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NOMENCLATURE 

a angle of attack (perturbed) . 
a rate of change in a (perturbed) 
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Py; full attention observation noise to signal ratio 

Puci motor noise ratio 

2 mean square output error due to the driving noise (jc 

T reaction time of pilot 

-r, lead time constant of pilot 
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-r E angle of attack effectiveness of the elevator 

i-N neuro-muscular constant of pilot 

'f/0 rate of tum (steady State) 

A aspect ratio 

A plant matrix of dynamic model 
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C va. variation of drag coefficient with a 
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c . variation of lift coefficient with a after damage 

La 
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g acceleration of gravity 
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Ixz XZ product of inertia 

.\ incidence angle of horizontal tail 

J single-axis performance index before normalization 
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L root length of control surface 
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CHAPTER I 

INTRODUCTION 

1.1 Problem Statement 

The assessment of loss of control of a control surface damaged aircraft 

should receive further attention because of the safety and economic considerations. 

In many critical situations, the knowledge about the flying control status is 

desperately needed so that no human life is sacrificed for saving a seriously 

damaged aircraft, and the valuable aircraft is not abandoned while it can still 

survive. It is obviously not practical to obtain such knowledge by carrying out real 

test flights for each specific type of aircraft with various types and degrees of 

control surface damage. In this research, a computer simulation methodology is 

developed to obtain the data associated with the flying control status of various 

multi-axis maneuvers for a specific aircraft with various types and degrees of 

damage. 

In this methodology, for a specific maneuver, a dynamic model of each axis 

is first developed for every specific control surface damage. Each resulting 

dynamic model is input into a computer program, the Optimal Pilot Model (OPM), 

to obtain the associated performance index, also known as cost. By the utilization 

of the cost function/ rating correlation model, the obtained performance index is 

then transformed into the corresponding value of pilot opinion rating (POR). For a 

specific control surface damage, the POR of each axis is thus integrated into the 

associated multi-axis POR of each maneuver by the use of the product rule. 
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Finally, by using the Cooper-Harper scale for the interpretation of the resulting 

multi-axis POR, the specific aircraft with a specific control surface damage is 

determined to be in whether a state of loss of control or a state of in-control during 

a specific maneuver. 

Based on some valuable previous works, which are reviewed in Chapter II, 

this research develops a systematic methodology to achieve the following goals: 

(1) to develop the multi-axis dynamic models for a specific aircraft with various 

types and degrees of damage, (2) to relate the Cooper-Harper pilot ratings to the 

performance index for pilot closed loop control of damaged aircraft dynamics by 

use of the optimal control pilot model, (3) to monitor and predict the states of loss 

of control for various maneuvers performed by a specific aircraft with various 

types and degrees of damage, and (4) to establish a set of safety criteria for 

operating a specific aircraft; where the maneuver can be a straight and level flight, 

a steady level turn, a symmetrical pull-up, or a combination of a steady level turn 

and a symmetrical pull-up. 

1.2 Organization 

The pilot opinion rating is a proper tool for determining the state of control 

of a specific aircraft which is performing a specific maneuver. However, it is not 

likely to utilize flight tests to obtain the POR for a damaged aircraft. In fact, some 

existing experimental data can provide enough information for obtaining POR if a 

proper methodology is established. The methodology developed in this research is 

applied to a specific aircraft, Gates Learjet 24B, for the assessment of loss of 

control and a series of reasonable results are achieved. The foundation of this 

methodology is briefly illustrated in Chapter II which includes the flying quality 

evaluation scale, the different approaches of human pilot model, the correlations 



between performance index and pilot opinion rating from different experimental 

data. 

Chapter III introduces the configuration of the specific aircraft which 

induces several aerodynamic characteristics. This chapter also presents the 

mathematical definitions of the four typical maneuvers performed by a subsonic 

aircraft. The types and degrees of control surface damage are also defined 

numerically in this chapter. Also, Chapter ill primarily provides a concise 

skeleton of the developed methodology. 

3 

Moreover, Chapter IV illustrated the theoretical development of the 

methodology on a step-by-step basis. 1h this chapter, the control surface damage 

is first mathematically modeled. The six rigid-body equations of motion are 

employed and developed into the general form of a dynamic model which consists 

of a pilot input matrix and an aircraft plant matrix. The single-axis transfer 

function, is thus derived from the obtained dynamic model. This single-axis 

transfer function is input into a software of the human pilot model, which is also 

briefly illustrated in this chapter, to obtain the corresponding single-axis 

performance index. The obtained single-axis performance is then transformed into 

the associated single-axis pilot opinion rating. The procedure of integrating 

single-axis PORs into the corresponding multi-axis POR is then presented in the 

end of this chapter. 

Chapter V presents some details for applying the methodology to the 

specific aircraft. Several constants are given in this chapter. Moreover, the 

driving noise shaping filter employed in this methodology are also introduced. 

The analytical results are plotted and discussed in Chapter VI. Based on the 

resulting data, a set of safety criteria for operating the specific aircraft is then 

presented in this chapter. Chapter VII summarizes the principal conclusion of this 

thesis and contains suggestions for further research. 



CHAPTER II 

LITERATURE REVIEW 

The response of a pilot to the encountered situation is practically based on 

the state of control rather than directly on the type and degree of damage that 

occurs to the aircraft. However, when a failure takes place, the type and amount 

of the damage dictates the controllability of the aircraft. Therefore, the 

relationship between failure and flying quality should be established. This chapter 

presents the previous works which provide the foundation of this research and 

make the contribution of this research possible. 

2.1 Cooper-Harper Rating Scale and Pilot Opinion Ratings 

Cooper and Harper [ 1] provide the standard of evaluating the controllability 

of aircraft based on their flying and engineering specialties. This scale represents 

a very successful attempt to relate pilot comments about the ease or difficulty with 

which aircraft can be controlled in certain flight situations to a numerical rating. 

The resulting rating, named POR, ranges from 1 (best) to 9 or 10 (worst), which is 

dominated by the pilot's mental and physical workload required to achieve the 

performance implied by a given mission phase. 

Based on the Cooper-Harper pilot opinion rating scale, Dander [2] and 

Mitchell, Aponso, and Hoh [3] have reported experimental findings from single 

and multi-axis tracking tasks. Dynamically independent single, two, and/or three 

axis tracking experiments are conducted, and then subjective PORs are given for 
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each task. Although the best way to make the extension is not evident, several 

methodologies are proposed by Dander to predict multi-axis PORs based on 

single-axis results. Nevertheless, the Dander data is still the best data base upon 

which to test out theories. 

2.2 The Development of Pilot Models 

The analytical techniques for modeling the human pilot generally fall into 

two categories, the classical and modem approaches. For classical approaches, it 

relies heavily upon frequency domain representation such as a quasi-linear model 

of the human as a controller of single-input, single-output (SISO) systems 

developed by McRuer and Krendel [ 4 ]. · The most common form of the classical 

human pilot model is 

t s+l e-ts 

Gp(s)=Kp-1 ----

t2s+lt0s+l 

5 

The last term models inherent human limitations of reaction time delays, and lags 

attributed to the neuro-muscular system. The remaining term represents the 

human's equalization characteristics and are adjustable in accordance with the type 

and difficulty of the control task. 

The frequency domain pilot models are somewhat limited to single-input, 

single-output systems. Multiloop models have been implemented by Magdaleno, 

McRuer, and Stepelford [5] in which subsequential loop closure techniques are 

used with some limited success. The single loop block diagram of a roll tracking 

(hold wing level) task is also studied by Swaim [ 6]. It is seen that the pilot transfer 

function could be combined with aileron actuator transfer function and aileron to 

roll transfer function to yield a single block composite transfer function to be used 



in further analysis and synthesis of any necessary stability augmentation system 

(SAS) for this roll tracking task. 
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For the modem approach, it is rooted in modem control and optimization 

theory based on the time domain. It is capable of treating multi-variable systems 

within a single conceptual framework using state. space techniques. A flying 

quality evaluation technique called performance index is developed by Kleinman, 

Baron, and Levison. The basic assumption implied in this approach is that, subject 

to the pilot's inherent limitations, the well-trained, well-motivated pilot behaves in 

an optimal manner where "optimal" refers to a specific quadratic index of 

performance expressed as the following equation: 

J = E{ ~1 ~[t (t)Q)'.(t) +!!T (t)R!!(t) ]cit} 

where E {·} = the expected value of { ·}, 

'!._(t) = vector of displayed and perceived variables 

. 
~(t) = vector of pilot control rate 

Q = weighting matrix of '!._(t) 

• 
R = weighting matrix of ~(t} 

The resulting performance index is essentially a weighted sum of the mean square 

deviation of a linear combination of the state variables from their desired values, 

and the mean square deviation of the commanded control rate from the desired 

pilot control rate. When the elements in Q are chosen, the elements of R have to 



be changed in iterative fashion until the desired neuromuscular time constant is 

generated in the model. 

2.3 Correlation of Pilot Model and POR 

7 

For the classical approach, McRuer, Ashkenas, and Guerre [8] correlate 

POR with parameters of the classical form of the pilot model. This is one of the 

earliest references of the relationship between the form of the pilot transfer 

function and POR for single-axis tracking. The concept of minimum pilot rating is 

introduced by Anderson [9]. The hypothesis is the pilot adopts a control strategy 

that maximizes his impression of the vehicle's handling qualities, or equivalent, 

minimizes his numerical opinion rating under a given particular vehicle and 

control task. This concept is then applied in a longitudinal helicopter hover task. 

By using Miller and Vinje's data, the general form of the pilot transfer function is 

obtained. Moreover, a workable expression for numerical POR is developed as the 

following equation: 

where R1 was an explicit linear function of RMS performance, and Ri and ~ were 

linear functions of the lead time constants. This rating expression is then tested by 

using data from seven other simulations of a similar hover task with different 

vehicles. In this test, the pilot parameters are selected so that the POR is 

minimized. The resulting predicted ratings of this test are quite consistent with the 

actual ratings obtained from the seven pilot-participated simulations. 

A lower frequency performance leads to a lower oscillation with smaller 

overshoot. However, a pilot is generally assumed to want to acquire the target 
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quickly and predictably with minimum overshoot and oscillation. The assumption 

is applied by Neal and Smith [10] to 51 basic short period configurations (pitch 

tracking tasks) to determine the optimal frequency of performance which can be 

suggested by the obtained PORs and resulting pilot's compensation. The result of 

the test suggests that a low frequency is favored for performance. 

Another analytical technique for human pilot model is the modem 

approach. With the·application of optimal control and estimation theory, the 

modem pilot model is first developed by Kleinman, Baron, and Levison [7]. The 

model consists of several components which are individually expressed by the 

associated mathematical forms. This pioneering work establishes such a model 

that modem control theorists refer to as a linear quadratic Gaussian control 

formulation which yields a numerical value of the performance index smaller than 

that for any other linear feedback structure. 

Furthermore, a mathematical relationship between the performance index 

and POR is established by Dillow and Picha [11]. In their research, a longitudinal 

hover simulation is performed by the V/STOL aircraft and the following consistent 

relationship between actual pilot ratings and performance index J for the specific 

vehicle configurations of each task is obtained: 

POR=./J 

The performance index also can be related to POR in another mathematical form 

which is provided by Hess [12] under a rating hypothesis. This rating hypothesis 

states as that the numerical value of the performance index resulting from the 

modeling procedure can be related to the numerical pilot rating which the pilot 

assigns to the vehicle and task if ( 1) the performance index and model parameters 

in the optimal pilot modeling procedure yield a dynamically representative model 



9 

of the human pilot, (2) the variables selected for inclusion in the performance 

index are directly observable by the pilot, (3) the weighting coefficients in the 

performance index are chosen as the squares of the reciprocals of maximum 

"allowable" deviations of the respective variables, and these deviations are 

consonant with the task as perceived by the pilot. The rating hypothesis was tested 

by Hess using McDonnell's data from seven pitch attitude tracking tasks, Duffy's 

data from two longitudinal hover tasks, Arnold's data from five pitch attitude 

tracking tasks, and Miller and Vinje's data from five longitudinal hover tasks; and 

the correlation between POR and performance index is plotted. 

The correlationship between the performance index obtained by Arnold's 

and the POR obtained by Neal and Smith [10] is established by Schmidt [13] for 

the specific fourteen aircraft configurations. This correlationship can be expressed 

as 

POR = log10 (J) +4 

for a single-axis tracking task performed by a conventional aircraft. And for a 

single-axis tracking task of high-order configuration dynamics, is expressed as 

POR = log10 ( J) 

where the slope of regression of the plot appears to be greater than the 

conventional one due to aeroelastic or other low damped mode. Moreover, by use 

of Dander's data, McRuer and Schmidt [14] correlate experimental PORs with 

single- and multi-axis performance index to give the following equation: 
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By the utilization of the Large Amplitude Multimode Aerospace Research 

Simulator (LAMARS) of the U.S. Air Force, Mitchell, Aponso, and Hoh [3] obtain 

the PORs of single and multi-axis tracking tasks performed by a low altitude, high

speed, fighter-type aircraft. Coincidentally, the same result as that of McRuer and 

Schmidt is obtained. 

2.4 Comparison of Classical and Modem Approaches of the Pilot Model 

The classical approach is applied to human pilot model in the early stage of 

development of controllability evaluation. Nevertheless, there are some pitfalls in 

the mentioned applications of classical pilot models to flying quality prediction: 

( 1) the selection of the appropriate pilot model loop structure is often not 

straightforward, (2) the selection of particular parameter values in the model tends 

to be artful, and (3) incorporation of pilot model parameters, such as lead-time 

constants, in handling qualities metric can lead to difficulties because different 

pilot models are applied to different pilot tasks. In converse, the optimal approach 

tends to minimize some of the pitfalls associated with the handling qualities 

prediction schemes based upon classical techniques: (1) no a priori pilot loop 

structure has to be hypothesized, and (2) handling quality metric was an integral 

part of the optimal modeling procedure itself, i.e., the performance index. 



CHAPTER III 

OVERVIEW OF THE DEVELOPED METHODOLOGY 

3 .1 Details of the Utilized Aircraft 

To implement the development of the methodology, the Gates Learjet 24B 

aircraft is utilized because this aircraft is representative of a medium sized 

conventional jet. The dimensions and geometry are illustrated in Figure 1. It can 

be seen that this specific aircraft can be characterized for ( 1) low wing location: 

the dihedral effect is decreased negatively by the fuselage interference so that a 

geometric dihedral angle is built to compensate the lift which produce the rolling 

moment; 

(2) low wing sweep angle: the stability of the aircraft is enhanced because of the 

less negative rolling moment due to sideslip, C113 ; 

(3) high horizontal tail location: the downwash effect is reduced and the 

interference from the engine exhaust flow is decreased. 

3 .2 Definitions of Maneuvers 

The specific maneuvers used are straight and level flight, steady level tum, 

symmetrical pull-up, and the combination of symmetrical pull-up and steady level 

tum. These maneuvers can be mathematically defined. For straight and level 

flight, rate of roll, rate of pitch, and rate of yaw are zero. For a steady level turn, 

rate of roll, angle of pitch are zero. For a symmetrical pull-up, rate of roll, rate of 

yaw, and angle of bank are zero. The steady state downward velocity, and side 

11 
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velocity are zero for all the four maneuvers. These parameters of each defined 

maneuvers are summarized as Table 1. Moreover, it is important to know that P0 , 

Q O, and R0 are not zero in general. 

TABLE I 

MATHEMATICAL DEFINITION OF MANEUVERS 

Parameters Types of Maneuvers 

1 2 

Po 0 0 

Oo 0 v 
Ro 0 v 
Uo v v 
Vo 0 0 

Wo 0 0 

<l>o 0 v 
e 0 0 0 

Maneuver 1 represents straight and level flight, 

Maneuver 2 represents steady level tum, 

Maneuver 3 represents straight and level flight, 

Maneuver 4 represents combination of Maneuver 

3 

0 

v 
0 

v 
0 

0 

0 

v 

1 and 2; where " sign indicates the parameter is not zero. 

4 

v 
v 
v 
v 
0 

0 

v 
v 
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These three parameters are formulated and are given for each maneuver as follows: 

(1) Straight and level flight: 

Po =0 

(2) Steady level tum: 

• 
Ro= 'Po cosct>0 

.. h t;, g tanct>o , w ere r o = ..:::-_-...:a.. 

Uo 

(3) Symmetrical pull-up: 

Po =0 

Ro =0 

, where n is load factor and is assigned to be 2. 

(4) Combination of steady level tum and symmetrical pull-up: 

• 
Po= -'Po sin@0 

• 
~='Po cos@0 sin ct>0 

• 
Ro= 'Po cos@0 cosct>0 
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h \;1 g tan<1>0 ~secE>0 ,were To=---~--
Uo 

. 
The derivation of the rate of tum, 'Po , is presented in 

Appendix A. 

3.3 Control Surface Damage 

The specific types and degrees of damage are damage on wings, horizontal 

tail, or vertical tail, and each with increment of 6.25% of loss of the specific 

control surface. It is important to know that the wing area is based on the areas of 

the both wings; and the horizontal tail area is based on both horizontal tails. 

Moreover, the maximum loss of any control surface is limited to be 50% for 

practical reasons. 

3.4 Strategic Procedures of the Methodology 

The strategy for assessment of loss of control of this aircraft performing the 

specified maneuvers with various types and degrees of control surface damage can 

be portrayed using the following procedures: 

( 1) Develop the multi-axis dynamic model of each maneuver for each type and 

degree of damage, which includes a plant matrix and an input matrix. 

(2) Transform the developed dynamic models into associated three single-axis 

transfer functions by using the single-input-single-output (SISO) method. 

(3) Input the resulted single-axis transfer functions and disturbance function to the 

Optimal Pilot Model (OPM), a C-language computer program developed by Kim 

[15], to obtain the single-axis performance index, J. 
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( 4) Transform the single-axis J into its corresponding single-axis pilot opinion 

rating (POR) by the utilization of the cost function /rating correlation model [14]. 

(5) Use the Product Rule [3] to integrate the single-axis PORs of a specific type 

and degree of damage into the associated multi-axis POR. 

( 6) Determine the state of control of the aircraft by using the Cooper-Harper rating 

scale [ 1] to interpret the resulting multi-axis POR. The aircraft is said to exhibit 

total loss of control if its POR is larger than 9; otherwise, the aircraft is 

controllable. The Cooper-Harper rating scale is given in Table 2. 

TABLE II. 

COOPER-HARPER HANDLING QUALITIES RATING SCALE 

Aircraft Demands on the Pilot Pilot 
Characteristics In Selected Task or Required Operation• Rating 

Excelhtnt Pilot Compensation Not a Factor for 1 
Highly Desirable Desired Performance 

Good Pilot Compensation Not a Factor for 2 Negligible Deficiencies Desired Performance 

Fair - Some Mildly Minimal Pilot Compensation Required for 3 Unpleasant Deficiencies Desired Performance 

Minor But Annoying Desired Performance Requires Moderate 4 Deficiencies Pilot Compensation 

Moderately Objectionable Adequate Performance Requires 
5 Deficiencies Considerable Pilot Compensation 

Very Objectionable But Adequate Performance Requires Extensive 6 Tolerable Deficiencies Pilot Compensation 

Adequate Performance Not Attainable 
With 

Major Deficiencies Maximum Tolerable Pilot Compensation. 7 
Controllability Not in Question 

Major Deficiencies Considerable Pilot Compensation Is 8 Required for Control 

Major Deficiencies Intense Pilot Compensation Is Required to 9 Retain Control 

Major Deficiencies Control Will Be Lost During Some Portion 10 of Required Operation 



CHAPTER IV 

THEORETICAL DEVELOPMENT 

To implement the described methodology, some theoretical

development tasks are required. The first is the modeling of control 

surface damage. Second of all is the establishment of dynamic 

models of the aircraft with various types and degrees of damage for 

different maneuvers which are needed in procedure ( 1) of the 

methodology mentioned in Section 3 .4. The third part of this chapter 

is the transformation of the dynamic model into its three associated 

single-axis transfe.r functions; and this is procedure (2) of the 

methodology. The fourth part is the brief illustration of the logic of 

the Optimal Pilot Model software which is employed to obtained the 

single-axis performance index with the input of single-axis transfer 

functions. The fifth part presented in this chapter is to integrate the 

single-axis PORs into the associated multi-axis POR by using the 

product rule [3]. 

4.1 Modeling of Control Surface Damage 

The mathematical models of control surface damages are 

necessary for the derivations of the expressions of stability 

derivatives with damage. A half-sided control surface, except vertical 

tail, can be generalized as Figure 2. By applying geometric relation, 
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the following equation are given: 

i ------... 

Figure 2. Half-sided Sketch of a Control Surface 

then, 

also, 

a·/ 
y=-·

L-/ 

y+a-q I 
---=-

y+a L 
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(1) 

(2) 

By substituting equation (1) into equation (2), the following equation 

is obtained: 

a·(L-/) 
l=L-----

a 
(3) 



The remaining area after damage, s, is given by: 

S = g_·(L+l) + S 
- 2 2 

Substituting equation (2) and (3) into equation ( 4) to have 

-a2 ·(L-1) S 
S= - +L·a+-
- 2-a - 2 

Rearranging equation (5), it gives 

L-1 
--·g_2 + L·g_+(0.5-S-S) = 0 
2·a 

By solving equation (6) to have 

L-~L' + 2-(L-/)~.5-S-S.) 

a=--'----------- L~l 

a 

(4) 

(5) 

(6) 

(7) 

To obtain the span after damage, e_, the following geometric 

relation is used: 

b = 0.5-b+a - -

where b is the span of the control surface. 

Then 
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L- fL' + 4·(L-/}(0.5·S-S.) 
v , b b 

b= +-
- 2·(L-l) 2 

b 

By use of the definition of aspect ratio, 

b2 
A=

S 

it gives the aspect ratio after damage: · 

b[l L L2 + 4 · (L-1)(0.5· s.-S.) ]2 
+ -

L-1 A=---.C..----------
2 ·S. ·(L-1) 

(8) 

(9) 

Applying the known geometric data of Gates Learjet 24B aircraft 

[ 16], the after-damage aspect ratio of each control surface is 

obtained: 

8.95- ~80.1025+0.5141 ·(115-Sw) 
[17+ · -. ]2 

20 

A = 0.2571 .. 
w s (10) 

-2:'.. 

5.36- 128.7682+0.9173·(27-Sh) 
[7.30+ " - ]2 

Ah= 0.4587 
sh 

( 11) 
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8.95- ~80.1025+ 1.2030·Sv 
[ -12 

A = 0.6015 
V 

(12) 

The lift curve slope of a subsonic conventional aircraft is given 

by Roskam[16]: 

2·1t·A 

C'-" = r' 2+ -·(l-M2 -tan2 A)+4 
K2 

(13) 

The after-damage lift curve slope is obtained by replacing A by A in 

equation (14): 

C'-" = ~ ~ A2 . 
2+=-·(1-M2 -tan2 A)+4 

K2 . 

(14) 

Therefore, for the Gates Learjet 24B aircraft, 

(15) 



2 · 7Z'· Ah 
CLah = ----;:::=2=======. 

Ah 2 
2+ =-·(1-0.7 -0.05)+4 

K2 

2 · 7Z'· A V 

CLav =---:::=====================:;:-
A/ 2 

2+ -- ·(1-0.7 -0.33)+4 
K2 
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(16) 

(17) 

Then, by knowing CLa and s, a series of equations in terms of 

the factors between the damaged and undamaged stability derivatives 

can be derived. Referred to Roskam [ 16], the undamaged longitudinal 

stability derivatives of horizontal tail are expressed as follows: 

sh. T/h de 
C =C · ·(1--) 

Loe . Lah S da 
w 

(18) 

(19) 

C Lah ·Sh · T/h de 
C =C · ·(1--) 

La LaWB SW da (20) 

(21) 



2 · C · 1J • S · ( X - X ) d& C = Lah h h ac cg . _ 
L: S da 

w 

-2•CLah · TJh ·Sh ·(Xac -Xcg)2 d& 
C =----------m: SW da 

2•CLah · TJh ·Sh ·(Xac -Xcg) 
CLq =---------

SW 

Referring to equation ( 16), let 

CLah 
K == 

1h C 
Lah 

sh 
K == 

2h s 
h 

the equation ( 18) becomes 

23 

(22) 

(23) 

(24) 

(25) 

(26) 
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sh . .,,h ds 
C =C · ·(1--) 
_..!:§!_ -1:!!!!. S · d a 

w 

(27) 

Substituting K1h, K2h, Kh and equation (18) into equation (27), it gives 

By using the same logic to have 

Since 

C. = Kh ·C. 
La La 

C • = Kh ·C. 
ma ma 

CLq =Kh ·CLq 

Cmq =Kh ·Cmq 

CDa = Kh ·Cva 

d& 
1--= TE =0.5 

da 

Equation (18) can be substituted into equation (20) to give 

CLa = CLaWB +CL& 

(28) 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Therefore, by use of the same logic for transforming equation ( 13) 
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into equation ( 14 ), for horizontal tail with damage, 

(36) 

Equation (36) subtracts equation (35) to give 

(37) 

Substituting equation (19) into equation (21) to have 

(38) 

Again, for damaged horizontal tail, 

(39) 

Equation (38) is subtracted by equation (39) and gives 

(40) 

If damage occurs to the vertical tail, the following stability 

derivatives are significantly effected by the lift curve slope, CLav, and 

surface area of vertical tail, Sv: 

Referring to equation ( 16), let 

CLav 
K == 

Iv ·C 
Lav 



sv 
K == 

2v S 
V 
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Then, by using K iv, K 2v, K v and undamaged lateral-directional 

stability derivatives, and following the same logic used for horizontal 

tail with damage, the stability derivatives with significance of 

damaged vertical tail [ 16] are 

1'/v du 
C =--·(l+-. )·C ·S (41) 
_!f!_ SW dp ~ ...,..!. 

'f/v ·Zv du 
C1'fJ = - ·(1--)·C ·S (42) 

S •b dR ~ .....!. 
w w JJ 

zv 2 1'/v du . 
C =-2·(-) ·-· ·(l+-. )·C ·S (43) 

Ip b S dR Lav ...,..!. 
w w JJ 

1'/v du 
C = ·(1--)·(/ cosa+Z sina)·C ·S (44) 

mp S • b dR v v ~ ...,..!. 
w w JJ 

-2·K·TJ du 
C = V ·(l+-)·(/vcosa+Zvsina)2 ·CL-· ·Sv (46) 
--2'.: S •b 2 dR --· - · 

w w JJ 
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(47) 

(48) 

Therefore, 

(49) 

and 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

Considering the lift force decreases due to wing damage, the 

angle of attack, a, should be increased to compensate the loss of lift 



force. Referring to the expression of lift coefficient [16]: 

w 
CL=-
- q·S. 

Also, 

Substituting equation (15) and (57) into (58) to obtain 

W CLan · T/h ·Sh de · 
--C + ·[(e +-·a)+i + r ·8] • s LOWB s O da h E e 

a= q - w 

. cLah.T/h.sh 
CLaWB +--.----- s 

w 

Referring to equation (15), let 

SW 
K== 

lw S 
w 

b 
K ==w2 · b 

Then, by using K iw, K 2w, Kw and stability derivatives derived by 

Finck and Hoak [ 17], and following the same logic used for 

28 

(57) 

(59) 
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horizontal tail with damage, the stability derivatives with significance 

of damaged wing are 

(60) 

(61) 

(62) 

(63) 

Cnaa =0.1124·C,aa (64) 
- -

(65) 

(66) 



cmq 
C =
___!!!!!_ K 

lw 

C 
C =_E!!.. 
_EE.. K 

lw 

cyp 
C =yp K 

lw 

30 

(67) 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 



C =-C_zr_ 
-1!.. K ·K 

"' w2 

C =-C_np_ 
_.!!!.. K ·K 

"' w2 

de 
CLah · TJh ·Sh ·Xach ·(1--d-) 

X + a 

where 
acWB C •S 

xcg = ------------...... LaWB .......... ____ w ___ - 0.1 
de 

CLah.,,h.sh•(l--d ) 
1+. . . a 

CLaWB ·S,,, ---
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(75) 

(76) 

(77) 

(78) 

As a summary, equation (28-34), equation (37), and equation 

( 40) are the stability derivatives of horizontal tail with damage; 

equation (49-56) are those of vertical tail with damage; and equation 

(60-78) are those of wing with damage. 
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4.2 Dynamic Models of the Specific Aircraft with Damage 

The six rigid-body equations of motion and the three Euler angles kinematic 

equations are given by Roskam [ 16]: 

. 
Fx = m · (U + Q · W - R · V) + m · g · sin 8 

. 
· FY =m·(V+R·U-P·W)+m·g·cos8·sin</J 

• 
~ =m·(W+P·V-Q·U)+m·g·cos8·cos</J 

• • • 
M,: = p.J,: +Q·R·(Jz -Jy)-(R+P·Q)·lrz -(Q-P·R)·l,:y 

-(Q2 -R2),Jyz 

• • • 
My =Q·ly +P·R·(Jx -JJ-(P+R·Q)·l,:y -(R-P·Q)·lyz 

-(R2 -P2),Jrz 

• • • 
Mz = R·lz +P·Q·(Jy -1,:)-(Q+ P·R)·lyz -(P-Q·R)·lrz 

-( p2 _ Q2 ) . J ry 

• 
</J = P + Q · tan 8· sin </J+ R · tan 8· cos </J 

• 
8= Q·cos</J-R·sin </J 

• 1 
':P= --·(R ·cos</J+Q· sin </J) 

cos8 

(79) 

(80) 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

U. V, Ware the linear velocities and P, Q, R are the angular velocities with respect 

to the body axes, and are illustrated in Figure 3. Moreover, steady state flight is 

defined as a flight condition for which all motion variables remain 



Lift 

y w 

N,R,9 

z 

Figure 3. Aircraft Coordinate System 

L,P,t 

VTrue 

w 
w 



constant with time relative to a body fixed axes system. The steady state and 

small perturbation variables can be defined by the following equations: 

U=U0 +u (88) 

V = Va +v (89) 

W="fVa+w (90) 

P=Po+p (91) 

Q=Qo+q (92) 

R=Ro+r (93) 

0 = 0 0 +8 (94) 

<1> = <1> 0 + <I> (95) 

'P ='Po+ \j/ (96) 

Fx=Fxo+fx (97) 

Fy=Fyo+fy (98) 

Fz = Fzo + fz (99) 
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MX =Mxo +mx (100) 

MY =Myo +my (101) 

Mz = Mzo +mz (102) 

Substituting equation (88-102) into equation (79-87) and neglecting the products 

of the perturbation terms as small and making the sine, cosine, and tangent small 



angle approximations, gives the steady-state equation (103-111) and the 

perturbation equation (112-120): 

F = m·(W ·Q -V ·R +g·sine) xO O O O O 0 

F =m·(U ·R -W .p -g·cose ·sin(P) yo o o o o o o 

F = m·(V . p -u ·Q -g·cose ·COS(P ) zO O O O O O 0 

M xO = Qo · Ro · (I z - f y) - Pa · Qo · I xz + Po · Ro · f xy 

-(Q/-R/)·Iyz 

Myo = Po ·Ro ·(Ix -JJ-Ro ·Qo ·lxy +Po ·Qo ·lyz 

-(R 2 -P2),J 
0 0 xz 

Mzo = Po · Qo · (I y - I J - Po · Ro · I yz + Qo · Ro · I xz 

-(Po2 -Q/)·lxy 

. 
(1j = P + Q · tan e · sin (1j + R · tan e · cos (1j 0 0 0 0 0 0 0 

• 
@0 = Q0 • cos (lj0 - R0 • sin (P0 

. 
fx =m·(u+~ ·q+Qo ·W-~ •r-Ro +g·B·coseo) 

. 
JY =m·(v+U0 ·r+R0 ·U-~ ·p-P0 ·W 

-g· <I>· cos00 · cos<l>0 + g·0 · sin 0 0 · sin <1>0 ) 

35 

(103) 

(104) 

(105) 

(106) 

(107) 

(108) 

(109) 

(110) 

(111) 

(112) 

(113) 
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. 
fz =m·(w+V0 ·p+P0 ·V-U0 ·q-Q0 •U 

+g· <I>· cos00 ·sin <1> 0 + g·0 · sin 0 0 • cos<1>0 ) (114) 

• • 
mx =p·lx +(Qo ·r +Ro ·q)·(/z -/y)-(r+Qo · p+flo ·q)·/xz 

• 
-( q- P0 • r - Ro · p) · / xy - 2 · (~ · q - Ro · r) · / yz (115) 
. . 

my= q·ly +(Pa ·r+Ro ·p)·(lx -/z)-(p+Q0 ·r+Ro ·q)·lxy 

• 
-(r-Po ·q-Q0 • p)·l yz -2·(Ro ·r-Po · p)·lxz (116) 

• • 
mz =r·lz +(Po ·q+~ · p)·(ly -/x)-(q+Po ·r+Ro ·q)·/yz 

• 
-(p-Qo ·r-Ro ·q)·lxz -2·(Po · p-Qo ·q)·lxy (117) 

• 
<I>= p +<I>· (Q0 • cos<l>0 -Ro· sin <1>0 )· tan00 +q· sin <1>0 ·tan00 

+r·cos<l>0 ·tan00 (118) 

. 
e = q. cos<l>o -r. sin <l>o -<I>. (Qo. sin <l>o +Ro. cos<l>o) (119) 

. 
\jl = q· sin <1>0 • sec00 +r · cos<l>0 • sec00 +<I>·(~· cos<l>0 -Ro •sin <1>0 )· sec00 

+0 · (Q0 • sin <1>0 + Ro cos<l>0 )·tan00 • sec00 (120) 

Equation (103-120) are linear with respect to the perturbation variables and 

allow an arbitrary steady-state maneuver by specifying 

U O , ~ , ~ , Po, Q0 , and R0 • Equation ( 112-119) can be further simplified by the 

following steps: 

(1) Referring to Figure 4, w O can be reduced to zero by replacing body axes with 

stability axes orientation to express the aerodynamic forces which consists of, 

drag, and side force. 



~ 

horizontal 

I 

I 
X, Y, Z ( arbitrary body axes) 

Xs, Ys, Zs, ( stability axes) 

I 
z 

Zs 

Figure 4. Definition of Stability Axes w 
-.] 



(2) The angle of attack, a, and sideslip angle, p, are so small that they can be 

expressed in the following forms: 

then all the w/U0 or v/U0 related terms can be transformed into a or p related 

terms. 

(3) After the implementation of step (1) and (2), equation (112-114), equation 

(115), equation (116), and equation (117) are divided by .z::, .z;,, and ~, 

respectively. However, the cross-products of mass moments of inertia in these 

equations remain, as they will not be zero for a damaged aircraft where the xz

plane will not be a plane of symmetry. 
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Consequently, the equations of motion are obtained as equation (121-126): 

• 
u g-e Ix - =-Q0 ·a+Ro ·f3--cos00 +--

U0 U0 m-U0 

(121) 

:X, =-Po· f3 +Q0 • .!!....+q-.K.·(q>· cos00 sin <1>0 +0 · sin 0 0 •cosel>0 ) 

Uo Uo 

(122) 



f3 = Po ·a+ Ro ·..!!_+r _ _K__ (<I>· cos00 cos<l>0 +0 · sin 0 0 • sin <l>0 ) 

Uo Uo 

+_£_ 
m·U 0 

r mJC --·[2· l) .J +P, ·I +Q ·(I -1 )]+-I -''O yz o :ry o z y I 
JC JC 

p . m 
--·[2·R .J +n .J + 1) ·(I -I )]+-2.. I o xz ~ yz -''O JC z I 

:ry y 

• -r p 
r = - · (Q · I - P, · I ) +-· [2 · P, · I - n . (I - I )] I O;rz Oyz I O:ry~ y JC 

z. .z 

_!l_·[2·n .] + 1) .] +P, ·(I -] )]+ mz I ~ . :ry -''O xz O y JC I 
z z 
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(123) 

(124) 

(125) 

(126) 

The perturbation aerodynamic terms in equation (121-126) can expressed as 

functions of stability derivatives. The stability derivatives are given by Swaim 

[18] as 

p·U 2 ·S -u·(C +2·C ) 
r = 0 ·[ nu vo +(-C +C )·a-C ·8] (127) JJC 2 u Da LO Dlie e 

0 
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P·U 2 ·S b·(C ·p+C ·r) 
f = 0 ·[ YP yr +C ·P+C ·'5 +C ·'5] (128) 

y 2 2 . U yp yoa a yor r 
0 

. 
U 2 S -c·(C · a+C ·q) 

f = p· 0 • ·[ L: Lq -u·(CLu +2·CLO) 

z 2 2·U0 Uo 

+(-CLa. +Cvo)·a -CL& ·Oe] (129) 

(130) 

• 
U 2 S -c · ( C · a+ C · q) (C 2 c ) p· O • • C • mq U · mu + · mO m = . [--=ma'--__ _ 

Y 2 2·U0 U0 

+Cma ·a-Cmoe ·'5el (131) 

Equation (121-126) are substituted by equation (127-132) to give the aerodynamic 

forces and moments in terms of the dimensional stability derivatives as defined by 

Roskam[19] (given in Appendix C): 
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(133) 

2 -2 

q ·S·c·C qo ·S2 •C ·C. ·(CLa +2·Cvo) 
+[ 0 ma _ ma ] . a 

I 2·m·I ·U 2 
y y 0 

2 · ~ . J xz + Qo · I yz + Ro • ( J x - J z ) 
-[ . . . ]·p 

ly 

2 · R · I + Q · I - P · (I -1 ) 
[ 0 XZ O X}' . 0 X Z ] - . ·r 

ly 

2 -2 

q •S•c•C qo ·S2 •C ·C. ·CL& 
+[ o . moe _ ma ] , O 

I 2·m·I ·U 2 e y y 0 

(135) 

. 
B=q·cos</J -2·(Q ·sin</J +R ·cos</J )·~-,-sin</J o o o o o'P o (136) 
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• -Re ·U g,8 . g,<j> 
A= +P, ·a.--,sm@ ·cos<I> +-·cos@ ·cos<I> 
I-' u OU O OU O O 

0 0 0 

(137) 

. 
<I>= p + q · sin <1>0 • tan 0 0 + [(C?o · cos<l>0 -Re sin <1>0 ) • tan 0 0 ]- <I> 

+r·cos<l>0 ·tan00 (138) 

• 2·Q ·I +P ·I _ 1) ·(I -I ) q ·S·b·C 
_ [ 0 yz O xz _.~ z y ] + 0 Ip p p- ·q . 

Ix ly 

q ·S·b2 ·C +2·U ·(Q ·I -R ·I ) q ·S·b·C +[ O Ip O O xz O .xy ] , p + 0 Ilia , '5a 
2 ·Ix •U0 Ix 

q ·S·b·C q ·S·b2 ·C 2, Y ·I +P ·I +Q ·(I -I) + 0 l6r , '5r + [ 0 Ir _ _. ~ yz O .xy O z y ] , r 

Ix 2·1x·U0 Ix 
(139) 

• 2·Q ·I + 1) ·I -P ·(I -I) q ·S·b·C 
_ [ 0 .xy .. ~ xz O y x ] + 0 . nP p r-- . . . ·q . 

lz lz 

q ·S ·b2 ·C -2·U ·(Q ·I -P ·I ) q ·S ·b·C +[ o nr O O xz . 0 yz ] , p + 0 . nlJa , <5
0 

2·1z·U0 lz 

2·R0 ·lxy +. Q0 ·(IY -I~)] 
~~~~~~~~ ·p 

lz 
(140) 
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Finally, the whole set of equations of motion of the undamaged aircraft is obtained 

and given as equation (136), equation (138) and equation (141-146): 

. 
..!:!_ = X ..!:!_ + ( xa - Q )a -(~ cos0 )0 + R A + X .se 5 ( 141) 
U u U U o U o of-' U e 

0 0 0 0 0 

• u z g 
a= (Zu +Q0 )-+~a+q-(-sin00 cos<l>0 )0-P0J3 

Uo Uo Uo 
(142) 

-(~cos0 sin<l> )"' + 200 5 U o o'f' U e 
0 0 

• u M.Za 
q =[U0Mu +M. (Q 0 +ZyJ]-+(Ma + a )a 

a · U 0 U 0 

1 M.g 
+[M. + M +- (Raf -Pofyz)]q -(-· a-cos(?)0 cos</J0 )¢ 

a q ]Y xy U0 

1 
--[2P0Jxz +Q0Jyz +R0 (Ix -JJ]p (143) 

Iy 

1 M.Z& 
+-[2Rof xz +Qof xy -PO(Ix -Jz)]r+(M& + a )oe 

Iy U0 

. 
0 = q cos<1>0 - (Q0 sin<1>0 + Ro cos<l>0 )<1>- r sin<1>0 (136) 

(144) 



. 
<I> = p + q sin <l> 0 tan0 0 + [ ( Q0 cos<l> 0 - Ro sin <l> 0 ) tan0 0 ]<I> 

+ r cos<l> 0 tan0 0 

• 1 
p=-[2Q0Jyz +f'o]xz -R0 (1z -Jy)]q+Lp/J 

Ix: 
1 

+[LP +1 (Qof xz -R(Jxy )]p + Laa8a + Llir8r 
,: 

1 
{Lr --[2R0Jyz +l'c/x,, +Q0 (1z -Jy)]}r 

Ix: 
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(138) 

(145) 

(146) 

These equations could also be applied to the aircraft with control surface damage 

by updating the dimensional stability derivatives from Section 3.1, as well as the 

masses and moment inertia with damage. Moreover, the equations of motion are 

re-written in state space form and the dynamic model, the plant matrix, A, and 

input matrix, B, is therefore obtained (Appendix D). 
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4.3 Derivation of Single-axis Transfer Functions 

The single-axis transfer functions of pitch, roll, and yaw are obtained by using 

the following equation (147) which are given by Kuo [20]: 

where 

G(s)=C(sl-A)"1B 

G( s) = transfer function of a specific axis 

I = unit matrix 

C = output matrix 

4.4 The Logic of Optimal Pilot Model 

(147) 

The Optimal Pilot Model (OPM) is a C-language computer program 

developed by Kim [15]. This software is developed to obtain the single-axis 

performance index from an input single-axis dynamic model of an aircraft which 

can be expressed in state space form or transfer function form. In this research, to 

directly apply Dander's data, transfer-function formed dynamic models are used as 

input. 

When disturbances occur to an aircraft, the resulting deviation is displayed 

on the instrument and visually perceived by the pilot with observation noise. After 

reaction time delay, the pilot evaluates the delayed situation and predicts the future 

situation and responds. The feedback with motor noise made by the pilot is 

delayed by his neuro-muscular system and input into the vehicle and produces an 

output status ofthe aircraft. Figure 5 illustrates these procedures. The dashed 

block is the so-called human operator model, or optimal pilot model, which 

includes the procedures from the visual perception to the neuro-muscular delayed 

feedback of the pilot. A more detail diagram of the optimal model is given as 

Figure 6. 
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Based on the illustrated logic, the Optimal Pilot Model (OPM) software is 

developed. Because the pilot does not have perfect observation of the instrumental 

output, which is expressed as vector y(t), he sees a delayed and noisy vector given 

by equation (148): 

y p(t) = CX(t- t) + Vy(t- t) 

The observation noise vector v Y has a white noise diagonal auto-covariance 

matrix given by 

E[Vyi(t)·Vyi(t)]=Vi>(t-t), i=l, 2, 3 

where 
Pyi ·1t·E(y/) 

Vyi = . T 
/; ·[e,fc(~ i )]2 

2·E2 (y;) 

. 
" 

(148) 

(149) 

A Kalman filter is used to estimate the delayed state vector x (t- -r ). The Kalman 

filter ( estimator) equations are 

. 
/\ I\ A /\ 

X(t- t) =A· X(t-t) + B · uc(t- t) +I:· er -v;,-1 ·[yp (t)-CX(t- t)] (150) 

where t is the pilot's reaction time delay 

A·L+L·AT -L·CT .v-1 -C-I:+E·W·Er =0 y 

. 
I\ 

(151) 

The estimated state X(t) can be obtained by a linear least squares predictor as the 

form 
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. . 
I\ I\ 

X(t) = eA·, · X(t-'t) (152) 

where eA·, is a constant state transition matrix. 

The feedback response without mot<>r noise is given by 

I\ I\ 

Uc =-t[x-K-1!]= R-1 -BT[K·X-!] (153) 

The following feedback response with motor noise is given by · 

m(t) = uc(t) + v.,c(t) (154) - --
The motor noise auto-covariance matrix is 

(155) 

where V . = p . · 1t • E(u . 2 ) 
U1 UCI Cl 

I\ ,.. 

The solution of the Kahn.an filter and predictor to obtain X(t) and y (t) requires 

an iterative procedure. This procedure, illustrated in Figure 7, is to select values 

for the intensities v yi and v uci solve the single-axis filter and predictor equations 
I\ 

(150-152) to yield x (t}, compute the values E (y/) and E ru.c/) from the 

computer simulation. Repeat this procedure until equation (149) and equation 

(155) are satisfied to a sufficient numerical accuracy for the v yi and v uci values. 

Then, the single-axis performance index J is obtained by equation (156): 

J = Q·E(y/)+R·E(U/) (156) 

The single-axis performance index of the associated axis are then obtained 

and are ready for being transformed into the associated single-axis PORs. This 

transformation is discussed in the next section. 
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until J 
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Figure 7. Computation Flow of the Optimal Pilot Model 



4.5 Multi-axis POR 

In this research, multi-axis POR is used to determine the flying quality of 

the specific aircraft, Gates Learjet 24B. As mentioned in section 3.3, the multi.

axis POR is obtained by the integration of the associated three single-axis PORs 

which are resulted from the transformation of single-axis performance index. 

The three single-axis performance indices are first normalized by the following 

equation: 
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J=~ 
O' _2 

(157) 
Cl 

andaci 2 is the mean square output error due to the driving noise for axis i. The 

normalized performance index for the i axis, J; , is transformed into the 

corresponding single-axis POR by use of the cost function/rating correlation model 

[4], which is illustrated in Figure 8. 

The linearity between single-axis normalized performance index and single

axis POR displayed in Figure 8 can be formulated as the following equation: 

POR; = 7 :7 +3 :7 ·log0 (J;) (158) 

The fmal procedure is to integrate the obtained single-axis PORs into the 

corresponding multi-axis POR by the utilization of the product rule [3]: 

where 

-}(m+l) m 

1\. = 10 + · (m-1) TI (Ri -10) 
8.3 i=l 

1\. = the multi-axis POR 

~ = the POR in the axis i 

m = the number of axes 

(159) 



10 -C, -0 9 
u .,, 
... 8 
u 
g- 7 
0 u 
- 6 CJI 
C: --a . a: 

5 

G 4 
> --u 3 ., -.12 
:a 

U') 
2 

I 

-2.0 

Dander 
Data Base 

! Ma:1.·Min. 
J. Raring 

Single-Axis 
Data 

52 

Single-Axis Trend Line 
Slope = 3.7 POR/log J task 

-1.0 

Log J task 

Figure 8. POR vs. Performance Index 

0.0 



53 

The controllability of the aircraft which is perfonning a specific maneuver 

is then determined by using the Cooper-Harper rating scale [1], shown in Table II, 

to interpret the resulting multi-axis POR. The aircraft is said to exhibit total loss 

of control if the obtained POR is larger than 9; otherwise, the aircraft is 

controllable. 



CHAPTERV 

DETAILS OF IMPLEMENTATION 

5 .1 The Assigned Constants and Range of Study 

The Gates Learjet 24 B aircraft is utilized for this research. The flight 

conditions, geometry and inertia, steady state coefficients, and stability and control 

derivatives of this aircraft are given in Appendix B. The specific types and 

degrees of damage are damage on wings, horizontal tail, or vertical tail , and each 

with increment of 6.25% of loss of the specific control surface, and are 

mathematically defined. Moreover, the maximum loss of any control surface is 

limited to be 50%. In addition, because this specific aircraft is a commercial one 

rather than a fighter, the pitch angle e0 and bank angle <1>0 are not supposed to be 

larger than 30 degrees in practical situations. Therefore, the pitch and/or bank 

angles of the specified maneuvers are set to be 15 or 30 degrees. In addition, the 

flight speed is set to be the cruise speed which is 677 feet per second. 

To perform the third procedure of the methodology mentioned in.Section 

3 .4, several parameters are required to operate Kim's Optimal Pilot Model 

software [6]. They are neuro-muscular constant, 'N, driving noise intensity, Vw, 

human reaction time delay, r, noise ratios, Pyi, Pyi, and py3, indifference threshold, 

T1 and T2, and fractional attention, f The values of these parameters except fare 

given in Table III [21]. The value of/is selected based on the data from the 

optimal pilot model of McRuer and Schmidt [ 4] and is between O and 1. 
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p 

Vw 

1 

1 

1 

Table ill 

PILOT MODEL PARAMETER VALUES 

Py] Py2 Puc 

0.2 0.1 0.01 0.01 0.01 0.015 0.025 

0.2 0.1 0.01 0.01 .0.01 0.750 1.500 

0.2 . 0.1 0.01 0.01 0.01 0.070 0.140 
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Also, in the third procedure, the input of driving noise shaping filters (Yw, i of 

the i-axis, i can be 0, q, or f:3) for the three axes are required by Kim's optimal pilot 

model software. These driving noise shaping filters are modeled as a second-order 

Markov process [ 4] based on Dander's data and are given as follows: 

Y. ( ) 0.2219 
W,& S = S2 +0.7s+0.25 (160) 

Yw (s) = 13.3 
,+ S2 + 0. 7s+0.25 

(161) 

Yw ( s) = . 0.53 . 
,II S2 +0.7s+0.25 

(162) 

The commanded attitude of the associated axis is thus the product of the driving 

noise shaping filter of the associated axis and the external disturbance, and is 

calculated by the software automatically. It is important to know that.Gaussian 

white noise is used as the external disturbance. Moreover, in this research, the 

external disturbance is Gaussian distributed with a mean of zero and a variance 

which is a delta function of time. 
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5 .2 Sample Case 

A methodology for determining the controllability of a specific aircraft with 

specific control surface damage has been developed completely. In this section, a 

sample case is presented to provide an environment for understanding this 

methodology. In this sample case, a damage occurs to the specific aircraft and 

causes a loss of 43.75% of the area of the horizontal tail. Moreover, the damage 

occurs while the aircraft is performing a combinational maneuver defined in 

Section 3.2 with both e0 and r/J0 are constant at 15°. 

Before determining the damaged case, the parameters c Ip and c nr are first 

calibrated by setting the POR to be 4.5, a reasonable controllability, while the 

aircraft is performing straight and level flight, the simplest maneuver. The 

calibrated c Ip and c nr are -3.17 and -13.34, respectively; and the undamaged c Lah 

is 4.26. The procedure of implementation is then illustrated step by step: 

(1) Obtain Ah: 

Substituting sh = 30 .38 (ft) into equation (11) to give 

Ah = 2 .DB. 

(2) Obtain c Lah : 

Substituting the obtained Ah into equation (16) to give 

CLah =2 S9. 

(3) Obtain Kh: 

(4) Substitute the obtained K h into equation (27-34) and equation (37) and 

equation ( 40) to give the stability derivatives with damage: 
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Cue 0.16 
cm& -0.43 
CLiz 0.76 

cmiz -2.30 

CLq = 1.61 

cmq -5.32 

CDa 
0.10 

5.54 
CLa 

0.18 
cma 

( 5) Substitute the stability derivatives with damage into Plant matrix, A, and input 

matrix, B: 

-.019 .009 0 -.046 .012 0 0 0 

-.135 -.633 1 -.012 .003 -.012 0 0 

.631 1.675 -1.324 .005 -.001 .018 .012 -.003 

0 0 .966 0 
A= 

0 -.013 0 -.259 

-.012 -.003 0 -.003 -.083 .044 0 -.999 

0 0 .069 0 0 0 1 .259 

0 0 -.012 0 -4.152 0 -3 .148 

0 0 -.001 0 2.843 0 .005 -7.5 



0 0 0 

-.024 0 0 

-6.204 0 0 

0 0 0 
B= 

0 0 .016 

0 0 0 

0 6.718 .717 

0 -.448 -1.656 

( 6) Obtaining the three single-axis transfer functions: 

By use of equation ( 14 7) the transfer functions for three axes are given: 

Ga= -5.168(s+0.026)(0.631) .. . .· 
(s~ 0.074)(s-O. 715)(s2 + 1.928s+0.126) 

G _ . 6.67(s+0.449) . 
,p - (s+3.027)(s2 +0.458s+0.057) 

G = 1.677(s+0.031) 
P (s+'7.093)(s2 +0.458s+0.057) 

(7) Input the single-axis transfer functions and driving noise shaping filter, 

equations (160-162), into the Optimal Pilot Model and have 

Ia= 0.074 
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J~ = 29.873 

(8) Use equation (157) to obtain the normalized single-axis performance index 

with crc/ = 0.14, crc/ = 500, crc/ = 0.81 which are given by Thompson and McRuer 

[20]: 

J8 = 0.53 

Jp = 0.059 

(9) Use equation (158) to obtain single-axis PORs 

POR8 =6.68 

POR13 = 3.15 

(10) Use the product rule, equation (159), to obtain the multi-axis POR as 

POR = lO+ (-1)4(6.68-10)(3.18-10)(3.15-10) = 7_ 74 
8.32 

( 11) Determine the state of control: 

From the Cooper-Harper rating scale [1], it is clear that the aircraft is still in 

control after the damage. 



The sample case thus provides an example of applying the methodology. 

By use of this methodology, a series of resulting data is obtained. The resulting 

data is then summarized and analyzed in the next chapter. 
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CHAPTER VI 

ANALYSIS OF RESULTING DATA 

The resulting data is plotted for straight and level flight, steady level turn, 

symmetrical pull-up, and the combination of steady level turn and symmetrical 

pull-up as shown in Figures 9, 10, 11, 12, 13, and 14. In addition, the numerical 

PORs are provided in Appendix E. From these figures, the computer simulation 

shows the same trend for all these maneuvers that the scale of loss of control 

increases while the control surlace damage on wing, horizontal tail, or vertical tail 

mcreases. 

The resulting data suggests that the Gates Learjet 24B aircraft is capable of 

taking serious control smface damage. To perform tasks with small pitch and bank 

angles which are not more than 15 degrees, the aircraft remains controllable even 

though the control surlace damage of either type is about 43.75% loss. In 

addition, coincidentally, with the same scale of control smface loss, the specific 

aircraft is more sensitive to wing damage than to tail surlace damage if the damage 

scales are all less than 37.50% for all four types of maneuvers. However, if the 

damage scales are more than 37.50%, the aircraft is more sensitive to horizontal 

tail loss. This dramatic increase in sensitivity to horizontal tail loss occurs because 

the variation of pitching moment coefficient with a, c ma• changes its sign from 

negative into positive while the damage scale is 37.50%; and this change abruptly 

reduces the controllability of the aircraft. However, among all types of control 

surlace damage, the resulting data suggests that wing loss is still the most serious 

condition for this aircraft for all types of maneuvers studied. 
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Moreover, based on the resulting data, some criteria can be established for 

operating this aircraft, Learjet 24B, as follows: 
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(1) When performing straight and level flight, symmetrical pull-up with e0 no 

more than 30 degrees, steady level turn with tP0 no more than 30 degrees, or the 

defined combinational maneuver with neither e0 nor tP0 is more than 30 degrees, 

the specific aircraft should be abandoned if 

(a) the wing loss is more than 43. 75%, or 

(b) the horizontal tail loss is about 50%; · 

(2) When performing steady level turn with tP0 between 15 and 30 degrees, the 

specific aircraft should reduce its tP0 to 15 degrees or less if 

(a) the wing loss is about 42%, or 

(b) the horizontal tail loss is about 49%; 

(3) When performing the defined combinational maneuver with both e0 and tP0 

are between 15 and 30 degrees, the specific aircraft should reduce both its e0 and 

tP0 to 15 degrees or less, or simply reduce its maneuver to the steady level tum 

with the same tP0 if 

(a) the wing loss is about 40%, or 

(b) the horizontal tail loss is about 45%; 

(4) When performing straight and level flight, symmetrical pull-up with e0 no 

more than 30 degrees, steady level turn with tP0 no more than 30 degrees, or the 

defined combinational maneuver with neither e0 nor tP0 is more than 30 degrees, 

the specific aircraft should not be abandoned even though the vertical tail loss is 

50% or less. 

These criteria can be easily applied when a failure identification system is 

built in the specific aircraft. Furthermore, to minimize the interference of human · 

factors such as emotion, psychological stress, misjudgment, and so on, the criteria 

are expected to be built in a warning system which can respond to the identified 
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damage immediately. The methodology developed in this research thus provides 

for the specific aircraft a foundation for the establishment of a flying safety 

system. 



CHAPTER VII 

CONCLUSIONS 

The assessment of loss of control of aircraft should be conducted so that the 

tragedies that human lives are sacrificed for saving a seriously damaged aircraft 

can be avoided. Furthermore, the damaged aircraft is not abandoned while it can 

still survive. This research thus develops a systematic methodology to evaluate the 

controllability for a specific aircraft, Learjet B24, with/without various types and 

degrees of control surface damage. 

The general dynamic models of the aircraft with/without various types and 

degrees of damage have been developed as the bases of this research. These 

developed dynamic models, Kim's optimal pilot model, the cost function/rating 

correlation model, and the Cooper-Harper rating scale are then successfully 

integrated into this methodology. And consequently, based on computer 

simulation, the controllability of the specific aircraft with specific· control surface 

damage is monitored and predicted while this aircraft is performing straight and 

level flight, symmetrical pull-up, steady level tum, or the combination of 

symmetrical pull-up and steady level tum. Moreover, a set of safety criteria for 

operating the specific aircraft is established. With these simple and clear criteria, 

the pilot can make a decision quickly and correctly to save the aircraft, or his life. 

This assumes the pilot has knowledge of the type and amount of damage from a 

failure identification system. 

It is important to know that in a practical situation, the surface damage may 

occur in combinational loss of surface failure. The system breakdown can also 
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cause the loss of control of an aircraft. In fact, the pilot will encounter a more 

serious situation when both system and control surface failures occur. All these 

cases are complicated and ought to receive further attention. The methodology 

developed in this research provides a fair starting point for the future study on 

these cases. 
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APPENDIX A 

DERIVATION OF RATE OF TURN FOR 

COMBINATIONAL MANEUVER 
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Referring to dynamic equations given by Roskam[ 16] 

L·cos<l>0 ·cos00 = W = m·g 

u2 
L · sin d. = m · ;,,2 • R = m . ;,,2 • 0 

¥Jo ¥Jo 1 'l'o d. 
g· tan'?o 

Equation (163) is divided by Equation (162) to give 

ii · u2 
tan¢o • sec eo = O 

g2 ·tan¢o 

Then 

. g. tan¢o ·.Jsec eo 
If/,=-----~ 

0 u 
0 

The kinematic equations for general steady state cases are: 

p = :;, - f//0 

• sin e o ¥Jo o o 

ll = f//0 

• cos d. • cos e - e . sin d. .,~ o ¥Jo o o '?o 

For the defined combinational maneuver, 

@=:;,=o o ¥Jo 

therefore, Equation (165) - (167) becomes 

p = - ,i, . sine 0 . Y'O . 0 
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APPENDIX B 

FLIGHT CONDITIONS, AERODYNAMIC, INERTIAL, 

GEOMETERIC DATA 
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(A) Flight Conditions, Aerodynamic, Inertial, Geometric Data 

Velocity= 677.0 ft/sec 

Altitude= 40,000.0 ft 

Air Density= 0.000588 slugtft3 

Weight= 13,000.0 lbs 

lxx = 28,000.0 slugtft2 

Iyy = 18,800.0 slugtft2 

lzz = 47,000.0 slugtft2 

lxz = 13,00.0 slugtft2 

Wing Area= 230.0 ft2 

Wing Span = 34.0 ft 

Wing Mean Geometric Chord= 7.0 ft 

CLO= 0.41 Coo= 0.03 

C. =-6.70 cmq =-15.50 
ma 

CLa =5.84 C. =2.20 
La 

C0 a =0.30 G.ae = 0.46 

CIP =-0.11 Gp =-0.45 

c 100 =0.18 G« =0.02 

C =-0 01 RP • cnr =-0.20 

en& =-0.07 CYP = -0.73 

Cyr= 0.40 CY& =0.00 

cma =-0.64 

~u =0.40 

~ =4.70 

C =-124 mae • 

Cir = 0.16 

cn,8 = 0.13 

en& =-0.02 

cyp = o.oo 
c;,ci = 0.14 
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DIMENSIONAL STABILITY DERIVATIVES 
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( 1) Longitudinal Dimensional Stability Derivatives 

X-r = 
u 

z .. -
u 

z = -a 

z .. -
q 

-1 (sec ) 

-1 (sec ) 

-2 (ft sec or 
-2 -1 ft sec deg ) 

qlS(~ + 2CL) 
. 1 -1 (sec ) u 

mu1 

qlS(~ +CD) 
a 1 -2 (ft sec ) m 

qlSCL C 
9 

2mU1 

q1SCz. 
cSE 

-1 (ft sec ) 

-1 (ft sec ) 

-2 
zcS .. - (ft sec or 

E 
m ft sec-2deg-1) 

q1Sc(C + 2C ) 
mu ml 

M = ----------u IyyUl 
-1 -1 (ft sec ) 

q1Sc(C + 2C ) 
. ~ ~ 

~ -
u 

u 1 -1 -1 (ft sec ) 

~ .. 
a 

M• • a 

M .. 
q 

I yy 

q1Sc2C 
m• a 

2I yyul 

qlsc2cm 
9 

2I yyul 

q1ScC 
111,6 

McS - I 
E yy 

E 

-2 (sec ) 

-2 (sec ) 

-1 (sec ) 

-1 (sec ) 

-2 (sec or 
-2 -1 sec deg ) 
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(2) Lateral-Directional Dimensional Stability Derivatives 

q1SC ql Sb CR. 
ye -2 oA 

(sec -2 
Ye = (ft sec ) Lo = or m I 

-2 -1 A xx 
sec deg ) 

q1SbC 
q1SbC1 yp -1 y = (ft sec ) 

p 2mU1 oR -2 
Lo = l 

(sec or 
R xx -2 -1 

q1SbC sec deg ) 

Yr -1 y = (ft sec ) q1SbC r 2mU1 ns -2 
NS .. l 

(sec ) 
q1SC -2 zz 

Yo (ft sec or 
Yo 

A -2 -1 q1SbC = m ft sec deg ) 
A 11.rs -2 N = 

I 
(sec ) 

q1Sc 
-2 

TS zz 
Yo (ft sec or 

Yo 
R -2 -1 = qlsb2cn m ft sec deg ) 

R -1 
N .. p (sec ) 

p 21 u1 
q1SbC1 

zz 

s -2 
Le = (sec ) 

qlsb2cn l xx -1 N r .. (sec ) r 21 u 
- 2 zz 1 q1Sb c1 

-1 L = p (sec ) q1SbC 
p 21 xxul no 

A -2 
No = (sec or 

l -2 -1 - 2 A zz q1Sb c1 sec deg ) 
r -1 L = (sec ) q1SbC r 21 xxul no 

No .. 
R (sec -2 

I 
or 

R zz -2 -1 sec deg ) 
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INPUT MATRIX 
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All elements of the matrix are zeros except follows: 

Input matrix B for all maneuvers: 

b11 = X°"/U0 

b21 = Z°"/Uo 

M.Z°"/ 
b31 = M °" + a ju o 

b53 = Yor/Uo 

bn = Loa 

b13 = Lor 

bs2 =Noa 

hs3 = Nor 
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PLANT MATRICES 
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All elements of all matrices are zeros except as follows: 

( 1) Plant matrix A for straight and level flight: 

a11 = Xu 

a12 = Xex/Uo 

a14 = -g/Uo 

a21 =Zu 

a22 = Zex/Uo 

a23 = 1 

a 31 = U0Mu + M.Zu ex 
M.Zex I 

a32 =Mex+ ex /Uo 

a33 =M. +Mq 
ex 

a36 = -M;g/Uo 

a43 = 1 

ass= Y~/Uo 

as6 = g/Uo 

ass= yr -1 
Uo 

a61 = 1 

a1s = L~ 

an= LP 

a1s = Lr 

as5 = N~ 

a87 = NP 

ass= Nr 

85 



(2) Plant matrix A for steady level tum 

Xa Q a12 =-- o 
Uo 

R14 = -g/Uo 

R15 = Ro 

R21 = Zu +Qo 

R22 = Za/Uo 

R23 = 1 
-g . 

a26 = - sm <l>o 
Uo 

R31 = UoMu + M. (Qo + Zu) 
a 

M.Za; I 
R32 =Ma;+ a; /uo 

M M lxyRX 
R33 = . + q + I 

a y 

-M.g 
a36 = a cos <I> 0 

Vo 
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a43 = cos<l>0 

a46 = -(Q0 sin <1> 0 + R0 cos<l>0 ) 

a48 = - sin <1> 0 

a51 =-Ro 

a 55 = Yr,/V 0 

a56 = -1Lcos<l>0 
Vo 

a 57 = YP/V0 

a5g = yr -1 
Vo 

a67 = I 

a73 = 
2Qoiyz - Ro Oz - Iy) 

Ix 
a75 = Lr, 

Q0Iyz -R0Ixy 
a77 =LP+-----

Ix 
2Roiyz + Qo Oz - Iy) 

a7s = Lr - -~----
Ix 

-(2Qoixy + Roixz) 
as3 = ----'-----

Iz 
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(3) Plant matrix A for symmetrical pull-up: 

Xa. Q a12 =-- o 
Uo 
-g 

a14 =-cos@0 
Uo 

a21 =Zu +Qo 

a22 = Za./Uo 

a23 = 1 

-M.g 
a36 = . a. cos@0 

Uo 

a _ -Qoli( 
37 - I . 

y 

a _QoI~ 
38 - I 

y 

a43 = 1 

ass =Yf3/U0 

as6 =~cos@0 
Uo 

as1 = YP/Uo 

ass= Yr -1 
Uo 

a66 = Qo tan@o 

a67 = 1 

a68 = tan@0 

a73 = 2Qoli( 
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( 4) Plant matrix A for combinational maneuver: 

a11 =Xu 

Xa. Q 
a12 =-- o 

Uo 
-g 

a14 =-cos00 
Uo 

a1s = Ro 

a21 =Zu +Qo 

a22 = Za./Uo 

a23 = 1 
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-M.g 
a36 = a cos@o cos<I>0 

Uo 

-[2P01xz + Qolyz + Ro(Ix -lz)] 
R37 =-----------

ly 

2Rolxz +Qolxy -Po(Ix -lz) 
R3g = ----~~----

ly 

a43 = cos<l>0 

a46 = -(Q0 sin <1>0 + R0 cos<l>0 ) 

a48 = - sin <1>0 

Rs1 =-Ro 

Rs2 = Po 

-g . 0. • "" a54 = -sm ~o sm .,.,..0 
Uo 

a55 = Y13 /U0 

a56 = __[_cos@0 cos<l>0 
Uo 

a57 = YP/U0 

Rsg = Yr -1 
Uo 

a63 = sin <1>0 tan@0 

a66 = (Q0 cos<l>0 -R0 sin <1>0 ) tan@0 

a61 = 1 
a68 = cos<I>0 tan@0 

_ 2Q01yz +P01xz -R0 (Iz -ly) 
a73 - ----------------

Ix 
R75 = Lp 

Qolxz -Rolxy 
a77 = LP +----.a-

Ix 
-L 2Rolxz +P01xy +Q0 (Iz -ly) 

a78 - r - I 
X 
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ass= N13 

2Polxy - Qo (Iy - Ix) 
a87 =NP +---=-----'----

Iz 
Qolxz - Polyz 

ass=N,-----
Iz 
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0% = percentage of control surface area that is lost 

H.T. = horizontal tail 

V.T. = vertical tail 

W. =wings 

0% 0.00 

H.T. 4.58 

V.T. 4.58 

w. 4.58 

TABIB IV 

STRAIGHT AND IBVEL FLIGHT 

6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

4.70 4.83 4.95 5.14 5.66 6.23 7.52 9.08 

4.63 4. 71 4.80 4.95 5.20 5.55 5.98 6.58 

4.84 5.17 5.75 6.35 7.15 7.91 8.80 9.86 

TABLE V 

SYMMETRICAL PULL-UP (00 =15°) 

0% 0.00 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

H.T. 4.62 4.74 4.89 5.00 5.18 5.70 6.29 7.65 9.13 

V.T. 4.62 4.68 4.75 4.82 5.00 5.25 5.58 6.05 6.62 

w. 4.62 4.92 5.29 5.90 6.60 7.32 8.10 8.96 9.94 
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TABLE VI 

STEADY LEVEL TURN («1>0 = 15°) 

0% 0.00 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

H.T. 4.58 4.72 4.87 4.98 5.17 5.67 . 6.26 7.61 9.12 

V.T. 4.58 4.64 4.71 4.85 4.98 5.25 5.56 6.00 6.59 

w. 4.58 4.93 5.27 5.85 6.50 7.21 7.98 8.93 9.94 

TABLEVIl 

COMBINATIONAL MANEUVER 
(eo =15°, «l>o ==15°) 

0% 0.00 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

H.T. 4.62 4.75 4.90 5.08 5.30 5.80 6.39 7.74 9.24 

V.T. 4.62 4.65 4.75 4.90 5.18 5.58 6.01 6.42 7.03 

w. 4.62 4.98 5.36 6.06 6.73 7.45 8.23 9.00 9.96 

TABLE VIII 

STEADY LEVEL TURN («1>0 =30°) 

0% 0.00 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

H.T. 4.60 . 4.74 4.87 5.05 5.28 5.78 6.35 7.70 9.18 

V.T. 4.60 4.65 4.71 4.90 5.15 5.55 5.99 6.38 7.01 

w. 4.60 5.02 5.48 6.18 6.90 7.63 8.36 9.16 10.0 
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TABLE IX 

COMBINATIONAL MANEUVER 

(80 - 30°, <1>0 == 30°) 

D% 0.00 6.25 12.50 18.75 25.00 31.25 37.50 43.75 50.00 

H.T. 4.91 5.00 5.19 5.36 5.60 6.21 6.80 8.20 9.80 

V.T. 4.91 4.95 5.10 5.25 5.45 5.80 6.20 6.75 7.62 

w. 4.91 5.40 5.90 6.50 7.15 7.90 8.70 9.52 10.0 
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% fname: PILOT.M 
% 
% 
% 

This program is for the anlysis of pilot opinion ratings 
using an optimal control model(OCM). 

This should be excuted externally by the user. 

HEAD; 
while l 

MAI!~; 
if MenuNo=l 

INPUTSYS; 
elseif MenuNo==2 

OPTIMAL; 
elseif MenuNo=3 

FDOMAIN; 
elseif MenuNo==4 

TDOMAIN; 
elseif MenuNo==S 

CUTOFF; 
elseif MenuNo==6 

RESULTS; 
elseif MenuNo=7 

OUTPUT; 
elseif MenuNo==8 

break; 
1:nd 
cli:ar MenuNo; 

1:nd 
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98 

% fnarne: HEAD.M 
% general description of this program. 

c..:lc..: 
fprintf i • \n 
- - I ) 

fprintf(•-----\n') 
fprintf (' 
fprintf (' 
fprintf (' 
Model \n•) 
fprintf ( • 
- - I ) 

fprintf(•---\n\n') 

Jounguk Kim\n•) 
Oklahoma State University\n') 
Pilot Opinion Ratings Using an Optimal Pilot 

fprintf ( • - This program was developed for understanding and 
\n•) 
fprintf ( • 
\n• i 
fprintf (' 
\n•) 
fprintf (' 
fprintf (' 
describing \n • ) 
fprintf (' 
\n') 
fprintf ( • 
fprintf (' 
fprintf (' 
fprintf ( • 
fprintf ( • > Hit any 
pause; 

interpretation of the OCM (Optimal Control Model) 

results in the pilot opinion ratings by using Matlab 

program. \n • ) 
- A clear comparision between the OCM and the 

transfer function of the human pilot is possible 

in this program. \n•) 
The estimation of the pilot opinion ratings \n•) 
(Cooper-Harper rating system) is also possible \n•) 
in both time domain and frequency domain. \n\n•) 

key to continue: ') 



% fname: IHPUTSYS.M 
% Input system equation 
% (transfer function or state space equationi 

while l 
c;lc; 
fprintf ( • \n\n\n\n•) 
fprintf (' 

N\n\n\n\n\n\ •) 
fprintf (' 
fprintf (' 
fprintf (' 
No-input ( ' > Select a number 
if No=l 

TRANSF; 
elseif No=2 

SYSEQN; 
elseif No=3 

break; 
end 

end 

S Y S T E M E Q U A T I 0 

1. Transfer function \n•) 
2. State space equation \n•) 
3. quit \n\n\n\n') 

' ) ; 
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% fname: TRANSFER.M 
% input data for the vehicle and filter transfer function 
% 
% 
% 
% 
% 
% 
% 
% 

l) y(s)= Gs(s)u(s)+Gw(siw(s) 
2) y(s)=-Gs(s)u(s)+Gw(s)w(s) 

Gs(s): vehicle transfer function 
Gw(s): filter transfer function 
u(s) optimal input 
w(s) white noise 
y(s) error to the cormnand signal 

yes=l; 
while (yes) 

clear; 
c.:lc; 
fprintf( 1 ----------------------------\n 1 ) 

fprintf ( • SYSTEM TRANSFER FUNCTION\n • ) 
fprintf(•----------------------------\n•) 
fprintf(' 1) y(s) = Gs(s)u(s) + Gw(s)w(s)\n•) 
fprintf(' 2) y(s) =-Gs(s)u(s) + Gw(s)w(s) \n•) 
fprintf (' Gs (s) : Vehicle transfer function\n•) 
fprintf (' Gw(s) : Filter transfer function\n\n•); 
fprintf('> Select a number: ') 
case=input(' '); 
fprintf ( '> IMPORTANT: Gw(s) should be at. least 2nd order ? (y/n) •) 
check=input(' •, •s•); 
if check==•n• I check=='N' 

fprintf('> Use state space form.\n\n•) 
fprintf ( • > Hit any key to continue : •) 
pause; 
break; 

end 
fprintf('> Enter num of Gs(s) in 
nSystem=input(' '); 
fprintf('> Enter den of Gs(s) in 
dSystern-input(' '); 
fprintf('> Enter num of Gw(s) in 
nFilter=input(' '); 
fprintf('> Enter den of Gw(s) in 
dFilter=input(' '); 
fprintf('> Input data is correct 
s=input ( I I ' I s I ) ; 

fprintf(•- processing ... ') 
if s==' Y' I s==•y• 

yes=O; 
else 

yes=l; 
t:!Ild 

t:!Ild 

while(check=='Y' I check=='Y') 

descending 

descending 

descending 

descending 

? (y/n) : ') 

% zeros and poles of Gsystem, Gfilter 

powers 

powers 

powers 

powers 

[ zsystem, pSystem, gSystemJ =tf2zp (nSystem, dSyst.em) ; 
[zFilter,pFilter,gFilterJ-tf2zp(nFilter,dFilter); 

of s 

of s l 

of s l 

of s 

% transfer function to state space equation (system eqn) 
[As,BEs,Cs,Ds]==GETSS(nSystem,dSystem,nFilter,dFilter,case); 
[A,Bm,C,DmJ==minreal(As,BEs,Cs,Ds); 

B=Bm(:, l) ; 
E=Bm(:,2); 

: I ) 

: ') 

: ' ) 

: ') 
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D=Dm (:, l) ; 
% original state eqn matrix coefficients 

Ao=As; 
Bo=BEs ( : , l ) ; 
Eo=BEs ( : , 2 ) ; 
Co=Cs; 
Do=Ds ( : , l ) ; 
sizel=max(size(A)); 
size2=max(size(Ao)); 
clc; 
fprintf( 1 ------------------------\n 1 ) 

fprintf ( • STATE SPACE EQUATION \n • ) 
fprintf(•------------------------\n•) 
fprintf(' dx(t) = Ao x(t) + Bo u(t) + Eo w(t)\n') 
fprintf ( • y(t) = Co x(t) + Do u(t) \n\n•) 
Ao 
fprintf(•\n> Hit any key to continue: •) 
pause; 
fprintf ( • \n\n•) 
Bo 
fprintf(•\n> Hit any key to continue •) 
pause; 
fprintf ( • \n\n') 
Ee 
fprintf('\n> Hit any key to continue •) 
pause; 
fprintf ( • \n\n•) 
Co 
fprintf(•\n> Hit any key to continue ') 
pause; 
fprintf ( '\n\n•) 
Do 
fprintf(•\n> Hit any key co continue ') 
pause; 
if sizel < size.2 

clc; 
fprintf(•--------------------------------\n•) 
fprintf(' MINIMAL STATE SPACE EQUATION \n•) 
fprintf('--------------------------------\n') 
fprintf ( • dx(t) = A x(t) + B u(t) + E w(t) \n•) 
fprintf (' y(t) = C x (t) + D u(t) \n\n') 
A 
fprintf(•\n> Hit any key to continue: ') 
pause; 
fprintf ( • \n\n •) 
B 
fprintf ( '\n> Hit any key to continue •) 
pause; 
fprintf ( • \n\n•) 
E 
fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n •) 
C 
fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n •) 
D 
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fprintf(•\n> Hit any key co concinue ') 
pause; 
else 
A=Ao; B=Bo; C=Co; D=Do; E=Eo; 

end 
break; 

end 
clear sizel size2 s yes check Bm Dm As BEs Cs Ds; 
save dumfile; 
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% fname: GETSS.M 
% from transfer function to state space equation 

function [Ac,BEc,Cc,Dc]=GETSS(nSystem,dSystem,nFilter,dFilter,casei 
[Al,Bl,Cl,Dl]=SS2 (nFilter,dFilter); 
[A2,B2,C2,D2]-SS2(nSystem,dSystem); 
sizeF-size(Al); 
nl=sizeF(l,l); 
sizeS=size (A2) ; 
n2=sizeS(l,l); 
Ac=[Al,zeros(nl,n2); 

zeros(n2,nl),A2]; 
Bc=[zeros(nl,l);B2]; 
Ec=[Bl;zeros(n2,l)]; 
BEc=[Bc,Ec]; 
if nl>l & n2>1 

if case==l 
Cc=[eye(2) ,zeros(2,nl-2),eye(2) ,zeros(2,n2-2)]; 

elseif case-=2 
Cc=[eye(2) ,zeros(2,nl-2),-eye(2),zeros(2,n2-2)J; 

end 
Dc=[zeros(2)]; 

elseif nl>l & n2=-l 
if case-1 

Cc-=[eye(2) ,zeros(2,nl-2), [l,A2J ']; 
Dc=[O O;B2 OJ; 

elseif case-2 
Cc= [ eye ( 2) , zeros ( 2, nl - 2) , [ -1, -A2] • J ; 
Dc=[O O;-B2 OJ; 

~Ild 
end 
%[A,Bm,C,Dm]=minreal(Ac,BEc,Cc,Dc); 
%B=Bm ( : , l) ; 
%E=Bm ( : , 2 ) ; 
%D=Dm ( : , l ) ; 
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% fname: SS2.m 
% second canonical form (phase variable) 

function [A,B,C,D]=ss2(num,den) 
sizeN=size (num) ; 
nl=sizeN(l,2); 
sizeD=size (den) ; 
n2=sizeD(l,2); 
if nl>n2, .. 
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fprintf('Error order of numerator is greater than denorninator\n•); •• 
break; .• 

end 
if n2===2 

A=-den(2)/den(l); 
B=nurn/ den ( l) ; 
C=l; 
D=O; 

else 
A=zeros(n2-l); 
A(l:n2-2,2:n2-l)=eye(n2-2); 
A(n2-l,:)=-den(n2:-l:2); 
if n2>nl, .• 

NOM=zeros(l,n2) ; •. 
NUM(l,n2-nl+l:n2)""Ilum; •. 

else, .. 
NUM--num; .. 

end 
b=zeros(n2,l); 
b(l)=NUM(l); 
for i=2 :n2; .• 

for j=l:i-1, .. 
b (i) =-den( l+j) *b(i-j) +b(i); .. 

end, .. 
b(i)=b(i)+NUM(i) ; .. 

end 
B=b ( 2 : n2 , l ) ; 
C=zeros(l,n2-l); 
C(l,l)=l; 
D=b ( 1); 

end 



% filename: SYSEQN.M 
% input system equation as state space form 

yes=l; 
while (yes) 

clear; 
clc; 
fprintf('------------------------\n•) 
fprintf(' STATE SPACE EQUATION\n') 
fprintf(•------------------------\n') 
fprintf ( • dx(t) = Ao x(t) + Bo u(t) + Ea w(t) \n•) 
fprintf ( • y(t) = co x (t) + Do u (t) \n\n') 
fprintf ( • > Enter Ao matrix ' ) 
Ao=input(' '); 
fprintf ( • > Enter Bo matrix • ) 
Bo=input(' '); 
fprintf ( '> Enter Ea matrix • ) 
Eo=input(' '); 
fprintf ( • > Enter Co matrix • ) 
Co=input(' '); 
fprintf (' > Enter Do matrix ') 
Do=input(' '); 
fprintf('> Input data is correct? (y/n) ') 
s=input ( I I , Is I ) ; 

if s='Y' ls=•y• 
yes=O; 

else 
yes=l; 

end 
end 
BEo=[Bo,Eo]; 
DEo=[Do,zeros(2,l)]; 
[A,Bm,C,Dm]=minreal(Ao,BEo,Co,DEo); 

B=Bm (:, 1); 
E=Bm (:, 2) ; 
D=Dm (:, 1) ; 
sizel=max(size(A)); 
size2=max(size(Ao)); 
if sizel < size2 

clc; 
fprintf(•--------------------------------\n') 
fprintf(' REDUCED STATE SPACE EQUATION \n•) 
fprintf(•--------------------------------\n') 
fprintf ( • dx{t) = A x(t) + B u(t) + E w(t) \n•) 
fprintf ( • y(t) = C x(t) + D u(t) \n\n') 
A 
fprintf(•\n> Hit any key to continue: ') 
pause; 
fprintf ( • \n\n •) 
B 
fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n •) 
E 
fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n •) 
C 

105 



fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( '\n\n•) 
D 
fprintf ( '\n> Hit any key to continue ') 
pause; 

end 
[nSys,dSys]=SS2tf(A,B,C(l, :) ,D(l, :),1); 
[nFil,dFil]=ss2tf(A,E,C(l,:),zeros(l),l); 
[nSystem,dSystem]=minreal(nSys,dSys); 
[nFilter,dFilter]=minreal(nFil,dFil); 
[zSystem,pSystem,gSystem]=tf2zp(nSystem,dSystem); 
[zFilter,pFilter,gFilter]-tf2zp(nFilter,dFilter); 
if gSystem > o 

case=l; 
else 

case=2; 
end 
c.:lc.:; 
fprintf('---------------------\n') 
fprintf (' TRANSFER FUNCTION \n') 
fprintf(•---------------------\n') 
fprintf(' y(s)= Gs(s)u(s) + Gw(s)w(s)\n') 
fprintf(' Gs(s) Vehicle transfer function\n') 
fprintf(' Gw(s) : Filter transfer function\n\n•) 
gSystem 
fprintf ( '\n> Hit any key to continue : ') 
pause; 
fprintf ( • \n\n•) 
zsystem 
fprintf(•\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n') 
pSystem 
fprintf ( '\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n•) 
gFilter 
fprintf(•\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n') 
zFilter 
fprintf('\n> Hit any key to continue ') 
pause; 
fprintf ( • \n\n•) 
pFilter 
fprintf('\n> Hit any key to continue: ') 
pause; 
clear yes s BEo DEo Bm Dm sizel size2 nSys dSys nFil dFil; 
save dumfile; 
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% fname: OPTIMAL.M 
% This is a menu for the calculation of optimal control model. 

while l 
<.:le; 
fprintf('\n\n\n\n') 
fprintf ( • C O M P . u T A T I O N 
fprintf ( • l. solve L Q R\n•) 
fprintf (' 2. solve K B F/linear 
fprintf ( • 3. quit \n\n\n\n•) 
No=input('> Select a number : '); 
if No-=l 

SOLVELQR; 
elseif No=2 

SOLVEKBF; 
elseif Ne=3 

break; 
end 

end 

F L O W\n\n\n•) 

predictor\n • ) 
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% fname: SOLVELQR.M 
% This is to solve the Linear Quadratic Regurator problem. 
% 
% augmented system matrix: AO, BO 
% weighting matrix: QO for xhat, Q for yhat 

while l 
clc; 
fprintf(•------------------------------\n•) 
fprintf ( ' LINEAR QUADRATIC REQULATOR \n' ) 
fprintf(•------------------------------\n•) 
fprintf(' J(u) = E[ ql yl(t)"2 + q2 y2(t)"2 + G udot(t)·2 J : ') 
fprintf(•cost function\n') 
fprintf(' yl(t) y2(t) error and error rate for single axis\n•) 
fprintf{' udot(t) optimal pilot control rate\n•) 
fprintf (' ql, q2 weights for error and error rate\n•) 
fprintf {' G weight for control rate \n\n•) 
fprintf{'> Enter the weights Q for y(t) in [ql q2) : ') 
q=input{' '); 
:::printf{'> Enter the neuro-rnuscular time constant {Tn) : ') 
Tn=input{' '); 
fprintf{'- Recornrnanded interval to solve G: 0.000001 l J\n') 
fprintf{'> Enter the initial interval for Gin [ gl g2 J ') 
intvG=input{' '); 
fprintf{'- Processing ••. ') 
Q=[q(l,l) 0 

O q{l,2) J; 
Gl=intvG { l) ; 
G2=intvG{2); 
sizeA=size(A); 
ns=sizeA{l,l) ;% no of states 
AO=zeros(ns+l); 
AO(l:ns, :)=[A,B); 
BO=zeros(ns+l,l); 
BO(ns+l,l)=l; 
QO=zeros{ns+l); 
QO(l:ns,l:ns)=C'*Q*C; 
:::or i=l:ns 

for j=l:ns 
if abs(QO(i,j))<o.000000000001 

QO { i, j) =0; 
end 

end 
end 
[L,KO)=LQR(AO,BO,QO,Gl); 
Fl=l/L{ns+l) -Tn; 
LL,KO)=LQR(AO,B0,QO,G2); 
F2=1/L (ns+ l) -Tn; 
if Fl*F2<0 

fprintf ( '\n- Init.ial interval for G is O.K. \n•) 
fprintf ( '> processing• ) 
l>reak; 

else 
fprintf('- Initial interval of G is NOT appropriate for bisection') 
fpr int f ( ' method. \n \n' ) 
fprintf('> Hit any key to continue: ') 
pause; 

end 
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end 
while abs((Gl-G2)/Gl)>0.001 

[L,KO]=LQR(AO,BO,QO,Gl); 
Fl=l/L(ns+l)-Tn; 
G3=(Gl+G2)/2; 
[L,KO]=LQR(AO,BO,QO,G3); 
F3=1/L(ns+l)-Tn; 
if Fl*F3<0 

G2=G3; 
fprintf ( ' . ' ) 

else 
Gl=G3; 
fprintf ( ' . ' ) 

t!lld 
t!nd 
G=Gl; 
Ll=L < l :ns) ; 
L2=L(ns+l); 
fprincf ( • \n> Hit any key to continue : •) 
pause; 
clear i j sizeA Gl G2 G3 intvG Fl F2 F3 ; 
save dumfile; 
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% fname: SOLVEKBF.M 
% This is to solve the Kalman Bucy Filter and linear predictor problem. 
% 
% augmented system matrix: Al, Bl, Cl for Kalman Filter 
% covariance matrix for noise : Vy, Vua, w 

yes=l; 
while (yes) 

clc; 
fprintf(•----------------------------------------\n') 
fprintf ( I KALMAN BUCY FILTER /LINEAR PREDICTOR\n•) 
fprintf( 1 ----------------------------------------\n\n1 ) 

fprintf('> Enter the pure perceptional time delay: •); 
delay=input(' •); 
fprintf('> Enter the covariance of w(t) : '); 
W=input ( ' ' ) ; 
fprintf('> Enter the noise ratios for [yl(t) y2(t) ua(t)] •); 
ratios=input(' '); 
ratiol=ratios(l); ratio2=ratios(2); ratio3=ratios(3); 
fprintf('> Enter the observation thresholds for [yl(t) y2(t)) '); 
treshd=input(' '); 
Tl=treshd(l); T2=treshd(2); 
fprintf('> Enter the fractional attentions for [yl(t) y2(t)] '); 
fractn=input(' •); 
fl=fractn(l); f2=fractn(2); 
fprintf('> Input·data is correct? (y/n) ') 
s=input ( ' • , • s • ) ; 
if s=='Y' I s==•y• 

yes=O; 
else 

yes ... l; 
end 

end 
% initial values for iteration 
clc; 
fprintf(•\n---------------------------------------\n•) 
fprintf ( I KALMAN BUCY FILTER/LINEAR PREDICTOR\n I) 

fprintf(•---------------------------------------\n•) 
fprintf ( ' - processing ••. •) 
checkl=l; 
while (check!) 

fprintf('\n> Do you want to try with default initial values•) 
fprintf(•\n for [var(yl) var(y2) var(ua)] ? (y/n) •) 
sl=input ( • •, •s•); 
if sl-=='Y' I sl=='y' 

varyl=O.l; 
vary2-=0.l; 
varua=-0.l; 

else 
fprintf('> Enter initial values for [var(yl) var(y2) var(ua)] •) 
invar=input(' '); 
varyl=invar(l); vary2=invar(2); varua=invar(3); 

end 
fprintf ( • > processing•) 
check2=l; 
check3=0; 
countl=O; 
count2=0; 
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while (check2) 
%construct augmented matrix 

fprintf ( ' . ' ) ; 
countl=countl+l; 
count2=count2+1; 
erfcl=l-ERF(Tl/(sqrt(2)*sqrt(varyl))); 
erfc2-l-ERF(T2/(sqrt(2)*sqrt(vary2))); 
Vy1=pi*ratio1•vary1/(fl*erfc1•2); 
Vy2=pi*ratio2*vary2/(f2*erfc2·2); 
Vy-[Vyl 0 

0 Vy2] ; 
Vua=pi*ratio3*varua; 
Al..,.AO; 
Al(ns+l,ns+l)=-L2; 
Bl=zeros(ns+l,l); 
Bl(ns+l,l)=L2; 
Cl=[C,D]; 
Wl=zeros<ns+l); 
Wl(l:ns,l:ns)=E*W*E'; 
El=eye(ns+l); 
Wl(ns+l,ns+l)=L2*Vua*L2';%time domain performance 
[Hl,sigmal]=LQE(Al,El,Cl,Wl,Vy); 
Lopt= [Ll/L2 O] ; 
[ylJ:a:matitg(Al,Wl,delay); 

% [y1,coJ=simpson(•func•,o,delay,Al,Wl); 
El=expm(Al*delay)*sigmal*expm(Al'*delay)+yl; 
A3=Al-Bl*Lopt; 
W3=expm(Al*delay)*Hl*Vy*Hl'*expm(Al'*delay); 
Xhatl=lyap(A3,W3); 
Xl=El+Xhatl; 
Y=Cl*Xl*Cl'; 
Ua=Lopt*Xhatl*Lopt•; 
if abs((varyl-Y(l,1))/max(varyl,Y(l,l))) > 0.01 •. 

I abs((vary2-Y(2,2))/max(vary2,Y(2,2))) > 0.01 
check2=1; 

elseif abs((varua-Ua)/max(varua,Ua)) > 0.01 
check2=1; 

else 
checkl=O; 
check2=0; 
check3=1; 

end 
if count2=-=l 

templ=varyl; 
temp2=vary2; 
temp3=-varua; 

elseif count2==2; 
temp4==varyl; 
temp5==vary2; 
temp6-varua; 

end 
varyl=Y(l,l); 
vary2=Y(2,2); 
varua ... ua; 
if count2==3 

fprintf(•\n iter no: 
%g\n•, .• 

countl-2,countl-l,countl) 

%g 
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fprintf(' var(yl) :%15.7f%15.7f%15.7f\n',templ, temp4, varyl) 
fprintf(' var(y2) :%15.7f%15.7f%15.7f\n',temp2, temps, vary2) 
fprintf(' var(ua) :%!5.7f%15.7f%15.7f\n•,temp3, temp6, varua) 
count2=count2-3; 
fprintf('\n> uo you want more iterations? (y/n) ') 
s2=input ( ' ' , ' s ' ) ; 
if s2--='N' I s2==-'n' 

checkl=O; 
check2=0; 

else 
fprintf('> Try with another set of initial values? (y/n) ') 
s3-input ( • • , • s • ) ; 
if s3--='Y' I s3--'Y' 

fprintf('> Enter initial values : [varyl vary2 varua] '); 
invar ... input ( • . • ) ; 
varyl=invar(l); vary2=invar(2); varua=invar(3); 

~nd 
fprintf ( '> processing•) 

end 
end 

end 
end 
if check3=-l 

fprintf('\n- KB F/linear predictor was soloved.') 
fprintf ( '\n> Hit any key to continue : ') 
pause; 
xlsize=size(Xl); 
nl=xlsize(l,l); 
U=Xl (n1,n1); 
Uhatdot=L*Xhatl*L'+[zeros(l:ns),L2]*El*[zeros(l:ns),L2] '; 
J=trace(Y*Q)+trace(Uhatdot*G); 

end 
clear yes s sl s2 s3 i j ratios treshd fractn invar countl count2; 
clear erfcl erfc2 sizeA xlsize nl; 
clear checkl check2 check3 vary! vary2 varua templ temp2 temp3; 
save dumfile; 
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% fname: MATITG.M 
% matrix integral with time delay 

function [yl]=matitg(A,W,delay) 
Asize=size(A); 
n=Asize(l,l); 
[P,Al]=eig(A); 
Wl=inv(P)*W*(inv(P)) '; 
for i-1:n 

for j==l:n 
temp-Al(i,i)+Al(j,j); 
if abs(temp) > 0.00001 

Jd(i,j)=-Wl(i,j)/(temp)*(exp(temp•delay)-l); 
E:!lse 

Jd(i,j)=Wl(i,j)*delay; 
E:!nd 

1,md 
E:!Ild 
yl=real(P*Jd*P'); 
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% fname: FDOMAIN.M 
% to find pilot transfer function 

% 4th order Pade approximation of the delay 
t.:lc; 
fprintf(•--------------------------------\n•) 
fprintf ( • FREQUENCY DOMAIN PERFORMANCE \n • ) 
fprintf(•--------------------------------\n•) 
fprintf(•- Processing ••. •) 
[nPade,dPade]-=pade4(delay); 
[zPade,pPade,gPade]=tf2zp(nPade,dPade); 
[Ap,Bp,Cp,Dp]=tf2ss(nPade,dPade); 
A2=zeros(2•ns+7)1 
A2(1:ns+l,l:2*nS+6)=[Al-Hl*Cl,-Bl*Dp*Lopt,Bl*Cp]; 
A2(ns+2:2*ns+2,l:2*ns+2) ... [-expm(Al*delay)*Hl*Cl,Al-Bl*Lopt] 1 
A2(2*ns+3:2*ns+6,ns+2:2*ns+6)=[-Bp*Lopt, Ap] 1 

A2(2*ns+7,ns+2:2*ns+7)=[-L2*Dp*Lopt,L2*Cp,-L2]; 
B2=zeros(2*ns+7,2); 
B2(1:2*ns+2,l:2)=[Hl1expm(Al*delay)*Hl] 1 
C2=zeros(l,2*ns+7); 
C2(1,2*ns+7)=11 
E2=zeros(2*ns+5,l); 
E2(2*ns+7,l)=L2; 
A3=A2; 
B3=B2(:,l)+A2*B2(:,2); 
C3=C2; 
D3=C2*B2 (: ,2); 
% pilot transfer function 
[nPilot,dPilot]=ss2tf(A3,B3,C3,D3,l); 
if case=! 

[zPilot ,pPilot, gPilot] =tf2zp ( -nPilot, dPilot) ; 
elseif case=2 

[zPilot,pPilot,gPilot]=tf2zp(nPilot,dPilot); 
end 
[nPilotM,dPilotM]==minreal(nPilot,~ilot); 
[zPilotM, pPilotM, gPilotM] =tf2zp (nPilotM, dPilotM) ; 
nl=l; 
dl=l; 
if case 1 

n2=-nPilotM; 
elseif case==2 

n2=nPilotM; 
end 
d2=dPilotM; 
n3=nSystem; 
d3=dSystem; 
n4=-l; 
d4=1; 
nblocks=4; 
BLKBUILD 
q=[l O O; 

2 l 4 ; 
3 2 O; 
4 3 OJ; 

iu= [l] ; 
iy= (3) ; 
[Acl Bel Ccl Dcl]=CONNECT(a,b,c,d,q,iu,iy); 
fprintf(•- Processing ••• '); 
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omega=logspace{-2,2,100); 
if case-=l 

[magl,phasel]=bode{-nPilot,dPilot,omega); 
elseif case==2 

[magl,phasel]=bode{nPilot,dPilot,omega); 
end 
[mag2,phase2]=bode(nSystem,dSystem,omega); 
[mag4,phase4]=bode(Acl,Bcl,Ccl,Dcl,l,omega); 
lmag1-2o•loglO{magl); · 
lmag2-20*loglO(mag2); 
lmag3=lmagl+lmag2; 
phase3-i,hasel+phase2; 
lmag4-20*loglO(mag4); 
if phasel(l)==l80 

phasel=phasel-360; 
end 
if phase2{l)==l80 

phase2=phase2-360; 
phase3=phase3-360; 

end 
%for ascii data 
dl=[omega 1 ,lmagl,lmag2,lmag3,lmag4,mag4]; 
d2=[omega•,phasel,phase2,phase3,phase4]; 
clear nblocks nl n2 n3 n4; 
save dumfile; 
save a.1 dl /ascii /tabs 
save a.2 d2 /ascii /tabs 
fprintf{'\n- Frequency domain performance was solved.\n•) 
£print£('> Hit any key to continue: '); 
pause 
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% fname: PADE.M 
% 4th order Pade approximation for the pure time delay 

function [nu,de)=pade4(delay) 
Al=[l -delay/2 (delay·2)/(2*3) -(delay·3)/(2*3*4); 

l -delay/3 (delay•2)/(3*4) -(delay•3)/(3*4*5); 
1 -delay/4 (delay•2)/(4*5) -(delay•3)/(4*5*6); 
1 -delay/5 (delay•2)/(5*6) -(delay•3)/(5*6*7)]; 

bl=- (delay•4) * [l/ (2*3*4*5) 1/ (3*4*5*6) 1/ (4*5*6*7) 1/ (5*6*7*8) J •; 
de-=[inv(Al)*bl;l]; 
A2=[1 -delay (delay•2)/2 

o l -delay 
0 0 l 
0 0 0 

-delar 3/ (3*2) ; 
(delay·2)/2 

-delay ; 
l ] ; 

b2=[(delay·4)/(4*3*2) 
nu=[A2*de(l:4)+b2;1J; 

- (delar 3) / (3*2) (delay·2)/(2) -delay]'; 

U!==d!= I ; 

nu=nu•; 
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% fname: TDOMAIN.M 
% This is for the time domain performance of OCM. 

clc; 
fprintf ( ' - - - - - - - - - - - - - - - - - \n' i 
fprintf{' STEP RESPONSE \n•) 
fprintf(•-----------------\n•) 
fprintf('> Enter time interval for step response : ') 
dt=input(' '); 
fprintf{'> Enter final time for step response: ') 
tf=input{' '); 
fprintf{'- Processing .•• ') 
tS={O:dt:tf) I; 
sizes=max(size(tS)); 
us=0nes(sizes,1); 
iu=[l]; 
iy= [2) ; 
[Ac2,Bc2,Cc2,Dc2J=connect(a,b,c,d,q,iu,iy); 
[yS,xS)=lsim(Acl,BCl,Ccl,Dcl,uS,tS); 
clear xs 
(y6,xSJ=lsim(Ac2,Bc2,Cc2,Dc2,uS,tS); 
clear xs 
plot(tS,yS),xlabel{'tirne (sec) '),ylabel{'y{t) '),grid 
title{'Step Input Response') 
pause; 
plot(tS,y6),xlabel( 1 tirne (sec) 1 ),ylabel{ 1 u{t) (pilot input)'); 
title( •step Input Response• l 
pause 
[overshoot,i)=rnax(yS); 
peaktirne=tS(i); 
[risemagl,jl]=rnin{abs(yS(l:i)-1)); 
risetimel=tS(jl); 
[risemag2,j2]=min(abs(yS{l:jl)-0.8)); 
risetime2=tS(j2); 
d3=(t5,y5,y6]; 
save a.3 d3 /ascii /tabs 
clear iu iy tf dt xs us sizes i jl j2 risernagl risernag2 
fprintf ( '\n> Hit any key to continue : •); 
pause 
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% fname: CUTOFF.M 
% Bode ideal cutoff analysis 
clc; 
fprintf ( • - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - \n • ) ; 
fprintf ( I BODE IDEAL CUTOF'F ANALYSIS\n I ) ; 

fprintf(•---------------------------~--\n•); 
fprintf(•- Find the break frequency for disturbance and sensor 
noise.\n•); 
fprintf('> Hit any key to continue: '); 
pause; 
axis ( 'square• ) 
semilogx(omega,lmagl),grid,title('Pilot transfer function•); 
xlabel(•w (rad/sec) '),ylabel(•ma.gnitude (dB)'); 
pause; 
fprintf('\n- Break frequency for disturbance \n•) 
fprintf('> Enter No (local max=l, local min=2, skip=3) ') 
no=input ( ' • ) ; 
if no===l I no=2 

fprintf('> Enter subinterval for disturbance break freq [wl w2] '); 
rangel=input(' '); 
[ml,Wdl=maxminl(nPilot,dPilot,range1,nol; 

end 
[mSysteml,pSysteml]=bode(nSystem,dSystem,Wd); 
mPilotl=20*loglO(ml); 
feedback=mPilotl+20*loglO(mSysteml); 
fprintf ( • > Hit any key to continue : •); 
pause; 
semilogx(omega,lmagl),grid,title(•Pilot transfer function•); 
xlabel('w (rad/sec) '),ylabel(•magnitude (dB)') 
pause; 
fprintf('\n- Break frequency for sensor noise \n•) 
fprintf('> Enter No (local max=l, local rnin=2, skip=3) •) 
no=input(• '); 
if no=-1 I no==2 

fprintf('> Enter subinterval for sensor noise break freq 
range2=input(' •); 
fprintf('- Processinq ... •); 
[m2,wnJ=maxminl(nPilot,dPilot,range2,no); 

end 
[m21,p21,wnJ-bode(nSystem,dSystem,wn); 
[m31,p31,Wn]=bode(nPilot,dPilot,wn); 
rnPilot2=20*loglO(m2); 
mPS=mPilot2+20*loglO(m21); 
pPS=p2l+p31; 
[m3,i]=max(mag4); 
range3=[omega(i-l) omega(i+l)j; 
[peak,Wp]=maxmin2(Acl,Bcl,Ccl,Dcl,range3,l); 
logpeak=20*loglO(peak); 
range4=[0.001 Wp]; 
[m4,Wdr]=maxmin2(Acl,Bcl,Ccl,Dcl,range4,2); 
droop=l-m4; 
ldroop=20*loglO(m4); 
[Gm,Pmargin,Wcg,Wcp]=ma.rgin(magl.*mag2,phase3,omega); 
Gmargin=20*loglO(Gm); 
% Bode.Ideal cutoff Analysis 
x=Gmargin; 
y=Pmargin/180; 
Wl=Wcp/Wd; 

[wl w2] '); 
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W3=Wil/Wd; 
slope=-1.2*(1-y); 
highpole=l+abs(max(size(nSystem))-max(size(dSysteml)); 
%W2=Wl*.2·(-x/slope); 
W.2=2*(1-y)*W3/highpole; 
Wc-W2*Wd; 
maxFB-=1.2* (l-y) * (l+loglO (W2) /loglO (2)) -x; 
pecentFB=feedback/maxFB*lOO; 
save dumfile; 
clear range! range.2 range3 range4 ml m2 m3 m4 i 
fprintf(•\n- cutoff analysis was done.\n•); 
fprintf('> Hit any key to continue: •); 
pause 
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% fname: MAXMINl.M 
% Local minimwn and maximum 

function [m,wJ=maxminl(num,den,range,case) 
yes=l; 
while (yes) 

omega•range(l): (range(2)-range(l))/20:range(2); 
[mag,phase]=bode(num,den,omega); 
if case-1 

[m, i]-max (mag) ; 

elseif case -2 
[m, i] =min (mag) ; 

end 
w=omega(i); 
if (omega(i+l)-omega(i))/omega(i)<0.05 

yes=O; 
~nd 
range=[omegaii-1) omega(i+l)J; 

~nd 
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% fname: MAXMIN2.M 
% Local maximum and minimum 

function [rn,w)=maxmin2(A,B,C,D,range,case) 
yes=l; 
while(yes) 

omega-range(l): (range(2)-range(l))/20:range(2); 
[mag,phase]=bode(A,B,C,D,l,omega); 
if case--1 

[m, i)-niax (mag) ; 
elseif case -2 

[m, i] =min (mag) ; 

end 
w=omega(i); 
if (omega(i+l)-ornega(i))/omega(i)<0.05 

yes=O; 
t!lld 

range=[omega(i-li omega(i+l)); 
1:md 
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% fname: RESULTS.M 
% Resuts menu for time domain and frequency domain performance 

while l 
c..: lr.;; 
fprintf ( • \n\n\n') 
fprintf (' R E S U L T\n\n\n•) 
fprintf ( ' l. Check input data \n • ) 
fprintf(' 2. Time/frequency domain performance 
fprintf (' 3. Pilot transfer function\n•) 
fprintf (' 4. Bode plot \n') 
fprintf(' 5. quit \n\n\n\n•) 
No=input('> Select a number: '); 
if No=l 

CHECKIN; 
elseif No=2 

TFRESULT; 
elseif No=3 

PTF; 
elseif No=4 

BODEPLOT; 
elseif No=S; 

break; 
end 

end 
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% fname: CHECKIN.M 
% check input data is correct or not to confirm results 

clc; 
fprintf('- SYSTEM TRANSFER FUNCTION: Gs(s) ') 
fprintf('\n Gain %g\n 1 ,gSystem) 
fprintf ( • zeros : \n • ) 
s=size(zSystem); 
imax-s(l,l); 
for i-=l:imax, •. 

fprintf(' (US.7f) + (%15.7f)j\n•,real(zSystem(i)), .. 
imag(zSystem(i))) ; .• 

end 
s=size (pSystem) ; 
imax=s(l,l); 
fprintf(' Poles 
for i=l: imax, •. 

\n•) 

fprintf (' (US. 7£) + (US. 7f) j\n•, real (pSystem(i)), .. 
imag(pSystem(i))) ; .. 

end 
fprintf('\n- FILTER TRANSFER FUNCTION 
fprintf ( • \n 1 ) 

fprintf ( 1 Gain 
fpr intf ( ' zeros 
s=size (zFilter); 
imax=:=s ( 1, l) ; 
for i=l: imax, .• 

%g\n• ,gFilter) 
\n•) 

Gw(s) ') 

fprintf(• (%15.7£) + (%15.7f)j\n•,real(zFilter(i)), .. 
imag(zFilter(i))) ; •. 

~nd 
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fprintf (' Poles \n•) 
s=size (pFilter); 
imax=s ( l , l ) ; 
for i=l:imax, •. 

fprintf (' (%15.7f) + (%15.7f)j\n• ,real (pFilter(i)), .. 
imag(pFilter(i))) ; .. 

l::!Ud 

fprintf(•\n\n> Hit any key to continue '); 
pause 
clc 
fprintf(•\n- INPUT PARAMETERS FOR OCM\n\n•) 
fprintf(' covariance of disturbance (W) 
fprintf(• Objective function weights (Q) 

Q(l,l) ,Q(2,2)) 
fprintf(' Neuromuscular lag 
fprintf(' Observation delay 
fprintf(• Observation noise ratio 
fprintf(' Neuromuscular noise ratio 
fprintf(' Observation threshold 
fprintf(• Fractional attention 

fl,f2) 
fprintf ( '> Hit any key to continue 
pause; 

(Tn) 
(Td) 
(rl) 
(r2) 
(Tl, T2) 
(fl,f2) 

I ) f 

lg\n•, W) 
[ lg lg ] \n I 1 • • 

lg\n• ,Tn) 
lg\n • , delay) 
lg\n•, ratiol) 
lg\n •, ratio3) 
[ lg lg ]\n',Tl,T2) 
[ lg lg ]\n\n\n•, •. 
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% fname: TRESULTS.M 
% Results·of time and freq domain performance on the screen 

clc; 
fprintf(•\n- TIME DOMAIN PERFORMANCE\n\n•) 
fprintf(' Objevctive function weight (G) 
fprintf(' Covariance of u (U) 
fprintf ( • Covariance of ye · (yl,y2) 

Y(l,l) ,Y(2,2)) 
fprintf(' Covariance of ua 
fprintf ( • Coyariance of uhatdot 
fprintf(• Optimal cost 
fprintf ( • Overshoot 
lg\n • , overshoot) 
fprintf ( • Peak time 
lg\n• ,peaktime) 
fprintf(' Rise time at!OO percent 
fprintf ( • Rise time at 80 percent 
fprintf('> Hit any key to continue 
pause; 
clc; 

(Ua) 
(Udot) 
(Jopt) 

(rtl) 
(rt2) 

' ) ; 

lg\n• ,G) 
lg\n•, U) 
lg lg\n•, .. 

: lg\n•, Ua) 
lg'\n• ,Uha.tdot) 
lg\n• ,J) 

(os) 

(pt) 

lg\n • , riset ime1) 
lg\n\n\n•,risetime2) 

fprintf('\n- FREQUENCY DOMAIN PER.FORMANCE\n\n•) 
fprintf ( • Gain margin (Gm) 
fprintf(' Crossover frequency (Wcg) 
fprintf ( • Phase margin ( Pm) 
fprintf(' Crossover frequency (Wcp) 
fprintf(' Feedback 
fprintf ( • working band (Wd) 
fprintf ( • Pilot gain at Wd : 
fprintf (' Noise cutotf frequency (Wn) 
fprintf(' Pilot gain at wn 
fprintf(' Pilot/System gain at wn 
fprintf(' Pilot/System phase at wn 
fprintf (' Resonant peak 

peak, logpeak) 
fprintf(' Peak frequency (Wp) 
fprintf ( • Droop 

droop, ldroop) 
fprintf ( • > Hit any key to continue •); 
pause; 
clc; 
fprintf(•\n- BODE IDEAL CUToFF ANALYSIS\n\n•) 
fprintf (' Maximum available feedback 
fprintf(' Percent feedback at Wb 
fprintf(' Gain slope at Wcp (dB/octave) 
fprintf (' Ideal phase crossover freq (We) 
fprintf('> Hit any key to continue: '); 
pause; 

lg\n • , Gmargin) 
lg\n• ,Wcg) 
lg\n • , Pmargin) 
lg\n•, Wcp) 
lg\:n• ,feedback) 
lg\n• ,Wd) 
lg\n• ,mPilotl) 
lg\n•, Wn) 
lg\n• ,mPilot2) 
lg\n• ,mPS) 
lg\n• ,pPS) 
lg ( lg dB)\n•, .• 

lg\n• ,Wp) 
lg ( lg dB)\n\n•, .. 

lg\n• ,maxFB) 
lg\n• ,pecentFB) 
lg\n', slope) 
lg\n\n• ,We) 
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% fname: PTF.M 
% Show pilot transfer function on the screen. 

clc; 
fprintf(•- PILOT TRANSFER FUNCTION 
fprintf ( • Gain lg\n• ,gPilot) 
fprintf ( • zeros : ' ) 
s=size (zPilot) ; 
imax-s(l,l); 
for i•l:imax, •• 

Gpilot (s) \n•) 

fprintf(•\n (US.7f) + (ll5.7f)j•,real(zPilot(i)), .. 
imag(zPilot(i))), •• 

end 
fprintf(•\n> Hit any key to continue ') 
pause 
clc; 
fprintf ( '\n .!:'oles ' ) 
s=size (pPilot) ; 
imax=s(l,l); 
for i=l: imax, •. 

fprintf(•\n (il5.7f) + (ll5.7f)j•,real(pPilot(i)), .. 
imag(pPilot (i))), •• 

end 
fprintf ( • \n> Hit any key to continu~ •) 
pause 
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% fname: PTF.M 
% Show pilot transfer function on the screen. 

clc; 
fprintf('- PILOT TRANSFER FUNCTION Gpilot(s)\n•) 
fprintf(' Gain %g\n 1 ,gPilot) 
fprintf ( ' zeros : • ) 
s=size ( zPilot) ; 
imax=s ( l , l ) ; 
for i-1: imax, •. 

fprintf('\n (%15.7f) + (%15.7f)j•,real(zPilot(i)), .. 
imag(zPilot(i))) , •. 

end 
fprintf(•\n> Hit any key to continue ') 
pause 
clc; 
fprintf('\n Poles ') 
s=size (pPilot) ; 
imax=s(l,l); 
for i=l:imax, •. 

fprintf('\n (%15.7f) + (%15.7f)j',real(pPilot(i)), .. 
imag(pPilot(i))), .. 

end 
fprintf('\n> Hit any key to continue ') 
pause 
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% fname: BODEPLOT.M 
% open-loop and closed-loop Bode plot on the screen 

axis ('square•) 
semilogx(omega,lmag1,omega,lmag2,omega,lmag3),grid,xlabel('w 
(rad/sec)'); 
ylabel(•magnitude (dB) 1 ),title(•open-loop transfer function•) 
pause; 
semilogx(omega,phase1,omega,phase2,omega,phase3),grid,xlabel('w 
(rad/sec)'); 
ylabel('phase (degree) '),title(•open-loop transfer function•) 
pause 
semilogx(ornega,mag4),grid,title('closed-loop transfer function•) 
xlabel('w (rad/sec) 1 ),ylabel( 1 magnitude 1 ) 

pause 
semilogx(omega,lmag4) ,grid,title('closed-loop transfer function•) 
xlabel ( •w (rad/seci •), ylabel ( •magnitude (dB)•) 
pause 
semilogx(omega,phase4),grid,title(•closed-loop transfer function•) 
xlabel('w (rad/sec) 1 ),ylabel( 1 phase (degree)') 
pause 
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% fname: OUTPUT.M 
% write output data file 

Cle.:; 
fprintf( 1 ---------------------\n 1 ) 

fprintf ( • WRITE OUTPUT DATA \n • ) 
fprintf(•---------------------\n•) 
fprintf('> Enter the configuration No ') 
confNo=input(' •, •s•); 
fprintf ( • > Enter the output file name •) 
fn=input(' ', •s•); 
fprintf (' - processing ••• ') 
sizeNo=size(confNo); 
n=max(sizeNo); 
fprintf(fn, 1 \n------------------------------------- 1 ) 

for i=l:n 
fprintf (fn, • - •) 

end 
fprintf (fn, • \nC o N P I G u R A •r I o N N o •) 
fprintf(fn,confNo) 
fprintf(fn, 1 \n------------------------------------- 1 ) 

for i=l:n 
fprintf (fn, • - •) 

end 
fprintf ( fn, • \n • ) 
if case=l 

fprintf (fn, • \n\n ye(s) = Gs (s) uis) + Gw(s) w(s) \n\n•) 
elseif case=2 

fprintf(fn,•\n\n ye(s) = -Gs(s) u(si + C:r'W(s) w(s) \n\n•) 
end 
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fprintf (fn,' ye 
fprintf ( fn, ' u 
fprintf ( fn, ' w 
fprintf (fn,' Gs (s) 
fprintf (fn,' Gw(s) 
fprintf(fn, •system 
fprintf(fn, •\n\nGain 
fprintf ( fn, • zeros : \n • ) 
s=size (zSystem); 
imax=s(l,l); 
for i=l: imax, .. 

tracking error \n') 
pilot control input \n') 
plant processing driving 
system transfer function 
filter transfer function 

noise \n•) 
\n•) 
\n\n\n•) 

T r a n s f e r 
tg\n\n' ,gSystem) 

F u n c t i o n 

fprintf(fn,' (%15.7f) + (%15.7f)j\n•,real(zSystem(i)), .. 
imag(zSystem(i))) ; .• 

end 
s=size(pSystem); 
imax=s ( l , l ) ; 
fprintf(fn, •\nPoles: \n') 
for i=l:imax, •• 

fprintf(fn,' (%15.?f) + (%15.7f)j\n•,real(pSystem(i)), .. 
imag(pSystem(i))); .. 

end 

Gs(s) •) 

fprintf(fn, •\n\nF i 1 t er 
Gw(s)') 

T r a n s f e r F u n c t i o n 

fprintf (fn, • \n\n•) 
fprintf(fn,•Gain 
fprintf(fn, •zeros 
s=size(zFilter); 
imax=s(l,l); 

tg\n\n• ,gFilter) 
\n•) 
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for i=l:imax, .. 
fprintf(fn, • (%15.7f) + (%1S.7f)j\n•,real(zFilter(i)), .. 
imag(zFilter(i))) ; .. 

end 
fprintf (fn, '\n.E:>oles : \n•) 
s=size(pFilter); 
imax-s(l,l); 
for i=l: imax, •. 

fprintf(fn,' (%15.7f) + (%15.7f)j\n•,real(pFilter(i)), .. 
imag(pFilter(i))) ; •. 

end 
fprintf(fn, 1 \n\nI n put Par am et er s 
fprintf(fn,' covariance of disturbance (W) 
fprintf(fn,' Objective function weights (Q) 

Q(l, l) ,Q(2,2)) 
fprintf(fn,' Neurotm1scular lag 
fprintf(fn,' Observation delay 
fprintf(fn,' Observation noise ratio 
fprintf(fn,' Neurotm1scular noise ratio 
fprintf(fn,' Observation threshold 
fprintf(fn,' Fractional attention 

fl,f2) 
fprintf(fn, 'Time Domain P 
fprintf(fn,' Objevctive function weight 
fprintf(fn,' Covariance of u 
fprintf(fn,' Covariance of ye 

Y(l,l) ,Y(2,2)) 

(Tn) 

(Td) 
( r .1.) 
(r2) 
(Tl,T2) 
(fl,f2) 

e r f o 
(G) 
(U) 

(yJ. I y2) 

fprintf(fn,' Covariance of ua (Ua) 
fprincf(fn, • covariance of uhatdot (Udot) 
fprintf(fn,' Optimal cost (Jape) 
fprintf (fn, ' overshoot (os) 
fprintf (fn, ' Peak time (pt) 
fprintf (fn,' Rise time atlOO percent (rtl) 
fprintf (fn,' Rise time at 80 percent (rt2) 
fprintf(fn, 'Frequency Domain 
e\n\n') 
fprintf (fn, • 
fprintf (fn, • 
fprintf ( fn, • 
fprintf (fn, • 
fprintf ( fn, • 
fprintf (fn, • 
fprintf (fn, • 
fprintf (fn, • 
fprintf (fn, • 
fprintf (fn, • 
fprincf (fn, • 
fprintf (fn, • 

Gain margin 
Crossover frequency 
Phase margin 
crossover frequency 
Feedback 
working band 
Pilot gain at Wd 
Noise cutoff frequency 
Pilot gain at Wn 
Pilot/System gain at Wn 
Pilot/System phase at Wn 
Resonant Peak 

peak, logpeak) 
fprintf(fn,' Peak frequency 
fprintf(fn, • Droop 

droop, ldroop) 

(Gm) 
(Wcg) 
(Pm) 
(Wcp) 

(Wd) 

(Wn) 

(Wp) 

f o r o c M\n \n • ) 
lg\n•, W) 
%g %g\n•, .. 

%g\n• ,Tn) 

%g\n', delay) 
%g\n•, racial) 
%g\n•, ratio3) 
%g %g \n' , T 1, T2 ) 
%g %g\n\n\n•, .• 

r m a n c e \n \n • ) 
%g\n• ,G) 
%g\n•, U) 
%g %g\n•, .. 

%g\n•, Ua) 
tg\n • , Uhatdot) 
%g\n• ,J) 
%g\n•,overshoot) 
%g\n• ,peaktime) 
%g\n• ,risetimel) 
%g\n\n\n', risetime2) 

P e r f o r m a n c 

%g\n' , Gmargin) 
%g\n•, Wcg) 
%g\n • , Pmargin) 
%g\n', Wcp) 
%g\n' , feedback) 
%g\n• ,Wd) 
%g\n' ,mPilotl) 
%g\n• ,Wn) 
%g\n', mPilot2) 
%g\n' ,mPS) 
%g\n• ,pPS) 
%g ( %g d.B)\n•, .. 

%g\n• ,Wp) 
%g ( %g d.B)\n\n•, .. 

%g\n' ,maxFB) 
%g\n• ,pecentFB) 
%g\n•, slope) 
%g\n\n•, We) 

fprintf(fn, 'Bode ideal cutoff analysis\n\n•) 
fprintf (fn, ' Maxitm1m available feedback 
fprintf(fn,' Percent feedback at Wb 
fprintf(fn,' Gain slope at Wcp (dB/octave) 
fprintf(fn,' Ideal phase crossover freq (We) 
fprintf(fn, 'Pade approximation for observation delay: Gpade(s)\n') 

131 



fprintf (fn, '\nGain l \n') 
fprintf (fn·, '\nzeros ') 
s=size(zPade); 
imax=s(l,l); 
for i=l: imax, •. 

fprintf(fn,•\n (115.Sf) + 
(ll5.5f)j•,real(zPade(i)),imag(zPade(i))), •. 
end · 
fprintf (fn, • \n\nPoles : •) 
s-size (pPade) ; 
imax•s(l,l); 
for i=l:imax, •• 

fprintf(fn,•\n (115.7£) + 
(ll5.7f)j•,~eal(pPade(i)),imag(pPade(i))), .•• 
~nd 
fprintf(fn, •\n\nPilot Transfer function: Gpilot(s)\n\n•) 
fprintf(fn,'Gain lg\n\n',gPilot) 
fprintf(fn, •zeros : ') 
s=size ( zPilot) ; 
imax=s(l,l); 
for i=l:imax, •• 

fprintf(fn, '\n (115.7£) + (ll5.7f)j•,real(zPilot(i)), .. 
ima.g(zPilot(i))), •• 

end 
fprintf (fn, • \n\nPoles •) 
s=size (pPilot) ; 
imax=s(l,l); 
for i=l: imax, .. 

fprintf(fn,•\n (115.7f) + (ll5.7f)j•,real(pPilot(i)), •. 
ima.g(pPilot(i))) , •• 

end 
fprintf('\n- Writing was completed in') 
fprintf(fn) 
fprintf(•\n> Hit any key to continue: ') 
pause; 
clear i imax s fn fnl fn.2 dl d2; 
clc; 
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