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CHAPI'ER I 

INTRODUCTION AND LITERATURE REVIEW 

When a statistically designed experiment is run to test for 

"significant differences among treatments", the statistical analysis 

yields a numerical observation on a t~st statistic whose distribution 

(under the null hypothesis of no differences among treatment effects) is 

known. This numerical value may then be transformed ( using the known 

distribution of the test statistic) into an observed level of signifi

c~nce (of the test statistic under the null hypothesis) and this observed 

significance level may, under the null hypothesis, be interpreted as a 

random observation on a ·random variable which is uniformly distributed on 

the interval (0, 1), assuming the test statistic is of the continuous 

type. This then is a measure of the consistency or inconsistency of 

the observed experimental data with the null hypothesis being tested. 

If an experiment is repeated and the results of these repetitions 

can be treated as independent of one another, a naturally arising 

question is "How can. the experimental data be combined to give an 
. ..::,~.,..~\. 

overall set of experimental :data £0.tfia.t a meaningful overall analysis 

c~ be run on the combine.d data?" If, for example, two agronomists 

(~ceptical of each other.'s abilities) run identical completely randomized 

experiments in ne·ighbouring plots· (each experimenter doing an individual 

randomization, of course), each can analyze his data separately or their 

data can be easily combined and a meaningful analysis run on this 

1 
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combined data. However, if three experimenters (each oblivious of the 

other's work) run experiments measuring the one "quantity" (say the 

differences among a standard treatment at present in use, a new treatment 

and a "control", i.e., no treatment), one e:x:perimenter using a completely 

randomized design in Fort Collins, Colorado, another using a randomized 

block design in Ames, Iowa and the third a Latin square in Stillwater, 

Oklahoma, and their data cannot be easily combineq. by any known technique 

to yield a "useful" test statistic, then how can their separate results 

be combined to yield a meaningful overall result? 

Fisher (22, Section 21.1, pages 99-101) suggested the following 

method. Let u1 , Uz, ... , un be the observed significance levels of 

n independent test statistics; then (under the combination of all n 
n 

null hypotheses) - 2 ln (TT u.) is an observation on a chi-squared 
. 1 ]. J_;:: 

r~ndom variable with 2n degrees of freedom, so~ overall significance 

level for all individual experimental results combined can be determined. 

Since the natural logarfthmic function ln is one-to-one, Fisher's 

method is equivalent to multiplying the individual significance levels 

.µid determining the significance level of this product •... It is easily 
. I 

shown (by induction, for example) that the density of this product random 

variable T (under the combination of all n null hypotheses) is 

given by. 1 · ( )n-1 
(n-l)l -ln t ' 0 < t < 1, 

f (t) = 
n 

O otherwise, 

n = 1, 

(so 2 -2 ln T f"'-' x (2n), 
·.,c..,..•"'------

n = 1 1 • , • ) • Thus x + -2 ln x, x~(o, 1), 

maybe regarded as "Fisher's transformation." 
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Again, Fisher's method is equivalent to transforming each observed 

significance level into an observation on an exponentially distributed 

random variable - with common parameter - by a common logarithmic 

transformation, then summing these observations and determining the 

significance level of this sum, for if u1 , .•• , Un are independent 

and identically distributed (i.i.d,) random variables with uniform 

distribution on (0, 1) then V. X > O, Y. = -A ln u1 has density 1 . 

given by 

f(y) = 

d . th 2 Y . . d an since en X i l'Vl. .i. , 

_ I. 
1 A xe y > 0, 

O otherwise, 

i = 1, ... , n, 

2 X (2), 

2 n 2 , L. Y. ,v X ( 2n) , n = 1, • • • , 
I\ • l 1 i= 

Fisher's method has the disadvantage that it does not allow for 

the significance levels to be weighted. If, for example, u1 is the 

significance level of an observation on a chi-squared random variable 

wi:th one degree of freedom whereas u2 is the significance level of 

an observation on a chi-squared variate with one hundred degrees of 

freedom it seems rational and reasonable to give ~ one hundred times 

the weight of u1 , yet Fisher's method does not do this. 

According to van:·zwet and Oosterhoff (48), Lancaster (32) has 

given a method of weighting significance levels. I. J. Good (24) 

and Zelen and Joel (.54) have given restricted methods of doing likewise. 

Good considered the distribution of the variate 



A 
P n n, where P 1 , ... , P n ,vi. i. d. U ( 0, 1) 

and Al' ... , An are unequal positive weights, 

and showed that v q e:: [o,. 1] , 

1 (1) 
n r 

P(Q. < q) = t1. A k q k, where , 1_, . , . ,, An are 

constants defined by the partial fraction expansion 

n 

-l=l 1-i~ t -. k 

Property 1: The weights rteed be known only to within an 

4 

arbitrary factor since for µk = A Ak, k = 1, ..• , n, for some A> O, 

= 

n n 1 
k=l 1-iµkt -

n 
so n 1 

k=l 1-iAkU -

-

i.e. ~ = 

1 

P(I¢: < rA) 

1 
n -. ~=i l\rµk, where 

n }1{ I: 
k=l 1-iµkt 

n . r-7ic ii 1-iA ti 
-= At u 

: . k 

n A.k·· 

f==i 1-iAkU 
,. 

Ak I k == 1, ... ' n. 
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Thus if, for example, two significance levels are available from 

chi-squared variates, one with one degree of freedom and the other with 

two degrees of freedom, then Good's formula (with weights proportional 

to the number of degrees of freedom of the chi-squared variates under

lying the respective significance levels) yields an overall significance 

level which would be equal to the significance level calculated from 

the -same formula if the given significance levels were obtained from 

chi-squared variates, one with fifty degrees of freedom and the other 

with one hundred degrees of freedom. 

Modifications of Fisher's method to adapt it to the case where the 

underlying distribution is disc~ete have been proposed by wlllis (.51), 

Lancaster (33) and E. S. Pearson (44). Kincaid (31) has written an 

excellent article clarifying the re1ationship among these methods. 

Lancaster suggests that in many cases the observed significance level 

ma.y be replaced in "Fisher's tri:l,nsformation" with the average of the 

observed significance level and the next lower level attainable (the 

lowest level being defined as zero). 

The references given so far all have an outstanding singularity 

of purpose: all deal with a random sample of significance levels of 

fixed size - none deals with a sequential procedure. 

The Problems 

The Sequential Probability Ratio Test (SPRT) of Wald (49) is of the 

following form: 

To test the simple hypothesis H0 : e = e0 against the simple 

alternative H1 : e = e1 (/ e0) calculate the likelihood ratio 
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p 
lm = A after the m th random observation has been taken (m = 1, , , , ) 

Pom m 
and either 

Here 

(i) accept H0 if \n < 1_13_ a. or 

(ii) 

(iii) 

accept H1 if A m 
> _1_-_s_ 

(l 
or 

if Q l· - f3 
"' < A. _<. ----

1 - a. m a then take another observation. 

P is the likelihoodunder H1., im i = 0 , 1, and a and 13 are 

the desired overall probabilities of Types I and II errors, respectively. 

B. l-f3 The SPRT boundaries a:p.d 
1 - (l a. are only approximate, the 

actual overall probabilities of Types I and II errors being bounded 

above by a. d a an 1-a' respectively; these are not gener~lly 
1 - f3 

the least upper·bounqs, What-is desired is a sequential procedure 

(or sequential procedures) with exactly attainable frequency 

characteristics-when the null hypothesis is true and capable of attaining 

exactly any given power against any given alternative hypothesis 

hopefully -by setting an upper bound on the sample size. Burman (13), 

Epstein and s·obel (20) , Ba,rraclough and Page ( 9) and Elnglish 

statisticians (Anscombe, Armitage, Barnard, et. al.) made contributions 

towards determining exact frequency characteristics and sampling plans 

:.for Wald's original SPRT, and Epstein (19), Woodall and Kurkjian (.53), 

Burnett (14) and Aroian (4, 5) were among those investigating exact 

characteristics of truncations of Uald*s SPRT in life testing with an 

exponential distribution, these latter efforts being amenable to 

~eneralizations to other distributions and arbitrary test boundaries1 

Armitage, : Mc"Pherson and Rm,re (3) and Mc-Pherson and Armitage ( 41) 

~ve investi~ated exact frequency characteristics of a simple and natural 
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method they propose for sequential hypothesis testing on accumulating 

data, firstly when the null hypothesis is true and again when it is not 

true. Their publications contain numerical results for the cases of the 

underlying distribution of the test statistic being binomial, normal 

and exponential each against a two-sided alternative. The results were 

used to formulate proposals for sequential sampling ~lans in 

the two-tailed binomial and normal cases. Their methods will here be 

examined with the following purposes in mind: 

(i) Extending their results - to one-tailed cases in particular 

(ii) Examining a sequential estimation procedure and associated 

inferential problems. 

(iii) The inferential base of the methods employed will be 

criticised and alternative modes of inference proposed 

and criticised. 



CHAPI'tR II 

F~UENCY' .CHARAm'ERlSTICS OF. A METHOD OF 1.:,1:· . ,. 

SEQUENTIAL HYPOTHESl~ AND SIGNIFIC~CE 

TESTING WHEN TH.El' NULL HYPOrHESIS 

IS TRUE 

As Armitage:,-McPherson and Rowe (3, page 235) Move stated, 

The general effect of J?erformirtg repeated signifi
canc.e tests at different stages during the accUI)lu
lation of a ·body of data is well known. If the 
null hypothesis is true and if each significance 
test is performed at the same nominal level, the 
probability that at some stage or another the 
test criterion is significant may be substantially 
greater than the nominal value. 

They consider problems associated with testing for the significance of 

accumulating observations using fixed-sample-size procedures. Questions 

arising naturally are: 

(a) What is the probability of obtaining a result "sig-

nificant" at a certain nominal level within the first 

(say) 50 tests? --, 

(b) Does the probability of obtaining a "significant" 

result reach a "noticeably high" level only after a 

"very large" number of tests? 

(c) · What is the effect of repeated tests when the null 

hypothesis is not true? 

8 
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The purpose of the pa.per (3) and of· ·McPherson and Armitage• s 

later publication (41) was to answer some of these questions. Sequential 

observations from three distributional forms were considered: binomial, 

norm.al and exponential. The results were·"used to formulate proposals 

for sequential sampling plans 

which can be interpreted either from the frequency 
point of view, with $:pacified probabilities of 
errors, ·or as repeated significance tests at a 
specified level, or perhaps as having a stopping 
rule defined ••• (3, page 236). 

Two-tailed Normal Case 

Armitage, McPherson and Rowe (3) considered the following: 

An experiment consists of a series of observations x1 , ... , xn 

on random variables which are (under·the null hypothesis) independently 

and normally distributed with zero mean and unit variance. After each 

o'bservation the experimenter uses the cumulative sum 

n 
~ x. 
i=l 1 

to decide whether to· continue sampling. Samplin~ stops (with the 

rejection of the null hypothesis) the first time 

where for some a E(O, f), 

ZrvN(o; 1). 

(2.1) 

(2.2) 

The value of n at which the experiment stops will be denoted by m. 

The immediate problem is to determine the (cumulative) distribution 

of random variable M·~ 



Let 

let 

f 1(x) 

and define 

g (x) n 

1 --h? 
== - e 2 ' 

-

== 

~ 

1 2 1 -p: -e 
v2i" 

rz Ji=r 

J~: ln-1 
(l 

-z rn ~ x ~ z rn, a a 

Let Ph denote P(M ~n), n = 1, ••• , 

so P1 = 2a; 

then for n , ,== 2, ... , 

p == 1 -r·rn g (x).dx n n 
-z ../ii 

(l 

where .P(x) 1 fx -tt2 = /z.rr. e .dt. 
-oo 

To simplify the numerical calculation of the 

1 2 -zX e 

n = 2, 3, .... 

P 's let n , 

and h (x) 
n 

rz fh-1 - Jo a hn-l ( u) (t1i (x-u} + t1i (,,+u)) .du, 

o < x < z rn, 
- - (l 

n = 2, . . . . 

10 

(2.3) 

(2.4) 

(2.5) 

(2.6) 



Note (i) 

(ii) 

(iii) 

and (iv) 

i 
h1 (x) _ l"2"irf 1 (x) , 

n 

h (x) == 
n 

. ·z (2'1T) ~(x), 

h (o' n I 

0 ~x ~ z In, 
a 

n==2, .•• , 

h is an even function when the domain over which it is n 

11 

defined is extended to the entire real line, the definition 

of h extending naturally, n = 2, ,,, . n 

Then (2.4) may be written 

irz rn 
~ 1 - 2(2•)- ~o" 11,,(x).dx, n = 1, I I. I (2,7) 

(i) - (iv) can be used to simplify the computation of the P's from n 

(2.6) and_(2.7) for any given a. Tables are given in (3), 

Note that the experimenter need not necessarily run a test after 

each observation, Suppose that the predetermined numbers mi of 

random observations are made on the normal population between the 

(i-l)th and ith tests (i = 1, .•. ); then letting x .• denote the 
J.J 

jth randomly sampled observation between the successive tests 

(j = 1, •.• , m.), the experimenter could use the cumulative sum 
J. 

s' n 

m. 

::t.l E 
i=l rm:- j=l 

J. 

x .. 
J.J 

to decide whether to continue sampling. If sampling stops (with the 

rejection of the null hypothesis) the first time 

> z rn, 
a 
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then under the null hypothesis the distribution theory of M (the 

random variable corresponding to the value of n at which the experiment 

stops) is as given above. If m. = m Vi= 1, .•• , then this modified 
]. 

procedure is greatly clarified and the algebra and numerical calculations 

greatly simplified. If mi 1 ~ for some i, k = 1, .•. , then Xil 

and Xkl (for example) will not have "equal weights" in the sequential 

1 procedure in the sense that X. 1 is "diluted" by the factor -,:::=. 
. i tm. 

1 ]. 
while Xkl is diluted by the factor ~ , and these two factors are 

unequal. Thus unless all the m. 's are equal this alternative pro
i 

cedure "seems unreasonable." However, if all m. 's 
]. 

essentially the original analysis is applicable. 

One-tailed Normal Case 

are equal then 

An experiment consists of a series of observations x1 , ... , xn 

on random variables which are (under the null hypothesis) independently 

and normally distributed with zero mean and unit variance, and after 

each observation the cumulative sum 

is used to decide whether to continue sampling. Sampling stops (with 

the rejection of the null hypothesis) the first time sn > za.../n' 

where P(Z > z ) = a., ZN N(O, 1), The value of n at which the 
a 

experiment stops will again be denoted by m, and again the immediate 

problem is to determine the distribution of random variable,. M. 

Let 

1 2 1 --:;-X = -- e "' , 
5 

x < z , 
- a. 



let 

and define 

Again let 

and 

g (x) 
n 

1 2 1 -z)C -e 
ff,; 

1 2 
h1 (x) _ e-zX 

:Yet Pn again denote P(M s. n); 

then p = 1 -n 

Here pl = Cl., 

N-ote (i) h1(x) - Y27r f 1 (x), 

n 

(ii) h (x) 2 
- (2'1T) g (x), n n 

(iii) 

13 

x < z $, 
- Cl. 

n = 2, . . . . 

x < z In, 
- Cl. 

n = 2, . . . . 

n = 1, .... (2.8) 

n = 2, ... ' 

n = 2, ••• 



(iv) 

n = 2, ... , 

h here is not an even function when the domain over 
n 

which it is defined is extended to the entire real line, 

the definition of h ext$nding naturally, 
n 

14 

(v) v = -u, x < z rn, 
- a 

n = 2, , , , 

_[
z ln-1 2 

"" .. a h (u)e-t(x-u) ,du 
n-1 

0 

I oo 
· 1 2 

+ h ( ) - 2 (x+v) d 
1 -v e . v, n-

o 
0 < x < z [ri', 

- - a 

n=2, ••. , 

and (vi) h (-x) 
n i z /n-1 2 

a i(x+u) = h (u)e-2 du n-1 · 
0 

+ ~h (-v)e--i(x-v)2.dv, v = -u, x > O, 
n-1 

0 2, n = 

Then (2.8) may be written 

n~z rn 
+ rhn(-x) .dxJ p 1 - (2,)2 

0
" hn(x),dx (2.9) n 

O n = 2, 

(i) - (vi) may be used to simplify the computation of the 

(2,9) for any given a, Results are given in Table I. 

p •s 
n 

from 

The basic method was to evaluate the right-hand sides of (iii), 

(v), (vi) and (2.9) at points on a grid of mesh o. This was done 



n 

1 

2 

3 
4 

5 
6 

7 

8 

9 
10 

12 

14 

16 

18 

20 

25 

p's 
n 

TABLE I 

FOR THE ONE-TAILED NORMAL CASE 
. FOR TWO VALUES OF ex 

ex= 0,05 

0.05000 

0.08008 

O.JJ0105 

0.11706 

0.12997 

0.14076 

0.15001 

0.15811 

0.1653 

0.1718 

0.1830 

0.1925 

0.2008 

0.2080 

0.2145 

0.2282 

a== 0.01 

0.01000 

0.01727 

0.02280 

0.02727 

0.0;3100 

0.03422 

0.0370 

0.0396 

0.0418 

0.0439 

0.0475 

0.0507 

0.0535 

0.0560 

0.0582 

0.0630 
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using Simpson's rules (piecewise quadratic or cubic - depending on 

whether there are three points or four left on the grid), o = 0.1 was 

found satisfactory. Special allowance has to be made near the limits 

of integration where there are incomplete grid-meshes. 

Two-tailed Exponential Case 

Armitage, McPherson and Rowe (3) considered the following: An 

experiment consists of a series of observations x1 , ... , xn on 

random variables which are (under the null hypothesis) independently 

;:a.nd exponentially distributed with unit parameter, and after each 

observation the cumulative sum 

s 
n 

n 

- Ex. 
i=l 1 

i.s used to decide whether to continue sampling. 28 N /'(2n), 
n 

n = 1, .•• , and sampling stops (with the rejection of the null hypothe

sis) the first time 

8, 

f 2n being the density (with respect to Lebesgue 

measure) of a chi-squared random variable with 

2n degrees of freedom. 

Let Yin denote fxi-a.(2n), and Yzn denote tx!(2n), n = 1, 

Again the value of n at which the experiment stops is denoted by m, 

and again the immediate problem.is to find the distribution of random 

variable TL 



Let 

let 

and for n = 2 , . . . • 

define 

-x e 

f-x, x 2: 0, 

~ otherwise, 

Y < x < y ln - ~ 2n 

l min {x, Yz,n-l.} 
e-x gn_1(u)eu.du, 

Yil,n-1 
Yl < x < Yz . 

Letting P again denote P(M ~ n) 
n 

then 

(Obviously P1 2a again.) 

Example: 

(x - Y11)e 
-x 

n - - n 

n = 1, •. I I 

' Y12 < x ~ Y21' 

17 

-- (2.10) 

(y21 - Y11)e 
-x , Yz1 i. x :S. Yzz 



and 

0.1615836 using a = 0 .05 

20 so y11 = ln19, 

y21 = ln 20, 

y12 = f • 0.710723 . 

and y22 = t · 9,48773, 

This example suggests it is simpler to define 

and 

so 

Note (i) 

(ii) 

and (iii) 

h1 (x) ::;: 

h (x) -n 

x ~ o, 

{x, Y2,n-l} 
hn_1(u).du, 

n = 2, 

n == 1, 

exf1 (x), x ~ 0, 

••• J 

exgn(x)' n = 2, II I•' 

h is constant on [Y2 ~n-1' Y2J' n n = 2, ... 

18 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

. 



(2.10), (2.12) - (2.14) and (iii) may be used to facilitate the 

computations of the P's for any given a, 
n 

19 

The method was to evaluate the right-hand side of (2.12) at points 

on a grid of mesh 0, i.e. for 

u = . >.. 1o ( o )µ 1o n- n-

and lln-1° ~Y2,n-l < (µn-1 + l)o, 

and at Y1,n-l' i(Yl,n-1 + An-lo), i((11.n - l)c5 + Yin), 

and y2 n-l' , 

This was done by 

(i) the trapezoidal rule (piecewise linear) with cS = 0.1, 

(ii) Simpson's rules (piecewise quadratic or cubic - depending whether 

there are three points or four left on the grid) with cS = 0.1 

and 0.05. 

Special allowance has to be made near the limits of integration, where 

there are incomplete grid-meshes. P was evaluated from (2.13) by using 
n 

such methods. These methods are against the advice of Armitage, 

McPherson and Rowe so comparison of the results given by the above 

methods with those obtained by their methods is of interest. 

Values of yln and y2n were obtained from tables (47) and using 

the algorithm of Wilson and Hilferty (52) which was given by 

Thompson (47) and again by Merrington (42), who checked its accuracy. 

Armitage, McPherson and Rowe expressed a hope of using such an algorithm 



20 

TABLE II 

P- "s FOR THE TWO-TAILED EXPONENTIAL CASE 
n FOR VARrOUS. VALUES OF 2cx 

n 2cx = 0 .10 0.05 0.02 0.01 

1 0.10000 0.05000 0.02000 0.01000 

2 0.16158 0.08381 0.03468 0.01766 

3 0.20402 0.10841 0.04596 0.02375 
4 0.23599 0.12753 0.05502 0.02874 

5 0.26151 0.14313 0.06258 0.03295 
6 0.28267 0.15628 0.06905 0.03660 

7 0.30071 0.16764 0,07471 0.03981 
8 0.31640 0.17763 0.07974 0.04268 

9 
/ 
,·' 0.33027 0.18654 0.08426 0.04528 

I 

10 I 0.34268 0.19458 0.08837 0.04765 
12 0.36410 0.20862 0.09563 0.05185 
14 0.38211 0.22060 0.10188 0.05550 
16 0.39761 0.23102 0.10735 0.05869 
18 0.41118 0.24025 0.11224 0.06157 
20 0.42322 0.24853 0.11667 0.06419 

25 0.44837 0.26608 0.12615 0.06982 

30 o.46852 0.28042 0.13401 0.07451 

35 0.48524 O .29252 0.14071 0.07854 
40 0,49947 0.30296 0.14654 0.08207 

45 0.51183 0.31214 0.15172 0.08521 

50 0.52271 0.32032 0.15636 0.08804 

60 0.54116 0.33439 0.16446 0.09299 

70 0.55637 0.34619 0.17130 0.09720 

80 0.56925 0.35634 0.17725 0.10087 

90 0.58038 0.36522 0.18250 0.10412 
100 0.59016 0.37310 0.18720 0.10704 
120 0.60665 0.38661 . O .19532 0.11211 
140 0.62018 0.39790 0.20219 0.11641 
160 0.63162 0.4076 0.2080 0.12019 



n 

2 

3 

4 

5 
10 

20 

.50 

100 

1.50 

TABLE III 

INVERSE NOMINAL SIGNIFICANCE LEVELS 2a(n,Lo) 
IN THE TWO-TAILED EXPONENTIAL CASE FOR GIVEN 

TERIVIINAL VALUES OF n TO ACHIEVE THE GIVEN 
OVERALL SIGNIFICANCE LEVEL Lo 

(AFTER THE n TESTS) 

L0 = 0.1000 0.0500 0.0200 

2oe. = O • 0602 0.0292 0.0113 

0.04.58 0.0219 0.0083 

0.0381 0.0180 0.0067 

0.0333 O.Ol56 0.0057 

0.0229 0.0108 0.004 

0.0166 0.0075 

0.0116 0.005 

0.009 

0.008 

21 

0.0100 

0.00.56 

0.0041 

0.0033 

0.0028 
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in their future work to reduce the effect of errors due to inaccuracies 

in the values of Yin and y2n. (For 2a = 0,05 their program yielded 

P1 = 0,051 l) Results are given in Tables II and III. 

Furthering the above example one finds 

1 2 1 2 
zX - Y11x + Y11Y12 - zY12' 

Y13 ~ x ::::. Y21' 

(2.15) 

Y22 ~ x .:::, Y23' 

and ( 1 2 2 -Y13 
1 + Y11 - Y11Y12 + Y11Y13 + zY12 - Y13 - iY13. - l)e . 

-Yz -y2,2 
+ e l + ( ) Y21 - Y11 6 (2.16) 

= 0.2040170 using a= 0,05, 

Yl) = t • 1,635383 

and y23 ;:: t • 12.59159, 

Bhate (10) derived formulas analogous to (2.10) and (2.15) using an 

unnecessarily complicated method, namely inversion of characteristic 

functions. He exemplified this method in the case where the cut-nff 
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boundaries in each tail are linear in n (the number of observations in 

the cumulative sum) and parallel, but states that his method can be 

used even when these boundaries are not linear and parallel but "the 

computations involved will be much more complicated." Using the method 

of the above example all these objections are relatively easily overcome. 

Bhate does however raise an interesting application of the 

surrounding theory to a class of problems which can be greatly broadened 

as follows. Suppose one is "investigating" (i.e. intending to test a 

null hypothesis about) the variance of a normal distribution with known 

mean µ, (Bhate considered only this case, but the case where the mean 

is unknown will also be mentioned here soon.) Moreover, suppose the 

null hypothesis is H0 : o2 = 0~ and is to be tested against the 

2 _1 2 two-sided alternative _HA: 0 ; 00 using a sequential procedure. 

Randomly sample two obse~tions at a time (i.e. between successive 

sequential tests) from the normal population. For k = 1, .•. , and 

2 independent and identically distributed N(O, 0 ), 

1 2 2 
- ~((~2k-l ~ µ) + (X2k - µ)) 

00 

2 
NX(2) under H0 ; 

(2.17) 

i.e. random variables Tk are independent and exponentially distri

buted with parameter. A=!, Thus, making two observations at a time 

on this normal population is equivalent to making a single observation 

on this exponential population, 

Hence to test H0 ag~inst HA using this sequential procedure 

one could preselect a nU}llber of observations to make on the exponential 
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population, say 50 (so this then requires that 50 pairs of observations 

be taken from the underlying normal population), and preselect an 

overall 

(i) 

or (ii) 

size for the test, say 0.10, then keep sampling until either 

n 2 n 2 
ETk < x1_a(2n) or ~Tk > x (2n) 
k==l k==l a 

for some n = 1, ... ' 50, where, by interpolation in 

Table 3 of Armitage,. McPherson and Rowe's publication (3), 

a= 0.0116; in this case H0 is rejected; 

the fifty pairs of observations have been sampled from 

the normal population, in which case H0 is not rejected 

(but HA need not necessarily be rejected either), 

No claim is made that this procedure is optimal in any sense, just that 

it is an illuminating and apparently reasonable application of the 

surrounding theory. (Stein (46) has stated that "It is difficult even 

to formulate a definition of an optimal among sequential tests of a 

hypothesis agai~st multiple alternatives.") 

Of course in practice one may be tempted to 

(i) stop without rejecting H0 before taking fifty pairs of 

observations from the normal population if there seems 

little likelihood of rejecting H0 before observing the 

fiftieth pair, 

or (ii) continue random sampling beyond the preset limit of fifty 

pairs of observations from the normal population if 

rejection of H0 at the preset overall size of the test 

seems imminent after the fiftieth pair of normal ob9ervations 

has been sampled. 



This latter procedure is of course objectionable from many points of 

view, among these objections being the fact that this procedure 

increases the overall size of the test beyond the preset overall size. 

Ae;a,in in practice one may prefer to run sequential tests only after 

every two pairs of observations have been randomly sampled from the 

normal population, in which case a new problem arises - that of the 

"two-tailed X2(4) 11 case. Obviously there is no limit to the natural 

theoretical extensions here. Another approach would be to not reject 

H0 until two or three sequential tests had been judged "significant." 

In the case where the mean of the population is unknown one could 

take three random samples from the normal population before applying 

the first test of the sequence; then for n = 1, ... , and 

2 N( µ, a ) , 

25 

T' 
n 

-(n) x 
1 2n L x. 

2n+l i=O 1 
(2.18) 

2 x (2n) under H0 • 

Note that T~1 ~ T~ with equality if and only if 

(so T~1 I:. T; almost surely), n = 1, ,,, , 

Hence T' - T' r.J x2(2) n+l n 

-(n) x 

= x2(n+l) 

and T~+l - T~ and T' are independent, 
n 

n = 1, .... 

Thus H0 can be tested against 
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HA using the previous test procedure (when the mean was assumed known) 
n 

with 6 Tk 
k=l 

replaced by T' , 
n 

Again one may be interested in testing H0 against 

2 2 
cr > cro ' or 

2 2 
cr < cro ' 

~here the mean may be known or unknown. Extending the above procedures 

in the obvious manner, to test H0 against H1 one could preselect a 

number of pairs of observations to be randomly sampled from the normal 

population (the first "pair" being three observations when the mean is 

unknown) and preselect an overall size for the test procedure, then keep 

randomly sampling until either 

' 2 or Tn ~ Xa(2n) for some integral n ~ p, 

a here being obtained by interpolating in appropriate tables* 

(different from the Table referenced above) and is such that 

the overall size of the sequential test procedure is the 

preselected value; in this case H0 is rejected and H1 

accepted; 

or (ii) the p pairs of observations have been sampled from the 

population, in which case H0 is not rejected (but H1 need 

not necessarily be rejected either). 

Similarly to test H0 against H2 one could "legitimately" 

reject H0 if and only if 

n 
L,~k < xi,,.,.a(2n) or Tr< xi-a(2n) for some integral n ~ p_.· 
k=l 

a here being different from the a•s in the above test 



criteria but again being derived by the same method 

(interpolation in the appropriate tables*) and tailored 

to suit the same purpose (making the overall test 

procedure the preselected overall size). 

*The objection now is that the "appropriate tables" from which a 

is to be determined do not exist to this point; i.e. the test criteria 

necessitate new tables •. The one-tailed exponential cases (from which 

these tables wi.11 come) will soon be discussed. 

Comparison of Two-tailed Normal and Two-tailed 

Exponential Results 

27 

Comparing the two-tailed normal table given by Armitage, McPherson 

and Rowe (3) with the two-tailed exponential results, two general trends 

are to be observed for each of the chosen values of 2o.: 

(i) For "smaller" values of n (n = 2, ••• , 20) the 

the normal table are less than the corresponding 

p's 
n 

in 

P 'sin n 

the exponential case, This means that for a maximum number of 

these sequential tests in this "lower" range the nominal 

significance level at which each test is to be conducted 

to achieve a given overall significance level (after the 

maximum number of tests) is .greater in the normal case than 

in exponential testing. This in turn suggests that if' an 

experimenter plans to use a sequential testing procedure 

described above then, assuming the test statistics obtained 

from the experiment are continuous and amenable to conversion 

to normal or exponential statistics of equal significance 

level, it is preferable to convert them to normal test 
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statistics. 

(ii) For "larger" values of n {greater than 60) the opposite is 

~' 

true. This may be a manifestation of the asymptotic 

optimality of Fisher's method (38, 39) in which case some 

partial answers may be provided as to just how .large a 

sample size of independent test statistics is necessary 

before using Fisher's method as more powerful than other 

methods of combination. 

One-tailed Exponential Cases 

Right tail. An experiment consists of a series of observations 

••• ' x n 
on random.variables which are (under the null hypothesis) 

independently and exponentially distributed with unit parameter, and 

after each observation the cumulative sum 

s =- tx. 
n i=l 1 

is used to decide whether to continue sampling. As with·the two-tailed 

exponential case, 2 28 l"VX (2n), n n = 1, ..•. Sampling stops (with the 

rejection of the null hypothesis) the first time 

s 
n > t/(2n), a 

where O<a.<l and 

1 - a, f 2n the density 

(with respect to Lebesgue measure) of. a chi-squared 

random v~riable with 2n degrees of freedom. 

Let y denote t/(2n), n = 1, • • • • Again the value of n at which n a 



the experiment stops will be· denoted by Ill, and again the immediate 

problem is ~o determine the distribution of random variable M. 

Let -x = e 

x .2: 0, 

elsewhere, 

and for n = 2, ••. , 

define 

and P - P(M !S. n) n 

Here 

Again define 

h1(x) = 1, x~ O, 

and define 

rin{x, yn-1) 
hn(x) = h 1(u).du, 0 < x < y 

n- - - n, 
0 

n = 2, ... ' 

ly" so p 1 - h (x)e-x.dx, n = 2, ... . n n . 
0 

Again note (i) h1(x) = exf1 (x), x ~ o, 

(ii) h (x) - exg (x), n = 2, ... , 
n n 

and (iii) h is constant on ~n-1' Yn]' n = 2, ... . n 

29. 

(2.19) 

(2.20) 

(2.14) 
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Also, for n = 2, ... , P(M=n) is the probability that sampling 

continues through the first n-1 samples and stops at the nth sample, 

so that P(M=n) is the probability that Sn-le [o, yn-~ (this 

probability being measured by the integral of gn-l over this interval) 

and X > y - S 1 . . Ma thematically, - n n n-

P(M=n) 

so by (2.14), 

ry 1 )r.., 
-Jo n- !ln-1 (uJY -u fl (x) .dx.du, 

. n 

,., .. 
-y ("Yn-1 . 

pn ~ pn-1 + e n .\o hn_/u),.du 

(2.19) and (iii) may be used to facilitate th~.computations of the 

from (2.20) or (2.21) for any given a, 

The final program used in calculating the in this case 

(2.21) 

p's 
n 

utilizes (2.20) with grid-mesh o = 0,05 to n = 25 and (2.21) with 

o = 0.1 thereafter. Results are given in Tables IV and V. 

Again, if the domain over with gn and h are defined is extended 
n 

to [9, 00 ), the definitions of gn and hn extending naturally, then 

so (2.22) 



n a = 0.05 

1 0.05000 

2 0.07608 

3 0.09401 

4 0.10774 

5 0.11:009 

6 0 .. 12627 

7 0.1J638 

8 0.14}52 

9 0.14989 
10 0.15.566 

12 0.16571+ 

14 O ,174}5 

16 0.1'8:188 

18 O.J:8'855 

20 0.19454 

25 0 .20729 

30 0.21.774 

35 0.22658 

40 0.23424 

45 0.24100 

50 O .24703 

60 0.25745 

70 0.26622 

80 0.27380 

90 0.28046 

100 0.286'.}9 

120 0.29659 

140 0.30516 

160 0.31256 

TA;BLK IV 

IN :TIIE . Rimrr:,:.;mAIJiED:EXPGNENriiL CASE 
FOR VARIOUS VALUES OF a 

0.025 0.01 

0.02500 0.01000 

0.03904 0.01603 

0.04905 0.020lt-9 

0.0:5691 0.02408 

0.0631+0 0.02709 

0.06894 0 .. 02970 

0.07379 0.03201 

0.,07'809 0.03408· 

0,.081-96 0.03:596 

O.G8_549 · -0 .037,6g 

0.09172 0.04075 

0.09709 0 .-G4'-)42 

0.101-82 0.04579· 

0.10605 O.G4792 

o .l0987 0·,04987 

0.11808 0.05400 

O.J2488 0.05761 

0.13069 0.06066 

0.13577 0.06333 

0.14027 0.06572 

0.14431 0.06788 

0.15134 0.07166 

0.15731 0.07490 

0 .162.50 0.07773 

0.1~708 0.08024 

0.17119 0.0'8250 

0.17830 o.oae44 
0 .J:84}2 0.08980 

0.18953 0.0927 
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0.005 

0.00500 

0.00814 

0.01052 

0.01246 

0.01410 

0.015.54 

0.01682 

0.01798 

0.01903 

0.02000 

0.02173 

0.02325 

0.02460 

0.02582 

O .026-94 

0.02936 

0.03144 

0.03323 

0.034-80 

0.03622 

0.03750 

0.03975 

0.04169 

0.04338 

0.04490' 

0.04626 

O.G4865 

0.05069 

0.0525 



n 

2 

3 
4 

5 
10 

20 

50 
100 

150 

TABLE V 

INVERSE .NDMINAL SIGNIFI.CANCE LEVELS a (n, Lo) IN 
THE RIGHT~TAILED EXPONENTIAL CASE FOR GIVEN 

TERMINAL VALUES OF n TO ACHIEVE THE 
GIVEN OVERALL 'SIGNIFICANCE LEVEL Lo 

(AF'I'ER THE n TESTS) 

L0 = 0.0500 0.0250 0.0100 

a = O .0323 0.0158 0.0062 

0.0255 0.0123 0.0048 

0.0218 0.0104 0.0040 

0.0193 0.0092 0.0035 

0.0136 0.0064- 0.002 

0.0100 0.0046 

0.0069 0.003 

0.0055 

0.0048 

32 

0.0050 

0.0030 

0.0023 

0.0019 

0.0017 



Examples: h2(x) :::: min{x, y1 }, 0 :s x -s y2 , 

so by (2.20), 

p2 - 1 -~Y
1

~e-x.dx - y~:2 

-yl -y2 
= e + y1e 

33 

-x e .d.x 

(2.23) 

which is what (2,22) gives directly and also (2.21) 

= 0.07607766 using = 0.05 
so y1 == ln 20 

and y2 == t · 9.48773, 

Y1 ~ x -S Y2 , 

and by (2.20), 

(2.24) 

which is what (2.22) gives directly and also (2.21) 

= 0,0940094 using· a= 0,05, as above 

and y3 = f · 12.59159, 
By observing the pattern developing in the above calculations 

P4 may be postulated to be 
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(2.2.5) 

= 0.1077401 using a.= 0.0.5, Y1, Y2• Y3 

and y4 = t • 1.5,.50732, 

and, further, P.5 may be postulated to be 

as before 

(2.26) 

= 0.11888.53 using a.= 0,0.5, y1 , ..• , y4 as before 

and Y.5 =} • 18,3070.5, 

Left tail.. An experiment consists of a series of observations 

~, , , • , xn on. random variables which are ( under the null hypothesis) 

independently.and. exponentially distributed with unit parameter, and 

after each observation the cumulative sum 

is used to decide whether to continue sampling. As with the previous 

exponential cases, 2 28 N X (2n), n n = 1, . • . . Sampling stops (with 

the rejection of the null hypothesis) the first time 

sn < t xi-a.(2n), where O < a. < 1 and 



f 2n the density (with respect to Lebesgue 

measure) of a chi-squared random variable with 

2n degrees of freedom. 

Let y n here denote iXi-a (2n), n = 1, . , , . Again the value of n 

at which the experiment stops will be denoted by m, and again the 

35 

immediate problem is to determine the distribution of random variable M. 

Let 
gl(x) 

let 
f 1(x) 

and for n = 2, ••• , 

define 

and p 
n 

pl 

Again let 

h1(x) 

and define 

h (x) n 

= e -x 
x ~ yl' 

{-x x ~ o, 
' 

0 elsewhere, 

- P(M ~ n) 

= 1 i m~{x),dx, 

Yn 

= a, 

= 1, x ~ o, 

- ~x hn_1(u).du, x > y 
- n 

Yn-1 
n = 2, 

x > y ' - n 

... ' 
(2.27) 
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so p = 1 -.(~: hn(x)e-x,dx, n = 2, ... . n 
Yn 

(2.28) 

Again note (i) h1 (x) = exf1 (x), x 4 o, 

and (ii) hn(x) - exgn (x)' n = 2, ... . (2.14) 

Also, using an argument equivalent to that given in the right-tailed 

exponential case, for n = 2, ..• , P(E=n) is the probability that 

sampling continues through the first n-,,l observations and stops .at 

the nth observation, so that P(:M=n) is the probability that 

Sn-l ~ yn-l (this probability being measured by the integral of gn_1 ) 

and X < y - S 1, n n n-

i.e. P(M=n) = n gn_1 (u) {9 n f 1 (x).dx.du, i y y -u 

Yn-1 Jo 
so by (2.14), 

P = P 1 +.[yn h 1 (u)(e-u - e-yn).du, 
n n-. n-

n-1 

Again, as in the right-tailed exponential case, if the domain over 

which gn and hn are defined is extended to [!n_1 ,~), the 

definitions of these functions extending naturally, then 

so 

(2 .29) 

(2.30) 
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(2,27) (with domain of definition of h extended to ry 1, 00)) is n LJn-

used to facilitate the computations of the P's from (2.29) or (2.30) 
n 

for any given a., 

The final program used in calculating the P's in this case 
n 

utilizes only (2.29) with grid-mesh o = 0,05 to n = 25 and o = 0.1 

thereafter, Results are given in Tables VI and VII. 

Examples: 

Here h2(x) x - y1 , x ~ y1 , 

so by (2 .30), 

-y -y 
) 2 1 

1 e + e , which is what (2.29) 

gives directly 
. -y2 

- 1 + (y1 - y2 - l)e 

= 0.08595249 

-y 
(since P1 + e 1 = 1), 

which is what (2.28) gives 

using a. = 0 .05 

20 
so y1 = l~ 

and y2 = 1- • 0,710723 . 

tLi(x) ~ ix (u - y1) .du, x ;:. y2 

Y2 

(2.31) 
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TABLE VI 

p's FOR THE LEFT-TAILED EXPONENTIAL CASE 
n 

FOR VARIOUS VALUES OF (l 

., 

n a= 0.0,2 0.02,2 0.01 0.00,2 
1 0.05000 0.02500 0.01000 0.00500 
2 0.08595 0.04487 0.01866 0.00952 

3 0.11099 0.5957 0.02550 0.01323 
4 0.12977 0.07097 0.03100 0.01629 

5 0.14468 0.08020 0.03555 0.01886 

6 0.15699 0.08794 0.03943 0.02107 

7 0.16744 0.09458 0.04280 0.0230 
8 0.17649 0.10039 0.04578 0.02474 

9 0.18446 0.10554 0.04845 O .02629 
10 0.19158 0.11018 0.05086 0.02769 
12 0.20385 0.11822 0.05508 0.03017 
14 0.21415 0.12504 ,o .o.,869 0.03231 
16 0.22301 0.13094 0.06182 0.03416 
18 0.23077 0.13614 0.06461 0.03581 
20 0.23767 0.14081 0.06713 0.03732 

25 O .25213 0.15064 0,07248 0.04053 

JO 0.26378 0.15865 0.07687 0.04319 

35 0.27350 0.16538 0.08060 0.04545 
40 0.28184 0.17119 0.08384 0.04742 

45 0.28911 0.17629 0.08669 0.04917 

50 0.29556 0.18083 0.08924 0.05073 
60 0.30660 0.18865 0.09368 0.05346 

70 0.31579 0.19521 0.09741 0.05577 
80 0.32366 0.20086 0.10064 0.05777 

90 0.33052 0.20581 0.10349 0.05954 
100 0.33660 0.21021 0.10603 0.06112 

120 0.34699 0.21777 0.11042 0.06385 
140 0.35565 0.22411 0.11411 0.06616 

160 0.36315 0.22956 0.11731 0.06816 

180 0.23435 0.12012 0.06993 
200 0.12262 0.07151 



n 

2 

3 
4 

5 
10 

20 

50 
100 

150 

.TABLE VII 

INVERSE- rnAl, ... SIGN::t.l!'IcmcE'. 'LEVELS a ( n, Lo) IN 
THE LEFT.,-TAILEIT~ ·c.ASE .IDR GIVEN 

TERMINAL VAliUES OF n TO ACHIEVE GIVEN 
. OVERALL .SIGNIFICANCE LEVEL L0 

(AFTER THE n TESTS) 

t 0 = 0.0500 0.0250 0.0100 

a = 0.0280 0.0134 0.0053 

0.0206 0.0098 0.0037 

0 .0169- 0 .0079- 0.0030 

0.0146 0.0068 0.0025 

0.0098 0.0044 

0.0070 0.003 

0.0049 

0.004 

0.003 
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0.0050 

0.0026 

0.0018 

0.0014 

0.0012 



so by (2,30), 

By (2 ,29), 
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( 1 2 . . - - . ( ) ( 1 ) ) -y 3 P3 = P2 - 213 + y3 + l - Y1 y3 + l + Y2 Yf '- 2Y2 e 

-y2 
+ (y2 - Yi+ l)e , which is what (2.29) yields 

more readily 

a 1 - (1Y~ + Y3 + 1 - Y1(Y3+l) + Y2(Y1-1Y2)).e-Y3 

(2.32) 

by (2,31), and is what (2.28) gives 

= 0 .1109857 using a. = 0 .05, y1 , y2 as before 

and y3 = t • 1.635383. 

( -u -Y4 
e - e ).du 

= P3 - (1Y! + y4 + 1 - y1(Y4 + 1) 

+ Y2(Y1 - 1Y2)(l + Y4 - Y3) + !(ya - Y§) 

1 2 2 -Y4 
-211(Y4 - y3))e 

+ (ty~ + Y3 + 1 - y1(y3 + 1) + y2(y1 - 1Y2))e-Y3 

~ 1 - (1Y! + y4 + l - y1(Y4 + 1) 

+ Y2(Y1 - 1Y2)(l + Y4 - Y3) + !(ya - Y§) 

by 
(2.33) 
(2.32) 

= 0.1297729 using a.= 0.05, y1, y2, y3 as before 

and y4 = t • 2,732637 . 
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1 3 1 2 ( 1 ) = ~ - 2Y1x + Y2 Yl - 2Y2 X 

so by (2.29) and observing the pattern developing in the above 

calculations, P5 may be postulated to be 

(1.J 1 2 ( 1 2 ) ( 1 ) ( ) 1 - b.Y 5 + zY 5 + y 5 + 1 - Y1 zY 5 + y 5 + 1 + Y2 Y1 - 2Y2 y 5+1. 

- (~~ - tY1Y; + Y2(Y1 - tY2)Y3)(l + Y5 - Y4) + ~4(Y~ - Yt) 

(2.34) 
' -y 

1 ( 3 3) 1 ( 1 )( 2 2)) 5 - 6yl Y5 - Y4 + 2Y2 Y1 - zY2 Y5 - Y4 e 

= 0.1446847 using a = 0,05, y1 , ... , y4 as before 

and Y5 = t • 3,940297, 



CHAP!'ER III 

POWER OF THE :METHOD OF SEQUENTIAL TESTING 

Power of the.Method in the 

Two-tailed Normal Case 

McPherson and Armitage (41) considered the following: 

An experiment consists of a series of observations x1 , .•• , xn 

on random variables which are independently .and normally distributed 

with mean µ and unit variance. After each observation the experimenter 

uses the cumulative sum 

to decide whether to continue sampling. Sampling stops (with the 

rejection of the null hypothesis H0 : µ = 0) the first time 

I s I > z rn , where !P < z ) = 1 - a v a E: < o , t) . n a a 

(3.1) 

(3.2) 

Again the value of n at which the experiment stops will be denoted 

by m and again the immediate problem is to determine the distribution 

of random variable M. 

Letting 

1 -f(x-µ)2 
- - e 

& 

define 

(3.3) 
n.., 2, . . . . 
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Letting P again denote P(M ~ n), then for n = 1, ••• , 
n 
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(3.4) 

The probability of being absorbed in the upper boundary at the nth 

observation is given by 

~ -J.ro $ gn(x) . .dx (3,5) 

a 

and similarly for the lower boundary 

J-z vb" 
Rn = a gn(x).dx, 

-"" 

n = 1, I I. I (3.6) 

n 
Note (i): Li (Q. + R.) = P , n = 1, .• , 

i=l 1 1 n 
(3,7) 

(not 1 - P as given by McPherson and 
n 

Armitage (41) in their Appendix). 

(3,7) can be used to check the accuracy and precision of the numerical 

computations of the P's, Q's and R •s. To simplify and facilitate n n n 

these computations let 

_ -t(x-µ)2 
= e 

(3.8) 

and h (x) 
n n = 2' I• I I (3.9) 

n 

Note (ii): h (x) 
n 

2 = (21r) g (x), 
n 

n :=: 1, I I I I 



Then (3,4) - (3.6) may be written 

and 

p 
n 

Qn 

R n 

- 1 - (2Jjz/ll 
J_z rn 

h (x).dx, 
n 

a. 

:c = (2n)2 hn(x).dx 
z ;;; 

a. 

= 1-· rn (2,)2 -~ " hn(x) .dx, n = 1, . . . . 

(3;8) and (3,9) c.an be used to simplify the computations of the 

(3.10) 

(3.11) 

(3.12) 

p's 
n ' 

~'s and R's 
n 

from (3.10) - (3.12) for any given a.. Tables are in 

(41). 

Power of the Method in the 

One-tailed Normal Case 

X1, .•• , Xn are i.i.d. N(µ, 1). After each observation the 

experimenter uses 

= Ex. 
i=l l 

to decide whether to continue sampling: sampling stops (with the 

rejection of H0 : µ = 0) the first time 

s > z rn, gi(z ) = 1 - a.. n a. a. 

Let gl(x) 
1 -}(x - µ)2 

- -e 
i21T 

and n = 2, • . • • 
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Defining 

h1(x) -t(x-µ) 2 
- e 

I. /n-1 
and h (x) - ~a hn_1(u)h1(x-u).du, n = 2, ... ' n 

then p = P(Min), Mas previously n 

lln 2 a 
= 1 - (2TI) -oo hn(x).dx, n = 1, ... ' 

~c 2 and ~ = (2TI) hntx).dx 

z In a 

is the probability of absorption in the boundary at the nth 

observation, n =. 1, ,,, , 

. . . n 
Note that ~Q. = P , n = 1, . , • . 

. 1 n (J.lJ) 
1= 

(J.lJ) can be used to check the accuracy and precision of the numerical 

computations of the P's and Q's. 
P. n 

Power of the Method in the Two-tailed 

Exponential Case 

Consider the following: 

An experiment consists of a series of observations x1 , .•• , xn 

on random variables which are independently and exponentially distri-

buted with parameter. A E {0,m), i.e. 

f(x) -{:•-Mt, x > 0 ,. 

otherwise. 



After each observation the cumulative sum 

n 
s =- I: x. n . l J. J.= 

is used to decide whether to continue sampling, 

2 2 S rv x (2n), n = 1, , , , , and sampling stops (with the rejection of 
n 

the null hypothesis H0 : A= A0) the first time 
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Again the value of n at which the experiment stops will be denoted by 

m and again the immediate problem is to determine the distribution of 

random variable M. 

One is interested in testing H0: A= AO against HA:. A 'f AO 

where, without loss of generality, AO may be taken as unity 

(i.e. 

of X, 

n = 1, 

H0:. AO= 1: otherwise take "i:"' in place of. A, A0x in place 
0 

and A0x in place of x), so that under H0 , 2Sn N x2(2n), 

i 2 y1 denote 2 X1· (2n) and let n -a. 

denote 

As in Chapter II let 

tx;,(2n), n = 1, 

Letting 

then for 

-AX = Ae , x::. 0, 

n = 2, ... ' define 

rmin{x,y2,n-l} 

gn(x) = jy gn_1 (u)g1 (x-u).du 

l,n-1 

i min{x,y2 n-l} 
-AX ' () AU = Ae gn-l u e .du, 

Y1,n-l 

x a: Y1 l' ,n-



Letting P again denote P(M~n) then 
n 

l y2n 
P = 1 - g (x).dx, n n 

Y1n 
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n = 1, , , • , 

The probability of being absorbed in the upper boundary at the nth 

observation is 

Q = ioo g (x) .dx 
n n 

Y2n 

and similarly for the lower boundary 

i yln 
R = g (x).dx, 

n . n 

Y1,n-l 

where y10 = 0, 

Analogous to Chapter II define 

x :;:_ 0, 

and i min {x,y2 ,n-l} 
= h (u).du, n 

y ' 1,n-1 

x ~Yl,n-1' 

n = 2, 

iYzn p -11.x then = 1 ~ A hn(x)e .dx, n 

· ln 

Qn = ).iw h (x)e -Ax ,dx 
. n 

Y2n 

:rln n -AX and R = . 11. hn(x)e .dx, n = 1, . Y10 s 0. n ... ' 
1,n-1 

Results are given in Tables VIII and IX. 

(3,14) 

. . . . . 
(3.15) 

(3.16) 
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n 
Note (i) ~(Q. + R.) = P, n = 1, ... , 

i=l 1 1 . n 

(ii) n = 1, I I I , 

where y10 = 0, 

(iii) hn is constant on ~ 2 ,n_1 ,y2n]' n = 2, 

Examples: 

and 

and 

Similarly, 

and 

pl = 1 + a.>. - (1 -a)>. 

R1 = 1 - (1 - a.)>.. 

->.y21 -Ji.Y12 
P2 = 1 + e + (>.y11 - Jty12 - l)e 

+ Ji.(y21 - Y11)e 
-.\Y22 

2 2 1 2 2 
PJ == 1 + (Ji.yll - Ji. Y11Y12 + Ji. Y11Y13 + z:\ Y12 -AY13 

1 2 2 -1..Y13 -Ji.Y21 
- 2 >. ylJ - l)e + e ' 

(J.17) 

(J.18) 

(J.19) 

(J.20) 

-JtY22 2 
+ Jt(Y21 - Y11)e + Ji. (Y11Y12 - Y11Y22 

1 2 1 2 -AY23 
- 2Y12 - 2 Y21 + Y21Y22)e 



n 

1 
2 

3 
4 

5 
6 

7 
8 

9 
10 
12 
14 
16 
18 
20 
25 
JO 

35 
40 
45 
50 
60 
70 
80 
90 
100 

TABLE VIII 

Pn's FOR THE TWO-TAILED EXPONENTIAL CASE 
WITH . A=2 AND FOR VARIOUS VALUES OF 2a 

a= 0.01 0.02 0.05 

0.01000 0.02000 0.05000 
0.02686 0.05135 0.11744 
o.oLi-967 0.09015 0.18927 
0.07740 0.13386 0.26095 
O .10925 0.18087 0.33055 
0.14451 0.22998 0.39697 
0.18252 0.28016 0.45954 
0.22263 0.33057 0.51787 
0.26420 0.)8048 0.57175 
0.30666 0.42931 0.62115 
0.39216 0.52191 0.70676 
0.47549 0.60571 0.77606 
0.55329 o.67894 0.8J088 
0.62518 0.74224 0.87374 
o.68973 0.79571 0.90670 
0.81546 0.89062 0.95776 
0.89672 . 0.94461 0.98173 
0.94510 0.97324 0.99239 
0.97207 0,98757 0.99693 
0.98633 0.99442 0.99879 
0.99353 0.99757 0.99954 
0.99868 0.99958 0.99994 
0.99975 0.99993 0.99999 
0.99996 0.99999 1.00000 
0.99999 1.00000 1 
1.00000 1 1 
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0.10 

0.10000 
0.21289 
0.31660 
0.40906 
0.49082 
0.56275 
0.62573 
o.68066 
0.72835 
0.76957 
0.83551 
0.88370 
0.91846 
0.94328 
0.96083 
0.98489 
0.99436 
0.99795 
0.99927 
0.99975 
0.99991 
0.99999 
1.00000 

1 
1 
1 
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TABLE IX 

(P - CUJ,IlJLATIVE Rn)' s FOR THE TWO-TAILED 
~XPONENTIAL CASE WITH A =2 AND FOR 

VARIOUS VALUES OF 2cx 

n ex= 0.01 0.02 0.05 0.10 

1 0.00003 0.00010 0.00063 0.00250 

2 0.00003 0.00012 0.00073 0.00295 

3 0.00003 0.00012 0.00076 0.00308 

4 0.00003 0.00012 0.00077 0.00312 

5 0.00003 0.00012 0.00077 0.00314 

6 0.00003 0.00012 0.00077 0.00315 

7 0.00003 0.00012 0.00077 0.00315 
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1 2 2 2 2 
- ~A Y13 + A Y11Y13 - A Y11Y12 

-AY13 
+ AY11 -: AY13 - l)e . (3.21) 

For A= 2 -and a= 0.05, 

and 

P.3 = 0.3165956 

3 
}; R. == 0, 3135211. 
r;i1 

(3,14) - (3.17) -and (iii) .may be used to facilitate the computations 
' 1 .. 

of the P . 's and R. 's for any given a . n n 

Power of the Method in the One-tailed 

Exponential Cases 

Right Tail. 

X1 , , •• , Xnrvi.i,d. Exp(A), 

and 
n 

= Ex. 
i=l 1 

is used to decide whether to continue sampling: sampling stops (with 

the rejection of H0:. A= 1) the first time 

sn > ix! (2n). 

(H0 is to be tested against HA: A< 1.) 

Let gl(x) = -AX Ae· , x ~ o, 
imin{x,y 1 ) n-

and gn(x) 
-.xx Ali = ;\e gn-l (u)e .du, x ~ o, 
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where yn-l = fx! (2(n-1)) and 
n = 2, . . . . 

Defining 

x ~ o, 

and i mi:n{x,yn-l} 
h (x) = h 1(u).du, n n-

o 
x ~ o, n=2, .•. , 

then, analogous to (2.20), 

Pn - P(Msi), M as previously 

~ 1 - •iyn hn(x)e-:lx,dx, n - 1, .. , , 

and where 

Q denotes the probability of absorption in the boundary at the nth n . . ~ 

observation, n = 1, .••• Also, analogous to (2.21), 

-Ji.y:(Yn-1 n · n 
Qn = . .11. e· 

0 
hn-l (u) .du, 

n 
Note that I:Q. 

i=l]. 

Left Tail. 

I I e f 

= p ' n 
n = 1, .••• 

X rv i .i .d. Exp(Ji.), 
n 

and s ;. ~x. 
n . 1 J. J.= 

n = 2, .. , . 

(3.22) 
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is used to decide whether to continue sampling, sampling stopping (with 

the rejection of H0 : A= 1) the first time 

s 
n < i,/ (2n). 1-a. 

(H0 is being tested against HA: A> 1.) 

Defining 

and 

then, analogous to (2.28), 

and 

P = P(M~n), M as usual n 

2 
where y = tx1 (2n-2) and n-1 -a. 

n = 2, , •. , 

n = 1, , •• , 

is the probability of absorption in the boundary at the nth observa~ 

tion, n = 1, . , •.. Also, analogous to (2.29) and (2,30) respectively, 

n ::: 2, Io o J 

and R = Aiyn h (x)e-Ax.dlc, n = 1, ••• , where Yo= O. n . n 
Yn-1 

n 
Note that _E R1 = P , n = 1, • • • • 

i=l n 



CHAPI'ER IV 

A PHILOSOPHICAL DISCUSSION ON THE RATIONALE 

OF METHOIS OF SEQUENTIAL SAMPLING 

AND ANALYSIS 

It is natural to question whether the criterion that has been 

used for determining the "significance" of results is legitimate. Uhat 

is it that is rational or so special about the frequency characteristics 

that they should be chosen as the mode of inference rather than other 

possible methods? For example, "significance level" itself is not a 

well-defined entity (7),. Easterling (18) in an excellent article 

addressed to "Reliability engineers, statisticians, and Bayesians" 

discusses much that is both pertinent and very mundane: 

It is really not appropriate to lump all non
Bayesian approaches to statistical inference under 
one heading, However, since the expression 
"classical statistics" has some currency, though no 
precise definition, we shall let it stand as a 
heading .••• 

The test of significance is a concept due to 
R. A. Fisher •.. he developed the test of signifi
cance to answer the question, "to what extent are the 
data consonant with a given hypothesis?" 
••• To answer this he proposed the statistic: the 
relative frequency in repetitions from a 
hypothetical population in which results as extreme 
or more so as that observed are obtained, where by 
more extreme we mean those hypothetical results 
which support the -alternative to the hypothesis 
being tested more than they support the hypothesis 

It may help to think of ••. repeated experimenta
tion, but this interpretation is not necessary 
and often untenable •••• 
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Another objection is against the use of tail 
areas. Kempthorne [29 hereJ supports this measure 
by describing the significance test as a measure 
of the distance x is from the hypothetical 
data which are generated by f(X; eo); 
.•• The reason the significance test is used is 
because it has certain desirable operating charac~ 
teristics. 

'1:lith this basic tenet, that operating charac
teristics are informative and pertinent, I am 
willing to consider any statistic regardless of 
its ori,gin. I see no need to adopt any one 
"optimality" criterion, such as unbiasedness, 
maximum likelihood, or the bestBayes decision 
rule to derive acceptable statistics •••• 
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I can sympathize with the effort to bring a 
consistent logic to statistical practice. But I do 
not feel inadequate because of the absence of this (pp. 190-192). 

Anscombe (2) has asserted that "All risk of error is avoided if 

the method of analysis uses the observations only in the form of their 

likelihood function, since the likelihood function (given the 

observations) is independent of the sampling rule" (page 100). 

McPherson and Armitage (41) have perhaps the most relevant 

comments: 

Analyses of data by likelihood functions or 
posterior probabilities are completely unaffected 
by stopping rules; tail-area significance tests, 
by contrast, are highly sensitive to the stopping 
rule. However, the probability of achieving a 
particular result measured by likelihoods or 
posterior probabilities is affected by the number 
of times the data are examined. Certain appli
cations of likelihoods or posterior probabilities 
lead to the same stopping rules as would repeated 
significance tests at a fixed nominal level. For 
instance, if the .ratio of the likelihood of the 
hypothesis to the maximum likelihood is tested 
after each observation in N(µ, 1) variates, a 
reasonable stopping rule is: stop iff Lo/LMax i. 
some constant r. This is equivalent to repeated 
significance tests at~ two-sided level 2a*, where 
a* is given by 

4>fr'f2 loge(l/r)}] = 1 - a*. (3) 
If, si~ilarly, for N(µ, 1) variates we 

postulate that the prior distribution of µ is 
N(O,an), and measure the posterior probabilities 



that µ is greater than or less than zero at each 
observation, we might stop iff s~ ,(µ/sn) "' ). 

or (4) 

\
09 1r(µ/s ) < >c Jo n -

where 1r(µ/sn) is the posterior 
This leads to the stopping rule: 

density of 
stop iff 

µ. 

lsnl ~ k2'1(n + ot/) (5) 
where lf>(k2) = ~-A. Where the prior distribution 
is uniform, 00 = 0 and the stopping rule is 
equivalent to repeated significance tests at a 
two-sided level of 2>c. 

Hence ••• repeated significance tests .•• 
provide a basis for sequential analysis which 
[is] capable of interpretation from a frequen
tist, likelihood or Bayesian approach (page 20). 

Thus, the frequentist mode of inference used in at least one 
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section of each of Chapters II and III (namely the two-tailed normal 

case) i-s e.quivalent to both:_! likelihood ratio approach and a Bayesian 

approach (with a vague prior), The same is also true of the left-tailed 

and right-tailed normal oases; i.e. the frequentist mode of inference 

used in the one-tailed norm.al case for testing that N(µ, 1) · variates 

come from a population whose mean is zero (H0 : µ = 0) against either 

that the population mean is negative (HA: µ < 0) or positive 

(HA: µ > 0) is e.quivalent to both a likelihood approach and .a Bayesian 

approach (with a vague prior). After a digression into these approaches 

this critically important topic will be reintroduced in Chapter V. 

Some relevant comments on likelihood, likelihood ratio:and 

likelihood principle are now given. This section will then be followed 

by a discussion on Bayesian techniques. These two positions will be 

seen to be intimately connected. 



Likelihood Approach 

There seem to be as many versions of the so-called "likelihood 

principle" as there are authors who write on itl (c.f. (16), (JO) and 

(45),) As Kempthorne and Folks (JO, page 295) have it: 

This [the likelihood principle] has not bee stated 
tightly but appears to be as follows. 'To form 
opinions about parameter values from data, the only 
inferential content of the data is given by the 
realized likelihood function.' 

L. J. Savage (45, pages 184,185) was more commital: 

From the Bayesian position heretofore scat
tered ideas take on new unity and comprehensibility. 

One of the most obvious, ubiquitous and 
valuable consequences of the Bayesian position is 
what I call the likelihood principle. This prin
ciple was, so far as I know, first advocated by 
George Barnard [8 here] • 
.•. 'the likelihood function, long known to be 
a minimal sufficient statistic, is much more than 
merely a sufficient statistic, for given the 
likelihood function in which an experiment has 
resulted, everything else about the experiment -
what its plan was, what different data might have 
resulted from it, the conditional distributions of 
statistics under given parameter values, and so on -
is irrelevant.' 
••. The likelihood .•. retains its import even 
if the experiment terminated merely when the 
experimenter happened to get tired or run out of 
time - always under the proviso that the individual 
trials are independent ..•• 

This same function even persists if the 
experimenter quits only when he believes he has 
enough data to convince others of his own opinion. 
This leads to the moral that optiona;t stopping ,,, 
is no sin, but that traditional methods of judging 
data in terms of significance level cannot safely 
be interpreted without regard to other information. 

Cornfield (16) mentions preserving (which should be determining) 

the critical level, i.e. the lowest significance 
level at which the hypothesis can be rejected 
for given data •••• the critical level 
provides~ appropriate measure of the amount 
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of evidence [?1 in the data for or against the 
hypothesis •••• The critical level is thus regarded 
as a universal yardstick (page 18). 

(The emphasis has been added here and in the following.) 
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Unfo:duna.tely. the .usage here of the terms "critical level" and 

(prechosen) "significance level" is as.given by Lehmann (34, pages 61 

and 62), which is less commonly accepted than reversing the roles played 

by these terms. Cornfield later confuses the twol_ He then gives what 

he references as the a-postulate: "All hypotheses rejected at the same 

critical level have equal amounts of evidence C?J against them." He 

admits that he has never seen nor heard this postulate explicitly 

stated, nor can he name any statistician_who believes it, but asserts 
.. 

that he believes that sequential analysis can be defended if and only if 

"something like" the a-postulate is truel 

Cornfield then attempts to demolish his own argumentl Three 

examples are proposed and each is claimed to refute Cornfield's 

a-postulate. Curiously not one succeedsl The third example is: 

(c) D.R. Cox [17 here] has constructed an example 
which suggests that the most powerful test of the 
hypothesis that a mean is zero against a particular 
alternative will sometimes reject the null hypothesis 
when the observed mean is zero (page 19), 

The quoted reference has no such.fabricationl Even if it did there 

are much simpler contrivances which illustrate the point Cornfield 

(irrelevantly) tries to make: for random variable X tvN(e, 1), 

consider the uniformly most powerful test of H0 : e == 0 against 

HA: 0 > 0 using a= 0.6 , 

"But if one is willing to be guided by the a-postulate ••• why should 

he be any more willing to accept it when analyzing sequential trials?" 

Categorically, one need not accept it in seq uenti.al methods but may 
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ap:pear to do so only in the name of mathematical convenience - only for 

the sake of standardizing a procedurel 

Cornfield then turns to his second line of argument 

- which is that there is a reasonable alternative expli~ 
cation of the idea of inference and one which leads to 
the rejection of sequential analysis. This explication is 

·provided by the likelihood principle - which states that 
all observations leading to the same likelihood function 
should lead to the same conclusion (page 20). 

The likelihood functions of the binomial and negative binomial are then 

discussed. To fill in omitted details: consider n (or N) independent 

dichotomous trials, each with constant non-zero probability p of a 

"success", leading to r (or R) successes. If n is a pre-specified 

positive integer then R is a random variable whose distribution is 

given by 

= 0~0) 
P(R = r) l r = 0, 1, ..• , n, 

otherwise. 

If r is a pre-specified positive integer, i.e. continue random 

sampling until the th 
r success occurs then stop, then N is a random 

variable whose distribution is given by 

{
~:i) 

P(N = n) 

0 

r ( )n-r p 1-p , 

otherwise. 

The factors which depend on parameter p, 

n = r, r+l, .•. , 

Pr(l-p)n-r namely in each 

~' is regarded as the likelihood functi.on. The argument continues 

that since both distributions yield the one likelihood function, if one 

accepts the likelihood principle one "must come to the same common 

conclusion about p, despite the use of quite different stopping rules." 

Using "some different inferential principle, say that of unbiased 

estimation, however, the first investigator would have estimated p as 
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as r/n and the second as (r-1)/(n-1)." No mention is made of the 

restriction, r > 1 necessary in the latter case. Nor is mention made 

as to why unbiasedness should be used as the hallowed "inferential 

principle": it is well-known that likelihood techniques and unbiasedness 

are at variance - for random variable X rv N(µ, <:/), both 2 
µ and O 

unknown, the maximum likelihood estimate of 2 
(J is biased. Cornfield 

concludes that "if one accepts the likelihood principle one must reject 

seque~tial analysis" (page 20). 

Now the situation will be re-analyzed, this time without slipping 

over the crucial stepwise meaning of the symbols, for it is within 

this new framework that the rebuttal to the argument will be seen to 

lie - it will be seen that the 'old' argument became lost in the 

unquestioned mathematical symbolism! 

What is meant by the term 'likelihood function'? For present 

purposes, X being a random variable whose probability~ function 

will be denoted by p(x; p), single parameter p E (0,1), and 

x1 , ••• , xn being a random sample from this distribution, then the 

likelihood function is given by 

n 
L(p/~) = TI p(x.; p). 

i=l J. 

Thus in the binomial case there are purportedly n independent 

observations r 1 , ••• , rn from 

{:r. 1-r. 

= : 1 
(1-p) J. o, 1, r. = 

P(R = r.) J. 

J. otherwise, 
i == 1, ... ' n, 

so the likelihood function here is given by 



where r _ _ ·t r. 
i=l ]. 

In the negative binomial case there are r' independent observations 
I 

i.e. n. 
J 

from 

1 J ••• ' 

P(N = n .) 
J 

is the number of trials between the 

, ' , ' r'' 

(j-l)th and .th 
J 
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successes not counting the trial on which the (j-l)th success occurred 

but courtting the trial on which the jth success occurred, so the like-

lihood function here is given by 

~(p/~) ~ pr' (l-p)n'-r' where n' 
r' 

= L, nJ. • 
j=l 

Now ~(p/_t) s ~(p/~) p e: (0,1) 

r' = r 

and n' -n, 

i.e. the two likelihood functions are identical if and only if 

(i) the number of successes in the binomial case is equal to 

the pre-specified number of successes in the negative 

binomial case, 

(ii) the number of trials required in the negative binomial case 

is equal to the pre-specified number of trials in the 

binomial case, and 

(iii) the last trial resulted in a success for certain (and not the 

first success at that): this is taken into consideration in 

the negative binomial case - it is a pre-condition - but not 

in the binomial case, 
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Given that the experiment resulted in identical likelihood 

functio:p.s then the last trial.of the binomial experiment was non-random 

(since a success certainly occurred on this trial). Then this observa-

tion, being non-random whereas those preceding it were random, should be 

discarded - it contains no information (in any .sense) about p. Thus 

in the binomial case the experiment should be considered as consisting 

of n-1 independent trials resulting in r-1 successes, and 

Qornfield's 'contradiction', even based on unbiasedness, is resolved. 

Finally, D.R. Cox (17, pages 363-366) has given his views: 

In the problem without nuisance parameters, it is 
known that methods of inference ••• that use only 
observed values of the likelihood ratios, and not tail 
areas, avoid the difficulties ••• since the likelihood 
ratio is the same whether we argue conditionally or not. 

Ovriting on the Bayesian approach] An important ad
vantage of this approach is that it ensures independence 
from the sampling rule •••• {§ee Anscombe (1)~) 

Bayesian Approach 

For present purposes it suffices to characterize the Bayesian 

viewpoint in the following way: 

X is a random variable with density f(x; e) where the 

'parameter of interest• e en, the parameter set (or space); e 

itself is now considered as a random variable 0 with prior density 

denoted by 1r0 ( e) • One may think of 1r0 as being, in ~ intuitive 

sense, the "best description of the distribution of 8 available in the 

absence any (further) data." A random sample X1 , ... ' x 
n 

is then 

taken from f(x; 'e), which should now be written f(x/6), and 

'summarized' .by statistic Y == Y(X), sufficient for e. Furthermore, 

suppose Y has density g(y/e) (this being essentially the likelihood 
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L(e/;)); then the posterior density of e (with motivation via Bayes's 

theorem for absolutely continuous random variables) is defined to be 

g(y/e)'ITo(e) (4.1) 
~~(y/e)'IT0(e).de 

(assuming the right-hand side here exists). 

Hopefully 'ITl is, in some intuitive sense, the "best description 

of the distribution of e available after the data has been taken." 

The posterior density 'ITl of e is then the inference base for e. 

The chosen prior distribution and the data have been merged via Bayes's 

theorem to yield a posterior distribution: one may think of the 

posterior as being, in some intuitive sense, how the data has modified 

the chosen prior. Notationally e0 will represent the prior random 

variable and e1 will denote the posterior random variable. 

To exemplify some points consider 

X"'N(e, 2 (-m, 00) 0 ) ' e e: R -
= '2' 

2 known (positive), 0 

2 
(real), 00 rw N(p0, o0), µo known 

2 known (positive), 00 

... ' x n 
is a random sample of X's 

so Y = X here is sufficient for e 

2 
N N(e, 0 n); 

then 01 rv N 

nx -:· I-lo -+-2 · 2 
O oo 

n 1 --+-. 2 0 2 
' 0 

1 (4.2) 



For n = 1, 
xl µo 
-+-· 2 2 

e "' N 
CJ CJ O 1 2 

1 __!. + __!. - µl' __!. + __!. 
- (Jl 

2 2 2 2 
CJ CJ O CJ CJ O 

Thus, having randomly sampled a single observation x1 the (first) 

posterior di-stribution .at this stage is as given. 
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Now follow an "empirical Bayes" procedure: use this.distribution 

as the prior for a second randomly sampled single observation ~ 

(independent of x1 ). The second posterior random variable 

1 

Le. N 
1 

This process can be repeated ad infinitum and on the pth repetition 

(p = o, 1, , •• ) the 

Taking 

e N N 
p 

2 
CJ = 1 

= 2 
ao' 

th p posterior random variable 

1 (4,3) 
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the crux of the so.,..called.Bayesian controversy - or rather it is the 

beginning thereof,. but by no means the endl If one can justify the 

choice of _prior in some.meaningful way that '\-fa£ "acceptable" (as 

opposed to completely contrived) application in·the real world then 

apply Ba.yes.,_s theorem: the use of Bayes's theorem does not make one 

~ Bayesian and it is well-known that, as Easterling (18) puts it, "one 

must bear in mind that posterior probability statements are conditional 

on the prior." D.R. Cox (17) uses the terms"··· an agreed prior ••• ", 

II ••• conventional form of prior •• , " and qualifies one statement with 

"when the choice of prior is difficult." In sharp contrast Lindley 

(37, page 421) has objected 

to the statement, repeatedly made, that a prior is 
unknown. This is ridiculous, a prior is a statement of 

· one's knowledg,e -and moG.&"-n..::..W-ork- demonstrates that it is 
always known: by judicious questioning it can be found. 

$a.sterling (18', ·page 189) has made the very pertinent point that 

••• it is critical that the results of the experiment 
stand alone so that they can be added to the store of 
knowledge and so that others can draw their own con
clusions, Bayes' · Theorem merges these two i terns, 
sometimes inextricably. 

Barnard (6, page 194) had previously noted this, though not as forcefully: 

The main quarrel I have with the subjective Bayesian 
approach is this, that I-fear that it does not always 
make clear to the client or consumer how much of the 
message presented to him in the form of a posterior 
distribution really comes from the data and how much 
from the assumption involved in the prior distribution. 

Bayes's theorem merges the chosen prior and the observeQ. data in a rigid 

manner - it does not allow for any weighting of the data with respect 

to the chosen prior. This objection maybe overcome; the rationale 

and motivation for the method employed will be given first. The 

argument is entirely verbal: it rests completely on intuitive appeal. 
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Recall the verbalizations that 

(i) the prior may be thought of as the best description of the 

di£tribution of random variable e available before the data 

• ~ is observed, and 

(ii) hopefully the posterior is the best d,escription of the distribution 

of e available after the data has been taken. 

The posterior is to be considered "superior" to the prior for the 

purpose of inference about 6:, (nthe:rwise the prior would be used 

for this purposel) Hence if one knew the posterior before randomly 

sampling one would surely use this distribution as the prior, thus 

obtaining ,an even better posterior than the "original" posterior, The-

data are more heavily weighted than originally by Bayes's theorem! 

Notationally e2 will represent this second posterior random variable 

and . 7T 
2 will represent its density, 

To illustrate this procedure, by analogy with (4.1), 

g(y/e) ~1 ( e) 

- ~ g(y/a),1(a).da 

interpreted as 1ri(e/y} given by (4.1) 

where 1r1(e) is to be 
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g2(y/e) 1To(a1) 
= 50 i(y /a) ,0 ( a) .de 

(assuming the right-hand 

side here exists). 

This procedure can be repeated sequentially: more and more weight 

is put on the data (with respect to the original chosen prior). With a 

natural ·and self-explanatory extension of notation, for p = 3, 4, .•. , 

-Sn g(y/e)•p-l(e).de 

g(y/a)1rP_1 (a) 
where 

interpretedas 1rp_1 (a/y) from the previous step (assuming existence) 

= S rl gP(y/a) 1To(a) .de 

(assuming existence). This equation holds for all p = 1, •• , • It 

nay also be interpreted as holding for p = 0 providing 1b is "normed" 

to unity, i.e. integrates to unity on the real line (which can be taken 

for gn,nted without lOss of generality providing ~,0(e).ae <~.in 

which case 1r0 is called "proper"). 

This procedure shares some properties with the empirical Bayes 

technique, but the two are quite distinct. For one, the empirical Bayes 

technique requires that a random sample be taken between calculation of 

posteriors and this is not the case with the above technique. 

Without enquiring further -what this procedure does and means and 

why it is done here, one immediately asks a question that is begged: 



"Does e have a limit as p tends to infinity?" p 

The following examples provide some answers: 

(i.e. "What is 
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e ?") co 

· 2 2 
Example 4.1: . If X N N(e, a ) , e e: R = Sl; a known {non-negative), 

2 
GON N(µO' ao) ', llo known, a~ known (positive), 

and xl, 

for e 

• e I f X are in4ependent X's so Y n . _ X here is sufficient 
2 

N N(e, 0 n)' 

then e A-1 N 
p 

1 
p = o, 1, OI I' 

~+-1 
2 2 

a ao 

2 
so eco is degenerate at y = *'-,,y µ0 e: R. This is true V a > O, 

2 V a0 > 0 and V n = 1, •.•. In the limit the weight on the data is 

so heavy with respect to the chosen prior as to wash out the effect of 

the prior: according to Easterling (18), the 

coincidence of Bayesian and classical results brings to 
mind one rationale that some advance as support for the 
Bayesian approach, which is that if one has eno\]gh data, 
the effect of the prior is washed out (page 188). 

For a (proper) vague prior take 2lim 
ao~ co 

2 
ep rv N(x, ~p), p = 1, .. • . 

; then 

Hence not only is X(hence X) unbiased for e here, but also, under 

this vague prior, 

p = l, o O O I 

e 
.P 

is unbiased for x (or just x), 

Exam;ele 4.2: If X rvExp(e), e > O (i.e. Sl = (o, co)), 

A known (positive), 

.... ' Xn is a random sample of X's so Y 

sufficient for 0' 

n = 1, I. 0 t 

here is 

ru Ga(e, n), 



i.e. g(y/e) 
{ 

1 n · n-1 -ey 
(n-l)l -0. y e ' 

= 
O otherwise, 

then v e > O, 

~:p e-pye e-.At0 
= f 00 0np -pye -.>i.e 

e e· 
0 

so ep N Ga(npx +. >., np+-1), 

The characteristic function of 

p = o, 1, • • • • 

e is then p 

(l _ .l:i...)-(np+-1) 
- py+.A 

y > 0, 

lim~t 
p~ py'r.A' e . as p ~ co 

it 

x 
- e 

7Q ; 

so by the Levy~Cramer theorem (Fisz (23), for example) e is degenerate co 
at l . This is true V .>i. > 0 and V n = 1, • • • . Again the x 

increasingly heavy weight on the data has washed out the effect of the 

prior chosen herel 

For a (proper) vague prior take 

then 0 ,v Ga(npx, np·l-1), p = O, 1, 
p 

lim; 
HO 

Thus not only is X 

(hence X) unbiased for i here, but also, under this vague prior, 

1 is unbiased for x (or just x), p = 1, •.. , since for p = 1, 
eP 

E(el) = 
p 

(P:y)npi-1 lco 1. enp e -pye 
(np)l o e 

= x, n ::;: 1, I I I O 

.de 

... ' 



71 

1-1 
In contrast, n is unbiased for e, n = 2, 3, ..• (nrl), while 

1 -=, n , · ·p = 1, , , , 
;x: 

en 
under the given vague prior ___,i;_ is unbiased for 

1+-1-
x 

np 

(The first estimate affords a situation in which at least two population 

units would be sampled at a time. The second estimate, in considering 

E(0 ), essentially utilizes the squared-error loss function.) It is 
p 

also of academic interest to note that both these estimates have rather 

obtuse analogues in normal distribution theory: 

2 2 Suppose . X1 , , •• , X rv N(µ, o ) , both µ and o 
-1 n 

1-- n 
then {. ~) is unbiased for (x-x)2 = ~ ~(xi-x)2 

- 1.=>l 
02 

is the minimum mean-square error estimate of 1 R). 
<J 

unknown ca2 > o); 

l(x-x)2 
1+1 while 

n 

A natural extension of this weighting method leads to an interest-

iim conclusion. By holding the philosophy that the observed data x 

in some sense reflects something informative about the (realized or 

present) value e of random variable e, and supposing 

(i) the prior to be not just the best description of the distribution 

of 0 (before the observations x are taken) but the true 

distribution of 0, and 

(ii) ~ is, as a random sample, representative of the whole population 

(of which f(x/e) is the density), i.e. assuming the data x are 

"obliging" for the purpose of inference about e, then 

the posterior returned from merging the data and the prior via Bayes's 

theorem may reasonably be expected to be just the prior; i.e., dropping 

the subscripts on the prior and posterior densities n0 and n1 , the 

following functional equation is of interest: 



1r( a) 

For given g(y/e) 

for almost all y, 

= . g(y/ah( e) 
~ g(y/a)1r(e).da 

0 

this equation is to be solved for 1r(e). Hence 
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~ g(y/e),(e).de = g(y/e) almost everywhere with respect 

to the probability measure 1r 

on e. 

Now the left-hand side of this equation is independent of e, so 

g(y/e) is independent of at This seems to contradict the philosophy 

that ~ reflects s-0mething a.bout the value e of e. Then surely the 

only conclusion is that the posterior must be different from the prior 

(on some subset of Q of non-zero prior and posterior measure): the 

data must modify the prior - either for better or worsel -
Jeffreys (27) ha.s rationalized a vague prior for binomial parameter 

p: 
= {p(i-p) ' 

0 

0 < p < 1, 

otherwise. 

Note that v E E (o, t)' 

r-E E •o(p) .dp < 00 

but that fl-< lim 1r 0(p).dp = 00 

e+O 
E 

This much-discussed prior is unusual for its properties - tending to put 

:infinitely more prior weight in the interval (0, e) and again in the 

interval (1-e,1) than in the in-between interval (e,1-e). In 



discussing such "improper" priors Hacking (26~ page 204) writes: 

If we have-.a.n unknown parameter which can range anywhere 
from O to ~, we are usually told to assume that the 
prior probability of the logarithm of the parameter is 
uniformly distributed. So we assent to probabilities 
that do not sum to any finite quantity. We substitute 
these in a formula, use some other data, and get 
probabilities that sum to 1. What is going on here? 
It looks like magic ••• 

According to Perks (43, pages 55 - 57), Jeffreys modified this 

prior to 
O.< p < 1, 

1 

so that£ ,0(p) ,dp = •· 

otherwise, 
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Novick (43, pages 61 - 64), Lindley (43, pages 57 - 58) and I. J. Good 

(43, pages 59 - 61) have provided further discussion on this. 

To round out this discussion on the Bayesian approach both "camps" 

will have their say: 

Indeed the whole Bayesian computation is trivally easy 
providing that one slips over the question of what the 
meaning of the result is ••• I am opposed to the. type 
of thinking , •• that the best approach to data inter
pretation is to feed the data through the Bayesian 
process with a prior that is arbitrary (or perhaps has·· 
mathematical convenience). 

- Kempthorne ( 15 ·, pages 648, 6 53) 

, • • prior distributions are often specified and used 
when they are not describing a real random process nor 
deduced in a logical. manner to describe a certain state 
of knowledge. The introduction of such an element into 
the inference seems to us quite unscientific. We do not 
agree that the purpose of a scientific investigation and 
the subsequent statistical analysis is to quantify personal 
belief and so that justification for the ·use of such 
priors is not acceptable to us. 

- Kalbfleisch and Sprott (28', page 206) 



Box and Tiao ( 12 ; page 9-10) on "The Role of Bayesian Analysis" : 

Because this system of inference may be readily 
applied to any probability model, much less.attention 
need be given to the mathematical convenience of the 
models considered and more to scientific merit .••• 

It is, we believe, equally unhelpful for en
thusiasts to • , • claim that Bayesian analysis can do 
everything, as it is for its detractors to ••• assert 
that it can do nothing. 

I believe that the lesson that we must learn is that 
there is no single theory entirely free from deficiencies. 
We have to be willing to learn about the advantages and 
disadvantages of all concepts used in inference about 
certainty, lfe owe a great deal to the Bayesian school 
of thought but we do object to a dogma in which this 
philosophy is worshipped as the infallible and completely 
virtuous solution of the decision maker. 

- Hartley (15, page 647) 

From Geisser (15, page 645) on Bayesians: "'Ye shall know them by 

their posteriors.'" 



CHAPI'ER V 

.THE EXPONENT.IAL CASES REVISITED 

As noted early in.Chapter IV the frequentist mode of inference used 

in the normal cases in Chapters II and III is equivalent to both.a 

:likelihood ratio and a Bayesian .approach (with a vague prior). These 
I 

approaches will now be investigate:d in relation to the two-tailed 

exponential case. The one-tailed. exponential cases are simplifications 

of this case. 

A Likelihood~Frequentist Approach 

For X N Exp(>. ) , >.. > O, 

t. ->..x 
e ' 

f(x) 
0 

so that V x. > 0, i = 1, ••• , n, 
1 

x > 0, 

otherwise, 

n 
L(>../x) . ~ . 

n ->..y = A e , Y - ,I:x., 
. 1 1 

n. = 1, .. , • 
1"" 

Suppose one is interested in testing H0 : >.. = >.. 0 · against li;A: >.. 'f >.. 0 • 

-n(>.. x-1) -n O 
c .(>. 0x) e , where 
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x = x(n) 

1 n 
= - I:xi, n . 1 1= 

,n = 1, a I e I 
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Let r - r(2a, n) 

E (0, 1) and such that 
LO 
~ < r defines a critical region of nominal size 2a 
1r1ax 

(a e (o,t)) for testing H0 against HA using 

a fixed-sample-size procedure; 

then a rational and reasonable stopping rule is: sampling stops (with 

the rejection of H0 ) the first time 

n(l - >-ox+ ln(>.ox)) < ln r, 

i.e. w - ln w 
1 

> 1 - - ln r, w - . :>..ox. n 

(The appearance of the intuitive "reasonableness" of this stopping rule 

is to some extent analogous to the apparent "reasonableness" of consid-

eration of highest posterior density regions of Bayesian methods.) 

w-ln w · 

1 

w 
0-+~--t~~~_,_~~~~~~~-f-~~~~~~~--3~ 

0 
WL.:::>..0~ 1 

[ "conjugate critical points" for any given n 

Figure 1. Graph of w - ln w Against w for Any 
Given n 



Without loss of generality t~ke AO = 1 ( otherwise take 

in place of A and A0x in place of X), so under H0, 

2X N /(2) = Exp(f); 

then one is interested in solving 

x - ln x 
- en for ~ and ~ 

i.e. x(n) - ln x(n) = en for ~n) < 1 and ~n) > xin) 

subject to (since 2nX(n) rv x2 (2n)) 

F (2n:xJn)) + 1 - F (2nx.:~n)) = 2a 
2n .1., 2n u ' where F2n is 
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the cumulative distribution function of a chi-squared random 

variable with 2n degrees of freedom, 

i.e. xin) - ln xin) = ~n) - ln ~n) (5.1) 

subject to 

(5.2) 

(5.1) and (5.2) are to be solved simultaneously for 

ru4,n) < n and ~n) > ru4,n) for any given a e:: (o,t) 

and V n = 1, .•• , ~x= ru4,n) and ~n) will replace Yin and y2n' 

respectively, in the two-tailed exponential case of hypothesis testing 

at a nominal 2a level after each observation has been randomly sampled, 

Results are given in Table X. 
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TABLE X 

VALUES OF nx:£n), ~n), ~i~ P(X 2(2n) < 2rix;.n)), 
(ii) P(X2(2n) > 2n~t ) , r(2a, n) AND 

p 
n FOR 2a == 0.10 

n (n) 
~ 

(n) 
~ (i) (ii) r(0.10, n) p 

n 

l 0.083815 3,93214.5 0.08040 0.01960 0.20952 0.10 
2 o.441327 5,479177 O .07296 0.02704 0,23141 O .16253 
3 0.937295 6.946117 0.06914 0.03086 0.23993 · 0,20485 
4 1.508663 8,355396 0.06673 0.03327 0.24440 0.23651 
5 2.129108 9,723134 0.06505 0.03495 0.24714 0.26170 
6 2.78479 11.0595 0.28256 

7 3,46737 12.3712 0.30031 
8 4.17137 13.6629 0.31575 
9 4,89294 14,9379 0.32938 
10 5.62928 16.1989 0,34158 
15 . 9,47174 22,3483 0.38827 
20 13,4934 28,3226 0.42091 
30 21.8489 39,9630 o.46576 
40 30.4607 57,3492 0.49653 
50 39,236.5 62.5721 0.51969 
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By comparing Tables II (with 2a. == 0.10) and · X it may be observed 

that up to n = 5 the p's 
n 

of Table II are less than those of Table X, 

while for larger values of n the opposite is true. This may be 

suggesting that sequential testing based on not only frequency 

characteristics but also on the likelihood ratio is, for sufficiently 

large sample sizes n, more powerful than one based on frequency 

characteristics alone. 

From these results, for 

= 0.10, 

(2.11) 

· where - m4n) 
and y2n - n~n), n = 1, 2 

= 0.162532 (for 2a. = 0.10) 

and from (2 .18), 

PJ = 0.204846. 

A Pure Likelihood Ratio Approach 

Fix r = r(2a., 1) 

= 0.209515 for 2a = 0.10 

in the Likelihood-Frequentist Approach, so that 

pl = 2a.;; 

then one is interested in solving 
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1 - ±in r n (5,3) 

for ~n) < n and nxfin) > n 

= 1 + l,56226 for 2a = 0.10. 
n 

(5,3) is to be solved for ~n) < n and n~n) > n for any given 

(0 <a<< 0.5) and V n = 1, .•• , ~x= ~n) and nxfin) will again 

replace Yin and y2n' respectively, in the two-tailed exponential case 

of hypothesis testing at a nominal 2a level after each observation has 

been randomly sampled, Results are given in Table XI. 

A Bayesian Approach 

For X rv Exp( A), A > 0 and prior distribution of A being 

Exp(µ), µ known(> 0), suppose one is again interested in testing 

H0: A= AO against 

one can take. AO = 

HA: A 1 AO and again without loss of generality 

2 1 so 2X ""x ( 2) under H0 . Measuring the . 

posterior probabilities that A is less than or greater than 1, a 

rational and reasonable stopping rule is: sampling stops (with the 

rejection of H0) the first time 

I 1·1< ., .d,I < k. 

or ilm ·i< ,\) ,d,1 < k, for some constant k e (o,t). where "i 

is the posterior density of A, 
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TABLE XI 

VALUES OF ruti,n), ~n), (i) P(x2(2n) < 2ruti,n)), 
(ii) P( /(2n) > 2n~n)), (iii) (i)+(ii) AND 

p FOR 2a. = 0.10 n 

(n) (n) n (i) (ii) (iii) p 
~ nxu n 

1 0.083815 J,932144 0.08040 0.01960 0.10 0.10 
2 0.414290 5,6.34473 0.06542 0.02370 0.08912 0.15416 
J 0,878496 7,181757 0.05936 0.2583 0.08519 0.18991 
4 1.419772 8.646317 0.05598 0.02720 0.08318 0.21649 
5 2.012391 10.05722 0.05.378 0.02819 0.08197 0.23759 
6 2.64230 11.4297 0.25507 
7 3.30085 12.7728 0.26996 
8 J,98230 14.0927 0.28293 
9 4.68257 15,3934 0.29440 
10 5,39870 16.6780 0.30468 
15 9,15232 22,9268 O.J4424 
20 lJ.0989 28.9814 ,·q.37212 

_i,. 

JO 21.J288 40.7527 0,.41084 
40 29.8J47 52.2475 o.4~772 
50 J8.5176 63.5649 0,45814 



Now from Example 4.2, 

(y + U)n+l ( ) -- -- Ane - y+µ_ A 
nl · ' 

O otherwise, 

n -u 

n 
Y - Exi, 

i=l 

..li y+µ 
nl u e .du, u - (y + µ}A 

0 

= P(x2(2(n+l)) < 2(y + µ)). 
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A> O, 

2 P(x (2n+2) < 2(y + µ) is a strictly increasing function of y > 0 so 

that the critical region is in the left tail, which agrees with 
n 

intuition. Moreover, the lower critical point for L xi+µ 
i=l 

nth test is ix~(2n+2), n = 1, . , , , Similarly, 

P(f(2n+2) > 2(f x. + µ)) 
. 1 1 1= 

n 

in the 

is a decreasing function of ~xi (> 0) so that the critical region 
1=1 

here is the right tail, which also agrees with intuition. Also, the 

upper critical point for ~x~ + µ in the nth test is txf_k(2n+2), 
i=l 1 

n = 1, •••• (For a vagure prior take µ = O.) Thus the effect this 

Bayesian approach has on the "original" sampling and testing procedure 

is to replace the original first sample with µ, suppress the original 

first test and continue randomly sampling and testing as in the original 

procedure, the nth actual observation of this Bayesian procedure being 

included for the first time in the (n+l)th test of the original pro-

cecure , n = 1, • • • • 
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In the case of the vague prior (µ = 0), 

P1 = P(x2(2) ~ (xi_0 (4), x!(4))) 

:-Y11 -Y21 
= 1 - e + e where y11 

and y21 

= 0.307785 for a= 0,05. 

-Y21 -yl2 -Y22 
p2 = 1 + e + (yll - Y12 - l)e + (y21 - Y11)e 

where y11 and y12 are as before, 

Y12 = ixi-a(6) 

and y22 = tx! (6) 

= 0,36401 for a= 0,05 . 

Similarly, from (2.18), substituting Y13 = ixi_ 0 (8), 

Y23 = .!. 2 (8) 2X0 

and a= 0.05, 

p3 = 0.40785, 

(2.11) 



CHAPl'ER VI 

UNBIASED S~UENTIAL ESTIMATION 

A frequently occurring question which arises naturally after a null 
y 

hypothesis about a parameter ha.s been rejected is "What then is an 

estimate of the true value of this parameter?" An often forgotten 

section of Blackwell's classic publication (11) is that on unbiased 

sequential estimation. The method will be explained and illustrated. 

Suppose x1 , •• , , Xn are random variables whose distribution 

depends on parameter El. If T(!) is unbiased and U(!) suffici_ent 

for El (T with finite variance) then E(TjU) = V(U) is unbiased 

for a, depends on only U (not a) and has variance not greater 

than that of T with equality if and only if T is a function of U 

(almost everywhere). 

The estimate obtained in this section for the parameter· 
of a sequential process is of the v type; its importance 
lies in the fact that in man;ycases there is an unbiased 
estimate t (generally poor) which is a function of the 
first observation, and which will consequently be an unbiased 
estimate no matter what sequential test procedure is used. 

A closed sequential sample (test) is determined by specifying a 

sequence of mutually exclusive and exhaustive events· {Si}' where Si 
co 

depe.nds on only x1 , ... , x. ; i.e. ~ P(S. ) = 1 V a . The event S1• ]. . 1 ]. 
].= 

is that sampling stops after the ith observation. Feller (21) has 

shown that the (test) procedures of Chapters II and III are closed, 

irrespective of how small a is in the open interval ( 0, t ). The 
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sequential sampling procedures to follow in illustrating Blackwell's 

unbiased sequential estimation method are also closed. They are just 

truncations of the test procedures of Chapters II and III. 

Let {U.} denote any sequence of random variables such that 
l 

8.5 

Ui = Ui (X1 , .•• , Xi) is sufficient for estimating 8 from x1 , •. , , xi, 

and suppose the sequential test (or sample) satisfies the condition 
i-1 

s. = w. n c( u s .) ' where w. is an event depending on only u. and 
l l j=i J l l 

C(A) denotes the complement of the event A, This condition means that 

when the ith observation is taken the decision to stop then depends 

on only Ui, the value of the ith sufficient statistic. All tests 

in Chapters II and III satisfy the above condition, as do all sequential 

sampling procedures to follow in illustrating Blackwell's unbiased 

sequential estimation method. 

Let {T. } denote 
l 

any sequence of random variables such that 

= Ti (Xl' .• •' Xi) and define T = T. when S. occurs • Then T 
l l 

is said to be unbiased for 8 (relative to the particular sequential 

test {S. }) if and only if E(T) = e V e . 
l 

Now let T denote any unbiased estimate of e relative to a 

particular sequential test {Si}, 
i 

let h. denote the indicator function 
l 

of event C ( U S . ) and define 
j=l J 

v = 
E ( h. l T. j U. ) 

l- l l when S. 
l 

Blackwell (11) has shown V to be unbiased for 8, 

occurs. 

There are some important points worth mentioning before preceding 

to illustrate Blackwell's unbiased sequential estimation method. First 

is a result due principally to Fay, 



Fay's Lemma: If, for each m, T = T (X1 , ••• , X) m m m is sufficient 

for e in the case of the sample . x1 , ... , Xm of fixed size, then 

(N, TN) is sufficient for e in the sequential case. 
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Lehmann (35) and Blackwell (11) have given proofs. From Fay's 

Lemma it follows that if x1 , .•• are i.i.d. N(e, 1) or Exp(e) then 
N 

(N, L X. ) is sufficient for e. 
i::::l ]. 
Second, Lehmann and Stein (36) have shown that the sequential test 

procedures of Chapters II and III in the normal cases are not complete, 
N 

i.e. (N, TN)' where TN ... Ex., is not complete in these normal 
j=l J 

cases. This is also true in more general circumstances involving 

sequential random sampling from a normal distribution with the trivial 

exception of (procedures with) fixed sample size. It appears the 

question of completeness or otherwise of this statistic in the case of 

sequential random sampling from an underlying exponential distribution 

is still open. 

Now to illustrate Blackwell's unbiased sequential estimation 

procedure. In both the normal and exponential sequential procedures, 

T = T1 = x1 may be taken as an unbiased estimator ... for µ in the 

normal cases and for 1 in the exponenti.al cases - and 
N A 

where 

TN =6X., 
j=l J 

may be taken as a statistic sufficient for estimating µ 

in the normal cases and 1 in the exponential cases from x1 , ..• , xn 

for n = 1, .••• 

Consider the two-tailed normal test procedure with 2a = 0.05 

truncated at n ~ 2. The test procedure is (or was) of the form: 

Take the first random observation; if it lies outside the interval 

( -1. 96, 1. 96) then stop sampling; if it lies in the given interval take 

a second random observation (independent of the first) and then stop 



sampling. The "joint density" of (N, x1 , x2) may be taken as 

1 _.!.2(x -µ)2 
- e 1 , 
& 

n = 1, lx1 1 > 1.96 and 

x2 = O(sayl) 

[one-dimensional, i.e. x2 is to be 

considered degenerate at o], 
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= ....!. e-t Kx1-µ)2 + (x2-µ)2], n = 2, lx1 1 < 1.96 

2ir and v ~ 
{!,wo-dimensional], 

O otherwise, 

n = 1 n == 1 

1.96 

Figure 2. Graph of fn(x1,x2) in Two-tailed Normal Case 
for 2a. = 0,05 Truncated at n = 2 



The marginals may then be calculated: 

l l.96 2 
1 -f(x1-µ) dx 

- e . l' 

& 1.96 

1 -t(x -µ/ e -e 1 
l21r 

Note that~m fx2<"2l·ru<z - P(IX1I < 1.96) 

= P(N = 2) 

For n = 2, v _ 

< 
'f 1. 

E(~l(Xl)Xlj X1+X2 = ~) 
E{"h1(x1)1 x1+x2: = ~) 
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n=2 



= 

O otherwise, 

where f 2(x1 , u2 - x1) = ...L e-tCTx1-1J)~u2-xl..-µ)2J, lx1j < 1.96 
2'1f 

= 

O otherwise, 
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so 

and v = 

-~+ ~).! l 

2/; 
e . - .2 [ 

11.96 .< 1 )2 - xl~2 
e .dx1 

-1.96 

-( 1. 96+i-u2) 2 
1 = 2'12 + e ' 

} 

-( 1. 96-iu2 )2 
- e 

Clearly this illustration may be generalized to values of 2a other 

than 0,05 and to one-tailed test procedures truncated at n = 2. 

Consider now an exponential test procedure truncated at n = 2. 

9.0 

The test procedure is (or was) of the form: Take the first random obser

vation; if it lies outside the interval (a,b) then stop sampling; if it 

:lies in the given interval take a second random observation (independent 

of.the first) and then stop sampling. Critical points a and b are 

subject to only O <a< b, For a right-tailed test a= O. For a left-... 
tailed test take b = ""• The "joint density" of (N, Xl' x2) .may be 

taken as 



n = 1 
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-AXl 
Ji.e , n = 1, x1 i (a,b), x1 > 0 and 

x2 = 0 (sayl) 

[5,ne-dimensional, i.e. x2 is to be 

considered degenerate at o], 

2 -Ji.(xl+x2) 
. Ji. e , n = 2 , x1 e (a, b) and 

x2 > 0 

8:,wo-dimensionatj , 

O otherwise. 

n == 1 

Figure 3, Graph of fn(x1,x2) in Exponential Cases 
Truncated at n = 2 



The marginals then follow: 

n = 1, 

= 

. 1 . s.b -AX 
>.. a e .dx1 , n = 2, 

{ 
( ::->..a ->..b) 1 - e - e , n = 1, 

= ->..a ->..b 
e - e , n = 2. 

-[{b .-~1.~1] 
e - e e 

{ 
( ->..a ->..b) .~>..xz , x2 > O, 

• · 0 otherwise, 

Note that 1: :f"z (Xz) ·dxz - P(N-Z), 

E(1\(X1)X1 1X1+x2 = uJ 
For n = 2, v = E(~(X1)1X1+x2.= ~) is unbiased for 

(f) 
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O otherwise, 

{

2 _-A~ 
= A e· , x1 e: (a, b), x1 < ~, 

O otherwise, 

and 

O, u1 < a, 

2 -AU 
= A (u2-a)e 2 , u2 e: (a, b), 

2 -AU 
A (b-a)e 2 , ~ > b; 

1 
(a,1,12)' u2 e: (a,b), 

~-a xl e: 

1 x1 e; (a,b), = ~ > b, b--a 

0 otherwise 

u2 
1 

Xl,qxl u2-a a u2 < b, 

s."2 1 dx1 
and v = u2-a a 

l Ib xl.d:xl 
b-a 

s:b d:xl 

~ > b 

1 
b-a 
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11z < b, 

11z > b. 

Verification of unbiasedness: 

E(V) 

1 2 2 _-).u2 1 2 2 2 · .-AUz fb 100 
+ :2'• a (11z-a )e . .d11z +_ .i~. (b -a ) b e .du2 

Variance of V: 

so va.r(V) 

1 
= -

1 ( -Aa ( 2 2 2 2 2) -). b) = 2 8 - 2e +.). n+2).b-2.\ abf-2-:2).a+). a e . 
4). 

= 12 (4-2e_).a + ( ~(b-a) + 1] 2 + l)e-).b), 
4). 

If the test procedures are extended to taking a third sequential 

observation then Blackwell's method above becomes very complex and 

"untidy" • 



CHAPI'ER VII 

.AN.OVERVIEW, SUMMARY :AND EXTENSIONS 

Surely the prime motivation for Wald and others to develop the 

Sequential Probability Ratio Test (SPRI') was to provide a sequential 

analysis of data as it is accumulated with a test which has prechosen 

overall probabiliteis of Types I and II errors, or at least excellent 

approximations thereto. This test may be used to advantage in cases 

where it is "costly" to take a random sample of prefixed size - . 

particularly when there is no guarantee that this fixed-sample-size 

procedure will yield conclusive results, or the action to be taken is 

dictated in a fraction of the prefixed sample size and sampling is 

continued only to vainly satisfy the conditions and properties of the 

preconceived sampling scheme. It is the economics (or tedium) of a 

context that most often forces an experimenter to use a sequential acheme. 

This dissertation has tackled a slightly different problem. An 

experimenter may be interested in "legitimately" discounting a certain 

(null) hypothetical claim and to do so runs an experiment, which yields 

what is considered "insufficient statistical evi.dence" (in the form of 

an observation on a test statistic) against the claim. The experimenter 

repeats the experiment enough times to collect "sufficient statistical 

evidence" to refute the claim. Qualitatively, the probability of Type I 

error rises above the nominal value at which successive combinations of 

observations on the test statistic may have been tested. 
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(Often an experimenter in an applied_fi.eld,. using statistics as only a 

tool, is not consciously aware of this fundamental qualitative result. 

In view of the experimenter's unwillingness to change his system, the 

next best approach a theoretical statistician can adopt is to determine 

just what it is that the experimenter is really doing - what are the 

true frequency characteristics of the sequential scheme the experimenter 

is following.) This dissertation has gone some of the way towards 

answering how this rise takes place quantitatively: "the answer" depends 

on both the distributional form of the underlying test statistic and the 

mode of combination. 

The only underlying test statistics considered in this -dissertation 

are the only two continuous statistics that Armitage and -IfoPherson 

considered: normal and exponential (equivalent to a chi-squared with 

two degrees of freedom). The computational advantages are immediate: 

linear combinations of normal variates are normal and sums of independent 

exponentials are within a constant multiple of chi-squared distributions 

with an even number of degrees of freedom .•... Moreover, if the underdlying 

test statistic is not one of these two distributional forms, then it may 

be converted to a chi-squared variate with two degrees of freedom by 

"Fisher's transformation" ( • ~ -2ln •) applied to the significance level 

of the original statistic, assuming the original statistic is continuous. 

(If the original statistic is discrete then modified methods -

Lancaster's approximation (31, 33) in particular - may be employed.) 

In its original form llald's SPRT has an immediate major drawback: 

while it is certain that the test will terminate (with a finite sample 

size) there is no upper limit on the sample size required for termina

tion. Understandably, manufacturers (for example) may not be prepared 



to permit unlimited sampling from their wares, particularly in view 

of the fact that the cases where "large" sample sizes are likely to be 

encountered are when the (simple) hypothetical claims being weighed 

against each other are "close together" - where, due to variation, 
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sample differences. tend to be non-significant and population differences 

tend to be insignificant from a practical viewpoint. Thus a form of 

truncation is desirable and, as referenced in the problem stated at the 

end of Chapter I, some research has been done on some truncated SPRT's 

in exponential testing. Potential truncation possibilities for the 

general sequential method employed in this dissertation are evident 

from Chapters II and III for pre-specified simple "null" and alternative 

hypotheses and for prespecified overall probabilities of Types I and II 

errors (as in Wald's SPRT) about a normal mean with known variance (i.e. 

no nuisance parameter) and exponential parameter - in the form of a 

maximum number (~) of observations to be randomly sampled (40, 41) • 

. Wald and Wolf owi tz ( 50) have shown that the SPRT has an optimal 

property: "of all tests with the same power the sequential probability 

ratio test requires on the average fewest observations." In contrast, 

Gundy and Siegmund (25) have shown that if 

(0, 1), i.e. zero mean and unit variance, 

xl I , • o I Xn ,rv i , i • d • 
n 

S := Z:x. I n = 1, , • • 1 
n . 1 i 

i= 1 

t c denotes the smallest integer n such that jsnl > c n2 (= oo if 

no such n exists), c 2:. 0, then E(Tc) < oo if O ~ c < 1; 

E(T) = 00 if c 2 1. (Clearly the result can be generalized to any c 

i.i.d. variates X. which possess a non-zero and finite variance.) 
1. 

Thus no -sampling scheme considered in Chapter II has a finite average 

sample number. 

and 
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It may be of interest to compare the tables generated by the two 

underlying distributions considered here with tables generated by other 

distributions underlying the general fixed-sample-size procedure adopted 

here. Distributions of immediate interest include chi-squared distribu

tions (more generally.gammas), the Laplace (double exponential) 

distribution, Weibull distributions, Student's T (40), Snedecor's F and 

multiv~riate distributions. 
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