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CHAPTER I 

INTRODUCTION 

Electronic computers and electronic systems are rapidly shrinking in size, while 

their complexity and capabilities continue to grow at an amazing rate. Lower costs and the 

desire for smaller system sizes have resulted in large scale component integration. High 

speed processing requires short transmission lengths and, consequently, close component 

packaging (propagation delay is proportional to length). These factors have produced a 

dramatic increase in the power density, resulting in rapidly rising temperatures and a large 

increase in the number of failures. Consequently, the thermal management of electronic 

systems has become an increasingly challenging task for electronic package designers for 

the past decade. The operating temperatures must be controlled on every component in 

order to ensure a reliable electronic system. 

Removal of dissipated heat from electronic packages is an economically significant 

problem. When thermal effects go undetected and unchecked, the failure rate of electronic 

components and assemblies doubles for every increase of 10 to 20°C in component 

temperature. The costs resulting from these failures can be substantial. In a study of 200 

aircraft, the U.S. Department of Defense estimated that $10 million in annual maintenance 

and repair expenditures could be saved for each drop by 5°C in coolant air temperature of 

electronic equipment in the aircraft (Weiss et al. 1989). 

Figure 1.1 shows the four levels of the structure of an electronic computer; the 

chip, the package, the printed wiring board (PWB), and the system. The chip is a 

rectangular slice of single crystal silicon where microscopic patterns of electronic circuits 
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Figure 1.1. Structural Levels of an Electronic Computer 
(Nakayama, 1986) 
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are provided through a number of thermal, chemical, mass transfer, optical, and mechanical 

processes. Several chips are housed in a package, whose primary function is to seal from 

the atmosphere. The package contains the electrical leads for the pulsed signals to be 

. transmitted in and out of the package. Packages are mounted on the PWB, where layers of 

conductor networks are fabricated to connect the different packages electrically. The 

system is composed of PWBs, mutually connected by wiring, the power supply, and the 

coolant moving device (a fan or pump). More complex gas or liquid cooling arrangements 

may be required for the larger, more powerful classes of computers. However, for smaller 

computers, direct forced air-convection cooling remains an appealing technique because of 

its mechanical simplicity, high reliability, ready availability, and attractively low cost 

(lncropera, 1986 and 1987). 

The Printed Wiring Board (PWB) is a representative subsystem with chip-carrying 

packages which is usually simulated as an array of rectangular components. The term 

"component" will be used hereafter instead of similitude "package" in PWB. Component 

arrangement may be semi-regular (in geometry), as for example, Very Large Scale 

Integrated (VLSI) chip carriers, Dual-In-Line Packages (DIPs), and Single-In-Line 

Packages (SIPs), or they may be irregularly shaped components, such as resistors and 

capacitors. The distribution of components on a board is application-dependent, but 

frequently components are mounted "in-line" in the direction of flow. When multiple 

PWBs are utilized, they are usually mounted back-to-back in horizontal racks, and if space 

is a consideration, PWBs may be mounted vertically in the system cabinet or rack. 

Figure 1.2 shows a typical regular in-line array of rectangular components. The 

present study is mainly concerned with this particular type of configuration. For forced 

convective heat transfer of a single heated component in such an array, the relevant 

geometric parameters are: L, the component plan length; t, the component height; S, the 

component streamwise and spanwise spacing; and D, the channel height, as illustrated in 

Fig. 1.3. These parameters can be non-dimensionalized and specified in terms of D/t, 
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SIL, and t/L. The first parameter, D/t, indicates the fraction of the total flow that passes 

over the top of the components. Since most of the heat transfer takes place from the top of 

the component, the ratio D/t is an important parameter. The second parameter, SIL, 

expresses the flow disturbance due to interaction of outer flow and cavity flow formed by 

two neighboring components. The third parameter, t/L is associated with the total wetted 

surface area of the component exposed to the air flow. Furthermore, the location of a 

heated component (row number, r) in such an array can be considered as the fourth 

effective geometric parameter, since the upstream components have hydrodynamic effects 

on the heat dissipation rate of the downstream heated components. 

Before any attempt can be made on the components' heat transfer enhancement, the 

thermal engineer of electronic packages needs to be provided with a tool to predict the 

operating temperature of each component, given the above mentioned geometric parameters 

and the air flow rate. To accomplish this task, there is a need in the joint design of 

experimental and numerical research in the area of electronic cooling. It is important that 

the numerical methods are applied with appropriate consideration of the experimental 

instrumentation and procedures which are used. 

In recent years, Computational Fluid Dynamics (CFD) codes have been extensively 

used for predicting flow and the associated heat transfer for cooling problems in electronic 

packaging. However, before CFD can become widely accepted in electronic cooling 

design, benchmark problems must be posed and solved to establish the validity and 

applicability of CFD. A CFD benchmark problem should consist of a clear and complete 

specification of the problem in terms of the above mentioned geometric parameters, material 

properties, and flow conditions, which are representative of the electronic cooling 

situations. Several investigators (for example see Choudhury, 1993; Linton and Agonafer, 

1993; Patankar, 1993) have shown that a set of reliable experimental data is required for a 

benchmark problem, in order to judge the adequacy of the mathematical model used. Thus 

the user of a CFD code can decide whether the model incorporated in the code is 
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satisfactory for the conditions covered by this benchmark problem. For the developer of 

mathematical model, such a benchmark represents a valuable resource that can be 

systematically used to identify the shortcomings of available models and to construct 

improved models. As a result, benchmark problems can make a valuable contribution, 

only if accurate and reliable experimental heat transfer data are provided. 

At this point the necessity of providing a set of reliable experimental heat transfer 

data for a range of different geometric parameters and flow rates becomes evident. This is 

the main purpose of the present research. In the absence of such data, the design tends to 

evolve on a trial-and-error basis, which is extremely time consuming and hence, costly. 

Experiments were conducted for a range of different geometric parameters (D/t, t/L, 

and r), air flow rates, and input power to the heated component placed in a regular in-line 

array of rectangular components. The results of these experiments were used to develop an 

emprical correlation that expresses the local convective heat transfer coefficient of any 
. . . 

single heated component placed in a regular in-line array of rectangular unheated 

components. 

Temperature rise of any component may be expressed as the sum of two parts; its 

self-heating temperature rise due to its own internal heating, and its temperature rise due to 

thermal wake effects of upstream components. The self-heating temperature rise is a 

function of the above mentioned geometric parameters, as well as the flow rate, and can be 

predicted with our proposed correlation. The thermal wake of upstream heated components 

can constitute a significant percentage of the total temperature rise of the heated component, 

especially if it is located far downstream of the entrance, and if all of the components 

upstream of it have a significant level of heat dissipation. This temperature rise due to 

thermal wakes can be predicted using the available correlations in the literature (Arvizu, 

1981; Arvizu and Moffat, 1982; Anderson and Moffat, 1990; etc.). These correlations, 

together with our proposed correlation, will enable the prediction of the operating 

temperature of any component in a regular in-line array of rectangular components, for any 
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combination of geometric parameters, flow rates, and heat dissipation levels. This is a 

significant step towards solving the electronic cooling problem. 

In most practical applications of convective cooling in air, there will be some heat 

lost due to conduction. The amount of conduction losses can greatly affect the component 

operating temperature and therefore the system as a whole. Experiments were conducted to 

examine the effects of varying Reynolds number, component placement, and board 

conductivity on the conduction heat transfer to the board. More information about details 

of these experiments can be found in Arabzadeh, et al. (1993). 

In the next chapter, a brief review of the experimental work published in the open 

literature in the area of electronic cooling will be presented. Both studies, which are 

directly or indirectly related to the proposed research will be considered. The work of 

those investigators who recognized the effect of any geometric parameter (D/t, SIL, t/L, and 

r), are considered as directly related work, while the studies of those who performed their 

experiments without taking the effects of these parameters into· account are regarded as 

indirectly related work. 



CHAPTER II 

LITERATURE REVIEW, RESEARCH NEEDS, OBJECTIVES, 
AND PRACTICAL IMPACT OF THE PROPOSED RESEARCH 

In this chapter, a brief review of experimental work published in open literature on 

forced convective electronic cooling in arrays of rectangular components is presented. 

Papers related to conduction heat transfer through the board are presented in section 4.2.1. 

Studies which are directly related to the present work show lack of development of a 

comprehensive heat transfer correlation which takes into account the effects of all relevant 

geometric parameters (D/t, SIL, t/L, and r). This comprehensive correlation should have 

sufficient generality in order to be "transportable" to any regular in-line array of rectangular 

components having arbitrary geometry. Indirectly related papers refer to those 

experimental studies who did not investigate the effect of any geometric parameters, but 

used different techniques or arrangements in order to enhance the convective heat transfer 

of their special tested arrays. These studies are reported at the end of this chapter, along 

with the objectives and practical impact of the proposed research. 

2.1 Present State-of-the-Art 

Several experimental investigations related to forced convective heat transfer in air

cooled electronic equipment have been conducted over the past decade. These experimental 

studies (both directly and indirectly related to the proposed work) have been summarized in 

Table I. This table outlines specifics about the experimental setup used in each study, the 

parameters and techniques used by each investigator, and the variables measured. A brief 

review of some of the directly related work listed in Table I will be presented first. 

9 



TABLE! 

Summary of Previous Experimental Studies With Ranges 
of Tested Parameters and Relevant Geometries 

COMPONENT"S INFORMATION: 

Sl'UDT SIZE: HEAT DISSIPATION ARRANGEMENT 
L St;L 

MATERIAL ol:lm/ 
~(q,,) Canl W/L t/L Sp/L component rows columns 

Ana&rson ana I.& I.& 3. tor low V 10 
Moffat. 19&11 

1.27 ]. I. 2. 2. aluminium 100. 5. tor ti"1 V 8 

Sparrow, •t al 
2.667 I. 3/8 1/4 1/4 

brass & US& or DaDllthal&D& 
1982-i ;aaplltllaleoe SUb!im!l~Oll 17 4 

Santos.and 2.667 I. 3/8 1/4 1/4 brnss & 1lll4i ot lll!.plli:ilal•ne 17 4 
M•ndes, 1986 lllaplltllal&El• sublimation 

!Arvizu. I. to l.& aluminium 

1981 
1.27 I. I. 

14 2. mounted on 100. 0.5 10 5 jp.laig!U plak 

l/'lrVIZU, and 
1.3 I. I. I. I.& 

Mottat, 1982 2. 2 . 
aluminium 100. NR 10 5 ... 

llull&r, and 2.4 I. 0.196 
Kilburn, 1981 2.8 I. 0.168 N/A N/A aluminium NR NR 5 2 

, .. 6 I. 0.1" 
Aslliwalt•, 2.2 I. 0.364 0.72 1.18 
&ta! 1983 2.0 I. 0.25 0.5 1.5 

acrylic NR 3. 2 5 

WlrtZ,and 
2.54 I. 0.25 1. Dvkslloorn,198~ I aluminium NR 1. to 5. 8 5 

WlrtZ,&tal 2.54 1. 0.25 1. 
1911" 

1. aluminium 60 1. to 5. 8 5 
L&llmann, and 

5. I. 0.25 
0. to N/A aluminium 

iODIY 11 tll •lement was 
WlrtZ, 198" 1. f,_ and heated 12 1 

Moffat, et al 1.27 1. I. & I.& aluminium 
I. 

1985 2. 2. mounted on 100. MR 8 14 
plaiglas plaM 

Chou, and LH 
3. 0.5& upstream modUI& was 

1987 
I. I. I. N/A aluminium IIMted With 25. VOits 2 I 

Ratts, •ta! 
1.9 1. 0.334 0.526 0.526 

66.a I vart&d 

19117 copptr Cllly modUltl Oil 3rd 4 6 
mlumn 6: 5ttl row hi,fttffl 

Chang. &tal 6. 
0.167 

1. 0.334 to N/A 1987 COP})4tl' 140. 14.5 2 I 
3-834 

Lehmann 5.011 1. 0.25 
0. to N/A only 11th element wa1 

1985 I. aluminium tiDd and llnted 12 1 

ort&Ra,and 
1.27 Moffat, 19116 I. I· 2. 2. aluminium 100. 0.1 t.o 0.8 10 8 

llib&r, and 
2.4 I. Sing!& moduJ• llnted 5. 7. 

,1981 
2.8 I. NR NR NR NR 4 6. 
3.6 I. With 2. watts 

4. 5. 

Holl"10rtll, and 
2.5 1. 0.25 

o. 10 30. V1)C 

FUiler, 1987 
1. I. aluminium 60. r9IUlaled 8 4.5 pnersuppl.,. 

Mortat. and I. & I.& 3.tor-v 
ADderson.1990 1.27 I. 1. 2. 2. aluminium 100. 5. for hi"1 V 10 8 

0.3 0.3 
Copeland, T 988 2.54 I. 0.25 to ID aluminium N'I 5. 9. 11 

I.OS 1.05 

Torikoshi,et 0.25 
2. 1. 0.375 0.25 aluminium N'I al,1988 0.25 N'I 16 7 

0.5 

Anderson and 
4.65 0.806 aluminium 3. tor ICM V 

Moffat, 1 990 0.204 0.273 0.273 100. 
5. far high V 

8 6 

Garimella ,anc 0.2 0.2 

Eibeck, 1990 2.54 1. 0.4 tO tO copper 7. 90. 6 5 
2.6 ?.R 

Note: Symbols and nomenclature used in this table are described at the end of the able 

10 
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TABLE I (CONTINUED) 

TEST SECTION INFORMATION : CHANNEL INFORMATION : 

STUDY SIZE: FLOW 
8 3:: SIZE: 

LT WT V MATERIAL 0 LI LO LC WC MATERIAL 
D/L :z " (cm (cm) Im/a) Rf>n Ill (cm) (cm) (cm) (cm) 

IM<*SOc, anc 3556145.7 ) . & DUUU P.~NIA-
2~ to IPl.aDX.~ VT SU 10.16 n 2to. 45.7 lrR 

Moffat, 19&& (1mtp1-) 62 25(Dl ··- . jSparrow, et al I.D7 ZODD o.~cm ot Th•-•ae 56. "'"' 1. u~ 1100 alllllWltlD H SU 165. 411. 269. 13.'}t 
1982-4 '100) t>late i.et eection 

lsantos, and l.D7 2IXXl o.~cmor Th•-•ae 
Mendes .. 19&6 56. l).)t I . l.98 3700 llummtum H SU 165. 411. 269. l).)t t.et. eection 

~.7> 7CXX) !>lab! 

Arvizu, 1. I. 900 alummium 
19&1 '3:156 102 to to to 1.27cm le:D.!1 VT SU NR NR 266.7 '3:i.56 .-!&luan 5. ID. i5000 

Arvizu, and I . I. 11Dl alummium 
Moffat, 19&2 '3:156 102 to 11) to 1.27cm IHI.JI VT SU NR NR 266.7 ~56 S1Nl&luan u 9. '7000 

Buller, and IOO--lll. oa 5. '}t6 cttamic 
Xilburn, 19&1 

~4 ____ 

to 11) substrate H SU NR NR 7.). NR NR -·--·mp ., .. ---· 2720 

IMhiwue, 0.56i I. 870. 

eta! 19&3 
19. 11 .7 & 1D to NR VT SU NR NR NR NR n 

0.62 10. 8700 
Wirtz.and '38.1 25.4 

o.m I. 6,0 1 ........ .,_ 

Dvkshooni.t 9&~ 
to 1D to '-- 1H SU 7.5 52 50.1 25.4 pleJ:!&laS 
1.15 10. 6,00. 12.5aa·'""'"'-

M'irtz, et al )II.I 25.4 0.5 
1.5 25DO , ........ .,_ 

pleliglas to to ~_s:;.!1._ H SU 7.5 52 50.1 25.4 
19&'; 9 .. 1500D. 

Lehmann, and 60. to O.'I 1000. VT 45. to 
Wirtz, 19&5 115. 5. ~-r, NR 

)7)0. plHiglaS SU 100. 5. 165. 5. plHiglas 

Moffat, et at I. 1.5 1noo aluminium 
19&5 

test plate 2..Z, ID 
5500D 1.27cm lezaa VT SJ NR NR 266.7 35.56 

<t.62 9 . ltMI & leDn 

Chou, and Lff '3'60 • 

19&7 
test plate NR NR 7120 ableltOS H SJ NR NR NR NR HR 

10680 

Ratts, et al I.I '3680. cleu clear 
19&7 

16.<t 12.6 1.5) to to plelliglas H DI 21.7 ... 42.1 12.6 plextglas 52 10710 

Chang. etal 0.5 1.5 2'1111. 

19&7 N/A 20. to to to acrylic plate H SJ N/A N/A 2<14. 20. acrylic plate 
l. 10. 19000. 

Letmwm 50.1 25.4 0.5 1000. 45. 

test plate 
0.75 HR ..: pleJ:!&laS VT SJ to 5 . 165. 5. ple:iilglu 

19&5 1.0 0. 100. 

C>rtetla, and '3).561 i5.7 1.0 0.01 10. i,t=~-:: aluminium. 
test plate !"n .~ 1D VT SJ a.165 6.ffl :NO. i5.7 

Moffat, 19&6 1000. o._ ......... _ ltMI a. leJan 

Biber, and Mt Of tw.llty zooo. fiberglass 
SJ 

,19&~ circuit carts HR to epo:lied on VT HR HR HR NR HR 
IDDDD rHln 

HoU'W'Ofttl, and 0.5 1.5 1310. II.a.aw..- 12.7mm --·· Fuller, 19&7 
')8.1 · zz.9 0.75 to to ~- VT SJ 7.6 7.6 5).') ZZ.9 plaig!U plat. 15. 19670. IZ.--·~--

Moffat, and l . ,... 
ZDOO. 

_,,_ __ 
SJ 

i,..nderson, 19&& !35.56 457 2..Z, to 
~ IPlat..-...- VT 10.16 HR 2i0. i5.7 HR 

i.6 6.Z o.-P1nlCIM 

Copeland, 198E 0 .5 ID 0.5 to lsoo to 1mm thick 
38 42. 1.25 5.5 113750 epoxy gtus H SJ 81. 23. 122. 42. NI 

Torikoshi,et al 2.5 to 
2500 1.8 mm thicl, Transparent 

50. 20. 1.25 5000 VT SJ NI NI NI 20. 
1988 8.5 ··"" fiberglass acrylic plate 

Anderson and b .3to h .5 to 1350 ··- 1.27 cm thiclo 
38.9 35.6 ID ........ ,nan VT SJ 8. 53. 100. 35.8 

Moffat, 1990 b .94 8. ""·"· -- lexan 

Garimella and 0 .47 150 
1.9 cm thick 80.~ 

Eibeck, 1990 
80.: 36.6 to NI to H DI NI NI 36.6 Plexiglas 

1 41 •i•n plexiglas 
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TABLE I (CONTINUED) 

CCHilDERAT10N OF FaJA 

STUDT EFFECTIVE KEY PARAMETERS !CORRELATIONS 
COMMENTS: 

,-5TAINED: 
D/t S/L t/L r 

Anaenonana 
flgUres only 

mstalltd 1COOps inaeaMd thermal mizing & 

Moffat, 19&& lrtductd adiabatic temperature bV 10- 50~ 

Sparrow, et al X I 
~ of analogy be~ mass transfer and 

19&2·4 lhnt transfer 

Santos. and 
flguresODly IUSe of aualogy between mass transfer and 

Mendes, 19&6 ~Ht transfer 

!Axvizu, 118 wr• Q coa.~IM eoc» WIiie!!, pr- tbe 

19&1 
X X X I ~tmc t.etnpenbll'o of Mdl •1-t , la a 

~11111 popwalltd ID liae for ftric>u V, D/L ~ /L 

~ . and 1UM or supetl)OSition meUlod to predict the 
Moffat, 19&2 X X flgUres only !:>perating tniperatur• and compare it 

Mith measured tnlDerature. 

Buller, and 
X 

u.. or cotburn J factor to predict th• 
Iilburn, 19&1 I operating tniperature. 

IMhiwu.•. ltne 1-1 ~blr• nae of llir reduced b'f •• 

•tat 19&3 I =~ •• 10• o1 _ ... uoaa1 m 11ae"" uaag 
"*--e4·--~ 

IWirtZ ,and X X 
-,.o tbtai.Dad for coatrtbutloo to 

bvkShooni,19&• I ~tam-:,·~ d ~~!.- down Nim o( I ... eat diNi t . 

lwirtZ, •tat flgUres only lintrartd thermographic study: 
19&"\ its advantan and disadvant:aoe 

.. •tunann. and X 
m o,re11111 c«nlltioll ill r-1N 'Wblcb 

WirtZ, 1a",:, I ~<:..~ u. eaectol oomDOAent =lda DO. 
el llei•ll.t. & modUlo etnam- IRAt!iaa 

Moffat, •t al 
X p=~-~==::r'Tut;1~i:t° 

19&5 X X I la-uaounn for eowral coratuatlCDI ot 
d>annel 11--taod ..,........,1, •olOcitll'. 

Cbou, and LH 
figures only 

flAdiDg th• q>Umum tliat of ,rortft genuat.or 

19&7 ti> reduce tne ew1- wm:peraturo aad 
DO&IIDifon:ait)'. 

Ratts, etal OIXlliag ouaa-eat by nno:11 ell.eddiag 
19&7 figures only - .1a Cl'--now < muimum of ea • l. 

Chang. etat X X ---OlllaiDedbTIIIUIC connunJfact.or 
19&7 

Lehmann, 
!In• ffengo coa\llKUYe roailltlllace ( R 1 ) 

X X I Iva rolaled to L aad a•er1gt Hlocity ty: 
19&5 Ille-a " (UL)"8·" 

ert.Ra. and I 
ttemporaw.r" of i.DdiYidual elem.ma la la-uae 

Moffat, 19&6 X larn.y cu llo predicted gl•.n tll.o bNt i...--.. •n from Mdl •1-t. 
5iber, and lia......tiptien of tile appbcabilityof pablilbod 
~ . • 19&6 I iOOffetatiODa •- Ulateffecta of oaterlnco 

~ .•mt - Uld ccm4uctloa ut -!cant 

Hollworth, and lcun-• of 50 I ill hf« ataaore4 
Full•r, 19&7 flgUres only ct oomparod to tn-11• 1rnno,1Nnt 

Moffat. and X X I 
19Pplyiag ltwtr pn¥ioue o1Jt1in1CI C11t1 tn order 

Anderson, 19&& tt IIW,a wperpoeitiOG mttll.od. 
1,- unarwu ~on ..._ nal 1r1G11Ua Ql"RWW'1l 

Copeland, 1988 X X X X ,... °' campcll ... llai1'ltS encl lnpUt powa' to ... 

T orikoahi ,et aJ X X Only-of-~~an-•-
1988 caalllc:ienl of._ -,.pana,1 ... -galad 

Anderson Ind 
X X ~ IUl*ll(lllltlar mMhod to ablained - 1Dr 

Moffat, 1990 X - c:tlanMI 1N119f11S encl row numbers 

Garimella and X X X 
Eibeck, 1990 TIMf perfarmed lheir ...,;m ... In ••• -
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SYMBOLS AND NOMENCLATURE USED IN TABLE I 

Reynolds number is based on length of component, adequate information is not 

available to convert it to Reo 

configuration of the test section 

height of channel 

blower in discharge mode 

horizontal test section 

length of each component 

total length of channel 

length of inlet section 

length of outlet section 

length of test section 

mode of blower (suction or discharge) 

not applicable 

not reported 

power dissipation of each component 

heated component row number 

Reynolds number based on the height of channel (D) 

intercomponent spacing 

spanwise spacing between components 

streamwise spacing between components 

blower in suction mode 

height of each component 

voltage input to the heated component 

channel inlet velocity 

vertical test section 

width of each component 

width of channel 

width of test section 
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Sparrow et al. (1982) reported heat transfer data for a regular in-line array of 

"flatpacks". They used the naphthalene sublimation technique, with the heat transfer 

Nusselt number deduced from the measured Sherwood number by invoking the mass

transfer analogy. They reported row-independent (fully developed) heat transfer 

coefficients for fifth and all subsequent rows. None of the important geometric parameters 

appear in their suggested correlation. Furthermore, since they used the analogy between 

mass and heat transfer, the accuracy of their results should be verified by actual temperature 

measurements. 

Arvizu (1981); Arvizu and Moffat (1982); and Anderson and Moffat (1990), 

reported a superposition method to calculate the temperature rise of a rectangular 

component due to the effects of thermal wakes of its upstream heated components. It 

should be noted that during our data collection, the temperature rise of components 

upstream of the heated component were also measured and recorded in order to compare 

with their data for the superposition method. This comparison revealed and verified that 

their suggested superposition correlation is accurate enough (within our experimental 

uncertainty) for only prediction of the temperature rise of any component due to the thermal 

wakes of its upstream heated components, in a regular in-line array of rectangular 

components. However, another comprehensive correlation is needed to predict the self

heating temperature rise of the component due to its internal heating, which is a function of 

all relevant geometric parameters. This can be the proposed correlation of this study. As 

mentioned in Chapter I, summation of these two temperature rises gives the total 

temperature rise of the component. Their suggested correlation for prediction of self

heating temperature rise is only limited to their tested array, since the effects of important 

parameters such as components' height (t), and heated component row number (r) were not 

included. 

Buller and Kilburn (1981) obtained heat transfer data for a single heated rectangular 

component placed in the test section, and successfully correlated the data using a hybrid 
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characteristic length based on features of both the flow and component geometries. They 

had only one component in their test section, therefore, their suggested correlation can not 

be applied to fully populated arrays. Hydrodynamic effects of upstream components 

(heated component row number, r) and effects of components' spacing can not be 

investigated when there is only one component in the test section. 

Wirtz and Dykshoom (1984), and Wirtz et al. (1985), reported heat transfer studies 

for an in-line array of "flatpacks". The components were arranged in a square array in both 

the streamwise and the spanwise directions. In these tests, the components were 

electrically heated, and the heat transfer coefficient was deduced from an energy balance. 

Using conventional temperature measurement and infrared thermographic techniques, the 

experimental results showed that the thermal wakes from heat dissipating components have 

significant influence on heat transfer of downstream components. However, the effects of 

the hydrodynamic wake and components' height were not investigated separately. It was 

found by Lehmann and Wirtz (1985) that the convection from the component surface 

increased when component spacing was increased. 

Moffat et al .(1985) with an experimental setup similar to that used by Arvizu and 

Moffat (1982), presented heat transfer coefficients and thermal wake functions for in-line 

arrays of cubical components mounted on one wall of a parallel planar channel for several 

combinations of channel height (plate spacing) and approach velocity. It was found that the 

change in channel height can result in different flow patterns an~ hence, large variations in 

the heat transfer coefficient. However, they did not investigate effect of components' 

height and heated component row number, on convective heat transfer coefficient of the 

heated component. 

Chang et al. (1987) investigated the influence of the hydrodynamic wake from one 

unheated component on the heat transfer of a downstream heated component. Only two 

components were used in their experiments. It was found that the hydrodynamic wake 

from the upstream component can cause a large variation in heat transfer on the heated 
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component, depending on the spacing between the two components. They also showed 

that the average heat transfer coefficient from the heated component can be expressed by the 

Colburn j-factor, which is a function of the Reynolds number and the ratio of channel 

height to component height. Since their test section was composed of only two rectangular 
-

components, effects of components' spanwise spacing, as well as components' height 

were not included in their offered correlation. Their results can not be used for fully 

populated arrays. 

Copeland (1992) performed a series of experiments to study the effects of channel 

height, components' spacing, and heated component row number on forced convection of a 

regular in-line array of "flatpacks". Their suggested correlations are only limited to their 

tested arrays, since effects of input power to the heated component and components' height 

were not taken into account. 

Torikoshi et al. (1988) suggested a set of correlations based on their experimental 

data for regular in-line arrays of flatpacks. They included the effect of components' height 

in their offered correlations, while effects of other important parameters such as channel 

height, components' spacing and heated component row number were neglected. 

More recently, Garimella and Eibeck (1990) conducted an experimental study for 

water cooling of a regular in'-line array of rectangular components. The Nusselt numbers 

of the heated components were correlated in terms of array Reynolds number, channel 

height, and components' spanwise and streamwise spacing. However, the effects of 

components' height and heated component row number were not included in their 

suggested correlations. Furthermore, as mentioned in their paper, water cooling is more 

applicable to the mainframe computers, rather than portable electronic equipment. 

Heat transfer enhancements have been reported by other investigators by using 

several different techniques and arrangements, such as pin-mounted components, regular 

in-line array with a missing component, or a component with different height (odd size 

component), implanted fence-like barriers, and staggered arrangement of the rectangular 
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components. These studies are not directly related to the proposed work, however, a brief 

review of some of these work listed in Table I will be presented here. 

Anderson and Moffat (1988) reported that installed scoops (turbulators) increased 

thermal mixing and reduced the temperature rise of the component due to the thermal wake 

by 10-50%. Chou and Lee (1987) found the optimum size of the vortex generator installed 

on the leading edge of the component in order to reduce the component surface temperature 

and nonuniformity. Ratts et al. (1987) reported the cooling enhancement of the 

components up to 82%, by placing cylinders periodically above the back edge of each row 

of components. 

Experiments with a "missing component", a component with a different height 

(odd-size component), and implantation of fence-like barriers in a regular in-line array of 

rectangular components, were performed by Sparrow et al. (1982-1984), and Santos and 

Mendes (1986). They reported that all of these techniques enhanced the heat transfer, 

however, since they deduced the heat transfer Nusselt number from the measured 

Sherwood number by invoking the mass transfer analogy, the accuracy of their results 

should be verified by actual temperature measurements. 

Ashiwake et al. (1983), Hollworth and Fuller (1987), and Garimella and Eibeck 

(1990), reported a notable advantage by placing the components in a staggered arrangement 

on a card. Staggered arrangement of the components on a card reduces both the thermal 

resistance and the local temperature rise of the air by as much as 70% of the conventional 

regular in-line arrangement. One of the focuses of their work was on reducing the non

uniformity in the temperature rise of the cooling air. For different channel heights tested, 

their flow visualization showed little or no mixing from the recirculating regions behind 

each component into the flow in the lanes for an in-line array, while a staggered 

arrangement had better mixing in these regions. 

Mounting the components in a staggered configuration may enhance the convective 

heat transfer, but it will increase both the pressure drop in the channel and the total 
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interconnect length and/or bus-line length. An increase in the total length of bus-lines 

potentially causes a reduction in computer speed (speed being inversely proportional to the 

total length of bus-lines). In spite of having a considerable heat transfer enhancement by 

placing the components in a staggered arrangement, the trade-off between this advantage 

and its effect on the pressure drop in the channel and reduction of computer speed has not 

been assessed. 

2.2 Areas of Research Needs 

Undoubtedly, the work discussed in the foregoing and the results summarized in 

Table I represent major steps forward. However, there are several shortcomings and 

needed research in certain areas associated with the work available in the literature. These 

shortcomings can be classified in two different categories; shortcomings of the studies 

which are directly related to our proposed work, and shortcomings of the studies which are 

not directly related to our study. For directly related work, a detailed discussion will be 

presented, while for indirectly related work, a brief discussion of the needed research will 

be outlined. 

2.2.1 Shortcomings and Research Needed for Directly Related Studies 

For forced convective heat transfer of a heated component in a regular in-line array 

of rectangular components, the relevant geometric parameters are D/t, SIL, t/L, and heated 

component row number (r). Influence of these important geometric parameters on heat 

transfer coefficient of the heated component was outlined in Chapter I (see Figure 1.3). In 

addition to these parameters, the influence of channel approach velocity and input power to 

the heated component should also be considered in these studies. 
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None of the experimenters who investigated the convective heat transfer in a regular 

in-line array of rectangular components took the effects of all of the above important 

parameters into account. The heat transfer results of these studies have not sufficient 

generality to be transportable to another setup, since they don't cover the effects of all 

relevant parameters. The urge to combine the reported correlations and deduce the 

appropriate correlation(s) which cover the effects of all of the above mentioned parameters 

is also impossible. Consequently, the available correlations for forced convection of a 

regular in-line array of rectangular components have many gaps, and the accuracy of the 

reported results is not well established. 

The purpose of this study was to address most of the above mentioned 

shortcomings by conducting a full scale "systematic" experiment in a regular in-line array 

of rectangular components. It is believed that a significant contribution is made by 

expanding the existing experimental database and developing the proposed correlation, for 

the local convective heat transfer response to any heated component placed in a regular in

line array of unheated rectangular components. This correlation includes the effects of 

most of the important relevant geometric parameters (D/t, t/L, and r), as well as approach 

channel velocity, for different range of input power to the heated component. Such 

information is required to accurately predict the operating temperature of a heated 

component in any arbitrary regular in-line array of rectangular components. 

It should be noted that the experiments with different SIL ratios are underway 

(Kim, 1993). The results of these experiments will complement the database developed in 

this study and could be easily incorporated into the proposed heat transfer correlation. In 

order to conduct these experiments, two different boards for SIL ratios of 0.429 and 2.333 

were designed and constructed. 
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2.2.2 Shortcomings and Research Needed for Indirectly Related Studies 

Investigators who conducted their experiments with pin mounted components, 

vortex generators, missing components, components with different height ( odd size 

component), implantation of fence-like barriers, and staggered arrangement of rectangular 

components, all reported the increase of convective heat transfer for their special tested 

array. Few of them obtained correlations for the heat transfer enhancement. Undoubtedly, 

these correlations work for their tested array have special geometries. Once the 

components and array geometries change, the rate of increase of heat transfer will be 

changed. The rate of these heat transfer enhancements should be correlated in terms of the 

involved effective parameters in order to have sufficient generality to be transportable to 

arrays having different geometries. Consequently, before any attempt can be made on heat 

transfer enhancement, a general correlation which expresses the heat transfer coefficient of 

a heated component in a regular array of rectangular components in terms of relevant 

parameters is needed. This was the main purpose of the proposed research. Based on our 

proposed correlation, research for the above mentioned different techniques can be 

continued to find a general correlation for each case. Furthermore, as mentioned in the 

previous section, the trade-off between the advantage of heat transfer enhancement by 

mounting the components in a staggered arrangement, and the disadvantage of increased 

pressure drop, as well as reduced computer speed, has not been investigated. 

2.3 Objectives 

The main purpose of this study was to take a step forward in the direction of the 

overall objectives in the area of forced air-cooled electronic cooling: to develop the 

techniques and the databases needed to be able to predict the operating temperature of any 
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rectangular component in an arbitrary array of arbitrarily different rectangular components 

mounted on a circuit board and contained in a forced-air-cooled cabinet. 

The specific objectives of the proposed research were: 

1 . Design and construction of a versatile experimental setup which is capable of 

performing experiments with different channel heights, component heights, 

spanwise and streamwise spacings, component arrangements (in-line and 

staggered), as well as test section orientations (vertical or horizontal). The 

setup should also be capable of accurate control and measurement of the 

channel average velocity, heated component temperature, and input power to 

the selected component(s). 

2. Systematic expansion of the experimental heat transfer database applied to 

forced convective air-cooling of regular in-line array of rectangular 

components. Detailed and systematic experiments were performed with 

different channel heights, components' heights, heated component row 

numbers, channel approach velocities, and input power to the heated 

component. 

3 . Development of a general heat transfer correlation in terms of most of the 

effective parameters, using the experimental data. This systematic approach 

will permit the use of the proposed correlation for regular in-line arrays of 

rectangular components with any arbitrary geometry, channel approach 

velocity, and input power to the heated component. 

4. Investigation of the effects of board conductivity and conduction losses of the 

heated component, on the convective heat transfer coefficient and consequently 

on the operating temperature of the heated component. Experiments were 

performed to examine the effects of varying Reynolds number, component 

placement, and board conductivity on .the conduction heat transfer to the board. 
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2.4 Practical Impact of This Research 

The results of this study and the available correlations in the literature (Arvizu, 

1981; Arvizu and Moffat, 1982; Anderson and Moffat, 1990) for thermal wakes of 

upstream components can be combined in order to predict the operating temperature of any 

component in an arbitrary regular in-line array of arbitrarily heated rectangular components. 

This serves as the primary significant step towards solving the electronic cooling problem. 

Consequently, the practical benefits emanating from this investigation are enormous: 

1 . Allow heat transfer behavior to be predicted for a wide range of arrays with 

only a minimal amount of testing required for the array in question. 

2. In the initial stages of the design effort, predictions of component failure rates 

and corresponding equipment reliability could be made based on the accurately 

predicted temperatures. This improved prediction ability would allow the 

designer to assess the various trade-offs between component types (material, 

size, weight, etc.) and failure rates before the optimized design is established. 

3. Provide a set of accurate and reliable experimental heat transfer data as the 

input for CFO benchmark problems. Such benchamrk problems that are 

bundled with experimental data are very useful in judging the satisfactoriness 

and adequacy of the mathematical models used. 

4. Ultimately, the improved temperature predictions that could be performed in 

the design stage will lead to more efficient, more reliable equipment. 

Collectively, these benefits would markedly speed up the entire thermal design 

process, and reduce the overall production cost, while providing improved reliability. 

In the next chapter, details of different parts of the experimental setup will be 

presented. Efforts have been made to design and construct different parts of the 

experimental setup, in order to be able to perform a series of systematic experiments which 

include variations of all effective involved parameters. 



CHAPTER ill 

EXPERIMENTAL SETUP, DATA ACQUISITION SYSTEMS, 
AND PROCEDURES 

Lack of systematic approach is one of the main shortcomings of the work available 

in the literature, as mentioned in Chapter IL Efforts have been made to design and 

construct different parts of the experimental setup, as well as development of data 

acquisition systems and establishment of a well-defined velocity profile in order to 

accomplish this task. This allowed us to perform a series of systematic experiments which 

was needed to fill in the gaps in the database and provided preliminary heat transfer results 

that can be directly compared to previous work. It is the objective of this chapter to explain 

the experimental setup, data acquisition systems and facilities, procedures, and data 

reduction. These are presented in detail in the subsequent sections. 

3 .1 Experimental Setup 

In this section, different parts of the experimental setup will be presented. These 

parts are the contraction, rectangular host channel, test section, components, plenum, 

circular duct, and blower. A schematic diagram of the setup, which illustrates these parts is 

shown in Fig. 3 .1. 

3.1.1 Contraction 

The large entrance contraction is made of wood and has a movable bottom part that 

can move along with the entire channel floor in order to adjust to the desired channel height 
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( 1.27 to 7 .62 cm). A perspective view of the contraction with this movement arrangement 

is shown in Fig. 3.2. The contraction's inlet to outlet area (contraction ratio) varies from 

14.5 to 82, depending on the channel height. The start of the channel floor rests on a 

wooden flap, which is attached to the movable part of the contraction. The surface of this 

wooden flap is at the same level as the bottom surface of the channel floor and has a 

maximum elevation of 137 cm above the laboratory floor for the minimum channel height. 

The start of each adjacent side wall of the channel rests on another wooden flap attached to 

a wooden strip. These strips are screwed to the fixed side walls of contraction and rest on 

a stand, which is made of light angle iron and secured to the laboratory floor. A small 

hydraulic jack is positioned under the bottom of the movable part in order to move and 

adjust it smoothly for the desired channel height. 

3 .1.2 Rectangular Host Channel 

Ambient air passing through the contraction enters a 152.4 cm long rectangular 

channel. The entire channel was made of 1.27 cm commercial-grade plexiglass with a 

fixed 25.4 cm width and a height that is easily adjustable from 1.27 to 7.62 cm. 

Flow straighteners for different channel heights are made of tightly packed soda 

straws (0.55 cm inside diameter, 12 cm length, 0.901 open area ratio), sandwiched 

between galvanized steel mesh screens (wire diameter 0.044 cm, mesh width 0.32 cm, 

open area ratio 0.773). For any desired channel height, the appropriate flow straightener 

can be positioned at the start of entrance to the rectangular channel as shown in Fig. 3.1. 

This provides a uniform flow at the entrance to the rectangular channel. 

The entire channel floor is covered with a 1.6 mm layer of epoxy resin plate mixed 

with fiberglass (NEMA-G-11 manufactured by Polypenco, Inc.), which is close to what is 

commonly used in the actual computer board. 
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To accommodate variation in the height of the channel, the setup is constructed such 

that the bottom part of the contraction with the entire channel floor, along with the 

plexiglass flap attached to the inlet part of the plenum, can all be moved together and 

adjusted for the desired channel height. This design will prevent flow disturbance caused 

by the sharp leading edges of splitters or adjustable flap used by other investigators to 

adjust the channel height by moving the test section floor only. 

The two adjacent side walls of the channel are connected from the bottom with two 

pieces of 25.4 x 16 cm rectangular plexiglass, which are fixed in place with nylon screws 

(see Fig. 3.3). These fixed pieces allow to place spacers under the channel floor for a 

desired channel height in order to support the weight and avoid buckling. Two threaded 

holes are made through each of the support pieces, and two through the wooden flap of 

contraction, in order to place the nylon screws. Final adjustment of a desired channel 

height can be achieved with an accuracy of 0.025 cm by adjusting these six nylon screws 

with two other screws placed under the plexiglass flap attached to the inlet part of the 

plenum. The contraction wooden flap, spacers, and each piece of plexiglass support have a 

hole at the center to route a threaded nylon rod. One side of each of these three rods is 

fixed in a threaded hole under the channel floor and the other side is connected to a nylon 

nut. After final adjustment, these three nuts allow to fix the entire channel floor in place 

and avoid any movement caused by high air velocity drawn through the channel. 

The top portion of channel consists of three pieces. The contraction side (68.6 x 

28 cm) and plenum side (30.5 x 28 cm) are fixed in place with nylon screws. The upper 

wall of the test section (53.3 x 28 cm) can be removed and reset in place in a matter of 

seconds, thus enabling rapid access to the array of components. 

The rectangular channel, as shown in Fig. 3.1, consists of three sections: inlet, 

test, and exit sections. Attention now will be focused on the test section, which is the 

most important part of the experimental setup. 
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3.1.3 Test Section 

The start of the test component array is positioned 76 cm from the entrance to the 

channel and extends for 38.1 cm. The dimensions of test section, the range of test 

parameters, and the dimensions of components were carefully chosen and constructed in 

order to be able to perform experiments with different arrangements and configurations, 

similar to some of the experimental studies summarized in Table I, see for example, Wirtz 

and Dykshoorn (1984), and Hollworth and Fuller (1987). This allowed comparison and 

cross-check of our experimental data with their results (see Chapter IV for the details of 

these comparisons). The good agreement between our results and those of other 

investigators allowed the experiments for more complex geometries to be performed with 

more confidence. 

The test section, as illustrated in Fig. 3.4, encompasses eight rows of components 

with four columns of full-size components flanked on both ends by half components. Each 

half component mounts on the adjacent side wall of the host rectangular channel. The idea 

underlying the use of the half components is to more closely model an infinitely wide array. 

Figure 3.5 shows a staggered arrangement of the components in the test section. This 

configuration is achieved by shifting every other row of the in-line arrangement shown in 

Fig. 3.4 by the component planform dimension L in the span-wise direction. 

To accommodate variation for different arrangements of the components, the 

fiberglass layer on the channel floor is made of three pieces, a piece of 74.93 cm length for 

the inlet section, a piece of 36.83 cm length for the exit section, and a piece of 40.64 cm 

length for the test section. The piece which covers the test section floor can easily be 

removed, reset, and aligned with the edges of the other two pieces. This allows placement 

of the fiberglass sheet with the appropriate holes under the components for a desired 

arrangement of the test component arrays. 
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3.1.4 Components 

Cubic shaped aluminum blocks with heights varying from 1.27 to 5.08 cm were 

used to simulate various electronic components. As shown in Fig. 3.4, all components 

have the same square plan-view. Furthermore, the transverse and longitudinal 

intercomponent gaps are identical. However, for a desired arrangement, it is possible to 

remove some components and arrange the appropriate transverse and longitudinal gaps. 

There are four length dimensions which define the geometrical characteristics of the array 

and its relationship to the flow passage. These include the component planform dimension , 

L, the component height t, the intercomponent gap S, and the height H of the flow passage 

between the component and the opposite wall of the channel. Although there is a tendency 

to deal with dimensional quantities in connection with electronic equipment cooling, the use 

of dimensionless parameters is preferable because they accord greater generality to the 

results. The range of dimensionless ratios defining the array and its related flow passage 

are: 

t/L=0.5andl, S/L=l, (H+t)/L=l.5to3 

where H + t = D is the channel height. 

These dimensionless ratios were chosen to closely correspond to a practical 

configuration. Thus far, only dimensionless ratios have been specified. With the above 

equations, all test section dimensions can be deduced when only one dimension is 

specified. For example, with L = 2.54 cm and t/L = 0.5, each component dimension is 

2.54 x 2.54 x 1.27 cm. 

A detailed schematic diagram of each component is illustrated in Fig. 3.6. As 

shown in this figure, each component was hollowed out from the back side and a small 

(0.9 x 0.35 cm) ceramic resistor (RN60D-NA60, manufactured by Mini-system, Inc.) 

having 475 Ohm resistance was embedded exactly at the center of the aluminum block. 

The component surfaces were also polished to reduce thermal radiation effects. To 
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measure surface temperature of each component, a 36 A WG Type-T copper/constant 

thermocouple (0.381 mm bead diameter, 0.127 mm wire diameter, 91.44 cm wire length 

with teflon insulation, manufactured by Omega Company) was used. The calibration of the 

thermocouples (using an oil bath) against a platinum resistance thermometer which was 

certified by the National Bureau of Standards, showed an accuracy of+ 0.5°C. The 

thermocouple for each component was bonded exactly at a position half-way between the 

top surface and the embedded resistor using OMEGABOND 100 epoxy, having a thermal 

conductivity of 1.038 W/m Kand electrical insulation volume resistivity of 1012 ohm-cm. 

A small hole of O. 71 mm was drilled at the center of each component in order to route the ' 

thermocouple wire through it. The rest of the cavity of each component was filled with 

thermally-conducting epoxy (OMEGATHERM 201) having thermal conductivity of 2.304 

W/m Kand electrical insulation volume resistivity of lQ14 ohm-cm. The electric leads of 

the resistor were covered with teflon tubing to avoid electrical contact with the aluminum, 

and then soldered to stranded 22 A WG wires. Thermocouple wires and electric leads of 

the resistor were routed through a threaded, hollowed nylon rod, which is used to hold the 

component to the test section floor with a nylon fastener nut. 

Heat flow sensors equipped with built-in T-type thermocouples (RdF Corporation, 

model 20453-3) were used for direct measurement of heat flux and temperature on all five 

exposed surfaces of the heated component (inside the wind tunnel) and the back of the 

board (outside of the wind tunnel). These sensors measure radiation as well as convection 

losses. Each heat flow sensor is individually calibrated at a base temperature of 21 degree 

celsius with output of 5.83 x 10-8 V m2JW, thermal resistance of 2.11 x 10-3 °C m2JW, 

heat capacity of 1022 J/m2°C, and response time of 0.400 second. For monitoring the heat 

flux, the voltage signals from the heat flow sensors were passed through a high gain DC 

amplifier. An AID conversion program called (READFLUX), written in C language, 

converts the output analog voltage of the amplifier to a digital voltage. Estimates of 
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uncertainty of the measured heat fluxes was determined to be ±5%. More information 

about heat flow sensors and program READFLUX can be found in Ogden (1992). 

In order to ensure that the measured temperature by the inserted thermocouple 

inside the component represents the component surface temperature, a special component 

with a thermocouple inserted exactly half way between each surface and the cavity, was 

heated with three different input powers (2, 3, and 5 Watts). The temperature of each 

surface was also measured separately by a heat flow sensor. The average difference 

between the temperature measured by the inserted thermocouple, and the temperature 

measured by the heat flow sensor at different surfaces of the component were 0.33°C, • 

0.50°C, and 0.94°C for input powers of 2, 3, and 5 Watts, respectively. Low channel 

average velocity (2m/sec) was chosen for this test, in order to show maximum possible 

temperature difference. For velocities higher than 2 m/sec, this average temperature 

difference is less than 0.4 °C, which is within our experimental error. 

3.1.5 Plenum 

Air exits the host rectangular channel and discharges in an acoustically absorbent 

relaxation plenum (81 cm long, 76 cm wide, and 28 cm high) made of wood. The plenum 

"relaxes" or reduces the speed of the air due to its larger area of cross-section compared to 

the rectangular channel. As illustrated in Fig. 3 .1, a 30.48 x 28 x 1. 9 cm rectangular 

wooden plate is inserted vertically at the center of the plenum to stop jet flow in the 

channel. The entire plenum rests on a stand which is made of light angle iron and secured 

to the laboratory floor. 

It should be noted that the present horizontal test section has the versatility of being 

converted to a vertical test section, as was done by some investigators (see Table I in 

Chapter II). In order to do this, the contraction, rectangular channel, and plenum should be 

rotated 90°. 
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3 .1. 6 Circular Duct 

A circular duct of 15.24 cm diameter and 335 cm length made of thin aluminum 

sheet connects the plenum to the blower. A pitot static probe is placed at the far end of the 

duct (55 cm from the blower). The pitot probe is connected to an MKS model 223BD 

differential pressure transducer which is, in tum, connected to the data acquisition system 

(see Section 3.2.3). 

3.1.7 Blower 

A New York Blower compact G.I Fan, size 106, capable of delivering 17 m3/min 

with the driver motor of 2HP and 3600 rpm is used. To control excessive acoustic noise 

from the blower, an insulated wooden housing was constructed around it. The blower 

exhausts outside the building, allowing flow visualization experiments with smoke to be 

performed (Wang and Ghajar, 1991). A single vane damper mounted by the factory on the 

exit duct of the blower can be used for adjusting the blower. Due to the limitations of this 

damper, very low velocities can not be reached. Hence, an arrangement consisting of a 

movable wooden damper, along with the necessary parts, was designed for accurate 

control of velocities. The details of the arrangement are explained in Section 3.2.3.2. 

3.2 Data Acquisition Systems and Facilities 

In order to accurately measure and control the velocity, temperature, and power 

given to the components, the experimental setup is equipped with a microcomputer driven 

data acquisition system. This fully automated system is programmed to control and 

monitor the air velocity through the test section, to scan temperature readings across the 

component array, and to store the readings on hard disc. The system also automatically 
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gives the required heat to the selected component(s) to be heated. A block diagram of the 

automated component test plate is shown in Fig. 3.7. This consists of a thermal regulator 

board, a thermocouple datalogger for temperature measurement, and an air flow control 

signal. These different parts are explained in detail as follows. 

3.2.1 Thermal Regulator Board 

This unit, which was developed through the Oklahoma State University's School of 

Electrical and Computer Engineering, provides precise open loop control of individual , 

component power dissipation. It is interfaced with an IBM/PC compatible, and a desired 

power ranging from O to 5 watts with the increments of 0.1 watts can be simultaneously 

supplied to each component by the keyboard. Preliminary tests for this unit providing 

different power for each component has been performed while monitoring supplied powers 

with an accurate oscilloscope. The tests showed that the thermal regulator board works 

with an accuracy of± 1 %. 

3.2.2 Thermocouple Datalogger 

A programmable forty channel datalogger ECD-5100 (manufactured by Electronics 

Controls Design Corporation) was used to monitor the temperature reading of T-type 

thermocouples. The different features of ECD-5100 include a built-in 24 column thermal 

printer, an alphanumerical keyboard, a 16-digit vacuum fluorescent display, a real time 

clock, and an RS-232 port. It also includes a "data cache memory feature", which provides 

temporary storage of logged data for reviewing before printing or unloading to a computer 

or a printer. The data logger was initially calibrated and monitors the temperatures with a 

reading accuracy of± 0.05°C. 



PC 
with 

METRABYTE 

DI/DO 

DIA 
Thermal Reg. Board 

1 J ________________ 4o. 

II II II II II II • • •••••••• •••••••• •••••••• 11 ---------------40 
f 

, , ,, 1 Thermocouple Data Logger 

Figure 3. 7. Block Diagram of Automated Component Test Plate 

w 
-J 



38 

The output of datalogger can be transferred to a personal computer through a 

datalogger-computer interface software called PC-TALK (program by Freeware 

Corporation). An interactive data acquisition and data reduction computer program, called 

RED40, reads data from the file created by the datalogger and PC-TALK. The program, 

which is written in FORTRAN 77, outputs average, maximum, and minimum temperatures 

of the desired number of channels for a given number of data sets over a certain period of 

time. A sample input/output of this program is shown in Appendix A. More information 

about RED40 program can be found in Rajagopalan (1991). 

3.2.3 Air Flow Measurement and Control 

Accurate velocity measurement, control of the desired velocity, and documentation 

of the approach velocity profile upstream of the component arrays are three important key 

factors in order to achieve the more precise heat transfer results. These are explained in 

detail, along with necessary parts and the data acquisition programs in the following 

sections. 

3.2.3.1 Velocity Measurement The voltage signal from the differential 

pressure transducer was digitized and averaged on the personal computer equipped with a 

Metrabyte-DAS-8 analog-to-digital data translation board. This convector board has 8 AID 

channels with 12 bit resolution, 7 bits of digital 1/0 (4 outputs, 3 inputs) and other features. 

An MKS model 223 BD differential pressure transducer, which was connected to a 

pitot static probe, was used to measure the velocity. The differential pressure transducer 

can read a maximum differential pressure of 0.5 inches of water, which corresponds to 

14.5 m/sec velocity in the 15.24 cm circular duct. The range of its voltage output is -5 to 

+5 volts. It has an accuracy of 0.3% of reading and can be powered by a -12 to +12 volts 

power supply. 
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An AID conversion program written in C-language converts the analog voltage 

measured by the pressure transducer to a digital output displayed on the monitor. The 

pressure transducer was calibrated against an inclined manometer and the calibration curve 

is illustrated in Fig. 3.8. This figure shows the monitored digital voltage versus the 

pressure measured by an inclined manometer. The obtained linear curve fit equation shown 

in Fig. 3.8 relates the output voltage signal of the pressure transducer to the differential 

pressure of the pitot static probe. The velocity then can be found using the differential 

pressure and other physical properties. 

3.2.3.2 Velocity Control Arran~ement Manually changing the position of the 

built-in single vane damper on the exit duct of the blower to reach the desired velocity was 

found to be a tedious operation. It was also not a very accurate method of changing the 

velocity. Furthermore, low velocities could not be reached by this method of operation. 

Hence, it was decided to automate the control of velocity in the wind tunnel. To 

accomplish this task, the arrangement shown in Fig. 3.9 was designed and assembled on 

the blower wooden housing. 

A movable wooden damper, along with an aluminum sprocket of 1.25" pitch 

diameter, three aluminum pulleys of 1.25" pitch diameter, and a plastic chain were used. A 

stepper motor manufactured by Superior Electric Company, model number SS50-1009, 

with 50 oz-in torque, 5.5 volts DC, 1.3 Amps, 60Hz, and 200 steps per revolution was 

connected to the aluminum sprocket to rotate it clockwise and counter-clockwise in order to 

move the wooden damper up and down. Movement of this damper changes the flow rate, 

and hence, the velocity in the wind tunnel. Sprocket, pulleys, and plastic chain were 

purchased from Berg Company. 

3.2.3.3 Program VELAIR The AID conversion program mentioned in Section 

3.2.3.1 converts the output analog voltage of the pressure transducer to a digital voltage. 
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The digital voltage is related to the differential pressure (measured by pitot static probe) 

through the calibration curve equation shown in Fig. 3.8. The differential pressure gives 

the duct velocity using appropriate physical properties. The velocity in the channel can be 

calculated from the duct velocity by mass flow rate equation depending on the channel 

height. By reversing the above procedure for a desired channel velocity, the output analog 

voltage of the pressure transducer can be found. 

To accomplish all of these tasks, an interactive data acquisition program called 

VELAIR (see Appendix A), written in C-language, was developed. The AID conversion 

program, calibration curve equation, relation between the differential pressure and duct , 

velocity, fixed physical properties, relation between the duct velocity and channel velocity, 

and the digital I/0 program for stepper motor were all incorporated into VELAIR program. 

Variable parameters such as channel height, barometric pressure, etc., can be input by the 

keyboard. 

Figure 3.10 shows the setup for measurement and control of the velocity in the 

channel. Program VELAIR utilizes this setup in order to find channel velocity, using only 

the pressure transducer, and to change the position of the "velocity control damper", using 

the stepper motor and pressure transducer, until the desired channel velocity is reached. 

The program has also the option of back calculating the channel velocity for a given 

Reynolds number based on channel height. Block diagrams of these options are shown in 

Figs. 3.11 and 3.12. 

3.2.3.4 Velocity Profile Accurate determination of the mean velocity upstream of 

the test section is needed for calculation of Reynolds number and obtainment of accurate 

heat transfer results. During each heat transfer experiment, it is possible to traverse the 

inlet section by a pitot static probe in several strategic locations, and the measured local 

velocities can be numerically integrated to render mean velocity in the channel. This is not 

an accurate and convenient method because of the following reasons: 
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1 . Traversing the inlet section by the pi tot static probe may disturb the flow, and 

consequently, affect the accuracy of heat transfer results. 

2. It is a tedious and time consuming method to perform the above operation 

during each single heat transfer experiment.. 

Hence, it was necessary to find an alternative method for determination of the 

average velocity for different flow settings (low, medium, and high) in the channel. The 

alternative method measures the local velocity at the center of the duct for each heat transfer 

experiment, and then relates that to the approach mean velocity in the channel by an 

appropriate correction factor. To accomplish this task, the following extensive direct local 

velocity measurements at different locations of the circular duct and rectangular host 

channel were made. 

3.2.3.4.1 Duct Velocity Profile Direct local velocity measurements were 

performed across the height of the circular duct at fifteen locations and different flow 

settings (low, medium, and high velocities). Figure 3.13 shows the dimensionless velocity 

profiles versus dimensionless height for these three settings. These local velocities were 

numerically integrated and three correction factors of 0.852, 0.864, and 0.896 were found 

for low (2 m/sec), medium (6 m/sec), and high (10 m/sec) velocities, respectively. Since 

these three values were very close to each other (a maximum difference of 5%) and their 

difference were within the range of the experimental error, they were averaged in order to 

present a single duct correction factor (Cd), which was 0.871. This correction factor relates 

the duct average velocity (vd) to the maximum duct local velocity (V d), which was found to 

be at the center of the duct: 

(3.1) 

For each flow setting, the wooden velocity damper was sealed and the 

corresponding direct local velocity measurements were made in the rectangular channel for 

the same setting. 
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3.2.3.4.2 Channel Velocity Profile Direct local velocity measurements were 

made upstream of the component test section (68.58 cm from the entrance of the 

rectangular channel) at three different locations across the width of the channel ( at channel 

center line and about 6 cm from the wall on either side of the channel) and up to thirteen 

different locations ( depending on the channel height) across the height of the channel. The 

flow settings were the same as mentioned for "Duct Velocity Profile", since the wooden 

velocity damper was sealed during each flow setting measurement. Figures 3.14 to 3.16 

show the dimensionless velocity profiles for low, medium, and high velocities, _ 

respectively. The dimensionless velocity profiles at left, center, and right of the channel are 

shown in Figs. 3.17 to 3.19, respectively. The velocity profiles for each individual flow 

setting and location are depicted in Appendix B. 

The local velocities in the channel were numerically integrated and three correction 

factors of 0.803, 0.808, and 0.814 for low, medium, and high velocities were found. 

Since these three values were very close to each other ( a maximum difference of less than 

1.4%) and their difference was within the range of the experimental error, they were 

averaged in order to present a single channel correction factor (Cch), which was 0.808. 

This correction factor relates the channel average velocity (Vch) to the maximum channel 

local velocity (V ch), which was found to be at the center of the channel: 

(Vch) = 0.808 Yeh (3.2) 

A relationship between the channel average velocity (Vch) and the measured duct 

center-line velocity (V d) can be obtained by equating the mass flow rate between the circular 

duct and the rectangular channel: 

Substituting Equation (3.1) in the above equation and rearranging: 
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where D is the channel height, W = 25.4 cm is the channel width (fixed), Pd and Pch are the 

duct and channel air densities, Ach is the channel cross sectional area, Aci is the duct cross

sectional area (duct diameter is 15.24 cm), and C is the "overall correction factor". 

Combining the above relations with Equations (3.1) and (3.2) gave a value of 6.02 for C. 

Therefore, the final relation for calculation of channel average velocity from measured duct -

center-line velocity was: 

Y- _ 6.02 y 
ch-o d 

where Y ch and Yd are in m/sec, and D is in cm. 

(3.3) 

With Equations (3.1) and (3.3), only local velocity at the center of the duct (Yd) 

should be measured in order to find Yd and Yeh· Program YELAIR was modified by 

incorporating these equations. 

To verify the accuracy of these equations, local direct velocity measurements 

upstream of the component test section at 50.8 cm from the entrance of the rectangular 

channel for different flow settings (local velocity at the center of the duct was controlled 

from 1 to 12 m/sec) were performed. The results of these experiments showed that these 

equations predicted the experimental data with an accuracy of± 2%. Figure 3.20 shows 

comparison of measured channel center velocities (Y ch,nJ versus calculated channel center 

velocities (Ych,c), while Figure 3.21 shows measured channel average velocities {Vch,m) 

versus calculated channel average velocities (vch,c). 

Estimates of uncertainty using method of single-sample experiments (Kline and 

McClintock, 1953) show the uncertainty in channel average velocity measurements varied 

from about 0.71 % to 8.9% (see Appendix C). 
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3.3 Experimental Procedures and Data Reduction 

Before performing any experiment, the following steps should be taken in order to 

make the setup ready for the purposed experiments: 

1. Cover the test section with the fiberglass sheet suitable for the desired 

arrangement. 

2. Install the required components on the test section for the purposed 

arrangement, and connect the wires to the datalogger and thermal regulator 

board. 

3. Adjust the channel height with the small hydraulic jack under the contraction 

and three screws under the plexiglass flap attached to the plenum. Then, place 

the spacers on the two rectangular plexiglass supports and under the channel 

floor. Do the final adjustment of the channel floor, and then fix it in place with 

the plastic screws and nuts under the channel floor. 

4. Put the upper wall of the test section in place and seal the channel floor, 

movable part of contraction, and other places. Wait 6 to 8 hours until the 

sealant dries. 

5. Tum on the datalogger, thermal regulator board, and personal computer, and 

enter the desired power for each component by the keyboard. 

6. Tum on the blower, stepper motor and pressure transducer power supply, and 

enter the required mean velocity (or Reynolds number) at the channel using 

velocity control option of VELAIR program. 

7. Monitor the component temperatures with the datalogger every five minutes 

until the steady state condition is reached (when temperatures are within 

± 0.5°C). 
8. Print out the steady state temperatures of components. 
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Conduction and radiation are important factors which have to be considered during 

each experiment. Therefore, the convective heat transfer rate for each component (Qc) is its 

input power (Q1), less losses due to the conduction through the channel floor (Qic) and 

thermal radiation to the surroundings (Q): 

(3.4) 

conduction losses can be calculated by: 

Qc = (Tc - T_ }'Rw 

where Tc is the component temperature, Too is the approach air temperature measured 

upstream of the test section with a T-type thermocouple connected to the datalogger, and -

Rw is the thermal resistance of the test section floor obtained by: 

where: 

Ak = (0.025)2m2 is the component contact surface area with the channel floor. 

t1 = 0.0127m is the plexiglass thickness. 

k1 = 0.193 Watt/m°C is the thermal conductivity for commercial plexiglass 

(Personal communication, Polypenco, Inc., 1991) 

t2 = 0.0016 mis the fiberglass thickness 

k2 = 0.293 Watt/m°C is the thermal conductivity for NEMA-G 11 fiberglass 

(Personal communication, Polypenco, Inc., 1991) 

Therefore, 
Tc -T00 

Qc = 110.5°C 

Radiation loss can be calculated by 

where 

cr = 5.729 x IQ-8 WattJm2K4 is the Stefan-Boltzman constant 

(3.5) 



Hence, 

£ = 0.06 is the emissivity of polished aluminum (Siegel and Howell, 1981) 

Ac= (1 + 4 t/L) (0.0254)2 is the component exposed surface area in m2. 

where Tc is in K and Qr is in Watts. 
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(3.6) 

Knowing the component temperature (Tc) and the approach air temperature (Too), 

conduction and radiation losses can be calculated from Equations (3.5) and (3.6), 

respectively. The component convective heat transfer rate (Qc) can be calculated from 

Equation (3.4) for a given component input power (Qt). Thus, the component convective 

heat transfer coefficient (h) can be found for a single heated component from: 

(3.7) 

After finishing one measurement, the same procedure can be repeated for another 

experiment. 

The experimental procedures outlined in this chapter were followed for collection of 

heat transfer data. The results of these experiments with the related general correlation for 

different geometric parameters, their detailed discussion and comparison with the work of 

other investigators, and the influence of conduction losses on component convection heat 

transfer coefficient are presented in the next chapter. 



CHAPTER IV 

HEAT TRANSFER RESULTS, 
DISCUSSION, AND COMPARISONS 

In Chapter III, details of our experimental apparatus and procedures for collection 

of heat transfer data were outlined. The necessity of a systematic and continuous approach 

in the area of electronic cooling was mentioned, and the experimental setup was designed 

based on this purpose. It was also explained that the setup has the capability of performing 

experiments with different arrangements, component heights, channel heights, spanwise 

and streamwise spacing, component power dissipations, test section orientation (vertical or 

horizontal), as well as performing experiments for configurations similar to some of the 

work summarized in Table I, in order to compare and verify the performance of our 

experimental setup. 

In this chapter, heat transfer results are presented. Experiments were performed 

with different channel average velocities, channel heights, heated component row numbers, 

component heights, and input power to the heated component. Ranges of conduction and 

radiation heat transfer for different Reynolds numbers and geometries were first 

determined. Based on the collected heat transfer data and the influence of all tested 

effective parameters, a general correlation for prediction of heated component operating 

temperature was developed. Detailed discussion of the effects of Reynolds number and 

different tested geometric parameters (Hit, t/L, and r), on convective heat transfer 

coefficient of the heated component is presented. The results of this study were compared 

with the results of other investigators, having almost similar geometries and range of 

Reynolds numbers. These comparisons revealed the accuracy of our general heat transfer 

correlation, and verified the good performance of our experimental setup. Finally, effects 
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of conduction heat transfer on heat transfer coefficient, using different board conductivities 

and Reynolds numbers were investigated. 

4.1 Heat Transfer Results 

A single component was heated for each set of collected heat transfer data. Ranges 

of experimental parameters tested are shown in Table II. Figure 4.1 illustrates an in-line 

arrangement of the components used in the test section, with row-column numbers written 

above the heated components. Third column was chosen in order to be able to compare the 

results with other investigators. The works reported in the literature were based on a single 

heated component placed at the center of the test section, with the same distance from the 

adjacent side walls of the rectangular channel. 

t/L 

0.5 

1 

TABLEil 

RANGES OF EXPERIMENTAL PARAMETERS TESTED 
FOR COLLECTION OF HEAT TRANSFER DATA 

Heated Component Approximate channel 
Dlt Row Number Average Velocity V ch (m/s) 

at Column 3 

1.5 1, 2, 3, 4, 5 2, 5, 7.5, 10 

2.25 1, 2, 3, 5, 7, 8 2, 5, 7.5, 10 

3 1, 2, 3, 4, 5, 6 2, 5, 7.5, 10 

1.5 1,2,3,4,5,8 2, 5, 7.5, 10 

2.25 1, 2, 3, 5, 7, 8 2, 5, 7.5, 10 

3 . l, 2, 3, 4, 5, 6, 7 2, 5, 7.5, 10 

For each set of these experiments, the procedures outlined in Chapter ID were 

carefully followed. Approach air flow temperature (Too), component steady state 

temperature (Tc), Reynolds number based on component length (ReL), and the input power 
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to the component (Qc) were collected. Conduction loss (Qk), radiation loss (Qr), 

convective heat transfer rate (Qc), and convective heat transfer coefficient (h) were also 

calculated for each run using Equations (3.5), (3.6), (3.4), and (3.7), respectively. 

Nusselt number based on component length (L) was found from: 

NuL=hL/k 

where k is the air thermal conductivity at Too, 

The Reynolds number, based on component length (L) and channel average 

velocity ( V ch} is: 
VhL ReL=_c _ 

V 

where v is the kinematic viscosity of air at Too, The choice of component length as the 

characteristic length for Reynolds and Nusselt numbers was based on the following 

reasons: 

1 . All of the geometrical parameters are non-dimensionalized with respect to 

component length, as mentioned in Section 3.1.4. Components with a fixed 

length (L = 2.54 cm) but different heights were used for performing systematic 

experiments with our experimental setup. This length was fixed while varying 

other parameters, until experiments for all possible variations were performed. 

2. Component length is an appropriate conventional basis for meaningful 

comparisons. The heat transfer results reported by some investigators, even 

for some set of dissimilar geometries, are possible to be compared with each 

other and our results by the use of component length as the characteristic 

length. The Reynolds and Nusselt numbers of some investigators which were 

not based on their component length were carefully converted to this basis in 

the next section, in order to make a reasonable comparison. 

The collected data and the above calculated parameters are all summarized in Tables 

m and IV. A complete set of heat transfer data was first collected by keeping the heated 



TABLEill 

COLLECTED HEAT TRANSFER DATA FOR COMPONENT 2-3 WITH DIFFERENT HEAT DISSIPATION 
LEVELS AND VELOCITIES (CASE: D/t = 3, S/L = 1, AND t/L = 1) 

Qt Yeh Tc Too (Tc-Too) Ok Qk/Qt Or Qr/Qt Qr, Qr/Qt Qc h 
(Watt) Run# (m/s) ReL (°C) {°C) {OC) (Watt) X 100 (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2oq NuL 

1 2.11 3552 29.6 22.5 7.1 0.064 6.4 0.008 0.84 0.073 7.3 0.927 40.5 40.1 
1 2 4.97 8366 26.5 22.0 4.5 0.041 4.1 0.005 0.53 0.046 4.6 0.954 65.7 65.1 

3 7.57 12742 26.3 22.8 3.5 0.032 3.2 0.004 0.41 0.036 3.6 0.964 85.4 84.6 
4 10.17 17120 25.8 22.8 3.0 0.027 2.7 0.004 0.35 0.031 3.1 0.969 100.2 99.3 

5 2.11 3552 37.5 22.8 14.7 0.133 6.7 0.018 0.91 0.151 7.6 1.849 39.0 38.7 
2 6 4.97 8366 30.4 21.3 9.1 0.082 4.1 0.011 0.54 0.093 4.7 1.907 65.0 64.4 

7 7.57 12742 28.2 21.0 7.2 0.065 3.3 0.008 0.42 0.074 3.7 1.926 82.9 82.2 
8 10.17 17120 27.3 21.3 6.0 0.054 2.7 0.007 0.35 0.061 3.1 1.939 100.2 99.3 

9 2.11 3552 42.7 21.9 20.8 0.188 6.3 0.026 0.88 0.215 7.2 2.785 41.5 41.1 
3 10 4.97 8366 34.9 21.8 13.1 0.119 4.0 0.016 0.53 0.134 4.5 2.866 67.8 67.2 

11 7.57 12742 32.2 21.5 10.7 0.097 3.2 0.013 0.43 0.110 3.7 2.890 83.7 82.9 
12 10.17 17120 30.9 21.7 9.2 0.083 2.8 0.011 0.37 0.094 3.1 2.906 97.9 97.0 

13 2.11 3552 49.8 22.0 27.8 0.252 6.3 0.037 0.91 0.288 7.2 3.712 41.3 40.9 
4 14 4.97 8366 38.7 21.7 17.0 0.154 3.8 0.021 0.53 0.175 4.4 3.825 69.8 69.2 

15 7.57 12742 35.7 22.0 13.7 0.124 3.1 0.017 0.42 0.141 3.5 3.859 87.3 86.5 
16 10.17 17120 34.3 22.5 11.8 0.106 2.7 0.014 0.36 0.121 3.0 3.879 102.4 101.5 

17 2.11 3552 55.7 21.5 34.2 0.310 6.2 0.046 0.92 0.356 7.1 4.644 42.1 41.7 
5 18 4.97 8366 43.2 21.9 21.3 0.193 3.9 0.027 0.54 0.220 4.4 4.780 69.6 69.0 

19 7.57 12742 38.9 21.8 17.1 0.155 3.1 0.021 0.42 0.176 3.5 4.824 87.5 86.7 
20 10.17 17120 35.9 21.4 14.5 0.131 2.6 0.018 0.35 0.149 3.0 4.851 103.7 102.8 

°' U\ 



TABLEN 

COLLECTED HEAT TRANSFER DATA WITH DIFFERENT VEWCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 1.50, SIL= 1, t/L = 0.50, AND Qt= 4 WATTS) 

Vch Tc Too (fc-Too) Ok Qk/Qt Qr Qr/Qt Qi.. QJJQt Qc h 
r Run# (m/s) ReL (°C) {°C) <°9 (Watt) X 100 (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2°C) 

1 2.27 3821 55.8 22.7 33.1 0.300 7.5 0.027 0.67 0.326 8.2 3.674 57.3 
1 2 5.35 9000 41.4 22.5 18.9 0.171 4.3 0.014 0.36 0.185 4.6 3.815 104.5 

3 7.48 12593 36.8 21.8 15.0 0.136 3.4 0.011 0.28 0.147 3.7 3.853 132.9 
4 9.90 16669 35.3 22.6 12.8 0.115 2.9 0.009 0.23 0.125 3.1 3.875 156.9 

5 2.23 3756 57.5 21.9 35.6 0.322 8.1 0.029 0.73 0.351 8.8 3.649 53.0 
2 6 5.24 8819 42.7 21.8 20.9 0.189 4.7 0.016 0.40 0.205 5.1 3.795 93.9 

7 7.52 12666 39.3 22.3 17.0 0.154 3.9 0.013 0.32 0.167 4.2 3.833 116.3 
8 9.91 16678 35.2 21.2 14.0 0.126 3.2 0.010 0.25 0.137 3.4 3.863 142.9 

9 2.21 3728 58.0 21.9 36.1 0.327 8.2 0.030 0.74 0.356 8.9 3.644 52.2 
3 10 5.19 8737 43.6 21.8 21.8 0.197 4.9 0.017 0.42 0.214 5.3 3.786 89.7 

11 7.47 12584 38.9 21.4 17.6 0.159 4.0 0.013 0.33 0.172 4.3 3.828 112.7 
12 9.94 16735 37.0 22.6 14.3 0.130 3.2 0.011 0.27 0.140 3.5 3~860 139.1 

13 2.24 3777 57.2 21.2 36.1 0.326 8.2 0.029 0.73 0.356 8.9 3.644 52.2 
4 14 5.13 8636 43.8 21.7 22.1 0.200 5.0 0.017 0.42 0.217 5.4 3.783 88.4 

15 7.53 12670 39.6 22.0 17.6 0.159 4.0 0.013 0.33 0.173 4.3 3.827 112.3 
16 9.88 16635 36.4 21.9 14.5 0.131 3.3 0.011 0.27 0.141 3.5 3.859 137.9 

17 2.15 3620 59.0 21.8 37.2 0.336 8.4 0.031 0.76 0.367 9.2 3.633 50.5 
5 18 5.21 8766 44.3 22.1 22.3 0.201 5.0 0.017 0.43 0.218 5.5 3.782 87.8 

19 7.50 12634 39.7 21.9 17.8 0.161 4.0 0.013 0.33 0.174 4.4 3.826 111.0 
20 9.89 16647 36.8 22.1 14.7 0.133 3.3 0.011 0.27 0.143 3.6 3.857 136.0 

NuL 

56.8 
103.6 
131.7 
155.5 

52.5 
93.1 

115.3 
141.6 

51.7 
88.9 

111.7 
137.9 

51.7 
87.6 

111.3 
136.7 

50.0 
87.0 

110.0 
134.8 

0\ 
0\ 



TABLE IV (continued) 

COLLECTED HEAT TRANSFER DATA WITH DlFFERENT VEWCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 2.25, SIL= l, t/L = 0.5, AND Q1 = 4 WATTS) 

Yeh Tc Too CTc-Too) Ok Qk/Qt Qr Qr/Qt Qi, Qt/Qt Qc h 
r Run# (m/s) ReL {°C) {°C) {°C) (Watt) X 1()() (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2°C) NuL 

1 1.74 2930 60.0 22.8 37.2 0.336 8.4 0.031 0.77 0.367 9.2 3.633 50.5 50.0 
1 2 5.00 8422 42.4 21.9 20.4 0.185 4.6 0.016 0.39 0.200 5.0 3.800 96.1 95.2 

3 7.53 12684 38.3 22.1 16.1 0.146 3.7 0.012 0.30 0.158 4.0 3.842 123.0 121.9 
4 9.99 16827 36.1 22.0 14.1 0.128 3.2 0.010 0.26 0.138 3.5 3.862 141.3 140.0 

5 1.74 2930 60.4 21.4 39.0 0.353 8.5 0.032 0.81 0.385 9.6 3.615 47.9 47.5 
2 6 5.6 8422 44.5 22.1 22.4 0.203 5.1 0.017 0.43 0.220 5.5 3.780 87.1 86.3 

7 7.53 12684 39.1 21.6 17.6 0.159 4.0 0.013 0.33 0.172 4.3 3.828 112.6 111.6 
8 9.99 16827 36.4 21.4 15.0 0.136 3.4 0.011 0.28 0.147 3.7 3.853 132.4 131.2 

9 1.74 2930 61.5 22.1 39.4 0.357 8.9 0.033 0.82 0.390 9.7 3.610 47.3 46.8 
3 10 5.00 8422 44.8 22.1 22.7 0.205 5.1 0.017 0.43 0.222 5.6 3.778 86.1 85.3 

11 7.53 12684 39.5 21.7 17.9 0.162 4.0 0.013 0.33 0.175 4.4 3.825 110.6 109.6 
12 9.99 16827 36.8 22.0 14.8 0.134 3.3 0.011 0.27 0.144 3.6 3.856 134.9 133.7 

13 1.74 2930 61.8 21.9 39.9 0.361 9.0 0.033 0.83 0.395 9.9 3.605 46.7 46.3 
5 14 5.00 8422 44.7 21.8 22.9 0.207 5.2 0.018 0.44 0.225 5.6 3.775 85.2 84.4 

15 7.53 12684 39.0 22.1 16.9 0.153 3.8 0.013 0.31 0.165 4.1 3.835 117.5 116.4 
16 9.99 16827 36.2 21.8 14.4 0.131 3.3 0.011 0.26 0.141 3.5 3.859 138.2 137.0 

17 1.74 2930 61.9 21.8 40.2 0.363 9.1 0.034 0.84 0.397 9.9 3.603 46.4 46.0 
7 18 5.00 8422 44.9 21.8 23.1 0.209 5.2 0.018 0.44 0.227 5.7 3.773 84.4 83.6 

19 7.53 12684 39.9 21.7 18.2 0.165 4.1 0.014 0.34 0.178 4.5 3.822 108.5 107.5 
20 9.99 16827 37.5 22.2 15.3 0.138 3.5 0.011 0.28 0.150 3.7 3.850 130.2 129.0 

21 1.74 2930 61.6 21.8 39.8 0.360 9.0 0.033 0.83 0.393 9.8 3.607 46.9 46.5 
8 22 5.00 8422 44.7 22.0 22.7 0.206 5.1 0.017 0.44 0.223 5.6 3.777 85.9 85.1 

23 7.53 12684 39.6 21.9 17.7 0.160 4.0 0.013 0.33 0.174 4.3 3.826 111.5 110.5 
24 9.99 16827 36.5 21.6 14.9 0.134 3.4 0.011 0.27 0.145 3.6 3.855 134.1 132.9 ~ 



TABLE N (continued) 

COLLECTED HEAT TRANSFER DATA WI1H DIFFERENT VELOCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 3, S/L = 1, t/L = 0.5, AND Q1 = 4 WA ITS) 

Vch Tc Too CTc-Too) Ok QklQt Or Qr/Qt Qi. Qr/Qt Qc h 
r Run # (m/s) . ReL (°C) {°C) {°C) (Watt) X 100 (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2°C) NuL 

1 1.78 2998 61.3 23.2 38.1 0.345 8.6 0.032 0.81 0.377 9.4 3.623 49.1 48.7 
1 2 4.65 7832 45.0 22.2 22.7 0.206 5.1 0.018 0.44 0.223 5.6 3.777 85.8 85.0 

3 7.69 12953 39.5 22.4 17.1 0.154 3.9 0.013 0.32 0.167 4.2 3.833 116.1 115.1 
4 10.01 16861 36.8 22.4 14.5 0.131 3.3 0.011 0.27 0.142 3.5 3.858 138.0 136.8 

5 1.71 2880 63.0 22.6 40.4 0.366 9.1 0.034 0.85 0.400 10.0 3.600 46.1 45.7 
2 6 4.65 7832 47.4 22.7 24.7 0.224 5.6 0.019 0.48 0.243 6.1 3.757 78.6 77.9 

7 7.66 12903 41.3 22.5 18.9 0.171 4.3 0.014 0.36 0.185 4.6 3.815 104.6 103.7 
8 9.98 16810 37.6 22.0 15.7 0.142 3.5 0.012 0.29 0.153 3.8 3.847 126.9 125.8 

9 1.72 2897 64.1 23.2 40.8 0.370 9.2 0.035 0.87 0.404 10.1 3.596 45.5 45.1 
3 10 4.63 7799 47.6 22.4 25.2 0.228 5.7 0.020 0.49 0.248 6.2 3.752 76.8 76.1 

11 7.66 12903 41.6 22.2 19.3 0.175 4.4 0.015 0.37 0.189 4.8 3.811 101.9 101.0 
12 9.98 .16810 37.7 21.8 15.9 0.144 3.6 0.012 0.29 0.156 3.9 3.844 124.9 123.8 

13 1.77 2981 64.7 22.3 42.4 0.384 9.6 0.036 0.90 0.419 10.5 3.581 43.7 43.3 
4 14 4.65 7832 48.2 22.7 25.5 0.231 5.8 0.020 0.50 0.251 6.3 3.749 75.8 75.1 

15 7.63 12852 41.6 22.2 19.4 0.176 4.4 0.015 0.37 0.190 4.8 3.810 101.4 100.5 
16 9.97 16793 37.7 21.5 16.2 0.146 3.7 0.012 0.30 0.158 4.0 3.842 122.7 121.6 

17 1.74 2931 65.3 22.2 43.2 0.391 9.8 0.037 0.92 0.427 10.7 3.573 42.8 42.4 
5 18 4.63 7799 50.6 24.8 25.9 0.234 5.9 0.021 0.52 0.255 6.4 3.745 74.8 74.1 

19 7.64 12869 41.8 22.3 19.5 0.176 4.4 0.015 0.37 0.191 4.8 3.809 101.0 100.1 
20 9.97 16793 39.1 22.6 16.5 0.149 3.7 0.012 0.31 0.161 4.0 3.839 120.4 119.3 

21 1.76 2965 65.0 22.3 42.7 0.386 9.7 0.036 0.91 0.423 10.6 3.577 43.3 42.9 
6 22 4.65 7832 51.2 25.2 26.0 0.235 5.9 0.021 0.52 0.256 6.4 3.744 74.5 73.8 

23 7.65 12886 41.5 22.1 19.4 0.176 4.4 0.015 0.37 0.190 4.8 3.810 101.4 100.5 
24 9.94 16743 38.5 22.4 16.1 0.146 3.6 0.012 0.30 0.157 3.9 3.843 123.5 122.4 °' 00 
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TABLE N (continued) 

COLLECTED HEAT TRANSFER DATA WITII DIFFERENT VELOCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 1.5, S/L = 1, t/L = 1, AND Qt= 4 WATTS) 

Vch Tc Too CTc-Too) Ok QidQt Or Qr/Qt Qi. QrJQ1 Qc h 
r Run# (rn/s) ReL (°C) {°C) {°C) (Watt) X 100 (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2°C) NOL 

1 1.86 3133 46.6 22.3 24.3 0.220 5.5 0.031 0.78 0.251 6.3 3.749 47.9 47.5 
1 2 5.00 8422 34.8 22.3 12.5 0.113 2.8 0.015 0.38 0.128 3.2 3.872 96.4 95.5 

3 7.58 12768 31.8 22.1 9.7 0.088 2.2 0.012 0.29 0.100 2.5 3.900 124.6 123.5 
4 10.07 16962 30.5 22.2 8.3 0.075 1.9 0.010 0.25 0.085 2.1 3.915 146.2 144.9 

5 1.92 3234 47.2 22.3 24.9 0.226 5.6 0.033 0.81 0.258 6.5 3.742 46.5 46.1 
2 6 4.98 8388 36.9 22.2 14.7 0.133 3.3 0.018 0.45 0.151 3.8 3.849 81.2 80.5 

7 7.46 12566 33.9 22.6 11.3 0.102 2.5 0.014 0.34 0.116 2.9 3.884 106.8 105.8 
8 10.07 16962 31.9 22.5 9.4 0.085 2.1 0.011 0.28 0.096 2.4 3.904 128.7 127.5 

9 1.92 3234 46.5 21.5 25.0 0.226 5.7 0.032 0.80 0.258 6.5 3.742 46.4 46.0 
3 10 5.00 8422 36.0 22.4 13.6 0.123 3.1 0.017 0.42 0.140 3.5 3.860 88.0 87.2 

11 7.51 12650 32.9 22.3 10.6 0.096 2.4 0.013 0.32 0.109 2.7 3.891 113.5 112.5 
12 10.03 16895 31.4 22.3 9.1 0.082 2.0 0.011 0.27 0.093 2.3 3.907 133.8 132.6 

13 1.92 3234 47.0 21.2 25.9 0.234 5.9 0.033 0.83 0.267 6.7 3.733 44.7 44.3 
4 14 5.01 8439 36.7 22.0 14.7 0.133 3.3 . 0.018 0.45 0.151 3.8 3.849 81.2 80.5 

15 7.63 12852 33.7 22.6 11.1 0.100 2.5 0.014 0.34 OJ14 2.8 3.886 108.5 107.5 
16 10.03 16895 31.3 21.8 9.5 0.086 2.2 0.011 0.28 0.098 2.4 3.902 126.8 125.7 

17 1.92 3234 47.2 21.2 26.0 0.236 5.9 0.034 0.84 0.269 6.7 3.731 44.4 44.0 
5 18 5.01 8439 36.5 22.6 13.9 0.126 3.2 0.017 0.43 0.143 3.6 3.857 86.0 85.2 

19 7.55 12717 33.6 22.2 11.4 0.103 2.6 0.014 0.35 0.117 2.9 3.883 105.6 104.7 
20 10.09 16996 31.1 21.4 9.7 0.087 2.2 0.012 0.29 0.099 2.5 3.901 125.3 124.2 

21 1.92 3234 46.8 22.0 24.8 0.224 5.6 0.032 0.80 0.256 6.4 3.744 46.8 46.4 
8 22 10.09 16996 31.7 22.4 9.3 0.084 2.1 0.011 0.28 0.095 2.4 3.905 130.6 129.4 

$ 



TABLE N (continued) 

COLLECTED HEAT TRANSFER DATA WI1H DIFFERENT VEWCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 2.25, SIL= 1, t/L = 1, AND Qt= 4 WATTS) 

Vch Tc Too Cfc-Too) Ok Qk/Qt Or Qr/Qt Qi, QI./Qt Qc h 
r Run# (m/s) Rel ("C) (°C) (°C) (Watt) X 1()() (Watt) X 100 (Watt) X 100 (Watt) (Watt/m2°C) Nut 

1 1.80 3032 48.1 21.8 26.3 0.238 6.0 0.034 0.85 0.272 6.8 3.728 43.9 43.5 
1 2 5.03 8473 36.6 22.7 14.0 0.126 3.2 0.017 0.43 0.144 3.6 3.856 85.6 84.8 

3 7.56 12734 33.1 22.1 11.0 0.099 2.5 0.013 0.33 0.133 2.8 3.887 109.9 108.9 
4 10.04 16911 31.5 22.3 9.1 .083 2.1 0.011 0.27 0.094 2.3 3.906 132.5 131.3 

5 1.80 3032 50.2 22.0 28.2 0.225 6.4 0.037 0.93 0.292 7.3 3.708 40.8 40.4 
2 6 5.03 8473 38.5 22.5 16.0 0.145 3.6 0.020 0.50 0.165 4.1 3.835 74.1 73.4 

7 7.56 12734 34.9 22.2 12.7 0.115 2.9 0.016 0.39 0.131 3.3 3.869 94.2 93.4 
8 10.00 16844 33.2 22.7 10.5 0.095 2.4 0.013 0.32 0.107 2.7 3.893 115.3 114.3 

9 1.80 3032 51.2 22.5 28.7 0.259 6.5 0.038 0.95 0.297 7.4 3.703 40.0 39.6 
3 10 5.03 8473 38.7 22.4 16.3 0.148 3.7 0.020 0.51 0.168 4.2 3.832 72.9 72.2 

11 7.56 12734 34.4 21.8 12.6 0.114 2.9 0.015 0.38 0.129 3.2 3.871 95.2 94.3 
12 10.04 16911 33.0 22.4 10.6 0.096 2.4 0.013 0.32 0.109 2.7 3.891 113.8 112.8 

13 1.80 3032 52.7 21.8 30.9 0.280 7.0 0.041 1.03 0.321 8.0 3.679 36.9 36.6 
5 14 5.03 8473 39.0 22.4 16.6 0.151 3.8 0.021 0.52 0.171 4.3 3.829 71.3 70.7 

15 7.56 12734 35.0 21.8 13.2 0.119 3.0 0.016 0.40 0.135 3.4 3.865 90.8 90.0 
16 10.04 16911 32.7 21.2 11.5 0.104 2.6 0.014 0.34 0.118 2.9 3.882 104.7 103.8 

17 1.80 3032 52.9 22.1 30.8 0.279 7.0 0.041 1.03 0.320 8.0 3.680 37.0 36.7 
7 18 5.03 8473 39.2 22.0 17.2 0.155 3.9 0.021 0.53 0.177 4.4 3.823 69.0 68.4 

19 7.56 12734 35.7 22.3 13.4 0.122 3.0 0.016 0.41 0.138 3.4 3.862 89.1 88.3 
20 10.04 16911 33.4 21.7 11.8 0.106 2.7 0.014 0.35 0.121 3.0 3.879 102.3 101.4 

21 1.80 3032 52.4 22.7 29.7 0.269 6.7 0.040 0.99 0.308 7.7 3.692 38.6 38.3 
8 22 5.03 8473 39.7 22.7 17.1 0.154 3.9 0.021 0.53 0.176 4.4 3.824 69.5 68.9 

23 7.56 12734 35.1 22.0 13.1 0.119 3.0 0.016 0.40 0.135 3.4 3.865 91.5 90.7 
24 10.04 16911 33.6 22.3 11.4 0.102 2.6 0.014 0.34 0.116 2.9 3.884 106.1 105.1 ....J 
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TABLE N (continued) 

COLLECTED HEAT TRANSFER DATA WITH DIFFERENT VELOCITIES AND HEATED COMPONENT 
ROW NUMBERS (CASE: D/t = 3, SIL= 1, t/L = 1, AND Qt= 4 WATTS) 

Vch Tc Too ffc-Too) Qic Qk/Qt Or Qr/Qt Qi. Qr}Qt Qc h 
r Run# (m/s) Rel (°C) {°C) (°C) (Watt) X 100 (Watt) X 1()() (Watt) X 100 (Watt) (Watt/m2°C) NUL 

1 2.11 3554 46.8 21.9 24.9 0.225 5.6 0.032 0.80 0.258 6.4 3.742 46.6 45.7 
1 2 5.03 8473 37.3 21.9 15.4 0.139 3.5 0.019 0.47 0.158 4.0 3.842 77.3 76.6 

3 7.57 12751 34.1 22.2 11.9 0.108 2.7 0.014 0.36 0.122 3.1 3.878 101.0 100.1 
4 10.17 17130 32.7 21.9 10.8 0.098 2.4 0.013 0.32 0.111 2.8 3.889 111.6 110.6 

5 2.11 3554 49.8 22.0 27.8 0.252 6.3 0.037 0.91 0.288 7.2 3.712 41.3 40.9 
2 6 4.97 8371 38.7 21.7 17.0 0.154 3.8 0.021 0.53 0.175 4.4 3.825 69.8 69.2 

7 7.57 12751 35.7 22.0 13.7 0.124 3.1 0.017 0.42 0.141 3.5 3.859 87.3 86.5 
8 10.17 17130 34.3 22.5 11.8 0.106 2.7 0.014 0.36 0.121 3.0 3.879 102.4 101.5 

9 2.11 . 3554 50.3 22.3 28.0 0.254 6.3 0.037 0.92 0.290 7.3 3.710 41.0 40.6 
3 10 4.97 8371 39.4 22.0 17.3 0.157 3.9 0.022 0.54 0.179 4.5 3.821 68.3 67.7 

11 7.57 12751 35.7 21.9 13.7 0.124 3.1 0.017 0.42 0.141 3.5 3.859 87.1 86.3 
12 10.17 17130 33.5 21.9 11.6 0.105 2.6 0.014 0.35 0.118 3.0 3.882 104.6 103.7 

, 13 2.06 3470 51.9 22.3 29.6 0.270 6.7 0.039 0.98 0.309 7.7 3.691 38.6 38.3 
4 14 4.97 8371 40.8 22.3 18.5 0.168 4.2 0.023 0.58 0.191 4.8 3.809 63.7 63.1 

15 7.57 12751 36.7 22.0 14.7 0.133 3.3 0.018 0.45 0.151 3.8 3.849 81.2 80.5 
16 10.17 17130 34.6 22.3 12.3 0.111 2.8 0.015 0.37 0.126 3.1 3.874 98.0 97.1 

17 2.06 3470 52.4 22.0 30.4 0.275 6.9 0.040 1.01 0.316 7.9 3.684 37.6 37.3 
5 18 4.97 8371 41.0 22.3 18.7 0.169 4.2 0.024 0.59 0.193 4.8 3.807 63.1 62.5 

19 7.57 12751 36.8 22.1 14.7 0.133 3.3 0.018 0.45 0.151 · 3.8 3.849 81.2 80.5 
20 10.17 17130 34.4 21.7 12.7 0.115 2.9 0.015 0.39 0.130 3.3 3.870 94.5 93.7 

21 2;06 3470 52.5 22.2 30.3 0.274 6.9 0.041 1.01 0.315 7.9 3.685 37.7 37.4 
6 22 4.97 8371 40.9 22.0 19.0 0.172 4.3 0.024 0.59 0.195 4.9 3.805 62.2 61.6 

23 7.57 12751 36.8 22.1 14.7 0.133 3.3 0.018 0.45 0.151 3.8 3.849 81.2 80.5 
24 10.17 17130 34.1 21.8 12.2 0.111 2.8 0.015 0.37 0.126 3.1 3.874 98.1 97.2 

....J -7 25 4.97 8371 40.9 22.3 18.7 0.169 4.2 0.024 0.59 0.193 4.8 3.807 63.2 62.6 
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component at a fixed place (row 2, column 3), and varying the input power and Reynolds 

number. This was necessary, as shown in Table III, in order to show that the percentage 

of conduction and radiation losses were independent of input power to the heated 

component. Table IV shows collected heat transfer data for different ranges of 

experimental parameters in the order shown in Table II. Estimates of uncertainty using 

single-sample experiments method (Kline and McClintock, 1953) show the uncertainty in 

the calculated heat transfer coefficients in Table IV varied from a minimum of 2.1 % to a 

maximum of 8.6% (see Appendix C). However, for intermediate values of velocities (3 to 

5 m/sec) and higher input power to the compon~nt, which is more closer to the electronic 

cooling application, this value is always less than 6%. Repeatability was checked on the 

heat transfer measurements. Repeated measurements using the same heated components, 

the same input power, the same instruments, the same geometric parameters and approach 

Reynolds numbers, on successive days showed ±1 % scatter. More details about these two 

tables are presented in the next section. 

4 .1. 1 Ranges of Conduction and Radiation Losses 

With a quick look at Tables III and IV, the following conclusions for conduction 

and radiation can be obtained: 

1. Percentage of conduction loss (Qk/Qt x 100) decreases with increasing 

Reynolds number. From Table III, percentage of conduction loss seems to be 

independent of input power to the component. However, Table IV indicates 

that the loss due to conduction is a weak function of heated component row 

number (r), channel height (D/t), and component height (t/L). In general, it is 

true that for a fixed t/L (fixed component surface area exposed to convection 

and radiation, i.e Ac), percentage of conduction loss is inversely proportional 

to the convective heat transfer coefficient or Nusselt number. This fact can be 
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analytically proven using Equations (3.4) through (3.7), ignoring negligible 

loss due to radiation. On the other hand, with increasing t/L and holding other 

effective parameters constant, Ac increases and causes more heat dissipation 

due to convection and radiation, and less losses due to conduction heat 

transfer. The range of conduction loss in Table IV is from a minimum of 1.9% 

to a maximum of 9.8%, depending strongly on the flow approach velocity and 

the component height, and weakly on the heated component row number and 

the channel height. More detailed discussion and analysis for influence of 

effective parameters on conduction loss are presented in Section 4.2. 

2. Percentage of radiation loss ( Qr/Qt x 100) is independent of input power to the 

heated component, and decreases with increasing the approach Reynolds 

number. As shown in Table IV, radiation loss is a weak function of the heated 

component row number, component height, and channel height. In this table 

radiation losses range from a minimum of 0.23% to a maximum of 1.01 %, 

depending strongly on the approach Reynolds number, and weakly on the 

heated component row number and other geometric parameters. 

3. Percentage of total heat loss due to conduction and radiation (QL/Qt x 100) 

decreases with an increase in the approach mean air velocity, and is 

independent of the input power to the heated component. As shown in Table 

IV, range of total loss due to the conduction and radiation is from a minimum 

of 2.1 % to a maximum of 10.7%, depending strongly on the flow approach 

velocity and the component height, and weakly on the heated component row 

number and the channel height. 

The above conclusions for the ranges of conduction and radiation losses match the 

results of other investigators (see for example Arvizu, 1981; Buller and Kilburn, 1981; 

Wirtz and Dykshoom, 1984). 
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4.1.2 Heat Transfer Correlations 

An interactive curve fitting computer program called RQ was used for developing 

the heat transfer correlations. This program was originally developed by Professor J.P. 

Chandler, Computer Science Department, Oklahoma State University. The program was 

modified by D.R. Maiello and L. M. Tam under supervision of Professor A. J. Ghajar, 

School of Mechanical and Aerospace Engineering, OSU, for interactive use on personal 

computers and heat transfer applications. The general form of equation used in this 

program for correlating the collected heat transfer data was: 

where NuL is the Nusselt number of the heated component collected during each 

experiment, ReL, R, Hit and t/L are the corresponding tested experimental parameters. R is 

a new parameter for the effect of row number, and defined as the ratio of the distance 

between the leading edge of the component at the first row (beginning of the test section) 

and the center of the heated component, to the total length of the test section: 

R = (r-1)(1 +SIL)+ 112 
(N - 1)(1 + SIL) + 1 (4.1) 

where N is the total number of rows in the test section, and the equation holds for r < N. 

Once the collected data for NuL and the corresponding tested experimental parameters are 

entered in the RQ program, the coefficients A1, A2, A3, A4, and As are determined by the 

computer program. 

Based on the first set of collected heat transfer data, a primary heat transfer 

correlation was developed using RQ curve fitting computer program and the simplest form 

of the equation as: NuL = A1 (ReL)A2. This primary correlation was then modified 

gradually by entering new tested experimental parameters tabulated in Table II during the 

course of the experiments. This modification procedure helped in observing the influence 

of the involved effective parameters which will be discussed in detail in the next section. 
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After the final modification, the following single general correlation was developed for the 

range of tested experimental parameters presented in Table II: 

NuL = 0.280 (ReL)0.61 (R)-0.05 (H/t)-0.11 (UL)-0.22 (4.2) 

where 

2880 ~ ReL ~ 17130, 0.5:::;; Hit~ 2.0, 0.5 ~UL~ 1.0, SIL= 1.0 

and R is given by Eq. (4.1). 

This correlation is applicable to any single heated component in an in-line array of 

similar rectangular components having different geometries, heated component row 

numbers, and approach velocities within the above range. Equation (4.2) does not 

accurately predict the heat transfer coefficient of the heated component at the last row (row 

8), because of the exposure of the component's back surface at this row. For this reason 

the collected data for heated component at row 8 were not used for developing the general 

correlation. Figure 4.2 conveys the deviations between the experimental heat transfer data 

(Nuexp) collected in Table IV and the predicted results (Nuca1) presented by Eq. (4.2). The 

correlation gives a representation of the experimental data to within +10.5% and -12.6%. 

In the development of the correlation, a total of one hundred and twenty nine experimental 

data points were used. The absolute average deviation between the results predicted by Eq. 

(4.2) and the experimental data is 3.7%. About thirty one percent of the data (40 data 

points) were predicted with more than ±5% deviation and sixty nine percent of the data (89 

data points) with less than ±5% deviation (see Fig. 4.2). As shown in the figure, only 

three data points (2.3% of the data) were predicted with more than ±10% deviation and one 

hundred and twenty six data points (97. 7% of the data) with less than ±10% deviation. 
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More detailed discussion about the effects of Reynolds number and the other tested 

geometric parameters on the heat transfer of the heated component, along with the 

appropriate figures and comparisons with the results of previous investigators are presented 

in the next section. 

4 .1. 3 Discussion and Comparisons of the Results 

The experimental results of this study have shown that the heat transfer behavior of 

a single heated component in a regular in-line array of rectangular components can be 

described by a correlation of the form NuL = CgRe1.. For different geometric tested 

parameters shown in Table II, the exponent value, n, was found to be constant and equal to 

0.61. The geometric coefficient, Cg, varies with different array densities and is only a 

function of geometric parameters (r, D/t, and t/L). Figures 4.3 through 4.9 show the 

effects of Reynolds number and other tested geometric parameters on the heat transfer of 

the heated component. A detailed discussion of these figures and comparison of the 

experimental results of this study with the results of other investigators are presented next. 

Evidence of h - Ren dependence has been observed for many years in forced 

convective electronic cooling. It is evident that larger Reynolds numbers mean more air 

movement around the heated component which causes more heat dissipation. Figures 4.3 

through 4.7 show the effects of Reynolds number on the heated component Nusselt 

number for different array geometries. These figures convey the fact that there is a regular 

increase in the value of heat transfer coefficient, corresponding to a regular increase in the 

value of Reynolds number. 

In addition to the Reynolds number, there are three other important geometric tested 

parameters which affect the value of heat transfer coefficient of a single heated rectangular 

component, placed in an in-line array of rectangular components. These parameters are: 
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Figure 4.4. Fully Developed Heated Component Nusselt Number (Fifth Row) as a 
Function of Reynolds Number for t/L = 0.5, Parametric in Hit 
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Figure 4.6. Fully Developed Heated Component Nusselt Number (Fifth Row) as a 
Function of Reynolds Number for Hit = 0.50, Parametric in t/L 
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1. r(heated component row number) - When examining the results, it must be 

kept in mind that there will be irregularities due to the exposure of the first and 

last rows. The first row will lose a disproportionate amount of heat through its 

front surface (the surface facing the air flow) due to the increased air velocity 

over the surface. Similarly, the eighth (last) row will lose more heat through 

its back surface than other components due to its exposure. These losses will 

affect the remaining sides. 

The results of this study show that components along the first row experience 

heat transfer which is 8 to 17% greater than those of succeeding rows. Figure 

4.7 shows the variation of Nusselt numbers as a function of row number for 

different Reynolds numbers. These data correspond to the dimensionless 

component height of t/L = 1.0 and the dimensionless channel height of Wt = 
2.00. It should be noted that five additional figures for different combinations 

of Hit and t/L showing the same trend as Figure 4.7 could have also been 

presented. As shown in Figure 4.7, for a fixed Reynolds number, the heat 

transfer of the heated component at the first row is 8.4%, 11.6%, 13.7%, 

15.2%, 16.4%, and 17.5% greater than the heat transfer of the second to 

seventh row, respectively. It is clear from this figure that as the row number 

increases, the difference between h for the two neighboring rows becomes 

smaller. This difference reduces to 1.0% for the fifth and sixth rows. 

Therefore, the Nusselt number of the heated component at the fifth and 

subsequent rows is defined as the "periodically fully-developed" Nusselt 

number. Sparrow et al. (1982) found that it took five rows of components for 

the heat transfer to be truly "periodically fully-developed", while Wirtz and 

Dykshoom (1984) reported three rows. However, they did not clearly define 

the meaning of "periodically fully-developed" heat transfer i.e., what is the 
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percentage difference between the Nusselt number at the row they attained 

fully-developed, and its first downstream row. 

The variation of the heated component Nusselt number as a function of 

Reynolds number for the first row and fifth row (fully-developed) for different 

channel heights are shown in Figs. 4.3 and 4.4. The data plotted in these two 

figures correspond to a fixed component height (t/L = 0.5). It can be seen 

from these two figures that the heat transfer for the first row (see Fig. 4.3) is 

15.2% greater than the corresponding fully-developed Nusselt number shown 

in Fig. 4.4. This finding is in agreement with the experimental heat transfer 

results reported in the literature (Arvizu, 1981; Sparrow et al, 1982; Wirtz and 

Dykshoom, 1984; etc.) which indicates that the components along the first row 

of an in-line arrangement experience heat transfer which is 10 to 20% greater 

than that of succeeding rows. In order to clearly compare the heated 

component Nusselt numbers shown in Figs. 4.3 and 4.4, these two figures 

were combined into a single figure as Fig. 4.5. 

2. Hit (dimensionless channel height) - Figures 4.3 and 4.4 depict the heated 

component Nusselt number versus Reynolds number for the entrance and 

fully-developed regions, respectively, for t/L = 0.5 and a range of channel 

heights, while Fig. 4.8 shows the Nusselt number of the heated component as 

a function of row number for t/L = 0.5 and ReL = 8,000, for different channel 

heights. From these figures it can be seen that for a fixed Reynold number, as 

the channel height is increased, the heat transfer decreases both for the entrance 

and fully developed regions. Since a fixed ReL represents a fixed mean 

velocity, as Hit increases (see Fig. 3.4), the portion of air flow over the 

component is decreased, thus reducing the heat transfer. This expression 

justifies the assumption of other investigators, that the heat transfer of a single 
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component depends on the velocity around it. For example, see Moffat, et al. 

(1985). 

During the process of development of the general heat transfer correlation 

presented by Eq. (4.2), it was found that the exponent, -0.11, was the best fit 

for the heat transfer data tabulated in Table IV. This negative exponent shows 

thatthe heat transfer is more sensitive to the values of Hit less than unity. This 

fact can be seen more clearly in Fig. 4.8, that for a fixed row number, the 

heated component Nusselt number for Hit= 0.5 is 10.5% more than what is 

depicted for Hit= 1.25, and this percentage reduces to 5.3% for comparable 

Nusselt number of a fixed row for Hit= 1.25 and 2. This reveals that as Hit 

increases, while holding the other parameters constant, the Nusselt number 

becomes less sensitive, and at some critical value of Hit, the change in heat 

transfer is negligible. In other words, if the heated component Nusselt is 

plotted versus Hit while holding the other parameters constant, the slope would 

be steeper for Hit < 1 than the slope for Hit > 1. 

3. t/L (dimensionless component height) - Figure 4.6 shows the fully-developed 

Nusselt number as a function of Reynolds number for Hit = 0.5, and two 

different tested dimensionless component heights (t/L), while Fig. 4.9 plots the 

heated component Nusselt number versus row number for Hit= 0.5, ReL = 

8,000, and two different tested t/L. It can be seen from these two figures that 

as t/L is increased, the heat transfer decreases. This fact can be justified by 

defining a new-parameter called Surface Blocking Ratio (SBR). SBR is the 

ratio of the surface of the component blocked by its neighboring components in 

the direction of air flow, to the total surf ace of the heated component exposed 

to convection. This ratio is t/L/(1 + 4t/L) for the first and last rows, and 

2t/L/(1 + 4t/L) for the components in the other rows. Comparing this new 

defined parameter (SBR) for the two cases of t/L = 0.5 and 1.0, it reveals that 
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for the case of t/L = 0.5, less fractional surface of the heated component is 

blocked by its neighboring components in the direction of the air flow, which 

in turn causes more fractional surface exposed to convection, thus more 

convective heat transfer. It was found that the exponent, -0.22, was the best 

fit for the heat transfer data tabulated in Table IV. This negative exponent 

shows that the heated component Nusselt number is more sensitive to the 

values of t/L < 1. It is believed that if more experiments are performed for a 

range of t/L > 1, some critical value for t/L can be found that for t/L greater 

than this critical value, the variation of Nusselt number of the heated 

component will be negligible. However, in electronic cooling t/L is less than 

unity for most practical cases. 

In the above analysis, the effects of Reynolds number and each single geometric 

parameter (r, Hit, and t/L) on the heated component Nusselt number were discussed 

separately in detail. However, during the analysis, it was found that effects of these 

geometric parameters on the convective heat transfer of the heated component are not 

independent of each other. In the following, two important conclusions which were made 

for the effect of geometric parameters on each other and their combined effects on the 

Nusselt number of a heated component are presented. 

1. In the general correlation presented by Eq. (4.2), the exponents for Hit and t/L 

were -0.11 and -0.22, respectively. As mentioned earlier, these two exponents 

were the best fit for the experimental heat transfer data tabulated in Table IV. 

These two exponents are interrelated and for some set of values for Hit and t/L, 

they cancel each other and Eq. (4.2) could be simplified. For example, for the 

case of Hit= 2 and t/L = 0.5, Eq. (4.2) predicts the same result as the case of 

Hit= 0.5 and t/L = 1. This fact can be seen from the raw data for these two 

cases in Table IV, which for most of the data points, the difference is less than 

3% which is within our experimental error. In general Eq. (4.2) predicts the 
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same heat transfer result for the case of Hit = x, t/L = 1/X, and the case of Hit 

= 1/x, t/L = 1, while holding the other parameters constant, since (Hlt)·,11 

(t/L)·.22 in both cases simplifies to (l/X)·,11. It is believed that if more 

experiments were performed for larger ranges of Hit and t/L, these two 

geometric parameters could be combined in order to introduce a new single 

geometric parameter which represents effects of both Hit and t/L on the Nusselt 

number of the heated component. 

2. During the process of development of the general correlation, two separate 

subcorrelations were found for the cases of t/L = 0.5 and 1, having the same 

exponent for ReL and H/t, but different exponents for the effect of row number 

(R). These two exponents were -0.04 and -0.06 for t/L = 0.5 and 1, 

respectively. This difference in exponent of R means that for the case of t/L = 

0.5, the heat transfer coefficient is less dependent on the row number and takes 

less number of rows of components for the heat transfer to reach fully

developed region than the case of t/L = 1. This fact can be seen from the data 

tabulated in Table IV, which shows that for the case of t/L = 0.5, the average 

difference of the heated component Nusselt number between the first and 

second rows is 6.5% while this value is 10% for the case of t/L = 1. It is 

believed that this difference is partially due to the effect of Swface Blocking 

Ratio (SBR) which was discussed earlier. If more experiments for the larger 

range of t/L were performed, it might be possible to find a relation between the 

exponent of R and SBR. However, for this study the above two mentioned 

subcorrelations were combined to represent a single general correlation 

presented by Eq. (4.2). The error due to this combination is within our 

experimental error, and does not affect the final result. 

Thus far the heat transfer results, the general heat transfer correlation based on the 

results along with a detailed discussion of the effects of Reynolds number and other tested 
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geometric parameters on the heat transfer coefficient have been presented. In the 

following, the collected heat transfer results and the general heat transfer correlation 

presented by Eq. (4.2) will be compared with the results of other investigators reported in 

the open literature. These comparisons will show that the results of this study are in good 

agreement with the results of other investigators. This in tum verifies the good 

performance of our experimental setup and the accuracy of the general heat transfer 

correlation given by Eq. (4.2). 

In electronic cooling, the component heat fluxes are roughly limited to what is 

suggested by Kraus and Bar-Cohen (1983), as shown in Fig. 4.10. This figure agrees 

well with the heat transfer data summarized in Tables ID and N, as well as the general heat 

transfer correlation presented by Eq. (4.2). 

The experimental heat transfer results of other investigators are compared with our 

results in Table V. This table only shows ranges of their tested parameters which were 

comparable with the results of this study, and their corresponding correlations for both heat 

transfer coefficient (h) and Nusselt number (NuL). In these correlations, h is in 

Wattfm2°C. More details about the experimenters experimental setups and their involved 

parameters can be found in Table I. Reynolds and Nusselt numbers of these studies were 

based on different characteristic lengths, such as the channel height (D), component height 

(t), component length (L), etc. To be able to compare the results of these investigators with 

our heat transfer results, their reported correlations were carefully converted on the basis of 

our characteristic length (L=2.54 cm). Furthermore, Eq. (4.2) was simplified according to 

their "Ranges of Comparable tested experimental parameters" and entered in the "Simplified 

Form of Eq. (4.2)" Column in Table V. It appears from this table that the range of the 

exponent on Reynolds number varies from 0.54 to 0. 72. The heat transfer results reported 

in the open literature indicate the bounds on the exponent, n, to be 0.5 to 0.8. This range 

on the exponent applies to geometries of both small scale and large scale sizes and from 
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TABLEV 

COMPARISON OF HEAT TRANSFER RESULTS WITH THE RESULTS OF OTHER INVESTIGATORS 

Ranges of comparable tested Suggested Simplified Form %Difference 
Study Case ex2erimental 2arameters Correlation of Eq. (4.2) 

ReL t/L Hit r SIL Lowest ReL Highest ReL 

Sparrow et. al Dense 1905 
•. 

h = 0.095 ( Rei_ )°"72 h = 0.340 ( ReL )°"61 

1982 flatpacks to 0.375 1.67 5 0.25 +35.9% +26.4 
6667 NuL = 0.094 ( Rei, )°"72 NuL = 0.337 ( Rei, )°"61 

Arvizu, Sparse 2419 h = 0.441 ( Rei, )°"55 h = 0.252 ( Rei, )°"61 

1981 cubes to 1 3.62 5 1 -9.6% +1.5% 

14514 NuL = 0.437 ( Rei, )°"55 NuL = 0.250 ( Rei, )°"61 

Buller and Single 806 h = 0.667(ReL )°"54 h = 0.398 ( ReL )°"61 

Kilburn, flatpack to 0.196 5.31 1 NIA -4.9% +6.3% 
1981 4032 NuL = 0.661 ( Rei, )°"54 NuL = 0.394 ( Rei, )°"61 

Wirtz and Sparse 1613. h = 0.358 ( Rei, )°"6 h = 0.353 ( ReL )°"61 

Dykshoom flatpack to 0.25 3.6 3 1 +5.8% +7.9% 

1985 16127 NuL = 0.355 ( Rei, )°"6 NuL = 0.350 ( ReL )°"61 

Lehmann and Sparse 2680 h = 0.268 ( Rei, )°"65 h = 0.377 ( ReL )°"61 

Wirtz, flatpack to 0.25 1.25 11 1 +2.5% -3.5% 

1985 12000 NuL = 0.266 ( ReL )°"65 NuL = 0.374 ( ReL )°"61 

~ 
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single roughness element to arrays of roughness elements. The upper limit on the 

exponent, i.e., n = 0.8 is precisely the value reported for turbulent flow through smooth 

parallel planes (see Kays and Crawford, 1980). It is not too surprising that, as the regular 

in-line array of rectangular components become very dense, i.e., SIL<< 1, the Reynolds 

number exponent increases to approach the behavior of turbulent flow between smooth 

parallel planes, i.e., h - Re0.8. 

The heat transfer results of this study were compared with the results of Sparrow, 

· et al. ( 1982) in Fig. 4.11 for their reported ranges of tested experimental parameters. We 

measured higher heat transfer rates and a slightly weaker dependence on the flow rate. 

This is not surprising since Sparrow, et al's .. arrays were densely packed (SIL = 0.25) 

whereas ours should be considered sparse with SIL = 1. It is well known that the large 

cavities between arrays, such as in the present experiments, will interact more strongly with 

the channel flow above the array, producing a higher turbulence level in the flow. This 

higher freestream turbulence will produce higher heat transfer coefficients and a weaker 

dependence on the Reynolds number. Furthermore, they used naphthalene sublimation 

technique, and found the value of Nusselt number by invoking the mass-transfer analogy. 

This may be the second reason for their heat transfer results being lower than ours. 

Figure 4.12 shows comparison of the heat transfer results of the present study with 

the work of Arvizu ( 1981) for his reported ranges of tested experimental parameters 

tabulated in Table V. This figure shows that his results are in good agreement and within a 

few percent of our results for t/L = 1, Hit = 3.62, SIL = 1, and r = 5. This slight 

difference may be due to the fact that the general heat transfer correlation presented by Eq. 

( 4.2) is limited to the ranges of 0.5 ~ Hit ~ 2.0 and 2880 ~ ReL ~ 17130, while Arvizu's 

Hit and ReL were 3.6 and 2419, respectively. 

Buller and Killurn (1981) used a single heated flatpack with attached pins. Our heat 

transfer results were compared with their results as shown in Fig. 4.13, for their reported 

ranges of tested experimental parameters. This figure shows that the Buller and Killum's 
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heat transfer results are within a few percent of our results with a slightly weaker 

dependence on the Reynolds number. However, since they used single heated flatpack 

with attached pins, their heat transfer results should be higher than the results of this study. 

On the other hand, their ranges of tested experimental parameters were different from 

ranges for which Eq. (4.2) is suggested. These two factors may offset each other. Since 

detailed dimensions of the attached pins and other parameters were not reported, further 

discussion about this comparison is impossible. Their characteristic length (l ) was defined 

as: 

where Af was component frontal surface area, Cf was circumference of component frontal 

surface, At was component total wetted area, and L was component length. Their 

Reynolds number was based on l and the velocity component was evaluated through the 

constricted test area. Correlating the heat transfer coefficient to this Reynolds number 

would automatically include partial effects of t/L, SIL, and Hit. 

Figure 4.14 shows comparison of our heat transfer results with the work of Wirtz 

and Dykshoom ( 1985) for their reported ranges of tested experimental parameters tabulated 

in Table V. This figure shows that their results are a few percent higher than ours, while 

the exponent of their Reynolds number is almost the same as ours. Although this percent 

difference is not considerable (5.8% to 7.9% as tabulated in Table V), it may be partially 

due to the use of Eq. ( 4.2) outside of its recommended range for t/L and Hit. 

The present experimental heat transfer results were compared with the work of 

Lehmann and Wirtz (1985) as shown in Fig. 4.15, for their ranges of tested experimental 

parameters. This figure shows the good agreement of our results with theirs, while our 

results are slightly less sensitive to the Reynolds number. As seen in Table V, their results 

are within +2.5% to -3.5% of our results for the range of Reynolds numbers from 2680 to 
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12000. Their ranges of tested experimental parameters were closer to ours (see Table II) 

than the work of other investigators tabulated in Table V. 

Table V along with Figs. 4.12, 4.14, and 4.15 show that our experimental heat 

transfer results are in good agreement with the results of other investigators having the 

same dimensionless component spacing, i.e., SIL= 1. As seen in Table V, the percent 

difference between our results and their work is within +7.9% to -9.6%. This agreement 

reveals the accuracy of our general heat transfer correlation presented by Eq. (4.2), and 

verifies the good performance of our experimental setup. 

4.2 Effects of Conduction and Board Conductivity on Heat Transfer Coefficient 

Accurate prediction . of component operating temperature depends on the heat 

transfer coefficient, which, in turn, is influenced by board conductivity and conduction heat 

transfer to the board. An experimental investigation was conducted to examine tlie effects 

of board conductivity and conduction losses of the heated component, on the convective 

heat transfer coefficient and consequently on the operating temperature of the heated 

component. Experiments were performed with . different board materials, each one 

arranged with an in-line array of four rows by three columns of highly polished aluminum 

cubes, in a horizontal rectangular wind tunnel. Each component was individually powered 

with a resistor element. Data were collected for different ranges of channel average air 

velocities, component placement, as well as input power to the heated component. The 

heat flux and temperature were measured on all sides of the middle heated components in 

each row of the array by a direct measurement heat flow sensor equipped with a 

thermocouple. The heat transfer by conduction through the back of the board was 

measured directly beneath and surrounding the heated components. The experimental 

results indicate that the conduction heat transfer through the board and consequently the 

thermal behavior of the system were strongly affected by the Reynolds number of the flow, 
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placement of the component, and the board conductivity. For the experiments conducted in 

this study, heat transfer by conduction accounted for 1 to 91 % of the total power applied to 

the component and the component temperature varied from 25 to 132°C. 

A brief review of this investigation will be presented in this section. More 

information about this study·can be found in Arabzadeh et al. (1993). 

4.2.1 Previous Studies 

An extensive review of the literature pertinent to convective cooling of electronic 

boards has been compiled by Incropera (1988). Most previous investigators did not 

adequately address the problem of conduction, since they tried to minimize the conduction 

effects by using insulating materials. This kept the problem simple and tractable, and made 

it possible to do well controlled experiments and simple analyses. There has been no 

systematic attempt to study and incorporate the effect of conduction in a circuit board. 

Because the majorit)' of the heat is ultimately removed through convection, the effects of 

conduction are often overlooked. If conductive board is used, the problem will be more 

complex, since the conduction coupling between the components and the board can 

represent a significant thermal path for dissipation of heat. This was one of the main 

purposes of this study. 

Wagner (1984) used an epoxy-glass board with different thick layers of copper in 

order to investigate effects of board conductivity on temperature distribution on the back of 

the board. A heat source oflow power (1.0 W) was placed at the center of the board to 

represent a silicon integrated chip. Conduction losses were calculated rather than being 

directly measured. The experiments were performed with only one low velocity (1.0 mis), 

therefore effects of different Reynolds numbers were not investigated. 

Ortega and Moffat ( 1986) used a board consisting of balsa wood epoxied onto 

plexiglass in an effort to minimize conduction heat transfer through the board. Ortega and 



102 

Kabir (1991) also used balsa wood mounted on plexiglass for the board. Kang et al. 

(1990) tried to limit conduction by using three masonite boards separated by 6 mm air 

gaps. Roeller et al. (1990) used a thermally symmetric channel design on a cardboard 

board to minimize conduction heat transfer through the board. 

Studies using convection in fluids other than air generally had insignificant amounts 

of conduction. For example, Garimella and Eibeck (1990) estimated that the conduction 

for their setup cooled by forced convection in water accounted for less than 1 % of the total 

heat dissipated. 

Some investigators have attempted to account for conduction by numerical or 

analytical methods. Laderman et al. (1987) conducted a numerical study of several 

conduction heat transfer schemes and examined the sensitivity of the component junction 

and board temperatures to certain parameters which affect conduction. 

Some studies effectively correlated models with experimental results. Fitch (1990) 

proposed a model using a thermal resistance network which included the effects of. 

conduction. Experiments were also conducted and the temperatures were found to correlate 

well with the proposed model. 

Ortega and Kabir (1991) developed an analytical model for the conduction from a 

component to the board. This model suggested that conduction varies linearly with a 

modified driving temperature. This model correlated well with experimental conduction 

flux data calculated from thermocouple temperatures within the component. 

Manno and Azar (1991) examined the effect of intercomponent coupling which 

included conduction and radiation. All the correlations which were examined 

underpredicted component temperatures. They note that this is potentially due to 

underestimating conduction losses. They conclude that the non-convective mechanisms, 

which consist mainly of conduction, account for approximately 34% of the total heat 

dissipated from a powered component. 
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Some experimenters have examined the influence of conduction on certain quantities. 

Azar and Moffat (1991) studied the effect of conduction on the heat transfer coefficient. 

Only the convective flux from the top of the component was experimentally measured using 

a heat flux sensor. They assumed that the convective heat flux from the other surfaces of 

the component (front, back, and sides) is equal to the heat flux from the top (as will be 

shown, not a particularly good assumption). Employing this assumption, from an energy 

balance, they determined the total conductive heat flux of the component. Conduction 

percentages between 24.3% and 60.0% were reported. 

While there has been considerable interest in the effect of conduction, there has not 

been a systematic attempt to experimentally determine the influence of varying Reynolds 

number, component placement, and board conductivity on the conduction heat transfer to 

the board, component temperature, and heat transfer coefficient. One of the objectives of 

this study was to conduct such experiments in a horizontal rectangular wind tunnel using 

polished aluminum cubes to simulate electronic components. 

4.2.2 Experimental Setup and Procedures 

The same experimental apparatus which was explained in detail in Chapter Ill, was 

used to perform conduction experiments. Only the test board on which the array of 

components were mounted changed, and positioned in the test section in place of the 

plexiglass ceiling (see Fig. 4.16). The test board occupied the entire width and length of 

the test section and rested flush with the ceiling of the rest of the channel. Three boards of 

different materials were used. The materials were chosen in order to have a significant 

variation in thermal conductivity. The materials chosen were fiberglass (0.160 cm thick) 

with a thermal conductivity of 0.293 W/m-K, aluminum 2219 alloy (0.155 cm thick) with a 

thermal conductivity of 130 W/m-K, and balsa wood (0.645 cm thick) with a thermal 

conductivity of 0.07 W /m-K. 
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The components were arranged in an array with four rows in the streamwise 

direction and three columns in the cross-stream direction (see Fig. 4.17). The 

dimensionless length ratios which define the geometrical characteristics of the array are: 

t/L = 1 ; SIL = 0.3 ; (H+t)/L = 3 

The difference between component height and channel height (H = D - t = 2L), is the 

characteristic length used for calculation of the Reynolds number. Components were 

oriented such that the lead wires through which current is supplied to the resistor emerge 

from the downstream side of the cube. These wires were secured against the board and 

followed the board to the end of the test section where they emerged from the air channel 

via holes sealed with putty. 

Electronic chips were modeled by highly polished aluminum cubes (2.54 cm per 

side) with a thermal conductivity of 216.3 W/m-K. The components were heated using 

resistance heating. Each component was equipped with a 475 ohm ceramic resistor placed 

at the center of the component (see Fig. 4.18). The rest of the cavity in the back of the 

block was filled with Omegabond 101 thermally conductive epoxy. 

The heat flux and temperature on all five exposed surfaces (inside the wind tunnel) 

and the back of the board (outside of the wind tunnel) for the middle heated components in 

each row of the array were measured by a direct measurement heat flow sensor equipped 

with a built-in T-type thermocouple. These sensors were 1.27 cm square, and placed 

exactly at the center of heated component surface using Omegatherm 201 a very high 

thermally conductive silicon paste. It is important to note that these sensors measure 

radiation as well as convection losses. For monitoring the heat flux on all sides of the 

components, the voltage signals from the heat flux sensors were passed through a high 

gain DC amplifier. The output of the amplifier was then connected to a personal computer 

equipped with an AID board. Estimates of uncertainty of the measured heat fluxes with 

negligible thermal contact resistance between the module and the board was determined to 

be ±5% (Kline and McClintock, 1953). This estimate of uncertainty increased to about 
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16% when an estimate of the maximum possible value of thermal contact resistance for the 

experiments was included in the uncertainty analysis. 

4.2.3 Results and Discussion 

Table VI summarizes the experiments that were conducted to show the influence of 

varying Reynolds number, component placement, and board conductivity on conduction 

heat transfer to the board, component temperature, and heat transfer coefficient. The data 

were collected for the middle heated components of an array of twelve components placed 

in four rows (stream-wise) and three columns. During the data collection, all of the center 

components were heated simultaneously. Table VI summarizes the three different power 

distributions (referred to as cases) that were used for the experiments. This table gives a 

summary of the specific data taken for each case using each of the three boards. As 

indicated in Table VI, the Reynolds number based on the difference between component 

height and channel height (H), was either 3800 or varied from 1450 to 30400. 

When examining the results, it must be kept in mind that there will be irregularities 

due to the exposure of the first and last rows. The first row will lose a disproportionate 

amount of heat through its front surface (the surface facing the air flow) due to the 

increased air velocity over that surface. Similarly, the fourth (last) row will lose more heat 

through its back surface than other components due to its exposure. These losses will 

affect the remaining sides. 

Conduction heat flux for each of the heated components is directly measured 

beneath the component on the back of the board ( outside of the wind tunnel), using a heat 

flux sensor. This value will be referred to as the "direct conduction". Direct conduction is 

not the total conduction heat transfer from the heated component. A large portion of the 

heat (depending on the board conductivity) will be dissipated by conduction from the 

surface of the board both inside and outside of the channel in all directions around the 
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TABLE VI 

HEAT TRANSFER DATA COLLECTED FOR DIFFERENT BOARD MATERIALS 
AND LEVELS OF POWER SUPPLIED TO THE MIDDLE COMPONENTS 

Case 

1 
2 
3 

= 
= 
= 
= 
= 
= 

Power Supplied Fiberglass Board Aluminum Board 
(Watts) 

1 I, T,S,F,B,C,EB,L I,T,S,F,B,C,EB,L 
3 I,T,S,F,B,C,EB,Re I,T,C 

4.5 I,T,S,F,B,C,EB,L,Re I,T,S,F,B,C,EB,L,Re 

inlet air temperature 
flux and temperature for the top of the component 
flux and temperature for the side of the component 
flux and temperature for the front of the component 
flux and temperature for the back of the component 
flux and temperature for the bottom of the board 

Balsa Wood 
Board 

I,C 
I,C 

I,T,C,Re 

EB = an energy balance was performed 
L = 
Re = 

lateral conduction from the back of the board was measured 
flux and temperature for the bottom of the board was taken for eight Reynolds 
numbers ranging from 1450 to 30400 

* Unless otherwise specified, all data was taken at a Reynolds number of 3800 

bottom of the heated component. This will be referred to as the "lateral conduction". As 

mentioned before, the readings from heat flow sensors for the five exposed surfaces were 

the sum of convective and radiative heat fluxes. Subtracting this total convective and 

radiative heat transfer from the input power to the component, gives the "total conduction" 

heat transfer. Dividing the "direct conduction", and the "total conduction" by the input 

power to the heated component, gives the "direct conduction percentage", and the "total 

conduction percentage", respectively. The difference between the total and direct 

conduction is the lateral conduction. Efforts were made to account for the lateral 

conduction by direct measurements. In order to accomplish this, experiments were 

performed with a single heated component placed 91.5 cm from the entrance of the 

rectangular channel on two different boards, a 0.155 cm thick aluminum board, and a layer 

of 0.16 cm thick fiberglass board placed on a 1.27 cm thick commercial plexiglass. The 

back of the board (outside of the wind tunnel) was divided into uniform grids of the size 

1.27 cm x 1.27 cm, same size as the heat flux sensors, up to a distance of SL around the 
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component. Conduction heat flux and temperature of each individual grid was carefully 

measured by the heat flux sensors. Two different input power levels ( 1 and 4.5 W) and 

several different air velocities ranging from 2 to 12 mis were used. These detailed 

measurements revealed that it was not possible to account for all of the lateral conduction, 

since part of the heat was dissipated by conduction from the inside part of the board around 

the component. 

Figure 4.19(a) shows one of these grid systems used to measure the local 

conduction heat fluxes from the back of the aluminum board around the component in 

terms of mW, and temperature above Too in °C, for a fixed 4.5 W input power to the 

component and 7 .5 mis channel average air velocity. The bottom of the heated component 

is highlighted in Fig. 4.19(a) by the thick lines. The top number shown inside of each grid 

is the local temperature above Too in ·c, while the bottom number is the local conduction 

heat flux in mW. It was assumed that the heat flux and temperature distributions about the 

component center-line were symmetric in the streamwise direction. 

This assumption was applied to those grids that their heat flux and temperature were 

not directly measured. However, this symmetric assumption can not be made about the 

component center-line in the spanwise direction because of the thermal wake effect 

upstream of the component due to the air flow. The variations of temperature rise above 

Too and the lateral conduction in the streamwise and spanwise directions given in Fig. 

4.19(a) are depicted in two distinct 3-D plots in Figs. 4.19(b) and 4.19(c). Adding all of 

these local conduction heat fluxes gives 1.079 W. Measured convective and radiative heat 

fluxes from the exposed surfaces through the sensors were 0.161, 0.182, 0.173, 0.173, 

and 0.128 W from the top, front, left side, right side, and back of the component, 

respectively. Adding these values and subtracting from 4.5 W input power, gives 3.683 W 

which should be the total conduction loss. However, total measurement of the conduction 

loss from the back of the board up to SL around the component (from Fig. 4.19(a)) was 



111 

0.78 1.00 1.00 0.89 
5.26 5.42 5.42 6.59 

1.06 1.06 
5.93 5.93 

1.44 1.44 
6.09 6.09 

1.5 1.5 
6.5 6.5 

1.61 1.61 
7.2 7.2 

1.94 1.94 1.56 
7.4 7.4 7.1 

1.67 2.00 1.28 2.28 2.17 2.17 2.28 1.28 2.00 1.67 
8.3 8.7 7.1 8.9 8.2 8.2 8.9 7.1 8.7 8.3 

1.67 2.17 2.17 2.78 2.67 2.67 2.78 2.17 2.17 1.67 
8.3 9.0 7.6 9.6 9.6 9.6 9.6 7.6 9.0 8.3 

2.11 2.44 2.61 3.11 3.33 3.33 3.11 2.61 2.44 2.11 
9.1 9.4 JO.I I 1.2 10.2 11.0 11.2 JO.I 9.41 9.1 

2.39 2.72 3.06 3.61 4.44 4.56 3.94 3.06 2.72 2.39 
9.1 9.9 11.2 10.3 13.1 15.7 14.2 11.2 9.9 9.1 

1.67 1.94 2.22 2.67 3.06 3.78 5.11 6.CKI 4.72 3.61 2.94 2.50 2.00 1.83 
6.1 6.1 7.0 6.9 7.6 8.7 13.2 19.2 14.3 10.7 9.4 8.4 7.4 7.3 

1.67 1.94 2.22 2.67 3.06 3.78 5.28 6.06 4.67 3.61 2.89 2.39 1.94 1.83 
6.1 6.1 7.0 6.9 7.6 8.7 16.S 16.7 12.6 10.4 9.1 8.2 7.6 7.8 

2.2 2.07 1.94 3.00 4.56 4.56 3.00 1.94 2.07 2.2 
7.5 8.0 8.4 8.6 8.1 8.1 8.6 8.4 8.0 7.5 

2.08 1.98 1.67 2.72 3.39 3.39 2.72 1.67 1.98 2.08 
7.2 7.4 7.4 7.3 6.8 6.8 7.3 7.4 7.4 7.2 

2.17 2.11 2.83 2.83 2.11 2.17 
7.9 7.5 6.6 6.6 7.5 7.9 

1.94 1.83 2.17 2.17 1.94 1.83 
7.4 7.4 6.0 6.0 7.4 7.4 

1.89 1.89 
5.8 5.8 

0.167 1.61 1.61 0.22 
5.2 6.3 6.3 5.3 

i 
Air Flow 

Figure 4.19(a). Local Temperatures Above Too in ·c (top numbers in the grids), and Local Conduction 
Losses in mW (bottom numbers) Around the Heated Component on the Back of the 
Aluminum Board. 
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only 1.079 W. This value was 0.241 W for the fiberglass board for the same input power 

and channel average air velocity, while the total conduction obtained from the energy 

balance was 0.469 W. From this comparison, it seems that the correct way to account for 

the total conduction heat transfer is to use an energy balance by subtracting the total 

measured convective and radiative heat fluxes of the exposed surfaces from the input power 

to the component. 

4.2.3.1 Effect of Board Conductivity The amount of conduction losses can greatly affect 

the component operating temperature and therefore the reliability of the system as a whole. 

In this study, conduction was controlled by changing board material. Boards with different 

thermal conductivities allowed different amounts of conduction. Balsa wood with a low 

thermal conductivity (0.07 W/m-K) was used to minimize conduction, while aluminum 

with a high thermal conductivity (130 W/m-K) was used to maximize conduction. 

Figure 4.20 shows the temperature rise of the middle components for case 3 using 

three different boards. The different board conductivities had a large effect upon the 

component temperature rise. In other words, with a fixed input power to the component, 

the higher conductive board has more conduction heat transfer through the back of the 

board and less convection and radiation through the exposed surfaces, hence less 

component temperature rise. For example, the temperature rise of the heated component at 

row 1 was 13°C, 40.5°C, and 50°C for the aluminum, fiberglass, and balsa wood, 

respectively. Similarly, these temperature rises for row 4 were l6°C, 60.2°C, and 80°C 

for the three respective boards. The difference in temperature rise is very significant when 

a I0°C increase is considered to double the component failure rate (Weiss et al. 1989). 

This figure also reveals the hydrodynamic and thermal effects of upstream components on 

the temperature rise of downstream components, since all of the middle components were 
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heated simultaneously. As mentioned earlier, there are some irregularities due to the 

exposure of the last row. It is recommended that the component with higher power be 

placed in row 1 in electronic packaging, since its operating temperature will be lower, 

thereby providing higher reliability. 

Figures 4.21 and 4.22 complement the results shown in Fig. 4.20. Figure 4.21 

shows the effect of board conductivity on the total conduction percentage of the heated 

component at row 3 for case 3 with different Reynolds numbers, while Fig. 4.22 depicts 

effect of board conductivity on component temperature rise at row 3 for case 3 with 

different Reynolds numbers. Comparing Figs. 4.20 and 4.21 for a fixed Reynolds number 

of 3800 and input power of 4.5 W, the component temperature rise at row 3 is 17°C, 

65.6°C, and 77°C (see Fig. 4.20), while the total conduction percentage is 89%, 21 %, and 

6% (see Fig. 4.21) for the aluminum, fiberglass, and balsa wood boards, respectively. It 

is important to note that with a fixed Reynolds number, the board with the higher thermal 

conductivity, dissipates more heat through the back of the board by conduction (see Fig. 

4.21), rather than by convection and radiation through the exposed surfaces, which in turn, 

causes less temperature rise of the heated component (see Figs. 4.20 and 4.22). Figure 

4.21 also shows that the total conduction percentage decreases with increasing Reynolds 

number. For example, for a Reynolds number of 1470, the total conduction percentage is 

91 %, 26.7%, and 7.2%, while for a Reynolds number of 30450, the total conduction 

percentage is 78.3%, 5%, and 1.2% for the aluminum, fiberglass, and balsa wood boards, 

respectively. Higher Reynolds number means faster air movement around the exposed 

surfaces of the component causing more heat dissipation by convection and less by 

conduction. This increase in convection heat transfer reduces the operating temperature of 

the heated component as can be seen in Fig. 4.22. The temperature rise for the balsa wood 

board was l l0°C at the lowest Reynolds number. This was 28°C higher than that for the 

fiberglass board. The temperature rise for the fiberglass board was in turn, 57°C higher 

than that for the aluminum board. At high Reynolds number, the temperature rise for the 
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balsa wood board was only 1 °C higher than that for the fiberglass board. However, the 

temperature rise for the fiberglass board was l0°C higher than that for the aluminum board. 

The role of board conductivity on direct and lateral conduction losses can be further 

analyzed by revisiting the data of Fig. 4.21. If for this data "lateral conduction" 

contributions are ignored and only "direct conduction" effects are considered, the results 

will appear as Fig. 4.23. Comparison of Figs. 4.23 and 4.21 show that conduction 

percentage for aluminum is less than fiberglass and balsa wood for the same operating 

conditions. This is obviously not true. As discussed earlier, a great portion of conduction 

heat transfer for a conductive board (aluminum) is by lateral conduction, while for a 

relatively non-conductive board (balsa wood) this portion is very small. For example, for a 

fixed Reynolds number of 1470, the direct conduction percentage is 4%, 16.5%, and 

6.5%, while the total conduction percentage is 91 %, 26.7%, and 7.2% for the aluminum, 

fiberglass, and balsa wood boards, respectively. This means that heat transferred by lateral 

conduction is 87% for aluminum, 10.2% for fiberglass, and only 0.7% for balsa wood 

board. 

The effects of board conductivity and Reynolds number on conduction losses are 

not addressed as a major contribution to the heat transfer in most of the work done in 

electronic cooling. This is perhaps because most of those measurements were conducted at 

higher Reynolds numbers regimes using nonconductive board. In fact, this is also shown 

in this study on Fig. 4.21 for Reynolds numbers above 10,000 (total conduction 

percentage is less than 9 for balsa wood and fiberglass board). Results of this work could 

become more useful if more measurements are performed for a set of lower Reynolds 

numbers. A correlation may be obtained between the percentage of conduction losses and 

Reynolds numbers for a range of Reynolds numbers below 2000. 

4.2.3.2 Influence of Conduction and Board Conductivity on the Heat Transfer Coefficient 

The total rate of heat transfer from the exposed surfaces measured with the 
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heat flow sensors by the experimenter, is the sum of convective and radiative heat 

transfers. The net rate of thermal radiation heat exchange between the surfaces and the 

surroundings (Qr) can be calculated from Stefan-Boltzmann law, which in general is less 

than 1 % of the total power supplied, as shown in Tables III and IV. Therefore, the 

experimenter can directly find the value of the convective heat transfer of the heated 

component (Qc), then the value of the heat transfer coefficient (h) can be determined from 

Eq. (3.7): 

h = Qc/Ac {Tc-Teo) (3.7) 

where Ac is the total exposed surfaces of the heated component, Tc is the average 

temperature of the exposed surfaces, and T co is the approaching air temperature. Working 

with heat flux sensors is tedious, time consuming, and causes flow disturbance due to 

presence of exposed wires. Therefore, most of the experimenters preferred temperature 

measurements rather than using heat flow sensors. They found the convective heat transfer 

by employing Eq. (3.4): 

Qc=Qt-Qk-Qr (3.4) 

where Qt is the total input power to the component, and Qk is the calculated conduction 

heat transfer using the board thermal conductivity. However, typically the industrial users 

directly apply the heat transfer coefficient offered by the experimenter in order to predict the 

operating temperature of the heated component: 

Tc= Teo+ (QcfhAc) (4.3) 

The actual heat transfer coefficient (ha) can be found by using the correct measured 

value of total conduction loss in Eq. (3.4). However, almost all of the experimenters used 

one-dimensional calculated conduction loss in Eq. (3.4) in order to find the calculated heat 

transfer coefficient (he) from Eq. (3.7). Figure 4.24 shows comparison of these two 

values for the heated component at row 3 of case 3 for fiberglass board at different 

Reynolds numbers. This figure reveals that the calculated heat transfer coefficient is 

overestimated for all of the Reynolds numbers. The average difference between he and ha 
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is 5.8% with a maximum of 16% at the lowest Reynolds number. This difference would 

be higher if the board with higher conductivity is used, since the percentage of lateral 

conduction is higher which is not taken into account in the one-dimensional conduction loss 

calculation. An attempt was made to directly compare the actual heat transfer coefficients 

obtained in this study with the data in the literature. The arrays tested by previous 

investigators were different in size and geometry, as well as the material used for the board 

and simulated component(s). Hence, the results of these studies can not be directly 

compared with one another, as though to test for agreement or disagreement. However, 

Fig. 4.24 depicts a general comparison of the heat transfer results of this study with those 

experimenters who ignored lateral conduction loss and only considered one-dimensional 

calculated conduction loss using the board thermal conductivity. It should be mentioned 

that the board used for collection of the main experimental heat transfer results tabulated in 

Tables III and IV, was a non-conductive board ( a layer of 0.16 cm thick fiberglass placed 

on 1.27 cm thick commercial plexiglass). Since the conductivity of this composite board is 

much less than the conductivity of the fiberglass alone, therefore, average difference 

between he and ha is less than what is shown in Fig. 4.24. In order to investigate this 

difference, experiments were performed with a single heated component placed 91.5 cm 

from the entrance of the rectangular channel, on this composite board ( a layer of 0.16 cm 

thick fiberglass placed on a 1.27 cm thick commercial plexiglass). Different approach 

velocities and input power were used. It was found that the average difference between ha 

and he for this board was less than 2.6% which was within the range of our experimental 

error. For this reason the conduction losses (Qk) reported in Tables III and IV were based 

on a one-dimensional assumption. 

In most practical applications of convective cooling in air, there will be some heat 

lost due to conduction. If the experimenter either ignores or underestimates these losses, 

then by employing Eqs. (3.4) and (3.7), Qc and h will be overestimated. Use of this 

overestimated heat transfer coefficient by the industrial user, causes underprediction of the 
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component operating temperature in Eq. (4.3). On the other hand, if the user uses the 

accurate value of h offered by the experimenter, but either ignores or underestimates the 

conduction losses, then Qc in Eq. (3.4) will be overestimated, which in turn, causes 

overprediction of the component operating temperature in Eq. (4.3). While having the 

operating temperature lower than what predicted, is generally not a problem from the 

reliability aspect, it is preferable to predict the component operating temperature as 

accurately as possible. This important task can be accomplished by the correct estimation 

of the conduction losses. 

The value of the conduction losses and the consistency between the experimenter 

and the industrial user in the way they estimated this value, plays a major role in accurate 

prediction of the operating temperature, and it can cause serious problems if there is a 

failure of communication. Taking into account the accurate value of conduction losses, 

could allow greater packaging densities ahd therefore better overall circuit performance. 



CHAPTERV 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary and Conclusions 

While forced air cooling continues to be adequate for many relatively low power 

dissipation applications, techniques for prediction of the component operating temperature 

are actively being investigated for future generations of electronic equipment such as high 

performance computers. Sufficient knowledge of the convective heat flux distribution over 

the exposed surfaces of an electronic printing wiring board is required as a guide to 

accurately predict the operating temperature of the heated component. The convective heat 

flux is mainly affected by the array geometry and the air flow rate. 

In Chapter I, the effects of four key parameters (D/t, SIL, t/L, and the heated 

component row number) on the heat transfer coefficient of any single heated rectangular 

component placed in an in-line array of unheated similar rectangular components became 

evident. The investigators who obtained their correlations with taking any of these 

parameters into account were summarized in Table I. This table showed that none of the 

reported correlations included the effects of all of these four parameters. Since the arrays 

tested were different in geometry as well as size, the urge to combine the reporte"d 

correlations and deduce a single correlation which covers the effects of all these four 

parameters is also impossible. Therefore, the reported correlations work only for the 

experimenter's experimental setup, or with limitations for setups that are somewhat similar. 

These correlations are not "transportable" to setups having different geometries. In spite of 

having expanded heat transfer database in the area of forced convective electronic cooling, 
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there is still no single correlation available that can predict the heat transfer behavior of any 

single heated rectangular component placed in any in-line array of unheated similar 

rectangular components having arbitrary geometries. 

Research on air cooling should be more responsive to the inherent complexities of 

"real world" applications while at the same time retaining sufficient generality to be 

"transportable" from one application to another. Lack of this generality in the reported 

correlations established the need for the present research. 

This study was undertaken to investigate the combined effects of most influential 

geometric parameters (D/t, t/L,and r), air flow rate, and conduction loss on the heat transfer 

coefficient of any single heated rectangular component placed in an in-line array of 

unheated similar rectangular components. A versatile experimental setup was designed and 

constructed for this purpose. The setup allows to perform experiments with different 

channel heights, component heights, spanwise and streamwise spacings, component 

arrangements (in-line and staggered), as well as test section orientations (vertical or 

horizontal). The setup will also allow accurate control and measurement of the channel 

average velocity, heated component temperature, and input power to the selected 

component( s ). 

Systematic experiments were performed for a range of different geometric 

parameters (D/t, t/L, and r), air flow rates and input powers to the heated component (see 

Tables II, ill, and IV) placed in regular in-line array of similarrectangular components. A 

set of separate experiments with a different test section arrangement was also performed, in 

order to examine the effects of conduction losses and board conductivity on the heat 

transfer coefficient and consequently on the operating temperature of the heated component. 

Effects of air flow rate, each of the geometric parameters, input power, board material, 

conduction and radiation losses, on the heat transfer coefficient of the heated component 

were individually analyzed and discussed in detail. 
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The findings and accomplishments of this experimental investigation may be 

summarized as follows: 

1 . It was found that the percentages of conduction and radiation losses, and the 

heat transfer coefficient of the heated component were independent of the input 

power to the heated component (see Table ill). 

2. Percentage of conduction losses for the experimental data tabulated in Table 

N, was found to vary from a minimum of about 2% to a maximum of about 

10%, depending strongly on the flow approach velocity and the components' 

height, and weakly on the heated component row number and the channel 

height. 

3 . Percentage of radiation losses for the experimental data tabulated in Table N, 

was found to vary from a minimum of about 0.2% to a maximum of about 1 %, 

depending strongly on the approach Reynolds number, and weakly on the 

heated component row number, components' height, and channel height. 

4. The results of this study showed that components along the first row 

experienced heat transfer which was 8 to 17% greater than those of succeeding 

rows (see Figs. 4.7 through 4.9). As the row number increased, the 

difference between h for the two neighboring rows became smaller. It 

generally took five rows of components for the heat transfer coefficient to be 

truly "periodically fully-developed." 

5. For a fixed Reynolds number, as the channel height was increased, the heat 

transfer coefficient of the heated component decreased both for the entrance 

and fully developed regions (see Figs. 4.3, 4.4, and 4.8). 

6. It was found that for a fixed Reynolds number, as the components' height was 

increased, the heat transfer coefficient of the heated component decreased ( see 

Figs. 4.6 and 4.9). This fact was justified by defining a new parameter called 

Surface Blocking Ratio (SBR). SBR was defined as the ratio of the surface of 
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the heated component blocked by its neighboring components, to the total 

surf ace of the heated component exposed to convection. 

7. This study showed that for a conductive board, such as an aluminum board, 

lateral conduction was generally higher than 50% of the total conduction. Total 

conduction heat transfer of the heated component was defined as the sum of 

two terms: "Direct Conduction" and "Lateral Conduction". The "Direct 

Conduction" is a one-dimensional conduction and was accounted for the 

amount of heat dissipated directly beneath the heated component on the back of 

the board. The "Lateral Conduction" is the heat dissipated by conduction from 

· all around the component either to the inside or outside surface of the board. 

Almost all of the previous investigators ignored lateral conduction, and only 

accounted for one-dimensional conduction, i.e., direct conduction. Ignoring 

this significant value, overestimates the heat transfer coefficient. This causes 

underprediction of the operating temperature of the chip by the industrial user; 

hence reduction in the overall reliability of the system. 

8. The experimental heat transfer data of this study were used to develop a general 

empirical correlation presented by Eq. (4.2). This correlation expresses the 

local convective heat transfer coefficient of any single heated component placed 

in an arbitrary regular in-line array of unheated rectangular components with 

SIL= 1. Equation (4.2) has sufficient generality in order to be "transportable" 

to any in-line array of rectangular components having arbitrary geometries i.e., 

different D/t, t/L, and r. 

9. The heat transfer results of this study were compared with the results of other 

investigators reported in the open literature. These comparisons revealed that 

the results of this study were in good agreement with the results of other 

investigators. This in turn verified the good performance of our experimental 
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setup, and the accuracy of the general heat transfer correlation presented by Eq. 

(4.2). 

The generality of the proposed correlation can be further increased by including the 

effect of SIL into Eq. (4.2). Experiments with different SIL ratios are underway (Kim, 

1993). The results of these experiments will complement the database developed in this 

study, and could be easily incorporated into the proposed heat transfer correlation. 

The general correlation presented in this study can be used to predict the self heating 

temperature rise of the heated component due to its own internal heating. The temperature 

rise due to the thermal wakes of upstream components can be calculated using the available 

correlations in the literature (Arvizu, 1981; Arvizu and Moffat, 1982; Anderson and 

Moffat, 1990; etc.). However, .during the data collection, the temperature rise of 

downstream unheated components were also collected in order to cross check the works of 

these investigators. With combining the results of this study and the available correlations 

for thermal wakes due to upstream components, it is possible to predict the temperature rise 

of any rectangular component placed in any in-line array of arbitrarily heated similar 

rectangular components. 

The heat transfer results of this study can be used as the preliminary database, for 

prediction of heat transfer behavior of any rectangular array with a desired complexity, 

such as arrays with different component sizes, missing components, etc. This fact is 

evident, since the in-line array can gradually be changed toward the desired complexity, 

and heat transfer behavior of the array should be experimentally determined during this 

process of change until the final change is achieved. Therefore, the heat transfer behavior 

of in-line array should be initially known, in order to move systematically toward the 

desired complex situation. 
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Recommendations 

Based on the results obtained in this study the following recommendations may be 

1. In the general correlation presented by Eq. (4.2), the exponents for Hit and t/L 

were found to be interrelated, and for some set of values for Hit and t/L they 

cancel each other and Eq. (4.2) could be simplified. More experimental data 

for larger ranges of Hit and t/L are needed in order to introduce a new single 

geometric parameter which represents effects of both Hit and t/L on the heat 

transfer coefficient of the heated component. 

2. During the process of experimentation· and development of the general 

correlation, it was found that the exponent of R in Eq. ( 4.2) was a function of 

t/L. More experiments for the larger range of t/L are needed in order to find a 

relation between the exponent of R and the Surface Blocking Ratio (SBR). 

3. Board conductivity can have significant direct effect on the operating 

temperature of the heated component. This study showed that the temperature 

rise of the heated component mounted on a conductive board such as aluminum 

was generally much less than what was for a relatively non-conductive board 

such as fiberglass or balsa wood board. llowever, in the electronic 

equipment, packages are mounted on the printing wiring board (PWB) where 

layers of electrical conductor networks are fabricated to connect the different 

packages. Hence, the material used for PWB should be electrically non

conductive. This causes a problem, since generally any heat conductive 

material is also electrically conductive and vice versa. More research should be 

conducted in this area to further quantify the influence of board material in 

order to find a suitable material to be able to transfer more heat by conduction 

and reduce the operating temperature of the heated component. 
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4. Systematic experiments should be performed by gradually changing the 

rectangular in-line array toward more complex arrays, such as arrays with 

staggered arrangements, arrays with different component sizes, arrays with 

missing components, arrays having different angles with the direction of 

approach velocity, etc. During the process of this change, the heat transfer 

behavior of the array should be experimentally determined and Eq. (4.2) 

should be gradually modified. 

Finding the general correlations in order to predict the operating temperature of any 

rectangular component placed in an arbitrary array of rectangular components, is the 

"overall objective" of electronic cooling. However, at the present time, the world of 

electronic cooling is far away from this main purpose. 
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A SAMPLE OF INPUT DATA FILE FOR RED40 PROGRAM 

* 10/23/90 01:33 
*01+0100.0 F 
*02+0099.0 F 
*03+0082.1 F 
*04+0078.8 F 
*05+0088.8 F 
*06+0088.8 F 
*07+0088.8 F 
*08+0088.8 F 
*09+0088.8 F 
*10+0088.8 F 
*11+0088.8 F 
*12+0088.8 F 
*13+0088.8 F 
*14+0088.8 F 
*15+0088.8 F 
*16+0088.8 F 
*17+0088.8 F 
*18+0088.8 F 
*19+0088.8 F 
*20+0088.8 F 
*21+0088.8 F 
*22+0088.8 F 
*23+0088.8 F 
*24+0088.8 F 
*25+0088.8 F 
*26+0088.8 F 
*27+0088.8 F 
*28+0088.8 F 
*29+0088.8 F 
*30+0088.8 F 
*31+0088.8 F 
*32+0088.8 F 
*33+0088.8 F 
*34+0088.8 F 
*35+0088.8 F 
*36+0088.8 F 
*37+0088.8 F 
*38+0088.8 F 
*39+0088.8 F 
*40+0088.8 F 

* 10/23/90 01:34 
*01+0100.1 F 
*02+0099.1 F 
*03+0082.4 F 
*04+0078.8 F 
*05+0088.8 F 
*06+0088.8 F 
*07+0088.8 F 
*08+0088.8 F 
*09+0088.8 F 
*10+0088.8 F 
*11+0088.8 F 
*12+0088.8 F 
*13+0088.8 F 
*14+0088.8 F 
*15+0088.8 F 
*16+0088.8 F 
*17+0088.8 F 
*18+0088.8 F 
*19+0088.8 F 
*20+0088.8 F 
*21+0088.8 F 
*22+0088.8 F 
*23+0088.8 F 
*24+0088.8 F 
*25+0088.8 F 
*26+0088.8 F 
*27+0088.8 F 
*28+0088.8 F 
*29+0088.8 F 
*30+0088.8 F 
*31+0088.8 F 
*32+0088.8 F 
*33+0088.8 F 
*34+0088.8 F 
*35+0088.8 F 
*36+0088.8 F 
*37+0088.8 F 
*38+0088.8 F 
*39+0088.8 F 
*40+0088.8 F 

* 10/23/90 01:35 
*01+0100.2 F 
*02+0099.2 F 
*03+0082.5 F 
*04+0078.8 F 
*05+0088.8 F 
*06+0088.8 F 
*07+0088.8 F 
*08+0088.8 F 
*09+0088.8 F 
*10+0088.8 F 
*11+0088.8 F 
*12+0088.8 F 
*13+0088.8 F 
*14+0088.8 F 
*15+0088.8 F 
*16+0088.8 F 
*17+0088.8 F 
*18+0088.8 F 
*19+0088.8 F 
*20+0088.8 F 
*21+0088.8 F 
*22+0088.8 F 
*23+0088.8 F 
*24+0088.8 F 
*25+0088.8 F 
*26+0088.8 F 
*27+0088.8 F 
*28+0088.8 F 
*29+0088.8 F 
*30+0088.8 F 
*31+0088.8 F 
*32+0088.8 F 
*33+0088.8 F 
*34+0088.8 F 
*35+0088.8 F 
*36+0088.8 F 
*37+0088.8 F 
*38+0088.8 F 
*39+0088.8 F 
*40+0088.8 F 
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A SAMPLE OF OUTPUT FILE FOR RED40 PROGRAM 

INPUT DATA FILE= INPUT OUTPUT DATA FILE = OUTPUT 

THE TEMPERATURES ARE IN DEG C 

CHANNEL MEAN LOWEST HIGHEST 
NO. TEMP TEMP TEMP 

1 37.83 37.78 37.89 
2 37.28 37.22 37.33 
3 27.96 27.83 28.06 
4 26.00 26.00 26.00 
5 31.56 31. 56 31.56 
6 31.56 31. 56 31.56 
7 31. 56 31.56 31.56 
8 31. 56 31.56 31. 56 
9 31. 56 31.56 31. 56 

10 31. 56 31. 56 31.56 
11 31. 56 31. 56 31.56 
12 31. 56 31. 56 31.56 
13 31. 56 31. 56 31.56 
14 31. 56 31.56 31.56 
15 31. 56 31. 56 31.56 
16 31.56 31.56 31.56 
17 31. 56 31. 56 31.56 
18 31. 56 31.56 31.56 
19 31. 56 31.56 31.56 
20 31. 56 31. 56 31.56 
21 31. 56 31. 56 31. 56 
22 31. 56 31. 56 31. 56 
23 31.56 31. 56 31. 56 
24 31.56 31.56 31.56 
25 31. 56 31. 56 31.56 
26 31. 56 31. 56 . 31.56 
27 31.56 31.56 31. 56 
28 31. 56 31. 56 31.56 
29 31. 56 31.56 31.56 
30 31.56 31. 56 31. 56 
31 31. 56 31. 56 31. 56 
32 31.56 31. 56 31. 56 
33 31. 56 31. 56 31.56 
34 31. 56 31.56 31.56 
35 31. 56 31. 56 31.56 
36 31. 56 31.56 31.56 
37 31. 56 31. 56 31.56 
38 31. 56 31.56 31.56 
39 31. 56 31. 56 31.56 
40 31. 56 31. 56 31.56 

THE START TIME (HRS AND MINS) = 1.33 
THE FINAL TIME (HRS AND MINS) = 1.35 
DURATION OF EXPERIMENT (HRS AND MINS) = .02 
EXPERIMENT WAS CONDUCTED ON 10/23/90 BY: MASOUD 



/* 
VELAIR PROGRAM 

This program can be used for three purposes : 

1. To reach a desired velocity of wind tunnel by changing the damper position 
of the blower using a 60 oz in , 200/revolution stepper motor. Range of 
desired velocity is from 0.0 to 12. meter per second with the accuracy of 
0.05 m/s. 

2. To measure the velocity and Reynolds # either at the duct or test section 
at a fixed damper position. 

3. To back calculate velocity of either test section or duct by using a given 
Reynolds # as an input. 

An MKS 223B pressure transducer with the range of 0.5 inches of water and 
5 volts(+ or-) output signal is used for A/0 conversion.*/ 

#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "dos.h" 
#include <stdlib.h> 

#define 
#define 
#define 
#define 

BASADR 
ADHI 
STATUS 
CONTROL 

float rd_adO; 

main() 

/* Definition of addresses from DAS -8 manual */ 

Ox300 
BASADR+l 

BASADR+2 
BASADR+2 

/* Declaration of variables */ 

int io=O,chno,i,choice,in= l ,vch, velch,hit,key; 
int loop,dur ,dir ,lowbyte,hibyte,ask,cho; 
char sign; 
float reyn,tk,dvis,dvise, v, vel,temp,sum=O.O,data,sq,da,dat,press; 
float chtd,rho,pstat,dyn,ave,duct,corr,hgatm,atmp,vcorr; 
float vtest, vell, vel2,chtl ,cht2,reyn 1,reyn2,sqr ,x,xx,a,vref,checkv; 
double kvis; 
float b = 0.000001458,s = 110.4; /* Sutherland & Gas Constants */ 

FILE *ofp; 
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ofp = fopen("velair.dat","w"); /* Output file - Velair.dat */ 
textbackground(LIGHTGREEN); 
textcolor{BLACK); 
clrscrO; 

printf(''\n\n\n\n\n\n\n "); 

printf(''\t FORCED CONVECTIVE COOLING IN COMPUTERS & ELECTRONIC EQUIPMENl\n"); 
printf(''\t *************************************************************\n"); 
printf(''\n\n\n\t Velocity Control of Wind tunne~ "); 
printf{''\n\n\n\t Type <RETURN>\n"); 
getcharO; 

clrscrO; 

while(in == 1)( 
sum = ave = 0.0; 
clrscrO; 

/* Program begins */ 

/* Two inputoptions */ 

printf(''\n\n\n\n\n\n\n\n\t Inputs \n"); 
printf(''\t ******\n"); 
printf(''\n\t Do you want to calculate experimental parameters for\n"); 
printf(''\t - a given Re.no. -> 1 "); 
printf(''\n\t - a measured Velocity ->2 "); 
printf(''\n\t Input no. and <RETURN> ->"); 
scanf("%d" ,&cho); 

while(cho < 1 II cho > 2) { 
printf(''\n\t Error in input ! Try again 
scanf("%d" ,&cho); 
} 

~>"); 

/* Reynolds number*/ 
if( cho == 1 ){ 
printf(''\n\t Input the desired Re.no (AT DUCT) 
scanf("%f' ,&reyn); 
} 

printf(''\n\t Duct diameter(inches) 
scanf("%f' ,&duct); 

->"); 

->"); 

/* Channel number for AID convetsion */ 

if(cho == 2){ 
chno= 5; 

printf(''\n\t Velocity measurement 

/* Option for velocity measurement or control*/ 

->l"); 



printf("\n\t Velocity Control ->2"); 
printf(''\n\t Choice ->"); 
scanf("%d" ,&vch); 

/* Characteristic length */ 

printf(''\n\t Char.length (inches) -TEST SECTION ->"); 
scanf("%f" ,&dyn); 

/* Control the velocity*/ 
if(vch == 2){ 
printf(''\n\t Control Average Velocity at the -Duct -> 1 "); 
printf("\n\t -Test section ->2"); 
printf(''\n\t Your input and <RETURN> ->"); 
scanf("%d" ,&velch); 

printf("\n\t Desired Average Velocity(m/sec) ->"); 
scanf("%f' ,&vret); 

if(velch = 2){ 
vtest = vref; /* Calculating the corresponding velocity at the duct*/ 
vref = 1.0882 * 0.945 * vref * 10.0 * dyn /(duct* duct* 3.1415927 / 4.0); 

if(velch == 1){ /* Calculating the corresponding velocity at the test section*/ 
vtest = 1./(1.0882 * 0.945) * vref * 3.1415927 *duct* duct/ 4.0 / (dyn * 10.0); 

} 
} 

} 

printf(''\n\t Barometric pressure (mm of Hg) ->"); 
scanf("%f' ,&hgatm); 
atmp = 101325.0 * hgatmn60.0; /* Converting barometric pressure to atmospheres */ 

/* Air temperature */ 

printf(''\n\t Air Temperature (deg C)? 
scanf("%f' ,&temp); 
clrscrO; 

->"); 

/* Display input channel number on screen */ 

if(cho == 2){ 
printf(''\n\t Input Channel No.-> %d" ,chno); 
sum= rd_ad(chno); 

ave= sum/1000.0; 
press= 0.0999 * ave - 0.0014; /* Pressure transducer calibration equation*/ 

pstat =-press* 249.1 + atmp; 
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if {press >= 0.0) { 
press = press; 
sign='+'; 
} 

if (press <= 0.0) { 
press = -press; 
sign='-'; 
} 

/* The following are the air constants calculations Conversion 
factor to convert pressure in inches to atm in Pa's */ 

tk =temp+ 273.15; 
rho= pstat / (287.0*tk); 
dvis = b * sqrt(tk)/(1.0 + (s/tk)); 
kvis = dvis/rho; 

v = 22.297799 * sqrt (press /rho)* 0.945; /* Average Velocity at the DUCT*/ 

if(vch == 2){ 

if(sign == '-){ 
v=-v; 
} 

/* Beginning of velocity control */ 

checkv = vref - v; /* Checking whether desired a verage velocity has 
been reached */ 

/* Loop begins for velocity control*/ 

while((checkv > 0.05) II (checkv < -0.05)){ 
gotoxy(50,10); 
printf(''\n\t Velocity Control in process! \n"); 

while(checkv > 0.05){ 

gotoxy(50,13); 
printf(''\n\tDesired Average Velocity (DUCT)= %6.3fm/sec",vref); 
printf(''\n\t Actual Average Velocity (DUCn = %6.3f m/sec\n" ,v); 

if(checkv >= 3.0){ 
loop= 100;} 

else 
if(checkv >= 2.0) { 
loop= 50;} 
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else 
if(checkv >=1.0){ 
loop= 30;} 

else 
if(checkv >=0.3){ 
loop= 10;} 

else{ 
loop= I;} 

v=O.O; 
checkv = 0.0; /* D/A conversion for clockwise direction*/ 
outportb{CONTROL,OxO); 
for(io=O; io <= loop;++io){ 
outportb(CONTROL,Ox20); 
delay(20); 
outportb(CONTROL,OxO); 

} 

sum= rd_ad(chno); /* Checking actual velocity again*/ 
ave= sum/1000.0; 
press= 0.0999 * ave - 0.0014; 
pstat =-press* 249.1 + atmp; 
rho = pstat / (287 .0 * tk); 
gotoxy(S0,10); 

if(press > 0.0) { 
sign='+'; 

} 

if(press <0.0){ 
press = -press; 
sign='-'; 

} 

v = 22.297799 * sqrt (press/ rho) * 0.945; 

if(sign = '-){ 
v=-v; 

checkv = vref - v; 

if(v >= 13.5){ 
clrscrO; 

/* Error check * / 

printf(''\n\n\t Actual Velocity= %6.3fm/sec",v); 
printf(''\n\t Desired Velocity = %6.3f m/sec", vret); 
printf(''\n\n\n\n\t Approaching the MAX.PRESSURE OF 0.5 inch!"); 
printf(''\n\t You could damage the PRESSURE TRANSDUCER !\n\n\n"); 
printf(''\n\n\n\n\n\n\n Stop - program VELAIR terminated\n"); 
exit{l); 
} 
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while(checkv < -0.05){ 

gotoxy(50,13); 
printf(''\n\t Desired Average Velocity (DUCT) = %6.3f m/sec" ,vret); 
printf(''\n\t Actual Average Velocity (DUCT)= %6.3f m/sec\n" ,v); 

if(checkv < -3.0){ 
loop= 100;} 

else 
if(checkv <= -2.0){ 
loop= 50;} 

else 

else 

else{ 

if(checkv <= -1.0){ 
loop= 30;} 

if(checkv <= -0.3){ 
loop= 10;} 

loop= l;} 

v=O.O; 
checkv = 0.0; 
outportb(CONTROL,Ox 10); 

for(io=O; io <= loop ;++io){ 
outportb(CONTROL,Ox30); 
delay(20); 
outportb(CONTROL,OxlO); 
} 

/* DIA conversion for C-Clockwise */ 

sum= rd_ad(chno); /* Checking actual velocity*/ 
ave = sum/1000.0; 
press= 0.0999 * ave - 0.0014; 
pstat =-press* 249.1 + atmp; 

if(press > 0.0) { 
sign='+'; 

} 

if(press < 0.0) { 
press = -press; 
sign='-'; 

} 

rho = pstat / (287 .0 * tk); 
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v = 22.297799 * sqrt {press/ rho) * 0.945; 

if(sign == '-1{ 
v=-v; 

checkv = vref - v; /* Checking error * / 

} 

} 
} 

/* End of velocity control */ 

vell = vel = v; 
chtl = duct * 0.0254; 
reyn 1 = reyn = vel * chtl /kvis; 

cht2 = dyn * 0.0254; 

/* Calculations for duct */ 

/* Calculations for test section*/ 

vel2 = lJ{l.0882 * 0.945) * (v *duct* duct* 3.1415927 / 4.0) / (10.0 * dyn); 
reyn2 = vel2 * cht2 / kvis; 

} 

/* End for choice 2 */ 

if( cho == l ){ 
chtd = duct * 0.0254; 
tk = 273.15 + temp; 

/* Back calculations option begins to * / 
/* calculate voltage for a given Re */ 

dvis = b*sqrt(tk)/(1.0 + (s/tk)); 
x = chtd * chtd /(dvis * dvis); 
a= x * tk * 572.83845; /* Eqn of the form ax**2 + bx + c = 0 */ 
sqr = sqrt((l.9959528 * 1.9959528 * atmp * atmp * x * x) - (4.0 *a* reyn * reyn)); 
vref= 0.0; /* Vref= 0.0 as it is not needed*/ 
if(sqr < 0.0) { 
xx= -sqr; 

} 

else{ 
xx= sqr; 

} 

rho= (1.9959528 * atmp * x + xx)/(2.0 * a); 
kvis = dvis / rho; 
vell = vel = reyn * kvis / chtd; 
press = vel * vel *rho /(22.297799*22.297799); 
reynl = reyn; 
reyn2= 0.0; 
vel2=0.0; 
if( vel < 0.0) { 
sign='-'; 

} 
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else{ 
sign='+'; 

) 

ave= (press+ 0.0014)/0.0999; /* using pressure transducer calibration 
equation*/ 

outportb(CONTROL,OxO); /* Switching of the stepper motor */ 
clrscrO; 

if(cho == 1) 
chno = O; 

printf(''\n\t\t\t Output Data"); 
printf("\n\t\t\t ******* ****\n "); 

/*Outputs*/ 

/* Output to the screen */ 

printf(''\n\t Input Ch.no = %1d",chno); 
printf("\n\t Voltage = %6.5f V\n''.,ave); 

printf("\n\t PHY .PROP AIR: Pressure = % le% 7 .Sf inch H20" ,sign.press); 
printf("\n\t Density= %9.7f Kg/m3 Temp = %5.2f deg C" ,rho,temp); 
printf(''\n\tK.vis = %9.7fm2/sec Dyn.vis = %9.7fN-sec/m2\n",kvis,dvis); 

printf("\n\t DUCT: Diameter = %5.2f inches" ,duct); 
printf(''\n\t Re.no = %8.2f',reynl); 

if((cho == 2) && (vch == 2))( 
delay(O); 
sound(500); 
delay(5000); 
nosoundO; 
printf(''\n\t Desired Average Velocity = %7.3fm/sec",vref); 

} 
printf(''\n\t Actual Average Velocity = %lc%7.3fm/sec\n",sign,vell); 

if(cho != I){ 
printf(''\n\t TEST SEC: Char.length = %5.2f inches" ,dyn); 
printf(''\n\t Re.no = %8.2f',reyn2); 
if(vch == 2) { 
printf(''\n\t Desired Average Velocity = %7.3f m/sec",vtest); 

} 
printf(''\n\t Actual Average Velocity = %1c%7.3fm/sec",sign,ve12); 

} 

fprintf(ofp,''\n\t\t\t Output Data"); 
fprintf( ofp, ''\n\t\t\t ***********\n "); 
fprintf(ofp,''\n\t Input Ch.no 
fprintf( ofp,''\n\t Voltage 

fprintf(ofp,''\n\t PHY .PROP AIR: 

= %1d",chno); 
= %6.5f V\n",ave); 

Pressure= %1c%7.5finch H20",sign,press); 
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fprintf(ofp,''\n\t Density= %9.7f Kg/m3 Temp = %5.2f deg C" ,rho,temp); 
fprintf(ofp,''\n\t K.vis = %9.7f m2/sec Dyn.vis = %9.7f N-sec/m2\n",kvis,dvis); 

fprintf(ofp,''\n\t DUCT: Diameter = %5.2f inches",duct); 
fprintf{ofp,''\n\t Re.no = %8.2f' ,reynl); 

if((cho == 2) && (vch == 2)){ 
fprintf( ofp,''\n\t Des. Vel 

} 
fprintf(ofp,''\n\t Act.Vet 

if(cho != 1){ 

= %7.3fm/sec",vref); 

= %1c%7.3fm/sec\n",sign,vell); 

fprintf(ofp,''\n\t lEST SEC: Char.length = %5.2f inches" ,dyn); 
fprintf( ofp, ''\n\t Re.no = %8.2f' ,reyn2); 
if(vch == 2){ 
fprintf(ofp,''\n\t Des.Vet = %7.3fm/sec",vtest); 

} 
fprintf(ofp,''\n\t Act.Vet = %1c%7.3fm/sec",sign,vel2); 

} 

printf(''\n\n\n\n\n To continue -> 1 "); 
printf(''\n Stop ->2 and <RETURN>"); 
scanf("%d" ,&in); 
} 

clrscrO; 
printf (''\n\n\n\n\n\n\n\n\n\n\n\n\n\n "); 
printf(''\n\t\t Good day ! "); 
printf(''\n\n\n\n\n\n\n\n\n\n "); 

/* Function for the AID conversion*/ 

float rd_ad(chno) 

int chno; 
{ 
int i,lowbyte,hibyte; 
float da,dat,data,su = 0.0; 

for(i=O;i<lOOO;++i) { 
outportb{ST A TUS,chno ); 
outportb{ADHI,O); 
while(inportb(ST A TUS) >= 128); 
lowbyte = inportb(BASADR); 
hibyte = inportb(ADHI); 
da = hibyte * 16 + lowbyte / 16; 
dat = da * 10/4096; 
data= dat - 5:0; 
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SU = SU + data• 
delay(lO)· ' 

} . 
retum(su); 
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VELOCITY PROFILES 
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Estimates of Uncertainty in Duct Center Velocity <Yd} 

,V(AP )T_ 
Yd= 32.7153 . Pam, 

where Af> is the differential pressure measured by pressure transducer in inches of water, 

and Patm is the barometric pressure in mm Hg. 

Af> ± 6~p, T 00 ± 6T oo, P atJn ± 6P atJn, and V d ± 6V d give the individual uncertainties. 

6AP = 0.3% = 0.003 
AP 

6Too = 0,5 K = 1 71 X 10-3 
Too 293 K . 

6Patm = 1 mm Hg = 1.37 X 10-3 
Patm 730 m Hg . 

± 6Vd = ±[( avd 6AP )
2 

+( avd 6Too )
2 

+( avd aPatm )
2

]
112 

± 0.05 
aAP aToo aPatm 

The term ± 0.05 should be added to uncertainty of V d, since it was incorporated in program 

VELAIR to exit the program when V d was within ± 0.05 m/sec of the desired duct center 

velocity. 

±6Vd _ ±[(16AP)2 +(16T00
)

2 
+(16Patrn}2 J112 

±Q,05 
Vd 2 AP 2 Too 2 Patm Vd 

= ± 1.86 x 10-3 ± OJ; 
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Estimates of Uncertainty in Channel Average Velocity 

where C is the overall correction factor with uncertainty interval of oC = ± 0.008, and D is 

the channel height in cm with uncertainty interval of OD = ± 0.025 cm. 

OC = 0.008 = 1 21 X 10-3 
C 6.599 . 

oD = 0.025 
D D 

[ ( - )2 ( - )2 ( - )2 ]1/2 ± 6Vch; ± a;~h Ile + a~h /ID + a;: 6Vd 

Dividing by ( V ch ) to nondimensionalize: 

± r.:;h ; ± [ (fr + (tr+ ( 6~d r r 
= ± [ ( 1.21 X 10-3 r + ( 0.~5 J + ( 1.86 X 10-3 + 0t5)2J1/2 

Substitute for Vd in terms of{ Vch) with the use ofEq. (3.3) and rearrange: 

± - ch = ± 1.464 x 10-6 + · x2 + 1.86 x 10-3 + ~.33 ov [ 6 25 10-4 ( )2]112 
Vch D VchD 

The above equation gives the nondimensionalized uncertainty for channel average velocity 

for different channel heights and channel average velocity. It is an inverse function of D 

and ( Vch ). The worst case was for minimum { Vch) and minimum D, i.e., for { Vch) = 

2m/sec and D = 1.905 cm, the maximum percentage of uncertainty for{ Vch) was± 8.9%. 

The best case was when ( Vch) and D were maximum, i.e., for D = 7.62 cm and ( Vch} = 

10 m/sec, the minimum percentage of uncertainty for { V ch ) was ± 0. 71 % . 
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Estimates of Uncertainty in Heat Transfer Coefficient (h} 

Using Eqs. (3.4), (3.5), (3.6), and (3.7) and rearranging: 

h =_L[ Qt __ l __ 1.109 X 10-11Tc4] 
Ac AT 110.5 AT 

where AT= Tc -Too 

oTc = ± 0.5°C, OToo = ± 0.5°C, .and OAT are the uncertainty intetvals for Tc, Too, and AT, 

respectively. 

Then: 

= ± [ ( oTc f + (oTooJ ]112 = [ ( 0.5°C )2 + { 0.5°C )2 ]112 = 0.707°C 

oQ1 = ± 0.01 Qt and oh are the uncertainty intetvals for Qt and h, respectively. Then: 

± oh = ±[ ( ..fu.oQt )
2 

+( ~OAT )
2 
+(~0Tc)

2 
]

112 

dQt cJAT dTc 

[ ( 
-12 4)2 ]1/2 = ±-1- ( O.OlQt )2 + - 0.707Qt + 7.842 X 10 Tc +( 2_218 X lQ-11Tc3f 

AcAT AT 

D• "d" b h QC di • al" 1v1 mg y = -- to non mens1on 1ze: 
AcAT 

[ ( 12 4)2 ( 11 3 )2 ]1/2 + oh = + ( O Ol Qt )2 _ 0.707 . Qt 7.842 X 10- Tc 2.218 X 10- Tc 
- h - • QC + { Tc - T00 } Qc + Qc { Tc - Too} + Qc 

The term Qt!Qc was almost close to unity, and did not have great effect on the 

percentage of uncertainty for h. The terms AT= Tc -Too, and Qc were the more sensitive 

parameters and had great effects on oh/h. Since our experimental heat transfer data 

tabulated in Table IV, was collected for a fixed value of Q1 (4 Watts), the only effective 
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parameter on the value of Oh/h is the tenn a T =Tc - T 00• Therefore, minimum percentage 

of uncertainty for the heat transfer coefficient corresponded to maximum (Tc - Too), while 

maximum of oh/h corresponded to minimum (Tc - Too). Using the collected data in Table 

N; 

{th). =2.1%forthecase: Dft=3,tfL=0.5,r=5, Vm=l.74M/s 
nnn 

(th} = 8.6% for the case: Dft = 1.5, tfL = 1, r = 1, V = = 10.07 M/s 
max 
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