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CHAPfER I 

INTRODUCTION 

1.1 Problem Statement 

In the past decade there has been increasing attention in the integrated optimal 

control, frequency domain approach for the analysis of pilot/vehicle systems in handling 

quajity research [1-4]. This approach has been focused on attempts to bridge the gap 

between the crossover model and the optimal control model (OCM) of the pilot/vehicle 

system. What makes this attempt attractive for handling quality research is its systematic 

procedure for providing an explicit form of the pilot transfer function and frequency 

domain parameters of the pilot/vehicle system such as bandwidth, stability margins, sensor 

noise constraints and feedback over a prescribed frequency band. In general, these 

frequency domain parameters are more useful to the flight control designer than the 

statistical descriptions in the time domain. 

The optimal control approach to modeling a pilot in the loop was successfully done 

by Kleinman et al. in 1970 [5, 6]. A pilot transfer function can be automatically developed 

from the optimal control model which is based on optimal control and estimation theory. 

However, there is no guideline to characterize this optimal pilot transfer function related to 

handling qualities using the optimal control. approach in the frequency domain. Most of the 

research has been contributed in duplicating results of the classical frequency domain 

approach using this optimal control model for various tasks. 

This thesis presents the concept of the Bode ideal cutoff to analyze pilot/vehicle 

systems in the frequency domain based on the optimal control model. The Bode ideal 

cutoff takes into account the pattern of the pilot transfer function for a given aircraft 
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dynamics and a task. Specifically, it provides the absolute standard, maximum available 

feedback at a pilot working band, which can be used to define the ideal feedback at a 

working band with the high frequency stability and constraints. The goal of this work is to 

correlate the values of the frequency domain performance of pilot/vehicle systems with pilot 

opinion ratings (POR) as determined by the Cooper-Harper rating system [7] (Figure 1.1.). 

1.2 Objectives and Scope 

This research is focused on the relationship between the time domain performance 

and the frequency domain performance. The major objectives are: 

( 1) To develop pilot transfer functions from the optimal pilot model using a 4th order 

Pa.de approximation for the perceptional (reaction) time delay element (The · 

approximation is valid for frequencies less than 30 rad/sec.) 

(2) To compare pilot transfer functions with the classical crossover model. 

(3) To characterize pilot transfer functions using the Bode ideal cutoff. 

( 4) To find important parameters that effect the pilot opinion ratings in the frequency 

domain. 

(5) To relate the values of the frequency domain performance with the Cooper-Harper 

rating system. 

In this study, two simple vehicle dynamics [6] and the 51 Neal-Smith configurations for 

the pitch attitude tracking task [8] are tested using the above objectives. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Mathematical Pilot Model 

Hundreds of studies have been published on modeling the human operator from the 

viewpoint of analyzing the nonlinear characteristics of the human behavior in the man

machine system. These mathematical models of the human operator have been developed 

under two categories. 

( 1) Classical control approach in the frequency domain 

(2) Modern control approach in the time domain 

A detailed discussion of the models of the human operator is beyond the scope of this 

thesis. Classical and modern approaches for modeling the human operator are briefly 

reviewed. 

Most of the classical approaches in the field of the manual control system were 

contributed in understanding the behavior of the human operator as a controller of single

input, single-output (SISO), linear, time-invariant systems. Conventionally, the 

mathematical model for describing the human controller can be characterized by the servo 

analytical techniques in the frequency domain. The advantage of the classical approach is 

that the results of the frequency domain performance are in a form very useful to the flight 

control designer. Much of this work based on a quasi-linearization technique was 

successfully done by McRuer et al. [9]. 

The quasi-linear models are very effective in analyzing the characteristics of the 

human operator performing a closed loop compensatory tracking or state regulation tasks. 

It is assumed that a well trained human operator performing such a task develops a 
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relatively stable control strategy to minimize some displayed errors with his inherent 

psycho-physical limitations. The response of the human operator is strongly dependent on 

the mental and physical conditioning of the operator as well as the type of the information 

presented to him. Therefore, it is very difficult to predict the behavior of the human 

operator with a simple transfer function for complex man-machine systems in general. 

However, a very large class of the experimental data can be explained by the following 

form. 

_ ( 'ti s+ 1) [ e-'tS l 
GP(s) - ~ ("ti s+l) ~ s+l (2.1) 

where the bracketed term represents the human operators limitation, perceptional time 

delay and neuromuscular dynamics. The remaining term represents the human's 

equalization characteristics to adapt his stable control strategy to match a given situation. 

In the complex multi-loop systems, the subsequential loop closure technique has 

been implemented with some limited success [10]. However, it is very difficult to 

construct the loop structure of the pilot/vehicle system with such a classical pilot model as 

well as to define the pilot's compensation in the multi-loop systems. 

The modem control approach to modeling the human controller is rooted in a 

significant work of Kleinman et al. [6] which is based on optimal control and estimation 

theory in the time domain. This approach also has the assumption that a well-motivated, 

well-trained human operator generates an optimal control input under a given situation 

subject to his inherent limitations and constraints, and his control task. Figure 2.1. shows 

a simplified block diagram of the optimal control model, at which the shadowed block 

represents the mathematical key elements of the human behavior. The advantage of the 

optimal control model is the capability of handling multi-input, multi-output (MIMO) 

systems with the state space technique. Also, the pilot transfer function can be 

automatically generated under a given task. Therefore, the optimal control model is a most 
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powerful tool in the analysis of complex multi-variable man-machine systems. The optimal 

control mcxlel will be discussed in Chapter III in detail. 

2.2 Pilot Opinion Ratings 

Most of the field studies of handling qualities are closely related to the mathematical 

pilot mcxlel which can give critical effects in the prediction of the pilot opinion ratings. The 

frequency domain approach with a classical pilot mcxlel was done to find the correlation 

between the values of the pilot transfer function's parameters and the pilot opinion ratings. 

The time domain approach with an optimal control mcxlel is to correlate the value of the cost 

function with the pilot opinion ratings. Both approaches are summarized in TABLE 2.1 

and TABLE 2.2, respectively. 
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TABLE 2.1 

FREQUENCY DOMAIN APPROACH 

McRuer, Ashkenas, and Guerre (1960) [11] 

Correlation: Pilot rating and parameters of the classical pilot model 

Comments: The earliest documentation of the relationship between the pilot transfer 
function and pilot opinion 

Graham, Krendel, McRuer, and Reisener (1965) [9] 

Correlation: Pilot rating and quasi-linear mcxlel 

Comments: Implicit internal mcxlel of the human operator 

Anderson ( 1970) [12] 

Correlation: Pilot rating and root mean square tracking perf onnance and lead time 
constant of the classical pilot model 

POR=R1 +R2+R3+l.O 

Application: Longitudinal helicopter hover task 

Comments: Computer implementation for the prediction of handling qualities 
"Paper Pilot" 

Neal and Smith (1970) [8] 

Correlation: Pilot rating and pilot's compensation of the classical pilot mcxlel and 
pilot/vehicle oscillation that resulted 

Application: 51 basic short period configurations for the pitch tracking task 

Assumption: "Pilot wants to acquire the target quickly and predictably, with minimum 
overshoot and oscillation." 

Comments: ''To acquire the target quickly and predictably" means that the pilot 
wants to keep the magnitude of closed loop transfer function relatively 
close to O dB. 

"with minimum oscillation and overshoot" means that the pilot wants to 
minimize the closed-loop resonant peak. 



TABLE 2.1 (Continued) 

Neal and Smith (Continued) 

Pilot control strategy is a tradeoff between good low frequency 
performance and minimum accompanying oscillations. 
(Figure 2.2.-2.4.) 

Onstott (1972) [13] 

Correlation: Pilot rating and pilot gain 

Application: Roll tracking task 

Adams and Moore (1976) [14] 

Correlation: Pilot rating and lead time constant 

Application: Lateral directional mode 

The prediction of handling qualities with the classical pilot models has the following 

disadvantages: 

(1) The pilot loop structure depends on the given systems and control tasks. 

8 

Specifically, it is very difficult to construct the appropriate pilot loop structure in the 

complex multi-loop systems. 

(2) There is no systematic procedure for selecting the values of the parameters in the 

classical pilot models. 

(3) Correlation between the pilot opinion ratings and the parameters of the classical 

pilot models is very difficult because different pilot models are applied to different 

vehicles and different control tasks. 
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TABLE 2.2 

TIME DOMAIN APPROACH 

Kleinman, Baron, and Levison (1970) [6] 

Correlation: Pilot rating and the value of the perf onnance index of the optimal control 
model (Figure 2.5.-2.6.) 

h E<J~ { f [ xT(t)Qx(t) + uT(t)ru(t) + ti\t)gti(t)] di} 

Assumption: "Human pilot behaves optimally in some sense, subject to his psycho
physical limitations." 

Comments: Original work of the optimal control model 
Linear quadratic Gaussian optimal control 
Pilot loop structure is automatically generated in SISO and MIMO 
systems. 

Dillow and Picha (1975) [15] 

Correlation: Pilot rating and the value of the perfonnance index 

POR=ff 

Application: Longitudinal hover task of a V /STOL aircraft 

Phatak, Weinert, Segall, and Day (1976) [16] 

Comments: Different fonn of the optimal pilot model 

Hess (1977) [17-18] 

Correlation: POR = R(J) 8 

Assumption: (1) The performance index and model parameters in the optimal 
pilot modeling procedure yields a dynamically representative 
model of human pilot. 

(2) The variables selected for inclusion in the perfonnance index 
are directly observable by the pilot. 

(3) The weighting coefficients in the index of performance 
are chosen as the squares of the reciprocals of maximum allowable 



Hess (Continued) 

Application: 

Comments: 

TABLE 2.2 (Continued) 

deviations of the respective variables, and these deviations are 
consonant with the wk as perceived by the pilot. 

7 pitch attitude tracking wks from McDonnell ( 1968) 
2 longitudinal hover wks from Duffy (1976) 
5 pitch attitude tracking wks from Arnold (1973) 
5 longitudinal hover wks from Miller and Vinje (1968) (Figure 2.7.) 

General pilot rating fonnulation 

Schmidt(l979, 1980) [19] 

Correlation: Pilot rating and the value of the perfonnance index 

Application: 14 Arnold configurations 

POR = log10(J) + 4 

14 Neal-Smith high-order configuration dynamics 

POR = log10(J) 

Comments: The pilot rating/cost magnitude sensitivity, or the slope of regression, 
· appeared to be greater due to aeroelastic ( or other low damped) mcxie. 
(Figure 2.8.-2.9.) 

Bacon and Schmidt (1982) [1] 

Application: 26 Neal-Smith configurations for pitch tracking 

10 

Comments: Integrated optimal control, frequency domain approach for pilot/vehicle 
analysis 
Duplicate the Neal-Smith criteria using the optimal control mcxiel 
(Figure 2.10.-2.11.) 

Anderson and Schmidt ( 1985) [2] 

Application: 32 Smith configurations for the pitch tracking wk 
Approach and landing of high-order system (Figure 2.12.-2.13.) 

Comments: Integrated optimal control, frequency domain approach for multi-loop 
pilot/vehicle analysis 



TABLE 2.2 (Continued) 

Thompson and McRuer (1988) [3] 

Application: Dander helicopter data for single and multi-axis tracking tasks 

Comments: Comparison of the human optimal control and crossover model using 
the Parle approximation for the pure time delay of the human pilot 

McRuer and Schmidt (1990) [4] 

Correlation: POR = 7.7 + 3.7 log10(J) 

Application: Dander helicopter data for single and multi-axis tracking tasks 

Comments: Correlation for the multi-axis problem in the time domain 

Optimal control approach related to the prediction of the handling qualities has the 

following advantages compared to the classical approach. 

(1) Pilot loop structure can be automatically developed with a given vehicle and 

control tasks. 

(2) Optimal control model can treat MIMO systems naturally with a state space 

technique. 

(3) The main concept of the optimal control modeling can be directly related to the 

handling qualities. The value of performance index itself is the metric of the 

handling qualities. 

11 
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Figure 2.10. Model Comparison (Bacon-Schmidt) [1] 
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Figure 2.12. Multi-Loop Flight Path Tracking Task (Anderson and Schmidt) [2] 
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CHAPfERIII 

THEORIES 

3.1 Representation of Human Behavior 

The behavior of the human operator in the man-machine systems is very difficult to 

describe explicitly because the combined human sensing, data processing and actuating 

elements of the human operator are directly connected to the various display instruments 

and the actuators of the controlled system through the internal nerve pathway. In spite of 

this difficulty, the mathematical model of the human operator must have within its frame 

work his inherent psycho-physical limitations in performing a given task with a controlled 

system. Conventionally, the characteristics of the human operator are categorized as the 

following three linear elements: 

( 1) Perceptional time delay 

(2) Equalization and computational operation 

(3) Neuromuscular dynamics 

The general loop structure of the man-machine system with the above elements is shown in 

Figure 3.1. 

Major sources of the perceptional time delay are based on the human sensing nerve 

excitation, conduction and the data processing time in the central nerve system, which is 

basically dependent of a display array of the controlled system as well as the task 

requirements. Since these elements are internally combined in the human body, it is 

conveniently represented as a lumped equivalent time delay. In a simple tracking task, the 

perceptional time delay is generally accepted in the range of 0.15 to 0.25 seconds [20-22]. 

The equalization and computational operation of the human operator is the most important 

19 



Motor 
Lag 

+ 

Motor Noise 

Disturbance 

Aircraft Dynamics Display 

Reference 

Equalization 
& 

Computation 

Obs. Noise 

+ 

+ 

Time 
Delay 

Figure 3.1. General Loop Structure of the Man-Machine System 
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key element of the human behavior, which stabilizes the response of the closed loop system 

and minimizes the error in the tracking tasks. In other words, this element generates the 

relatively stable, best control strategy to the neuromuscular system under the situation of 

the given task and conditionings of the human operator. Thus, this element is also strongly 

dependent on a controlled system and a given task. 

Neuromuscular dynamics are modeled by the first order lag and detail discussion 

was done by McRuer et al. [22]. 

I\(s) = (~s ~ 1) (3.1) 

The neuromuscular constant, 'tn, depends on the task to perform in the man-machine 
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system. The adjustment required for the given situation is obscure because the 

neuromuscular mechanism is not well understood and the appropriate measurement of the 

variation is very difficult A typical value of the neuromuscular constant is 0.1 second in 

the range of 0.1 to 0.6 seconds. 

The remnant of the human operator is defined as a component of human response 

that is unpredictable in other than a statistical sense. The various sources of inherent 

human randomness can cause the errors in observing the system outputs and executing the 

control strategy through the neuromuscular system. Observation noise is described as the 

effects of the random perturbations in observing the system output through the display 

panel. Motor noise represents the random errors in executing the intended control strategy, 

and the fact that the pilot cannot generate the ideal control input under a given situation. 

Thus, the observation noise and motor noise in Figure 3.1. are represented as the lumped 

remnant of the human operator, which can be modeled as independent, zero-mean, 

Gaussian white noise [23]. 

3.2 Optimal Control Model [3, 5-6] 

The basic function of the human operator in the man-machine system is to control a 

given dynamic system in some prescribed way. This is the situation of the typical tracking 

tasks in the pilot/vehicle system. It is assumed that the pilot has a single input for 

simplicity and extracts the information of the error and error rate with a single display. It is 

also assumed that the given vehicle dynamics, which may include the dynamics of the 

vehicle's actuator, sensor and control system, are represented by the linear, time invariant 

equations of motion: 

:i:(t) = Ax(t) + Bu(t) + Fw(t) (3.2) 

where x(t) is the state vector, u(t) is the scalar pilot's control input and w(t) represents 
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external disturbances which is the zero-mean, Gaussian white noise with autocovariances 

E{ w(t) wT(cr)} = W o(t-0') 

The two system outputs y(t) are error, Ye(t), and error rate, Ye(t), which are linear 

combination of the system states, x(t), and control input, u(t). 

y(t) = Cx(t) + Du(t) 

(3.3) 

(3.4) 

The pilot perceives the delayed system output, y(t-'t), with observation noise, vy<t-'t), 

through the display panel. 

(3.5) 

where 't is the perceptional time delay of the pilot and v y<t) is the zero-mean, Gaussian 

white noise with autocovariance, Vy 

E{ vy<t) v[(cr)} = Vy o(t-cr) (3.6) 

The intensity of the observation noise, Vy= diag ( Vy 1, Vy2 ), is defined quantitatively as 

i = 1, 2 (3.7) 

where Pyi is the observation noise ratio and f is the attentional factor of the human operator 

for the multi-axis task which has the range OS f S 1 . crJ is the covariance of the system 

output, error and error rate, and Ti is the observation threshold which is based on the 



human eye perceptional levels. 

(3.8) 

The range of the above erf c function is from O to 1. For example, if the observation 

threshold is zero, erf c function is 1, which means there is no effects of the observation 

threshold in equation (3.7). 
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The assumption of the optimal control model is that the human operator chooses an 

optimal control input u*(t) with the objective in the steady state which minimizes the 

performance index based on the perceptional observations y p( · ) in equation (3.5) 

J(u) = E{ ,~ ff [ y T(t)Qy(t) + uT(t) r u(t) + 1l(t) gli(t) ] dt} (3.9) 

Equation (3.9) can be expressed simply as 

2 

J(u) = E{ L 'Ii Y? + r u2 + g u2 } (3.10) 
i=l 

The weightings in equation (3.10) are 'Ii ~ 0, r ~ 0 and g > 0 and the third term in equation 

(3.9) results in the nueromuscular dynamics of the human operator. Neuromuscular 

dynamics, H0 (s) in equation (3.1), are not directly included in the performance index, but 

the weighting g on the control rate is adjusted to represent the neuromuscular first order 

lag. 

The optimal control input, u*{t), can be determined by the estimated state of the 

system through the Kalman-Bucy filter (KBF) and linear predictor (LP), which is a typical 

Linear Quadratic Regulator (LQR) problem with the time delay and the observation noise. 
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By including the control input, u(t), in the system state vector, x0(t), and using µ(t) = u(t) , 

the LQR problem can be solved based on the estimated states with the perf onnance index, 

equation (3.9). 

[ Xo(t)] 
Xo(t) = u(t) 

y(t) = [ ~e(t) ] 
Ye(t) 

Ao=[!~] 

C0 =[ C D ] 

The solution of the optimal control input is: 

µ(t) = - Lx0(t) 

cJOCo 
0 

0 ] r 

The weighting, g, on the control rate, ti(t), is detennined by the iteration so that 

~1=\ 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 
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The KBF and LP generate the estimated states of the augmented system which is driven by 

the external disturbance, w(t), and the neuro-motor noise, vu<O: 

(3.19) 

y(t) = C1x1 (t) (3.20) 

{) = [ X1(t) ] 
XI t u(t) w (t) = [ w(t) ] 

1 vu<t) 
y(t) = [ ~e(t) ] 

Ye(t) 

A1=[ ! -~] B1 =[ ~] F1 =[ ~] 

C1 =[ C D] w, =[~ !J (3.21) 

where vu(t) represents the neuro-motor noise which is a zero-mean, Gaussian white noise 

with a autocovariance: 

(3.22) 

It is inserted to the neuromuscular dynamics with the commanded input, uc(t). The 

intensity of the neuro-motor noise, Vu , is defined as 

(3.23) 

It is noted that the covariance of commanded input, aq, 2 , is proportional to the neuro

motor noise intensity, Vu . The KBF estimates the delayed states of the augmented system, 

x 1 (t-'t), which is the linear mean-square estimate of x 1 (t-'t) based on observation Yp( a) for 
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O'<t. 

(3.24) 

(3.25) 

(3.26) 

The linear predictor generates the updated states of the augmented system, x1 (t) , 

from x1(t-'t) based on observations ypCo) for O'<t. 

(3.27) 

(3.28) 

Finally, the commanded optimal control, uc(t), is computed by 

(3.29) 

(3.30) 

The derivation of the optimal control mode is discussed in detail in Kleinman [5-6]. Figure 

3.2. shows the key elements and variables of the optimal control model. 

In summary, the element of equalization and computation in Figure 3.1. is replaced 

by the Kalman-Bucy filter, the linear predictor and the optimal control gain in Figure 3.2. 

The Kalman Bucy filter represents the estimation ability of the human operator from the 

delayed stochastic information and the linear predictor is the compensation for the 
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Figure 3.2. Block Diagram of the Optimal Control Model 

perceptional time delay. The optimal control gain represents the relative stable control 

strategy of the human operator under the given situation. The advantage of the optimal 

control model is that the structure of the human operator in the feedback loop of the man

machine system is automatically generated through the systematic procedure. 

3.3 Time Domain Performance [3, 5-6] 
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The time domain performance of the human operator is represented by the 

following statistical values of the mean squared estimate and the performance index. They 

are solved by the iterative method so that ~i and~ satisfy the equation (3.7) and (3.23), 

respectively. In the time domain, the handling qualities are directly related to the value of 
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the performance index, J, which is minimized by the optimal control u*{t). 

(3.31) 

where e1 (t) is the estimation error which is defined as 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

,.. 
J = trace (YQ) + trace (U g) (3.38) 

3.4 Pilot Transfer Function [3] 

The classical model of the human operator is represented by the simple transfer 

function which has a single input, ye(t), and a single output, u(t). However, the optimal 
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Figure 3.3. Optimal Pilot Transfer Function 

control mcxlel has two inputs, ye(t) and ye<t). The loop structure of the optimal transfer 

function for SISO system is shown in Figure 3.3. 

where 

G 1(s) and G2(s) is based on the following matrix transfer function [6]. 

G(s) = [ G1 (s) Gis) ] 

= _-_L_*_ [ ( sl - A) i't e(sl -Ai )a dO' (sl - A1 + B 1L*) + sl -A+ B 1L*]-l H1 
(~ s + 1) 

(3.39) 

G (s) = u(s) 
1 Ye(s) 

G (s) = u(s) 
2 ye<s) 

(3.40) 

Thus, the pilot transfer function has a form: 

GpCs) = G1 (s) + s ~(s) (3.41) 

Frequency domain performance measures are based on the pilot transfer function Gp(s) and 
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the system transfer function Gs(s). 

Due to the combined elements of the human operator, perceptional time delay, 

Kalman-Bucy filter, linear predictor and the optimal control gain, the optimal pilot transfer 

function may not be represented by a simple transfer function. Using the repre~entation of 

McRuer [6] with the Pade approximation for the perceptional time delay, the pilot transfer 

function can be expressed more effectively rather than using equation (3.39). 

The delayed commanded control is defined by 11p(t). 

(3.42) 

Equation (3.42) can be represented by the standard matrix fonn of the linear differential 

equation through the Pade approximation for the perceptional time delay. 

(3.43) 

(3.44) 

The reconstruction of the human operator with the Pa.de approximation allows us to 

represent the combined KBF/LP/neuromuscular system by the standard matrix differential 

equation as 

(3.45) 

u(t) = CzXi(t) (3.46) 
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A1-H1C1 - B 1DPL* B1CP 0 

- eA1'tff1 c 1 A1 - B1L* 0 0 

Ai= 
0 -BL* ~ 0 

p 

0 - ~DPL* ~cP -~ 

p(t) "1 

~= [n xz<t) = x<t) 
Bz = 

eA1'tff1 

xP(t) 0 
u(t) 0 

(3.47) 

A state space realization for Gp(s) is associated with ye(t) as an input and u(t) as an output 

of the human operator: 

(3.48) 

(3.49) 

The second subscript indicates the number of the column matrix in the B2 matrix of 

equation (3.47). The state space form of the human operator, equation (3.48) and (3.49), 

can be converted to the pilot transfer function, Gp(s), by standard techniques. The order 

of Gp(s) will be 2(n+m)+k+3 where n is the order of the controlled system and mis the 

order of the shaping filter, and k is the order of the Pade approximation. The pilot transfer 

function has n+m+ 1 exact and some approximate pole/zero cancellations. 
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3.5 Bode Ideal Cutoff Analysis 

In 1940, Hendrick W. Bode published his work about four integrals which 

characterize the feedback control systems in the frequency domain [24]. It was realized that 

these integrals provided the analytical insight of the feedback control system as well as the 

design methodology [25-27] in the frequency domain which is called as the Bode ideal 

cutoff. In this thesis, the Bode ideal cutoff is used to relate the handling qualities with the 

frequency domain performance in the pilot/vehicle system and to take into account 

bandwidth and human sensing constraints, stability margins, and the feedback over a 

working band. Some of the feedback fundamentals and four Bode integrals will be 

discussed briefly. 

Figure 3.4. represents a stable closed loop system consisting of a linear time 

invariant plant, G, and a controller, K, which is excited by command signals, r, 

measurement noises, n, and external disturbances, d. P is an optional prefilter which is 

used in shaping the command signals. It is assumed that the external disturbances are 

reflected to the output of the controlled system, y, and all signals are multi variable. Also, 

the plant and the controller are linear time invariant systems which can be represented by 

the matrix transfer functions, G(s) and K(s), respectively. 

If the feedback control system shown in Figure 3.4. is stable, it can be 

characterized by the following equations: 

(1) Input-output behavior 

y = GK (I+ GKY1 (r- n) +(I+ GKY1 d 

u =K (I+ GKY1 (r- n - d) 

e =r-y 

(3.50) 

(3.51) 



d 

r + u 
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Figure 3 .4. Standard Feedback Control Structure 

=(I+ GKf1 (r- d) + GK (I+ GKf1 n 

(2) System sensitivity 

' -1 
AHc1 = (I + G K) AH01 

where AHcl and A~1 represents changes in the closed loop and open loop system, 

respectively, which is caused by changes in the plant, i.e., G' = G + AG. 
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(3.52) 

(3.53) 

Equations (3.50)-(3.53) explicitly show the fundamental characteristics of feedback 

control systems. Equation (3.52) provides the analytical insight that the loop's errors 

under the presence of command signals and external disturbances can be made small by 

making the sensitivity operator, (I + GKf1, small, and equation (3.53) shows that the 

closed loop sensitivity is improved under these same conditions, provided G' does not 

stray far from G. It is also shown in equation (3.50) that the output of the controlled 

system is not effected too much by the external disturbances with small sensitivity operator. 

In the SISO systems, the scalar sensitivity, [1 + G(jm)K(jm)J-1 , has small 

magnitude, or equivalently that [1 + G(jm)K(jm)] have large magnitude, in the frequency 

range where the command signals, external disturbances and/or plant changes, AG, are 

significant Thus, good feedback controller design is focused on achieving high loop gains 
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in the prescribed frequency range under the stability boundaries and the constraints of the 

sensor noise. In spite of the simple statement of the feedback controller design, it is not a 

trivial work because the loop gain must satisfy certain performance tradeoffs and design 

limitations. Finding the appropriate tradeoff between the command/disturbance error 

reduction and the sensor noise error reduction is the main issue in the field of the feedback 

controller design. The conflict between these two objectives is shown in equation (3.52). 

For the example of the SISO systems, if the magnitude of G(jco)K(jc.o) is very large over a 

certain frequency range, the error due to the command and disturbance is relatively small. 

However, it also makes the errors due to the sensor noise relatively large because it is 

directly passed to the system output over the same frequency range, i.e., 

y = G(jco)K(jc.o) [1 + G(jco)K(jc.o)]-1 n ~ n (3.54) 

Also, large loop gains can make the control input, u, quite unacceptable in equation (3.51). 

u =K(jc.o) [1+ G(jco)K(jco)J-1 (r - n - d) ~ o-1(jco) (r- n - d) (3.55) 

It is shown that command, disturbances and sensor noise are actually amplified at the 

control input whenever the frequency range significantly exceeds the bandwidth of G(jco), 

i.e., for co such that G(jc.o) << 1 we get 

o-1(jc.o) >> 1 (3.56) 

The Bode ideal cutoff derived from the Bode integrals will help us to calculate how 

much feedback is available with constraints of the sensor noise and stability margin in the 

prescribed frequency range. In the discussion to follow we define the open loop transfer 

function, L(s), as tb~ product of the plant transfer function, G(s), and the controller 
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transfer function, K(s), in the SISO systems. 

L(s) = G(s)K(s) (3.57) 

where L has the magnitude, I LI , and the phase, cj> : · 

(3.58) 

and the magnitude at low and high frequencies are denoted as 

(3.59) 

(3.60) 

If L(s) is minimum phase, four Bode integrals are follows: 

(1) The first integral says that the phase, <I>, of the open loop transfer function, L(s), at 

one frequency is a weighted function of the log gain slope at all frequencies. 

cj>( cq.) = 1. Jco d ln IL I In coth I ..Y..I du 
1t du 2 

-00 

where 

u= In ( ~) 

The weighting function, In coth I u/2 I , is a very strong weight on cq. , which is 

approximately one decade on either side of '°a , 

(3.61) 
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(2) The second integral says that negative feedback is always balanced by positive 

feedback given L(s) is stable and has more than one pole rolloff. 

(3.62) 

(3) The third integral says the open loop gain over the working band, which is 

normalized frequencies between Oto 1, can be reshaped while maintaining the weighted 

phase outside the working band. 

1(1):::

1 
( In I L(jco) I - In IL 100 ) d arcsin co= -J(l):::oo <I> dco 

(l)::Q .J oi2 - 1 
(I)::} 

(3.63) 

This means that we can construct the desired loop gain freely over the working band while 

keeping the good high frequency performance. Figure 3.5. is a good example of the third 

integral. The flat gain, IL lo, over the working band is a measure of the available feedback 

even though the gain is not necessary to be flat 

( 4) The fourth integral says that in order to increase the loop gain, I L lo, in the working 

band more negative phase is required in the same frequency range. 

(3.64) 

What the ideal shape of the open loop transfer function in the feedback control 

system is will be explained with the above four Bode integrals using the Nichols chart. 

Here the square stability margins is used to tolerate independent variations of x dB and y7t 



dB 
ILi 

deg 

<I> 

37 

',. 

log ro 

1 

log ro 

Figure 3.5. Implications of the integral allowing reshaping 

radians in the change of gain and phase, respectively. In order to achieve a high loop gain 

in the working band, 0 :5 ro :5 1, we must keep the Nichols plot to the stability boundary as 

close as possible in Figure 3.5. This can be explained by the fourth integral. 

The segment 1 and 2 of the Nichols plot, which is the function, I LI (<I>) , can be 

mapped onto the function L(jro). The open loop transfer function of the two segments is 

[25]: 

L(jro) = IL lo (3.65) 
24> 

[..J1 -ro2 + jro] 7t 
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Figure 3.6. Desired Shape of Open Loop Transfer Function 
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This transfer function has the ideal structure only for the low frequency range, so we have 

to modify equation (3.65) to explain the high frequency roll off for the sensor noise 

attenuation. In general, the sensor is working at a higher frequency range than the 

disturbance cutoff frequency. Simple adding of the high gain slope below the crossover 

frequency shown in Figure 3.6. violates the phase margin, and it can be explained by the 

first integral. Thus, the flat gain, segment 3 in the Nichols plot, should be added below the 

gain margin, x dB, and after this flat gain, high frequency rolloff can be added without 

violating the stability margin. 

The ideal loop shape represented by equation (3.65) can be adjusted in the high frequency 

range for the sensor noise attenuation without solving any of the integrals or even equation 

(3.65). 

The ideal cutoff maximizing the feedback over the working band is presented by 

Lurie [25] 



dB 
ILi 

log ro 

Figure 3.7. Improper adding of the High Frequency Rolloff 

min ILi = max (ro~ 1) 

ILi >> 1 (O>~ 1) 

<I> nml O>) = I <I> nml roe) ( :c ) I ~ 1 radian (ro < roJ 
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(3.66) 

(3.67) 

(3.68) 

(3.69) 

(3.70) 

where ro represents the normalized frequency with the working band frequency and n is 

the number of poles in the high frequency asymptote of I LI which is -6n dB/octave. Gain 

margin and phase margin is x dB and yn: radians and <I> nmp is the phase shift due to 

nonminimum phase sources. Figure 3.7. shows the ideal cutoff of the magnitude of the 

open loop transfer function and corresponding phase shape. Detailed ideal cutoff structure 

is shown in Figure 3.8. Note that the line with a slope of -12( 1-y) dB/octave crosses the 
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Figure 3.8. The Bode Ideal Cutoff 

gain of IL lo at m = 0.5. The maximum available feedback in the working band under the 

high frequency constraints is represented by [25]: 

~ax= 20 log10 I Ll0 = 12 (1 - y) (1 + lo~m) -x (3.71) 

where 

(3.72) 

The Bode ideal cutoff allows us to calculate the maximum available feedback using 

equation (3.71) at the working band under the conditions of the high frequency rolloff, 

sensor noise attenuation and stability margins. High frequency constraints are related to the 

order of the controller and stability margin is set for the model uncertainty. 
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The pilot control strategy in the optimal control model is to adopt the control input, 

u* (t), which minimizes 

J(u) = E{ T~ f f [ y T(t)Qy(I) + uT(t) r u(t) + ti(t) \t) g ti(t) ] dt} (3.9) 

subject to his psycho-physical limitations. This objective function can be interpreted in the 

frequency domain as the pilot wanting to maximize the feedback in his working band for 

good tracking under the high frequency constraints such as stability margins, bandwidth, 

sensor noise attenuation and high frequency rolloff. In other words, the open loop transfer 

function of the optimal control model, Gp(s)Gg(s), tends to construct the ideal cutoff 

pattern to reject the disturbances at his working band and to attenuate sensor noises at the 

high frequency range without violating the closed loop stability in the frequency domain. 

Equation (3.51) shows that large feedback gain at the working band can make the system 

tracking errors small in the presence of commands and disturbances. 

e = r-y 

=(I+ GKY 1 (r- d) + GK (I+ GKY 1 n (3.51) 

In the above two equations, equation (3.9) and equation (3.51), which defines the objective 

of the human pilot's behavior, we can find the strong relation between the value of 

performance index in the time domain and the feedback at working band in the frequency 

domain. Another important factor of the handling qualities is the speed of the closed loop 

system response. If the human is working in the relatively high frequency range, ro ~ roe in 

Figure 3.9., the closed loop system response will be fast Sensor noise cutoff frequency is 

heavily dependent on the system dynamics. Figure 3.9. shows the interpretation of the 
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logm 

Bode ideal cutoff in the tracking task. Here, good tracking is related to the feedback at the 

working band and fast response is related to the sensor cutoff frequency. 

Therefore, the pilot opinion rating will be predicted based on the these two terms which are 

generated from the optimal control model automatically with the human limitations. It is 

also possible to use the maximum available feedback at the working band as the indication 

of the difficulty level of the task and/or the pilot work load. 

The important factors of the open loop performance required in the ideal cutoff 

analysis are shown in Figure 3.10. 

(1) w1 = Disturbance cutoff frequency (rad/sec) 

It is defined by the shaping filter cutoff frequency to model the command signal. 

Pilot working band is defined by OS m S w1. 

(2) w2 = Gain crossover frequency (rad/sec) 

(3) x = Gain margin (dB) 

( 4) y = Phase margin ( deg) 
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Figure 3.10. Important Factors of the Ideal Cutoff 

(5) w4 = Sensor noise cutoff frequency (rad/sec) 

It is measured by the high frequency peak of the open loop transfer function. 

(6) w3 = Ideal Bode step frequency (rad/sec) 
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[ w -w ] 
- X = - 12 ( 1 - y) lo~ 3 W

2 
2 (3.73) 

(7) L1 = Feedback at a disturbance cutoff frequency, w 1 

(8) l...niax = Maximum available feedback ( dB) 

Using cod= w3/w1 , it can be calculated by equation (3.71) 

Figure 3.10. helps us to understand the relation between the optimal control model loop 

structure and the equivalent transfer function loop structure. 
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CHAPTER IV 

IMPLEMENTATION 

4.1 Descriptions of the Numerical Simulation 

In order to implement the optimal control model, it is assumed that the following 

input parameters are given: 

(1) A, B, C, D, F, W: parameters of the linear vehicle system and the shaping filter. 

(2) qi, r: weightings in the performance index 

(3) 'tn, 't, f, Ti: parameters of the human's limitation 

Experimental data and equations in the manual control systems are [20-22]: 

(1) 't'n = 0.1 - 0.6 sec: neuromuscular time constant 

(2) 't = 0.15 - 0.25 sec:· perceptional time delay 

(3) [ T1, T2 ] = [ 0.05 deg, 0.18 deg/sec]: observation threshold 

( 4) Observation noise 

2 
. _ Pyi 1t cryi 

Vy1 - -- ----'---
f E ( O'yi 'Ti)2 

i = 1, 2 

Pyi = 0.01 : average noise to signal ratio 

frequency power density = -20 dB 

(5) Neuro-motor noise 

Vu = 7t PuE{ uJ } 
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Pu= 0.003 

frequency power density= -25 dB 

The algorithm for solving the human optimal control model is summarized in 

Figure 4.1. The human optimal control model can be assumed as the standard linear 

quadratic Gaussian optimal control problem, with the following distinctions [3]: 
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(1) The performance index includes u(t). The LQR problem is solved by augmented 

system with nueromuscular mode. 

(2) The Kalman Bucy filter is used for estimating the states of the controlled system 

augmented with the neuromuscular mode. 

(3) The linear predictor is used since the observations are delayed. 

(4) The observation and motor noise intensities are defined as a ratio of the respective 

mean square outputs and inputs, equation (3.7) and (3.21). Iteration is required to 

achieve this ratio. In this thesis, bi-section method and x=f(x) method are used 

for the iteration of LQR problem and KBF/LP problem, respectively. 

(5) 4th order Pade approximation for the perceptional delay is used to obtain the pilot 

transfer function. This approximation is valid in the range of ro::;; 30 rad/sec . 

(Figure 4.2.) 

4.2. Application of the Kleinman Data [6] 

The performance of the optimal control model was successfully matched to the 

experimental data obtained from a set of simple dynamics by Kleinman et al [6]. Here 

two simple vehicle dynamics, k/s and k/s2, among them are investigated to validate the 

representation of the pilot transfer function using the Pade approximation for the 

perceptional time delay. For k/s and kf s2 dynamics, a simulated first order noise 

spectrum having a break frequency of 2 rad/ sec was applied as a velocity disturbance to 

the vehicle. 



Enter G8(s), GJs) 

Construct System Matrix 

Enter Q, r, \ 

Solve LOR 

Enter 't, W, p, T, f 

Solve KBF 

Pilot Transfer Function 

Ideal Cutoff Analysis 

Enter A, B , C, D, F 

Iteration 
Bi-section Method 

n 

n 

Iteration 
x=f(x) Method 

POR 

Figure 4.1. Computation How of the Optimal Control Model 
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where 

.-
C,) 
C,) 

"' Cl) 
C,) 

"O ,_, 

C,) 
~ 
o:I 
.c c.. 

0 

-180 

-360 

-540 
1 2nd order Pade approximation 
2 4th order Pade approximation 
3 exp(-0.2 s) 

-720 ....___.___._ ....................... _ .................................... ___. ............................ _ _.__._ ........ __. 

.01 .1 1 10 30 100 

frequency (rad/sec) 

Figure 4.2. Phase Plot of the Pade Approximation for 0.2 sec Delay 

4.2.1. Velocity Control Example 

The controlled system and the external disturbance are represented by: 

y(s) = 0 8(s) [u(s) +Gw(s) w(s)] 

G (s) =l 
s s G (s) =-1-

w s+2 
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(4.1) 

(4.2) 

The second canonical state space form is used for the systematic representation based on 

the white noise, w(t), and the control input, u(t), in equation (4.1) 



*1 (t) = Xi(t) (4.3) 

*i(t) = - 2Xi(t) + w(t) (4.4) 

Xg(t) = u(t) (4.5) 

y(t) = x1 (t) + "3(t) (4.6) 

where w(t) is Gaussian white noise with a covariance W = 8.8. x1 (t) and x3(t) are the 

system output due to the white noise and the control input, respectively. The error and 

error rate, Ye(t) and Ye(t), for the regulating task are defined as 

ye<t) = -y(t) = -x1 (t) - "3(t) (4.7) 
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ye<t) = - y(t) = - Xi(t) - u(t) (4.8) 

The objective of the task is to minimize the following mean squared performance 

index 

J(u) = E{ Y; } + g E{ 1i2} (4.9) 

The input parameters for solving the optimal control model and results of the time 

domain performance are shown in TABLE4.l and TABLE4.2 respectively. In TABLE 

4.2, (.) represents the experimental value of the Kleinman data [10]. Figure 4.3.-4.5. 

shows the frequency domain results using the 4th order Pade approximation. The 

magnitude of the approximated pilot transfer function is exactly the same as the 

Kleinman's model and its phase is compared with the Kleinman model in Figure 4;6. 



TABLE 4.1 

INPUT PARAMETERS OF VELOCITY CONTROL EXAMPLE 

w 't Py 

8.8 0.08 0.15 0.01 0.01 0.003 1 0 1 0 0 

TABLE 4.2 

TIME DOMAIN PERFORMANCE OF VELOCITY CONTROL EXAMPLE 

g 

0.00016 0.12(0.13) 

a-2 
Ye 

3.07(3.1) 3.86(4.2) 4.85 

a-2 u 

244 

This approximation is valid in the frequency range less than 30 rad/sec. 

The pilot transfer function is: 

J 

0.16 
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G (s) = 181.967(0)(-2)(-3.26)(-6.43)(-12.50)(-12.67)[-0.96,40.31][-0.62,45.19] 
P (O)(-l.99)(-2)(-6.50)(-12.50)(-12.50)[0.28,23.32][0.53,58.18](-78.55) 

(4.10) 

where (a) represents (s+a) and[~,~] represents (s2+2~0\s+~). The order of the pilot 

transfer function is 11, which matches the number of the state, x2(t), in equation 

(3.47).The order of the pilot transfer function, N, can be calculated by the simple 

equation: 
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N = 2(n+m+ l)+(order of Pade approximation)+ 1 (4.11) 

where n and m are the order of the controlled system and the shaping filter, respectively. 

(n+m) represents the number of the minimum states of the system equation based on 

equation (3.2). In this example, the number of the states in the system equation, equation 

(4.3)-(4.5), is 3, but the number of the minimum states is 2. The number of zeros of the 

pilot transfer function should be less than the order of the pilot transfer function because 

the matrix C2B22 is always zero in equation (3.49). 

Equation (4.10) has 3 exact pole/zero cancellations which are the poles of the 

controlled system, (0), the shaping filter, (-2), and the neuromuscular dynamics, (-12.50). 

It also contains 2 close pole/zero cancellations, (-6.43)(-12.67)/(-6.50)(-12.50). These 

exact cancellations can be explained by the use of the A 1 matrix in both the Kalman Bucy 

filter and the linear predictor. The numerator, [-0.96,40.31][-0.62,45.19], is the same as 

the numerator of the Pade approximation which represents the perceptional time delay. 

This can be converted to the time delay in the low frequency range: 

(2)(0.96) 
(40.31) 

(2)(0.62) 
0.048 sec, --

( 45.19) 
0.027 sec 

(0.048+0.027)=0.075 sec is half of the given time delay, 0.15 sec. The denominator, 

[0.28,23.32][0.53,58.18], is the shifted version of the Pade approximation due to the loop 

closure. These can also be converted to the time delay in the low frequency range: 

(2)(0.28) 
(23.32) 

(2)(0.53) 
0.024 sec, (58_18) = 0.018 sec 

(0.024+0.018)=0.042 sec is another half of the Pade approximation. Thus, the total 

recovered time delay is (0.075+0.042)=0. l 17 sec, which is recognized as the effective 

time delay of the human operator. If we cancel the exact and close pole/zeros and neglect 
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( -78.55) with the gain adjustment, the pilot transfer function can be represented as 

G (s) = 4.17(-3.26) e-0.117s 
P (-1.99) 

(4.12) 

This reduced simple pilot model works very well only in the frequency range less than 3 

rad/sec. (Figure 4.7.-4.8.) However, the peak of the pilot transfer function, which is 

related to the sensor noise attenuation explained in Section 3.5, cannot be explained in 

this model. It is a very significant factor in handling qualities. Thus, the high frequency 

approximation should be done outside of this peak, and it will be discussed in detail in 

Section 4.3. 

GpCs) 2271.50(-3.26) e- 0_099 s 

( -1.99)[0.27 ,23 .32] 
(4.13) 

The magnitude and phase of the equation (4.13) are also shown in Figure 4.7.-4.8. This 

reduced model is much better than equation ( 4.12) from the point of view of high 

frequency approximation. 
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where 

4.2.2 Acceleration Control Example 

The controlled system and the external disturbance are represented by: 

y(s) = Gis) [u(s) +Gw(s) w(s)] 

G (s) = .l_ 
s s2 

GJs) =-1-
s+2 

The state space form of the system equation is: 

*1 (t) = Xi(t) 

x(t) = - x1 (t) + w(t) 

xit) = u(t) 

y(t) = x1 (t) + ~(t) 
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(4.14) 

(4.15) 

(4.16) 

(4.17) 

(4.18) 

(4.20) 

(4.21) 

where w(t) is Gaussian white noise with a covariance W = 0.217. x1 (t) and x3(t) are the 

system output due to the white noise and the control input, respectively. The error and 

error rate, Ye(t) and Ye(t) , for the regulating task is defined as 

y/t) = -y(t) = -x1 (t) - ~(t) (4.22) 
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y/t) = -y(t) = -~(t) - xit) (4.23) 

The objective of the task is to minimize the following mean squared performance 

index 

J(u) = E{ y/ } + g E{ ti2} 

The input parameters for solving the optimal control model and results of the time 

domain performance are shown in TABLE 4.3 and TABLE 4.4, respectively. 

TABLE 4.3 

INPUT PARAMETERS OF ACCELERATION CONTROL EXAMPLE 

w Py· p q u 1 

(4.24) 

0.217 0.08 0.21 0.01 0.01 0.003 1 0 1 0 0 

TABLE 4.4 

TIME DOMAIN PERFORMANCE OF ACCELERATION CONTROL EXAMPLE 

g 

0.000064 0.010(0.0014) 0.11(0.10) 1.33(1.43) 

o:2 
4, 

1.83 

J 

66.77 0.014 



Figure 4.9.-4.11. shows the results of the frequency domain performance. 

The pilot transfer function is: 

G ( ) = 436.23(0)(0)(-0.46)(-2)(-238)(-3.84)(-9.99)(-10.0l) 
P s (0)(0)(-2)(-2)(-3.82)(-9.99)(-9.99)[0.31,10.34] 

[-0.96,28. 78] [-0.62,32.28] 
[0.55,32.15] [0.92,37.82] 

The reduced pilot transfer function is: 

G (s) = 254.76(-0.46)(-2.38) e - o.195 s 
P (-2)[0.31,10.34] 

Equations ( 4.25) and ( 4.26) are compared in Figure 4.12. and 4.13. 
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(4.25) 

(4.26) 
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4.3 Application for the Neal-Smith Data[8] 

4.3.1 Neal-Smith Tracking Task 

In 1970, Neal and Smith investigated the longitudinal flying quality problems of 

fighter aircraft based on the experimental results of the USAF/CAL variable stability T -

33 airplanes. This work was done for the following objectives: 

(1) To find the effects of the flight control system (FCS) in both the high order 

dynamics and the short period characteristics 

(2) To provide design criteria which can explain the handling qualities in performing 

a given task. 

A total of 51 basic FCS/short period configurations were tested for the pitch tracking task 

in the combat phase of the fighter's mission. The pilot opinion rating, Cooper-Harper 

scale, representing an overall control and tracking ability of the airplane to perform a 

given task, was provided to each configuration through the actual flight test by a test 

pilot. Neal and Smith used a simple classical pilot model in the loop, which is shown in 

Figure 4.14., to explain the results of the experiments. 

The control strategy for the tracking task based on the pilot comments is that the 

pilot wants to track a target quickly and predictably with a minimum overshoot and 

oscillation. Neal and Smith interpreted this strategy with following mathematical terms: 

(1) The pilot tries to achieve a certain open loop gain crossover frequency, me, 

8c + ee ~e- 'tS (';s+ 1) u FCS 8 -- -- -- & --- ' - - -
j ~ -

('tis+l) Vehicle 

Figure 4.14. Neal-Smith Pitch T~ng (Classical Model) 

.,. 
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2) The pilot tries to minimize the closed loop droop at ro S roe . 

(3) The pilot tries to maintain the high frequency stability by keeping the closed loop 

damping ratio greater than 0.35 and the phase margin of 60 to 110 degree. 

In this mathematical interpretation of the pilot control strategy, (1) and (2) are rr,lated to 

the low frequency performance in the range, 0.5 S ro S 3 rad/sec, roughly. The low 

frequency performance can be explained by the closed loop droop and the bandwidth, 

BW, defined in Figure 4.15., which means that the pilot wants to minimize the closed 

loop droop in the frequencies below BW. The Nichols chart is used to find the 

parameters of the pilot transfer function satisfying the tracking performance standard 

because it uses the gain and phase information of the open and closed loop in one plot. 

dB 

deg 

Performance Standard 

Minimize Droop 

(Droop)max = -3d.B 

Minimize Overshoot 

.. 
I 
I 
I 

log ro 

0 1;;;;;;;;;;;--=~=====:::=-----r----;::-: log ro 

Performance Standard 

- 180 -+-------------------,1-------
BW 

(BW)min = 3.5 rad/sec 

Figure 4.15. Neal-Smith Tracking Performance Standard 



However, in the Neal-Smith methodology there are the following disadvantages: 

(1) There is no consideration of a driving noise, which can be defined for a given 

task, in generating the pilot transfer function. 
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(2) Bandwidth, which may have critical importance to handling qualities, is fixed and 

predetermined for the various different controlled systems. 

(3) Defining the handling quality levels seems to be artistic. 

In this thesis, the optimal control model technique is used to generate the pilot 

transfer function, which was explained in Section 3.4., and the frequency domain 

performance of the open loop transfer function is analyzed related to prediction of the 

pilot opinion ratings by the concept of the Bode ideal cutoff. The pilot transfer function 

is the frequency domain version of the optimal control model. So, the question is how 

the optimal control model works in the frequency domain in the presence of the driving 

noise (command signal) and the observation noise (sensor noise). This thesis is intended 

to answer to this question particularly. This attempt might provide more general 

understanding of the pilot model as well as the bridge between the frequency domain and 

time domain approach to pilot/vehicle analysis. 

The vehicle dynamics are represented by the following transfer function [8]: 

e<s) _ Ke ('ti s + 1 H1ai s + 1) 

( 
s2 2~ )( s2 2~ ) s(-;s+l) -+-s+l ·-+-·-Ps+l 
oi ~ O>;p '°sp 

u(s) 
(4.27) 

The corresponding parameters are listed with each configuration number and the gain, 

Ka, is defined as 

_ 57.3 g 
Ka-VT(F/n) 

F/n = 5 (lb/g) (4.28) 
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where VT is the trimmed true airspeed (ft/sec), which is 480 in the configurations 1A-5E 

and 675 in the configurations 6A-8E, and g is the acceleration of gravity (ft/sec2). F/n is 

the steady stick force per unit normal acceleration change at constant speed (lb/g). 

TABLE 4.5. 

NEAL-SMITH CONAOURA TIONS 

Conf. 1/'t1 IIT.e2 1/'t2 Olspf~sp 0>.3/~3 POR 

lA 0.5 1.25 2 2.2/0.69 63/0.75 4-6 
lB 2.0 1.25 5.0 2.2/0.69 63/0.75 3.5 
lC 2.0 1.25 5.0 2.2/0.69 16/0.75 3.5-5 
lD 1.25 2.2/0.69 75/0.67 3-5 
lE 1.25 5.0 2.2/0.69 63/0.75 6 
lF 1.25 2.0 2.2/0.69 63/0.75 8 
10 1.25 0.5 2.2/0.69 63/0.75 8.5 

2A 2.0 1.25 5.0 4.9/0.70 63/0.75 4-4.5 
2B 2 1.25 5 4.9/0.70 16/0.75 4-6 
2C 5.0 1.25 12.0 4.9/0.70 63/0.75 3 
2D 1.25 4.9/0.70 75/0.63 2.5-3 
2E 1.25 12.0 4.9/0.70 63/0.75 4 
2F 1.25 5.0 4.9/0.70 63/0.75 3 
20 1.25 5.0 4.9/0.70 16/0.75 7 
2H 1.25 2 4.9/0.70 63/0.75 5-6 
21 1.25 2.0 4.9/0.70 16/0.75 8 
2J 1.25 0.5 4.9/0.70 63/0.75 6 

3A 1.25 9.7/0.63 75/0.67 4-5 
3B 1.25 12 9.7/0.63 63/0.75 4.5 
3C 1.25 5 9.7/0.63 63/0.75 3-4 
3D 1.25 2 9.7/0.63 63/0.75 4 
3E 1.25 0.5 9.7/0.63 63/0.75 4 

4A 1.25 5.0/0.28 75/0.67 5-5.5 
4B 1.25 12 5.0/0.28 63/0.75 7 
4C 1.25 5 5.0/0.28 63/0.75 8.5 
4D 1.25 2 5.0/0.28 63/0.75 8-9 
4E 1.25 0.5 5.0/0.28 63/0.75 7.5 

SA 1.25 5.1/0.18 75/0.67 5-7 
5B 1.25 12 5.1/0.18 63/0.75 7 
SC 1.25 5 5.1/0.18 63/0.75 7-9 
5D 1.25 2 5.1/0.18 63/0.75 8.5-9 
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TABLE 4.5. (Continued) 

SE 1.25 0.5 5.1/0.18 63/0.75 8 

6A 0.8 2.4 3.3 3.4/0.67 63/0.75 5-6 
6B 3.3 2.4 8 3.4/0.67 63/0.75 1-4 
6C 2.4 3.4/0.67 75/0.67 4 
6D 2.4 8 3.4/0.67 63/0.75 5.5 
6E 2.4 3.3 3.4/0.67 63/0.75 7-8.5 
6F 2.4 0.8 3.4/0.67 63/0.75 8-10 

7A 3.3 2.4 8 7.3/0.73 63/0.75 2-5 
7B 8 2.4 19 7.3/0.73 63/0.75 3 
7C 2.4 7.3/0.73 75/0.69 1.5-4 
7D 2.4 19 7.3/0.73 63/0.75 5.5 
7E 2.4 8 7.3/0.73 63/0.75 5-6 
7F 2.4 3.3 7.3/0.73 63/0.75 3-7 
7G 2.4 2 7.3/0.73 63/0.75 5-6 
7H 2.4 0.8 7.3/0.73 63/0.75 5 

8A 2.4 16.6/0.69 75/0.67 4-5 
8B 2.4 19 16.6/0.69 63/0.75 3.5 
8C 2.4 8 16.6/0.69 63/0.75 3-3.5 
8D 2.4 3.3 16.6/0.69 63/0.75 2-4 
8E 2.4 0.8 16.6/0.69 63/0.75 2.5-5 

In order to apply the optimal control model, three key elements are defined: 

(1) The objective function to be minimized 

(2) State space form representation of the system for the tracking task 

(3) The command signal to be tracked. 

The objective function of the Neal-Smith pitch attitude tracking task is 

J(u) = E{ Yi } + g E{ ii2} (4.29) 

where the weighting matrix on the pitch error and error rate, Q, is selected as diag[ 1 O] 

and the weighting on the control input, r, is 0. The tracking error, 0e, is defined as the 

difference between the commanded attitude, 0c, and the aircraft attitude, 0. A pilot can 
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extract error as well as error rate from a single display. Thus, y is defined: 

(4.30) 

The vehicle states are augmented with the command signal states using the 2nd canonical 

form for the tracking task. The structure of the augmented system is: 

[i:w] = [ ~ 0 l [xw] + [ 0 ] u + [Bw] w 
X O ~~ X ~~ 0 

(4.31) 

(4.32) 

(4.33) 

It should be noted that the state vector, x, represents the pitch angle and the change of the 

pitch angle due to the pilot control input since this state space form is structured by the 

2nd Canonical form. xw represents the command pitch angle and its rate. The command 

signal is generated by a second-order shaping filter driven by the white noise to model the 

Neal-Smith pitch tracking experiment: 

0c + 0.5 ec + 0.25 0c = 0.25 w(t) (4.34) 

where w(t) is a zero mean, Gaussian white noise with crJ = 64 ~(t). 

cr8 = 4 deg °s = 2 deg/sec , 

The second order model for the pitch tracking task is based on the actual discrete 
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instrument tracking task used in the Neal-Smith flight experiments. In the Neal-Smith 

experiments the evaluation pilot's task was to minimize this error, which required rapid 

and precise change of the pitch angle. Input parameters to solve the optimal control 

model are listed in TABLE 4.6, and Figure 4.16. shows the loop structure of the Neal

Smith pitch tracking task. 

TABLE 4.6 

INPUT PARAMETERS FOR NEAL-SMITH PITCH TRACKING TASK 

Observation vector 
Observation thresholds 
Objective function weights 
Observation noise ratio 
Neuromuscular noise ratio 
Fractional attention 
Neuromuscular lag 
Observation delay 
Control input (Stick force) 

e- 0.2 s 

+ 

+ 

Obs. 
Noise 

0 

yT = [ 0e 0e] 
T0 = 0.05deg 

e 

Oii=[l O] 
Pyi = 0.01 
Puc= 0.003 
f= 1 
'tn = 0.1 sec 
't = 0.2 sec 
u (lbf) 

KBFA..P 
& 

Optimal Gain 
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4.3.3 Results and Discussions 

The application of the ideal cutoff analysis to the 51 Neal-Smith short period/FCS 

configurations for the prediction of the handling qualities resulted in the POR/feedback 

correlation of Figure 4.17. and POR/sensor noise cutoff frequency correlation of Figure 

4.18. where x and y represent the x-axis and y-axis variable, respectively, and R 

represents the coeffficient of correlation. The correlation of the POR and the feedback at 

a disturbance cutoff frequency is based on the tracking ability of the human operator in 

performing a given task. In the Neal-Smith pitch tracking task, the pilot working band is 

0 :5 ro :5 0.5 rad/sec, which is the frequency band of the actual pitch attitude command 

signal in the experiment and also the cutoff frequency of the shaping filter 

mathematically. Tracking error, covariance of the pitch angle error, is compared with the 

feedback gain of the open loop transfer function at the disturbance cutoff frequency in 

Figure 4.19. It shows that good tracking perfonnance, small covariance, is proportional 

to the large gain at the disturbance cutoff frequency. 

The sensor noise cutoff frequency is another important factor of handling 

qualities, which is closely related to the closed loop response time. As mentioned in 

Section 3.5, if the human can observe the high frequency signal inf onnation under the 

given situations, the resulting response of the closed loop system is relatively fast. 

However, there are distinct limitations of the human for processing signals in the optimal 

control model. The gain and phase plot of the pilot transfer function at the sensor noise 

cutoff frequency for the attenuation of the observation noise is shown in Figure 4.20. and 

Figure 4.21. They show a trend of decreased pilot gain and decreased (more negative) 

pilot phase with increased sensor noise cutoff frequency, which is a human's physical 

limitation for the high frequency signal in the manual control. Specifically it should be 

noted that pilot phase shift is linearly proportional to the sensor noise cutoff frequency 

and heavily dependent on the controlled system dynamics. If the vehicle dynamics have 

good high frequency perfonnance, a pilot can operate the vehicle relatively easily with a 



large time lag. If the vehicle dynamics are bad in the high frequency range, a pilot will 

struggle to make the vehicle stable with relatively small phase lag, which means that he 

has to react quickly to achieve the stability criteria. It may also cause pilot induced 

oscillations (PIO). 

The pilot phase shift of the high frequency performance in the optimal control 

model is expressed in the range of 6 ~ m ~ 18 (rad/sec): 

69 

(Pilot Phase)= (95.7) - (19.4)x(Sensor Noise Cutoff Frequency), [deg] (4.35) 

Mathematically it can be explained that this phase limitation of the high frequency 

performance is the sum of the pure perceptional time delay, neuromuscular lag and the 

phase of KBF/LP. Figure 4.22. shows that the phase lead of the KBF/LP decreases as the 

input frequency increases. It means that the prediction ability of the pilot decreases for 

the high frequency signals. 

From the above discussions of the two significant factors, feedback and sensor 

cutoff frequency, we can obtain the final results for the prediction of the pilot opinion 

ratings. Figure 4.23. shows the result of the 51 Neal-Smith configurations and Figure 

4.24. is the interpretation of the frequency domain performance related to the prediction 

of the pilot opinion ratings. 
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For the detail discussions of the Bode ideal cutoff analysis in the optimal control 

model several Neal-Smith configurations are selected and divided into 3 groups. The 

configurations of each group are listed in Table 4.7. 

Group 1 

Group 1 is a good example of the Bode ideal cutoff analysis in analyzing the 

effects of the high frequency vehicle performance to the optimal control model. The only 

difference in the pilot transfer function of Group I lies in the short period frequency of 

the vehicle, but they have almost the same damping ratio. The magnitude and phase of 

Group 1 are almost the same in the pilot working band, 0 ~ ro ~ 0.5 rad/sec, but the 

vehicle dynamics are quite different in the high frequency range. Figure 4.25 shows the 

results of POR of Group 1. The magnitude and phase plot of the vehicles, pilot transfer 

functions and open loop transfer functions are shown in Figure 4.26.-4.30. and the arrows 

of the each plot indicate the direction of good handling qualities increasing short period 

frequency and also corresponding lines of the configurations presented in Figure 4.25., 

which means the arrow moves from lD to 3A in Figure 4.26.-4.30. 

The objective of the optimal control model is to find the optimal control strategy 

which minimizes the tracking error in the working band and also stabilizes the system in 

Index 

Group 1 

Group2 

Group3 

TABLE 4.7 

GROUP SUMMARY 

Configuration 

lD, 2D,3A 

2F,4C, SC 

lE, IF, lG 

Description 

Different short period freqs. 

Different damping ratio 

Different phase lag 
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the high frequency range. For the configurations of Group 1, which have the same low 

frequency performance and quite different high frequency performance, the tracking 

ability of a pilot is the same in the working band, but the high frequency compensation to 

stabilize the each vehicle are quite different. So, a pilot tries to compensate for the 

vehicle's high frequency performance to meet the high frequency stability in Figure 4.26. 

Mathematically, for a good high frequency performance vehicle, 3A in Group 1, a pilot 

can control the vehicle with a relatively small gain and large phase lag in the high 

frequency range and also attenuate the .observation noise at a relatively high sensor noise 

cutoff frequency, comparing ID and 20 in Figure 4.26. and 4.28. It means that a pilot 

can control a vehicle smoothly and the resulting closed loop pilot/vehicle system has 

relatively fast response. It is noted that the pilot phase of 3A in the high frequency is 

almost flat in Figure 4.29., which explains that a pilot can control very smoothly in his 

task. Figure 4.27. and 4.30. show the resulting open loop characteristics of Group 1. 
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Group2 

Group 2 is chosen to analyze the effects of the damping ratio in the vehicle's short 

period dynamics to the optimal control model. The vehicle dynamics of each 

configuration are shown in Figure 4.32., and the peak of the magnitude plot in the high 

frequency affects the pilot's tracking ability in the working band as well as the high 

frequency performance in Figure 4.33. In the configuration of SC, the high frequency 

phase compensation of the pilot is changed abruptly from the negative value (lag) to the 

positive value (lead) to meet the high frequency stability in Figure 4.36., which means 

that a pilot is required to move relatively fast to attenuate the high frequency sensor noise 

and to stabilize the vehicle explained in Group 1. The pilot comments of the Neal-Smith 

experiments say that the pilot cannot track a target without PIO problems in SC. Thus, 

the PIO problem is strongly related to the high frequency phase compensation of a pilot 

for high frequency stability. 
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Group3 

Group 3 is selected to analyze how the lag of the vehicle dynamics affects the 

optimal control model. The phase of the vehicle dynamics in Figure 4.41. are decreased 

by the effects of this lag compared to Group 1 in Figure 4.28. in the high frequency 

range. For these configurations of Group 3, the magnitude and phase of a pilot are 

increased to meet the high frequency stability, which means that a pilot should control the 

vehicle with relatively small phase lag or even lead and also excessive gain in the high 

frequency range as mentioned earlier. This is interpreted as a pilot cannot control the 

vehicle without PIO problems. Thus, the major source of the PIO problems comes from 

the pilot's phase lag in the high frequency range to meet the high frequency stability 

requirement. From the Neal-Smith experiments, the POR of the lE, lF and 20 are very 

poor, 6, 8 and 8.5, respectively, and they have also bad PIO problems. 
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The order of the pilot transfer function for the Neal-Smith configuration 2D and 

10 is 21 and 23, respectively, which can be reduced by the exact and close pole/zero 

cancellations. The reduced pilot transfer function of configuration 2D (POR=2.5-3) as 

explained in Section 4.2. is 

0 (s) = 30.81(-0.03)(-1.528)[0.70,4.74] e _ 0_16 s 

P [0.5,0.5](-1.26)[0.15, 12.87] (4.36) 

The reduced pilot transfer function of configuration 1 G (POR::8-8.5) is 

0 (s) = 72.85[0.86,0.36](-l.04)[0.71,2.24] e _ 0_22 s 

P [0.5,0.5](-1.25) [0.14, 7.40] (4.37) 

The equivalent perceptional time delay in these two equations is recovered from the 
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shifted Pa.de approximation for the human's perceptional delay, 0.2 seconds. The above 

two equations show that the equivalent perceptional time delay is related to the human's 

sensing ability to attenuate the sensor noise. Sensor noise cutoff frequencies of 2D and 

lG are 13 and 7.6.rad/sec, respectively, which indicates the sensor working band. Thus, 

the human can perceive the vehicle's output signal relatively fast for configuration 2D 

compared to lG. 

The most difficult part in the analysis of the pilot/vehicle system is to find the 

absolute values to characterize the system, which is also one of the general issues in 

control theory. Bode ideal cutoff analysis gives us this absolute standard, maximum 

available feedback. So, we can relate the maximum available feedback to the feedback at 

the disturbance cutoff frequency to explain the error between the optimal case with the 

human's limitations and ideal case. As an example, consider configuration 2D. The 

frequency performances for 2D, which are calculated from the open loop transfer 

function, are 

(1) Gain margin: x=4.49dB 

(2) Phase margin: y 1t = 37.88 deg = 0.661 rad, y= 0.21 

(3) Working band frequency: w1 = 0.5 rad/sec 

(4) Gain crossover frequency: w2 = 5.16 rad/sec 

(5) Sensor noise cutoff frequency: w 4 = 13 rad/sec 

(6) Bode step frequency: w3 = 7.64 rad/sec 

w3 is calculated by equation (3.73) 

(7) Feedback at w 1 Li =24.52dB 

(8) Maximum available feedback: 1-max = 32.82 dB 

The performance of the optimal control model for configuration 2D under the Neal-Smith 

pitch attitude tracking task is 58 percent of the maximum available feedback at 

disturbance cutoff frequency. It is be explained that a pilot tries to maximize the 

feedback to reduce the tracking error in the working band, but he cannot achieve the ideal 
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maximum feedback due to the his psycho-physical limitations. Figure 4.43 illustrates the 

maximum available feedback in the working band. 

Finally, Table 4.6 summarizes the effects of the perceptional time delay which can 

give critical effects in evaluating handling qualities for configuration 20. 't =0.2 sec is 

accepted to simulate the optimal control model for the Neal-Smith tracking task in this 

thesis. A pilot with faster perception ('t = 0.1 sec) in a tracking task produces a larger 

feedback in the working band (better tracking ability) as well as a higher sensor noise 

cutoff frequency (faster response) in Figure 4.44. Conversely, a pilot with slower 

perception ('t = 0.3 sec) produces a lower sensor cutoff frequency which may violate the 

high frequency stability due to the high frequency magnitude peak. It is also shown that 

the phase of the pilot behavior ( 't = 0.3 sec) is almost flat and more negative in the high 

frequency range compared to the pilot ('t= 0.1 sec) tracking in Figure 4.45., which is the 
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pattern of the smooth flight as mentioned earlier. It is interesting to note that the 

perceptional time delay does not significantly effect on the pilot's phase compensation 

ability in the working band in Figure 4.45., which means that the pilot's prediction ability 

in the low frequency range is not effected by the perceptional time delay. However, 

extensive investigation related to the effects of the perceptional time delay is required in 

the handling quality research, particularly at frequencies outside the working band. 

TABLE 4.6 

SUMMARY OF EFFECTS OF PERCEPTIONAL TIME DELAY (2D) 

X 

0.1 5.32 

0.2 4.47 

0.3 4.19 

39.7 

37.9 

36.6 

0.5 

0.5 

0.5 

Wz 

4.0 

3.2 

2.7 

9.9 

7.6 

6.4 

16 

13 

11 

27.8 

24.5 

21.9 

44.3 

42.3 

40.5 

% 

63 

58 

54 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

The Bode ideal cutoff analysis was successfully applied to predict the pilot opinion 

ratings of the 51 Neal-Smith short period/FCS configurations for the pitch attitude tracking 

task. The pilot opinion rating was correlated with the low frequency performance term, 

feedback at a disturbance cutoff frequency, as well as the high frequency performance 

term, sensor noise cutoff frequency, in the open loop transfer function of the pilot/vehicle 

system. In this proposed technique, the handling quality problem was interpreted based on 

the tracking error and the response speed of the closed loop system, which are the 

fundamental measures of the closed loop performance to quantify the general tracking 

control problems. 

The results obtained in this study are summarized as follows: 

(1) Pilot opinion rating is a strong function of the gain of the open loop transfer 

function, feedback, at a disturbance cutoff frequency and a senor noise cutoff 

frequency at which a pilot attenuates the observation noise. 

(2) Feedback at a disturbance cutoff frequency is a measure of the pilot's tracking 

ability in a pilot working band which is defined by a given task. 

(3) Sensor noise cutoff frequency is a measure of the pilot's observing ability in the 

high frequency range. If a pilot attenuates the observation noise at the relatively 

high frequency, the response of the closed loop pilot/vehicle system is also 

relatively fast 

( 4) The major source of the pilot induced oscillation problem is due to the small phase 

lag or phase lead of the pilot in a high frequency range, which are required to meet 
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the high frequency stability. It means that rapid movements of a pilot are 

required to stabilize a vehicle in a high frequency range. 

Future work in this area will include an extension of this study to the analysis of the 

complex multiloop high-order systems, and study possible extension of the results 

presented in this thesis to the formulation of a general pilot opinion rating system. 
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APPENDIX 

MATLAB PROGRAM FOR THE OPfIMAL CONTROL MODEL 

% fname: PILOT.M 
% This program is developed for solving the OCM. 
% This should be excuted externally by the user in the Matlab. 
% Mfile and function 
% HEAD descriptions of program 
% COMFLOW canputation flow for solving OCM 
% INPU'l'SYS : Enter system and shaping filter data 
% TRANSl!' : Enter transfer function data 
% GETEQN transfollll transfer function to state space eqn 
% CANON2: 2nd canonical follll 
% SYSEQ'N Enter state space data 
% OPTIMAL Canputation of OCM in time danain 
% SOLVELQR : LQR problem 
% SOLVERBl!' KBF /r;p problem 
% MATI'l'G : Analytical soluticm of special matrix integration 
% FDOMAIN Generate pilot transfer function 
% CU'l'Ol!'l!' : Bode ideal cutoff analysis 
% MAXMI'Nl Calculation of max or min value 
% MAXMI'N2 : Calculation of max or min value 
% CBECia'N Check input data and parameters 
% RESULTS I Show results 
% T.l!'RESULT : Time and frequency danain perfonnance 
% BODEPLOT I Bode plot 
% PTF Pilot transfer function 
% OUTPUT : Write results in data file 

HEAD; 
while 1 

COMFLOW; 
if Menu'No=l 

INPUTSYS; 
elseif MenuNo=2 

OPTIMAL; 
elseif MenuNo=3 

l!'DOMAI'N; 
elseif MenuNo=4 

CtJTOFF; 
elseif MenuNo=5 

CBECKI'N; 
elseif MenuNo=6 

RESULTS; 
elseif MenuNo=7 

OUTPUT; 
elseif Menu'No=S 

clear Menu'No 
break; 

end 
end 
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% f~: BDD.M 
% general descriptions of the program. 

clc 
fprintf('> PREDICTION OF PILOT OPINION RATINGS (POR)\n') 
fprintf ( ' • This program was developed for solving the OCM. \n' ) 
fprintf ( ' • All input parameters should be entered with [ J • \n' ) 
fprintf ( ' • Bode ideal cutoff analysis is used for the prediction of\n' ) 
fprintf ( ' the POR ( Cooper-Harper rating) in the frequency domain. \n \n' ) 
fprintf('. Robert L. Swaim & Jounguk Kim\n') 
fprintf ( ' School of Mechanical and Aerospace Engineering\n' ) 
fprintf ( ' Oklahoma State University\n' ) 
fprintf(' July, 1993\n\n') 
fprintf ( '> Hit any key to continue : \n ' ) 
pause; 
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% fname: CCIIPLOW.M 
% sequence :ill computation of OCM 

fprintf ( I \n I ) 

clc; 
fprintf ( '> Canputation flow\n' ) 
fprintf ( • 1. Input systElll equation \n • ) 
fprintf ( • 2. Solve human optlllll!ll control model \n' ) 
fprintf ( ' LQR (Linear Quadratic Regulato:i:-) \n' ) 
fprintf ( ' RBF (Kalltlan Bucy Filter) /LP ( Linear Predictor) \n' ) 
fprintf ( • 3. Frequency danain perfozmance \n' ) · 
fprintf ( • 4. Bode ideal cutoff anaysis \n • ) 
fprintf ( • 5. Check input data \n • ) 
fprintf ( • 6. Show output data \n' ) 
fprintf ( ' 7. Write output data \n • ) 
fprintf ( I 8 o Quit \n I ) 

fprintf ( • > Sel.ect a number : • ) 
MenuNo=input ( I I ) ; 
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% :fnanes INPU'l'SYS.M 
% Enter system equation 
% (transfer function or state space equation) 

while 1 
fpri.ntf ( I \n I ) 

clc; 
fpri.ntf ( '> Input system equation \n' ) 
fpri.ntf ( ' 1. Transfer function \n' ) 
fpri.ntf ( ' 2. state space equation \n' ) 
fpri.ntf(' 3. quit\n') 
fpri.ntf ( '> Select a number : ' ) 
No=i.nput( I I ) ; 

if No=l 
TRANSF; 

elseif No=2 
SYSEQN; 

elseif No=3 
clear No 
break; 

end 
end 
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% fname: 'l'RANBF .M 
% Enter input data for vehicle and filter transfer function 
% 1. y(s)= Gs(s)u(s)-+Gw(s)w(s) 
% 2. y(s)=-Gs(s)u(s)+Gw(s)w(s) 
% Gs ( s) : vehicle transfer function 
% Gw(s): filter transfer function 
% u(s) : optimal input 
% w(s) : white noise 
% y ( s) : error to the ccmnand signal 
% IMPORTANT 
% ( order of denominator)-( order of numerator) >= 1 in Gs ( s) 
% (order of denaminator)-(order of numerator)>= 2 in Gw(s) 
% varibles 
% nSystem, 
% gSystem, 
% nFilter, 
% gFilter, 

dSystem 
zSystem, 
d!'ilter 
zFilter, 
D, E 

numerator, d.enaminatior of Gs ( s) · 
pSystem I gain, zero, pole of Gs(s) 

: numerator, denaminatior of Gf(s) 
pFilter gain, zero, pole of Gf(s) 

% A, B, C, : system matrix of state space eqn 

clear 
yes=l; 
while (yes) 

fprintf ( ' \n' ) 
clc; 
fprintf( '> Enter vehicle and filter transfer function. \n') 
fprintf(' 1. y(s) = Gs(s)u(s) + Gw(s)w(s)\n') 
fprintf(' 2. y(s) =-Gs(s)u(s) + Gw(s)w(s) \n') 
fprintf(' 3. quit\n') 
fprintf ( ' IMPORTANT\n' ) 
fprintf(' u(s) : Opt.imal control input\n') 
fprintf(' w(s) : White noise\n') 
fprintf ( ' y ( s) : Error to the ccmnand signal \n • ) 
fprintf ( ' Gs ( s) : Vehicle transfer function \n' ) 
fprintf(' Gw(s) : Filter transfer function\n' ); 
fprintf ( ' order ( den )-order(num) >= 1 in Gs ( s) \n' ) 
fprintf(' order(den)-order(num) >= 2 in Gw(s)\n') 
fprintf ( '> Select a number : ' ) 
case=input( I I ) ; 

if case=l I case=2 
fprintf(' K(Nls+N2) (N3s+N4) (N5s+N6) (N7s+NB) (MlsA2+M2s+M3)') 
fprintf(' (M4sA2-+M5s+M6)\n') 
fprintf ( I Gs ( S )=------- -------- ----- ------ ------------- I ) 

fprintf ( I ----------\n I ) 

fprintf(' (Dls+D2) (D3s+D4) (D5s+D6) (D7s+DB) (ElsA2+E2s+E3)') 
fprintf( • (E4sA2+£5s+E6)\n') 
fprintf(' Integrator should have its own block. (ex) Nl=D2=0,N2=D1=1\n') 
fprintf( • order(den)>=order(num) at each block. \n') 
fprintf( '> Enter n1Dll of Gs(s) in [ K Nl N2 N3 N4 N5 N6 N7 NB ] : ') 
nSysteml=input ( I I ) ; 

fprintf( '> Enter num of Gs(s) in Ml M2 M3 M4 M5 M6 J : •) 
nSystaa2=input ( I I ) ; 

fprintf( '> Enter den of Gs(s) in Dl 02 D3 D4 D5 06 07 DB J : ') 
dSysteml=input ( I O ) ; 

fprintf( '> Enter den of Gs(s) in El E2 E3 E4 E5 E6 J 1 ') 

dSystem2=input ( ' I ) ; 

fprintf ( ' K(NlsA2+N2s+N3) \n' ) 
fprintf ( ' Gf ( s )=------------\n, ) 
fprintf(' (OlsA2+D2s+03)\n') 
fprintf( '> Enter num of Gw(s) in [ K Nl N2 N3 J 1 1 ) 

nPilterl=input( I I); 
fprintf( '> Enter den of Gw(s) in [ 01 02 03 J : ') 
d!'ilterl=input ( I o ) ; 

fprintf( '> Input data is correct ? (y/n) 1 ') 

s=input(' ','s'); 

98 



if s='Y' ls='y' 
yes=O; 

else 
yes=l; 

end 
elseif case=3 

£print£('> Use state space fo:cn for input data. \n') 
fprintf( '> Bit any key to continue : \n ') 
pause; 
break; 

end 
end 
£print£ ( ' processing ••• \n ' ) 
while(case-=3) 

K=nSystenl(l); 
Nl=nSysteml(2);N2=nSysten1(3);N3=nSystElll1(4);N4=nSystem1(5); 

N5=nSystenl(6);N6=nSystem1(7);N7=nSystem1(8);N8=nSysten1(9); 
Ml=nSystem2(l);M2=nSystem2(2);M3=nSystem2(3); 
M4=nSystem2(4);M5=nSystem2(5);M6=nSystem2(6); 
Dl=dSysteml(1);D2=dSystenl(2);D3=dSysteml(3);D4=dSysteml(4); 
D5=dSysteml(5);D6=dSystem1(6);D7-dSysten1(7);D8=dSystem1(8); 
El=dSystem2(l);E2=dSystem2(2);E3-dSystem2(3); 
E4=dSystem2(4);E5=dSystem2(5);E6=dSystem2(6); 
[As,Bs,Cs,Ds]=limood( 'Systen'); 
K=nFilterl(l); 
Nl=nFilterl(2);N2=nl!'ilterl(3);N3=nl!'ilter1(4); 
D1=dFilter1(1);D2=dFilterl(2);D3=d!'ilterl(3); 
N4=K*[Nl N2 N3]; 
D4=[Dl D2 D3]; 
[Af,Bf,Cf,Df]=tf2ss(N4,D4); 
[ zSystem, pSystem, gSysten ]=ss2zp ( As ,Bs, Cs, Ds, 1 ) ; 
[zFilter,pFilter,gFilter]=ss2zp(Af,Bf,Cf,Df,1); 
clc; 
fprintf ( '> System transfer function I Gs ( s) ' ) 
fprintf ( '\n Gain %g\n' , gSystein) 
fprintf(' Zeros 1 \n') 
s=size(zSystem); 
imax=s(l,1); 
for i=l::imax, •• 

£print£ ( ' ( %15 • 7£) + ( %15 • 7£) j \n ' , real ( zSysten( i)) , •• 
.imag(zSysten(i))); •• 

end 
s=size(pSystem); 
imax=s(l,1); 
fprintf ( ' Poles : \n • ) 
for i=l::imax, •• 

fprintf ( ' ( %15. 7£) + (%15. 7£) j\n' ,real(pSysten(i)), •• 
.imag(pSystem(i))); •• 

end 
£print£ ( '> Bit any key to continue 1 \n ' ) ; 
pause 
£print£( '\n> Filter transfer function : Gw(s)') 
fprintf ( I \n I ) 

fprintf( • Gain 1 %g\n • ,gFilter) 
fprintf ( ' Zeros : \n • ) 
s=size(zFilter); 
imax=s(l,1); 
for i==l 1 :imax, •• 

fprintf (' (%15. 7f) + (%15. 7£ )j\n' ,real(zFilter(i)), •• 
.imag(zl!'ilter(i))); •• 

end 
fprintf ( ' Poles 1 \n' ) 
s=size(pFilter); 
imax=s(l,1); 
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for i=l::imax, •• 
fprintf(' (%15,7f) + (%15,7f)j\n',real(pFilter(i)),,, 
:imag(pFilter(i)));,, 

end 
fprintf( '> Gs(s) and Gw(s) are correct ? 1 (yin)'); 
s=input( I I I IS I ) ; 

if s='n' I s='N' 
break 

end 
fprintf ( ' Processing ••• ' ) 
[nSystem3,dSystem3J=ss2tf(As,Bs,Cs,Ds,l); 
[nFilter2,dFilter2]=ss2tf(Af,Bf,Cf,Df,l); 
sizeS=max(size(dSystem3)); 
sizeF=max(size(dFilter2)); 
for i=l:sizeS 

if nSystem3(i)>0,00001 
nSystan=nSystem3(iasizeS)*dSystem3(1); 
break 

enc;! 
end 
for i=l1sizeF 

if nFilter2(i)>0,00001 
nFilter=nFilter2(i:sizeF)*dFilter2(1); 
break 

end 
end 
c1System=c1System3/c1System3(1); 
dFilter=dFilter2/dFilter2(1); 
% transfer function to state space equation ( system eqn) 
if case=l 

index=l; 
else case==2 

index--1; 
end 
[Ao,BEo,co,Doj=GBTEQN(nSystem,dSystem,nFilter,dFilter,index); 
[A,BE ,C ,DJ=minreal(Ao,BEo,Co,Do); 
B=BE(1,l); 
E=BE(:,2); 
D=D(:,1); 
% original state eqn matrix 
Bo=BEo(:,l); 
Eo=BEo ( : , 2 ) ; 
Do=Do(: ,1); 
sizel=max(size(Ao)); 
size2=max(size(A)); 
fprintf ( ' \n' ) 
clc; 
fprintf ( '> state space equation \n' ) 
fprintf(' dx(t) = Ao x(t) + Bo u(t) + Eo w(t)\n') 
fprintf(' y(t) = Co x(t) + Do u(t)\n') 
Ao 
fprintf ( '> Bit any key to continue 1 \n ' ) 
pause; 
Bo 
fprintf ( '> Bit any key to continue I \n I ) 

pause; 
Eo 
fprintf( '> Bit any key to continue I \n I ) 

pause; 
Co 
fprintf( '> Bit any key to continue \n I) 

pause; 
Do 
fprintf('> Bit any key to continue I \n I ) 
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pause; 
% reduced state equation matrix 
if sizel > size2 

fprintf ( ' \n ' ) 
clc; 
fprintf( '> 
fprintf(' 
fprintf(' 
A 

Reduced state space equation \n' ) 
dx(t) = A x(t) + B u(t) + E w(t)\n') 
y(t) = C x(t) + D u(t)\n') 

fprintf('> Hit any key to continue: \n 
pause; 
B 

' ) 

fprintf('> Hit any key to continue \n ') 
pause; 
E 
fprintf('> Hit any key to continue \n ') 
pause; 
C 
fprintf ( '> Hit any key to continue \n ' ) 
pause; 
D 
fprintf( '> Hit any key to continue \n ') 
pause; 

end 
break 

end 
clear is yes ima.x 
clear nSysteml nSystem2 nSystem3 nFilterl nFilter2 
clear dSysteml dSystem2 dSystem3 dFilterl dFilter2 
clear As Bs Cs Ds Af Bf Cf Df BE BEo Ao Bo Co Do Eo 
clearKmm~m~~m~~~~~~~ 
clear Dl D2 D3 D4 D5 D6 D7 D8 El E2 E3 E4 ES E6 
clear k dl d2 d3 d4 d5 d6 nl n2 n3 n4 n5 n6 
clear ab c d m q p iu iy nblocks sizeS size!' sizel size2 
save afile 
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% fname: GE'rEQN.M 
% get state space equation from transfer function 
% (order of denaninator)-(order of nmnerator) >= 1 in Gs(s) 
% (order of denaminator)-(order of nmnerator) >= 2 in Gw(s) 

function [Ac,BEc,Cc,Dc)=GETEQN(nSystem,dSystem,nFilter,dFilter,index) 
[Al,Bl,Cl,Dl)=CANON2(nFilter,dFilter); 
[ A2, B2 , C2 , D2 ] =CAR>N2 ( nSystem, dSystem) ; 
kl=max(size(nFilter)); 
k2=max(size(dFilter)); 
ml=max(size(nSystem)); 
m2=max(size(dSystem)); 
nl=max( size(Al)); 
n2=max(size(A2)); 
Ac=[Al,zeros(nl,n2); 

zeros (n2 ,nl) ,A2]; 
Bc=[zeros(nl,l);B2]; 
Ec=[Bl;zeros(n2,l)]; 
BEc=[Bc,Ec); 
if (m2-ml )>l 

Cc=[eye(2),zeros(2,nl-2),index*eye(2),zeros(2,n2-2)]; 
Dc=[zeros (2)); 

elseif (m2-ml)==l 
if m2==2 

Cc=[eye(2),zeros(2,n2-2),index*[l A2]']; 
Dc=[O O; index*B2 O]; 

elseif m2>2 
Cc=[eye(2),zeros(2,nl-2),index*eye(2),zeros(2,n2-2)]; 
Dc=[O O; index*B2(1) O]; 

end 
end 

102 



% fn.ame: CANOR2 .M 
% second canonical fo:an (phase variable) 

function [A,B,C,D]=CAR:>N2(nmn,den) 
nl=max(size(nmn)); 
n2=max(size(den)); 
if nl>n2, •• 

fprintf ( '> Error order of numerator. is greater than denaninator\n • ) ; 
break; •• 

end 
if n2==2 & nl==l 

A=-den(2); 
B=num/ den ( 1 ) ; 
C=l; 
D=O; 

elseif n2>2 
A=zeros(n2-l); 
A(l:n2-2,2:n2-l)=eye(n2-2); 
A(n2-1,:)=-den(n2:-1:2); 
if n2>nl, •• 

NUM=zeros(l,n2); •• 
NUM(l,n2-nl+l:n2)=nmn; •• 

else, •• 
NUM=nmn; •• 

end 
b=zeros(n2,l); 
b(l)=NUM(l); 
for i=2:n2; •• 

for j=l:i-1, •• 
b(i)=-den(l+j)*b(i-j)+b(i); •• 

end, •• 
b(i)=b(i)+NUM(i); •• 

end 
B=b(2:n2,1); 
C=zeros(l,n2-l); 
C(l,l)=l; 
D=b(l); 

end 
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% filename: S!'SEQN.M 
% input system equation as state space fonn 
% dx(t) = Ao x(t) + Bo u(t) + Eo w(t) 
% y(t) = Co x(t) + Do u(t) 

yes=l; 
while(yes) 

clear; 
clc; 
fprintf ( '> Enter data for state space equation. \n' ) 
fprintf(' dx(t) = Ao x(t) + Bo u(t) + Eo w(t) \n') 
fprintf(' y(t) = Co x(t) + Do u(t) \n') 
fprintf ( '> Enter Ao matrix : ' ) 
Ao=input( I I ) ; 

fprintf ( '> Enter Bo matrix ' ) 
Bo=input ( ' ' ) ; 
fprintf ( '> Enter Fo matrix : ' ) 
Eo=input ( I I ) ; 

fprintf ( '> Enter Co matrix ' ) 
Co=input( ' ' ) ; 
fprintf ( '> Enter Do matrix 1 ' ) 
Do=input ( I I ) ; 

fprintf( '> Input data is correct ? (y/n) 1 ') 
s=input ( I • r • S • ) ; 

if s=='Y' ls=='y' 
yes=O; 

else 
yes=l; 

end 
end 
% original state equaiton matrix 
BEo=[Bo,Eo]; 
DEo=[Do,zeros(2,l)]; 
[A,Bm,C,Dm]"'!ld.nreal(Ao,BEo,Co,DEo); 
B=Bm(1,l); 
E=Bm(: ,2); 
D=Dm( 1,l); 
% reduced state equation matrix 
sizel=nsx(size(A)); 
size2=nsx(size(Ao)); 
if sizel < size2 

clc; 
fprintf ( • > Reduced state space equation \n' ) 
fprintf(' dx(t) =Ax(t) +Bu(t) +Ew(t) \n') 
fprintf(' y(t) = C x(t) + D u(t)\n') 
A 
fprintf( '> Bit any key to continue 1 \n ') 
pause; 
B 
fprintf( '> Bit any key to continue : \n ') 
pause; 
E 
fprintf ( '> Bit any key to continue : \n ' ) 
pause; 
C 
fprintf ( '> Bit any key to continue \n ' ) 
pause; 
D 
fprintf( '> Bit any key to continue \n ') 
pause; 
fprintf ( I \n I ) 

end 
[nSysteml,dSysteml]=ss2tf(A,B,C(l,:),D(l,:),l); 
[nFilterl,dFilterl]=ss2tf(A,E,C(l,1),zeros(l),l); 
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[nSystem,dSystem]=minreal(DSystenl,dSysteml); 
[nFilter,dFilter]=minreal(nFilterl,dFilterl); 
(zSystem,pSystem,gSysten]=tf2zp(DSysten,dSystem); 
(zFilter,pFilter,gFilter]=tf2zp(nFilter,dFilter); 
if gSystem > 0 

case=l; 
else 

case=2; 
end 
clc; 
£print£('> Transfer function of system and shaping filter\n') 
fprintf(' y(s)= Gs(s)u(s) + Gw(s)w(s)\n') 
fprintf ( ' Gs ( s) : Vehicle transfer function \n' ) 
£print£ ( ' Gw( s) : Filter transfer function \n' ) 
gSysten 
fprintf ( • > Bit any key to continue a \n • ) 
pause; 
zSysten 
£print£('> Bit any key to continue \n I ) 

pause; 
pSysten 
fprintf( '> Bit any key to continue I \n I ) 

pause; 
gFilter 
£print£ ( '> Bit any key to continue I \n I ) 

pause; 
zFilter 
fprintf( '> Bit any key to continue I \n I ) 

pause; 
pFilter 
£print£ ( • > Bit any key to continue : \n I ) 

pause; 
clear yes s case No BEo DEo Bm DB sizel size2 
clear nSysteml dSysteml nFilterl dFilterl 
save afile; 
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% fname: OP.l'IMI.L. M 
% This is a sequence of the calculation for opt.imal control model, 

while 1 
fprintf ( '\n' ) 
clc; 
fprintf('> Solve human optimal control model\n') 
£print£(' 1. solve L Q R\n') 
£print£ ( ' 2. solve K B F /linear predictor\n' ) 
fprintf( I 3. quit \n') 
fprintf ( '> Select a number s ' ) 
No=input( I I ) ; 

if No=l 
SOLVEIQR; 

elseif No=2 
SOLVJmBF; 

elseif No=3 
clear No; 
break; 

end 
end 
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% £name: SOLVELQR.M 
% Input 
% [ql,q2] :weights on error (yl) and error rate (y2) 
% Tn :neuro-muscular time constant 
% output 
% r: weight on input (u) 
% G: weight on input rate ( du/dt) 
% To solve the Linear Quadratic Regurator (LQR) problem 
% for a single input 
% cost function: 
% J=E[y'Qy + G(du/dt)A2]=[x0'(CO'QCO)x0 + G(du/cit)A2] 
% Q=weights on error(yl) and error rate(y2) 
% augmented system equation: 
% d(xO)/cit = Ao xO + Bo du/cit 
% y = CO XO 
% xO=[x u] ', AO=[A B;O O], BO=[O I]', CO=[C D] 
% QO=CO'QCO 
% solution 
% udot=-Lxo 
% L=Bo'Ko/G 
% O=Ao'Ko+KoAo+Qo-KoBoBo'Ko/G 
% iteration to find G: Bisection method 
% L=[Ll L2] 
% 1/L2=Tn I iteration stop 

run=l; 
while (run) 

fprintf ( I \n I ) 

clc; 
fprintf('> Solve linear quadratic regulator problem\n') 
fprintf ( ' cost func I J(U) = E [ ql yl A2 + q2 y2A2 +' ) 
fprintf(' G (du/cit)"2 ]\n') · 
fprintf ( ' yl y2 : error and error rate for single axis \n' ) 
fprintf ( ' du/ cit : optimal pilot control rate \n' ) 
fprintf ( ' ql q2 : weights on error and error rate\n' ) 
fprintf ( ' G : weight on control rate \n' ) 
fprintf ( '> Enter the weights Q on [yl y2] : [ ql q2] ' ) 
q=input(' '); 
fprintf( '> Enter the neuro-muscular time constant 1 [Tn]') 
Tn=input( I I ) ; 

fprintf( '> Use default range to solve G ? : (yin)') 
yes=input(' ','s'); 
if yes=='n' I yes=='N' 

fprintf(' Recc:mnended initial range of G : [ 0.000001 1 ]\n') 
fprintf( '> Enter the initial range for G 1 [ gl g2 ] ') 

rangeG=input(' '); 
else 

rangeG=[0.000001 l]; 
end 
fprintf( '> Input data is correct ? : (yin)') 
yes=input( I I' 's I); 
if yes='y' I yes='Y' 

fprintf ( ' Processing ••• • ) 
Q=[q(l) 0 

0 q(2) ]; 
Gl=rangeG(l); 
G2=rangeG(2); 
ns=max(size(A));% no of states of A 
AO=[ A B; 

zeros(l,ns) OJ; 
BO=[zeros(l,ns) 1) '; 
CO=[C DJ; 
QO=CO'*Q*CO; 
r=Q0(3,3); 
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for i=lans 
for j=lans 

if abs(QO(i,j))<0.000000000001 
QO(i,j)=O; 

end 
end 

end 
[L,KO]=LQR(AO,BO,QO,Gl)~ 
Fl=l/L(ns+l)-Tn; 
[L,KO]=IQR(AO,BO,QO,G2); 
F2=1/L(ns+l)-Tn; 
if Fl*F2<0 

run=O; 
fprintf ( ' \n Initial range of G is O .K. \n' ) 
fprintf ( '> processing' ) 

else 
run=l; 
fprintf('\n Initial range of G is NOT appropriate for bisection') 
fprintf ( I method.a \n I ) 

fprintf( '> Hit any key to continue 1 \n ') 
pause; 

end 
end 

end 
run=l; 
while (run) 

[L,KO]=IQR(AO,BO,QO,Gl); 
Fl=l/L(ns+l)-Tn; 
G3=(Gl+G2)/2; 
[L,KO]=LQR(AO,BO,QO,G3); 
F3=1/L(ns+l)-Tn; 
if Fl*F3<0 

G2=G3; 
fprintf('.') 

else 
Gl=G3; 
fprintf( I• I) 

end 
if abs((Gl-G2)/Gl)>O.Ol 

run=l; 
else 

run=O; 
end 

end 
G=Gl; 
Ll=L( l 1ns); 
L2=L(ns+l); 
fprintf ( ' \n The weight on control rate I G = %g' ,G) 
fprintf ( '\n> Hit any key to ccmtinue 1 \n ' ) 
pause; 
clear i j q run yes yes KO Gl G2 G3 rangeG Fl F2 F3 ; 
save afile; 
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% fname: SOLVEKBF.M 
% To solve the Kallllan Bucy Filter and linear predictor problem. 
% augmented system eqn 
% d(xl)/dt = Al xl + Bl ua + wl 
% y = Cl xl 
% xl=[x u]', wl=[w (v)ua]' 
% AO=[A B;O -L2], BO=[O L2] ', Cl=[C D] 
% Wl=[EWE' O;O L2VuaL2'] 
% covariance matrix for noise : Vy, Vila, W 

yes=l; 
while (yes) 

fprintf ( ' \n' ) 
clc; 
fprintf ( '> Solve Kallllan Bucy filter/linear predictor\n' ) 
fprintf ( ' :KBF /linear predictor estimates the state of\n' ) 
fprintf ( ' the controlled system augmented with the neuro-muscular\n' ) 
fprintf(' mode and driven by an additional white noise source. \n') 
fprintf( '> Enter the pure perceptional t.irne delay : [Td]'); 
Td=input( ' ' ) ; 
fprintf('> Enter the covariance of w(t) : [W]'); 
W=input(' '); 
fprintf('> Enter the noise ratios for (yl y2 ua] : [rl r2 r3]'); 
ratios=input(' '); 
fprintf ( '> Enter the observation thresholds for [yl y2] [ Tl T2] ' ) ; 
treshd=input(' '); 
fprintf ( '> Enter the fractional attention : [ f] ' ) ; 
f=input( I O); 
fprintf( '> Input data is correct ? (yin) : ') 
s=input ( ' ' , ' s ' ) ; 
if s=='Y' I s=='y' 

yes=O; 
else 

yes=l; 
end 

end 
ratiol=ratios(l); ratio2=ratios(2); ratio3=ratios(3); 
Tl=treshd(l); T2=treshd(2); 

% initial values for iteration 
fprintf ( ' \n' ) 
clc; 
fprintf('> Kalman Buch filter/linear predictor\n') 
fprintf ( ' processing ••• \n' ) 
checkl=l; 
while ( checkl) 

fprintf( '> Do you want to try with default initial values\n') 
fprintf(' for [var(yl) var(y2) var(ua)] ? (yin)') 
sl=input(' ','s'); 
if sl=='Y' I sl=='y' 

varyl=O.l; vary2=0.l; varua=O.l; 
else 

fprintf( '> Enter initial values for [var(yl) var(y2) var(ua)] ') 
invar=input ( I O ) ; 

varyl=invar ( 1) ; vary2=invar ( 2) ; varua=invar ( 3) ; 
end 
fprintf ( ' processing' ) 
check2=1; 
check3=0; 
countl=O; 
count2=0; 
while (check2) 

%construct augmented matrix 
fprintf( Io I); 
countl=countl+l; 

109 



count2=count2+1; 
erfcl=l-ERF(Tl/(sqrt(2)*sqrt(varyl))); 
erfc2=1-ERF(T2/(sqrt(2)*sqrt(vary2))); 
Vyl=pi*ratiol*varyl/(f*erfc1A2); 
Vy2=pi*ratio2*vary2/(f*erfc2A2); 
Vy=[Vyl 0 

0 Vy2]; 
Vua=pi*ratio3*varua; 
Al=[ A B; 

zeros(l,ns) -L2]; 
Bl=[zeros(l,ns) L2]'; 
Cl=[C,D]; 
Wl=[ E*W*E' zeros(ns,l); 

zeros ( 1,ns) L2*Vua*L2']; 
El=eye(ns+l); 
[Hl,sigmal ]=LQE(Al,El,Cl,Wl, Vy); 
Lopt=[Ll/L2 O]; 
Int=MATITG( Al, Wl , Td) ; 
El=expn(Al*Td)*sigmal*expn(Al'*Td)+Int; 
A3=Al-Bl*Lopt; 
W3=expn(Al*Td)*Hl*Vy*B1' *expn(Al' *Td); 
Xhatl=LYAP(A3,W3); 
Xl=El+Xhatl; 
Y=Cl*Xl*Cl'; 
Ua=Lopt*Xhatl*Lopt'; 
if abs((varyl-Y(l,1))/max(varyl,Y(l,1))) > 0.005 •• 
I abs((vary2-Y(2,2))/max(vary2,Y(2,2))) > 0.005 
check2=1; 

elseif abs( (varua-Ua)/max(varua,Ua)) > 0.005 
check2=1; 

else 
checkl=O; 
check2=0; 
check3=1; 

end 
if count2=1 

templ=varyl; temp2=vary2; temp3=varua; 
elseif count2=2; 

temp4=varyl; temp5=vary2; temp6=varua; 
end 
varyl=Y(l,l); vary2=Y(2,2); varua=Ua; 
if count2=3 

if (countl-2) < 10 
fprintf ( '\n iter no : %g %g %g\n', •• 
countl-2,countl-1,countl) 

else 
fprintf ( ' \n i ter no : %g %g %g\n' , •• 

countl-2,countl-l,countl) 
end 
fprintf(' var(yl) :%15.7f%15.7f%15.7f\n',templ, temp4, varyl) 
fprintf(' var(y2) :%15.7f%15.7f%15.7f\n',temp2, temps, vary2) 
fprintf(' var(ua) :%15.7f%15.7f%15.7f\n',temp3, temp6, varua) 
count2=count2-3; 
fprintf( '> Do you want mQre iterations ? (y/n)') 
s2=input ( ' ' , ' s ' ) ; 
if s2='N' I s2='n' 

checkl=O; 
check2=0; 
fprintf( '> Try with another set of initial values ? (yin)') 
s3=input(' ','s'); 
if s3='Y' I s3='y' 

fprintf( '> Enter new initial values [var(yl)') 
fprintf ( ' var(y2) var(ua)] • ) ; 
invar=input( • '); 

110 



varyl=invar(l); vary2=invar(2); varua=invar(3); 
checkl=l; check2=1; 
countl=O; count2=0; 
fprintf ( ' processing' ) 

end 
else 

fprintf ( ' processing' ) 
end 

end 
end 

end 
if check3==1 

nl=max(size(Xl)); 
U=Xl(nl,nl); 
dUhat=L*Xhatl*L'+[zeros(l:ns),L2J*El*[zeros(l:ns),L2]'; 
J=trace(Y*Q)+trace(dUhat*G); 
fprintf('\n KBF/linear predictor was 
fprintf ( ' Covariance of u 
fprintf ( ' Covariance of ye 

Y(l,1),Y(2,2)) 
fprintf ( ' Covariance of ua 
fprintf(' Covariance of du/cit 
fprintf(' Optimal cost 
fprintf( '> Bit any key to continue 
pause; 

end 

solved. \n' ) 
(U) %g\n', U) 
(Yl,Y2) %g %g\n',•• 

(Ua) 
(dUhat) 
(J) 

\n ') 

%g\n' ,Ua) 
%g\n' ,dUhat) 
%g\n' ,J) 

clear yes Int s sl s2 s3 i j ratios treshd invar; 
clear erfcl erfc2 sizeA xlsize nl countl count2 A3 W3; 
clear checkl check2 check3 varyl vary2 varua; 
clear templ temp2 temp3 temp4 temps temp6; 
save afile; 
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% :fname: JaTI'l'G.M 
% matrix integral with t.une delay 

function [y]=matitg(A,W,delay) 
[P,D]=eig(A,'nobal.ance'); 
invP=inv(P); 
n=max(size(invP)); 
for i=l:n 

for j=l:n 
invpt(i,j)=invP(j,i); 
pt(i,j)=P(j,i); 

end 
end 
PWPt=invP*W*invpt; 
for i=l:n 

for j=l:n 
temp=D(i,i)+D(j,j); 
if abs(temp) > 0.00001 

Jd(i,j)=PWPt(i,j)/(temp)*(exp(temp*delay)-1); 
else 

Jd(i,j)=PWPt(i,j)*delay; 
end 

end 
end 
y=real(P*Jd*pt); 
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% fnamez FDCMAIN.M 
% To find pilot transfer function 
% 4th order Pade approXlllllltion of the pure observation del.ay 

fprintf ( I \n I ) 

clc; 
fprintf ( '> Frequency dana.in response \n' ) 
fprintf ( • Classical studies of human operator models use transfer ' ) 
fprintf ( 'function models. \n' ) 
fprintf ( ' Processing ••• • ) 
[nPade,dPade]=pade(Td,4); 
[zPade,pPade,gPade]=tf2zp(nPade,dPade); 
[Ap,Bp,Cp,Dp]=tf2ss(nPade,dPade); 
A2=zeros ( 2 *ns+ 7 ) ; 
A2(1:ns+l,lz2*ns+6)=[Al-Hl*Cl,-Bl*Dp*Lopt,Bl*Cp]; 
A2(ns+2z2*ns+2,lz2*ns+2)=[-expn(Al*Td)*Hl*Cl,Al-Bl*Lopt]; 
A2 (2*ns+3:2*ns+6,ns+2:2*ns+6)=[-Bp*Lopt, Ap]; 
A2(2*ns+7,ns+2:2*ns+7)=[-L2*Dp*Lopt,L2*Cp,-L2J; 
B2=zeros(2*ns+7,2); 
B2(1:2*ns+2,lz2)=[H1;expn(Al*Td)*Hl]; 
C2=zeros(l,2*ns+7); 
C2(1,2*ns+7)=1; 
E2=zeros(2*ns+5,1); 
E2(2*ns+7,l)=L2; 
A3=A2; 
B3=B2(:,l)+A2*B2(z,2); 
C3=C2; 
D3=C2*B2 ( z ,2); 
% pilot transfer function 
[nPilot,dPilot)=ss2tf(A3,B3,C3,D3,1); 
[zpilot,pPilot,gPilot]=tf2zp(-ilidex*nPilot,dPilot); 
[nPilotM,dPilotMJ=minreal(nPilot,dPilot,0.01); 
[zpilotM,pPilotM,gPilotMJ=tf2zp(nPilotM,dPilotM); 
[Ac,Bc,Cc,Dc]=limnod('Closedl'); · 
[ZClosed,pClosed,gClosed)=ss2zp(Ac,Bc,Cc,Dc,l); 
[zClosedM,pClosedMJ=minreal(zClosed,pClosed,0.001); 
[nClosed,d.ClosedJ=ss2tf(Ac,Bc,Cc,Dc,1); 
[nClosedM,d.ClosedMJ=minreal(nClosed,d.Closed,0.001); 
fprintf ( ' Processing ••• \n • ) ; 
amega=logspace(-2,2,100); 
[magP,phasePJ=bode(-index*nPilot,dPilot,anega); 
[mags, phaseS J=bode(nSystem,dSystem., anega) ; 
[magC,phaseCJ=bode(nClosedM,d.ClosedM,anega); 
ImagP=20*loglO (magP) ; 
ImagS=20*loglO(magS); 
ImagC=20*loglO(magC); 
ImagO=ImagP+ImagS; 
if phaseP(l)==lBO 

phaseP=phaseP-360; 
end 
if phaseS(l)==lBO 

phaseSmphaseS-360; 
end 
phaseO=phaseP+phaseS; 
semilogx(anega,ImagP,anega,ImagS,anega,ImagO),grid,xlabel( 'w (rad/sec)'); 
ylabel( 'magnitude (dB)•) ,title( 'open-loop transfer function') 
pause; 
semilogx(anega,magC) ,grid,xlabel( •w (rad/sec)'); 
ylabel( 'magnitude') ,title( 'closed-loop transfer function') 
%for ascii data 
datl=[ anega • ,ImagP ,ImagS, ImagO ,Image ,magC, phaseC J; 
dat2=[ anega' ,pbaseP, phaseS, phase<>, phaseC J ; 
fprintf ( • F:requency dana.in perfoxmance was solved. \n' ) 
fprintf ( '> Hit any key to continue z \n ' ) ; 
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pa.use 
save a.1 d.atl /ascii /tabs %:magnitude Bode plot 
save a. 2 d.at2 / ascii /tabs %phase Bode plot 
clear d.atl d.at2; 
save afile; 
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% fname: CU'l'OFF.M 
% Bode ideal cutoff analysis 
% Wd : working band 
% Wn.: break frequency for sensor noise 
clc: 
fprintf('> Bode ideal cutoff analysis\n'): 
fprintf ( ' Find the break frequency for disturbance and sensor noise\n' ) 
fprintf ( ' on the Bode diagram of the pilot transfer function. \n' ) : 
fprintf ( ' Wd : disturbance break frequency ( 1st peak) \n' ) 
fprintf ( ' Wn. : sensor noise break frequency ( 2nd peak) \n' ) 
fprintf ( '> Bit any key to continue : ' ) : 
pause: 
semilogx(anega,I.magP),grid,title('Pilot transfer function'): 
xlabel( 'w (rad/sec)') ,ylabel( 'magnitude (dB)'): 
pause: 
fprintf ( '\n Find disturbance break frequency (Wd) \.n' ) 
fprintf ( '> Enter No ( local max=l, local min=2, no 'peak=3) • ) 
no=input( I I): 
%calculate working band (Wd) 
if no==l I no==2 

fprintf ( • > Enter subinterval for disturbance break freq 1 ' ) 

fprintf('[wl w2] (rad/sec)'): 
rangel=input(' '): 
[mPWd,pPWd,Wd]=maxminl(-index*DPilotM,dPilotM,rangel,no): 

%enter working band 
elseif no==3 

end 

fprintf( '> Enter the working band (rad/sec) : '): 
Wd=input ( I I ) : 

[mPWd,pPWd]=bode(-index*DPilotM,dPilotM,Wd): 

fprintf(' 1st peak is at %g\n' ,Wd): 
%Log magnitude of System and Pilot at Wd 
[mSWd,pSWd]=bode(nSystem,dSystem,Wd): 
if pSWd 180 

pSWd=-180: 
end 
ImPWd=20*loglO(mPWd): 
ImSWd=20*loglO(mSWd): 
%Feedback at working band ( open loop)· 
ImPSWd=ImPWd+ImSWd: 
pPSWd=pPWd+pSWd: 
fprintf ( '> Bit any key to continue 1 ' ) : 

pause: 
semilogx(anega,ImagP),grid,title('Pilot transfer function'): 
xlabel( 'w (rad/sec)') ,ylabel( 'magnitude (dB)') 
pause: 
fprintf ( ' \n Find sensor noise break frequency (Wn) \n' ) 
fprintf ( '> Enter No ( local max=l, local min=2, no peak=3) : ' ) 
no=input ( ' • ) : 
%calculate break frequency for sensor noise (Wn) 
if no==l I no==2 

fprintf ( '> Enter subinterval for sensor noise break freq 1 ' ) 

fprintf('[wl w2] (rad/sec)'): 
range2=input ( ' • ) : 
fprintf(' Processing ••• '): 
[mPWn, pPWn, Wn ]=maxminl (-index*DPilotM, dPilotM, range2 ,no) : 

elseif no==3 
fprintf( '> Enter break frequency for senor noise (rad/sec) '): 
wn=input ( I I ) : 

[mPWn,pPWn]=bode(-index*DPilotM,dPilotM,Wn): 
end 
if pPWn>O 

pPWn=pPWn-360: 
end 
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fprintf ( ' \n 2nd peak is at %g\n' , Wn) ; 
[mSWn, pSWn] =bode( nSystem,dSystem, Wn) ; 
if pSWn>O 

pSWn=pSWn-360; 
end 
I.mPWn=20*loglO(mPWn); 
ImSWn=20*loglO(mSWn); 
lmPSWn=I.mPWn+ImSWn; 
pPSWn=pPWn+psWn; 
%calculate peak of closed loop response 
[mag ,i]=max(magC); 
range3=[anega(i-1) anega(i+l)]; 
[mPSWp,pPSWp,Wp]=maxmin2(nClosedM,dClosedM,range3,1); 
lmPSWp=20*loglO(mPSWp); 
range4=[0.001 Wp]; 
[mPSWdr,pPSWdr,Wdr]=maxmin2(nClosedM,dClosedM,range4,2); 
droop=l-mPSWdr; 
1mPSWdr=20*log10(mPSWdr); 
[ Gm, Pmargin, Wcg, Wcp] =margin (magP. *magS, phaseO ,anega) ; 
Gmargin=20*loglO(Gm); 
% Bode Ideal Cutoff Analysis 
XdB=Qnargin; 
Yrad=Pmargin/180; 
nWcp=Wcp/Wd; 
nWn=Wn/Wd; 
slope=-12*(1-Yrad); 
highpole=l+abs(max(size(nSystem))~(size(dSystem))); 
%nWc=2*(1-Yrad)*nWn/highpole; 
nWc=2A(XdB/(12*(1-Yrad)))+l; 
Wc=nWc*Wcp; 
maxFB=l2*(1-Yrad)*(l+loglO(Wc/Wd)/logl0(2))-XdB; 
pecFB=lmPSWd/maxFB*lOO; 
fprintf ( ' Cutoff analysis was done. \n' ) ; 
fprintf ( '> Hit any key to continue 1 \n ' ) ; 
pause 
clear i imax nos nWcp nWc XdB Yrad Gm mag 
clear rangel range2 range3 range4 
save afile 
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% fname: MAXMIHl.M 
% Local minimum and maximum. 

function [m,p,w]=maxminl(nmn,den,range,case) 
yes=l; 
while(yes) 

anega=range(l):(range(2)-range(l))/20:range(2); 
(mag, phase] =bode ( nmn, den, anega) ; 
if case==l 

[m,i]=max(mag); 
elseif case 2 

[m,i ]=min(mag); 
end 
p--phase ( i) ; 
w--omega ( i ) ; 
if (omega(i+l)-anega(i))/amega(i)<0.05 

yes=O; 
end 
range=[anega(i-1) anega(i+l)]; 

end 
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% fname I MUMIH2 .M 
% Local maximum and minirnmn 

function [m,p,w]=maxmin2(num,den,range,case) 
yes=l; 
while(yes) 

anega=range( 1) 1 (range(2 )-range( 1) )/20:range(2); 
[mag,phase]=bode(num,den,anega); 
if case=l 

[m,i]=max(mag); 
elseif case =2 

[m,i]=min(mag); 
end 
p=phase(i); 
w=omega(i); 

if i=l 
yes=O; 

else 
range=[anega(i-1) anega(i+l)]; 

end 
if (anega(i+l)-anega(i))/anega(i)<0.05 

yes=O; 
end 

end 
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% £name: CBECKIN.M 
% check input data is correct or not to confinn results 

clc: 
fprintf('> System transfer function I Gs(s)') 
fprintf ( ' \n Gain : %g\n' , gSystem) 
£print£ ( ' Zeros : \n ' ) 
s=size(zSystem): 
imax=s(l,1): 
for i=l:imax, •• 

fprintf(' (%15.7£) + (%15.7f)j\n',real(zSystem(i)), •• 
:imag(zSystem(i))): •• 

end 
s=size(pSystem): 
imax=s(l,l): 
£print£ ( ' Poles \n' ) 
for i=l:imax, •• 

fprintf(' (%15.7£) + (%15.7f)j\n',real(pSystem(i)), •• 
:imag(pSystem(i))): •• 

end 
fprintf ( '> Bit any key to continue : \n ' ) : 
pause 
fprintf( '\n> Filter transfer function : Gw(s) ') 
fprintf ( ' \n' ) 
£print£(' Gain : %g\n' ,gFilter) 
£print£ ( ' Zeros : \n' ) 
s=size(zFilter): 
imax=s(l,l): 
for i=l:imax, •• 

£print£ ( ' (%15. 7£) + (%15. 7£) j\n' ,real ( zFilter(i)), •• 
:imag(zFilter(i))): •• 

end 
£print£ ( ' Poles : \n' ) 
s=size(pFilter): 
imax=s(l,l): 
for i=l:imax, •• 

fprintf(' (%15.7£) + (%15.7f)j\n',real(pFilter(i)), •• 
:imag(pFilter(i))): •• 

end 
£print£ ( '> Bit any key to continue : \n ' ) : 
pause 
fprintf ( ' \n' ) 
clc 
fprintf ( '> Input parameters for OCM\n' ) 
fprintf ( ' Covariance of disturbance (W) 
fprintf(' Objective function weights (Q) 

Q(l,l),Q(2,2)) 
£print£ ( ' Neuromuscular lag 
£print£ ( ' Observation delay 
£print£ ( ' Observation noise ratio 
£print£ ( ' Neuranuscular noise ratio 
£print£ ( ' Observation threshold 
£print£ ( ' Fractional attention 
£print£ ( '> Bit any key to continue 1 

pause: 

(Tn) 
(Td) 
(rl) 
(r2) 
(Tl,T2) 
(f) 

\n '): 

%9.4£\n' ,W) 
I [%9.4£ %9.4£]\n',•• 

%9.4£\n• ,Tn) 
%9.4£\n' ,Td) 
%9.4£\n', ratiol) 
%9.4£\n', ratio3) 

[%9.4£ %9.4£ ]\n',Tl,T2) 
%9 .4£\n I ,f) 
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% £name: RESULTS.M 
% Resuts menu for time danain and frequency danai.n perfo:mvmce 

while 1 
fprintf ( '\n' ) 
clc; 
fprintf ( '> S:imlll.ation results \n' ) 
fprintf ( ' 1. T:ime/frequency dana.in perfonnance \n' ) 
fprintf ( ' 2. Pilot transfer function \n' ) 
fprintf ( ' 3. Bode plot \n' ) 
fprintf(' 4. quit \n') 
fpriIItf ( '> Select a number : ' ) 
No=input( I I ) ; 

if No=l 
TFRESULT; 

elseif No=2 
PTF; 

elseif No=3 
BODEPIDT; 

elseif No=4 
break; 

end 
end 
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% £name: TRESULTS.M 
% Results of time and freq domain perfonnance on the screen 

clc; 
fprintf('> Time domain performance\n') 
fprintf(' Objevctive function weight (G) 
fprintf(' Covariance of u (U) 
fprintf ( ' Covariance of ye (Yl, Y2) 

Y(l,l),Y(2,2)) 
fprintf ( ' Covariance of ua 
fprintf(' Covariance of d(uhat)/dt 
fprintf ( ' Optilllal cost 
fprintf ( '> Hit any key to continue 
pause; 
clc; 
fprintf ( ' \n> Open loop \n' ) 
fprintf ( ' Gain crossover frequency 
fprintf ( ' Gain margin 
fprintf ( ' Phase crossover frequency 
fprintf ( ' Phase margin 
fprintf( '> Closed loop\n') 
fprintf ( ' Peak frequency 
fprintf ( ' [ gain phase] at Wp 

LmPSWp, pPSWp) 
fprintf ( ' Droop frequency 

(ua) 
(dUdot) 
(J) 

\n '); 

(Wcg) 
(Gm) 
(Wcp) 
(Pm) 

(Wp) 

(Wdr) 
fprintf ( ' [ gain phase] at Wdr 

LmPSWdr,pPSWdr) 
fprintf ( • > Hit any key to continue : \n . ) ; 
pause; 
clc; 
fprintf('\n> Cutoff analysis\n') 
fprintf ( ' Working band (Wd) 
fprintf ( ' [ gain phase] of pilot at Wd 

LmPWd, pPWd) 
fprintf ( ' [ gain phase] of system at Wd 

~d, pSWd) 
fprintf(' [gain phase] of Pilot/system at Wd 

LmPSWd, pPSWd) 
fprintf ( ' Noise cutoff frequency (Wn) 
fprintf ( ' [ gain phase] of pilot at Wn 

I.mPWn, pPWn) 

%15. 7f\n' ,G) 
%15.7f\n',U) 

[%15.7f %15.7f]\n•, •• 

%15. 7f\n' , Ua) 
%15. 7f\n • ,dUhat) 
%15. 7f\n • ,J) 

%15. 7f\n • ,Wcg) 
%15.7f\n',Gmargin) 
%15. 7f\n' ,Wcp) 
%15. 7f\n • ,Pmargin) 

%15. 7f\n' ,Wp) 
[%15.7f %15.7f]\n•, •• 

%15. 7f\n' ,Wdr) 
[%15.7f %15.7f]\n•, •• 

%15. 7f\n' ,Wd) 
[%15.7f %15.7f]\n•, •• 

[%15.7f %15.7f]\n•, •• 

[%15.7f %15.7f]\n', •• 

%15. 7f\n • ,Wn) 
[%15.7f %15.7f]\n', •• 

fprintf ( ' [ gain phase] of system at Wn : [%15.7f %15.7f]\n', •• 
IillSWn, pSWn) 

fprintf(' [gain phase] of pilot/system at Wn: 

fprintf(' 
fprintf( • 
fprintf(' 
fprintf( • 
fprintf( '> 
pause; 

LmPSWn, pPSWn) 
Max available feedback (maxFB) : 
Percent feedback at Wd (pecFB) 
Gain slope at Wcp (slope) 
Ideal phase crossover freq (We) 
Hit any key to continue : • ) ; 

[%15.7f %15.7f]\n•, •• 

%15. 7f\n • ,maxFB) 
%15.7f\n',pecFB) 
%15 • 7f\n ' , slope) 
%15. 7f\n' ,We) 
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% fname: TRESULTS.M 
% Results of time and freq domain perfo:crnance on the screen 

clc; 
fprintf('> Time danain perfo:crnance\n') 
fprintf(' Objevctive function weight (G) 
fprintf(' Covariance of u (U) 
fprintf ( ' Covariance of ye (Yl, Y2) 

Y(l,1),Y(2,2)) 
fprintf ( ' Covariance of ua 
fprintf(' Covariance of d(uhat)/d:t 
fprintf ( ' Optimal cost 
fprintf ( '> Hit any key to continue 
pause; 
clc; 
fprintf ( ' \n> Open loop \n' ) 
fprintf ( ' Gain crossover frequency 
fprintf ( ' Gain margin 
fprintf ( ' Phase crossover frequency 
fprintf ( ' Phase margin 
fprintf( '> Closed loop\n') 
fprintf ( ' Peak frequency 
fprintf ( ' [ gain phase] at Wp 

ImPSWp, pPSWp) 
fprintf ( ' Droop frequency 
fprintf ( ' [ gain phase] at Wdr 

ImPSWdr,pPSWdr) 
fprintf ( '> Hit any key to continue 
pause; 
clc; 
fprintf('\n> Cutoff analysis\n') 

(ua) 
(dUdot) 
(J) 

\n '); 

(Wcg) 
(Gm) 
(Wcp) 
(Pm) 

(Wp) 

(Wdr) 

\n I); 

fprintf ( ' Working band (Wd) 
fprintf(' [gain phase] of pilot at Wd 

ImPWd, pPWd) 

%15. 7f\n' ,G) 
%15.7f\n',U) 

[%15.7f %15.7f]\n', •• 

%15. 7f\n' , Ua) 
%15.7f\n',d0hat) 
%15. 7f\n' ,J) 

%15. 7f\n' ,Wcg) 
%15. 7f\n' ,Gmargin) 
%15. 7f\n' ,Wcp) 
%15.7f\n',Pmargin) 

%15. 7f\n' ,Wp) 
[%15.7f %15.7f]\n', •• 

%15. 7f\n' ,Wdr) 
[%15.7f %15.7f]\n', •• 

%15. 7f\n' ,Wd) 
[%15.7f %15.7f]\n', •• 

fprintf ( ' [ gain phase] of system at Wd 
ImSWd, pSWd) 

I [%15.7f %15.7f]\n',•• 

fprintf(' [gain phase] of Pilot/system at Wd 
ImPSWd, pPSWd) 

fprintf ( ' Noise cutoff frequency (Wn) 
fprintf ( ' [ gain phase] of pilot at Wn 

ImPWn, pPWn) 
fprintf ( ' [ gain phase] of system at Wn 

ImSWn, pSWn) 
fprintf(' [gain phase] of pilot/system at Wn : 

fprintf(' 
fprintf(' 
fprintf(' 
fprintf( I 

fprintf( '> 
pause; 

ImPSWn, pPSWn) 
Max available feedback (maxFB) 
Percent feedback at Wd (pecl!'B) 
Gain slope at Wcp (slope) : 
Ideal phase crossover freq (We) 
Hit any key to continue : ' ) ; 

[%15.7f %15.7f]\n', •• 

%15. 7f\n' ,Wn) 
[%15.7f %15.7f]\n', •• 

[%15.7f %15.7f]\n', •• 

[%15.7f %15.7f]\n', •• 

%15. 7f\n' ,maxFB) 
%15. 7f\n' ,pecFB) 
%15.7f\n',slope) 
%15. 7f\n' ,We) 
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% fnamei BODEPIDT.M 
% open loop and closed loop Bode plot on the screen 

semilogx(anega,ImagP,c:anega,ImagS,anega,ImagO) ,grid,xlabel( 'w (rad/sec)'); 
ylabel( 'magnitude (dB)') ,title( 'open-loop transfer function') 
pause; 
semilogx(amega,phaseP,c:anega,phaseS,anega,phaseo) ,grid,xlabel( •w (rad/sec)'); 
ylabel( 'phase (degree)') ,title( 'open-loop transfer function') 
pause 
semilogx( omega ,mage) , grid, title ( 'closed-loop transfer function' ) 
xlabel( 'w (rad/sec)') ,ylabel( 'magnitude') 
pause 
semilogx(amega,ImagC) ,grid,title( 'closed-loop transfer function') 
xlabel( •w (rad/sec)' ),ylabel( 'magnitude (dB)') 
pause 
semilogx(anega,phaseC),grid,title('closed-loop transfer function') 
xlabel( 'w (rad/sec)') ,ylabel( 'phase (degree)') 
pause 
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% fname: P'l'F .M 
% Show pilot transfer function on the screen. 

clc; 
fprintf('> Pilot transfer function Gpilot(s)\n') 
fprintf(' Gain %g\n' ,gPilot) 
fprintf ( ' Zeros : ' ) 
s=size(zFilot); 
:ilnax=s ( 1, 1); 
for i=l:imax, •• 

fprintf('\n (%15.7f) + (%15.7f)j',real(zPilot(i)), •• 
imag(zPilot(i))), •• 

end 
fprintf ( ' \n> Hit any key to continue : ' ) 
pause 
clc; 
fprintf('\n Poles ') 
s=size(pPilot); 
:ilnax=s ( 1, 1 ) ; 
for i=l: imax, •• 

fprintf('\n (%15.7f) + (%15.7f)j',real(pPilot(i)), •• 
imag(pPilot(i))), •• 

end 
fprintf ( ' \n> Hit any key to continue ' ) 
pause 
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% fname: OU'l'PUT .M 
% write output data file 

clc; 
fprintf( '> Write output data on the output data file. \n') 
fprintf ( '> Enter the title of this problem : ' ) 
confNo=input ( I I , IS I ) ; 

fprintf ( '> Enter the output file name : ' ) 
fn=input( I I, 's I); 
fprintf ( ' processing ••• • ) 
sizeNo=size(confNo); 
n=max(sizeNo); 
fprintf(fn, '\nTitle : ') 
fprintf(fn,confNo) 
if index=l. 

fprintf(fn,'\n y(s) = Gs(s) u(s) + Gw(s) w(s) \n') 
elseif index= 1 

fprintf(fn, '\n y(s) = -Gs(s) u(s) + Gw(s) w(s) \n') 
end 
fprintf (fn, ' y tracking error \n' ) 
fprintf ( fn, ' u pilot control input \n' ) 
fprintf (fn, ' w plant processing driving noise \n' ) 
fprintf (fn, ' Gs ( s) : system transfer function \n' ) . 
fprintf(fn,' Gw(s) : filter transfer function \n\n') 
fprintf(fn, 'System transfer function : Gs(s)\n') 
fprintf(fn,' Gain : %g\n' ,gSystem) 
fprintf ( fn, ' Zeros : \n' ) 
s=size(ZSystem); 
imax=s(l,l); 
for i=l:.imax, •• 

fprintf (fn,' ( %15. 7f) + (%15. 7f)j\n' ,real(zSystem(i)), •• 
unag(zSystem(i))); •• 

end 
s=size(pSystem); 
llllEIX=S(l,l); 
fprintf ( fn, ' Poles : \n' ) 
for i=l::imax, •• 

fprintf(fn,' (%15.7f) + (%15.7f)j\n',real(pSystem(i)), •• 
unag (pSystem( i) ) ) ; •• 

end 
fprintf(fn,'\n!'ilter transfer function: Gw(s)\n') 
fprintf(fn,' Gain : %g\n' ,gFilter) 
fprintf(fn,' Zeros: \n') 
s=size(zFilter); 
llllEIX=S(l,1); 
for i=l:imax, •• 

fprintf(fn,' (%15.7f) + (%15.7f)j\n',real(zFilter(i)), •• 
unag(zFilter(i))); •• 

end 
fprintf ( fn, ' Poles : \n' ) 
s=size(pFilter); 
imax=s(l,l); 
for i=l::imax, •• 

fprintf(fn,' (%15.7f) + (%15.7f)j\n',real(pFilter(i)), •• 
unag(pFilter(i))); •• 

end 
fprintf(fn,'\ninput parameters for OCM\n') 
fprintf ( fn, ' Covariance of disturbance (W) 
fprintf(fn,' Objective function weights (Q) 

Q(l,1) ,Q(2,2)) 
fprintf ( fn, ' Neuranuscular lag ( Tn) 
fprintf (fn, ' Observation de1ay (Td) 
fprintf(fn,' Observation noise ratio (rl) 
fprintf ( fn, ' Neul:almscular noise ratio ( r2) 

%9.4£\n' ,W) 
: [%9.4£ %9.4£]\n', •• 

%9.4£\n I ,Tn) 
%9.4f\n' ,Td) 
%9.4£\n', ratiol) 
%9.4£\n', ratio3) 
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fprintf ( fn, ' Observation threshold 
fprintf ( fn, ' Fractional attention 
fprintf(fn, 'Time d.anai.n perfo:cmance\n') 
fprintf(fn,' Objevctive function weight 
fprintf(fn,' Covariance of u 
fprintf(fn,' Covariance of y 

Y(l,l) ,Y(2,2)) 
fprintf(fn,' Covariance of ua 
fprintf(fn,' Covariance of d(uhat)/dt 
fprintf ( fn, ' Optimal. cost 
fprintf(fn, 'Open loop\n.) 
fprintf ( fn, • Crossover frequency 
fprintf(fn,' Gain margin 
fprintf ( fn, ' Crossover frequency 
fprintf(fn,' Phase margin 
fprintf(fn, 'Closed loop\n') 
fprintf ( fn, ' Peak frequency 
fprintf ( fn, I [ gain phase 1 at Wp 

ImPSWp, pPSWp) 
fprintf ( fn, • Droop frequency 
fprintf (fn, ' [ gain phase] at Wdr 

ImPSWdr, pPSWdr) 

(Tl,T2) 
(f) 

[%9.4f %9.4f]\n',Tl,T2) 
%9.4f\n\n' ,f) 

(G) %15.7f\n',G) 
(U) %15.7f\n',U) 
(Yl,Y2) : [%15.7f %15.7f]\n',•• 

(Ua) 
(dUhat) : 
.(J) 

(Wcg) 
(Gm) 
(Wcp) 
(Pm) 

(Wp) 

(Wdr) 

%15. 7f\n', Ua) 
%15. 7f\n I ,dUhat) 
%15. 7f\n \n' ,J) 

%15. 7f\n' ,Wcg) 
%15 • 7f\n • ,Qnargin) 
%15. 7f\n' ,Wcp) 
%15.7f\n\n',Pmargin) 

%15 o 7f\n I ,Wp) 
[%15.7f %15.7f]\n', •• 

%15. 7f\n' ,Wdr) 
: [%15.7f %15.7f]\n\n', •• 

fprintf ( fn, 'Bode ideal cutoff analysis \n' ) 
fprintf(fn,' Working band (Wd) 
fprintf ( fn, ' [ gain phase] of pilot at Wd 

ImPWd, pPWd) 
fprintf(fn,' [gain phase] of system at Wd 

ImSWd, pSWd) 

· %15. 7f\n' ,Wd) 
: [%15.7f %15.7f]\n', •• 

: [%15.7f %15.7f]\n', •• 

fprintf(fn,' [gain phase] of Pilot/system at Wd: [%15.7f %15.7f]\n', •• 
ImPSWd, pPSWd) 

fprintf(fn,' Noise cutoff frequency (Wn) 
fprintf ( fn, ' [ gain phase] of pilot at Wn 

ImPWn, pPWn) 
fprintf ( fn, ' [ gain phase] of system at Wn 

IIIISWn, pSWn) 

%15 • 7f\n I ,Wn) 
I [%15.7f %15.7f]\n',•• 

: [%15.7f %15.7f]\n', •• 

fprintf ( fn, ' [ gain phase] of pilot/ system at Wn : [ %15 • 7f %15. 7f] \n' , •• 
ImPSWn, pPSWn) 

fprintf (fn, ' Max available feedback (max!'B) t %15. 7f\n • ,max!'B) 
fprintf(fn,' Percent feedback at Wd (pecl'B) : %15.7f\n' ,pecFB) 
fprintf (fn, ' Gain slope at Wcp (slope) %15. 7f\n • ,slope) 
fprintf(fn,' Ideal phase crossover freq (We) : %15. 7f\n' ,We) 
fprintf (fn, • \nPade approximation for observation delay : Gpade( s) \n' ) 
fprintf ( fn, ' Gain : 1 \n ' ) 
fprintf(fn,' Zeros: \n') 
s=size ( zPade) ; 
imax=s(l,l); 
for i=l Ii.max, .• 

fprintf(fn, I 

end 
(%15.7f) + (%15.7f)j\n',real(zpade(i)),imag(zPade(i))), •• 

fprintf(fn,' Poles: \n') 
s=size(pPade) ; 
imax=s(l,l); 
for i=laimax, •• 

fprintf(fn,' (%15.7f) + (%15.7f)j\n',real(pPade(i)),.imag(pPade(i))), ••• 
end 
fprintf(fn, '\nPilot Transfer function : Gpilot(s)\n') 
fprintf(fn,. Gain : %g\n' ,gPilot) 
fprintf ( fn, ' Zeros : ' ) 
s=size ( zpilot ) ; 
ima.x=s ( 1, 1); 
for i=l:imax, •• 

fprintf(fn,'\n (%15.7f) + (%15.7f)j',real(zl>ilot(i)), •• 
.imag(zpilot(i))), •• 

end 
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fprintf ( fn, ' \n Poles ' ) 
s=size(pPilot); 
imax=s(l,1); 
for i=l:imax, •• 

fprintf(fn,'\n (%15.7f) + (%15.7f)j',real(pPilot(i)), •• 
lll18.g(pPilot(i))), •• 

end 
fprintf ( ' \n Writing was canpleted in ' ) 
fprintf(fn) 
fprintf('\n> Hit any key to continue: \n ') 
pause;, 
clear i imax s fn fnl fn2 dl d2; 
clc; 
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