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CHAPTERI
INTRODUCTION

In most of sampling theory, it‘has been assumed that the data collected on
the units in the sample are always accurate or true values of the characteristics
observed, and that the estimates of the population values obtained from the data
are subject only to sampling errors. In practice, the situation is rarely as simple.

The nonsampling errors that arise from the method of measurement or
interviewing, and other sources of errors in surveys are present in a census. These
nonsampling errors may be equally as important as sampling error, or perhaps
more important for surveys of human populations.  For voting questions in
Chicago, approximately one third of all residents who reported voting in the
primary election were found not to have voted when the record was checked
(Sudman and Bradburn, 1983). This problem becomes more serious when
respondents are questioned about sensitive matters, especially when truthful
answers may place them in an unfavorable light. The question dealing with
acceptance of racial intermarriage produced a difference by race of interviewer of
over 45 percent (Hatchett and Schuman, 1975). For the socially undesirable
questions, direct measurement of valid information on human populations is
difficult because of untruthful reporting and refusal to respond.

The randomized response methodology of survey technique is designed to
encourage cooperation and truthful replies to questions involving socially

undesirable activities.



1.1 Sources of Error in Surveys

The theory of survey sampling assumes throughout that some kind of
probability sampling is used and that the observation, say y; on the i—th unit is
the correct value for that‘ unit. The error of estimation arises solely from the
random sampﬁng variation that is present when n of the units are measured
instead of the complete population of N units. This makes up what is termed
sampling error.

Many saniphng techniques and estimation techniques have been developed
to collect data and use methods of estimation so as to minimize sampling error,
and improve the efficiency of survey esfimafes.

Even thought the various survey operations carred out strictly according to
the rules laid down are expected to yield the true value, X, which is the
characteristic under study, this can rarely be achieved in practice. The
discrepancy between the value actually obtained, ¥ to be called the survey value
and the true value is called the observational or response error (Hansen, Hurwitz,
and Madow, 1951) and arises primarily from the variable performance of
enumerators and lack of precision in measurement techniques. Hence even when
the sampling fraction is unity, that is n = N, the value of any population
parameter obtained from é census will differ from the true value of the parameter.
The discrepancy between the survey value and the true value also arises due to
several other causes, such as incomplete coverage, faulty methods of selection,
faulty methods of estimation, and 5o on. Together with the observational errors
these make up what are termed as non—sampling ErTors (Sukhatme, Sukhatme,
Sukhatme, & Asok, 1984). Deming (1960) and Cochran (1977) have discussed in
detail the sources of non—sampling error and it’s effects on sampling estimates.

The main source of non—sampling error in any survey comes as the result of



non—response.  Non-—response occurs when an element of the sample fails to
provide data to the researcher. In effect, this keeps the sample from truly being a
random sample from the survey population. - This can often lead to a considerable
bias in the survey results and hence distort the conclusions regarding the
population of interest. Four distinct types of non—response are generally
recognized.
These are as follows.

i) non—coverage

ii) unable to answer

ili) not at home

iv) hard core refusal

Among all these problems, we will .study two types of non—sampling errors:
i ) non—response error resulting from the respondents who adamantly refuse
to be interviewed.

ii) response error resulting from giving incorrect answers.

Systematic distortion of the respondent’s true status jeopardizes the
validity of survey measurements. = Unlike random error, response bias does not

cancel out over repeated measurement.

1.1.1 The Effect of Refusal on the Estimates

The answers from a survey are heavily weighted with people who are willing
to respond, and many characteristics of these people are different from the
characteristics of people who are not willing to respond. Deming (1960, pp. 67)
states "People sometimes enquire whether 50 % response is good enough, or
whether 80 %, or 90 % is good enough, or just what do we consider to be good ?

The answer depends on the characteristic and how it is distributed. If half the



people or firms with very high incomes, sales, or inventories are nonrespondents,

the error may be large, even though the response over all classes combined be only

5 %".

1.1.2 Sensitive Question Bias

When the survey is about sensitive matters, the non—response and response
error becomes more serious because the respondent will tend to give incorrect
answers, the interviewer may hesitate to ask such questions, and sometimes even
omit or alter them. The pebple who have high incomes will try to underreport,
and the people whb have low incomes will try to overreport. @Worse cases are
where the subject is asked to respond to questions about sensitive issues such as:
abortion, drunken driving, or marijuana smoking. The respondents often prefer to

give an answer that is socially acceptable.

1.2 Scope of the Study

After Warner’s (1965) proposal, many other researchers improved and
developed the theory and techni(;ues of the randomized response models. = Their
main discussion was the estimation of population proportions or population means.
Here we are studying the covariance and correlation between two sensitive
variables. Although Kraemer (1980), Fox and Tracy (1984), and Edgell,
Himmelfarb, and Cira (1986) discussed estimation of correlations, their
assumptions are not practical.

A review of Warner’s model and the unrelated randomized response models
are given in chapter II. And the analysis of correlation for Warner’s model and
the unrelated randomized response model is also given in chapter II.

Chapter III contains a review of the additive models, the scrambled models,



and multiproportion mbdels, and the estimation of the product moment correlation
for each model is also given.

In chapter IV, the correlation analysis for the continuous sensitive variables
is given for the additive models and the scrambléd randomized response models.
The correlation between the response variables is expressed in terms of the
correlation between the two sensitive variables and bias due to random device.
The bias due to random device is estimated for the additive and scrambled

randomized response models.



CHAPTER II

CORRELATION ANALYSIS FOR THE DICHOTOMOUS
RANDOMIZED RESPONSE TECHNIQUE

Literature Review

In surveys of human populations, respondents are not likely to participate
or tell the truth when the reply may tend to stigmatize them in the eyes of the
surveyer or the reply represents a socially undesirable behavior.

Sample surveys of human populations have established the fact that refusal
to respond and intentional giving of incorrect answers are two main sources of non
sampling error. The bias produced by these two sources of error can sometimes
make the sample estimates seriously misleading. This pfoblem becomes more
serious when respondents are questioned about sensitive mattefs, especially those
questions for which truthful answers may place them in an unfavorable light. For
example, questions about the number of times that a woman has had an abortion,
incidence of drunken driving, use of marijuana, sexual activity and child abuse will
create biases of these types.

In surveys on these topics, the respondents may refuse to answer or give
incorrect answers. This will lead to response bias, and these sources of bias persist
no matter how much effort is put into completeness of returns or into the
improvement of sampling techniques. |

A survey technique for eliminating or reducing this bias was introduced by
Warner (1965) and is generally called the randomized response technique.

The technique was designed to eliminate or reduce response bias for



sensitive questions in estimation of the proportion of a population belonging to a
sensitive group. In other words, this technique reduced the frequency of false |

(incorrect) answers by giving the respondent a randomization device.

2.1 The Warner Model

Suppose that every person in a population belongs to either group S or the
complementary group S, and it is necessary to estimate the proportion of persons
who belong to group S from a sample survey. A simple random sample of n
people is drawn with replacement from the population and provisions are made for
each person selected to be interviewed. Before the interviews, each interviewer is
furnished with an identical spinner (random device, see figure 1) which points to
the question Q with probability P, and to the question Q with probability 1-P.
A die, a container with marbles, and a deck of cards, each can be used as
randomization devices for Warner’s model. In each interview, the respondent is
asked to spin the spinner unobserved by the interviewer and report only ‘yes’ or
‘no’ according to the question to which the spinner points. The interviewer is told
not to make any attempt to identify the group to which the spinner points. Thus
the interviewer does not know whether the respondent’s answer is for the sensitive
question or the nonsensitive question, and ail that the interviewer records is the

respondent’s answer (yes or no). Let

Tg = the true population proportion of respondents belonging to group S

P = the probability that the spinner points to S, and

1 if the i—th respondent reports ‘yes’,

0 if the i—th respondent reports ‘no’.

Each respondent is provided with a randomization device by which he or



Hzlwe any of your pregnancies

ended with an abortion ?

Have all of your pregnancies ended
without an abortion ?

Figure 1. Warner’s Randomizing Device



she chooses one of the two questions.

For example the two questions might be

Q ; Have any of your pregnancies ended with an abortion ?

Q ; Have all of your pregnancies ended without an abortion ?

The randomization device is designed to ask question Q with probability P,
where 0 < P < 1 asin figure 1. The proportion of the sensitive question ( P ) is
preassigned and question Q is the complement of question Q.

The probability of getting a ‘yes’ response () is

A=P(r;=1)=P(yes|Q )P(Q )+P(yes|Q )P(Q)

=mgP+(l-mg) (1-P)

=(2P~1) g+ (1-P). (2.1.1)

Denoting the number of ‘yes’ responses in the sample by n,, the sample

n, . 1
proportion of ‘yes’ responses is- n—l- (A= ﬁl ), and since n; follows a binomial
distribution with parameters n and A,
: M1 M. : :
EA=E T = b A=A, 80 718 an unbiased estimator of A.

Therefore an unbiased estimate of g is

_P—1+ A

Ty =
S 9p—_1 9P -1

n
- P=-1_, 1 (2.1.2)
2P —1 (2P - 1)n

and since n; follows binomial distribution with parameters n and A, Eq.(2.1.2) is

an unbiased estimate of g when P # %
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IfP = %, the probability of getting a ’yes’ response does not even depend on

. ‘If % <P<l(or0<P< % ), the person interviewed provides useful but not
absolute information as to exactly which group he (she) is in. In this context the
P can be thought of as describing the nature of the cooperation between the
interviewer and the respondent.

From Eq.(2.1.2) the variance of an unbiased estimate of g is given by

Var(ny) = -2ALL=A)

s) =2 (2P—1)?

P(1-P
(2P—1)

_ 1
= 22 4] 51, (2.1.3)
where the second term on the right hand side of Eq.(2.1.3) is the variance due to
the random device. This bias is symmetric about P = %, and as P increases to 1
(P decreases to 0) the bias decreases.

Since E(n,) = 0}, E(n;)* = 0 + n(n—1))’

A

B [A02A) | _ g a1yl 2L (1 - 2
nn, — Il2
nz(n—l)

- ;22?—1—) %) — (A +n(n—1)2?)]

A(1=))

n
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Thus an unbiased estimate of Var(;rs) is given by

(n-1)(2P-1)

=5rs(1—;rs)+ 1 [ P(l-m]_ (2.1.4)

n-1 n-1 ( 9P-1 ) 2

The first term of Eq.(2.1.4) is the variance of Tg as in the direct survey procedure,
therefore our variance consists of the variance due to sampling plus the variance
due to the random device. 'When the selection probability, P close to 0.5, the

variance due to the random device increases.
2.2 Unrelated Randomized Response Model

The unrelated question randomized response technique was developed by
Horvitz, Shah, and Simmons (1967) and it’s theoretical framework has been
discussed by Greenberg, Abtﬂ—Ela, Simmons, and Horﬁtz (1969).  Abul-Ela,
Greenberg, and Horvitz (1967) extended the unrelated randomized response
technique to a multiproportions model.  Gould, Shah, and Abernathy (1969)
considered two trials per person for the unrelated randomized response technique,
and Moors (1971) compared Warner’s model and the unrelated model. The first
major field trial of the unrelated randomized response technique conducted by the
Research Triangle Institute for the National Center for Health Statistics
(1965—1966).

This technique requires the respondents to randomly select one of two
unrelated questions (sensitive question or unrelated nonsensitive question). In the

Warner's. randomized response technique, the interviewer asked the respondent
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whether he or she belongs to the ﬁénsitive group S or to the complementary group
5. If two unrelated questions (including one nonsensitive question) are used, the
respondent may have more confidence that his or her response is confidential and
so this will increase the cooperation of the respondent. This possibility leads to
the unrelated question model.

Two independent, non—overlapping simple random samples of size n, and

1
n,, are drawn from the population. The size of n, and I, are not necessarily
equgal. |

Every respondent in the samples is asked to reply with only a ’yes’ or 'no’
answer to the specific single question which turns up in his case. The selection of
the question is made by a randomization device on probability basis. In this way,
the respoudeﬁt’s status is not revealed to the interviewer provided that the
interviewer cannot observe the randomization process in the device.

Suppose the randomization device consists of a wheel of two parts
(Figure 2). In this model, two randomization devices need to be used. Wheel 1
is used for the respondents in the first sample, and wheel 2 is used for respondents
in the second sample. If more than one iﬁterviewer is used in either sample, every
interviewer in sample 1 has a randomization device identical to wheel 1, and every
interviewer in sample 2 has a randomization device identical to wheel 2. The two
wheels, 1 and 2, must also be different with respect to the probability that the
sensitive question, Ql’ will be selected.

Let the randomization devices be such that the sensitive question Q1 is
represented on a probability basis by P1 on wheel 1 and P2 on wheel 2, and P1 #
P2. Similarly, lét the unrelated non—sensitive question, Q2 be represented on a

probability basis by (1 — Pl) on wheel 1, and (1 — P2) on wheel 2.



Do you smoke pot at least

Is the last digit of your student once a week 7

ID number odd ?

Figure 2. The Unrelated Randomizing Device

13
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The unrelated question model uses two questions such as

Q1 ; Do you smoke pot at least once a week ?
Q2 ; Is the last digit of your student ID number odd ?
Let
g = the true population proportion of belonging to the group S.

Ty = the true population probability of belonging to the nonsensitive group

P1 = the probability that the sensitive question is selected by the random
device in the first sample.

P2 = the probability that the sensitive question is selected by the random
device in the second sample.

ng ; size of the first sample

n, ; size of the second sample
' 1if the i-th respondent in the j~th sample reports ‘yes’ to the

Y selected question.

0 otherwiSe;

where i=1,2, ........ ,nj, j=1, 2.

The probability of getting a ‘yes’ response is
Ap=P; =1 =P(yes | Q) P(Q)+P(yes | Q) P(Qy)
=g Py + 7y (1-P)), | (2.2.1)
Ay =Pty =1)=P(yes | Q) P(Q) +P(ves | Qy) P(Q,)

= 71g Pyt 7y (1-P,). (2.2.2)
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Denote the number of ‘yes’ responses in the first sample as g, and in the

N M9
second sample as LY where 0= iil Iq and N, = iil Lo

. | : 111 > M2
The sample proportion of ‘yes’ responses are A; (= =—) and A, (= 5=
' : 1

for each sample, and since nlj follows a binomial distribution with parameters nj

n n : . .
and A, 11 and —12 are unbiased estimates of A, and A , and from Eq.(2.2.1)
¥ n, 1 2

and Eq.(2.2.2)

1

[ (1-Pp) A, — (1=P;) A ] (2.2.3)

provided P1 # P2.

Therefore an estimate of Y is given by

. 1

T =
S
o PPy

[ (1-P,) A, — (1-P)) :\2]

) n n
=1 [ (1-P,) =L - (1-p,) 12 ] (2.2.4)
Pl—P2 1 2

The dénominator in Eq.(2.2.4) can become quite small by choosing P, too
close to P; with the result that the point estimate of g might be greater than 1in
the unrelated question model. Thus, a first general rule is that P2 should be
selected as far from P1 as possible without jeopardizing the likelihood of a
respondent’s cooperation. Obviously, when P2 = 0, or 1, this would not be a

randomization device at all.
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The estimate of Ty is

~

Since n1j follows a binomial distribution with parameters n i and A 7 for j=1, 2, g
and Ty are unbiased estimates of g and k7rY.

From Eq.(2.2.4) the variance of mg is

(1-P,) %A, (1-2,) . (1-P )0y (1-2y)

oy )

Var(ng) = (P,—P,) 2

0 (2.2.5)

. A=) . A
Since Var(Ai) =1 L and /\1 and /\2 are independent, then using Eq.(2.2.5),

n.
1

~

an unbiased estimate of Var(7rs) is

~

2 3 3 2 3
(-By)? A=) (0=P)? dy(i-hy)
(Pl"P2)2 Ill -1 n2 -1 b

S 1
Var(7rs) =

provided P1 $ P2. |

Since A, = g P, + 7y, (1 - Pi)’ if 7y is close enough to zero, the variance
of the estimate, g is smaller, but if Ty = 0, this technique reduces to the direct
survey. Therefore the respondent reporting sensitive information is not protected

by the method whenever Ty = 0.
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A

| To reduce the variance, V:;r(vrs), it is desirable to choose P1 as far away
from P2 as possible and to keep the respondent’s confidence, P1 and P2 should be
as large as can be efficiently afforded, and Ty should be large.
But in the case when the true probability of a ’yes’ answer to the unrelated
non—sensitive question in the population is known in advance, one sample is
enough to estimate ;rs. When the distribution of Ty is known in advance, from

Eq.(2.2.1), an estimate of Tg is

~

- Ay = (1=Py) my

7r =
S
Py
n
11
_ . (2.2.6)
Py

-

Since niy follows a binomial distribution with parameters ny and )‘1’ g is an
unbiased estimate of g

From Eq.(2.2.6) the variance of g is

A (1-2))

Var(ﬂ's) = —-—-—-2—
n; Py

Since 0, follows a binomial distribution with parameters n, and )‘1 and

2 2
E(n].].) = 111 )\1 and E(n].]_ ) = 111 )\1 + Ill (nl——]_) )\1, therefore

nl—l ny
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Hence, an unbiased estimate of Var(7rs) is given by
(2.2.7)

Greenberg, Abul-Ela, Simmon, and Horvitz (1969) showed that the
unrelated randomized response model with known Ty is better than that with
unknown Ty é,nd both the unrelated randomized response model with known Ty
and with unknown Ty are better than Warner’s model despite the fact that
Warner’s model is always asking abouf the sensitive group, S either the

complementary group of S.

2.3 Bivariate Binomial Data Analysis Collected by Warner’s

Randomized Response Technique

Using randomized response models, we can estimate the proportion or
mean of a population, but we cannot observe individual level data. Therefore
direct computation of correlation procedures are not possible.

Consider two sensitive variables S1 and 52 with dichotomized qualitative
groups (85, Sl) and (S, 5,), along with a sample of size n drawn from a bivariate
binomial distribution with correlation p. Using the randomized response
technique, we may estimate the marginal parameters T and T for a 2 x 2.
contingency table, but we may not observe cell proportions, o9 D> Dygr Dype

Denoting "yes" response = "1" and "no" response = "0" for each group, we get



Therefore we have analytic limits to analyse the data collected by

)
yes no
yes 111 T10 M+
51
10 o1 o0 Mo+
Il+1 11+0
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randomized response models, and as we showed in the introduction, the estimated

variance will be inflated by the random device bias.
and correlation using the observed response data, we may have reduced (inflated)

estimates and tests of hypothesis will also give misleading results as we can see in

If we estimate the covariance

table 1. The estimated correlation between the two reported data obtained by the

unrelated randomized response technique is shown table 1.

The estimated correlation between the two reported variables decrease as

the selection probabilities (P1 and P3) for the sensitive variables decrease.

TABLE 1
REDUCED CORRELATIONS

P, P3 Est i mated Correlation Estimated True
Unrelated model Correlation

04 04 0.17772 0.5954

06 04 0.24777 0.6007

0.7 0.7 0.31478 0.5996

0.8 0.8 0.38185 0.6000

09 09 0.48053 0.5991

The -true correlation is 0.6
n = 100
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Ourr concerns are how do we correct these correlations, covariances, and test
statistics.

Kraemer (1980) considered estimation of the correlation coefficient between
two sensitive groups each surveyed by Warner’s technique and the unrelated
randomized response models when the population parameters of the nonsensitive

variables are known.

2.3.1 Correlation Analysis

Here we propose a correlation analysis for Warner’s model.
We will show that the correlation between two unknown sensitive variables is the
same as that of the two observed response variables for the Warner’s model.

ie,p =p for Warner’s model.
'7818y Ty’

As we showed in Warner’s model, the response variables can be expressed
by
r; = (2P, —1)S; + (1-P,)
Iy = (2Py —1)S, + (1 - P,).
The means and variances can be expressed as
Er,=(2P;—1)ES; +(1-P)) (2.3.1)

Ery= (2P, —1)ESy + (1-P,) (2.3.2)

V(r,) = (2P, —1)* V(S)) (2.3.3)



V(r,) = (2P, — 1) V(S,)

E 1 1y= (2P, = 1)(2P, —1) E§,S, + (2P

,~1D(=PyES,;
+(1-P)(2P, —1)ES, + (1-P;)(1-P,)

= (2P} ~1)(2P, ~ 1) E§;S, + K,

where K = (2P1 -1)(1- P2) E S1 + (1 —Pl)(2P2 -1)E S2 +(1-P

Now the formula for the correlation between S1 and S2 is

_ B 9199

172 ESS—ESlES2

Substituting Eq.(2.3.3) and Eq.(2.3.5) into Eq.(2.3.6), then we have

Ja-P

21

(2.3.4)

(2.3.5)

2)

(2.3.6)

G & il
5159 |

Substituting for E S1 and E S2 yields

K = (1-Py)E r, — (1-P,)(1-P;) + (1—;P1)E Iy.

Therefore
E Ty = Er1 E I,

pg g = =p
5159 o o Ty’

E 1j19-E 1;E 19+(1-P5)E 1;+(1-P|)E ro—(1-P;)(1-Py)-K

(2.3.7)
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and hence Cov(S, S,) = p Oq Og -
172 5159 "85,

The bivariate binomial density function of (5;, S,) is

S 1 l—s1 S 9 l—s2

(8-m ) (so—m 1)
_ _ _ 4/ 1897
7rSls2 =mi(-my) Tr0-Tyy)

[1+c

1
_ »
M=)y ()

where ¢ = p / T4 (1—7r1+) T4 (1——7r+1).
From the density,

M =M+ T e

To = T4 (1—7r+1) —c
Moy =(-m )Ty e
s

00 = (1—7r1+)(1—7r+1) + c.

This can be displayed in a 2 x 2 table as follow:

S
1 2
1 T T T+
51
0 To1 Too To+
7r+1 7r+0
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and observed cells are given by

S
1 2
1 n n n
11 10 1+
Sl
0 =} 90 Mo+
Il+1 Il+0
The likelihood function is
n n n n
Locq 1110 01 00

11 M0 To1 oo -

The log likelihood function is
log L ny, lqg T1 + 14 log Ty0 T Ro1 108 7y + 0y log 00"

By taking derivatives of log L with respect to T

140 Ty and c, and then equating
to 0 we obtain :
olog L_"11"+1 _ To1 "+1
0 T Tt C 7r+1(1—7r1+) -
Lol M) mee(myy) _ 0

(1—7r+1) Ty~ © (1——7r+1) ( 1—7r1+)+c
§log L_"11 M1+ o1 (mmy)
0 T4 T Tyt C 7r+1(1—7r1+) —c

Bio M4 _ Dgpll-m,) —0

(1—7r+1) T C (1—7r+1)(1—7r1+)+c
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dlog L_ ™M1 701
dc Tyt C 7r+1(1—7r1+) —c
n | n
N 10 B 00 —

(1—7r+1) T ¢ (1-—7r+1)(1—7r1+)+c
Solving these equations we may find the maximum likelihood estimators (m.l.e)

S P D41+ P11 oo T P1o Box
7r1+— n 7r+1_ n 0 ¢F n2

and since ¢ =py Ty (1-my ) 7r+1(1—7r+1)

~ Dy Do — N 0
p= 1100 1001 , and is the m.l.e of p by the invariance

i+ o+ P41 Byo

property of m.l.e.

To see the properties of thebestimated correlation, we introduce the following
Theorems.

Theorem (Muirhead 1982) Multivariate central limit theorem

1 r2,‘ - - - be indeperidently and identically
distributed vectors with E (ri) = p= (g, u2)’ and covariance matrices

Let the 2—component vectors r

0'2 g
1 12
Cov(ryy, 1;9) =X = .
%12 %
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Let 1, = I, then y'n (1, —p)—> Ny(0,3) as n —> w.

Bl=
Il B
[

1

Proof : See Muirhead (1982).

o
Now since Plo = ;—2172, Y can be rewritten as follows
172 :

2
1 P12 91 92

N
I

, (2.3.8)
P12 91 % 9

Theorem (Anderson 1984)

Let (rlt’ r2t)7, t=1,2,..,n, beiid N2(u , ¥), where ¥ is the same as

Eq.(2.3.8), a? >0, |p| <1. Let ybe the sample correlation coefficient. Then

ST (7=p)——> N[0, (1 - %)% as 0 —> o.
2.2
(1—0%)

whereas T—>N}p,—|-
Proof : See Anderson pp 122.

Hence

2,2
- (1-77)
n,, n,, — n.,, I

where 7= 1L 00 10 01

Ill+ n0+ Il+1 Il+0
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2.3.2 Cell Proportion Estimation

Here we propose a method to estimate the cell proportions, using the estimated

correlation ps152'

) ~8 ~ 1-8; -8 1-s ~ (s —;r- )(s -;r )
1 1°°2 2 1 %1.7\%2°7,
Ty =T 1-m) T (1—-7r‘j) [1+¢c J

I

ﬂ-i.(l-"ri.)ﬂ-.j(l—ﬂ-.j)

~ A A

wherec=py m (1 - =) 5 (1 - 7r_j), 8; =0,1 8, =0,1.

2.3.3 Tests of Hypothesis

Using the relationship between the correlation and chi—square statistics, we can
perform a test of hypothesis.
In a 2 x 2 contingency table, by coding each level "0" and "1", we may

derive a relationship between correlation and chi—square test statistics as

1 1 (m, -7, 7,2

=3 3 - Tiy T4
1=0 j=0 L 7r+j
(T Tqr — Ty T 0)

_ 0 M1 T To1 ™10 2

=7-
To+ T4+ T+o T41

2
Thus in a 2 x 2 tables, 72 is simply X i.e., the Pearson chi—square test statistic

T )
for independence of rows and columns divided by the sample size (Bishop,
Fienberg, and Holland, 1975). But this relationship is not true in general forr x c

contingency table (r > 2,¢ > 2).
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The null hypothesis is H =0

Pp
The alternative is H A psls2 $0
To test this, we just need the value of n 'yg S with critical values of X2,
: 172
ie.,ifn '72 > xi we may say that there is evidence against H0 at significance

level a.

2.3.4 Sample Size Estimation

Now consider the sample size estimation procedure.

i. Some margin of error d in the estimated proportion g of units in the
population has been agreed on, and there is a small risk a that we are willing to
incur that the actual error is larger than d. So how many elements are needed to
satisfied these conditions ?

We want
Prf|rg—ng|2d] =

We use simple random sampling, and since g is a maximum likelihood estimate,

g is approximately normally distributed,

mg(1~7g) . _P(1-P)
n 21
| n(2P-1)

WSNAN [ 7rS,

Hence the formula that connects n with the desired degree of precision is

To(1-7g)
_, sl1—Tg P(1—P)
152y 1 - n(2P—1)? ’

where z is the abscissa of the normal curve that cuts off an area of ‘2—1 in the upper

tail.
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Solving for n, we find

2
o y. P(1-P
—Lz [ 741 S)+—(—l(2P_1) )

At this point a difficulty appear that is common to all problems in the estimation
of sample size.  The above formula for n depends on the parameter of the
population that is to be sampled.

The parameter is the quantity g that we would like to measure.
Estimates of g for the purpose of estimating n may be obtained in a number of
ways (Warde, 1991).

We try to obtain an estimate of g which is as close to the real value of g
as possible, but which, it is not correct, willlobta,in a conservative value for n.
This concept is referred to as a conservative assumption in that it is made to
ensure that the specified tolerences are met or exceeded. In this situation, with no
prior knowledge of g, using thé value Tg = 0.5 will yield a conservative value for
n. If some information on Tg is known, the value of Tg closest to 0.5 in the range
of values of g that we believe to be reasonable a priori will yield a conservative
value for n.

ii. How many more elements are needed to get the same variance as the

direct survey ?

We know the variance of g for the direct survey is given by

mg(1-7g)
V(rg)g = 5
(ng)g = 5
and
Vi) = 8UTTS) P(L-P)
SR™ " mg np (2P-1)*
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In order to have the same variance as the direct survey, the sample size
(n d) should be increased. The number of additional sample units needed can be

found by reexpressing V(;rs)R and Var(7) & respectively, as

VG ng(1-7g ) (2P—1)°+P(1-P)

), =
SR ng(2P-1)%

and

) rg(1-7g) (2P—1)2.

Va,r(7rs)d =

2
nd(2P—1)

If we equate both variances and solve for I, then

P(1-P)
(2P-1)2V(x

np =1y )
S/d

The formula for n has been obtained, but n depends on the quantity V(7rS) d that
we would like to measure. Here we also use a conservative assumption that is

made to ensure that the specified tolerences are met or exceeded.

2.3.5 A New Randomized Response Technique for Bivariate Binomial Data

Now we propose a new data collection technique and hence the cell
proportions for a 2 x 2 contingency table can now be estimated.

Consider two sensitive variables S1 and 82 with dichotomized groups (S1
Sl) and (8, 32), which follow bivariate binomial distributions with correlation p.
By applying Warner’s technique, each interviewer is furnished with two spinners
(random devices). In each interview, the respondent is asked to spin spinner 1

unobserved by the interviewer, and pointer 1 gives a question from the first two
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statements. =~ Without reporting the answer to the interviewer he (she) spins
spinner 2, and pointer 2 gives a question from the second two statements. Then
the respondent reports a pair of answers: yes yes; yes no; no yes; ‘or NO Nno; OI a pair
of coded answer 11; 10; 01; or ‘00.

The bivariate binomial density function of (x,y) is given by Hamdan and
Martinson (1971) and Kocherlakota and Kocherlakota (1992) as
x 1-x

1—
I =P Py, a5 Y [1+d(x—p, )(—Py)/ (P19,P905)]

wherec=py P;d;Pyd9, X, y=0,1, q; = 1-p; and q5 = 1-p,.

An example of possible questions to be used are

Ql ; Have you ever had an abortion ?
Q'l ; Have you ever not had an abortion ?
Q, ; Have you ever smoked marijuana ?

7 Q, ; Have you never smoked marijuana ?

Let g be the population proportion of the respondent belong to group Sj
J
P f be the probability that spinner j points to S i (7=1, 2)

I, be the reported response value from the i—th respondent and
P[A1 A2|Q1Q2] be the conditional probability of response given questions
(Q; Q)

1 if response is yes’
A= v forj=1,2
J 0 if response is 'no’
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where Ql is the first question which is selected by the first device and Q2 is the
second question which is selected by the second device and a question is randomly
selected one at a time by the random device, hence P[Q1Q2] = P[QI]P[Q2],then
the probability of getting a response (11,1 0,0 1, or 0 0) is

AM1= P[ri =(11)]=P1 1'Q1 Qg] P(Ql)P(Q2) +P[1 OlQl Q2]P(Q1)P(Qz)
+ P[0 1T, Q,] P(@,)P(Q,) + P[0 0|7, Tyl P(T,)P(T)

= 1y PPy + m o Py (1-Py) + 75y (1-P )P, + myq (1-P)(1-P,)
Ao =Pl = (10)] = P0 1]Q; Qul P(Q))P(Q,) + P[0 0]Q; Qy) P(Q))P(Qy)
+ P[11]Q; Q] P(Q;)P(Qy) + P[10]Q; Tyl P(Q))P(Qy)
= 7y (1=P1)Py + myy P (1-Py) + my1 (1-P;)Pg + 7y (1=P;)(1-Py)
Mgy = Pl = (01)] = P[10]Q; Qo] P(Q))P(Qy) + P[1 1]Q; Q) P(Q))P(Qy)
+ P[0 0|T; Q) P(Q;)P(Qy) + P[0 11T Tyl P(TQ)P(Qy)
= 1o PPy + 7y P (1-Py) + 75 (1=P )P, + my; (1-P)(1-Py)
Ao = Plr; = (00) 1= P[0 0]Q; Qq] P(Q)P(Qy) + P[0 11Q; Q] P(Q))P(Qy)

© +P[10]Q; Q) P(Qy)P(Qy) + P[1 1T, Tyl P(Q,)P(Q,)

= Tyo P1Py + my; P.(1-P,) + 7y (1-P )Py + 7y (1-P,)(1-P,).
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In matrix form we can express those probabilities as

EN r

Ayl (PP, P,(1-P,) (1-P))P, (1-P))(1-Py)] [ 7,
Mo| |0-PpR, (PP, PP,  P(1-P) ||,
Mol [P1(1-Py) PP, - (1-P)(1-P,)  (1-P))Py | | 7y
hg| |1-Pp-Py) (PP, P,(1-P,) PPy | | 7o)
In matrix notation tlﬁs becomes
A=PI
and an unbiased estimator is
A=PIL
The variance of II is given by
Var (1) = P1 var(A) (P
A=A A Aarer atoo
=3P gy MU Aghgr Mg | BT
Aot Hotro 2011 A0 “Aotree |
L =Ag0?11 o010 ~ootor  Aooll-Ago)]

—n ! [diagA—AA],
A
wherediag (A)=1| , o

To compare this model with the direct survey method, if we apply the usual
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direct survey method, the outcome of the n independent repetitions of that trial

follows the multinomial distribution with probability density function defined by

1 1 s 1]
f(xll, X100 Xo1> XOO) =n! I 1 2
i=0 j=0 xij!

For the vector of observed counts x = (xll, X100 X012 XOO),’ 0< X <n
1 1
fori,j=0,1and ¥ X X;; =1
i=0 j=0 M
. . d d d d
The direct survey estimates of 1 Mo o1 and oo 3¢

B
11~ Mo ~ 01

n

‘d _*11 4 %10 ;4 _*or d M~

™M M0~ M1~ 0~

These estimates are unbiased and the Covariance matrix is

4 d d d d d d d
(1) =TT MM ~F11%00
_d d d 1,4y _d d 4 d
5. -1 T10™11 100710/ TM0™01 T10™00
d=1
d d d d d,. d, d d
01711 “To1™0  To1(1~To1) ~T91700
_dd dd _dd d ) ,dy
00711 70010 ~To0™M1 Tool oo

Comparing the estimates under both models, randomized and direct, we
observed that :
1. The estimates of 7rij and W(iij are unbiased under both models.
2. The direct survey estimates are expected to be of higher precision(i.e. lower

variance) than the randomized response estimates. This is because the use of a



34

random device in interviewing introduces an additional source of variability to
sample variation. Also the variance of the direct multinomial estimators,
Var(;r‘iij), (i, j= 0, 1) as a function of n decreases faster than the variance of the
randomized multinomial estimators, Var(;rij) which is function of n and Pj'

Var( ;rij) can be minimized by choosing Pj = 1, but in that case the model is
no longer a randomized response model. = Therefore Pj are to be determined to
increase the cooperation of the respondents and at the same time minimize the
variances of the randomized response estimators. Since each cell of the 2 x 2

2

contingency table is known, by applying 7~ = % xz, we can estimate the

correlation between two sensitive variables. And to test H0 Py g = 0, and
12

H,:p # 0, we just need the value of n 72 with critical value of xz.
17785, 5154

2.3.6 Correlation Analysis for the Warner’s Model versus Direct Survey

If a researcher wants to estimate the correlation between two variables
where one variable is sensitive and another is nonsensitive, one possibility is to
collect data  on the sensitive variable using Warner’s model, and on the
nonsensitive variable data by a direct survey.

As we showed‘in Warner’s model, the response variable can be expressed as

r, = (2P —-1)S+ (1-P)
and the response variable for the nonsensitive variable (Y) using a direct survey
can be expressed as

Iy = Y.

Let

1 if the individual says ’yes’ for the Warner model
0 otherwise.
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1if the individual Says ’yes’ for the direct survey

Y= 0 otherwise.

The outcome of each trial can be displayed in a 2 x 2 table as follows:

yes no

yes [S =1 Y=1|S=0 Y=1Y=1

m|S=1Y=0[S=0Y=o0Y=0

The correlation between the two variables (S, Y) is

(2P-1) Cov(S,Y) Cov(S,Y)
Prr, = e —
B2y @p1)? v(s) V(Y) ¥ V(S) V(Y)

We observe that this result i_s the same as the Warner model versus Warner

model given in section 2.3.1.

2.4 Bivariate Binomial Data Analysis Collected by the Unrelated

Randomized Response Models

For the unrelated randomized response technique, like Warner’s model, we
cannot estimate cell proportions. To analyse the correlation between two
sensitive variables, Kraemer (1980), Fox and Tracy (1984), and Edgel,
Himmelfarb, and Cira (1986) assumed that two sensitive variables (S; and S,) are
independent of the two unrelated variables (Y, and Y2) and that the two

unrelated variables are also independent. These assumptions are not practical
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(these assumptions are too strong), because S, and Yj (i=1,2 j=1,2) can be
independent, but Y1 and Y2 may not be independent.

Gould, Shah, and Abernathy (1969) tried to use the unrelated randomized
response techniques with two trials per respondent to get the covariance, but their
model contains forty two parameters and not all of these parameters are
simultaneously estimable, therefore they failed to estimate the covariance between

the two sensitive variables.

2.4.1 Correlation Analysis

Here we propose a method to estimate the correlation between two sensitive
variables. To estimate the correlation between the sensitive variables, the

interviewer has to prepare two sets of questions such as.

Ql : Do you smoke pot at least once a week ?

Q, :Is the last digit of your student ID number odd ?

Ql : Have you ever had abortion ?

Q2 : Were you born in Oklahoma ?

(These types of questions were used by several authors)

Suppose we have a sample of size 2n drawn from a population. The first n
respondents are asked to answer "yes" or "no" to one of two questions from the
first set. The probability of selecting the sensitive question is predetermined as
Pl’ and the question to be answered will be selected by a random device. After
completing the first question, the respondents are asked to answer one of two
questions from the second set of questions.  The probability of selecting the

sensitive question is predetermined as P2, and by a random device a question will

be selected.
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For the next n respondents, the interviewer will change the probability of
selecting the sensitive questions for both question sets. Thus, the probability of
the first sensitive variable changes from P, to P3 and the probability of the second
sensitive variable changes from P2 to P " With these probabilities, the next n
respondents will anwer the quéstions like the first n respondents.

Then the response equations are :

I'1=P1 Sl+(1—P1)Y1
1.'2=P2 Sz+(1—P2)Y2

Since the sensitive variables are independent of the two unrelated variables, the

correlation equations can be written as

pI'I'

=P.P,ps « +(1=P)(1—P,)p
159 1" 2 3132 1 2 Y1Y2

(2.4.1)
prr =PaPypg o +(1=Pa)(1-Py)p
rgr, 3 4788, 3 vy,

where P. (i=1,2,3,4) are predetermined, and p and p can be estimated
i ITq TaTy

from the observed data.

Solving Eq(2.4.1) for pg g » We have
172

Pritg ~ [(1 - Pl)(l - P2) pT3I4] [(1 n P3)(1 - P4)]—1

_ 11Ty
P51, PPy —[(1— P)(1 — Py) PgPy][(1- Py)(1- P4)]‘1
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Therefore we may estimate fg g by
172

- N -1
S pepy [0 P = By a0 R0 - 7
S.S, = . T
172 PP, —[(1 - Pl)(l - P2) P3P4] [(1 - P3)(1 - P4)]
where p and pr p are provided by the observed data, and the selection
T1%o 34

probabilities P1 P P3, and P 4 are known, and hence we can estimate the
correlation between the two sensitive variables.

To illustrate this procedure, we have simulated randomized response data
for estimating the correlation between the two senmsitive variables.  The true
correlation between the two sensitive variables S1 and S2 was set at 0.6.  The
true correlation between the two unrelated variables Y1 and Y2 was set at 0.2, 0.3,
0.4, 0.5 and 0.6 for fixed correlation between the sensitive variables. = Means of

each of the variables were set at ,uslz 0.2, p,Yl = 0.2, ”82 = 0.3, and p,Y2= 0.3.

In the simulation, the probabilities of selecting the sensitive question were set to
be various values. The results of the simulations are presented in table 2 and
table 3 for n = 100 and n = 200 respectively. Each table gives the estimated
correlations and standard deviations of the sampling distribution of the correlation
coefficient obtained by using the unrelated queétion model under the assumptions
stated previously. The standard deviations decrease as ]P1 - Psl increases.

The estimated correlation g does not depend on the correlation between
172

unrelated variables for each set of (P, P,, Py, P nk
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ESTIMATED CORRELATION FOR THE UNRELATED
RANDOMIZED RESPONSE MODEL

' Py v
P, P, 119
0.22 0.3 0.4 0.5 0.6
0.3 0.4 0.64216 0.62861 0.63454 0.62885 0.64619
(1.21164) (1.22923) (1.22557) (1.23004) (1.21609)
0.3 0.6 0.60406 0.59795 0.59967 0.60064 0.60062
(0.32265) (0.32537) (0.32591) (0.32467) (0.32148)
0.3 0.7 0.60163 0.59346 0.59420 0.59436 0.59453
(0.22093) (0.22292) (0.22315) (0.22254) (0.22173)
0.3 0.8 0.59836 0.59379 0.59369 0.59381 0.59412
(0.16567) (0.16165) (0.16295) (0.16287) (0.16361)
0.4 0.6 0.60206 0.59554 0.59725 0.59651 0.59639
(0.37488) (0.37324) (0.37469) (0.37422) (0.37281)
0.4 0.7 0.60078 0.59236 0.593038 0.59255 0.59269
(0.23157) (0.23345) (0.23353) (0.23298) (0.23273)
0.4 0.8 0.59804 0.59344 0.59330 0.59321 0.59352
(0.16754) (0.16329) (0.16458) (0.16451) (0.16544)
0.6 0.7 0.61012 - 0.60409 0.60582 0.60025 0.59901
(0.37164) (0.37912) (0.37793) (0.37439) (0.37393)
0.6 0.8 0.59984 0.59630 0.59631 0.59509 0.59510
(0.18359) (0.17904) (0.18032) (0.17975) (0.18096)
0.7 0.8 0.60127 0.59882 0.59849 0.59563 0.59452
(0.23289) (0.22893) (0.22993) (0.22820) (0.22960)

Inside values of ( ) are standard deviations.
Simulation includes 1000 trials.
Pg g = 0.6, n = 100.

172
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TABLE 3

ESTIMATED CORRELATION FOR THE UNRELATED

RANDOMIZED RESPONSE MODEL

Py v
P, P, 1 2
0.22 0.3 0.4 0.5 0.6
0.4 0.4 0.61612 0.60314 0.60058 0.60042 0.61474
(0.83676) (0.85359) (0.85901) {0.85139) (0.84824)
0.6 0.6 0659779 0.59062 0.59204 0.59265 0.59319
(0.22317) (0.22043) (0.22062) (0.22263) (0.22387)
0.7 0.7 0.60015 0.59615 0.59669 0.59618 0.59661
(0.01545) (0.15507) (0.15542) (0.15339) (0.15338)
0.8 0.8 0.59935 0.59743 0.59692 0.59634 0.59681
(0.12118) (0.11063) (0.11145) (0.11006) (0.11015)
0.6 0.6 0.59577 0.58614 0.58768 0.58760 0.58791
(0.25985) (0.25549) (0.25577) (0.25998) (0.26149)
0.7 0.7 0.59954 0.59482 0.59536 0.59454 0.59488
(0.16211) (0.16305) (0.16334) (0.16172) {0.16208)
0.8 0.8 0.59914 0.59702 0.59649 0.59582 0.59625
(0.11331) (0.11197) (0.11275)_(0.11146) (0.11166)
0.7 0.7 0.60591 0.60090 0.60251 0.59894 0.59900
(0.26218) (0.26366) (0.26445) (0.26050) (0.26259)
0.8 0.8 0.60057 0.59872 0.59830 0.59700 0.59739
(0.12483) (0.12335) (0.12402) (0.12220) (0.12274)
0.8 0.8 0.60015 0.59923 0.59868 0.59650 0.59640
(0.16035) (0.16105) (0.16094) (0.15794) (0.15837)

Inside values of { ) are standard deviations.
Simulation includes 1000 trials.

p
Sls2

= 0.6,

n = 200.
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. 2.4.2 Test of Hypothesis

Here we propose a method to perform a test of hypothesis. For 2 x 2 tables
(not I x J tables in general) 72 = x2/2n.. Therefore we may conduct a test of

independence directly from the estimate of p with critical value of X2 .

2.4.3 Sample Size Estimation

Here we propose sample size estimation.

i. Some margin of error d in the estimated proportion 7 of units in the
population has been agreed on, and there is a small risk « that we are willing to
incur that the actual error is larger than d. So how many elements are needed to
satisfied these conditions ?

We want

Pr{| rg—1g | 2d] = e |

We use simple random sampling, and since ;rs is a maximum likelihood estimate,

A

g is approximately normally distributed (for the case where Ty is known),

;r~AN[7r,Ml—_)‘l],
S S nP2

where A = 7g P + 1y (1 —P).

Hence the formula that connects n with the desired degree of precision is

| A=

d =
z0‘/2‘/ nP ’

where z is the abscissa of the normal curve that cuts off an area of -g— in the upper

tail.
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Solving for n, we find

2
a2 ['/\11_1\) 1.

n=
a2 = p?

For practical use, an estimate ) of ) is substituted in the above formula. But A
depends on the parameter g of the population that is to be sampled. Hence we
may use a conservative assumption to ensure that the specified tolerences are met

or exceeded.

ii. How many more elements are needed to get the same variance as the

direct survey. We know the variance of g for the direct survey is given by

. To(1-mg)
S S
V("rS)d - ng '
and
- A{1=A
V(rg)g = _(_572_
n

In order to have the same variance as for the direct survey, the sample size
(n4) must be increased. ~The number of extra sample units can be found by

equating both variances and solving for np, then

N [l N 7rs(1—P) N 7rY(1—P) [;—WY(].—P) ]_27rs7rYp(1__P)

1.
P P(l-mg) Pirg(1 — mg)

The formula for n depends on the population parameters g and Ty which are to

be estimated.
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Hence we may use a conservative assumption in that it is made to ensure

that the specified tolerences are met or exceeded.

2.4.5 Unrelated Randomized Response Technique versus Direct

Survey technique

The purpose of the present model is to estimate the correlation between two
variables; one variable is sensitive (S) and the other variable is nonsensitive (Y).

To estimate the proportion of the sensitive variable we may use the
unrelated randomized response model with an alternative nonsensitive variable
(Yl) which is unrelated to the sensitive variable (S) but can be related to the
nonsensitive variable (Y). Since Y is a nonsensitive variable, we may use the
usual direct survey methodology.

Suppose we have a sample of size 2n drawn from a population. In this
particular model, two randomization devices need to be used. The first one is
used for the first n respondents, and the second one is used for the next n
respondents.

Let the ra,ndomiza,tion‘ devices be the two wheels. One side of wheel
designates sensitive question S and the' other side designates nonsensitive unrelated
question, Yl‘ The selection probability of the sensitive question S is
predetermined as P1 for the first wheel and as P2 for the second wheel. P1 should
not be the same as P2_

An example of possible questions to be used are:

S : Have you ever smoked marijuana ?

Y1: Have you watched any sports game on TV in the past week ?
and let the question for the usual direct survey methodology be:

Y : Have you had a beer in the past week ?
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The first n respondents are asked to answer ’yes’ or ’'no’ to one of two
Yy

questions by using the first wheel and also answer the direct question, Y, on a »

nonsensitive topic. The next n respondents will answer the question like the first

n respondents but using the second wheel.

For the first n respondents

A =P g+ (1 —P1)7rY1

/\2 = Ty
For the second n respondents
4 = 7('Y.

From Eq(2.4.1) and Eq(2.4.3)

(L -Rh - (- Py
S (1 ~P,)P,-(1 — P,)P,’

Therefore an estimate of g is

SR s Sl el DL
g =
(1 - Py)P,-(1 — P,)P,

n n
1 2
_ A -P) APy &

(1 =P, )P,-(1 — PP,

where n, is the number of ’yes’ responses from the first n respondents, and

n, is the number of ’yes’ responses from the second n respondents.

provided P1 # P2.

Then the interviewer will observe ;

(2.4.1)

(2.4.2)

(2.4.3)

(2.4.4)

(2.4.5)



Since n, and n, follow binomial distributions with parameters n and )‘i’

i=1,2, g is an unbiased estimate of Tg-

From Eq(2.4.5), the variance of ;rs is

(1 = Py)? Var(A)) + (1 = P)? Var()y)]
(P, — P,)°

Var(rg) = =
1

where Var(il) =2 Var(n,) = n! A1 =2)
Var(i\ ) = n 2 Var(n,) = nL A (1-2X,)
2 2 3 3

Hence Var(;rs) is given by

(1= P)?A (1 = A)) + (1= P51 = Ap)]
n (P, — P,)* '

Var(rg) =
1

Since n, follow binomial distributions with parameters n and )‘i for i=1,2

an unbiased estimate of Var(7g) is given by

e M =P A =R + (1= PP A1~ A
Var(rg) = 5
(n-1)(P; — P,)

and from Eq(2.4.1) and Eq(2.4.3)

1 P

- .
Y _ P

2 1

45
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Since A, and A, are unbiased, an unbiased estimate of Ty 1S given by

Y. = v
1 P2—P1
n n
1 2
[Py = =Py 3
P2_P1

and the variance of Ty 15 give by
1

[P2 A1 =) + P2yl — Ay
n(P, — P;)

Hence an unbiased estimate of Var(y, ) is given by
1

~ ~ ~

o PEA =) + PR - )
Var(ry, ) = 5 -
1 (n"l)(Pz - Pl)

However, we also have an estimate of Ty by direct observation, and hence we have
two estimates of Ty each of them is unbiased. To get the best linear unbiased

estimate, let

~

1 )
Ty be the first estimate of Ty

-

~

2 )
Ty be the second estimate of Ty

2 : "1
o] be the variance of Ty
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2 . "2
75 be the variance of Ty
019 be the covariance between 7r§1{ and 7r2.

Ty = £ 7r31{ + (1=¢) w% is a linear unbiased for my for any valug of &,

where 0 < £ < 1.

The variance of ;rY is given by
Var(my,) = € Var(13) + (1 — €)% Var(r2) + 2 £ (1 — €) Cov(r, 72).  (2.4.6)
Y/ Y Y Y Y o

To minimize this variance, we take the first derivative with respect to £, and set
the resulting equation equal to 0.
That is
0 Var( m, )
9¢

—20.5)—2 2 +20,.,=0.

_ 2
= (2 01+2 9 19

02
2
Soving for &, we get §0 which is given by

0'2 - g
9 12
= o3 —

o) + Oy — 40799

(2.4.7)

Therefore Ty is the best linear unbiased estimate whenever we use £ = 50.

Substituting Eq.(2.4.7) into Eq.(2.4.6), Var(my,) is given by

02 02 02
. 1 2 712

o] + 0y — 2012

To estimate the correlation between two variables (S and Y),
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we may rewrite Eq.(2.4.1) and Eq.(2.4.4) B

L

1‘2=Y

=P, S+ (1-P)Y,

1y =Py S+ (1-Py) Y,

I, = Y.'

Since S and Y1 are independent, the correlation equations can be written as

p. . =P ipoy+(1-P,)p
I T, 17SY 1 Y1Y

pr + =Py poy + (1=Py) py v
Ity 27SY 2 YIY

From these two equations we obtain

(0= Po, ;- (1 - Pl)pr3r4}

P, - P

Pgy =

1 2

Hence from the observed data we may estimate [ and [ and the selection
172 34

probabilities P1 and P2 are known hence we may estimate the correlation and so

obtain

(1= P, , = (1=Ppay ]
- { 27114 1 rary
Py = :

P, - Py

Since ;’r c and ;’r . are m.le, ;JSY is also m.l.e..

1°2 34
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To illustrate this procedure, we have simulated randomized response data
for estimating the correlation between the two variables. Thé true correlation
between the sensitive variable S and the non—sensitive variable Y was set at 0.6.
The true correlation between the unrelated variable Y1 and the non—sensitive
variable which is conducted by direct survey was set at 0.35. In simulation, the
prdbabilities of selecting the senmsitive question were set to be varioﬁs values.

Means of each of the variables were set at kg = 0.2, by = 0.3, and by = 0.3.
' 1

The results of the éimulations are presented in table 4. Table 4 gives the
estimated correlations and standard deviaﬁons (third column for n = 100, fourth
column for n = 200)‘ and the effective sample sizes. To minimize the variance of
pgy» for fixed P; (or P,), we should choose Py =1 (or P; = 1), but in that case,
this is no longer randomized response model.  Therefore, P, (or P,) have to be
choosen as far from P, (or P2) as possible. As we can see in table 4,

as |P; — P, | increases the standard deviation decreases.



TABLE 4
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ESTIMATED CORRELATION FOR THE UNRELATED RANDOMIZED

MODEL VERSUS DIRECT SURVEY

Ps s Ps._s Effective

Pl P2 172 172 Sample
n=100 n=200 Size

0.2 0.3 0.61285 0.61260 50
(0.54785) (0.37662)

0.2 0.4 0.61628 0.61849 60
(0.26637) (0.18950)

0.2 0.6 0.60490 0.60544 80
(0.13498) (0.10093)

0.2 0.7 0.60386 0.60322 20
(0.11986) (0.08428)

0.2 0.8 0.60424 0.60310 100
(0.10299) (0.07360)

0.3 0.4 0.60702 0.60492 70
(0.49167) (0.35092)

0.3 0.6 0.60850 0.60964 90
(0.16269) (0.11073)

0.3 0.7 0.59858 0.60707 100
(0.12600) (0.08882)

0.3 0.8 0.60578 0.60141 110
(0.10472) (0.07591)

0.4 0.6 0.60269 0.60155 100
(0.20378) (0.14389)

0.4 0.7 0.60091 0.60385 110
(0.13875) (0.09875)

0.4 0.8 0.60143 0.60082 120
(0.11183) (0.07695)

0.6 0.7 0.60020 0.60046 130
(0.24899) (0.17894)

0.6 0.8 0.59811 0.59811 140
(0.13076) (0.09026)

Inside values of (

) are standard deviations.

Simulation includes 1000 trials.



CHAPTER III
RANDOMIZED RESPONSE TECHNIQUE FOR MULTIPTL ATTRIBUTES
3.1 Additive Randomized Response'Techm'que.

An additive randomized response technique was proposed by Kim and
Flueck (1978). The additive randomized response technique will be explained
briefly. »

Let C_j be the true category for the j—th respondent, where the Cj have T

mutually exclusive and exhaustive categories with population proportions T T

T
Tq,-..-, T, Tespectively, and ¥ w, = 1. Let Y. (1, 2, ..., T) be a randomly
3 T =1 t ]

selected augmentation value for the j~th respondent, with selection probability

T
P(Yj =t)=P, t=1,2,..,T,and ¥ P, =1. The selection probability (Pt) of
! t=1

the augmentation value is preassigned and the distribution of augmentation
variable (Y) is known. Each respondent is asked to select his own category but to
maintain confidentiality, they are instructed to add the augmented value selected
to their own v»ca.tegory number. Then the th respondentv’s added response whose

true group is Cj’ is

Ci+Y;,j=1,2...0C=12 ..Tand Y;=1,2,..,T.

To provide further confidentiality to the respondent, the interviewer asks

the respondent to transform the added value and report the value rj.

C.+Y. fC.+Y.<T
it He+ 3=
Ir. =
J _ )
Ci+¥,-T if i+ Y > T.

51
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For the case T = 3, the questions (Kim and Flueck, 1978) are :

Ql : I have never cheated

Q2 : I was prepared to cheat before the test but did not actually cheat
Q3 : I cheated.
Then, the probability AI that a respondent reports valuer (1, 2 or 3) is
A, =P(r=1) = P(C.=1,Y.=3) + P(C.=2, Y.=2) + P(C.=3, Y.=1
| = P=1) = P(C;=1, Y,=3) + P(C;=2, Y{=2) + P(C;=3, Y;=1)
=7r1P3+7r2P2+7r3P1,
Ao =P(r1=2) = P(C.=1,Y.=1 P(C.=2,Y.=3 P(C.=3, Y.=2
:7r1P1+7r2P3+7r3P27
Aq = P(r=3) = P(C.=1,Y.=2) + P(C.=2, Y.=1) + P(C.=3, Y.=3
3= P(r=3) = P(C;=1, Y;=2) + P(C;=2, Y;=1) + P(C;=3, Y;=3)
=7 Pg+ 7y Py + 713 Py | (3.1.1)
Since A3 = 1- /\1 - A2 and T = l—m — 7, these equations reduce to
A =P+ (P;3—P)m+ (Py—P)m,

Ag =Py + ( P, - P2)7r1+ (P3 - P2)7r2.
We may rewrite these equations in matrix form

AP _[PemFy PPy m
Ag =Py P1—=Py Pg—Py||m
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n
From the observed data, the sample proportion for r = 1 is n—l, the sample

: . M9 | tp g
proportion for r = 2 is T and the sample proportion for r=3is (1 — T ﬁ_)'

. -~ nl ~ n2 ~ ~ ~
SlnceAlz T A2= T )\3=1—)\1-—)\2,

- - —1 °*
we may estimate Il ,by Il =P 1p , provided P1 # P2 # P3

~ % A —P pP,-P, P,—-P N
where A = | © 1 , P = P3—P1 P2_P1 ,and II =
)\2—P2 1 2 73 2

1 }
2
The unbiased estimate of II is

. 1

| P I[(P3_P2)(3‘1"P1)+(P1—P2)(3‘2—P2) ]:

Ty = | 11) I[(Pz——Pl)(3\1—P1)+(P3—P1)(3\2—P2) ]

~ ~ A

Tg=1-—m —m,. (3.1.2)

The variances of 7, Ty, g and Cov (7r1, 7r2) are

o (Py Py A (IADHPPY)? Ag(1-Ag)-2(Ps—Po)(P—Py)A Ay

Var(7,) = )
2 2
- (PyPT A (192)) + (Pg=Py)” Ag(1-Ag)-2(Py—P,)(Py—P A ),
Var(7r2) = 5 )
n|P|

Var(rg) = Var(m) + Var(my) + 2 Cov(m; m,),



_ 2
w o (Pa=P)(P,~P A, (1=A,)+(P.—P,)%). A
Covln ) = 3 22 T Mty
1™ T 2
n|P|

(Pa=Po)(P4—P ) A Agt (P1=Po)(Po=P. )Ao(1-A,)

+
n|P|?

Since n, follows a binomial distribution with parameters n and )‘i fori=1, 2,

N N 111 111
A I I G
n-1 » n-1
25 (1=A
1o o Ay (1)
=—E(—-5)= -
n-1 n n n

“~  oa n n
1 2
A A — =
and E 1°2 =K n n
n—1 n—1
1
= En.n
n2(n~—-1) 172
_ )‘1 )‘2
n b]

since E ny n, = Cov(n;,n,) + En; En,.
The unbiased estimate of Var(7r1), Var(,), and Var(7r3) is given by

S

2 7,3 2 5 .
- (Pg —Py)” A(1=A;) + (P1=Py)” Ag(1-Ag)-2(P4—P,)(P;~P

~

Ay

54

: )
vl (1) [P’ -
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~ A

g - - ..
(Py=P))* A,(1-2)) + (Py=P )% A(1=2p)-2(Py=P )(P4—P )A )

Var (1,) = 172
2 (n-1)|P|2

Var (75) = Var(m ) + Var(m,) + 2 Cov(m; ),

where

- ~ 2,\ -

C(;v(7r To) =
12 (n-1)|P|?

, (P P)(PyP)) A gt (P=Po)(Pg—P )Ao(1-A,)
(n-1) |P|? |

3.2 Correlation Analysis for Another Version of

the Additive Model

Suppose we have two sensitive characters and each character has more than
two subcategories (S1 has r subcategories, S, has ¢ subcategories).  Thus the
population can be tabulated as anrTxc contingency table, and we need to estimate
the corresponding cell proportions Ty1r Mygs -weeer

where 0 < s < 1,

) 7r1-c7 .]

rc
(i=12,..,1,j=1,2,.....,c)and 88 7.. = 1.
| ij ™
Let S, have 3 subcategories and S, have 3 subcategories, then to estimate
1 2 &

each cell proportion, we may apply the additive randomized response technique by

reordering each cell number as follow:

Let (11)=1,(12)=2,(13)=3,(21)=4,(22)=5,(23) =6,
(31)=7,(32)=8,(33)=9.

The first number of each pair is the row subcategory and the second number is the

column subcategory, then our contingency table will be as follows:
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TABLE 5
REORDERED CONTINGENCY TABLE

2
1 2 3
1 1 T19 T3
1 2 3
Vit Vit T,
2 21 22 28
3 T31 T39 T33
7 8 9

As with the usual additive model, let Yj be the j—th respondent’s randomly
selected augmentation value (Yj =1, 2, ..., 9), and the selection probabilities P ;
(t=1,2,...,9) are known, then this system is the same as the Kim and Flueck’s
Additive randomized response model. Hence we may apply the additive model for
estimating the cell proportions of the above contingency table.

Then the j—th respondent’s added response whose true group is Cj is

C.+Y. C.=1,2, ... ,9
J+ ] ] ’

The possible added responses are 2, 3, ..., 16, 17, 18, the added responses 2 and 18
have only one possibility to be that added values, hence the respondents will
hesitate to release their information.

To provide further confidentiality to the respondent, the j—th respondent’s

added value Cj + Yj’is transformed by the respondent to the reported value,

Ci+ Y, i£C. + Y, <9

= it

J lCc.+Y.-9 ifC.+Y.>0.
it O+
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Then the possible reported values and their sources are :

Obs erved ,
number source ( Cj+ Yj )

1 1+9 2+8 3+7 4+6 5+5 6+4 7+3 842 9+1
2 1+1 249 3+8 4+7 5+6 6+5 7+4 8+3 9+2

3 | 142 241 3+9 4+8 5+7 646 7+5 8+4 9+3
4 | 143 2+2 3+1 4+9 548 647 7+6 8+5 9+4
5 | 144 243 3+2 4+1 5+9 648 7+7 8+6 9+5
6 | 1+5 2+4 3+3 4+2 5+1 6+9 7+8 8+7 9+6
7 | 146 245 3+4 4+3 5+2 6+1 7+9 8+8 9+7

8 147 2+6 3+5 444 5+3 6+2 7+1 8+9 9+8
9 1+8 2+7 346 4+5 5+4 6+3 7+2 8+1 9+9

Let f be the proportion of j—th category for that population (see table 5).
Let P j be the selection probability of the augmentation values.
From the above transformed response values the probability () that a
respondent reports valuer (r=1,2,3,4,...,9)is:
)\1 = 7r1P9 + 7r2P8 + 7r3P7 + 7r4P6 + 7r5P5 + 7r6P4 + 7r7P3 +7r8P2 + 7r9P1,
)\2 = 7r1P1 + 7r2P9 + 7r3P8 + 7r4P7 + 7r5P6 + 7r6P5 + 7r7P4 +7r8P3 + 7r9P2,

)\3 = 7r1P2 + 7r2P1 + 7r3P9 + 7r4P8 + 7r5P7 + 7r6P6 + 7r7P5 +7r8P4 + 7r9P3,

)\4 = 7r1P3 + 7r2P2 + 7r3P1 + 7r4P9 + 7r5P8 + 7r6P7 + 7r7P6 +7r8P5 + 7r9P4,



Ar=m,P P,+ 7,P P, + 7.P TP, +7,P

5= TPyt TPy + 1Py + my Py + 1Py + mePg + 1 Py +mPe + 7P,

A, =7, P, +

6= "5 T Tgiy T T3 6

/\7 = 7r1P6 + 7r2P5 + 7r3P4 + 7r4P3 + 7r5P2 + 7r6P1 + 7r7P9 +7r8P8 + 7r9P7,

’\8 = 7r1P7 + 7r2P6 + 7r3P5 + 7r4P4 + 7r5P3 + 7r6P2 + 7r7P1 +7r8P9 + 7r9P8,

/\9 = 7r1P8 + 7r2P7 + 7r3P6 + 7r4P5 + 7r5P4 + 7r6P3 + 7r7P2 +7r8P1 + 7r9P9.

P,+ P3 + 7r4P2 + 7r5P1 + 7 P9 + 7r7P8 +7r8P7 + 7r9P6, |
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8 8
Since A\, =1-—% ), and 7, =1— ¥ 7, these equations can be reduced as follows
9 1=1 1 9 1=1 1
A =P, + (Pg—P))m; + (Pg—P)my + (PP )ms + (PP ),

+ (P5—P1>)7r5 + (P4—P)mg + (Py—P )7, + (Py—P,)7g
Ay =Py + (Pl—P2)7r1 + (Pg—P2)7r2 + (PS—P2)7r3 + (P7—P2)7r4

+ (Pg—Py)mg + (Ps—Py)me + (P,—Pg)m, + (Pa—Py)7g
Ay =Pa+ (Py=Pa)m; + (P;—Pa)my + (Pg—Py)ms + (Pg—P )7,

+ (P7—P3)7r5 + (P6—P3)7r6 + (P5—P3)7r7 + (P4—P3)7r8
A =Py + (PP )m; + (Py—P )1, + (P,—P,) 1y + (Py—P )7,

+ (Pg—P)my + (Pp—P )75 + (Pc—P 4) 7y + (P5——P4)1r8
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Ay =Py + (P4—P5)7r1 + (P3—P5)7r2 + (P2——P5)7r3 + (Pl—P5)7r4

+@f%m+@f%m+@f%m+wf%m
Mg =P + (Ps=Po)my + (P,—Po)my + (Py—Py)my + (Py=P )T,

+ (Pl—P6)7r5 + (P9—P6)7r6 + (P8—P6)7r7 + (P7-—P6)'ir8
/\7 = P7 + (PG—P7)7r1 + (P5—P7)7r2 + (P4—P7)7r3 + (P3—P7)7r4

+ (Py=Py)m, + (P;—P,)7 + (Pg—P,)m, + (Pg—P.)mg
)‘8 = PS + (P7-—P8)7r1 + (P6_P8)7r2 + (P5——P8)7r3 + (P4——P8)7r4

+ (P3—P8)7r5 + (P2—P8)7r6 + (Pl--P8)7r7 + (Pg—P8)7r8.
In matrix notation,
A'=pm, | (3.2.1)
where P is

Pg—P; Pg—P; Py—P; PP,

Pl——P2 Pg-—P2 PB—P2 P7—P2

Py-Py P\-Pg Pg—Ps Pg—Py

—P4 P,—P Pl—P4 P ——P4 P

P,-P

P

3 9

© o0 I O o

P2—P5 Pl—P5

P3—P 6 P2—P

=~ W

-P

o - O ot s W

D Ot
o 3 O

-P

> W

P P.—P

5Tg P



*7
A is
AP 1> Ag~Pos A3=Pg, Ay=P s AgP; Ag—
and
=] Ty» Toy Mgy Ty, Ty, Mg, Ty Tg ]
From Eq.(3.2.1)
S R
I=P " A provided | P| #0,
and

Var(I) =P L var(A") P,

60

“y . —AgA A (1=24) —AjAg —AgAg
where Var( A ) == ) : ,
—AgM —Aghg oo /\8(1—/\8) —AgAg
‘ —AgAq —AgAg —Aghg  Ag(1-Ag) J
By decoding m; = Ty, Ty = Myg, oo , Ty = Tgq, We may estimate each cell

proportion. Using these estimated cell proportions, we may estimate the product

moment correlation between two sensitive variables.

For I x J contingency table

where a is a value assigned to the i—th row category, and bj is a value assigned to

—

the j~th column category, and a +=i£1 Ty

1
Ch andb =Y 71, .b

+ o T
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The estimator is

1J.
?Zwij (a; a+)(bJ b+)
7= . -
I[E'lr (a-;)2][27r (b B;Z]
J i+ \3 78y +j V25 T P4
: T, - T,
wherea, =% |~~~ |a,andb, =3 | =L | b
+ il ! + 1|7 J
++ +4

For the general case, S1 has r subcategories and S2 has ¢ subcategories.
The above procedure is extendable, by renumbering the r x ¢ contingency table,
11)=1,012)=2 ..,(1c)=1,(21) =i+1, .., (rc) = m.

The probability of getting each renumbered cell is :

Ay =P+ (P -P)m + (P —P)my+....+ (Po—=P)m 1

Ag=Py+ (P, —Po)m + (P —P)my+ ...+ (Py—Py)r

Ag=Pa+ (Py—Pom + (P, —Po)my+.... + (P~ Po)m

’\m—l = Pm-—l + (Pm——l - Pm—2)7r1 Tt (Pm - Pm—1)7rm——1'

*
We can express these equations in matrix notation, A = P Il , and by solving

these equations for I, we may estimate the product moment correlation between

two sensitive variables.
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3.3 Correlation Analysis for the Additive Model

- To estimate the correlation between two semsitive variables which have
more than two subcategories, we may apply the additive model.

Suppose each sensitive variable has 3 subcategories, then by applying the
additive model, the respondents are asked to select their own category for the first
sensitive variable and add their augmented value (numbér) to their own selected
category. By using this procedure for the second sensitive variable in the same
manner as with the first variable, the respondent reports a pair of answers
(transformed responses) to the interviewer.  To give further confidence to the
respondent, the reported value r is reduced modulo 3 if r is greater than 3, and the
interviewer records a pair of responses.

The transformed response table is given by

143=4 1+1=2 1+2=3
94+9=4 2+43=5 941=3
3+1=4 3+9=5 3+3=6
1 9 3
1+3=4 4 4 4 2 R
24+92=4 4 4 4 5 4 3
3+1=4 4 4 4 5 46
1+1=2 4 9 2 3
9+3=5 4 5 5
3+2=5 4 5 5
1+2=3 4 9
949=3 4
3+3=6 6 4 6 5
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From this table, the probabilities ()\J i=1,2,83;j=1,2,3) of getting

each cell response is

Ay, =P.P.r

11 = PgPgm+P4P, Mot P3P 1mgtP o a1 TP oo Mant PP Tog

P Pama;+P Py 32+P1P1 33

Ajg = PgP M +PgPsm gt PePom g +PoP Ty  +PoP oty tPoPyTyq

tP P 73 +P PamagtP Pomgg

Ayg = PgPom 1 +PP M g+ PaPam o+ PoPomy, +PoP oo +PoPgTog
+P Pomg;+P P Mg+ P Pamag
Agp = P1Pgmy + P Pom g+ Py Py a4+ PPamy  +PgPo Ty +P P Tog

P

tPgPama 1 tPgPomag+ PP mag

Agg = PP 7 +P Pam g+ P Pomy g+ PP Mo  +PgP gm0 +PgPoTyg

PP Mg +PoPgmagtPoPymag

Agz = PPomy+P P M g+ P 1 Pam gt P aPomy  +PgP Mg+ PaP ooy

+P2P27r31+P2P17r32+P2P37r33
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Ay, = PP 7r1+P2P

31 9P 3™ P7r3+PP7r+PP7r+P1P

99 tPoP M gtP Pamy +P Pomog 1793

+P3P37r31+P3P27r32+P3P17r33

Agg = PoP 7 +PoPam o+ PoPom o +P P 7y  +P P amyo+P  Pomys

+P3P17r31+P3P37r32+P3P27r33

Agg = PoPom 1 +PoP M o+ PoPam g+ P Pomy  +P Py Moo+ P Pomoq

P3P omg PP T3g+PgP ey

These equations can be written in matrix form,

r

p,pP, P, P, P,P. P.P

3Pg P3Py PgPy PoPg PoPy PPy PP P P,

11 p.P,P,P,P,P P

1P1] ™1
12| |P3P1 P3Pg P3Py PoPy PoPg PoPy P1P PPy PiPy | | Ty,

13| |F3Po P3Py P3Pg PPy PoPy PPy P 1Py PPy PiPg | mg

A

A

A P.P
/\21 p.P,P.P,P.P. PP,P,P, PP PP,P,P, PP
A

A

A

1737172511733 3 2 3 1T 2f3 2t 221 | | ™

= |P1P) P P3 P Py PgP) PaPy PoPy PoPy PP PoPy | | mo 1.

93 | |P1Pa PP P P3 P3Py PPy PPy PoPy PoPy PoPg | | 7og

31| |PoP3PoPgPoP) P1P3 P Py P Py PaPg PaPy PoPy | | 7gy

P

32| |PoPy PoP3 PoPo P1Py P1Py PPy PoPy PaPg PaPy | | 7a9

L A33)  |PgPy PoPy PoPg PPy Py Py Py Py PaPy PoPy PoPg ] { a3 )

In matrix notation

A=PI

=P 1A provided | P | #0,
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then EIl = P L E A, and Var(11) = P2 Var( A ) P2,

)‘i (1—)\i) A A
——,a,ndai.z——lll—'1 fori=1,23;

where Var( A ) = { %5 booy = i

n
j=1,2 3.

Using these estimated cell proportions, we may estimate the product moment

correlation between two sensitive variables. The formula is given by

e g

J - -

’Y=i — >
J Emy (a-2)% [Sa (b - 5]

~ ~

" T. ° T .
wherea, =% | & a,andb, =% o 1 N
T ol 1 T oilg J

++ ++

3.4 Scrambled Randomized Response Technique.

Here, instead of adding a random number which is generated by a random
device, the respondent is asked to multiply a random number by his true category
number. The product is given to the interviewer, who does not know the value of
the random number. This technique is called "the scrambled randomized response
techﬁique" (Eichhorn and Hayre, 1983). Eichhorn and Hayre showed how to
generate the values of multiplier variable. Pollock and Bek (1976) compared the
additive and the scrambled models. The scrambled randomized response model
will be explained briefly.

Let Cj be the true category number for the j—th respondent
(Cj =01,28,...,T-1,and j=1,2,3, ... ,n) and m, be the randomly selected
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multiplier number for the j—th respondent, (mj = 0,1, 2, .... ,T-1). The selection

T—1
probabilities P(mj =t) = P, (t =0,1, 2, ..., T-1, and X P, = 1) are
’ t=0

preassigned, and the distribution of the multiplier variable is known. T is the
number of. category. Each respondent is asked to select his own category but to
keep their response confidential, they then multiply the multiplier value by their
own category number. Then the j—th respondent’s scrambled response whose true

category is Cj is

C.*m., C.=0,,2,..,T-1
i ™ jT s
m;=0,1,2,..,T-1
j=1,2, ........ 5l
The possible scrambled responses are 0, 1, 2, ... , (T—1)*(T-1), hence some

responses like 1 or (T—1)*(T—1) have only one possibility to be that number. It is
therefore probable the respondents will hesitate to release their information.

To provide further confidence to the respondent, the interviewer asks the
respondent to transform the scrambled value and report the transformed value Ij’
where

¥ m, if C.*m. < T-1
C_] mJ 1CJ mJ_

J Cj * m, mod(T) if Cj * m; > T-1

where T is a prime number.
For the case T = 5, the transformed response for the scrambled model is

given in table 6.



67

TABLE 6
TRANSFORMED RESPONSE FOR T =5

m.
J
0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
C. 2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1
The reported value rj satisfies;
C.*m, if C.*m. < 4
po | i e A
I Cj*mj—rj=k(mod5) iij*mj>4

where k is a number less than 5. As we can See in table 6, the first category is not
protected by multiplying by a random number. If the respondent’s answer 0 is a
nonsensitive response, the fact that this answer is not protected by the
randomization technique will not be problem. |
Define #Cj : true population propoftion in category C j

Pm. : the probability of selecting a multiplier number mj.

J
Then, for T = 5 the probability ()‘r) that a respondent reports a value

rj(O,l, 2,3,0r4)is:
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An=P(r=0)=P(C.=0, m.=0)+P(C.=0, m.=1)+P(C.=0, m.=2)+P(C.=0,m.=
§=P(r=0)=P(C;=0, m =0)++P(C;=0, m;=1)+P(C;=0, m =2)-+P(C;=0m =3)+

P(Cj=0,mj=4)+P(Cj=1,mj=0)+P(Cj=2,mj=0)+P(Cj=3,mj=0)+P(Cj=4,mj=0)
=P, + (1-Py) 7,
A1=P(r=1)=P(Cj=1, mj=1)+P(Cj=2, mj=3)+P(Cj=3, mj=2)+P(Cj=4, mj=4)
=7r1P1—’f—7r2P3—+-7r3P2—’f—7r4P4
A2=P(r=2)=P(Cj=1, mj=2)+P(Cj=2, mj=1)+P(Cj=3, mj=4)+P(Cj=4, mj=3)
=7 Po+ 1y P + 13 Py + 1y Py
3

A =P(r=3)=P(Cj=1, mj=3)+P(Cj=2, mj=4)+P(Cj=3’ mj=1)+P(Cj=4, mj:2)

=7r1P3—’f—7r2P4+7r3P1v—+—7r4P2
=P(r=4)=P(C.=1 =4)+P(C.=2 =2)4+P(C.=3 =3)4+P(C.=4.m.=1

:7r1P4+ 7r2P2+7r3P3+7r4P1.

We may rewrite these equation in matrix form.

A=PII
where P is
(1 —P0 0 0 0 0 ]
0 P1 P3 P2 P4
P=| 0 P2 P1 P4 P3 ,
0 P3 P4 P1 P2
| 0 P4 P2 P3 P14
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A= (=P Ay A9 Ag. 4y),

and

n=(r,, 1> Top T3, 7r4).

Hence I = P~ A provided |P| # 0.
- —1 o 3 -1
El=P "EA=P " A, and

Va,r(f]) = P—l Var(]\) (P—l)’

(A1) Agr Ay Agrg Aghy )
A e L U L B T B ST

where Var(A) = = | =5}, =AgA1  A(1-Ag)  —Aghg ~AgAy )
g A Ay Ag(Idg)  Agh,

Mg AL Ay Ay (1) |

~ ~ N A ~
}

0= (my, 7, Ty, g, Ty),

~

A=(Ag—Pg Aps Ay, Agy Ay,

~

and ¢ =

Fﬂlﬁb

, and n, is the number of respondents who reported value t.

t

3.4.1 Correlation Analysis for the Multivariate version of the Scrambled

Randomized Response Model

Suppose we have two sensitive variables with r and c¢ subcategories
respectively. The population can be tabulated as an r x ¢ contingency table, and

we need to estimate the corresponding cell proportions, Togr Topr= T o1’

7!'10, 7T11, ......... ,7T1 c—1 ,7TI_1 0’ 7!'1__1 o ,77'1__1 c—1°
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where 0 < i< 1(i=0,1,2, ...,1-1. ¢=0,1, 2, ..., c—1) andfgl c§17rij = 1.

. i=0 ;=0
We will explain the r = 3, and ¢ = 3 case detail, since the r > 3, and ¢ > 3 case is
an extension of this procedure.

Let Cj be the true category number for the j—th respondent. To estimate
each cell proportion, we may apply the scrambled randomized response models by
reordering each cell number as follows: (0,0) =0, (0,1) =1, (0, 2) =2,
(1,0)=3,(1,1) =4, (1,2)=5,(2,0)=6, (2,1) =7, (2, 2) = 8, where the first
number of each pair is the row category and the second number is the column

category. Then the population will be tabulated as shown in Table T7:

TABLE 7
REORDERED POPULATION CATEGORIES

S9
0 1 2
0 7['0 ‘7T1 7['2
S1 1 g T4 Ty
2 6 ™1 8

Using the same steps as were explained earlier in this chapter, the j—th respondent
has a scrambled value Cj*mj' By scrambling, the respondent’s answer cannot be
protected for some scrambled values consequently, in order to give more
confidence, the respondent is asked to transform the scrambled value and report

the transformed value I



Then the transformed response for the scrambled model is given by table 8.

C.*m.
i ™

o ¢*my mod(s)

TRANSFORMED RESPONSE FOR T=9

if C.*m. <
i JmJ_S

HC.*m.>8
i

TABLE 8

™
0 0 1 2 3 4 7
0 0 0 0 0 0 0
1 0 1 2 3 6 7
2 0 2 1 6 3 )
3 0 3 6 2 1 4
Cj4 0 6 3 1 2 8
) 0 4 8 5 7 2
6 0 ) 8 4 6
7 0 7 5 4 8 3
8 0 8 4 7 ) 1
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Then the probability (’\r) that a respondent reports a value I (0,1,2,3,4,5,6, 7,

8)is :

= 7r1P0 + 7r2P0 + 7r3P0 + 7r4P0 + 7r5P0 + ﬂ'6P0 + 7r7P0 + 7r8P0

=P, + (1- Po)mg



/\1 =7 P + ToPy + 1r3P4 + 1F4P3 + 7r5P6 + 7T6P5 + '/r7P8 + 1r8P7
Ao =M Py + TPy + mPy + M Py + m Py + mPo + mPy + 7P
)\3 = '/rlP3 + 1r2P4 + 1r3P1 + 1r4P2 + 7r5P8 + 7r6P6 + 7r7P7 + 1r8P5
/\4 = '/rlP5 + 7r2P8 + 1r3P7 + 1r4P6 + 7r5P1 + 7r6P4 + 1r7P3 + '/rSP2
/\5 = 1r1P6 + 1r2P7 + 1r3P5 + 1r4P8 + 7r5P3 + 1r6P1 + 7r7P2 + 1r8P4
)‘6 = 1r1P4 + 7r2P3 + '/r3P2 + 1F4P1 + 7r5P5 + 1r6P7 + 7r7P6 + '/rSP8
/\7 =mP,+ 7r2P6 + 1r3P8 + TPy + 1r5P4 + 7r6P2 + 7r7P1 + 1r8P3
)‘8 = '/rlP8 + 7r2P5 + '/r3P6 + 1r4P7 + 7r5P2 + 7r6P3 + '/r7P4 + 1r8P1.

By rewriting these equations in matrix form, we get

A=PII,
where P is
0 B P B, B, B B, by P

1 "2 "4 -3 "6 "5 "8 77
0 P2 P1 P3 P4 P7 PS P5 P6
0 P3 Py Py Py PS Pe Py P5
0 P5 PS P7 P6 P1 P4 P3 P2
0 P6 P, P5 PS P3 P, Py P,
0 P4 P3 P2 P1 P5 P7 P6 P8
0 P7 P6 PS P5 P, Py Py P3
0 P8 P5 P6 P7 P2 P3 P4 P1 |
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?

0= (7r0, Tys Tgs Mgy Tgy Ty My Mo, 7r8),
and

K= (Ag=PgAps Ay Ags Mgy Ay Ay Any Ag):

Hence 1T = P* 1&,
Var(l) =P Var(A) (P7LY,

e M) e Ay g
where Var(A) = = . : :
-—)\7)\0 —)\7)\1 e )\7(1—)\7) —)\7)\8

Using these estimated cell proportions we can estimate the product moment
correlation between the two sensitive variables. The formula for the estimated

product moment correlation is given by

) . ) ;r .
where§+=$ 1+ ai,and'5+=$ -'il} b_]
AT Py

3.5 Multiproportional Randomized Response Technique

Suppose we have two sensitive variables with r and c subcategories

respectively. The population can be tabulated as an r x ¢ contingency table, and
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we need to estimate the corresponding cell proportions, T T Topr

VNSRS YRR SOPI SNSRI A where 0 < 7rij< 1i=1,2,..,r:
c

c=12..,c¢) andé E Ty = 1.

i=1 j=1
We will explain the r = 3, and ¢ = 3 case detail, since the r > 3, and ¢ > 3 case is
an extension of this procedure.

A simple random sample of size n is drawn with replacement from that
population. Random devices are used to obtain, from the respondents in the
sample, information concerning the category to which they belong on a probability
basis, and in such a way that the respondent’s status will not be revealed to the
interviewer. Suppose that the random device is the Hopkins’ Randomizing Device
( which was developed by Liu and Chow 1976 a, b). A number of balls of two
different colors, e.g., green and white, will be placed in the body of the device (see
figure 3). A discrete number, such as 1, 2, 3, will be marked on the surface of
each of the white balls. The proportion of green to white balls, and of white balls
with different figures, will be predetermined. The respondent is asked to turn the
device upside down, shake the device thoroughly, and turn it right side up to allow
one of the balls to appear in the window of the device.

The ball in the window will either be green or white. If it is a green ball,
the respondent will be Asked to answer the sensitive question (e.g., the number of
abortions she has had ). If the ball is white, there will be a number marked on its
surface, and the respondent simply tells the number. The answers will again be 1,
2, 3, depending on the nimber marked on the surface of the white ball.

Interviewers stand on the opposite side of the window of the device, and
therefore do not know whether the respondents have been asked to respond to the
sensitive question or whether the respondents are responding with the number on a

white ball.
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Figure 3. Hopkins’ Randomizing Device
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For two sensitive variables with 3 subcategories, the interviewer prepares a
device for each question (or prepares one device and asks the respondent to use the
same device for each question), and the respondent will be asked to use the first
device for the first question and so on. Obviously, the respondent will return the
ball into the device after answering the question.

Let w, represent the number of white balls marked i (where i = 1, 2, 3) and
where g represents the number of green balls (unmarked), then the total number of

balls in the device is

3 3
g+w=g+2X¥ w, wherew=13% w

i=1 i=1 ¥

For the first question, the respondent will shake the device and will get a
ball. If it is a green ball and he (she) really belongs to subcategory 2, then he
(she) will report 2, and replace the ball into the device. For the second question,
if it is a white ball marked 3, then he will report 3 whichever category he really
belongs to.

Let 7rij represent the true proportion of respondents who possess i—th
category for the first question, and j—th category for the second question.

Let P[ij | i j’] represent the conditional probability that the respondents give the
responses (i j), given that they are in category (i’ j’).

Now the probability that the respondent gives the response (2 3) is

Agg =P[23|11] 7|+ P[23]12) 7o+ P[23]138] 74

23
+P[238]21] my + P[23] 22] Mo+ P[23]23] 7oy

+ P[23]31] 1y + P[23] 32] mgo+ P[23]3 3] 7aq



s

Since before reporting a pair of answers, the respondent uses the random device
two times independently and each time the device selects a question, We can

rewrite P[i j|i’j’] = P[i|i’]P[j|j]. Therefore Ayg can be rewritten as follows
Ay = P[2|1] P[3]1] = ; + P[2|1] P[3]2] 9+ P[2/1] .P[3|3] T3

+ P[2(2] P[31] 7, + P[2]2] P[3]2] mpo+ P[2|2] P3]3] 7y

+ P[2|3] P[3]1] m; + P[2]3] P[3]2] mpo+ P[2]3] P[3]3] .

Similarly, we may have )‘ij for all i,j, and we can express the probability (Aij) in

matrix form using the Kronecker product (&), as

(A [(PIL/1)P[L|2] P[L|S)@(P[L]1] P[L|2] P[1|3])) [ =y,

ALy (P[L]1] P[1|2] P[1|3)@(Pl2]1] Pl2(2] PE2I3])| | =,

A (P[L[1] P[1|2] P[1]3])@ (P[3]1] P[3]2] PI3I3])| | myq

Ay (P[211] P2]2] P[2|3)@(P[L|1] P[1|2] P[L|3])] | moy

Ay | = |(PI211] P212) P213])@ (Pl2]1] P[212] P213])| | mpy

Agg (P[2[1] Pl2]2] P[213)@(P[3]1] P[312] PI3I3])| | 7pg

Agy (P[311] P[3]2] PI3]3)@(P[1]1] P[1]2] P1]3])] | 7y,

Ags (P[311] P[312] PI3I3)@(P[L|1] P[1]2] P[1]3])| | 7,
[Ag3)  |(PI3]11 P[3]2] P[3|3))@(P[L]1] P[L]2] P[1]3])] | mgq.

(3.5.1)

By rewriting these equations in matrix form, we get
A=PI,

where A'= () Aras Aots Aoos Aoas Aqqs A

11’ )‘12’ 13> 7210 722 723’ 731’ T32 }‘33)’

L= (711, T19: Ty3s Tgq» Togs Tozr Tgqs Tggr Tag)s
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and P can be rewritten as
(P[1|1] P[1]2] P[1]3])} |(P[1|1] P[1|2] P[1{3])

P = |(P[2]1] P2{2] P[2]3])|®|{(P[2]1] P[2]2] P[2]3])
(P[311] P[3]2] P[3]3])| |(P[3|1] P[3]2] P[3]3])

Hence 1 = P~1 ]&, provided P is nonsingular.
Var(Il) = P™1 Var(A) (P71)

[A1(2209) A9d9 - Apdze Apgigs ]
- “AoA1r Apa(IAg) oo Apgdgg AgAag
where Var(A) = 5 : :
A30M1 Ageria - Aga(lAgg)  Agedsg
| A33r1 Agzria - Agzdzg Aga(ldgg))

Using these estimated cell proportions we can estimate the product moment
correlation between the two sensitive variables. The formula for the estimated

product moment correlation is given by

-~ -

(ag - 3,)(b; - B,)

t2
S By (ag-5)7 (3 my; (05 - B,) ]

DA et

J .
2_7ri.
j J

[

’y:

- . - ;r .
’Where§+=_2 1+ ai,andE_l_:_Z L bj'
P4 PTG
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3.5.1 Test of Hypothesis

Before discussing the test of hypothesis we till show the relationship
between ’\ij and Ty i.e., we will show 7rij’s are independent if and only if the Aij’s

are independent.

In a 3 x 3 contingency table, if the 7rij’s are independent then 7rij =m T f
From Eq(3.4.1),

A =PIIP[|1] 7y + P[1[1]P[1[2] my, + P[1]1]P[1]3] 7,

+ P[L|2]P[L]1] 7p; + P[L|2]P[1]2] Ty + P[1|2P[L|3] 7y

+ P[1|3]P[1]1] Ta1 + P[1]3]P[1]2] Tag + P[1|3]P[1]3] Tag-
Now assumes that the 7rij’s are independent, i.e., 7rij =TT 7 then

Ay; = P[LILP[L|1] 7, 7 + P[L[1]P[1]2] 7, 7, + P{1[1P[1|3] m 7

+ P[1|2]P[1]1] my 7 | + P[1]2]P[1|2] 7, 7, + P[1|2]P[1{3] 7y 7 4

+Ppwppup%¢1+Ppwpump%¢2+puwppmp%¢3

(7.7 1]
.72
.73
.71
T9.T.2
T9.73
371
3.2
3. T.3]

= (P[1]1] P[1]2] P[1]3]) @ (P[1]|1] P[1]2] P[1]3])




Since /\1. = /\11 + /\12 + /\13 and /\.1 = /\11 + /\21 + /\31,
and if the A..’s are independent, then .. = A. X ..
ij ij i.7.]
Now we will relate ’\i A j tom 7.
From Eq(3.5.1),

A =P[1[1)(P[1|1]+P[2|1]+P[3]1])x | + P[1|1](P[1|2]+P[2|2)+P[3|2))7,,

+P[1|1])(P[1]3]+P[2|3]+P[3]3])m 5 + P[1]2](P[1] 1]+ P[2|1]+P[3] 1])7,
+P[1]2](P[1|2]+P[2|2]+P[3|2])7myq + P[L] 2](P[1|3]+P[2|3]+P[3]3])7,,

+P[1|3](P[1|1]+P[2| 1]+P[3]1])7y, + P[L]3](P[1|2]+P[2|2]+P[3|2])my,

+P[1{3](P[1]3]+P[2|3]+P[3]3])7as.
Since P[1]j]+P[2|j+P[3]]] =1, then
Ay =P[|1m +P[1]2]m, + P[1|3]7, and similarly

1.

X (=P[1|1)(P[1|1]+P[2[1]+P[3|1])r,, + P[1|2)(P[1|2]+P[2[2]+P[3|2]),
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+ P[1]3](P[1]3]+P[2|3]+P[3]3])m 5 + P[1|1)(P[1] 1]+P[2| +P[3] 1])m,,

+ P[1]2](P[1]2]+P[2]| 2]+P[3]|2]) 7., + P[1|3](P[1]3]+P[2]3]+P[3]3]

)Ta9
+ P[1|1)(P[1] 1]+P[2|1]+P[3|1])m,, + P[1]2](P[1|2]+P[2|2]+P[3]2]

+ P[l|3](P[1|3]+P[2]3]+P[3|3])7r33.

)To3

)T39



Since P[1|j+P[2|{+P[3j] =1,
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A =PI 1|(my 47y 470 ) + P1|2](m g+ Tyq+Taqg) + P[1[3](m) 3+ Ta+7aq)

=P[1|1] 7| + P[1]2] 7, + P[1|3] 7.

Therefore
[71.71
.72
.73
T9.M1

/\1./\'1 = (P[1|1] P[1]|2] P[1}3]) ®) (P[1]1] P[1}2] P[1]3]) Ty T ol
.73
T3.71
3.2
(73, 7.3

Therefore we showed T= M. if and only if A, i= ’\i.’\.j‘

Using this relationship we may discuss a test of independence,

where nij is the observed ij—th cell count.

3.6 Multiproportional Randomized Response Technique
With Reordering Cell Numbers

For the maultiproportional data, as we explained in the additive and

scrambled randomized response models, by reordering each cell number (table 5)

and using a random device (wheel, multifaced dice, or Hopkins’ device).

We can estimate each cell proportion s (i=12..1.j=12 ..,0).
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Suppose a sample was drawn from a bivariate discreté population. For
instance if each variable has 3 subcategories, then the population can be tabulated
as a 3 x 3 contingency table (table 5). By reordering each cell number as in table
5, the contingency table can be express as a 9 x 1 vector, II = (7r1, oy Mg - ,7r9)7.

As a random device, we can use the Hopkins’ Randomizing Device (Figure
3) then following the same steps section 3.4 we can estimate each cell proportion.

Let W, Tepresent the number of white balls marked i (wherei =1, 2, ... ,9),

and g represents the number of green balls (unmarked), then the total number of

9 9
balls in the deviceis g + X w,=g+w (where w = % Wi)' If 7, represents the
i=1 i

i=1
. 9
true proportion of respondents who belong to i~th category (where % = = 1),
1=1
then the probability ()\i) that a respondent reports i is:

W .
— 8 1

A=rg )t Ew (3.6.1)

wherei=1, 2,3, ... ,9.

Let n, be the number of respondents reporting i, then the proportion of

n. -
respondents reporting i is 2 (= ). Substituting this into Eq.(3.6.1), and
g o i g

solving for T then the estimate of T, becomes

The estimated variance of m becomes

Var (7 ) = [g-;—wr e e\ (3.6.2)
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The estimated covariance between . and 7rj is

2 0 1
~ ~ - 3 g 4+ w T n—']

(3.6.3)

Liu and Chow (1976 a) indicate that "the ratio of green balls to the total
number of balls in the device is the major component which affects the efficiency of
estimate." From Eq.(3.6.1) and Eq.(3.6.3), we can see that for fixed total
number of balls, if we increases the number of green balls, V;),r( ;rl) and C(;v(;ri, ;rJ)
decreases. But if the ratio of green balls to the white balls is large, the
respondent’s cooperation will decrease.

Now by decoding the reordered cell number, T = M1 Ty = Mgy e s Tg =

Tag- we can estimate the correlation between two sensitive variables.



CHAPTER IV

RANDOMIZED RESPONSE TECHNIQUE FOR THE QUANTITATIVE
- ATTRIBUTES

4.1 Additive Randomized Response Models

Kim and Flueck’s (1978) additive randomized reponse models can be used
to obtain responses for semsitive questions when the answers are quantitative.
The respondent is asked to sum his (her) sensitive attribute ( S ) and an
augmented value ( Y ). The augmented value is generated from a random device
and is not known to the interviewer, but the distribution of the augmented
variable is completely known and the augmented variable is independent of the
sensitive variable. Suppose a simple random sample is drawn from a bivariate
continuous population. The respondent is asked to generate a random number
from a random device and add it to his (her) own sensitive attribute for each
question. The value of the random number which is generated by the respondent
is unobserved and unknown to the interviewer.

Let I, = observed response variable

S; = unknown sensitive variable

Y = augmented variable
then the response value for each question can be written

I, = S1 +Y

I, = S2 +Y

where S, (i=1,2)andY are independent.

84
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The estimated mean of the observed random variable is

P = g T by , (4.1.1)
i i
and hence the unbiased estimate of pg s
i
Hg, = by — Hy-
i i

And Var(r;) = Var(5;) + Var(Y), since S; and Y are independent and hence the

estimated variance, ag., is given by
_ i

~ A

2 2 2

og. = 0y — Oy (4.1.2)
1 1
9 1 1 2 - 10m

Now From Eq.(4.1.1), since Si and Y are independent, the estimated

variance of o is
i

Var(s_) = Var(ug ) + Var(uy).
1 1

A~

Since the distribution of Y is completely known, the estimated variance of kg, is
i
given by
Var(ug ) = Var( u_ ) = Var(r;)
i i
Var(r;)

= =L 02. + (,% ), (4.1.3)
n 1

where Cov(Si,Y) = 0, because 5; and Y are independent.
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Hence to reduce the estimated variance of pg , We need to choose an
i

augmented variable with small variance.  This result is shown in table 9, in other
words, by choosing an augmented variable with small variance we may have a

short confidence interval for b -
i

Now since Cov(ry, ry) = Cov(§;, So) + Var(Y), the correlation between

two sensitive variables is given by

Cov(S;, S,)

p
5154

) V' Var(s,) Var(s,)

Divide both the numerator and denominator by o, O,

152
-2
by - Y
I,T a. ag,_
172 r1 r2
0'2 0'7
$,8y = 51 5y
0'2 0'2
Vv I1 To
1 — X

), p can be written
Sls2




TABLE 9

ESTIMATED MEANS & STANDARD DEVIATIONS FOR THE
ADDITIVE RANDOMIZED RESPONSE MODELS

¥

a B ”sl STD ”52 STD

2 2 29.99325 1.76233 37.06723 1.86817
2 3 ‘29.99117 1.78970 37;06521 1.89342
2 4 29.98909 1.82773‘ 37.06313 1.92884
2 5 29.98700 1.87576 37.06104 1.97386
2 6 29.98492 1.93306 37.05896 2.02785
2 7 29.98284 1.99883 37.05688 2.09011
2 8 29.98076 2.07225 37.05480 2.15993
2 9 29.97868 2.15256 37.05272 2.23660
2 10 29.97659 2.23900 37.05060 2.31945
2 11 29.97451 2.33090 37.04855 2.40782
2 12 29.97243 2.42764 37.04647 2.50115
3 2 30.03489 1.80234 37.12420 1.96584
3 3 30.03519 1.83979 37.12451 2.00595
3 4 30.03550 1.89292 37.12482 2.06036
3 5 30.03580 1.96046 37.12512 2.12798
3 6 30.03611 2.04098 37.12543 2.20759
3 7 29.98284 1.99883 37.05688 2.09011
3 8 30.03672 2.23514 37.12604 2.39783
3 9 30.03703 2.34604 37.12635 2.50611
3 10 30.03733 2.46453 37.12665 2.62174
3 11 30.03764 2.58957 37.12696 2.74379
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2
o
Y 1 X
SS_[‘OII~0‘0‘ (1+ )
172 172 Ty Ty
02
1 —-X Y _—
=p . (1+ )= (1 + 2=
12 X I, r X
1 2
02
1 —X Y 1
I1To Iila X arlar X
2
o0 2 2
I,°r o. o
Since 1 X 0102—1,and Z l=g Z ,
X S1 S2 r1 r2X S1 82
o o 2
T T o
1 2 Y
P, T Pr . TP : (a o —’1)_0 O ’ (4.14)
1%2 12 12 S1 S2 S1 S2
where the last two terms are due to the random device. Sincep__, o, and o
I I Ig

can be calculated from the observed data, and og and 0g can be estimated from
1 2

Eq.(4.1.2), and a% is known, the bias can be estimated.
To estimate the correlation between two sensitive variables, first we need to
estimate the variances of the sensitive variables, and then we find the estimated

variance, ag_ which is given by
i

If we use an augmented variable which has a wide range and so a% is close

to 02 , Or 02 is greater than 02 , then we may not be able to estimate the
Si Y Si
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correlation between two sensitive variables since we observe a negative estimated
variance for the sensitive variables. To illustrate this procedure, we simulated a
bivariate gamma distribution (Mardia, 1970, Ong, 1992) with the true correlation

set at 0.6, means (4g , g ) equal to (30 , 37.037) and variances (og , og ) equal
1 "2 1 2

to (300 , 370.37).

The results of the simulations are presented in table 9, 10, and 11. Table 9
gives the expected means and standard deviations of the sampling distribution for
population correlation values of 0.6 and for a sample size of 100. The standard
deviations in table 9 are strictly increasing as the variance of the augmented
variable increases. We expected this result from Eq.(4.1.2). Table 10 presents

the results for the estimated correlations, standard deviations and biases. As we

-

explained early, it is possible to obtain a negative estimate of the variance, og_.
i

A correlation cannot be calculated when this occurs. The table also indicates
when the negative variance occurs. = We observed negative variances of the
sensitive variable (S), for augmented distributions, Gam(2,14), Gam(3,11),
Gam(4,10), Gam(5,8), Gam(6,7). Where the variances of augmented variables

are greater than Min(og , og )s only Gam(6,7) has less variance than
1 2
Min( og , og ). Table 11 gives the conditions for having a positive bias. Each
1 2

parameter, 032{, og , and og is changed from 1 to 20 by increasing by one unit.
1 2

For o% = 1, and Min(og , og ) < 7, we observed a positive bias with
1 2

relatively high Pr - For 032{ = 1, the smallest pr o to give a positive bias was
172 172

0.6. For 02

= 2,and 2 Min(a2 , o2 ) < 7, we observed a positive bias with

relatively high p. . For 032{ = 1, the smallest p. _ to give a positive bias was
172 172

0.7. As o% increase, we have less chance to have a positive bias.



TABLE 10

ESTIMATED CORRELATIONS & BIASES FOR THE

ADDITIVE RANDOMIZED RESPONSE MODELS

negative

a f pr1r2 Bias p8182 STD \Sra,ria,nge
1 2

2 2 0.60825 -0.00971 0.59853 0.08594 |

2 3 0.61910 -0.02130 0.59780 0.08723

2 4 0.63340 -0.03655 0.59684 0.08910

2 b 0.65028 -0.05b469 0.59558 0.09174

2 6 0.66889 -0.07490 0.59392 0.09536

2 7 0.68843 -0.09669 0.59174 0.10026

2 8 0.70824 -0.11938 0.58886 0.10682

2 9 0.72780 -0.14273 0.58506 0.11559

2 10 0.74672 -0.16669 0.58002 0.12744

2 11 0.76474 -0.1914¢% 0.57324 0.14411

2 12 0.78170 -0.21797 0.56373 0.17076

2 13 0.79754 -0.25375 0.54378 0.33975

2 14 0.81222 -0.27826 0.53424 0.27100 1, 1

3 2 0.61599 ~-0.01425 0.60174 0.08474

3 3 0.63161 -0.03085 0.60076 0.08655

3 4 0.65151 -0.05208 0.59942 0.08946

3 5 0.67412 -0.07654 0.59757> H0.09381

3 6 0.69802 -0.10298 0.59504 0.10012

3 7 0.68843 -0.09669 0.59174 0.10026

3 8 0.74538 -0.15877 0.58661 0.12238

3 9 0.76745 -0.18795 0.57950 0.14341
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TABLE 10 (Continue)

negative
¥ prlrz Bias f’slsz STD va,ria,nge
2
10 0.78795 -0.21714 0.57095 0.16737 1, O
11 0.80675 -0.25299 0.55390 0.24146 1, ©
2 0.62040 -0.01884 0.60156 0.08727
3 0.64063 -0.04027 0.60036 0.08980
4 0.66560 -0.06696 0.59864 0.09373
5 0.69299 -0.09681 0.59618 0.09963
6 0.72086 -0.12820 0.59266 0.10835
7 0.74785 -0.16027 0.58757 0.12151
8 0.77311 -0.19306 0.58004 0.14313
9 0.79620 -0.22856 0.56763 0.19599
10 0.81698 -0.26887 0.54821 0.352333 1, O
2 0.62302 —-0.02345 0.59957 0.08709
3 0.64790 -0.04945 0.59844 0.09021
4 0.67765 -0.08092 0.59673 0.09509
5 0.70917 -0.11505 0.59411 0.10244
6 0.74014 -0.15001 0.59012 0.11347
7 0.76911 -0.18524 0.58387 0.13130
8 0.79538 -0.21959 0.57584 0.15182 1,
2 0.62665 -0.02792 0.59873 0.08806
3 0.65536 -0.05829 0.59706 0.09218
4 0.68882 -0.09437 0.59444 0.09912
5 0.72326 -0.13294 0.59032 0.11048
6 0.75615 -0.17252 0.58363 0.13039
7 0.78615 —0.21349 0.57272 0.18067 1,

91




TABLE 11
CONDITIONS FOR THE POSITIVE BIAS OF THE ADDITIVE
RANDOMIZED RESPONSE MODELS

2 2 2 p
o o o .1
Y S1 52 1°2
1 1 4,5 >= 0.9
1 1 6,7,8 >= 0.8
1 1 9,10,11,12 >= 0.7
1 1 13,... ,20 >= 0.6
1 2 6,7,8,9 >= 0.9
1 2 10,....,14 >= 0.8
1 2 15,....,20 >= 0.7
1 3 9, eennn ,13 >= 0.9
1 3 14,....,20 >= 0.8
1 4 11,....,17 >= 0.9
1 4 18,19,20 >= 0.8
1 5 14,....,20 >= 0.9
1 6 17,....,20 >= 0.9
1 7 19,20 >= 0.9
2 2 7,8,9,10 >= 0.9
2 2 11,....,16 >= 0.8
2 2 17,....,20 >= 0.7
2 3 10,....,14 >= 0.9
2 3 15,....,20 >= 0.8
2 4 12,....,18 >= 0.9
2 4 19,20 >= 0.8
2 5 15,....,20 >= 0.9
2 6 17,....,20 >= 0.9
2 7 20 >= 0.9
3 3 10,....,16 >= 0.9
17,....,20 >= 0.8
3 4 13,....,20 >= 0.9
3 5 15,....,20 >= 0.9
3 6 18,19,20 >= 0.9
4 4 13,....,20 >= 0.9
4 5 16,....,20 >= 0.9
4 6 19,20 >= 0.9
5 5 17,....,20 >= 0.9
5 6 19,20 >= 0.9
0.9

6 6 20 >=
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Using Eq.(4.1.2), and Table 9, we need to choose an augmented variable
which has small variance, and hence we may have a short confidence interval for

~

#g . Using Eq.(4.1.3), and Table 10, we also need an augmented variable which
i

has small variance. However, an augmented variable which has a wide range of
values will give more confidence to the respondent, particularly if a low value is
highly sensitive, and so the concealing effect is high using a wide range augmented
variable. To estimate unbiased correlations it is critical that the variance of the
augmented variable be smaller than the variance for the sensitive variables, but
the variances of the sensitive variables are unknown and hence it is difficult to
choose a good augmented variable. Another problem is that extreme values
cannot be protected by adding a random number. All these are disadvantages of

the additive randomized response models.
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4.2  Scrambled Randomized Response Models

Scrambled randomized response models can be used to obtain responses for
sensitive questions when the answers are qﬁa,ntitative. The respondent is asked to
multiply his(her) sensitive attribute (S) by a random value (Y). The random
value is generated from a random device and is not known to the interviewer, but
the distribution of the multiplier variable is completely known, and the multiplier
variable is independent of the sensitive variables. We assumed that S > 0 and
Y > 0, since the scrambled answer, ris SY. If S = 0 then SY = 0, and as long as
S = 0 is a nonsensitive response, the fact that thj‘s answer is not protected by the
randomization technique will not be a problem.

For the correlated two sensitive continuous variables case, the respondent is
asked to generate a random number by a random device, and muitiply his (her)
own sensitive attribute for each question by that value, and then the response
values for each question can be written

I = S1 Y

Iy=5yY , (4.2.1)
where Si and Y are independent.

And since E ,=ES;EY, the unbiased estimate of pig_ s given by
v i

L | (4.2.2)

where fyr is known and fry # 0.
The estimated variance of the response variable is

Var(r;) = E S? EY?- (E Si)2(E Y)2, because S. and Y are independent,

2, 2 2 2 2 2, 2 2 2 2
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From Eq.(4.2.3), the estimated variance of Ug. is given by
i

9 2 "2
"rl - Oy ”si
A% Ky

where a% and fiy aTe known.
Now from Eq.(4.2.2) and Eq.(4.2.3), the estimated variance of pg_ i
M

Var( /LS_) =1 5 Var( 1, ), because iy, is a known constant,
i n ,

1 2 2 2 2 2
= [aY(aSi+,uSi)+aSiy,Y]

: 2 2 o2
since asi+/zsi—ESi,

2
1, 2  9%Y_ .2

Since Si and Y are independent, for fixed distributions of S;, to reduce the variance

A

of the estimated population mean, pg , WE have to choose the multiplier variable
i

2
o
which makes the ratio, —g as small as possible. Suppose the multiplier variable
by
2
9y 1
follows a gamma distribution with parameters a and §, then the ratio, — is <.
'

Therefore if we increase a, the variance of the estimated mean will be reduced.
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Now from Eq.(4.2.1) and independent relationship between Si and Y, the

covariance between two reported variables is
Cov(r,, 1,) = Cov(S,Y, 8,Y)
=E SlY SZY_ E SlY E S2Y.

since Si and Y are independent,

_ 2 \2
1y =BS5S BY ES ES,(EY)

2 2 2 2
=ES8S,EY'—ES ES,EY'+ES ES,EY*~ES ES, (EY)

2 2
=0 EY "+ uc po o
5:5, 5,78, °Y
2 2 2
=0q o (O + ) + Lo o Oy
Si5,4°Y Ky 5175, Y

Therefore the estimated covariance between two sensitive variables is given by

2
g — Ug fg O
_ IyTy S1 82 Y
USISZ = 5 — (4.2.6)
Oy + Py

From Eq.(4.2.4) and (4.2.6), the correlation between two sensitive variables is

given by

2
o —fo po O
I;Tg S1 S2 Y

p =
Sls2




Divide both the numerator and the denominator by g. 0,
1 "2

97

Jg fg O
S1 S2 Y
Prr. T
12 g. 0.
1 "2
p = (4.2.7)
Sls2 02 2 02 2
Y /"sl Y “sz
1-. 1 — —
v U? O
1 2

By substituting Eq(4.2.3) and Eq(4.2.4) into Eq.(4.2.7),

We may express pg g as
172

2
i
a function of —g-
oy
; _ pr1r2
515, #2 #2
2 Y., 2 Y
1 GY 2 (TY
) 2
2 Py 2 2 Fy 2
(US (1 +_‘§_) + l"s )(Us (1 +‘—2_) +l"s)
J 1 v 1 2 oy 2
7 7
S Sq
2 Oy 2 2 Oy 2
(6g (1 + —5—) + pg )(og (1 + 2)+#52)
_ 1 UY 1 2 O'Y
o by
2 Y, 2
og (1 +—5~) og (1+ —5~)
1 Ty 2 oy
) )
2 Ky 2 2 Ky 2
(og (1 + —5—) + g )(og (1 + ——) + g )
v 1 oy 1 2 oy 2

(4.2.8)
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Let X be the denominator of the first term,

2 2
2 Py o 2 by
o5, (1 +—5) o5 (1+ —5-)
oy 2 oy
X =
by wy
2 Y 2 2 2
(g (1 + ——) + ug )(og (1 + —5—) + ug )
v 1 o 1 o 2
Y Y
Since +=1+L =X
X X
the first term of Eq.(4.2.8) can be written
1 — X
o [1+ ]
%9 X
and the second term of Eq.(4.2.8) can be written
2 2
5 59
ui e
2 Y 2 2 Y 2
(cg (1 + —5=) + g Mog (1 + —5—) + ug )
v 1 oy 1 2 oy 2
ks Hg
1 2 N .
Now, let == = fl, T = f2, and the multiplier variable follows a gamma
51 59
by
distribution with parameters a and £, hence —5 =
' o
Y

Then by simple algebra

I, _f

pe =l

bS5, = Prp. P pr e 2
S189 ~ "1qTy T1irp Y (1 + a) (1 + a)
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where the last two terms are due to the random device. Hence if we estimate the
correlation from the observed response data, we may have some bias which is given

by

| £2 £ f
=g W+ o+ ]| 8

Since Pr 1 fl, and f2 can be estimated from the observed data and a is known, we
172

may estimate the bias and hence the estimated correlation between two sensitive
variables, which is P T Bias. If we observe positive (negative) bias, the
172

estimated correlation, p. = from the observed data will over (under) estimate the
172

correlation fg g between the two sensitive variables. For fixed fl and fz, if we
172

f, £
f’12

increase «, the bias decreases, since for fixed fl and 9 ( decreases as «
1+ a)

2 2
f f _
increases and ‘/I [1 + ———1———] [1 + ——2—] — 1 also decreases as «

1+ o (1 + a)
increases. Therefore if the shape parameter, a, of the multiplier variable is large

enough, the bias can be zero. This is shown in table 12 and 13.
To illustrate this procedure, we simulated a bivariate gamma distribution,

the true correlation was set at 0.6, with the means (us » Hg ) equal to (30 ,
1 2
37.037), and the variances (o3 , o5 ) equal to (300 , 370.37). For the multiplier
1 2

variable, we use a gamma distibution with various parameters.

The results of the simulations are presented in table 12, 13, 14, and 15.
Table 14 gives the expected means and standard deviations of the sampling
distributions for population correlation value of 0.6 for sample size 100. The
standard deviation values in table 14 decrease slowly as the « increases, as we

expected from Eq.(4.2.4). Table 12 and 13 presents the results for estimated
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TABLE 12

ESTIMATED CORRELATIONS & BIASES FOR THE
SCRAMBLED RANDOMIZED RESPONSE MODELS

a Pr 1, Bias PSS, Std(’s,S,)
5 0.74195 -0.14500 0.59690 0.11630
€ 0.72667 -0.13178 v 0.59488 0.11293
7 0.71722 -0.11936 0.59785 0.109958
8 0.70842 -0.10914 0.59927 0.10922
9 0.70051 ~0.10097 0.59954 0.10243
10 0.69303 ~-0.09401 0.59901 0.10472
15 0.66736 -0.07027 0.59708 0.09897
20 0.65284 -0.05590 0.59694 0.09590
25 0.64179 -0.04660 0.59519 0.09313
30 0.63378 -0.04015 0.59362 0.09354
35 0.62991 -0.03491 0.59499 0.09128
40 0.62677 -0.03088 0.59589 0.09115
45 0.62301 -0.02781 0.59519 0.09159
50 0.61948 -0.02536 0.59412 0.09275
55 0.61800 -0.02318 0.59482 0.09104
60 0.61585 -0.02143 0.59441 0.09080
80 0.61739 -0.01597 0.60141 0.08682
100 0.61018 -0.01310 0.59707 0.08584
200 0.60351 -0.00669 0.59681 0.08504
300 0.60169 -0.00452 0.59717 0.08599
400 0.60028 -0.00340 ' 0.59688 0.08282
500 0.60267 -0.00270 0.59997" 0.08862

n = 100, bs s, 0.6.
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TABLE 13

ESTIMATED CORRELATIONS & BIASES FOR THE
SCRAMBLED RANDOMIZED RESPONSE MODELS

pr1r2 Bias 7S5, Std(”s,S,)
5 0.74971 -0.15405 0.59566 0.10048
6 0.73530 -0.13729 0.59801 0.09593
7 0.71917 -0.12127 0.59790 0.08667
8 0.70494 -0.11325 0.59168 0.08645
9 0.69695 -0.10496 0.59198 0.08392
10 0.69214 -0.09636 0.59578 0.08212
15 0.66813 -0.07031 0.59782 0.07440
20 0.65200 -0.05614 0.59585 0.07084
25 0.64598 -0.04587 0.60010 0.06832
30 0.63817 -0.03952 0.59864 0.06694
35 0.62932 -0.03496 0.59436 0.06723
40 0.62906 -0.03044 0.59886 0.06358
45 0.62484 -0.02748 0.59735 0.06659
50 0.62404 -0.02483 0.59720 0.06318
55 0.62027 -0.02277 0.59750 0.06346
60 0.61891 -0.02102 0.59789 0.06459
80 0.61221 ~0.01615 0.59606 0.05941
100 0.61151 -0.01289 0.59862 0.05955
200 0.60656 -0.00660 0.59996 0.06175
300 0.60407 -0.00439 0.59967 0.05647
400 0.59966 -0.00336 0.59630 0.06132
500 0.60191 -0.00267 0.59923 0.05757
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TABLE 14

ESTIMATED MEANS & STANDARD DEVIATIONS FOR THE
SCRAMBLED RANDOMIZED RESPONSE MODELS

a #s, - std(fs) fs, std(¥s,))
5 29.98168 2.32671 37.05844 2.66994
6 30.02349 2.19366 37.06843 2.58392
7 29.99817 2.17698 36.97602 2.48384
8 29.93463 2.15973 36.93093 2.44235
9 29.97757 2.01765 37.02887 2.31318
10 29.94107 2.10216 36.95828 2.39717
11 29.97544 2.02668 37.01020 2.25791
12 29.99186 2.02930 37.02292 2.25821
15 29.99598 2.02910 37.02791 2.20981
20 29.98787 1.87565 36.98916 2.12555
25 29.96865 1.90332 36.96799 2.08319
30 29.95429 1.90670 36.96342 2.06246
35 29.94810 1.87072 36.95879 2.05674
40 29.94579 1.86662 36.95485 2.05599
45 29.94225 1.82302 36.93484 2.04361
50 29.90725 1.80201 36.91562 2.01575
55 29.91269 1.77219 36.92020 1.97135
60 29.91406 1.76804, 36.91732 1.98227
80 30.04758 1.76785 37.08747 2.02706
100 29.98567 1.74211 36.99157 1.94889
200 29.96098 1.76597 37.03351 1.97908
300 29.95310 1.74834 37.03675 1.91635

n = 100, p5152=0.6, p52=30, u52=37.0373
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TABLE 15

CONDITIONS FOR THE POSITIVE BIAS OF THE
SCRAMBLED RANDOMIZED RESPONSE MODELS
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TABLE 15 (Continued)
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f f2 f1f2 @ p 1Ty
2 19 38 5,6 >= 0.7
10, cevenns ,19 >= 0.6
20 >= (0.5
2 20 40 2 = 0.8
5,6 = 0.7
10, c e evenn ,18 >= 0.6
19,20 >= 0.5
3 6 18 15, .00 , 20 >= (0.9
3 7 21 9, eeenannan , 20 = 0.9
3 8 24 6 ,cecacansa , 11 >= (0.9
3 9 27 5,6 >= 0.9
18,19,20 >= (0.8
3 10 30 4,5 >= 0.9
14,0 0ceean , 20 >= 0.8
3 11 33 4 >= 0.9
12,0 eeennnn ,20 >= 0.8
3 12 36 O , 20 >= 0.8
3 13 39 3 >= 0.9
10, ceeeacns , 17 >= 0.8
3 14 42 3 >= 0.9
O, ceccscnns , 14 >= 0.8
3 15 45 9,10,11,12 >= 0.8
19,20 >= 0.7
3 ls 48 8,9,10 >= 0.8
18,19,20 >= 0.7
3 17 51 8,9,10 >= (0.8
17,18,19,20 >= 0.7
3 18 54 8,9 >= (0.8
16,17,18,19,20 >= 0.7
3 19 57 8 >= 0.8
16,17,18,19, 20 >= 0.7
3 20 60 7,8 >= 0.8
15, ceennnnn ,20 >= 0.7
4 9 36 17,18,19,20 >= 0.9
4 10 40 13,..... , 20 >= 0.9
4 11 44 11, cen.. ,18 >= 0.9
4 12 48 10,11,12,13 >= 0,9
4 13 52 9,10 >= 0.9
4 14 56 8,9 = 0.9
4 15 60 7,8 >= 0.9
4 16 64 7,20 >= 0.9
4 17 68 7 = 0.9
0.8

19,20
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£ £ f,f, o pr1r2
4 i8 72 6 >= 0.9
18,19,20 >= 0.8
4 19 76 6 >= 0.9
17,18,19,20 >= 0.8
4 20 80 16, cccvenne ;20 >= 0.8
5 13 65 19,20 >= 0.9
5 14 70 17,18,19,20 >= (0.9
5 15 75 15, caeanan- ,20 >= 0.9
5 16 80 14, .ccc0c.e , 18 > 0.9
5 17 85 13,14,15 >= 0.9
5 18 90 12,13,14 >= 0.9
5 19 95 12,13 >= 0.9
5 20 100 11,12 > (0.9
6 20 120 19,20 >= 0.9
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correlation, standard deviations, and biases. The amount of bias decreases as «

increases. The standard deviations for the estimated correlation fg g also
12

decreases as « increases. It was expected that as values of « increase, the

observed correlation [ will be close to the correlation between the two sensitive
1°2

variables, and hence the bias will be close to zero. For a = 500, p . Was
1°2

0.60067, the bias was —0.0027 and hence pg g Was 0.59997. 1t is close enough to
172
the true correlation value pg g = 0.6. Table 15 gives the conditions for getting a
172

positive bias in terms of fl, f2, and p. .. Values were set from 1 to 20 and
1°2

p. ; Was increased by 0.1.  For fixed f1 and f2, conditions which give positive
172 ‘
bias depend on o and the observed p. . . When f; =1 or 2 if we use large value
172

of « for the low values of the observed p. . Wecangeta positive bias. When f1
172

= 3 and for various values of f2 and «, to get a positive bias the minimum

observed p. r was 0.7. When f1 = 4 and for various values of f2 and a, to get a

172
positive bias, the minimum observed p. . Was 0.8. When f1 =4 or 5 or 6 and for
172
various values of f2 and q, to get a positive bias, the minimum observed pr . Was
172

0.9. When f1 > 6 for any combinations of f2 and «, we never observed a positive
bias.

A major field problem in conducting a survey using the scrambled
randomized response technique is how does the interviewer furnish a random
device which can generate the multiplier value.  Eichhorn and Hayre (1983)
discussed this problem. Here we may propose a simple and familiar method.

After generating multiplier values, we may write the values on a card and
put those cards into an urn and ask the respondent to pick one card from the urn

and multiply his (her) own S values and report product, SY to the interviewer.
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