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CHAPTER I
INTRODUCTION
1.1 Overview
1.1.1 Scope

A considerable amount of work has been done in the field of state
estimation since the late forties. For nonlineaf systems, the observers have
mainly relied on the precise knowledge of the plant. Recently, state estimation
of nonlinear system in the presence of uncertainty has attracted much
attention. This attention, Qf course, is due to the fundamental importance
of the issue.| There are several robust observers for the uncertain systems,

for example, sliding observers, VSS observers, adaptive observers etc.

[Misawa, 1989]. However, choosing a proper observer is not easy because,

" Recently, price-reduced and powerful microprocessors have applied to

in many cas)js, the observer design is problem-dependent.

nonlinear eséimation techniques that require on-line calculations. However,
the estimation schemes, for example, with the computation of the coupled
covariance and filter equations are burdensome on applicable capabilities of
the microprocessors in practice. Hence, this study aims at developing a

simple structure observer so that it can be implemented using

microprocessors.




1.1.2 Contributions of the Thesis

For nonlinear/uncertain systems, adaptive and robust observers have
been propos‘ed. Since the robustness of the variable structure’ system is
known, nonlinear observers using "sliding mode" technique-have been
studied in seLreral ways. An approach using the dual concept of the variable
structure sy?étem requires the so-called "matching condition.”, Misawa et
al., proposed a sliding observer that can be designed without the matching
condition. TPey propqsed two design procedures: the first one'is for the case
of the strictlj}I positive real system and the other one is based on the absolute
stability theorem. With the absolute stability theorem, the sliding observer
utilizes a saturation function instead of a sign function.-

This study focuses on the robust features of the sliding observer by
introducing |a Lyapunoﬁ-like function theorem. The main works are

summarized as follows: first, the fundamentals of the sliding observer were

reviewed anc} explained systematically for the robust features including the
shearing effefts. For the stability of the observer, the worst case was analyzed
so that an algebraic stability condition was derived for the 2-order case. By
introducing a coordinate transformation, it is found that the sliding observer
can be interpreﬁed in the light of a linear system theory. Stability theorems
combined this coordinate transformation and the Lyapunov-like theorem
were proved %or the stability of the observer. Consequently, a robust nonlinear
observer design algorithm, ';Sliding\Observer design by wOrst reaching
dynamics for Nonlinear/ uncertain system” (SOON) is developed for a phase
variable canonical form system. Several comparative examples show the
strong points of the sliding observer. .

The sliding observer for multiple measurements was developed and




applied to de
In order
exact intensi

i.e., the Ricea

signing an observer based controller for a SCARA robot.
to realize the optimal Kalman-Bucy filter, we should know the
ties of noise which compose the state error covariance matrix,

ti equation. Practically, however, the noises are not measurable,

and the noiTe intensities may be changed according to the variation of

operating conditions. With the nominal statistical properties of the sensor

noises, Misa
designing a s

was applied

order Markov

order Marko

parameter m

equation was

wa[1988] applied the method of statistical linearization in
uboptimal stochastic sliding observer. In his study, the method
to the first order Markov process. The extension from the first
process of the previous work [Misawa, 1988] to the second
v process was performed. The extension work includes the
ismatch cases in which the optimal solution of the Lyapunov

numerically obtained by the steep decent method.

1.1.3 Problem Definition

A nonlin

nonlinear dif

where g(z, u,
state vector;
w and v are
parameter, a

A state

dynamical sy

possibly incl

lear dynamic system can usually be represented by a set of

fferential equations in this form:

(1.1)
(1.2)

z =g(z,u, t, w,0)

v = h(z,u, t, v, 8)

t, w, 6) is an nx1 nonlinear vector function, and z is the internal
y is the measurement vector, u is the control input vector, and
the process and measurement noise vectors. 6 is the system
nd the system is explicitly time dependent.

estimation problem can be interpreted as a composition of a

stem that estimates the state z from the measurement y and

uding the input u. In this study, we are interested in a simple



and robust observer that will guarantee a priori stability and convergence
with some relaxed knowledge of the system. Practically, the observer will
be implemented using microprocessors or computers and will be corrupted
with measurement noise and process noise. With this scope, the ideal state
estimation problem can be described as designing a simple observer that
can be implemented with desired accuracy and stability in the noise and
uncertain environment. For practical situations, the class of problems will
be specified. In the study, the plant is assumed to be described by systems of

first order differential equations in the canonical form:

Zy =12y
2y =17,
' (1.3)
Z'n-1= Zn
z_ = g(z,u,t,w,0)
y(t) = C z(t) (1.4)

where ze R", yez,, CeR™ and g(z,u,t,w,8) is a nonlinear/uncertain function.
1.2 Literature Survey

A literature survey was performed on the nonlinear observers and the
related fields such as stability theories and robust control. The nonlinear
observer survey includes a brief summary of Misawa and Hedrick's recent
paper (see detail Misawa [1989]) and is updated with the papers published
since 1989.

1.2.1 Nonlinear Observers

Since the cornerstone of modern estimation theories, the Wiener filter
and the celebrated Kalman filter, the estimation theory has been a very

vigorous research topic. In the case of a linear plant and a linear relationship




between the unknown state and the noisy observations, the estimation problem

has been solved by Kalman and Bucy [Kalman, 1960; Kalman, 1961].

Furthermore

has been wid

the Kalman filter is so easily installed in computers that it

ely used.

In the non-linear case, the Extended Kalman filter [Gelb, 1974; Sorenson,

1985] has a a

nalogous structure to the Kalman filter. The Extended Kalman

filter uses both the nonlinear and linear models, and it assumes that the

system is perfectly known. The computation of the coupled covariance and

filter equation imposes considerable real-time computational efforts

[Wishner, 1€
approximati

precomputed

Safonov, 19

)69; Misawa, 1989].

30].

To avoid the computational load, the

on of the Extended Kalman filter's residual-gain was

in the Constant Gain Extended Kalman filter [Safonov, 1978;

This method has the guaranteed robustness as the

mathematical dual of the LQG controller. This method assumes that the

system matrix is Gateaux differentiable [Holzman, 1970], nonanticipative,

dynamical nonlinear operators with finite incremental gain so that has

limitation on

Phaneuf|
that uses the
to determine

to lessen thel

hard nonlinearities.
[1968] developed a Statistically Linearized filter [Gelb, 1974]

describing function. It requires the probability density function

the describing function. Beaman [1984] suggests the new scheme

computational burden due to the error covariance equation. A

priori performance and robustness cannot be guaranteed without exactly

knowledge of

r

the statistics of x.

The concept of Global Linearization Methods was introduced by Bestle

and Zeitz [1

083] and extended to the multiple output case by Krener et al.

[Krener, 1985; Walcott, 1987]. With the assumption of the existence of a

nonlinear ty

ansformation T(x*) that in the new coordinate x*, the system



may be transformed into a linear observer canonical form. Following the
arguments involving the starting vector of Bestle and Zeitz [1983], Walcott et
al., showed the necessary transformation for a single output case. This
method transforms a system into a simple linear system but cannot guarantee
the existence of the transformation.

Another!approach is the Extended Linearization Method, which falls
into the category of gain scheduling methods. Baumann and Rugh [1986]
introduce an observer-design technique for non-linear systems that yields
constant eigenvalues for the error differential equation linearized about

fixed equilibrium points. The method of extended linearization requires

that the system dynamics be known exactly, and this method cannot
guarantee tixe performance and stability except in the neighborhood of
constant ope{rating points.

One major idea in designing the nonlinear observer is linearizing the
system about a nominal trajectory so that the linear observer technique is
applied. Another way to design the nonlinear observer is to use a
transformation technique that expresses the system in observable canonical
form that simplifies the design process.

However, most of the schemes of nonlinear observers have relied on an
exact knowledge of the system. Recently, the robustness of observer for a
nonlinear system has been pursued by using the dual concept of Variable
Structure System [Drakunov, 1986; Slotine, 1987; Misawa, 1988; Misawa,
1989; Walcott, 1986; Walcott, 1987; Chen, 1987; Chen, 1990]. A nonlinear
observer using the sliding mode technique was analyzed for a stochastic
case by Drakunov [1986] and for a deterministic case by Slotine, Hedrick and
Misawa [1986]. Another approach to estimation of uncertain nonlinear

systems is the adaptive observer [Hori, 1988; Chen, 1988; Chen, 1990]. The




drawbacks of the adaptive observer are that it requires the so-called matching
conditions, and the estimation error cannot be guaranteed to converge but

only to be bounded.
|

1.2.2 Stability Theory and Robust Controls

Several references can be found on the Lyapunov theory applied to
nonlinear systems with discontinuous functions [Alimov, 1960, 1961,
Bockman, 1991; Peleties, 1991; Stalford, 1981]. Passivity interpretations of
adaptive control laws are discussed in the book of Landau [1979]. The reader
is referred to Vidyasagar's book [1978] for a detailed discussion of absolute
stability. The circle criterion and its extensions to non-autonomous systems
were derived by Narendra [1973], and Zames [1966].

The idea of variable structure systems and sliding surfaces [Filippov,
1964] has been investigéted mostly in the Soviet literature [Utkin, 1984; Utkin,
1977, Utkin, 1978; Itkis, 1976]. It is well known that VSS shows robustness,
i.e., disturbance rejection property. The undesirable feature, chattering is
remedied by/plugging a boundary layer into a neighboring sliding surface
[Slotine, 1983; Slotine, 1984]. The sliding observer is motivated by the dual
concept of sliding control to give the inherent robustness to the nonlinear
estimation. |Plant uncertainty is the main reason why we need feedback.
However, plant uncertainty was largely heglected by modern control [Bryson,
1969] during the 1960s and 1970s. The optimal controllers based on LQG
have shown [poor performance and even instability in real systems because
of high sensitivity to modelling errors [Doyle, 1981; Doyle, 1982]. Beginning
in the late 1970s, the study of robust control systems by means of singular-value

analysis is represented by the work of investigators centered at the MIT.




The earl

control theor

lest statement of the separation theorem in the literature of

y was given by Joseph and Tou [Joseph, 1961] on discrete-time

systems in 1961. The separation theorem for discrete-time systems was so

reasonable and convenient that it was immediately adopted, without rigorous

proof, for continuous-time systems [Friedland, 1986; Walcott, 1988]. It is

well known
uncertain nor

perturbation

control in the

that the separation principle cannot be applied directly to

1linear systems. Esfandiari and Khalil [1989] used the singular

technique to prove the stability of the observer-based closed-loop

> presence of time-scaling.

The literature on the subject of computational considerations and

robustness w
[1973] discu
understandir
residual-gain

The refer
of literature,
[Papoulis, 19
[1970] give:
the Ito and |
found by Kus

1.3.1 l-order

A linear

ith model uncertainties [Safonov, 1978] is sparse. Schweppe

ssed nonlinear estimation and provided a good intuitive

g of the trade-off between computational requirements and

1 choice.

ences about the stochastic processes spread over a wide range

according to the level of mathematical rigor. General textbooks

84: Friedland, 1986] are available. Jazwinski [1970] and Astrom
readable accounts of stochastic differential equations including

Straonovitch calculi. A higher level of mathematical rigor is

hner [1967, 1984] and Anderson et al. [1986].

1.3 Differential Equations with Discontinuous
Right-Hand Sides

Examples

time invariant system with a pole at -3 is a asymptotic stable

and its nonzero initial state decays to origin exponentially. If a disturbance




is applied, then the system shows state error as in Figure 1.1 (a). The

linear syste

Let us co

right-hand sj

is
X=-3x+w (1.5)

nsider a first-order differential equation with a discontinuous

ide.

X =-3sgn(x) + w (1.6)

(a8) -D LTI system: x and x with w=2sqw(t/4)

Figure
(a) Lin

Without
condition x'=

system is con;

time

1.1 Comparison between linear and nonlinear systems

ear system (b) nonlinear switching system

the disturbance input, the switching system, with initial
5, decays 3 per second. The approaching slope of this nonlinear

stant, compared to the asymptotic behavior of the linear system.
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The velocity field of this system with the bounded disturbance (1w 1< 3)is

x<0, forx>0
x>0, forx<0 1.7

This velocity field composes a sliding motion at the switching plane.
With a disturbance less than the switching coefficient, this switching system
does not leave the sliding surface. The robust feature of the system with a
discontinuous right-hand side is mainly owing to this sliding motion. Until
arriving at the switching plane x=0, the signum function is constant. While
staying in the switching plane, the instant time mean of the signum function

has the value between -1 <{ <1, i.e., from the Filippov's equivalent dynamics.
1.3.3 2-order Examples

Let us consider a nonlinear system that is a 2-order linear canonical

form system with switching functions.

'h1 X, +X, ‘k1 1S(X1)
-h, x, -k, 1(x,) + w

X,
X,

(1.8)

where w is a|input or disturbance input and h,:2, h,:2, k,:0.1, k,:2, w=sin(t),

1.(x,) = sign(x,) or sat(x,)

5 Luenberger Observer with Disturbance ;. w=sin(t)

time

Figure 1.2 Luenberger observer error dynamics
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If the sygtem has only linear correction terms, then it is the same as

the error dynamics of the Luenberger observer.

added to the
dynamics.
‘When the
the state err
Compared to

switching ter:

If switching terms are

system then it becomes a nonlinear sliding observer error

disturbance is applied to the system, the linear system shows

or according to the disturbances as shown in Figure 1.2.

the linear system, the nonlinear system with additional

ms compensates the disturbance and quickly diminishes state

errors as in Figure 1.3. These properties are the robust features that is

essential to observers.

We can se¢
switching ter
control." The

modulation cg

e the sliding motion begins at approximately 4 seconds. The

m looks like the control action of "pulse width modulation

saturation function looks like the control action of "amplitude

ntrol" and it has the opposite sign of disturbance.

(a) Sign Function : k1:0.1 k2:2 h1:2 h2:2 w=sin(t)

5
()] X1
£ \%
<
5 =
0. 2 4 6 8 10
time
5 () saturation Function : k1:0.1 k2:2 h1:2 h2:2 w=sin(t)
~ X1
x o0
< .
5 . - - :
0 2 4 6 8 10

~~~

E

time

'igure 1.3 Sliding observer error dynamics

a) Sign function case (b) Saturation function case




sign & sat function : k1:0.1 k2:2 h1:2 h2:2 w=sin(t)

2+
E T
B oo I
SURN L
2 ) |
0 2 10
time -
Figure 1.4 Plotting of sign and saturation function
20 “Luenberger Observer : h1:40 h2:400

x1,x2

1 1.5 2
time

Figure 1.5 A linear system with high gains

The linear system with high gain has a big overshoot compared to the
former ones.| It is well known that the sensor noise is also amplified by the

same gains. | The signum function in the nonlinear system has "adaptive"

features that behave as a high gain function near the origin and as a low

gain functioT far from the origin.

A nonlinear observer that just had switching terms added to it shows

desirable rollust features. Since the signum function does not satisfy the

Lipschitz condition, the stability of the system with the signum function has
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been usually studied by the Lyapunov stability theory. Hence, if the Lyapunov
function is not found for the nonlinear observers with the signum function,
then the nonlinear observers have been designed with quadratic Lyapunov
function which required the matching condition [Walcott, 1986] or can be
designed only for a strictly positive real system [Misawa, 1988]. This study

aims developing a sliding observer without the matching condition.




CHAPTER I
FUNDAMENTALS OF SLIDING OBSERVERS
2.1 Systems and Problem Statement

It is assumed that the plant is described by a set of first order differential

equations in the canonical form:

Z, =2,
Zy = Zg
. (2.1
z.n-l = zn

7 = g(z,u,t,w,e)

y(t) = C z(t) (2.2)

whereze R'|ye R", Ce R™, g(z,u,t,w,0) is a nonlinear/uncertain function

of the state,|input, time, disturbance, and system parameter. With this

system, the sliding observer is suggested as follows:

|
7=l | +H@-CD+KLE) 2.3)
3l
where y=y-Cz
H'=[h}, h},...,h)], He g*"
(2.4)

K'=[k,k,... k] Keg*

g(z,u,t,w,0) is the estimated function of the nonlinear/uncertain function

~

P Yin . ‘) . .
g(z,u,t,w,8). The estimated function g(z,u,t,w,0) 1sAfunct10n‘ of the estimated

state, input, time, disturbance, and the estimated system parameter. The

14
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function 1(y) is the multivariable generalization of switching functions:
1) =[sgn(¥,) sgn(¥,) ... sgn¥_)]". With this state estimator, the error

dynamics is obtained by subtracting equation (2.3) from equation (2.1):

| 0‘
x=(A-HC)x-Kls(§)+{6’ (2.5)

W.
where x=2-2, y=y-Cz=Cx, w=g(z,u,tw,0) - 8z,u,t,w,8), C=[10 ... 0],
0] I

ol 0J
Since the function g(z,u,t,w,0) can be a nonlinear function of the state,

the system matrix of error dynamics A is A =[

it is not modeled into the system matrix. For sliding observer error dynamics,
w is the disiurbance input which includes the system modeling errors,
neglected noLlinearities, parametric uncertainties, and noises. Since the
disturbance input w is the difference between g and g, its dynamics varies
according to the modeling accuracy and the estimation error state [Slotine,
1987]. The estimated model complexity may depend on the acceptable
computational burden. The bound of the disturbance input w is assumed to

be known for the proper range of system state.

This sliding observer is basically the conventional Luenberger-like
observer with an additional term of the signum functions or saturation
functions. The "error dynamics" of the observers will be studied in the light
of this viewpoint.

Rewriting the equation (2.5), in the case of single measurement available,
the observer error structure is of the following form:

’ ’:(1 =X, - h; x, - k sgn(x,)
X, = X, - h, x, - k, sgn(x,) (2.6)

x,= -h, x, -k, sgn(x,) +w
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Throughout this study, the above equation (2.6) is used as the standard

form of the sliding observer error dynamics with a single measurement.

2.2 Solutions of Discontinuous Differential Equations

2.2.1 Sliding and Passing Conditions

According to the solution of discontinuous differential equations (see

Appendix A.1), one should discern the conditions between the two main
|

cases: one is the reaching dynamics and the other is sliding dynamics.

Consider the case where the function f(x) is discontinuous on a smooth
surface S given by the equation y = C x = 0. The surface S separates its
neighborhood in the state space into domains Q. and Q,. For the point §
approaching the point x € S from the domains Q. and Q, , let the function
f(t,£) have thi limit values: [Filippov, 1964]

1&31 f(t,£) = £(t,x), ghgl fit,£) = f'(t,x) 2.7

£-x 5-x

The functions f, and f; are defined as the normal component of the
vectors f and f* to the surface S at the point x. The positive sign is directed

toward the domain Q,. In this study, the velocity means x in (2.6).

//v //S p%/

Figure 2.1 The velocity field near the hyperplane
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Sliding Condition. If the velocity field f(t,x) is directed to the surface S

on both sides, i.e., fi(t,x) > 0, fi(t,x) <0, then near surface S, all the solution

points are approaching it from both sides as t increases, and they cannot

leave it while the condition is satisfied. Let the hyperplane equation be

®(x)=0. For the sliding observer (2.6), ¢(x)=x, =0 is the sliding surface,

and the directional functions at the surface (x,=0) are

f;=(vl¢)¢if:xl_=x2-hlxl+kl=x2+kl
\
(2.8)
(Vo). .
fx::L_:Xu:Xz'hlxl'kl:xz'kl
Ve
* The sliding condition for the system (2.6) is
X,°%X, <0 (at x, =0) (2.9a)
Plug equation (2.7) in equation (2.8):
%] <k, | (2.9b)

’ | ' . .
Passing Condition. If the velocity field ft,x) has the same signs, i.e.,

ftx)<0 fi(t,x)<0orfi(t,x)>0 f(tx)>0, then near surface S all the

solution points are passing through the hyperplane ¢(x) = x, = 0 as t increases.

* The passing condition for the system (2.6) is

x,| > k, (at x, =0) (2.10)

Suppose that for t' < t < tf the trajectory of vector function x(t) extends

inside the region in which the right-hand side of equation (2.6) is continuous
with respect t,
is determinec
Undoubtedly

plane, then x

o (t,x). With this passing condition, the solution of this system
1 by the first case of the solution definition in Appendix A.1.
if the velocity function x = f(t,x) is continuous at each half

t) is continuous. Consequently, the continuity of x(t) is:




where x' is th
Since the
exists, for ea

ordinary sens

X(t) = x(t) + f fux() du (2.11)

e initial state at the passing point.
> integral is continuous, the continuous derivative x = f(t,x)
ch half domains, for all te (ti,t‘) , i.e., x(t) is a solution in the

e [Filippov, 1964] (see also Chapter 2.4.2).

222 Switchipg System

The sugg%ested sli

ding observer is a linear system plus switching terms.

The linear S}}rstem has the linear correction term that corrects the velocity

|
onal to the feedback state x,. On the contrary, the switching

field proporti
terms change
linear system
solution of th

the solution o

The first

While the
the sliding su
are known as
the trajector
Unfortunatel
order systems

first order six

the velocity field according to the sign of feedback states. In a
1, the state transition matrix is in an exponential form. The
e switching system is compared with the usual definition of
f the differential equation with a continuous right-hand side.

order n-simultaneous switching system is

|

‘ X, =- k sgn(x,)+w

X, = X, - k, sgn(x,)
X, = X, - K, sgn(x,)
. (2.12)

> state x, is not zero (in other words the solution point leaves
rface and does not cross over the hyperplane), these dynamics

"reaching dynamics." In the 2-order case, it is easy to verify
ies of the switching system using a phase plane analysis.
y, however, this technique does not apply directly to higher
. For the general case, the state is obtained by integrating the

nultaneous equations.




t
X, = -knsgn(xl)t+f wdt + x!
0

t
X,, = -2 sgn(x,) t2+f wdtdt + (xi-k_, sgn(x,))t + x|
0

X, =- _kr—-sgn(x ) t™ 1+ff w dtn 1* X -kgri-szg;l(xl)) tn-2+..-+(X:ia'k25gn(xl))t+qu

X, = & sgn(x,) t* +f f 0 Wdtn+(x;-kz;.slg)r'1(xl)) t" 4 Hxi-k, sgn(x t+xt

(2.13)
wherex] is the initial state of x; and f f f w dt” stands for n-multiple integral.

Let the bound of disturbance be w=w(t) as follows:

Jkn SWp, SWSw_ <k (2.14)

With the} bounded initial state and disturbance, the bound of each state
for the right half side of the svﬁtching plane (x, > 0) is as follows:

kt+w t+x<x <-kt+w, t+x (2.15a)

n

- 21 mirﬂf? '(kn-1 - XL) t+x,<x, <- (k vamaX)t (kn-l - XL)t +x,, (2.15b)

(kn 'Wmin)+n'1 (kn-l 'Xri)) n-2

" - ECIE | 35 AR AL RS 4
(n-1)! (n-2)! °
(2.15¢)
<l W )ins By o) oz ey 4w
T (n-1) (n-2)! TR TR
-w k., -
octinide B o nyion
(2.154d)
(kn Wmax) n (kn-l-X ) n-1
<- t o) t (k;-%,) t+x




For the le
We canﬁot ce
However, the
Particularly,

opposite sign

Since the
terms, its dyz
sliding obsery
and the slidi

reaching dyn

2

ft half plane (x, < 0), the bound will be obtained the same way.
nclude the stability of the system from the equations (2.15).

equations show that each state has modes of power of time.

the coefficient of the highest power term of each state has the

of x,.
2.3 Sliding Observer Dynamics

sliding observer has both linear correction terms and switching
namics may have characteristics of both. In this section, the
yer is compared with a linear system and a switching system
ng observer dynamics are reexamined as a composition of

iamics and sliding dynamics.

2.3.1 Reaching dynamics
Linear Time Invariant (LTI System. A LTI system in state space form
is
zs=Az+Bu, zt)=z (2.16)
The state solution is expressed in an exponential form of the state-

transition me

The respc
mainly by its

has a negativ

trix:

2(t) = eM 7 + f et B u(1) dt 2.17)
0

nses of a linear time-invariant dynamical system are dictated
modes, or equivalently, the eigenvalues of A. If an eigenvalue

e real part, its mode will approach zero exponentially as t—eo.

2(t) = Y, (pi 20) €t g (2.18)

where p, and q; are, respectively, a right and a left eigenvectors of A associated




with A..
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Switching System. The switching dynamics (2.15) is compared to the

time invariant linear system dynamics. The state correction mechanism is

compared to ‘the LTI system as follows:

Switching system:

LTI syste

{ x, = X, + k, sgn(x,)
Xy = X, + K, sgn(x,) (2.19)

X, =X, +k_, sgnx,)

oI,
X,=% +h x
X; =%, + h, x,

(2.20)

xn = xn-l + hn-l xl

Reaching Dynamics of the Sliding Observer. The sliding observer error

dynamics is t

case of the sl

where w =

Different

where 8(3

he same as the combination of two systems. Consider a 3-order

iding observer with a passing condition:

X, =X, - h, x, - k, sgn(x,)

X, = X, - h, x, - k, sgn(x,) (2.21)
\5{3 = -h; x, - k; sgn(x,) + w
X,u,t,w,0)

iate x, and plug in the second equation:

X, =-h, %, -h, %, -k, 8(x)) %, - k, sgn(x,) + x,

x,) is a dirac delta function (see Appendix A.2)

x® =-h, X, -h, %, -h, x,-k, 8(x,) %, - k, 8(x,) %, - k; sgn(x,) + w (2.22)




If a solu

2

tion point does not cross over the hyperplane, i.e., reaching

dynamics and x, is not zero, then the dynamics (2.22) is rewritten as:

l

|

x®=-h X, -h, %, -h, x, - k, sgn(x,) + w (2.23)

Near thé switching plane, i.e., Ix,] << 1, the contribution of linear

correction terms in the equation (2.21) is less than that of switching terms.

However, the linear correction terms of the reaching dynamics cannot be

|
neglected. Even though Ix,| << 1, we should notice that the differentiated

terms may n

can stabilize

ot be small. Hence, by using the linear correction terms, we

the system.

2.3.2 Sliding Dynamics

To get the sliding dynamics, the methodology of Lemma 1.1 in Appendix

A.1 could be

finite switchi

directly applied to the sliding observer[Filippov, 1964]. With a

ng timing, the sliding dynamics includes chattering that may

be harmful for sliding control in practice. For an observer problem, even

though the chattering is only a numeric phenomenon, it is not desirable for

the observer

dynamics is ¢

based controllers. With the linear correction terms, the sliding

btained as the same method.

The n-1 poles associated with the sliding dynamics on the sliding patch

are obtained by Slotine [1987]

[ k/k, 10 0
-k,/k, 01 0
det{ sI_, - =0 (2.24)
.. 1
| -k /k, 00 0_
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where the I, ; is the identity matrix of order n-1. Thus the poles of the
sliding dynamics can be placed arbitrarily by proper selection of the ratios

k/k,, (i=2, ... n).

2.4 Coordinate Transformation

2.4.1 Shifted:-coordinate System

The error dynamics (2.6) can be rewritten as:

x=A,x-Ksgnx)+W (2.25)

where K={k,,....k_ }', W={0,...,0 w)" and

[-h,10...00]
-h, 01 : '
A_=| - = |H| I (2.26)
. 01 0
-h,0. .. 00,

The equation (2.25) can be rewritten as:

| 0\
x=A_x- 1,0 ngn(x1)+16 (2.27)
010 ‘UJ

~ where u, = w-k_sgn(x,) (2.28)

Observation 2.2 Matrix multiplication

I 0 Jo
s ol =l T° (2.29)

0 010




By using|equation (2.29), rewrite equation (2.27):

| 0 o ] Q\
x=A_|x- 1 lo Ksgn(x,)|+ O’ (2.30)
Uy
The sliding observer can be rewritten:
‘|
x=A_(x-K sgn(x,))+: O (2.31)
\ud {
0o
where K = I lo K : shifted switching coefficient (2.32)
Take a coordinate transformation:
x,=x-K sgn(x,) v (2.33)
and differentiate it
X, =X - K, 8(x) %, (2.34)

Finally, in the shifted-coordinate system, the sliding observer is

0
Uy

0
X = A_X_+ { ; f -K, 8(x) %, (2.35)

For the reaching dynamics, the sliding observer in the shifted-coordinate

is

H
x,=A_x + \ i [ (2.36)




where u, =

-k sgn(x,)

The shifted-coordinate transformation for each side of the domains Q,

and Q are as

2.4.2 Sliding

Compare
which are tw

and sliding d

i) Right

passing cond

Take the

The right

where x, =[x,

The reac

follows:

’x+ =x-K,, forQ, (x,>0)

-‘x_=x+Ks, for Q (x,<0)

X

S

(2.37)

Observer Error Dynamics in the shifted coordinate

d to a LTI system, the sliding observer has three dynamics

o reaching dynamics for x, >0, x, < 0 in the shifted-coordinate

ynamics at the hyperplane x, = 0.

Reaching Dynamics. The first mode is for x, > 0 space with

ition:

|

X =% -hx, -k
X, = X3 -hyx, - k,

(2.38)

X, -k,

w-h x,

coordinate transformation:

|

x1+ = X1

X,, = X,- Kk, sgn(x,) (2.39)

xn+ = xn- kn—l sgn(xl)
reaching dynamics is

-h,10...00]
-h, 01
. (2.40)

SO
IO._;.. .

-h. 0.

ud+

. X,,]5, for x,;#0, §(x,)=0and u,, = -k_ + w < 0 for k >twl oo

P

hing dynamics is the second companion form in the linear




system theory. The equilibrium point is moved to:
x=[0k k,... kI (2.41)

The disturbance input u,, will push the solution point into the sliding
patch where the sliding mode occurs or the trajectory will cross the

hyperplane.

i) Left Reaching Dynamics. The second mode is for x, < 0 space with

passing condition:

X, =X, -hx +k,
| X, = X, -hyx; + k, (2.42)

. .

| X, = W -hnX1 +‘kn

The shifted-coordinate transformation is

X.. =X
| X5 =X+ Ky (2.43)
X, =X+ Kk,
The left reaching dynamics is
[-h,;10...00] 0
-h, 01
. (2.44)
X_ = C X+
01
-h,0. .. 00, Uy
wherex =[x,/ ...x,]"andu, =k +w>0 (2.45)
The equilibrium point is moved tox =[ 0 -k, -k, ... -k_,]". (2.46)

The disturbance input u, will push the solution point into the sliding

zone where the sliding mode occurs or the trajectory will cross the hyperplane.

iii) Sliding Dynamics. The third dynamics is the sliding dynamics that



is in the hyperplane x, = 0 with the sliding condition (x| <k, ).

) [ &A10...07 4 0
iy Kk 01...0||x. )

S = S S O (2.47)
\XI R x'] \OI
-k /k,00...0]'\"" w
The sliding patch is the region:
x,=0, -k,<x,<k,, ..., -k ;<x,<k_;. (2.48)

A sliding|patch is defined as a zone where sliding condition is satisfied

and where the sign of velocities are the same. For the sliding observer, the

sliding zone is

-k, <x, <k (2.49)
In the shifted-coordinate, it is equi\?alent to:
2k <x,, <0 (2.50)

> |

0<x, <2k, (2.51)

"igure 2.2 Shifted-coordinate and sliding patch
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Steady State of the Sliding Dynamics. With the constant disturbance,

the steady state with the sliding condition can be calculated from the condition:

3
nn
oo

(2.52)
iz

Plug this condition into the sliding observer (2.6) with x, = 0 and obtain:

M
]

Time mean[sgn(x,)] = %—:ﬁ =.=% (2.53)
1

k, k,

From this condition, the steady states are obtained as follows:

X, =L W
SS kn
xass = kﬁ w
o (2.54)
X = Koy w
nss kn

With the ‘ipresumed condition |w|<k_, the steady state is in the region
k. J<k,;in J)ther words the steady state is confined by the shifted-constant
K.. If the at?solute of every state is less than the shifted constant, i.e.,
x|<k,,, thel‘l the switching terms dominate the velocity field direction at
the each switching instance. Consequently, all the velocity direction is

opposite of the sign of x, at the instance.
2.4.3. Passin‘ Points on the Hyperplane

The error|state of sliding observer with an arbitrary initial condition is
desirable to converged to, within finite time of passing, the sliding patch

and stays on it. Through a series of switching, designing an asymptotically
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stable system is required the notion of passing points. As a notational
convenience, the set of passing points is defined by sequences of switching

timing 0<Ty<o0, V T€ T,=T,T, - - - Ty -

(s(xs,'cj)} = 8(T,), (1)) ... » 8(T), - (2.55)
X,
A
si(1,) Q.(x)
Q (x)

si(t,)] si(t,)

/’_‘—3 xl’

w si(TI)

o |

"igure 2.3 Passing points on the hyperplane

At the passing instance 7; on the hyperplane, the new initial state is

reset as the same as the final state of the former reaching dynamics except
the changed sign of x, (x, = 0). Even though the velocity field of the system is
discontinuous as equation (2.42) and (2.46), the trajectory is continuous (see
Appendix A.1). The pasing point s(x,,T,) is decomposed into s,(t;) and s (t;)

according to the sign of x,. Hence, the continuity equation of passing state is

s(1) = si(t) = si(1) .
! ? " (except changed sign of x,, s=-,+) (2.56)

‘ Ss(Tj) = Si+(1j) = Sf('tj)



where si(1) =

i f i f
0, 0f o 0
S5 S : St S
2, sl =, siy =2, sl =2 (2.57)
Sha St S S,

It is convenient to express the initial state and the final state in the

shifted-coordinate x

The relat
the shifted-co

By pluggi

i) Passing

1) Passin

In the sh
each other by
shifted.

0 o | o o
oL(T) = %l oi(t) = O oi(t) = %, o'(r) = % (2.58)
A oL, ] o | o |

ions of the passing state between the original coordinate and

ordinate are

oL(t) =si(1) - K,

6.(%) =si(1) - K, (2.59)
ol(t) = si(t) + K|

o(t) = §i(1) + K,

ng equation (2.59) into the continuity equation (2.53), we have:
r left (with the passing condition x,=0, x, < -k,)

5i(1) = si(1) = 0l(1) = oi(T) + 2K, (2.60)
g right (with the passing condition x,=0, %, > k)

5i(1) = sl(1) = o, (1) = d(1) - 2K, (2.61)

ifted-coordinate, the initial and final states are different from

twice of the shifted-coefficient because the coordinate origin is




3.1.1 Worst C

The initie
determine a t
input can wor
worst case is
trajectory is d
other trajecto

Consider

passing condi

where Iwl <
With no l¢

a hyperplane,
the plane is di

Region I

CHAPTER III
STABILITY ANALYSIS

3.1 Worst Case Analysis

ase Analysis of Switching System

l condition and the disturbance input of the sliding observer

rajectory of system. For the sliding observer, the disturbance

rsen the error state. If the worst direction is known and the

stable, then the system is obviously stable. The worst-case

lefined as the worst-convergence trajectory that encloses any

ry with the same bounded disturbance in the phase plane.

the worst case in a second-order switching system with a

tion.

X, = x,- k, sgn(x))

%, = -k, sgn(x,) + w (3.1

k, is a disturbance whose bound is known (3.2)
)ss of generality, we can assume that an initial point starts on
e, x,=0, | x, I>k,. In a second-order phase plane analysis,

vided into 4 regions as Figure 3.1.

For the region (x, >0 nx, > k), the system is

X, =X%,-k

5{2=-k2 +w (3.3)

31




The line

the maximun
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ABC, in Figure 3.1, is the worst trajectory of solution point by

n disturbance w=w and the trajectory equation is

X) = 2(1{1. 5 (x2 - ki) + Cy (3.4)

Figus

As the di
wider angle.
is C. If the di
to the sliding |

X, _ -1
2k, + )

re 3.1 Worst case analysis in the second-order phase plane

sturbance input w gets bigger, the arc of trajectory shows a
The worst point at x, =k, by the above parabolic equation (3.4)
sturbance has negative sign, then it will be helpful to converge

patch. The trajectory equation is

(x, - k,F + C, (3.5)
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Region I1) For the region ( x,>0nx, <k, ), the system is the same as
the case of region I. The worst trajectory of solution point is the line CD in

Figure, that is by minimum disturbance w =-o and the equation is

- -1 .
= 2(k2 : (0) (X2 kl)z + Cz (36)

1

The final §olution point D in this region is clearly the worst point because
1
it is the outermost point. If the disturbance has a positive sign, then it will

be helpful to converge like the trajectory line C'D’ whose equation is

| ) '
T (x,- k) + C, (3.7)

If the bound of disturbance is known and if the coefficient k, is greater
than the bound of disturbance, then the trajectories of solution point are
enveloped with the curves, i.e., the worst trajectory ABCD and the best
trajectory AB/{C'D’ as in Figure. According to the equations (3.4) and (3.6),
the worst direction of disturbance in right half plane is

W = o sgn(x, - k; sgn(x,))

= ® sgn(x,) (3.8)

For a left half plane, the worst direction is the same as the above equation,
since it is symmetric about the origin. Let assume the initial states xi =0
and xj =L2 >k, For the worst case, the constants of equations (3.4) and
(3.6) are:
(L2 - &,
2(k, - 0)

[

b =C, = (3.9

With the given condition (3.9), solve the equation (3.6), and the final

point, X,, _,, is obtained for the worst case:




(L2, - k,f
Xojx, =0 \/(k + W) (k-z o) +k,

L2 = X, o
(Take positive term) (3.10)

b+ @) (19 x)-
) (L2, - k) - k,

If L2 >L%, then the system is BIBO stable. If the disturbance is zero

(w=0), then the distance of the final point is closer than the initial condition

by twice of k, until it reaches sliding patches. The worst case analysis of the
left half plane is the same as that of right half plane. This jump approach
to origin shO\Is "shearing effect" of the sliding observer.

20 = (L2 - 2k,) (3.11)
L2 =(LZ-2k) | (3.12)
With the ILnown bound of ® and L2 (or L2 ), we need to design k, and k,.

(k, is presum d greater than the bound of w).
The algeb[(aic condition for k,is

2(5- (fe)f -1) (3.13)

1
2 0 o

M

The above equation is singular for ® = 0: since this analysis is for the
worse case, it is reasonable to assume w#0. From the algebraic stability
criterion, if k, equals @ then the initial condition x, should be on the sliding
patch i.e., xj =k, in order to guarantee stability. Using the stability criterion
(3.13), Figure 3.2 is plotted as a function of k,/w. We can see that k, is not
necessarily the same as the bound of disturbance. If k, is 2 times of ®, then

k, can be selected as small as 0.3*L2, as shown in Figure 3.2.




The algebraic stability criterion

1
+ . Stable o0
= 0.5 N P el L
< ; A
Unstable \\\_
0 ; : : —
100 101

k2/w

Figure 3.2 Stable region by the stability criterion (3.13)

1185

3.1.2 Exampls

Let us consider a following second-order switching system

X, =X, - sgn(x,)
X, =-28gn(x,) +w

where x, =0, x} =12, =5, w, = 0.8*sign(x,), w, = 0.5*sign(x,)

(3.14)

The above initial condition satisfies the passing condition. Therefore,

apply the stab

stability:
o Lot f w,=0.8 - k;>1.044
T lw2=o.5 - k,>0.635

W

ility criterion (3.13) and we have the necessary condition for

(3.15)
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-81..

-10 ; : . : : : :
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Figure 3.3 The template (dotted lines) and disturbed trajectories

k1:1k2:2, w=0.8"fsgn(x2-k1*sgn(x1))

x2

Figure 3.4 The worst case: w;=0.8*sign(x, - k,*sgn(x,))
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The template (dotted lines) is made by the system without disturbance,
and the disturbances for the trajectories (solid lines) are: w,=0.8*sign(x,),
w,=0.5*sign(x,). The system's coefficient k, = 1 is sufficient for the worst
case of w, =0.5: for the case of w, =0.8, it is not. In Figure 3.3, the disturbance
w,=0.8%sign(x,) forces the system to grow slowly. On the contrary, in Figure
3.4, the worst disturbance w,=0.8*sign(x, - k,*sgn(x,)) forces the system to

diverge faster than the former one does.

3.2 Worst Direction in the Shifted-coordinate

3.2.1 Second-Order Reaching Dynamics

Rewrite the equation (2.39) in Chapter 2 for a second-order case:

%, =-h, x, +x,,
X,, =-h, X, + u, (3.16)
where u, = w -k, sgn(x,), -k, <w, . <wsw__ <k, (3.17)

Xo, h 0 X,
X;=-h; X, +x,, =
4 x,50x%, <0 P T # x>0 .
X, =-h x +x, =0
—
* 2 cl
- ¢ <0
X, <
/ %, <0 !
*vl > X — >
0';.
‘4—
<4
X,<0
o§+worst

Figure 3.5 Velocity field and the worst trajectory
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equation (3.8)).

3.2.2 Worst D

Let us con

gion (x, >0 N X%, > 0), the worst direction is

Xz"’worst - x2"’ ' max{iz)

= x2+ I max(w) (3 18)
=Xt | i) ('.'xz+ <0)

= 'h2 X,
passing condition, the solution point starts to move right. The

termost point is ¢l which is determined by the slope h, and

h,.

gion (x, >0 N X, < 0), the worst direction is
Xz"'worst. = }'{2*' l min()'(z)
= X + .
T | ming) _ (3.19)
=X,, ‘ maxﬂ)'d) ('.'X2 <0 )
=-h, x, -2k,

that any other trajectories are bounded by the worst trajectory,

nitude of the worst passing point is the bound of any other

S.

e | 2| G5 (3.20)
h half space, the worst disturbance is
& = o sgn(x,) (3.21)

t direction is the same as that of the switching system (see

irection in the Velocity Field

sider the velocity field of a 2-dimensional space:

X, =-h X, +x,,
'h2 Xl + ud

X2+




where u; = w -k, sgn(x,), -k, <w__ <w<w,_, <
In order to specify the coordinate transformation, the subscript + or -
are used in the dynamics equations. However, for convenience, the subscript

can be ignored without confusion.

At the point P, on the trajectory in Figure 3.6 (a), the disturbance input
does not change the difference dx, but change the difference dx, , e.g. dx,®
and dx, @. Th}e sign of the velocity direction dx, is strictly negative according
(8.17). The wo‘rst case trajectory is defined as a trajectory that encloses any
other trajecto. y with the same bounded disturbance in the phase plane. Ifa
moving point moves outward always, then it will compose the worst trajectory
for a given initial condition.

Even though the finite next point P? is outward compared to the point

PJ, the distance of P? from the origin itself is closer than the other point.

2" X, = h1 Xy
G,
P,
® %0
B/ axe
PPy
» X;
dx,
(a)

Figure 3.6 (a) Conception of velocity field (b) The fictitious next point
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By adding the scaled differences of dx, and dx, to the point P,, fictitious
next point P,, is defined as follows:
Zz* = PZ*(Xlt(t+dt), Xz*(t+dt)) (3.22)

where x,.(t+dt) = x,(t) + dx,

dx
X, 2 5

8¢ = C,W/(dx,) + (dx,)’ and C, is a constant.
It is clear that the outmost fictitious points compose the worst trajectory.
The generalization of the fictitious next point is obvious and the direction of

worst fictitious point is the worst direction of disturbance input.

%, (t+dt) = x,(t) + %’i

%, (t+dt) = x,(t) + 32
8¢ (3.23)

x_(t+db) = x,(t) + ‘;xn

where 8¢ = C, #/(dx,f + (dx,f + . . . + (dx_F and C, is a constant.

For the second-order case, the fictitious next points e.g. Py,P? lie on the
arc o in Figure 3.6 (b) which is less than the quarter of the peripheral of the
unit circle centered at P, because the sign of dx, is strictly negative and dx,
is fixed as positive or negative.

For the general n_th-order case, the fictitious next points composes a

line on the n_th-order sphere surface since all the different components dx;
except dx, are determined by only x(t) and dx, is strictly negative and bounded.

In the phase plane of x, and x,, the fictitious next point is less than the



41

quarter of the peripheral of the unit circle centered at P, also. Since the

direction of qu
the worst dire

the worst dire
3.2.3 Numeric

The worst
problem wher
maximized ba
of the boundec
section search

more reliable

(3.17) is a real

shifted origin

reasonable to s

one of the thre

3.7 1s not esse

Golden-section

least number o

\

—

arter line is function of %,, %X,, . . . ,X,, , it is not easy to visualize
ction as the second-order case. Hence, it is proper to search

ction by numeric simulation.

al Search

bound by the disturbance input can be interpreted as the
¢ the distance (or the Lyapunov-like function) has to be
sed on the evaluations of the results from several simulations
1 disturbance input. The optimization is done by the Golden-
that does not require the derivatives of the function. It is
but slower method. Suppose that the disturbance input in
| valued function defined on [-2k , 0]. The distance from the
or the Lyapunov-like function can be the cost function. It is
issume that the cost function is unimodal and its graph takes
e forms as shown in Figure 3.7 The interval [0,2] in Figure
ntial but convenient to implement the sliding observer. The
search algorithm is optimal in the sense that it uses the

f evaluations of the cost function for a desired accuracy.

—

0 2

Figure 3.7 Unimodal functions
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Structure of the Code. The worst direction of the sliding observer should

be evaluated by simulation for each value of the disturbance input. The
different simtlllations are used by the search procedure. The optimization
algorithm is 1Written as a discrete. time syStem to control each simulation
conveniently.| Thus, the many simulatidns are integrated to one long worst
simulation. Three subsystems are connected by the connecting system
CONN.T. Tllley are: SYS.T, which contains the sliding observer error
dynamics, the search algorithm GOLD.T, and the cost function COST.T.
Each step in the search starts with a given value of the disturbance input
from the GOLD.T, then the response of the SYS.T is evaluated by COST.T.
The value J(U,) is obtained at the end of the each step GOLD.T, then the
value J(U,) is/ used to calculate the next value of U,;. The initial values of

SYS.T and COST.T are reset by GOLD.T. (See detail Appendix C.5).

GOLD.T
U, SYS.T X

Cost function J

time _J
—> COST.T

Alarm

Figure 3.8 Block diagram of the optimization algorithm
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Example 3.1 The simulation results of the reaching dynamics with
H=[1.8 .95 .25]", k_ = 0.023.

x1 x2 x3

Figure 3.9 The simulation result of the numeric search

The state x, is maximum at x, = h, x, and in about 1.7 second. The

worst direction by the numerical search is approximately w= sign(x,) which

is the same as|the 2-order case.

3.2.4 Approximate Worst Direction

For the seLond-order case, the worst direction is analytically obtained.
For the higher dimensional cases, it is difficult to define the outward direction,

so that, theoreLically, a numerical search is proposed in the previous section.



However, the

more computa

worst directio
Consider

satisfies the p

4

numeric search for the high dimensional space takes much

itional efforts. Hence, it is reasonable to find an approximate
n for a practical design purpose. -

a third-order reaching dynamics in the shifted-coordinate. It

assing condition and it is a linear system until it reaches the

hyperpiane.
’ %X, =-h, x, +x,,
X,, = -h, X, + X, (3.24)
‘ Xy, = -hy x; + u,

where u; = w

From the e
of the position
disturbance in

For the re
(3.24) is rewrit

For the re
the maximized
input is strictl

input in (3.25)

t t
%, =-h,x, + 0, - hafo x,dt +]; u,dt

-ky sgn(x,) , -k, <sw,, Sw<w__ <k,

max

>quation (3.24), even though the velocity %, and x,, are function
L only, the trajectory of moving point is also a function of the
1 put.

gion (x, > 0 N %, > 0), in the x,-x, phase plane, the equation
ten as:

X, =-h, x; +x,,
(3.25)

gion, the worst direction of %, is approximately the same as
velocity %, by the disturbance input. Because the disturbance
y negative, the maximum of time integral of the disturbance

is zero.
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w
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“ ofh-worst 0§+worst
2 4 :
0 1 2 0 1 2
x1 x1
Figure 3.10 The trajectory of solution point and velocity field
Along the worst trajectory, the velocity of moving point is
X2+worst = %2*- I max()'(2+) (3.26)
= X2+ | maxprg
When the|trajectory pass through the line %X, =0, i.e., at the changing

point c1, the velocity direction of x, changes. The worst direction disturbance

pushes the change point c1 off from the origin point. When %, is maximum

i.e. u,=0, the x| state is maximized. . Since X, >0, w = 0 sgn(x,) makes u,=0 by

(3.17)

+worst Xa*’ l max{)'(s)

(%, <0)

_x (3.27)
T T3 | maxw)

= -h, x,

For the region (x, > 0 N %, < 0), along the worst trajectory in the x,-x,




phase plane, the velocity of moving point is

x2+worst = x2+ I min(xg) (3’28)

To minimize x;, the worst velocity direction is approximately:

K3*‘worst = X3+ l min()'(a) ( : X3+ < 0)

= X3+ I singw) (3.29)

Since the velocity of %, is function of integral of disturbance input as the
equation (3.26), the minimum velocity might be obtained by minimum
disturbance input. However, the worst changing point cl is obtained already
by the maximum disturbance input as the equation (3.27). Hence, the direction
is only approximation of the worst case.

In the both half space, the approximate worst disturbance is

w = sgn(x,) (3.30)

which is the same as the second-order case. Even though the exact worst
direction is function of all states, the disturbance effect in the X,-X,, space

was considered only in the approximate worst direction method.

Generalization of Approximate Worst Direction. Consider a n_th-order

reaching dynamics in the shifted-coordinate. We can assume that it satisfies

the passing condition without loss of generality.

(3.31)

Since the passing state is not desirable than the sliding state and the
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ion(2.9) is a function of the state x, only, the state x, is more
n the other states except x,. Hence, it is reasonable to define
ction of disturbance as a disturbance that makes the state x,

ralently maximizes |of .

> 18 obtained as time functions as follows:

z+(t)=0';+-h2f x,dt + f x,.d7
0

. (t) =05, - b, f x,dt + j; X, dt (3.32)

HOEY hnf x,dt + f u,dt
0 0

g the equation (3.32) into the simultaneous differential equation

ains the following equation. According to the notational

3), the initial states x' is denoted as o' to emphasize that they

%, =-h, X, +x,,
)'(2+ = -h2 X, + G;+ - h3J; de’t (3.33)

+f o, (d1) - hJ: x,(dtf

+ f G (d1f? - b, f x {dr)2+ f u(dr)?

(dt)' is n-multiple integral and u, = w - k, sgn(x,),

W S k.
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In the x,:x,, phase plane, the solution point of the general dimensional
case behaves according to equation (3.33). For the short period (t<<1), the
integral of disturbance input hardly affects the velocity direction of the state

X, comparing to other terms. Since the disturbance input alters the velocity

direction of the lower state via the intégrators, for the short period, it changes
the velocity d‘irection of x_ only. For the case of positive initial state of X,
the worst d1rect1on In x,-x,, phase plane can be obtained as the same way as
the case of 2-‘dlmensmn However, for the case of negative initial state of
X,,, the worst direction in x,-x_, phase plane cannot be defined as clearly as
the case of 2-dimension.

Let us consider a long period motion of solution point. Since the integrator
order of disturbance input is the highest term of the equation (3.33), the
velocity direction of the state x, will be affected mostly by the disturbance
input. For a long period, the approximate worst direction can be obtained
as the same method as the 3- dimensional case.

For the region (x, >0 "%, > 0), the approximate worst direction is

XZ"’worst X2+ l max(x2)

=X
2+ [ max(w)
For the region (x, >0 N %, < 0), the approximate worst direction is

“ +worst 2"' I mm(xz)

= X2+ l min(w}

For the both cases, the approximate worst disturbance is

w = sgn(x,)

which is the same as the second- or third-order cases.




3.2.5 General

Usually,
globally stabl

Remarks

it was conjectured that the second-order switching system is

e with the bounded disturbance condition, i.e., k, > Iwl. In

the worst analysis, the algebraic stability condition (3.13) shows that the

switching system is not globally stable and it depends on the initial condition

and the design constants k, and k,. The shearing effects (3.11) and (3.12)

explain why t

do. In the se

he sliding observer converges faster than the linear observers

cond-order phase plane analysis, it is clear that the shifted-

coordinate system brings the shearing effect. By introducing the coordinate

transformatio
shift the coor
notice that tk

switching ter

n, the worst case analysis shows that the switching terms
-dinate and bring the shearing effect. However, we should
1ese effects are finite and constant, i.e., k,, k,, etc. These

ms are compared to the linear correction terms that have

relatively small effect near the origin but have proportional effect to the

state x,. The

reaching dyns
observer stabi

less than the

it is stable.

sufficient to ex

tool to measur

3.3.1 Introduc

This chapt

]

necessity of linear correction terms are already showed in the
amics (see (2.23)). Roughly speaking, the second-order sliding
lity is: if the state divergence due to the worst disturbance is
shearing effect plus the convergence by linear correction, then
for higher dimensional system, phase plane analysis is not
plain the "general shearing effect." Therefore, we need another

e the effects and to explain stability.
3.3 Lyapunov-like Function
tion

ter focuses on the stability analysis of the sliding observer.
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o analyze the stability is as follows: First, when the sliding

s not satisfy the sliding condition, it passes through the

hyperplane until satisfying the sliding condition. By applying the shifted-

coordinate system, the sliding observer is transformed to a linear system

with disturba

the sliding con

nce input, i.e., reaching dynamics. Second, after satisfying

dition, it becomes a reduced order linear system, i.e., Filippov's

equivalent dynamics. This chapter investigates the stability of the sliding

observer by using a Lyapunov-like function which describes a fictitious

S

i

energy, i.e.,
quadratic Lya
into regions w
activated and,
is turned on.

Lyapunov-like

symmetric posi

energy of each

o called "pseudo-energy" of a system. The employment of

punov-like function makes easy the whole domain to separate

here, with the passing condition, two reaching dynamics are
with the sliding condition, the reduced order sliding dynamic
Each coordinate associated with switching has its own a
function of the form V, =xT P, x, (s=+,-) where P, is a real
tive definite ( r.s..p.d) matrix. Roughly speaking, if the pseudo-

dynamics is strictly decreasing along the trajectories in the

accompanied successive coordinate systems, then the sliding observer is

stable.

sliding observe
switching coor

shearing effect

3.3.2 Liyapunos

A quadrati
function used

systems, i.e.,

The sk

earing effect due to the shifted-coordinate characterizes the
or. The difference of Lyapunov-like functions of successive
rdinates is due to the shearing effect. Generalization of

is explained by several intriguing system properties.
v-like Function Theorem

c function of the form, x*P x, are common form of a Lyapunov
for investigating stability questions of linear autonomous

x(t) = A x(t) [Kailath, 1980]. Since the system with u =0 is
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equivalent to the composition of the three linear autonomous systems,
i.e., X,(t) = A x,(t) (subscript s=+,-,0), it would be natural to use a quadratic
function as representing the Lyapunov-like function[Alimov, 1960]. Hence,
it is necessary to delineate the composite structure of V(x,)=xTPx_ in the

domain of Q, (subscript s=+,-,0)[Pe1etieS, 1991].
Definition 3.1 A scalar continuous function V(x) is said to be locally
positive definite if V(0)=0 and, in a ball BRO [Slotine, 1991].

x20=Vx)>0 (3.31)

If V(0)=0 |and the above property holds over the whole state space the
V(x) is said to be globally positive definite. i
Definition 3.2 The function V (x) is said to be radially unbounded if

lim V(x) — (3.32)

b[s” —00

|
Definition 8.3 A linear system x(t)=Ax(t) +bult), yt)=cx(t) is
internally stable or stable in the sense of Lyapunov if the solution of

x(t) = A x(t), x(t)= X,, t>t' tends toward zero as t—oo for arbitrary x,. g

Definition 3.4 A set ®is said to be a cone if V X €R,ox,€ R, Va>0.
]
Definition 3.5 Let us define a domain Q, where x, > 0 as right half
space and a domain Q where x, <0as left half space in each shifted-coordinate
system. A hyperplane domain Q where x; = 0 and [x,/ <k, in the original

coordinate is said sliding zone. The whole domain is as follow:

Q=QuQuUQ cg i

Observe that both Q, and Q_ are cones. If X, 1s a member of Q_, then any
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positive scalar multiple o of x, is also a member of Q. Neither right or left

reaching dynamics has equilibrium point within the domain of Q.

Corollary 3.1 If V/(x)=x"P x_ then every region X, is a cone [Peleties,

1991].
Q
Proof) Let assume x, € Q.. The time derivative of V, is
Vi) =T g TR, k<o,
ox T ox

Consider |x' = ax. Then the time derivative of V,indicates that x" e Q,

as follows:

V (x)) _9

V.(x,) A x| o BVS(xs)I
ox

X=X, Asax;=a’2%-)—lx=x‘ AS
ax 8- Xy ax L B

s P xg=xg T

S

x. <0

Note that the above is true for any value of «, therefore the positive values of

o satisfy Definition 3.4.

Corollary 3.2 Let (A, ¢,) be an eigenvalue/ eigenvector pair of A_. Then

the derivative of Lyapunov-like function is negative definite (Vs(ej) <0)ifand

only if Re(A;) <0 [Peleties, 1991]. Q
Proof) Let assume that Vs(ej) <0. Then it can be rewrite as follows:

Vv

8

(ej)=ejT(A:P+PAm)ej=ejTA:,Pej+ejTPAmej

=\ el Pe+ A T Pe=( A +1) Ve)=2ReA) V,(e) <0 (=0)

A quadratic Lyapunov function is positive definite:

8

Since V (e

V(x,) >0, x#0, Vx, e C"

> 0, the other term must be negative (Re(,) < 0).
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e Re(A) < 0. Applying similar procedures, we have the same

= 2 Re(?»j) Ve;). Since V(e;) >0 then Vs(ej) <0. |

Corollary 3.3 A solution trajectory of system A_ cannot escape to infinity

within Q..

Q

Proof) Assume a solution point of system A_ escape to infinity within

Q, ie., limx
t—o0

where x(t)

implies that

that V (x,(q)) <

The defini

=’.'

(t; X, T,) =, then 3t,>t, 21, such that V(x/(t,) > V(x(t,))

x(t; x, 7). However, V.(x(t,) =V, (x,(t,)+ .’; & V(x,(q)) dq
1

Jt,

(-

Vi(xs(q)) dq >0 which is clearly a contradiction of the fact

0,Vx(t)eQ, ,s=+-0.

tions and propositions give us the general pictures of the

dynamics of system A_ within Q. We have established that there are no

equilibrium pd

ints within Q, and in addition the trajectories will not go to

infinity. This implies that the trajectories will either asymptotically approach

the shifted origin or they will approach the sliding patch. The trajectories

will enter the sliding patch where sliding can take place so that the Filippov's

equivalent dynamics will describe the behavior of the error dynamics.

3.3.3 Passing Jump of Lyapunov-like Function

A Lyapunov-like function candidate is a quadratic form, V_ =xT P x,

which is not a ¢

ontinuous function and does not satisfy the usual requirement

of Lyapunov function. This function has several interesting features that

can be interpre

ted as a good nature. Whereas the usual Lyapunov function

shows continuity, Lyapunov-like function in the shifted-coordinate shows a
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discontinuity ("passing jump") between the initial and final states on the
hyperplane.
Relations Between the Passing Points.
1) Passing right case (with the passing condition x,=0, x, > k,):
The passing points relations in the shifted-coordinate are
s,(1) = (1) = oi(1) = d(7) - 2K, (3.33)
ii) Passing left case (with the passing condition x,=0, x, < -k,):
The passing points relations in the shifted-coordinate are
si(t) = sl(t) = (1) = oi(t) + 2K, (3.34)

Since the
distance of t}

decreasing by

/
\

Since, Lya
shows a "passi

the Lyapunov-1

\%

sign unity property for the case of 2- and 3-dimension, the
e passing point from the shifted-coordinate origins are

passing:

Passing Right : |6\(t)|=| o(t)| 2 K,

. (3.35)
Passing Left : | 6'(t)| =] of(t;)| -2 K_

punov-like function is defined in the shifted-coordinate, it
ing jump” between the initial and final functions. Rewrite

ike function in the original coordinate:

=X, Px,
=(x - k, sgn(x)))" P(x - k, sgn(x,))
=x"Px+K PK -2K Pxsgn(x,)
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—a
k, —-> K
2 >
»xl —> X,

Figure 3.11 A solution point shows passing right through the hyperplane

Passing Jump of Lyapunov-like Function.

1) Passing

right case (x, > k): Ifx, > k,, then the solution point passes

from the left half space to the right half space, i.e., x, > 0. The difference of

Lyapunov-like

fod

For the th

passing states

C.3). Each ele

We can see th

function between the passing points is

@ip = ValT) - Vil

=-4K§P X (3.36)
0
X

=-4[0k, ...k ]P|%
X

lird-order system, as shown in Figure 3.11, all of the final

are positive except the first state X, = 0- (see proof Appendix
ents of shifted-coefficient K is positive except the first one.

t the passing jump J(t) is a form of bilinear function, xPy,

and the (n-1)x(n-1) submatrix of P of equation (3.36) is positive definite. The

sign unity of t

is strictly negative (see Appendix A.2).

submatrix P_,

k's, the passin

e bilinear function do not guarantee that the passing jump J

With the diagonally dominant

and the sign unity of the bounded states and positive coefficients

g jump J is negative. After approximation, the passing




jump J is

i1) Passin
left half space
like function b

Since each
all of the feati
is negative a

approximation

J

where x, is

J

=-4{k Py %, + Kk, Pyyx,+...+k  P_x) (3.37)

g left case: If x, <-k,, then the solution point passes from the

to the right half space, i.e., X, <0. The difference of Lyapunov-

etween the passing points is

(%) iy k) = Vi) - Vf(tj)

0
X
=40k, ...k |P|%
X

domain in the shifted-coordinate is symmetry about the origin,

ures are the same each other. In this domain, the sign unity

nd consequently the passing jump J is negative. After

, the passing jump J is
=4k Py x,+k, P x, +...+ k,,P_x]}

s negative (i=2, . . ., n).

Hence, with a passing condition, the solution point of sliding observer

approaches to

the shifted-coordinate origins quickly as shown above passing

jump.
3.4 Lyapunov-like Stability Analysis
3.4.1 Lyapunov-like Stability Theorem

The objecti

switching, wh

ve is to asymptotically stabilize the system through a series of

ich is expressed by the set of passing points along with




sequences of
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switching timing [Peleties, 1991]:

0T <0, V 1€ 7,=1,1,, ... TetsTis + + - o

8(x,,7)} = 8(1y), s(ty), ... , s(ty), ... (3.40)

X,

!

si(1,) Q (x)
Q. (x)

si(ty)] si(t,)

>
Sz'(,tl) if&)—//

Figure 3.12 Passing points on the hyperplane

Lyapunov-like Function Sets on the Hyperplane. Let us define the initial

and final Lyapunov-like function set[Peleties, 1991]:

{Vs(xs,tj)}

and the ini

{s,(x,7,)

The sequen

= V.(1), Vi), Vi(z,), Vilty), Vi(1)), Vi), . .., Vi) (341)

tial and final passing point set:

=5(1y), si(1)), §i(1)), s(1,), si(1,), sf(xy), . . . , si(t) (3.42)

ce of Lyapunov-like functions is identical to that of passing



points. The d
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etailed notion of Lyapunov-like function sequences is follows:

Passing Left Passing Right
———— —he . . .
i . i j ] . (3.43)
Vi), Vi1, Vilry), Vi(t), Vi(x,), Vi(z,), . . ., Vi)

Right Don

1ain Left Domain Right Domain  Unti] satisfying

passing condition

The set {V_P(xs,tj)} for the right half space can be defined as Lyapunov-like
function sequences corresponding to the right passing points sequences
[s.(x,,T)) L

{V,,(X+,Tj)} = V.(1y), Vi(1,), Vi(ty), Vi(ty), . . ., Vi(Tj) (3.44)

{s+(x+,tj)} =s(1y), si(1)), 8i(1y), si(1y), . . . , si(x) (3.45)
For the left half space, {V_(xs,tj)}, and { s_(x_,tj)} are

{V_(X_,Tj)} = Vi(1,), Vi(1,), Vi(1,), Vi(t,), . . . ,Vf(‘tj) (3.46)

{s.(x,7)) = i(1)), 8((xy), 8i(7y), si(x,), . . . , s¥1) (3.47)

Zero-input Responses of the Reaching Dynamics. For the stability of the

sliding observe

L

, it is desirable that any initial state asymptotically converge

to the origin. Hence, we need to consider the worst case whose initial state
is not on the sliding patch and does not satisfy the sliding condition. For
this case, by adapting this coordinate transformation, the well-known linear
system theory vlan be applied to interpret the sliding observer as the reachin g
dynamics which is a linear system in each shifted-coordinate half space.

The reaching dynamics in the shifted-coordinate is




l ; ] | (3.48)

where u, = w-k sgn(x,) \

Let us consider first the internal stability of the reaching dynamics by

setting the disturbance input zero, u, = 0. The internal system is

X, = A, x, (3.49)
A candidate Lyapunov-like function for this system:
V.=xTPx, (3.50)

Assuming that the Lyapunov-like function is differentiable except

switching plane, its derivative with respect to time is

ﬁ:ng+ﬁPg
=[An %, Px,+xTP[A,_ x,]

= X! A:Fans+xsTPAmxs
=% Qx

(3.51)

We can see that each reaching dynamics is asymptotically attractive to

the shifted origin (or to the sliding patch). If, whenever the solution point

passes through the hyperplane, the Lyapunov-like function strictly decreases,

then the Lyapunov-like function is strictly decreasing along the trajectory

over the whole reaching dynamics domain.

Theorem 3.1 Given an reaching dynamics of the form x, = A, X, (where

A _: Hurwitz system matrix, x, =x- K_ sgn(x,), s=- or +), let us consider a

quadratic Lyapunov-like function candidate:

Vx) =xTPx ,s=- + (3.52)
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which is a real positive definite on % and unbounded where V(x) is associated

with the domain Q (x),Q,(x). Suppose |xi> k, at x,=0, V X, € X, there exist

constants y> 0, p >0 and a switching sequence

{ 8,(%,,T))] = si(1y), si(1y), si(1)), si(1y), si(t,), si(t), . .. ,sft),... (353)

as in the followings:
i) In an reaching domain, the total derivative of Lyapunov-like function

1s negative dei’mite in the domain Q(x ) [Peleties, 1991]:
Vix) <v|xJP <0, Vx#0,V s, s=-,+ (3.54)

1)) While the solution point is passing the hyperplane, the Lyapunov-like

function always decreases:
Vi) - Vel(w) < - pllofm)|P ¥ oft) € o, (3.55)

where the subscripts s and s* are: sign(s) # sign(s¥*), s=- or +, s*=+ or -.
Then, the system is globally asymptotically attractive to the sliding patch
that is defined as [x,| <k, at the switching plane (x, =0). .

Proof) The above two conditions mean that the sequence {Vs(xs,'c.)} strictly
decreases along the trajectories up to its limit. This implies that

Vi{o{t..) - Vi(of f V(x,0dt<0 for each side and lim V {o(g)) = L. 20.

This limit exists by virtue of the fact that the sequence { {o{t)) | strictly

decreases by the passing condition ii) and lower-bounded by zero:

lim V{o5,,)) - lim Vio(g)) =L-L=0

J—‘)OO J>00

|
= lim [ {0(.1)) - Vifo ) Sjliﬁ['YlIGs(‘fj)HZ] =0

J

In other words, lim[-yllo;(‘cj)Hz]=-ylim[”os('cj)]]z] =0, which implies
Jj—oe0

J>o0
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limet)=0, which is a sufficient condition for attractiveness to the sliding

J —00

patch.

Example 3.2 Consider following 2-order sliding observer:

wherek;:1, k,
Rewrite t

then we have

where u, =0

X, =%-hx-k sgn(x;)
X, =-h,x -k, sgn(x,) + w (3.56)

:0, h,: 0.1, h,: 0.2, w=0, initial conditions: x,:0, x,:10

he above equation using the shifted-coordinate transformation

a reaching dynamics:
X, =Xy - h x,
Xy = - h2 X, + 1, (3.57)

S

x1,x2

0 10 20 0 10 20 30
x1 time

Figure 3.13 Phase plane and Lyapunov-like function




Lyapunov

The pha

asymptoticallwfr

 equation A'*P + P*A = Q
=130 [0 8] L G sl @58)

se plane Figure 3.13 shows that the solution point is

approaching to the sliding patch via passing the hyperplane

x;=0 twice. The Lyapunov-like function shows two passing jumps around 8

and 14 second.

Total Res;

u,; includes t
considering
uncertain/nonl

system of cont;

of LTI system
cannot conclug
input response

Assuming
with respect to|

\Y

s

Plug in the

w

Q

ponses of the Reaching Dynamic. Since the disturbance input

he neglected nonlinearities and disturbances, without
this term, the sliding observer cannot handle

inear systems. In a linear stability theory, if the internal

rollable and observable system is stable then the total stability

is guaranteed . (see Appendix B.1) On the contrary, we
e the stability of reaching dynamics only based on the zero-

of the system.

that the Lyapunov-like function is differentiable, its derivative

time is
=X, Px, +x'Px_ (3.59)
reaching dynamics (3.34) with u, # 0.

al y
- : T |
—Amxs+l0{ Px +xIPlA_x_ + 0[

Uy /s U,

o]

=x; A, Px,+x'PA x +2/ | Px, (3.60)

0
Uy

l

T

P x,

0

1)

=-X! QX ,+2
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Owing to the 2nd term of right hand side equation, the time derivative of

Lyapunov-like

so-called matc

definiteness of

be satisfied or

conservativen
definiteness. k

3.1 is replaced

as following tk

>
L.

function may be not negative definite. At this situation the
hing condition could bev a solution that guarantees negative
VS. However, in real situation, the condition usually cannot
it is so conservative that it is almost useless. The every
ess. comes into the system by sticking to the negative
fence it is desirable that the negative definite of V in Theorem

by strictly decreasing Lyapunov-like function of passing states

leorem:

Theorem 3.2 Given a reaching dynamics of the form x,=A_x,  + u,

(where A_: Ht

let us consider

\Y%

S

which are

associated wit

there exists cor
i) In an re

strictly less the

Q(x,):

i1) While

Vi{olt.)) - Vifols) < - vllofs)IP

irwitz system matrix, x, =x - K| sgn(x,), u,: input, s=- or +),

a quadratic Lyapunov-like function candidate:

(x)=xTPx ,s=-+ (3.61)

real positive definite on X and unbounded where V (x) is
h the domain Q(x),Q,(x). Suppose [xi|>k, at x,=0,Vx, e &,
1stants >0, p > 0 and a switching sequence { ss(xs,‘cj)} as in:

) is

an the initial Lyapunov-like function Vi(o{t)) in the domain

aching domain, the final Lyapunov-like function Vot

i+1

(3.62)

the solution point passes the hyperplane, the Lyapunov-like

function always decreases:

V4

o (3.63)

S

%) - Ved() < - pllofm)If, V ofz)

where the subscripts s and s* are: sign(s) # sign(s*), s=- or +, s*=+ or -.

Then, the sy

ystem is asymptotically attractive to the sliding patch.




Proof) The proof is the same as Theorem 3.1.

While Theiorem 3.1 requires negative definite of V, , Theorem 3.2 compares

the Lyapunoleike function of the initial and the final passing point. In the
case of Theorc‘em 3.2, the Lyapunov-iike function may not strictly decrease.
However, the ﬂeaching dynamics is equivalently linear time-invariant system
so that the sys:tem is bibo stable. The shifted coordinate transformation of

|

the sliding observer enables to apply the linear stability theorem to nonlinear
system. All the more, the passing jump brings the shearing effect so that

the solution point approaches sliding patch fast.

Example 3.3 Consider the same 2-order sliding observer as that of the

former example except the disturbance input:

20 3000 , :
o 10K 2000\ oo e e
e > \«\ : |
. 1000} \,Lm ............
-10 0 ; :
0 10 20 30
time
200
L0
> S

-200

-400
0

Figure 3.14 Phase plane and Lyapunov-like function



where k;:1, k/

Rewrite t

then we have

whereu,=-0

X, =X, - h; x, - k; sgn(x,)

%, =-h, x, - k, sgn(x,) + w (3.64)

:0.5, h;: 0.1, h,: 0.2, w=0, initial conditions: x,:0, x,:10

he above equation using the shifted-coordinate transformation

a reaching dynamics:

X1=Xzs'hlxl

%, = - h, X, + u, (3.65)

5*sgn(x,) .

The Lyapunov equation is the same as the former one. The phase plane

shows that the

solution point with disturbance input approaches to the sliding

patch faster than the former example because the sign of disturbance input

u, 1s opposite
jumps around

definite, V is

sign of x,. The Lyapunov-like function shows several passing
6.5 second and 12 second and so on. Since, V is not negative

not strictly decreasing either. However, this example shows

the Theorem 3.3 is valid. The passing jump is proved for 2- and 3- order

cases in Appendix B. The other requirement, i.e., decreasing sequences of

initial and fina

"SOON"(see C

Finally the

If the system
the final point

possible to stab

Theorem 3

| Lyapunov-like function set, is assured by the design algorithm

hapter 4). a

next Theorem 3.3 is the generalization of the worst analysis:
pseudo-energy decreases as solution trajectory passes from

of one domain to the final point of the other domain, then it is

ilize the system.

.3 Given an reaching dynamics of the form %, = A_x_  + u,

(where A_: Hurwitz system matrix, x, = x - K| sgn(x,), u, : input, s=- or +),

let us consider

a quadratic Lyapunov-like function candidate:




Vx)=xIPx ,s=-+ (3.66)

which are real positive definite on % and unbounded where V. (x) is
associated with the domain Q (x),Q,(x). Suppose kil >k, at x,=0,Vx e %,
there exists a switching sequence { cs(xs,'cj)} and there exists constants p > 0

such that the final Lyapunov-like function V_(o(t,,)) is strictly less than the

precedent final Lyapunov-like function V{o(t) of the domain Q(x,):

0(T,1) - Vilo(t) < - p [foit) | P (3.67)

where the subscripts s and s* are: si n(s) # sign(s*), s=- or +, s*=+ or -
p g

‘then the system is asymptotically attractive to the sliding patch. O

Proof) The above condition means that the sequence {V:(xs,‘cj)> strictly
decreases along the switching sequence {cs(xs,‘cj)} up to its limit, i.e.,
lim V(x(t))=L20. This limit exists by virtue of the fact that the sequence
} =00

{V:(o('cj)) } is strictly decreasing and lower-bounded by zero:

limV (o{t,,)) - lim V{o(t))=L-L=0

= JES[ Val0ft,) - Vo)) < Jli{f[ ~pllofz)|F]<0.

|

In other words,
lim{ - p o5} |F] = - p lim] [fo/r)|[] =0
] poo J >0
which implies limo(t)=0, which is a sufficient condition for

J oo

attractiveness to the sliding patch. a

Since this theorem concerns only the final state sequence {Vﬁ(o(‘cj)) }, one

may worry about the possibilities of growing Lyapunov-like function during
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the reaching dynamics. But the boundedness of Lyapunov-like function is
guaranteed by the well-known linear system theory that a Hurwitz linear
system is BIBO stable with bounded external input. Since the space is cone

about the shifted-coordinate origin, for each reaching domain, decreasing

final state sequence {Vi(c('cj)) } provides a BIBO stability. Next example shows
3-order case whose eigenvalues are chosen intentionally so small (Figure
3.15) that its solution point approaches slowly to the sliding patch and the

attractiveness can be explained by Theorem 3.3.

Example 3.4 Consider a 3-order sliding observer as that of the former
example of Chapter 2 except the disturbance input:
X, =%,-h x -k sgn(x)
X, =X, - h, x, - k, sgn(x,) (3.68)
\ %; = - hy x, - k; sgn(x,) + w
where K=[ .8 .31 .7]", H=[.8 .31 .05]", w=0, initial states: X;:2, X,:-8, X4:-6

The reaching dynamics is:

" {(23 =X - Dy X (3.69)
where u, = - O.L*sgn(xl)

Even though the initial state is not on the hyperplane, we can see the
sign unity at the first passing. This example shows that after first 3 passings,
the final passing Lyapunov-like function is greater than the initial's in
each reaching|domain until reaching the sliding patch. However, the final
Lyapunov-like function sequence is decreasing so that it is attracted to the

sliding patch by the Theorem 3.83. a



10 - - - - 4000 -
5¢ 30004 ------ e .......
2 o A
o > 2000 ... .. ....... .......
R .' : : I
101 10000 L .... D .......
-15 0 \/\/L/\A‘
0 0 20 30 40 50
time
5 5 S -
I o f N A e
) o /: :
[l Ed .
51 '5] ..... o .....................
.10 . . . .10 .
-15 -10 -5 [¢] 5 0 10 20 30 40 50
x1 time
10 5
51.
ol.
~
<
-5t
-10¢%.
-15

-15 -10 -5 0 5 -20 -10 0 10
x1 x2

Figure 3.16 Phase plane and Lyapunov-like function

The third mode is the sliding mode that is in the hyperplane x,; = 0 and

with the sliding condition |x,| <k, .

ky/k, 01...0

[k 10. .07 5 0
HER
+
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stability requ
origin , i.e., 1
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state of syste

Since the slid

the origin may

Definition

and only if for

as all the stat

Theorem
dynamics, i.e
eigenvalues of A have negative real parts.

Proof) Le

in the Jordan

|| et|| should

Since every en
t—eo if and on

negative real parts.

If a linear
response will

exponentially s

3.4.2 Contour

Consider
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tisfying the sliding condition, the sliding dynamics is,
a reduced order linear system. For linear system, asymptotic
lires that the state of system asymptotically approaches the
im x(t) =0 V x(1,) =%, . For the stability of sliding observer, the
:also should approach the origin, via a series of switching.

ing dynamics has switching terms, Lyapunov-like function at

not be zero.

3.6 A linear dynamical equation is said to be totally stable if
any initial state and for any bounded input the output as well

e variables are bounded. |

3.4 The forced response (zero state) of the sliding equivalent

. X, =A x

0 “to ?

is asymptotically stable if and only if all the
Q

t P be the nonsingular matrix such that 1’\\0=PA°P'1 and Ko is -
form. In order for the zero state to be asymptotically stable,
not only be bounded but also tend to zero (” exo“” —0) as t—eo.
try of ert is of the form et we conclude that ” exo“” -0 as
ly if all the eigenvalues of A\o, and consequently of A have

time-invariant system is asymptotically stable, its zero-input
approach zero exponentially; thus it is also said to be

table. It is clear that total stability implies BIBO stability.
of Lyapunov-like Function

a contour of equivalent Lyapunov-like function on the
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hyperplane for the previous 3-order instance of Example 3.4. The 2x2

submatrix is Pn_1=[ _% %55] :

15 Contour of Lyap-Like Function 1 5C0ntour of Diag-Dominant L-L. Funct

1 B T SR ........... .....

0.5

Figure 3.17 Contour of 'Lyapunov-like functions

The Lyapunov-like function is V, = 5 o3, - 6,,0;,, + 73.5 o2, whose contour
for V, =10 is shown at Figure 3.17(a)». The contour of Lyapunov-like function
with neglecte | off-diagonal terms is plotted at Figure 3.17(b). Since the 2x2
submatrix is diagonal dominant, these are almost identical as expected.

For the diagorlal dominant case, the principal radius are approximately the

square root of| corresponding diagonal terms.
R =P, (=2,...n) (3.72)

Consider a initial passing point ¢,, >0, o,, > 0 which is on the arc a+b+
in the hyperplane.
Consider a case of V, < 0 or V! - V! <0, the final point in Figure 3.18 will
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remain inside the ellipsoid a, b, ¢, d, and the sign unity confines the region

as0,c.d, . Ifi0> 0, > -2k, then it satisfies the sliding condition. Otherwise,

it will pass again the hyperplane and the Lyapunov-like function V, decreases

by the jump difference.

x3 3
XS-‘ ‘ A -~
b+
b- \
C+ N a+ X2
7\ . ~ 1 7
{ ‘ \ 0- \ / >
o ~ > x2-
K y
d-

Figure 3.18 Contour of Lyapunov-like function on the hyperplane

x3 X3+
x3-
T b+
b-
c+ o+ a+
7 P X2+
X I /# x2
¢ Y a- X2-
d+
d-

Figure 3.19 Contour of large Lyapunov-like function case
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X3+
x3 #
X3- # b+
|

— X2+

[

-(-i;—/

igure 3.20 Contour of small Lyapunov-like function case

Consider contours of large Lyapunov-like function case as shown in

Figure 3.19. [t shows that V, covers more region of V. than the previous

one as shown in Figure 3.18.

For the case of small Lyapunov-like function, all the final point on the

arc 0, c, d, satisfies the sliding condition as shown in Figure 3.20

The ellipse
Figure 3.20 sh

oidal contour is determined by the positive definite matrix P.

ows that a contour does not cover the other side contour at all.

This case can increase the Lyapunov-like function by switching. Hence the

coefficient K which determines shifted-coordinate system should be a function

of aspect of contour, i.e., principal radius.

The Lyapu

Hence, for 3-or

Vi

VI

nov-like function in Figure 3.22 strictly decreases by switching.

der case, the suggested design methodology of coefficient K is

(3.73)

sl
) 134
w N

=5
k,




x3-
4 .
c+ / .o+ \a; o
\ d+ /

» 32

e ‘\\‘; o

Figure 3.21 Contour of badly designed case

=
S—

Remarks.
by the passing

Figure 3.22 Contour of suggested case

jump of the Lyapunov-like function at the hyperplane. F

73

In Chapter 3.3.3, the general shearing effect was explained

or

3-order system, the sign equalization is prooved in Appendix C.3 and the

passing jump J is always negative. For the 3-order case, the contour of

Lyapunov-like

function of the passing point not only explains the general
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shearing effect but also suggests how to choose the design coefficient K in
relation with the linear coefficient H. The sign unification in n-dimensional
space was studied in Appendix C but it is not proved analytically yet.
Therefore, the design algorithm based on the Lyapunov-like stability Theorem

3.3 are proposed as a future study.




CHAPTER IV
DESIGN OF SLIDING OBSERVERS
4.1 Development of Design Algorithm
4.1.1 Reaching Dynamics Response

In Chapter 2, it was showed that the dynamics of the sliding observer in
each reaching domain is the same as linear system with the shifted-
coordinate. At the passing instant, even though the velocity field is
discontinuous, the trajectory of solution point in reaching domain is
continuous. Consequently the dynamical characteristic for the half domain
can be extended to the whole domain directly. Hence let us review reaching

dynamics in the view point of linear system theory [Chen, 1970] as follows:

x(t) = e x(r) + f M B u(d) da (4.1)

—_—————— — — J
Zero-input response  zero-state response

A very important property of any linear system is that the responses of

the system can be decomposed into two parts, as follows [Chen, 1970]:

Responses due to {x(t,), u(t,ee)}

= responses due to {x(to), 0} + responses due to {0, u(t,,o0)}

The responses due to {x(t,), 0} are called zero-input responses or transient

term: they are generated exclusively by the nonzero initial state x(t). The

(6]
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responses due to {0, u(t,eo)} are called zero-state response or forced term:
they are excited exclusively by the input u(t,,>o). Hence, for linear systems,

we can consider the zero-input responses and zero-state responses

independently.

A 2-order reaching dynamics in the shifted-coordinate is [Zhu, 1992 ] |

?‘(1. _ -h1 1 'xl 0 .
(3"{2 ) _['hz 0 J (xz ) + (u ) ' (4.2)
where u = w-k, sgn(x,) < 0 for x, >0

-1
S
I "8+ hs+h,

s+ h,

. (4.3)
‘ " s2+hs+h,

u

‘With zero initial values, the steady state is obtained by applying the final
value theorem. For critical damping, e:g., h? =4 h,, the states by the

forcing term are bounded:

L1
;e

(4.4)
< }f—z max ju] < Sh_l‘;z
<t<tp
1 1
lx2l = 1 + h1/2 2 u
Iy
2 2 (4.5)

L~
>

4 < 8
h, B

These bounds are only due to the forcing term. The transient term by

the initial conditions cannot be considered in an analytic manner except for
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some special cases. The reaching dynamics is valid only to the next passing

point, i.e., x, |= 0. Usually, the steady states bounds are too conservative as

compared to the actual passing state values. Even though these bounds are

big enough, it|is hard to verify that the transient overshoot can be considered

in the same manner. The Kalman-Yakubovich lemma is an usual approach

to this problem. With the so-called "matching condition”, the Lyapunov

function of this kind of system is perfect in mathematics but too conservative

to find the real applications. The conservativeness is mainly due to the

strict negative definiteness of V. This conservativeness can be overcome by

considering the system's properties, i.e., "shearing effect" etc. Hence, a

design algorithm "Sliding Observer design by the wOrst reaching dynamics

for Nonlinear/uncertain system" (SOON) is developed to consider all the

phenomena--that is the overshoot by initial conditions, the transient by forcing

term and shifted-coordinate.

X, Index :@ : V <0
@:V-via
: ®: V.-V«

Fig

b S
v
Ko

g

¥

ure 4.1 Conceptual comparison of stability theorems




78

4.1.2 Conceptual Comparisons of Stability Theorems

Let us compare the sliding observer stability theorems in Chapter 3 for
the case of 2-0L'der reaching dynamics.

2-order Case. Theorem 3.1 requires V,<0. The Lyapunov-like function
strictly decrea?es along the line @ in Figure 4.1 so that o}, > -6}, (sf. > -sb, +2k,)

Along the %line @ the Lyapunov-like function V_ of the final point strictly
less than that of initial point: V! - Vi <0, 62 > -6}, (s2 > -si, +2k,)

Theorem §3 requires V/- V' <0 (V is the same quadratic function as V,
except that it |is expressed in the original coordinate) The Lyapunov-like
function V of the final point strictly less than that of initial point, i.e., line
®: of >-0,, -2k, (sf >-si,). This condition is exactly the same as the worst

case analysis.

%3 N <34 Index : @ :Vs<0.
X3,  § @ :VLVig
B+ ® : VLV

=

+’/
\
{\\ \\)_(C@
c- d+ a-
\X® D+
~— —

d-

Figure|4.2 Lyapunov-like function contour on the hyperplane
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3-order Case. Let us compare the sliding observer stability theorems in

Chapter 3 for

conceptual dis

The ellipse
point ¢&. If V,
a,bc,d,. Ifth

the case of 3-order reaching dynamics. Figure 4.2 is only a
agram to compare the theorems.

» a,b,c,d, is the Lyapunov-like function contour of initial passing

<0 then a final passing point will fall inside of the ellipse

e final passing point X® is -2 k, < 6}, <0 then it satisfies the

sliding condit;ion. If a final passing point , e.g. X®, is inside the ellipse

a,bc.d
Theorem 3.2.
A BC.D,isla

function of th

+

e

then |V§ -V <0. Hence the stability of this case is guaranteed by

If a final passing point is the point X® then its contour

rger than the contour a+b+¢+d+ . However, the Lyapunov-like

sequenced initial passing point & is less than the initial

passing point ¢ . In Figure 4.2 the ellipse a b.c.d. encloses the final passing

point X@®.

4.1.3 Sliding O

It is hard to
dynamics exce
term like equat
get for higher
cannot be consj
stability Theore
the final passir
final passing po
the design crite

design procedu

procedure is sug

bserver Design Algorithm

obtain an analytic solution of the forced response of reaching

pt some special cases. The analytic bounds of the forcing
ions (4.5) and (4.6) are not only conservative but also hard to

order system. The transient term by the initial conditions

dered in an analytic manner also. Since the Lyapunov-like

m 3.2 and Theorem 3.3 require the Lyapunov-like function of

1g point only, it is reasonable to obtain the worst bound of

int via a simulation. According to the observer requirements,
oria can be adjusted iteratively. However, the goal of the
re is to make a stable observer. Hence, the first design

gested to make the initially bounded error dynamics converge




to the sliding patch directly as follows: o
Design Procedures for Direct Convergine to the Sliding Patch. (SOON)

1. Determine the system order
2. Determine the maximum bound of the disturbance w
3. Determine the bound of the initial states
4. Choose [proper linear correction coefficients
* According to the desirable converging speed
5. Simulate SIMNON program Reaching I
* Worst reaching dynamics
6. Designing the switching constant K

* The switching constant k, , is determined by half Max o

* For convergence purpose only, the coefficient k_, does not

need to be half of Max o,

* For n_th order case, the suggested coefficient K is

ﬁg k, Py k, UPn-l.;L

22 , =—£ ., (4.6)
By, k' VP, Kk, VP, k.,

n

where P; is obtained from the Lyapunov equation with the proper matrix Q.
7. Tuning the design constants:
* If the switching constant k's are big compared to the
| desired precisions then h.'s are need to be increased

* The characteristic equation (2.24) of the sliding equivalent dynamics:

[ k/k,10...07"
k/k, 01, .. 0

det| sl , - oL =0 4.7)
k/k, 00, .0

* Steady state error equation (2.54) in sliding region




Remark.
then the slidi

sliding patch.
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If the characteristic equation has some positive eigen value,

ng observer error dynamics will form a "limit" cycle near the

Equation (4.6) is based on the contour analysis (3.73). The

linear correction coefficient H is also related to the matrix Q and P by the

Lyapunov equation (3.58).

system, (4.6) h

However, for the second and the third order

as only one term or not. Hence, the tuning procedure between

the design constant H and K is actually important. For more general design

procedure bas

future study.

As a comp

consider a non

Z,
Zy

where g(z,w) =
4.2.1 Sliding O

For this sy,
A
Z,
where g(z,w) =

For the sli

output equatioz

Y

y =

ed on the Lyapunov-like stability theorem is suggested as a

4.2 Comparative Example with VSS Observer

arative example for the sliding observer and VSS observer,

linear system as follows:

=Z2

= g(z,w) (4.8)

- sin(z,)

)bserver

stem, the sliding observer can be written:

= :2:2 +h, x, +k, x 49)
=g(z,w) + h, x, + k, x,

- 8in(Z,)

ding observer, it needs only one measurement case and the

1S are

(4.10)



The sliding observer error dynamics is

X, =%-h x - k, sgn(x,)
X, = - h, x, - k, sgn(x,) +u,

(4.11)
where X,=2,-2,, X,=2,-2,, u, = g(z,w) - §(2,w) and g(Z,w)=-sin(z,).
The numerical data for the system are

x} =0.57, ¥}, =-1; initial error states

The linear correction coefficients choosed as h, =2 and h, =1.2 to place

poles around -1 and to make the system underdamped. With the given
bound of initial state, the bound of disturbance input is evaluated as u, =1
Hence k,=1 may be a reasonable starting value. For the design algorithm
SOON, the initial states are assumed as xi =0, x, =1.5. The simulated results
are shown in Figure 4.3. The worst final passing point is o}, =-0.95 whose
absolute value is less the initial value. According to Theorem 3.2, this
system is stable. If the shifting coordinate constant k, is assigned as half of
the worst final passing point, then it will make the error state converge to

sliding patch directly. Finally the tested design constant are

k,=0.5,k, =1, h, =2, h,=12 -

The simulation results of the sliding observer as shown in Figure 4.4 is
compared with the VSS (Variable Structure Systems) observer which is

designed by [Walcott et al.].




X2+

0.2 0.4 0.6

x1

x1, x2+

time

Figure 4.3 Simulation results of SOON

72,zh2

4.2.2 VSS Observe

Figure 4.4 Sliding observer simulation results

14

The suggested VSS observer (see detail [Walcott, 1987]) is

z
Al
ZA

where g(z,w) -

o~~~
1 =2y

=-3, 3, +BEw)

-2 sgn(z,+2,-y,)

(4.12)



To design
It has the for

where P is th

To satisfy

equation is

For the s

simulated.

Compared

satisfying th

superiority in

according to d

by tuning the

z1,zhl

E
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VSS observer, so-called matching condition should be satisfied.
m as follows:

B =C" (4.13)

e unique positive-definite solution to the Lyapunov equation.

this condition two measurement are necessary and the output

o - Z1 -+ Z2 (4.14)

ame initial condition as previous one, the VSS observer is

to VSS observer, the sliding observer can be designed without

D

=3

so-called matching condition as shown above. Another
) favor of the sliding observer design methodology is that,
lesign requirements, its characteristic may be easily adjusted

design coefficient H ahd K.

z2,7h2

time

Figure 4.5 VSS observer simulation results




4.3 Inverted pendulum with a moving support

Since Stephenson [Stephenson, 1908] predicted the possibility of inverting
the unstable equilibrium of a pendulum on an end by applying a vertical
periodic force|at the bottom, parametric excitations of an inverted pendulum
have been studied by inany investigators [Nayfeh, 1979]. Sethna [Sethna,
1973] proved|that an inverted pendulum can be stable near the upright
position for arbitrary vertical excitations with the condition that they are
fast and the time average of the square of the velocity of the vertical excitations
is greater than the square of the time average of the velocity of these motions

by a constant that depends on the system parameters.

= ! i d(t)

igure 4.6 Inverted pendulum with a moving support

e 5]

The equation of motion is derived as follows:

D

+ £ sin(0) = %(cos(e) 6 d + sin() d) (4.15)

where g=9.8 m/sec?, L = 0.5 m, d(t) = 0.001*sin(100 t)

Rewrite equation (1) in the state space form:




The syste

7, =Z
.1 2g ) d q . (4.16)
by=-1 sin(z,) + L cos(z,) z, + L sin(z,)

m model for the sliding observer design is
2, =2, (4.17)
Zo=W

where w is the neglected nonlinearities and model uncertainties.

Let us ass‘ume each initial state is bounded by 0.01 then the disturbance

input bound i

The sugge

f

W] < | £ sin(zl)l + }% cos(z,) z;

P

\;\

s obtained as follows:

+ }% sin(zl)l

£ sin(zl)i <0.2, l% cos(z,) ZZI < 0.0l,l% sin(z,

1<0.2

>sted sliding observer is

21 = 22 + h1 X, + kl Sign(xl) | (4.18)

z, = W + h, x, + k, sign(x,)

The linear correction coefficients were chosen as h, = 10 and h, =30 to

place poles around -5 and to make the system underdamped. Simply assign

the function W =0 to the sliding observer. When the bound of initial state is

known as 0.01, the bound of disturbance input is evaluated as u, = 0.5.

Hence k, =
design algorit

follows:

.5 may be a reasonable starting value. With the data, the

thm SOON was simulated and the simulated results are as




0.01 _
0
, -0.01 g
W !
-0.02 :
-0.03
-0.04 :
-5 0 5 10
x1 x10-4
Figure 4.7 Simulation results of SOON
For the design algorithm SOON, the initial states are assumed as
x! =0,x,=0.01. The simulated results are shown in Figure 4.7. The worst

final passing
value. If the
ﬁnal‘ passing
patch directly
are sinusoida
according to

constants are

k

Even thou

initial error o

point is o}, =-0.035 whose absolute value is greater the initial
shifted coordinate cdnsfant k, is assigned as half of the worst
point, then it will make the error state converge to sliding
according to Theorem 3.3. Since the neglected nonlinearities
] functions only, the constant k, can be chosen small as

the desired observing accuracy. Finally the tested design

, =0.005, k, =0.5, h, =10, h, =30

1gh the initial error of the simulation is as big as twice of the

f the design algorithm, the simulation shows that the solution

point convergIs to sliding patch directly as shown in Figure 4.8. This is not

a surprising r

as expected.

esult because the design algorithm by worst case is conservative




(a) Time domain plot of the states

, zhl,zh2

-~

z1,72

: ! -0.01 . ; ;
-0.01 -0.005 O 0.005 0.01 -1 -0.5 0 0.5 1

zl x1 x10-3

b

Figure 4.8 Sliding observer simulation results

(a) Time domain plot of the actual and estimated states
(b) Phase plane of the actual states

(c) Phase plane of the error states of the sliding observer

Hence, if the nonlinear model of system is exactly known and if it is

composed with sinusoidal functions whose means are zero, then the smaller

constant k, can be chosen safely.

4.4 Nonlinear Mass-Spring System with Friction

Consider T 2-order nonlinear system, consisting of a mass connected to
a nonlinear spring in the presence of dry friction and stiction, in canonical

form:




2,72
z, = g(z,w) (4.19)
y=1z,

where g(z,w) = -k 2} - f(z,) + W, k is a constant nonlinear spring coefficient,

and f(z,) represents dry friction with stiction.

For this system, the sliding mode observer can be written:

A A
z2,=2,+h, x, + k| x,

'z'\; =8(z,w) + h, x, + k, x, (4.20)

~~

Z,

f
The slidin];g observer error dynamics is
|

|X1 =X,-h, X, - k; sgn(x,)

}X2 = - h, %, - k, sgn(x,) +u,

(4.21)

where x,=2,-2,, x,=2,-2,, u, = g(z,w) - (z,w).
The numerical data for the system are

x|= 1.0, F, =1.0; static friction, F, =0.75; dynamic friction
x}=0, x,=0.5; initial values

The linear correction coefficients was chosen as h, =8 and h, =16 according

to pole placemgnt of linear system theory. Simply assign the function g(z,w)=0.
With the givén bound of initial state, the bound of disturbance input is
evaluated as u, = 2. Hence k, =2 may be a reasonable starting value.

With the d:.ata simulate the design algorithm SOON and the results are
as follows:

The worst| final passing point is o, =-0.44 whose absolute value is less
the initial value. According to Theorem 3.2, this system is stable. Hence,

we can freely assign the coordinate shifting constant k,. Consider the




0

desirable accuracy x,, take k, =0.01. Finally the tested design constant are
IL =0.01, k, =2, h, =8, h, =16
The simu?ation results by SOON is compared with the sliding observer
which is desi!gned by the absolute stability theorem and whose switching
function is saturation functions instead of signum function (see Appendix

B.2). The nur‘znerical data for the saturation sliding observer is the same as

new sliding observer except the design coefficients:

k, =0, k, =2, h, =44, h, =400

0.5, g
7
+ X
65 3 0 i
<
05L N
0 0.5
x1 time

Figure 4.9 Simulation results of SOON

time

Figure 4.10 Simulation results: time domain plot of 1st states
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(@) T T

z2,7h2

time

Figure 4.11 Simulation results: time domain plot of 2nd states
a) The sliding observer by absolute stability theorem
b) %The sliding observer by SOON

l

1

Even thoug%h the both of simulation results satisfy the design goal, we
can see the diffe!;rence between them. Both of the first estimated state are so
close to fhat ofE actualv system, we cannot see the difference in Figure 4.10.
The saturation sliding observer is equivalently high gain system within the
boundary layer. On the contrary, if the signum sliding observer is arrived
at sliding patch, its dynamics is equivalently reduced order system and its
steady state ernor bounds are limited by the shifted-coefficient as shown in

the equation (2.43).




4.5 Super-tanker Lateral Dynamics

For the 3.order example, the sliding observer is used to estimate the
angular velocity (yaw rate) and the angular acceleration of a super-tanker

from the measurement of the "heading", le., the yaw angle. The equation

of motion is originally derived by Frimm [1983]. The plant is described as

follows:

(4.22)

S o ._K (1l 1 _K '
]za_ 5 B (T1+T2)Z3+T1T2(8+T38)

where

*z =y is the yaw angle (degree)
*z,=Vy 1s the yaw rate (degree/sec)

® z,is the derivative of yaw rate

o is thq rudder angle (degree)

- The functiojn H(z,) = H(y) and the constants were identified from the

actual ship as:

- H(\if)‘;' =1.8419- 21.294 y - 8.0534 y* + 96.5283 ° - 24.9247 T

* T, =-60.26

o T, = 7.7§
=

*T,=175

¢ K =-0.04696

The goal of this example is to design a sliding observer which estimates
the second and |third states with the only available measurement of yaw

angle. A linear|model by Arie will be used and the rudder inputs will be




lumped with the nonlinearities and regarded as an uncertainty.

The modell used for the observer design is

(4.23)

| v ’
\

where |wl s'

The uncerf;ainty bound y will be determined based on the knowledge of

the actual syst%m. The suggested sliding observer is
/2’1 =%, +h x, +k sgn(x)
:
A
wherex, =z, -7

1

N ).

, =23+ h, x + k, sgn(x,) (4.24)

e

=-—1 ’z‘-(—1—+l)'z‘+hx+k sgn(x,)
T T1T2 2 7111 T2 3 3 “*1 3 1

To follow the design procedure, the uncertainty bound needs to be
evaluated first. Since modeling errors of this example are mathematically
unbounded, it is necessary to use the physical knowledge to determine the

bounds for modeling errors. The experimental data are as follows:

* Iz, 1 <1(degree)
* lz,] <0.2 (degree/sec)
* 18! <10 (degree)

Using the physical bounds given above, the uncertainty bound is obtained

via the Schwarz inequalities.

=|_1 . K '
|wl= rTz(z2 1<H(z2))+T 5 (8+T38)

1 +2

<.023 (4.25)

With x = 0.1, take the bound as Y=0.023. The next step is to determine




the bounds on the initial error states. Let assume the bounds as follows:
* x =0
* Ix,l .. <15
<05

* Ix,l

ma

The next step is choosing the linear correction coefficient. Simply pole
place all at -2 and make it slightly underdamped to be captured in the

sliding patch fz;a.st. The chosen coefficient is

H=[6 122 84]"
|

With this aesign constant, simulate the reach'ing dynamics to get the
worst final pas‘jsing point. Considering the bound of initial state, 2 different

initial conditiorjls are simulate and the results are shown in following Figures.

Figure 4.12 Worst reaching dynamics with x' =[0 1.5 0.5]

1.5

1
0.5

X2+

0

-0.5

0 0.2 0 0.2
x1 x1

Figure 4.13 Worst reaching dynamics with x' =[0 1.5 0]
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The simulation shows that the later one is worse than the first one
whose initial Lyapunov-like function is greater than that of later one. The
final passing point are of =[0 -0.18 -0.49]" and o = [0 -0.24 -0.8]". However,
the both resul"ts satisfy the requirement of stability Theorem 3.2. Assigning
the shi&ed-co?fﬁcient K, as half of the worst final passing state will guarantee

\ .
one cycle convergence. Considering the equivalent sliding dynamics
|

eigenvalues, the switching coefficient is chosen as:

K=1[0.1 0.2 0.023]"

z1,zh1
r_‘N

3 4 5
time
o
= n
~N
o
~N
3 4 5
time
o
N z
0 / ° |
( 1 2 3 4 5
time

Figure 4)14 The actual and estimated states of super-tanker
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Even the bound of the rudder angle is 10°, the simulation is done for §
=30° to demonstrate "robustness” of the designed sliding observer as shown
in Figure 4.14 in time domain. It shows that the solution point is captured

by the sliding patch within one cycle as expected.




CHAPTER V

ROBOT CONTROL BASED ON SLIDING OBSERVERS

o

.1 Sliding Observer for Multiple Measurements

In the state estimation problem, the need to handle model uncertainty
due to nonlintl,arities or disturbance leads to the development of a sliding
observer. A sliding observer is one of the simple robust estimations. Despite
the presence of uncertainty and disturbances whose bound is known it is
easy to show that the performance of the sliding observer is theoretically
perfect.

The sliding observer with multiple measurement in phase variable
canonical form can be designed as far as the disturbance input bound of the
error dynamics is known. The system with double measurements is assumed

as:
] Z, =2z,
‘ z:2 = g1(zau1at»w1’e) (5.1)

\ Z,=12,
Z,= g2(z,u2,t,w2,9)
The suggested sliding observer is:

7, =7, + h, (y,-C,2) + k, sgn(x,)

2)
=8, + h,(y,-C;2) + k, sgn(x,) 5.2

? =7, + hy (y,-C,Z) + k, sgn(x,)

z)
=g, + h, (y,-C,2) + k, sgn(x,)




|
|
|

l~ ~ ~
where x, = y,-C,z and x, = y,-C,z

The error, dynamics:

L ————— 2
-
‘e
nnun
g el

X, -h, x, - k, sgn(x,)

-hy %, - k, sgn(x,)
Xg X4 h; x k sgn(x;) (5.3)
X, =W, - h k sgn(x,)

wherew, = gl(é,ul,t,wl,e) - gl(i,ul,t,a) and w, = gz(z,uz,t,wz,e) - §2(E,u2,t,6)

For the sliding observer error dynamics, w, and w, are the disturbance
inputs which iiinclude neglected nonlinearities, parametric uncertainties,
modeling error%s and noises. The bound of the disturbance input w, and w,
are assumed to be known. If the error dynamics of multiple measurements
system can be 1idecoupled, then the sliding observer can be designed exactly
the same methéod as the single measurement case. Compared to the single
measurements 'sliding observer, the multiple measurements sliding observer
has multiple hyperplanes. This is one of the main difference between the
sliding observeir and sliding control problem.

In this chai)ter, the sliding observer_is used to estimate the states of a
two-link manif‘)ulator‘ for multiple measurement example. Since every
observer is considered to be a part of a closed-loop feedback system, as a
practical exam};le, a sliding observer for a two-link robot system was designed
and simulated t‘lo compose a closed-loop feedback system with several control
method. If the|model of robot is known exactly, the nonlinear term of the
equations of motion can be included in the sliding observer for an accurate
estimation. For this case, the Feedback Linearization method can be applied

to control the nonlinear system. And also the SOFL (Feedback Linearization

control based (Jn Sliding Observer) is composed and simulated. If the

|
|

8
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dynamics is n]ot known exactly, the Feedback Linearization control does not

work properly. Also, for the sliding observer, the simplified model may be

preferred. For the system control, the adaptive control and the sliding

control were designed.

5.2 Robots Dynamics

5.2.1 Dynamics of Rigid Robots

The mathtjamatical model for a n-link robot is derived via the Euler-

\

Laglangian eq111ations (see Spong and Vidyasagar for details [Spong, 1989] ):
|

Y 4@+ Y, Cipl@) 6.3+ 0(@) = 5,
j ij

where d,; ; The coefficient of inertia matrix D(q)

¢« ; The gravitational forces and torques

Cix ; The co¥iolis and centrifugal terms

o 21[9% 9dy 9dy
Ci=3 0  9q; 0qy

Equation (5.4) can be rewritten in the matrix form:

Dl@§ + C(q,9) g+gl@=r

where the k, j_ph element of the matrix C(q,9) is defined as:

= Cii(@) G

i=1

Cy;

T &2 0g dqj  Oqx i

=1

and the k_th component of gis ¢,

(5.4)

(5.5)

For a general n-link manipulator, the equations of motion (5.4) are
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nonlinear and coupled, but for the simplest robots, they have several
properties [Spong, 1990] that are useful for designing control system.

Property
1) The inertia matrix D(q) is symmetric, positive definite, and both D(q)

and D(q)* are uniformly bounded as a function of q € R"

2) There 1s an independent control input for each degree of freedom.

3) Link i‘masses, moments of inertias etc., appear as coefficients of
known functio%:ns of the generalized coordinates.

4) The Coériolis and centrifugal forces are quadratic in the terms of &
e o .
Il'Cq adll < o llall®

5) The veétor C(q, 4)q has elements q" Ni(q)q where the N.'s matrices
are symmetricé and composed of bounded periodic elements.

Each termi;of the matrices of dynamic equation (5.4) can be defined as a
separate pararineter, so that the dynamic equation (5.5) is rewritten in a

linear regression form:

D@4+ Cla,d)d + g = Yaqqde=1

where Y(q,q,d) 1s an n x r matrix of known functions, known as the regressor,

and q is an r-order vector of parameters.

5.2.2 Two Link% Manipulator

Fig. 5.1 is a planar type model of two-link robot with a motor at each
|
joint for control input. The dynamic equation (5.3) for a two-link robot in

matrix form is:

. .. .. . . 2
dll\ql +d, 4, + C121 q,4q, + Czn q,q, + Czn QG +¢, =1

L. .. .2
dy, 4, +dp @y + Cp Gy +0, = 1, (5.6)
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wherei=1, 2

t.; The control inputs

q; A generalized coordinate‘that is the joint angle

dy=m, 12+ m, (12 +124+ 211, cos(q) + I, + 1,

dy=dy, =myl.2+1,1;cos(qy) + I,

de=m;1.2+1,

Ciy = Cgyy = Coyy = -Cppp = Myl; 1, 8in(q,):=h

¢, =(m 1, + m,1,) g cos(q) + m, 1, g cos(q; + q)

¢,=m,l, g cos(q, + g) where I; The moment of inertia of link i
is at the center of mass of link i

1, ; The distance from the previous joint to the center of mass link i

92 Ug

\ 9

N
Figure 5.1. Two link Manipulator

Let us define parameters 6,, ... ,0, to get a linear regression equation:

6,=m,1%, 6,=m,l1l, 06,=m;l;g

92=m2‘112, 0,=1,, 0;=m,l, g
0;=m,l.% 6,=I,, 0;=m;l, g
where 6 =[6, ... ,8,] (6.7)

Using the parameter (5.7), rewrite the equation (5.6) in a linear regression
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form:

Y(q,4,0)0 =7 : (5.8)
Y,(q,4,d6,+Y,q,996=1 , (5.9)

where 6,: known parameter, 0:to be estimated

Assuming that m, is known exactly and does not change, load and
disturbances are included in m, so that m, is unknown. If the equation
(5.9) is applied to a SCARA (for Selective Compliant Articulated Robot for
Assembly) type robot, the gravitational terms 6,, 6,, 6, will not appear.

The equations of motion (5.6) is rewritten in a state space form. First,

the equation (5.6) is multiplied by the inverse of inertia matrix and we have:

z,=12,
Zy =C;y Zy+Cp Z, + 0, + T
Z;=12,

Z, = Cpy Zo + Cpy Zy + Oy + T, R (5.10)

where z,=q,,2,=4,,2;,=q,, and z, =4,

A =dy dgo - di2 dar ; determinant of inertia matrix D(q)
611='(d22011‘d12021)/A

o= (dmcn-dpey)/A

Cu=-(dycy-dpey)/A

Gy =-(dycp-dyey)/A

01=-(dp 0r-dip 0)/ A

O =-(-dip0r +dys 6 )/ A

T=(dyt-dpt)/A

T=(-dpt+d; )/ A (5.11)
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where q, and g, are the two joint angles, T,and 1, are the joint inputs, and
d,=m 1+ m (17 + 1 +2 l,1,cos(z)) + I, +1,
dy=dy =m, (12 + 1,1, cos(z,)) + 1,
de=m, 1.2+ L,
h := m], 1, sin(z,)
¢,=-hz,
c12=-hzz-hi4
¢21 =hz,
Cp=0
¢1 =(myl,; + m, 1) g cos(z,)) + m, 1, g cos(z, +z,)

¢, = my 1, g cos(z, +z,)

The specification of a two-link manipulator for the computational
simulation is m, =20, m,=10, 1,=1, 1,=05, ,=0.8,1,=05,1, =5, I,=
2.5, g = 9.8, with the SI unit.

5.3 The Case with No Parameter Uncertainty

5.3.1 The Design of the Sliding Observer

Even thdugh we know the system exactly, the estimated parameters
may be different from the actual value, since the parameters are function of
estimated states. In this section, the nonlinear term is considered to design
a sliding observer. The observer is obtained.by replacing the parameters in

(5.10) with estimated parameters.

z,=2,+h,¥,+k 15)

~

z,= h,y,+k 1()+¢,2,+Cr 2, + 0, + T,

%= 2,+h, ¥, +k, 15,
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~

Z,= h,J,+k, 1) +Cp 2y + Cppy Z, + O, + T, (5.12)
where §,=x,=2,-2, and§, =%, =2;- Z,
The error dynamics equations are

X, =%x,-h x -k 1(x)
%=-hx -k 1(x)+w,
X, =%, - hy x, - k; 1(x,)

%X, = -h,x,-k, L(x,)+w,

where x,=z,-%,, X, = 2,-2, and

W, =C X+ (C-C)Zy+Ca X, +(Cp-Cp) 2, + 0, -0, +7,-T,

Wy = Coy Xy 4+ (Cyy =Coy) Zy + Cpp X, + (Cpp = Cop) Zy + By - Qo + T, - Ty

By using the properties 4) and 5), it can be proved that the error of
estimated parameter w, and w, are bounded.

The switching gain k, , k, is chosen as a bound on the steady state
estimation error on Xx,, x, and k, ,k, is chosen to be larger than the error of

estimated parameter w, and w,. The chosen constants are:

k,=0.1,k,=0.1, k,=1,k,=1

The true system is tracking the desired trajectories by feedback
linearization control law. The simulations were run using SIMNON, on
two different initial conditions. The first set of initial conditions of the
states and the states of estimation are all zeros. The simulation results for
this set of initial conditions are shown in Fig. 5. It is clear that the sliding
observer is working properly.

The initial condition of the sliding observeris Z =[.1.3.1.3]". The chosen
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linear correction coefficient is H=[4 4 12 40]. The bound of disturbance is
known as kl‘: .5 and k;: 1. The simulated results of the design algorithm
SOON is -.46 and -.48 so that the chosen switching coefficients are K=[.2 1
.25 2].

zl, 271
[

W
72, 7272
[
¥, ]

z3, "3
74, 7/

Figure 5.2 The simulated results of the sliding observer

5.3.2 Feedback Linearization Control

If the parameters are known exactly, the inverse dynamics control law
(i.e. the Computed Torque control law) cancels exactly all of the nonlinear

terms in (5.3) so that the closed loop system is linear and decoupled

D@ § +Clgd q + ga) =1 (5.13)
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If the torque is t=D(q) v+ C(q,d) q + g(q) (5.14)
Then, frdm (5.14) and (5.3), the equation of motion is

D(@ (4-v)=0 (5.15)

By property 1, G=v  (5.16)

We now consider the case when the manipulator is actually required to
follow a desired trajectory, rather than merely reach a desired position.
Note that a trajectory control problem may arise even when the task is
merely to move a load from its initial position to a final position. The simple
P.D. controller cannot be expected to handle the dynamic demands of
trajectory tracking effectively. We consider first the use of feedback
linearization. We then discuss the extension of adaptive control and sliding
control based on the sliding observer.

The term v is the interpretation of an outer loop control law with units

of acceleration, which is typically chosen as:
v=4dq - K, q-Kpq , (5.17)

with q = q - q;, where q,(t) ; n-order vector of desired joint trajectories.

By plugging (5.17) into (5.16), we get a linear error dynamics
d+K,q+K,q=0 (5.18)

If the gain matrices K, and K are chosen as diagonal matrices with
positive diagonal elements, then the closed-loop system is linear, decoupled,
and exponentially stable. The global stability for this scheme is thus obvious.
In fact, theiclosed-loop damping ratio and natural frequency may be
arbitrarily assigned.

The Feedback Linearization Control based on Sliding Observer. The

only difference between previous simulations and this section FL-SO is the
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control law in which the actual states are replaced by the sliding observer
estimated states. The first set of initial conditions of the states and the
states of the;slliding observer are all zeros. The simulation for this set of
initial conditions are shown in Fig. 5.9. It is clear that the FL-SO closed
loop is stable. The initial condition of the sliding observer is 2 =1[.1.3.1.3]".
The chosen linear correction coefficient is H=[6 9 16 60]. The bound of
disturbance is known as k, .5 and k;: 1. The simulated results of the design
algorithm SOON is -.58 and -.56 so that the chosen switching coefficients
are K=[.32.33].

zl, zM1
o
(9.3
72, 772

time

z4, z7M\4

Figure 5.3 The simulated results of feedback linearization control based

on the sliding observer
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5.4 The Case with Parameter Uncertainty

5.4.1 The Dggign of the Sliding Observer

Each angular position in a two-link manipulator is measured and both
the velocity as well as the position are estimated. For an estimation scheme,
we can intuitively include available nonlinear model to make estimation
error small. On the contrary, however, it will take more time to compute
and it is not desirable for our purpose. Therefore, although the nonlinear
model with no uncertainty is available, we may adopt only linear terms for
a fast estimation.

The simplified model for a sliding observer design is obtained by taking
only linear terms. We need to notice that the input torque is not used and

not measured.

z, =7z,
Z, = W,
7, =2,
Z,= W, (5.19)

The equapion (5.19) is really simple compared to the original equation.
By comparing equations (5.10) and (5.13), one can identify the disturbance
terms w, and w,, as in (5.12), and try to find the bound for them. The bound
of w, and w, are function of states and cannot be computed explicitly.

Therefore, the bounds can be assumed as the simulated maximum value
of x, and x, of the operating range and the initial condition. Possibly, the
bound can be violated during the transient for the different initial condition.
The initial condition of the sliding observer is Z=[.1.5.1.5]". The chosen

linear correction coefficient is H=[20 100 40 400]. The bound of disturbance
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is known as k, .5 and k,: 1. The simulated results of the design algorithm
SOON is -.65 and -.9 so that the chosen switching coefficients are K=[.32 5
.45 10].

N\

N
[Sn

zld, z1, z™1
>
LY
z2d, 72, z"2
o

0
0 5 0 5
time
e <
< <
N N
o <
N N
~ =
A <
N N
0 5 ' 0 5
time time

Figure 5.4 The simulated results of feedback linearization control

based on the sliding observer with uncertain parameter

5.4.2 Adaptive Control

The Adaptive implementation of the inverse dynamics control law
[Astrom, 1989; Slotine, 1991] is obtained by replacing D, C, and g by their

estimates, i.e.,



1=D(q)(§'-Ky§-Kpd) + Clg, 9 4 + E@)
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]3, 6, g have the same function form as D, C, g with estimated parameter

.» Og
Di+Cq+8=Y@a ¢ 40
substitute (5.19) into (5.3), we got
Di+Cq+g=D(§-Kq-K§) +Cq+g
Rearrange the terms as:
Di-Dig+D (K G+K.g)=(C-C)q+8-¢g
(D§-Dg")-(D§-D§)+D K.G+K,§)=(C-C)q+(g-g)

Let (7):=(")-(.)

)
s

(a‘*‘KVa"' q)=ﬁq+6q+§=Y(q,q,q)9

K. q+Kg=D"

BN-Y
+

Rewrite (5.22) in state space form:

z=Az+ B®O

A; Hurwitz matrix:

A=L§p_}1{j ; and B=[9] ; 2

d ; measurable, D" ; bounded.

QN

:

The Update Law

8=-T'®'B"P2

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)
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where I'=T" >0 and P is the unique symmetric positive definite solution to

the Lyapunov equation:
A"TP+PA+Q=0 (5.26)

for a given symmetric, positive definite @. Under these conditions then,

the solution x of (5.23) satisfies:

Zz=>0a T = o

with all signals remaining bounded.

< N : <
N N /| 3
~ 0.5 : N
| ‘ A1 \ / =
N0 N N
-0.5
0 5 10 15
time

z3d, z3, z"3
z4d, 74, 774

Figure 5.5 The simulated results of adaptive control based on

the sliding observer with uncertain parameter
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Proof) Choose the Lyapunov function candidate [Astrom, 1989]:
V=z"Pz+ gr Fg
V:-ZTQZ+26T[(DTBTPZ+FS]
Using (5.25)
V=-2T Qz <0
' 1
The initial condition of the sliding observer is z =[.0 .5 .0 .5]". The chosen
linear correction coefficient is H=[40 400 60 900]. The bound of disturbance
is known as k, .5 and k;: 1. The simulated results of the design algorithm
SOON is -.62 and -.9 so that the chosen switching coefficients are K=[.315
.45 10].

5.4.3 Sliding Control

We need to handle the model uncertainty or disturbance that leads to
develop a sliding control and an adaptive control etc. The sliding control is
one of the simple approachés to a robust control. It is easy to show that a
perfect perforinance can be achieved theoretically in the presence of arbitrary
uncertainty and disturbances.

Let thé tracking error vector g=q-q‘..

The slidiﬁg condition is:
%—g—tsf < -nlsl (g>0)
where § = Q; + Ai G
One may extend the sliding observer in a multi-variable case .

s=4+A3=q-q,
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where g, =qq-Aq ( qr : Reference velocity)

The detail derivation of a sliding control law for a multi-variable case is
shown by Slotine (1991).

Let us define a Lyapunov function candidate as:

Vit) = L[s"Hs]

1
2
Differentiating

V(t):sT(H'q-H'qr)+%sTHs

From the system dynamics,
Hi=1-Cq-g=1-C(s+q,.)-¢g
plug in and get
Vit)=sT(t-HG,-Cq:-g)
The control input has the form as:
1=7-k sgn(s)
T is computed as:
T=H d, + C G + ¢
The compbnents of the vector k will be chosen as:
k > |[ Hq) qr + Cla,0) & + E@li| +my
so that
.' n
V- m sl

i=l

As in the single-input case, this sliding condition makes the state reach
within a finite time and remain on the surface.

The initial condition of the sliding observer is Z =[.5 .5 .5 .5]". The chosen
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linear correction coefficient is H=[40 400 60 900]. The bound of disturbance
is known as k, .5 and k;: 1. The simulated results of the design algorithm
SOON is -.Gé and -.9 so that the chosen switching coefficients are K=[.315
.45 10].

zld, z1, z*1
o
)|
HN
N\

/
\
z2d, 72, 22
[
[ V)]

z3d, z3, z"\3

Figure 5.6 The simulated results of sliding control based on

the sliding observer with uncertain parameter



CHAPTER VI
"STOCHASTIC SLIDING OBSERVER DESIGN
6.1 Introduction

Optimal estimators that minimize the estimation error in a well-defined
statistical sense, are of particular interest. For the linear filtering problem,
under the assumption that the process noise and the nonsingular
measurement noise are white, the Kalman-Bucy filter [Kalman, 1961,
Kalman, 1960] is optimal in the sense of the mean-square estimation error
criterion. For realizing the filter, we should know the exact intensities of
noise which compose the state error covariance matrix, i.e. the Riccati
equation. Practically, however, the noises are not measurable and the noise
intensities may change according to variation of the operating condition.

To avoid difficulty in adapting a filter in accordance with variation of
noise characteristics, Drakunov, in 1983, suggested an Adaptive Quasi-
optimal Filtef [Drakunov, 1986] which is insensitive to inexact knowledge of
the noise intensity. By using the averaging theory his paper shows that the
Adaptive Quasioptimal filter, which is actually a sliding observer, can be
robust against the changed measurement noise characteristics. With the
known statistical properties of the sensor noises, Misawa applied the methods
of statistical linearization (the describing function technique [Gelb, 1968]) in
designing the stochastic sliding observer.

If all the uncertainties in the input noise can be modeled as white noises,

115
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then one can use the Random Input Describing Function (RIDF) in the
design process. Compared to the Drakunov's analysis, Misawa [Misawa,
1988] included the linear gain "H C z" in his analysis for a first order
system. |

In this pfeliminary study, the robustness analysis for a second order
system was studied about the effect of changing in noise characteristics and
parameter mismatch. The theoretical prediction of a steady state estimation
error covariance of the sliding observer using RIDF shows good agreements

with the simﬁlation, as well as with the first order case of Misawa [ 1988].

6.2 Sliding Observer Design for Noisy Measurements

Misawa's method [1988] for the sliding observer design procedure for

noisy measurement is utilized. System and measurement equations are

Z=Az+WwW

yv=Cz+v (6.1)

where w and v are assumed to be stationary and independent white noise.

The sliding observer structure:
Z=AZ+H(y-CZ2)+K1® (6.2)
wherey=y-§y
The estimation error dynamics for the sliding observer:

x=(A-HO)x-K1F+w-Hv (6.3)

T~

1,(3) = [ sign()), sign(¥,), . . ., signFu) ]
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The switching function can be approximated by the RIDF function [Gelb,
1974]:

1(H=N,7=N,(Cx+v) (6.4)
where N, is the m x m matrix of RIDF of 1 and the function of statistics of
y. By assuming ¥ is a zero mean Gaussian Process, N, is determined by

covariance matrix of ¥. The estimation error dynamics can be rewritten

as:

x=(A-HC)x-KN,(Cx+v)+w-Hv
=A x-(H+KN,)Cx-(H+KN,)v +w

Let H*=H + KN,

x=A x-(H+'KN1)(Cx +V)+WwW
=Ax-H(y-CZ)+w (6.5)
The lumped gain matrix H* is also a function of the covariance matrix
of ¥.
§=Cx+v
EFt) ¥®)]1=CE[xx"]C" +E [v v"]
=CPC"+R (6.6)

Considering the measurement noise is correlated, the gain matrix H*

should be determined by an iterative optimization method.
The plant is assumed to be described as

z=Az+w

y=Cz+v

where E [w(t) w(t+1)"] = Q &(t) and w is a n-order column vector that
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includes all nonlinearities and uncertainties. Suppose that the measurement
noise is colored, i.e. it is correlated. It is assumed that the measurement

noise can be modeled through the use of a "shaping filter":

§=Ev+Fv1 (6.7)

where the matrix E and F are chosen properly and v, is a white noise

process:

E [ vi(t) vit+0)"] = R (1)

The augmented system ivncluding the noise model is:
,_[2]_[A 0 DO
i=3]=[5 2151+ (0 7]

wherew=Dn.

”] 6.8)

v,

Using the lumped gain matrix in the RIDF method, the sliding observer

can be written as:
z=AZ+H (y-CZ) (6.9)

The augmented estimation error dynamics is:

. 7 A - H* C - H* D O [n
=% = X _
X_[v}_ 0 E [V]+{OF] v, =A,x+ G, w (6.10)
The covariance matrix of estimation error:
EXX ] E[XV
P={ lzf'] [XV]} (6.11)
E[vX"] E[vVv']

The covariance propagation equation:

P=A,P+PA, +G,® G, (6.12)
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where ® = diag( Q, R).
Assuming that the original process is ergodic, the steady state Lyapunov
equation can be solved for a fixed matrix H'.

Let the cost function:

J =trace (E [ x x7] ) = trace (M P M") (6.13)

where M is the nx(n+m) matrix with nxn identity matrix and the remain is
zero. To get the optimal gain H' that minimizes the chosen cost function,

the solution of Lyapunov equation should be obtained iteratively.
6.3 1st Order System Example

In this éection, the former example of Misawa [Misawa, 1988] is
summarized.é Let us consider the first-order system with the correlated
measurement noise that can be modeled as a first-order Gauss-Markov
Process:

Z=-az+ W
§=z+v
TV=-v+ v
where Q= ¢=E[ww=10, R=r*=E[v,v7]=001, a=1,7=0.05

The Kalmian filter is optimal in the least-square sense:
E: -azZ+ h(y-2)

Assuming ?the measurement noise v is white, we get the constant Kalman

filter gain by ﬁsing a standard CACSD software.

h =9.05 = KF1
For the cdlored noise case, the covariance error propagation equation

(6.12) should be solved to get the optimal gain H'. The first step in the
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design process would be to get the statistical steady state variance of estimation

error. For the 1st order system, it can be solved explicitly.

@[ (a+h)t+ 1]+ h*r2
2(a+h)[(a+h)t+1]

P,=E[x]=

To find tlfe gain h that will minimizes P;:

I, _
ah "

- h*=(1+at)(tq2-a2r2iVa2r4+q2r2)=17356
| r’(2at+1)-¢’r? '

For a first-order system, the sliding observer is
z=-aZ+ksign(y-z)

where theilinear gain term of equation (6.2) is already stable so that no
more terms need to guarantee the stability. Because the optimal gain h'is
known, we cain proceed to compute the gain for the sliding observer. For

this case, the covariance of estimation error and noise are

P, = E [x?] =0.07

The covari‘iance of E[¥] is

Z=E[F]1=Elx+v)]
=E[x]+2E[xv]+E[v]
=%0.07-0.0904+O.1=0.0796
o3 = 0.282

With this i?nput statistics, the gain k for the sliding observer is
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ko=h'o; L =613

Using RIDF, the steady state covariance of the sliding observer for the

1st order exainple 18

(a2-—1—)r—2 _

: 2 2
of = 1 v T +q + 5
2la+q/2 Kk a+l+/\/—2—L

T Oy, T T Oy
1
a+? r2

The above implicit equation for the output error covariance can be solved

numerically.
6.4 2nd Order System Example

To extend the first order system to the second order system, consider a
simple second-order system, with correlated measurement noise that can

be modeled as a second-order Gauss-Markov Process:

Z'i=z2
Zg=-8,Z, -8 Z,+ W
y=2z,+V

TV=-V+V,

where Q=¢=E[wwT =10, R=r*=E[v,v]=0.01, a=1,7=0.05
The Kalman filter is optimal in the least-square sense and has the

form:



Z=-az+h(y-7)
where z = [ z,i z,]. Assuming the measurement noise v is white, we get the
constant Kalfinan filter gain by using a standard CACSD software.

H= [ 2.7010 ] = KF1
3.6478

For the cblored noise case, the covariance error propagation equation
(6.12) should be solved to get the optifnal gain H'. The first step in the
design process would be to get the statistical steady state variance of estimation
error. For the 2nd order system, it may be convenient to solve numerically.
To find the ogtimal gain matrix H' that will minimize the trace of estimation
error covariance matrix, the Lyapunov equation is solved iteratively. The
covariance eqﬁation (6.12) is solved for the steady state by using MATLAB

with the matrices:

: -hy 1 -h
Am = |a;-h, a, -h,
‘ 0 0 E

| : 00
Gun[3 9] 30 ama 0=[

One can see the matrix A_ is a function of h, and h, that is to be solved.

The Gain mati'ix H is

H*=[ 3.1790] _ KF9
T | 45289

For a second-order system, the sliding observer is

?%-a2+ksign(y-2)

where z = [ z,| z,]"and the linear gain term of equation (6.2) is not need to
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guarantee th%z stability. Because the optimal gain H is known, we proceed
the compute i:he gain for the sliding observer. For this case, the covariance
of E [] is calculated from the solution of the steady state Lyapunov equation.
With this inpﬁt statistics, oy = 0.3102, the gain K for the sliding observer is

K=[ 12360 _, g0
~~1 17609

6.5 Prediction and Simulation

6.5.1 Effect of Measurement Noise

In order to test the performance robustness of the sliding observer, the
effect of deviation of measurement noise intensity from the nominal value is
investigated. When the noise intensities are the ones considered in the
design process, the Kalman filter should be the optimal one for a linear
system. In this case, the noise is assumed to be colored noise as the equation
(6.7) so that the Kalman filter KF1 is not the optimal one and the Kalman

filter KF2 is the optimal one at the nominal point.

(a)“ﬁO vs KF -Predicted : Effect of Meas. Noise (bi)éO vs KF -Simulated : Effect of Meas. Noise

:

S 5 A
& E 7
g 100 g 3
= = D
I ] = -]
E 7 g N
-3 =
& 1T & i
5 101 g % =
> = > =
) | ] e .
O | 1 © ’
102 ‘ -
10-3 110-2 101 100 103 102 101 100
Measlurement Noise Intensity Measurement Noise Intensity

Figure 6.1 Efféct of measurement noise: SO vs. KF (for the 1st order system)

a) Prediction b) Simulated results
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(a) & KF1,2-Predicted : Effect of Meas. Noise (b)ﬂj‘pig_g Observer vs K.F.-Effect of Meas. Noise
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S - |+ KF1 1 g - |+:KF1
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Meas. Noise Intensity - 2nd Order Sys. Measurement Noise Intensity

Figure 6.2 Effect of measurement noise: SO vs. KF (for the 2nd order system)

a) Prediction b) Simulated results

The prediictions for 1st and 2nd order case are plotted in Figure 6.1 (a)
and Figure 62 (a) and the Monte Carlo simulation that is the mean of the
time averageé over 100 simulations are shown in Figure 6.1 (b) and Figure
6.2 (b). Cleariy, at the nominal point, the KF2 is the optimal one, seen both
from the predicted values and from the values of simulation. The prediction
of the SO at nzominal point coincides with the KF2 for both cases. When the
measurementz noise intensity deviates from the nominal condition, the
inherent robuistness of the SO with respect to changes in the measurement
noise becomesi evident for both cases. In prediction results, for all values of
méasurementénoise intensities are different from the nominal value, the
sliding observér is the best one. On the contrary, thé simulation shows the
1st order SO 1‘s best for all values, but the 2nd order SO is not best. Even
thought the 2;nd order SO is not best for all values, it apparently shows

|

robustness against the variation of measurement noise.

i
|
i
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i

This result is due to the fact that the sign function has an inherent
adaptive-type:i of behavior with respect to changes in the measurement noise.
This fact can %be clearly observed if one recalls the definition of RIDF for the

sign function?:
R - ./2 1
%1gn(y) 4/n —y

Since G5 is directly affected by the changes in the measurement noise,
one can see t%hat the increased noise reflects as a virtual decrease in the
measurement; noise intensity is reflected as virtual increase in the filter
gain. This belhavior is exactly the desired from an adaptive filter in order to
maintain a goc;d performance for a wide range of changes in the measurement

noise intensitj
6.5.2 Effect of Process Noise

The robus:f,ness about the change of process noise was investigated. The
predicted resuélts for 1st and 2nd order systems are shown in Figure 6.3 (a)
and Figure 64 (a). The Monte Carlo sifnulation that is the averaging the
time averages %of 10 seconds over 100 simulations are shown in Figure 6.3 (b)
and Figure 64 (b).

In this caée, the sliding observer is not profitable. For both prediction
and simulatioﬁ, the KF'1 shows good robustness for smaller intensities and
the KF2 showsi_ a good robustness for larger intensities; it is probably due to
the fact that for large process noise intensity a larger filter gain is required

|

so that suitablé corrections are provided to the filter.

|
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( a2 SO.vs KF ‘Predicted : Effect of Proc. Noise (b) 468) vs K.F.-Simulated : Effect of Proc. Noise
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Figure 6.3 Effect of process noise: SO vs. KF (for the 1st order system)

a) Prediction b) Simulated results
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6.5.3 Effect o?f Parametric Mismatch

System Equations:

’=AZ+H(y-C%)

= °E+H(C(z-2)+v)

The error dynamics:

)':j:(A-HC)x-Hv+X'z\+W

where A = A - A°, A” is nominal value and A is a actual value.

The estimation error covariance matrix is

- |ExxT E[xVI]E[xzZ"
P= Elvx"] E[vvT] E[vZ]]
 LEEZxME[ZV] E[Z27]

It can be propagated as:

151=APP+PAPT+G,,CDG,,T

| A-HC -H A
where Ap=% 0 E _ 0
l HC = A°

DO
and G, =| 0 F
00

1
The steady state error covariance P is obtained by solving the Lyapunov

equation with P set to zero. For 2nd order system, the matrix A isa5x 5

matrix and a function of H with given parameter A. The optimal solution

of Lyapunov equation can be solved numerically, for example, by the steep

decent method. The remain procedure for prediction is the same as the

previous cases.
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The results are shown in Figure 6.5 (a) and Figure 6.6 (a) for prediction
and in Figure 6.5 (b) and Figure 6.6 (b) for simulation. Theoretically, the
sliding obser\%er shows good robustness for larger parameter mismatch but
the actual si%nulation is not the best one. For values if actual A much
smaller than the nominal value, the KF2 is the best one and for values if
actual A mucl%1 larger than the nominal value, the KF1 is the best one. This
can be explained as the same way as the previous analysis. For small
parameter oné wants to increase filter gain in order to have a suitable filter,

and for large parameter case vice versa.




CHAPTER VII
CONCLUSION AND FUTURE RESEARCH

7.1 Summary and Conclusion

7.1.1 Thesis Summary

The theS1s has approached to the stability of the sliding observer based
on the dlfferentlal geometry of the problem. The coordinate transformation -
enabled to apply the linear system theorem to the stability Theorem of the
sliding observier. A semi-aﬁalytic design algorithm was suggested according
to the stabilit?y theorem. The designed sliding observer was compared with
other nonlineéar observers for several applications.

In Chapte:r 1, the robust feature and the solution definition of switching
system was initroduced. A literature survey on robust and practical nonlinear
observers werie performed. |

In Chaptér 2, fundamentals of the sliding observer was investigated
and explalinedf1 systematically on the robust features. The analysis includes
the solutionsiand dynamics of switching system. Emphasis are on the
derivation of the coordinate transformation.

In Chaptér 3, a algebraic stability condition was derived by the worst
case analysisifor the 2nd order switching system. It is shown that the
worst direction of general order of system can be searched by numerical

search method. For practical purposes, an approximate worst direction
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method is sugégested. The worst case analysis is generalized for the stability
analysis of thie sliding observer by introducing the Lyapunov-like function.
The general éhearing effect is explained by the contour of Lyapunov-like
function. |

In Chaptér 4, a design algorithm "Sliding Observer design by wOrst
reaching dyn.%amics for Nonlinear/uncertain system" (SOON) was proposed
based on the :stability theorems. The sliding observer was designed for 4
practical appl%ications and compared with other current nonlinear observers.
The advantagies and superior performance of the new design methodology
was demonsttzfated via a simulation. Besides utilizing the linear system
theory via thie coordinate transformation, the new design algorithm also
guarantees st.;ability with known bound of uncertainty and the initial states.

In Chaptér 5, the sliding observer for multiple measurement, as a
practical exarﬁple, has been designed and combined with a controller for a
two-link robot'; system. The cases with and without parameter uncertainty
were implemeénted and simulated in the digital computer. In this case the
sliding obser?ver and controller were designed independently without
examining theiz separation principle. |

In Chapteir 6, the performance robustness of the sliding observer, with
noises and pairameter u,ncertainty; was analyzed by theoretical prediction
and numerica;l simulation as a extension of Misawa's method. To quasi-
linearize the :jerror dynamics, a Random Input Describing Function was
used as a staitistical linearization method. Th‘e measurement noise was
assumed coloxi'ed and the process noise was assumed as white gaussian
noise. As the% results, the sliding observer was designed and analyzed for

the 1st and 2na order Gauss-Markov process.

!
i
i
|
i
!
!
|
|
\
|
!
|
i
|
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712 Qonclugﬁion

|
Most nonlinear observer methods have their own positive aspects,

either as exteinsions of linear techniques or as novel nonlinear techniques,
a dual techniczlue of the variable structure control, for instance. A common
drawback to tihe previous nonlinear observer is that the exact nonlinearities
of the system énust be modeled, either directly or indirectly, into the dynamics
of the observeér. On the contrary, the sliding observer requires only bounds
of uncertaintizes and nonlinearities of the system in the phase variable
canonical forr%n. Furthermore, it guarantees stability with the bounded
initial conditic;in, and it can be easily implemented using a microprocessor.
The receZnt adaptive robust observer of Walcott et al. requires necessarily
the matching %conditio'n which is difficult to be satisfied practically. On the
contrary, the siiding observer can be designed without satisfying the matching
condition. Theii same matching condition was derived by an entirely different
way, i.e., the %Alimov's transformation (see Appendix B.4 [Alimov, 1960]).
One should notéice that the design method by passivity theorem (see Appendix
B.3 [Misawa, 1?88]) also arrived at the same condition. On the contrary, the
new stability Eganalysis adopted the linear system theory (i.e., reaching
dynamics) so tilat the conservativeness of the matching condition or strictly
negative deﬁn"\ite of Lyapunov theorem can be feplaced by the strictly
decreasing Lyz%lpunov-like function sequence of the passing points. Even
though a system has multiple measurements and its states are coupled in

the canonical form, the sliding observer can be designed. In this case, the

sliding observer error dynamics are decoupled for each measurement.

A new design algorithm "SOON" is proposed according to the stability
theorems. Usuzally by following the design procedure SOON, one can design
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the sliding observer converge directly to the sliding patch. If the observer

requirement is not satisfied by the above design procedure SOON, then it
can be improved by allowing the solution point pass through the hyperplane
in the worst ciase.

Ih the numerical examples, it was shown that the new sliding observer

effectively ad(j)pted to the bounded parameter uncertainty, such as the dry

friction and inaccuracies of the system model.

| 7.2 Future Research

7.2.1 Design Algorithm by Lyapunov-like Stability

|

If the observer requirement is not satisfied by the direct converging
design procedures (SOON) then it can be improved by allowing the solution
point pass thﬁough the hyperplane in the worst case. According to Theorem
3.3, if the final Lyapunov-like functi-on Vi(o(r,,)) is strictly less than the

precedent ﬁnél Lyapunov-like function V{o(t)), then the sliding observer is

stable. The e(iuation (3.67) is

Vidolr.) - Viote) < - p|lo) | (7.1)
where the suﬁscripts s and s* have different signs: sign(s) # sign(s*).

If there 1s no passing at the hyperplane by the direct converge design
procedure thelil we do not need to consider the passing jump. On the contrary,
if the solution point passes through the sliding patch then not only should
the equation (3.67) be satisfied but also the passing jump of the worst trajectory
should be negzgtive in the design procedure based on Theorem 3.3.

In Figure [7.1, even though the passing jump J, was already considered

in the equation (3.67), the next passing jump J, should be negative because
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the positive jljlmp by the worst passing point can make the error dynamics

unstable.

Figure 7.1 Lyapunov-like function and the passing jump

The difference of Lyapunov-like function between the passing points is

I i = V(1) - V)

=-4KYSPP X
0
X
=-4/[0 k, ... kn—l]P 2
X

In Figure %7.1, even though the passing jump J, was already considered
in the equatiojn (3.67), the next passing jump J, should be negative because
the positive jump by the worst passing point can make the error dynamics
unstable. |

If the sigﬂ of the passing state is unity then the passing jump is always
negative as shown in Appendix A. However, the sign equalization property
is hard to prove analytically as is shown in Appendix C. Hence it is reasonable

to search the worst case numerically.
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Figure 7.2 Conception of velocity field and Lyapunov-like function

7.2.2 Worst-cése Lyapunov-like Function Search

Consider the 2nd order reaching dynamics as shown in Figure 7.2. For
a finite time (it, the difference dx,, dx, of a moving point P, is determined by
the position x,, x, and the disturbance input u,. By adding the scaled
differences of dx, and dx, to the point P,, the fictitious next point P,, was
defined by equation (3.22). The numerical search algorithm is the same as
the former oné except the cost function. In this search, the Lyapunov-like
function is the cost function instead of the distance in order to apply the
stability Theorem 3.3. Since the switching constant k's determines (see
equation 2.54) the accuracy of the observer error, the smaller constant k's
increase the accuracy. With these new constants k's, the passing jump's
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will be computed. In the first design procedure, one might tune the design
constants K and H already. However, since the available linear correction
constant H is practically limited by noise, the available accuracy by the first
design methoél is also limited. With this proper constant H, one can increase
the accuracy by allowing the solution point pass through the hyperplane.
The suggested§ design procedure based on the Lyapunov-like stability Theorem

is as follows: |

7.2.3 Design p rocedure Based on the Lyapunov-like Stability Theorem
|

L. Data:
* The jmaximum bound of the disturbance w
¢ The \ivorst bound of the initial states
¢ The linear correction constant H
2. Choose ithe switching constant K according to the desired
observer accuracy.

¢ For a n_th order case, the suggested coefficient K is

1P, k' VP, k' ~~THP, k,,

¢ Check sliding dynamics eigenvalues equation (2.24)
. Checii steady state error equation (2.54) in the sliding region
3. Simulatie SIMNON program Reaching
. Searci:hing the worst Lyapunov-like function
4. Tuning ithe design constants K
¢ If equation (4.7) is satisfied and the jump is negative
\

then one can increase accuracy by choosing smaller K
\

L
|
|
\
|
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e If eq1;1ation (4.7) is not satisfied or the jump is positive

|
then one should decrease accuracy by choosing larger K

7.2.4 Design .iAlgorithm for Noisy Measurement

i
|

The perf&rmance robustness of the sliding observer, with noises and
parameter uncertainty, was analyzed by the theoretical prediction and the
numerical sinémlation in Chapter 6. In order to quasi-linearize the error
dynamics, a lj%andom Inpﬁt Describing Function was used as a statistical
linearization%method. However, the noise characteristics may change

according to %the variation of the operating condition. In this case, it is
necessary to aftdjust the filter according to the varying noise characteristics:
the solution oif this problem is usually sought in a class of adaptive systems
in which the n;oise intensities are estimated in one way or another. However,
such adaptiveg systems may be complicated and require more computational
power. Furthjermore, in a situation in which over long time intervals, the
system do not need any adjustment, and the adaptive part of the filter will
be idle. |

For the pﬁactical purpose, it is interesting to design a filter which would
obtain a suboi)timal estimation error, but it is insensitive to inexact noise

intensity.
7.2.5 Using Nionlinear Terms in the Observer

As shown' in Chapter 4 and Chapter 5, the nonlinear model sliding
observer improves the accuracy of estimation. Therefore, as far as the
computational power is allowed, it is preferred to include the proper nonlinear

terms in the observer structure. But, if the state estimation error is large,




|
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|
for example, the initial condition is mismatched, the nonlinear term possibly
induces a negative effect [Misawa, 1988].

It is diffijcult to set up a general rule in using the nonlinear terms.
Hence, for thﬁe practical purpose, it can be studied as case studies, the
estimators for the robot systems in the chapter 5, for instance.

A comparative study between nonlinear models and simple linear models
is needed: |

e Convergence speed and computational load
e Develop a.computational index to compare computational

| . .
burdens of different nonlinear observers.

This study should be useful as a design criteria.
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APPENDIX A
MATHEMATICAL BACKGROUND

A.1 Differential Equationswith Discontinuous
Right-Hand Sides

The evolution of the theory of differential equations with discontinuous
right-hand sides has been to a great extent motivated by its many applications.
The popular usage of the switching technique in automatic control systems
leads to the necessity of fabricating an intricate theory. The technique of the
variable structure system with sliding motions has been developed
fundamentally in the literature from Russia [Utkin, 1984]. The basic

properties are|explored in this chapter.

Definitions of solution
\

The solutions of the differential equations with discontinuous right-hand

sides are studi\ed by cases. The usual definition of a solution for a continuous
differential eq‘uation cannot apply directly to the discontinuous differential
equations of which are discontinuous on an arbitrary smooth line or on a
surface S. |

i) For the first case, the definition of a solution for continuous differential
equations can e applied to the case in which the solution point approach on
the surface S and leave on the other side of the surface S. Here the solution

passes through S and satisfies the equation everywhere except at the
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intersection point at which the solution does not have a derivative.

ii) In the|other case, a solution point approaches on both sides of a line
or a hyperplane S, the usual definition is unsuitable because there is no
clue of how é solution point that has reached on the hyperplane S may be

continued. The solution of velocity field along a surface of discontinuous,

i.e. the hyperplane (in this study x,=0), can be determined by the Filippov'
equivalent sol}ition.

Consider t%he case in which the function f(x) is discontinuous on a smooth
surface S thaé is given by the equation y = C x = 0. The surface S separates
its neighborhood in the state space into domains Q. and Q,. As the trajectory
& approaches t%,he point x € S from the domains Q. and Q, at a given time t.

let the functioil f(t,&) have the limiting values:

1§i:ég1 f(t,8) = f(t,x), lgixsp fit,8) = f'(t,x) (A.1)
EIS(x) gfso()

Lemma 1.1.[Filippov, 1964] Let the regions Q, and Q in the space x,, . .
.» X, be separated by a smooth surface S. Suppose that the vector function
flt,x) is bouncied and, for any time t, ité limiting values f(t,x) and f*(t,x)
exist when th? solution point is approaches from S and S, . Let £ and £}, be
the projections of the vectors £ and f* on the normal to the surface S directed

from S_and S|. Let the vector function x(t) be absolutely continuous. For

t,<t<t,, let Jassume x(t) € S, ft,x)20, fi(t,x) <0, f(t,x)-f(t,x)>0. In
order for x(t) to be a solution of (A.1), it is necessary and sufficient that for

almost all t e [t,, t,]
=ftx), =af +1-0)f (A.2)

X
where oc=——f"— (A.3)
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Proof) See Filippov pp.206.

Remark)

If f and f* are continuous with respect to (t,x), xeS , then

equation (A.2) holds for all te(t,, t,). It is easy to see that the value of % for a

solution is lyi

Following

ng on the hyperplane.

Figure A.1 are examples of hyperplane H = x, =0.

Fort, <t <t,, draw a line joining the endpoints of the vectors f(t,x) and

\
f*(t,x) that stari

Figure A.1 The velocity field near the hyperplane

t from the point x. If this line does not intersect the hyperplane

S as shown Fiéure A.1a, the solution is determined by the first case. In this

case, the soluti!ons pass from one side to the other of the hyperplane.

If this line‘ intersects the hyperplane S (Figure A.1b), the intersection

point is the enjdpoint of the vector ft,x) which determines the velocity of

motion x = f(t,x) along the surface S. This is the Filippov's equivalent

solution [Filippov, 1964] of the differential equation with discontinuous right-

hand sides:
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x = £(t,%) (A.4)

The veloc1ty function of this case is:

F(6x) % F(t,x), £(6%) % £(5%) | @A

This movément of the solution point is called a "sliding motion".

A.2 Differential of Signum Function
|

We want to apply chain rule to differentiate a signum function about

time which is discontinuous at zero. The Fourier series expansion for a

square wave i!s obtained as followings:
|

|
sqw(x) =7%. si @L) +4 sin(3_7_5&) R Sin((Zm-l)ﬂ:x) .

P/ 3n p " (2m-1)r p T (A.6)

2 Fourier Series of Square Wave with Boundary=0.1; n=3

-0.4 -03  -02 -0.1 0 0.1 0.2 0.3 0.4

Figure A.2\Fourier series expansion of square wave and signum function




The signum function can be recomposed by using sqw(x) and sgn(x).
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(A.7)

il PR
< ( sgn(x) =
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Figure A.3 Differential of the Fourier Series of Square Wave
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For finite|p, 4/p is also finite. Hence, we need to evaluate the rest term.

Let y={cos(ﬂpl)+cos(3—gx—)+...+Vcos((—2—m'p—1)n35:)+...J (A.8)

If x equal‘s zero, then y will be infinite as n goes infinite. If x does not

equal zero, then y will converge zero as n goes infinite. We can define 8(x)

as following:

(5(x)=l°°’(x=0) (A.9)
l 0,(x=0)
Let us consider a following function:
1 (.e<x<e)
€
f;,(x)z‘-;lz—(-p<x<-p+e,p-e<x<p) (A.10)
0 elsewhere
%) = 2o 3 nnx in(TX A1l
flix) 2+§1(ancos(p)+bnsm(p )) (A.11)
3 p
= =21 1 .,4nznx 21 -1 ., 4nrx A.12
wherea, =0, a_ plecos(p)dt+pf 8cos(p )dt ( )
p-E
i) n=2m
8y, = 0 ' (A.13)
ii)n =2m—1‘
) sin ((2mi)1)1ce)
a2m—1 = 5 (2m"1)ﬂ€ (A.14)
p

It is well known that a delta function is mathematically defined as a

limit of the above function. Take the limit and we get the coefficient:

lim a,,,, =% (A.15)

We can see this coefficient is exactly same as the former one.




A.3 Differential of Saturation Function

The differential of saturation function is:

lel,(-e<x1<e))

d -
ag(sat(xl)) = \ 0 , (lel S 8)
]
\
Definition A1
|
f%,for-e<x<e
O(x) = \ 0, for x| >¢

By using definition A.1, the derivative of sat(x,) is:

d _ .
dft(sat(xl)) =8,(x)) %,

sat(x)
1

Figure A.4 A saturation function

A.4 Bilinear Form Matrix Function

Definition A.2
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(A.16)

(A.17)

(A.18)

A nxn matrix P whose diagonal elements ]pﬁl>2|pﬁ|,‘v’i, is said

diagonally dominant (row dominance) [Strang, 1976].

j#

A nxn matrix P whose diagonal elements Ipﬁ|>2|pjj|,‘v’i, is said

j#
diagonally dominant (column dominance).
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For any symmetric matrix P, the product Q(x)=x' Px is a quadratic

form.
Theorem A.1

A necessary and sufficient condition that the real quadratic form Q(x)=x"
Px be positive-definite is that every principal minor of P be positive. 1
Closely associated with quadratic form is what is known as bilinear

form.

Definition A.3

If P is a symmetric matrix, the expression B(x,y) = x*Py is said as a
bilinear form! | |

Consider a simple conjecﬁure that every element of x,y and every principal
minor of P of a bilinear form B(x,y) is positive. However, following example
shows this conjecture is not true.

Bl =xBy=16] 23 1]=s

Let us consider a special form J = K'P x = D x where D = K'P. If every
element D and x is positive then J is positive. For the sliding observer,
matrix P is obtained form Lyapunov equation with the Hurwitz matrix A
and the positive coefficient K is another design coefficient. For designing a

sliding observer we can easily check the matrix D. However, a diagonal

dominant matrix P and positive coefficient K will make a positive matrix D.




Time-invarian

Although 1
varying dyna

conditions are

APPENDIX B
STABILITY THEOREMS

B.1 Linear Stability Theorem

1t case

various stability conditions have been obtained for linear, time-

mical equations, they can hardly be used, because all the

stated in terms of state transition matrices, which are very

difficult, if noF impossible, to obtain. In the stability study of linear time-

\
invariant dynamical equations, the knowledge of the state transition matrix

is, however, n

system matri

ot needed. The stability can be determined directly form the

x A. Consider the n-dimensional linear time-invariant

dynamical equation
x=Ax+Bu (B.1)
y=Cx (B.2)

where A, B, C
the time-varyi
input response
system is char
C
From theo

if all the poles

are nxn, nxp, qxn real constant matrices, respectively. As in
ng case, first, we study the zero-state response and the zero-
> and then the total response. The zero-state response of the
acterized by

i(s)=C (s I-A)'B (B.3)

rem , the forced response of system is BIBO stable if and only

of G(s) have negative real parts.
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any initial st

state variable

Theorem B.1
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ynamical equation is said to be totally stable if and only if for
ate and for any bounded input, the output as will as all the

5 are bounded [Chen, 1970]‘ 1

The forced response (zero state) of x = A x is asymptotically stable if and

only if all the

eigenvalues of A have negative real parts. Qa

Proof) Let P be the nonsingular matrix such that A=PAP" and A isin

the Jordan fo
stable, in addi

rm. For the zero state response, in order to be asymtotically

tion to the bound of || e*|], it is required that || e*¢|| tends to zero

as t—eo, or equivalently, that H eKtH —0 as t »e. Since every entry of e is of

the form tfext

eigenvalues o

parts.

“t we conclude that H eXtH —0 as t— if and only if all the

fA. Consequently the eigenvalues of A have negative real

If a linear time-invariant system is asymtotically stable, its zero-input

response will

exponentially

However, BIB

approach zero exponentially; thus it is also said to be
stable. It is clear that total stability implies BIBO stability.

O stability may not imply total stability. If a linear time-

invariant dynamical equation is controllable and observable, then the

characteristic

polynomial of A is equal to the characteristic polynomial of

G(s). Consequently, we have the following theorem [Chen, 1970].

If a linear time-invariant dynamical equation is controllable and

observable, th

en the following statements are equivalent:

1. The dynamical equation is totally stable.

2. The for
3. The for

ced response is BIBO stable.

ced response is asymtotically stable.
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4. All the poles of the transfer function matrix have negative real parts.

5. All the eigenvalues of the matrix A have negative real parts.

B.2 Dynamics of Saturation Nonlinear Observer

Rewrite the suggested sliding observer (2.6) with the saturation functions

instead of the signum functions. Consider a 3-dimensional system:

%X, =X, - h, x, - k, sat(x,)

I X, =X, - h, x, - k, sat(x,) (B.4)
\)‘(3 = -hyx, - kysat(x) + w

If the switching term 1 is a saturation function, the equivalent gain is
X = AX+Bu+Hy+K 1 (B.5)
5 [% , 15 <e
where 1(y) =/
|5 191>
|5
|y|s8,§=A§+Bu+(H+1§)§ (B.6)
X = AX+Bu+(H+ LX)y

@
A
o

|51

The robust property of the saturation function needs to be studied to

design a quas

i-optimal filter. The equivalent gain h" is plotted as:

wh
.—.—.----.4;--5. ...............
. >
= ¢ v 57

Figure B.1 The equivalent gain profile
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The derivative of sat(x,) is expressed by using definition A.17:

1

\

d _ :
a{sat(xl)) =d,(x,) X, B.7)

Differentigte the first equation and plug in the second equation:

l

i

X;=-h, % -h x -k 3,(x)) %, - k, sat(x,) + x, (B.8)
|
|

Differentizjite again and plug in the third equation:

xP=-h, 3;1 -hy X, - hyx; - k) 8(x) X, - k, 8.(x,) %, - k, sat(x,) + w (B.9)

Combine t

he same order terms and rewrite the equation then we have

the dynamics of the sliding observer with saturation functions:

X =- (b,

+X, 8,x) )%, - (hy + K, 8,x) )%, - hyx, -k, sat(x)+w  (B.10)

For convenience, we can rewrite (B.10) for the outside and for the inside

of the boundary layer. For the outside of the boundary layer:

»

Within the

X

P=-h % -h % -hyx, -k sgnx) +w (B.11)
boundary layer:
O == (Bt 2%, - (hy+ 2%, (hy+ 5y 4w (B.12)

|
Outside the boundary layer, the sliding observer with saturation functions

behaves exact
boundary laye:

a high gain sy

ly the same as the signum function observer. Within the
r, the sliding observer with saturation functions behaves like

stem.
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B.3 Sliding Observer using the Absolute Stability Theorem

In this section, the sliding observer by Misawa [1988] is summarized.
Let us consider the robust nonlinear observer in the presence of only output
measurementi, rather than full state feedback. Since, the measured output
provides only partial information about the system state, the additional
observer structure must be used. Misawa [1988] proved the stability of the
sliding observer by using the Passivity theorem [Astrom, 1989] that
guarantees tfle L,-stability of the estimation error. In order to maintain

generality, we need to consider the following conditions:

* Define the terms 1, such that ' 1,>0, and k," >0 (B.13)

With these conditions, one can combine the disturbance and "switching”

term 1(¥), resulting in the estimation error dynamics described by:

M)

=(A-HC)X-K ofy)y (B.14)

This equation is described in the block diagram as Figure B.2. One can
readily see that the equation (B.5) is now given in the exact form required by

the Passivity theorem.

H,
u1=0 e1 -1 yl
-—T*O—> C(sl-A+HC) K .
I- _ A )
v, - e2=y<13 u, =Cd(t, 1) x(0)
2 <

+

Figure B.2 Estimation error dynamics
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The operators H, and H,, and the input u, are defined as follows:

H e = C f " @(t,0) () e, (1) dr B.15)
1 0

Hye, = H,5 :=a(3)§ (B.16)
u; = C dt,7) X(0) B.17)

where @(t)=e(A-HOt {g the state transition matrix.

In this scheme, e, and e, are defined as: ¢, =u,-H, e, and e,=u, + Hie,
\
In order to introduce the main result, it is necessary to define the sets #

and He:

(B.18)

(0 | WP = [ (6" x{t) dt < o

IH = { x(t) | ||x| ]2 =};T x(t) x(t)dt<oo | VT20 (B.19)

The main|estimation convergence (stability) results can now be stated

as a theorem.

Theorem B.2

e (A-H C)is made stable;
o The gain matrices H and K, and the function 1, are chosen such that

there are constants o, and B, (i=1,2,3), so that:

[|H;z|lr < oulld]r + B

sz(t)T(le)dt = (z1H,2); 2 o ||2][2 + B,

fT(sz)Tz(t) gt = (H,2 1 2) > o || H, 2|l + B,
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Vze H, VTe[0,);

e oL, +0,>0;

Then: e, e, =¥, H,e, Hye,e #, andy=Cx=0 as t = oo.
Q
The main result stated in this section gives a fairly general result for

the problem at hand.

First Design lfrocedure

The first design procedure shows the observed states to be asymptotically
|

convergent if 1the transfer function matrix

Hs) = C(sI-A+HC)'D (B.20)
|

can be ma%de strictly positive real.

1) Let the function 1s(.) be

|~ . ~ . ~ . ~
11s(Y)T=[Slgn(Y1), sign(¥s), ... ,sign(y,,)]

where sign(y)=y/ 1yl
2) Choose the gain matrices H and P so that the following conditions are

satisfied:

P(A-HC)+(A-HC)P = -Q

\
Tp-¢

K=Dp (B.21)

for some symmetric positive definite matrices P and Q.
3) If these conditions are met, then the design is complete. If they are
not met one can iterate by changing the matrices D and P, or iterate using
the multipliej theory [Desoer, 1975] trying to meet the conditions given in

this design procedure. If these changes do not work, then one can try the




method descri

The secon
for particular

that Y = 0 an
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bed in Second Design Procedure.
d conditions is usually hard to verify and can be too restrictive

problems. When it works, this design procedure guarantees

@§ =0ast= o,

For systems with a single measurement, the definition of strictly positive

real linear systems [Desoer, 1975] give an easier way to check whether the

operator H, is

of A-HCin

strictly positive real. In this case, by placing the eigenvalues

the open left half plane, the operator H, is strictly positive real

if and only if 1;:he following transfer function

H(s) = C(sI-A+HC)'K

(B.22)

evaluate at all s=jw is completely contained in the open right half plane:

If this ap

Re[GGw)1>0 forall @ € R

(B.23)

proach does not work, one still has the option to design the
I

observer usingf‘;,r a following alternative method.

Second Desig%l Procedure

The previc

yus design procedure was restricted by the Positive Real Lemma,

which resulted from the strict passivity condition imposed by the use of

pure switchin
by using the ¢
found. This is
[Landau, 197¢
criterion to th

In this ca
that the outp

layer once it §

g (signum function) for the function 1(5). This suggests that
saturation function for 1 (5), a less restrictive condition may be
5 the case, and the design procedure uses the circle criterion
)] for the single measurement case, and the extension of circle
e multivariable case [Luenberger, 1966].

se the design process has two parts. The first part guarantees
ut estimation error y=y-CX remains inside the boundary

rets into it and the second part guarantees that the boundary




layer is attrac

>
s
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tive.

1) Let 1(¥) be the vector function whose components are saturation
functions defined in the usual way:
LG = [satGiey), satGle,), . . ., satFle,) ] (B.24)
and
. Y/Bif §l 2
sat (y;/¢g) = I
2) Set the gain matrix K as:
|
K =Dp (B.26)
p=diaglp,,...,p), P21 (B.27)
|
|
3) Choose the width of boundary layer for ¥ called ¢, , and which coincides

with the satur
matrix

A

The choice

it as small as

the next steps.

4) Design

matrices H an

m

In practice

ation limit g in the sat-function defined by (B.25) ; define the
= diag(e, €,... € ) (B.28)
of & is arbitrary, to some extent, but one might want to have

possible as long as the particular choice does not conflict with

for boundedness inside the boundary layer. Choose the gain

d p such that forallt € R+ and forallwe R:

. -1 -1
ax[ 6, (C(jol-A+H+KA')C)'D] + (B.29)

-1
+ 0 (Ce(A-(H+KA ICt)

max

max(X_) < min (g,)
1

this test has to be verified in the time interval of interest,

typically durin

g the initial transient. This method may be very conservative,

as the usual singular analysis is.

5) Check whether the state estimation error bounds are within desirable
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limits:

X(t) < max [0, ((joI - A+ (H + KA )C)Y'D] (B.30)

O<@<+oo
Clearly, iif the transfer function matrix

G(s)=C(sI-A+(H+KA)CY'D (B.31)

has ﬁmte transmission zeros then the de51red convergence time and
the desired accuracy can be difficult to achieve. In particular, if the zeros
turn out to be in the closed right half plane, then the problem may become
particularly d%fﬁcult, even impossible in some cases.

6) Check for stability outside the boundary layer (single measurement
systems). The error dynamics can be written as:

y=CxX

=(A-HC)Xx-K ¢y (B.32)

[l

It is necessary to verify that (A.8) is stable for ¢ such that ¢ is constrained

in the sector:

0<¢<%(1+pi>=§ (B.33)

For instange, if the circle criterion is used, then it is sufficient to show

that the Nyquist Plot of the transfer function

Hi(s) = C(sl-A+HC)!K (B.34)

is to the right of the vertical line that intersects the real axis at - é

7) Check for stability outside the boundary layer (systems with multiple
measurements). The matrices H and K must be such that:

* (A-HC-KM C) has eigenvalues in the open left half plane ; the

matrix M is a cglagonal matrix whose entries are my = —2—8—( 1 +p1 )
1 1



e The fi

H," exists:

Q

where H,(s)
8) Ifthis ]
one has to iterate changing the width of boundary layers and the choice of

matrices D, pjand H.

The slidin!
X
where Kis a r

signum functi
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ollowing condition is verified for all values of we ® at which

mln([M+H1(Jw)]M ) > 1 (B.35)

= C(sI-A+HC)!'K

ast condition is satisfied, then the design is complete. Otherwise,

B.4 Alimov's Transformation

g observer error dynamics without disturbance is:

=A,x-K1( (B.36)

1x1 column matrix whose elements are positive and 1(s)is a

on.

With a nonsingular Hurwitz system matrix A, we are investing the

effect of a disc

2]

We denote

ontinuous switching surface.

X

=y=Cx® (B.38)
by x,(x°,t) and x (x°,t) the trajectories of the systems
=f(x)=Ax-K,
x=fx)=Ax+K (B.39)

passing foq t=0 through the initial point x° of the space x.

For the stquymg of the system, it is convenient to rewrite (B.39) in a new

coordinate [Alimov, 1960] x, =x - A™ Kx=x+A"K:

X, =Ax,

E

%:Ax

(B.40)

i
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We denote by §,(x) and §(x) the derivatives with respect to time of the

function s(x) = C x(t) according to the system.

|
5,0 =CAx-CK1[s)

$x)=CAx+CK1(s) B.41)

1
§witching plane = Sliding zone + Passing zone

1) In the space s(x) > 0, we assume that x(x°t) = x,(x°t), (for s(x) <0,
x(x°%,t) = x (x°1)).
2) At any point o, of the set s(x)=0, §,(x) §(x)> 0 which represents two

half-planes (CK)'CAx<-1,Cx=0and (CK)'CAx>+1, C x =0, the

trajectories x,(c,t), x,(o?, t) go through the surface s(x) = 0 in the same
direction. We‘ determine x(o,,t) by connecting continuously at o, those half-
trajectories ’ﬂL(% t) and x(o, t) which lie close to o, in the regions s(x)>0
and s(x)<0, relspectively.

3) At any }point o, of the set s(x)=0, §,(x) §(x) <0 ,the trajectories x (o, t)

and x(o,t) go through the surface s(x)=0 in the opposite direction. The

hyperplane is;

Cx=0and -1<(CK)'CAx<+1 (B.42)

\
|
Example B.2 ‘

C=[100], K=[k1k2k3]", (CK)'CAx= h1X1;+Xz
1

ie. -k, <x,<k,, fors=0 (x| <<1)

The representative point of the system moves according to the equations

J

x=Ax-K1(0)=Ax-K{t) (B.43)

where {(t) is chosen so that the derivative with respect to time §(x) of the

function s(x) is obtained as in the above equation. It satisfies the equality
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S,(x)=CAx(t)+ CK{(t)=0 (B.44)

Combine i(B.4.‘2) and (B.43), we obtain

si(x) =Cx=0,
x=fx=Rx, R=A-(CK/'KC A (B.45)

For the trl‘ajectories of the sliding dynamics, we will use the notation

x,(x°%t).

By using the equation (B.44), we can extend the definition of a switching

function.

1(s) =

|
1

-1 for s<0,
€ for s=0

+1 for s>0

The essenée of Filippov's equivalent dynamics is precisely the definition
|

|
of the discontT'nuous right hand side, including infinite valued functions,

continuous in the same sense as the extended definition. The fact that the

solution x(x°t) can be continued for t = +09, its uniqueness, and the property

for are obvious; the continuity relative to x° and t can easily be proved by

using (B.41) and(B.44). The solution x(x%t) of the syste'm (B.44) , determined

as above, is also a generalized solution of this system in the sense of the

definition of Fi‘lippov.

We consider finally the boundary s(x)=0, §,(x) §(x) =0 ofthe zone of the

sliding regime, represented by the two hyperlines

Cx=0, 50=CAx-CK1(s)=0 (B.49)
Cx=0,8x)=CAx+CK1(s)=0 (B.50)
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We will form the Lyapunov function V(x) for the system with Hurwitz

system matrix by linking on the surface s(x)=0. The Lyapunov functions:

V.®)=X,PX,x =x-A1K (B.51)
Vx=XPX,x =x+A-lK (B.52)

For the systems (P is a symmetric matrix of the nth order), respectively:

The conti

the equality

holds, since

/(%) = / V*(x) - V+(O) for s(x) > 0,
V(x)-V(0) fors(x)<0

!

(B.53)

nuity of V(x) is established if V .(x) and V (x) are chosen so that

V.(®)-V,(0)=V(x)-V(0) forsx)=0 (B.54)

the relation V,(x)-V,(0)=V(x)-V(0) is equivalent to

xXPA'K=0. The connecting equation (i.e., so-called matching condition)

can be rewritten in the form

PA'K=p(C" (p=const=0) (B.55)

It is evident from the relation

V@) =xTPx+2p S 1(s) | _ (B.56)

that follows from (B.53) and (B.55). If the function x' H x that is satisfying

the condition

(1B.55) is positive deﬁnite, then the function V(x) will also be

positive deﬁnit(‘e for p>0.

For any solution x(x°,t) everywhere except possibly at points of intersection

of x(x%t) with the surface s(x)=0, the derivative V(x) with respect to time of

the function along x(x°t) exists and satisfies the relations
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V.(x) = xT(PA+A"P)x, for s(x) >0,
V) =) V.(x) = x*(PA+A™P)x  for s(x) <0, (B.57)
\Vo(x) =x"(PR+R"P)x  for s(x) = 0, §,(x) §(x) < 0

where ‘ PA+A"™P=-Q (B.58)
|
|

Let the Q #natrix 1s a symmetric positive definite matrix. Then, with the
|
Hurwitz system matrix, there exists a unique matrix P by the equation. It

| . .
is apparent that the function V.(x) or V(x) is negative definite and the
function V(x) decreases along any trajectory x (x,%t) or x (x°t). Finally, we

need to show the V(x) also decreases in sliding mode.




APPENDIX C

SIGN EQUALIZATION OF PASSING STATES

|
C.1 Transient State of the Reaching Dynamics

At the pafssing instance, even though the velocity field is discontinuous,
the trajectory% of the solution point in the reaching domain is continuous.
Consequentlyi the dynamical characteristic for the half domain can be
extended to t“he whole domain directly. Hence let us review the reaching
dynamics in tLe view point of a linear system theory as follows:

x(t) = eXdx(t) + J' NN B ur) da (C.1)

T

—_— ~ —— 4
Zero-input response  zero-state response

A very important property of any linear system is that the responses of

the system C&I‘l be decomposed into two parts, as follows:

Responses due to {x(t,), u(t,)}

= responses due to {x(to), 0} + responses due to {0, u(t,,)}

The responses due to {x(t,), 0} are called the zero-input response or a
transient term: they are generated exclusively by the nonzero initial state
x(t,). The responses due to {0, u(t,=)} are called as the zero-state response
or the forced term: they are excited exclusively by the input u(t_e). Hence,

for linear systems, we can consider the zero-input response and the zero-state

174
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responses independently. Reset the initial time zero at the passing instance

and rewrite 1:< e equation (2.17);

gx(t)= ertxi 4 el f e BuA) dA (C.2)
| 4]

|
l

The distqirbance input u, of the reaching dynamics is composed of the
disturbance v&‘r and -k, sign(x,). If the disturbance input can be assumed as
a white noise (or normal distributed random noise with zero mean) then
the disturban!ce output of a high order system is much smaller than the
output by the|switching term -k_ sign(x,). Hence, the transient response for

the step input is useful to understand the reaching dynamics.

Transient responses of 2 order systems

The transient response of the reaching dynamics may be described in
terms of the rise time t_ which is the time for the step response to reach
from 10 to 90 percent of its final value, the exact values can again be obtained
directly from the simulated results. The approximate relation between the
rise time versus { is known for the 2-order system [Kuo, 1982]. For the

range of 0 <{ <1, the rise time approximated by the first order equation is

_08+25¢(

r w

(O<C<1)

n

The rise time approximated by the second order equation is

L 1+11¢+147C
I‘:: W

n

For the overdamped range (1<§), the rise time is approximately

[Friedland, 1986]:
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b
T

fo=

n

Transient reJnonses of higher order systems
Some mo%e detail descriptions of the transient response of the 2-order
1
system can be found in the book of Clark [1962]. However, it is hard to find a
|

paper which explicitly mentions the complex phenomena of the transient

|

response for ail higher order system including the zero input response. From
|

the general solution (C.2), both terms have the same transient factor e* so

that the tran%ient times of the step input response and zero input response

should be the same order. With the special initial condition, the specific

eigenmode only will be excited.

Example C.1

Consider the third order sliding observer reaching error dynamics:

X, =Xy - hy x4
Xye = Xg - h, Xy

Xg = - hy X, + 1,

e

where H=[.8 .31.05]", w=0, initial states: x,:0, x,:3, x,:5, u, = - sgn(x,)

The simulation results are shown in the Figure C.1. As it is expected,
the transient [time of the noised disturbance input is approximately the
same as the step response. The transient time t, for the zero input response
can be defined as the time for the initial state to reach from 10 to 90 percent
of its equilibrium state. The transient time t, can be obtained directly from
the simulated [results Figure C.1. The transient time is approximately 10

second for all. |Figure C.1 (d) is the superposition of Figure C.1 (a) and (b).




17

O(a) ‘ero State Response 1 5(b) ‘ero Input Response
o o ‘
= -10L-- =
o 3l
g} =
= =
20k
0 10 20 0 10 20
time time
10 (d) Total Responses
- Ol
=< <
) o~
= R L0 NG
= =
Reac}lling phas:e

0 10 20 0 10 20
time time

Figure C."l Transient responses of reaching dynamics
a) Zero state response (Step input) b) Zero input response

¢) Random noise disturbance input response d) Total response

Conjecture C.1

For the zero input response, the last state x, is a strictly decreasing
function and reaches the minimum value when the state X, is zero. If all
the initial states are positive at the hyperplane (x, =0), then all of the initial
velocity field is positive except %, The conceptual diagram is shown in

Figure C.2. In the Figure C.2, the reaching time of x, is less than the

reaching time of x,.
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1st Order Approximate
Zero S*:ate Responses

Approximate | —

Total Responses l\ X,
Ss

Reaching time X, Reaching time

nss

+
Approximate h — \\ T"‘n
Zero In;but Responses —“lmax

Figure C.2 The conceptual diagram of the reaching time

Minimum Phase Transfer Function

The transfer functions for the each state are

X5(s) = (s + h)) x,(s)
X5,(s) = (s? + h;s +h,) x,(s)

- . ' (C.3)
X (8) =(s"t+ h;s™?+.. +h_,)x(s)
uys) =(s"+ h;s*™' +. .+ h ) x,(s)
The transfer functions between the state are
x,(s) - 1
X,(s) (s +h,)
| x,(8)_  (s+h)
} X3(s) (s + h;s +h,)
\ (C.4)

Xs(8)  (s724+hs™3+ . . 4 h_,)
x,(8)  (s"'+hs*?+..+h_ )

% (8) _(™+hs®+. . +h )
u,(s) (s"+h;s™+..+h)

n
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gh the reaching dynamics cannot be settle down to its steady

tio between the steady states are helpful to understand the

characteristic of the reaching dynamics. Apply the final value theorem
and we get:
lim%a®) _ 1
-0 X2S(S) hl
. h
1 X,,(8) _b
x5
(C.5)
lim X 1s(8) _hy,
20 xns(s) hn-l
. h
1 mxns(s) ——n-1
0 uys) h,
For the transfer function between the input and output state is
lim X8 _ 1 C.6
-0 ud(s) hn ( )

A transfer
is called a min

nonminimum

function that }

function whose poles and zeros all lie in the left-half s-plane
imum phase transfer function. The steady state value of the
phase system is negative for the case of a simple transfer

n1as a zero and a pole. If any of the coefficient h, is negative

then some of the final value ratio of equation should be negative so that

some the zero

state responses move to different sign direction. Therefore

the superposition of the zero state responses and zero input responses does

not guarantee the sign equalization of a]l states Xy - . X, at the final passing

point.

The charac

hI-A

C.2 Eigen structure

teristic equation is

A=A +hA 4 h A+ h (C.7)
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1
=
[
(e
(e
(e

where A_ =

- n
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(C.8)

The Routh-Hurwitz stability method provides an answer to the question

of stability by considering the characteristic equation of the system.

(A -a)h-n). . (a-2)

n

ey N Y Y ) S 5 WU YA D N (AR, .. A

By comparing the two equations, we obtain the coefficients:

h, = (-1)! (sum of all the eigenvalues)

(C.9)

h, = (-1} (sum of the products of the eigenvalues taken 2 at a times)

h ={(-1)"

e

(products of all n eigenvalues)

For the canonical form system, the eigen structure has special form as

follows:
[-h,10...007
-h, 01 RS "
) . 1 Xe }‘3 X,
. 01
th,0. ..00] % %a

For A =7»j case (j=1,2,.. ., n)

From the 1st equation of (C.10), the eigenvector X, 18 obtained as follows:

X, =h, x, + A x

={Patrgr )45,

(C.11)
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From the following equations of equation (C.10), the remaining

eigenvectors are also expressed as function of the state X, and the eigenvalues:
X, =h, X, + A%,

={(AAt AR A A - A))

={ 2 Mw}xl

1

| ke, ), kel

]

s=hyx + A%
= [dAt AR A A - A x,

- {( 3 xmxnxo)mj v ml}xl

mM#n#0 ka1, kel
== X AMgx
ka1, maj,

k#l#m

o] = “x1=(-1)n+l(}\'l}"2°"}"n)xl
}\'J' }\'j

If all the eigenvalues are negative, all the coefficient of the above equations
are positive. Therefore, all the eigenvector have the same sign as x,.

If all eigenvalues of A are distinct, the response of x = Ax due to x(0) =x,

can be written as:

X(s)=(sI- A'x,= ), % q; Py %,(C.13) where g, and p; are,
i s

J

respectively, right and left eigenvector of the system matrix A which is

associated with A,. In the time domain, the equation becomes:

x(t) = ), (px,) et q (C.14)

J

If x_ is chosen so that p; X, =0 for all j except j=i, then the equation (C.14)
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(t) = (px,) 4 g

For this initial state, only the mode e* is excited and x(t) will travel

along the direction of the eigenvector g,

C.3 3-order System

Rewrite a|3-order right reaching dynamics:

where u; = w -

}X2+

\x3+ -h; x, + u,

X, =-h; x; + Xos

h, X, +x,, (C.15)

k. sgn(xl)

Since the state x,; is not changed by the coordinate transformation in

each domain Q_, Q, Q , it is noted without a sign of + or -. It is obvious

that, in the shifted coordinate, the above system is a linear system and it is

asymptotically

stable and attractive to the shifted origin. Since the right

half domain Q+ and the left half domain Q- are symmetric to each other

about the origin of original coordinate, let us consider the half domain Q+

only. If the initial states are not on the sliding patch, then the solution

point needs t(i)

be attracted to the sliding patch. Hence, for the stability

analysis purpo‘se, it is assumed that the initial point is satisfying the passing

condition o},>(

Case 1)

without loss of generality.

With the initial condition &}, >0, the initial velocity field of the reaching

dynamics is obtained from (C.15):
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I x>0
x,,>0 (C.16)

%;, <0

We can do pole placement to choose the linear correction coefficients.

Let us assume that the system is underdamped or critically damped. Since

the Hurwitz system is asymptotically stable, the velocity of X, 18 negative as

it approaches the switching plane. The velocity field, x{ <0, is due to the

state x, in the equation (C.15).

. f
Hence, x,

where

<0 implies o5, <0 (C.17)

I if0 > o}, > -2 k, : satisfy sliding condition
‘if 0, < -2k, : passing the hyper plane

The initial passing point with o}, >0 arrived at final point, o}, <0. The

associated velocity field is %,, = -h, x, + x,, in which the first term -h, x,is

always negative and x,, is strictly decreasing. Consequently, the direction

of velocity %,, can be changed only once and the velocity of x,, is negative at

the final passing time.

o3, <0implies x{, <0 (C.18)

The approching velocity %, <0 near the switching plane x, = 0 is due to

the negative state of x,,.

X5, <0 implies of,<0 (C.19)

The equation (C.17) and (C.19) shows that both of the final passing state

are negative (05, <0 and 0;, <0). The general shearing effect of the sliding

observer can be explained by the "sign equalization" of the final passing

state.
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Let us consider the other case ¢, <0.

Case 2)

With the initial condition 6}, <0, the initial velocity field of the reaching
dynamics is |
x>0
1 %, <0 (C.20)
| %, <0

With the initial passing point o},<0, the final state is negative because

the %, is strictly decreasing.

X}, <Oimplies of, <0 (C.21)

The approaching velocity %}, <0 near the switching plane x, = 0is dueto
the negative of state x,, .

‘f

X, <0 implies o}, <0 (C.22)

We can see here the "sign equalization” of the states of the final passing
point as it is iIP the equation (C.21) and (C.22). For the case of passing right,
the unified si,lgn of final passing state is positive (6}, >0 65.>0). The sign
equalization is due to the characteristic of the sliding observer velocity field.
The direction of each state x; is the function of x, and x;,; (for the last state:
u,) only. Sin‘ce, in the right reaching domain, x, is positive only andlthe
velocity of last state %, is strictly decreasing, each direction sign can change
only once or not at all. This special feature of the sliding observer guarantees
the sign equalization in 2- and 3-order cases.

It is useful to note that o, of the final passing point has the opposite

sign of o,




Q

When the
shifted-coordi:

state determir

If the sigr

. One <0 (s=+ or -)
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(C.23)

solution point passes left, the succeeded initial state in the

nate is obtained by the equation (2.60). Particularly the second
1es that the solution point pass through the hyperplane or not.

dl-(Tj) = 0f1+('tj)

0-12.(1‘]')‘ = G;+(Tj) + 2 kl (C24)

ot

0, (1) =0,(1) + 2k,

1 of the second state in the following shifted-coordinate does

not change, then the solution point crosses the hyperplane. If the sign is

changed, then
the hyperplan:

the sliding motion starts because the solution point moves to

e from the both sides.

C.4 High Order System

In the previous sections, the transient and the final states were reviewed.

For the minin

um phase LTI systems, the sign of final values are unity as

shown in the previous section. The eigen structure of the reaching dynamics

shows sign e
only some par

sign equalizat

Conjecture C.

If the initi
changes only

Justificatic

qualization also.

However, since the reaching dynamics is
t of the transient period, it is a subtle problem to prove the

ion of the reaching dynamics.

1 Initially unified sign case.

al signs are the same each other then the sign of the velocity
onee.

on) Consider a n-order right reaching dynamics in the shifted-




coordinate.
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Let assume the sign of all of the initial states are positive except x, =0.

At the hyperpllane (x, =0), all of the velocity field are positive direction except

the last velocit

Let assum

Y.

e the sign of x, changes only once then the state X, 18 convex

over the right reaching domain as followings:

-hx, ?

1

Figure C.3

>t
— N

a) Convexity of x, b) Concavity of -h, x,

For the i_ith equation, the first term in the RHS, -hx,, is concave over

the right-reaching domain. The last state x_ that is initially positive decreases

strictly and th;
Chapter C.1). |
The initial

e sign of the final passing point of X_ 1s negative (see detail

velocity direction of the second last state, i.e., X 4.1y, 18 Positive

and becomes negative when h_, x, is greater than the state x,. Since the

last state x, strictly decreases and the term, -h_, x,, is concave over the time

domain, the sign of X .1, changes only once. Therefore the second last

state, x ,,, is

concave. Let assume the state decreases enough so that it
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becomes negative as plotted in Figure C a).

The initial velocity of the third last state, i.e., X, ,,, is positive and becomes
negative whein h,, X, is greater than the state x_,. Since the second last
state x, , convex and the term, -h_, x,, is concave over the whole time domain,
the sign of X, ,), changes only once. Therefore the third last state, x,,,, is

concave. The sign change of the rest velocity can be explained as the same

way as the former ones. Therefore, the assumption of convexity of x, is

X(i+1)+ /\
—> t

Figure C.4 a) Convexity of the state b) Sign Change of the state

valid.

Xir1)+

Each state decreases enough to be negative as the state x, approaches to
the hyperplane. If the state x, is positive when the state x, decreases and
approaches to|the hyperplane, then the velocity %, is positive and the state x,
increases again. Therefore, x, cannot be zero with the positive state x, and

this is contradict to the convexity of x,.

Conjecture 2

All the final signs are changed from the initial sign
Justification) If any state x., has the same sign at the approaching the

hyperplane instance then it will change the sign of velocity of the previous




state x; ), aga

Sign Alternat
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in. This is contradiction to the Lemma 1)

ing (For right-reaching domain)

Rewrite the reaching dynamics:
X2+
X3+
X, =-Hx, +/{... (C.25)
Xn+
Uy
where H=[h, h,,.. ,h_T"
The initial velocity field is function of ¢ and u, only. The signs of the

initial state ar

(c

The j-th e
X,

XJ

Part I) If

state x.,, do tl

J+1

number N; is
arriving the h
domain.

Part II)

descending or

the way to the

5 =[0+...+-7.

€

oo

_w_.__d W__J'
part I part II

quation of the reaching dynamics has the first negative state

+ =T hjxl + X(j+1)+

X, 18 negative all the time until x, become 0, the first negative
1e same role as u, in the initial sign unity case. Hence, the
increased at least 1. If x;,, become positive at the instance x,

yperplane then the N; does not change in the next reaching

The disturbance input also unifies the sign of the state in
der so that the system will satisfy the sliding condition or on

sign unity of the passing point.

C.5 Numerical Search Program




The sourse code of the MATLAB program SOON and the SIMNON -
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C5 N umerical Search Program

program Reaching are listed for the third order case only because the

extension to the higher order system is straight forward.

C.5.1 SOON (for MATLAB)

%

% SOON.M

%

% Sliding |Observer design by wQrst reaching dynamics
% for Nonlinear/ uncertain system

% PURPOSE: Known Bounded Disturbunce and

% Known Bounded Initial States

% Design the sliding observer coefficients in order to

% converge to the sliding patch directly.

%

% For 3rd order only
odr=input('System Order=")
w=input('Wmax=")

wll=1.1%*w

k3=max(1.1,w]1);
% Select the proper Linear Coefficients

disp('Choose H

so that the system is critically damped or slightly under

damped');
hl=input('h1=")
h2=input('h2=")
h3=input('h3=")

% Save data for the Simnon program Reaching

save d_reaching

ren d_reaching.mat d_reaching.t

% Run the Simnon Program Reaching
mreaching

% Get the Output of mreaching

'Ren o_reaching.t o_reaching.mat

load o_reaching

% Steady State
x2ss=w*k1/k3;
x3ss=w*k2/k3;

with constant disturbance
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%disp('Slidin‘g dynamics e.v.");

%As=[-k(2,1)/k(1,1) 1;-k(3,1/k(1,1) 0 J;

As=[-k2/k1 1;-k3/k10 I;

eas=eig(As); |

if re(eas) > 0 :then disp(‘Warning:Unstable Equivalent Dynamics!!")
subplot(122);grid; .

axis([-0.5 0.1 -1.5 1.5]);

plot(eas,™*"); |

xlabel('Re');ylabel('Im");

title('E.V. of sliding dynamics');

end

C.5.2 Reaching (for SIMNON)

MACRO M_REACHING

1"

" Plot whole step at once : for third order system only
syst sys3 cost3 gold3 conn3 " *3.t: 3rd order system
store x1 x2 x3 F [sys3] tau jlcost3]

error le-6 |

init x2in[gold3]:3 "The initial bound of the states

init x3in[gold3]:2

" Estimates the proper number of the evaluations of the cost function
" in the GOLD.T search.

let plow=0
let phigh=2
let ace=.01
let unc0.=phigh-plow "Initial uncertainty.
let f1.=1.
let f2.=1.
free gfl.
free qf2.
free x. "Ratio fn-1/fn.

free uncn. "Ungertainty after N evaluations.

free n. "Requi}red number of evaluations.

free p0. "Initial optimization starting point.

free teval. "Simulation time for evaluation.

free toptim. "Total simulation time.

default nmax.=20 "Maximal number of evaluations.

----- Calculation of required number of evaluations
for i=1. to nmax.

let qf2.=f1.4£2.
let qfl.=f2.

let f1.=qf1.

let £2.=gf2.




let x.=f1./f2.
let unen.=unc0./f1.
let n.=1

let nace=-.05

if uncn. le nace goto exit
next i
"

label exit

let p0.=x.*unco0.
let p0.=plow+p0.
init p:p0.

init pmin:p0.
init phi:phigh
init plo:plow
disp teval/teval
let toptim.=n.*teval.
let tperid.=12%teval.

simu 0 toptim. .001 /dz31 tperid.

init xlin[gold3]:x1in[gold3]
init x21n[gold3] x2in[gold3]
init x31n[gold3] x3in[gold3]
init Jmln[gold3] le33

- init m[gold3]:m[gold3]
export dz31<dz131

let dat=dz3 |

" \

" Step by sitep

default step.=‘30
for jj=2 to step.
let datjj=dat+j;
let p0.=x.*unc0.
let p0. _plow+pb
let nn.=jj*n.
let jj1=jj-1
let nn0.=jj1*n.
disp teval/teval "from gold3
disp x1/x1

let toptim.=nn.*teval.
let tbgn.=nn0.*teval.

simu tbgn. toptim. 0.0001 /dat;jj tperid.

init x1in[gold3]:x1in[gold3]
init x2in[gold3]:x2in[gold3]
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init x3in[gold3]:x3in[gold3]
init jmin[gold3]:1e33
init m[gold3]:nn.
init p:p0.
init pmin:p0.
init phi:phigh
init plo:plow \
free unc0.
"suspend *
export datjj<datjj
if x1. le acc goto exitj
next jj

"

label exit;

split 2 2
areall
ashow x2(x1)
turn dark on
areal 2
ashow x3(x1)
area 21
ashow x3 x2 "y
area 2 2

turn dark off
ashow T

end

1

CONTINUOUS SYSTEM SYS3

11

input T alarm
output yl y2 y3| el e2 3
state x1 x2 x3
der dx1 dx2 dx3

"Disturbance Input :T

dx1 = if alarm<0.5 then -h1*x1 + x2 else 0
dx2 = if alarm<0.5 then -h2*x1 + x3 else 0
dx3 = if alarm<0.5 then -h3*x1 -kn*T else 0
st= CTERM(t>t0 or (dx1<0 and x1 < eps) )
eps:-.001
10:300

"Output
mag = sqrt(dx1*dx1+dx2*dx2 + dx3*dx3)
el = x1 + dx1/mag
e2 = x2 + dx2/mag
ed = x3 + dx3/mag
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yl=x1
y2 =x2
y3 =x3

"parameters :
h1:6 "1.8 ---datal.8
h2:12.2 ".95 "12.2
h3:8.4" .25 "8/4
kn:.023
end

"

CONTINUOUS SYSTEM COST3

"Evaluates the cost function
input el e2 e3 tau

output j alarm
state sl
der dsl

" Measure distance
dsl = if not alarm then el*el + e2*e2 + e3*e3 else 0
v=s51+.01

=WV

"Alarm test:

alarm = if j>jmax then 1 else 0
"parameters:

Jmax : 1000

end

DISCRETE SYSTEM GOLD3

"

"Discrete system to perform optimination of one parameter
inputjyly2y3
output peval thegin

state plo phi pmin p jmin  x1in x2in x3in m n

new gplo gphi gpmin qP qJmin gxlin qx2in gx3in qm qn
time t
tsamp ts

"Update the search state:
left = P<mid
decr = J<Jmin
stepn=qm-qn
t15 = stepn+1.5
t05 = stepn+0.5
PloFix = if t<t15*teval then 1 else mod(left+decr+ 1,2)
PhiFix = if t<t15*teval then 1 else mod(left+decr,2)
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1%4

unc = newPhi-newPlo "Uncertainty interval.
mid = (Phi+Plo)/2 "Midpoint of the interval
newPlo = if PloFix then Plo else if decr then Pmin else P
newPhi = if PhiFix then Phi else if decr then Pmin else P
newPmin = if decr then P else Pmin
qdmin = if t>t95*teval and decr then J
else Jmin
qPlo = if t>t15%*teval then newPlo else Plo
qPhi = if t>t15*teval then newPhi else Phi
qPmin = if t>t05*tevalthen newPmin else Pmin
qP = Peval _
"Calculate the new evaluation point Peval:
Peval = if t>t05*teval then newPhi+newPlo-newPmin else Pmin

"Reset process and loss-function after each test

gm = m+1 "Counter

gn =if n<11.5 }then n+1 else 1"'Numbering in each step
qxlin = if mod(m+1,nmax)>0 then x1in else y1

qx2in = if mod(m+1,nmax)>0 then x2in else y2

gx3in = if mo&(m+1,nmax)>0 then x3in else y3

x1[sys3] = xliq
x2[sys3] = x2in
x3[sys3] = x3irl
sllcost3]=0 |
"New sample:
ts = t+teval
tbegin =t

“Initial values that should be set by the user
nmax:12 "Ma)‘: number of evaluation in each step
n:0

m:0

Plo :0.0 "Lower bound of parameter

Phi :1.0 "Upper bound of parameter

P :0.61803 "Gélden section ratio

VIax real value

"Jmin :1E33 "N
teval : .05 "Simulation time for evaluation
end

1"

CONNECTING SYSTEM CONNS3

1"

time t
T[sys3] = Peval[gold3]
el[cost3] = el[sys3]
e2[cost3] = e2[sys3]
e3[cost3] = e3[sys3]
y1[gold3] = y1[sys3]




y2[gold3] = y2[sys3]
y3[gold3] = y3[sys3]
J[gold3] = J[cost3]

tauf[cost3] =t
alarm[sys3] =
end

~tbegin[gold3]
alarm[cost3]
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