINS AND PLASMIDS 

Relevant Characteristics 

thi thr leu tonA lac Y supE 
p-, hsdS20 recA13 arg14 proA2 
lac Yl galK2 rpsL20 xyl-5 mtl -1 
supE44 "A,- thi- leu-
(pro-lac) recAl thi-1 supE 
endA gyr A96 hsdR relA 1 (F' 
traD36 proAB laciq lacz~M 15) 
F-, hsdS574 supE44 supF58 lacYl 
galK2 galT22 metB 1 trpR55 "A, -

thi pro hsdR- hasM+ recA 

Alcaligenes 

JMP134 
AE0106 
AEK101 
AEK201 
AEK211 
AEK301 
AEK302 
AEK303 
AEK304 
AEK305 
AEK311 

eutrophus 
Prototroph, Phi+ Tfd+ Hgr 
Prototroph, Phi+ Tfd-
Rif+, derivative of AE0106 
AEK101::Tn5, Phi- Kmr 
AEK201 revertant, Phi+ Km­
AEK101 ::Tn5, Phi- Kmr 
AEK101::Tn5, Phi- Kmr 
AEK101 ::Tn5, Phi- Kmr 
AEK101::Tn5, Phl- Kmr 
AEK101::Tn5, Phi- Kmr 
AEK301 revertant, Phl+ Km-

Pseudomonas aeruginosa 

PAOlc Prototroph 

Plasmids 
pJP4 
pMMB67EH 

PMMB67HE 

TFD+ Hgr 
Tac expression cloning vector 
with cloning sites of pUC18,Apr 
Tac expression cloning vector with 
opposite cloning sites of pUC18, Apr 

Reference 

64 
1 3 

U.S.B.Co. 

Promega Co. 

96 

25 
44 

This 
This 
This 
This 
This 
This 
This 
This 
This 

47 

25 
38 

38 

study 
study 
study 
study 
study 
study 
study 
study 
study 
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Strains or 
Plasmids 

pGEM7zf(+) 
pRK2013 
pR01727 
pROl 769 
pR02321 
pSUP2021 
pUW964 

pVJ256 
pVK102 
pTZ18R 
pTZ19R 

TABLE 3 (Continued) 

Relevant Characteristics 

Blue screening cloning vector, Apr 
Kmr Tra+; ColEl replicon 
Cloning vector, Tcr, Cbr 
Cloning vector, Smr, Gmr 
Cloning vector, Tcr, Tpr 
pBR325-mob::Tn5, Kmr, Apr, Cmr 
TraRK2+ Ll(repRK2) repEl + Tn5, Tn7 
Kmr, Smr, Spr, Tpr 
Cloning vector, Apr Dr. 
IncP, cos+, Kmr, Tcr 
Blue screening cloning vector, Apr 
Blue screening cloning vector, Apr 

Phl- : deficient in phenol degradation. 

Reference 

Promega Co. 
24 
1 8 
1 9 
119 
96 
112 

Vijayakumar 
58 

U.S.B. Co. 
U.S.B. Co. 

Tf d- : deficient in 2,4-dichlorophenoxyacetic acid degradation. 
Antibiotics: Ap, Cb, Cm, Gm, Km, Rif, Sm, Sp,Tc, Tp refer to 

ampicillin, carbenicillin, chloramphenicol, gentamycin, 
kanamycin, rifampicin, streptomycin, spectinomycin, 
tetracycline, and trimethoprim respectively. 

Hgr : mercury resistant. 
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Recombinant 
Plasmids 

pYK201 

pYK202 
pYK203 
pYK204 
pYK205 
pYK301 

pYK302 

pYK303 

pAEK201 
pYKlOl 
pYK102 
pYK103 

pYK2010 

pYK2011 

pYK2012 

pYK2013 

pYK2014 
pYK2015 

pYK2016 

pYK2017 
pYK2018 
pYK2019 
pYK2020 

pYK2021 
pYK2022 

TABLE 4 

RECOMBINANT COSMIDS AND PLASMIDS 

Relevant Characteristics 

35-kb Hindlll digest of AE0106 DNA cloned into pVK102, phlRl +, 

Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, phlRl +, Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, phlRl +, Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, phlRl +, Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, phlRl +, Tcr 
16.8-kb HindIII digest of AE0106 DNA cloned into pVK102, 
phZR2+, phlH +, c2JO+, Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, 
phZR2+,phlH +, c2JO+, Tcr 
Hindlll digest of AE0106 DNA cloned into pVK102, 
phZR2+,phlH +, c2JO+, Tcr 

pGEM carrying 14.5-kb EcoRI fragment from AEK201, Kmr Apr 
8.0-kb Hindlll fragment of pJP4 cloned into pVJ256, tfdB+, Apr 
2.3-kb Sall fragment from pYKlOl cloned into pGEM, tfdB+, Apr 
2. 3-kb Xhol-Hindlll fragment from p YK 102 cloned into 
pMMB67EH, tfdB+, Apr 

4.3-kb Xhol-BamHI fragment from pYK201 cloned into pMMB67EH 
phlRl +, Apr 
4.3-kb Xhol-BamHI fragment from pYK203 cloned into pMMB67EH 
phlRl +, Apr 
4.3-kb Xhol-BamHI fragment from pYK205 cloned into pMMB67EH 
phlRt+, Apr 
6.0-kb Xhol-Hindlll fragment from pYK201 cloned into pMMB67EH 
phlRl +, Apr 
6.5-kb BamHI-Xhol fragment from pYK201 cloned into pMMB67EH 
8.1-kb Hindlll-BamHI fragment from pYK201 cloned into 
pMMB67EH, phZRl-, Apr 
7.9-kb BamHI-Hindlll fragment from pYK201 cloned into 
pMMB67EH, phZRI-, Apr 
4.5-kb Xhol-BamHl fragment from pYK201 cloned into pMMB67EH 
3.1-kb Sall fragment from pYK2024 cloned into pMMB67EH 
2.2-kb Pstl-Sall fragment from pYK2024 cloned into pMMB67EH 
2.4-kb Sall-Pstl fragment from pYK2024 cloned into pMMB67EH 
phlRl +, Apr 
1.8-kb Sall-Pstl fragment from pYK2024 cloned into pMMB67EH 
1.5-kb Pstl fragment from pYK2017 cloned into pMMB67EH 
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Recombinant 
Plasmids 

pYK2023 

pYK2024 

pYK2025 

pYK2026 
pYK2027 

pYK3010 

pYK3011 

pYK3012 

pYK3013 
pYK3014 

pYK3015 

pYK3016 
pYK3017 
pYK3018 
pYK3019 
pYK3020 
pYK3021 

pYK3022 

pYK3023 

pYK3024 

pYK3025 

pYK3026 

pYK3027 

pYK3028 

TABLE 4 (Continued) 

Relevant Characteristics 

1.7-kb EcoRI-Sall fragment from pYK201 cloned into pMMB67EH 

4.3-kb XhoI-BamHI fragment from pYK201 cloned into pTZ18R 
pfllRl +, Apr 

3.1-kb Sall fragment from pYK2023 cloned into pTZ18R, phlRl +, 
Apr 
4.3-kb EcoRI fragment from pYK2013 cloned into pMMB67EH 
2.4-kb BamHI-HindIII fragment from pYK2020 cloned into 
pR02321, phZRl+, Tpr 

14.0-kb PstI-HindIII fragment from pYK301cloned into 
pMMB67EH, phlR2+, Apr 
11.2-kb HindIII-BamHI fragment from pYK301cloned into 
pMMB67EH, phlH +, phZR2+, c230 +, Apr 
11.4-kb BamHI-HindIII fragment from pYK301 cloned into 
pMMB67EH,phZR2+, Apr 
5.8-kb BamHI fragment from pYK301 cloned into pMMB67EH, Apr 
5.4-kb HindIII-BamHI fragment from pYK301 cloned into 
pMMB67EH,c230 +, Apr 
5.6-kb BamHI-HindIII fragment from pYK301 cloned into 
pMMB67EH 

97 

4.6-kb EcoRI-BamHI fragment from pYK3011 cloned into pMMB67EH 
6.8-kb EcoRI-BamHI fragment from pYK3011 cloned into pMMB67EH 
7.3-kb XhoI-BamHI fragment from pYK3011 cloned into pMMB67EH 
7.9-kb XhoI-BamHI fragment from pYK3011 cloned into pMMB67EH 
8.5-kb XhoI-BamHI fragment from pYK3011 cloned into pMMB67EH 
9.1-kb Xhol-BamHI fragment from pYK3011 cloned into 
pMMB67EH, phlH +, Apr 
9.3-kb HindIII-PstI fragment from pYK3011 cloned into 
pMMB67EH, c230 +, Apr 
6.4-kb HindIII-EcoRI fragment from pYK3011 cloned into 
pMMB67EH, c230 +, Apf 
4.1-kb HindlII-EcoRI fragment from pYK3011 cloned into 
pMMB67EH, c230 +, Apr 
3 .1-kb HindIII-PstI fragment from p YK3024 cloned into 
pMMB67EH, c230 +, Apr 
7.5-kb PstI-HindIII fragment from pYK3012 cloned into pR01727, 
phZR2+, Tcr 
7.5-kb PstI-HindIII fragment from pYK3012 cloned into pTZ18R, 
phZR2+, Apr 
5.6-kb BamHI-HindIII fragment from pYK3027 cloned into 
pR02321,phZR2-, Tpr 



Recombinant 
Plasmids 

pYK3029 

pYK3030 

pYK3031 
pYK3032 
pYK3033 
pYK3034 

pYK3035 

TABLE 4 (Continued) 

Relevant Characteristics 

5.0-kb PstI-EcoRI fragment from pYK3027 cloned into pR01727, 
phZR2+, Tcr 
5.0-kb Pstl-EcoRI fragment from pYK3027 cloned into pTZ18R, 
phlR2+ ,Apr 

4.1-kb Pstl fragment from pYK3030 cloned into pR01727, Tcr 
3.0-kb Pstl fragment from pYK3030 cloned into pR01727, Tcr 
2.6-kb EcoRI fragment from pYK3030 cloned into pR01769, Gmr 
1.9-kb Pstl-BamHI fragment from pYK3030 cloned into pTZ18R, 
Apr 
11.2-kb Hindlll-BamHI fragment from pYK3011 into pROl 727, 
phlH +, c230 +, Cbr 

Gene designations: phlH, phenol hydroxylase; c230, catechol 2,3-dioxygenase; 
phlRl, regulatory gene l; phlR2, regulatory gene 2 

Antibiotics: Ap, Cb, Gm, Tc, and Tp refer to ampicillin, carbenicillin, 
gentamycin, tetracycline, and trimethoprim respectively 
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Strains 

AE0106 

AEK101 

AEK201 

AEK301 

TABLE 5 

ENZYME ACTNITIES IN A. eutrophus 
AE0106 AND ITS DERNATNES 

Enzyme Activities.!! 

Culture Conditions Phenol Catechol 2,3- Catechol 1,2-

Hydrox.'Ylase Dioxygenase Dioxygenase 

Phenol (2.5 mM) 52.19 0.1323 1.5233 

Benzoate (5.0 mM) NDh ND 3.6266 

Ethanol ( 0.1 % ) ND ND ND 

PHL (2.5 mM)/BA (2.5 mM) 43.19 0.0021 2.2590 

PHL (2.5 mM)/BA (5.0 mM) 19.78 0.0002 3.0217 

PHL (2.5 mM)/EtOH (0.1%) 32.61 0.0229 1.8964 

Phenol (2.5 mM) 51.13 0.1253 1.7046 

Benzoate (5.0 mM) ND ND 3.4951 

Ethanol (0.01 %) ND ND ND 

PHL (2.5 mM)/BA (2.5 mM) 34.87 0.0012 2.2542 

PHL (2.5 mM)/BA (5.0 mM) 12.84 0.0002 2.7573 

PHL (2.5 mM)/EtOH (0.1%) 28.56 0.0165 1.7538 

PHL (2.5 mM)/BA (2.5 mM) ND ND 2.1214 

PHL (2.5 mM)/EtOH (0.1%) ND ND ND 

PHL (2.5 mM)/BA (2.5 uiM) 0.04 0.0002 2.8237 

PHL (2.5 mM)/EtOH (0.1%) 0.03 0.0012 0.0035 

a Phenol hydroxylase is expressed as increase above basal levels of 
nanomoles of oxygen consumed per minute, normalized to an optical 
density of 1.0 at 425nm. Other enzyme activities are expressed as 
specific activities (µmol of product formed/min mg protein). 

b ND is not detected. 
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Plasmid 

None 

pYK201 

pYK301 

pYK3011 

pYK3021 

pYK3023 

pYK3024 

TABLE 6 

ENZYME ACTIVITIES IN A. eutrophus AEK201 AND 
AEK301 CARRYING VARIOUS PLASMIDS 

Enzyme Activitiesa When the Plasmid is 
in AEK201 in AEK301 

Culture 
Conditionsb PHL C2,30 Cl,20 PHL C2,30 

PHI/EtOH NDC ND ND <0.03 <0.001 

PHL 53.45 0.1397 2.1496 <0.03 <0.001 
PHI/EtOH 30.55 0.0161 1.8037 <0.03 <0.001 
PHI/BA 31.32 0.0018 2.5296 <0.03 <0.001 

PHL/EtOH ND ND ND 24.15 0.0237 
PHL/BA ND ND 2.7573 27.11 0.0210 

PHL/EtOH ND ND ND 12.95 0.0213 
PHL/BA ND ND 2.3808 12.00 0.0195 

PHUEtOH ND ND ND 16.65 <0.001 
PHI/BA ND ND ND 18.58 <0.001 

PHL/EtOH ND ND ND <0.03 0.0810 

PHL/EtOH ND ND ND <0.03 0.1032 

Cl,20 

<0.007 

<0.007 
<0.007 
2.1098 

0.0291 
2.7856 

0.0228 
2.5503 

0.0353 
0.0166 

0.0346 

0.0678 

a Phenol hydroxylase is expressed as increase above basal levels of 
nanomoles of oxygen consumed per minute, normalized to an optical 
density of 1.0 at 425nm. Other enzyme activities are expressed as 
specific activities (µmol of product formed/min mg protein). 
PHL, phenol hydroxylase; Cl,20, catechol 1,2-dioxygenase; C2,30, 
catechol 2,3-dioxygenase. 

b concentration of each carbon source is follows; ethanol (EtOH), 0.1%; 
PHL (phenol), 2.5 mM; benzoate (BA), 2.5 mM. 

c ND, not detected 
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TABLE 7 

ENZYME ACTMTIES IN Pseudomonas aeruginosa PAOlc 
CARRYING VARIOUS PLASMIDS 

Enzyme Activities.a in PAOlc (AEK.301) 

101 

Plasmids Culture Phenol Catechol 2,3- Catechol 1,2-
Conditionsb Hydroxy lase Dioxygenase Dioxygenase 

None Ethanol NDC (ND) ND (ND) ND (ND) 
PHI/EtOH ND (<0.03) ND ( <0.0006) ND (<0.007) 

pYK201 Ethanol ND (ND) ND (ND) ND (ND) 
PHI/EtOH 2.04 ( <0.03) ND ( <0.0006) ND (<0.007) 

pYK2019 PHI/EtOH ND (<0.03) ND ( <0.0006) ND (<0.007) 

pYK301 Ethanol ND (ND) ND (ND) ND (ND) 
PHI/EtOH ND (24.15) ND (0.024) ND (0.029) 

pYK3011 Ethanol ND (0.0053) ND (ND) ND (ND) 
PHI/EtOH 10.60 (12.95) ND (0.0213) 0.6605 (0.0228) 

pYK3024 Ethanol ND (ND) ND (ND) ND (ND) 
PHI/EtOH ND (<0.03) ND (0.1032) ND (0.0678) 

pYK301 PHI/EtOH ND ND ND 
pYK3011 

pYK201 PHUEtOH 10.38 ND 0.8363 
pYK3011 

pYK201 PHI/EtOH ND ND ND 
pYK3023 

pYK2019 PHI/EtOH ND ND ND 
pYK301 

pYK2019 PHI/EtOH 11.66 ND 1.0727 
pYK3011 

a Phenol hydroxylase is expressed as increase above basal levels of 
nanomoles of oxygen consumed per minute, normalized to an optical 
density of 1.0 at 425nm. Other enzyme activities are expressed as 
specific activities (µmol of product formed/min mg protein). 
PHL, phenol hydroxylase; Cl,20, catechol 1,2-dioxygenase; C2,30, 
catechol 2,3-dioxygenase. 

b concentration of each carbon source is follows; ethanol (EtOH), 0.1%; 
PHL (phenol), 2.5 mM. 

c ND, not detected 



Strain 

AE0106 

JMP134 

TABLE 8 

INDUCTION OF SUBSTRATE-DEPENDENT 
OXYGEN CONSUMPTION 

Oxygen Consumptiona in the Presence of 
Inducer ---------------------------------------------------------

2 4-D 
' 

Phenol 2,4-DCP 

None 37.5 0.0 16.3 
2 4-D 
' 

35.5 0.0 8.8 
Phenol 25.0 338.0 26.3 

None 38.0 0.0 37.0 
2 4-D 
' 

270.0 0.0 313.0 
Phenol 88.0 275.0 42.5 

a Reported as nanomoles of oxygen consumed per minute, 
normalized to an optical density of 1.0 at 425nm. 2,4-D, 
2,4-Dichloroacetic acid. 2,4-DCP, 2,4-Dichlorophenol. 
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TABLE 9 

TCE DEGRADATION BY THE PLASMIDS 
pYK301 AND pYK3021 

TCE Degradation* 
Substrate AEK101 AEK301 AEK301 

(pYK301) (pYK3021) 

Phenol (2.5 mM)/ 99 99 6 
Benzoate ( 2.5 mM) 

Phenol (0.5 mM)/ 5 2 99 
Benzoate ( 2.5 mM) 

Phenol (2.5 mM)/ 74 33 0 
Ethanol (0.1%) 

Phenol (2.5 mM/ 46 39 0 
Casamino acid (0.3%) 

Benzoate (2.5 mM) 0 0 99 

Ethanol (0.05%) 0 0 99 

Casamino acid (0.3%) 0 0 99 

TNB broth 0 0 65 

* TCE concentration was expressed as percent decrease after 
ovemignt growth as the average of duplicate determination. 
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PAOlc 
(pYK3021) 

54 

38 

31 

12 

0 

0 

0 

0 
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Figure 1. Phenol and Benzoate Metabolism 
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Figure 6. Southern Blot of DNA from AEK301 to AEK305. Lane A, 

3.3kb Hindlll cut of Tn5; B to F, BamHI cut DNA from 
AEK301 to AEK305; G, EcoRI cut of AEK101; H to L, 
EcoRI cut DNA from AEK301 to AEK305 respectively. 

The probe was 32P-labeled 3.3 kb Hindlll fragment of Tn5 
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Figure 7. Southern Blotof DNA from AEK201. Lane A, 3.3kb HindIII 
cut of Tn5; B, AEK201 DNA cut with BamHI; C, AEK101 
DNA cut with EcoRI; D, AEK201 DNA cut with EcoRI. 

The probe was 32P-labeled 3.3kb HindIII fragment from Tn5. 

1 1 1 



H 
I 

pYK201 

5KB 

H HE i i X 
I II 111 

I 
HE B E XBi J El E H 

pYK202 11 I I II I I 

HE B 
p YK203 " I El 1 ? T t.J II 

· HE 
pYK204 II i El 1~ T T 

p YK205 1 HIT ~ E X B T E . I I I I fJ 

Figure 8. Partial Physical Map of Cosmids p YK201 top YK205. Simbols: f , Location of 
Tn5 insertion; 8, incomplete Hindlll cut; - , common fragment; 
E, EcoRl; H, Hindlll; B, BamHI; X, Xbal. 
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Figure 12. Subcloning and Localization of the phlH and c230 genes I 
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