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CHAPTER I 

INTRODUCTION 

In most of sampling theory, it has been assumed that the data collected on 

the units in the sample are always accurate or true values of the characteristics 

observed, and that the estimates of the population values obtained from the data 

are subject only to sampling errors. In practice, the situation is rarely as simple. 

The nonsampling errors that arise from the method of measurement or 

interviewing, and other sources of errors in surveys are present in a census. These 

nonsampling errors may be equally as important as sampling error, or perhaps 

more important for surveys of human populations. For voting questions in 

Chicago, approximately one third of all residents who reported voting in the 

primary election were found not to have voted when the record was checked 

(Sudman and Bradburn, 1983). This problem becomes more serious when 

respondents are questioned about sensitive matters, especially when truthful 

answers may place them in an unfavorable light. The question dealing with 

acceptance of racial intermarriage produced a difference by race of interviewer of 

over 45 percent (Hatchett and Schuman, 1975). For the socially undesirable 

questions, direct measurement of valid information on human populations is 

difficult because of untruthful reporting and refusal to respond. 

The randomized response methodology of survey technique is designed to 

encourage cooperation and truthful replies to questions involving socially 

undesirable activities. 

1 
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1.1 Sources of Error in Surveys 

The theory of survey sampling assumes throughout that some kind of 

probability sampling is used and that the observation, say y., on the i-th unit is 
1 

the correct value for that unit. The error of estimation arises solely from the 

random sampling variation that is present when n of the units are measured 

instead of the complete population of N units. This makes up what is termed 

sampling error. 

Many sampling techniques and estimation techniques have been developed 

to collect data and use methods of estimation so as to minimize sampling error, 

and improve the efficiency of survey estimates. 

Even thought the various survey operations carred out strictly according to 

the rules laid down are expected to yield the true value, x., which is the 
1 

characteristic under study, this can rarely be achieved in practice. The 

discrepancy between the value actually obtained, yi' to be called the survey value 

and the true value is called the observational or response error (Hansen, Hurwitz, 

and Matlow, 1951) and arises primarily from the variable performance of 

enumerators and lack of precision in measurement techniques. Hence even when 

the sampling fraction is unity, that is n = N, the value of any population 

parameter obtained from a census will differ from the true value of the parameter. 

The discrepancy between the survey value and the true value also arises due to 

several other causes, such as incomplete coverage, faulty methods of selection, 

faulty methods of estimation, and so on. Together with the observational errors 

these make up what are termed as non-sampling errors (Sukhatme, Sukhatme, 

Sukhatme, & Asok, 1984). Deming (1960) and Cochran (1977) have discussed in 

detail the sources of non-sampling error and it's effects on sampling estimates. 

The main source of non-sampling error in any survey comes as the result of 
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non-response. Non-response occurs when an element of the sample fails to 

provide data to the researcher. In effect, this keeps the sample from truly being a 

random sample from the survey population. This can often lead to a considerable 

bias in the survey results and hence· distort the conclusions regarding the 

population of interest. 

recognized. 

These are as follows. 

i) non-coverage 

ii) unable to answer 

iii) not at home 

iv) hard core refusal 

Four distinct types of non-response are generally 

Among all these problems, we will study two types of non-sampling errors: 

i ) non-response error resulting from the respondents who adamantly refuse 

to be interviewed. 

ii) response error resulting from giving incorrect answers. 

Systematic distortion of the respondent's true status jeopardizes the 

validity of survey measurements. Unlike random error, response bias does not 

cancel out over repeated measurement. 

1.1.1 The Effect of Refusal on the Estimates 

The answers from a survey are heavily weighted with people who are willing 

to respond, and many characteristics of these people are different from the 

characteristics of people who are not willing to respond. Deming (1960, pp. 67) 

states "People sometimes enquire whether 50 % response is good enough, or 

whether 80 %, or 90 % is good enough, or just what do we consider to be good ? 

The answer depends on the characteristic and how it is distributed. If half the 
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people or firms with very high incomes, sales, or inventories are nonrespondents, 

the error may be large, even though the response over all classes combined be only 

5 %". 

1.1.2 Sensitive Question Bias 

When the survey is about sensitive matters, the non-response and response 

error becomes more serious because the respondent will tend to give incorrect 

answers, the interviewer may hesitate to ask such questions, and sometimes even 

omit or alter them. The people who have high incomes will try to underreport, 

and the people who have low incomes will try to overreport. Worse cases are 

where the subject is asked to respond to questions about sensitive issues such as: 

abortion, drunken driving, or marijuana smoking. The respondents often prefer to 

give an answer that is socially acceptable. 

1.2 Scope of the Study 

After Warner's (1965) proposal, many other researchers improved and 

developed the theory and techniques of the randomized response models. . Their 

main discussion was the estimation of population proportions or population means. 

Here we are studying the covariance and correlation between two sensitive 

variables. Although Kraemer (1980), Fox and Tracy (1984), and Edgell, 

Himmelfarb, and Cira (1986) discussed estimation of correlations, their 

assumptions are not practical. 

A review of Warner's model and the unrelated randomized response models 

are given in chapter II. And the analysis of correlation for Warner's model and 

the unrelated randomized response model is also given in chapter II. 

Chapter III contains a review of the additive models, the scrambled models, 
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and multi proportion models, and the esfimation of the product moment correlation 

for each model is also given. 

In chapter IV, the correlation analysis for the continuous sensitive variables 

is given for the additive models and the scrambled randomized response models. 

The correlation between the response variables is expressed in terms of the 

correlation between the two sensitive variables and bias due to random device. 

The bias due to random device is. estimated for the additive and scrambled 

randomized response models. 

')• 



CHAPTER II 

CORRELATION ANALYSIS FOR THE DICHOTOMOUS 
RANDOMIZED RESPONSE TECHNIQUE 

Literature Review 

In surveys of human populations, respondents are not likely to participate 

or tell the truth when the reply may tend to stigmatize them in the eyes of the 

surveyer or the reply represents a socially undesirable behavior. 

Sample surveys of human populations have established the fact that refusal 

to respond and intentional giving of incorrect answers are two main sources of non 

sampling error. The bias produced by these two sources of error can sometimes 

make the sample estimates seriously misleading. This problem becomes more 

serious when respondents are questioned about sensitive matters, especially those 

questions for which truthful answers may place them in an unfavorable light. For 

example, questions about the number of times that a woman has had an abortion, 

incidence of drunken driving, use of marijuana, sexual activity and child abuse will 

create biases of these types. 

In surveys on these topics, the respondents may refuse to answer or give 

incorrect answers. This will lead to response bias, and these sources of bias persist 

no matter how much effort is put into completeness of returns or into the 

improvement of sampling techniques. 

A survey technique for eliminating or reducing this bias was introduced by 

Warner (1965) and is generally called the randomized response technique. 

The technique was designed to eliminate or reduce response bias for 

6 
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sensitive questions in estimation of the proportion of a population belonging to a 

sensitive group. In other words, this technique reduced the frequency of false 

(incorrect) answers by giving the respondent a randomization device. 

2.1 The Warner Model 

Suppose that every person in a population belongs to either group S or the 

complementary group S", and it is necessary to estimate the proportion of persons 

who belong to group S from a sample survey. A simple random sample of n 

people is drawn with replacement from the population and provisions are made for 

each person selected to be interviewed. Before the interviews, each interviewer is 

furnished with an identical spinner (random device, see figure 1) which points to 

the question Q with probability P, and to the question Q" with probability 1-P. 

A die, a container with marbles, and a deck of cards, each can be used as 

randomization devices for Warner's model. In each interview, the respondent is 

asked to spin the spinner unobserved by the interviewer and report only 'yes' or 

'no' according to the question to which the spinner points. The interviewer is told 

not to make any attempt to identify the group to which the spinner points. Thus 

the interviewer does not know whether the respondent's answer is for the sensitive 

question or the nonsensitive question, and all that the interviewer records is the 

respondent's answer (yes or no). Let 

1r S = the true population proportion of respondents belonging to group S 

P = the probability that the spinner points to S, and 

r. = 
1 

[ 
1 if the i-th respondent reports 'yes', 

. 0 if the i-th respondent reports 'no'. 

Each respondent is provided with a randomization device by which he or 



Have any of your pregnancies 
I 
ended with an abortion ? 

Have all of your pregnancies ended 
without an abortion ? 

Figure 1. Warner's Randomizing Device 

8 
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she chooses one of the two questions. 

For example the two questions might be 

Q ; Have any of your pregnancies ended with an abortion ? 

Q ; Have all of your pregnancies ended without an abortion? 

The randomization device is designed to ask question Q with probability P, 

where O < P < 1 as in figure 1. The proportion of the sensitive question ( P ) is 

preassigned and question Q is the complement of question Q. 

The probability of getting a 'yes' response (A) is 

A = P( ri = 1 ) = P ( yes I Q ) P ( Q ) + P ( yes I Q" ) P ( Q ) 

= ( 2P - 1 ) 1r S + ( 1 - P ) . (2.1.1) 

Denoting the number of 'yes' responses in the sample by nl' the sample 

proportion of 'yes' responses is· nl ( ~ = nl ), and since n1 follows a binomial 
n n 

distribution with parameters n and A, 

A . Ill 1 Ill 
EA= E - = - n A= A so -n is an unbiased estimator of A. 

n n ' 

Therefore an unbiased estimate of 1r S is 

p 1+ A 
?rs= 

2P 1 2P 1 

p 1 
+ 

Ill 
(2.1.2) 

2P 1 (2P - l)n 

and since n1 follows binomial distribution with parameters n and A, Eq.(2.1.2) is 

1 
an unbiased estimate of 1r S when P f:. 2"· 
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If P = !, the probability of getting a 'yes' response does not even depend on 

1r. H ! < P < 1 ( or O < P < ! ), the person interviewed provides useful but not 

absolute information as to exactly which group he (she) is in. In this context the 

P can be thought of as describing the nature of the cooperation between the 

interviewer and the respondent. 

From Eq.(2.1.2) the variance of an unbiased estimate of 1rS is given by 

Var(~ ) = n>.( l->.) 
S n2(2P-1)2 

[(1 - P) + (2P - 1) 1rs] [ 1 - {(1 - P) + (2P - 1) 1rs}] 

n(2P -1)2 

1rs(l-1rs) + l [ P( 1-P) ], 
n n ( 2P-1)2 

(2.1.3) 

where the second term on the right hand side of Eq.(2.1.3) is the variance due to 

the random device. This bia~ is symmetric about P = !, and as P increases to 1 

(P decreases to 0) the bias decreases. 

Since E(n1) = n>., E(n1)2 = ri.>. + n(n-1)>.2 

E [ >.(1->.)] = E [(n-1)-1 nl (1 - nl)] 
n-1 n n 

1 2 2 = 2 [n ). - (n>.+n(n-1)>. )] 
n (n-1) 

- >.(1->.) 
n 
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A 

Thus an unbiased estimate of Var( 1r s) is given by 

A 

( )(1-A) 
Var 1rs) = 2 

(n-1) ( 2P-1) 

A A 

= 1rs(l-1rs) + _1 [ P(l-P) .] 
n-1 n-1 ( 2P-1) 2 · 

(2.1.4) 

A 

The first term of Eq.(2.1.4) is the variance of 1rs as in the direct survey procedure, 

therefore our variance consists of the variance due to sampling plus the variance 

due to the random device. When the selection probability, P close to 0.5, the 

variance due to the random device increases. 

2.2 Unrelated Randomized Response Model 

The unrelated question randomized response technique was developed by 

Horvitz, Shah, and Simmons (1967) and it's theoretical framework has been 

discussed by Greenberg, Abul-Ela, Simmons, and Horvitz (1969). Abul-Ela, 

Greenberg, and Horvitz (1967) extended the unrelated randomized response 

technique to a multiproportions model. Gould, Shah, and Abernathy (1969) 

considered two trials per person for the unrelated randomized response technique, 

and Moors ( 1971) compared Warner's model and the unrelated model. The first 

major field trial of the unrelated randomized response technique conducted by the 

Research Triangle Institute for the National Center for Health Statistics 

(1965-1966). 

This technique requires the respondents to randomly select one of two 

unrelated questions (sensitive question or unrelated nonsensitive question). In the 

Warner~ randomized response technique, the interviewer asked the respondent 
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whether he or she belongs to the sensitive group S or to the complementary group 

S'. If two unrelated questions (including one nonsensitive question) are used, the 

respondent may have more confidence that his or her response is confidential and 

so this will increase the cooperation of the respondent. This possibility leads to 

the unrelated question model. 

Two independent, non-overlapping simple random samples of size n1 and 

n2 are drawn from the population. The size of n1 and n2 are not necessarily 

equal. 
\ 

Every respondent in the samples is asked to reply with only a 'yes' or 'no' 

answer to the specific single question which turns up in his case. The selection of 

the question is made by a randomization device on probability basis. In this way, 

the respondent's status is not revealed to the interviewer provided that the 

interviewer cannot observe the randontjzation process in the device. 

Suppose the randomization device consists of a wheel of two parts 

(Figure 2). In this model, two randomization devices need to be used. Wheel 1 

is used for the respondents in the first sample, and wheel 2 is used for respondents 

in the second sample. If more than one interviewer is used in either sample, every 

interviewer in- sample 1 has a randomization device identical to wheel 1, and every 

interviewer in sample 2 has a randomization device identical to wheel 2. The two 

wheels, 1 and 2, must also be different with respect to the probability that the 

sensitive question, Q1, will be selected. 

Let the randomization devices be such that the sensitive question Q1 is 

represented on a ~robability basis by P 1 on wheel 1 and P 2 on wheel 2, and P 1 :f. 

P 2. Similarly, let the unrelated non-sensitive question, Q2 be represented on a 

probability basis by ( 1 - P 1) on wheel 1, and (1 - P 2) on wheel 2. 
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Do you smoke pot at least 

Is the last digit of your student once a week? 

ID number odd ? 

Figure 2. The Unrelated Randomizing Device 



Let 

Y. 

The unrelated question model uses two questions such as 

Ql ; Do you smoke pot at least once a week? 

Q2 ; Is the last digit of your student ID number odd ? 

1r8 = the true population proportion of belonging to the group S. 

14 

7ry = the true population probability of belonging to the nonsensitive group 

P 1 = the probability that the sensitive question is selected by the random 

device in the first sample. 

P 2 = the probability that the sensitive question is selected by the random 

device in the second sample. 

n1 ; size of the first sample 

n2 ; size of the second sample 

1 if the i-th respondent in the j-th sample reports 'yes' to the 
r .. = 
IJ selected question. 

0 otherwise, 

where i=l,2, ........ ,n., j=l, 2. 
J 

The probability of getting a 'yes' response is 

·\ = P(ril = 1) = P( yes I Q1 ) P( Q1 ) + P( yes I Q2 ) P( Q2 ) 

).2 = P(ri2 = 1) = P( yes I Q1 ) P( Q1 ) + P( yes I Q2 ) P( Q2 ) 

(2.2.1) 

(2.2.2) 



15 

Denote the number of 'yes' responses in the first sample as n11 and in the 

nl n2 

second sample as n12, where n11 = i~l ril and n12 = iE 1 ri2. 

· A n11 A n12 
The sample proportion of 'yes' responses are >.1 ( = - ) and >.2 ( = - ) 

. nl n2 

for each sample, and since n1j follows a binomial distribution with, parameters nj 

nu n12 . A 

and).., n and n are unbiased estimates of >.1 and >.2, and from Eq.(2.2.1) 
J 1 2 

and Eq.(2.2.2) 

(2.2.3) 

provided P 1 f P 2. 

Therefore an estimate of 1rS is given by 

= 1 [ (1-P ) nll - (1-P ) n12]. 
p -P 2 n1 1 n2 

1 2 

(2.2.4) 

The denominator in Eq.(2.2.4) can become quite small by choosing P 2 too 

close to P 1 with the result that the point estimate of 1rs might be greater than 1 in 

the unrelated question model. Thus, a first general rule is that P 2 should be 

selected as far from P 1 as possible without jeopardizing the likelihood of a 

respondent's cooperation. Obviously, when P 2 = 0, or 1, this would not be a 

randomization device at all. 
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The estimate of 1r y is 

A 

Sine: n1j follows a binomial distribution with parameters nj and >.j, for j=l, 2, 1rs 

and 1ry are unbiased estimates of 1rs and 1ry, 
A • 

From Eq.(2.2.4) the variance of 1rs is 

(2.2.5) 

A ).,(1-).,) A A 

Since Var(\) = 1 1 and >.1 and >.2 are independent, then using Eq.(2.2.5), 
n. . 

1 
A 

an unbiased estimate of Var( 1rs) is 

provided P 1 j P 2. 

Since\= 1rS Pi+ 7ry (1 - Pi), if 7ry is close enough to zero, the variance 
A 

of the estimate, 1rs, is smaller, but if 1ry = 0, this technique reduces to the direct 

survey. Therefore the respondent reporting sensitive information is not protected 

by the method whenever 7ry = 0. 
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To reduce the variance, Var( 1rs), it is desirable to choose P 1 as far away 

from P 2 as possible and to keep the respondent's confidence, P 1 and P 2 should be 

as large as can be efficiently afforded, and 1ry should be large. 

But in the case when the true probability of a 'yes' answer to the unrelated 

non-sensitive question in the population is known in advance, one sample is 

enough to estimate ?rs· When the distribution of 7ry is known in advance, from 

Eq.(2.2.1), an estimate of ?rs is 

(2.2.6) 

Since n11 follows a binomial distribution with parameters n1 and ·\, ?rs is an 

unbiased estimate of 1rS. 
A 

From Eq.(2.2.6) the variance of 1rs is 

Since n11 follows a binomial distribution with parameters n1 and >.1 and 

2 2 E(n11) = n1 >.1 and E(n11 ) = n1 >.1 + n1 (n1-1) >.1, therefore 
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A 

Hence, an unbiased estimate of Var(7!"s) is given by. 

(2.2. 7) 

Greenberg, Abul-Ela, Simmon, and Horvitz (1969) showed that the 

unrelated randomized response model with known ?ry is better than that with 

unknown ?ry and both the unrelated randomized response model with known ?ry 

and with unknown 1ry are better than Warner's model despite the fact that 

Warner's model is always asking about the sensitive group, S either the 

complementary group of S. 

2.3 Bivariate Binomial Data Analysis Collected by Warner's 

Randomized Response Technique 

Using randomized response models, we can estimate the proportion or 

mean of a population, but we cannot observe individual level data. Therefore 

direct computation of correlation procedures are not possible. 

Consider two sensitive variables s 1 and s2 with dichotomized qualitative 

groups (S1 S1) and (S2 S-2), along with a sample of size n drawn from a bivariate 

binomial distribution with correlation p. Using the randomized response 

technique, we may estimate the marginal parameters 1r 1 and 1r2 for a 2 x 2 

contingency table, but we may not observe cell proportions, n00 , n01, n10, n11. 

Denoting "yes" response= "1" and "no" response= "O" for each group, we get 
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S2 
yes no 

yes nl l nlO Ill+ 

s1 
no nol noo no+ 

n+l n+o 

Therefore we have analytic limits to analyse the data collected by 

randomized response models, and as we showed in the introduction, the estimated 

variance will be inflated by the random device bias. If we estimate the covariance 

and correlation using the observed response data, we may have reduced (inflated) 

estimates and tests of hypothesis will also give misleading results as we can see in 

table 1. The estimated correlation between the two reported data obtained by the 

unrelated randomized response technique is shown table 1. 

The estimated correlation. between the two reported variables decrease as 

the selection probabilities (P 1 and P 3) for the sensitive variables decrease. 

0.4 0.4 

0.6 0.4 

0.7 0.7 

0.8 0.8 

0.9 0.9 

TABLE 1 

REDUCED CORRELATIONS 

Est i mated Corr e 1 ation 
Unrelated model 

0.17772 

0.24777 

0.31478 

0.38185 

0.48053 

The · true correlation is 0.6 
n = 100 

Estimated True 
Corr elation 

0.5954 

0.6007 

0.5996 

0.6000 

0.5991 
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Our concerns are how do we correct these correlations, covariances, and test 

statistics. 

Kraemer (1980) considered estimation of the correlation coefficient between 

two sensitive groups each surveyed by Warner's technique and the unrelated 

randomized response models when the population parameters of the nonsensitive 

variables are known. 

2.3.1 Correlation Analysis 

Here we propose a correlation analysis for Warner's model. 

We will show that the correlation between two unknown sensitive variables is the 

same as that of the two observed response variables for the Warner's model. 

i.e., Pg S = p , for Warner's model. 
1 2 rlr2 

As we showed in Warner's model, the response variables can be expressed 

by 

The means and variances can be expressed as 

(2.3.1) 

(2.3.2) 

(2.3.3) 
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(2.3.4) 

+ (1 - P 1)(2P 2 -1) E s2 + (1 - P 1)(1 - P 2) 

(2.3.5) 

where K = (2P1 -1)(1-P2) E S1 + (1-P1)(2P2 -1) E S2 + (1-P1)(1-P2). 

Now the formula for the correlation between s1 and s2 is 

-------- (2.3.6) 

Substituting Eq.(2.3.3) and Eq.(2.3.5) into Eq.(2.3.6), then we have 

Substituting for E s1 and E s2 yields 

Therefore 

(2.3.7) 



and hence Cov(S1 S2) = Pg S u8 u8 . 
1 2 1 2 

The bivariate binomial density function of (Sp s2) is 

From the density, 

This can be displayed in a 2 x 2 table as follow: 

1 
S2 

0 

1 7r 11 71'"10 

s1 

0 7r O 1 'll'"oo 

71'"+1 71'"+0 

22 

71'"1+ 

'll'"o+ 
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and observed cells are given by 

1 0 

1 

0 

The likelihood function is 

The log likelihood function is 

log L o<'.n11 log 7rll + n10 log 7rl0 + n01 log 7rOl + n00 log 7roo· 

By taking derivatives oflog L with respect to 7rl+' 7r+l' and c, and then equating 

to Owe obtain : 

8 1 o g L n 11 7r + 1 nOl 7r + 1 

O 71"1+ 71"+171"1+ + C 7r+l(l-7rl+) - C 

nlO( 1-71" +1) 
+------

noo ( l-71" +1) 
-------=0, 

(1-71"+1) 71"1+ - C (1-7r+l) ( 1-7r1+)+c 

8 log L nll 71"1+ nOl (l-11"1+) 

O 71"+1 71"+171"1+ + C 71"+1 (1-71"1+) - C 

nlO 71"1+ +------
noo( l-11"1+) -----'----- = 0, 

(l-11"+1) 7r 1+ - C (1-7r+1H l-7r1+)+c 
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8 log L = nl 1 no 1 

8 C 7r+l 7rl+ + C 7r+l (l-7rl+) - C 

. nlO 
+------

(1-71" +1) 71"1+-' C 

Solving these equations we may find the maximum likelihood estimators (m.1.e) 

~ n n -n n 
p = 11 00 10 01 , and is the m.l.e of p by the invariance 

Ill+ no+ n+l n+o 

property of m.l.e. 

To see the properties of the estimated correlation, we introduce the following 

Theorems. 

Theorem (Muirhead 1982) Multivariate central limit theorem 

Let the 2--component vectors r1, r2, · · · be independently and identically 

' distributed vectors with E (ri) = µ, = (µ1, ~) and covariance matrices 

2 
0'1 0'12 

Cov( ril, ri2) = E = 
2 

0'12 0'2 



n 
Let rn = fi. E ri, then {rt( rn - µ) -> N2(0, E) as n -> CD. 

I=l 

Proof: See Muirhead (1982). 

. 0"12 
Now smce p12 = --, E can be rewritten as follows 

0"10"2 

2 
(Tl P12 ul o-2 
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E= (2.3.8) 
2 

P12 ul o-2 ur 
2 

Theorem (Anderson 1984) 

' Let (rlt, r2t) , t = 1, 2, ... , n, be i.i.d N2(µ, E), where Eis the same as 

Eq.(2.3.8), uf > 0, Ip I ~ 1. Let 'Y be the sample correlation coefficient. Then 

{r! ( 'Y - p ) --> N[O, (1 - µ2) 2] as n -> CD. 

whereas [ 
(1-p2)2 l 

'Y---> N p' n . 

Proof : See Anderson pp 122. 

Hence 

2 2 
~ (1-'Y ) 

Var ( 'Y) = n , 

n11 nOO - nlO nOl 
where 'Y = --------

nl+ no+ n+l n+o 
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2.3.2 Cell Proportion Estimation 

Here we propose a method to estimate the cell proportions, using the estimated 
A 

correlation Ps S . 
1 2 

"' A A. A 

where c = p ..J 1ri. (1 - 1ri) 1r.j (1 - 1r}, s1 =0,1 s2 = 0,1. 

2.3.3 Tests of Hypothesis 

Using the relationship between the correlation and chi-square statistics, we can 

perform a test of hypothesis. 

In a 2 x 2 contingency table, by coding each level 11011 and 11 111 , we may 

derive a relationship between correlation and chi-square test statistics as 

A A 2 
( 71" •• - 7r i+ 7r+· .) IJ J X A 

A A 2 
_ ( 1roo 1r 11 - 1r o 1 1r 1 o) = 1'. 

1ro+ 1r1+ 1r+o 1r+1 

2 
Thus in a 2 x 2 tables, '(' is simply~, i.e., the Pearson chi-square test statistic 

for independence of rows and columns divided by the sample size (Bishop, 

Fienberg, and Holland, 1975). But this relationship is not true in general for r x c 

contingency table ( r > 2, c > 2 ). 



The null hypothesis is H0 : Ps s = O 
1 2 

The alternative is HA : Ps s 'f O 
1 2 

To test this, we just need the value of n 'Y~ S with critical values of x2, 
1 2 
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. "f 2 2 1.e., 1 n 'Y > Xa we may say that there is evidence against H0 at significance 

level a. 

2.3.4 Sample Size Estimation 

Now consider the sample size estimatfon procedure. 

i. Some margin of error din the estimated proportion 1rs of units in the 

population has been agreed on, and there is a small risk a that we are willing to 

incur that the actual error is larger than d. So how many elements are needed to 

satisfied these conditions ? 

We want 
A 

Pr [ I 7r S - 7r S I ~ d] = a. 

We use simple random sampling, and since 1r S is a maximum likelihood estimate, 
A 

1rs is approximately normally distributed, 

Hence the formula that connects n with the desired degree of precision is 

+ P(l-P) 
n(2P-1)2 ' 

where z is the abscissa of the normal curve that cuts off an area of ~ in the upper 

tail. 
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Solving for n, we find 

2 
n = zo./2 [ 7r (l-7r ) + p ( 1-P) ]. 

d2 S S (2P~1)2 

At this point a difficulty appear that is common to all problems in the estimation 

of sample size. The above formula for n depends on the parameter of the 

population that is to be sampled. 

The parameter is the quantity 7r S that we would like to measure. 

Estimates of 7rS for the purpose of estimating n may be obtained in a number of 

ways (Warde, 1991). 

We try to obtain an estimate of 7rS which is as close to the real value of 7rS 

as possible, but which, it is not correct, will obtain a conservative value for n. 

This concept is referred to as a conservative assumption in that it is made to 

ensure that the specified tolerences are met or exceeded. In this situation, with no 

prior knowledge of 7rs, using the value 7rS = 0.5 will yield a conservative value for 

n. If some information on 7rS is known, the value of 7rS closest to 0.5 in the range 

of values of 7rs that we believe to be reasonable a priori will yield a conservative 

value for n. 

ii. How many more elements are needed to get the same variance as the 

direct survey ? 

We know the variance of 7rS for the direct survey is given by 

and 
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In order to have the same variance as the direct survey, the sample size 

(nd) should be increased. The number of additional sample units needed can be 
A 

found by reexpressing V(7rs)R and Var(?r)d, respectively, as 

and 

If we equate both variances and solve for nR, then 

A 

The formula for n has been obtained, but n depends on the quantity V(7rg)d that 

we would like to measure. Here we also use a conservative assumption that is 

made to ensure that the specified tolerences are met or exceeded. 

2.3.5 A New Randomized Response Technique for Bivariate Binomial Data 

Now we propose a new data collection technique and hence the cell 

proportions for a 2 x 2 contingency table can now be estimated. 

Consider two sensitive variables s 1 and S2 with dichotomized groups (S1 

S1) and (S2 S2), which follow bivariate binomial distributions with correlation p. 

By applying Warner's technique, each interviewer is furnished with two spinners 

(random devices). In each interview, the respondent is asked to spin spinner 1 

unobserved by the interviewer, and pointer 1 gives a question from the first two 
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statements. Without reporting the answer to the interviewer he (she) spins 

spinner 2, and pointer 2 gives a question from the second two statements. Then 

the respondent reports a pair of answers: yes yes; yes no; no yes; or no· no; or a pair 

of coded answer 11; 10; 01; or 00. 

The bivariate binomial density function of (x,y) is given by Hamdan and 

Martinson (1971) and Kocherlakota and Kocherlakota (1992) as 

wherec=pJ p 1 q 1 p 2 q 2 , x,y=0,1, q1 =1-p1 andq2 =1-p2. 

An example of possible questions to be used are 

Q1 ; Have you ever had an abortion ? 

Q1 ; Have you ever not had an abortion? 

Q2 ; Have you ever smoked marijuana?· 

Q2 ; Have you never smoked marijuana? 

Let 7f S be the population proportion of the respondent belong to group S. 
j J 

Pj be the probability that spinner j points to Sj (j=l, 2) 

ri be the reported response value from the i-th respondent and 

P[A1 A2 I Q1 Q2] be the conditional probability of response given questions 

(Ql Q2) 

A.= 
J 

[ 0
1 if response is 'yes' 

if response is 'no' 
for j = 1, 2 
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where Q1 is the first question which is selected by the first device and Q2 is the 

second question which is selected by the second device and a question is randomly 

selected one at a time by the random device, hence P[Q1 Q2] = P[Q1]P[Q2],then 

the probability of getting a response {11, 1 0, 0 1, or O 0) is 



In matrix form we can express those probabilities as 

).11 plp2 p 1 (1-P2) (1-P1)P2 (1-P 1)(1-P 2) 

).10 (1-P1)P2 (1-P 1)(1-P 2) plp2 Pl(l-P2) 
--

).01 P1(1-P2) plp2 (1-P 1)(1-P 2) (1-P1)P2 

).00 (1-P 1)(1-P 2) (1-P 1)P 2 P1(1-P2) plp2 

In matrix notation this becomes 

A= P II 

and an unbiased estimator is 
A A 

A= P II. 
A 

The variance of II is given by 

Var (II) = p-l Var(A) (P-1)' 

).11 ( l-).11) 

=!p-1 -).10).11 n 

-).01 ).11 

-).11).10 -).11).01 -).11 ).00 

).10 ( 1-AlO). -).10).01 -).10).00 

-AOl ).10 ).01 (1-).01) -).01).00 
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7rll 

71"10 

71"01 

1roo 

(P-1)' 

-).00).11 -).00).10 -).00).01 ).00( 1-).00) 

-1 ' = n [ diag A - A A ] , 

).11 0 0 0 

0 ).10 0 0 
where diag ( A ) = 0 O ).01 0 

0 0 0 ).00 

To compare this model with the direct survey method, if we apply the usual 
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direct survey method, the outcome of the n independent repetitions of that trial 

follows the multinomial distribution with probability density function defined by 

x .. 
1 1 7f, , IJ 

f(x11, X10, x01' Xoo) = n!. IT .rr -2.L_, 
I=O J=O X, ., 

IJ 

' For the vector of observed counts x = (x11, x10, x01 , x00) , 0 S xij S n 

1 1 
for i, j = 0, 1 and :E :E x .. = n. 

i=O j=O IJ 

The direct survey estimates of 1rt1, 1rt0, 1rg1, and 1rg0 are 

These estimates are unbiased and the Covariance matrix is 

d d 
7r 11 (1-1r 11) 

d d 
-7f 117f 10 

d d 
-7f 117f01 

d d 
-1r111roo 

d d d d d d d d 
1 -7r 107f 11 1r10(1-1r10) -1r101ro1 -7f 107f00 

:Ed= :n 
d d d d d d d d 

-7f017f11 -7f017f 10 1ro1 ( 1-1ro1) -1ro11roo 

d d d d d d d d 
-1roo1r 11 -1roo1r 10 -1roo1r11 7fooC 1-1roo) 

Comparing the estimates under both models, randomized and direct, we 

observed that : 

1. The estimates of ?f •. and 1r~. are unbiased under both models. 
IJ IJ 

2. The direct survey estimates are expected to be of higher precision(i.e. lower 

variance) than the randomized response estimates. This is because the use of a 
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random device in interviewing introduces an additional source of variability to 

sample variation. Also the variance of the direct multinomial estimators, 

Var(;f j), (i, j = O, 1) as a function of n ~ecreases faster than the variance of the 

randomized ~ultinomial estimators, Var(1rij) which is function of n and Pj" 

Var( 1r • • ) can be minimized by choosing P. = 1, but in that case the model is 
lJ . J . 

no longer a randomized response model. Therefore P . are to be determined to J . 

increase the cooperation of the respondents and at the same time minimize the 

variances of the randomized response estimators. Since each cell of the 2 x 2 

contingency table · is known, by applying ,? = i x2, we can estimate the 

correlation between two sensitive variables. And to test H0 : Ps S = 0, and 
1 2 

H1 : Ps S I 0, we just need the value of n 'Y~ S with critical value of x2. 
1 2 1 2 

2.3.6 Correlation Analysis for the Warner's Model versus Direct Survey 

ff a researcher wants to estimate the correlation between two variables 

where one variable is sensitive and another is nonsensitive, one possibility is to 

collect data on the sensitive variable using Warner's model, and on the 

nonsensitive variable data by a direct survey. 

As we showed in Warner's model, the response variable can be expressed as 

r1 = (2P -1) S + (1 - P) 

and the response variable for the nonsensitive variable (Y) using a direct survey 

can be expressed as 

r2 = Y. 

Let 

s = [ ~ if the individual says 'yes' for the Warner model 

otherwise. 



[ 
1 if the individual says 'yes' for the direct survey 

y = 0 otherwise. 

The outcome of each trial can be displayed in a 2 x 2 table as follows: 

s 
yes no 

yes S - 1 Y = 1 S - O Y = 1 Y = 1 

y 

no S = 1 Y = 0 S = 0 Y = 0 Y = 0 

S = 1 S = 0 

The correlation between the two variables (S, Y) is 

(2P-1) Cov(S,Y) Cov(S, Y) 
Pr r = 

1 2 J (2P-1) 2 V(S) V ( Y) 

____ =Psv. 
J V(S) V(Y) 

35 

We observe that this result is the same as the Warner model versus Warner 

model given in section 2.3.1. 

2.4 Bivariate Binomial Data Analysis Collected by the Unrelated 

Randomized Response Models 

For the unrelated randomized response technique, like Warner's model, we 

cannot estimate cell proportions. To analyse the correlation between two 

sensitive variables, Kraemer (1980), Fox and Tracy (1984), and Edgel, 

Himmelfarb, and Cira (1986) assumed that two sensitive variables (S1 and S2) are 

independent of the two unrelated variables (Y 1 and Y 2) and that the two 

unrelated variables are also independent. These assumptions are not practical 
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(these assumptions are too strong), because S. and Y. (i=l,2 j=l,2) can be 
I J 

independent, but Y 1 and Y 2 may not be independent. 

Gould, Shah, and Abernathy (1969) tried to use the unrelated randomized 

response techniques with two trials per respondent to get the covariance, but their 

model contains forty two parameters and not all of these parameters are 

simultaneously estimable, therefore they failed to estimate the covariance between 

the two sensitive variables. 

2.4.1 Correlation Analysis 

Here we propose a method to estimate the correlation between two sensitive 

variables. To estimate the correlation between the sensitive variables, the 

interviewer has to prepare two sets of questions such as. 

Q1 : Do you smoke pot . at least once a week ? 

Q2 : Is the last digit of your student ID number odd? 

Q1 : Have you ever had abortion? 

Q2 : Were you born in Oklahoma? 

(These types of questions were used by several authors) 

Suppose we have a sample of size 2n drawn from a population. The first n 

respondents are asked to answer "yes" or "no" to one of two questions from the 

first set. The probability of selecting the sensitive question is predetermined as 

P 1, and the question to be answered will be selected by a random device. After 

completing the first question, the respondents are asked to answer one of two 

questions from the second set of questions. The probability of selecting the 

sensitive question is predetermined as P 2, and by a random device a question will 

be selected. 
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For the next n respondents, the interviewer will change the probability of 

selecting the sensitive questions for both question sets. Thus, the probability of 

the first sensitive variable changes from P1 to P 3 and the probability of the second 

sensitive variable changes from P 2 to P 4. With these probabilities, the next n 

respondents will anwer the questions like the first n respondents. 

Then the response equations are : 

rl = p 1 81 + (l - p 1) y 1 

r2 = P 2 82 + (l - P 2) y 2 

r3 =P3 S1 +(1-P3)Y1 

r4 = p 4 S2 + (l -P4) Y2 .. 

Since the sensitive variables are independent of the two unrelated variables, the 

correlation equations can be written as 

(2.4.1) 

where P. (i=l,2,3,4) are predetermined, and Pr r and Pr r can be estimated 
1 1 2 3 4 

from the observed data. 

Solving Eq(2.4.l) for Ps S , we have 
1 2 

Prlr2 - [(1 - Pl)(l - P2) Pr3rj[(1 - P3l(l - P4)rl 

Ps 1 S2 p 1 p 2 -[ (1 - p 1 )( 1 - p 2 ) p 3P 4] [ (1 - p 3 )( 1 - p 4 ) ]-1 



Therefore we may estimate Ps S by 
1 2 
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P,1'2 [(1 - Pl)(l - P2) P,3,J [(1 - P3)(l - P4)rl 

p 1 p 2 -[ ( 1 - p 1 )(l - p 2) p 3P 4] [ (1 - p 3 )( 1 - p 4) ]-l 

where p and p are provided by the observed data, and the selection 
rlr2 r3I4 

probabilities P1, P2, P3, and P 4 are known, and hence we can estimate the 

correlation between the two sensitive variables. 

To illustrate this procedure, we have simulated randomized response data 

for estimating the correlation between the two sensitive variables. The true 

correlation between the two sensitive variables s1 and s2 was set at 0.6. The 

true correlation between the two unrelated variables Y 1 and Y 2 was set at 0.2, 0.3, 

0.4, 0.5 and 0.6 for fixed correlation between the sensitive variables. Means of 

each of the variables were set at µ5 = 0.2, ~ = 0.2, µ5 = 0.3, and ~ = 0.3. 
1 1 2 2 

In the simulation, the probabilities of selecting the sensitive question were set to. 

be various values. The results of the simulations are presented in table 2 and 

table 3 for n = 100 and n = 200 respectively. Each table gives the estimated 

correlations and standard deviations of the sampling distribution of the correlation 

coefficient obtained by using the unrelated question model under the assumptions 

stated previously. The standard deviations decrease as IP 1 - P 31 increases. 

The estimated correlation Ps S , does not depend on the correlation between 
1 2 

unrelated variables for each set of (P 1, P 2, P 3, P 4). 
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TABLE 2 

ESTIMATED CORRELATION FOR THE UNRELATED 
RANDOMIZED RESPONSE MODEL 

pl P3 
Pyly2 

0.22 0.3 0.4 0.5 0.6 

0.3 0.4 0.64216 0.62861 0.63454 0.62885 0.64619 
(1.21164) (1.22923) (1.22557) ( 1. 23004) (1.21609) 

0.3 0.6 0.60406 0.59795 0.59967 0.60064 0.60062 
(0.32265) (0.32537) (0.32591) (0.32467) (0.32148) 

0.3 0.7 0.60163 0.59346 0.59420 0.59436 0.59453 
(0.22093) (0.22292) (0.22315) (0.22254) (0.22173) 

0.3 0.8 0.59836 0.59379 0.59369 0.59381 0.59412 
(0.16567) (0.16165) (0.16295) (0.16287) (0.16361) 

0.4 0.6 0.60206 0.59554 0.59725 0.59651 0.59639 
(0.37488) (0.37324) (0.37469) (0.37422) (0.37281) 

0.4 0.7 0.60078 0.59236 0.593038 0.59255 0.59269 
(0.23157) (0.23345) (0.23353) (0.23298) (0.23273) 

0.4 0.8 0.59804 0.59344 0.59330 0.59321 0.59352 
(0.16754) (0.16329) (0.16458) (0.16451) (0.16544) 

0.6 0.7 0.61012 0.60409 0.60582 0.60025 0.59901 
(0.37164) (0.37912) (0.37793) (0.37439) (0.37393) 

0.6 0.8 0.59984 0.59630 0.59631 0.59509 0.59510 
(0.18359) (0.17904) (0.18032) (0.17975) (0.18096) 

0.7 0.8 0.60127 0.59882 0.59849 0.59563 0.59452 
(0.23289) (0.22893) (0.22993) (0.22820) (0.22960) 

Inside values of ( ) are standard deviations. 
Simulation includes 1000 trials. 

Ps1s2 
= 0.6, n = 100. 
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TABLE 3 

ESTIMATED CORRELATION FOR THE UNRELATED 
RANDOMIZED RESPONSE MODEL 

pl P3 
Pyly2 

0.22 0.3 0 .4 0.5 0.6 

0.4 0.4 0.61612 0.60314 0.60058 0.60042 0.61474 
(0.83676) (0.85359) (0.85901) (0.85139) (0.84824) 

0.6 0.6 0659779 0.59062 0.59204 0.59265 0.59319 
(0.22317) (0.22043) (0. 22062) (0.22263) (0.22387) 

0.7 0.7 0.60015 0.59615 0.59669 0.59618 0.59661 
(0.01545) (0.15507) (0.15542) (0.15339) (0.15338) 

0.8 0.8 0.59935 0.59743 0.59692 0.59634 0.59681 
(0.12118) (0.11063) (0.11145) (0.11006) (0.11015) 

0.6 0.6 0.59577 0.58614 0.58768 0.58760 0.58791 
(0.25985) (0.25549) (0.25577) (0.25998) (0.26149) 

0.7 0.7 0.59954 0.59482 0.59536 0.59454 0.59488 
(0.16211) (0.16305) (0.16334) (0.16172) (0.16208) 

0.8 0.8 0.59914 0.59702 0.59649 0.59582 0.59625 
(0.11331) (0.11197) (0.11275) (0.11146) (0.11166) 

0.7 0.7 0.60591 0.60090 0.60251 0.59894 0.59900 
(0.26218) (0.26366) (0.26445) (0.26050) (0.26259) 

0.8 0.8 0.60057 0.59872 0.59830 0.59700 0.59739 
(0.12483) (0.12335) (0.12402) (0.12220) (0.12274) 

0.8 0.8 0.60015 0.59923 0.59868 0.59650 0.59640 
(0.16035) (0.16105) (0.16094) (0.15794) (0.15837) 

Inside values of ( ) are standard deviations. 
Simulation includes 1000 trials. 

Ps1s2 
= 0.6, n = 200. 
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_ 2.4.2 Test of Hypothesis 

Here we propose a method to perform a test of hypothesis. For 2 x 2 tables 

(not Ix J tables in general) 'f' = x2 /2n. - Therefore we may conduct a test of 

independence directly from the estimate of p with critical value of x2. 

2.4.3 Sample Size Estimation 

Here we propose sample size estimation. 

i. Some margin of error d in _the estimated proportion 1r of units in the 

population has been agreed on, and there is a small risk a that we are willing to 

incur that the actual error is larger than d. So how many elements are needed to 

satisfied these conditions ? 

We want 
A 

Pr [ I 'If S - 'If S I ~ d] = a. 
A 

We use simple random sampling, and since 'Ifs is a maximum likelihood estimate, 
A 

1rS is approximately normally distributed (for the case where 1ry is known), 

where .X = 1rs P + 1ry(l - P). 

Hence the formula that connects n with the desired degree of precision is 

I .x(1 ~) 
d = z0 / J , 

2 n P 

where z is the abscissa of the normal curve that cuts off an area of ~ in the upper 

tail. 
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Solving for n, we find 

n= 

For practical use, an estimate A of A is substituted in the above formula. But A 

depends on the parameter 1r8 of the population that is to be sampled. Hence we 

may use a conservative assumption to ensure that the specified tolerences are met 

or exceeded. 

ii. How many more elements are needed to get the same variance as the 

direct survey. We know the variance of 1r8 for the direct survey is given by 

and 

In order to have the same variance as for the direct survey, the sample size 

(nd) must be increased. The number of extra sample units can be found by 

equating both variances and solving for nR, then 

The formula for n depends on the population parameters 1r8 and 1ry which are to 

be estimated. 
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Hence we may use a conservative assumption in that it is made to ensure 

that the specified tolerences are met or exceeded. 

2.4.5 Unrelated Randomized Response Technique versus Direct 

Survey technique 

The purpose of the present model is to estimate the correlation between two 

variables; one variable is sensitive {S) and the other variable is nonsensitive {Y). 

To estimate the proportion of the sensitive variable we may use the 

unrelated randomized response model with an alternative nonsensitive variable 

(Y1) which is unrelated to the sensitive variable {S) but can be related to the 

nonsensitive variable {Y). Since Y is a nonsensitive variable, we may use the 

usual direct survey methodology. 

Suppose we have a sample of size 2n drawn from a population. In this 

particular model, two randomization devices need to be used. The first one is 

used for the first n respondents, and the second one is used for the next n 

respondents. 

Let the randomization devices be the two wheels. One side of wheel 

designates sensitive question S and the other side designates nonsensitive unrelated 

question, Y 1. The selection probability of the sensitive question S is 

predetermined as P 1 for the first wheel and as P 2 for the second wheel. P 1 should 

not be the same as P 2_ 

An example of possible questions to be used are: 

S : Have you ever smoked marijuana ? 

Y 1: Have you watched any sports game on TV in the past week ? 

and let the question for the usual direct survey methodology be: 

Y : Have you had a beer in the past week ? 
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The first n respondents are asked to answer 'yes' or 'no' to one of two 

questions by using the first wheel and also answer the direct question, Y, on a 

nonsensitive topic. The next n respondents will answer the question like the first 

n respondents but using the second wheel. Then the interviewer will observe ; 

For the first n respondents 

A.2 = 7ry· 

For the second n respondents 

From Eq(2.4.l) and Eq(2.4.3) 

(1 -P2)>i.1 -(1- P 1 )>i. 3 

(1 - P2)P1-(1 - P1)P2 

Therefore an estimate of 1r S is 

A A 

(1 - P2)>i.1 - (1 - P 1 )>i. 3 
7rS = 

nl n2 
(1 - P )- - (1 - P ) -2 n 1 n 

provided P 1 f P 2. 

where n1 is the number of 'yes' responses from the first n respondents, and 

n2 is the number of 'yes' responses from the second n respondents. 

(2.4.1) 

(2.4.2) 

(2.4.3) 

(2.4.4) 

(2.4.5) 



Since n1 and n2 follow binomial distributions with parameters n and\, 
A 

i = 1, 2, 1rS is an unbiased estimate of 1rS. 

From Eq(2.4.5), the variance of 7rS is 

A 

Hence Var( 1rs) is given by 

Since n. follow binomial distributions with parameters n and,\. for i=l,2 
1 1 

an unbiased estimate of Var( 1rs) is given by 

and from Eq(2.4.1) and Eq(2.4.3) 

7ry -
1 

45 .. 



Since·\ and >.2 are unbiased, an unbiased estimate of 7ry is given by 
1 

A 

[P2 ,\ 1 - pl >-3] 
7ry 

1 p2 - pl 

n n 
[P2 __!_ - p ~] 

n 1 n 

p2 - pl 

and the variance of 7ry is give by 
1 

A 

Hence an unbiased estimate of Var(1ry ) is given by 
1 
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However, we also have an estimate of 7ry by direct observation, and hence we have 

two estimates of 1ry, each of them is unbiased. To get the best linear unbiased 

estimate, let 
A 1 
7ry be the first estimate of 7ry 

~t be the second estimate of 1ry 

2 Al 
a1 be the variance of 7ry 
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u~ be the variance of ;i 
A 1 A 2 

u12 be the covariance between 1ry and 7ry· 

A A 1 A 2 
7ry = e 7ry + (1-e) 7ry is a linear unbiased for 7ry for any value of e, 

where O S e S l. 

The variance of 7ry is given by 

To minimize this variance, we take the first derivative with respect to e, and set 

the resulting equation equal to 0. 

That is 

Saving for e, we get e0 which is given by 

(2.4. 7) 

Therefore 1ry is the best linear unbiased estimate whenever we use e = e0. 
A 

Substituting Eq.(2.4.7) into Eq.(2.4.6), Var(1ry) is given by 

A 

Var(1ry) = 

To estimate the correlation between two variables (Sand Y), 



we may rewrite Eq.(2.4.1) and Eq.(2.4.4) 

r1 =P1 S+(l-P1)Y1 

r2 = y 

r3 =P2 S+(l-P2)Y1 

r4 =Y. 

Since S and Y 1 are independent, the correlation equations can be written as 

From these two equations we obtain 
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Hence from the observed data we may estimate p . and p . , and the selection 
rlr2 r3r4 

probabilities P 1 and P 2 are known hence we may estimate the correlation and so 

obtain 

Since p and p are m.l.e, Psy is also m.l.e .. 
rlr2 r3r4 
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To illustrate this procedure, we have simulated randomized response data 

for estimating the correlation between the two variables. The true correlation 

between the sensitive variable S and the non-sensitive variable Y was set at 0.6. 

The true correlation between the unrelated variable Y 1 and the non-sensitive 

variable which is conducted by direct survey was set at 0.35. In simulation, the 

probabilities of selecting the sensitive question were set to be various values. 

Means of each of the variables were set at µ8 = 0.2, ~ = 0.3, and ~ 1 = 0.3. 

The results of the simulations are presented in table 4. Table 4 gives the 

estimated correlations and standard deviations (third column for n = 100, fourth 

column for n = 200) and the effective sample sizes. To minimize the variance of 

Pgy, for fixed P1 (or P2), we should choose P2 = 1 (or P1 = 1), but in that case, 

this is no longer randomized response model. Therefore, P 2 ( or P 1) have to be 

choosen as far from P 1 ( or P 2) as possible. As we can see in table 4, 

as IP 1 - P 21 increases the standard deviation decreases. 
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TABLE 4 

ESTIMATED CORRELATION FOR THE UNRELATED RANDOMIZED 
MODEL VERSUS DIRECT SURVEY 

pl p2 Ps1s2 Ps1s2 Effective 
Sample 

n=lOO n=200 Size 
0.2 0.3 0.61285 0.61260 50 

(0.54785) (0.37662) 

0.2 0.4 0.61628 0.61849 60 
(0.26637) (0.18950) 

0.2 0.6 0.60490 0.60544 80 
(0.13498) (0.10093) 

0.2 0.7 0.60386 0.60322 90 
( 0 .11986) (0.08428) 

0.2 0.8 0.60424 0.60310 100 
(0.10299) (0.07360) 

0.3 0.4 0.60702 0.60492 70 
(0.49167) (0.35092) 

0.3 0.6 0.60850 0.60964 90 
(0.16269) (0.11073) 

0.3 0.7 0.59858 0.60707 100 
(0.12600) (0.08882) 

0.3 0.8 0.60578 0.60141 110 
(0.10472) (0.07591) 

0.4 0.6 0.60269 0.60155 100 
(0.20378) (0.14389) 

0.4 0.7 0.60091 0.60385 110 
(0.13875) (0.09875) 

0.4 0.8 0.60143 0.60082 120 
(0.11183) (0.07695) 

0.6 0.7 0.60020 0.60046 130 
(0.24899) (0.17894) 

0.6 0.8 0.59811 0.59811 140 
(0.13076) (0.09026) 

Inside values of ( ) are standard deviations. 
Simulation includes 1000 trials. 



CHAPTER III 

RANDOMIZED RESPONSE TECHNIQUE FOR MULTIPTL ATTRIBUTES 

3.1 Additive Randomized Response Technique. 

An additive randomized response technique was proposed by Kim and 

Flueck (1978). The additive randomized response technique will be explained 

briefly. 

Let C. be the true category for the j-th respondent, where the C. have T 
J J 

mutually exclusive and exhaustive categories with population proportions 1r1, 1r2, 

T 
1r3, .... ,1rT, respectively, and E 1rt = 1. Let YJ. (1, 2, .... ,T) be a randomly 

t=l 

selected augmentation value for the j-th respondent, with selection probability 

T 
P(Y. = t) = Pt t =1, 2, .... , T, and E Pt= 1. The selection probability (Pt) of 

J ' t=l 

the augmentation value is preassigned and the distribution of augmentation 

variable (Y) is known. Each respondent is asked to select his own category but to 

maintain confidentiality, they are instructed to add the augmented value selected 

to their own category number. Then the j-th respondent's added response whose 

true group is C ., is 
J 

Cj + Yj, j = 1, 2, .... ,n; Cj = 1, 2, .... ,T; and Yj = 1, 2, ... ,T. 

To provide further confidentiality to the respondent, the interviewer asks 

the respondent to transform the added value and report the value rJ 

[
C. + Y. 

J J 
r. = 
J C.+Y.-T 

J J 

if C. + Y. < T 
J J-
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For the case T = 3, the questions (Kim and Flueck, 1978) are: 

Q 1 : I have never cheated 

Q2 : I was prepared to cheat before the test but did not actually cheat 

Q3 : I cheated. 

Then, the probability >. that a respondent reports valuer (1 , 2 or 3) is r 

>.1 = P(r=l) = P(C.=1, Y.=3) + P(C.=2, Y.=2) + P(C.=3, Y.=1) 
J J J J J J 

>.2 = P(r=2) = P(C.=1, Y.=1) + P(C.=2, Y.=3) + P(C.=3, Y.=2) 
J J J J J J 

>.3 = P(r=3) = P(C.=1, Y.=2) + P(C.=2, Y.=1) + P(C.=3, Y.=3) 
J J J J J J 
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(3.1.1) 

Since >.3 = 1- >.1 - >.2 and 1r3 = 1- 1r1 - 1r2, these equations reduce to 

We may rewrite these equations in matrix form 
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Ill 
From the observed data, the sample proportion for r = 1 is n' the sample 

n2 nl n2 
proportion for r = 2 is n' and the sample proportion for r=3 is ( 1 - n-n). 

A A A 

A3 == 1 - Al - A2, 

A A -1 A* 0 

we may estimate II , by II= P A , provided P1 f P2 f P3 

A 

The unbiased estimate of II is 

1 
71"1 = 

p I 

A A 

--, [ (P 3 - p 2) ( Al - p 1) + ( p 1 - p 2) ( A2 - p 2) ], 

1 
71"2 = 

I p 

(3.1.2) 

A A A 

Var(1r3) = Var(1r1) + Var(1r2) + 2 Cov(1r1 1r2), 
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Since ni follows a binomial distribution with parameters n and,\ for i =1, 2, 

and 

= 1 En n 
n2(n-1) 1 2 

n 

A A A 

The unbiased estimate of Var( 1r 1), Var( 1r 2), and Var( 1r 3) is given by 



A A A A A 

Var (1r3) = Var(1r1) + Var(1r2) + 2 Cov(1r1 1r2), 

where 

A A 

(P 3-P 2)(P 3-P 1),\ .X2+ ( p l-P2)(P 3-P 1).X2(l-.X2) 
+------------------

(n-1) IP 1 2 

3.2 Correlation Analysis for Another Version of 

the Additive Model 
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Suppose we have two sensitive characters and each character has more than 

two subcategories (S1 has r subcategories, s2 has c subcategories). Thus the 

population can be tabulated as an r x c contingency table, and we need to estimate 

the corresponding cell proportions 1r11, 1r12, ...... , 1rrc' where O < 1rij < 1, 

re 
(i = 1, 2, ... , r, j = 1, 2, ..... , c) and~~ 1r •• = 1. 

i j lJ 

Let s1 have 3 subcategories and s2 have 3 subcategories, then to estimate 

each cell proportion, we may apply the additive randomized response technique by 

reordering each cell number as follow: 

Let ( 1 1) = 1, ( 1 2) = 2, ( 1 3) = 3, ( 2 1) = 4, ( 2 2) = 5, ( 2 3) = 6, 

(3 1) = 7, (3 2) = 8, (3 3) = 9. 

The first number of each pair is the row subcategory and the second number is the 

column subcategory, then our contingency table will be as follows: 



1 

2 

3 

TABLE 5 

REORDERED CONTINGENCY TABLE 

1 

7rll 
1 

7r21 
4 

7r31 
7 

S2 
2 

7rl2 

7r22 

7r32 

2 

5 

8 

3 

7rl3 

7r23 

7T"33 
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3 

6 

9 

As with the usual additive model, let Y. be the j-th respondent's randomly 
J 

selected augmentation value (Y. = 1, 2, ..... , 9 ), and the selection probabilities Pt 
J . 

(t = 1, 2, .... ,9) are known, then this system is the same as the Kim and Flueck's 

Additive randomized response model. Hence we may apply the additive model for 

estimating the cell proportions of the above contingency table. 

Then the j-th respondent's added response whose true group is Cj is 

cj + Yj cj = 1, 2, ....... ,9 

Y. = 1, 2, ....... ,9. 
J 

The possible added responses are 2, 3, ... , 16, 17, 18, the added responses 2 and 18 

have only one possibility to be that added values, hence the respondents will 

hesitate to release their information. 

To provide further confidentiality to the respondent, the j-th respondent's 

added value C. + Y. is transformed by the respondent to the reported value, 
J J 

[
c. + y. 

J J 

rj= C.+Y.-9 
J J 

ifC.+Y.<9 
J J -

if C. + Y. > 9. 
J J 



Then the possible reported values and their sources are: 

Observed 
number source ( C+ Y. ) 

1 1+9 2+8 3+7 4+6 5+5 6+4 7+3 8+2 9+1 

2 1+1 2+9 3+8 4+7 5+6 6+5 7+4 8+3 9+2 

3 1+2 2+1 3+9 4+8 5+7 6+6 7+5 8+4 9+3 

4 1+3 2+2 3+1 4+9 5+8 6+7 7+6 8+5 9+4 

5 1+4 2+3 3+2 4+1 5+9 6+8 7+7 8+6 9+5 

6 1+5 2+4 3+3 4+2 5+1 6+9 7+8 8+7 9+6 

7 1+6 2+5 3+4 4+3 5+2 6+1 7+9 8+8 9+7 

8 1+7 2+6 3+5 4+4 5+3 6+2 7+1 8+9 9+8 

9 1+8 2+7 3+6 4+5 5+4 6+3 7+2 8+1 9+9 

Let 1rj be the proportion of j-th category for that population (see table 5). 

Let Pj be the selection probability of.the augmentation values. 
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From the above transformed response values the probability (\) that a 

respondent reports valuer (r = 1, 2, 3, 4, ... , 9) is : 
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8 8 
Since >.9 = 1 - ~ >.1, and 1r9 = 1 - ~ 1r1, these equations can be reduced as follows 

l=l · 1=1 



In matrix notation, 

* 
A = P Il, . 

where Pis 

P9-P1 P8-Pl P7-P1 P6-Pl P5-P1 P4-P1 P3-P1 P2-P1 

Pl-P2 P9-P2 P8-P2 P7-P2 P6-P2 P5-P2 P4-P2 P3-P2 

P2-P3 P1-P3 P9-P3 P8-P3 P7-P3 P5-P3 P5-P3 P4-P3 

P3-P4 P2-P4 P1-P4 P9-P4 P8-P4 P7-P4 P5-P4 P5-P4 

P4-P5 P3-P5 P2-P5 P1-P5 P9-P5 Ps-Ps P7-P5 P5-P5 

P5-P5 P4-P5 P3-P5 P2-P6 Pl-P6 P9-P5 P8-P6 P7-P5 

P5-P7 P5-P7 P4-P7 P3-P7 P2-P7 P1-P7 P9-P7 P8-P7 

P7-Ps P6-P8 P5-Ps P4-Ps P3-Ps P2-P8 P1-P8 Pg-Ps 
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(3.2.1) 



*' A is 

and 

' II= [ 1r1, 1r2, 1r3, 1r4, 1r5, 1r6, 1r7, 1r8 ]. 

From Eq.(3.2.1) 

A -1 A* 
II = P A provided I P I I 0, 

and 
A 

Var( II)= p-l Var( A*) p-1, 

Al ( 1-Al) -A1A2 
A 

* 1 
where Var( A ) = ii 

-A2Al A2( l-A2) 
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-A1As -A1A9 

-A2A8 -A2Ag 

As ( 1-As) -A8A9 

-AgAs Ag(l-Ag) 

By decoding 1r1 = 1r11, 1r2 = 1r12, ...... , 1r9 = 1r33, we may estimate each cell 

proportion. Using these estimated cell proportions, we may estimate the product 

moment correlation between two sensitive variables. 

For I x J contingency table 

p=----.,._ ___________ _ 

) [~ 1ri+ ( ai - a+)2] [ E 1r +. (b. - '6 +)2] 
V I j J 1 

where ai is a value assigned to the i-th row category, and bj is a value assigned to 

I I 
the j-th column category, and a+= E 1r.+ a. and o+= E 1r+· b .. 

i=l I I i=l J J 
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The estimator is 

I J " 
E E 7r •• (ai - a+)(bj - b+) 
i . lJ 

'Y = 
) 

K ,. 
2 

[E 7ri+ (ai - a+)2] [ E ,r+. (b. - o+) 1 J J 

For the general case, s1 has r subcategories and s2 has c subcategories. 

The above procedure is extendable, by renumbering the r x c contingency table, 

(11) = 1, (1 2) = 2, ... , (1 c) = i, (2 1) = i+l, ... , (r c) = m. 

The probability of getting each renumbered cell is : 

A 1 = p 1 + (P 1 - p 2)1r1 + · · · · + (P - p 1)1r 1· m- m- m- m- m m- m-

* We can express these equations in matrix notation, A = P II , and by solving 

these equations for II, we may estimate the product moment correlation between 

two sensitive variables. 
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3.3 Correlation Analysis for the Additive Model 

To estimate the correlation between two sensitive variables which have 

more than two subcategories, we may apply the additive model. 

Suppose each sensitive variable has 3 subcategories, then by applying the 

additive model, the respondents are asked to select their own category for the first 

sensitive variable and add their augmented value (number) to their own selected 

category. By using this procedure for the second sensitive variable in the same 

manner as with the first variable, the respondent reports a pair of answers 

(transformed responses) to the interviewer. To give further confidence to the 

respondent, the reported valuer is reduced modulo 3 if r is greater than 3, and the 

interviewer records a pair of responses. 

The transformed response table is given by 

1+3=4 

2+2=4 

3+1=4 

1+1=2 

2+3=5 

3+2=5 

1+2=3 

2+2=3 

3+3=6 

1+3=4 
2+2=4 
3+1=4 

1 

4 4 

4 4 

4 4 

2 4 

5 4 

5 4 

3 4 

3 4 

6 4 

7["1 

1+1=2 
2+3=5 
3+2=5 

2 

4 2 

4 5 

4 5 

2 2 

5 5 

5 5 

3 2 

3 5 

6 5 

7["2 

1+2=3 
2+1=3 
3+3=6 
3 

4 3 

4 3 

4 6 

2 3 

5 3 

5 6 

3 3 

3 3 

6 6 

'1r3 
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From this table, the probabilities (.t ., i = 1, 2, 3 ; j = 1, 2, 3) of getting 
IJ 

each cell response is 

+P 1 p 311"31 +P lp 21r32+P 1 pl 1r33 

+P 1 pl 1r31 +P lp 31r32+P lp 21r33 

+P 1 p 271"31 +P lp 11r32+P lp 311"33 
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These equations can be w.ritten in matrix form, 

.Xu P3P3 P3P2 P3P1 P2P3 P2P2 P2P1 P1P3 P1P2 plpl 71"11 

.X12 P3P1 P3P3 P3P2 P2P1 P2P3 P2P2 plpl P1P3 P1P2 71"12 

·\3 P3P2 P3P1 P3P3 P2P2 P2P1 P2P3 P1P2 plpl P1P3 71"13 

.X21 P1P3 P1P2 plpl P3P3 P3P2 P3P1 P2P3 P2P2 P2P1 71"21 

.X22 plpl P1P3 P1P2 P3P1 P3P3 P3P2 P2P1 P2P3 P2P2 11"22 

A23 P1P2 plpl P1P3 P3P2 P3P1 P3P3 P2P2 P2P1 P2P3 71"23 

A31 P2P3 P2P2 P2P1 P1P3 P1P2 plpl P3P3 P3P2 P3P1 11"31 

A32 P2P1 P2P3 P2P2 plpl P1P3 P1P2 P3P1 P3P3 P3P2 11"32 

>.33 P2P2 P2P1 P2P3 plp2 plpl P1P3 P3P2 P3P1 P3P3 11"33 

In matrix notation 

A=Pil 

II = p-l A provided I P I f o, 
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then E II= p-l EA, and Var( II)= p-l Var( A) p-1, 

A A- (1 - A-) A-A· 
where Var( A)= { a .. }, a .. = 1 1 , and a .. = _ __!__J for i = 1, 2, 3 ; 

~ n n ~ n 

j = 1, 2, 3. 

Using these estimated cell proportions, we may estimate the product moment 

correlation between two sensitive variables. The formula is given by 

I J A 

E E 'ff·. (ai - a+)(bj - h+) 
i . IJ 

'Y = 
A >< 

) 2 
[E 'ffi+ ( ai - a +)2] [ E 'ff+. (b. - o+) l J J 

3.4 Scrambled Randomized Response Technique. 

Here, instead of adding a random number which is generated by a random 

device, the respondent is asked to multiply a random number by his true category 

number. The product is given to the interviewer, who does not know the value of 

the random number. This technique is called "the scrambled randomized response 

technique" (Eichhorn and Hayre, 1983). Eichhorn and Hayre showed how to 

generate the values of multiplier variable. Pollock and Bek (1976) compared the 

additive and the scrambled models. The scrambled randomized response model 

will be explained briefly. 

Let C. be the true category number for the j-th respondent 
J 

(Cj = 0,1, 2, 3, .... , T-1, and j = 1, 2, 3, ... , n) and mj be the randomly selected 
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multiplier number for the j-th respondent, (m. = 0,1, 2, .... ,T-1). The selection 
J 

T-1 
probabilities P(mJ. = t) = Pt (t =0,1, 2, .... , T-1, and ~ Pt = 1) are 

. ' t=O 
preassigned, and the distribution of the multiplier variable is known. T is the 

number of category. Each respondent is asked to select hls own category but to 

keep their response confidential, they then multiply the multiplier value by their 

own category number. Then the j-th respondent's scrambled response whose true 

category is C. is 
J 

C.*m., 
J J 

Cj = 0,1, 2, .... ,T-1. 

mj = 0,1, 2, ... ,T-1. 

j = 1, 2, ........ ,n. 

The possible scrambled responses are 0, 1, 2, ... , (T-l)*(T-1), hence some 

responses like 1 or (T-l)*(T-1) have only one possibility to be that number. It is 

therefore probable the respondents will hesitate to release their information. 

To provide further confidence to the respondent, the interviewer asks the 

respondent to transform the scrambled value and report the transformed value r ., ·. . J 

where 

[ 
C. * m. 

J J 
r. = 
J Cj * mj mod(T) 

if c. * m. < T-1 
J J -

if C. * m. > T-1 
J J 

where Tis a prime number. 

For the case T = 5, the transformed response for the scrambled model is 

given in table 6. 



TABLE 6 

TRANSFORMED RESPONSE FORT = 5 

0 1 

0 0 0 

1 0 1 

c. 2 0 2 
J 

3 0 3 

4 0 4 

The reported value r. satisfies; 
J 

r. = J J [ 
C. * ID· 

J .. C. * m. - r. = k ( mod 5) 
J J J 

m. 
J 

2 3 

0 0 

2 3 

4 1 

1 4 

3 2 

if c.*m. < 4 
J J -

if c.*m. > 4 
J J 

4 

0 

4 

3 

2 

1 
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where k is a number less than 5. As we can see in table 6, the first category is not 

protected by multiplying by a random number. If the respondent's answer O is a 

nonsensitive response, the fact that this answer is not protected by the 

randomization technique will not be problem. 

Define 1r C. : true population proportion in category C j 
J 

P : the probability of selecting a multiplier number m .. 
mj J 

Then, for T = 5 the probability ( \) that a respondent reports a value 

r/0,1, 2, 3, or 4) is : 
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>.0=P(r=O)=P(C.=0, m.=O)+P(C.=0, m.=l)+P(C.=0, m.=2)+P(C.=O,m.=3)+ 
J J J J J J J J 

P(C .=O,m.=4)+P(C .=l,m.=O)+P(C .=2,m.=O)+P(C .=3,m.=O)+P(C .=4,m.=0) 
J J J J J J J J J J 

>.1=P(r=l)=P(C.=1, m.=l)+P(C.=2, m.=3)+P(C.=3, m.=2)+P(C.=4, m.=4) 
J J J J J J J J 

>.2=P(r=2)=P(C.=1, m.=2)+P(C.=2, m-=l)+P(C-=3, m.=4)+P(C-=4, m-=3) 
J J J J J J J J 

>.3=P(r=3)=P(C.=1, m.=3)+P(C.=2, m.=4)+P(C.=3, m.=l)+P(C.=4, m.=2) 
J J J 'J J J J J 

>.4=P(r=4)=P(C-=1, m-=4)+P(C-=2, m-=2)+P(C-=3, m-=3)+P(C.=4,m-=l) 
J J J J J J J J 

= 1rl P4 + 7r2 p2 + 1r3 P3 + 1r4 pl" 

We may rewrite these equation in matrix form. 

A= P II, 

where Pis 

1-P0 
0 

P= 0 

0 

0 

0 

pl 

p2 

P3 

P4 

0 0 0 

P3 p2 P4 
pl P4 P3 , 

P4 pl p2 

p2 P3 pl 



' A= (>.O - P 0' ·\, >.2' >.3, >.4), 

and 

' II= (7r0' 71'"1' 71'"2' '11'"3, '11'"4)· 

Hence II = p-l A provided IP I j 0. 

A -1 A -1 
E II = P E A = P A, and 

Var(II) = p-l Var(A) (P-1)' 

A 1 
where Var(A) = ii 

>.a( 1->.o) 

->.l>.O 
->.2>.0 

->.3>.0 
->.4>.o 

.... ' "' ,., ,.. " ..... 

II= (7ro, 71'"1' 71'"2, '11'"3, 7r4), 

.... ' ,.. " " " .... 

A= (>.o -Pa, >.1, >.2, >.3, >.4), 

->.O>.l 
).1 ( t-->.1) 

->.2>.1 

->.3>.l 
->.4>.1 

->.a>.2 
->.1 ).2 

>.2( l->.2) 

->.3>.2 

->.4>.2 

->.0>.3 
->.l>.3 
->.2>.3 

).3 ( l->.3) 

->.4>.3 

A nt 
and >.t = n' and nt is the number of respondents who reported value t. 

3.4.1 Correlation Analysis for the Multivariate version of the Scrambled 

Randomized Response Model 
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Suppose we have two sensitive variables· with r and c subcategories 

respectively. The population can be tabulated as an r x c contingency table, and 

we need to estimate the corresponding cell proportions, 71'"00, 7rol'········,7ro c-l' 

71'"10' 7ru,·········,7r1 c-1,······,11"r-l 0' 7rr-1 a, ..... ,7rr-1 c-1' 
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r-1 c-1 
where O < 1r. -< 1 ( i=0,1, 2, ... , r-1. c=0,1, 2, ... , c-1) and ~ ~ 7r .. = 1. 

IJ i=O j=O IJ 

We will explain the r = 3, and c = 3 case detail, since the r > 3, and c > 3 case is 

an extension of this procedure. 

Let Cj be the true category number for the j-th respondent. To estimate 

each cell proportion, we may apply the scrambled randomized response models by 

reordering each cell number as follows: (0, 0) = 0, (0, 1) = 1, (0, 2) = 2, 

(1, 0) = 3, (1, 1) = 4, (1, 2) = 5, (2, 0) = 6, (2, 1) = 7, (2, 2) = 8, where the first 

number of each pair is the row category and the second number is the column 

category. Then the population will be tabulated as shown in Table 7: 

TABLE 7 

REORDERED POPULATION CATEGORIES 

0 2 

0 
'lro 'Jr 1 7r2 

'lr3 7r4 'lr5 

2 'lr5 'lr7 'lrg 

Using the same steps as were explained earlier in this chapter, the j-th respondent 

has a scrambled value C/mj" By scrambling, the respondent's answer cannot be 

protected for some scrambled values consequently, in order to give more 

confidence, the respondent is asked to transform the scrambled value and report 

the transformed value r j' 
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[ 
c. * m. 

J J 

rj = C. * m. mod{9) 
J J 

if c. * m. < 8 
J J -

if C. * m. > 8 
J J 

Then the transformed response for the scrambled model is given by table 8. 

TABLE 8 

TRANSFORMED RESPONSE FOR T=9 

m .. J . 

0 0 1 2 3 4 5 6 7 8 

0 0 0 0 0 0 0 0 0 0 

1 0 1 2 3 6 4 5 7 8 

2 0 2 1 6 3 8 7 5 4 

3 0 3 6 2 1 5 8 4 7 

c. 4 
J 

0 6 3 1 2 7 4 8 5 

5 0 4 8 5 7 6 1 2 3 

6 0 5 7 8 4 1 3 6 2 

7 0 7 5 4 8 2 6 3 1 

8 0 8 4 7 5 3 2 1 6 

Then the probability(\) that a respondent reports a value rj {O, 1, 2, 3, 4, 5, 6, 7, 

8) is : 
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By rewriting these equations in matrix form, we get 

A=PU, 

where Pis 

l-P0 0 0 0 0 0 0 0 0 
0 pl P2 P4 P3 p6 P5 Ps P7 
0 p2 pl P3 P4 P7 PS P5 p6 
0 P3 P4 pl p2 PS p6 P7 P5 
0 P5 PS P7 p6 pl P4 P3 p2 
0 p6 P7 P5 PS P3 pl P2 P4 
0 P4 P3 p2 pl P5 P7 p6 PS 
0 P7 p6 PS P5 P4 P2 pl P3 
0 PS P5 p6 P7 p2 P3 P4 pl 
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' n = (1ro, 1r1, 1r2, 1r3, 1r4, 1r5, 1r5, 1r7, 1r8), 

and 

Hence II = p-l A, 

Var(II) =P-l Var(A) (P-1)', 

-,\0,\7 -,\0,\8 

A 1 
where Var(A) = ii 

-,\1,\7 -,\1,\8 

,\7( l-,\7) -,\7,\8 

-,\8,\7 ,\8 ( l-,\8) 

Using these estimated cell proportions we can estimate the product moment 

correlation between the two sensitive variables. The formula for the estimated 

product moment correlation is given by 

,=-----"--------------
) [E ?ri+ (ai - i:+)2] [E ?r+j (bj - ~+)2] 

3.5 Multiproportional Randomized Response Technique 

Suppose we have two sensitive variables with r and c subcategories 

respectively. The population can be tabulated as an r x c contingency table, and 
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we need to estimate the corresponding cell proportions, 1r11, 1r12, .... ,1rlc' 1r21 , 

7r22'., .. ,1r2 , .... ,1r 1, 7r 2, ..... ,7r , where O < 1r. ·< 1 (i = 1, 2, ... , r: c r r re IJ 
r C 

c = 1, 2, ... , c) and }; }; 7r •. = 1. 
i=l j=l IJ 

We will explain the r = 3, and c = 3 case detail, since the r > 3, and c > 3 case is 

an extension of this procedure. 

A simple random sample of size n is drawn with replacement from that 

population. Random devices are used to obtain, from the respondents in the 

sample, information concerning the category to which they belong on a probability 

basis, and in such a way that the respondent's status will not be revealed to the 

interviewer. Suppose that the random device is the Hopkins' Randomizing Device 

( which was developed by Liu and Chow 1976 a, b ). A number of balls of two 

different colors, e.g., green and white, will be placed in the body of the device (see 

figure 3). A discrete number, such as 1, 2, 3, will be marked on the surface of 

each of the white balls. The proportion of green to white balls, and of white balls 

with different figures, will be predetermined, The respondent is asked to turn the 

device upside down, shake the device thoroughly, and turn it right side up to allow 

one of the balls to appear in the window of the device. 

The ball in the window will either be green or white. If it is a green ball, 

the respondent will be asked to answer the sensitive question ( e.g., the number of 

abortions she has had ). If the ball is white, there will be a number marked on its 

surface, and the respondent simply tells the number. The answers will again be 1, 

2, 3, depending on the number marked on the surface of the white ball. 

Interviewers stand on the opposite side of the window of the device, and 

therefore do not know whether the respondents have been asked to respond to the 

sensitive question or whether the respondents are responding with the number on a 

white ball. 
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Figure 3. Hopkins' Randomizing Device 
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For two sensitive variables with 3 subcategories, the interviewer prepares a 

device for each question ( or prepares one device and asks the respondent to use the 

same device for each question), and the respondent will be asked to use the first 

device for the first question and so on. Obviously, the respondent will return the 

ball into the device after answering the question. 

Let wi represent the number of white balls marked i (where i = 1, 2, 3) and 

where g represents the number of green balls (unmarked), then the total number of 

balls in the device is 

3 3 
g + w = g + E wi' where w == E. wi. 

i=l i=l 

For the first question, the respondent will shake the device and will get a 

ball. If it is a green ball and he (she) really belongs to subcategory 2, then he 

(she) will report 2, and replace the ball into the device. For the second question, 

if it is a white ball marked 3, then he will report 3 whichever category he really 

belongs to. 

Let 'ff. . represent the true proportion of respondents who possess i-th 
IJ 

category for the first question, and j-th category for the second question. 

' ' Let P[i j I i j] represent the conditional probability that the respondents give the 

' ' responses (i j), given that they are in category (i j ). 

Now the probability that the respondent gives the response (2 3) is 
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Since before reporting a pair of answers, the respondent uses the random device 

two times independently and each time the device selects a question, We can 

rewrite P[i jli'j'] = P{ili')P[jlj']. Therefore >.23 can be rewritten as follows 

>.23 = P[2ll] P[3ll) 1r11 + P[2ll] P(3l2) 1r12+ P[2ll] P(3l3) 1r13 

+ P[2 I 2] P[3 I 1) 1r21 + P[2 I 2] P(3 I 2) 1r22+ P[2 I 2] P[3 I 3] 1r23 

+ P(2l3) P(3ll] 1r31 + P(2j3] P(312] 1r32+ P(2l3] P(3!3] 1r33. 

Similarly, we may have .,\ .. for all i,j, and we can express the probability (>. . . ) in 
~ D 

matrix form using the Kronecker product (@), as 

>.11 (P(l I 1] P(l I 2] P(l I 3]) ®(P[l I 1] P[l I 2] P[l I 3]) 

.,\12 (P[l I 1] P[l I 2] P[l I 3])@ (P[2 I 1) P[2 I 2] P[2 I 3]) 

>.13 (P[l I 1] P[l I 2) P[l I 3])® (P[3 I 1] P[3 I 2] P[3 I 3]) 

.,\21 (P[2 I 1] P[2 I 2] P[2 I 3])@(P[l I 1] P[l I 2] P[l I 31) 

>.22 (P[2ll] P[2!2] P[2f3])®(P[2'1] P[2!2] P[2!3]) 

-X23 (P[2ll] P[2!2] P[2l3])@(P[3jl] P[3!2] P[3!3]) 

>.31 (P[3 I 1] P[3 I 2] P[3 I 3])@(P[l j 1] P[l I 2] P[l j 3]) 

A32 (P[3 I 1] P[3 I 2) P[3 I 3])(!)(P[l I 1] P[l I 2] P[l I 3]) 

A33 (P[3 I 1] P[3 I 2] P[3 I 3])© (P[l I l] P[l I 2] P[l I 3]) 

By rewriting these equations in matrix form, we get 

A=Pil, 

' where A= (.Xll, >.12' >.13' >.21' >.22' >.23' >.31' >.32' ,\33), 
' n = (1r11, 1r12' 1r13, 1r21' 1r22' 1r23, 1r31, 1r32, 11"33), 

71"11 

71"12 

71"13 

71"21 

7f22 

71"23 

11"31 

11"32 

11"33 

(3.5.1) 
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and P can be rewritten as 

(P[l I 1] P[l I 2] P[l I 3]) (P[l j 1] P[l j 2] P[l j 3]) 

P = (P[2jl] P[212] P[2l3]) © (P[2ll] P[212] P[2l3]) 

(P[3ll] P[3l2] P[3l3]) (P[3ll] P[3l2] P[3j3]) 

Hence II= p-l A, provided Pis nonsingular. 

Var(II) = p-l Var(A) (P-1)' 

A 1 
where Var(A) = ii 

Using these estimated cell proportions we can estimate the product moment 

correlation between the two sensitive variables. The formula for the estimated 

product moment correlation is given by 

I J A 

~ ~ 71" •• ( ai - a+)( bJ. - o+) 
i J. IJ 

1=~~~~~~~~~~~~~~~ 

) [~ 7ri+ (ai - ~+)2] [~ 7r+j (bj - ~+)2] 
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3.5.1 Test of Hypothesis 

Before discussing the test of hypothesis we will show the relationship 

between >. .. and 1r. .• i.e., we will show 1r • • 's are independent if and only if the >. .. 's 
IJ IJ IJ IJ 

are independent. 

In a 3 x 3 contingency table, if the 1r • . 's are independent then 7r .. = 1r. 1r .. 
IJ IJ 1. .J 

From Eq(3.4.l), 

>.11 = P[lll]P[lll] 1r11 + P[ljl]P[lj2] 7r12 + P[ljl]P[lj3] 1r13 

+ P[l I 2]P[l j 1] 1r21 + P[l j 2]P[l I 2] 1r22 + P[l j 2]P[l j 3] 1r23 

+ P[l j 3]P[l j 1] 1r31 + P[l j 3]P[l I 2] 7r32 + P[l I 3]P[l j 3] 1r33. 

Now assumes that the ?r .. 's are independent, i.e., 1r .. = 7r. 7r ., then 
IJ IJ 1. .J 

7r 1. 7r.l 

7r 1. 7r.2 
7r 1. 1r_3 

7r2.7r.l 
= (P[lll] P[ll2] P[ll3]) ® (P[lll] P[ll2] P[ll3]) 7r2_7r_ 2 

7r2. 1r_3 

7r3_ 1r.1 

71"3. 7r.2 
7r:3. 1r.3 



Since·\. = ·\l + A12 + A13 and A.l = All + A21 + A31, 

and if the A . . 's are independent, then A-.= A- A .. 
. lJ lJ 1. .J 

Now we will relate A- A . to 1r. 1r •• 
. 1. .J . 1. .J 

From Eq(3.5.l), 

Al. =P[l I l](P[l I l]+P[2 I l]+P[3 I 1])1r11 + P[l I l](P[l I 2]+P[2 I 2]+P[3 I 2])1r12 

+P[l I l](P[l I 3]+P[2 I 3]+P[3 I 3])1r13 + P[l I 2](P[l I l]+P[2 I l]+P[3 I 1])1r21 

+P[l I 2](P[l I 2]+P[2 I 2]+P[3 I 2])1r22 + P[l I 2](P[l I 3]+P[2 I 3]+P[3 I 3])1r23 

+P[l I 3](P[l I l]+P[2 I l]+P[3 I 1])1r31 + P[l I 3](P[l I 2]+P[2 I 2]+P[3 I 2])1r32 

+P[l l3](P[l I 3]+P[2 I 3]+P[3 I 3])1r33. 

Since P[l U]+P[2 lj]+P[3 lj] =1, then 

A.l =P[l I l](P[l I l]+P[2 I l]+P[3 I 1])1r11 + P[l I 2](P[l I 2]+P[2 l2]+P[3 I 2])1r12 

80 

+ P[l I 3](P[l I 3]+P[2 I 3]+P[3 I 3])1r13 + P[l I l](P[l I l]+P[2 I l]+P[3 I 1])1r21 

+ P[l I 2](P[l I 2]+P[2 I 2]+P[3 I 2])1r22 + P[l I 3](P[l I 3]+P[2 I 3]+P[3 I 3])1r23 

+ P[l I l](P[l I l]+P[2 I l]+P[3 I 1])1r31 + P[l I 2](P[l I 2]+P[2 I 2]+P[3 I 2])1r32 

+ P[l I 3](P[l I 3]+ P[2 I 3]+ P[3 I 3])1r33. 
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Since P[l jj]+P[2 jj]+P[3 jj] =1, 

A.l = P[l I l]( 1rll +1r21 +1r31) + P[l 12]( 1r 12+1r22+1r32) + P[l I 3]( 1r13+1r23+1r33) 

= P(l I 1] 1r_1 + P[l I 2] 1r_2 + P(l I 3] 1r_3. 

Therefore 

7rl.7r.1 

7r 1. ?r.2 

7r 1. 1r_3 

7r2.7r.l 
Al.A.l = (P(lll] P[ll2] P(ll3])@ (P(lll] P(ll2] P(ll3]) 1r2_1r_2 . 

Therefore we showed 1r_ •• = 7r. 1r. if and only if A·.= A· A .. IJ 1. .J IJ J. .J 

7r2. ?r.3 

?r3_ ?r.1 

?r3_ ?r.2 

7r3. ?r, 3 

Using this relationship we may discuss a test of independence, 

3 3 A A 2 
~ ~ ( n .. - n A- A .) 
i j 1 J 1. .J 

x2 = --------
n A· A. 

1. . J 

where n .. is the observed ij-th cell count. 
IJ 

3.6 Multiproportional Randomized Response Technique 

With Reordering Cell Numbers 

For the multiproportional data, as we explained in the additive and 

scrambled randomized response models, by reordering each cell number (table 5) 

and using a random device (wheel, multifaced dice, or Hopkins' device). 

We can estimate each cell proportion 1rij (i = 1, 2, ... ,r. j = 1, 2, ... ,c). 
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Suppose a sample was drawn from a bivariate discrete population. For 

instance if each variable has 3 subcategories, then the population can be tabulated 

as a 3 x 3 contingency table (table 5). By reordering each cell number as in table 

' 5, the contingency table can be express as a 9 x 1 vector, II = ( 7r 1' 7r 2, 7r 3, . . . , 7r 9) . 

As a random device, we can use the Hopkins' Randomizing Device (Figure 

3) then following the same steps section 3.4 we can estimate each cell proportion. 

Let wi represent the number of white balls marked i (where i = 1, 2, ... ,9), 

and g represents the number of green balls (unmarked), then the total number of 

9 9 
balls in the device is g + E w. = g + w (where w = E w. ). If 7r. represents the 

·11 ·11 1 1= 1= 

9 
true proportion of respondents who belong to i-th category (where E 7ri = 1), 

i=l 

then the probability p .. ) that a respondent reports i is: 
1 

W· 

\ = 7ri ( g f w ) + g ~ w' (3.6.1) 

where i = 1, 2, 3, ... ,9. 

Let n. be the number of respondents reporting i, then the proportion of 
1 

n. A 

respondents reporting i is -2. ( = >.. ). n 1 
Substituting this into Eq.(3.6.1), and 

solving for 7r., then the estimate of 7r. becomes 
1 1 

n. 
(g + w) rf 

7ri = g 
W· 

1 

g 

The estimated variance of ?ri becomes 

(3.6.2) 
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,. ,. 

The estimated covariance between 'ff. and 1r. is 
I J 

n. n. 
I ..1 -n n (3.6.3) 
n 

Liu and Chow (1976 a) indicate that "the ratio of green balls to the total 

number of balls in the device is the major component which affects the efficiency of 

estimate." From Eq.(3.6.1) and Eq.(3.6.3), we can see that for fixed total 

number of balls, if we increases the number of green balls, Var( 1r.) and Cov( 'ff., 1r .) 
. I I J 

decreases. But if the ratio of green balls to the white balls is large, the 

respondent's cooperation will decrease. 

Now by decoding the reordered cell number, 1r1 = 1r11, 1r2 = 1r12, ···· , 1r9 = 

1r33. we can estimate the correlation between two sensitive variables. 



CHAPTER IV 

RANDOMIZED RESPONSE TECHNIQUE FOR THE QUANTITATIVE 

ATTRIBUTES 

4.1 Additive Randomized Response Models 

Kim and Flueck's (1978) additive randomized reponse models can be used 

to obtain responses for sensitive questions when the answers are quantitative. 

The respondent is asked to sum his (her) sensitive attribute ( S ) and an 

augmented value ( Y ). The augmented value is generated from a random device 

and is not known to the interviewer, but the distribution of the augmented 

variable is completely known and the augmented variable is independent of the 

sensitive variable. Suppose a simple random sample is drawn from a bivariate 

continuous population. The respondent is asked to generate a random number 

from a random device and add it to his (her) own sensitive attribute for each 

question. The value of the random number which is generated by the respondent 

is unobserved and unknown to the interviewer. 

Let r. = observed response variable 
1 

S. = unknown sensitive variable 
1 

Y = augmented variable 

then the response value for each question can be written 

rl = sl + y 

r2 = S2 + y 

where S. (i = 1, 2) and Y are independent. 
1 

84 



The estimated mean of the observed random variable is 

and hence the unbiased estimate of Jls. is 
I 
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(4.1.1) 

And Var(ri) = Var(Si) + Var(Y), since Si and Y are independent and hence the 

estimated variance, a~., is given by 
I 

2 2 2 
as. = ar. - ay, 

I I 

2 
where ar. 

I 

1 n -2- ln 
---,,-1 E ( r .. - r. ) , r. = - E r ... 
n - j=l IJ I I n j=l IJ 

(4.1.2) 

Now From Eq.(4.1.1), since S. and Y are independent, the estimated 
1 

A 

variance of µ is r. 
1 

A A 

Var(µr) = Var(µs) + Var(~)-
1 1 

Since the distribution of Y is completely known, the estimated variance of µs. is 
1 

given by 
A A 

Var(µ8) = Var( µr) = Var( ri) 
1 1 

( 4.1.3) 

where Cov(Si'Y) = 0, because Si and Y are independent. 
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Hence to reduce the estimated variance of µ5_, we need to choose an 
I 

augmented variable with small variance. This result is shown in table 9, in other 

words, by choosing an augmented variable with small variance we may have a 

short confidence interval for µ5_. 
I 

Now since Cov(r1, r2) = Cov(S1, S2) + Var(Y), the correlation between 

two sensitive variables is given by 

Divide both the numerator and denominator by ur ur , 
1 2 

2 
Uy 

p -
ur u r rlr2 

1 2 

Ps s = I 
2 2 us us 

1 2 1 2 2 2 
,J 

(}" (}" 

rl r2 

Let X = , then since.!.= ( 1 + _l __ X_ ), Pg S can be written 
X X 1 2 
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TABLE 9 

ESTIMATED MEANS & STANDARD DEVIATIONS FOR THE 
ADDITIVE RANDOMIZED RESPONSE MODELS 

a /3 /lgl STD /lg2 STD 

2 2 29.99325 1.76233 37.06723 1.86817 

2 3 29.99117 1.78970 37.06521 1.89342 

2 4 29.98909 1.82773 37.06313 1.92884 

2 5 29.98700 1.87576 37.06104 1.97386 

2 6 29.98492 1.93306 37.05896 2.02785 

2 7 29.98284 1.99883 37.05688 2.09011 

2 8 29.98076 2.07225 37.05480 2.15993 

2 9 29.97868 2.15256 37.05272 2.23660 

2 10 29.97659 2.23900 37.05060 2.31945 

2 11 29.97451 2.33090 37.04855 2.40782 

2 12 29.97243 2.42764 37.04647 2.50115 

3 2 30.03489 1..80234 37.12420 1.96584 

3 3 30.03519 1.83979 37.12451 2.00595 

3 4 30.03550 1.89292 37.12482 2.06036 

3 5 30.03580 1.96046 37.12512 2.12798 

3 6 30.03611 2.04098 37.12543 2.20759 

3 7 29.98284 1.99883 37.05688 2.09011 

3 8 30.03672 2.23514 37.12604 2.39783 

3 9 30.03703 2.34604 37.12635 2.50611 

3 10 30.03733 2.46453 37.12665 2.62174 

3 11 30.03764 2.58957 37.12696 2.74379 



[ ui l 1 - X Ps S = Pr r - er er (l + ) 
1 2 1 2 .r1 r2 X 

Since 1 - X 
X 
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( 4.1.4) 

where the last two terms are due to the random device. Since p , er , and er 
rlr2 rl . r2 

can be calculated from the observed data, and crs and crs can be estimated from 
1 2 

Eq.( 4.1.2), and ui is known, the bias can be estimated. 

To estimate the correlation between two sensitive variables, first we need to 

estimate the variances of the sensitive variables, and then we find the estimated 

variance, er~. which is given by 
1 

2 2 2 
US = CT - Uy. . r. 

1 1 

If we use an augmented variable which has a wide range and so ui is close 

to a~.' or ai is greater than a~.' then we may not be able to estimate the 
1 1 
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correlation between two sensitive variables since we observe a negative estimated 

variance for the sensitive variables. To illustrate this procedure, we simulated a 

bivariate gamma distribu~ion (Mardia, 1970, Ong, 1992) with the true correlation 

set at 0.6, means (µ8 , µ8 ) equal to (30 , 37.037) and variances ( er~ , er§ ) equal 
1 2 1 2 

to (300 , 370.37). 

The results of the simulations are presented in table 9, 10, and 11. Table 9 

gives the expected means and standard deviations of the sampling distribution for 

population correlation values of 0.6 and for a sample size of 100. The standard 

deviations in table 9 are strictly increasing as the variance of the augmented 

variable increases. We expected this result from Eq.(4.1.2). Table 10 presents 

the results for the estimated correlations, standard deviations and biases. As we 

explained early, it is possible to obtain a negative estimate of the variance, u~ .. 
1 

A correlation cannot be calculated when this occurs. The table also indicates 

when the negative variance occurs. We observed negative variances of the 

sensitive variable (S), for augmented distributions, Gam(2,14), Gam(3,11), 

Gam(4,10), Gam(5,8), Gam(6,7). Where the variances of augmented variables 

are greater than Min( u~ , u~ ) , only Gam( 6, 7) has less variance than 
1 2 

Min( u~ , u~ ). Table 11 gives the conditions for having a positive bias. Each 
1 2 

parameter, ui, u~ and u~ is changed from 1 to 20 by increasing by one unit. 
1 2 

For ui = 1, and Min( u~ , u~ ) ~ 7, we observed a positive bias with 
1 2 

relatively high Pr r . For ui = 1, the smallest Pr r to give a positive bias was 
1 2 1 2 

0.6. For ui = 2, and 2 ~ Min( u§ , u~ ) ~ 7, we observed a positive bias with 
1 2 

relatively high p . For uy2 = 1, the smallest Pr r to give a positive bias was 
rlr2 1 2 

0. 7. As ui increase, we have less chance to have a positive bias. 
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TABLE 10 

ESTIMATED CORRELATIONS & BIASES FOR THE 
ADDITIVE RANDOMIZED RESPONSE MODELS 

p Ps1s2 
negative 

a fJ rlr2 Bias STD variance 
s1 S2 

2 2 0.60825 -0.00971 0.59853 0.08594 

2 3 0.61910 -0.02130 0.59780 0.08723 

2 4 0.63340 -0.03655 0.59684 0.08910 

2 5 0.65028 -0.05469 0.59558 0.09174 

2 6 0.66889 -0.07490 0.59392 0.09536 

2 7 0.68843 -0.09669 0.59174 0.10026 

2 8 0.70824 -0.11938 0.58886 0.10682 

2 9 0.72780 -0.14273 0.58506 0.11559 

2 10 0.74672 -0.16669 0.58002 0.12744 

2 11 0.76474 -0.19149 0.57324 0.14411 

2 12 0.78170 -"0.21797 0.56373 0.17076 

2 13 0.79754 -0.25375 0.54378 0.33975 

2 14 0.81222 -0.27826 0.53424 0.27100 1, 1 

3 2 0.61599 -0.01425 0.60174 0.08474 

3 3 0.63161 -0.03085 0.60076 0.08655 

3 4 0.65151 -0.05208 0.59942 0.08946 

3 5 0.67412 -0.07654 0.59757 0.09381 

3 6 0.69802 -0.10298 0.59504 0.10012 

3 7 0.68843 -0.09669 0.59174 0.10026 

3 8 0.74538 -0.15877 0.58661 0.12238 

3 9 0.76745 -0.18795 0.57950 0.14341 



TABLE 10 (Continue) 

p Ps1s2 
negative 

a {1 rlr2 Bias STD variance 
s1 S2 

3 10 0.78795 -0.21714 0.57095 0.16737 1, 0 

3 11 0.80675 -0.25299 0.55390 0.24146 1, 0 

4 2 0.62040 -0.01884 0.60156 0.08727 

4 3 0.64063 -0.04027 0.60036 0.08980 

4 4 0.66560 -0.06696 0.59864 0.09373 

4 5 0.69299 -0.09681 0.59618 0.09963 

4 6 0.72086 -0.12820 0.59266 0.10835 

4 7 0.74785 -0.16027 0.58757 0.12151 

4 8 0.77311 -0.19306 0.58004 0.14313 

4 9 0.79620 -0.22856 0.56763 0.19599 

4 10 0.81698 -0.26887 0.54821 0.352333 1, 0 

5 2 0.62302 '.""0.02345 0.59957 0.08709 

5 3 0.64790 -0.04945 0.59844 0.09021 

5 4 0.67765 -0.08092 0.59673 0.09509 

5 5 0.70917 -0.11505 0.59411 0.10244 

5 6 0.74014 -0.15001 0.59012 0.11347 

5 7 0.76911 -0.18524 0.58387 0.13130 

5 8 0.79538 -0.21959 0.57584 0.15182 1, 0 

6 2 0.62665 -0.02792 0.59873 0.08806 

6 3 0.65536 -0.05829 0.59706 0.09218 

6 4 0.68882 -0.09437 0.59444 0.09912 

6 5 0.72326 -0.13294 0.59032 0.11048 

6 6 0.75615 -0.17252 0.58363 0.13039 

6 7 0.78615 -0.21349 0.57272 0.18067 1, 0 
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TABLE 11 

CONDITIONS FOR THE POSITIVE BIAS OF THE ADDITIVE 
RANDOMIZED RESPONSE MODELS 

2 2 2 p Uy us us rlr2 
1 2 

1 1 4,5 >= 0.9 
1 1 6,7,8 >= 0.8 
1 1 9,10,11,12 >= 0.7 
1 1 13, ••• ,20 >= 0.6 
1 2 6,7,8,9 >= 0.9 
1 2 10, ••.• ,14 >= 0.8 
1 2 15, ••.• ,20 >= 0.7 
1 3 9, ••••. ,13 >= 0.9 
1 3 14, •••• ,20 >= 0.8 
1 4 11, •... ,17 >= 0.9 
1 4 18,19,20 >= 0.8 
1 5 14, •••• ,20 >= 0.9 
1 6 17, •••. ,20 >= 0.9 
1 7 19,20 >= 0.9 

2 2 7,8,9,10 >= 0.9 
2 2 11, •..• ,16 >= 0.8 
2 2 17, ••.. ,20 >= 0.7 
2 3 10, ...• ,14 >= 0.9 
2 3 15, •.•. ,20 >= 0.8 
2 4 12, •... ,18 >= 0.9 
2 4 19,20 >= 0.8 
2 5 15, ••.• ,20 >= 0.9 
2 6 17, .... , 20 >= 0.9 
2 7 20 >= 0.9 

3 3 10, .... ,16 >= 0.9 
17, .•.• ,20 >= 0.8 

3 4 13, .... ,20 >= 0.9 
3 5 15, •.•. ,20 >= 0.9 
3 6 18,19,20 >= 0.9 

4 4 13, .... ,20 >= 0.9 
4 5 16, •... ,20 >= 0.9 
4 6 19,20 >= 0.9 

5 5 17, .... ,20 >= 0.9 
5 6 19,20 >= 0.9 

6 6 20 >= 0.9 
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Using Eq.( 4.1.2), and Table 9, we need to choose an augmented variable 

which has small variance, and hence we may have a short confidence interval for 

µ8_. Using Eq.(4.1.3), and Table 10, we also need an augmented variable which 
1 

has small variance. However, an augmented variable which has a wide range of 

values will give more confidence to the respondent, particularly if a low value is 

highly sensitive, and so the concealing effect is high using a wide range augmented 

variable. To estimate unbiased correlations it is critical that the variance of the 

augmented variable be smaller than the variance for the sensitive variables, but 

the variances of the sensitive variables are unknown and hence it is difficult to 

choose a good augmented variable. Another problem is that extreme values 

cannot be protected by adding a random number. All these are disadvantages of 

the additive randomized response models. 
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4.2 Scrambled Randomized Response Models 

Scrambled randomized response models can be used to obtain responses for 

sensitive questions when the answers are quantitative. The respondent is asked to 

multiply his(her) sensitive attribute (S) by a random value (Y). The random 

value is generated from a random device and is not known to the interviewer, but 

the distribution of the multiplier variable is completely known, and the multiplier 

variable is independent of the sensitive variables. We assumed that S ~ 0 and 

Y > 0, since the scrambled answer, r is SY. ff S = 0 then SY= 0, and as long as 

S = 0 is a nonsensitive response, the fact that this answer is not protected by the 

randomization technique will not be a problem. 

For the correlated two sensitive continuous variables case, the respondent is 

asked to generate a random number by a random device, and multiply his (her) 

own sensitive attribute for each question by that value, and then the response 

values for each question can be written 

rl =sly 

r2 = S2 y 

where Si and Y are independent. 

And since E r. = E s. E Y, the unbiased estimate of µS is given by 
I I . 

I 

where µy is known and µy f 0. 

The estimated variance of the response variable is 

( 4.2.1) 

( 4.2.2) 

2 2 2 2 . Var(ri) = E Si E Y - (E Si) (E Y) , because Si and Y are mdependent, 

( 4.2.3) 



From Eq.( 4.2.3), the estimated variance of u~. is given by 
1 

95 

( 4.2.4) 

2 where uy and /1y are known. 
A 

Now from Eq.( 4.2.2) and Eq.( 4.2.3), the estimated variance of µS. is 
. 1 

A 1 
Var( µs) = -.-2 Var( ri ), because /1y is a known constant, 

1 n J1y 

1 2 2 2 2 2 = --2 [ Uy ( US. + µS. ) + US. ~] 
n ~ 1 1 1 

2 
1 Uy 2 2 2 

= - [ 2 ( us. + µs. ) + us. l 
n11y 1 1 1 

2 2 2 
since us + µS = E S . , . . 1 

1 1 

( 4.2.5) 

Since Si and Y are independent, for fixed distributions of Si, to reduce the variance 
A 

of the estimated population mean, µS.' we have to choose the multiplier variable 
1 

u2 
which makes the ratio, r as small as possible. Suppose the multiplier variable 

µy 

(T2 

follows a gamma distribution with parameters a and f:J, then the ratio, y2 is .!.. ry a 

Therefore if we increase a, the variance of the estimated mean will be reduced. 
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Now from Eq.( 4.2.1) and independent relationship between S. and Y, the 
I 

covariance between two reported variables is 

= E sly S2Y-E sly E S2Y. 

since S. and Y are independent, 
I 

2 2 O"r1r2 = E s1 S2 E Y - E S1 E s2 (E Y) 

Therefore the estimated covariance between two sensitive variables is given by 

+ ~ 
( 4.2.6) 

From Eq.(4.2.4) and (4.2.6), the correlation between two sensitive variables is 

given by 

Ps S = 
l 2 2 2 2 

J [(Tr - O"y µs 
1 1 



Divide both the numerator and the denominator by u u 
rl r2 

2 
µs µs uy 

p + 1 2 
rlr2 u u 

rl r2 
Ps S = 

1 2 

J [1-
2 2 

] [1 -
2 2 

Uy µS Uy µS 
1 2 

2 2 
Ur Ur 

1 2 
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( 4.2. 7) 

] 

By substituting Eq( 4.2.3) and Eq( 4.2.4) into Eq.( 4.2. 7), we may express Ps S as 
1 2 

2 
µy 

a function of 2 . 
Uy 

p 
rlr2 

Ps1s2 - 2 
µi 2 µy 2 

) us (1 + 2 ) US ( 1 + (12 1 Uy 2 y 
2 ~ 

(u~ (1 + '1 ) 2 2 2 + µs )(us (1 + 2 ) + µs) 
,J 1 Uy 1 2 Uy 2 

µs 
1 ~2 

I 2 Uy 2 2 Uy 2 
(us (1 + -2-) + µs )(us (1 + 2 ) + µs ) 

,J 1 Uy 1 2 Uy 2 

2 Uy 2 ,) 
US (1 + 2 ) US (1 + 

1 Uy 2 Uy 

2 µy 2 2 1) + 2 
(us (1 + -,-) + µs )( us ( 1 + µs ) 

,J 1 Uy 1 2 Uy 2 

( 4.2.8) 
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Let X be the denominator of the first term, 

2 µy . 2 . '1 ) US (1 + 2 ) US (1 + 
1 u 2 . Uy 

X = 
y 

2 µy 2 2 µy 2 
( US (1 + ---r) + µs ) ( us (1 + 2 ) + µs ) 

J 1 Uy 1 2 Uy 2 

. 1 1 - X 
Smee -=1 +--

X X 
the first term of Eq.( 4.2.8) can be written 

[ 1 - X 
Pr r 1 + ] 

1 2 X 

and the second term of Eq;( 4.2.8) can be written 

µSl µS2 
Now, let us = fl' us = f2, and the multiplier variable follows a gamma 

1 2 
2 

distribution with parameters a and /3, hence ~ = a. 
Uy 

Then by simple algebra 
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where the last two terms are due to the random device. Hence if we estimate the 

correlation from the observed response data, we may have some bias which is given 

by 

Bias = p r [J [1 + 
rl 2 V (1 

f ~ ] l f 1 f2 
+ (1 + a) - 1 - (1 + a) 

( 4.2.9) 

Since Pr 1 r2, f1, and f2 can be estimated from the observed data and a is known, we 

may estimate the bias and hence the estimated correlation between two sensitive 

variables, which is p + Bias. 
rlr2 

If we observe positive (negative) bias, the 

estimated correlation, p from the observed data will over (under) estimate the 
rlr2 

correlation Ps S between the two sensitive variables. For fixed f1 and f2, if we 
1 2 

f f 
increase a, the bias decreases, since for fixed f1 and f2, 1 2 decreases as a 

(1 + a) 

increa,es and ) [1 + f i ] [1 + f ~ ] _ 1 
(1 + a) (1 + a) 

also decreases as a 

increases. Therefore if the shape parameter, a, of the multiplier variable is large 

enough, the bias can be zero. This is shown in table 12 and 13. 

To illustrate this procedure, we simulated a bivariate gamma distribution, 

the true correlation was set at 0.6, with the means (µ8 , µ8 ) equal to (30 , 
1 2 

37.037), and the variances ( a~ , a~ ) equal to (300 , 370.37). For the multiplier 
1 2 

variable, we use a gamma distibution with various parameters. 

The results of the simulations are presented in table 12, 13, 14, and 15. 

Table 14 gives the expected means and standard deviations of the sampling 

distributions for population correlation value of 0.6 for sample size 100. The 

standard deviation values in table 14 decrease slowly as the a increases, as we 

expected from Eq.(4.2.4). Table 12 and 13 presents the results for estimated 
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TABLE 12 

ESTIMATED CORRELATIONS & BIASES FOR THE 
SCRAMBLED RANDOMIZED RESPONSE MODELS 

a p 
rlr2 Bias Ps1s2 Std(Ps1 S2) 

5 0.74195 -0.14500 0.59690 0.11630 

6 0.72667 -0.13178 0.59488 0.11293 

7 0.71722 -0.11936 0.59785 0.10998 

8 0.70842 -o .109.14 0.59927 0.10922 

9 0.70051 -0.10097 0.59954 0.10243 

10 0.69303 -0.09401 0.59901 0.10472 

15 0.66736 -0.07027 0.59708 0.09897 

20 0.65284 -0.05590 0.59694 0.09590 

25 0.64179 -0.04660 0.59519 0.09313 

30 0.63378 -0.04015 0.59362 0.09354 

35 0.62991 -0.03491 0.59499 0.09128 

40 0.62677 -0.03088 0.59589 0.09115 

45 0.62301 -0.02781 0.59519 0.09159 

50 0.61948 -0.02536 0.59412 0.09275 

55 0.61800 -0.02318 0.59482 0.09104 

60 0.61585 -0.02143 0.59441 0.09080 

80 0.61739 -0.01597 0.60141 0.08682 

100 0.61018 -0.01310 0.59707 0.08584 

200 0.60351 -0.00669 0.59681 0.08504 

300 0.60169 -0.00452 0.59717 0.08599 

400 0.60028 -0.00340 0.59688 0.08282 

500 0.60267 -0.00270 0. 5999T 0.08862 

n = 100, Ps S = 0.6. 
1 2 
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TABLE 13 

ESTIMATED CORRELATIONS & BIASES FOR THE 
SCRAMBLED RANDOMIZED RESPONSE MODELS 

a p 
rlr2 Bias Ps1s2 Std(Ps1 S2) 

5 0.74971 -0.15405 0.59566 0.10048 

6 0.73530 -0.13729 0.59801 0.09593 

7 0.71917 -0.12127 0.59790 0.08667 

8 0.70494 -0.11325 0.59168 0.08645 

9 0.69695 -0.10496 0.59198 0.08392 

10 0.69214 -0.09636 0.59578 0.08212 

15 0.66813 -0.07031 0.59782 0.07440 

20 0.65200 -0.05614 0.59585 0.07084 

25 0.64598 -0.04587 0.60010 0.06832 

30 0.63817 -0.03952 0.59864 0.06694 

35 0.62932 -0.03496 0.59436 0.06723 

40 0.62906 -0.03044 0.59886 0.06358 

45 0.62484 -0.02748 0.59735 0.06659 

50 0.62404 -0.02483 0.59720 0.06318 

55 0.62027 -0.02277 0.59750 0.06346 

60 0.61891 -0.02102 0.59789 0.06459 

80 0.61221 -0.01615 0.59606 0.05941 

100 0.61151 -0.01289 0.59862 0.05955 

200 0.60656 -0.00660 0.59996 0.06175 

300 0.60407 -0.00439 0.59967 0.05647 

400 0.59966 -0.00336 0.59630 0.06132 

500 0.60191 -0.00267 o--. 59923 0.05757 

n = 200, Ps S = 0.6. 
1 2 



TABLE 14 

ESTIMATED MEANS & STANDARD DEVIATIONS FOR THE 
SCRAMBLED RANDOM I ZED RESPONSE MODELS 

a 

5 

6 

7 

8 

9 

10 

11 

12 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

80 

100 

200 

300 

29.98168 

30.02349 

29.99817 

29.93463 

29.97757 

29.94107 

29.97544 

29.99186 

29.99598 

29.98787 

29.96865 

29.95429 

29.94810 

29.94579 

29.94225 

29.90725 

29.91269 

29.91406 

30.04758 

29.98567 

29.96098 

29.95310 

2.32671 

2.19366 

2.17698 

2.15973 

2.01765 

2.10216 

2.02668 

2.02930 

2.02910 

1.87565 

1.90332 

1.90670 

1.87072 

1.86662 

1.82302 

1. 80201 

1.77219 

1. 76804. 

1.76785 

1.74211 

1.76597 

1.74834 

37.05844 

37.06843 

36.97602 

36.93093 

37.02887 

36.95828 

37.01020 

37.02292 

37.02791 

36.98916 

36.96799 

36.96342 

36.95879 

36.95485 

36.93484 

36.91562 

36.92020 

36.91732 

37.08747 

36.99157 

37.03351 

37.03675 

n = 100, Ps S =0.6, µS =30, ~ =37.0373 
1 2 2 2 

2.66994 

2.58392 

2.48384 

2.44235 

2.31318 

2.39717 

2.25791 

2.25821 

2.20981 

2.12555 

2.08319 

2.06246 

2.05674 

2.05599 

2.04361 

2.01575 

1.97135 

1.98227 

2.02706 

1.94889 

1.97908 

1.91635 

102 



1 
1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 
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TABLE 15 

CONDIT IONS FOR THE POSITIVE BIAS OF THE 
SCRAMBLED RANDOMIZED RESPONSE MODELS 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

a 

1, .•.•..... , 20 
2,3,4,5 
6, •...••••• ,20 
1 
2,3,4,5,6 
7, ......... , 20 
2,3 
4, ......... , 11 
12, .•.•••.• , 20 
1,2 
3,4,5,6,7 
8 I••••••••• I 20 
1 
3,4,5 
6, .•..••... ,17 
18,19,20 
1 
2,3,4 
5, ......... ,12 
13, •....... , 20 
2,3,4 
5, ......... , 10 
11, ....•... , 20 
2,3 
4,5,6,7,8,9 
10, ........ , 20 
2,3 
4,5,6,7,8 
9, ...•....• , 20 
2 
4,5,6,7 
8 I•••• o ••••I 20 
2 
4,5,6,7 
8 I••••••••• I 20 
2 
4,5,6,7 
8 I••••••••• I 18 
19,20 
4,5,6 
7, ......... ,17 
18,19,20 
3,4,5,6 
7 I••••••••• I 16 
17,18,19,20 

>= 0.9 
>= 0.8 
>= 0.7 
>= 0.8 
>= 0.7 
>= 0.6 
>= 0.7 
>= 0.6 
>= 0.5 
>= 0.7 
>= 0.6 
>= 0.5 
>= 0.7 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.7 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.6 
>= 0.5 
>= 0.4 
>= 0.3 
>= 0.5 
>= 0.4 
>= 0.3 
>= 0.5 
>= 0.4 
>= 0.3 
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TABLE 15 (Continued) 

fl f2 f1f2 a p 
rlr2 

1 17 17 3,4,5 >= 0.5 
6 I • • • • • • • • • I 15 >= 0.4 
16,17,18,19,20 >= 0.3 

1 18 18 3,4 >= 0.5 
5 I••••••••• I 14 >= 0.4 
15, •.•..... ,20 >= 0.3 

1 19 19 3,4 >= 0.5 
7 I••••••••• I 14 >= 0.4 
15, ..•...•. ,20 >= 0.3 

1 20 20 3,4 >= 0.5 
6 ~ • • • o • • • o • I 14 >= 0.4 
15, .......• , 20 >= 0.3 

2 4 8 6 I••• o •••••I 20 >= 0.9 
2 5 10 JI••••••• o • i 13 >= 0.9 

14, ....••.. , 20 >= 0.8 
2 6 12 2 >= 0.9 

8 Io o • o • • o ••I 20 >= 0.8 
2 7 14 6 I••••••••• I 14 >= 0.8 

15, ........ , 20 >= 0.7 
2 8 16 1 >= 0.9 

5 I••• o • o ••I 10 >= 0.8 
11, •.•.... , 20 >= 0.7 

2 9 18 4,5,6 >= 0.8 
10 I••••••• t 20 >= 0.7 

2 10 20 4 >= 0.8 
8 I•••••••• I 18 >= 0.7 
19,20 >= 0.6 

2 11 22 3,4 >= 0.8 
8 I•••••••• i 15 >= 0.7 
16 t •••••••I 20 >= 0.6 

2 12 24 3 >= 0.8 
7 I•••••••• I 14 >= 0.7 
15, ..•.... , 20 >= 0.6 

2 13 26 3 >= 0.8 
7 I•• o • • • • o I 12 >= 0.7 
13, ....•.. , 20 >= 0.6 

2 14 28 3 >= 0.8 
6,7,8,9 >= 0.7 
13, ....... , 20 >= 0.6 

2 15 30 6,7,8 >= 0.7 
12, ....... ,20 >= 0.6 

2 16 32 6,7 >= 0.7 
11, ....... , 20 >= 0.6 

2 17 34 6,7 >= 0.7 
11, ...•.•• , 20 >= 0.6 

2 18 36 5,6 >= 0.7 
11, .•..... ,20 >= 0.6 
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TABLE 15 (Continued) 

fl f2 f1f2 
p 
rlr2 

2 19 38 5,6 >= 0.7 
10, •.••... ,19 >= 0.6 
20 >= 0.5 

2 20 40 2 >= 0.8 
5,6 >= 0.7 
10, ••••••• ,18 >= 0.6 
19,20 >= 0.5 

3 6 18 15, •.•••••• ,20 >= 0.9 
3 7 21 9 I • • • • • • • • • I 20 >= 0.9 
3 8 24 6 I • • • • • • • • • I 11 >= 0.9 
3 9 27 5,6 >= 0.9 

18,19,20 >= 0.8 
3 10 30 4,5 >= 0.9 

14, •••••••• ,20 >= 0.8 
3 11 33 4 >= 0.9 

12, •••.•••• ,20 >= 0.8 
3 12 36 11, ••.••••. , 20 >= 0.8 
3 13 39 3 >= 0.9 

10, •••••.•• ,17 >= 0.8 
3 14 42 3 >= 0.9 

9 I • • • • • • • • • , 14 >= 0.8 
3 15 45 9,10,11,12 >= 0.8 

19,20 >= 0.7 
3 16 48 8,9,10 >= 0.8 

18,19,20 >= 0.7 
3 17 51 8,9,10 >= 0.8 

17,18,19,20 >= 0.7 
3 18 54 8,9 >= 0.8 

16,17,18,19,20 >= 0.7 
3 19 57 8 >= 0.8 

16,17,18,19,20 >= 0.7 
3 20 60 7,8 >= 0.8 

15, •.••••.• ,20 >= 0.7 

4 9 36 17,18,19,20 >= 0.9 
4 10 40 13, •.••• , 20 >= 0.9 
4 11 44 11, ••.•• ,18 >=. 0.9 
4 12 48 10,11,12,13 >= 0.9 
4 13 52 9,10 >= 0.9 
4 14 56 8,9 >= 0.9 
4 15 60 7,8 >= 0.9 
4 16 64 7,20 >= 0.9 
4 17 68 7 >= 0.9 

19,20 >= 0.8 
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TABLE 15 (Continued) 

fl f1f2 a p 
rlr2 

4 18 72 6 >= 0.9 
18,19,20 >= 0.8 

4 19 76 6 >= 0.9 
17,18,19,20 >= 0.8 

4 20 80 16, ••.•.••• , 20 >= 0.8 

5 13 65 19,20 >= 0.9 
5 14 70 17,18,19,20 >= 0.9 
5 15 75 15, •••••••• ,20 >= 0.9 
5 16 80 14, .••••••• ,18 >= 0.9 
5 17 85 13,14,15 >= 0.9 
5 18 90 12,13,14 >= 0.9 
5 19 95 12,13 >= 0.9 
5 20 100 11,12 >= 0.9 

6 20 120 19,20 >= 0.9 
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correlation, standard deviations, and biases. The amount of bias decreases as a 

increases. The standard deviations for the estimated correlation. Ps S also 
1 2 

decreases as a increases. It was expected that as values of a increase, the 

observed correlation p will be close to the correlation between the two sensitive 
rlr2 

variables, and hence the bias will be close to zero. For a = 500, p was 
rlr2 

0.60067, the bias was -0.0027 and hence Ps S was 0.59997. It is close enough to 
1 2 

the true correlation value Ps S = 0.6. Table 15 gives the conditions for getting a 
. 1 2 

positive bias in terms of f1, f2, and Pr r . Values were set from 1 to 20 and 
1 2 

p was increased by O .1. 
rlr2 

For fixed f1 and f2, conditions which give positive 

bias depend on a and the observed p r . When f1 = 1 or 2 if we use large value 
rl 2 

of a for the low values of the observed p we can get a positive bias. When f1 rlr2 

= 3 and for various values of f2 and a, to get a positive bias the minimum 

observed p was 0.7. When f1 = 4 and for various values of £2 and a, to get a 
rlr2 . 

positive bias, the minimum observed p was 0.8. When f1 = 4 or 5 or 6 and for 
rlr2 

various values of f2 and a, to get a positive bias, the minimum observed Pr r was 
1 2 

0.9. When f1 ~ 6 for any combinations of f2 and a, we never observed a positive 

bias. 

A major field problem in conducting a survey using the scrambled 

randomized response technique is how does the interviewer furnish a random 

device which can generate the multiplier value. Eichhorn and Hayre (1983) 

discussed this problem. Here we may propose a simple and familiar method. 

After generating multiplier values, we may write the values on a card and 

put those cards into an urn and ask the respondent to pick one card from the urn 

and multiply his (her) own S values and report product, SY to the interviewer. 
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