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Abstract 
!  

VANETS is an ad hoc network in vehicles with wireless communication capability. The 

network utilizes a system to relay data from one vehicle to another vehicle or to a Road 

Side Unit (RSU). This communication is also known as Vehicle to Vehicle (V2V) [31] and 

Vehicle to Infrastructure (V2I) [31]. The communication protocol for Wireless Access in 

Vehicular Environment (WAVE) [10], is the industry standard IEEE 802.11p to 

communicate between vehicles. This thesis examines the Medium Access Control 

(MAC) layer of this IEEE 1609.4 multi-channel communication protocol. In Dedicated 

Short Range Communications, the core of the WAVE protocol, there is an allocated 

spectrum in the frequency area of 5.9-GHz [20]. In the U.S, the allocated spectrum of 75 

MHz was split into seven channels. A channel is defined as a frequency range of 10 

MHz for a radio to tune into [28]. There is a control channel to relay safety messages 

and six service channels to relay non-safety messages, giving us two types of channels 

to choose from when in message transmission. Both the type and priority of the 

message are the factors considered. Many existing studies illustrate the impact of multi-

channel and single-channel switching for non-safety and safety message transmissions. 

Most studies focus on optimizing the usability of the service channels. This thesis aims 

to determine the best use of the single radio in a vehicle i.e. to best utilize the Control 

Channel (CCH) and Service Channels (SCHs) in a Single Radio Multi-Channel (SR-MC) 

system [20]. We analyze the channel utilization, beacon transmission, and packet 

transmission of IEEE 1609.4 multi-channel operations in CCH and SCH. Some of the 

parameters used for comparison are the number of collisions, channel utilization, packet 
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transmissions, and beacon transmissions. We investigate the scenario with density of n 

vehicles in a real world map, using safety (beacons) and non-safety (data) messages. 

The technologies used are Instant Veins 4.6, OMNET++ 5.2.1, SUMO 0.30, Debian 

GNU/Linux 9 (stretch) 64-bit, VMware Fusion (Professional Version 10.1.4) and an open 

street map from Northampton. The advantage of using OMNeT++ and Simulation Urban 

Mobility (SUMO) framework is the thorough implementation of IEEE 1609.4 DSRC/

WAVE and IEEE 802.11p in the framework [29]. Additionally, important feature of 

realistic traffic along with factual map can be  generated with SUMO [21]. The 

contributions provided in this thesis include the integration of the testing framework 

Catch, randomizing the SCH, adding beacon transmission to the MAC layer, tracking of 

vehicle neighbors, tracking of collisions, and channel utilization. Plus an analysis on 

multi-channel switching. In our results we found that the CCH is highly overloaded both 

with beacon and channel switching management, which has a strong impact on the 

switching operation with a high number of collisions. Furthermore we also found that as 

the number of beacons generated increased, there was an increase in lost frames 

independent of the channel . Lastly there was little fluctuation in the number of collisions 

with a higher “n” of vehicles. 

   

Keywords   
vehicular networks, multi-channel, IEEE 1609.4, channel utilization 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CHAPTER 1: Introduction  
!  

The Vehicle Ad Hoc Network (VANET)  is a new type of network infrastructure 

integrating wireless communication between vehicles. VANETs [37] construct the 

standards for sending, receiving and handling data messages via a single radio system 

in a vehicle jointly with the GPS application. The goal of a VANET protocol is to optimize 

packet transmissions by increasing delivery rate for all messages, resulting in reduced 

delays for safety messages [15]. Countries leading the automotive industry, have 

research emphasis on VANET protocols to enable the communication between vehicles. 

Therefore, the participating countries of Japan, U.S., U.K. and Germany have 

implemented standards to support multiple channel services with a Control Channel 

(CCH) and a set number of Service Channels (SCHs). For example, there is a total of 

seven 10 MHz channels in the U.S. and five in Europe. Followed by the communication 

protocol for Wireless Access in Vehicular Environment (WAVE) [10], which is the 

industry standard  IEEE 802.11p to communicate between vehicles. 

The remainder of this chapter is structured as follows: Section 1.1 (VANETs) 

defines the communication between vehicles, how it is used and the factors in the 

network. Section 1.2 (Background) covers VANET applications, communication 

protocols, protocol architecture, IEEE 802.11p ,DSRC Protocol, WAVE Protocol and 

IEEE 1609.4 Multi-Channel Protocol.  Section 1.3 (Problem Statement) defines the  
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problem addressed in this thesis and our assumptions. Section 1.4 (Thesis Objective) 

defines the objective of this thesis and how it is related to the problem. Section 1.5 

(Thesis Contributions) List the contributions of thesis and how they can be used in 

further research. For more information, use the list of acronyms and technical terms as 

a reference for the thesis. 

1.1 VANETs 

In VANETs, vehicles transmit messages Vehicle to Vehicle (V2V) [37] and Vehicle to 

Infrastructure (V2I) [37]. This communication can be used to create a decentralized 

network with the vehicles. The Intelligent Transportation Systems (ITS) [31] uses the 

communication systems to send high priority infotainment messages. Packet objects 

are categorized as safety and non-safety messages. Communications types are 

categorized by either infrastructure mode or ad-hoc mode. In the first mode, at least one 

member is the Access Point (AP) [30]. The member is a recipient of messages from 

other vehicles or Road Side Units (RSUs) [37]. In the ad-hoc mode, each member can 

be the access point (AP) for a new member. Some of the factors impacting the Time 

Sensitive Networking are the vehicle mobility, redirection, scalability, geographic 

location, and wireless interference from physical obstacles. To get a better idea on the 

reasons for this problem, the following section will lay out the context. 

  1.2 Background 
VANETs have a strong influence in trafficking information. They construct a mobile 

network using vehicles as wireless connection nodes for transmitting data. The data is 

transmitted to Road Side Units (RSUs) [37] or other vehicles. RSUs are defined as 
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stationary access points to the network. In the network, data is transmitted by hopping 

between nodes to reach the destination. In this paper, we present an overview of 

VANETs focusing on the MAC layer and channel utilization. We elucidate the subject 

with a methodical approach. We begin with an overview of the VANET structure, 

applications, and challenges that it poses. We follow with current protocols and their 

classifications. We aim to answer the following questions: 

● What are VANETS? 

● What are are the current factors and challenges in this new type of network? 

● What are the communication protocols? 

● What is the VANET protocol architecture ?  

● What are the standards used in this thesis?  

1.1.1  VANET Applications 

The leading application to VANETs is Active Road Safety. Road safety points to collision 

avoidance and traffic flow architecture. Ideally, with VANETs we want to minimize 

accidents by providing the driver with preemptive information. Generally, the driver 

receives rapid messages related to vehicles around it. For example, a driver will receive 

a message when the vehicle ahead of them comes to a sudden stop. Recently, the field 

of traffic flow research has gained much more attention. The capability of VANETs has 

motivated researchers to exploit traffic information to improve vehicle traffic control [2]. 

Other VANET application includes general use for personal communications and 

entertainment. This technology is capable of generating a network hotspot for internet 

access. This network facilitates rapid web access for police cars, UPS trucks, postal 

trucks, or any vehicle whose driver benefits from mobile access to perform their job. 
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1.1.2  Communication Protocols  

In Vehicle Ad-hoc Networks, each vehicle is a wireless consumer as well as a provider 

for forwarding data to other transmitters. The VANET architecture applies the following 

three categories  [5]: 

● WLAN/MANETs[32]: Vehicle-to-Infrastructure (V2I) communication. The vehicles 

use base stations to access the wireless local network [40].  

● Ad-Hoc: Vehicle-to-Vehicle (V2V) communication. The vehicles are the network 

forwarding data to other vehicles as well as sending message requests for 

themselves. 

● Hybrid: Inter-vehicle communication (IVC) combining V2I and V2V. In this 

network, Vehicles can connect to RSUs as well as near vehicle nodes. This is 

beneficial because it offers constant accessibility to wireless connection, but its 

environment also produces a lot of routing challenges. 

Part of the communication is the protocol architecture for the layers in the system. The 

following section will cover reasons behind the architecture and the protocol stack.   

1.1.3  Protocol Architecture 

VANET protocol design is identified for addressing unpredictable vehicle density, fast 

vehicle mobility, and rapid changes in network topology [11]. These issues are frequent 

contributors to wireless interference and link failure. Protocols use many techniques to 

reduce routing overhead and end to end delay while maintaining higher packet delivery 

ratio. These techniques include movement prediction, connection stability detection, 

channel selection based on stability, carry on forward hopping methods [24], geographic 
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vehicle trajectory statistics exploitation, and road system protocol adaptation. Behind 

the protocol design there is a general protocol architecture for the network. 

Figure 1.1 1609.4 WAVE architecture [30]. 

A network protocol architecture has a protocol stack. The protocol stack includes 

an application layer, transport layer, network layer, data link layer and a physical layer. 

Some newer additions are the security and medium access control (MAC) layer. Figure 

1.1 above shows the protocol stack for VANETs. Standards have been defined by the 

industry of Inter Vehicle Communication (IVC) [31] making great progress in the last 

several years [22].  

Some of the standard protocols displayed in Figure 1.1, are IEEE 802.11p and 

IEEE 1609.4 DSRC with WAVE [31] described in Secs 1.2.4-1.2.5. These compose the 

communication stack defining the physical and access layer in the inter vehicle 

communication (IVC) [31]. The following section, lays out the details of these standard. 
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1.1.3  IEEE 802.11p  

The electromagnetic spectrum is a range of frequencies between 3Hz - 300 EHz as 

seen on the figure 1.2. As part of the electromagnetic spectrum, the radio spectrum of 

frequencies falls within the range of 3 kHz to 300 GHz [12]. The Intelligent 

Transportation Society of America (ITSA) [30] began designing IEEE 802.11p with the 

need to support Intelligent Transportation Systems (ITS) [31]. For example, existing 

applications once used to automate tolls had to share radio wave frequency with other 

systems. In 1997, ITSA proposed the Federal Communication Commission (FCC) to 

allocate 75 MHz within the range of 5.9-GHz for the communication in ITS applications.  

The European Telecommunications Standards Institute allocated a radio spectrum of 50 

MHz for Europe. In 1999, the request for radio spectrum of a total of 75 MHz allocated 

in the frequency band of 5.85-5.925 GHz was granted by the U.S. Federal 

Communication  Commission. That same year, the spectrum range was also granted to 

be divided into seven 10 MHz-wide channels.

!  

Figure 1.2 Frequency and Channel Allocation.  

Operations like the multiple handshake in IEEE 802.11 carried too much 

overhead for vehicle communication. In 2010, the amendment IEEE 802.11p, also 
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known as WAVE Basic Service Set(BSS), was published to address the overhead. It 

specified the requirements in the physical and MAC layer for two VANET devices to 

communicate [37]. The IEEE 802.11p standard is implemented in the WAVE lower MAC 

and the physical layer of the communication stack. A main IEEE 802.11p feature 

provides the single-channel operation [31]. After having the availability to multiple 

dedicated channels, the next step was to standardize the most-efficient use of the 

frequency band [30]. The configuration was designed to implement the single-channel 

operation and simplify ad hoc BSS operations.  

A Basic Safety Message (BSM) contains all the information it needs to be 

received, categorized, and transmitted among the Basic Service Set (BSS) of 

devices[37]. BSS VANET devices have parameters to operate at same rate to better 

communicate with each other [30]. To reach CA, it is assumed a 10 beacon message 

per second rate is adequate. [37]. The following list presents standards for  IEEE 

802.11p:  

● Beacon rate - 10 beacons/second [37] 

● Max Communication range - 1000 m [30] 

● Max Transmission Power - 800 mW [30] 

Along with IEEE 802.11p, the DRSC protocol was standardized to address the 

usability of the allocated spectrum. The next section will cover the details of this 

protocol. 
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1.1.4  DSRC  Protocol 

Dedicated Short Range Communications (DSRC) [37] was designed by the US 

Department of Transportation (US DOT) by a request of Congress in 1999. The job was 

to create a standard that would efficiently utilize the reserved spectrum [30]. The 

standards aggregation for DSRC included IEEE 802.11p and IEEE 1609.4 [22]. As in 

the figure below, the DSRC [37] spectrum was standardized for V2I communication and 

V2V communication.  

Figure 1.3 Dedicated Short Range 

Communication Protocol. 

The channels are grouped by one Control Channel (CCH) for safety messages, 

identified as a default channel that all nodes can tune into, and six Service Channels 

(SCHs) for non-safety messages for any public use [30]. The infrastructure standard 

applied to the physical layer [31] is a modification of the IEEE 802.11a OFDM physical 

layer [30]. The standards design focuses on transmitting packets between V2I and V2V, 

with a reserved frequency band for seven channels. The DSRC research results from 

the American Society for Testing and Materials (ASTM) published in standard 

specification ASTM E2213 [30]. Due to the implementation complexity of E2213, a study 

group in 2004 published the amendment in 2010. It was later the IEEE 802.11p release 

of 2012.  
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1.1.5  WAVE Protocol 

Because all vehicles must have the ability to communicate to each other, standards for 

the protocol communication have been set by the IEEE working group. One identifier  

among different types of networks is the frequency allocated for that specific network 

type. The frequencies are allocated for standard channels to be able to connect and 

communicate with other nodes. In vehicle networks, this is known as an Intelligent 

Transportation Systems (ITS) Radio. In order to guarantee communication across 

different vehicle systems, the working group released Quality of Services (QoS) 

requirements to regulate the Wireless Access in Vehicular Environment (WAVE). 

[15] The availability to switch between the CCH and the SCH was standardized as the 

WAVE Split Phase Protocol. This requires that vehicles synchronize every second via 

the GPS.  To meet this requirement, the radios switch between channels in intervals of 

50 ms [22]. Following is the definition of the IEEE 1609.4 Multi-Channel Protocol.  

1.1.6  IEEE 1609.4 Multi-Channel Protocol 

The IEEE 1609 working group, sets the higher layer criteria based on 802.11p [2].  The 

group is show in Table 1.1. It is composed of 1609.1 resource management services [2], 

1609.2 security services, IEEE 1609.3 network services, and IEEE 1609.4 channel 

management services [30]. The 1609.4 service is used as the standard that defines the 

functions of multi-channel operations. The implementation is integrated as a layer on 

top of IEEE 802.11p [37]. The IEEE 1609.4 standards contribution is the channel 

switching operation applicable to the MAC layer of the infrastructure. [31]  The figures 

below list the specification descriptions for each of the IEEE 1609 amendments. 
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Table 1.1 IEEE 1609 Standards. 

The standard designates the seven channels to specific roles. One channel is 

designated as the Control Channel (CCH) and the rest as Service Channels (SCHs). 

The multi-channel operation switches between the CCH and SCH in intervals of 50ms 

[37]. The intervals are separated by a short guard interval, to handle any unexpected 

asynchronization [22]. The channel switching operation requires radio systems to 

simultaneously tune back into the CCH using the GPS [30]. The figure  below illustrates 

the channel intervals and synchronization to support channel switching.   

The Control Channel in Figure 1.4 is responsible for receiving, sending, and 

transmitting safety and management information [30]. Safety messages are exchanged 

in format of Basic Short Messages (BSMs/beacons) [37]. To create a cooperative 

awareness between devices, beacons are sent and received using the Wave Short 

Message Protocol (WSMP) [37]. 

Amendment Description  Implementation 

IEEE 1609.1 Defines the resource manager Application Layer

IEEE 1609.2 Defines the format and processing 
for secure messages 

Security Layer

IEEE 1609.3 Defines the addressing and routing 
of packets with secure data 
exchange 

Network Layer 

Transport Layer

IEEE 1609.4 Defines enhancements of IEEE 
802.11p multi-channel operation

Mac Layer
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"  

Figure 1.4. IEEE 1609.4 Multi-Channel Operations and synchronization[2]. 

The CCH sends Wave Short Announcement (WSAs) to announce the Service 

Channel selected to transmit the upcoming WAVE short messages (WSMs) [30]. A 

Service Channel’s role is to manage other types of messages identified as data or non-

safety messages. This includes any information that is low priority and unrelated to 

infotainments applications. 

In [22], the following criteria were identified to consider the control channel operation:  

● Given a vehicle system is in the beginning of the CCH, the CCH needs to 

calculate the time to send the channel selection Wave Short Announcement. 

● Given a vehicle system is in the CCH, it must calculate up to the time period in 

the interval it should continue receiving BSMs.  

● Given a vehicle system has received any request to use a specific SCH when it 

is in the CCH, then it must decide which SCH to use for the upcoming WSMs.  

● Given a vehicle system is in the CCH, it should calculate a time target by when to 
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select the SCH.  

● Given a vehicle system has selected the SCH to use, it should calculate time to 

send the WSA.  

● Given a vehicle system has switched to the selected SCH, it should decide when 

to send data messages (WSMs).  

Now that we have covered the background of VANETs, the standards and the 

multi-channel operation, it is important to look at how to best improve the VANET 

protocols. The next section will define the problem addressed in this thesis and why. 

1.3 Problem Statement 

Much attention was given to the unknown impact and efficiency of the multi-channel 

operations in 1609.4. In this thesis, we analyze the channel utilization, beacon 

transmission, and packet transmission of IEEE 1609.4 multi-channel operations in CCH 

and SCH to identify the points of impact in Vehicular ad-hoc Networks. The existing 

complexity of protocols presents a risk in this problem. Several trigger points for 

sending, receiving and generating collisions of messages also exist. The assumptions 

of the expected behavior were based on the implementation/configuration of the traffic 

simulation. This presented a compound risk of missing some of these trigger points due 

to the complexity of the existing codebase. Addressing this problem is important to the 

VANET research community. The objective behind it is laid out in the following section. 

1.4 Thesis Objective 

As indicated earlier, the goal of this thesis was to determine how to best use the single 
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radio in a vehicle i.e. to optimize Control Channel (CCH) and Service Channels (SCH’s) 

in a Single Radio Multi-Channel (SR-MC) system with IEEE 1609.4. The parameters 

recorded to diagnose the operation include the following: collisions, channel utilization, 

packet transmission, and beacon transmission. We considered the scenario with density 

of n vehicles in a real world map, using safety (beacons) and non-safety (data) 

messages. We intended to define the performance benefits and drawbacks of IEEE 

1609.4 multi-channel operations in safety and non-safety messages by evaluating : 

traffic against networks congestion, application layer against MAC layer message 

handling and channel utilization.  

1.5  Thesis Contributions 

The following summarizes the contributions of this thesis in the area of VANET:  

● We added the following features to the simulation: Catch testing framework 

integration, SCH randomization, MAC layer beacon transmission, vehicle 

neighbors tracking and channel utilization tracking. These features were targeted  

to better judge the problem of performance, impact and efficiency of multi-

channel operations. Collectively these features can be used when analyzing 

other problems in VANETs. Our implementation of these  features can be found 

at https://github.com/surod22/VeinsVanetSimulation-2018. The repository 

includes the source code of the simulation, the framework veins used and 

documentation to run it. 

● We proposed an analysis on traffic congestions versus network congestions, 

MAC layer message handling versus application layer message handling and the 

https://github.com/surod22/VeinsVanetSimulation-2018
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MAC layer channel utilization for CCH/SCHs. We found the control channel to be 

highly overloaded by handling beacons and multi-channel operations. Many of 

the previous studies had schemes with a focus on the usability of the SCHs. In 

our study the CCH was the greatest point of impact and caused the most 

collisions. With our findings we recommend to put a stronger emphasis on 

reducing the responsibilities of the CCH. Putting this into effect, future proposed 

schemes will target a larger point of impact of multi-channel operations in IEEE 

1609.4. 
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1.6  Thesis Outline 

The remainder of this thesis is organized as follows:  

● Chapter 2 - Introduces the basic components of  VANET applications, 

communication protocol architectures, routing protocols for VANETs, protocol 

design, IEEE 802.11p, DSRC, WAVE, and IEEE 1609.4 

● Chapter 3 - Presents the simulation scenario, with an overview of the software 

components, OMNET++ architecture, SUMO architecture and Veins architecture. 

Followed with the setup of the simulation.  

● Chapter 4 - Covers the research features implemented. These features include 

Catch framework integration, MAC layer beacon transmission, vehicle neighbors 

tracking and channel utilization tracking. 

● Chapter 5 - Presents an analysis of the multi-channel operation. It examines the 

application layer message delivery, the MAC layer message delivery, the MAC 

layer utilization and the traffic congestion against the the network congestion. 

● Chapter 6 - Covers the results for network congestion against traffic congestions, 

message delivery in the application layer, message delivery in the mac layer and 

channel utilization. 

● Chapter 7 -  This section summarizes our conclusions and potential future work. 
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CHAPTER 2: Literature Review  
!  

VANET’s area of research is fairly new compared to other networks line LAN, WLAN or 

MANETs. There is a large span of research topics considering the different network 

layers. To identify the most impactful trigger points in IEEE 1609.4 multi-channel 

operations, we carefully select a set of thirteen research papers. In this next section we 

will be covering the evaluation of these papers. 

2.1 Previous Work  

When investigating the definition of the connection between IEEE 802.11p and MAC 

1609.4, particular parameters and metrics were used. These include IEEE 802.11p, 

MAC 1609.4, OMNET++, Veins simulators, multi-channel, safety messages, non-safety 

messages and beacons. We searched for references with proposed schemes, 

evaluations, published dates of 2010-2017 and a robust citations per published year. 

We aimed to identify the latest research trends in the field. We studied patterns in the 

number of channels used, determined their main objectives, and documented the 

problems addressed as well as any contributions, results, and evaluation metrics. The 

next section will cover the details of the patterns found previous work.  

2.2 Number of Channels  

Of the thirteen studies covered, studies [3], [30], [22], [37],[2], [14], [8], and [20] used 

one CCH and six SCHs. Studies [3], [21], and [22] used one CCH and four SCHs. In 

scenarios with a total of seven channels, the studies applied the U.S. standards rather 

than  the  U.K.  standards which has five channels.  
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2.3 Range of Objectives 

In [3], [7], [14], and [8], multi-channel operations in VANET IEEE 1609.4 were 

investigated and evaluated.  The investigations of [14] and [8]  focused on safety 

applications. Collectively, evaluation of [3] and [7]  focused on both safety and non-

safety applications. [20] and [7] studied how to increase performance by examining 

message delivery of frames. Studies [26], [21], [22], and [37], shared the common 

objective of analyzing and optimizing beacon delivery with multi-channel operations. 

2.4 Overview of VANET Problems 

Inquiries in this area of research address the efficiency of bandwidth use in the channel 

switching procedure [3] [21] [22] , communication delay on beacons [15] [26] [22],  

impact of 1609.4 channel scheduling [15], effective use of channel resources of 

technologies on a single radio [14] [8], best modeling for VANET mobility [28],  impact of 

synchronous channel switching 1609.4 on delivery rate [37] [2], and collisions [23]. 

2.5 Scope of Previous Contributions   

In the following, we introduce a set of model solutions previously evaluated. These are 

supported by the evaluation of efficiency of multi-channel operations. For example, we 

drew a comparison between multi-channel and single-channel performance with a 

realistic dataset [3] and analysis with a safety dissemination model. A closer look at the 

study of 1609.4 [15] showed that the tight channel synchronization issues foreseen by 

the protocol could dramatically impact the performance of safety-related applications 

with strict delivery ratio and delay requirements. Furthermore, it proposed two new 
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enhancements for the WAVE protocol stack to favor the dissemination of safety 

messages in multi-channel operations.  The solutions were a group of dedicated 

solutions for message delivery and dissemination.  

The WAVE-enhanced Safety message Delivery scheme (WSD) quickens the 

transmission of safety messages in multi-channel VANETs, while preserving 

compatibility with the IEEE 1609.4/802.11p standards [8]. The analytical model in [14] 

also proposes a WSD to enable accelerated dissemination of safety messages over 

multi-channel operations, whereas [9] provides a simulation scenario of varying traffic 

density using Flooding protocol in an urban scenario.  

In order to evaluate the performance of dissemination protocols, a separate 

group of solutions analyzed [37] the performance of beaconing and showed existing 

solutions to minimize the impact of channel switching. Approach [26] uses a  

mathematical problem in a realistic simulation to calculate a Probability of Beacon 

Delivery (PBD) value. Study [21] explores the potentials of a multi-channel approach by 

extending a delay sensitive scheme. It extends the delay sensitive scheme and 

congestion aware Adaptive Traffic Beacon (ATB) protocol. This uses IEEE 802.11p/

1609.4 DSRC/WAVE to its best potential. The scheme is then promoted in [22],  with a 

Multi-Channel Beaconing Protocol (MCB). It is based on ATB, which is designed to 

better use the added SCHs of the DSRC band [22]. MCB implements new techniques to 

address the network topologies and extra delays in the split-phase network operation 

[22]. The investigations in [21] and [22] attest to the CCH operations.  A new MAC 

contention control mechanism [7] is produced, adapting to the multi-channel operations 

of the 1609.4. In [20], two algorithms are proposed to optimize the timeshare of CCH 
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with non-safety applications. Lastly, in approach [4], a VANET Car Mobility Manager 

(VACaMobil) for OMNeT++ was evaluated. We will now examine the  types of metrics 

used to evaluate the approaches mentioned.    

Immediate and Extended Access [7] 

Fragmentation Scheme [7] 

Best fit scheme  

Problem Need to reduce the waste of remaining time in SCHservice 
channel

How it works Defines how to use the remaining time in the interval in the 
CCH after transmission is complete

Pros ● Improves bandwidth usage for non-safety 
applications by switching for the remaining time.

Cons ● Does not address minimizing the impact of channel 
switching 

● The scheme improves at the cost of CCH interval

Problem Need to reduce bandwidth waste in the SCH

How it works When there is not enough time remaining in SCH to 
transmit the next package, the packet is split into two 
fragments: one for the remaining SCH time and one for the 
next SCH interval. 

Pros ● All service channel time is utilized

Cons ● Requires an extra header for fragmented packet

Problem Need to use time remaining in SCH service interval

How it works By reviewing the  queue, a packet is chosen with less 
transmission time than the remaining SCH time

Pros ● More efficient performance than  fragmentation 
when packets with different sizes are present in the 
queue

Cons ● Difficult implementation 
● Need to track packet sizes  (assuming packets are 

of different sizes) 
Constant changes on the following packet in the 
transmission queue creates challenges in determining the 
reason for contention and transmission 
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Exploitable node-assisted WBSS Broadcasting Mechanism  
(WBSS - Wave Basic Service Set)  

ATB [21] 

Problem Need to reduce collisions when nodes are broadcasting 
WBSS simultaneously  due to CSMA/CA (Carrier Sense 
Multiple Access/Collision Avoidance), a protocol that aims 
to prevent collisions

How it works A exploitable node in the SCH broadcasts the WBSS to 
new vehicles and is acknowledged when other nodes are 
transmitting data to the RSU. 
The scheme defines a near area for higher priority and a far 
area for lower priority.

Pros ● None reported

Cons ● Does not address channel switching impact 
● With CSMA/CA - when node is unable to send a 

packet if in the same channel and at the same time.  
● The scheme is not standardized and has high 

complexity. 
● Nodes must calculate their relative location to the 

RSY.

Problem Creates a beacon interval via the channel quality and 
priority of the message to prevent wireless collisions by 
sending beacons as often as possible without overloading. 

How it works Scenarios:  
1. Artificial case with simple detours 
2. Freeway  

Rural area, using Breitenbach am Inn/Tirol as a primary 
example 
Parameters: 

● Vehicle rate: departing every 5 minutes 
● Two lanes allowing vehicles to pass each other  

1. Events artificial accident starting at a fixed point 
2. Vehicle stops for a duration to broadcast warning  
3. ATB or ATB-MCH transmission 

Scenario of beacon with high priority to specific channel, 
node without fingerprinting tunes in to receive message. 

Pros ● Higher traffic increases beacon transmissions, 
leading to higher number of collisions 

http://searchnetworking.techtarget.com/definition/CSMA-CA
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Table 1.2 Schemes Related to the Problem Bandwidth Wastage of SCH. 

Table 1.2 compares several schemes illustrating the problem of bandwidth waste 

in the service channel. The selection criteria for the schemes used was in relationship to 

traffic Information System for IVC using beacons and approaches to multichannel 

scheduling for single and multi-radio environments [5,1,6]. The schemes address 

several targeted problems. Following the Pareto Principle, these trigger points assist in 

identifying the  top 20% of variables and metrics to provide a stronger analysis.  

2.6 Results of Previous Studies  

Reviewing contributions in VANETs’ area of research, we will categorize 

successful and unsuccessful results. This will illustrate immediate feedback on key 

trigger points of efficiency in the multi-channel operation of 1609.4. The evaluation of [3] 

found the delay of single-channel protocol IEEE 802.11p was reduced by 36% in 

comparison with its multi-channel protocol counterpart. We conclude that the 

parameters used in this study focused on packet/beacon delay, throughput, and lost 

packets [3].  

Additionally, [15] shows that tight channel synchronization dramatically impacts 

the performance of safety-related applications with strict delivery ratio and delay 

requirements. Because the function of a safety application is to deliver beacons (safety 

messages), we see a pattern form between results from [15] and [26]. The impact of 

Cons ● Static traffic beaconing is not appropriate for every 
traffic scenario 

● Does not focus on minimizing channel switching 
impact 

● The scheme improves at the cost of CCH interval 
● Low traffic may allow to large of a beacon interval
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safety applications is similar to the low Probability of Beacon Delivery (PBD) [26] in a 

large area with huge density of cars. Luckily, the proposed algorithm in [21] and [31]  

targets some of the tight channel synchronization by measuring the channel quality, 

message usability, and beacon interval [31].  ATB demonstrated the feasibility of its 

multi-channel approach, illustrating the reduction of channel utilization and successfully 

observed packet collisions without sacrificing throughput. The proposed algorithm MCB 

[22] focused on selecting the time to send coordination information. The algorithm 

reduced effects on the CCH while improving beacon delivery and reliability [22].  

When comparing single-hop and multi-hop, the schemes recorded average 

delay, packet delivery ratio, packet loss, and throughput [2]. The proposed conclusion of 

these metrics was that the packet delivery rate and throughput of safety applications in 

multi-channel were enhanced [2]. Furthermore, both the scheme WSD [14] and the 

scheme of [8] effectively reduced the delayed delivery ratio and delivery delay 

accordingly. In [9], the simulation shows that higher traffic density results in an increase 

in the number of collisions. This negatively impacts the performance of dissemination 

protocols. After covering some of the findings in the literature, the next section will 

define the parameters/metrics used to evaluate the studies.  

2.7 Spectrum of Performance Metrics 

In the context of multi-channel switching, different parameters are reviewed to analyze 

the impact of 1609.4 multi-channel operations.  Because most of the solutions covered 

explore the efficiency of the multi-channel operations, the comprehensive set of metrics 

vary.  
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Reference Parameters and  Metrics Used

[3] 1. Beacon Delay for safety and non-safety applications  
2. Data Delay for safety and non-safety applications  
3. Beacon Throughput for safety and non-safety applications  
4. Data Throughput for safety and non-safety applications  
5. Lost Packets for safety and non-safety applications 

[15] 1. Delivery delay per number of vehicles 
2. Packet delivery ratio per distance (meter)

[26] 1. Lost Beacons per total  number of vehicles 
2. Probability of Beacon Delivery(PBD) Vs. Analytical Model 
3. PBD per street for different types of streets 
4. PBD per street different number of vehicles 
5. PBD of straight streets vs Crossroads  

(2 region,100m area with 50 cars)

[21] 1. Channel Utilization 
2. Packet Collisions 
3. Beacon Interval 
4. Relative Utilization for benefit of fingerprinting 
5. Packet Collisions for benefit of EDCA

[22] 1. Reliability  
2. Channel load  
3. Performance 
4. 90 % vehicles and 10 % trucks 
5. Vehicle Density for medium utilized freeway  
6. Vehicle Density for high road traffic jam  
7. Channel Utilization vs (medium and high traffic jam) 
8. Packet Success Rate vs (medium and high traffic jam) 
9. Beacon Interval eCDF vs (medium and high traffic jam)  
10. Informed vehicle in % vs (medium and high traffic jam)

[37] 1. CUmin  
2. CWmax (Control Window Max)  
3. AIFSN for VI (Video Traffic) 
4. VO (Voice Traffic) 
5. BE (best effort traffic) 
6. BK (background traffic) 
7. Beacon generation rate 
8. Data rate 
9. EDCA class 
10. Beacon size 
11. CWmin 
12. Scheduling 
13. Simulation time
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Table 1.3  Performance Parameters and Metrics for the State of the Art .  

 The common metrics used to analyze the area of research are summarized in 

Table 1.3. The metrics included beacon delay, data delay, lost packets, packet 

collisions, channel utilization, throughput, packet success rate, vehicle density (number 

of vehicles), packet delivery ratio, beacon interval, and beacon/data transmission rate. 

These common metrics are recognized in bold in the table. Based on the results of 

previous studies, we gathered that several of the metrics used included packet/beacon 

[2] 1. Simulation time 
2. Range transmission 
3. Number of vehicles 
4. Channel data rate ® 
5. Number of channels 
6. SCH interval  
7. CCH interval 
8. Guard interval

[7] 1. Packet delivery ratio 
2. Throughput 
3. Channel utilization

[14] 1. Average Delay of Safety Messages(s) 
2. Packet Delivery Ratio 
3. Packet Un-Transmitted Risk  Index 
4. Delay percentile

[8] 1. Packets Un-transmitted Risk Index (PURI) 
2. Average delay of safety messages 
3. Delay percentile 
4. Probability of Successful Delivery (PSD). 

[9] 1. Collisions per traffic (vehicles/km2) 
2. Packet loss per traffic 
3. Delay per traffic 
4. Density 
5. Access Category 
6. Transmission Rate 
7. Size of the Data message 
8. Number of messages produced

[20] 1. Successful transmission rate 
2. Normalized Control Channel Interval  

[28] 1. Average number of vehicles  
2. Vehicle number 
3. Standard deviation
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delay, throughput and lost packets, strict delivery ratio, and delay requirements.  This 

exhibits a clear pattern of parameters and metrics used, which are refined for inclusion 

in the analysis used in this thesis. 

2.8 Topics in Future Work 

This section combines the diverse set of recommendations of future work from the 

studies covered. In the comparison [3] of multi-channel and single-channel 

performance, the scenario evaluated vehicle densities with different speeds in the same 

lane. The authors wanted to further investigate a various number of vehicles in a 

different transmission range with varying speeds while taking lane change into account. 

A recommendation from [2] specified a scheme that could minimize the impact of the 

channel switching and improve the beaconing (i.e., CCH) performances. The proposed 

WAB scheme of [8] dynamically adapts the contention level of the control channel 

through a cooperative channel load estimator. The recommendation of future work is to 

further analyze the WAB’s adaptation for event-driven safety applications and cover  

large-scale urban scenarios. Similarly, the authors in [20] extend the proposed paradigm 

to the multi-hop environment and introduce an analytical model for the WSD scheme.  

Considering the standards per country, the authors suggest simulating traffic of the city 

[20] using a different set of technologies/standards for comparison with 802.11p.  For 

ATB in [22], a further extension would be investigating a beacon interval configured 

lower than one sync interval in WAVE. Lastly, in [13], they recommend further use of 

realistic scenarios and different dissemination for the simulation. 
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2.9 Simulation Engines  

There are several simulation engines available for VANET protocols. Some of the 

existing engines are ns-2, ns-3, OMNET++ and Jist [30]. Ns-2, ns-3, and OMNET++ use 

C++ language while Jist uses Java. Each of the engines uses a network framework that 

contains the basic components to construct a network standard. Ns-2 and ns-3 use their 

own library. The main differentiation is that the ns-2 library is in Objective Tcl, while ns-3 

is in Python. As a rewrite of ns-2, ns-3 improved scalability, extensibility, and modularity 

[30], OMNET++ uses INET for its network simulator. Ns-3 roots back to the NEST 

prototype from 1989 [30].  

Table 1.4 Simulation engines and frameworks used in previous studies. 

Name Tech stack Usability Requirements

ns-2 Network 
Simulator-2 
C++  
Network library:   
ns-2(Objective 
Tcl)   

Dependencies  
Tcl/Tk, Otcl  and 
TclCL  

Open source 
1989-2011

- High 
complexity 

- Limited 
functionality 

- Automated 
testing under 
development 

- Map-realistic 
based (can 
integrate with 
SUMO)

No IDE 
C++ compiler 
Unix  
( FreeBSD, Linux, SunOS, 
Solaris) 

Windows (Cygwin) 

Disk space:  
320 MB to build  
24MB for a 10K node [55]

Reference 1 
[3]

2 
[15]

3 
[26]

4 
[21]

5 
[22]

6  
[37]

7 
[2]

8 
[7]

9 
[14]

10 
[8]

11  
[9]

12 
[20]

13 
[28]

OMNET++ 
Sumo  
Veins 1

x x x x x X 

4.2.
2

x

Ns-2  x x x x x x
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    Table 1.5  Network simulation engines and frameworks [30]. 

Ns-3  Network 
Simulator-3 

C++ 

Network library 
Ns-3 (Python) 

Open source 
2006 - now 

- Scalable 
- Modular 
- New 

modules 
under 
development 

- Map-realistic 
based (can 
integrate with 
SUMO) 

Ubuntu 18.04 (64 bit) with g+
+-7.3.0 and Python 2.7.15 

Ubuntu 16.04 (64 bit) with g+
+-5.4.0 and Python 2.7.12/3.5.2 

Fedora Core 28 (64 bit) with g+
+-8.1.1 and Python 2.7.15/3.7.0 

Fedora Core 26 (64 bit) with g+
+-7.3.1 and Python 2.7.14/3.6.5 

macOS High Sierra 10.13.5 with 
Xcode 9.4.1, Apple LLVM 
version 9.1.0, Python 2.7.10 
[6]

JiST Java in 
Simulation 
Time 
Java 

Network library 
SWANS (Java) 

Open source: 
2005 - 

- Transparent 
- Efficient 
- Standard 
- Object 

models 
- Scalable  
- Map-realistic 

based 
(undefined)

Virtual machine based 

Disk space:  
20MB for 10K node Simulation 
[5]

OMNE
T++  

Objective 
Modular 
Network 
Testbed in C++ 
[27] 
C++ 

Network library 
INET (C++) 

VANET library 
Veins with Sumo 

Open source 
2008 - now

- Configurable 
parameters 
for simulation 
scenarios 

- Modular 
- Component-

based 
- Complex to 

expand 
- Complex to 

automate 
tests 

- Map-realistic 
based with 
SUMO

Optional IDE base on top of 
Eclipse 
Graphical Interface  

Release 5.4.1 supports 

Windows 7 and 10 / 64-bit 

MacOS 10.12 

Linux x86; 64-bit.    
Distributions: Ubuntu 16.04 LTS, 
Fedora Core 25, Red Hat 
Enterprise Linux Desktop 
Workstation 7.x and OpenSUSE 
42 [27]
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To illustrate the frequency at which each simulator was used, Table 1.4 

documents the simulator used for each study mentioned. Table 1.5 gives a detailed 

description of existing simulation engines in the area of VANET. It is important to note in 

the usability column, OMNET++ is identified as configurable. In this this a spike was 

done to identify the most ideal engine to use. Aiming to produce a realistic scenario with 

a concrete representation of the VANET standards, the pair of OMNET++ and Veins 

was selected. The following chapter will describe the components of the simulation 

scenario and how to set it up. 
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CHAPTER 3: Simulation 
!  

This chapter will cover a description of each of the simulators OMNET++, SUMO, and Veins. 

Each description will provide an overview of the architecture within the technology and its 

modularity. This section will also include the documentation on how to set up the simulation. Our 

simulation source code can be found at https://github.com/surod22/VeinsVanetSimulation-2018.   

3.1 Software components 

To simulate a vehicle’s network scenario, the following software frameworks were used: 

Omnet++, SUMO and Veins. Omnet++ is an extensible and modular framework used to 

create different protocols. In the case for IEEE 1609.4 MAC layer in IEEE 802.11p, the 

extension is Veins. Veins is defined as a “fully-featured IEEE 802.11p and IEEE 1609.4 

simulation model” [31]. SUMO is a realistic road traffic simulator that uses real street 

maps from Open Street Map to replicate the road system. Veins is the framework that 

connects Omnet++ and SUMO with a TCP socket. As each of the vehicles changes in 

position, direction, and speed in SUMO, the information is communicated to omnetpp 

through the socket. Omnetpp then replicates the traffic state and its effects on the 

network state. Inet 2.5 is a library that has a more extensive implementation of protocols 

and applications. These include  IPv4, IPv6, TCP, SCTP, and UDP. The simulation was 

setup in a Debian virtual environment for the compatibility with the simulator versions 

stated. This section covers each of the frameworks involved in the simulation  

scenario. It will additionally provide a high-level summary of the physical modular 

architecture, communication layer architecture, and how to set up the simulation. 

https://github.com/surod22/VeinsVanetSimulation-2018
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3.2 OMNET++ Architecture  

OMNET++ is a framework that has the platform and taxonomy of a basic network layer. 

OMNET++ has set up the basic hierarchy and communication structure of a basic 

network layer. It is a source of infrastructure and tools to create network protocols [1]. 

The architecture of OMNET++ was designed to write network simulations [1] 

3.2.1  Architecture 

OMNET++ has a generic, event-driven architecture. It is composed of simple modules, 

compound modules, gates, links, messages, channels, collection classes, NED 

modules, parameters, and the configuration file omnetpp.ini. The modules are linked by 

gates, which are defined and connected in the NED file. The simulation is configured by 

parameters that can be initialized in the omnetpp.ini file.

  

Figure 3.1 Basic layer taxonomy of OMNET++ architecture. 
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In Figure 3.1, we can see the base modules in OMNET++ and how they integrate. 

Modules are reusable components that derive more complex components of a network 

protocol [1]. A module can be used to create different components of the protocol like 

the transport, MAC and physical layer. 

3.2.2  Modules 

 The base level of architecture is a simple module. The structure of a simple module 

involves the following inheritable virtual functions [19] :  

 The initialize function is called once the module is created. Following 

initialization, the module is triggered by receiving a message. This is where most of the 

business logic of getting information from the message, setting up for transmission to 

other layers, and scheduling the transmission happens.  The activity function can also 

be used for the business logic instead of the HandleMessage. For complex model 

functionality, the HandleMessage is still preferable as the activity function makes it 

difficult to scale and debug. The finish function is typically used to clean up any 

instances and to finalize the recording of metric variables. All of these functions are the 

vanilla structure to use the basic modules. To use a simple or compound module type, 

the class must be subclassed, and these virtual methods must be implemented. 

The next level of architecture covers compound modules. A compound module is 

a group of simple modules. The compound module represents the network of a vehicle 

incorporated in an application, Network Interface Card (NIC), and Veins mobility.  

● Initialize 

● HandleMessage

● Activity 

● Finish 



!32

Modules are connected via ports identified at gates in the OMNET++ domain. A 

gate is an input or output of a module [1]. The gates in each module are connected via 

links. There is an input and output link for each layer within a module. The basic layers 

are used with the gates to communicate between two modules: 

Modules communicate via messages. Messages are scheduled as an event to 

be sent with a time flag. When the time flag is triggered, the message is broadcasted to 

be received by other modules. As mentioned earlier, the message is received by the 

HandleMessage function. The message is handed down and dismantled to the lower 

layers. Once the message has been identified as received/ignored, another message is 

scheduled for acknowledgement when needed. Self messages can also be scheduled 

to trigger internal timers for certain functions to happen. An example may be when it is 

time to create and send a new packet. 

A NED file is known as a network descriptor which contains all the gates, network 

components, connections, and parameters for a module. The NED descriptor only 

defines structure of the topology. The behavior is implemented in the C++ code. 

Configuration parameters are defined in the NED file as mentioned earlier. A default 

value can be initialized, and can be overwritten in the omnetpp.ini file.  

● Upper Layer 

● Upper Control Layer 

● Lower Layer  

● Lower Control Layer
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3.2 SUMO Architecture  

SUMO stands for Simulation Urban Mobility. It is an open source traffic simulator 

created by the Institute of transportation systems at the German Aerospace Center. 

According to the documentation, its focus is to produce and replicate large road 

networks [35]. SUMO has a feature to generate the road traffic network for the 

simulation from Open Street Maps. According to the Veins description, SUMO was 

integrated to “make simulations as real as possible, without sacrificing speed” [38].  

Open Street Map is an open source map that depicts traffic infrastructure of the 

world[34]. These world maps are created from data input by people physically traversing 

roads. Some of the elements captured in this map include nodes as intersections and 

edges as streets [35]. An edge type is labeled as a streep type, which can be a highway, 

a railway, or a waterway. Some attributes that belong to the edge type include the 

number of lanes and the street speed. The map is in OSM (Open Street Map) XML 

form. Building objects are identified as polygon types. Some of these types include 

residential, industrial, commercial, parks, and military bases. More polygon types are 

identified within the road types link [36]. With the map osm xml file, the network xml file 

for SUMO can be generated. 

$ netconvert --osm-files berlin.osm.xml -o berlin.net.xml 

The SUMO network file is created with a network command as the one above 

[33]. The network convertor identifies default street types from the osm file. Provided a 

default street type exists in the osm file, a corresponding edge is generated in the 

network file. The main relationship between the osm file and the network file are the 

node IDs. The following section will cover the Veins architecture and modules. 
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3.4 Veins Architecture 

Veins is an extension of OMNET++. It adds a top layer of protocol to represent the 

vehicle network architecture. It works to represent the communication of messages 

among nodes in the movement of vehicles. The following section will cover the 

underlying architecture of veins. 

3.4.1  Architecture  

At a high level, the vehicle network simulator is composed of three services. This 

includes the OMNET++ network simulator, a TraCI mobility simulator, SUMO as a traffic 

simulator and a SUMO-launched socket. The duties of the OMNET++ simulator include 

maintaining connections between nodes and wireless ad-hoc networks. The duties of 

the TraCI server are to control the steps of the of the vehicles. These include:  

● Creating a vehicle 

● Adding a vehicle to the queue 

● Communicating when to execute the next step 

The SUMO simulator is responsible for executing the next step in the traffic 

simulation. SUMO then returns the coordinates via the socket. Once TraCI receives the 

coordinates , OMNET++ updates the locations.   

The TraCI manager couples OMNET++ and SUMO. The setup involves running a 

SUMO socket that listens for traffic networking instructions for the traffic scenario. As a 

vehicle position changes in the TraCI server, a command is sent via the socket. The 

SUMO socket listens on a specific port for the commands. When a TraCI command is 

received, SUMO is executed to simulate the step in the traffic interface. The SUMO 



!35

socket listens for connections on 127.0.0.1:9999. Once a connection is accepted, it 

reads a the launch configuration to extract the TraCI command. I then gets the sumo-

launchd.launch.xml file to execute the SUMO command. 

We now present an example of the SUMO communication with TraCI and 

OMNET++. First, the TCP connection is created. The TraCI client sends a message to 

set max speed. SUMO responds with status of max speed. TraCI sends a message to 

set simulation, and SUMO responds with a status after starting simulation. Then SUMO 

sends a message after each node is moved. An example of this scenario is when a tcp 

connection is created via a SUMO. The TraCI client will set the max speed using a 

command and subscribes to the command. SUMO returns an acknowledgement status. 

With the command subscription, the TraCI manager handles the response. It checks its 

time trigger and follows with a command to execute the next step. SUMO moves the 

appropriate vehicles to simulate the next time trigger and sends status response.  

We will now present more detail for the execution tasks in the scenario above. 

The TraCIScenarioManager will initialize the command to send the launching file 

"sumo.launchd.launch.xml". Other things that the manager handles internally include 

subscribing to the list of vehicles and initializing mobility for position. It also takes care of 

executing a time step trigger, adding the mobility module, and updating the module 

position. For clean up, it will delete the managed module.  

3.4.2  Vehicle Scenario 

The scenario includes a controller for obstacles encountered in the SUMO simulation as 

well as the annotation manager, connection manager, a world utility, and a scenario 

TraCI manager. These modules are in the figure below. One thing to note: this module 
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does not allow all connections to be unconnected as opposed to others.  

Figure 3.2 Transit and network modules for the vehicle scenario.  

3.4.3  Obstacle Control   

The obstacle controller administers objects that are blockers to simulate buildings and 

walls of the simulation [17]. An obstacle is represented by a type of polygon. A function 

to be done by the polygon includes calculating attenuation per car. It is responsible for 

adding an obstacle, adding by type and shape, and erasing an obstacle. As opposed to 

other modules, the controller does not handle any messages. This means that its 

responsibility is outside of transmitting packets. It represents a physical reaction  

3.4.4  Annotation Manager 

According to the description of the annotation manager, it handles the annotations on 

the OMNET++ canvas. It handles all UI components for the OMNET++ canvas and 

encapsulates the logic for actions on a canvas with objects like a point, line, group, and 

polygon. The existing actions available are creating, drawing, erasing, scheduling to 

erase, and showing and hiding the objects. The procedures for the annotation start by  
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initiating a group of figures also identified as annotations. It retrieves the canvas and 

adds the figures to it. The manager retrieves the annotations from a SUMO xml file that 

contains can tags like “line” and “poly”. In these simulations, the file that contains the 

poly annotations is northampton.poly.xml. More details are in the poly file we used at 

https://github.com/surod22/VeinsVanetSimulation-2018/tree/master/vanets/simulations/ 

As it extracts each tag, it will draw the object to the canvas. Similar to the 

obstacle control, the annotation manager does not handle messages. Its sole 

responsibility is to extract annotations from the SUMO polygons file and draw them on 

the canvas. [19] 

3.4.5  Connection Manager 

The connections manager is the central source that handles connections between 

nodes. According to its definition, the procedure includes creating gates and 

communicating with the mobility module in intervals [18]. It handles the grid by creating, 

transforming, and adding coordinates. Itt measures the existing interference distance 

and compares it to the max interference distance. The maximum value is provided by 

the user in the configuration file omnetpp.ini. It will create a world module and matrix to 

represent the grid on the canvas. The playground sized from the world is used to 

generate the grid dimensions. We did not find verification of the connection manager 

directly communicating with the channel access modules. It does, however, set the 

channel access to the NIC upon registry. 

We will now discuss how the connections manager connects and tracks the 

communication between nodes. The manager keeps a list of all network interface cards 

available and their positions in the grid. The process is initiated when the base wave 

https://github.com/surod22/VeinsVanetSimulation-2018/tree/master/vanets/simulations/northampton
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application layer registers a NIC. The registration includes providing the NIC module 

type, the channel access, and its position. When a new network interface card is added 

to the grid, the module will update its connections. Given the module has the old and 

new position of the NIC interface, it will move the NIC to a new position. To update the 

connections, it will check the rest of the available NICs on the grid. When a NIC is in 

range of the NIC for that node, it will connect the network card to its own, given they 

have not already been connected. In the case where the current connected NIC is no 

longer in range, it will disconnect it. In relation to the range, the module tracks the gates 

of the NICS in that range. Wrap up features of the connections include unregistering 

and deleting all NICs at end of simulation. The unregistering is triggered by the wave 

application layer and the TraCI scenario manager.  

3.4.6  TraCI Scenario Manager 

The TraCI Scenario Manager initiates all the configuration variables to create a vehicle, 

insert a vehicle to the queue, and trigger its step. The total number of vehicles in the 

simulation is checked against the number of active vehicles and vehicles in the queue. It 

also subscribes to a vehicle. On a similar note, this module, like other managers, does 

not handle incoming messages. It tracks the network boundaries, arrived vehicles,  

departed vehicles, and vehicles in stages to teleport and park. Some general simulation 

subscriptions track the existing simulation time. This is also known as the time step of 

the simulation. The subscriptions are handled by the command query pattern described 

earlier as the TraCI command. Internally, it handles the execution of triggering a time 

step in the simulation. This is the trigger that is sent via the SUMO socket to update the 

traffic simulation to its next step. Every vehicle has a TraCI mobility submodule which is 
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initiated and updated by the TraCI manager. When a SUMO response is received from 

a TraCI subscription command, it will check for the response type from the list of 

variables it originally subscribed to. Given the module for the vehicle in the response ID 

exists, it will update the module’s position. It updates the coordinates for the new 

position, edge, speed, angle, and vehicle signal.   

3.4.7  Car Module  

A vehicle component is made up of an application 

layer, an 802.11p network interface card also known as 

Nic. The layout is in Figure 3.3. For the mobility 

portion, it includes a mobility module and a radio in 

gate to send direct messages. The physical layer is the 

physical layer of the network interface card. 

 Figure 3.3 Architecture components for the Car 
module.  

3.4.8 WAVE Application Module 

The application layer has most of the configuration fields to address the header, 

beacon, and data. It initializes all the fields for the Wave Short Message, Basic Safety 

Message, and the Wave Service Advertisement. Internally, it creates the message types 

and schedule them to be sent. Based on the WAVE app layer description, the module 

handles all three types of messages when receiving a message from the lower layer. It 

will also handle the position and parking update. It then sends the message down to the 

applications lower layer and to the upper layer of the network interface card.  
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3.4.9  Nic Module 

The network interface card module includes a radio in gate for direct connection, a 

physical layer, and a mac layer. The radio is directly connected to the radio in the 

physical layer.   

3.4.9.1  Physical Layer  

The physical module represents the physical layer of the 802.11p. It is responsible for 

handling the state of the packet by communicating with its upper control and upper layer 

to the lower control and lower layer of the mac service. According to the documentation, 

it sets the Clear Channel Assessment (CCA) [22] threshold for the bandwidth. According 

to the connection manager, this CAA is the threshold for the minimal receiving power. It 

also initializes the analogue models when the gradual loss of  

received signals occurs. Some of the models used include the following:  simple path 

loss, log normal shadowing, jakes fading, breakpoint path loss model, PER model, 

simple obstacle shadowing, two ray interference model, and nakagami fading. In terms 

of internal responsibilities, it determines when a transmission is over by initiating a radio 

switch to alert mac module. It also receives the airframe and the channel sense request. 

The physical layer communicates via messages to the mac layer with channels, and it 

also directly interacts with the decider.  

3.4.9.2  MAC Layer 1609.4 

In this section we discuss  some of the responsibilities in the MAC layer, signal 

management, and channel transmissions. The MAC layer sends a frame, attaches a 

signal, creates a signal, sets the guard interval active, changes the service channel. 
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Additionally, itsets the transmission power and sets the mcs. According to the definition 

of the mac layer, the mcs is the standard for modulations and coding scheme. It helps 

attach a signal, create a signal, make the guard interval and change service channel. 

Internally, it sends the signal, creates the queue, and places the packet in the queue. 

After, it starts and stops content and can revoke a transmission. The mac layer also 

contains channel integration. It makes it possible to communicate with the service 

channel. It creates and attaches a signal while simultaneously managing the state of the 

channel, given it is  busy internally or idle. It also manages the state of the 

acknowledgement, by receiving the transmission when the acknowledgment has timed 

out. 

3.4.9.3  Decider Module 80211p  

The decider module processes the new signal. First, it calculates the channel Sense 

RSSI. It then calculates the signal both with interface and without interface. It verifies 

that the signal power is strong to submit, and then proceeds to verify that the packet is 

in tact.  Once the signal is verified, the decider module can calculate the CCA threshold. 

Once the packet is verified, it will activate the channel upon the signal’s end. The 

Decider’s documentation indicates that it  is the Decider’s responsibility to classify 

signal and transmission errors including he classified cases in which the signal has 

noise or no noise. It also classifies packet transmission errors. 
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3.5  Setup  

In this section covers how to setup up Veinst with OMNET++. The instructions to set up 

SUMO, Catch and some extra options. The following list represents the tech stack used 

for our simulations: 

● Debian GNU/Linux 9 (stretch) 64-bit 

● Omnetpp-5.2.1 

● Sumo 0.30 

● Instant Veins 4.6 

● VMWare fusion  

● Catch (Unit Testing Framework) 

3.5.1  Setup Veins with OMNET++  

The fastest way to setup Veins is via the instant veins image which is an image of 

debian virtual machine. The image is then imported into a software to virtualize 

operating systems. The image includes the dependencies and setup up Veins, 

OMNET++  and SUMO along with any of the required dependencies. Because we used 

a mac operating system, we chose VMware fusion to run instant Veins.  

● Source code : https://github.com/surod22/VeinsVanetSimulation-2018 

● Configuration file :  https://github.com/surod22/VeinsVanetSimulation-2018/blob/

master/vanets/simulations/omnetpp.ini 

In following section will describe how to setup Veins. 

https://github.com/surod22/VeinsVanetSimulation-2018
https://github.com/surod22/VeinsVanetSimulation-2018/blob/master/vanets/simulations/omnetpp.ini
https://github.com/surod22/VeinsVanetSimulation-2018/blob/master/vanets/simulations/omnetpp.ini
https://github.com/surod22/VeinsVanetSimulation-2018/blob/master/vanets/simulations/omnetpp.ini
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3.5.2  Setup Veins 

We installed Veins a linux and a macOS . Both installations introduces many linking 

errors. After much investigation the setup used virtual machine image called Instant 

Veins. 

1. Download  Instant Veins  
a. http://veins.car2x.org/documentation/instant-veins/ 
b. https://github.com/sommer/instant-veins 

2. Mac -  Install VMWare fusion or otherwise identify the best VM management 

software for your operating system.  

3. Import the debian image to VMware fusion.  

4. Expand partition on VM - The default partition is not enough. We recommend  

importing the image first, stopping the virtual machine, and expanding the disk 

space. Next, the volume must be expanded to enable use of the expanded 

partition on the disk. You can either do this via the command line using fdisk or 

with a partition manager. We found the gparted partition manager to be the 

fastest option. Tasks to do this are :  

a. Download gparted to VM: https://gparted.org/download.php 

b. Expand volume  

c. Restart VM  

Note: To expand veins, use the simple or compound modules of the existing example. 

The corresponding classes must be subclassed, and the virtual modules must be 

implemented. 

3.5.3  Setup SUMO 

http://veins.car2x.org/documentation/instant-veins/
https://github.com/sommer/instant-veins
https://gparted.org/download.php
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Because Instant Veins was used and it was already set up on the virtual machine, there 

is no further setup. If you would like to install SUMO separately, more information is 

provided here: http://veins.car2x.org/tutorial/.  [39]  

Directory Content  

● vanets/ - Simulation tracking parameters as channel utilization, collisions, 

neighbors, packets (sent, received and dropped), beacons. This simulation is a 

model on top of veins that is implemented by subclassing veins.  

● veins/ - Open source vehicular networks framework with logging for debugging. 

Run SUMO Socket  

Open terminal window 
$ cd vanets/ 

$ ./sumo-launchd.py -vv -c sumo-gui

Run Veins Simulation with Omnet++ 

1. From  omnet++ IDE (eclipse), select the file /vanets/src/omnetpp.ini 

2. Select the green arrow icon to run. 

3. From the pop up window, select the config file to run. The description is on title. 

4. Click the run button on top left corner. (NOTE: It is usually faster.) 

5. Stop the simulation by clicking the stop button.lick on stop button 

6. Select the flag button to conclude simulation. 

7. Once the simulation is finished, it will generate the result files under /vanets/

src/results/ . 

In the next section will instructions to set up the Catch framework. 

http://veins.car2x.org/tutorial/
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3.5.4  Setup Catch Test Framework 

Theres is a couple steps to setup Catch. First the framework needs to be is installed 

and built. Once it is setup the user can run the tests.  

Install Catch: 

$ cd vanets/test/Catch2/  

$ git clone https://github.com/catchorg/Catch2.git  

$ cd Catch2  

$ cmake -Bbuild -H. -DBUILD_TESTING=OFF  

$ sudo cmake --build build/ --target install

Run Tests: $ cd vanet/test/

Compile  

$ g++ -std=c++11 -Wall -Icatch2/catch.h -I../src/

ChannelService.h -o ChannelServiceTest 

ChannelServiceTest.cc && ChannelServiceTest —success

Run

$ gcc ChannelServiceTest.cc -o ChannelServiceTest

Note: Install Cmake if needed  https://cmake.org/install 

Optional Procedures:  

● Export your own Open Street Map with the instructions in the link below 

 https://www.openstreetmap.org/#map=5/37.666/-92.703.  

https://cmake.org/install/
https://www.openstreetmap.org/%23map=5/37.666/-92.703
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● Add additional metrics   

a. Define variable in header file  

b. Initialize header in c++ file 

c. Find out where this method needs to be called to be recorded 

d. Call method 

e. Create method for functionality of metric 

f. Record variable in finish method 

g. Run to make sure it is recorded in the final .sca results file. 

3.5.5  Simulation Network Parameters 

In the figure below, you will find the network and traffic parameters used to configure the 

simulation. Some of the parameters were already the default configuration. 

Table 3.1 Realistic Traffic and Map Parameters. 

My scenario Source Location

Number of Vehicles in 
simulation  

Low = 137 vehicles 
High = 285 vehicles 

*.rou.xml

Vehicle mobility mode Gaussian Kraus *.rou.xml

Vehicle length cars = 5m,  
Note: trucks not implemented yet

*.rou.xml

Min gap 2.5 *.rou.xml 

Max  
acceleration 

2.6 m/ms^2 *.rou.xml

Max speed 33.33m/ms *.rou.xml
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Table 3.2 Simulation network parameters based on standards. 

In case there is further questions, feel free to reach me via the repository https://github.com/

surod22/VeinsVanetSimulation-2018/. This chapter covered the setup used for the vehicle 

scenario. Chapter four will cover the research features we added.  

Parameter My Scenario Source location 

Carrier frequency 5.890e9 MHz Omnetpp.ini , config.xml                                                                                                                                                               

Data Rate 6 Mbps Omnetpp.ini  as bitrate

Number of channels 1CCH   
4 SCH 

omnetpp.ini 
*.nic.mac1609_4.useService
Channel = true

Beacon Interval 1 s Omnetpp.ini

Beacon length (B), 
Service Packet length (P)

B=3200 bits = 400 Bytes  
P=8000 bits = 1000 Bytes

Omnetpp.ini

Maximum  
Transmission power 

100mw Omnetpp.ini for phy80211p

Sensitivity -89dBm omnetpp.ini

CWmin - Minimum Content 
Window  
CWmax - Maximum 
Content Size

15 
1023 

Consts80211p.h 
used in the mac1609_4 class

Simulation length 150 sec omnetpp.ini

Periodic switching every 
50ms CH-> SCH

50 ms 

Header length 80 bit 

Accident time Start : 10s  
End : 30s

https://github.com/surod22/VeinsVanetSimulation-2018/
https://github.com/surod22/VeinsVanetSimulation-2018/
https://github.com/surod22/VeinsVanetSimulation-2018/
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CHAPTER 4: Research Features  
!  

This chapter covers the contributions made to the research topic: including integration 

of  the testing framework Catch, SCH randomization, MAC layer beacon transmission, 

vehicle neighbors tracking and channel utilization tracking per CCH/SCHs.  

4.1 Catch Framework Integration 

This section will cover importance to adding tests to the codebase. Two of the testing 

frameworks integrated. Following with details on the selected framework Catch and why 

it is recommended. 

4.1.1  Cxxtest  

Integration tests are a strong source to validate the expected end to end behavior, when 

expanding a codebase . By the testing pyramid from Martin Fowler, it is recommended 

to have a small number of integration tests, followed by bigger set of functional tests 

and a larger set of unit tests. Ideally these should be added via test driven development. 

The veins framework used, included a set of integration tests. The integration test were 

complex due to extra layer of the ned modules. We wanted to expand the framework 

with low risk. Hence, we looked into integrating a testing framework for unit tests. 

Initially CxxTest was selected for its quick integration [13].  

 After the review, CxxTest was consequently complicated for expanding the 

codebase. It focused on using an integration tests. Once getting back into extracting the 

added features and testing the code. It turned out too redundant to create a test, as it 
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was using the output of the scalar files to verify outcome. We performed a further spike 

to identify the easiest unit testing framework to integrate. While reviewing the 

frameworks, another framework known as Catch was repeatedly recommended.  

4.1.2  Catch 

Benefits of catch include easy integration without extra dependencies and fast test 

setup. Catch was developed to have simpler assertions. To integrate the framework to 

the simulation, the package download is for a header file. After it is downloaded, it is 

built with a command. After its build is complete, the header is added to the testing class 

like so “#include <catch2/catch.hpp>” [16]. The test can then be compiled and executed. 

What made Catch so ideal, was the feature to add only the header file to the new class/

module, and extracting that single responsibility to this class [16].  There was no need to 

link to the original source files. This prevented any common linking errors to the 

resources. Having tested these features externally, there was assurance on the 

expected functionality.  

This feature is highly important, as it makes it easier for other users to expand 

our simulation or Veins for their own research. We worked with OMNET++ and Veins 

several years. We have strong confidence that Catch was the best solution during this  

period. We encourage further users to use this testing framework to test their research 

functionality while using Veins. Next we will be covering how we randomized the SCH.  
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4.2  Service Channel Randomization 

Before this scenario, the packets were only sent by default to one service channel, 

meaning the channel selection was static. The same single service channel was 

selected per every node on the simulation. The contributed feature was doing a random 

channel selection per node. The feature was added at the MAC layer. This happened 

when the vehicle internally handled the next channel switch.   

Figure 4.1 Randomizing the selection of the the service channel.  

Figure 4.1 shows the functionality to randomize the service channel. After the feature 

was added, the data in Table 5.3 displayed that the SCH4 had zero packets for all 

vehicles. The logic below seemed to have the appropriate functionality. We looked at  

where the method was called and found the mySCH = randomizeSCH(1, 4). With this 

logic, It is not possible to generate a value of four with a min of one and max of four. 

This is the how the SCH4 was never used. We recognized this is a bug and can be 

fixed by replacing the max a value of five. This feature was added to simulate when 

int Mac16094Metrics::randomizeSCH( int min, int max) {

    srand((unsigned)time(NULL));
    int randomSCHNumber= rand()%( max - min) + min;
    int randomSCHEnum = 0;

    switch (randomSCHNumber) {
        case 1: randomSCHEnum = Channels::SCH1; break;
        case 2: randomSCHEnum = Channels::SCH2; break;
        case 3: randomSCHEnum = Channels::SCH3; break;
        case 4: randomSCHEnum = Channels::SCH4; break;
        default: throw cRuntimeError("Random Service Channel 
must be between 1 and 4"); break;
    }
    return randomSCHEnum;
}
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using different service channels. Some previous schemes focused on the optimized 

selection of the next service channel. This feature can used as a base case when 

comparing to such schemes. If someone plans to use this feature, the user must verify 

that the appropriate min and max values are set. The following section will cover the 

details of the beacon transmission to the MAC layer.  

4.3  MAC Layer Beacon Transmission 

The workflow of packets is where sending and receiving endpoints occur in each of the 

protocol layers. We summarize the lifetime of a packet as follows: When a step is 

triggered by the TraCI manager, a signal is received by the wave application layer. Upon 

signal receipt, the packet updates its state of the vehicle from the mobility module. The 

state includes information like  the vehicle’s position and speed. When triggered to step, 

the channel access module will register the vehicle’s Network Interface Card (Nic) with 

the connection manager. Once the network interface card is registered, the list of other 

nics within range are updated. This creates a network of communication. The lifetime of 

a packet begins at the application layer. When the Wave application layer is initiated, it 

schedules a wave short acknowledgement and beacon to be sent. As the message gets  

triggered internally, it is sent down to the outgoing gate of the lower layer. By 

referencing the Car module, we can see that the lower layer out gate is connected to 

the upper layer in gate of the Nic module. In the Nic module, we can see its upper layer 

in gate is connected to the upper layer in of the mac layer. Once the mac receives the 

message, it can manage signal state, channel rotation, transmission intervals, and 

message state. During the transmission handling, the mac can communicate with the 
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physical layer to calculate the signal quality. The physical layer along with the decider 

will be the decision makers for whether the packet is identified as successfully 

transmitted or not.  

In the Veins framework used, the WAVE application layer was recording when 

the beacons were received. Based on the measures of the Mac layer, the traffic related 

to beacon messages seemed much smaller than expected. While reviewing the code 

base, the findings where the wave short messages and basic safety messages were 

recorded on the Wave application layer of the simulation due to the application layer 

being the first layer component to receive a message from a node. At the same time, 

the beacons were not being sent down to the Nic and Mac layer. A functionality was 

added to send the beacon down to the Nic Mac layer and to be receive on the Mac layer 

end. This was verified by adding message metrics on the Mac layer. Looking at the 

channel utilization layer we can, before the feature, were getting CCH channel utilization 

values between 0.005597 to 0.380212. After the feature was added, the CCH channel 

utilization values were between 0.08774 and 11.409037.  In addition, the time it took the 

the simulation to run increased. This feature was crucial to provide a better analysis. 

4.4 Vehicle Neighbors Tracking 

The number of neighbors is recorded when receiving a frame from the lower layer. This 

only happens when the packet is for the address of that node or if it is a broadcast 

message. It occurs at the receiving end of the simulation. Each time a frame is received, 

the frame contains the sender ID. The received frame is defragmented to a packet. 

Given the destination of the packet is the same as the existing node, the packet is 
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received and the packet sender ID is recorded into an array of unique values. Provided 

the sender ID does not exist in the array, the ID is added to the array. In the case where 

the sender ID does exist, the frequency is incremented for that index value. The goal is 

to have a list of the neighbors at the end of the simulation for that specific node with  the 

possibility of being able to display the number messages received from that specific 

sender.  

Table 4.1 Number of Neighbors per Vehicle ID. 

After implementing this feature we found that each vehicle was only receiving 

messages from one vehicle. Table 4.1 displays the day for the number of vehicles. The 

first row is the vehicle ID. The second row is the number of vehicles found for the 

vehicle. To confirm that the number of neighbors feature worked properly, we looked 

addresses in the frame. For each frame received the source address was recorded for  

that vehicles mac address. Other variables recorded are displayed in the first column of 

Table 4.1. As in the Table 4.2, we can see that there was only one unique source 

address of -42537770 .  

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
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Table 4.2 Address values for WSMs and Mac1609_4 frames. 

As mentioned earlier, the tracking of neighbors was implemented when receiving 

a packet or broadcast for that node. The destinations address did not match the 

vehicles address and did match the BROADCAST’s address. Therefore, the neighbor 

recorded was for broadcast messages and no packets were received at the Mac layer. 

This will explain the zero values in the column Received Unicast Packets at a later 

Table 5.5. Additionally, it was only one neighbor because all of the frames had a default 

source address of  -42537770. A further investigation was done to find the cause of 

this.The existing code base only set the recipient address with a default value of zero. 

The recipient address value was set at the Wave Short Message via the populateWSM 

method shown below. The Wave Short Message(WSM) was populated in the 

TraCIDemo11p module (TraCIDemo11p.cc) and the BaseWayApplLayer module 

(BaseWaveApplLayer.cc). 

Vehicles 
address

WSM 
Sender 
Address 

WSM 
Receiver  
Address

MAC 
Packet 
Source 
Address 

MAC 
Packet 
Destinatio
n Address 

BROADCAS
T Address 

Code myMac 
Address 

wsm-
>getSen
derAddre
ss()

wsm-
>getRecip
ientAddre
ss() 

macPkt-
>getSrcAdd
r() 

macPkt-
>getDestA
ddr() 

LAddress::L2
BROADCAS
T() 

19 21072266
64

205 0 -42537770 -1 -1

16 14480961
58

205 0 -42537770 -1 -1

17 19068503
53

205 0 -42537770 -1 -1

18 -5992772
80

205 0 -42537770 -1 -1
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 Figure 4.2 Existing BaseWaveApplLayer method that populates WSM.  

void BaseWaveApplLayer::populateWSM(WaveShortMessage* wsm, int 
rcvId, int serial) {
    wsm->setWsmVersion(1);
    wsm->setTimestamp(simTime());
    wsm->setSenderAddress(myId);
    wsm->setRecipientAddress(rcvId);
    wsm->setSerial(serial);
    wsm->setBitLength(headerLength);

    if (BasicSafetyMessage* bsm = 
dynamic_cast<BasicSafetyMessage*>(wsm)) {
        bsm->setSenderPos(curPosition);
        bsm->setSenderPos(curPosition);
        bsm->setSenderSpeed(curSpeed);
        bsm->setPsid(-1);
        bsm->setChannelNumber(Channels::CCH);
        bsm->addBitLength(beaconLengthBits);
        wsm->setUserPriority(beaconUserPriority);
    }
    else if (WaveServiceAdvertisment* wsa = 
dynamic_cast<WaveServiceAdvertisment*>(wsm)) {
        wsa->setChannelNumber(Channels::CCH);
        wsa->setTargetChannel(currentServiceChannel);
        wsa->setPsid(currentOfferedServiceId);
        wsa-
>setServiceDescription(currentServiceDescription.c_str());
    }else {
        if (dataOnSch) wsm->setChannelNumber(Channels::SCH1); 
        //will be rewritten at Mac1609_4 to actual Service 
Channel. 
        //This is just so no controlInfo is needed
        else wsm->setChannelNumber(Channels::CCH);
        wsm->addBitLength(dataLengthBits);
        wsm->setUserPriority(dataUserPriority);
    }
}
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Figure 4.3 TraCIDemop location where WSM is populated. 

void TraCIDemo11p::handlePositionUpdate(cObject* obj) {

    BaseWaveApplLayer::handlePositionUpdate(obj);

    // stopped for for at least 10s?
    if (mobility->getSpeed() < 1) {

        if (simTime() - lastDroveAt >= 10 && sentMessage == 
false) {

            findHost()-
>getDisplayString().updateWith("r=16,red");
            sentMessage = true;
            WaveShortMessage* wsm = new WaveShortMessage();
            populateWSM(wsm);
            wsm->setWsmData(mobility->getRoadId().c_str());

            //host is standing still due to crash
            if (dataOnSch) {

                startService(Channels::SCH2, 42, 
                                 "Traffic Information 
Service");

                //started service and server advertising, 
                //schedule message to self to send later
                
scheduleAt(computeAsynchronousSendingTime(1,type_SCH),wsm);

            }
            else {

                //send right away on CCH, 
                //because channel switching is disabled
                sendDown(wsm);
            }
        }
    }
    else {
        lastDroveAt = simTime();
    }
}
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Figure 4.4 BaseWaveAppllLayer location where WSM is populated. 

 We assumed this was done to simplify the IP address implementation. For future 

research we recommend an extension to this. It is important to understand and how 

many messages are received by each node. If this feature is added would be able to 

verify where the total of messages received are coming from. As well as have a more 

void BaseWaveApplLayer::handleSelfMsg(cMessage* msg) {

    switch (msg->getKind()) {

      case SEND_BEACON_EVT: {
        BasicSafetyMessage* bsm = new BasicSafetyMessage();
        populateWSM(bsm);
        sendDown(bsm);
        scheduleAt(simTime() + beaconInterval, sendBeaconEvt);
        break;
      }

      case SEND_WSA_EVT:   {
        WaveServiceAdvertisment* wsa = new 
WaveServiceAdvertisment();
        populateWSM(wsa);
        sendDown(wsa);
        scheduleAt(simTime() + wsaInterval, sendWSAEvt);
        break;
      }

      default: {
        if (msg)
            DBG_APP << "APP: Error: Got Self Message of 
unknown kind! Name: " << msg->getName() << endl;
        break;
    }
  }
}
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realistic representation of the message traffic for analysis. 

4.5 Channel Utilization Tracking 

Since the module of a node has the features to send and receive, collisions can happen  

at the sender and the receiver side. Some existing variables to track the types of 

collisions included dropped packets, SNIR lost packets, and RXTX lost packets. 

Packets are considered dropped or lost during different scenarios. A packet qualified as 

a dropped packet in the scenario in which the packet was to be added to queue. Ifn the 

size of the queue was greater or equal to the max queue size, the packet was dropped. 

This happens when receiving a WSM from the upper layer. In the case where packets 

are lost, the collisions occur when receiving a message from the lower control. An SNIR 

lost packet scenario occured when the packet was identified as having bit errors or to 

have a collision. For a TXRX lost packet, this occurs as a packet was being received 

while simultaneously sending. 

One thing to consider is how the base physical layer receives an airframe. It 

called the decider to process the signal. Next, it checked if the frame was detected by 

the radio card. If it was, when the radio is in transmission state, the packet was 

identified as receiving while sending. It followed by verifying that the signal if the packet 

had enough power to transmit.  

The probability of a packet error was separated by a header and packet error. 

The success rate of each error is computed considering the bitrate, bandwidth, 

minimum signal interference, and payload bitrate. The values for each accordingly were 

as follows: 
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Table 4.3 Variables to categorize a message in Decider80211p 

Channel utilization was defined to be the compound time spent transmitting 

packets at each channel. To map this to the simulation, each Wave Short Message has 

a duration time. The duration time for a packet is the configured time for that component 

to simulate as transmission time. We recorded channel utilization by tracking the time it 

took for each message being transmitted in the CCH and SCHs, provided that the 

channel was active and the packet was successfully transmitted.  The time per packet 

was verified by recording the duration times for different components of the message. 

For example the message body had a duration time of 0.000193 ms as below. There 

was also a duration time of 0.000032 ms for the PHY_HDR_PREAMBLE_DURATION.  

Frame 
category 

COLLISION NOT_DECODED  COLLISION NOT_DECODED

Acceptance 
Criteria 

Given 
collectCollisio
ns is set, 
When the header 
error is due to 
interference, then it 
is a collision. 

Give there was no 
interference, when 
the packet header 
had an error, then 
then unable to 
decoded the 
packet.

Given there was 
not a header error, 
when the error was 
due to interference, 
then the frame is a 
collision.

Given there was 
not header error, 
when the packet 
had an error, then 
unable to decode 
it. 

Error Type 
Variable

headerNoError - 
header success rate 
with interference 
snirMin

headerNoErrorSn
r -  
header success 
rate without 
interference 
snirMin

packetOkSinr - 
packet success 
rate with 
interference 
snirMin

packetOkSnr - 
packet success 
rate without 
interference 
snirMin

Bitrate PHY_HDR_BITRAT
E = 3000000

PHY_HDR_BITRA
TE = 3000000

Packet bitrate = 6 
Mbps

Packet bitrate = 6 
Mbps

Bandwidth BW_OFDM_10_MH
Z = 1

BW_OFDM_10_M
HZ = 1

BW_OFDM_10_M
HZ = 1

BW_OFDM_10_M
HZ = 1

Payload 
bitrate

PHY_HDR_PLCPSI
GNAL_LENGTH = 
24

PHY_HDR_PLCP
SIGNAL_LENGTH 
= 24 

lengthMPDU = 
PHY_SIGNAL_LE
NGTH + 
PHY_PSDU_HEA
DER + Payload 

lengthMPDU = 
PHY_SIGNAL_LE
NGTH + 
PHY_PSDU_HEA
DER + Payload



!60

Both the PHY_HDR_PLCSIGNAL_DURATION and the T_SYM_80211P had a duration 

time of 0.000008 ms. The times were verified at the application, physical, and mac  

layer. Based on the simulation code, the duration time for a message includes the 

duration time of header constants. Some of these headers are shown in Figure 4.3. 

Below is a list of some of the message components found. 

The sending duration time was recorded to confirm that the number of messages 

sent/received made sense. The control channel handles much of the load in the 

simulation scenario. We concluded that most of the service channels are underutilized. 

Collectively, the amount of beacons being generated was much greater then the amount 

of packets. Perhaps a further study would look into the beacon rate, to find the least 

beacon rate necessary to deliver safety messages.  

● PHY_HDR_PREAMBLE_DURATION: 0.000032 ms

● PHY_HDR_PLCSIGNAL_DURATION: 0.000008 ms

● T_SYM_80211P: 0.000008 ms

● Sending Duration Time 0.000193 ms (Raw value for 

message body) 
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CHAPTER 5: Multi-Channel Analysis 
!  

In this section, we analyze the patterns found on the results for the multi-channel 

operation. The scenario analyzed, mimics the traffic of 29 vehicles over a simulation 

time of 150 ms. A vehicle was triggered to simulate an accident starting at 10 ms and 

ending at 30 ms. The duration of 20 ms was not a direct representation for the time of a 

real accident.  Figure 4.3 is part of the implementation for the accident. The vehicle is in 

crash mode for at least 10 ms, with the remaining as traffic jam. The idea was to 

replicate a network congestion in the scenario of a traffic congestion. The SimTime unit 

is an interval step in the simulation vs simulating real time. For example if the number of 

operation per simTIme step increased, the sim step would take longer than a real time 

ms. Both the time and the number of vehicles was generated by the slow overhead 

created after the feature of handing the beacons to the mac layer was added. We will be 

covering the message delivery for the application layer mac layer and road traffic. The 

MAC layer is where the multi-channel operations are integrated. The application layer 

hands the messages to the MAC layer. We analyse the delivery of these components to 

identify patterns and points of impact. 

5.1  Single Vehicle Message Delivery 

Before moving the specific evaluations in each of the layers, it is important to review the 

data for the base case scenario of one vehicle. Table 5.1 illustrates the data for frames  

generated, received and sent message. This was considered the base case as a set of 

vehicles is evaluated in other sections. This also simplified the basic patterns expected 
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within the larger set. This vehicle was selected as it used the majority of the  service 

channels. This is information is in channel utilization data of Table 5.3.  

Table 5.1  Beacon and packet delivery data for a single vehicle.  

Figure 5.1 displays the raw data for vehicle ID 20. The data is separated by MAC layer, 

application layer and physical layer. The definitions for the metrics like SNIRLost, WSM 

and Packets can be found in Table 5.3. For example a Basic Safety Message is  

received and generated at the application layer and it is handed to the MAC layer as a 

Broadcast. A pattern in Vehicle 20 is the large number of beacons low number of 

packets generated. Also it is confirmed that the same number of beacons is received in 

the application and MAC layer. 

Layer Transmission 
type

WSMs 
(data)

BSMs 
(beacons)

WSAs 
(ack)

Application Generated 3 46609 0

Application Received 15 34864 0

Phy80211p Collisions N/A 46290 N/A

Layer Transmission 
type

Packets 
(data)

Broadcasts 
(beacons)

Ack 
(ack)

Nic.Mac16094 Received N/A 34879 N/A

Nic.Mac16094 Sent 13449 N/A 0

Nic.Mac16094 SNIRLost 235795 N/A N/A

Nic.Mac16094 RXTXLost 44688 N/A N/A

Nic.Mac16094 TotalLost 280483 N/A N/A

Nic.Mac16094 Dropped 33163 N/A N/A

Nic.Mac16094 Throughput 
Count

N/A 34879 N/A
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scalar RSUScenario.node[20].appl generatedWSMs 3  
scalar RSUScenario.node[20].appl receivedWSMs 15  
scalar RSUScenario.node[20].appl generatedBSMs 46609  
scalar RSUScenario.node[20].appl receivedBSMs 34864  
scalar RSUScenario.node[20].appl generatedWSAs 0  
scalar RSUScenario.node[20].appl receivedWSAs 0  
scalar RSUScenario.node[20].appl beaconInterval 0.1  
scalar RSUScenario.node[20].nic.phy80211p busyTime 1.006611487278  
scalar RSUScenario.node[20].nic.phy80211p ncollisions 46290  
scalar RSUScenario.node[20].nic.mac1609_4 throughputMetricMac 233.10214965581  
scalar RSUScenario.node[20].nic.mac1609_4 throughputMbps 0.20515234713503  
scalar RSUScenario.node[20].nic.mac1609_4 throughputControlMbps 0  
scalar RSUScenario.node[20].nic.mac1609_4 receivedFramesLowerMsg 34879  
scalar RSUScenario.node[20].nic.mac1609_4 receivedBitsLowerPackets 0  
scalar RSUScenario.node[20].nic.mac1609_4 receivedBitsLoserWsm 0  
scalar RSUScenario.node[20].nic.mac1609_4 packetsNotForMe 0  
scalar RSUScenario.node[20].nic.mac1609_4 receivedTotalBits 30696880  
scalar RSUScenario.node[20].nic.mac1609_4 collisionsPktNonDecoded 0  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationCCH 3.240966  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationSCH1 0.000465  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationSCH2 0.000465  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationSCH3 0.000465  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationSCH4 0  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationHPPS 0  
scalar RSUScenario.node[20].nic.mac1609_4 chUtilizationCRIT_SOL 0  
scalar RSUScenario.node[20].nic.mac1609_4 previousSignalQualityCCH 100  
scalar RSUScenario.node[20].nic.mac1609_4 previousSignalQualitySCH1 100  
scalar RSUScenario.node[20].nic.mac1609_4 previousSignalQualitySCH2 100  
scalar RSUScenario.node[20].nic.mac1609_4 previousSignalQualitySCH3 100  
scalar RSUScenario.node[20].nic.mac1609_4 previousSignalQualitySCH4 0  
scalar RSUScenario.node[20].nic.mac1609_4 chPacketsCCH 26547  
scalar RSUScenario.node[20].nic.mac1609_4 chPacketsSCH1 2  
scalar RSUScenario.node[20].nic.mac1609_4 chPacketsSCH2 2  
scalar RSUScenario.node[20].nic.mac1609_4 chPacketsSCH3 2  
scalar RSUScenario.node[20].nic.mac1609_4 chPacketsSCH4 0  
scalar RSUScenario.node[20].nic.mac1609_4 numberOfNeighbors 1  
scalar RSUScenario.node[20].nic.mac1609_4 ReceivedUnicastPackets 0  
scalar RSUScenario.node[20].nic.mac1609_4 ReceivedBroadcasts 34879  
scalar RSUScenario.node[20].nic.mac1609_4 SentPackets 13449  
scalar RSUScenario.node[20].nic.mac1609_4 SentAcknowledgements 0  
scalar RSUScenario.node[20].nic.mac1609_4 SNIRLostPackets 235795 
scalar RSUScenario.node[20].nic.mac1609_4 RXTXLostPackets 44688  
scalar RSUScenario.node[20].nic.mac1609_4 TotalLostPackets 280483  
scalar RSUScenario.node[20].nic.mac1609_4 DroppedPacketsInMac 33163  
scalar RSUScenario.node[20].nic.mac1609_4 TooLittleTime 496  
scalar RSUScenario.node[20].nic.mac1609_4 TimesIntoBackoff 22293  
scalar RSUScenario.node[20].nic.mac1609_4 SlotsBackoff 32938  
scalar RSUScenario.node[20].nic.mac1609_4 NumInternalContention 0  
scalar RSUScenario.node[20].nic.mac1609_4 totalBusyTime 18.330632601611  
scalar RSUScenario.node[20].nic.mac1609_4 throughputMetricMac:last 
233.10214965581  
attr source throughputSignalMac  
attr title "throughputMetricMac, last"  
scalar RSUScenario.node[20].nic.mac1609_4 throughputMetricMac:count 34879  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attr source throughputSignalMac  
attr title "throughputMetricMac, count"  
Scalar RSUScenario.node[20].nic.mac1609_4 throughputMetricMac:sum 
4698399.7681026  
attr source throughputSignalMac  
attr title "throughputMetricMac, sum"  
scalar RSUScenario.node[20].nic.mac1609_4 throughputMetricMac:mean 
134.70569018901  
attr source throughputSignalMac  
attr title "throughputMetricMac, mean"  
scalar RSUScenario.node[20].veinsmobility startTime 98000  
scalar RSUScenario.node[20].veinsmobility totalTime 51000  
scalar RSUScenario.node[20].veinsmobility stopTime 149629  
scalar RSUScenario.node[20].veinsmobility minSpeed 0  
scalar RSUScenario.node[20].veinsmobility maxSpeed 9.8554973309629  
scalar RSUScenario.node[20].veinsmobility totalDistance 80.260005883134  
scalar RSUScenario.node[20].veinsmobility totalCO2Emission 67.284878665944 

Figure 5.1  Raw data recorded for vehicle # 20. 

 One thing to consider in Figure 5.1 is the busy time for each of the layers. The 

physical layer had a busy time of 1.006611487278 ms, and the mac layer had a  busy 

time for 18.330632601611 ms, while the vehicle was active for a total time of 51 ms. 

Also, although throughput (mbps) was recorded, it was more important to focus on the 

message delivery because it indicated a better metric to identify the state of the 

protocol. The following section will cover an analysis of message delivery in the 

application layer against the MAC layer.  

5.2 Analysis: Application Layer Message Delivery  

 The message delivery metrics recorded both occurred at the application and 

mac layer due to the fragmentation of the message type. In the application layer, 

messages are categorized as Wave Short Messages (WSMs) , Basic Safety Messages 

(BSMs) and Wave Service Advertisement (WSA). In the MAC layer, they are identified 

as packets data type or broadcast. To identify where the messages drop, we 
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investigated the values of the messages received at each layer. Table 5.2 is sorted by 

the simulation time that each vehicle started. When the simulation number of vehicles 

was calculated, we found that all vehicles had one neighbor. The neighbor is for 

broadcast messages as mentioned in sec. 4.3, near Table 4.2 we explain the single 

neighbor is because the receiver address is not set when populating a WSM or BSM. 

This missing feature is important to understand the relationship between neighbors and 

message delivery. We highly recommended the implementation of this feature.  

Vehicle 
start time 

(ms)

Vehicle 
ID

Generated 
WSMs

Received 
WSMs

Generated 
BSMs

Received 
BSMs

Generated 
and 

WSAs

Sent 
Packets

Received 
Frames 

LowerMsg
1 3 3 24 82197 60235 0 26772 60259

3 1 1 34 176243 132304 0 46094 132338

6 28 1 34 176377 132490 0 45810 132524

11 29 1 34 174907 131727 0 45275 131761

12 2 1 34 180091 136031 0 45749 136065

17 4 1 34 163860 124711 0 42720 124745

22 15 1 34 145210 110476 0 39050 110510

27 21 1 29 134245 101742 0 36096 101771

31 22 1 29 122764 93260 0 34132 93289

36 23 1 29 112233 84745 0 31637 84774

41 24 3 27 106640 80386 0 30077 80413

46 25 3 27 98929 74432 0 28429 74459

50 26 3 27 95028 71622 0 26962 71649

83 27 1 17 57372 42961 0 16590 42978

86 5 1 18 53937 40752 0 15967 40770

88 6 1 18 52288 39401 0 15521 39419

90 7 1 17 51197 38395 0 14917 38412

92 8 1 18 49138 36995 0 14471 37013
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Table  5.2 Message handling metrics for application and MAC  layer.  

In terms of message delivery at the application layer. In the data of Table 5.2, the 

network for the accident was noticed as the number of beacons increases for vehicle ID 

3. The peak of beacon generation is at start time 12 ms. We observed the received 

BSMs in the application layer came fairly close to the Received Frames in the Mac 

layer. Also, of all the set of vehicles 1, 28 , 29 , 2, 4, 15 and 21 that became active 

around the time of the accident had a higher number of received packets and BSMs. 

We will now review some of the patterns found in the message delivery for the Mac 

layer. 

5.3 Analysis: MAC Layer Message Delivery 

The mac layer passes down the message to the physical layer, which is later handed to 

the decider to check the signal and state of the air frame.  The decider categorizes the 

package into either a DECODED, NOT_DECODED, or COLLISON [code, Decider]. 

Decoded is defined as packet was received. Not decoded indicates that there was low 

signal (power), causing the packet to have bit errors. When a packet is categorized as 

94 9 1 17 46725 35104 0 13984 35121

96 10 1 18 42451 31892 0 12888 31910

98 11 3 15 46609 34864 0 13449 34879

101 12 3 15 47120 35239 0 13161 35254

103 13 1 17 45417 33976 0 12801 33993

106 14 1 17 43439 32523 0 12071 32540

109 16 1 17 40230 30219 0 11158 30236

140 17 0 0 7884 6580 0 2299 6580

143 18 0 0 4701 4287 0 1443 4287
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NOT_DECODED, the MAC layer labels it as lost.  Table 5.3 shows the values for the 

lost packets under SNIR lost packets and TXRX lost packets. The collision category is a 

packet having bit errors due to a collision.  

Table 5.3  Message type definitions for VANETS, MAC and Decider.  

The goal of the metrics in Table 5.3 was to visualize the delivery scope of beacons 

(broadcasts) and data messages (packets) for the Mac layer with the multi-channel 

operation.  As well as the relationship of categorizing frames in the decider.

VANETs Message 
successfully 
delivered

Message 
un-successfully 
delivered

Message 
un-successfully 
delivered

Safety 
message 

Non-safety 
message

MAC Received RXTX Lost or  
SNIR Lost

Collision Broadcast Packet

Decider Frame 
DECODED

Frame 
NOT_DECODE
D  
due to bit errors 

Frame with bit 
errors due to a 
collision 

Frame 
of type beacon 

Frame 
of type 
data

Vehicle  
Start  
Time

ID Received 
Broadcast

s

Received 
Unicast 
Packets

Sent 
Packets

Dropped 
Broadcasts 

RXTX 
Lost 

Packets

SNIR 
Lost 

Packets

Total 
Lost 

Packets

N 
collisions

1 3 60259 0 26772 55428 27461 159452 186913 59596

3 1 132338 0 46094 130149 94739 369737 464476 72203

6 28 132524 0 45810 130568 93692 370911 464603 72194

11 29 131761 0 45275 129633 95682 369202 464884 72111

12 2 136065 0 45749 134343 96912 362436 459348 66483

17 4 124745 0 42720 121141 93644 371093 464737 73327

22 15 110510 0 39050 106161 88545 382531 471076 82780

27 21 101771 0 36096 98150 85295 385109 470404 85692

31 22 93289 0 34132 88633 79600 389652 469252 88782

36 23 84774 0 31637 80597 77883 387513 465396 91039

41 24 80413 0 30077 76566 75960 381010 456970 87797
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Table 5.4 Beacon delivery vs Packet delivery at the MAC layer. 

Table 5.4 shows the beacon and packet delivery metrics data for the MAC layer 

and the decider. Once again, there was a pattern between the accident time and the 

number of packets lost. For vehicles with a start time between 3 and 27, there was 

increase in lost packets. 

 An unexpected data in this table was the zero Received Unicast Packets 

received in comparison to the received WSM in Table 5.2. Earlier, section 4.3 described 

the correlation of one neighbor found per vehicle to the default address of a broadcast. 

The receiver address missing when populating the WSM, BSM and macPkt, and the 

default address was used. This explained the zero values in the column Received 

46 25 74459 0 28429 70503 71827 374946 446773 86307

50 26 71649 0 26962 68069 70018 366337 436355 83517

83 27 42978 0 16590 40782 51177 288277 339454 62453

86 5 40770 0 15967 37970 49879 279575 329454 59811

88 6 39419 0 15521 36768 49459 273018 322477 57958

90 7 38412 0 14917 36281 47679 267109 314788 55837

92 8 37013 0 14471 34668 47110 260391 307501 54043

94 9 35121 0 13984 32742 45773 254567 300340 52833

96 10 31910 0 12888 29564 42669 251912 294581 53480

98 11 34879 0 13449 33163 44688 235795 280483 46290

101 12 35254 0 13161 33962 44022 219828 263850 40712

103 13 33993 0 12801 32617 43168 210958 254126 38673

106 14 32540 0 12071 31369 41073 197430 238503 35298

109 16 30236 0 11158 29073 37665 185888 223553 33090

140 17 6580 0 2299 5585 8187 48123 56310 8792

143 18 4287 0 1443 3258 5228 34476 39704 6450

145 19 2877 0 890 1932 3178 25111 28289 4757

147 20 1570 0 380 767 1409 15292 16701 2915
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Unicast Packets for Table 5.4. Since there was no receiver address set at the TraCi and 

application layer, zero packets were received at the MAC layer and decider.  

It is important to identify that the values for a type of lost packets are in the same 

range of beacons generated. They are not similar to the small number of packets 

generated. For example lost packets are in the thousands similar to beacons. Lost 

packets should have been named lost beacons. Interestingly, as the number of packets 

lost and beacons dropped increases, the number of collisions decreased. Now that we 

have a more robust understanding on frame delivery between layers, it is import to 

analyze the usability of each channel. The following section will analyze the data for 

channel switching and utilization. 

 5.4 Analysis: MAC Layer Channel Utilization  
Channel utilization was defined as the total time handling successful packets/beacons, 

given that channel is active. The other data analyzed in this section is number of 

packets received per channel. The number of packets received was defined as the total 

packets received successfully by the channel, given the channel was active. It was 

unexpected to see that the SCH4 in Table 5.5. had zero utilization. The investigation of 

channel randomization in section 4.2, explained the bug on the feature. The (1 min , 4 

max) values were used to generate the random channel. Values of (1min, 5 max) 

should have been used to include SCH4 .  

Vehicle 
Start 
Time

CCH  
before 
feature

CCH + MAC Layer 
Beacon Transmission 

Feature SCH1 SCH2 SCH3 SCH4
MAC Total 
BusyTime

1 0.380212 7.288209 0 0 0.000465 0 49.1062241

3 0.362842 11.409037 0 0.000465 0 0 48.03534764

6 0.384072 11.334449 0.000465 0.00093 0 0 34.20923655



!70

Table 5.5 Channel utilization for CCH and SCH (ms) at the MAC layer. 

A positive outcome of the beacon feature explained in section 4.2, is shown in 

the utilization for columns CCH before feature and CCH + MAC Layer Beacon 

Transmission Feature. On average the CCH utilization increased twenty nine times the 

11 0.353192 11.169178 0 0.000465 0 0 46.58979752

12 0.219957 11.23858 0.000233 0 0 0 22.56146924

17 0.216162 10.466207 0.000233 0 0 0 21.8530523

22 0.212237 9.506569 0.000233 0 0 0 21.10403171

27 0.208377 8.801663 0.000233 0 0 0 20.4124089

31 0.204517 8.259603 0.000233 0 0 0 19.76368752

36 0.200657 7.672468 0.000233 0 0 0 19.03450713

41 0.196862 7.278842 0.000465 0.000465 0.000465 0 18.3306326

46 0.191007 6.88609 0.000465 0.000465 0.000465 0 17.25281308

50 0.187212 6.517519 0.000233 0 0 0 16.53584827

83 0.181357 4.026125 0.000465 0 0 0 15.44728718

86 0.343542 3.893598 0 0.000233 0 0 45.05650719

88 0.175567 3.755872 0.000465 0 0 0 14.39944335

90 0.115802 3.583236 0 0 0 0 3.414398978

92 0.110012 3.474502 0 0 0 0 2.35298223

94 0.106152 3.388575 0 0 0 0 1.646960498

96 0.102292 3.093527 0 0 0 0 0.941155623

98 0.096502 3.240966 0 0 0.000465 0 43.32506311

101 0.092642 3.173862 0 0 0.000233 0 41.90391659

103 0.088782 3.145856 0 0.000233 0 0 40.33319019

106 0.084922 2.913382 0.000465 0.000465 0.000465 0 38.47815587

109 0.081062 2.688597 0 0.000465 0.00093 0 36.58516915

140 0.333892 0.556411 0 0.000465 0.00093 0 35.31265076

143 0.075272 0.352803 0.000465 0 0 0 23.64613068

145 0.069482 0.214394 0 0.000233 0 0 48.79108756

147 0.057902 0.08774 0 0 0.000233 0 48.28244715
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original value. Most importantly the new values the linear pattern of beacons received in 

Figure 6.5. This pattern will be discussed in chapter 6, when comparing Figure 6.6 and 

Figure 6.5. Adding this functionality was a solid contribution to more accurate data for 

the multi-channel operation. To verify the channel utilization, the number of frames 

received was also recorded.  

Vehicle ID CCH SCH1 SCH2 SCH3 SCH4

1 91315 0 0 2 0

2 90713 0 2 0 0

3 52794 2 4 0 0

4 84689 0 2 0 0

5 31514 1 0 0 0

6 30603 1 0 0 0

7 29432 1 0 0 0

8 28560 1 0 0 0

9 27592 1 0 0 0

10 25422 1 0 0 0

11 26547 2 2 2 0

12 26018 2 2 2 0

13 25313 1 0 0 0

14 23870 2 0 0 0

15 77330 0 1 0 0

16 22068 2 0 0 0

17 4535 0 0 0 0

18 2847 0 0 0 0

19 1753 0 0 0 0

20 748 0 0 0 0

21 71404 0 0 2 0

22 67511 0 0 1 0

23 62545 0 1 0 0

24 59455 2 2 2 0
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Table 5.6 Packets received per channel at the MAC Layer. 

Table 5.6 has the packets received per channel at the MAC layer. Many previous 

studies reflected a great deal of focus on optimizing the SCH utilization. In Table 5.6, we 

see that the majority of the traffic happened at the CCH. This supports that our 

recommendation of optimizing the usability of the control channel due to the control 

channel managing the communication and decisions for the upcoming channel switch.   

At the same time, Table 5.2 confirmed that there was way more beacons 

generated than packets. Another recommendation is to analyze a scenario with a larger 

number of packets generated. With the much effort of using a realistic simulation, it is 

important to analyze the relationship of the network and traffic congestion. This is 

covered in the next section.  

5.5 Analysis: Traffic congestion vs the network congestion 

With Veins as the realistic traffic simulation, we wanted to evaluate the relationships 

between the traffic jam and the number of collisions. Looking at the relationship of 

vehicle density and the network, the first column of Active Vehicles is compared to the 

number of collisions. Assuming that each vehicle sent similar average of beacons and 

packets. The expected behavior was for the collisions to increase as the number of 

vehicles increases. As seen from start time 41 to 143, vehicle density increases by 16 

vehicles. During this period, the number of collisions does not fluctuate much. However, 

25 56189 0 2 4 0

26 53257 0 2 4 0

27 32731 2 0 0 0

28 90674 0 1 0 0
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when there is 26 vehicles in the simulation, the collisions drop from 33090 to 8792. Also, 

the busy time in the MAC layer decreases. It is recommended to to study the pattern 

between number of vehicles and collisions more in a larger number of simulation runs. 

Lastly a bias to consider is the threshold towards the end of the simulation. As a vehicle 

with lower total time has lower number of collisions. 

Table 5.7 Traffic vs Network congestion.  

Active 
Vehicles 

Start 
Time

Total 
Time ID

Total 
Distance

Min 
Speed

Max 
Speed

collisi
ons

MAC Total 
Busy Time

1 1 148 3 1487.06866 0 13.99812867 59596 34.20923655

2 3 146 1 197.531656 1.320179877 1.388696462 72203 49.1062241

3 6 143 28 192.2461384 0.8838096125 1.393291953 72194 48.79108756

4 11 138 29 185.7802316 0.9856438959 1.399275053 72111 48.28244715

5 12 137 2 183.5658233 0.8243705354 1.388072967 66483 48.03534764

6 17 132 4 177.2467625 0.9325684591 1.398566944 73327 46.58979752

7 22 127 15 170.7850123 0.9809413182 1.391785811 82780 45.05650719

8 27 122 21 164.2077012 1.061905699 1.397178956 85692 43.32506311

9 31 118 22 158.1509357 0.8453348706 1.399181308 88782 41.90391659

10 36 113 23 151.6924971 0.9362882634 1.405918627 91039 40.33319019

11 41 108 24 145.1831635 0 10.53132752 87797 38.47815587

12 46 103 25 138.5649047 0 8.735856198 86307 36.58516915

13 50 99 26 132.3925057 0 7.410544899 83517 35.31265076

14 83 66 27 121.4132993 0.0009649957 7.18002694 62453 23.64613068

15 86 63 5 115.0587852 0.4497240707 7.133446207 59811 22.56146924

16 88 61 6 109.7951971 0.6035547639 6.820338504 57958 21.8530523

17 90 59 7 104.0418463 0.7590023523 6.301196164 55837 21.10403171

18 92 57 8 98.1522499 0.8900745093 5.465737862 54043 20.4124089

19 94 55 9 92.21676985 0.9638579363 5.009624307 52833 19.76368752

20 96 53 10 86.37638398 1.001522262 4.653284283 53480 19.03450713
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In this section, the data of message delivery in the application layer, MAC layer and the decider 

was analyzed. This also includes an analysis of channel utilization, traffic congestion and 

network congestion. The base case scenario was the data from vehicle ID 20. The vehicle was 

selected for its usability in in the control channel and three of the service channels.

The objective was to find any pain points related to the multi-channel operation. There 

was an average of 81420 total beacons generated per vehicle in comparison to an 

average of 1 packet generated. With the larger number of beacons generated and 

switch operations, the control channel was overloaded. For collisions there was a total 

average of 56386. We also found that only broadcasts were received at the MAC layer 

and decider. No packets were received beyond the application layer caused by the 

receiver’s address not allocated. This also leads to the only one neighbor found per 

vehicle. Lastly there was also little correlation between the density of vehicles and the 

number of collisions. This chapter covered any analysis of the raw data. The results 

chapter compares and identifies the patterns for the data in graphical form. 
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CHAPTER 6: Results 
!  

This chapter will compare the results in graphical form with a linear regression. It reports 

the confidence of the underlying data in chapter 5. The findings were in the areas of 

traffic congestion against network congestion, application layer message delivery, MAC 

layer message delivery and MAC layer channel utilization. The applied computation, 

aimed at identifying some of the patterns found in the analysis of chapter 5 and any 

additional information. The first section will cover the traffic and network congestion.  

6.1 Traffic and Network Congestion  

Network congestion is the quality reduction of a system when the vehicles are handling 

more data then their capability. The graph in Figure 6.1 compares the number of 

collisions against the start time per vehicle. It was expected for the collisions to increase 

during the accident and after the traffic jam. The activity happened at the incremented 

curve starting at 12 ms, with a peak at 36 ms. We assumed the drop between 11 ms 

and 12 ms start time was due to the simulation initiating the generation of the accident.  

The last drop starting at start time 140 ms, was due to the low time the vehicles 

spent in the simulation. For example the vehicle before start time 140 ms had a start 

time of 109 ms. All the collisions during 31 ms interval and before, were not 

accumulated in the collisions of vehicles after 140 ms. It explains the huge drop of 

collisions at start time 140 ms. 
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Figure 6.1 Number of Collisions VS Start Time. 

As a relationship was derived between the number of collisions and vehicle start time, 

other points of traffic data were considered.  

 Some essential traffic data metrics recorded where vehicle density, max speed 

per vehicle, min speed per vehicle. Figure 6.2 compared the traffic variables against the 

total busy time for the MAC layer. We were assessing the likelihood of a vehicle density 

and speed affecting the outcome of the  MAC busy time. Our intuition expected the 

number the mac busy time to increase as the vehicle density increased. However, the 

empirical evidence in Figure 6.2 supported a decrease of MAC busy time as the number 

of vehicles increased. Considering survivorship bias, we recommend a more thorough 

density scenario to formalized this outcome. Moving on, the speed of vehicles was also 

considered. The average min speed for the vehicles was 0.7896875877 m/ms. The max 

average speed was 5.352483742 m/ms. For this scenario there was no meaningful 

pattern found against the MAC busy time.  
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Figure 6.2 Network and Traffic Parameters vs Vehicle Start Time. 
 Beyond the external metrics, we looked at the relation of the message handling 

and vehicle start time. The following section will cover the results for message delivery 

at the application layer.  

6.2 Application Layer Message Delivery 

The applications layer is the initial point of entry for a message into the network. The 

metrics of generating, sending and receiving were recorded. The horizontal axis in 

Figure 6.3 was the starting time per vehicle, the vertical axis represented the number of 

data packets created and delivered. Near the left edge of the graph, the WSMs’s 

received were at its highest of 34 packets, in the range 6 ms and 27 ms. The interval 

was very near the time range of the accident. On the right edged of the graph, the 

percent of WSMs generated and received was 0. It is the activity of the framework   

initiating a simulation stop.The middle interval had the drop of received messages after 

the accident. There was much greater fluctuation during this period.  
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Figure 6.3 Application Layer Data Message Handling. 

The averaged of generated data packets  was 1 WSM/vehicle. Leading to an 

average of 20 WSM’s received. These results were quite lower than the high average of 

81420 BSMs generated and the 61441 BSMs received. The linear graph in Figure 6.4 

has a profound comparison of delivery of BSMs against WSMs. Most importantly it 

compacted the scope having a large congestion of beacons in the scenario. The area 

difference between the yellow line of generated beacons and the green line of received 

beacons was much greater at the in the interval of the accident.  
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!  

Figure 6.4 MAC Layer Packets Received per Channel Type. 

Judging the increase of generated BSMs, the shift of increased collisions, found 

it was not beneficial to increase the beacons during the accident. For a future study, the 

generation rate of WSMs should be set much greater to reduce the survivorship bias. 

The mainstream of the multi-channel operation happens in the MAC layer. The following 

section will cover message delivery for the MAC layer. 

6.3 MAC Layer Message Delivery 

The results of the MAC layer in Figure 6.4, showed a similar graph line to Figure 6.5. 

The horizontal axis was the start time per vehicle. The vertical axis was the number of 

packets sent and the number of beacons delivered for Received Frames Lower Msg.  

The Received Frames Lower Msg represented beacons. Beacons were the purple line 

in MAC layer mapping to the yellow line in figure 6.4. In both figures, the beacons had a 
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decreasing slope targeting the bottom right corner.  As mentioned earlier in sections 4.3 

and 5.2, the MAC layer had no packets received. The problem was produced by the not 

attaching the receiving address to the WSM and the MacPkt. Revealing a default value 

of -1 in the MacPkt, which is the BROADCAST address. An unexpected result was the 

number of packets sent by the MAC layer. On average, 22441 packets were sent by the 

MAC in comparison to the average of one packet sent in application layer.  

Figure 6.5 MAC Layer Data and Beacon Message Delivery. 

Incidentally the MAC layer did send messages to it self to handle any internal 

scheduling. This could have been the cause of the extra packets or possibly a bug.  

There is definitely some uncertainty in this number. Moving on to how the traffic, 

application layer and MAC layer related to the multi-channel operation. The following 

section will cover the results of channel delivery and channel utilization.  
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6.4 Channel Utilization Message Delivery 

The break point of results happened at the number of messages delivered to each 

channel. Tying back to the channel utilization, we were expecting some high volume of 

beacons in the CCH. In figure 6.6 the received beacons in turquoise line depicts to the 

received beacons in figure 6.4 (purple line) and 6.4.(green line). The pattern is fairly 

close. There was an average difference of 17078 beacons between the lines. The 

largest difference of 45352 packets happened at vehicle start time of 12 ms.  

21 98 51 11 80.26000588 0 9.855497331 46290 18.3306326

22 101 48 12 72.4172962 0 8.544792526 40712 17.25281308

23 103 46 13 64.98961882 0 7.626548871 38673 16.53584827

24 106 43 14 55.66143908 0 6.740322333 35298 15.44728718

25 109 40 16 46.67888 0 5.9430106 33090 14.39944335

26 140 9 17 37.11117662
1.26120888
8 5.421882829 8792 3.414398978

27 143 6 18 26.86569073
3.01494472
9 5.390808185 6450 2.35298223

28 145 4 19 16.25409363
2.76135957
9 5.504373607 4757 1.646960498
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Figure 6.6 MAC Layer Packets Received per Channel Type.  

We did expect a low number of packets to be received in the service channels 

with the low number of WSM packets generated in Figure 6.4. Note that the MAC layer 

had no data packets recorded as received and the SCH did have packets recorded. The 

implementation of the metric in the MAC layer checked for the destination and receiver 

id. The implementation for the packets in the service channel checked for the type of 

message received before decapsulation to a packet. For example, WSM categorized as 

a data packet and BSM as beacon. Overall, the outcome of these results was the 

overload of the CCH. This was further confirmed on the time used per channel in Figure 

6.7. The horizontal axis plotted the vehicle start time. The vertical axis plotted the 

amount of time used per channel to transmit its messages, while active.  
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Figure 6.7 MAC Layer Channel Utilization. 

Furthermore, the dark blue line in the graph represented the usability of the CCH 

before the beacon transmission feature in the MAC layer was contributed. The turquoise 

line was the usability with the feature. The results of the CCH with the MAC layer 

beacon transmission feature, expose congruent data aligned with the beacon activity.  

The main contributions of this thesis are the findings in the high usability of the CCH, 

and the beacon transmission feature to map the channel utilization to the beacons 

received in the application and MAC layer. We return to these thoughts with a summary 

in the conclusions chapter.   



!84

CHAPTER 7 : Conclusions and Future Work 
!  
The communication protocol for Wireless Access in Vehicular Environment (WAVE) [10], 

is the industry standard IEEE 802.11p to communicate between vehicles. This thesis 

examined the MAC layer of this IEEE 1609.4 multi-channel communication protocol. We 

considered both the type and priority of the message. We evaluated recent studies to 

illustrate problems covered for the impact of multi-channel and single-channel switching 

for non-safety and safety message transmissions. This thesis aimed to determine 

factors to the best utilize the Control Channel (CCH) and  Service Channels (SCHs) in a 

Single Radio Multi-Channel (SR-MC) system [20 with IEEE 1609.4]. We analyze the 

channel utilization, beacon transmission, and packet transmission of IEEE 1609.4 multi-

channel operations in CCH and SCH. Some of the parameters used for comparison are 

the number of collisions, channel utilization, packet transmissions, and beacon 

transmissions.  

We investigate the scenario with density of n vehicles in a real world map, using 

safety (beacons) and non-safety (data) messages. The technologies used are Instant 

Veins 4.6, OMNET++ 5.2.1, SUMO 0.30, Debian GNU/Linux 9 (stretch) 64-bit, VMware 

Fusion (Professional Version 10.1.4) and an open street map from Northampton. The 

advantage of using OMNeT++ and Simulation Urban Mobility (SUMO) framework is the 

thorough implementation of IEEE 1609.4 DSRC/WAVE and IEEE 802.11p in the 

framework [29] 

90 
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The prime contributions of this thesis included research features and a multi-

channel analysis. The features were projected to the problem of establishing the 

impacts of multi-channel switching. They were derived by recent points of impact, IEEE 

standards and the existing Veins architecture. These features were Catch framework 

integration, MAC Layer Beacon Transmission, vehicle neighbors tracking and channel 

utilization tracking. The Catch framework enabled testing to the simulation. The prime 

contribution of the adding beacon transmissions to MAC layer, aided in accurate 

correlation of the beacon delivery in the application/MAC layer to the CCH. With the 

tracking of neighbors we found the receiving id of messages was not set for sent 

packets. Leading to zero received packets in the MAC layer. With the channel utilization  

feature we were able to see the message delivery activity in the channels. Additionally 

all the features are transitive to be used in future Vanet studies. 

In the analysis, we examined the beacon and packet delivery for a single vehicle. 

Following with n vehicles in the application layer, n vehicle in the MAC layer and n 

vehicles in the multi-channel operation. We also looked at the numbers for traffic and 

network congestion. Aiming to find any significant relationships with the realistic model. 

We were assessing the effects of the IEEE 1609.4 multi-channel operations on beacon 

transmission and packet transmission, both CCH and SCH. Many research 

professionals focused on optimizing the usability of the service channels. Looking at the 

channel usability, the CCH undertook a high volume of beacons while managing the 

channel switching responsibilities. With the evidence, we concluded a higher significant  

impact in the CCH. Judging the increase of generated BSMs, a shift of increased 

collisions, inferred no benefit of increased beacons during the accident.  
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For future work, it is recommended to replicate the study with a higher number of 

packets generated and using generated beacons as the dependent variable. Setting the 

receiving address for the MAC layer will be needed. The analysis should have non-

linear curves with the horizontal axis for generated beacons and the vertical axis for 

packet delivery. The highest point of the line segment should expose the maximum 

message delivery. This point can be used to select the ideal interval to generate 

beacons. This should include moving channel switching responsibilities out of  the CCH. 
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