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PREFACE 

This thesis consists of three separate essays. The first essay, titled 

"Conditional Heteroskedasticity, Asymmetry, and Option Pricing", introduces 

an asymmetric Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH) model. Commodity futures price changes are not distributed 

normally. Their distribution is leptokurtic and asymmetric. Volatility of price 

changes is not constant over time. Black's option pricing model which is based 

on normality and constant volatility is known to systematically misprice actual 

option premiums. The biases in Black's model may result from not considering 

stochastic volatility and non-normality. A GARCH option pricing model using 

Monte Carlo integration meets this objective. However, a limitation of the 

GARCH process is that it does not model skewness. The asymmetric GARCH 

process captures skewness in the mean equation. This essay also seeks to 

determine the most descriptive model of daily wheat futures price distributions 

among several models that consider non-normality and conditional 

heteroskedasticity. It also shows whether time-varying volatility and conditional 

non-normality can explain the biases in Black's option pricing model. One of 

the primary contributions of the essay is its new approach to modeling 

skewness. This essay also extends past research by considering non-normality 
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as well as stochastic volatility and analyzing their effects on option pricing. 

The second essay, titled "Valuing Target Price Support Programs with 

GARCH Average Option Pricing", seeks to determine the implicit premium of 

the government target price support program. The government deficiency 

payment program can be characterized as a subsidized put option except that 

acreage harvested is restricted. By participating in the program, farmers are 

protected from prices falling below the target price but can benefit from prices 

rising above the target. However, opportunity costs arise from the acreage 

restriction. In cases where revenue through acreage restriction exceeds the 

revenue from participating in the program, farmers would lose money from 

participating. Therefore, measuring the revenue from the government program 

is important for farmers to decide whether to participate in the program or not. 

Also, USDA could use the results to project participation, government cost, and 

in calculating advance deficiency payments. This essay improves on previous 

research in several ways. One is that it explicitly includes the non-normality 

and conditional volatility into the model using GARCH process. The other is 

that it considers average option pricing while past research did not. Past 

research considers the time value only for the period from the time of program 

sign-up until harvest, although the time value also occurs during the period of 

five (soon to be ten) months after harvest. A regression model based on the 

simulation results is provided for the GARCH average option pricing model to 

be easily used to project deficiency payments. The results can be used by 
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extension to help farmers' decision making whether to participate in the 

program and by the USDA to project participation, government cost, and to 

calculate advance deficiency payments. 

The third essay, titled "A New Efficiency Criterion: The Mean-Separated 

Target Deviations Risk Model", develops a new risk efficiency model which can 

order risky choices for decision makers whose monotonically increasing utility 

function lies within specified range. Conventional measures of risk do not 

distinguish between below-target and above-target outcomes, or else impose 

risk neutrality for above-target outcomes. The model is motivated by the 

intuition that decision makers respond in different ways to potential outcomes 

below a target return than to potential outcomes above a target return. The 

model measures return as expected value and risk as weighted sum of 

deviations below a target return and deviations above the target return, where 

the weight is determined by the decision maker's risk preferences. One 

contribution of this essay is the new risk measure. A second contribution is its 

provision for interval analysis. Like stochastic dominance with respect to a 

function, MSD can effectively reduce the efficient set by using appropriate 

ranges of absolute risk aversion coefficients. The MSD model is shown to be 

congruent with expected utility and also consistent with Stochastic Dominance 

rules. The MSD model also considers skewness in ranl<ing alternatives. An 

empirical evaluation of a decision maker's choice of wheat marketing strategies 

shows that the criterion yields a smaller efficient set than alternative efficiency 
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CONDITIONAL HETEROSKEDASTICITY, ASYMMETRY 
AND OPTION PRICING 

Abstract 

Commodity futures price changes are not distributed normally. Their 

distribution is leptokurtic and asymmetric. Volatility of price changes is not 

constant over time. Black's option pricing model which is based on normality 

and constant volatility is known to systematically misprice actual option 

premiums. The biases in Black's model may result from not considering 

stochastic volatility and non-normality. A GARCH option pricing model using 

Monte Carlo integration meets this objective. However, a limitation of the 

GARCH process is that it does not model skewness. This paper introduces an 

asymmetric GARCH model that considers skewness. Results show that the 

asymmetric GARCH(2, 1 )-t process fits the data better than alternative models 

of Kansas City wheat futures prices. The GARCH Monte Carlo integration 

shows that Black's model underprices deep out-of-the-money put and call 

options relative to GARCH option pricing model when the true underlying 

process is a GARCH process. Differences between Black's model and the 

GARCH option model increase as time to maturity increases. When used to 



forecast actual option premiums, the mean squared error of the GARCH option 

pricing model for deep out-of-the-money put option is significantly smaller than 

that of Black's model. However, Black's model is sometimes better for at-the­

money or in-the-money options. 

Key Words : Asymmetry, GARCH, EGARCH, Options, Mispricing, Monte 

Carlo, Futures Prices, Kansas City Wheat. 



CONDITIONAL HETEROSKEDASTICITY, ASYMMETRY 
AND OPTION PRICING 

Introduction 

The distribution of commodity futures prices is not normal but leptokurtic 

(Hall et al. 1989; Hudson et al. 1987). That is, there are more observations 

around the mean and more extreme values than with a normal distribution. 

Skewness and serial dependence of successive price changes are also well 

documented (Taylor 1985; Yang and Brorsen 1993). Ignoring the observed 

non-normality and stochastic volatility is likely to lead to biased estimates of 

option premia. Therefore, a correct option pricing model should model not only 

the stochastic volatility but also the conditional non-normality. It is well 

documented that the Black-Scholes option pricing model (OPM) based on 

constant volatility yields systematically biased estimates of deep in-the-money 

and deep out-of-the-money options (Black 1975; Johnson and Shanno 1987; 

Hull and White 1987). These inaccuracies may be due to the inappropriate 

assumptions about the futures price distribution. However, departures from 

normality have not been considered extensively in commodity option pricing 

because there is no clearly superior distributional specification (e.g. Eales and 

Hauser 1990). 

Time-varying variance models can explain nonlinear dependence and 

leptokurtosis. The generalized autoregressive conditional heterosl<edasticity 

(GARCH) process of Bollerslev ( 1986) was developed as an effective way of 
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modeling the dynamics of volatility. Using a more general distributional 

assumption than normality, this model can be extended to capture the observed 

non-normality. Bollerslev ( 1987) suggested the GAR CH( 1, 1 )-t model, with one 

lag of the conditional variance and one of the squared residuals and with a 

conditional t distribution as a simple and very useful model. This GARCH( 1, 1 )-t 

process fits most empirical data better than the GARCH(1, 1 )-normal or a mixed 

diffusion-jump process (Yang 1989). Myers and Hanson (1993) provided 

evidence that the GARCH OPM with a student distribution performs better than 

Black's OPM in predicting soybean option premia. 

However, one limitation of the GARCH process is that it does not model the 

observed skewness. An exponential GARCH (EGARCH) model that captures 

skewness was suggested by Nelson ( 1991). The EGARCH model considers 

skewness by allowing the ARCH process to be asymmetric. Asymmetry in the 

dynamics of the mean return has not been considered in past research. This 

study introduces an asymmetric GARCH model that captures skewness in the 

mean equation and determines the most descriptive model of daily Kansas City 

wheat futures price distributions among several models that consider non­

normality and conditional heteroskedasticity. The study also seeks to determine 

whether time-varying volatility and conditional non-normality can explain the 

biases in Black's option pricing model. 

One of the primary contributions of the paper is its new approach to 

modeling skewness. The GARCH-t process fails to consider skewness and the 
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EGARCH process models skewness only in the variance equation. The 

asymmetric GARCH-t process enables the GARCH process to model skewness 

and the asymmetric EGARCH-t process models skewness both in the mean and 

the variance equations. The GARCH-t, the asymmetric GARCH-t, and the 

asymmetric EGARCH-t processes are estimated and the most likely model is 

selected. 

This study improves upon Yang's methods in several ways. Yang assumed 

the length of lags in the mean equation was ten and that the t-distribution had 

ten degrees of freedom. He also assumed a GARCH(1, 1) process. Such 

restrictive assumptions are avoided in this paper. Further, this study provides 

more accurate statistical tests of the i.i.d. assur:nption and goodness-of-fit. 

Also, Yang did not consider option pricing. 

Previous option pricing models allowing stochastic volatility (e.g., Hull and 

White 1987) other than Myers and Hanson ( 1993) have not explicitly 

considered a conditional non-normal distribution. This paper considers non­

normality as well as stochastic volatility and analyzes their effects on option 

pricing. This study extends Myers and Hanson in several ways. Significance 

tests are conducted on the performances of Black's OPM and GARCH OPM, 

and the simulated biases between the two OPM's are analyzed in terms of time 

to maturity effects and futures-exercise price ratio effects. Most important is 

that this paper uses models which can capture skewness while Myers and 

Hanson did not. 
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Procedures 

The GARCH and EGARCH processes with and without asymmetry are 

estimated using maximum likelihood. The models are selected using likelihood 

ratio tests or the Schwarz model selection criterion. Then the effects on the 

option pricing of the model allowing time-varying volatility and conditional non­

normality are analyzed for wheat options at the Kansas City Board of Trade. 

To examine the systematic mispricing error in Black's OPM, a Monte Carlo 

simulation and an out of sample comparison with actual option premiums are 

provided. 

Econometric Models and Skewness 

Skewness of the rate of return has received increasing attention in the past 

decade, as portfolio theory has been extended to include skewness along with 

mean return and variance to explain security preferences (Conine and Tamarkin 

1981; Beedles and Simkowitz 1980; Junkus 1991; Kang et al. 1993). 

Skewness in daily futures returns is well documented. Twenty two of the 

thirty six futures price changes considered by Yang showed significant 

skewness. However, the observed skewness has not been well modeled with 

most models of asset price distributions. 

Many competing statistical distributions have been proposed to model the 

departures from normality: a symmetric stable Paretian distribution (Mandelbrot 

1963; Fama 1965), student t-distribution (Blattberg and Gonedes 1974), a 
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mixture of normal distributions (Kon 1984), and a mixed diffusion-jump process 

(Akgiray and Booth 1988). However, since these models assume the 

independence of successive asset returns, they are inconsistent with empirical 

data that is known to be linearly or nonlinearly dependent. Further, these 

models are focused on capturing leptol<urtosis. Jorion (1988) found that 

combining a jump process with a simple ARCH process provides a significantly 

better fit of the distribution of weekly exchange rates than either process alone. 

The mixed jump-diffusion process also models skewness. Combining the 

GARCH(1, 1 )-t process, however, with a jump process is not significantly better 

than the GARCH-t process alone (Brorsen and Yang 1992). Thus, a 

GARCH(1, 1 )-t process is used as the benchmark model, and other alternative 

models are compared with it. 

While the GARCH model elegantly captures the volatility clustering in asset 

returns, it ignores the possible asymmetric response of variance to positive and 

negative residuals and restricts the parameters in the variance equation to be 

non-negative. Nelson (1991) suggested an Exponential GARCH (EGARCH) 

model that meets these objections. LeBaron ( 1989) reported that the EGARCH 

model explains skewness better in the distribution of weekly and monthly stock 

indices than the GARCH model. However, Nelson's EGARCH model considers 

skewness only in the variance equation. 

In this paper, the GARCH under a student t distribution and the EGARCH 

under student t distributions will be considered. Each model will be estimated 
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with and without asymmetry in the mean equation. Specifying the dynamics 

in the mean equation as asymmetric together with the GARCH or the EGARCH 

process might capture skewness more effectively. The GARCH process can 

model well-documented market anomalies such as the day-of-the-week effect 

(Chiang and Tapley 1983; Junkus 1986) and seasonality (Anderson 1985; 

Kenyon et al. 1987) both in means and variances and maturity effect (Milonas 

1986) in the variance equation. In the GARCH process, the futures price 

changes, Rv can be expressed as a stochastic process: 

and f(lt_, ;O) denotes a function of It_, (the information set at time t-1) and the 

parameter vector e. et has a discrete time stochastic process, (et), of the form; 

= r 
~ 
L 

ztht in the GARCH-normal model and 

in the GARCH-t model. 

where zt is i.i.d. normal with E(zt) =0 and variance Var(zt) = 1 and wt is i.i.d. 

student with degrees of freedom v, E(wt) = 0 and Var(wt) = v/(v-2). Therefore, 

h2t is the time varying variance of et. The GARCH(p,q) model expresses h2t as 

a linear function of past variance and past squared values of the process, 

q p 

(3) h/ = a0 + a;L e;_; + fliL ht~i . 
i=l i=l 

Equation ( 1) is the mean equation and equation (3) is the variance equation. 

If h2t is to be the conditional variance of ev it must be nonnegative. The 

GARCH model ensures nonnegativity by making h\ a linear combination of 

positive random variables. The EGARCH model ensures that h2t remains 
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nonnegative by replacing h2t by ln(h 2t) in equation (3) 1 • For example, the 

conditional variance of EGARCH(1,0)-t with one lag on the conditional variance 

is: 

Over the range O < et_,/ht:, < oo, ln(h/) is linear in et_,/ht.1 with slope fJ + (f), 

and over the range -oo < et_,/ht.1 < 0, ln(h/) is linear in et_,/ht.1 with slope fJ -

(f). If f/ = 0 ln(ht2) responds symmetrically to et_,/ht_,, but if f/ ¢ 0 ln(ht2) 

responds asymmetrically. Thus the coefficient fJ is related to asymmetry in the 

variance equation. 

In the GARCH process, the mean and the variance equations to be 

estimated are, respectively, 

m 

(5) Rt = Bo + LA;Rr-i + a,DMoN + a2DTUE + a3Dwm + a4DTHu + 
i=1 

a5SIN(2rrK/252) + a6C0S(2rrK/252) + a7SIN(2rrK/126) + 

q p 

(6) h2t = a0 + a;L e~-; + PiL hr~i + b,DMoN + b2DruE + b3Dwm + b4DTHu 
i=1 i=1 

+ b5SIN(2rrK/252) + b6C0S(2rrK/252) + b7SIN(2rrK/126) + 

b8C0S(2rrK/126) + b9TTM, 

where Rt is the logarithmic difference of daily returns at time t, the .A/s are the 

q p 

1 EGARCH(p,q) is ln(h!) = (1 + L l/1;L ;)(1 -L ~iLit1g(zr_1) , where L is a lag 
i=1 j=1 

operator and g(zt) is a zero-mean i.i.d. random sequence that allows the condi­
tional variance h/ to asymmetrically respond to price falling and rising. 
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coefficients of lagged price changes, and m is the length of lags. The length 

of lags in the mean equation is identified with the Schwarz criterion2• D 

denotes dummy variables for each day of the week; DMoN = 1 if Monday and 

0 otherwise, DrnE = 1 if Tuesday and O otherwise, DwED = 1 if Wednesday and 

0 otherwise, and Drnu = 1 if Thursday and O otherwise. SIN and COS 

represent the sine and cosine functions, respectively, and" is approximated as 

3. 14. K in the sine and cosine functions is the number of trading days after 

January 1 of the particular year. Denominators in the sine and cosine functions 

are the specified cycle length in trading days, so 252 indicates a one year cycle 

and 126 a half year cycle. TTM is the time to maturity measured in the number 

of trading days prior to maturity. 

The asymmetric pricing model has been extensively applied to the structure 

of farm-retail price transmission (e.g., Kinnucan and Forker 1987; Boyd and 

Brorsen 1988). The asymmetric model can be used as an appropriate way to 

capture the asymmetric responses of current variables to the change of past 

shock variables. Restrictions on short selling, asymmetries in information, 

preferences of investors, and market psychology might cause the differing 

responses of price to the past price rising or falling. The asymmetric GARCH 

model is a special case of the Threshold Autoregressive model of Tong and Lim 

2 Schwarz's SC criterion is obtained by SC(m) = ln(SSEm) + am *ln(T)/T, where 
m is the length of lags, SSEm is the squared sum of residuals, am is the number 
of parameters and T is the number of observations. The value of m that 
minimizes SC is selected as the length of lags in the model. 
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(1980). 

The model with asymmetry in the mean equation is obtained by segmenting 

the lagged price changes into one set for rising changes and another set for 

falling changes. The logarithmic changes in returns, f\, are segmented as, 

rRt,Rt~O 
~ 
L 0, otherwise, 

r Rt, Rt < 0 
~ 
L O , otherwise, 

and the asymmetric model is specified as, 

m m 

(7) Rt = 80 + L ofiPt-i + L W;RNt-i + a, DMON + 82DruE + 83Dwrn + 
i=1 i=1 

a4Drnu + a5SIN(2rrK/252) + a6COS(2rrK/252) + a7SIN(2rrK/126) + 

a8C0S(2rrK/126) + et. 

where oi and wi represent the net effect of the ith positive and negative changes 

of Rv respectively. 

The variance equation to be estimated in the GARCH model is (6) and that 

for the EGARCH model is obtained by adding the day-of-the-week effect 

dummies, seasonality, and time to maturity variables into equation (4). 

The maximum likelihood estimates of alternative models are obtained using 

the statistical software package GAUSS. For the GARCH model, since the 

GARCH terms (a and P in the variance equation) are restricted to be 

nonnegative, inequality restrictions are imposed by taking the exponential of the 

parameters. Degrees of freedom is restricted to be greater than three for 
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computational concerns. The variance of the first 15 observations of price 

changes was used as initial variance. The starting algorithm is Polak-Ribiere­

type Conjugate Gradient method which performs well initially when the starting 

point is poor and a step size of one. After a few iterations, the algorithm is 

switched to the Davidon-Fletcher-Powell method and the Brent step-size 

method is used. The final estimates are obtained with the Newton method so 

that the Hessian is used to estimate the information matrix. All derivatives are 

calculated numerically. 3 

The asymmetry hypothesis is tested in two ways. One is that the total 

impact of past price increases is the same as that of past price decreases: 

m m 
(8) Ho: LO;= LW; 

i=1 i=1 

HA : H0 is not true. 

The other is that the speed of adjustment to price increases and to price 

decreases are the same (Boyd and Brorsen). 

(9) H0 : oi = wi , for all i 

HA : H0 is not true. 

For the hypothesis tests of equations (8) and (9), Wald-F statistics are used. 

The Wald test is not invariant in nonlinear models, but it is still asymptotically 

valid (Dagenais and Dufour 1991 ). Estimated t-ratios of the parameters of the 

skewness term (!J) in equation (4) provide tests of asymmetry in the variance 

3The estimation time took about 3 to 1 5 hours on a 486DX2/66MHZ computer. 
Estimation time depends heavily on the starting values. 
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equation of the EGAR CH model. 

Model Selection and Validation 

Selecting between the GARCH-t and the asymmetric GARCH-t models is 

performed by the likelihood ratio test, since the models are nested. Model 

selection between the asymmetric GARCH-t and the asymmetric EGARCH-t 

models are conducted by the difference of the Schwarz criteria of the two 

models. The Schwarz criterion penalizes the model with more parameters and 

thus is useful for selecting among nonnested models with different numbers of 

parameters. 

If the GARCH models are well-specified and fit the sample data, the 

standardized residual generated by the GARCH models should be i.i.d. normal 

or student. The Ljung-Box and Mcleod-Li test statistics are provided to 

determine if the serial dependence is revealed in the rescaled residuals (t/fit) 

and squared rescaled residuals ((t/ht)2) of the selected model. The Brock­

Oechert-Scheinkman (BOS) test (Brock et al. 1991) is used to test the null 

hypothesis that {Rt} is i.i.d.. The BOS statistic is based on the correlation 

integral. The statistic for raw data is asymptotically distributed as a standard 

normal random variable under the null hypothesis. However, Brock et al. have 

shown that the distribution of the BOS statistic is not standard normal when 

the data are GARCH residuals. Therefore, the test in this study is more 

accurate than the test by Yang which assumed the BOS statistic with GARCH 

residuals had a standard normal distribution. The tables in Brock et al.(p.279) 
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are used to obtain critical values of the test statistic. 

The Kolmogorov-Smirnov goodness-of-fit test is used to determine if the 

residuals have a t-distribution. If the largest absolute deviation between the 

cumulative distributions of the rescaled residuals and the theoretical student 

distribution is bigger than the critical value, the null hypothesis of no significant 

difference between the two distributions is rejected. The rescaled residuals are 

multiplied by (v/(v-2)) 112 , where vis the estimated degrees of freedom of the 

model. This adjustment is needed because the variance of a t-distribution is 

v/(v-2). Yang's test is biased, since he used the rescaled residuals without 

multiplying by (v/(v-2)) 112 • 

Implications for Option Pricing 

Using implied volatility, Mc Beth and Merville ( 1979) argued that the Black­

Scholes formula overprices out-of-the-money options and underprices in-the­

money options. However, Rubinstein ( 1985) argued that their results were not 

always true. Johnson and Shanno (1987) obtained numerical results for 

general cases in which the instantaneous variance obeys some stochastic 

processes. Under the situation where the volatility is a separate stochastic 

variable from the stock price, Hull and White (1987) have shown that the 

Black-Scholes formula overprices options that are at- or close-to-the-money and 

underprices options that are deep in- and deep out-of-the-money. This paper 

examines how well Black's OPM estimates option premia under non-normality 
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as well as conditional heteroskedasticity. 

Under the assumption of risk-neutrality, Black's (1976) commodity option 

price is a function of five underlying parameters: the current futures price (Ft), 

the exercise price of the option (X), the time to maturity of the option (T-t), the 

risk-free rate of interest (r), and the variance of futures prices (a2). 

(10) B = fX*N(-d 2) - F/N(-d1) for put, 

~ 
LF/N(d1) - X*N(d2) for call, 

where d1 = [ln(F/X) + (a2/2)(T-t)]/a(T-t) 112, · 

d2 = [ln(Ft/X) - (a2/2)(T-t)]/a(T-t) 112, and 

NO is normal cumulative density function. 

GARCH OPM yields the expected option prices at maturity using a Monte 

Carlo integration. Two sets of T-t random numbers are generated: one from a 

t-distribution with v degrees of freedom and another from a standard normal 

distribution. Time is measured in number of trading days. The time-varying 

conditional variances are generated for T-t periods using estimates from the 

selected model. Then, with the conditional variances, the futures prices Ft are 

simulated for T-t periods to get the futures price at maturity. Denoting this 

price at maturity {Fr}i, the simulated option prices are 

(11) r e·r(T-t)(1/n)Li=1n max[X- {Frt ,O] for call, 
G = ~ 

L e·r(T-t)(1 /n) L i=1n max[{Frt - X ,O] for put, 

where n = 10000 is the number of replications of this procedure. 

One efficient way to improve the accuracy of this calculation is the control 
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variate technique (Hammersley and Handscomb 1964; Boyle 1977). This 

technique replaces the problem under consideration by a similar but simpler 

problem which has an analytical solution. The solution of the simpler problem 

is used to increase the accuracy of the solution to the more complex problem. 

For this purpose, the GARCH option price, G in equation (11 ), is replaced by 

Black's option price, B in equation (10). The biases in B are reduced by an 

error correction term which is the difference between the GARCH option price 

G1 and the control variate G2 that mimics the behavior of GARCH option price 

and can be easily evaluated (see Boyle for details). The GAR CH option price 

under control variate technique is, then, 

(12) G* = B + (G 1 - G2). 

In the simulation, Bis obtained analytically using the Black's OPM, and G1 and 

G2 are obtained from Monte Carlo methods as given in equation ( 11). 

Simulated Differences. In the Monte Carlo simulation, the· unconditional 

q p 

variance of the GAR CH process ( a0/( 1 - :E a; - L pi t, ) is used as an 
i=1 j=1 

initial volatility to generate conditional variances for G1, and as a constant 

volatility for Black's analytical solution B and for Monte Carlo integration G2 

that mimics Black's analytical solution. The seasonality and the day of the 

week effects are not included in the Monte Carlo integration. Two sets of T-t 

random numbers are generated: one from a student distribution with degrees 

of freedom v and the other from a standard normal distribution. The student 
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random numbers are used for G1 and the standard normal random numbers are 

used for G2 • These random numbers are generated using the same seed so that 

the random errors in G1 and G2 are positively correlated. 

The issue in this portion of the paper is to determine the differences 

between Black's OPM and GARCH OPM. The difference between the Black's 

OPM and GARCH OPM may be caused by not considering the observed 

conditional heteroskedasticity and non-normality in Black's OPM. The extent 

of the difference can be measured by the absolute difference (B - G*) or by the 

percentage difference f = (B - G*)/G*. The differences for short-lived option 

premia differ from long-lived option premia. The differences are also different 

by how much the option is in the money or out of the money. Commodity 

futures options are mostly within 10% in or out of the money. For the case 

of a put option, the out-of-the-money option is examined at the levels of 1. 10 

and 1 .05 in the futures-exercise price ratio (F/X), the at-the-money option at 

the level of 1.0, and the in-the-"money option at the level of 0.95 and 0.90. For 

the case of a call option, the out-of-the-money option is examined at the levels 

of 0.90 and 0.95 in the futures-exercise price ratio, the at-the-money option at 

the level of 1 .0, and the in-the-money option at the level of 1 .05 and 1. 10. 

In the Monte Carlo simulation, exercise price is set equal to $1 .00. The 

differences are measured from six months prior to through one half month to 

maturity. 

The asymptotic t-statistics for the simulated differences are provided. 
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These could be used to determine whether the reported pricing biases are 

significantly different from zero. They are computed by the ratios of the 

simulated differences to the standard deviations of the differences. 

Actual Differences. To examine the ability of the GARCH OPM and Black's 

OPM to predict actual premia, option prices are estimated for 1991 Kansas City 

wheat futures for two month periods prior to maturity for each March, May, 

July, September, and December contract. The ranges of futures prices during 

the simulation period, exercise prices for in-, at-, and out-of-the-money options 

are shown in Table 7. The risk-free interest rate is assumed constant during 

the simulation period at r = 5.5%4. In this out of sample simulation, 20 day 

historical volatilities are used for generating unconditional variances in the 

GARCH integration process G1, for Black's analytical solution B, and for Black's 

integration process G2• 

Results are given for both put and call options. The mean errors and root 

mean squared errors (RMSE) of Black's OPM and GARCH OPM are computed. 

Further, the Ashley-Granger-Schmalensee test is used to determine if the mean 

squared error of Black's OPM is equal to that of the GARCH OPM. Statistical 

tests were based on White's (1980) heteroskedastic-consistent covariance 

matrix because of likely heteroskedasticity due to differences in maturity and 

4During the simulation period, the range of the rate of return on Treasury bills 
was (0.052, 0.058). 
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also based on Newey-West's (1987) autocorrelation-consistent matrix because 

the Ashley-Granger-Schmalensee test assumes independence. 

Sample Data 

To estimate the alternative statistical models, the first differences of the 

natural logarithms of the daily futures closing prices of wheat at Kansas City 

Board of Trade are used. The data are for the period of Jan. 1982 to Sep. 

1990. The data were created using Continuous Contractor from Technical 

Tools. Kansas City wheat futures contracts are traded based on five 

maturities: March, May, July, September, and December. The price series used 

is a continuous combination of the five contracts. The rollover date is the 21st 

day of the month prior to delivery. Log differences are taken before splicing 

so that no outlier is created at the rollover date. 

Table 1 shows summary statistics for daily logarithmic changes in the 

closing prices of wheat futures contracts at Kansas City Board of Trade. The 

departures from normality are apparent from the high kurtosis and skewness. 

The daily put option premia over the simulation period are collected from the 

Kansas City Grain Market Review. 

Empirical Results 

Model Selection and Validation 

Table 2 shows the estimated log-likelihoods and the test statistics 
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associated with the null hypotheses of no asymmetry. In the asymmetric 

GARCH model, the total impact of past rising prices is not significantly 

different from that of past falling prices. However, the speed of adjustment for 

price rising is significantly different from that of price falling, implying 

significant asymmetries in mean returns. The absolute values of coefficients 

of the lagged falling prices are greater than those of lagged rising prices in 

Table 4. Significant asymmetry is present in the mean equation of the 

asymmetric EGARCH model (Table 2). The skewness term in the EGARCH 

model is not significantly different from zero. 

Table 3 contains the test statistics of model selection. Likelihood ratio 

statistics and differences in Schwarz criteria are used to select between nested 

models and between non nested models, respectively. The asymmetric 

EGARCH( 1,0)-t process is not selected as better than the asymmetric 

GARCH(1, 1 )-t process5• The asymmetric GARCH(2, 1 )-t is selected over the 

asymmetric GARCH(1, 1 )-t which is selected over the GARCH(1, 1 )-t. The 

asymmetric GARCH(2, 1 )-t is also favored over the asymmetric GARCH(2,2)-t 

and over the asymmetric GARCH(3, 1 )-t. Thus, the asymmetric GARCH(2, 1 )-t 

process is selected as the best fit of the data and so its estimates are used to 

5 The choice between the asymmetric GARCH( 1, 1 )-t and the asymmetric 
EGARCH(1,0)-t is based on the difference in Schwarz criteria. The Schwarz 
criterion has a heavy penalty for additional parameters, especially when the 
sample size is big. However, in this case, the maximized log-likelihood value of 
the asymmetric EGARCH(1,0)-t is smaller than that of the GARCH(1, 1 )-t, and 
thus it can not be said that the asymmetric EGARCH(1,0)-t is better than the 
asymmetric GARCH(1, 1 )-t, even without referring to the Schwarz criterion. 
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obtain option prices. 

Table 4 reports estimates and test statistics of the asymmetric 

GARCH(2, 1 )-t model. The estimated GARCH terms are all positive and 

significant6 • The sum of GARCH terms (a, P,, and P2) is less than one implying 

stationarity7• Mean returris differ by day of the week, but variances do not. 

Significant seasonal patterns are revealed both in the mean and in volatility. 

The Ljung-Box and McLeod-Li tests (Table 4) do not detect any linear or second 

moment autocorrelations over time with the standardized data, which implies 

the GARCH-t process removed all the correlation in the first and second 

moments. The BDS statistics show that the null hypothesis of i.i.d. is rejected 

with the raw data (Table 4), implying that Kansas City wheat futures price 

changes are not i.i.d .. For the rescaled residuals, however, the BDS statistics, 

do not identify nonlinear dependence. The null hypothesis that the GARCH 

rescaled residuals follow a student distribution is not rejected at the 5% 

significance level. Yang did not adjust by the degrees of freedom and found 

6 The parameters a, P,, and P2 are all restricted to be greater than or equal to 
zero. Thus the null hypothesis that the parameter is zero lies on the boundary 
of the parameter space. Wald-type test of null hypotheses which lie on the 
boundary of the parameter space do not have the usual asymptotic normal 
distribution (Moran 1971 ). Also the inequality constraint was imposed on the 
parameter a using an exponential transformation, so the t ratio of a is computed 

as t = ea/(eas;.ea) 112 , where s;. is the standard error of ea . But, 

unfortunately, Wald tests are not invariant to nonlinear transformations. Thus, 
the hypothesis tests should be interpreted with caution. 

7a + P, + p2 < 1 is a sufficient condition, although not a necessary condition. 
Most past research is not clear on this point. 
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significance level. Yang did not adjust by the degrees of freedom and found 

that a GARCH-t model could be rejected. Thus the adjustment is shown to be 

important. 

Differences between Black's Option Pricing and GARCH Option Pricing 

Table 5 presents absolute and percentage differences between put option 

premiums with Black's OPM and GARCH OPM. The Black's OPM yields 

significantly lower premiums than the GARCH OPM for deep in- and deep out­

of-the-money put options. The put option value depends on the left tail of the 

terminal distribution. Therefore, Black's OPM based on the normal distribution 

tends to yield lower option premiums than the GARCH OPM. Absolute 

differences increase as time to maturity increases in deep in- and deep out-of­

the-money put options (Table 5, Panel A). Percentage differences for deep in­

the-money option also increase as time to maturity increases, but those for 

deep-out-of-the money option decrease as time to maturity increases (Table 5, 

Panel B). As time to maturity decreases, the time-value of deep out-of-the­

money option decreases very fast and eventually becomes zero. Therefore, 

deep out-of-the-money options close to maturity show extremely high 

percentage differences. Black's OPM yields at-the-money option premia 

significantly higher than does the GARCH OPM. Percentage differences for at­

the-money put options decrease as time to maturity increases. 

Table 6 presents absolute and percentage differences between call option 
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premiums by Black's OPM and GARCH OPM. The Black's OPM yields 

significantly lower premiums than the GARCH OPM for deep out-of-the-money 

call options. Since the call option value depends on the right tail of the terminal 

distribution, Black's OPM based on the normal distribution tends to yield lower 

option premiums than the GARCH OPM. Absolute differences increase as time 

to maturity increases in deep out-of-the-money call options (Table 6, Panel A). 

However, percentage differences decreases as time to maturity increases 

(Table 6, Panel Bl, because as time to maturity decreases, the time-value of 

deep out-of-the-money options decreases very fast and eventually becomes 

zero. Black's OPM prices at-the money call options higher than GARCH OPM. 

The simulation results confirm Hull and White's (1987) findings that the 

Black-Scholes model underprices in- and out-of-the-money options when 

stochastic volatility is present. Their argument that the Black-Scholes model 

overprices close-to-the-money options is also confirmed. The absolute 

differences are small, which agrees with Hull and White, and absolute 

differences between the two OPM's are larger for at-the-money options than 

for in- or out-of-the-money options. 

The asymptotic t-statistics (Tables 5 and 6) provide some evidences that 

the reported option pricing errors are not due to sampling errors. In particular, 

differences between Black's option price and GARCH option price for deep out­

of-the-money options are always significantly different from zero. 
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Performance of Black's and GARCH Option Pricing 

Table 8 shows the result for an out of sample simulation. Performance of 

each model for at-, in-, and out-of-the-money options is shown. For out-of-the­

money put options, the mean error and root mean squared error (RMSE) of the 

GARCH OPM are smaller than those of Black's OPM. For out-of-the-money call 

options, mean error of GARCH OPM is smaller than that of Black's OPM, but 

RMSE of GARCH OPM is larger than that of Black's OPM. For at-, and in-the­

money put and call options, however, mean error and RMSE of Black's OPM are 

smaller than those of GARCH OPM. Black's OPM performs worse than GARCH 

OPM for deep-out-of-the money options, but performs better for at- and in-the­

money options. 

Ashley-Granger-Schmalensee (AGS) test (Table 9) supports the hypothesis 

of mean squared error of Blacl<'s OPM being significantly larger than that of 

GARCH OPM for out-of ~the-money put options, but does not support it for out­

of-the-money call options. AGS test also shows that mean squared errors for 

at- and in-the-money put options and at-the-money call options by GARCH OPM 

are greater than those by Black's OPM. AGS test for in-the-money call options 

is inconclusive. Therefore, GARCH OPM performs better than Black's OPM for 

out-of-the-money put options, but Black's OPM still performs better than 

GARCH OPM for other cases. 
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Conclusions 

This paper introduces an asymmetric GARCH model that captures 

asymmetries in the mean equation, and determines the most likely distribution 

among alternative autoregressive conditional heteroskedasticity models. The 

asymmetric GARCH(2, 1 )-t with two lags of the conditional variance and one lag 

on the squared residuals, which considers asymmetry in the mean equation, 

was selected as the most likely among the alternative models. The alternative 

models considered were the GARCH-t and the asymmetric EGARCH-t models. 

The Monte Carlo integration using the estimated asymmetric GARCH(2, 1 )-t 

parameters shows that Black's model values deep out-of-the-money put options 

and deep out-of-the-money call option less than the GARCH option pricing 

model does. However, Black's option pricing model values at-the-money put 

and call option premiums higher than the GARCH option pricing model does. 

Differences between Black's model and the GARCH option model increase as 

time to maturity increases, which confirms Hull and White's findings. The 

GARCH option pricing model predicts actual option premiums more accurately 

than Black's model for deep out-of-the-money option, but Black's model is still 

at least as good as the GARCH option pricing model in other cases. 
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Table 1. Summary Statistics of Daily Kansas City Wheat Futures Prices over 
January 1982 through August 1990.a 

Sample Size(n) 

Mean(µ) 

Standard Deviation (a) 

Skewnessb 

Kurtosis0 

Statistics 
2191 

-0.0109 

0.9774 

0.6471 *d 

11 .1585* 

a Units are percentages. Rt = [ln(Pt) - ln(Pt.1)]*100. 

n 

b Skewness is computed by L (Rt-µ) 3/(n-1 )a3 
t=1 

n 
0 Excess kurtosis is computed by L (Rt-µ) 4/(n-1 )a4 - 3 

t=1 

d Asterisks denote the null hypothesis of normality (i.e., zero skewness and 

zero kurtosis) are rejected at a 5 % level based on the critical values by 

Snedecor and Cochran ( 1980). 
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Table 2. Estimated Log-likelihoods and Tests of Asymmetry with Alternative 
Models of Daily Futures Prices of Kansas City Wheat 

Maximized Statistics for 
Model Log-Likelihood Asymmetries 

Mean8 Varianceh 
Total Speed 

Asymmetric GARCH(1, 1 )-t -2521.3 3.22 5.93*c nad 

Asymmetric GARCH(2, 1 )-t -2515.4 3.33 5.86* na 

GARCH(2, 1 )-t -2520.6 na na na 

Asymmetric GARCH(2,2)-t -2515.0 3.50 6.05* na 

Asymmetric GARCH(3, 1 )-t -2514.7 0.87 3.75* na 

Asymmetric EGARCH( 1,0)-t -2523.5 8.08* 21.23* 1.39 

a Statistics for asymmetries in the mean equations are distributed as 

F(1,2191) for total impact and F(3,2191) for the speed of adjustment 

under the null hypothesis that there is no asymmetries. 

b Statistics for asymmetries in the variance equations are the t-statistics of 

the parameter representing skewness (!J in equation (4)). 

c Asterisks denote rejection of the null hypothesis of no asymmetry at the 

5 % significance level. 

d Not applicable. 



Table 3. Test Statistics of Model Selection with Alternative Models 

Hypotheses 
Null Alternative 

Asymmetric GARCH(1, 1 )-t Asymmetric EGARCH(1,0)-tb 

Asymmetric GARCH(1, 1 )-t Asymmetric GARCH(2, 1 )-t8 

GARCH(2, 1 )-t Asymmetric GARCH(2, 1 )-ta 

Asymmetric GARCH(2, 1 )-t Asymmetric GARCH(2,2)-ta 

Asymmetric GARCH(2, 1 )-t Asymmetric GARCH(3, 1 )-ta 
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Statistics 

-3.29 

11.SO*b 

10.40* 

0.42 

1.40 

a Likelihood ratio test statistic is obtained by 2T*(L, - L0 ), where Tis the 

number of observations, L, is the loglikelihood values under alternative 

hypothesis, and L0 under null hypothesis. 

b The statistic reported is the difference in Schwarz criteria which is obtained 

by 2T*(L1 - L0)-(K1 - K0 ) *ln(T), where K1 and K0 are the number of parameters 

under alternative and null hypothesis, respectively. 

c Asterisk denotes rejection of the null hypothesis in favor of the alternative 

hypothesis at the 5% significance level. 
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Table 4. Statistics and Test Results of the Estimated Asymmetric GARCH(2, 1 )­
t Process 

Mean 
Intercept 
Lag 1 positive 
Lag 1 negative 
Lag 2 positive 
Lag 2 negative 
Lag 3 positive 
Lag 3 negative 
DMON 

DTUE 
Dwrn 
Drnu 
S1N252 
COS252 
S1N126 
COS126 

Variance 
Intercept 
Alpha 
Beta1 
Beta2 
DMON 

DruE 
Dwrn 
DTHu 
S1N252 
COS252 
S1N126 
COS126 
Maturity 

Degrees of Freedom 

Estimated 
Coefficients 

-o.125*a 
0.027 
0.151 * 
0.010 

-0.134* 
0.050 

-0.071 
0.041 
0.077 
0.152" 
0.036 

-0.018 
0.061" 
0.025 

-0.043* 

0.061 
0.160* 
0.190* 
0.592* 
0.048 
0.014 

-0.096 
-0.039 
0.006 

-0.018* 
0.007 

-0.003 
-0.001 

v 7.31 c 

Wald F statistics 
Day of Week in Mean 3.66" 
Seasonality in Mean 3.12* 
Day of Week in Variance 1.26 
Seasonality in Variance 2.92* 

(t-ratio) 

(-3.05) 
(0.64) 
(3.69) 
(0.26) 

(-3.51) 
(1.23) 

(-1.81) 
(0.88) 
(1.68) 
(3.55) 
(0.82) 

(-0.81) 
(2. 79) 
( 1 . 19) 

(-2.09) 

( 1. 74) 
(2.47)b 
(2.27)b 
(7.25)b 
(0.81) 
(0.22) 

(-1.63) 
(-0. 70) 
(1.03) 

(-2.47) 
(1.21) 

(-0.53) 
(-0.31) 
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(Table 4 Continued) 

Ljung-Box and Mcleod-Lid 
e/ht( 12) 13.66 

e2/h 2t( 12) 20.41 

BOS tests {e = a} 0 

Raw Data 
Dimension = 3 13.04* 
Dimension = 6 17.58* 
Dimension = 9 24.53* 

Rescaled Data 
Dimension = 3 0.47 
Dimension = 6 -0.57 
Dimension = 9 -0.07 

Goodness-of-fit1 

Dmax 0.013 

a Asterisks denote the rejection of the null hypothesis at the 5 % significance 
level. Values in parentheses are the t-statistics. 

b Since the GARCH terms are restricted to be positive, the null hypothesis 
lies on the boundary of the parameter space. Under the assumptions of 
Moran (1971), the t-statistic is distributed as a mixture of a degenerate 
distribution and a half t-distribution. Hypothesis tests can still be conducted 
in the usual fashion with t-tests. The t ratio of a is computed as 

t = ea/(eas;.ea)112 , where s;. is the standard error of ea , because the 

inequality constraint was imposed on the parameter a using an exponential 
transformation. 

c The degrees of freedom is restricted to be greater than three. 
d Both null hypotheses that e/ht are not autocorrelated and that e2/h 2t are 
not autocorrelated are tested with twelve degrees of freedom. Test statistics 
are distributed asymptotically as x21121 under the null hypothesis. 

e The null hypothesis is that the standardized residuals are i.i.d. The 
hypothesis test is based on Table F.4 in Brock et al. (p.279). 

f The critical value of this test is De = 1.36/T112 = 0.0299 where T is the 
sample size (Shannon, 1975). 
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Table 5. Differences between Black's Option Pricing and GARCH Option Pricing 
for Put Options When the True Process Is GARCH 

Time to maturity (months) 

0.5 1 1.5 3 4.5 6 

Panel A: Absolute differencesa 

Deep In-the-money -0.002 -0.008 -0.018 -0.030 -0.047 -0.059 
(F/X = 0.90) (-0.20) (-0.66) (-1.09) (-1.30) (-1.71) (-1.91) 
In-the-money -0.001 -0.007 -,0.005 -0.019 0.059 -0.010 
(F/X = 0.95) (-0.15) (-0.59) (-5.36) (-0.88) (2.39) (-0.39) 
At-the-money 0.051 0.052 0.078 0.070 0.069 0.040 
(F/X = 1.0) (7 .89) (5.26) (6.37) (3. 78) (3.16) (1.54) 
Out-of-the-money -0.021 -0.015 -0.017 0.008 0.061 0.024 
(F/X = 1.05) (-5.19) (-2.45) (-1.81) (0.55) (3.46) ( 1.14) 
Deep Out-of-money -0.009 -0.019 -0.036 -0.025 -0.028 -0.036 
(F/X= 1.10) (-3.67) (-5.35) (-5.92) (-2.58) (-2.00) (-1.99) 
------------------------------------------------------------------------------------------------------------
Panel B: Percentage differences (%lb 

Deep In-the-money -0.02 -0.08 -0.18 -0.30 -0.46 -0.57 
(F/X=0.90) (-8.11) (-9.85) . (-6.09) (-4.08) (-9.87) (-0.16) 
In-the-money -0.03 -0.14 -0.10 -0.32 0.95 -0.17 
(F/X=0.95) (-14.88) (-9.20) (-8.83) (-3.09) (3.48) (-0.83) 
At-the-money 4.89 3.47 4.28 2.67 2.17 0.01 
(F/X = 1.0) (0.40) (0.58) (0.41) (0.91) (1.01) (0.96) 
Out-of-the-money -31.67 -6.73 -4.06 0.86 4.42 1.31 
(Ft/X = 1.05) (-11.35) (-0.43) (-2.69) (1.50) (0.91) (1.27) 
Deep Out-of-money -97.67 -64.92 -44.54 -9.05 -5.04 -4.20 
(F/X=1.10) (-5.58) (-12.46) (-12.95) (-4.48) (-0.63) (-3.66) 

a Black's option price minus GARCH option price when exercise price is set 

equal to $1.00. The absolute differences are measured in ¢/bushel. 

b [(Black's price - GARCH price)/GARCH price]* 100. 

Asymptotic t-statistics are in parentheses. 
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Table 6. Differences between Black's Option Pricing and GARCH Option Pricing 
for Call Options When the True Process Is GARCH 

Time to maturity (months) 

0.5 1 1.5 3 4.5 6 

Panel A: Absolute differences (cents per bushel)a 

Deep Out-of-money -0.003 -0.016 -0.037 -0.046 -0.036 -0.061 
(F/X = .90) (-2.63) (-4.96) (-5.62) (-4.39) (-2.41) (-2. 75) 
Out-of-the-money -0.026 -0.028 -0.016 0.027 0.002 0.017 
(F/X = .95) (-7.42) (-4.24) (-1.24) (1.69) (0.07) (0.66) 
At-the-money 0.050 0.063 0.074 0.093 0.061 -0.037 
(F/X = 1.0) (7.32) (5. 77) (5.05) (4.65) (2.03) (-1.03) 
In-the-money 0.0003 -0.016 0.013 -0.0004 -0.022 0.003 
(F/X = 1.05) (0.03) (-1 .09) (0.80) (-0.01) (-0.64) (0.07) 
Deep In-the-money 0.003 -0.006 '-0.066 -0.011 -0.001 -0.043 
( F /X = 1 . 1 0) (0.24) (-0.37) (-3.09) · (-0.36) (-0.03) (-1.01) 
------------------------------------------------------------------------------------------------------------
Panel B: Percentage differences (%)b 

Deep Out-of-money -98.37 -79.15 -61.96 -21.92 -8.68 -9.02 
(F/X= .90) (-3.32) (-9.53) (-14.97) (-3.61) (-2.38) (-2. 11) 
Out-of-the-money -43.25 -14.32 -4.41 3.24 0.12 1.03 
(F/X = .95) (-1.28) (-8.23) (-4.03) (5.28) (0.81) (1.35) 
At-the-money 4.79 4.19 4.03 3.61 1.91 -0.99 
(F/X= 1.0) (0.92) (0.95) (-0.97) (0.95) (0.07) (-1.12) 
In-the-money 0.01 -0.30 0.26 -0.01 -0.35 0.04 
(F/X = 1.05) (13.00) (-4.61) (4.89) (-2.35) (-0.47) (1.57) 
Deep In-the-money 0.03 -0.06 -0.66 -0.11 -0.01 -0.41 
(F/X = 1. 10) ( -1 . 00) ( -1 3 . 9 5 ) (-1 4. 3 3) (-6.96) (-4.04) (-0.39) 

a Black's option price minus GARCH option price when exercise price is set 

equal to $1.00. The absolute differences are measured in ¢/bushel. 

b [(Black's price - GARCH price)/GARCH price]* 100. 

Asymptotic t-statistics are in parentheses. 
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Table 7. Ranges of Futures Prices During the Out of Sample Simulation Period 
and Strike Prices of In-, At-, and Out-of-the-Money Options for Each Contracts 

Maturity March May July September December 

Panel A: Put Option 

Price 
Ranges (2.55,2.65) (2. 70,2.90) (2.85,2.95) (2. 70,3.00) (3.10,3.80) 

Out-of-Money 2.40 

At-the-Money 2.60 

In-the-Money 2.90 

Panel B: Call Option 

2.60 

2.90 

3.20 

2.70 

2.90 

3.00 

2.60 

2.90 

3.10 

2.70 

3.40 

3.80 

Price 
Ranges (2.55,2.65) (2. 70,2.90) (2.85,2.95) (2. 70,3.00) (3.10,3.80) 

Out-of-Money 2.40 

At-the-Money 2.60 

In-the-Money 2.90 

a Units are in $/bushel. 

2.60 

2.90 

3.20 

2.70 

2.90 

3.20 

2.60 

2.90 

3.30 

2.70 

3.40 

3.60 
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Table 8. Forecastimg Performance of Black and GARCH Option Pricing for 1991 
Kansas City Wheat Options 

Black GARCH 
Moneynessa Out At In Out At In 

panel A: Put Option 

Mean Errorb -0.21 -0.68 0.08 -0.13 -0.70 0.16 

Root Mean 
Squared Errorb 0.73 1.77 2.39 0.71 1.85 2.44 

----------------------· --------------------------·------------------------------------------------.---------
panel 8: Call Option 

Mean Errorb -0.38 -0.54 0.08 -0.36 

Root Mean 
Squared Errorb 0.71 2.54 1.83 0.75 

-0.58 0.16 

2.72 1.81 

a The precise exercise prices for the in-, at-, and out-of-the-money options are 

given in Table 7. 

b Mean errors and root mean squared errors are in cents per bushel. 
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Table 9. Ashley-Granger-Schmalensee Test of the Performance of Black and 
GARCH Option Pricing for 1991 Kansas City Wheat Options 

/3,a /3/ F statisticsb Conclusion Model 
Favored 

Panel A: Put Option 
Out-of-Mon eye 0.0837* -0.00005 nae reject H0 GAR); 

(9.661) (-0.006) 
At-the-Moneyd 0.0174 0.0225· 5.94* reject H0 Black 

( 1.076) (3.442) 
ln-the-Moneyd 0.0850* 0.0086 14.49' reject H0 Black 

(5.076) ( 1 .869) 
------------------------------------------------------------------------------------------------------------
Panel B: Call Option 
Out-of-Money0 0.0165* -0.0418 na not reject H0 none 

(0.845) (-1.864) 
At-the-Moneyd 0.0436* 0.0168* 3.33" reject H0 Black 

(2.020) (2.487) 
ln-the-Moneyd 0.0738* -0.0084* na inconclusive none 

(5.957) (-2.999) 

a The Ashley-Granger-Schmalensee test is based on following regression 

-
results: tit = /3, + {32 (''i.t - }) + ut · 
Here, .6.t = r e8t - e0 t for out-of-the-money option 

~ 
L e0 t - e8t for at- and in-the-money options, 

where e8t is Black's option price minus actual option price and e0 t is GARCH 

option price minus actual price. Lt = e8t + e0v assuming e/ > O and 

-G - -B d -G f 8 d G · et > O . ti, et , an et are means o ti, et , an et , respectively. 

b If both /31 and /32 are negative, then F test with one half of regular significance 
level can be used. However, if one of /31 and /32 is negative, then t test of the 
other coefficient should be used. If one of /31 and /32 is negative and 
significantly different from zero, then the test is inconclusive. 

c H0 : Mean squared error of Black's OPM is equal to that of GARCH OPM, 
H,: Mean squared error of Black's OPM is greater than that of GARCH OPM. 

d H0 : Mean squared error of GARCH OPM is equal to that of Black's OPM, 
H1 : Mean squared error of GARCH OPM is greater than that of Black's OPM. 

e In cases where both parameters are not positive, F test is not applicable. 
* Asterisks denote significance at 5 % level. 
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VALUING TARGET PRICE SUPPORT PROGRAMS 
WITH GARCH AVERAGE OPTION PRICING 

Abstract 

The U.S. government deficiency payment program stabilizes farm income 

by transferring income from taxpayers to farmers. When revenue lost due to 

the acreage restriction exceeds the revenue gained from participating in the 

program, farmers would lose money by participating. Therefore, measuring the 

expected revenue from the government program is important for farmers to 

decide whether to participate in the program or not. This essay uses a GARCH 

average option pricing model to predict the implicit premium of the U.S. 

government deficiency payment program. The GARCH average option pricing 

model combines the GARCH process that considers both stochastic volatility 

and a nonnormal distribution with the average option pricing model that 

considers the average price of the underlying asset over a fixed period. A 

regression model based on the simulation results is provided for the GARCH 

average option model to be easily used to project deficiency payments. The 

results can be used by extension economist to help producers decide whether 

to participate in the program and by USDA to project participation, government 



cost, and to calculate advance deficiency payments. 

Key words : Farm Program, Deficiency Payments, GARCH, Exotic Option, 

Monte Carlo, Wheat 



VALUING TARGET PRICE SUPPORT PROGRAMS 
WITH GARCH AVERAGE OPTION PRICING 

Introduction 

The U.S. government's deficiency payment program stabilizes net prices 

received by farmers and thus farmers can stabilize income by participating in 

the program. The program transfers income from taxpayers to farmers who 

participate in the program. The government deficiency payment program can 

be characterized as a subsidized put option except that acreage harvested is 

restricted (Gardner 1977; Irwin et al. 1988). Farmers that participate in the 

program are protected from prices falling below the target price but can benefit 

from prices rising above the target. However, opportunity costs arise from the 

acreage restriction. When revenue lost through the acreage restriction exceeds 

the revenue gained from participating in the program, farmers would lose 

money by participating. Therefore, measuring the expected revenue from the 

government program is important for farmers to decide whether to participate 

in the program or not. Also, USDA could use more accurate estimates of 

expected deficiency payments to project participation, government cost, and 

in calculating advance deficiency payments. 

In extension, the expected deficiency payment is computed by the 

difference between the target price and the expected harvest price at the time 

of program sign-up (Anderson et al.). Such an approach considers only the 

45 
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intrinsic value 1 and ignores the time value of the contingent claim. The time 

value can be critical especially when prices are near the targets. Measuring the 

revenue from the program will likely become more important as the program is 

squeezed by the budget deficit. The objective of this paper is to help farmers 

decide whether to participate in the government's wheat program by 

determining the expected deficiency payment and to provide tools the U.S. 

government can use to project government cost, and calculate advance 

deficiency payments. 

Based on the relationship between the target price program and a put 

option, past research used Black's option pricing model (Witt and Reid 1987; 

Turvey et al. 1988) or a variant of Black-Scholes option pricing model (Marcus 

and Modest 1986) to determine the revenue from participating in the program. 

Black's option pricing model assumes constant volatility and lognormally 

distributed price changes. However, conditional nonnormality, conditional 

heteroskedasticity, and asymmetry in the distribution of wheat prices are also 

well documented (Yang and Brorsen 1992; Kang and Brorsen 1993). Monte 

Carlo studies showed that Black-Scholes and Black option pricing models 

underprice in- and out-of-the-money options relative to models considering 

nonnormality and heteroskedasticity (Johnson and Shanno 1987; Hull and 

1 Actually the intrinsic value is the difference between the expected seasonal 
average and the target price. Since the expected seasonal average is not 
known at decision time, the difference between the expected harvest price and 
the target price is used as a proxy of the intrinsic value of the program. 
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White 1987; Kang and Brorsen 1993). Therefore, an option pricing model 

considering not only the non-normality but also stochastic volatility is needed. 

This essay improves on previous research in several' ways. One is that it 

explicitly considers the hon-normality and stochastic volatility by using the 

GARCH option pricing model. In past research using Black or Black-Scholes 

option pricing formulae, the expected deficiency payment was computed based 

on the expected harvest price, which considers the time value only of the 

period between program sign-up and harvest. However, the time value of the 

period between harvest and the program maturity should also be considered. 

In this essay, the expected deficiency payment is computed based on the 

intrinsic value plus the time value of both the periods before and after harvest 

as well as based on stochastic volatility. 

Another extension is that the deficiency payment program is modelled 

correctly as an average option. The amount of government transfer under the 

target price program is computed based on the difference between the target 

price and the average market price received by producers during the first five 

(ten) months of the marketing year. Therefore, an option pricing model 

considering the average price of the underlying asset over a fixed period 

provides a more accurate measure of the value of the target price program than 

one that assumes deficiency payments are based on harvest prices. 

As a generalization of Black's option pricing, Bergman (1985) suggested an 

option pricing path that provides a closed form solution for the premium of an 
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average value option. However, it oversimplifies the pricing model by assuming 

the exercise price equal to zero. Kemna and Vorst (1990) showed that an 

analytical solution to the more general problem is not possible and suggested 

a numerical solution to the average value option pricing model for European 

options. 

Kemna and Vorst demonstrated how to use Monte Carlo integration to 

obtain premiums of average value options. However, Kemna and Vorst's 

average value option pricing model is still based on the assumptions of 

normality and constant volatility. This essay goes beyond Kemna and Vorst by 

combining average option pricing and GARCH option pricing which considers 

the nonlinear dynamics and stochastic volatility of the distribution of cash and 

futures price changes. Myers and Hanson (1993) showed that the prediction 

error of the GARCH (generalized autoregressive conditional heteroskedasticity) 

option model with a student t distribution is significantly smaller than that of 

Black's option pricing model. Duan ( 1991) has shown that the Black-Scholes 

option pricing model underestimates out-of-the-money call option premium 

when the underlying process is a GARCH process. Therefore, a marriage of the 

average option pricing with the GARCH process should provide a more accurate 

measure than average option pricing alone. 

Theoretical Model and Method 

Treating deficiency payments as a contingent claim enables computing the 
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value of the program to producers and the cost to the government in a 

straightforward way. This essay determines the expected deficiency payments 

using an average value option pricing model which considers both conditional 

non-normality and stochastic volatility. 

A GARCH process considering observed non-normality and seasonality is 

estimated using maximum likelihood. Then, the value of the target price 

program under alternative scenarios is obtained using Monte Carlo simulation. 

The Theoretical Model 

The farmer is assumed to be a taker of a stochastic price P for the unit 

output which is produced at a known cost of C. Total output O may all be 

harvested if the farmer does not participate in the government deficiency 

payments program, or a portion of that 0 0 may be set aside if participating. 

The farmer is assumed to be a maximizer of expected profit E(rr). The profit 

depends upon the production cost, price, quantity harvested and the deficiency 

payments DP. The profit is, 

( 1) rr1 = PO - CO if not participating in the program, 

rr2 = P(O - 0 0 ) - C(O - 0 0 ) + R(00 ) + DP((1 - 1]1)0* - 0 0 *) if participating, 

where R(00 ) is net returns on set-aside acres, and DP = min[ max(TP-AP, 0), 

max(TP-LR,O) ], where TP is the target price, AP is the five (ten) month average 

price after harvest, LR is the loan rate, 1]1 is the portion of flexible acres, and 

(Q* - 0 0 *) is total program yield on harvested acres. The farmer is assumed to 



maximize expected profit: 

(2) Max [ E{rr1), E(rr2) ]. 
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Let R = rr2 - rr1 = DP((1 - 17t)Q* - 0 0 *) + R(Q0 ) - (P - C)Q0 , then the farmer 

would participate in the program if E(R) ~ 0, but not participate if E(R) < 0. 

Therefore, it is critical to obtain the value of DP and P which are stochastic. 

E(P) can be obtained by adjusting futures prices or by other conventional 

means. The expected value of DP, E{ min[max(TP-AP,O), max{TP-LR)] } will 

be obtained in this paper using stochastic dynamic simulation and Monte Carlo 

integration. 

The Statistical Model 

The GARCH process with residuals following a student distribution has been 

selected as the most likely among alternative nonlinear dynamic models such 

as a diffusion jump process and deterministic chaos (Yang and Brorsen 1992). 

Kang and Brorsen (1993) suggested an asymmetric GARCH-t process that 

considers asymmetries in the mean equation and found that it is more likely 

than the GARCH-t of Bollerslev ( 1986) and than the exponential GAR CH of 

Nelson (1991 ). 

A GARCH model and an asymmetric GARCH model under a student 

distribution are estimated. The GARCH process can model well-documented 

seasonality in the variance (Kenyon et al. 1987). In the GARCH-t process, let 

the conditional distribution of price changes, yj, be generalized t with mean x;B, 



51 

variance hj2, and degrees of freedom v: 

where x is the vector of independent variables and 8 the parameter vector. 

Therefore, error term (ei) has a student t distribution with zero mean and 

variance hi2 with v degrees of freedom. ei can be specified as: 

where zi follows at distribution which has mean zero and variance v/(v - 2). 

The asymmetric GARCH-t model is the same as the GARCH-t model except 

the lagged price changes in the mean equation are segmented into rising 

changes and falling changes. The logarithmic changes in returns, Yi, are 

segmented as, 

= r Yi, Yi > 0 
~ 
L 0, otherwise, 

= r Yi, Yi < 0 
~ 
L O , otherwise. 

The data for this study consist of two sets; futures prices and cash prices 

and cover the program years from 1981 through 1991 . Futures prices are used 

as a proxy for expected cash prices over the period prior to harvest when there 

are no cash prices for new crop wheat. For the futures price data, evidences 

of cyclical seasonalities have been reported in the variance equation (Choi and 

Longstaff 1985) but not in the mean equation (Murphy 1987). A spline 

function is used to model seasonality in the mean equation. A spline function 
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is a piecewise function in which the pieces are joined together in a continuous 

manner (Poirier 1976). The asymmetric GARCH-t model is specified as, 

for j = 1, 2, ... ,J program years and for i = 1,2, ... ,I observations in each 

program year. om and wm represent the net effect of the mth positive or the mth 

negative changes of Yi, respectively, and M is the length of lags. The length 

of lags in the mean equation is identified with the Schwarz criterion2• SIN and 

COS represent the sine and cosine functions, respectively, and " is 

approximated as 3.14. K in the sine and cosine functions is the number of 

trading days after January 1 of the particular year. Denominators in the sine 

and cosine functions are the specified cycle length in trading days, so 252 

indicates a one year cycle and 126 a half year cycle. Equation (5) is the mean 

equation and equation (6) is the variance equation. Wi,i captures the 

seasonality in the mean equation. A spline function with a cubic polynomial is 

used to impose no seasonality until harvest: 

(7) w .. = J,I r o 
~ 
l a, + a~ + a3,-\2 + a4J\ 3 

if ,.\ prior to harvest, 

if ,.\ post harvest, 

2 Schwarz's SC criterion is obtained by SC(m) = ln(SSEm) + am *ln(T)/T, where 
m is the length of lags, SSEm is the squared sum of residuals, and am is the 
number of parameters and T is the number of observations. The value of m 
that minimizes SC is selected as the length of lags in the model. 
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where,.\ = 1 on June 1 and so {..i} = ... -2, -1, 0, 1, 2, ... ..\. With restrictions 

of O = a, + a2"' + a3..\ 2 + a4..i 3 , when,.\ = June 1 by imposing continuity, and 

a2 + 2a~ + 3a4..\ 2 = 0, when,.\ = June 1 by imposing differentiability, (7) can 

be rewritten as, 

w .. = r o if "' < o, J,I 

~ 
l (1 - 2,.\ + A2)83 + (2 - 3.-i + ,.\3)a4 if" > 0, 

The loglikelihood function of the conditionally heteroskedastic model with 

errors following a student distribution was derived by Bollerslev (1987). Since 

the data are cross-section time series, each set of data for one program year 

is used for computing the likelihood for each program year and then summed 

to obtain the likelihood for the whole data set. The log likelihood function used 

by Bollerslev is adapted to consider the cross-section time-series data: 

(8) · 1 r(v/2) 
L(0,0lx,x,y) = - 2 J*/ln[1t(v-2)] - J*/ln[ r((v+1)/2)] 

where 8 and a are vectors of parameters in the mean and the variance 

equations, respectively, x and -x are vectors of independent variables in the 

mean and the variance equations, respectively; and y is the dependent variable 

in the mean equation. J is the number of program years, I is the number of 
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observations in each program year and ro denotes the gamma function. 

The maximum likelihood estimates are obtained using the statistical 

software package GAUSS {Aptech Systems Inc. 1992). Inequality restrictions 

are imposed on the GARCH terms (a and fl in the variance equation) by taking 

the exponential of the parameters. The starting algorithm is Polak-Ribiere-type 

Conjugate Gradient method which performs well initially when the starting point 

is poor and a step size of one. After a few iterations, the algorithm is switched 

to the Davidon-Fletcher-Powell method and a BRENT step length method is 

used. The final estimates are obtained with the Newton method so that the 

Hessian is used to estimate the information matrix. All derivatives are 

calculated numerically. The model was considered as converged if the relative 

gradient (gradient + parameter estimate) was less than 1 o-4 • 

If the GARCH-t models are well specified, the standardized residual 

generated from the GARCH-t model should be i.i.d. student. The Ljung-Box and 

McLeod-Li test statistics are provided to check if the serial dependence is 

revealed in the rescaled residuals of the selected model. The Brock-Dechert­

Sheinkman {BOS) test {Brock et al. 1991) is used to test the hypothesis that 

the daily futures and cash price changes are identically and independently 

distributed. The Kolmogorov-Smirnov goodness-of-fit test is used to determine 

if the residuals follow a student distribution. The rescaled residuals are 

adjusted by the standard deviation of the distribution, i.e., {ei)hi)(v/{v-2))0·5 , 

where vis the estimated degrees of freedom so that the rescaled residuals have 
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variance of v/(v-2). 

Monte Carlo Integration 

In a risk-neutral world, Black-Scholes option pricing model determines the 

option price that determines the value of a riskless hedge portfolio for a stock 

paying no dividend (Black and Scholes 1973). Therefore, the return to the 

hedge portfolio must be equal the riskless rate r. Merton (1973) extended 

Black-Scholes model allowin~ the stock to pay a dividend at a constant rate g 

so that the expected growth rate of the stock is (r-g). Black (1976) applied 

Merton's modification to commodity futures option pricing. Since a futures 

contract requires no initial investment, the return to the riskless hedge portfolio 

of a futures contract must be zero in a risk-neutral world. By setting the 

riskless rate equal to zero, the commodity option pricing model is obtained. 

If we assume that the cash price has the same lognormal property as the 

stock and the futures price do, the expected deficiency payment can be 

approximated by using Black-Scholes and Black's option pricing models. In 

past research, the expected deficiency payment was computed based on the 

expected harvest price, which considers the time value only of the period 

between program sign-up and harvest. However, the time value of the period 

between harvest and the program maturity should also be considered. In this 

essay, the expected deficiency payment is computed based on the intrinsic 

value plus the time value of both the periods before and after harvest as well 
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as based on stochastic volatility. 

The cash price is expected to rise proportionally to the carrying cost and 

thus stored wheat is an asset just like a stock. Therefore, the expected 

deficiency payment after harvest can be approximated using the Black-Scholes­

type model. The carrying cost is the sum of interest rate and the rate of 

storage cost. Since the commodity does not exist before harvest, carrying cost 

before harvest is zero. Assuming that the farmer has rationally expected 

harvest prices at decision time, no price increase should be expected during the 

period before harvest. Therefore, the expected deficiency payment before 

harvest can be obtained assuming no investment like in the Black model. 

However, unlike option trading in speculative markets, riskless arbitrage is not 

possible with the government deficiency payment program. Moreover, allowing 

stochastic volatility, it is not possible to solve the option pricing models in a 

closed form since the stochastic volatility adds risk which can not be diversified 

into a riskless hedge portfolio (Johnson and Shanno 1987; Hull and White 

1987; Scott 1987; Myers and Hanson 1993). Therefore, the GARCH option 

pricing model using Monte Carlo integration is used. The expected deficiency 

payment is obtained by generating the estimated mean equation at maturity. 

Since a farmer's decision making begins with planting wheat, one program 

year is defined as the period from planting time through the last date of the 

fifth (or tenth) month after harvest. One program year consists of fifteen (or 

twenty) months. For wheat, planted in September and harvested the next 
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June, 1992 program year has the period from September 1, 1991 through 

October 31, 1992 for five month average or through March 31, 1993 for ten 

month average. The program sign-up is usually between March 1 and April 15. 

One program year has six important points in time: 

T0 : planting time (September 1 in the previous calendar year), 

T1 : program sign-up start (March 1 ), 

T2 : program sign-up due (April 15), 

T3 : harvest time (June 1), 

T4 : five months after harvest (October 31), 

T 5 : ten months after harvest (March 31 in the next calendar year). 

The farmer can sign up in the program any time between T1 and T 2 • For 

simplicity, it is assumed that the farmer signs up at T1 or at T 2 and that the 

Agricultural Stabilization and Conservation Service (ASCS) pays the deficiency 

payment at the end of the program year (T4 or T5 ). 

A realization of the value, VT, is calculated as 

(9) VT = max{ min[TP-AT, TP-LR ], 0 }, 

where r is the maturity date, TP is the target price, and LR is the loan rate. To 

simplify the analysis in simulation, the loan rate is not considered. When 

prices are close to loan rate, the decision of whether to participate or not is 

easy. AT is the average market price computed as: 

(10) AT = 

where St is the market price of the underlying commodity at time t. The target 
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price program is a European option and thus American options are not 

considered. 

In this analysis, the GARCH option model is used to obtain the market price 

St at time t for the period between rand T0 • The GARCH model is estimated 

using data available at time T 0 • Time is measured in number of trading days. 

The way to simulate St is different before harvest than it is after harvest. While 

St post harvest is obtained with the mean equation in (5), St prior to harvest is 

obtained using the mean equation with zero intercept which does not allow any 

seasonal patterns3 • 

where 

before harvest 

Yt-1 = 
M M - 2 

8 + " 6 np + " W nn + W + h 7 ( V - )112 0 L.J m:,, t-m L.J m:, t-m t r-t -
m•1 m•1 V . 

after harvest 

Jm, wm , and a0 are estimated coefficients in equation (5). zt is random 

number generated from student distribution with ii degrees of freedom, and 

wt is the estimated spline function in equation (7). g1 is segmented as: 

3The futures prices as expected cash prices tend to fall before harvest during the 
observation period. Futures prices seem to reflect the possibility of a 
catastrophic events such as that which occurred in 1973. Futures prices before 
harvest fell possibly because no catastrophic event occurred during the 
observation period. Therefore, the market is assumed to be efficient (i.e., 
expectations are rational) in the sense of Fama (1970) which is contrary to 
what Wisner (1991) concluded based on similar findings. 
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gpt = r gt , gt > o 
~ 
l 0, otherwise, 

= r gt, gt < o 
~ 
l O , otherwise. 

When the asymmetry in the mean equation is not significant, gt does not have 

to be segmented. 

St of the period between r and T3 is used to get the average price at 

maturity, AT, and one realization of the value from the program, VT. Denoting 

this value at maturity {VT};, the simulated value is 

1 n 
( 12) V = - L { VT}; , 

n i=l 

where n = 20000 is the number of replications of this procedure4• V is not 

discounted so that it can be directly compared at different decision making 

times. 

One efficient way to improve the accuracy of this calculation is the control 

variate technique. The control variate technique adds a term with expected 

value of zero that is negatively correlated. The control variate in this case -is 

the difference between the analytical solution of a simpler problem and a Monte 

Carlo integration (using the same random number seeds) of the problem which 

has an analytical solution. By doing this, the variance of calculation can be 

effectively reduced (Hammersley and Handscomb 1964; Boyle 1977). 

Different control variates are used before and after harvest because 

4The calculation took 87.5 hours on a 486DX2/66MHZ computer. 
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different analytical solutions are used in each period. For the period of before 

harvest, an analytical solution is obtained by the standard Black option pricing 

model as follows: 

(13) 8 = TP*N(-d 2 ) - Sr0 *N(-d 1), 

where d1 = { ln[Sr0/TP] + u2/2)*(T3-T0 ) }/{ u(T3-T0 )112}, and 

d2 = { ln[Sr0/TP] - u2/2)*(T3-T0 ) }/{ u(T3-T0 )112}, 

where c,2 is the volatility of the price changes and NO is the cumulative 

probability density function of a standard normal distribution. The Monte Carlo 

integration corresponding to this analytical solution B' is generated using 

standard normal random numbers and constant volatility. Therefore, the 

control variate for the period before harvest is the difference between B in 

equation (13) and its corresponding Monte Carlo integration B'. 

The deficiency payment is calculated based on the average of prices 

between harvest (June 1) and program maturity. Since an option based on an 

arithmetic average cannot result in an analytical expression for the value of an 

option (Kemna and Vorst 1990), the geometric average option pricing model is 

used. Following Kemna and Vorst, the geometric average put option premium 

is: 



(14) G = TP*N(-d2) - eq*Sr3)N(-d1), 

where q = ((r+c)*((r-T3)/(r-T0 )) - a2/6)*(r - T3)/2, 

d1 = { ln[Sr3/TP] + ((r+c)*((r-T3)/(r-T0)) + a2/6)*(r - T3) }/{ a[(r­

T3)/3]112}, and 
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d2 = { ln[ST3/TP] + ((r+c)*((r-T3)/(r-T3)) - a2/6)*(r - T3) }/{ a[(r - T3) 

/3]1'2}, 

where r is the riskless interest rate, and c is storage cost as a percentage of 

target price. The interest rate is assumed to be constant at 5.5% and the 

storage cost 2.5¢/bushel per month so that c is constant at 7.6% per annum. 

The Monte Carlo integration for the post harvest period is obtained using 

standard normal random numbers and constant volatility and using a geometric 

average. The control variate is the difference between G in equation ( 14) and 

its corresponding Monte Carlo integration G'. 

The accuracy in calculating V is increased by adding the two control 

variates. The GARCH average option price with the control variate technique 

is: 

(15) v· = V + (B - B') + (G - G'), 

where B and G are analytical solutions from equations ( 13) and ( 14), 

respectively, and B' and G' are corresponding Monte Carlo integrations. Two 

sets of r-T0 random numbers are generated: one from a student distribution 

with v degrees of freedom which is estimated from the model and another 

from a standard normal distribution. These are generated using the same seed 

and therefore the random errors in B' and G' are positively correlated with the 
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random error in V. 

Sensitivity analyses are conducted by varying the initial volatility, expected 

harvest prices at program sign-up, the time of program sign-up, and the time 

of program end (five month average or ten month average), etc. The expected 

deficiency payment will be calculated at the expected harvest prices of $4.50, 

$4.00, $3.50, and $3.00 per bushel under the target price of $4.00 per bushel. 

Twenty day volatility will be used as initial volatility with the levels of 2.0, 1.5, 

1.0, 0.5, and 0.25 5 • Time to maturity effects will be detected by comparing 

the expected payments based on five month average and those on ten month 

average. Three decision points will be considered: September 1, March 1, and 

April 15. All the sensitivity analyses will be conducted in one run. The same 

seed is used for each expected initial prices in the same initial volatility to 

reduce variability of results .. 

Finally, a rule of thumb will be provided so that the GARCH average option 

premium model can be easily used to predict the expected deficiency payment. 

A regression model will be estimated based on the data from the result of the 

sensitivity analysis6 • 

5The historical daily volatility is measured as the standard deviation of the 
percentage changes of the five major market index is usually in the range 
of (0.5, 1.8). The range corresponds to the annual volatility of (0.08,0.28). 

6 A quadratic model on all the independent variables was considered. Since the 
quadratic relationship was significant only for IV and TIM, the quadratic terms 
and corresponding interaction term only for IV and TIM are considered. 
Deleting insignificant parameters is appropriate here since the goal is prediction. 



c7START MAR + e, 

where 

DP = Simulated deficiency payment, 

IV = Difference between target price and the expected harvest price, 

V = Initial 20 trading day volatility, 

TIM = r 1 if DP is based on 10 month average price, 
{ 
l 0, otherwise, 

STARTsEP = r 1 if decision making occurred on Sep. 1, 
{ 
l 0, otherwise, 

ST ART MAR = r 1 if decision making occurred on Mar. 1, 
{ 
l 0, otherwise. 
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Intrinsic value is max(O, TP - SA), where SA is the expected seasonal average 

of the period between harvest and maturity. Since SA is not known at decision 

time, max(O, TP - EHP) is used as a proxy for intrinsic value, where EHP is 

expected harvest price. EHP is readily available and currently used as the basis 

of decisions. 

Sample Data 

· Data for estimating the statistical model are divided into two sets : one is 

futures prices (July contract) and another is cash prices. Evidence suggests 

that wheat futures price is a good estimator of future cash price (Just and 
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Rausser 1981; Denbaly 1993). Since only changes are used, the basis is not 

a concern. The futures prices (July contracts) are used as a proxy of expected 

cash prices for the period between the time. of planting (September 1 of the 

previous calendar year) and harvest time (June 1 ). The data are a form of 

cross-section time series, with the cross-sectional units being the program year. 

First differences of the natural logarithms of the daily futures closing prices 

and of cash wheat prices are used7 • An equally-weighted average between 

Kansas City and Chicago Board of Trade are used as futures price data, and 

five major market average cash prices as cash price data. The five major 

markets consist of Kansas City hard red winter wheat, Minneapolis dark 

northern spring wheat, Minneapolis hard amber durum wheat, Portland white 

wheat, and St. Louis soft red winter wheat. The futures price data are 

obtained from Technical Tools and the cash major market index from ASCS. 

The cash prices are collected for the five (or ten) month period from harvest 

time .. The data cover eleven program years from 1981 to 1991. 

Table 1 shows the summary statistics for the daily logarithmic changes in 

five major market average cash prices and average futures prices between 

Kansas City and Chicago Board of Trade. The departures from normality are 

obvious from the high kurtosis and skewness in both prices. The means of the 

7Fama(1965) provides reasons for using log differences. First, the log difference 
is the return, with continuous compounding, from holding the asset. Second, 
while the variability of simple price changes increases as the price level 
increases, log differences neutralize price level effects. 
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two price series are not significantly different. The standard deviations of 

futures prices is significantly smaller than that of cash prices, which confirms 

Milonas (1986)8 • Cash prices are negatively skewed, while futures prices are 

positively skewed, which is similar to Yang's (1989) findings for other 

commodities. The kurtosis of futures prices may be smaller because of price 

limits9 • 

Results 

Model Estimation 

The null hypothesis that the asymmetric GARCH model fits the data better 

than the GARCH model was rejected based on the likelihood ratio test since the 

skewness in the mean equation may be neutralized because of combining two 

series of price changes which have opposite directions of skewness. Table 2 

reports estimates and test results of the GARCH model. The estimated GARCH 

terms (a and P) are all positive and significant. The sum of a and p is less than 

one implying stationarity 1°. The spline terms are individually not significantly 

8Milonas found the volatility of commodity futures prices increases as the time 
to maturity decreases. Since the cash commodity can be delivered at any time, 
the maturity effect found by Milonas suggest that volatility of cash prices 
should be greater than that of futures prices. 

9During the observation period, the Kansas City wheat futures prices hit the 
lower price change limit (-$0.25) 4 times and it hit the the upper limit ($0.25) 
5 times. Chicago wheat futures prices hit the lower price change limit (-$0.20) 
8 times and it hit the upper limit ($0.20) 6 times. 

10a + p < 1 is a sufficient condition but not a necessary condition for 
stationarity. 
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different from zero, but the null hypothesis that both spline terms (a3 and a4 ) 

are zero was rejected and therefore seasonality exists in the mean equation. 

Seasonal volatility in the variance equation is also significant. 

The Ljung-Box test shows that the model removes linear dependence in the 

mean equation but the McLeod-Li tests for the squared standardized data 

reveals second moment dependence11 • The BDS statistics show that the null 

hypothesis of i.i.d. is rejected in all dimensions for the raw data (Table 2), 

implying that the raw data are not random but dependent. For the rescaled 

residuals, the BDS statistics still identify nonlinear dependence, but the BOS 

statistics are considerably lower. The Kolmogorov-Smirnov goodness-of-fit test 

shows that the null hypothesis that the GARCH rescaled residuals follow a 

student distribution is not rejected at the 5% significance level. 

The Expected Deficiency Payment 

In this essay, the deficiency payment program is called in-the-money 

program if target price is greater than the expected harvest price, at-the-money 

if equal to the expected harvest price, or out-of-the-money if smaller than the 

expected harvest price. Table 3 reports the expected deficiency payment at 

various levels of expected initial prices, initial volatility, 5 month average or 10 

11 First-order autocorrelation among squared residuals is statistically significant 
in spite of the GARCH(1, 1) model having converged. Longer lags in the GARCH 
equation were not helpful in removing the remaining dependence. The McLeod­
Li test may not be robust with respect to the nonnormality remaining in 
standardized residuals. 
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month average, and different decision time with a target price of $4.00 per 

bushel. 

The payment increases as the program moves from out-of-the-money to in­

the-money in all cases. Expected deficiency payment generally increases as the 

initial volatility increases because higher volatility implies higher time value. 

The later the decision making occurs, the lower the deficiency payment in most 

cases except in the out-of-the-money program. 

Time to maturity effect is not the same between when program is at- or 

out-of-the-money and when in-the-money. When the program is in-the-money 

and the volatility is below 1 . 5, the deficiency payment of ten months is slightly 

smaller than that of five months. For the deep in-the-money case ( $3.00 target 

price), the expected deficiency payment based on a ten month average is 

always smaller than that based on a five month average. However, when the 

program is at- or out-of-the-money, deficiency payment based on a ten month 

average is greater than that based on a five month average. Even when the 

program is in-the-money (for example, $3.50 target price), the expected 

deficiency payment based on a ten month average is bigger than that based on 

a five month average with initial volatilities higher than 1.5. 

Table 4 contains the expected deficiency payment computed using Black's 

option pricing model as suggested by Witt and Craig ( 1987) and by Turvey et 

al. (1988). The moneyness effect, the effect of initial volatility, and the effect 

of decision time making are the same as the case of GARCH average option 



68 

pricing model: the payment increases as the program moves from out-of-the 

money to in-the-money; the higher volatility, the bigger deficiency payment; 

and the later the decision making occurs, the lower the deficiency payment in 

all cases. 

Since the approach using Black's option pricing model considers the time 

value only for the period from the time of decision making to harvest, the 

expected deficiency payment by Black's model is smaller than that with the 

GARCH average option pricing model which considers the time value not only 

for the period before harvest but also for the period after harvest 12 • However, 

since Black option pricing model is based on the expected harvest price (EHP) 

while the GARCH option pricing model is based on the expected seasonal 

average (SA), where EHP > SA, the expected deficiency payment by Black' 

model is greater than that with GARCH option pricing model. In our case, the 

expected deficiency payment computed by Black's option pricing model is 

generally smaller than that with the GARCH average option pricing model. 

Thus the time value effect dominates the expected price effect. 

12Black's option pricing model assumes normality in price change distributions. 
However, cash price change distributions have thicker tails than a normal 
distribution. Like a put option, the expected deficiency payment depends on the 
left tail of the terminal distribution. Therefore, GARCH option pricing model 
with a t-distribution tends to yield a higher expected deficiency payment. 
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A Rule of Thumb 

The estimated regression model is reported in Table 5. The dependent 

variable is the expected deficiency payment obtained from the simulation using 

GARCH average option pricing, and the independent variables are corresponding 

levels of intrinsic value of the program (IV), squared intrinsic value (IV2), initial 

volatility (V), time to maturity (TTM), interaction term between IV and TTM 

(IVTTM), and the time of decision making (START sEP and START MAR). The time 

to maturity and the decision time were estimated as dummy variables. 

Estimated coefficients are all significant except that of the dummy variable 

START MAR and the adjusted A-square is 0.9854. 

This regression model is given so that the GARCH average option pricing 

can be easily used by extension economist to predict the expected deficiency 

payment at the point of decision making and by the government to project 

participation, government cost, and also to calculate advance payments. For 

example, with the target price of $4.00, expected harvest price of $3.80, and 

initial volatility of 0.8, the expected deficiency payment would be $0.44 per 

bushel if it is based on a ten month average and the decision was made at 

planting time. 

Concluding Remarks 

The government deficiency payment program contributes to farm income. 

Extension personnel have predicted the expected revenue from the government 
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program using the expected harvest price. A Black-type option pricing model 

can also be used because the deficiency payment is a subsidized put option. 

However, Black's option premium is based on inappropriate assumptions such 

as a normal distribution and constant volatility. Also, since the payment is 

calculated based on the five (soon to be ten) month major market average 

prices, an average option pricing model provides a more accurate measure of 

the expected deficiency payment. This essay uses a GARCH (generalized 

autoregressive conditional heteroskedasticity) average option pricing model to 

meet these needs. The GARCH average option pricing model is a Monte Carlo 

integration combining the GARCH process and an average option pricing model. 

Results show that the expected deficiency payment increases as the 

intrinsic value increases and/or the volatility increases. The expected deficiency 

payment based on a ten month average is smaller than that based on a five 

month average when the program is in-the-money and the initial volatility is 

low. Therefore, government cost can in most cases be reduced by switching 

the calculation basis of deficiency payment from a five month average to a ten 

month average, but the cost reduction is not large. A regression model based 

on the simulation results is provided for the GARCH average option model to 

be easily used to project the expected deficiency payment. The results can be 

used by extension to help producers decide whether to participate in the 

program or not and by USDA to project participation, government cost, and to 

calculate advance deficiency payments. 
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Table 1. Summary Statistics of Daily Cash and Futures Prices of Wheat: 1981 -
1991 8 

Statistics 

No. observations 2317 

Mean -0.001 

Std Dev 0.965 

Skewnessd -0.48207* 

Futuresc 

2065 

-0.023 

0.941 

0.28521 * 

Kurtosis• 27.5879* 7.05359* 
a Units are percentages. Yi = [ ln(y) - ln(yi_,) ]*100. 
b Five major market average. 
c Arithmetic average of futures prices of Chicago and Kansas 

City Board of Trade. 

d Skewness is computed by _1_'t (y1 - µ)3/<f3 . 
n-1 t=1 

e Kurtosis is computed by _1_t (y1 - µ)4/a4 - 3 
n-1 t=1 

* Asterisks denote the null hypothesis of normality are rejected at 5% 
significance level. The critical values are based on Snedecor and Cochran 
(1980, p.492). 
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Table 2. Statistics from the GARCH(1, 1 )-t Process Estimated with Equal­
weighted Kansas City and Chicago Board of Trade Futures Prices and Five 
Major Market Cash Price Index, 1981 - 1991. 

Estimated Loglil<elihood 

Mean 
Intercept 
Lag 1 

84 
Variance 

Intercept 
Alpha 
Beta 
SIN252 
COS252 
SIN126 
COS126 

Degrees of Freedom 
v° 

Wald F statistics 
Spline in Mean 
Seasonality in Variance 

Ljung-Box and Mcleod-Lid 
e/h1( 12) 
e2/h2t(12) 

BOS tests (e = al e 

Raw Data 
Dimension = 3 
Dimension = 6 
Dimension = 9 

Rescaled Data 
Dimension = 3 
Dimension = 6 
Dimension = 9 

Good ness-of-fit1 

Dmax 

Estimated 
Coefficient 
-4648.24 

-o.029•a 
0.089* 
0.066 

-0.024 

0.225* 
0.105" 
0.872" 
0.012· 

-0.002 
-0.000 
-0.003 

5.03" 

4.61" 
2.84* 

14.79 
26.13" 

10.39" 
13.18" 
16.94. 

1.61" 
1.18" 
1.94" 

0.018 

(t-ratiol 

(-2. 10) 
(5.58) 
(1.59) 

(-1.10) 

(3.83) 
(2.51)b 

(46.36)b 
(3.17) 

(-0.67) 
(-0. 13) 
(-1 .02) 
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(Table 2 Continued) 

a Asterisks denote the rejection of the null hypothesis at the 5 % significance 
level. 

b Since inequality constraints were imposed on the parameter a using 
exponential transformation, the t ratio of a is computed as 

t = e&/(eas;.e")1,2 , where 52e' is the standard error of e" . 

c Degrees of freedom is restricted to be greater than three for computational 
concerns. 

d The null hypotheses that etfht and e2tfh 2t are not autocorrelated are tested 
with twelve degrees of freedom. 

e The null hypothesis is that the standardized residuals are i.i.d. The hypothesis 
test is based on Table F.4 in Brock et al. (p.279). 

f The critical value of this test is D0 = 1.36/T112 = 0.02 where Tis the sample 
size. 
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Table 3. The Expected Deficiency Payment with GARCH Average Option 
Pricing Model at Various Levels of Expected Initial Prices, Initial Volatility, Time 
to Maturities, and Decision Time and a $4.00/bushel Target Price 

Decision 
Time TTMa 

Sep 1 

10 
Months 

5 
Months 

Initial Expected Initial Pricec 
Volatilityb 450 400 350 300 

2.00 27.86 55.79 75.90 111.92 
1.50 23.62 49.37 68.67 108.39 
1.00 19.32 41. 73 61.62 105.52 
0.50 15.29 31.85 54.28 102.57 
0.25 13.77 25.14 51.74 101.45 

2.00 18.37 49.95 74.38 113.13 
1.50 14.55 44.14 68.56 110.06 
1.00 10.58 37.21 62.86 107.41 
0.50 6.65 28.16 56.96 104.80 
0.25 5.05 25.77 54.66 103.78 

------------------------------------------------------------------------------------------------------------

Mar 1 

10 
Months 

5 
Months 

10 
Months 

Apr15 

5 
Months 

2.00 
1.50 
1.00 
0.50 
0.25 

2.00 
1.50 
1.00 
0.50 
0.25 

2.00 
1.50 
1.00 
0.50 
0.25 

2.00 
1.50 
1.00 
0.50 
0.25 

23.32 
21.48 
20.03 
19.34 
19.40 

11.58 
10.00 

8.71 
7.96 
7.92 

23.06 
22.17 
21. 71 
21.81 
22.01 

10.70 
10.02 

9.66 
9.66 
9.76 

45.90 
40.97 
34.92 
27.27 
21.89 

38.69 
34.29 
28.81 
21.32 
15.79 

41.83 
37.68 
32.58 
26.32 
22.05 

34.17 
30.52 
25.90 
19.58 
15.00 

63.98 106.33 
58.57 103.86 
53.47 101.76 
48.29 99.24 
46.77 98.26 

62.19 107.63 
58.36 105.61 
54.90 103. 70 
51.66 101.48 
50.58 100.59 

62.12 106.09 
57.32 103.71 
52.68 101.64 
47.67 99.21 
45.92 98.22 

60.24 107.46 
57.11 105.52 
54.26 103.61 
51.53 101.44 
50.52 100.55 
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(Table 3 Continued) 

a Time to maturity. Deficiency payment is currently calculated based on 5 
month average, but soon to be 10 month average. 

b Historical daily volatility is used as the measure of the volatility in the 
analytical solutions and corresponding Monte Carlo integrations. 

c Farmers' expected harvest prices at the time of decision making. Unit is 
¢/bushel. 
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Table 4. The Expected Deficiency Payment by Black's Option Pricing Model at 
Various Levels of Expected Initial Prices, Initial Volatility, and Decision Time and 
a $4.00/bushel Target Price 

Decision 
Time 

Sep 1 

Mar 1 

Apr 15 

Initial 
Volatilitya 

2.00 
1.50 
1.00 
0.50 
0.25 

2.00 
1.50 
1.00 
0.50 
0.25 

2.00 
1.50 
1.00 
0.50 
0.25 

Expected Initial Priceb 
450 400 350 

13.53 30. 73 60.42 
10.02 26.62 57.51 

6.20 21. 75 54.42 
2.19 15.38 51.37 
0.49 10.88 50.24 

3.61 17.90 52.41 
2.26 15.51 51.41 
1.02 12.66 50.57 
0.15 8.96 50.06 
0.01 6.33 50.01 

0.99 12.56 50.54 
0.49 10.88 50.24 
0.15 8.88 50.06 
0.01 6.28 50.00 
0.00 4.44 50.00 

300 
101.99 
101.00 
100.30 
100.01 
100.00 

100.06 
100.01 
100.00 
100.00 
100.00 

100.00 
100.00 
100.00 
100.00 
100.00 

a Historical daily volatility is used as the measure of the volatility in the 
analytical solutions and corresponding Monte Carlo integrations. 

b Farmers' expected harvest prices at the time of decision making. Unit is 
¢/bushel. 
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Table 5. Regression Results of the Expected Deficiency Payment on the 
Explanatory Variables 

Variables 

Intrinsic Value(IV)8 

1v2 
Initial Volatility 
Time to Maturity(TTM) 
IV*TTM 
STARTsEP 
START MAR 

Intercept 

Estimated 
Coefficient 

0.4782" 
0.0030* 
7.7870* 
5.6127" 

-0.0907" 
5. 7455* 
0.5953 

17.4230* 

Standard Error of Estimation 
Adj. R2 

4.1409b 
0.9854 

Mean of 
Dependent Variable 

(t-ratio) 
(39.23) 
(19.58) 
(13.19) 

(6. 78) 
(-6.71) 
(6.21) 
(0.64) 

(16.21) 

a The difference between target price and expected harvest price is used as a 
proxy for intrinsic value. 

b Unit is cents/bushel. 
* Asterisks denote significance at 5 % level. 
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A NEW EFFICIENCY CRITERION: THE MEAN-SEPARATED TARGET 
DEVIATIONS RISK MODEL 

Abstract 

This paper develops a new risk efficiency model, Mean - Separated Target 

Deviations {MSD). MSD can be an interval analysis that orders risky choices for 

a decision maker whose monotonically increasing utility function lies within a 

specified range. Conventional measures of risk do not distinguish between 

below-target and above-target outcomes, or else impose risk neutrality for 

above-target outcomes. The model is motivated by the intuition that although 

decision makers in an investment environment are comfortable with expected 

value as a measure of return, they respond in different ways to potential 

outcomes below a target return than to potential outcomes above a target 

return. The measure of risk is a weighted sum of below-target deviations and 

above-target deviations. The weights are determined by decision maker's risk 

attitude. MSD is a special case of a van Neumann-Morgenstern expected utility 

function and of stochastic dominance. Unlike the mean-variance criterion, the 

MSD model considers skewness in ranking alternatives. An empirical evaluation 

of a decision maker's choice of wheat marketing strategies shows that the 

criterion yields a smaller efficient set than alternative efficiency criteria. 



Key Words: Efficiency Criteria, Risk, Mean-Variance, Target, Stochastic 

Dominance 



A NEW EFFICIENCY CRITERION: THE MEAN-SEPARATED 
TAR GET DEVIATIONS RISK MODEL 

Introduction 

Risk and return models are commonly used to analyze decisions under 

uncertainty. The most common of these models is the mean-variance (E-V) 

model, in which return is measured as the mean and risk as the variance of the 

outcome distribution. In spite of its computational and graphical advantages 

(Hazell and Norton, p.80) and its attractive dichotomy between risk and return 

(Holthausen 1981 ), E-V analysis has several well-known theoretical 

shortcomings 1 • Tobin (1957) argues that E-V analysis is relevant when the 

utility function is quadratic, or when net returns are normally distributed2 • 

Two main limitations of quadratic utility are: (a) the utility function is not 

monotonically nondecreasing, and (b) it displays increasing absolute risk 

aversion. Further, the assumption of normality often does not hold since actual 

returns are often skewed and leptokurtic. 

Recognizing problems with the E-V criterion, alternative efficiency criteria 

have been introduced. These criteria include E-S (Expected Value-

Semivariance) (Markowitz 1952; Mao 1970; Porter 1974), Target Risk-Return 

1 See Fishburn ( 1977) for a list of relevant articles; also Meyer 1987. 

2Meyer ( 1987) shows that a location-scale condition, of which normality is a 
special case, is the condition for ensuring that E-V analysis is consistent with 
expected utility. 

84 
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(Fishburn 1977; Holthausen 1981 ) , Mean-Gini criterion (Yitzhaki 1982; Bucco la 

and Subaei 1984), First-degree Stochastic Dominance (Quirk and Spasonik 

1962), Second-degree Stochastic Dominance (Hanoch and Levy 1969; Hadar 

and Russell 1969), and Stochastic Dominance with respect to a Function 

(SDWRF) (Meyer 1977; King and Robison 1983). Although these criteria 

overcome some of the disadvantages· of the E-V criterion they have some 

limitations. For example, most require the assumption of everywhere risk 

aversion3 • 

Moreover, Fishburn (1977) contends that the E-V model uses an unrealistic 

measure of risk. He noted, following Markowitz (1959), Mao (1970), and 

others, that decision makers (DM) 11 
••• frequently associate risk with failure to 

attain a target return, 11 (p. 117) suggesting that a measure of dispersion around 

a parameter which changes from distribution to distribution -- such as variance -

- is not a suitable measure of risk. To address these shortcomings of the E-V 

model, Fishburn proposed a mean-risk model which generalized the mean-target 

semivariance model (Markowitz 1959, Mao 1970, Hogan and Warren 1972, 

Porter 1974). Fishburn's model measured return as the mean of the outcomes, 

but defined risk as weighted deviations of outcomes below a target, where the 

weight was related to the DM's risk preferences. Holthausen (1981) adapted 

Fishburn's model by using the same measure of risk but defining return as 

3SDWRF can allow risk preferring utility, and FSD does not require assumptions 
on DM's risk attitude. 
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weighted deviations above the target rather than as the mean. 

This paper builds on Fishburn's and Holthausen's models by proposing a 

mean-risk model which generalizes Fishburn's model. It is shown that the 

model is consistent both with expected utility axioms and with stochastic 

dominance criteria. The model measures return as expected value and risk as 

deviations below a target return minus deviations above the target return, with 

both kinds of deviation weighted by the DM's risk preferences. 

One contribution of this paper is the new risk measure. As indicated, the 

traditional measure of risk, variance, has been criticized as unrealistic 

(Markowitz 1952). Also, as Hanoch and Levy (1969, p.344) note, "The 

identification of riskiness with variance, or with any other single measure of 

dispersion, is clearly unsound. There are many obvious cases where more 

dispersion is desirable, if it is accompanied by an upward shift in the location 

of the distribution, or by an increasing positive asymmetry. "4 Alternative risk 

measures such as mean-target semivariance (Mao 1970, Porter 1974) or more 

generally weighted below-target deviations (Fishburn 1977, Holthausen 1981 ), 

also consider information only on outcomes below a target and ignore 

information on outcomes above the target. The proposed model, however, 

considers information on outcomes both below and above the target. 

Therefore, it is consistent with Hanoch and Levy's observation that outcomes 

4Tronstad and McNeil! ( 1989) incorporated asymmetric price risk (only 
unfavorable deviations) into an econometric model of supply response. 
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above a target can reduce risk. Thus, the proposed measure is affected by the 

skewness of outcome distributions. 

A second contribution of the proposed model is its provision for interval 

analysis. The interval analysis is to order risky choices for DM whose 

monotonically increasing utility function lies within specified ranges. Previous 

mean-risk models do not consider the interval analysis technique. Like 

stochastic dominance with respect to a function (SDWRF), MSD can effectively 

reduce the efficient set by using appropriate ranges of DM's risk attitude. 

Unlike SDWRF, however, MSD allows different ranges of risk attitude above 

and below a target return. 

The MSD model goes beyond Fishburn's and Holthausen's model in several 

ways. Fishburn's model assumes risk neutrality above the target. This 

restriction is avoided in the MSD model as it is in Holthausen's model. 

Holthausen's model measures return as above-target deviations, while MSD 

measures return as expected return as in Fishburn's model. Expected return is 

the most common measure of return and decision makers are satisfied with it 

as a measure of return (Baumol 1963). More important is that the MSD model 

extends Fishburn's and Holthausen's models by allowing interval analysis. 

Porter (1974), Fishburn (1977), Holthausen (1981), and Yizhaki (1982) 

have shown that their risk efficiency models are congruent with expected utility 

theory and consistent with stochastic dominance rules. This paper extends 

their results to show that the MSD model is also congruent with expected 



88 

utility theory and consistent with stochastic dominance rules under some 

conditions. 

The following sections introduce the model in more detail and show its 

relationship with expected utility theory and stochastic dominance criteria. 

Then, MSD is used to identify risk-efficient marketing strategies for wheat 

producers. The empirical study provides MSD efficient sets for given ranges 

of a DM's absolute risk aversion coefficients, and compares these results with 

those obtained from alternative efficiency criteria. 

The Mean-Separated Target Deviations (MSD) Risk Model 

There is usually a point on the abscissa at which something unusual 

happens to the individual's utility function (Fishburn and Kochenberger 1979). 

Therefore, using a target in specifying a utility function seems to be 

appropriate. Fishburn generalized the Expected value-Semivariance model by 

associating risk with below-target returns. In Fishburn's ( 1977) model, return 

is measured by expected return and risk is measured by the dispersion below 

a target, 

t 

(1) p(F) = J </)(t - rr)dF(rr), 
-oo 

where ¢(y), for y ~ 0, is a nonnegative nondecreasing function in y with ¢(0) 

= 0, and F(rr) is the probability of that return will not exceed "· Without loss 

of reality F(rr) is assumed to be bounded as F(rr1) = O and F(rr2) = 1 for some 
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real TT1 and TT2 • 

A special form of ( 1) is the a-t model, in which risk is measured by 

t 

(2) r(F) = J (t - TT)«dF(TT) , a> 0. 
-co 

Fishburn showed that the a-t model is congruent with the expected utility 

model under the utility function: 

(3) U(TT) = f TT for all TT 2: t 
{ 
L TT - k(t - TTJ« for all TT ~ t and k > 0. 

If a > 1, the individual is risk averse below t, if a < 1, risk averse below t, and 

if a = 1, risk neutral below t. 

Holthausen ( 1981) derived an a-/3-t model with both risk and return 

measured as deviations from a target return so that the utility function for the 

above-target outcomes need not be linear. Risk in the a-/3-t model is defined 

as in Fishburn's model, but return is defined as above-target deviations, 

(4) Il(F) = 
00 f O(TT - t)dF(TT), , 
t 

where O(y), for y 2: 0, is nonnegative nondecreasing function in y with 0(0) = 

0. A specific form of (4) along with risk measure (2) gives the a-/3-t model in 

which the return is measured as 

00 

(5) R(F) = J (TT - t)PdF(TT). , /3 2: 0. 
t 

Using these measures of risk and return, Holthausen also showed that the a-/3-t 
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model is congruent with the expected utility model in which the utility function 

is: 

(6) U(rr) = r (rr -t)P for all rr 2: t 

~ 
l -k(t - rrt for all rr ~ t and k > 0. 

where k is a constant for a given utility function and a and /3 reflect the risk 

profile of decision makers. If a < 1 ( a > 1 ), then the individual is risk seeking 

(averse) below target and if /3 < 1 (/3 > 1 ), then the individual is risk averse 

(seeking) above target. 

Whereas Fishburn's utility specification is linear in outcomes above the 

target, imposing risk neutrality on above-target returns, Holthausen's is 

nonlinear since it is weighted by a parameter which depends on the DM's risk 

preferences. Holthausen's specification allows the DM to have different risk 

preferences for outcomes above and below the target. Following Fishburn, the 

proposed MSD model measures return as expected value. Holthausen did not 

include expected value in his measure of return, suggesting that its use is 

somewhat redundant. However, Baumol (1963) has noted that DMs are 

generally satisfied with expected value as a measure of return. 

Model Specification: The Mean-Separated Target Deviations Model 

The Mean-Separated Target Deviations (MSD) model is motivated by the 

intuition that although decision makers in an investment environment are 

comfortable with expected value as a measure of return, they respond in 
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different ways to potential outcomes below a target return than to potential 

outcomes above a target return. MSD uses an alternative to variance or 

semivariance as the measure of risk. The basic idea of MSD is that dispersion 

is separated into two parts: below-target deviations (BTD) and above-target 

deviations (ATD). BTD reduce the DM's expected utility, but ATD increase the 

DM's expected utility. Therefore, a higher level of dispersion of a distribution 

(e.g., variance) does not necessarily lower a DM's utility. 

The general measure of risk is: 

t 00 

(7) O(F) = J </)(t - rr)dF(rr) - J {}(rr - t)dF(rr) , 
-00 t 

where </J{rr) and 9(rr) are nonnegative nondecreasing function in "with </J(O) = 

9(0) = 0, and F(rr) is the cumulative probability distribution function over 

outcomes"· 

In many ways, 0 is a more intuitive definition of risk than measures such 

as variance in E-V, semivariance in E-S, or below-target returns in the Target 

Risk Return model. Fishburn (1977) and Holthausen (1981) used only below 

target deviation (the first term in (8)) as the measure of risk, and Holthausen 

used above target deviation (the second term in (8)) as the measure of return. 

The measure of risl< used here, 0, is below-target deviations (BTD) less above­

target deviations (ATD), with both weighted by probability and DM's risk 

attitude. O increases as BTD increases and decreases as ATD increases. This 

implies that the more negatively skewed the distribution, the higher the risk; 
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and the more positively skewed, the lower the risk. Since deviations are 

measured from the DM's target return, "skewness" from the DM's point of 

view may be more appropriately measured as skewness around the target5 • 

Thus, this risk measure captures the skewness of the probability distribution 

and, as shown below, is very flexible, allowing one to incorporate various levels 

of risk attitude into the model. 

A specific form of (7) is the MSD model which allows easy estimation. In 

the MSD model, risk is defined by 

f 00 

(8) SD,(F) = f (t-n) 0 dF(n) - J (n-t)PdF(n), a,P> 0. 
-oo t 

Congruence with Expected Utility. Combining O(F) from equation (7) with 

expected value EF gives a preference relationship in which the DM's preferences 

depend only on EF and O(F). This section extends Fishburn's and Holthausen's 

results to show the relationship between the MSD model and the expected 

utility model. Let U(EF, O(F)) be a real-valued function such that, for all relevant 

distributions F and G, 

F is preferred to G if and only if 

5 Skewness around the mean is measured as (1 /n) L (n-µ)/<r, whereµ is mean 
and u is standard deviation, and skewness around the target is measured as 
(1 /n) L (n-t)/s3 , where tis the specified target return ands is standard deviation 
around the target instead of around the mean. 
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U(EF, Q(F)) > U(EG, O(G)) 

where U is increasing in E and decreasing in n. 

THEOREM 1: Suppose that, for all bounded distribution functions F and G, the 

MSD model with risk defined by (7) is congruent with expected utility in the 

sense that 

(9) U(E"' O(F)) > U(Ec;, O(G)) if and only if 

00 00 

f U(rr)dF(rr) >- f U(rr)dG(rr). 
-~ -~ 

Then with U(t) = 0, U(t-1) = t-1-o and U(t + 1) = t + 1 + .A, there exist positive 

constants o and .A such that 

(10) U(rr) = f " - o</)(t - ll) for all " ::S t, 
~ 
L " + .A ()(rr - t) for all " ~ t. 

(Proof is given in the Appendix) 

Fishburn's utility function in (3) is a special case where .A = 0. 

The expected utility is: 

00 

( 11) f U{rr)dF{rr) = EF - O{rr) 
-oo 

When the MSD model is used, (10) gives 

(12) U{rr) = f " - o(t - ll)° for all " :S t, 
~ 
L " + .A(rr - t)P for all " ~ t. 

o is a unique solution to U(t-1) = t-1-o and .A is a unique solution to U(t + 1) = 
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t + 1 +A. The utility function { 12) can display various shapes depending on the 

values of a, P, o, and .A. Some possible shapes of utility function according to 

( 12) are given in Figure 1 . The curve of a < 1 is convex or risk preferring, the 

curve of a > 1 is concave or risk averse, and the curve of a = 1 is linear or 

risk neutral, all below target. The curve of P < 1 is concave or risk averse, the 

curve of P > 1 is convex or risk preferring, and the curve of p = 1 is linear or 

risk neutral, all above target. Even if a = 1 and also p = 1, the individual is still 

risk averse if o > A, and risk preferring if o < A, because the utility function is 

kinked around the target. 

Friedman and Savage (1948) suggested a three-segment utility function 

which is initially risk averse, then risk preferring, and then risk averse. 

Kahneman and Tversky {1979) suggested a function which is usually convex 

below target and concave above target. Fishburn and Kochenberger {1979) 

examined thirty empirically assessed utility functions with target points and 

found that the power functions as in { 1 2) were substantially better than either 

the exponential or the linear functions. They also found that the majority of 

below-target functions were risk preferring and the majority of above-target 

functions were risk averse. Therefore, a utility function as { 12) can be a sound 

candidate for a DM's utility functions. 

The Arrow-Pratt absolute risk aversion {ARA) coefficient is defined as r{ll) 

= -U"{ll)/U'{rr), where U' and U" are the first and second derivatives of a von 

Neumann-Morgenstern utility function. The ARA coefficient can be used as an 
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indicator of an individual's risk aversion. The larger the ARA coefficient, the 

more risk averse. If the ARA coefficient is negative, the individual is risk 

preferring, and if it is positive, the individual is risk averse. The absolute risk 

aversion function is invariant to positive linear transformations of the utility 

function. Therefore, upper and lower bounds on a DM's ARA function define 

an interval representation (King and Robison 1981). Like stochastic dominance 

with respect to a function, MSD can order risky choices based on interval 

representation of absolute risk aversion function. 

From equation ( 12), the ARA coefficients below and above t are, 

(13) r, = a(a - 1 )c5(t - ll) 0 " 2/[1 + ac5(t - ll)0 " 1], " :::;; t, 

If a > 1 and fl > 1, then the individual is risk averse below t (r1 > 0) and risk 

preferring above t (r2 < 0). If O < a < 1 and O < fl < 1, then the individual 

is risk preferring below target (r 1 < 0) and risk averse above target (r 2 > 0). 

a and fl can be expressed as functions of r, and r2 , respectively. Since a and 

fl are invariant to the level of wealth, the difference between" and t should be 

constant in solving (13) for a and fl. For simplicity, letting the difference 

between" and t be unity and c5=.A = 16 , 

(14) a = [1 + r1 + ((1 + r1 ) 2 + 4r1 ) 112]/2, 

fl = [1 - r2 + ((1 - r1 ) 2 - 4r1 )112 ]/2, 

" :::;; t, 

" 0::::: t. 

6a and fl can also be obtained numerically, that is, the values of a and p that 
minimize [r 1 - a(a-1 )c5/( 1 + c5a) ]2 and [r 2 + fl(fl-1 )A/( 1 + .A/l) ]2, respectively, are the 
parameters that reflect DMs' risk attitude. In this way, c5=.A = 1 is not required. 
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The more risk averse below target, the bigger the value of a, and thus the more 

weighted the BTD is. The more risl< preferring above target, the bigger the 

value of p, and thus the more weighted the ATD is. Therefore, the more 

negatively skewed the return distribution, the higher the risk in the MSD model. 

A utility function of the type given in equation (12) can take a number of 

ranges depending on the values of r1 and r2 • The power of the function can be 

determined from given values of r1 and r2 • Given ranges of r1 and r2, the utility 

function in (12) can take a range, and .thus interval analysis is possible. That 

is, MSD provides an efficient set for a utility function which lies within 

specified ranges. The MSD efficient set can be simply obtained using a 

computer spread sheet. The ranges of r, and r2 corresponding to risk averse, 

risk neutral, and risk preferring DM can be obtained by eliciting the typical DMs' 

utility functions and computing the absolute risk aversion coefficients, or by 

using an interval approach (Meyer, 1977) to establish a range of absolute risk 

aversion. Alternatively, absolute risk aversion coefficients elicited in other 

studies might be used as proxies (Harris and Mapp, 1986). Depending on the 

context and the circumstances of the DM or his firm, t might be formulated as 

a target return such as one which yields the zero profit, return from an insured 

investment, or the return necessary to cover all variable costs of production, 

including the cost of borrowed capital, etc. 

MSD efficient sets of each interval of ARA coefficient are obtained here by 
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grid search method7 • In the MSD model, the distribution F is better than 

another distribution G, if and only if the expected utility of F in (11) is greater 

than that of G. For each point of r1 and r 2 , one choice is selected as the best. 

For given ranges of r1 and r 2, any choices selected as the best are included in 

the MSD efficient set. 

Consistency of MSD with Stochastic Dominance Efficiency. Porter (1974) has 

demonstrated that the E-S efficient set is a subset of second degree stochastic 

dominance. Yitzhaki (1982) has shown that the M-G criterion is a necessary 

condition for first-and second-degree stochastic dominance. Fishburn ( 1977) 

and Holthausen ( 1981) have also shown that their models are consistent with 

the stochastic dominance rules. This section extends Fishburn's and 

Holthausen's results to the MSD model, and shows that MSD is consistent with 

stochastic dominance rules. The first, second, and third degree stochastic 

dominance rules are defined as: 

F FSD G if and only if F -;,t G and F(rr) < G(rr) for all rr, 

F SSD G if and only if F -;,t G and F1 (rr) ::5 G1 (rr) for all rr, and 

7For example, for an individual who is risk averse below target and risk preferring 
above target, suppose the intervals of ARA coefficients are (0.56,2.80) below 
target and (-1.68,-0.56) above target. Using 0.01 as a grid size, the ARA coef­
ficient below target can be 0.56,0.57, ... ,2.79,2.80, and the ARA coefficient 
above target can be -1.68,-1.67, ... , -0.55,-0.56. The union of all sets obtained 
using all possible combinations of ARA coefficients below and above targets 
is the MSD efficient set for an individual who is risk averse below target and 
risk preferring above target. Evaluating only at points of ARA coefficients near 
boundaries of intervals may reduce computing time substantially. 
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F TSO G if and only if F ~ G and F2 (rr) ::; G2 (rr) for all rr, 

letting F FSO G, F SSO G, and F TSO G denote F dominate G by FSO, SSO, and 

" 
TSO, respectively. Here, F1(rr) = J F(x)dx , so F1(rr) is the area under F(rr) up 

-oo 

" to rr, and F2 = 2 J p1 (x)dx , so F2 (rr) is twice the area under F1 up to "· 
-oo 

The expected utility under distribution F can be defined as 

00 

E(u,F) = J u(rr)dF(rr) . By Fishburn's (1977) Lemma 1, if F FSO G, then EF > 
-oo 

EG and E(U,F) ~ E(U,G) for every utility function with U' ~ O; if F SSO G, then 

EF ~ EG and E(U,F) ~ E(U,G) for every utility function with U' ~ 0 and U" :5 

0; and if F TSO G, then EF ~ EG and E(U,F) ~ E(U,G) for every utility function 

with U' ~ 0, U" :::5 0, and U"' ~ 0, where U', U", and U"' are the first, 

second, and third derivatives of utility function, respectively. Thus FSO 

corresponds to nondecreasing utility functions, SSO to nondecreasing and 

concave utility functions, and TSO to nondecreasing and concave utility 

function with U"' > 0. The following theorem shows the relationship between 

the MSO model and stochastic dominance rules. 

THEOREM 2 : Except for risky alternatives with identical mean and separated 

target deviations, every MSD efficient set is a subset of the FSD set for a ~ 

O and p ~ O; every MSD efficient set is a subset of SSD set for O < a :5 1 and 

O :5 p :5 1; and every MSD efficient set is a subset of TSD set for a > 2 and 
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p > 2. 

{Proof is given in the Appendix). 

The remainder of this paper uses MSD to determine the efficient set of 

marketing strategies using basis as an indicator and compares the MSD 

efficient set with those determined using other criteria. 

An Empirical Application 

This section of the paper selects risk efficient marketing strategies for 

wheat producers. Several routine marketing strategies, including cash-only 

strategies and routine hedges, are compared with selective strategies using 

basis predictors. Since hedging shifts price risk in cash and futures markets to 

basis risk, unexpected changes in basis affect hedging outcomes. This 

empirical application considers whether producers can increase expected utility 

by using basis predictors, or indicators, to select marketing strategies. 

Basis Indicator 

Since futures prices and spot prices generally move in the same direction, 

price risk can be reduced by taking opposite positions in cash and futures 

markets. However, as Working (1953) noted, the movements of spot and 

futures prices do not show complete parallelism. A hedger can use this 

inequality between the movements of spot and futures prices to increase profits 

by using basis as an indicator for efficient marketing strategies. The unequal 
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movement of spot and futures prices may provide indicators useful for reducing 

risk and improving profit. Net returns for several routine marketing strategies 

are computed each year for 1975 through 1990, as well as returns developed 

from selective hedging based on basis indicators. The returns from each of the 

strategies are compared using E-V, FSD, SSD, SDWRF, E-S, Mean-Gini, and 

MSD criteria. 

The model used assumes that cash wheat and wheat futures contracts are 

traded in two time periods: at harvest time (period 0) and when the futures 

contracts are liquidated (period 1). For the two period model, net return per 

bushel is : 

(15) R = xC0 + (1-x)C1 + (F1 -F0)y-(1-x)CC, 

where R = net return (cents/bu) 

C" = cash price in period n, n = 0, 1. 

F" = futures contract price in period n, n = 0, 1. 

x = 1 if sell wheat at harvest 

x = 0 if store wheat at harvest 

y = 1 if buy futures contract at harvest 

y = -1 if sell futures contract at harvest 

y = 0 if no action is taken in the futures market 

CC = carrying cost; number of months multiplied by the sum of monthly 

storage and interest cost. 

Three alternative marketing methods are considered in this analysis. 



101 

(a) The CASH method involves selling wheat at harvest and taking no additional 

action (x = 1, y = 0). The net return for this marketing method is: 

(16) Ri = Ci0 , i = 74, 75,,,91 , 

where Ri is net return for year i, and Ci0 is the local cash price in period 0 

(harvest time) in year i. 

(b) The SPECULATION method involves selling wheat and buying futures 

contracts for speculation at period O (at harvest), and then liquidating the 

futures contract at period 1 (x = 1,y = 1 ). The net return is: 

(17) Ri = Ci0 + ( Fi1 - Fi0 ) , i = 74,75,,,91, 

where Ft = price of futures contract in period n in year i. 

(c) The SHORT HEDGING method involves storing wheat and selling futures 

contracts in period 0, and then selling wheat and buying back the futures 

contracts in period 1 (x = 0, y = -1 l. The net return is : 

(18) Ri = Ci1 - (F/ - Fi0) - CC , i = 74, 75,,,91, 

where Ci1 is the local cash price in period 1 in year i. A fourth alternative, 

storing wheat at harvest for later sale (STORAGE), could be considered. 

However, this will yield approximately the same result as the SPECULATION 

strategy, except that the producer has to pay addjtional storage and interest 

charges. 

A routine strategy is defined as one which follows a particular marketing 

method every year. The selective strategies considered here use expected 

changes in basis as an indicator to choose the best marketing method in each 
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year. Instead of using the same marl<eting method every year, basis indicators 

are used to select one marketing method from among the three alternatives 

every year (See Table 1 ). 

Current basis (CB) is defined as the difference between the harvest-time 

cash price and the harvest-time futures price for a given contract month. 

Expected basis (EB) is defined as the producer's expectation of the difference 

between the cash price and the futures price on the day the producer would 

liquidate any futures contracts and sell any cash commodity. In period 0, at 

harvest time, the producer forms an expectation of the period 1 basis. 

Various forecasting models have been developed in previous studies, but 

several simple alternatives are presented here in an attempt to find marketing 

strategies that many producers could use. Two proxies, or forecasts, for 

expected basis (EB), as well as an indicator that combines the information 

obtained from both of these two proxies for expected basis, are presented. 

The first proxy assumes that an average of period 1 bases from previous years 

is a good predictor of this year's period 1 basis. Historical Expected Basis (HEB) 

is the average of period 1 bases for all years from 1974 up to year i. In each 

year, the average of daily futures prices for the month of liquidation is 

subtracted from the average of daily cash prices for that month. These 

monthly average period 1 bases are averaged together from 1974 to the year 

i to get an average period 1 basis. This average is used as a forecast of the 

year i's period 1 basis. A second proxy assumes that the historical average 
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of period O (harvest-time) bases (Historical Average of Current Bases, HCB) is 

a good indicator of whether the current basis will increase or decrease by 

period 1. If CB is greater than its historical average (HCB), it is more likely to 

decrease than increase from period O to period 1 . Conversely, if CB is smaller 

than its historical average (HCB), it is more likely to increase than decrease. 

Thus, HCB can be used to represent EB. As before, if CB is larger (smaller) 

than HCB, CB is larger (smaller) than EB. 

Neither of the two proxies provides a perfect forecast of basis, so each 

proxy is adjusted by a measure of its variability. In Case I, each proxy is 

adjusted by its standard deviation. Thus, instead of CB < EB and CB ~ EB, 

the adjusted indicators are CB < EB - a and CB ~ EB + a (a denotes the 

standard deviation). In Case II, each proxy is adjusted by one-half standard 

deviation, that is, CB < EB - a/2 and CB > EB + a/2. The effect of these 

adjustments is to make a strategy other than CASH less likely to be used. 

The strategies using the basis indicator are divided into three cases: Using 

Historical Expected Basis only (HEB), Using Historical Average of Current Bases 

Only (HCB), Using both HEB and HCB (HCEB). In mathematical form, the net 

returns from each of the adjusted strategies using the first two indicators are 

as follows: if CBi > EBi + aEBi , then the net return for year i is as shown in 

equation (16), where aEBi is the standard deviation of EBi; if CBi < EBi - aEBi -

CC , then the net return in year i is as shown in equation (18). Substituting 

HEB or HCB for EB gives the net return of the strategy using HEB, or the net 
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return of the strategy using HCB, respectively. 

The third indicator makes the conditions for taking a futures position even 

more strict by requiring that both proxies give the same sign before any 

marketing method other than CASH is taken. If CB is larger than or equal to 

not only HEB but also HCB, then choose the CASH method. That is, if CBi ~ 

max { (HEBi + aHEBi), (HCBi + aHcBil }, then the net return in year i is as shown 

in equation (16). On the other hand, if CB is smaller than both HEB and HCB, 

then the SHORT HEDGING method is the best. Therefore, if CBi < min { (HEBi 

- aHEBi - CC), (HCBi - O"Hceil }, then the net return in year i is as shown in 

equation (18). 

Procedures 

Cash and futures prices for Hard Red Winter wheat are used to calculate 

daily basis between central Oklahoma and Kansas City for the period 1975-

1990. Each year, June 20 basis {CB) is compared to the historical monthly 

basis for the month the underlying futures contract is liquidated {HEB), to the 

historical average daily basis on June 20 {HCB), and to both of them {HCEB). 

Daily bases are used for CB. Producers are assumed to make marketing 

decisions at harvest time {June 20) observing daily data. Monthly bases are 

used for expected basis {EB). In computing net returns, the closing cash and 

futures prices on June 20, as well as the first trading day in the month that the 

futures contract is liquidated, are used. 
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Carrying cost (CC) is defined as monthly storage cost plus monthly interest 

cost multiplied by the number of months wheat is stored. Assuming all wheat 

is stored in commercial storage, the monthly storage cost is assumed to be 

2.5¢ per bushel. Defining interest cost as the interest savings from paying off 

a loan, the production loan rate of a commercial bank is used as the interest 

rate in computing CC. 

The three most actively traded futures contracts (December, March, and 

May) are used in this analysis. As noted previously, cash wheat and futures 

contracts are assumed to be traded in two periods; at harvest time and when 

the futures contracts are liquidated. The futures contracts established at 

harvest are assumed to be liquidated on the first working day in either October, 

December, or March. 

The net returns from using the three routine strategies and from choosing 

among the strategies using the basis indicators are computed for each year 

from 1975 through 1990. A total of 68 strategies are considered. Since some 

strategies have exactly the same return distributions, only 46 strategies with 

unique return distributions are analyzed. Each strategy is a set of net returns 

for 16 years. Table 1 shows summary statistics of the qistributions of returns, 

whichever included in any efficient set considered. These observations are 

evaluated using E-V, E-S, FSD, SSD, SDWRF, Mean-Gini, and MSD. 

The Generalized Stochastic Dominance Program (Cochran and Raskin) is 

used to perform the stochastic dominance analysis. Arrow-Pratt coefficients 
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elicited at whole-farm income levels are adjusted to evaluate strategy choices 

described in terms of per bushel net returns. Risk aversion intervals (-1.68, -

0.01 ), (-0.01,0.01), (0.01, 2.80), and (2.80. 5.60) are used to represent risk­

preferring, risk-neutral, slightly risk-averse, and strongly risk-averse DM, 

respectively8 • The levels of a and P in the MSD criterion are obtained by 

substituting the values of ARA coefficients into ( 14). In this analysis the cash 

prices at harvest are used as the target levels of net returns. 

Results 

The strategies included in each efficiency rule are indicated in Table 2. 

Individual strategies are described in a footnote to Table 2. The E-V efficient 

set consists of 13 strategies (Table 3). In FSD, 19 of 46 strategies are 

undominated. The SSD efficient set includes five strategies. The results of the 

SDWRF analysis show that one to four strategies are included for given ranges 

of ARA coefficients. Note that for the entire range (-1.68, 5.60), nine distinct 

strategies are included. Two strategies, 05HCB31 and 12HCB1 2, which did not 

appear in any of the smaller ranges are included in this entire range9 • Using 

8 ARA coefficients for wheat farmers elicited by King and Oamek (1983) are 
used in this analysis. The scales of the ARA coefficients are adjusted by the 
unit of outcome scale following Raskin and Cochran (1986). 

9Given three ranges of ARA, A=(r1,r2), B=(r3,r4), and C=(r1,r4), where r1 < r2 

< r 3 < r 4 • There exist some choice H which is undominated in range C. 
However, H can be dominated for smaller ranges of ARA, say A and B. 
Therefore, in this example, SDWRF ignores some choices in smaller ranges. 
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E-S, two strategies are included in the efficient set. Both of them are also in 

the SSO set, which is consistent with Porter's (1974) result. Two strategies 

are included in the M-G set, both are in the SSO set, which is consistent with 

results by Yitzhaki (1982), and by Buccola and Subaei (1984). 

Twelve ranges of ARA coefficient are considered for evaluation under MSO 

(see Table 4). The first three cases are for a OM who is risk preferring below 

target, the next three ranges are for a OM who is risk neutral below target, the 

following three ranges are for a OM who is risk averse below target, and the 

last three ranges are for a OM who is strongly risk averse below target. Each 

group consists of three ranges of risk preferring, risk neutral, and risk averse 

above target. The interval of ARA coefficient below target is restricted to be 

greater than -0.17 and the interval of ARA coefficient above target to be 

smaller than 0.17 for a and P to be real numbers 1°. 

The MSO efficient set includes only one strategy 05HCB22 for any given 

range of ARA coefficient (Table 4). The strategy selected under MSO is the 

least negatively skewed (Table 2). The strategies selected by the MSO criterion 

is also in the FSO set, which is consistent with THEOREM 2. However, MSO 

reduces the FSO efficient set more than 90%. The strategy selected by a OM 

who is risk averse both below and above target is also included in SSO efficient 

10 If a and pare obtained numerically (See footnote 7), the ranges of r, and r2 

may not have to be restricted. 
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set in Table 3, which is consistent with THEOREM 2. The efficien~ set under 

MSD of an everywhere risk averse DM is smaller than the efficient set with 

SSD. The SSD efficient set includes five strategies, but the MSD efficient set 

for everywhere risk averse DM includes one. 

The last row in Table 4 provides a comparison with the last row of the 

SDWRF results in Table 3. Both efficiency measures consider the same range 

of ARA, between -1.68 and 5.60. However, MSD uses a different range of 

ARA for below target (r2 = (-1.68, 0.17)) and above target (r1 = (-0.17, 5.60)), 

while SDWRF does not allow such a separation. For the entire range of r2 = (-

1.68, 0.17) and r1 = (-0.17, 5.60), MSD contains one strategy. Since SDWRF 

includes nine distinct strategies for the entire range of (-1.68, 5.60) (Table 3), 

the efficient set of SDWRF is larger than that of MSD. Moreover, two 

strategies which are not included in any of the smaller intervals in SDWRF 

appear in the entire range (Table 3) . 

. Conclusions 

This paper develops a new risk efficiency model, Mean - Separated Target 

Deviations (MSD). MSD can be an interval analysis that orders risky choices for 

a decision maker whose monotonically increasing utility function lies within a 

specified range. Conventional measures of risk do not distinguish between 

below-target and above-target outcomes, or else impose risk neutrality for 

above-target outcomes. The model is motivated by the intuition that although 
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decision makers in an investment environment are comfortable with expected 

value as a measure of return, they respond in different ways to potential 

outcomes below a target return than to potential outcomes above a target 

return. Dispersion as a measure of risk is separated into two parts: below­

target deviations and above-target deviations. The risk measure in the model 

is below-target deviations minus above-target deviations, each term is weighted 

by probability and decision maker's risk attitude. Separating above-target 

returns from below-target returns allows the model to implicitly reflect the 

relationship between risk and skewness. 

The MSD model is a generalization of Fishburn's (1977) model. Fishburn's 

model assumes risk neutrality above target. The MSD model avoids such a 

restriction. The MSD model is different from Holthausen's (1981) model in that 

it uses expected return as a measure of return as in Fishburn's while 

Holthausen uses above-target return as a measure of return. The MSD model 

goes beyond Fishburn's and Holthausen's model by allowing interval analysis. 

The MSD model is shown to be congruent with von Neumann-Morgenstern 

expected utility theory. The model is also shown to be consistent with 

stochastic dominance. All the efficient strategies derived from MSD are also 

included in the first-degree stochastic dominance efficient set. The MSD 

efficient set for an individual who is everywhere risk averse is also a subset of 

second-degree stochastic dominance. 

Efficient sets were determined for alternative marketing strategies to 
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evaluate the usefulness of MSD. Results reveal that the MSD efficient set 

contains one strategy among forty six possible strategies for any given ranges 

of decision maker's absolute risk aversion coefficients and reduces the efficient 

set by more than 90% relative to FSD. For corresponding ranges of risk 

preferences, MSD yields a smaller efficient set than stochastic dominance rules. 
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Figure 1 . Shapes of Utility Function in ( 12) for the Possible Values of a, P and ;c 
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Table 1. Marketing Strategies, Basis Indicators, and Expected Basis Proxies 
Considered 

Marketing Strategies 

Routine CASH 

Routine SPECULATION 

Routine SHORT HEDGING 

Routine STORAGE 

Basis Indicator: CASH or SHORT 
HEDGING 

Basis Indicators: k = 1 /2 or 1 

CB < (EB - carry - kaE8) 

otherwise 

Expected Basis Proxies 

EB = HCB 

EB= HEB 

EB = HCB and HEB 

Description 

Sell cash commodity at harvest each 
year 

Sell cash commodity and buy 
December, March, or May futures 
contract at harvest each year; sell 
contract in pre-expiration month 

Store cash commodity and sell 
December, March, or May futures 
contract at harvest; sell cash 
commodity and buy contract in pre­
expiration month 

Store cash commodity at harvest; sell 
cash commodity in November., 
February, or April 

Each year choose CASH or SHORT 
HEDGING strategy based on basis 
indicator 

Chosen Strategy 

SHORT HEDGING 

CASH 

HCB = historical average of period 0 
bases 

HEB = historical average of period 1 
bases 

Basis Indicator for SHORT HEDGING 
must be satisfied with both EB = HCB 
and EB = HEB 
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Table 2. Summary Statistics of Alternative Strategies Included in Efficient Sets. 
Std. Max Min Skewness Skewness 

Strategies Mean Dev. Return Return Around Around 
($/bu) of Return ($/bu) ($/bu) Mean• Targetb 

CASH 3.1594 0.5458 4.00 2.15 -0.4935 -0.0267 
STORAGE1 3.0519 0.4910 3.85 2.07 -0.1603 -0.4266 
12LONG1 3.1163 0.5267 4.09 2.34 0.3022 -0.4816 
12SHORT1 3.0950 0.5470 4.14 1.89 -0.4693 -0.0968 
12HCB1 1 3.1282 0.5257 4.00 2.15 -0.4591 -0.0603 
12HEB1 1 3.1362 0.5279 4.00 2.15 -0.4950 -0.0565 
03LONG1 3.0827 0.6471 4.02 2.19 -0.0529 -0.3369 
03SHORT3 3.0215 0.5853 3.88 1.85 -0.3202 -0.1629 
03SHORT1 3.1285 0.7402 4.20 2.01 0.0187 -0.3883 
03HCB31 3.1870 0.5687 4.00 2.15 -0.4701 -0.0229 
05LONG2 3.0187 0.5795 3.97 1.94 -0.1742 -0.2820 
05LONG3 2.9290 0.5275 3.78 2.00 0.0165 -0.6121 
05LONG1 3.0705 0.6182 4.09 2.23 0.1143 -0.2820 
05SHORT2 3.1353 0.6171 4.11 2.05 -0.1923 -0.0795 
05SHORT3 3.0618 0.5911 4.05 1.96 -0.2159 -0.1412 
05SHORT1 3.1407 0.7368 4.27 1.90 -0.0834 -0.4781 
05HCB21 3.1952 0.5772 4.01 2.15 -0.4334 -0.0225 
05HCB31 3.1994 0.5855 4.05 2.15 -0.3824 -0.0211 
05HCB 11 3.1987 0.6220 4.20 2.15 -0.1103 -0.1057 
12HCB22 3.1946 0.5701 4.08 2.15 -0.4792 -0.0204 
12HCB 12 3.1530 0.5360 4.14 2.15 -0.4279 -0.0582 
12HEB 12 3.1260 0.5239 4.00 2.15 -0.4600 -0.0609 
03HEB22 3.1845 0.5596 4.00 2.15 -0.5066 -0.0255 
03HEB1 2 3.1702 0.5554 4.00 2.15 -0.4746 -0.0241 
03HCEB22 3.1887 0.5623 4.00 2.15 -0.5125 -0.0225 
05HCB22 3.2046 0.5879 4.11 2.15 -0.3844 -0.0195 

1 The name of the strategy consists of four parts: the first two digits denoting the underlying contract 
(i.e., 03 is March, 05 is May, and 12 is December contract); a name of a routine strategy (CASH, 
STORAGE, SPEC, or SHORT) or basis indicator used (HCB, HEB, or HCEB); a digit denoting the period 
when the contract is liquidated (1 = October 1 , 2 = December 1 of the current year, and 3 = March 
1 of the following calendar year); at the end, the subscripts '1' denoting that the indicator is adjusted by 
one standard deviation (Case I) and '2' denoting that the indicator is adjusted by half standard deviation 
(Case II). For example, 12HCB 11 is the strategy of choosing one of the two alternative marketing methods 
according to the HCB indicator adjusted by one standard deviation (Case I) in each year and using the 
December contract which is liquidated on October 1 of the current year. 
a Skewness around the mean is measured as (1 /n)* I: ("·Pl 3 /a3, whereµ is mean and a is the standard 

deviation. 
b Skewness around the target is measured as (1 /n)* :r ("·t)3 /s3, where tis the specified target return and 

s is the standard deviation around the target. 
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Table 3. Efficient Strategies with E-V, FSD, SSD, SDWRF, E-S, and M-G. 
CRITERIA RANGE OF EFFICIENT SETb 

ARA8 

E-V (0, oo) CASH STORAGE1 12HCB1 1 12HEB1 1 

05HCB2 1 05HCB31 12HCB1 2 12HCB22 

12HEB1 2 03HEB12 03HEB22 03HCEB22 

05HCB22 

FSD (-00,00) STORAGE1 12LONG1 12SHORT1 03SHORT1 05LONG3 
03SHORT3 03LONG1 05LONG1 05LONG2 05HCB1 1 

05SHORT1 05SHORT2 05SHORT3 03HCB31 05HCB22 

05HCB3 1 12HCB1 2 12HCB22 03HCEB22 

SSD (0,oo) 12LONG1 12HCB1 2 12HCB22 03HCEB22 05HCB22 

SDWRF (-1.68, -0.01 l 03SHORT1 05SHORT1 05HCB1 1 05HCB22 

(-0.01, 0.01 l 05HCB22 

(0.01, 2,80) 12LONG1 12HCB22 03HCEB22 05HCB22 

(2,80, 5.60) 12LONG1 

(-1.68, 5.60) 03SHORT1, 05SHORT1, 12LONG1, 05HCB1 1, 05HCB22 

05HCB31* 12HCB1/ 12HCB22 03HCEB22 

E-S (0, oo) 12HCB22 05HCB22 

M-G (0, oo) 12HCB22 05HCB22 

a ARA is the Arrow-Pratt absolute risk aversion coefficient 
b See notes to table 2 for names of strategies. 
* These strategies do not appear in any smaller range of SDWRF (See footnote 10 for details). 



Table 4. Efficient Strategies with the MSD Criterion. 

Absolute Risk Aversion Coefficient Intervals 
Below Target(r1) Above Target(r2 ) Efficient Set• 

(-0.17,-0.01 l 
risk 
preferring 

(-0.01,0.01 l 
risk 
neutral 

(0.01,2.80) 
risk 
averse 

(2.80.5.60) 
strongly 
risk averse 

(-0.17,5.60) 

(-1.68,-0.01) 05HCB22 

risk preferring 

(-0.01,0.01) 
risk neutral 

(0.01,0.96) 
risk averse 

(-1.68,-0.01) 
risk preferring 

(-0.01,0.01) 
risk neutral 

(0.01,0.96) 
risk averse 

(-1.68,-0.01) 
risk preferring 

(-0.01,0.01) 
risk neutral 

(0.01,0.17) 
risk averse 

(-1.68,-0.01 l 
risk preferring 

(-0.01,0.01 l 
risk neutral 

(0.01,0.01 l 
risk averse 

(-1.68,0.17) 

05HCB22 

05HCB22 

05HCB22 

05HCB22 

05HCB22 

05HCB22 

05HCB22 

05HCB2 2 

05HCB22 

05HCB2 2 

05HCB22 

05HCB22 

a See notes to Table 2 for names of strategies. 

115 

Stochastic Dominance 

FSD 

FSD 

FSD 

FSD 

FSD 

FSD 

FSD 

FSD 

FSD(SSD) 

FSD 

FSD 

FSD(SSD) 

FSD 
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Appendix 

Proof of Theorem 1 : The basic idea of the proof follows that of Theorem 2 in 

Fishburn (1977). For notational simplicity, let t = 0 with U(O) = 0. For rr < -1, 

let h exceed -rr and consider two gambles : F1 is the fifty-fifty gamble for 

-1 or g > 0, and F2 is the distribution which has probability <t>( 1 )/2¢(-rr) for rr 

and probability [2¢(-rr) - ¢(1 )J/2¢(-rr) for h, where g = ¢(1 )/q,(-rr) + h[2¢(-rr) -

¢(1 )1/<t>(-rr) + 1 and 8(9) = 9(h)[2q,(-rr) - ¢(1 )]/<t>(-rr). Then E(F1) = E(F2) and 

O(F1) = O(F2). Therefore, ( 1 /2)U(-1) + ( 1 /2)U(g) = U(rr)q,( 1 )/2¢(-rr) + 

U(h)[2q,(-rr) - ¢(1 )]/2¢(-rr). Solving for U(rr) yields U(rr) = rr - c5¢(-rr). 

For -1 < " < 0, let h exceed -rr and consider two gambles : F1 is the fifty­

fifty gamble for "or h, and F2 is the distribution which has probability 

<t>(-rr)/2¢( 1) for -1 and probability [2¢( 1) - ¢(-rr))/2¢( 1) for g, where 

g > ¢(-rr)/[2¢(1 )-¢(rr)]. Define h = 2g - (1 + g)¢(-rr)/¢(1) - rr and 9(h) = 

9(g)[2¢(1) - ¢(-rr)]/¢(1). Then E(F1 ) = E(F2 ) and O(F1) = O(F2). Therefore, 

(1 /2)U(rr) + (1 /2)U(h) = U(-1 )¢(-rr)/2¢(1) + U(g)[2¢(1) - ¢(-rr)]/2¢(1 ). Solving 

for U(rr) yields U(rr) = rr - 6¢(-rr). 

For O < rr < 1, consider two gambles : F1 is fifty-fifty gamble for rr or h, 

where h < -rr, and F2 gives 1 with probability B(rr)/6(1) and g with [8(1) -

B(rr)]/9(1), where g < -6(rr)/[9(1 )-9(rr)]. Define h = 26(rr)/6(1) + 2g - gB(rr)/6(1) 

- rr and ¢(-h) = 2¢(-g) - 2¢(-g)B(rr)/9(1) - 9(rr).,Vc5. Then E(F1 ) = E(F2 ) and O(F1 ) 

= O(F2)sothat(1/2)U(rr) + (1/2)U(h) = U(1)9(rr)/9(1) + U(g)[6(1)-9(rr)]/9(1). 

Solving for U(rr) yields U(rr) = " + A6(rr). 
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For rr > 1, let g < -1 and consider two gambles : F1 is fifty-fifty gamble for 

1 or g, F2 gives rr with probability 8( 1 )/8(rr) and h with [8(rr) - 8( 1 )1/0(rr), where 

h < -rr8(1 )/[O(rr)-8(1 )]. Define g = 2rr8(1 )/8(rr) + 2h - 2h8(1 )/8(rr) - 1 and 

<t>(-g) = 2¢(-h) - 2c5¢(-h) 8( 1 )/8(n) - J\8( 1). Then E(F1 ) = E(F2 ) and O(F1 ) = O(F2) 

sothat(1/2)U(1) + (1/2)U(g) = U(rr)0(1)/0(n) + U(h)[O(rr)-0(1)]/0(rr). Solving 

for U(rr) yields U(rr) = rr + J\O(n). Therefore, proof is completed.• 

Proof of Theorem 2: If F dominates G by FSD, then F(rr) :::S G(rr) for all values 

of rr, where F(rr) and G(n) are the cumulative distribution functions of return on 

alternative risl<y actions F and G, respectively. 

( 19) 

Integrating (19) by parts, 

(20) 

t 00 

= J (t-rr) 0 [dF(n)-dG(rr)] - J (rr-t)P[dF(rr)-dG(rr)]. 
-oo t 

t 00 

Ii = (t-e1 ) 0 [F(-oo)-G(-oo)] + a f (t-n) 0 - 1 [F(rr)-G(rr)]drr + Pf (rr-t)P-1 [F(rr)-G(rr)]drr, 
-oo t 

since F(oo) = G(oo) = 1. e1 is the lower limit of integration. By FSD, F(rr) :::S 

G(rr) for all rr. Therefore, equation (20) is nonpositive for a ~ 0 and p > 0. If, 

for any probability density functions, F dominates G by FSD, then the mean of 

Fis at least as large as that of G for a ~ 0, and P ~ 0. Under the assumption 

that F and G differ in either mean or separated semivariance, the above result 

is sufficient to guarantee that F dominates G by the MSD criterion. 



Integrating (20) by parts, 

(21) 

t 

fl= a(t-e1 )a-1 [F1(-oo)-G1(-oo)] + a(a-1) J (t-rr)a-2 [F1(rr)-G1 (rr))drr 
-oo 

00 

+ P(e2 -t)P-1[F1(oo)-G1 (oo)] + /3(/3-1) J (rr-t)P-2[F1(rr)-G1 (rr))drr, 
t 
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where e2 is the lower and upper limits of integrations. F1(rr) < G1(rr) for all rr 

by SSD. Therefore, equation (21) is nonpositive and thus SSD implies MSD for 

0 < a < 1 and O s P s 1 . 

Integrating (21) by parts, 
(22) 

t 

+ a(a-1)(a-2) J (t-rr)a-3[F2(rr)-G2(rr))drr + /3{e2 -t)P-1[F1(00)-G,(oo)) 
-oo 

00 

+ P(/3-1 )(e2 -t)P-2[F2(oo)-G2(oo)] + /3(/3-1 )({3-2) f (rr-t)P-3[F2(rr)-G2(rr)]drr. 
t 

F2 (rr) < G2(rr) for all rr by TSD. Therefore, equation (22) is nonpositive and thus 

TSD implies MSD for a 2::: 2 and /3 > 2. • 



References 

Baumol, G.J. "An Expected Gain-Confidence Limit Criterion for Portfolio 
Selection." Management Science 1 O(October 1963): 174-82. 

119 

Brink, L. and B. Mccarl. "The Tradeoff between Expected Return and Risk 
among Corn Belt Farmers." American Journal of Agricultural 
Economics 60(1978):259-63. 

Buccola, S.T. and A. Subaei. "Mean-Gini Analysis, Stochastic Efficiency and 
Weak Risk Aversion." Australian Journal of Agricultural Economics 
28 (August/December 1984):77-86. 

Cochran, M.J., and A.Raskin. "A User's Guide to the Generalized Stochastic 
Dominance Program for the IBM PC Version GSD 2. 1." Univ. of 
Arkansas at Fayetteville, Apr. 1988. 

Fishburn, P. "Mean-Risk Analysis Associated with Below-Target Returns." 
American Economic Review 67(March 1977): 116-26. 

_____ and G.A. Kochenberger. "Concepts, Theory, and Techniques: 
Two-Piece von Neumann-Morgenstern Utility Functions." Decision 
Science 10 (October 1979):503-518. 

Friedman, M., and L. J. Savage. "The Utility Analysis of Choices Involving 
Risk." J. Political Economy. 56(March 1948) :279-304. 

Hadar, J., and G.R.Russell. IIRules for Ordering Uncertain Prospects." 
American Economic Review 59(March 1969):25-34. 

Hanoch, G., and H. Levy. "The Efficiency Analysis of Choices Involving 
Risk''. Review of Economic Studies 36(July 1969):335-46. 

Harris, T. R. and Harry P. Mapp, "A Stochastic Dominance Comparison of 
Water-Conserving Irrigation Strategies." American Journal of 
Agricultural Economics 68(May 1986): 298-305. 

Hazell, Peter B.R. and Roger D. Norton. Mathematical Programming for 
Economic Analysis in Agriculture New York: Macmillan Publishing 

Company, 1986. 



120 

Hogan, W.W. and J.M.Warren. "Computation of the Efficient Boundary in 
the E-S Portfolio Selection Model." Journal of Financial and 
Quantitative Analysis 7(September 1972): 1881-96. 

Holthausen, D.M. "A Risk-Return Model with Risk and Return Measured as 
Deviations from a Target Return". American Economic Review 71 
(March 1981 ): 182-88. 

Kahneman, 0., and A. Tversky. "Prospect Theory: An Analysis of Decisions 
under Risk". Econometrica, 47(March 1979):263-291. 

King, R.P.,and G.E. Oamek. 11 Risk Management by Colorado Dryland 
Wheat Farmers and the Elimination of the Disaster Assistance 
Program." American Journal of Agricultural Economics 65(May 
1983):247-55. 

____ , and L.J. Robison. "An Interval Approach to Measuring Decision 
Maker Preferences." American Journal of Agricultural Economics, 
63 (August 1981 ): 510-20. 

Levy, H. "The Rationale of the Mean-Standard Deviation Analysis: 
Comment" American Economic Review 64(June 1974):434-41. 

Mao, J.C.T. "Models of Capital Budgeting, E-V vs E-S." Journal of 
Financial and Quantitative Analysis 4(January 1970):657-75. 

Markowitz, H. "Portfolio Selection." Journal of Finance 7(March 1952):77-
91. 

Meyer, J. "Choice among Distributions." Journal of Economic Theory 
14(April 1977) :326-36. 

___ . "Two-Moment Decision Models and Expected Utility 
Maximization." American Economic Review 77(June 1987):421-
30. 

Porter, R.B. "Semivariance and Stochastic Dominance: A Comparison." 
American Economic Review 64(March 1974):200-04. 

Quirk, J.P. and R. Spasonik. "Admissibility and Measurable Utility 
Functions." Review of Economic Studies 29(February 1962): 140-
46. 



121 

Raskin, R. and M. J. Cochran. "Interpretations and Transformations of Scale 
fort the Pratt-Arrow Absolute Risk Aversion Coefficient: 
Implications for Generalized Stochastic Dominance." Western 
Journal of Agricultural Economics 11 (December 1986):204-10. 

Tobin, J. "Liquidity Preferences as Behavior Towards Risk." Review of 
Economic Studies 25(February 1958):65-68. 

Tronstad, Rand T. J. McNeil!. "Asymmetric Price Risk: An Econometric 
Analysis of Aggregate Sow Farrowings, 1973 - 1986." American 
Journal Agricultural Economics 71 (August 1989):630-37. 

Working, H. "Hedging Reconsidered." Journal of Farm Economics 35 
(February 1953):54-61. 

Yitzhaki, S. "Stochastic Dominance, Mean Variance, and Gini's Mean 
Difference." American Economic Review 72(March 1982): 178-
185. 



VITA 

Taehoon Kang 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: GARCH OPTION PRICING, VALUING THE TARGET PRICE SUPPORT 
PROGRAM, AND A NEW RISK EFFICIENCY CRITERION 

Major Field: Agricultural Economics 

Biographical: 

Personal Data: Born July 10, 1960, in Seoul, Korea, the son of 
Myongjae Lee and Shinbong Kang. 

Education: Graduated from High School in the College of Education at 
Dongkook University, Seoul, Korea in 1979; Bachelor of Economics from 
the Department of Agricultural Economics at Seoul National University, 
Seoul, Korea in 1983; Master of Economics from the Department of 
Agricultural Economics at Seoul National University, Seoul, Korea in 
1985; completed requirements for the Doctor of Philosophy degree at 
Oklahoma State University in July, 1993. 

Professional Experience: Teaching Assistant, Department of Agricultural 
Economics, Seoul National University, March, 1983 - August, 1985; 
Assistant Researcher, Korea Rural Economics Institute, July, 1983 -
December, 1985; Korean Army, December, 1985 - February, 1988; 
Customer Credit Analyst, Korea Housing Bank, Seoul, Korea, March, 
1988 - May, 1989; Research Assistant, Department of Agricultural 
Economics, Oklahoma State University, August, 1989 - August, 1993. 

Professional Memberships:American Agricultural Economic Association, 
Western Agricultural Economic Association, Southern Agricultural 
Economic Association, Asian Society of Agricultural Economists, Korean 
Agricultural Economic Association. 

Awards: The 1993 Outstanding Graduate Student Paper Award, Southern 
Agricultural Economic Association. 


