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PREFACE 

Transverse effects are known to play a central role in nonlinear-optical systems. Since 

experiments are generally performed with lasers with finite transverse dimensions, the 

transverse nature of the field must be considered. Experimental evidence, for example, 

indicates that mechanisms in the form of diffusive and diffractive coupling within the 

medium, free-space diffraction, or some combination of these, can create transverse 

structures which are important in optical bistability and self-focusing/defocusing. In 

particular, transverse coupling is attributed to such phenomena as radial dependence of the 

switch up times of bistable loops, spatial hysteresis, and the formation of solitary waves in 

passive systems. 

The dynamical effects of free-space diffraction in a unidirectional ring cavity containing 

a thin resonant absorber driven by an external coherent signal is considered. Minimal 

focusing effects exist in this system by incorporating a thin medium whose width is small 

compared to the cavity length and Raleigh range. There is no restriction on the medium 

response time relative to the round trip time; i.e. the time-dependent polarization is not 

adiabatically eliminated from the equations of motion. Free-space diffraction effects are 

isolated and diffraction and diffusive coupling within the medium is negligible. In this 

model where free-space diffraction is the dominant mechanism for changing the field 

profile in the system, shifting, deformation, and radial variation of the bistable loop and 

spatial hysteresis is attributed to an inherent dispersion induced by the free-space 

diffraction. 
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CHAPTER I 

INTRODUCTION 

Optical bistability (OB) is an exciting field of research because of its potential 

application to all-optical logic and the interesting phenomena it encompasses. Since the 

first theoretical description of optical bistability in a passive medium in 1974 by McCall, [l] 

bistability has been observed in many different materials including tiny semiconductor 

etalons. Current applied research is focused on optimizing these devices by decreasing 

their size, switching times, operating power, and operating them at room temperature. 

Both improved nonlinear materials and more efficient device configurations are being 

sought. Current fundamental research centers on the interesting physical behavior of 

simple bistable systems. Many bistable devices consist of a nonlinear medium within an 

optical resonator, just as do lasers, except the passive bistable devices are excited only by 

the incident coherent light. The counterparts of many of the phenomena studied in lasers, 

such as fluctuations, regenerative pulsations, and optical turbulence, can be observed in 

passive bistable systems, often under better controlled conditions. Optical bistability in 

lasers, which was seen prior to passive bistability, is not considered in this thesis. 

A system is said to be optically bistable if it has two stable output intensity states for the 

same value of the input intensity state over some range of input values. Such a system is 

clearly nonlinear. However, nonlinearity alone is not sufficient to assure bistability. It is 

feedback that permits the nonlinear transmission to be multivalued. This definition implies 

that the bistable system can be cycled completely and repeatedly by varying the input 

intensity. Systems that exhibit hysteresis as a function of some other parameter, like 

temperature, is not of interest here. 

Seidel [2] in 1969 is apparently the first to understand the significance of optical 

bistability and to officially record the idea of a passive bistable optical device. He first 

proposed such a device as a natural extension of his work on similar effects in the 
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microwave region and filed a patent, which was granted in 1971, because of the potentially 

rich engineering possibilities, ranging from an all-optical computer to optical 

communications. 

Equally pioneering and independent work on absorptive bistability was done by Szoke, 

Daneou, Glodhar, and Kurnit. [3] They analyzed a Fabry-Perot interferometer containing 

a saturable absorber and derived the condition for purely absorptive bistability. They 

mentioned several problems still under study today: standing-wave effects, residual or 

unsaturable absorption, production of an infinite pulse train from a cw input, and crosstalk 

between nearby beams that could lead to adding and memory operations performed in 

parallel. McCall [l] further analyzed absorptive bistability by studying the effects of 

inhomogeneous broadening, standing waves, and transverse modes. 

The first experimental observation of passive optical bistability was reported by 

McCall, Gibbs, Churchill, and Venkatesan in 1975. [4] They used the D2 line in Na-vapor 

between the mirrors of a plane Fabry-Perot interferometer. This first observation of OB 

was due to nonlinear refractive index effects, not the anticipated nonlinear absorptive 

effects. It was this work in which bistability was observed that created the avalanche of 

experimental, as well as theoretical studies that followed. 

In 1976, Bonifacio and Lugiato [5] proposed an elegant first-principle treatment of 

plane wave absorptive OB which gave evidence for the existence of cooperative behavior 

and revealed deep analogies with first-order phase transitions. Two years later they also 

reported the first analytical theory of plane wave dispersive OB with propagation effects 

and saturation.[6] Using mean-field theory and the Maxwell-Bloch equations, they 

produced a number of predictions concerning the transient behavior and quantum statistical 

effects. 

Ikeda, [7] in 1978, developed a mapping model for plane wave OB to capture the delay 

effects of the long round trip time in a cavity compared with the response time of the 

nonlinear medium. From this simple map, which discarded the time derivative in the delay

differential equations, instabilities were predicted. Later analyses cast doubt on some of 

these results, [8, 9] as it was shown that the bifurcation structure of the delay-differential 

equations departed from that of the maps beyond the first instability. 

From 1979 to 1982 the plane wave mean-field model was used by researchers like 
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Meystre and Hopf, [10] Benza and Lugiato, [11] Hopf et al., [12] and Lugiato et al., [13] 

to investigate transient behavior. Others, such as Agrawal et al., [14] Carmichael and 

Walls, [15] and Casagrande andLugiato, [16] used the mean-field model at the quantum 

statistical level to describe the spectrum of transmitted and fluorescent light. Much effort 

has gone into describing the bimodal character of the distribution function in the instability 

region, completing the analogy between OB and first-order phase transition. [ 17-20] 

During the late 1970s to the early 1980s, many experiments in the field of optical 

bistability was performed. In 1977, Venkatesan and McCall [21] reported bistability, 

differential gain, and optical limiting in a Fabry-Perot (FP) cavity containing a ruby crystal. 

A year later, Grischkowski [22] reported optical switching using a nonlinear FP cavity with 

a fast response time. That same year, McCall and Gibbs [23] observed optical bistability 

arising from an intensity-dependent thermal change in optical pathlength. Experiments 

studying the transient behaviors of FP cavities filled with either absorptive or dispersive 

materials were demonstrated by Bishofberger and Shen, [24] Garmire et al., [25] and 

Grant and Kimble. [26] Other experiments in optical bistability were performed by Sandel 

and Gallagher, [27] Grant and Kimble, [28] Arimondo et al., [29] and Rosenberger et al. 

[30] For additional information on plane wave theoretical and experimental studies, see 

Refs. 31 and 32. 

In the mid-1980s, higher-speed computers were available which allowed the advent of 

more complex theories. The natural evolution in the theoretical description of both 

absorptive and dispersive optical bistability includes transverse effects. Experiments 

performed by Kimble's group on absorptive OB in Na-vapor [33] required an analysis 

involving transverse effects and gave good agreement. Experiments studying optical 

bistability are generally performed with lasers of finite transverse dimensions, usually with 

a Gaussian radial intensity profile. Beam profiles and mechanisms that change the profile, 

namely diffraction and self-focusing or defocusing, can substantially alter the bistability. 

Clearly, transverse effects do not eliminate bistability in general, since intrinsic bistability is 

observed using Gaussian beams .. However, in some cases bistability observed with a 

Gaussian beam is close to uniform-plane-wave predictions; this may be because diffusion 

of the excitation within the medium results in far less radial dependence in the phase shift 

than in the input beam. [31] Nevertheless, transverse effects do affect the optically bistable 
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system. 

The study of transverse effects in optical bistability proved the most fruitful of all 

passive nonlinear-optical phenomena. Reasons for studying transverse effects in optical 

bistability included the possibility of parallel processing optical computers based on 

optically bistable devices, which raised questions of minimum device size, transverse 

coupling mechanisms, and information storage. Studies of these questions may be more 

beneficial in terms of theory than of application, e.g. leading to spontaneous pattern 

formation based on transverse solitary waves. [34] They also constitute interesting coupled 

matter-field systems, in which the space-time evolution of the material excitation plays an 

important role in the phenomena. Another feature of transverse effects in OB is the 

richness of the dynamical instabilities. This meant a cross-fertilization of studies of 

transverse effects in OB with new ideas and techniques in nonlinear dynamics and chaos 

and, in particular, with the parallel developments in studies of laser instabilities. 

Self-focusing, a dispersive effect, was perhaps the first strongly nonlinear process in 

which transverse effects played a central role. [35-41] While the simplest intuitive result 

was the formation oflocal hot spots in a previously nearly uniform beam, in extended 

media new results were found like the formation of narrow intense channels of a beam, 

called filaments. Conical emission, [42] coherent on-resonance self-focusing, [43] and 

enhancement [ 44] arose from quantitative studies of self-focusing and related phenomena in 

single-pass systems using inhomogeneously broadened atomic vapors, where thermal and 

mechanical effects and/or damage, which complicate filamentation, were absent. 

The new theoretical studies of transverse effects in optical bistability prompted many 

researchers to explore various limits to reduce the complexity of the system allowing for 

use of well known numerical routines. The vast majority of the models studied the 

diffraction of the field within the medium or diffusion of the excitation. 

The high finesse of many optically bistable cavities encouraged the widely used 

approximation of longitudinal uniformity, which was termed early the "mean-field limit". 

Of course, when there is transverse variation of the field this term seems a little 

contradictory. Perhaps it is better to recognize that one is averaging the effects of mirror 

coupling and longitudinal variation in the beam intensity, properties that are not well 

described by terms like uniform-field approximation. 
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The high finesse of these optically bistable cavities also encouraged a Gauss-Laguerre 

mode-expansion approach to transverse effects for experimental comparisons, with early 

success for Ballagh et al. [ 45] and Drummond. [ 46] Likewise, an outstanding agreement 

between a bistability experiment and a single-Gaussian-mode model was reported by 

Kimble and co-workers. [33] A mode-expansion model [50] explained spatial hysteresis, 

in which the bistable loop occurred in the beam profile, with or without power hysteresis 

after a few experiments [47-49] indicated spatial hysteresis existed. However, with 

hindsight that model may have indicated a transverse modulational instability rather than a 

cavity-induced effect [51] 

Experiments in semiconductors such as GaAs [52] and InSb [53] in 1979 demanded 

attention because of the obvious device potential. Finesse was usually low, invalidating the 

mean-field limit and making mode-expansion techniques of doubtful value.[50] Fourier

transform (FT) techniques proved to be a good answer, as shown by Moloney et al. [54] 

and Rosanov et al. [55, 56] Most papers which used the Fr technique adiabatically 

eliminated the atomic variables, polarization and population difference, to reduce the 

number of variables in the system thus making a Fr technique applicable. This reduced 

system, where the medium response time was assumed to be much less than the round trip 

time, was within the so-called Ikeda approximation. [7] 

In ring resonators, the fast-Fourier-transform or beam-propagation method described 

above gave a quasi-dynamical simulation of the long-term evolution of the cavity fields. 

These simulations showed that switching waves moved out from the beam center at switch 

on, thus giving a discontinuity in the power output at switch up, where a pointwise 

application of the plane-wave transmission formula gave only a change of slope. More 

importantly, the sharp field gradients at the switching edge were found in self-focusing 

media to destabilize the switched-on region, generating robust and often stable groups of 

solitary waves (spatial solitons, loosely speaking). [57, 58] 

Modeling Gaussian-beam devices means taking advantage of cylindrical symmetry, for 

which the fast-Fourier-transform method is not so well adapted. Thei:e is a related fast

Hankel-transform method; [59] unfortunately, it roughly doubles the computing time and 

has been shown to be unstable. The problems with the fast-Hankel-transform method 

permitted other numerical techniques to compete and there was agreement between finite-
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difference and fast-Hankel-transform models of the same system. [60, 61] 

Including the photocarrier diffusion, which is necessary in bulk semiconductor devices, 

showed that the shape and sense of the bistable loop were strongly affected by diffusion. 

[62, 63] Grigor'yants and Dyuzhikhov [64] reported direct measurements of these effects. 

Taken together with earlier experiments of beam-width dependence of OB thresholds plus 

some profile measurements, [65] these results suggested the optical bistability properties of 

bulk semiconductors like InSb were as understood as the optically bistable properties of 

Na-vapor since diffusion dominated diffraction in semiconductor media. The diffusion 

property allowed for rather simple modeling, pioneered by Rosanov and co-workers [66] 

and developed by Firth and Galbraith [67] to model arrays of OB devices, which will be 

required in any practical optical memory. The diffusive coupling permitted simple 

modeling of the dynamics of such arrays, leading to estimates of the critical separation for 

independent memory action of the individual pixels. It was also shown that ideal optical 

memories necessarily possess spatially chaotic (but temporally stable) states. [68, 69] An 

alternative, perhaps equivalent approach was the demonstration that spatially modulated 

broad-beam pumping permits nonmonotonic static switching waves of complex structure. 

[70] 

Mapping models which were known to have quick computation times were 

investigated with the inclusion of transverse coupling by Rosanov et al., [71] Moloney and 

co-workers [57, 72, 73] and Firth and Wright. [7 4] When multilongitudinal-mode effects 

are ignored, the dynamics are governed by diffraction and diffusion with characteristic 

times much longer than the delay time, and there were few concerns about mapping models 

for longitudinal instabilities. The main finding was that the intensities of the different pairs 

of the Gaussian input beam locally generated different plane wave pulsing frequencies 

which tended to frustrate the period-doubling route to chaos, leading instead to frequency 

locking. Instability thresholds tended to be lowered with transverse coupling due to 

modulational instabilities. [7 5] 

Experimental studies of dynamic instabilities in optically bistable systems have been 

somewhat limited, especially with regard to transverse effects. When temporal pulsations 

predicted in both the plane wave temporal mapping theories and the continuous-temporal 

variable theories seemed not to be emerging in the experiments of Kimble's group on single 
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mode OB using Na-vapor, several authors [76-83] considered a modification in which they 

simply averaged over the transverse intensity profile, which was assumed to be Gaussian. 

After some disputed results it emerged that the coherent sideband instabilities induced by 

the Rabi oscillations could be suppressed or enhanced, depending on whether the system 

was passive and optically bistable, laser with an injected signal, or a free-running laser. 

However, transverse effects seemed to be somew.hat less destructive of multimode 

instabilities, as was demonstrated in a set of waveguide experiments by Segard and co

workers. [84] 

The theoretical and experimental results described above concentrate on diffraction of 

the field within the medium or the diffusion of the excitation. With few exceptions, the 

contribution of free-space diffraction to the overall system is neglected. Again, as a natural 

evolution to the full understanding of th1.s dynamically rich system and the future hope for 

optical computing, we theoretically study the dynamical effects of free-space diffraction in a 

unidirectional ring cavity containing a thin resonant absorber driven by an external coherent 

signal. We minimize focusing effects by incorporating a medium whose width is much 

smaller than the cavity length and the Raleigh range. We place no restriction on the medium 

response time relative to the round trip time; the time-dependent polarization and 

population difference is not adiabatically eliminated from the equations of motion. We 

isolate free-space diffraction effects and argue that diffraction and diffusive coupling within 

the medium is negligible. In this model where free-space diffraction is the dominant 

mechanism for changing the field profile in the system, shifting and deformation of the 

bistable loop and spatial hysteresis occurs. We see a radial variation of the bistable loop, 

however, this effect is not strong; this is consistent with those who argue that radial 

variation of the bistable loop is an effect of diffusion.[64] 

In Chapter II we review the origin of the basic equations of motion for both the medium 

and the free-space diffraction and establish numerical algorithms. In Chapters ID and IV 

we describe some plane wave and transverse effects phenomena reported earlier and 

establish links between our studies of free-space diffraction to these earlier works. Our 

basic tools will comprise numerical methods for the solution of the differential equations 

and our own fast-Hankel-transform. In Chapter V, we conclude. 



CHAPTER II 

DESCRIPTION OF THE OPTICAL SYSTEM 

We present a model that describes the dynamical behavior of the electromagnetic field in 

a passive medium. It is configured in a ring cavity and driven by a coherent external signal. 

The key elements in our model are as follows: (1) The medium polarization and population 

difference are not adiabatically eliminated from the equations of motion, i.e. these variables 

keep their time dependence. This allows the polarization and population difference to 

actively participate in the field dynamics. (2) There is no transverse coupling within the 

medium, i.e. no cross-talk between transverse modes within the medium. Small annular 

rings of plane-wave-like fields are allowed to propagate through the thin medium without 

coupling to other rings. The medium is considered to be a thin sample compared to the 

cavity length and Raleigh range. (3) At the exit of the medium boundary, the field is 

diffracted through free space using the Kirchoff diffraction integral. The free space is 

subdivided into equal cells in which the field is diffracted - cell by cell. Each cell has 

continuous memory of the current field conditions and earlier field conditions.· This 

method of propagation eliminates any abrupt changes in the field dynamics at the medium 

entrance that might be an artifact of the programming. We argue that this method of field 

propagation (in space and through the medium), and the thin nature of the medium 

diminishes/eliminates diffusive and diffractive coupling within the medium as a possible 

transverse coupling mechanism of this system. 

In this chapter we present the geometrical configuration of the ring cavity, detail the 

Maxwell-Bloch equations that describe the interaction of the field and atoms and Kirchoff's 

diffraction integral that simulates free-space diffraction, discuss the aperture on the injected 

signal, and present the appropriate system boundary conditions. 
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Geometrical Configuration 

The geometrical configuration of an optical system plays a considerable role in the 

overall field dynamics. In general there are two types of configurations, single-pass and 

multi-pass. Only the multi-pass system allows feedback which is essential for optical 

bistability using a medium that is not intrinsically bistable. For the purpose of this thesis, 

we consider only a feedback system in the form of a cavity. 

9 

Cavities come in all sizes and shapes containing any number of reciprocal or 

nonreciprocal devices like mirrors, apertures, or isolators. Depending on the shape of the 

cavity and the devices within them, the field is either unidirectional or counterpropagati.ng, 

stable or unstable. The cavities may contain either passive or active mediums, or a 

combination thereof. 

We choose a unidirectional cavity because the inclusion of counterpropagating fields 

creates a serious complication in the field dynamics. In the absence of a medium, 

counterpropagating waves cause interference patterns on the scale of a wavelength. In the 

presence of a medium, the atoms exposed to different intensity levels acquire a modulated 

pattern of inversion which acts as a grating, and is capable of scattering the forward 

propagating wave in the backward direction, and vice versa; this effect is responsible for 

dynamical coupling of the two waves. In order to avoid this type of complication, we 

choose a cavity configuration that allows only one direction of propagation; in practice this 

can be accomplished with a ring resonator and a non-reciprocal device, such as a Faraday 

isolator, to suppress one of the two propagating waves. 

The unidirectional cavity used in this model is shown in Fig. 1. Its total length is 

designated as A. We insert two fully reflecting spherical mirrors, M1 and M2, whose radii 

of curvature are R1 and R2, respectively, to insure that the majority of the radiation does not 

escape the cavity but will be refocused during each pass around the cavity. p1 and p2 

represent the distances between the spherical mirrors and the medium and p3 represents the 

round trip distance from M2 to M1• We insert a thin resonant two-level medium whose 

thickness, L, is L = 0.005A. We made this medium thin compared to the cavity length and 

Raleigh range so that diffraction effects inside the medium could be neglected which 
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Figure 1. Ring Cavity Schematic 
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allows us to isolate free-space diffraction effects. The aperture of the injected signal will be 

discussed later. We finish the cavity design by adding two partially transmitting planar 

mirrors Mr and Mn with equal transmittivity amplitude T. Mr functions as an entrance for 

the external signal and Mn as the output coupler. 

The stability of the cavity is an important issue. An empty ring cavity is always stable, 

provided that the mirrors are planar. However, when any other optical device is placed 

inside the cavity, the cavity may become unstable. For certain applications unstable 

resonators prove useful. They can create large mode volume and good discrimination 

against higher-order transverse modes. [85] However, for the purpose .of this thesis we 

choose to operate in a stable cavity configuration since the vast majority of knowledge in 

theoretical optical bistability deals with a stable cavity configuration. For instance, a stable 

cavity allows for the paraxial approximation which assumes the field changes slowly over a 

wavelength. This approximation greatly reduces the complexity of the model and thus the 

computation time. 

The empty cavity stability analysis which shows the range of cavity parameters which 

guarantee stability is given in Appendix A. The simplest case of the stable optical 

resonator, which is the one we choose, is the symmetrical system where p1 + p2 + L = p3 

= A/ 2. Most experimental setups use symmetrical cavities with system parameters lying 

well within the stability confinement region along the R1 = R2 line. For that reason, we 

choose R1 = R2 = A. 

Associated with any cavity is a set of axial-mode frequencies, [85] 

rom = 27t m .£. 
C A 

with a lifetime, 

'II = cT 
IC A 

(II.1) 

(II.2) 

provided that T ..,> 0. Here c represents the speed of light in a vacuum. Figure 2 shows the 

schematic of the relative cavity frequency. 

We choose to use a passive medium for this thesis for several reasons: (1) Passive 

systems are more likely to be practical because they are simpler (they do not require an 

inverted medium) and hence are likely to be smaller and require less power; (2) an active 



frequencies, ro 

Figure 2. Schematic of Frequency Spectrum. The frequencies are 
the atomic (roa ), cavity (roe), and signal (000 ). We 
assume that the injected signal is monochromatic 
which makes its spectrum a delta-function. o = roe - 000 

and A = Wa- ro0 • 1C and 'Y are the decay rates of the 
cavity and the medium, respectively. 

12 
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system is more complicated: the frequency of the laser may change or several modes may 

lase simultaneously, and the external excitation required to produce population inversion 

generally results in a complex environment; and (3) because there is a wealth of published 

information in the area of optical bistability. 

Theoretical Description of the Atom-Field Interaction 

Theoretical Development 

In general, the interaction between an electromagnetic field and an atomic medium is a 

quantum process especially when significant energy exchanges take place between the 

medium and the field. However, since the intensity of the field is usually sufficiently large, 

laser fields in particular, a classical description is valid. Atoms, on the other hand, undergo 

transitions between pairs of stationary states whose description is entirely based on 

quantum mechanics. When the existing radiation is sufficiently removed from an atomic 

resonance, the behavior of an atom can be adequately described by the Lorenz oscillating 

· dipole model, at least for the purpose of describing the susceptibility which 

includes the medium contribution to the index of refraction and the linear absorption 

. coefficient. On or near resonance this description breaks down and a more accurate 

theoretical framework is needed. The traditional approach in the field of quantum optics is 

to describe the electromagnetic field in terms of the. classical wave equation and the 

response of the atoms to the field in terms of the Schroedinger equation. The link between 

the classical macroscopic variables and the quantum mechanical microscopic variables is 

provided by the following argument. 

The classical electromagnetic wave equation is driven by a macroscopic bulk 

polarization. On the other hand, an atomic wavefunction, that consists of a superposition 

of two stationary states of opposite parity, yields a nonzero expectation value for the dipole 

moment By requiring that the bulk polarization be equal to the atomic density multiplied 

by the expectation value of the dipole operator, one has the required link between the 

Maxwell's classical wave equation and Schroedinger's quantum mechanical equation. In 

dealing with the atomic evolution, it is common to consider combinations of atomic 

probability amplitudes instead of the wavefunction itself. Because of the operational 
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meaning attached to these variables, the resulting atomic equations of motion can become 

formally identical to the Bloch equations of nuclear magnetic resonance. For this reason, 

the coupled equations of motion for the field and the atoms are commonly referred to as the 

Maxwell-Bloch equations. 

Unfortunately, there is no mechanism by which an excited atom can be forced to decay 

(no spontaneous emission or collisions between atoms resulting in relaxation) in this 

semiclassical theory. For the purpose of this thesis, as well as for most problems in 

quantum optics, this problem is easily solved. We assume that the atoms are driven by an 

external field and are never left in a nonradiating excited state in the absence of radiation. 

Thus all relaxation processes can safely be described by phenomenological relaxation 

terms. This section is devoted to the derivation and numerical method of solution of the 

Maxwell-Bloch equations. 

The passage of light through matter is accompanied by the simultaneous occurrence of 

absorption, dispersion, and diffraction. The classical electromagnetic wave equation is 

given by Maxwell's wave equation 

2-> .. a2?. (r,t) 
VT 'E (r,t) + --

cJz2 

2 2-·(r 2-- .. n0 d 'E r,t) d P(r,t) 
c2 cJt2 = µo at2 (11.3) 

where ?. is the electric field amplitude and 1: is the macroscopic polarization per unit volume 

of the medium. V T2 represents the transverse Laplacian (written in either cylindrical or 

Cartesian coordinates) and describes the diffraction of the field within the medium. r is the 

direction vector; z and t represent space and time variables, respectively. The phase 

velocity of propagation of the wave in vacuum is c = (µ0 E0 )-1/2 where µ0 is the 

permeability of free space and E0 is the permittivity of free space. The background 

refractive index is n0 and is considered close to unity since our medium is assumed to have 

low density. We have also assumed that the atoms or molecules are identical which 

eliminates any inhomogeneous effects. 

It is clear that Eq. (II.3) is not sufficient to describe the propagation of the field within a 

medium. The response of the medium, which is contained in the polarization, must be 
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determined. The simplest statement that we can make is to assume that Pis proportional 'E 

according to a relation of the type 

-+ -P=EoX'E (II.4) 

where X is the susceptibility. X is a scaler if the medium is isotropic and can be represented 

by higher rank tensors if the medium is anisotropic. Unfortunately, Eq. (II.4) limits the 

behavior of the medium since its reaction is governed by a field-independent quantity, X· 

In this thesis, we lift this restriction imposed on the atomic polarization and thus find 

equations to describe the medium behavior. 

We assume that the cavity field is unidirectional and is linearly polarized in a direction 

(we specify the x-axis) perpendicular to the axis of the active medium (we specify the z

axis). The field and polarization become 

--+ ,. I:- t ( i (k,, Z - C00 t) ) 
'E (r,t) = 1 'E (r, z, t) = 2 'E0 (r, z,t) e + c.c. 

(II.Sa) 

I:- • /1,- ) 
-+ .. I:- 1 . ( 1 \-"o Z - C00 t ) 
P(r,t) = 1 P (r, z, t) = 2 Nµ1 Po(r, z,t) e + c.c. 

(II.Sb) 

where N is the density of atoms in the medium and µ is the modulus of the atomic 

transition dipole moment. ko = n0 co0 / c is the wave vector in vacuum where we have 

chosen the frequency of the injected signal, co0 , to be close to the atomic transition 

frequency and a cavity mode. 'E0 and P0 are slowly varying envelopes of the field and 

polarization, respectively. 

Substituting Eqs. (II.5) into the wave equation, Eq. (II.3), and in the slowly varying 

envelope approximation (SVEA), i.e. under the assumption that 

I 
d'E0 1 I d'Eol Tz << ko 'Eo and T << coo 'Eo 

(II.6) 

the equation for the field envelope in the form of the transport equation is 

i n 2 d'E0 1 d'E0 iNµco0 

- 2ko v T 'Eo + Tz + c T = 2cEo Po 
(II.7) 

A similar result holds for the complex conjugate variable 



'£0 *. The SVEA demands that the growth of the field envelope is on the order of the 

wavelength and the time variation is slow compared to the optical carrier frequency. 
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The resonant or near resonant interaction of a collection of atoms with the 

electromagnetic field can be described to good approximation by neglecting all atomic 

levels, except for the pair of states which are resonant or nearly resonant with the radiation. 

The evolution of the atomic variables is governed by Schroedinger's equation 

iii gt I 'I'(t) > = H I 'I'(t) > 
(II.8) 

where tt is Planck's constant divided by 21t. The Hamiltonian operator, H, is the sum of an 

unperturbed part, Ho, which sets the atomic energy spectrum, and a penurbed pan, H 1, 

which describes the interaction of the atoms with their common radiation field to first order. 

If we model the atom as a two level system with unperturbed eigenstates I 1 > and I 2 > 

corresponding to the unperturbed energies E 1 < f. 2, the time-dependent state vector I '¥ ( t) 

>is given by 

I 'I'(t) > = a1 (t) I 1 > + ~(t) I 2 > (II.9) 

where a1 (t) and a2(t) are the time-dependent complex probability amplitudes. I 'I'(t) > is a 

normalized vector, i.e. la1 (t)l2 + la2(t)l2 = 1. The unperturbed Hamiltonian satisfies the 

relation 

Ho Ii> = f.i Ii> where i = 1, 2 (II.10) 

and the interaction Hamiltonian, H1, is given by 
..... ..... 

H1 = -P · 'E = -Px 'E (11.11) 

where Px = ex is the projection of the dipole moment operator along the direction of 

polarization of the field, e is the charge of the electron, and 'E is given by Eq. (II.Sa). 

Using Eqs. (II.8 - 11), Schroedinger's equation becomes 

iii ~~1 I 1 > + iii ~ I 2 > = ( f. 1 - Px 'E) a1 I 1 > + ( f.2 - Px 'E) ~ I 2 > 
(II.12) 

Forming the inner product of Eq. (II.11) with the bras < 1 I and < 2 I, we construct the 

equations of motion for the amplitudes a1 and a2 
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(II. l3a) 

(II.l3b) 

where µ = < 1 I Px I 2 > = < 2 I Px I 1 > are the dipole matrix elements and are assumed to 

be real without loss of generality. (If µ happens to be a complex number, we can let µ = lµI 

exp(i<l>) and associate the phase factor exp(i<l>) with the electric field. The result is a trivial 

change in the phase of the carrier wave, which has no physical significance.) 

Next we identify that if there are N contributing atoms per unit volume, then the 

macroscopic polarization , P = N < Px >, becomes a bilinear combination of the probability 

amplitudes 

P = N < 'P(t) I Px I 'P(t) > = Nµ (a/(t) ait) + a1 (t) a/(t)) (II.14) 

Comparing Eq. (II.14) with our original assumption for the polarization, Eq. (II.Sb), gives 

(II.15) 

Taking the time derivative of Eq. (II.15) and using the relations given in Eqs. (II.13) and 

(II.Sa) we find 

dPO . ( ) i µ 
-=1 (0-(0 P. --'£']) dt a o o h o 

(II.16) 

where COa = ( E 2 - E 1 )/ft is the resonant frequency of the two-level atom and 'lJ = a2*a2 -

a1 *a1 is identified as the population difference per atom. Refer to Fig. 2 for the frequency 

schematic. 

Identifying the population difference, 'lJ, leads us to develop its equation of motion 

similar to the development of Eq. (II.16). The equation describing the population 

difference is 

d'lJ = 1:... (= * P. P. *) d Lo o+'Eo o 
t 2h (II.17) 

where higher order terms like exp(± i 2co0 t) were neglected in this first order 
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approximation. 

An additional item is needed before Eqs. (II.7, 16, 17) can be used as an operating 

model. We must simulate the irreversible processes like spontaneous emission and atomic 

collisions that cause the decay of the population difference and polarization. The incoherent 

decay can be included easily by subtracting the term "11.. P0 from Eq. (II.16) and the term 

y11('1J+ 1) from Eq. (II.17) where "11..= l/f2.is the decay rate of the polarization and 'YI!= 

1/f 1 is the decay rate of the population difference. T 2 and T 1 are identified as the decay 

times of the polarization and population difference, respectively. When the cavity field is 

turned off, the system relaxes to the ground state, i.e. 'lJ = -1 or la 112 = 1 and la212 = 0. 

With these phenomenologically added terms, the two atomic equations that result are called 

the Bloch equations. 

It is often convenient to scale our working equations to dimensionless values. Let us 

define a new set of dimensionless variables 

µ 
E(r, z, t) = _ ~0 (r, z, t) 

h .J 'Y J.. "111 

f{;_ 
P(r, z, t) = \j Y;j P0 (r, z, t) 

D(r, z, t) = 'JX..r, z, t) 

(Il.18a) 

(II.18b) 

(II.18c) 

It is also convenient to rescale the time to the polarization decay rate, 't = 'Y J.. t. At this point 

the full set of Maxwell-Bloch equations take the form 

_ _j_ V2E + c)E + 1_c)E = _ cxP 
2k0 T dZ ~ d't 

c)p = - (1 + iA) P - ED 
d't 

an = 1(E*P+EP*) - y(D+ 1) 
d't 2 

(II.19a) 

(II.19b) 

(II.19c) 

where~= c / 'Y1.. is the speed of light scaled to the polarization decay rate and 'Y= 'Y;; / 'Y1..is 

the ratio of the population difference decay rate to the polarization decay rate; for the 
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purpose of this thesis, ~ = 2.0 and y = 0.01. With this choice for~ and y, 'YI! and yj_ 

become l.5xl06 /sand l.5xl08 /s, respectively, which are consistent with atomic or 

molecular gases. [85] The choice for y = 0.01 sets the system in the adiabatic polarization 

regime, i.e. the medium relaxation time is greater than the round trip time, which allows us 

to compare to transverse effects systems which work in this limit. A= (coa - co0 ) / yj_ is the 

, detuning of the injected signal carrier away from the atomic transition frequency, and 

N µ2 COo 
a.=----

2 E0 h 'YJ_ C (II.20) 

is the linear absorption coefficient per unit length of the atomic medium. We must also 

scale the cavity lifetime given in Eq. (Il.2) by the polarization decay rate to give K = Ye/ 'YJ_· 

We are interested in studying the effects that free-space diffraction have on a system 

with a thin atomic medium. This is in contrast to those who study the effects of diffraction 

within the medium (for instance, Ref. 50). For this system we assume the diffraction term 

in Eq. (Il.19a) is negligible allowing the field to act as a set of plane waves through the 

medium each corresponding to a particular annular ring. The transverse coupling of the 

field in this system resides in the diffraction integral which is analyzed in the next chapter. 

Remember that the systems that we compare to assume that the diffraction term in Eq. 

(Il.19a) is appreciable. Therefore, the equations of motion for the medium become, 

dB+ l_dE = -a.P 
dz ~ dt (II.2la) 

dP = - ( 1 + iA) P - ED 
dt 

an = 'Y (E*P + EP*) - y (o + 1) 
dt 2 

The initial conditions for Eqs. (Il.21) are 

(II.21b) 

(II.21c) 



E(z, 0) = noise 

P(z, 0) = noise 

D(z, 0) = -1 

0 ~ z ~ L 
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(II.22) 

which state that the field and polarization in the medium are initially set by background 

noise and the initial condition for the population difference demands that the system be in 

the ground state. 

Equations (II.21, 22) coupled with appropriate boundary conditions are the basis for 

the plane wave optical bistability systems which were studied extensively by researchers 

like Narducci et al. [87] and Lugiato and co-workers. [88 - 90] These plane wave systems 

are discussed in more detail in Chapter ill. 

Absorptive and Dispersive Optical Bistability Equations (II.21) describe mixed 

absorptive and dispersive optical bistability. However, bistability is demonstrated by the 

two extreme cases, purely absorptive and purely dispersive bistability. The mechanisms 

that cause the two systems to undergo bistability are different. For purely absorptive 

bistability, the absorption coefficient a depends nonlinearly on the optical intensity and the 

wave vector, k0 = n0 ro0 / c, is constant where n0 is the index of refraction. In the case of 

purely dispersive optical bistability ~ >> 1 (a= 0), the index of refraction depends 

nonlinearly on the optical intensity. In this case, the cavity phase shift becomes intensity 

dependent. 

Numerical Method 

We numerically solve Eqs. (II.21) by a Taylor expansion method introduced by Risken 

and Nummedal [86]. Their method uses a discretization process, similar to the familiar 

finite-difference routines. 

First, we divide the space-time domain into a grid as shown in Fig. 3 and introduce the 

following Taylor series expansions for all the variables in the problem 
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Figure 3. Schematic of the Descritized Time and Space Plane. 
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(II.23a) 

(II.23b) 

where A is a general representation of E, P, or D of Eqs. (II.21) and m and n denote 

indices of the discretized space and time, respectively. Notice that the rest of the Taylor 

series is truncated since we assume that the space and time steps are small, Liz and Li't << 

1. From the Taylor expansions, Eqs. (II.23), we have the basic formulas for the 

discretization process 

c)Am,n A -A 2 

+ .1,iiz 
a Am n m, n m-1, n 

' = dZ Liz 2 az2 (II.24a) 

c)Am,n A m, n+l -Am,n 
2 

1 a Am n 
= + -Li't ' 

d't Li't 2 d't2 (II.24b) 

By requiring that Liz= J3 Li't, the solutions of Eq. (II.21) are assured to propagate to the 

right. 

The objective is to substitute Eqs. (II.24) into the left hand sides of Eqs. (II.21). Of 

course, to do this we must first calculate explicitly the second space and time derivatives. 

Talcing the second time derivative ofEq. (II.2la) gives 

a2E _ J3 a2E af3 aP 
d't 2 - - d't dZ - d't 

= - J3 a2E + af3 (Cl - iii) P + ED) 
d'tdZ (II.25) 

where we have substituted in Eq. (II.2lb). Talcing the second space derivative ofEq. 

(II.21 b) gives 

a2E = _ l a2E _ a aP 
c)z2 J3 dZ d't dZ 
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'.L p -P 1 a .b m, n m-1, n 
= -13 az dt - a llz (11.26) 

Notice that whenever a first space derivative appears (like c)P/az), we replace it by its first 

difference approximation since a2p/c)z2 is already proportional to the first power of /lz. 

Substituting Eqs. (II.25) and (II.26) into Eqs. (II.24) and substituting Eqs. (II.24) into 

Eq. (Il.21a) gives 

E 1 = E 1 + a /l2t [ (!::it (1-i/l) - 1) pm, n - pm-1, n + flt Em, n Dm, n] m, n+ m- , n (Il.27) 

Breaking Eq. (II.27) into its real and imaginary parts gives 

E r r r r i pi r r 
m, n+l = Em-1, n + alp m, n - al m, n + a2P m-1, n + '1:,Em, n Dm, n (11.28a) 

E i i i r rpi pi i 
m, n+l = Em-1, n + al pm, n + al m, n + a2 m-1, n + a3 Em, n Dm, n (11.28b) 

where the superscripts rand i denote real and imaginary, respectively. The coefficients of 

Eqs. (Il.28) are given in Appendix B. The corresponding equations for the polarizations 

(real and imaginary) and the population difference are 

pr 
m,n+l 

pi 
m,n+l 

D m,n+l 

where the coefficients are also given in Appendix B. 

(II.29a) 

(11.29b) 

(II.29c) 
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Free-Space Diffraction Representation 

Theoretical Development 

A more accurate treatment of optical beams in cavity resonators must take into account 

diffraction and the wave nature of the light. Few optical bistability models take into 

account free-space diffraction because most choose to study diffraction of the field within 

the medium relying on well developed Fast Fourier Transform algorithms. We choose to 

study the effect of free-space diffraction on a system which includes a passive optically 

bistable medium. Practical laser beams are almost always well enough collimated even 

under worst conditions that we can describe their diffraction properties using a scaler wave 

theory and working in the paraxial wave approximation. This section gives the history and 

theoretical development of the Kirchoff diffraction integral. 

The first reference to diffraction phenomena appears in the work of Leonardo da Vmci 

in the 15th century. Such phenomena was, however, first described by Grimaldi in 1665. 

The corpuscular theory which, at the time, was widely believed to correctly describe the 

· propagation of light, could not explain diffraction. Huygen, the first proponent of the 

wave theory, was unaware of Grimaldi's discoveries which supported his own views. The 

possibility of explaining diffraction effects on the basis of a wave theory was not noticed 

until about 1818. In that year, Fresnel's work appeared in which he showed that 

diffraction can be explained by the application ofHuygen's construction together with the 

principle of interference. Fresnel's analysis was later put on a sound mathematical basis by 

Kirchoff in 1882 and the subject has since been extensively discussed by many authors. 

[91] 

Diffraction problems are among the most difficult ones encountered in optics since 

analytical solutions are rare. The first such analytical solution was given in 1896 by 

Sommerfeld when he discussed the diffraction of a plane wave by a perfectly conducting 

semi-infinite plane screen. Since then rigorous solutions of a small number of other 

diffraction problems (mainly two-dimensional) have also been found, but, because of 

mathematical difficulties, approximate methods must be used in most cases of practical 

interest. Of these the theory of Huygen and Fresnel is by far the most powerful and is 

adequate for the treatment of the majority of problems encountered in instrumental optics. 
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According to Huygen's construction, every point of a wave-front may be considered as 

a center of a secondary disturbance which gives rise to spherical wavelets, and the wave

front at any later instant may be regarded as the envelope of these wavelets. Fresnel was 

able to account for diffraction by supplementing Huygen's construction with the postulate 

that the secondary wavelets mutually interfere. This combination ofHuygen's construction 

with the principle of interference is called the Huygen-Fresnel Principle. 

The basic idea of the. Huy gen-Fresnel theory is that the light disturbance at a point P 2 

arises from the superposition of secondary waves that proceed from a surface situated 

between this point and the light source. This idea was put on a sounder mathematical basis 

by Kirchoff, who showed that the Huygen-Fresnel principle may be regarded as an 

approximate form of an integral theorem which expresses the solution of the homogeneous 

wave equation, at an arbitrary point in the field, in terms of the values of the solution and 

its first derivatives at all points on an arbitrary closed surface surrounding the point P2.[87] 

We consider first a strictly monochromatic scaler wave 

V(r, z, t) = E(r, z) e- i ro 1 (II.30) 

where r represents the transverse coordinate and z represents the longitudinal coordinate. 

In vacuum the space-dependent part then satisfies the time-independent wave equation 

(V 2 + k2) E(r, z) = 0 (Il.31) 

where k =co/ c. Equation (II.31) is known as Helmholtz's equation. Let v be a volume 

bounded by a closed surface S, and let P2 be any point within v (see Fig. 4); we assume 

that E possesses continuous first- and second-order partial derivatives within and on this 

surface. IfE' is any other function which satisfies the same continuity requirements as E, 

we have by Green's theorem 

JJJ (E v2E· - E' v2E) dV = -JJ (Et!' -E' g!) dS 

V S (II.32) 

where 'iJ/an denotes the differentiation along the inward normal to S. In particular, if E' ' 

also satisfies Helmholtz's equation then it follows at once from Eq. (Il.31) that the 

integrand on the left of Eq. (II.32) vanishes at every point of v, and consequently 
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Figure 4. Region of Integration in the Derivation 
of the Diffraction Integral. n is the 
normal vector of the surfaces S and 
S I and P 2 is the point of interest. 
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ff(E aE' - E' aE) dS = 0 
an an 

s (II.33) 

Suppose we take E'(r,z) = exp(iks) / s wheres denotes the distance from P2 to some 

point (r,z). This function has a singularity for s = 0, and since E' was assumed to be 

continuous and differentiable, P2 must be excluded from the domain of integration. We 

shall therefore surround P2 by a small sphere of radius E and extend the integration 

throughout the volume between Sand the surface S' of this sphere. In place of Eq. 

(II.33), we then have 

ff + ff(E ...Q.... (eiks) - eiks aE) dS = 0 
ans san 

S S' (II.34) 

which becomes 

ff ( a eiks eiks aE\ ff ( eiks . l eiks aE\ , E-(-) - --1dS = - E-(ik--)---1dS 
an s s an s s s an 

S S' 

ff ( eikE . 1 eikE aE) 2 = - E-(ik--)--- E d.Q 
E E E an 

n (II.35) 

where d.Q denotes an element of the solid angle. Since the integral over S is independent 

of£, we may replace the integral on the right-hand side by its limiting value as E -> O; the 

first and third terms in this integral give no contribution in the limit, and the total 

contribution of the second term is 4nE(P2). Therefore, Eq. (II.35) becomes 

E(P ) = _1 ff(E _Q__ (eiks) - eiks c)E) dS 
2 41t an s s an 

s (II.36) 

This is one form of the integral theorem of Helmholtz and Kirchoff. 

Although the integral theorem of Kirchoff embodies the basic idea of the Huygen

Fresnel principle, the laws governing the contributions from different elements of the 

surf ace are more complicated than Fresnel assumed. Kirchoff showed, however, that in 

many cases the theorem may be reduced to an approximate but much simpler form, which 
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is essentially equivalent to the formulation of Fresnel, but which in addition gives an 

explicit formula for the inclination factor that remained undetermined in.Fresnel's theory. 

Consider a monochromatic wave, from apoint source, P1, propagated through an 

opening in a plane opaque screen, and let P2 as before be the point at which the light 

disturbance is to be determined, see Fig. 5. We assume that the linear dimensions of the 

opening in the screen, although large compared to the wavelength, are small compared to 

the distances of both P1 and P2 from the screen. 

To find the disturbance at P2 we take Kirchoffs integral over a surface S formed by: 

(1) the opening ,4 in the screen, (2) a portion 73 of the non-illuminated side of the screen, 

and (3) a portion C of a large sphere of radius, R, centered at P2 which, together with ,4 

and 73, forms a closed surface. 

Kirchoffs theorem, expressed by Eq. (II.36) then gives 

E(P2) = 4~ [J J + J J + J J] (E ln (e~)- e~ i;) dS 
,4 'B C (II.37) 

The difficulty encountered in solving Eq. (II.37) is that the values of E and aFJan on 

A, 73, and C which should be substituted in Eq. (II.37) are never known exactly. 

However, it is reasonable to suppose that everywhere on ,4, except in the immediate 

neighborhood of the rim of the opening, E and aFJan will not appreciably differ from the 

values obtained in the absence of the screen, and that on 73 these quantities will be 

approximately zero. Kirchoff accordingly set 

eikR e1E eikR (· 1 ) E =E -- and - = E - ik:-- cos'lf on A 
0 R an ° R R 

E = 0 on 73 

(II.38a) 

(II.38b) 

as the values relating to the incident field (see Fig. 5) and E0 is a constant. R represents the 

distance from the source to the opening ,4 and 'If· represents the angle between the vector R 

and the normal vector. Eqs. (II.38) are called the Kirchoff s boundary conditions and are 

the basis ofKirchoffs diffraction theory. 
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Figure 5. Illustration of the Derivation of the Fresnel-Kirchoff Diffraction 
Forumla 

29. 
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Next we consider the contribution from the spherical portion, C. For our purposes it is 

sufficient to make the physically obvious assumption that the radiation field does not exist 

at all times but that it is produced by a source that begins to radiate at some particular instant 

of time t = tc,. Then at some time t > to, the field fills a region of space where the outer 

boundary is at distance less than c(t - tc,) from P 1, c being the speed of light. If the radius 

R. is chosen so large that at the time when the disturbance at P2 is considered, no 

contributions from C could have reached P2 because at the appropriate earlier time the field 

has not reached these distant regions, the integral over C will van1sh. 

Substituting Eqs. (II.38) into Eq. (II.37) and assuming that k >> 1/R and 1/s (since R 

ands are both assumed much greater than the wavelength, A) then we obtain 

E(P 2) = - 2~ J J E0 e: e~ks ( cosv - cos0) dS 

II (II.39) .. ~ . . 
where 0 represents the angle between s and the normal vector, n. Equanon (II.39) 1s 

known as the Fresnel-Kirchoff diffraction formula. The paraxial approximation, 

'If ~ 0 and 0 ~ 1t, gives 

i JJ eiks E(P2) = -I E(P1) -s-dS 

,4 

= JJ E(P1) K(s) dS 
,4 

where K(s) = eiks /sis the kernel of the Fresnel-Kirchoff integral. 

(II.40) 

Next we follow the development of Fox and Li [92] who study diffraction problems 

under the scalar approximation, which is often used in optics, in a resonator cavity. We 

assume that the field is uniformly polarized and nearly transverse and with width a, see 

Fig. 6. Here, A represents the distance between planes 1 and 2 and the points P1 and P2 

are analogous to the points discussed earlier. w a is the width of the aperture and we 

demand that A>> Wa· 
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Figure 6. Diffraction Between Two Planes. 
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We can writes, the distance between points P1 and P2, as 

J 2 2 2 
s = A + (xl - x2) + (y 1 - y 2) 

J (x1 - ~)2 (y1 - y2)2 
=A 1+ A + A (II.41) 

since we are dealing with a system whose cavity length is much greater than its transverse 

dimensions (A>> wJ then (x1 - x2), (y1 - y2)- Wa· This allows us to expand Eq. (II.41) 

into a binomial series 

(II.42) 

where e' represents all higher order teriris in the expansion. Rewriting s we find 

(II.43) 

where e = e' A. Since A>> wa then A>> (x1 - x2) and (y1 - y2) and we can assume that s 

= A in the denominator of the kernel, K(s). However, in the argument of the exponential 

term in K(s), s must contain more terms in the binomial expansion. Substituting Eq. (II.43) 

into the kernel we find the term exp(ike). We can only neglect this term if ke << 21t. We 

note that e is a converging series with alternating signs. By looking at the next term to find 

out its size 

(II.44) 

we find that 

1 2 w4 
lel < -(sw:) = _a 

8A3 A3 (II.45) 

where (x1 - x2) and (y1 - y2) can each be no larger than 2 w a· If ke << 21t then 
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kw 4 __ a= 

A3 
27t Wa2 F 2 

2 << 7t 
A (II.46) 

where 

(II.47) 

This means that F << A2 / w a 2 for Eq. (II.46) to hold. F is referred to as the Fresnel 

number. This leads us to the two criteria needed in order to expand s in a binomial series: 

(1) the distance over which diffraction takes place must be much greater than the aperture 

width, A>> w a• and (2) the Fresnel number must be small compared to the square of the 

ratio of the diffraction distance to the aperture width, F << A2 / w a 2. 

Using these criteria, we find for the kernel of the Fresnel-Kirchoff integral 

. ik 2 2) 
K(x1, x2 ; yl' y2) = - ~ exp (2A [(x1 - x2) + (y1 - y2) ] 

(II.48) 

where we have neglected the term exp(ikA) assuming that we can choose a distance A 

which is an integer multiple of the wavelength A.. 

A very useful generalized form of paraxial optics has been developed in recent years. 

This generalized form can handle para.xi.al wave propagation not only in free space but also 

in multi-element optical systems. This more general type ofparaxial wave theory can be 

expressed in several mathematically equivalent forms. The approach that seems most 

convenient describes paraxial wave propagation entirely in terms of ray (ABCD) matrices. 

We can write the total path length through a set of optical elements as [85] 

s = A + 2~ (Ax;- 2x1Xz +DX{)+ 2~ (Ayf- 2y1y2 + Dyf) 
(11.49) 

Using Eq. (II.49) we can write the kernel of the Fresnel-Kirchoff integral as 

K(xl, Xz; yl' Yz) = ~Bi exp(2ikB [A(xi + yf) --2(x1Xz+ Y1Y2) + D(Xz2+ Y{)]) 
/\, (II.50) 

where the elements of the ray matrix, A, B, D for the system in this study is given by Eqs. 

(A.4) in Appendix A. For the system parameters (R1 = Rz = A, p1 + pz + L = p3 = N2), 
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we find A = D = -1/2 and B = 3N8. 

Switching to cylindrical coordinates where x = r cos<!> and y = r sin<!> we find for the 

kernel 

K(rl' <1>1 ; r2, <1>2) = - '\ i exp(~ [Ar{- 2r1r2 cos(<l>1- <1>2) + Drf]) 
A.B . (II.51) 

Substituting Eq. (II.51) into Eq. (II.40) gives 

. .it. Dr 2 00 .it. Ar 2 27t - ik r r cos<I> 
E(P) = __ 1_e2B 2 JE(P) e2B i r dr Je B i 2 d<I> 

2 AB 1 1 1 
0 0 (II.52) 

where <I>= <1>1 - <l>z. Strictly speaking, the limits on the angular integral should be from -<!>2 

to 21t - <1>z but without loss of generality we can set <1>z = 0. 

The integral representation of the zeroth order Bessel's function is [93] 

(II.53) 

Substituting Eq. (II.53) into Eq. (II.52) gives 

(II.54) 

Note that we have added in the inherent time delay, L\t = B/c, caused by the travel of the 

field fromP1 to P2. 

At this point it becomes convenient to scale the radial coordinates to the beam width, 

w0 , p = r2/ w0 and,= r1 / w0 • This gives 

00 2 

E(p, P 2, t) = - 2i~ e i1;Dp2 J E(,, P 1, t - L\t) e il;A~ J0 (2~p,) ' d' 

0 (II.55) 

where ~ = Zr/ B and Zr is the Raleigh range given by kw O 2 / 2. This equation is only valid 
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in far-field where Zr< A. For that reason, we set Zr= A/4 in this study. For a cavity length 

of lm and A= 589.6 nm for the D2 line in sodium, this gives the input beam waist as w0 = 

220 µm. We scale the time in Eq. (II.55) by the polarization decay rate, 't = Y1-t, to be 

consistent with the field within the medium. 

Equation (II.55) is the Kirchoff's diffraction integral in cylindrical coordinates. It is 

this equation that will be used to calculate the diffracted field. The diffracted field is used 

as field memory for the spatial cell of the passive medium. The Kirchoff diffraction 

integral is a Hankel transform if the exponential term in the integrand is absorbed into the 

field. Currently, the Hankel transform has no set numerical method like the Fast Fourier 

Transform. In the next section we create an algorithm for solving this integral. 

Numerical Method 

The Hankel transform of order zero is defined here as 

E(p) = j J0 (2~p~) E(~) ~ d~ 

0 (II.56) 

where E(p) denotes the Hankel transformed function of E(~). The zeroth order Bessel 

function can be expanded exactly in terms of Laguerre generating functions as [89] 

J0 (2fxi) = e-z ~ £ L (x) 
~ n! n 
n=O (II.57) 

These Ln(x) functions are the normalized Laguerre functions whose recursion relation is 

T (x) = (2 - x + 1 ) L (x) - (1 _ l) L (x) 
LJyi n n-1 n n-2 (II.58) 

where L0(x) = 1 and L 1 (x) = 1 - x. By defining x = ~p2 and z = ~~2 we can write the 

Bessel function expansion as 

2 oo n 2n 

Jo(2~p~) = e -~; L ~ n~ ~(~p2) 
n=O (II.59) 
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Substituting Eq. (II.59) into the Hankel transform, Eq. (II.56), and making the change of 

variables x = ~2 and y = p2 we find 

F,(.fy) = j1 (e<H)x !, ~:r L,,(l;y)E(lx))e·Xdx. 
O n=O 

Equation (II.60) can be written as 
00 

E(/y) = J E(/x, y) e-x dx 

0 

where 

E(/x' y) = i (e (1-~)x !. ~n :n Ln(~y) E(/x)) 
n. 

n=O 

(II.60) 

(II.61) 

(II.62) 

Equation (II.61) is the familiar Gaussian quadrature which can be approximated by 

M 

E(./y.) = ~ E (Ix., y.) w(x.) 
1 .£.i Jl J 

j=l (II.63) 

where the Yi and xj are the abscissae of the Laguerre polynomial of order M and the w(xj) 

are the weights. This integration formula is exact for all polynomials of order < 2M + 2. 

Substituting Eq. (II.62) into Eq. (II.63) gives 

M 

E(./y.) = ~ B .. E(/x.) 
1 ,£.i lj J 

j=l 

where the two-dimensional matrix Bij is defined as 
n 

(1 - ~) x. M - 1 ~ x.n 
B .. = 21 w(x.) e i .~ 1 J Ln(l;y.) 

ij J ~ n. i 
n=O 

(II.64) 

(II.65) 

We replaced the infinite summation limit in the Bessel function expansion by M-1 for 

numerical evaluation. The Bij matrix can be calculated accurately once and stored for later 

use. By taking advantage of this quadrature formula, we are able to write our Hankel 

transform as a real matrix / complex vector product 

As in any numerical formulation, we are concerned with roundoff error. This error 
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manifests itself in the Hankel transformed field at large radii, where the field should fall off 

exponentially. As the number of roundtrip passes increases, the error becomes amplified. 

Physically over the atomic and geometric parameters we use, the field should remain 

Gaussian in the transverse dimension at large radii. We demand this Gaussian structure by 

choosing a radial coordinate where the field still has appreciable magnitude and extrapolate 

the field 

(II.66) 

where C controls the strength of the Gaussian smoothing. 

The FORTRAN code used to numerically simulate both the medium and the free-space 

diffraction is given in Appendix C. The computations.ran on a DECstation 3100 and 

DECstation 5000 workstations. We test the code against three known results. The first 

test, a Gaussian input field, gives the percent difference between the numerical and analytic 

results for small radii as less than 1 o-9 and rises to a few percent difference at large radii. 

The second test, a tightly apertured Gaussian input field, displays the well-known Airy 

function. The third test is the intercomparison·between this model and the model based on 

the Gauss-Laguerre modal expansion of the field in the active counterpart, the free-running 

laser model given by the authors in Ref. 94. We show that for small focal lengths (f = N2) 

in the free-space diffraction model and correspondingly large transverse mode spacing in 

the modal expansion model, excellent agreement in the radial profiles and the gain ramps. 

Aperture on the Injected Signal 

We place an aperture of width w a on the injected signal to simulate diffraction effects in 

the system, see Fig. 1. In the discussion of the Kirchoff's diffraction integral we 

introduced the Fresnel number parameter, Eq. (IIA7). We rewrite the Fresnel number to 

include the value of the Raleigh range and find 

2 
F = _l_(Wa) 

41t Wo (II.67) 

For the purpose of this thesis, we consider the limiting conditions of large and small 

Fresnel numbers, F >> 1 and F < 1 simulating a plane wave limit and increased free-space 
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diffraction. 

Boundary Conditions 

To complete the optical bistability free-space diffraction model, we must consider the 

boundary conditions for this system. The boundary conditions at the input and output 

couplers, Mr and Mn, imposed on this system are 

i6 
E(p,0,t) = .fTEi(p) + Re EFB(p,A,t) (1I.68a) 

Et(P, L, 't) = IT E(p, L, 't) (Il.68b) 

Here we place the origin of the space axis at the Mr mirror and we map the longitudinal 

distance relative to that point. At z = L we have exited the medium and at z = A we 

complete a roundtrip and arrive at the origin of the axis. 

Equation (II.68a) establishes two essential features of this work, an injected signal 

which couples coherently with the internal cavity field and feedback. This equation is the 

superposition of the Gaussian injected signal with a planar phase front, 

2 
E.(p) = E. e - P 

1 m (Il.69) 

attenuated by a factor Tl/2 and the feedback field, EFB, given by Eq. (II.55). In that 

equation, E(p, P2, t) ~ EFB(P, A,t) and E(~. P 1, t - ~t) ~ E(~, L, t - ~t). Tis the 

transmittivity of mirror Mr and R = 1 - T. The cavity/ injected signal phase detuning is 

given by 

(II.70) 

where 'CR= Ayjc is the scaled round trip time. For this thesis, we set o = 0 to reduce the 

number of system parameters which simplifies the system. We find similar behavior of the 

system if o :la 0. This condition minimizes known cavity effects which allows a 

concentration on diffraction effects. 

Equation (II.68b) represents the output field, Et, at mirror Mn created from the field as 

it leaves the medium at position L. 

An essential part of boundary conditions is periodicity. Because of the continuous 
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propagation of the field, we have the necessary isochronous boundary conditions through 

the feedback mechanism provided by the Kirchoff diffraction integral. 



CHAPTERill 

COMPARISON TO PLANE WAVE MODELS 

Much theoretical work has been done in the area of plane wave effects in optical 

bistability since it was first predicted in 1974 [1] and experimentally verified a year later. 

[4] The early- to mid-1980s showed considerable research reporting phenomena like 

period-doubling bifurcations, [87] and self-pulsing and chaos. [88] For the purpose of this 

thesis, we will be mainly concerned with hysteresis and the effects of atomic and cavity 

detuning. For a good discussion on plane wave effects in optical bistability, see Ref. 31. 

To begin our analysis of the effects that free-space diffraction has on an optically 

bistable system, we select the limiting case of a large Fresnel number, where the ratio of the 

aperture radius to the injected signal radius is large, and compare the dynamics of the on

axis intensity in the free-space diffraction (FSD) system to the intensity in systems modeled 

in the plane wave (PW) limit. This is justified since we treat the field through the medium 

as a series of plane waves each corresponding to a particular annular ring and since large 

Fresnel numbers approach the plane-wave limit of this model. 

In this chapter, we briefly describe the well known plane wave model and compare the 

results displayed in the FSD system to the PW system. 

Plane Wave Models 

The Maxwell-Bloch equations coupled with boundary conditions are widely used to 

describe plane wave optical bistability. As a reminder, this system is a collection of 

homogeneously broadened two-level atoms whose central frequency COa is detuned from the 

injected signal frequency 000 by A. The nearest cavity frequency roe is detuned from 000 by 

the amount 6. The atomic line has a width 'Y.1 which is usually affected not only by the 

40 
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spontaneous decay of the excited state but also by collision processes. The cavity linewidth 

K is controlled by the mirror reflectivity and by the optical quality as known from the theory 

of optical interferometers. The coupled field-atom equations of motion are controlled by 

the atomic and cavity detuning parameters /1 and o, respectively. 

Most of the theoretical literature on the subject of plane wave OB concentrates on the 

physically relevant mean-field limit, a situation that is defined simultaneously by the effect 

of aL ~ 0 and T ~ 0 while at the same time the ratio aL IT remains constant and 

arbitrary. The intention is to simulate a situation where the cavity field is nearly uniform 

over the length of the medium. The limit aL ~ 0 by itself leads to a trivial situation 

because it implies the disappearance of the passive medium and the loss of any significant 

interaction and feedback between the atoms and the radiation. On the other hand, by 

requiring T ~ 0 by itself, the cavity field is made to interact weakly with the medium in a 

single pass. However, this also requires the cavity field to circulate many times before 

escaping. Thus the accumulated effect of the dilute medium on the radiation can be 

maintained sufficiently high. The single mode equations in the mean-field limit for the plane 

wave model are 

dE = - K ( (1 + i0) E - E. + 2CP) 
dt 1 

dP = - (1 + ill) P - ED 
dt 

~ =; (E*P+EP*) -y(D+l) 

(III. la) 

(III. lb) 

(III.le) 

where Ei represents the planar injected signal, K = cTf'Y1. A is the cavity decay rate, 0 = o/T 

is the cavity detuning scaled to the transmittivity, C = aL/2T = al/KA is the bistability 

parameter, and 'Y = y11 I 'Y 1. is the ratio of the population decay to the polarization decay rate. 

These equations utilize the Lugiato time and space transformation and dynamical variable 

transformations. [93] With these transformations, the boundary conditions of the cavity 

resonator are now incorporated within Eqs. (III. I) and need not be imposed separately. 



42 

The steady state equation, derived from Eqs. (III.I) by letting the time 't ~ oo, is given 

+ 2C ) + i ( e _ 2C~ ) ) 
1+~2+1Et12 1+~2+1Et12 (111.2) 

where Etss represents the steady state transmitted field. Equation (III.2) was first derived 

for absorptive bistability (8 = ~ = 0) by Bonifacio and Lugiato, [5] and later extended to 

the dispersive case by Lugiato. [90] The nature of this relation for different values of the 

control parameters C, ~. and 8 has been discussed extensively in the literature. Here, we 

only mention that Eq. (III.2) may be S-shaped under suitable conditions, a fact that 

suggests the possibility of hysteretic behavior. In particular, for the case of absorptive 

bistability (~ = 8 = 0), the steady state equation becomes 

(111.3) 

If we set dBi/ dEtss = 0 in Eq. (III.3), we analytically find expressions for the switch 

up, Eii, and switch down, EiJ,, amplitudes 

Ei i = JC- 1 -JC(C-4) ( 1 + 2C . ) 
C-JC(C-4) 

El. , = JC -1 + J C(C-4) ( 1 + 2c ) 
,j, C +JC(C-4) 

and the width of the bistability region, ~Ei, as 

all as a function of the bistability parameter, C. In the limit C >> 1, 

Eii = C and EiJ, = Jgc 

(III.4a) 

(III.4b) 

(IIl.5) 

(III.6) 
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Comparison of the FSD System to the PW Systems 

If we compare the axial field modulus in the FSD system in the plane wave limit (large 

Fresnel number) to the planar field modulus of the PW models, we find there are 

similarities and differences between these two systems. 

Figure 7 shows the steady state S-curve, Eq. (III.2), for the absorptive plane wave 

case when the atomic and cavity detunings A = 0 = 0 and the bistability parameter C = 

37 .5. As the input field strength, Bi, is increased from 0, the field inside the cavity also 

increases, lowering the absorption that the field experiences and thus increasing the field 

intensity still further. The system first occupies the low transmission branch, then abruptly 

switches to the high transmission branch when Bi= Bii• the switch up amplitude. 

Increasing the field strength further saturates the medium. If the field strength is 

subsequently lowered, the field inside the cavity tends to remain large because the 

absorption of the material system has already been reduced. One finds the switch down 

threshold occurring for smaller values of the incident field amplitude, namely when Bi = 

&J., the switch down amplitude. The system now follows the lower transmission branch. 

The bistable range, A.Bi, is defined as the range of the injected signal amplitude during 

bistable operation. Hysteresis may occur within this bistable range. Due to the inherent 

time dependence of the diffraction integral, a steady state analysis of the free-space 

diffraction system is unavailable. However, we compare the results from the dynamics of 

stable operation of the FSD system to the steady state results of the plane wave system. 

To compare these two systems we choose to analyze the switch up, switch down, and 

bistable range of both systems in resonance and with detuning. Figure 8 shows the 

behavior of the switch up, Bit, switch down, BiJ., and bistable range, A.Bi, of the resonant 

PW system as a function of the bistability parameter, C. From this figure we see that 

bistability occurs if C > Cmin = 4 as predicted by theory. [31] For the range of C chosen, 

&t appears linear while BiJ. has a square root dependence on C as predicted in Bq. (III.6). 

Figures 9 show the behavior of the on-axis Bit• BiJ.• and A&, of the resonant FSD 

system as a function of C for different values of the absorption 
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Figure 9. Switch Up and Switch Down Amplitudes and the Bistable Range 
as a Function of the Bistability Parameter for the FSD 
System. The parameters are: A = 0, and 1e = aL/2CA. 
(a) a.L = 0.375; (b) a.L = 0.75; (c) cxL = 1.25. The dotted 
line marks Cmin for the plane wave case. 
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a.L (K = a.LJCA). It is apparent that the FSD system is dependent on the independent 

values of the absorption and cavity detuning and not just the ratio of the two as found in the 

PW case. This may be due to the strong cavity dependence of the free-space diffraction. 

At the absorption value a.L = 0.375 in Fig. 9a we see that EiiFSD < EiiPW for all values of 

C where the superscripts indicate FSD or PW systems. But, at the absorption a.L = 1.25 

in Fig. 9c, EiiFSD > EiiPw. The dotted lines mark where the minimum value of the 

bistability parameter Cmin may occur even though -A& '¢ 0. At values of C below Crain - 4 

it is difficult to determine whether there is bistability in the system due to the deformity of 

the bistable loop. 

As we noted earlier, Ei iPW - C for large C, i.e. as the value of the bistability parameter 

increases the value of the switch up amplitude linearly increases for the plane wave system 

to switch to the upper branch. In the FSD system, EriFSD, EiJ.FSD, and A& all approach a 

limiting value. For a.L = 0.375, EiiFSD ~ - 30 while for a.L = 1.25, EiiFSD ~ - 60. 

To compare the effects that detuning have on both systems, we plot the switch up, Ei i, 

and switch down, EiJ.• amplitudes and the bistable range, A&, as a function of atomic 

detuning for both systems in Figs. 10. The FSD system parameters, a.L = 0.75 and K = 

0.02 gives the bistable parameter value of C = 37 .5 which is used for the plane wave 

system. From Fig. 10a we see that the PW system is symmetrical about the A = 0 line 

because the system is unchanged if A ~ - A in the modulus of the steady state equation, 

Eq. (ill.2), if the cavity detuning 0 = 0. We also find that the bistable range AEi is a 

maximum if A = 0 and decreases as A ~ ±10. From this we see that atomic detuning in a 

plane wave, homogeneously broadened system is a destructive effect 

When free-space diffraction is added, the system no longer has the symmetric behavior 

in the absence of implicit cavity detuning as shown in Fig. 10b. This asymmetry may be 

caused by a free-space diffraction induced cavity detuning due to an inherent phase shift in 
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Figure 10. Switch Up and Switch Down Amplitudes and Bistable Range 
as a Function of Detuning. (a) The PW System with C = 
37.5 and 9 = O; (b) The FSD System with aL = 0.75 
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the diffracted field. We also find that positive atomic detuning is not destructive in this 

system since the bistable range remains large for large values of positive detuning, 

however, larage negative detuning destroys bistability. 

49 

For comparison if we detune the cavity frequency away from the injected signal carrier 

frequency for the PW system, we find a situation similar to the FSD system. Figures 11 

show the plane wave system for increasing values of positive cavity detuning ( roe > ro0 ). 

The PW system is no longer symmetrical about the ~ = 0 line similar to the FSD system. 

However for large detunings, bistability is destroyed for large negative atomic detuning. If 

the cavity detuning is negative (roe< ro0 ), the PW system no longer resembles the FSD 

system. The asymmetry displayed in the PW system caused by cavity detuning leads us to 

predict that free-space diffraction does indeed induce a positive cavity detuning but not 

enough to eliminate bistability. 

The physical appearance of the bistable loop is compared for the FSD and the PW 

systems. Figures 12 show a ramp up and a ramp down for both the plane wave and the 

free-space diffraction systems. Ramps are performed by slowly increasing (decreasing) 

the injected signal amplitude according to the following relation Ei = Ei0 + v*tR where Ei° 

is the initial injected signal amplitude; Ei0 = 0 for the ramp up and Ei° > Eif for the ramp 

down. The velocity parameter v = ± 10 -4 (the positive sign denotes a ramp up and the 

negative sign denotes a ramp down) and tR is the round trip time. These ramps were 

created by solving Eqs. (11.21) with (II.55), and (III. I). The system parameters used for 

this comparison are C = 37.5 (cx:L = 0.75), ~ = e = 0, K = 0.02, and y= 0.01. These 

parameters describe a resonant and good cavity system. There are four clear behavioral 

departures: (1) The PW system, Fig. 12a, has short switch up and switch down times, i.e. 

there is no deformation of the bistable loop. The bistable loop for the FSD system, Fig. 

12b, is deformed compared to the PW bistable loop, i.e. the switch up/down is much 

slower than in the PW system. (2) The transmitted field, IEtl, for the PW system is much 

larger (for these parameters, a factor of 10) than the transmitted field of the FSD system. 

This is due to the high cavity losses associated with diffraction effects. (3) The bistable 



Ei 
50 

40 

30 

20 

10 

0 
-10 -5 0 5 

Figure 11. Plane Wave Switch Up and Switch Down Amplitudes and 
Bistable Range as a Function of Detuning. C = 37.5. 
(a) e = 0.5; (b) e = 1.0; (c) e = 1.5. 

50 

10 



50...--------------, 

IEt I (a) 

40 

30 

20 

10 

10 20 30 

5 ;--' -------------, 

IEt I (b) 

4 

. 3 

2 

1 

Figure 12. The Transmitted Field as a Function 
of the Injected Field. 
(a) PW System with C = 
37.5, ~ = 0 = O; (b) FSD 
System with aL = 0.75, K 

= 0.02, and ~ = 0. 

51 



52 

range (width of the bistable loop) of the PW system is larger than the bistable range of the 

FSD system as previously shown. (4) In the PW model, the hysteresis loop does not 

change significantly as long as the cavity quality K is in the good cavity limit or high-Q 

condition. In the FSD model, we see a strong dependence on K, i.e. a strong dependence 

on cavity quality due to the cavity dependence of the diffraction integral. 

The stability of the plane wave steady state is studied according to conventional linear 

stability methods. [95] The main idea of the method is to explore the behavior of the system 

in the neighborhood of a steady state. If small deviations from steady state should grow 

exponentially, the system will be said to be unstable. One result of the linear stability 

analysis for the PW system shows that the segment of negative slope of the steady state 

curve (see Fig. 7) will always be unstable. Along the negative slope region of the state 

equation, an increase of Ei yields a decrease in the output intensity. This is an unphysical 

situation. Another result shows that the lower transmission branch of the state equation is 

stable while the high transmission branch can undergo undamped periodic oscillations and 

chaos. [93] Although we do not perform a linear stability analysis on the FSD system due 

to the inherent time dependence of the diffraction integral, we find dynamically that the 

FSD model exhibits the unstable behavior of the negative slope branch and a stable lower 

branch like the PW system, but there is unstable behavior in the upper branch for a wider 

range of parameter space than the PW system. 

Discussion 

In this chapter we compared the on-axis intensity of the free-space diffraction system in 

the regime of large Fresnel numbers to the intensities displayed in the plane wave system 

and found similarities and differences. (1) The minimum value of the bistability parameter 

for both system to undergo bistability is approximately the same. (2) The FSD system is 

strongly affected by the individual values of the absorption loss and the cavity loss while 

the PW system is dependent only on the ratio of the absorption loss to the cavity loss 

provided that the cavity quality is good. (3) The switch on/off amplitudes and the bistable 

range of the PW system in the absence of cavity detuning is symmetrical about the fl. = 0 
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line, i.e. the system is unchanged if /l. --+ - ll.. Under the influence of cavity detuning the 

switch on/off amplitudes and the bistable range are no longer symmetrical which is the 

effect reported in the FSD system without explicit cavity detuning. ( 4) The PW bistable 

loops have a sharp turn on/off while the FSD bistable loops are deformed. (5) The FSD 

model exhibits the unstable behavior of the negative slope branch and a stable lower branch 

like the PW system, but there is unstable behavior in the upper branch for a wider range of 

parameter space than the PW system. 

The similarities displayed between these two systems are due to the plane wave like 

nature of the field through the medium in the FSD system. The differences between these 

two systems may be attributed to the Gaussian nature of the injected signal, the added 

complexity of free-space diffraction, and the cavity induced phase shift calculated in the 

diffraction integral. 



CHAPTERN 

TRANSVERSE EFFECTS IN 

OPTICAL BISTABILITY 

Transverse effects are known to play a central role in nonlinear-optical systems. Since 

experiments are generally performed with lasers with finite transverse dimensions, the 

transverse nature of the field must be considered. In some such systems pattern formation 

is dependent sensitively on the particular physical mechanism(s) that may be active. [96] 

Experimental evidence, for example, indicates that these mechanisms which can create 

transverse structures are important in optical bi stability and focusing/defocusing. [31] 

Mechanisms that influence transverse field profiles can take the form of diffusive and 

diffractive coupling within the medium, free-space diffraction, or some combination of 

these. In particular, transverse coupling is attributed to such phenomena as radial 

dependence of the switch up times of bistable loops, [31] spatial hysteresis, [66] and the 

formation of solitary waves in passive systems. [57] For current studies and a good 

historical review of transverse effects in both active and passive systems see Ref. 97. 

Understanding the mechanisms behind transverse coupling of the field is important. 

The change in the field profile may be due, for example, to the response of the medium in 

the form of diffusive or diffractive coupling within the medium or to free-space propagation 

through the optics of the physical setup; New technology in high speed, low cost 

computers provides opportunities for newer, sophisticated numerical models that can 

explore these mechanisms. Of these models both high and low finesse cavities are 

considered. For high finesse cavities, the widely used mean-field limit encourages a 

Gauss-Laguerre mode-expansion approach. [ 45] In low finesse cavities where the mean

field limit no longer applies, a Fourier-transform (FT) technique is frequently used to 

propagate the field through the medium. [54] Most papers which use the FT technique 

adiabatically eliminate the polarization and population difference to reduce the complexity of 

54 



55 

the system thus making a Ff technique applicable. This reduced system, where the 

medium response time is assumed to be much less than the round trip time, is within the 

so-called Ikeda approximation. [7] Free-space diffraction is incorporated in models by Le 

Berre, Ressayre, Tallet, and Zondy [44, 98, 99] who study single-pass systems. 

We consider the dynamical effects of free-space diffraction in a unidirectional ring 

cavity containing a thin resonant absorber driven by an external coherent signal. We have 

minimized focusing effects by incorporating a thin medium whose width is small compared 

to the cavity length and Raleigh range. We place no restriction on the medium response 

time relative to the round trip time; i.e. the time-dependent polarization is not adiabatically 

eliminated from the equations of motion. We isolate free-space diffraction effects and argue 

that diffraction and diffusive coupling within the medium is negligible. In this model where 

free-space diffraction is the dominant mechanism for changing the. field profile in the 

system, shifting and deformation of the bistable loop and spatial hysteresis occurs. Radial 

variation of the bistable loop is found, however, it is not a strong effect. We conclude that 

radial variation of the bistable loop is largely an effect of diffusion as suggested by Ref. 64. 

In this chapter, we briefly describe the most popular models that study diffractive or 

diffusive coupling within the medium and compare effects seen in the FSD system with 

effects reported in these other transverse effects models. 

Other Transverse Effects Models 

We compare the system that studies free-space diffraction to transverse effects systems 

that study diffractive coupling of the field within the medium and diffusive coupling of the 

excitation. From this point on we refer to these systems as DCM, transverse coupling 

within the medium and DCB, diffusive coupling of the ex.citation. This is not to imply that 

we compare the FSD system to all systems that include transverse effects, just the models 

that are described in this thesis. 

In general, there are two types of transverse coupling mechanisms. (1) Diffractive 

coupling of the field is important when the input pump beam spot area, A < 11.L where A is 

the optical wavelength and L is the length of the medium. (2) Diffusive coupling is 

significant when the spot area has a size A < L0 2, where Ln is the diffusion length of the 



excitation responsible for the nonlinearity. In this section we briefly define the models 

associated with diffractive coupling within the medium and diffusive coupling of the 

excitation. 

Diffractive Couplin~ Within the Medium 
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The Maxwell-Bloch equations coupled with boundary conditions are used to describe 

the optically bistable system which includes· transverse coupling of the field within the 

medium. Most of the theoretical literature on the subject of transverse effects in OB 

concentrates on the diffraction effects within the medium by including the Laplacian term in 

the field equation. The full set of Maxwell-Bloch equations take the form 

__ i_ V2E + aE + 1_aE = _ aP 
2k0 T dZ ~ d't 

aP = - (1 + iA) P - ED 
dt 

: = ; (E*P +EP*) - y(D + 1) 

(IV.la) 

(IV.lb) 

(IV.le) 

where ~ = c / y 1. is the speed of light scaled to the polarization decay rate, y = y11 I y 1. is the 

ratio of the population difference decay rate to the polarization decay rate, ~ = ( ma - m0 ) / ''fl_ 

is the detuning of the injected signal carrier away from the atomic transition frequency, and 

ex is the absorption per unit length of the atomic medium. To complete this model, 

appropriate cavity boundary conditions must be imposed. 

Much of the work in this area has been done in the limit that the medium response time 

is much faster than both the cavity round-trip time and changes in the input field amplitude 

or phase, the so-called Ikeda limit. In this limit we find the steady state polarization and 

population difference of Eqs. (IY.lb, c) 

p = (1 - iA) E 
ss 1 + ~ 2 + 1Ei2 (IV.2a) 
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2 
D =- l+A 

ss 1 + A 2 + 1Ei2 . (IY.2b) 

and the equation of motion becomes 

__ i_ V2E + aE = a 1-iA E 
2ko T az 1 + A 2 + IEl2 

(IY.3) 

where Z = z and 't ~ 't - z / ~ are the new retarded variables. Rewriting this equation to 

include the Fresnel number, F, gives 

i V2E+aE=a 1-iA E 
41tAF T az ' 1 + A 2 + IEl2 

(IY.4) 

where the transverse coordinate has been scaled to the pulse width, ro0 • 

This quasi-dynamical equation, Eq. (IY.4), represents the governing equation used in 

most systems that study diffraction effects within the medium.[45, 50, 57] The first term 

in Eq. (IY.4) describes diffraction effects while the last term is the product of the nonlinear 

saturable absorption/dispersion with the field. Once again, note that a steady-state Bloch 

equation has been used to describe absorptive and dispersive effects and that diffraction 

effects due to free-space propagation are ignored. 

Diffusion of the Excitation 

In this model, diffusion of the excitation is the primary mechanism for transverse 

coupling of the nonlinear medium. This is a significant effect in materials like InSb. [64] 

Theoretical research in this area has been done by, for instance, Firth et al. [67, 100] who 

showed that diffraction and diffusion give rise to qualitatively similar effects and by Koch 

et al. [101] who solved the transport equation and discovered a "kink" or a discontinuity in 

the excitation density in the direction of the beam propagation. 

We consider a plane parallel etalon composed of a material (like InSb) characterized by 

a diffusive Kerr-type nonlinearity, pumped by an input beam of scaled transverse profile 

&(P ). The round trip nonlinear phase shift <I> can, if diffraction within the medium is 

negligible, be obtained by solving the partial differential equation [100] 



(IY.5) 

where te is the decay time of the excitation (recombination time in In.Sb), L0 = (Dte)l/2 

where D is the diffusion coefficient, o is the cavity detuning, and Ii (p) is the scaled input 

intensity. The medium contribution resides within the finesse factor, Fff, given by 

F = 4Re-aL 
ff (1-Re-aL)2 

(IY.6) 

where R is the reflectivity and a is the absorption coefficient. 

Comparisons With Other Transverse Systems 
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We compare known phenomena displayed in systems that consider difftactive coupling 

within the medium and systems that consider diffusive coupling of the excitation to the 

free-space diffraction system. We show that the FSD system is inherently dispersive and 

behaves similar to systems which display self-lensing. Self-lensing is a consequence of a 

thick medium, transverse effects, and a nonlinear refractive index which is positive for self

focusing (negative for self-defocusing). As a result of this nonlinear response, the 

refractive index of the material is larger (smaller) at the center of the laser beam than at its 

periphery, with the result that the medium is in effect turned into a positive (negative) lens. 

Due to the thin nature of the medium in the FSD system and the lack of transverse coupling 

within the medium, we argue that self-focusing/defocusing, in the known definition, is 

negligible. 

There are six different phenomena, bistability threshold, switch on powers, spatial 

hysteresis, shifting, deformation, and radial variation of the bistable loop that is displayed 

in the FSD system. We compare these effects to similar effects reported in either the DCM 

or the DCE systems. 

Bistability Threshold and Switch On Power 

Independent papers by Ballagh et al. [ 45] and Drummond [ 46] that compare diffractive 
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coupling in an optically thin medium in the absorptive case to the plane wave absorptive 

case suggest that: 1) The critical threshold for the bistability parameter increases when 

diffractive coupling is included, and 2) the injected signal for the switch on power is an 

order of magnitude greater compared to the plane-wave systems. For the limiting condition 

of large Fresnel numbers (plane-wave approximation), the FSD model in the absorptive 

limit (A = 0) shows that the critical threshold for the bistability parameter remains about the 

same as the plane wave system and that the switch on power of the injected signal is 

approximately the same as the plane wave systems (see Figs. 7 and 8) - never an order of 

magnitude difference as in Refs.45 and 46. 

By contrast, Refs. 45 and 46 report that the switch on power in the limit of dispersive 

bistability does not differ greatly from the plane wave system. As mentioned earlier, this is 

also seen in the FSD system in the limit of explicit absorptive bistability (A = 0). The FSD 

system has an inherent dispersive property due to the phase shift acquired during free-space 

propagation. 

Shifting and Deformation of the Bistable Loop 

In general when transverse effects are considered in a dispersive passive bistable 

system, shifting and deformation of the bistability loop can occur. We say that the bistable 

loop has shifted, either for increasing or decreasing switch on amplitudes, compared to 

either the absorptive case (A= 0) or the large Fresnel number case (F >> 1). We define 

deformation to mean a slow switch on or switch off. Shifting of the bistable loop is known 

to occur, for instance, in the study by Marburger and Felber [102] who show that self

focusing due to an effective refractive index change (positive detuning) reduces 

substantially the powers for bistable operation relative to the plane mirror geometry. In 

other words, they found that the effect of self-focusing shifts the bistable loop towards 

decreasing injected signal strengths. 

In the limit of absorptive bistability, DCM systems report sharp switch on/off while 

deformation of the bistable loop is reported in the limit of dispersive bistability. [31] In 

particular, Moloney and Gibbs [57] show that for a dispersive system in the large Fresnel 
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number regime where diffractive coupling within the medium is dominant, deformation of 

the bistable loop is due to the rate at which the radial annular rings turn-on/off. The 

discontinuity between the "on" inner spot (residing on the upper branch) and the "off' outer 

spot (residing on the lower branch) results in a very slow expansion of the "on" spot, thus 

causing a deformed bistable loop. For small Fresnel numbers, there is less deformation 

allowing for whole-beam switching. 

We consider the limiting conditions of large and small Fresnel numbers, F >> 1 and 

F < 1 to study the shifting and deformation of the bistable loop in the FSD system. 

Large Fresnel Numbers For large Fresnel numbers where the ratio of the aperture 

radius to the injected signal radius is large, the FSD system displays a shift in the bistable 

loop similar to systems that include diffraction within the medium under the influence of 

self-focusing and self-defocusing. For a positive detuning, A > 0, we see in the FSD 

model a shift in the first turning point of the bistable loop towards decreasing injected 

signal and a corresponding increase in axial intensity; conversely for negative detuning, A 

< 0, there is a shift in the first turning point towards increasing injected signal and a 

corresponding decrease in axial intensity. This effect is shown in Figs. 13 - 15 which are a 

plot of the axial intensity as a function of the injected signal for three values of the atomic 

detuning parameter, A= 5, 0, - 5. Figures 13 have parameters of aL = 0.375 and 1C = 

0.01. Figures 14 have aL = 0.75 and 1C = 0.02, and Figs. 15 have aL = 1.25 and 1C = 

0.033. We choose these parameters to compare since the absorption to cavity loss ratio is 

constant, i.e. C oc aUK = 37 .5 for each figure. 

The low absorption system displayed in Figs. 13 is extremely affected by free-space 

diffraction effects since the bistable loop for A = ± 5 is greatly deformed. We find that the 

bistable loop for A= 5 (Fig. 13a) is shifted towards decreasing injected signal and for A= 

- 5 (Fig. 13c) it is shifted towards increasing injected signal. However, as we increase 

both the absorption and cavity losses (see Figs. 14 and 15), the bistable loops are better 

developed, i.e. the increased absorption within the medium overcomes the effects due to 
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free-space diffraction. For negative detuning, there is a shift towards increasing injected 

signal and a decrease in axial intensity, and a shift towards decreasing injected signal and an 

increase in axial intensity is displayed for positive detuning. This is similar to DCM 

systems under the influence of self-focusing. [102] 

Also shown in Figs. 13 - 15, the FSD system displays a strong deformation of the 

bistable loop as a function of the detuning. For positive detuning the deformation is 

minimal while negative detuning washes out the hysteresis. Positive detuning, associated 

with focusing effects, appears to be less destructive than negative detuning which is 

associated with defocusing effects. Here, free-space diffraction couples with atomic 

detuning causing an effect similar to self-focusing and self-defocusing. 

In the good cavity condition where the cavity losses are small, K = 0.02, we find that 

the FSD system behaves in an intuitive and physical way. Figures 16 shows for 

resonance, the bistable loops for three different absorptions. For small absorption (Fig. 

16a), the system switches and saturates quickly. As the absorption increases, it takes a 

larger amplitude of the injected signal to switch the system. As the input field strength is 

slowly increased, the field inside the cavity also increases, lowering the absorption that the 

field experiences and thus increasing the field intensity still further. The system first 

occupies the low transmission branch then abruptly switches to the high transmission 

branch at the switch up amplitude. Increasing the field strength further saturates the 

medium. If the system has a small absorption coefficient then the switch up field amplitude 

will be smaller than the system with a larger absorption coefficient. 

At a bad cavity condition where the cavity loss is an order of magnitude greater, K = 

0.2, a curious behavior is seen that is not reported in other transverse effects systems, to 

the knowledge of the author. Figure 17 shows the resonant FSD system for two different 

values of the cavity loss, K. Here we find that an increased cavity loss causes the bistable 

loop to shift towards decreasing injected field strengths, noticeably deforms the loop, and 

increases the output intensity over the entire range of the injected signal parameter 

compared to the system with lower cavity loss K = 0.02. Initially, this is counter-intuitive, 

but it may be explained as follows. If we effectively eliminate the medium, setting a.L = 0, 
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and calculate the transmission from the cavity, we find that a cavity loss of K = 0.2 is larger 

than the rate at which the intracavity field is lost through diffraction. This results in a larger 

output field compared to the cavity with low loss. In other words, in a good cavity (low 

mirror loss) the field remains in the cavity longer allowing free-space diffraction to leak the 

field out at a faster rate. As the injected field strength, Bin, is increased from O the field 

builds up quicker in the higher K-cavity compared to the lower K-cavity which results in a 

lower effective absorption of the medium. The medium quickly saturates and thus the 

bistable loop is shifted to the left. 

Small Fresnel Numbers For decreasing Fresnel numbers where the ratio of the 

aperture radius to the injected signal radius is small, less deformation of the bistable loop 

exists in the FSD system. Figure 18 shows the behavior of the axial output field modulus 

as a function of the injected signal for three representative Fresnel numbers. We observe as 

F ~ 0, three characteristics: 1) The bistability is not destroyed by strong diffractive 

coupling in free space - a result also noted by Moloney et al., [54] Scalora and Haus, [103] 

and Reinisch and Vitrant [104] whose systems include diffractive coupling within the 

medium. 2) There is a shift in the bistable loop towards decreasing injected signal strength. 

3) There is a measurable increase in the axial output intensity. These last two results are 

merely an artifact of the type of cavity chosen and should not be considered physical. They 

can be explained by considering the following argument. As we decrease the Fresnel 

number, the low intensity wings of the injected signal are eliminated leaving only the high 

intensity central ring. The feedback field, which has broadened considerably due to 

diffraction, recombines with the injected signal to create a high intensity central ring with 

low intensity outer rings, similar to a field profile created by self-focusing. This type of 

field profile coupled with the nonlinear phase shift during free-space propagation induces 

the medium to response like a weak lens which, for very short distances, gives a larger 

axial field. Since the output coupler is a short distance from the input coupler, very little of 

the high intensity central ring has diffracted giving a false impression of a larger axial 

intensity compared to the large Fresnel number system. This increased intensity shifts the 

loop to the left. If the output coupler had been placed much further away from the medium 
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allowing the free-space diffraction to broaden the profile, the expected result (a decrease in 

axial intensity and a shift to the right) would be given. 

In Figs. 19 for a low Fresnel number, F - 0.1, with three different values of the atomic 

detuning, it can be seen that the system follows similarly to the behavior of the system 

with large Fresnel numbers except that the overall axial intensities are larger. 

In Fig. 20, we compare the switch on amplitude for the large and small Fresnel cases 

for three values of the absorption and cavity loss (the ratio of absorption to cavity loss is 

constant, C = 37.5 in each case) as a function of detuning. There are four behavioral 

characteristics. (1) In general, the switch on power is smaller for the small Fresnel number 

system compared to the large Fresnel number system as mentioned earlier for the entire 

range of atomic detunings. However, at certain detunings (for aL = 0.375, A= 5 and for 

aL = 0.75, A = 10) the switch on amplitudes for both cases are the same. (2) For both the 

large and small Fresnel number systems for atomic detunings IAI > 5 and aL = 0.375, 

bistability no longer exists. (3) For A> 10 in Fig. 20b, both the large and small Fresnel 

number systems have the same switch on amplitude. ( 4) We also see that as the detuning 

is increased, the injected signal switch on amplitude limits at particular values of Ei i, i.e. in 

Fig. 20a Eii ~ = 10 and in Fig. 20b Eii ~ = 20. For larger detunings, the bistable loop 

remains stationary, i.e. the loop will not continue to shift 

Spatial Hysteresis and Radial Variation of the Bistable Loop 

Important transverse effects in optical bistability include the spatial hysteresis of the 

ouput-beam profile and radial variations of the bistable loop. Several papers study this 

phenomena which was first predicted by Rozanov and Semenov [66] and later considered 

theoretically by groups like Firth and Wright. [50] The subject is given experimental 

foundation by Grigor'yants and Dyuzhikhov [64] who study an InSb Fabry-Perot system. 

Diffusion within the medi.um is the assumed, dominant mechanism of transverse coupling 

in their system. Studies by Khoo et al. [105] report bistability in the transverse profile in 

the transmission through a nonlinear thin film. 
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Spatial hysteresis, associated with dispersive optical bistability and self-lensing due to 

an intensity dependent index of refraction, arises from the nonuniform switching that gives 

rise to a switching wave which moves from the area of maximum input intensity toward the 

beam periphery. When the intensity of a particular radial ring is larger than the switching 

intensity, that radial ring switches to the upper branch leaving the lower intensity rings on 

the lower branch. Different radial rings appearing on different branches causes changes in 

the overall radial profile. The sharpness of the switch is determined by the extent of 

diffraction or diffusion of the nonlinearity. Such a switching pattern should result in a 

dramatic change in the bistable loop at different transverse coordinates, as was theoretically 

predicted by Firth and Galbraith. [67] They show that radial variation of the bistable loop 

results from a system which considers diffusive coupling. They do not explicitly single out 

diffusive coupling as the only mechanism leading to this effect. 

In the free-space diffraction model, spatial hysteresis of the output beam profile is seen. 

Figure 21 shows characteristic radial profiles in resonance taken as we adiabatically scan 

the injected signal strength. Each radial profile is scaled to its maximum to easily compare 

the transverse structures. The bistable region is marked by the arrows. The parameters 

used for this figure are an absorption of a.L = 0.75, a low loss cavity, K = 0.02, atomic 

resonance .1 = 0, and a large Fresnel number F >> 1. (See Fig. 14 for the corresponding 

bistability curve.) We find that the radial profiles of the output field in the lower branch 

outside of the bistable range remain the same regardless of the initial conditions (profile at 

Bin = 5) and similarly with the upper branch outside the bistable range (Bin = 40 - 50). 

Within the bistable loop, however, different transverse structures are displayed (10 <Bin< 

35). The radial profile of the lower branch within the bistable range remains similar to the 

profile at a smaller amplitude of the injected signal. As the injected signal is increased, the 

profile slowly reshapes itself to appear similar to the profile in the upper branch outside the 

bistable range. Likewise, as the signal is decreased, the profile slowly reshapes itself to 

appear like the profile in the lower branch. This gradual change in transverse profile is due 

to the deformation, slow turn on/off, of the bistable loop. 

Atomic detuning is a negative effect in the study of spatial hysteresis. As we increase 

the detuning, the deformation of the bistable loop increases and we correspondingly lose 
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the spatial hysteresis effect. Figure 22 shows how the spatial hysteresis is diminished for 

an atomic detuning L\ = 5. 

Likewise, a small Fresnel number is also a destructive effect when studying spatial 

hysteresis. Figures 23 and 24 show for small Fresnel number, radial profiles taken as the 

injected signal is slowly scanned. As we decrease the Fresnel number, we find that spatial 

hysteresis is less defined, although it still remains measurable. 

Spatial hysteresis in the absence of power hysteresis is not seen in the FSD system. 

This is in contrast to the study by Firth and Wright [50] who consider transverse coupling 

effects in a plane parallel Fabry-Perot containing a medium exhibiting nonlinear refraction 

who show that even in systems which do not display power hysteresis, spatial hysteresis 

can still occur. This was not observed in the FSD system; that is, spatial hysteresis is seen 

only in the presence of power hysteresis. The absence of a well defined bistable loop 

eliminates spatial hysteresis in the free-space diffraction model. 

Dramatic changes in the bistable loop at different transverse coordinates known as 

radial variation of the bistable loop is not a strong effect in the FSD system due to the 

strong deformations of the loop. Figure 25 shows radial variation of the bistable loop in 

the FSD system. Each bistable loop is scaled to the maximum output field value in order 

to easily compare the loop structures. Figure 25a is a typical radial profile for this system 

where we have selected points p1 - p5 along the transverse profile to display bistable 

loops. Figures 25b - fare the bistable loops taken at radial positions p1 - p5, respectively; 

only Figs. 25c and f show the only remarkable difference in the bistable loop. In Fig. 25c 

there exists a double bistable loop and increased instability in the upper branch while Fig. 

25f shows an increased instability in the upper branch. The radial variation of the bistability 

loop of the FSD system pales in comparison to the effect displayed in diffusive systems. 

The results of the FSD system are unremarkable and support diffusive coupling as a 

dominant mechanism in the radial variation of the bistable loop. 

Discussion 

In this chapter we compared the free-space diffraction system to systems which 
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consider diffractive or diffusive coupling within the medium as the dominant transverse 

coupling mechanism. We argue that the thin nature of the medium used in the FSD system 

eliminates/diminishes diffractive or diffusive coupling within the medium which eliminates 

nonlinear dispersion effects like self-lensing in the usual definition. The only transverse 

coupling mechanism is free-space diffraction. We find several comparisons between these 

systems. (1) Models that describe diffractive coupling within the medium in the dispersion 

limit report switch on powers similar to the PW system. This effect is seen in the FSD 

system without explicit dispersion dependence. (2) The FSD system resembles transverse 

effect systems under the influence of self-focusing. We report shifting of the bistable loop 

as a function of the atomic detuning and Fresnel number. Deformation of the bistable loop 

is minimal under positive detuning (associated with self-focusing) while negative detuning 

(associated with self-defocusing) washes out the hysteresis. The DCM systems report 

deformation of the bistable loop only in the limit of dispersive bistability; they report sharp 

switch on/off in the absorptive limit. (3) Spatial hysteresis and radial variation of the 

bistable loop, which are associated with dispersive optical bistability, are observed in the 

FSD system without explicit dispersion dependence. These effects, shifting, deformation, 

and radial variation of the bistable loop, and spatial hysteresis can be attributed to a system 

that considers free-space diffraction in the absence of diffrative effects within the medium. 



CHAPTERV 

SUMMARY AND CONCLUSIONS 

In this thesis, we discuss the free-space diffraction influence in an optically bistable 

system. This work is the natural extension of work done previously by several authors 

which studied plane wave effects, diffraction of the field within the medium, and diffusion 

of the excitation. We argue that the thin nature of the medium eliminates/diminishes 

transverse coupling within the medium. We make several comparisons between the 

phenomena displayed in the free-space diffraction system to phenomena reported in other 

plane wave and diffractive or diffusive systems. We find that the FSD system relates 

favorably with dispersive systems and relates poorly with absorptive systems. There are 

several similarities and differences. (1) The atomic and cavity resonant FSD system 

resembles the plane wave system in the presence of atomic and cavity detuning. (2) 

Models that describe diffractive coupling within the medium in the dispersion limit report 

switch on powers similar to the PW system which is seen in the FSD system without 

explicit dispersion dependence. (3) The FSD system resembles transverse effect systems 

under the influence of self-focusing. We report shifting of the bistable loop as a function of 

the atomic detuning and Fresnel number. Deformation of the bistable loop is minimal under 

positive detuning (associated with self-focusing) while negative detuning (associated with 

self-defocusing) washes out the hysteresis. The DCM systems report deformation of the 

bistable loop only in the limit of dispersive bistability; they report sharp switch on/off in the 

absorptive limit. ( 4) Spatial hysteresis and radial variation of the bistable loop, which are 

associated with dispersive optical bistability, are observed in the FSD system without 

explicit dispersion dependence. 

In the plane wave systems and transverse effects systems mentioned, dispersion in a 

product of large atomic or cavity detunings. However, in the FSD system, there does not 

exist a clear distinction between absorptive and dispersive bistability. Dispersion is 
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synonymous with detuning (or phase shift), either atomic or cavity. In the FSD system, 

dispersion is an inherent, inescapable, part of this system due to the phase shift of the field 

calculated within the free-space diffraction integral. 

The diffraction-induced dispersive behavior reported in this thesis has not been 

discussed in other transverse effects models to the knowledge of the author. The DCM and 

DCE models discussed rely on diffractive or diffusive coupling within the medium as the 

dominant transverse coupling mechanism. Although there is an explicit phase shift of the 

field in the diffraction term of the DCM model, see Eq. (IY.4), dispersive behavior in the 

resonant system is not reported. The DCM models adiabatically eliminate the medium 

variables, both the atomic polarization and population difference, to greatly reduce the 

complexity of the problem which, in tum, reduces the computation time. This results in a 

loss of dynamics and information. It is the opinion of this author that if the medium 

variables had been eliminated from the FSD system, the dispersive phenomena displayed in 

the resonant case would be greatly diminished or nonexistent consistent with the models 

that describe diffractive coupling within the medium. 

In conclusion, we show spatial hysteresis in the presence of power hysteresis, shifting, 

deformation and radial variation of the bistable loop and can be attributed to a system that 

considers free-space diffraction independent of diffusive and diffractive coupling within the 

medium. The coupling between detuning and free-space diffraction can cause an effect 

similar to self-focusing and self-defocusing. 
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Ray optics (geometrical optics without diffraction) is useful in understanding the full 

diffractive propagation of light waves in optical resonators. Ray matrices (ABCD matrices) 

are widely used to describe the propagation of geometrical optical rays through paraxial 

optical elements such as lenses or spherical mirrors. In particular, ray matrices can predict 

stable and unstable operating conditions of optical resonators. Even though diffraction is 

not considered, this approach will give us a rough estimate of cavity stability. Another 

problem that arises is that we are injecting a signal on each round trip of the field. This 

could cause an instability to occur. Although this would not affect a system based on 

geometrical optics, it could affect a system which considers diffraction (wave optics). 

An empty ring cavity is always stable, provided that the mirrors are planar. However, 

when any other optical device is placed inside the cavity, the cavity may become unstable. 

We use matrix optics to do the stability analysis of our empty ring cavity. The empty ring 

cavity has one planar mirror and two spherical mirrors, see Fig. 27. Here, R1 and R2 are 

the radii of curvature of mirrors 1 and 2 respectively, p1 and p2 are the distances between 

the mirrors and the dashed line (point X), and p3 is the distance from mirror 2 around the 

cavity to mirror 1. A= P1 + P2 + P3· 

The matrix equation describing propagation in free-space is 

[ r~ut ] = [ 1 d] l:~~ J 
rout O 1 m (A.l) 

while the matrix equation describing a reflection from a perfectly reflecting mirror is 

[r t] [ 1 OJ [r. ] OU lil 

I = _1._ 1 . r' 
rout R in 

(A.2) 

where rin and rout measures the distance from the axis of the ray entering the system and 

leaving the system, respectively, and rin' and r0 ut' are the slopes of the input and output 

rays, respectively. 

Beginning the stability calculation at point X and using the ray matrices defined above 

we find the following relation 
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Figure 26. Empty Cavity Schematic 
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(A.3) 

where X' denotes the same physical point as X after passing around the cavity once. The 

coefficients in the constant matrix are 

(A.4a) 

(A.4b) 

(A.4c) 

(A.4d) 

It is a general property of all the basic optical elements that the ray matrix determinant be 

equal to one, i.e. AD - BC= 1. 

The constant matrix will be independent of the pass through the system, so we can 

write in general 

(A.5a) 

(A.5b) 

Solving for rn' in Eq. (A.5a), letting n -> n+ 1, and substituting into Eq. (A.5b) we find the 

following difference equation describing the evolution of a geometrical ray in an optical 

cavity 

rn+Z - (A+ D) rn+l + (AD - BC) rn = 0 (A.6) 

Using the fact that AD - BC= 1 and defill!ng 2b =A+ D = Tr (constant matrix) we find 

r 2 - 2br 1 + rn = 0 n+ n+ (A.7) 

This difference equation is mathematically equivalent to the differential equation of the 

form 



ir _ 2 ---.91.r 
dz2 
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(A.8) 

where .91. is a constant to be found. Eq. (A.8) has solutions of the form r±Cz) = P± 

exp(±i.91.z) where p is a constant. Therefore, we look for solutions to Eq. (A.7) of the form 

Substituting Eq. (A.9) into Eq. (A.7) and solving for exp(hjf) gives 

ei'P=b±i~ 

but by Euler's theorem 

exp(hJf) = cos\jf + i sin\jf 

(A.9) 

(A.10) 

(A.11) 

provided that l'Jfl ~ 1. Comparing Eq. (A.11) with Eq. (A.10), we have as the necessary 

and sufficient condition for cavity stability that lbl ~ 1, or using the ray matrix elements 

IA+DI < l 
2 - (A.12) 

We can rewrite the stability condition, Eq. (A.12), in terms of the system parameters to 

give 

O ~ l _ A (-1 +...L) + P/P1+P2) ~ l 
2 R1 R2 R1 ~ . (A.13) 

When the system parameters are chosen such that Eq. (A.12) is satisfied, then we have a 

confined beam. If lbl > 1 we no longer have confinement of the beam. This leads to a 

solution of the form 

n a.+ a. r P e + P2 en -
n = 1 (A.14) 

where 

a.± ~ 
e = b ± vb- - 1. (A.15) 

Since the magnitude ofEq. (A.14) exceeds unity, the beam radius given by Eq. (A.14) will 

expand indefinitely as a function of distance, n. 

The simplest case of an optical resonator is the case where the system is symmetrical, 
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i.e. p1 + p2 = p3 =A/ 2. This leads to the stability condition 

(A.16) 

where 

g. = 1 A· wherei= 1,2 
1 2R. 

1 (A.17) 

The diagram shown in Fig. 28. is a convenient representation of the confinement condition, 

Eq. (A.16). The shaded regions where both g1 and g2 have the same sign indicate the 

regions of beam confinement. The g1 = g2 (R1 = R2 = R) line indicates the symmetric 

cavities. The concentric (R = N4), confocal (R = N2), and plane-parallel (R = oo) 

resonators all lie on the confinement boundary. These resonators can become extremely 

lossy unless great care is taken in the alignment of the mirrors. Most experimental cavities 

use system parameters lying well within the confinement region along the g1 = g2 line. 



93 

Figure 27. Confinement Regions of the Cavity Resonator. 
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a r - /).'t (A 
1 = ay u't-1) 

' A 2 a{ = _ a I!!. _u't_ 

a = rv !!!.'t 2 - -\.A,-
2 

~ = a l!!i.t2 
2 

2 

b r _ 2 I!!. 2 
1 = 1 + (1 - /). ) _'t_ - l!!i.t 
. 2 

b; = I!!. (1 - l!!i.t) l!!i.'t 

- 'Y !!!.'t 2 
b2 = ---

4 
b r - l!!i.t ( 3 = 2 Cl + y) !!!i.t - 1) 

b i = - A /).'t 2 
3 - u-

2 

b4 = - l!!i.'t 
2 

b = rv !!!.'t 2 
5-\.A,-

2 

b = 'Y l!!.'C 2 
6- - 2 

cf = 'Y l!!.-r (1- ~'t (1 + y)) 
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C = 'Y !!!.'C 2 - - 2 

2 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 
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(B.9) 

(B.10) 

(B.11) 

(B.12) 

(B.13) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

(B.18) 

(B.19) 
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c*****************************TRANSVERSE.F*************************** 
c This program was written by Darlena Jones to solve free-space diffraction effects in an 
c all-optical, passive, driven system. The Kirchoff diffraction integral and the Maxwell 
c Bloch equations are solved. 
c********************************************************************** 

implicit double precision (a-h,o-z) 
real *8 kappa 
dimension x(50),y(50),w(50),bmat(50,50),Elr(50),Eli(50) 
dimension time(20000),Emodt(50),E5r(50),E5i(50),Emod(20000),Dmod(20000) 
dimension radial(50),Estorr(50,200),Estori(50,200),Er(50) 
dimension A(0:2,50),B(0:2,50),P(0:2,50),Q(0:2,50),D(0:2,50) 
character*8 rfile 

c This program solves for laser with injected signal (LIS), optical bistability (OB), and the 
c free running laser. 

type*,'--------------------------------Menu-------------------------------------------------' 
type*, 'For LIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 1' 
type*,'For OB .................................... _....................... ........ enter 2' 
type* ,'For Free Running Laser................................................ enter 3' 
type*, '--------------------------------------------------------------------------------------- 1 

accept*, iLOB 

c********************************INITIALIZE**************************** 
iteg2 =2 
icount = 1 
iwidth = 48 
iplot = 0 
kk=O 
Ndiv = 200 
M=48 
u = 1.0 
s = 0.0 
if(iLOB .ne. 2) sigma = -1.0dO 
if(iLOB .eq. 2) sigma = 1.0dO 
sodlen = 1.0dO/dble(Ndiv) 
beta= 2.0 

c This calls the arrays x and w that contain the Gauss-Lagurre values. 
call absic(x,w) 

c This sets up the initial conditions for the medium. 
do 1 j=l,M 

Err= dexp(-xG)) 
A(s,j) = 0.001 *Err 
B(s,j) = 0.001 *Err 
P(s,j) = .OOldO*Err 
Q(s,j) = .OOldO*Err 
D(s,j) = -sigma*Err 

1 continue 

c This initializes the roundtrip field to zero. 
do 3 i=l,Ndiv-1 

do 2 j=l,M 



Estorr(j,i) = 0.0 
Estori(j,i) = 0.0 

2 continue 
3 continue 

Ntrips = 1 

98 

c**************************DATAENTRY********************************* 
c alpha - absorption, delta - atomic detuning, gamma - medium decay rate, and kappa -
c cavity decay rate. 
4 type*,'enter alpha, delta, gamma, and kappa' 

accept* ,alpha,delta,gamma,kappa 

c T - mirror transmittivity and R - mirror reflectivity. 
T = kappa/beta 
R = 1.0dO-T 
TT = dsqrt(T) 
RR = dsqrt(R) 

if(iLOB .ne. 3) then 
type*,'enter Ein and deltaO' 
accept* ,Ein,deltaO 
type*,'enter aperature width in units of half widths' 
accept* ,iwidth 
width= float(iwidth)*dsqrt(dlog(2.0d0)) 
do5 i=l,M 

if(width .le. dsqrt(x(i))) then 
iwidth = i-1 
goto6 

endif 
5 continue 

else 
Ein = O.OdO 
deltaO = 0.0dO 

endif 
6 pha = dcos(deltaO) 

phb = dsin(deltaO) 
inum = Ntrips 
type* ,'enter number of roundtrips' 
accept* ,newtrp 
type*,'Number of points= ',newtrp*200,' enter skip' 
accept* jskip 
Ntrips = Ntrips + newtrp · 
itrip = Ntrips 

c*********************************INITIALIZE***************************c 
This sets the injected signal. "iwidth" is the aperature width. 

do 8 i=l,M 
if(i .le. iwidth) Er(i) = TT*Ein*dexp(-x(i)) 
if(i .gt. iwidth) Er(i) = O.OdO 
y(i) = x(i) 
radial(i) = dsqrt(x(i)) 

8 continue 

c These are the Risken-Nummendal coefficients. 
deleta = sodlen 



deltat = deleta/beta 
delsq = deltat**2 
delsq2 = delsq/2.0dO 
del2 = deltat/2.0dO 
alr = alpha*delsq2 - alpha*del2 
ali = -alpha*delta*delsq2 
a2 = -alpha*del2 
a3 = alpha*delsq2 
blr = l.OdO + (l.OdO - delta**2)*delsq2 - deltat 
bli = -delta*delsq2 + delta*deltat 
b2 = -delsq2*gamma/2.0d0 
b3r = -del2 + (l.OdO + gamma)*delsq2 
b3i = -delta*delsq2 
b4 =-del2 
b5 =a3 
b6 = alpha*sigma*delsq2 
clr = 2.0*(gamma*del2 - (gamma/2.0dO)*(l.OdO + gamma)*delsq2) 
cli = gamma*delta*delsq2 
c3 = gamma*del2 
c5 = -alpha*gamma*delsq2 
c6 = -gamma*delsq2 
c7 = l.OdO - gamma*deltat + gamma**2*delsq2 
c8 = gamma*sigma*deltat*(-1.0dO + gamma*del2) 

c These are the cavity parameters scaled to the cavity length. etaf - focal length, etazr -
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c Rayleigh range, eta - distance from mirror to medium, eta3 - feedback distance. Arnatx, 
c Bmatx, Dmatx - coefficients of the ABCD matrix. 

etaf= .5d0 
etazr = 0.25d0 
eta = l.Od0/4.0dO - sodlen/2.0 
eta3 =0.5d0 
Aaf = 1.0 - eta/etaf 
Adf = 1.0 - eta3/etaf 
Amatx = Aaf* Adf - eta/etaf 
Bmatx = eta* Aaf* Adf - eta**2/etaf + eta3* Aaf + eta 
Dmatx = -eta*(l.0/etaf + Adf/etat) + 1.0 - eta3/etaf 
xciB = etazr/Bmatx 

c Matrix is a subroutine that calculates the Bij matrix. 
call Matrix(xciB,x,y, w,M,bmat) 

conl = Amatx*xciB 
con2 = Dmatx*xciB 

9 type*,' I 

type*, 'Calculating ......................... ' 

c********************************************************************** 
do 13 k=inum,Ntrips 

do 12 N = l,Ndiv-1 
do lOj=l,M 

c Boundary conditions. 
AO= Er(j)+Estorr(j,N)*pha-Estori(j,N)*phb 
BO= Estori(j,N)*pha + Estorr(j,N)*phb 



c Maxwell-Bloch equations describing the medium. A and Bare real and imaginary 
c fields. P and Q are real and imaginery polarizations. D is the population difference. 
c The medium is only one unit in thickness. 

A(u,j) =AO+ alr*P(s,j) - ali*Q(s,j)+ a3*D(s,j)* A(s,j) 

B(u,j) =BO+ ali*P(s,j) + alr*Q(s,j)+ a3*D(s,j)*B(s,j) 
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1 
2 

P(u,j) =blr*P(s,j)-bli*Q(s,j)+ 2.0*b2*(A(s,j)**2*P(s,j) 
- A(s,j)*B(s,j)*Q(s,j))+ D(s,j)*(b3r* A(s,j)- b3i*B(s,j) 
+b4*AO + b5*P(s,j)) + b6*A(s,j) 

10 

1 
2 

1 
2 
3 
4 

Q(u,j) = blr*Q(s,j)+bli*P(s,j)+2.0*b2*(A(s,j)**2*Q(s,j) 
+A(s,j)*B(s,j)*P(s,j)) +D(s,j)*(b3r*B(s,j) + b3i * A(s,j) 
+ b4*BO + b5*Q(s,j)) + b6*B(s,j) 

D(u,j) = c lr*(P(s,j)* A(s,j)+Q(s,j)*B(s,j))+ 
cli*(P(sj)*B(s,j) - Q(s,j)*A(s,j)) + 
c3*(P(s,j)* AO + Q(s,j)*BO) + 
c5*(P(s,j)**2 + Q(s,j)**2) + 
c6*D(s,j)*(A(s,j)**2 + B(s,j)**2)+c7*D(s,j)+c8 

E5rG) = A(uj) 
E5iG) = B(u,j) 
ElrG)=E5rG)*dcos(conl *yG))-E5i(j)*dsin(conl *yG)) 
EliG)=E5iG)*dcos(conl *yG))+E5rG)*dsin(conl *yG)) 

continue 

c The toggle switch between matrices in the Risken-Nummendal calculation. 
u = dabs(u - 1) 
s = dabs(s - 1) 

c Calculate the diffraction integral using the "integ" subroutine. 
call integ(Elr,Eli,x,y, w,xciB,con2,E5r,E5i,bmat,iteg2) 

c Place the feedback field into storage, Estorr and Estori. This is also a boundary 
c condition. 

11 

do 11 i=l,M 
Estorr(i,N) = R*E5r(i) 
Estori(i,N) = R *E5i(i) 

continue 

c Selecting every jplot point to store for later use. 
jplot = jplot + 1 

12 

ifGplot .eq. jskip) then 
jplot = 0 

endif 
continue 

kk=kk+ 1 
Emod(kk) = TI*dsqrt(E5r(1)**2 + E5i(1)**2) 
Dmod(kk);. Q(s,l) 
time(kk) = dble(kk) 

if(k/icount .eq. 25) then 
icount = icount + 1 
field= TI*dsqrt(E5r(1)**2 + E5i(1)**2) 
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type*,'iteration number',k,' field= ',field 
endif 

13 continue 
c********************************************************************** 

Eml = dsqrt(E5r(1)**2 + E5i(1)**2) 
Em2 = dsqrt(E5r(2)**2 + E5i(2)**2) 
coef = dlog(Eml/Em2)/(x(2)-x(l)) 
E5m = TI*Eml/dexp(-coef*x(l)) 
type*, char(7) 
type*, char(7) 

14 type*,' I 

type*,'-----. --------------------------Menu-------------------------------------------------' 
type*, 'To create radial profile file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 1' 
type* ,'To create final conditions file . . . .. . . .. . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 2' 
type* ,'To create amplitude ofEtrans vs roundtrips . .. . ... ... . . . .. . . . . .. . . . . enter 3' 
type*, 'To continue the present run . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 4' 
type*, 'To view the given parameters.......................................... enter 5' 
type*, 'To increase a parameter................................................. enter 6' 
type* ,'To plot . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 8' 
type* ,'To exit program . . . . . . . . . . . . . . . . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 9' 
type*,'---------------------------------------------------------------------------------------' 
accept*,ians 

c Here you can save the radial points for later use. 
if(ians .eq. 1) then 

type* ,'enter name of data file for radial profile' 
accept '(a)',rfile 
open(22,file=rfile,status='new ') 
write(22, *) M 
do 15 i=l,M 

Emodt(i) = TI*dsqrt(E5r(i)**2 + E5i(i)**2) 
if(Emodt(i) .It. 1.0d-90) Emodt(i) = O.OdO 
write(22, *) radial(i),Emodt(i) 

15 continue 

endif 

write(22, *) O.O,E5m 
type* ,'file creation completed' 
goto 14 

c Here we can save the final conditions of the run. 
if(ians .eq. 2) then 

type* ,'enter name of data file for final conditions' 
accept '(a)',rfile 
open( 12,file=rfile,status='new') 
do 17 N = 1,Ndiv-1 

do 16 i=l,M 
if(dabs(Estorr(i,N)) .It. 1.0d-90) Estorr(i,N) = O.OdO 
if(dabs(Estori(i,N)) .lt. 1.0d-90) Estori(i,N) = O.OdO 
write(l2, *) Estorr(i,N),Estori(i,N) 

16 continue 
17 continue 

do 19 i=l,mmax 
do 18j=l,M 

write(12,*) A(s,j),B(s,j) 
write(12, *) P(s,j),Q(s,j) 



18 
19 

endif 

write(12, *) D(s,j) 
continue 

continue 
type* ,'file creation completed' 
goto 14 

c We can save the amplitude versus the roundtrips in a file. 

20 

21 

if(ians .eq. 3) then 

endif 

type* ,'enter name of data file for amp vs. roundtrips' 
accept '(a)',rfile 
open( 13,file=rfile,status='new') 
type* ,'is this file for spec? .................. enter 1 for yes' 
accept* ,ispec 
if(ispec .ne. 1) then 

endif 

itrmin = 1 
itrmax =kk 
type* ,'do you want the entire run saved? .... enter 1 for yes' 
accept* ,ians 
if(ians .ne. 1) then 

endif 

type* ,'enter beginning and ending times' 
accept* ,itrmin,itrmax 

write(13,*) itrmax - itrmin + 1 
do 20 i=itrmin,itrmax 

write( 13, *) time(i),Emod(i) 
continue 
write(13,*) 1.0dO,Emod(l) 

if(ispec .eq. 1) then 
type* ,'enter the number of points to be saved' 
accept* ,numpts 
write(13,*) numpts,jskip,deltat 
itrmin = kk + 1 - numpts 
itrmax =kk 
do 21 i = itrmin,itrmax 

write(13,*) Emod(i) 
continue 
endif 
type*, 'file creation completed' 
goto 14 

c We can increase the number of round trips. 
if(ians .eq. 4) then 

inum = Ntrips 

endif 

type*,'enter the number of roundtrips and skip' 
accept* ,newtrp,j skip 
Ntrips = Ntrips + newtrp 
goto9 

c This allows you to see what the current parameters are set at. 
if (ians .eq. 5) then 

type*,' I 
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*'Eh . . I type , c 01ng input. ............................ . 
type* ,'delta = ',delta 
type* ,'gamma = ',gamma 
type*,'alpha = ',alpha 
type*,' etaf = ',etaf 
type*, 'deltaO= ',deltaO 
type*,' Ein = ',Ein 
goto 14 

endif 

c To increase a parameter, adiabatically, use this. 
if(ians .eq. 6) goto 4 

c This is the plotting menu. 
if(ians .eq. 8) then 

22 type*,' I 
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type*,'--------------------------------Menu-------------------------------------------------' 
type*, 'Please specify what to plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ' 
type*, 'Temporal .......................................... ; . . . . . . . . . . . . . . . . . . . . . . enter 1' 
type* ,'Radial profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 2' 
type*, 'To quit plot routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 3' 
type*, 'To plot in phase space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 4' 
type*, 'Temporal pop. cliff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enter 5' 
type*, '---------------------------------------------------------------------------------------1 

accept* ,iplt 
if(iplt .eq. 1 .or. iplt .eq. 4 .or. iplt .eq. 5) then 

itrmin = 1 
itrmax = kk: 
type*,'do you want the entire run plotted? ... enter 1 for yes' 
accept* ,ians 
if(ians .ne. 1) then 

endif 

type* ,'enter beginning and ending times' 
accept*,itrmin,itrmax 

coefin =Ein 

c The plotting subroutine is called "plottran". 

endif 

if(iplt .eq. l)call plottran(iplt,itrmin,itrmax,0.0,time,Emod) 
if(iplt .eq. 4)call plottran(iplt,itrmin,itrmax,0.0,Emod,Emod) 
if(iplt .eq. 5)call plottran(iplt,itrmin,itrmax,0.0,time,Dmod) 
goto 22 

if(iplt .eq. 2) then 
coeff=E5m 
do 23 i=l,M 

Emodt(i) = TT*dsqrt(E5r(i)**2 + E5i(i)**2) 
if(Emodt(i) .lt. l.Od-90) Emodt(i) = O.OdO 

23 continue 

endif 

call plottran(iplt, l ,M,coeff,radial,Emodt) 
goto 22 

if(iplt .le. 1 .or. iplt .eq. 3 .or. iplt .ge. 5) goto 14 
endif 



if(ians .eq. 9) then 

endif 

type*,'do you really want to quit? .... enter 1 for yes' 
accept* ,ians 
if(ians .ne. 1) goto 14 

if(ians .le. 0 .or. ians .ge. 10 .or. ians .eq. 7) goto 14 

stop 
end 
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c**********************************************************************c 
SUBROUTINE INTEG 
c This subroutine calculates the diffraction integral by multipling the two 
c dimensional matrix A (which is called Bij in my notes) by the field vector, 
c Er (real) and Ei (imaginery). 

subroutine integ(Er,Ei,x,y, w,xci,cc,Ehatr,Ehati,A,iteg) 
implicit double precision (a-h,o-z) 
dimension A(S0,50), Ehatr(50), y(50), x(50), w(50) 
dimension Er(50), Ei(50), Ehati(50),Emod(50),N(50) 
M=48 
Emax=O.OdO 
iff=O 
inum=48 
num=O 
cofmax=O.O 
do2i=l,M 

sumr = O.OdO 
sumi = O.OdO 
do 1 j=l,M 

sumr = sumr + A(ij)*ErG) 
sumi = sumi + A(ij)*EiG) 

1 continue · 
const = cc*y(i) 
Ehatr(i) = xci*(sumr*dsin(const)+sumi*dcos(const)) 
Ehati(i) = xci*(-sumr*dcos(const)+sumi*dsin(const)) 
Emod(i) = dsqrt(Ehatr(i)**2 + Ehati(i)**2) 
if(Emod(i) .ge. Emax .and. i .It. 20) then 

endif 

Emax = Emod(i) 
num=num+ 1 
N(num) =i 

if(i .ge. 20) then 

endif 
2 continue 

diff = Emod(i) - Emod(i-1) 
if(diff.ge.0.0dO .and. iff.eq.0) then 

inum=i 
iff = 1 

endif 

c This section is the data smoothing required to keep the aliasing from getting out of 
C hand. 

do 3 i=l,num 



coef = dlog(Emod(N(i))/Emod(N(i)+ 1))/(x(N(i)+ 1)-x(N(i))) 
if(coef .gt. cofmax) cofmax = coef 

3 continue 
j = inum - iteg 
do 4i=j,M 

Ehatr(i)=Ehatr(i-l)*dexp(-cofmax*(x(i)-x(i-1))) 
Ehati(i)=Ehati(i-1 )*dexp(-cofmax*(x(i)-x(i-1))) 

4 continue 
return 
end 
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c**********************************************************************c 
SUBROUTINE MATRIX 
c This calculates the A matrix (called the Bij matrix in my notes) by first 
c calling "laguer" to get the Lagurre values then summing by using the "summ" 
c subroutine. 

subroutine Matrix(xci,x,y, w,M,A) 
implicit double precision (a-h,o-z) 
dimension x(50), y(50), w(50), A(50,50), alag(50) 
do 2 i=l,M 

argue= xci*y(i) 
call laguer(argue, M, alag) 
do 1 j = 1,M 

argue= xci*xG) 
call summ(argue, M, alag, answer) 
A(i,j) = dexp(-(xci-1.0dO)*xG) )*answer*wG) 

1 continue 
2 continue 

return 
end 

c**********************************************************************c 
SUBROUTINE LAGUER 
c This calculates the Lagurre polynomials given thevalue of the arguement. 

subroutine laguer(x,M,al) 
implicit double precision (a-h,o-z) 
dimension al(50) 
al(l) = 1.0dO 
al(2) = 1.0dO - x 
do 1 i=3,M 

k =i-1 
al(i) = (2.0dO-(x+ 1.0dO)/k)*al(i-1) - (1.0d0-1.0dO/k)*al(i-2) 

1 continue 
return 
end 

c**********************************************************************c 
SUBROUTINE SUMM 

subroutine summ(x,M,al,answer) 
implicit double precision (a-h,o-z) 
dimension al(50) 
a= 1.0dO 
answer= al(l) 
do 1 i=2,M 

k =i-1 



a = a*x/dble(k) 
answer= answer+ a*al(i) 

1 continue 
return 
end 
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c**********************************************************************c 
SUBROUTINE PLOTIRAN 
c This is the plotting package used to plot both temporal and spatial values. 

subroutine plottran(inum,istart,idone,coeff, w,z) 
implicit double precision(a-h,o-z) 
real*4 xmin,xmax,ymin,ymax,xx,yy 
dimension x(20000),y(20000),z(20000),w(20000) 

do 1 i=istart,idone 
y(i) = z(i) 
x(i) = w(i) 

1 continue 
xminp = 100000.0 
yminp = 100000.0 
xmaxp = -100000.0 
ymaxp = -100000.0 
xx= istart 
yy =coeff 
if(inum .eq. 2) xx = 0.0 
do 2 i=istart,idone 

if(x(i) .lt. xminp) xminp = x(i) 
if(y(i) .lt. yminp) yminp = y(i) 
if(x(i) .gt. xmaxp) xmaxp = x(i) 
if(y(i) .gt. ymaxp) ymaxp = y(i) 

2 continue 
type*, Do you want to scale the field? enter 1 for yes' 
accept* ,iscale 
if(iscale .eq. 1) then 

scalex = xmaxp 
scaley = ymaxp 
if(inum .eq. 1) scalex = 1.0dO 
type* ,'the scaling values are: ' 
type*,'scale in x = ',scalex,'scale in y = ',scaley 
do 3 i=istart,idone 

x(i) = x(i)/scalex 
y(i) = y(i)/scaley 

3 continue 

endif 

xx = xx/scalex 
yy = yy/scaley 
xmaxp = xmaxp/scalex 
xminp = xminp/scalex 
ymaxp = ymaxp/scaley 
yminp = yminp/scaley 

4 type*,' I 

type*,'enter xmin, hint:min of x=',xminp 
accept* ,xmin 
type*,'enter xmax, hint:max of x=',xmaxp 



. accept* ,:xmax 
type* ,'enter nx' 
accept*,nx 
type*,'enter ymin, hint:min of y=',yminp 
accept* ,ymin 
if(iEiii .eq. 1) ymaxp = coef2 
type*, 'enter ymax, hiiit:max of y=' ,ymaxp 
accept* ,ymax 
type* ,'enter ny' 
accept*,ny 
type*, 'to change parameters ........ enter 1' 
accept* ,ians 
if(ians .eq. 1) goto 4 
call lnstp 
call lnpltl (xmin,xmax,ymin,ymax,nx,ny) 
call movea(xx,yy) 
do 5 i=istart,idone 

if(inum .ne. 4) call drawa(sngl(x(i)),sngl(y(i))) 
if(inum .eq. 4) call drawa(sngl(x(i-1)),sngl(y(i))) 

5 continue 
call lnendp 
type*,' I 

*'l • f' 'hd I type , p ot 1s 1ms e , .............. . 
return 
end 
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c**********************************************************************c 
SUBROUTINE ABSIC 
c This subroutine merely stores the absiscas and weigths iii the Gauss-Laguerre 
c integration routine. 

subroutine absic(x,w) 
implicit double precision (a-h,o-z) 
dimension x(50), w(50) 
x(l) = .298112358299601d-1 
x(2) = .157107990617896 
x(3) = .386265037576455 
x(4) = .717574694116972 
x(5) = 1.15139383402643 
x(6) = 1.68818582341904 
x(7) = 2.32852700665322 
x(8) = 3.07311086165263 
x(9) = 3.92275241304648 
x(lO)= 4.87839335592134 
x(ll)= 5.94110805462455 
x(12)= 7.11211053589074 
x(13)= 8.39276759909122 
x(14)= 9.78458318468732 
x(15)= 11.2892591680095 
x(16)= 12.9086577782855 
x(17)= 14.6448408832097 
x(l8)= 16.5000814289645 
x(19)= 18.4768823868741 
x(20)= 20.5779986340222 
x(21)= 22.8064622905213 



x(22)= 25.1656121564391 
x(23 )= 27 .6591280444805 
x(24)= 30.2910710010085 
x(25)= 33.0659306624987 
x(26)= 35.9886813274789 
x(27)= 39.0648487641977 
x(28)= 42.3005903629030 
x(29)= 45.7027920385114 
x(30)= 49.2791863828367 
x(31)= 53.0384980878166 
x(32)= 56.9906848148044 
x(33)= 61.1468647861402 
x(34)= 65.5202069290186 
x(35)= 70.124 7062361131 
x(36)= 74.9809775189113 
x(37)= 80.1068573503243 
x(38)= 85.5283111160321 
x(39)= 91.2757079936680 
x(40)= 97.3866677135915 
x(41)= 103.908833357176 
x(42)= 110.904220884976 
x( 43 )= 118 .456425046283 
x(44)= 126.683425768885 
x(45)= 135.762589577864 
x(46)= 145.986432709463 
x(47)= 157.915612022977 · 
x(48)= 172.996328148563 
w(l) = .7426200582802624d-1 
w(2) = .1522719498093528 

. w(3) = .1904090882639114 
w(4) = .1866330594848059 
w(5) = .1534242001575782 
w(6) = .1087796928074902 
w(7) = .6746073860921946d-1 
w(8) = .368811941158212ld-'l 
w(9) = .178568442691567ld-l 
w(lO)= .7677616514497608d-2 
w(l 1)= .2935785903739463d-2 
w(l2)= .9990655378158858d-3 
w(13)= .3025980169922584d-3 
w(l4)= .8153871180355413d-4 
w(15)= .1953158715728072d-4 
w(16)=.4154182945052174d-5 
w(17)=.7833700380277587d-6 
w(18)= .1307394774920602d-6 
w(19)= .1927071408017028d-7 
w(20)=.2502638937126341d-8 
w(21)= .2855785508771622d-9 
w(22)=.2854622412059155d-10 
w(23)=.2491010684937224d-11 
w(24)=.1890336606971544d-12 
w(25)=.1242162685949152d-13 
w(26)=.7034231520212617d-15 
w(27)=.3414549148591887d-16 
w(28)= .1412315414895739d-17 
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w(29)=.4944218008097474d-19 
w(30)=.1453952481367899d-20 
w(31)=.3561068365004085d-22 
w(32)=.7194055996494724d-24 
w(33)= . l l 85537228350586d-25 
w(34)= .1573491357075602d-27 
w(35)= .1657285440919482d-29 

· w(36)= .1361434162716342d-31 
w(37)= .8546155813963136d-34 
w(38)=.4000090532481346d-36 
w(39)=.1355019991102997d-38 
w(40)=.3201636795354913d-41 
w(41)= .5035869166061095d-44 
w(42)=.4962487540702732d-47 
w(43)=.2823510716120112d-50 
w(44)=.8268446069505063d-54 
w(45)= .104906484782127ld-57 
w(46)= .4346574422738856d-62 · 
w(47)=.3434736438396578d-67 
w(48)= .1319066088398016d-73 
return 
end 
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