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PREFACE

This dissertation makes no pretense to originality. It is, rather,
an initial investigation of the essential complexities involved in the
cohomology theory.of groups. For instance, celebrated pioneering works
of Eilenberg-MacLane ([12],[12],[14]) on the groups H(m,n) and the
groundwork of Hochschild-Sexre [19] on the cohomology .of -group extensions
should; in principle, enable us to compute the cohomology algebra of
groups. Practically, however, it seems to be impossible to do so in
general. Hence, we focus attention on the most effective computational
techniques, supplementing and enriching by cohomology operations . the
algebraic structure of the cohomology module.

This dissertation has developed out of a year course on homological
algebra taught by Professor Hiroshi Uehara. It aism to give an overview
of the theory and practice of the cohomological method. It is a collec-
tion of many results which until now were scattered through the litera-
ture, and some have been proved in detail while others have only been
stated '"with reference to sources'.

In Chapter I we present the definitions and results of algebraic
topology which play important roles in calculating the cohomology algebra
of a pair of topological spaces. We include here the direct limit of
homotopy groups that has not been available in existing texts.

In Chapter-II we consider the theory of cohomology of groups in the
general setting of‘modules over R-algebras.‘ We make use of results in

relative homological algebra [15] to define the extension functor Ext and
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to introduce a generalized form of the classical comparison theorem.
This setting allows us to define the cup product relative to an A-pairing
[30].

Chapter III provides the results that link Chapters I and II
together. We show the result H*(K(m,1),N) 2 H* (m,N) wﬁen T operates
trivially on the abelian group N.

In Chapter IV we use the results obtained in Chapters I, II, and III
to compute the cohomolegy ring H*(w,N) for various groups w. In particu-
lar, we compute H*(RP“’,ZZ) = H*(Z,,Z,), and H*(S1,R) = H*(Z,R) using the

algebraic topology tools. We define cup product in hom Z) and

"2 (2,) P32
compute the cohomology ring H*(ZS,Z).

Chapter V formulates the mechanism of spectral sequences via exact.
couples (Massey [23]) and then prqceeds to several applications in the
cohomology of .group extensions using the Hochschild-Serre spectral
sequence [19].

The final chapter culminates in making detailed compUtationsfof the
cohomology .algebras H*(ZZ’ZZ)* Hf(ZS,Z), I-I*(Z',3 X ZZ’Z) and H*(SS;Z).

The author wishes to express appreciation to his adviser, Professor
Hiroshi Uehara, for his guidance and.assistance. This dissertation could.
never have been writtén without his encouragement and friendship. Appre?
ciation is also expressed to'Dr. James W. Maxwell and other committee
members for their invaluable assistance ip guiding my doctoral program.

A note of thanks.is extended to my parents, Mr. and Mrs. Gerald
Hagerman, and to my mother-in-law, Mrs. William F, Horrell, for their
encouragement and support.

Special gratitude is expressed to my wife, Pat, and to our daughters,

Jill and Heidi, for their understanding, love, and numerous sacrifices,
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CHAPTER I
ELEMENTS OF ALGEBRAIC TOPOLOGY

In Chapter III the fact is discussed that the cohomology of a group.
T can be interpreted as the cohomolégyvof an arcwise-connected éspheriqal
space (all higher homotopy groups vanish) with fundamental group .
Consequently, the methods of algebraic topology are utilized in Chapter
IV for the computation of the cohomology algebra of a group. This chap-
ter is a collection of those definitions and results which play important
roles in calculating the cohomology algebra of a pair of topological
spaces. The reader is assumed to know the elementary parts of relative
singular cohomology (thology) theory and some basic properties of
homotopy groups. The notation is that of [16]. For proofs, the reader
is referred to [16] or [25]. Throughout this thesis, R will denote.a,
commutative ring with unit., Unless noted otherwise, the tenser product

notation ® stands for @h
. The CoHomqlogy Functor H*: Y+ A

- A key feature of cohomology which distinguishes it from homology is
the existence of a natural multiplication called cup product
(\/—‘product). For a pair of spaces (X,A), this multiplication makes the
graded R-module H*(X,A) into a graded R-algebra and establishes a finer
invariant than the cohomology module itself,

First define a cup product at the relative singular cochain



level. For subspaces:Al, Az,of X, it is required that

gP*q X)

a\uwb e - - m v
P + P

if a ¢ sP.(x,Al), b e Sq(X,Az).

Define a (p + q)-singular cochain a b by setting

(aub) (o) = ae P (41D b (o @177 (0);

for any singular (p + q)-simplex o of X, whqré 0(1) denotes the i-th face

of ¢ and

(il)(iz)"'(ik) (il) (12) Cik)
o o. 7]

]...]

eoe[

Since a and b vanish on Sp(Al) and Sq(AZ) respectively, it follows that

(A If, in addition, {Al’AZ} is an

2)'
excised pair in X, then the inclusion map i:S(Al) + S(AZ) - S(Al\J A2) is

aw b vanishes on S A + S
' P*q( 1) p*q

a chain equivalence inducing a graded R-isomorphism
# #.
H*((S(X)/(S(A;) + S(A})))7) = HF((S(X)/S(A; wA))) = HY(X,Aj U A)

With this identification, the cohomology class [a\ b] is considered as

an element in prq(X,Ali Az).

Definition 1.1: If {Al,Az} is an eXcised pair in X, then for

a= [a] € HP(X,AI), B = [b] ¢ Hﬁ(x,Az), the cup product
o B e Hp+q(X,A1uA2) is defined by a U B =?,‘[aub].

Proposition 1.1: The cup product has:the following properties:

(1) Bilinea;itz.‘ If {Al,Az} is an excised pair in X, thenthe

map u:H*(X,Al) ® H* (X,Az) -+ H* (X,Alu Az) defined by U(a ® B) = a UB



is a morphism of graded R-modules.

(2) Naturality. If {Al,AZ} and {Bl’Bi} are excised pairs in X and
Y respectively, and if h:X - Y is a continuous map such that
h(Ai) - B, (i=1,a), then h*(ylu Y,) = h* (yl) “ h*(y,), for

\f e,H*(Y,Bi) (i=1,2).

(3) Associativity. Let Ai(i=1,2,3) be subspaces of X such that
{Al,AZ},' {AZ’A’3}’ {AIU AZ’A'5}’ and {Al’AZU A3} are excised pairs in X,

Then for a; e H*(X,A,) (i=1,2,3),

= *
(alu az)v g aly (azv as) e H (X,AIU AZU A3)

(4) Commutativity. If {Al,A_Z} is an excised pair in X, then

o v a, = (-1)an2\J a,, for a, ¢ HP(x,Al) and e,Hq(x,Az).

1’ 1
(5) Unit. For o e H*(X,A), lwva =aw 1 =a, where 1l ¢ Ho(X) is

the cohomology class of the augmentation a:SO(X) + R,

For the category of pairs of topological spacesd, and for the

category of graded R-algebras A, we define the cohomology functor
H*: 9 »+&

by H¥*(X,A). By (1) and (3) of Proposition 1.1, H*(X,A) is a graded
R-algebra, and (2) implies H* is a contravariant functor. Note that the.
algebras in A are not assumed to have a unit. However, in the absolute

case A = ¢, Ais the usual category of graded R-algebras with units.
Relations Between Homology and Cohomology

Given a pair of spaces (X,A), there exists a bilinear pairing

(called the Kronecker product)




HYX,A) © H (GA) » R

given by the formula <a,w> = <u,a> = u(a), for a = [u] ¢ Hq(X,A),

w= [a] € Hq(X,A), and where <u,a> denotes the value u(a) of the cocycle
u-on the cycle a. It is obvious that the definition does not depend upon
the choice of representatives.

The Kronecker product enters in the following universal-coefficient .

theorem for cohomology.

Theorem 1.1: Given a pair of spaces (X,A) with Hq_l(X,A) free, then

an R-isomorphism
z:HY(X,A) » homg (H (X,A),R)
is defined by z(a)(w) = <a,w>, for a e Hq(X,A), W e Hq(X,A).

There is another product, called cap. product (M- product),‘closely
related to cup produét, that associates homology and cohomology classes

together. For subspaces A A2;of X, uce Sq(X,AZJ, and

1_’
a = § rio; €8 (0/(S,(A)) + S (A))), we define

- (p-q-1)---(0) (p)---(p-a+l)
un a —Zi(riu(ci ))o; € Sp_q(X,A1)
This definition induces a R-homomerphism (mapping [u] ® [a] to [um a])

q s(X) o
H' (X,A,) ®HP(S(A1) . S(Az)) Hy_q (%.A)) :

If {Al,Az} is an excised pair in X, this:.yields a R-homomerphism
.44
AHIXLA)) @ B (XA U A) * Hp_q(X,Al)

called the cap product.



Definition 1,2: If {Al,Az} is an excised pair in X, then for
o = [u] € Hq(X,Az), w= [a] ¢ Hp(X,AlLJ Az), the cap product

MW E Hp_q(‘X,Az) is defined by a mw = [u~a].

Proposition 1.2: The cap product has the following properties:

(1), Naturality. If {AI’AZ} and {BI’BZ} are excised pairs in X and
Y respectively, and if h:X >~ Y is a continuous map such that h(Ai)C: Bi
(i=1,2), then h,(h*(a) " w) = a ~h, (w), for a € H*(Y,‘Bz),
w e H*(X,AILJ A2).

(2) Duality. If {Al’AZ} is an excised pair in X, then
<a,B Nw> = <a\v B,w>, for a ¢ Hq(X,Al), B s,Hp(X,Az)* and

w e Hp+q(X,A1LJ Az).
Direct Limits of Homology and Homotepy

Let {Xk,f?}-be a direct system of topological spaces X, and let ZXA
A
be the topological direct sum of the spaces X, Define the direct limit

lim XA of the system by the quotient space ZXA/N, where v is the usual
' A

equivalence relation: for X, € XA and x, € Xu, X

vy such that A < vy, u < vy, and fz(xx) = f:(xu). Denoting the quotient map

N %.xu iff there exists

by»fzgxx + 1im X, we have £, = f]xA:XA > 1im X, .
Given a sequence of topological spaces X1C: X, cC...C xn(:'xn+lc:

s++, there is a direct system of spaces {Xh,iz} where iE:Xn > Xm is the

inclusion map. Evidently, lim X is the union LJXn whose topology is
5 ,
given by the property that A contained in ijn“is,open iff A.ﬂ)(.n is.
e -
open in Xn for any n. Hence, Xn is a subspace of lim_xn. The following

theorem is well known.

Theorem 1.2¢ If X1C: ch: oo XnC:.X C ... is a sequence of

n+l



Hausdorff spaces, then there exists an isomorphism
1im 1n*:1$m Hq(Xn) = Hq(lim Xn) ,

wherevln*:Hq(Xn) - Hq(l;m Xn) is the homomerphism induced by the

inclusion i :X - lim X .
n-'n > "n

Note that the proof of this.theorem and the following homotopy.
theorem is based on the fact that any compact subset in limlxn is con-,

tained in_some‘Xn.

Theorem 1.3: If XIC: XZC: ---(::ch: +++ is a sequence of Hausdorff

spaces, then there exists an isomorphism
PR Y o . .
lim 1n#.1&m np(xn, ) = np(lim Xn, ) s

x s . . . - . x s
where * is a base point in Xl and 1n#'np(xn’ ) ~» ﬂp(lim Xn, ) is the

hbmomorphism induced by the inclusion in:Xn + lim Xn.

Proof: Although a proof of this theorem is elementary, it is
sketched here because it is not contained in [16] or [25]. Since
im# 12# = in# for arbitrary integers m,n with m > n, it follows that
1im in# is well defined. Assume that in#(un) =-im#(am) for
a = [f] ¢ np(xn,*) and e = [g] s np(Xm,*). Then the two maps
inOf,imog:(Ip,BIp) > (1im Xn,*) are homotopic. Hence there exists a
homotopy h:(Ip X I,BIp x I) +“(1im Xn,*) between_in0f and imog.- Since
h(Ip x I) is compact in 1lim Xn, there exists h‘:(Ip x I, a1P x I) » (Xﬁ,*)
such that h =.i£°h' and £ >m > n. For any A ¢ Ip, we have
ilh'(k,o) = h(1,0) = inf(k) = iliﬁf(k), so that h'(x,0) = iﬁf(l).v Simi-

larly, h'(x,1) = iig(k). Therefore h' is a homotopy between representa-

. .2 . L LR LR .
tives 1nf, ig of ln#(an)’ 1m#(am), respectively. It follows that



.2 L2 i . R .

1n#(an)_= lm#(am) and thus 1lim igisa monomorphism. Let a = [z] be an.
arbitrary element of ﬂp(lim Xn,*). Then z(Ip) is a compact subset in

1im Xn and so there exists n:IP » Xn with the property inn = ;. Hence

1im in# is an epimorphism. This completes the proof. A
Covering Spaces

Let p:E -~ B be a continuous map. An open subset U C B is said to be

evenly covered by p iff p_l(U) is the disjoint union of open subsets of E

each of which is mapped homeomorphically onto U by p. If U is evenly.
covered by p, it is clear that any open subset of U is also evenly

covered by p. A continuous map p:E > B is called a covering projection.

iff each poeint b € B has an open neighborhood evenly covered by p. E is

called a covering space of B and B the base space of the covering.

In the sequel (see IV.1l and IV.2) two‘elementary covering spaces are
considered; one is the 2-fold covering of the n-dimensional real pro-
jective space RP" by the n—sphere Sn, and the other is the covering space
R of the 1-sphere‘Sl.

Let B be a connected locally arcwise-connected space. The category.
C of connected covering spaces of B has objects which are covering pro-

jections p:E » B and morphisms f which satisfy commutative triangles

1

.
o
o

It is easy to see that every morphism in C is itself a covering pro-

jection. The following result is well known.



Theorem 1.4: Let pl:El + B and p2:E2 - B be objects in the category
C of connected covering spaces of a connected locally arcwise-connected

space B. Then there is.a morphism f:E, - E2 iff there exist e, e E. and

1 1 1
e, € E2 with pl(el) = p2(e2) such_that;pl#nl(El,el) is conjugate to a
subgroup of pz#nl(Ez,eZ) in nl(B,p1(e1)).

It follows that two objects in C are equivalent iff their funda-

mental groups are mapped to conjugate subgroups of the fundamental group

of the base space.

By a covering transformation or deck transformation of an object
p:E -~ B 'in the category C we mean an isomorphism h:E +~ E in C. Hence, a
deck transformation h is a fibre preserving homeomorphism of E. The set
of deck transformations of p:E - B forms a group under composition. It
is called the group of deck transformations and is.denoted by ‘J(E,p).

An object p:E »~ B in C is called a regular.(normal) covering iff
p#nl(E,e) is normal in nl(B,p(e)) for some e ¢ E. Since-a normal sub-
group is equal to each of its conjugate subgroups, the condition of
regularity for a covering is independent of the base point e. The
following theorem describes the fundamental group of the base space in

terms of a universal covering space.

Theorem 1.5: Let p:E > B be.a regular covering in C. - Then the
group. (E,p) of deck transformations is isomorphic to the quotient group.
wl(B,p(e))/p#nl(E,e). If E is a universal covering space (namely,

m, (E,e) = 0), then  (B,p(e)) = J(E,p).

This section is concluded by stating a long exact homotopy sequence

associated With a covering. It is well known that the covering_homotopy

theorem holds true for any object p:E - B in C; that is, if a continuous.



map f:Y - B has a lifting map f':Y > E (namely, pf' = f), then any
homotopy h:Y x I -+ B with h(y,0) = £(y) for all y € Y can be lifted to a
homotopy H:Y x I -~ E such that H(y,0) = £'(y) for all y ¢ Y.. This is

illustrated by the commutative diagram

y 2 5y

where i is injection and hi = f. Hence, there is an exact sequence of a-
covering p:E -+ B with a fibre F:
1y Py A
e (F) = m (B) S w (B) 5w (F) > eee >, (B)
, i Py
a2 @ L ®

Since F is a discrete space, the following theorem holds true.

Theorem 1.6: If p:E -~ B is 4 covering, then nn(E,e) = nn(B,p(e))

for n > 2, and Dy maps nl(E,e) isomorphicaily into nl(B,p(e)).
Duality of Manifolds

In this section the Poincare Duality Theorem is stated. It is pre-
sented here as preparation for the cemputation of the cohomology algebra

of the infinite dimensional real projective space (see IV.1l).

Theorem 1.7: Let X be a compact orientable n-manifold and let

w e Hn(X,BX) be the fundamental class of X. Then the maps

~w:HLX) > Hn_q(X,BX)



and

Aw:HI(X,0X) ~ Hn_q(X)

are isomorphisms.

This theorem is called -the -Lefschetz Duality Theorem. In the case

when 3aX = ¢, the.theorem is called the-Poinca:é Duality Theorem.

10



CHAPTER II:
ELEMENTS OF HOMOLOGICAL ALGEBRA

The prerequisites for the study of the cohomology algebra of a.group
have been developed in several treatises (see [19], [22], and [20]) on
certain topics in homological algebra. It is the purpose of this chapter
to provide the reader with a direct access to this somewhat specialized

material.
Types .of Algebras and Modules Over Algebras

Definition 2.1: A graded Hopf Algebra A (over .R) is a graded

R-module which is both a graded R-algebra with product A ® A %A and unit
RS A and a graded R-coalgebra for a coproduct A 5 A ® A and counit

A 5 R such that (1) the unit e is a morphism of graded coalgebras;

(2) the counit ¢ is a morphism of graded algebras; and (3) the product m

is a morphism of graded coalgebras.

Observe that if A and B are graded Hopf algebras over R, then A @ B

is a graded Hopf algebra over R with coproduct the composition

A® A
A@BJL—3A®A®B®BlQi@iA@B@A@B

(where t is the twisting homomorphism), and with counit the composition
A ®cp
A®B =— SRR >R

Some elementary examples of Hopf algebras are now given.

11
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(1) The group ring Z(r) of a group 7 is a trivially-graded Hopf .
algebra over Z with coproduct A:Z(m) - Z(w) ® Z(7) defined by
A(g) =g ®g (g € 7), and with counit the usual augmentation e:Z(w) > Z.

(2) Let PR[x] be the graded polynomiai algebra on one generator x
of even degree. - PR[x] is a Hopf algebra with

A = T PP et ey =1 .
p*q=n P |
(3) Let ER[x] be the exterior algebra on one generator x of degree

1. Then_ER[x] is a Hopf algebra with
A(x) = 1 ®@x +®x 1 , €(1) =1

By taking tensor products of Hopf algebras, it follows from a pre-
vious observation that the polynomial algebra,PR[xl,---,xn] on n gener-
ators each of even degree or the exterior algebra ER[XI*""xm] on m

generators each of degree 1 is a Hopf algebra.

Definition 2.2: Let A be a graded R-algebra, Then M is said to be

a left A-module (or, just A-module when no confusion can occur) iff

(1) M is a graded R-module, and (2) there is a morphism of graded

R-modules ,,$:A x M + M of degree zero such that the diagrams.

M
m®1 ] o
ARAOM 25 A @M ROM—m M
1®M<1> W e®1 ¢
¥ W : :
A@M ——— M A®M

commute.
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One -defines comodules over coalgebras by dualizing the above

definition.

Definition 2.3: If M and N are left A-modules, then f:M - N is

called an A-module homomorphism of degree d provided that f is a graded

R-homomorphism of degree d and the-diagram‘
AoM

Mq’l

M

commutes; in other words, such that always

N

f£lax) = (-1)deg £)(deg a) 0y,

The set of all A-module homomorphisms f:M + N of degree d forms a
R-module, which is denoted by Homi(M,N). Then the class of all left

A-modules forms .a category with morphisms hom, ( ,) = Homo( s )
A P 10MA A

Some important left modules by pull-back are now considered which
will be used in later sections. If a:A » B is a morphism of graded
R-algebras and N is a B-module, then N can.be considered as an A-module
by pull-back along a. Hereafter, this A-module is denoted by aN'f

(1) Given left modules M and N over a Hopf algebra A, then
A(M~® N) is an A-module by pull-back along the coproduct A:A 4 AQ®A.

(2) 1If a graded R-algebra A is augmented by e:A -~ R, then sR is an

A-module by pull-back along the augmentation e.

Definition 2.4: Let A and B be graded R-algebras and let «:A + B

be a morphism of algebras. For M s,iﬁ?and N e gnza R-homomorphism

f:M > N is called an a-morphism of modules iff f is a morphism of
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A-modules considering N e
It follows immediately that f is an a-morphism of modules iff the .

diagram

=
4

is commutative; or, equivalently, f(ax) = a(a)f(x) for any a ¢ A and for
any x € M, Note that if g:N-eiN' is a morphism of B-modules and
o:A »~ B is.a morphism of algebras, then g is also a morphism of A-modules

by considering aN’ aN‘ € gr}

Definition 2.5: Let M, N, and L be left modules over a Hopf algebra
A. M and N are said to be paired with respect to L iff there exists a

morphism of left A-modules. (called an A-pairing)
e:A(MQN)-rL s

where A:tA - A ® A is the coproduct of A,

Consideration of the diagram

M@ N e . L
m? O n? | J
A@MEA®N
19t ®l . K
A®ARMON
A@l®l
106

ApgMeN——23°" AL
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shows that 6 is a R-homomorphi;m satisfying
) (—l)lxlla"le(a'x ®ay) = a8(x ® y) ,
where A(a) = Za' ® a'.

Definition 2.6: Let A be a Hopf algebra over R. Then M is said to

be an A-module algebra iff (1) M is an A-module; (2) M is a R-algebra;

and (3) the diagram

M®M n > M
Mo M m®
AoMaM —L®T A oM

is commutative.

Condition (3) states that the multiplication m:A(M @M - Mis a
morphism of A-modules. In view of Definition 2.5, it follows that if M
is an A-module algebra, M and M are paired with respect to M by the
A-pairing m,

In the sequel, the following special pairing is used. If M, N, and
L are left modules over the Hopf algebra Z(w) (group ring), then M and N
are paired with respect to L iff there exists a Z(w)-pairing 6:M @ N +> L

such that 6(ax ® ay) = a8(x @ y), forae m, x e M, y ¢ N.

Definition 2.7: Let A be a Hopf algebra over R. Then N is said to

be.an A-module coalgebra iff (1) N is an A-module;

(2) N is a R-coalgebra; and (3) the diagram
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N@®N N
N®N N

A®N@®N «——A x N

is commutative.

Note 'that the dual of an A-module coalgebra is an A-comodule

algebra.

Ext¥* (M,N)

The texts that give direct access to the theory of cohomology of
groups, for example [5], [24], and [33], all use the.''classical" pro-
jectivity. However, the work of S. Eilenberg and J. C. Moore [15] gives
us the notion of a '"new" projectivity. In this section both concepts are
defined and compared. Then this 'new" projectivity is used to define the
extension functor Ext.

The definition of Eilenberg and Moore's ''mew'" projectivity is given

first.

Definition 2.8: An object P & mis said to be Eb—projective iff

for any R-split exact sequence E:M'-£>M-§9M” in gh]and for any morphism

of A-modules «:P + M with go = 0, there exists a morphism of A-modules

h:P ~ M' such that the diagram

P
~
E'/'/ o
MY f M L MH
) k
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is commutative; where k is the kernel of g and ¢ is.a R-homomorphism

with the property 2c = lK“ It should be noted that in the diagram all

maps except ¢ are morphisms of A-modules.
Now the definition of "classical' projectivity is given.

Definition 2.9: An object P ¢ Zﬁ)is said to be éi-projective iff

for any exact sequence E:M' £ M &M in &ﬁzand for any morphism of-
A-modules o:P +~ M with go = 0, there exists a morphism of A-modules

h:P - M' such that fh = a.

Gb is used to denote the class of €B~projective modules in Z”L and

the notation Gﬁ is used to represent the class of Ea-projective modules
in Xn.

The following simple example shows the fact that, in general,
6%782 650 Let A = R = Z, then it is easy to.see that GBAis the class of

all abelian groups, while F

1 is the class of all free abelian groups.

Proposition 2.1: The A-module P is-in the class 6% iff P is a

retract of an extended A-module A @ M.

Hereafter, projective means é%-projective when no confusion can.

occur.

Definition 2.10: The left complex ¥ over M (in notation e:f » M) is

said to be a projective resolution of M ¢ KP]iff (1) for i > 0, X, € 6%;

9. 9.
(2) X. ALy Ex. . for i 0, and 0 « M € X_ are R-split exact.
i-1 i i+l - 0

Let M ¢ Xnu The unit e:R - A gives coker e = A/Ime = A/R1l,, which

A,

is denoted by A/R. For each n > 0-construct the extended A-module
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B (AM) = AQA/R® r ®A/ROM=A® (A/R)" @M .
— v J

n-factors .

As a R-module, Bn(A;M) is spanned by elements x = a QEl ® - Q En ®y

which are, following the notation of Eilenberg and MacLane, customarily

written as x = a[a1 an]y, or as x = a(al,-°-,an)y. In particular,
elements of BO(A;M) are written as a[ ]y or a( )y. Construct the left
i

complex e:B(A:M) > M

) )
ME By (AM) <2 oee « B (AM) EZE B (AM) < +ee :B(ASM)

Where ¢ and Bn (n > 1) are defined by

-1

e(al ly) = ay

n-1- i
...]an]y.+ izl (-1) a[all°°°|aiai+1

...lan]y

o1 alagl o lagly) = aayls,
+ (-1)"ala;[+=-]a 1y

This complex is called the normalized bar resolution of the A-medule M.

Theorem 2.1: For each A-module M, e:B(A;M) ~ M is a projective

resolution of M,

Now apply the normalized bar resolution to eR > Xﬁ]when A is

augmented by e:A -+ R. Observing that Bn(A;ER) = A G)(A/R)n, it is noted

that Bn(A;ER) is spanned by elements a[a1 ---lan], while 3 is given by
the previous formula with the "outside'" factor y omitted. In particular,
when A = Z(w) (group ring), Bn(Z(ﬂ);€Z) is the free Z(m)-module with

generators [x °--|xn] all n-tuples of elements X4 g 1, o0, X # 1 of m,

1|

setting [x, ---[xn] = 0 if any one x; = 1. Also, the notation

Bn(Z(ﬂ);EZ) = Bn(ﬂ) and B(Z(ﬂ),ez) = B(m) is adopted.
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If M e Xn, a variant of the normalized bar resolution B(A;M), the

non-normalized bar resolution B(A;M) has

BAM) =ADA® - OAON=AQA OM
-~/ ‘

n-factors

The boundary and e are given by the formulas for B(A;M) with each

a[a1 °f-|an]y replaced by a ® 3 ® "2 @Y. The projection
n:B(A;M) -~ B(A;M) is a chain equivalence of complexes of A-modules. In
particular, when A = Z(m), Bn(Z(w);€Z) = Bn(n) is the free Z(w)-module

generated by .all n-tuples x, ® *** @ X, of elements of m . (no normalized

1

condition).

In Chapter III a chain complex of Z-modules called the reduced .non-

normalized bar construction B(m) is used for a group m. Although B(m) is
not a resolution, it can be used to compute cohomology of groups for some

important special cases. For n > 0 let B(m) = Z(1) ® *** @ Z(w) be the
— J

n~-factors
free abelian group generated by all n-tuples X4 ® - ® X, of elements of

m. Set Eb(w) = Z and define an 1:§£(ﬂ) -> Eﬁ_l(ﬂ) by

an_l(xl ® e iexn) = x2 ® see i® xn
n-1 . | |
z (_1)lx ®o.o I X.X ®ooo ®xi + (_1)nx ®ooo ®x
1 ? %541 @770 9% 1  X5-1

i=1

! |
In order to introduce the cup-product in derived functors [1], [15],

[28] the presentation of a.comparison theorem in relative homological

algebra in the following form is now given.

Theorem 2.2: Let €:J > M be a projective resolution of M in the

category and let n:4% > N be a projective resolution of N in the
A proj
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category gq, Then, for any o-morphism of modules f£:M - N there exists an

a-chain map extension F:¥ +% of f in the sense that (1) for each n >0,

F iX——Y 1is an a-morphism of modules, and (2) dn—lEn = Fn-lan—1~f°r
n>1 and fe =\nFO,~where
3 30 an-l

=

H
[ SO A
1
(]
g L <
(=%
1
—
"< e <
o
1
=]
1

=z
4
=

and (3) if F, F' are a-chain map extensions.of f, then there exists an

a-chain homotopy h:¥ %% connecting F with F'.

Proof: First observe that the theorem is the usual comparison
theorem in the case when A = B and o is the identity map. The following
remarks enable us to reduce this theorem to the classical case; 1) the
B-modules N and Yi (1 > 0) can be considered as A-modules by pull-back
along ., 2) the B-module mo¥phisms n and\di (1 > 0) can be regarded as
morphisms in gﬁ]by considering 0LN, aYi 3 Xn, 3) by definition 2.4,

f:M > N is a morphism in Rn. From 1) and 2), n:% - N can be considered
as an acyclic complex in Rn, It follows from the usual comparison
theorem that there exists a chain map extension F of f in Xn. By defi-

nition 2.4, F is an a-chain map. It is immediate to see the rest of the

proof, This proves the theorem. A

Let M and N denote arbitrarily given left A-modules. Select any

projective resolution €:§¥ + M of M

30 3 1 9
Mixo@xl.@...fﬂf_ Xn<_n... I

where e .and Bn (n > 0) are morphisms of graded A-modules. Consider
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HomA({,N) which is the graded R-cochain complex

0 1 n
_ ) 8 )
HomA(I,N){ HomA(XO,N)-—+ HomA(Xl,N)-—+ > HomA(xn,N)——+ .

with a graded R-module HomA(Xn,N)_= {Homi(xn,N)| p=0,+1, +2, ¢}
and a morphism of graded R-modules st = HomA(Bn,N). For every integer
n > 0, the n-dimensional cohomology module Hn(Homi(I?N)) of a R-cochain

complex Homi(I,N) for each grading p will be referred to as the

n-dimensional extension functor over A of the given A-module M with
coefficients in the A-module N and will be denoted by the symbol
Extz’p(M,N), where . n refers to the homological dimension and p denotes
the grading. Thus for the category.of left A-modules &n7and for the

category of graded R-modules ﬁﬂ]we define the contravariant functor
* % .
ExtA ( ,N).Xn - éﬁ?
by Ext** = n,p
y Ext} (M,N) = {ExtA (M,N) }.

The cohomolegy H*(m,N) of a group m with coefficients in a
Z(m)-module N provides an important example of the functor Extz( ,N) with
A the group ring Z(w). These cohomology groups may be defined directly

in terms of the extension functor by

H*(m,N) = Extf o (Z,N) ,

considering sZ as a Z(m)-module by the augmentation e:Z(m) - Z. Thus,

the n-th cohomology of .a group m with coefficients in the Z(m)-module N
is defined by Hp(ﬂ,N) = Extg(ﬂ)(EZ,N). It should be noted that since all
modules involved in this case are trivially graded, the second asterisk
on the shoulder of Ext is dropped.

When the definitien of the reduced non-normalized bar construction
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EIﬂ) was given, it was mentioned that although B(m) is not a resolution
it can be used to compute cohomology of groups for some.important special

cases. This is now made precise.

Proposition 2.2: If N is a trivial Z(w)-module, that is, gx = x for

all g e m, x € N, then

H (m,N) = H' (Hom, (B(m) ,N)) ,
where B(7) is the reduced non-normalized bar construction.

Cup Products for A-Pairings

The main purpose of this section is to establish an algebraic
analogy to the first section in Chapter I, For a detailed account of
this -section, refer toi[30]°

Let A be a Hopf algebra over R with coproduct A:A - A @ A, and let
M be a left A-module coalgebra with coprbduct d:M>M @M. Ife:¥>Mis
a projective resolution of M, then e ® e:¥ ® ¥ > M ® M is a projective
resolution of M @ M. Since d is a A-morphism of modules, by the compari-
son theorem 2.2 there exists a A-chain map extension h:f - ¥ ® § of d
which preserves both the grading and the homological dimension. If
P, Q, and S are-A-modules such that P and Q are paired with respect to S

by the A-pairing 6, then there exist morphisms of R-modules
: A , h,9
tom, (1,P) ®.tom, (1,Q) * Homygy (1 @ §,P © Q) X2 o, (1,5)
where A is defined by
AME®g)(x®y) = £(x) ® g(¥) )

for
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f sfHomA'(I,P.),-g € Hova(I,Q), XxX®y e ¥I®% ;
and x(h,8) is defined by
x(1,8) (6) = eph, for o ¢ Hom (¥ ® £,P ® Q)
For a ¢ A and x ¢ ¥,

(x(h,8) (p)) (ax)

(6ph) (ax)

= 6(a(a)ph(x))

= 8(((,0 }® Q¢)0(1 @t®1)e(A®1 ®1))(a ® ph(x)))
= g?((1 ®6)(a ® ph(x)))

= g%(a ® 8ph(x))

= a(6ph(x))

Thus, x(h,8) € HomA(I,S). The reader can see here that the definition
2.5 of an A-pairing is effectively used.
It is immediate to see the composition\v% = y(h,8)R satisfies the

coboundary formula
G(f\v%g) = &f\v%g + (-1) f\vbdg

The composition.\% induces a morphism of graded R-modules (also

denoted by \,, or just v when no confusion can occur)

n+m,s+t

, tExt™ S 0M,P) @ Ext)’ T (M,6) —Ext (,8)

called the EEE_Eroduqt with respect to the A-pairing 6. Note that cup
product depends on the pairing 6 but not on-the particular projective
resolution of M,

If N is an A-module algebra, then N and N are paired with respect to

N by the A-pairing m;A(N ®N) - N. Thus, if M is an A-module coalgebra,
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the cup product

* * *
o :ExtK’ M,N) ® ExtK’ (M,N) - Ext2+m’ (M,N)

gives ExtK*(M,N) the structure of a graded R-algebra.

In the special case when M= EZ, A=2(r), and N is a Z(w)-module
algebra, then the.graded Z-module EXtECn)(Z’N) = H*(w,N) becomes a graded
ring when multiplication is defined in terms of the cup product; it is

called the cohomology.ring of m with coefficients in .the Z(w)-module

algebra N.

Characteristic Class and Lower

Dimensional Cohomology

Cohomology groups of a group were formally defined in the 1940's.
However, these groups in low dimensions had been studied earlier as part
of the general body of group theory. For example, the l-dimensional
cohomology groups. (crossed homomérphisms modulo principal homomorphisms)
had been long known; the 2-dimensional cohomology groups, in the form of
factor sets, had appeared as early-as 1926. This section is devoted to
the . task of calculating the. cohomology groups‘Hn(ﬂ,N), for n = 0,1; and,
to a discussion of the cohomology.group Hz(n,N) in relation to the
characteristic class of a.group extension.

For a group 7 and a Z(w)-module N (7-module for short),

H*(m,N) = Extg(ﬂ)(Z,N). By using the non-normalized bar resolution B(w)

(see 11.2), there is for each n > 0 a Z-isomorphism

homz(ﬂ) (Bn('ﬁ) ,N) = homz(én(ﬂ) sN), én(ﬂ)) = Z\(ﬂ) ® ** ® Z(ﬂj)

~
n-factors.

defined by the maps
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U
n .
homZ(ﬂ') (Bn(T"),N) <X__ ho'mZ (Bn(ﬂ') sN).
n
with
w(g)(x) = gl @x) , for ge homZ( )(B (m),N) , x ¢ B (my
and

A (E)(a®x) = af(x) , for £ e homzcén(n),N) ,a®x e B (1

Hence, the cochain complex HQmZ(w)(B(w)’N) is isomorphic to the cochain
complex

. d0 at " 1 a*
HomZ(B(ﬂ),N) hom (Z,N)— hom (B (P),N) —> ees — hom (B (w) N)-—+ s

with coboundary dn_1 = undn_lxn_l having the explicit formulation

n-1

e o o) = s

=u(>\

A, o) ®r®g)
1)@ ® - ®g)

(ln_lfan_‘l)(l ®g; @ ®¢g)

n- l n

g,f(g, ® -+ ®g))

n-1. :
+ 1 DM @ ©8,8,,, 9 ©g)
i=1
n
*(-1)f(g; @ ©g ) s

for f ¢ homZ(Bn_l(n),N), g; @ ® g, a Z-base element in Bn(n), The
cohomology group Hn(ﬂ,N) may thus be calculated by considering

Hn(HomZ(é(w), N)) = Ker dn/Im dn-1

Since N = homZ(Z,N), an element x € N is identified with the

o-cochain fx’ where fx:Z + N is defined by fx(l) = x, Then for g e 7
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@£ () = x - xg
Therefore, the kernel of d0 is the subgroup
N"={xeN|gx=x for all g e w}

of elements of N invariant under the action of .m. If f is a l-cochain,

then
1
(d7£)(g; ®gy) = 81f(8y) - £lgy8y) + £(gy)
The cochain f is therefore a cocycle iff
f(g,8,) = g,£(g,) + £(g;)

The mappings of 7 into N subject.to this condition are called crossed.

homomorphisms of 7 to N, and the group of crossed homomorphisms of 7 to N

is denoted by Zi(ﬂ,N). The l-cochain f belongs to the image of d0 iff

there exists an element a € N such that
f(g) = ga - a

for all g e m. Such crossed homomorphisms are called principal, and the.
group of principal crossed homomorphisms is denoted by BiCW,N). These

facts are summarized in the following proposition.

Proposition 2,3: For a.group m and a m-module N, Ho(ﬂ,N) = N" and

HY (7 ,N)

Zi(ﬂ,N)/Bi(ﬂ,N), In particular, when 7 acts trivially on N,

1]

HOCW,N). N and Hl(n,N) =.homz(ﬂ,N).

The relation between H%CN,N) and extensions of the abelian group N

by the group m is now investigated.
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Definition 2,11: A group extension is a short exact sequence

E:0 ~» N‘i 6By where N is-an abelian group; it is convenient to
write the group composition in 0 and N as addition, that in G, m, and 1
multiplication. G is called an extension of N by w. The extension E.

splits iff there is a homomorphism y:m -~ G with py = 1.

Let Aut N denote the group of -automorphisms of N, with group multi-
plication the composition of automorphisms. Conjugation in G yields a
homomorphism 6:G - Aut N under which the action of each 6(g) on any

X € N is given by
-1, . -1
8(g)(x) =1 "(gix)g ™) , geG, xeN s
or, one simply considers i as the inclusion map and writes
-1
6(g)(x) = gxg

when no confusion occurs. Since-N is abelian, observe that
(8ei) (x) = lN:N + N for all x ¢ N. Hence 6 induces a homomorphism

¢:m +~ Aut N defined by
8(0) (x) = 8(g)(x) , xeN, o e | ,

where g € G is such that p(g) =.0.. It is easy to see that ¢ is inde-
pendent of the choice of a representative g for o. Then & gives N the
structure of a m-module; for ¢ € m and x e.N, define an action of w on

N by o+x =-8(0)(x). This proves

Proposition 2.4: An extension of N by m furnishes N with the

structure of a wm-module,

Proposition 2.5: If N is an abelian group .and 7 is a group, then.
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there exists a one-to-one correspondence between the set {¢:m > Aut N | @
is a group homemorphism} and the set of all possible m-module structures.

of N.

For each group homomorphism ¢:m > Aut N construct a multiplicative,

but not necessarily abelian, group N x, m called the semi-direct product

¢

of N and 7 relative to ¢. As a set, N Xy T = {(x,0) | xe N, 0 ¢ 7},

Multiplication is defined by
(x,c)(xl,cl) = (x + @(c)(xl),ccl) » Xy X € N, 0,0, €7

One proves that-this is a group with the "identity' element 1 = (0,1)

and inverse (x’g)-l = ('Q(U-l)(x),o~1),

Proposition 2.6: Any split group extension

¥

0>N3¢ 11

<4

yields an isomorphism G = N Xg T for a ¢:m - Aut N.

Proof: First observe that Im i is nb;mal inG, 1=1ImiMNIny, and
every element in G is a product xy for x € N and y € m, Next, for
y € Im vy the inner automoerphism Ty of G (TyZG + G is defined by
Ty(g) = ygyfl) restricted to Im 1 is an inner automorphism of Im i. Thus

¢:Im vy >~ Aut Im i defined by ¢(y) = Ty| is a group homomorphism, and

Im i

n:Im i x, Im y > G defined by .n(x,y) =.xy is an isomorphism. Then

¢
identifying Im i with N and Im vy with,ﬂ, the proof is complete. '

Definition 2.12: If N is a w-module, an extension

E:0 >N 3 G B r > 1 is said to be compatible with the m-module structure

of N iff the m-module structure obtained from the extension E coincides
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with the given w-module structure.

Given 7 and a m-module N, there is at least one extension, the semi-
direct product, compatible with the w-module structure of N. If
$:m +~ Aut N is-the homomorphism corresponding to .the m-module structure

of N, then there is a short exact sequence
E0>N3Nx nBrn>1

where i is the monomorphism given by i(x) = (x,1) and p is p(x,0) = o.

Recalling that the m-module structure of N furnished by E is defined by
=1 . -1
o-x =1 “(gi(x)g ") s

where p(g) = o, setting g = (0,0), then

a
”
n

171((0,0) (x,1)(0,0)™H)

171 ((ox,0) (0,071Y)

17l ox,1)

gx

Whence

Proposition 2.7: If N is a m-module with structure corresponding

to ¢:m » Aut N, then the extension
0~>N3N Xg T RBrosi

is compatible with the given m-module structure of N.
If N is-a m-module, E:0 > N>G > 7+ 1 and E':0 > N~+>G' > 1 ~>1
are two compatible extensions of N by m, then E is said to be related

to E', in notation E ~ E', iff there exists an isomorphism y:G - G'
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such that the diagram

is commutative. This.relation is an equivalence relation..: Let Em,N)
denote the equivallence classes of compatible extensions of N by m modulo
this relation.

Suppose N is a m-module and E:0 -+~ N i GBr>1isa compatible
extension. K Construct a funetion s:m - G such that s(1) = 0 and ps = 11T

(such a. function is called a section of 7 in G). Then

(s(cl)-é(02)~s(0102)-l)e In i for o, o, ¢ 7. Let h_ e N be that

>
1 2 1292

unique element such that i(h ) = s(cl)-s(cz)-s(oloz)-l. Correspond-

0'1,0'2

ing to the fixed section s, there is a map
fs:n g>n -+ N
defined. by

f (0,,0,) =h
s> 172 01,02
Then fs determines a 2-cochain (also denoted by,fs)

fS:Bz(W) + N
where B(m) is the normalized bar resolution (see II.2), defined by

fs([clioz]) = fsz(c‘l ,02)

Moreover,
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(5(5)°5(59))13(95) = (b, 305(019)) 5(3)
By g ) (5(9195) (o)
i(hcl,oz)-(i(h

n

)es(0,0,0,))
0195593 17273

Similarly,

s(07)°(s(0,5)*s(04)) s(cl)~(i(hoz,cs)-s(czos))

]

(s(ol)-i(hcz,os)-scol)‘l)-(scol)-scczos))

i(cl-hcz,cs)-(i(h

)e¢s(0,0,0,))
01,0203 17273

Whence by associativity

)'i(hcl,c 5.)

ih,  )eith ) s

i(o,h
1°9, 102,0 ( l o,,0

3 2’73

and thus
fs(01,02) +st(0102,03) =0, fchz,cs) + fs(cl’OZOS)
Consequently, fs is a 2-cocycle and [fs] € HZ(W,N).

If s' is another section of 7 in G, then corresponding to each o .7
there exists a unique element (denote it) X, € N such that
s(o) = i(xc)°s'(c)u Define g:Bl(ﬂ) -+ N by g([c]) = X Then for

O,, O, € T,

12 72

it

s(cl)-s(czj i(xcl)-s'(01)-i(x02)-s'(02)

- i(xcl)-cs'(ol)-i(xcz)-s'(ol)‘l)-s'(ol)-s'(oz)

= i(xol)-i(cl-xoz)-s'(01)°s'(02)

= 1(x_ )ei(o,*x_ )ei(h' Yes'(0,0,) s
01 1 02 01,02 172

while



ith )*s(o,0,) = i(h )ei(x Yes' (o0
01,02 172 01,02 0102 1°2

Since s(cl)-s(cz) = 1(hcl,62)-s(0102),

clg([oz]) - g([oloz]) * g([ol]) = fs([ol’GZ]) - fS'([o—l,O—Z]‘)

1 = - i =
so that 8'g = fs fsl and hence [fs] [fS,]. Setting [fS] [fE],

there is a well-defined map
2
¢: (m,N) -~ H"(7,N)

with o([E]) = [fE]° The cohomology class»[fE] is called the

characteristic class of the group extension E.

The map ¢ is injective, for suppose E:0 -~ N 36Rr>1 and
i | 1
E':0 » N-—> G'-£> 7 + 1 are two extensions of N by m such that
®([E']) = ®([E]). Let s be a section of m in G and let s' be a section

of # in.G'. Then there exists a l-cochain,g:Bl(ﬂ) + N such that

Define s'':m >~ G by
s"(o9) = i(g([o]))+s(e) , oem
Then s'" is a section of 7 in G satisfying the property that
fs"(oi,cz) = fs,(ol,cz) " 0150, €T

If g € G, then g can be uniquely written as the product i(x)+s'p(g) for

x € N. Define w:G -~ G' by
a(g) = 1'(x)-s'p(g)

Then o is a homomorphism and the diagram

32
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is commutative; and hence by the 5-Lemma, o is an isomorphism and E N ET,
Now ¢ is shown.to be.surjective. Suppose [f] e Hz(w,N). Construct

the group N X 7. Its elements are all pairs (x,0) with the product
(x1507) (x5 05) = (%) + ;%) + £(0,,0,), 9,0,)

One proves that this is a group with the "identity'" element 1 = (0,1)
. -1, -1 -1 -1 .
and inverse (xl,ol) = (-Gl X, -0 f(cl,oz), oy ) and there is a short

exact sequence

E'0 > N 3 N X RBqs

where 1 is the homomorphism given by i(x) = (x,1), p is given by

p(x,0) = o. The section s of m in N .x 7 defined by

f

s(o) = (0,0)

is such that @([fs]) = [f]. Summarizing, the following theorem has been

prov e,

Theorem 2.3: Given a wm-module N then- ¢: &(m,N) ~» Hz(ﬂ,N) is a
one-to-one correspondence between the equivalence classes .of compatible .

extensions of N by m and the elements of HZ(n,N).

To'iilustrate Theorem 2.3, £(w,N) is computed for some elementary
groups ‘m and N.

(1) Take 7 = 22 with generator t and N = Z. There is only one.
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Zz-module structure for Z, Proposition 2.5, and it is obtained by letting

22 act trivially on Z. If f is the 2-cochain that maps [t|t] to 1 and

[tlltJ] to 0, for i, j # 1, then the odd multiples of f are the
2-cocycles that are notvcoboundarics° Hence HZ(ZZ,Z) is a cyclic group

of order two and 8(22,2) = {[E],[E']} where

E:0>23202,~2, 1

2 2

E':0>723%7 > Z, > 1

with i(n) = (n,0) and 2 maps.Z onto 2Z in Z.

(2) Take 7 = 22 with generator t and N = Z

There are two possible Z

3 with generator 8.

-module structures for Z, and they are obtained

2

by tB = Sq’wherevq = 1 or 2. In either case, the set of 2-cochains is a

3

cyclic group of order three generated by the cochain f that maps

B
[t]t] to 8.

(2a) If 22 acts on Zs\byAtB =.8, then every 2-cochain is a cocycle

and a coboundary. Hence HZ(ZZ,ZS) = 0 and 8(22,23) = {[E]} where

E:0 ~» 23 > 23 @‘22 = Z6 > 22 > 1

2

(2b) 1I1f 22 acts .on 23 by tB = 8”7, then f, and 2f, = £ , are

B g B2

coboundaries. Thus HZ(ZZ,ZS) = 0 and 8(22,23) consists of the single

equivalence class represented by .the extension

i
E:0 > Z, > S; > Z, > 1 ,

where S3 denotes the symmetric group of degree 3 and i(B) = (é é i) for

the generator B of ZS'

(3) Take m = Z_, with generator t and N = Z. Again, by Proposition

3
2.5 the only Zs-module‘structure for Z is obtained by letting Z3 act



trivially on Z, If f is the 2-cochain defined by

1;i+3j>3
£([eteI]) =

0 ; otherwise

then f, and 2f are the 2-cocycles that are not coboundaries, while 3nf
for any integer n is a coboundary. Thus H2(Z3,Z) is a cyclic group of

order three and 8(23,2) = {[El],[EZ],[E3]} where

> Z,>1 s

Elzo > Z>72Z 08 7 3

3

EZ:O > Z 3 Z - Z3 > 1 R

E3:0 > Z :é Z - 23 > 1

35



CHAPTER III
Extzcﬂ)(Z,N) = H*(K(r,1),N)

It was proved by Hurewicz [20] that if X is an arcwise-connected
aspherical space then the fundamental group nl(X) determines all the
homology and cohomology .groups of X. Eilenberg and MaclLane [10] showed
this determination in-.a purely algebraic fashion and further proved
H*(K(m,1) ,N) = H*(m,N) for an abelian group N as coefficient group. The
purpose of this‘chapter is to make a quick review of. this important link
between algebraic topology and the cohomology theory of groups.

Let X be an arcwise-connected aspherical space whose fundamental
group ﬂl(X) is isomorphic to a given abstract group w. We call such a
space K(m,1). Let Xy € X be a fixed point of X which is chosen as the
base point for the fundamental group ﬂICX). Denote by S(X) the subcom-
plex of the total singular complex S(X;Z) obtained by considering only

those singular simplices whose vertices are mapped into x It was shown

0"

in [8] that there exist chain maps p, i

S(X) 'fj S(X)
i

with i the injection map, such that pi = IQ(X) and ip is chain homotopic

to the identity map 1 Thus S(X) and §(X) are chain

s T sy
equivalent and the cohomology groups of the complexes S(X) and §(X) are
isomorphic.

It is clear the complex S(X) is more closely connected with the

36
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fundamental group ﬁ1(X) than is the larger complex S(X). In fact, any
l1-face of every singular simplex in S(X) determines a unique element of
ﬁl(X).

Now define chain maps «, n

K,
S(X) — B(m)

where B(m) is the reduced non-normalized bar construction for m (see
11.2).

Let A" = [eo,---,en] be a standard n-simplex whose vertices are
€ps° "t and let T:A" > X be a singular n-simplex in §(X). Since every
vertex e of A" is .mapped into the base point x

0

(i< 3) of A™ maps into-a clbsed ath in X and therefore.determines
= P 1 :

e X, each edge eiej

uniquely an element o, j‘Of.W. Ifi=3j, o, 4 = 1 can be defined. Then
3 yJ

018,00 > B (1)

is defined by Kn(T)A = aO,l ® a1,2 ® " Q® anfl,n' Now
Gpaa¥n) (M) =8 (g ) @y @ 2" @y g )
0200 @0 Q0
n-1 .
* .lgl (-1)7ag ; @ cor @y g 405 5, @ @ g4
o+ (_l)n ® o ® es e
%,1 ®%,2 ® o201 ’

while
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Cprta)® = 1 (0,

0<i<n
n-1 ; .
= Kn_l(T(O)) + izl (-l)lKn-l(T(l)) + (‘1)ann_l(T(n))
= (0, 1k, ) (M ,

where T(l) denotes the i-th face of T. Hence, 9k = k3 and k is.therefore
a chain map.

Define no:Eb(n) - §d(X) by ny(1) = T, where 7:00 > X is given by

1

T(eo) = X Let o be a base element of -é"i(n)° Let T:A” -~ X be a contin-

0
uous function mapping Al into a closed path about X, belonging to.the

element o of the fundamental group. Define nl(a) = T. Next, let

(Az)(l) denote the 1-face of Az‘opposite‘the i-th vertex e; (i=0,1,2).
©) . (1) @ _,

| = 0y, 0 = o 1"

already been defined for elements - of E&(w), there are three mappings

In notation, set o %y s and o Since n has

n @)@ s x, 5= 0,1,

which give closed paths3about X, belonging to the elements Gy, GGy, Of

of m, respectively. Jointly these three mappings give a mapping

T:BA2 + X of the boundary;aA2 of A2. This map is null homotopic because

alaz(alaz)_l = 1. Consequently, T can be extended to a mapping T:_A2 - X,

Define nz(a) T.
From now on, the procedure is by induction. Suppose that Nk has

been defined for .k < p (k> 2). Let a =

oy ® - Q® ap be a base element

of E;(w) and notationally let

(0) 3 s e e
Q = G2® ®ap >
d(i)=d ® *°* ® a.q ® *°* ® q I#OP
1 i%i+1 p’ ’
®
o = O"l®! ®ap-l .
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py (1) . . P .
If (&%) is the i-th face of AY, there are p+1 mappings

nyp @)@ @ s x :

for i = 0,1, sP. By virtue of the inductive construction of n, these
mappings agree on the common faces of any two (p-1)-faces of AP, Conse-
quently, they combine and give a map T:34P -~ X. Since 24P is
homeomorphic to a (p-1)-sphere and ﬂp_l(X) = 0 because p-1 > 1, the map T

can be -extended to a mapT:Ap -+ X. Define np(a) = T, and the definition

() - @

of n is complete. If one observes that n(a) T implies n(a
it follows that n and 3 commute so that n is.a chain map.
The chain maps « and n are such that «n = lETW) and nk ~ 1§(X)f

Hence

Proposition 3.1: Let X be a K(m,1) space. Then the complexes S(X},

é(X), and B(m) are-all chain equivalent.

As has ‘previously been observed (see II.2), passing to cohomology,

this chapter is concluded by

Theorem 3.1: H*(m,N) = H*(K(m,1),N) if 7 acts trivially on N,



CHAPTER IV
COMPUTATION OF GROUPS

In this chapter the tools developed in Chapters I, II, and III are.
applied to the computation of the cohomology ring H*(w,N) for various

groups ..
RP = K(Zz,l)

In this section the computation of‘H*(Zz,Zz) will be carried out by
constructing a space RP” whose fundamental group‘ﬂl(RPé) is isomorphic
with Z2 and whose higher homotopy groups vanish, and then applying te
this space Theorem 3.1.

The n-dimensional real projective space RP™ (n > 0) is defined to be

(Rn+1 - {0})/~ where ~ is the usual equivalence relation: x vy iff .

x = ry for some r # 0 € R. Using the quotient map vr:Rn+1 - {0} ~ RPn,
RP™ is topologized. Write [xl"°°’xn+1] for the equivalence class of
n+1 "
(xl, f,Xn+1) e RW° - {0},
First observelthat)RPn is a n-dimensional connected compact closed

manifold. Consider -a diagram

n+l .

R*™ {0} —T— rp"

1

where_Sn‘is‘the unit n-sphere in R™ _ {0} and i is the inclusion map.

40
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Define p by .the composition mi. It is thus immediate to see that p is
the identification map such that the inverse image by p of any .point
[x] € RP™ consists of exactly two antipodal points :_x/[xl. It follows
that RP" is a connected compact Hausdorff space. For i = l,«<¢,n+l, let
n . n
+ax 1 € RP | x; # 0} and define ¥.:V, -~ R" by

lyi([xl)...,xn_'_l]) = (xl/xi.'...’xi_l/xi)x /xi’...’x

n+1/xi). Since ¥, is

i+l
a homeomorphism and since~RP# is the union of the-Vi's, RP™'is a
n-dimensional connected compact closed manifold.

Next, decompose RP" into a CW-complex so that one can.calculate the.
cohomology (homology) of RP" by the standard method for CW-complexes.
Define A:R? - {0} » AL {0} by A(xl,--°,xn) =_(x1,°--,xn,0), and
consider an-l as a subspace of RP" by the identification tx] = [A(x)].
",

Define fn:(Dn;aDn)»+ (RPn;RP where D" is the n-dimensional unit disk

and 3D" its boundary, by

T2
kX)) = xp e, /1 Z X;

n-

Then f | is-a homeomorphism onto e" = RP Thus inductive-

n..n
n D -3D 1
ly there is a cell decomposition of RP,

RPn_=eOLJe1L.J---LJen ,

|

where el.(i = 0,1,+++,n) denotes an i-cell,
Define RPm'tovbe the direct limitilim Rp™ (see II.3), where

rRROC Rl C 2 C oo Crp"C e , and call RP” the infinite dimensional

real projective space.
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Proposition 4.1: For n.> 2,

(

fl
o

Z fqr p

n
—

vp(RP )= < 2 for p

2 5

0 ; forn>p>1

\
Proof:. Since_p:Sn - RP" is a 2-fold covering, by Theorem 1.6
wp(Sn) = ﬂp(RPg) for every p > 2. If p < n, then wp(Sn} = 0. Hence
np(an) = 0 for any p withn > p.> 2, If n > 2, then s™ ‘is simply con-
nected. By Theorem 1.5, the group iKSn,p) of deck transformations is
isomorphic to wl(RPnj. Since a\deck\transfopmation-f:sn‘+ Sn\preserves
each fibre consistiné of antipodal points, f is the antipodal map or the

identity. This prévésxthat'wl(RPn) =z, forn > 2. A

For -each p > 2, np(RPn)~= 0 when n > p. By‘Theorem 1.3,

o n, _ R n, _ » ;
ﬂp(RP ) = 1im vp(RP ) =.0, and nl(RP ) lim wIQRP ) 22. It follows

that RP™ = K(Z,,1).

It is well known,that for Z, coefficients, RP? is an orientable con-

2

nected compaét-n-manifold without boundary and

n 0 Z‘2 ; for 0 < q < n.
H (RP";Z,) = Hirp™;z.) =
q 0 ; forq>n

Moreover, the.cell decomposition of RP" shows that, if-i:RPn_l > RP" is
the. inclusion map, i*:Hq(RPn-l;ZZ) - Hq(RPn;ZZ) is an isomorphism for
0'<q<n-1; These facts together with the Poincare ‘Duality Theorem and
properties of cap product (see I.2) arevuse& to prove the following

theorem.
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Theorem 4.1: The cohomology algebra H*(RPn;Z ) is the truncated
polynomial algebra PZ [a]/(an+1) on one generator a of degree 1 and

height n+l.

Proof: Let‘wn denote the fundamental class of RP™ and define the.

continuous mappings

i, RPI > RPX, 1<j<k<n
)k ZIIEs

by letting i, , be the inclusioen map for j # k, and i.
: > T3,k o ' i,k

for j = k. The proof proceeds by induction on n, the dimension of RP".

be the identity

If n = 1, then the result is obviously true. For n = 2, i1 2*(w1) is a
td

generator of Hl(RPZ;Z ).. Define the generator a, aaHI(RPZ;Z') by

- o is a generator of HZ(RPZ;Z ) be-.

2 2

<a2,11,2*(w1)>.= 1. Then.a, v o,

A w,> =

cause <o 5 5 ~<a2,i1 2*(w
3

G, ,u,> = <a,,a

2 2 1)> = 1., Thus the thedrem

2
holds true in this case.
Assume the result to be true for any real projective space of dimen-
sion less than n; that is, assume for k < n, <qk,i1 k*(w1)> = 1 and
’_’.
<
K

21, y»(w)> =1 for all 2 < k. Define the generator o e Hl(RPn;Z )
Jk*
by <%,i1 n*(w1)> = 1. Then o e = ai is a generator of HZ(RPn;Z.)
td

because
«?,i. L (w)> = <o2,(i oi ), (6,)>
n’ 2,n*"2 n’*n-l,n "2,n-1"*""2
= <a?,i. 4 (w,)>
n’ n-1,n*""2,n-1*>"2"
. 2, .
_ * ]
= <im0 i nagx(9p)

2 .
= i *
<(1n—l,.n(c’bn)) ’12,.rx-1*(“32)>

<on-1012 po1x(9)>

= 1 .
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By a similar procedure, one can show-ug (p < n) is a generator of

HP(angzv). The last step for p.= n follows easily from the fact that

n n n-1 . .
<0 ,Ww >.= <o ;0 A w.> =.<g_,1 w,)> =1, This proves the
n’ n n’'n n n’ l,n*(“l) p
theoren. A

Theorem 4.2: H*(RPm;ZE) = H*(ZZ,ZQ) is the polynomial algebra

PZ [§] over 22 on one . generator § of degree 1.
2

Proof: Since RP’ = K(Z,,1), it follows .that H*(RP ;Z.) = H*(Z,,2,).
From Theorem 1.2, H*(RPw;ZZ) = H*(1im RPn;Z ) = lim H*(RPn;Z ) = PZ [s].
)

This completes the proof. A

st = kez,1)

The universal covering space of a circle,S1 is the real line R} with
. . 2mix . 1 1
the projection p(x) = e . Then a deck transformation h:R™ - R" pre-

serves fibres so that eZth(x) = ezﬂlx.

Thus‘htx) - x is an integer for
all x e Rl. Since the map k;R1 + Z defined by k(x) = h(x) - x is contin-
uous, and since‘R1 is connected, h(x) - x = ¢ for some fixed integer c;
that is h(x) = x + ¢ for some integer c. Hence h is a translation of -the
integer.c. It follows that the group‘g(sl,p) is Z. Since the covering
space R1 of S1 is contractible to a point, by Theorem 1.5, ﬁl(Sl) = 7,
From Theorem 1.6, ﬁp(Rl) = ﬁp(sl) for p > 2, Thus np(Sl) = 0 for any .

p > 2. This shows that S1 is a K(Z,1)-space.

Theorem 4,3: H*(S',R) = H¥(Z,R) for a ring R. Hence H*(Z,R) is
isomorphic to the exterior algebra ER[a] ever R on one generator a of

degree 1.

Proof: Evident. A
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Obviously the proof of Theorem 4.3 is a topological one. A purely.
algebraic computation of the cohomology algebra H*(Z,R) is now given.

Consider the exact sequence of Z(Z)-modules
E:0 » ker ¢ 3 Z(Z) 32+ 0

with i the inclusion and e the usual augmentation. It is well known that
ker ¢ is a free Z(Z)-module. By Proposition 2.1, ker e, Z(Z), and 0 are.

projective objects. Hence the left complex ¥ over EZ
Z <« Z(Z2) z ker € « 0 « 0 « <o+ :¥

is a Z(Z)-module resolution of eZ (see II.2)., It follows immediately
that Hn(Z,R) =0 for n > 2. By Proposition 2.3, HO(Z,R) = R and
?Hl(Z,R) = hémZ(Z,R) =:R, Summarizing, the module structure of H*(Z,R)
is given.by-

1 R;n=20,1

H"(Z,R) =

0 ;n>1

Evidently, H*(Z,R) is isomorphic to the exterior algebra ER[a] over R on

one generator o of .degree 1.
Cohomology of .Cyclic Groups .

The definition H* (n,N) =-Ext§(v)(€Z,N) was given in Chapter II.
Thus.one may calculate the cohomology(quules of a particular group v by
using a Z(w)-module resolution of eZ sqitably adapted to the structure of
the group .

Let w = Zp be the multiplicative cyclic group.of order pnwith

generator t. The group ring Z(Zp) is the ring of all polynomials P, (t)
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taken modulo the relation tP = 1; thus, Z(Zp) = PZ(t)/(tp)

= K p-l =
{ag + at +a jt [ a; € Z}. Forn > 0, let X - Z(Zp) and

p_
. Pel g pol
define an'xn+1 -> Xn by an(iZO ait ) = (t - l)(iZO ait ), for n even, and
p:-l . p-1 . p-l - p-1 ;
3. () a.th) = (] tH(] a.th), for nodd, where x = ) a.t' is an
n°’. 1 . . 1. . 1
1=0 i=0 1=0 i=0 ‘

arbitrary element in Z(Zp). Clearly ana 0. If'82n(x) = 0, then

n+1‘=

ay = a; = 0 = ap_liand 32n+1(a0) = x, If 82n-1(x) = 0, then
ag + @y e +1ap_l = 0, and x = -azn(ao + (al + ao)t + oo
+ (ap-l $oeee & ao)tp_l). The usual augmentation e:Z(Zp) - Z has eao =0
and ker ¢ = im 80. All told, the left complex I over cZ
30 3 1 3
ZEX{——...(—X .(—r_l:.—x (ll.x % e :I"
‘0 n-1. ol n+l -

provides a‘Z(Zp)-module:projective resolution of-SZ. This resolution was
originally due to Steenrod [26].

For .any Z(Zp)—module.N, thq isomorphism homZ(Z )(Z(Zp),N) = N maps
p’)

f e”homZ(Z )(Z(Zp),N) into £(1). Hence the cochain complex
‘P

SN Bndnt.

where d(x) = az(x) and h(x) = Bl(x), is isomorphic to the cochain complex
HomZ(Z )(F,N). The cohomology modules of Zp with coefficients in N are
p

those of the cochain . complex N.

Proposition 4.2: For a cyclic group of order p with a generator t
and a Zp-module N, the cohomology modules of Zp with coefficients in N

are: HO(ZP,N) = {aeN| ta=al, Hzn(ZP,N) = {aeN | ta=al}l/imh,

2n+1

with n > 0, H (Zp,N) = {a ¢ N | h(a) = 0}/im d, with n > 0.
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Cohomology.Ring H*(ZS,Z)

Let 7 = Zp be.the multiplicative cyclic group.of order.p with a
generator t. LetlA:Z(Zp) - Z(Zp) ® Z(Zp) be the coproduct of the Hopf.
algebra Z(Zp). The A-morphism 6f modules f:Z » Z @ Z defined by
f(1) = 1 ® 1 can be extended to a A-chaiq map h:T > T ®T by the direct
application of Theorem 2.2 (the comparison theorem), where I' is the
Steenrod resolution of the.Z(Zp)—module eZ discussed in the previous.
section,

Steenrod . [27] computed h explicitly in this case. Define

n
hn:'Xn +'.Z

i
= (T ®I)_byh(e,)= ) e,. ®€,y: .
520 n - n-2i 320 2j 21-2j

X. X .
i ® %n-3

i-1

k 2 .
¥ J=O 0<k<f<n-1 t e2j+l @t ezi_zj_l for n = 21, and

.), forn=21i+ 1,

O~

h(egie) = 520 (635 ® €p5 2541 * ©2541 ® T35 95

where, notatienally,
X = {ae +ate +---+a tPle | a, € 2}
n 0™ 1™ p-1 n i

By Proposition 4.2, the module structure of H*(ZS,Z) is given by

Z ;s n=20
HQ(ZS,Z) = Z/3Z ; n even
0 ; otherwise

Since.Z is a Z(Zs)-module algebra (see II.1), Z and Z are paired with
respect to Z by the Z(Zs)—pairing 8:Z ® Z ~ Z defined by 6(n ® m) = nm.

Then the cup product is a morphism of graded Z-modules



Vi (25,2) @ H'(Zg,2) > HY ' (Zg,2) :
Theorem 4.4: The cohomology.ring H*(ZS,Z)_is
0 0
Z(a) ® P, [a]/(a)

3

where Pz [a] is the polynomial algebra over Z, on one generator a of

3. 3
degree 2.

Proof: If %o is a generator of Hzn(ZS,Z), then at the cochain
level a,, is represented by.on € homZ(ZS)(XZn,Z).where on(eZn) =1,

The proof of the theorem proceeds by induction on n., If n = 1, at the

. A ) A
cochain level one has homZ(ZS)(X »Z) ®>h°mZ(Z )(X AR

h°mzcz,3)®zcz,3) X, ®X,,2 ®7) x(h,8) h°mZ(23) (X,»2), where w= x(h,8).

Thus

£2(e,) = (£, £)(e,) = (x(h,0)A) (£, ® £) (e,)

(6A(£, ® £,))h(e,)

1)

2
(8A(£, ® fz))(jzl ©; ® ey o5

+ ) tke'1 ® tzes)
0<k<2<3
= (£,(e,) ® £,(e,))
=1 ,

and o,V o generates\H4(ZS,Z). Assume that for k < n

2

G, = O

2.

2

S\ Tt a, (k-factors) generates HZk(ZS,Z}. Consequently,

48



This proves the theorem.

1)

u
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(x(0,0)1) (£, ® £27 1) (e, )
(eA(£, ® £ )h(e, )

n
n-1 :
(8A(£, ® £, ))(jzo ¢35 ® eop o

nil Z K .
oL the,. . ®t e, . 1)
j=0, Oik<gi2n_1 2j+l 2n-2j-1-

(£5(0) ® 557 (e ))



CHAPTER V
SPECTRAL SEQUENCES

If N is a normal subgroup of the group m, the cohomology module
H*(m,N) can be calculated by successive approximations from the
cohomology of N and that of w/N. These successive approximations are
codified in the notion of a spectral sequence. In this chapter.the
mechanism of these sequences is formulated via "exact couples' (Massey
[23]). A filtered cochain complex is associated with a spectral sequence
and the Hochschild-Serre spectral sequence [19] with,E2 term H(m/N,H(N))
is derived. The chapter is completed by giving some results which will

be applied to the calculation of the ring H*(w,N) in Chapter VI.
Exact Couples

1 ..
An exact couple C~ = {Dl,El,ll,Jl,

together with three homomorphisms i

kl} is a pair of modulesle, E,

10 310 Ky

which form an exact triangle in the sense that kernel = image at each

vertex. The modules Dl and EI in an exact couple may be graded R-moedules

or Z-bigraded R-modules; in the latter case, each of i kl has some

l, jl,

bidegree.

S0
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The exactness of Cl shows that the composition d1 = jlklel > E; is
such-that\dld1 = 0; he,nce.‘d1 is a differential operator on El' Let
1) DZ = im il,
(ii) E2 = ker dl/im dl’
(iii) 1i,:D, ~ D, be defined by i, =-i1102’
(iv) jZ:D2 - Ej be defined by jZ(x) = EETTTZ where yeD1 is such that

il(y) =.X, and jl(y) denotes the coset represented by ji(y),

(v) k,:E, + D, be defined by k2(§) = k;(x). Then the triangle

is exact., Call C {D »E k,} the derived exact couple of Cl (for

29 2’J2:

notatioenal reasons, C2 is called the 2-nd derived exact_céuple).
It is clear that this process of derivation can be applied to the-

derived exact couple C2 to obtain the 3-rd derived exact couple

3

{D ,E k.}, and so on, In general, denote the .n-th derived

3’ 3’33’
exact couple by C" = {Dn’En’iﬁ*jn’kn}° The sequence {En,dn | n > 1} is

called the Koszul-Leray spectral sequence of the exact couple Cla

. . 2o=l.. .n-1,,. .. _ .n-1 .n-1
Pr09051t10n 5.1: En = k1 (im i )/Jl(ker i) ), n > 1, where i

is the (n - 1)-fold iteration of ii'

A proof of this result is.sketched here because it is not found in

texts (for example, [5] and [22]) covering this subject. Forn > 1, let

(1) En’n = {xeE | d (x) =

(ii) ~t:E +~ E_ be the inclusion map,
n,n n . . g

. n . n. -
(iii) Kool n,n»+ En+1‘be defined by Kn+l(x) = X,



These definitions are illustrated in the diagram

El’l E2’2 ES’S ‘ LI En,n En+l’n4‘21 )
v 1 2 n
T T K T T Koel |¥
Y .
El E2 E3 see En‘ En+1
4 d, rd3 d_ d .
By E, Es By Ens1
Let
@) E ={xeE | d(x)=0,d . (x)=0}
n,n+l n n:"* 7’ "n+lon+l e
1 - .
(ii) T.En’n+1 +-En,n be -the inclusion map,
Gii)t " B > E__ be defined by * . (x).= X; note the use
‘ n+l’ n,n+l n,n - - : n+l ' ? ‘

the same notation as in. (iii),

n+l n

Gt Kt = & > E
n+2 n+2 n+l""n,n+l- Tn+2°

Continuing in this fashion, let

. k — - n F—1 LN N
(1) En’n+k = {xeE | d (x) =0,d .  (x) =0,
n
dn+1Kn+k(X) = 0},
(‘i)k :E + E be the inclusion ma
T T nek n+l,n+k © the inciusi P
... kK n . n. _ =
(iii) Kn+1'Enxn+kh* En+1,n+kkbe defined by Kn+1(x) = X,
(iv)k I Kn+1Kn . > E
: n+2 n+2 n+l’ n,n+2 n+2 ,n+2
I n+2Kn+1Kn S E
n+3 n+3 n+*2 n+l""n,n+3 n+3
n _ n+k-1- I S E
“nek T Knek n+l""n,n+k ~ “n+k

52
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In diagram form, one has

Since each of the maps k are surjective, En = E; 0 1/ker Ki. First, one.
‘ '~ ,n- ‘ :

n-l)

1 = ker (j

shows E =.k—1(im i Now E = ker d
‘ -1 1 n n-

1,n -1,n-1 1 n-lkn—l)

-1 . S -1 .. .n-1 ,
= kn_l(ker Jn_l) = kn_l(lm ln—l) = kn_l(lm_ll ). Also, for all

1 1 .n-1
X € El,n—l’ Kn_l(x) € En-l,n-l’ S0 that»kn_ln _1(x) =1 (z) for z ¢ Dl'

n
.n-1 1 ) n-2.1 _ 1
Hence, 1, "(z) = kn—lKn—lgx) = kn-lKn—lsn-Zcx) =k ok 5 ()
=k kP3d (x) = *¢+ = k. (x), and it follows that
n-2"n-2"n-3 1Yt ‘ : ,
-1.. .n-1 - -1,.  .n-1
El,n_1C: k[ "(im i;77).  Similarly, k" (im i;77) cz'El,n-l' Next, one
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1 _ . .n-1g 1 1 s
shows ker k= Jl(ker.ll ). If x ¢ ker <L then Kn_l(x) = Jn_l(cl),

_ .n-2; .n-1 1
where ¢, e D, and g, = i) (al) for a; e ker i, ~. Thus Koo (X)

. .n-3 .n-
= . _,(2,), where ¢, = i, "(a,) for a, e ker i

1 and it .follows that

1 . .n-3 A . . . .
Kn_z(x) = Jn_2(11 (al + az)). Continuing in this fashion, one obtains

1 s s e .2
Kz(x) = 32(11(a1.+ + an_z)) for a, 5 e ker iy, so that

. e . . .n-1
X = Jl(al + ta ot anel) for anflve ker i. Hence x ¢ Jl(ker i ),

1 . .1
and ker Cijl(ker i

proof is complete. A

-1y, similarly, j (ker iT'l) C ker Ki and the

In view of Proposition 5.1, the termlen of the spectral sequence

can be.considered as successive approximations.to E_, which is defined as.

-]

E = k0N im i/ (U ker i™7h
I T e 1

Spectral Sequences Associated With a

Filtered Cochain Complex

Definition 5.1: A graded cochain complex G = {C,§,F} with a

decreasing filtration F is

(1) a graded cochain complex over R:

0 .1 80 n+l

C:C” » CT > vee > P s e

where 6n:Cn -> Cn+l

is a morphism of graded R-modules, and
(2) for each integer p, FPC is .a subcomplex of C and FP+1C is a
subcomplex of FPC (in notation, FPC D, If, in addition,

FPC = C for p.< 0, and FPC" = 0 for p.> n, then the filtration F is said
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to be strictly.convergent.

It is now-shown that an exact couple can be associated with a graded
cochain complex G = {C,8,F} with decreasing filtration F. The short

exact sequence of cochain complexes

P+lo % gPe R pPe/pPtlc & o

0 ~>F
yields the usual long exact cohomelogy sequence

oo > Py 2 P rPey 4 HP EPe/rPt i) K @iy o .o

where i is induced by the injection &, j by the projection p, and k is
the cohomology connecting homomorphism. These sequences for all p com-

bine to give the zig-zag exact pile-up in Figure 1. In this display,

each sequence consisting of a vertical step i, followed by two horizontal
steps j and k, followed by a vertical step i, <++ is exact.

Let

Dp’q = HP+Q(ch)’ Ell’:q = HP+Q(ch/Fp+lc)

o
I

- [nPsqd P,q
{D1 T, E {El }

Then the zig-zag exact pile-up implies the exactness of the triangle

D1 1 D1
ct ) J1
By
where\il,_jl,k1 are induced by the families of maps {i}, {j}, and {kl,

respectively. Cl’is called the exact couple associated with G.

Through iteration, one.obtains the n-th derived exact couple



Figure 1.

Zig-Zag Exact Pile-Up

+q+1 . FPC
HP 9" (5 —

rFP™ ¢

99
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™ = {D ,E ,i:,j ,k } associated with G. D_and E_ are bigraded
n’n’n’’n’n n n. ' :

R-modules with maps .

in of bidegree (-1,1) - s
jn of bidegree (n-1,-n+1) s

kn of bidegree (1,0)

The differential bigraded R-module En has the differential operator

d =‘jnkn.of\bidegree (n,-n+1). The spectral sequenqea{Enfdn.I nx>1l}is

said to be .derived from G.

Proposition 5.2: If {En,dn | n. > 1} is derived from G = {C,$,F}

with strictly convergent filtration F, then
(1) Eg’q = 0ifp<0orq=<0,
(2) for n > max (p,q+l)

gPd . gPsq . _im i (rPey » HPY(0) )
® D gn eEPTIEPT L) - BP0}

Proof: Part (2) is proved first. The short exact cochain complexes

p+n p+l

0 » FP*Ig 5 pPrlc 5 Pl pPTe L g
0 » FPLe/P*ie o FPe/P*e o FPo/EP e 5 o
0 + FPc » PP le/pPe o pPP e EPC 5 o
yield, for n.> 1; the long exact cohomology sequences
co i Hp+q+1(Fp+1C)~l;.Hp+q+l(FP+1C/Fp+nC)-kL .

eoo ZLL gPra(pPo Py AL A (pPe Py K L

cew L ppracl vl 310 praslpPontlo pPey Ko Ll



respectively. It is easily verified that im i? = ker j',
ker i?_ = ker 1'', and the diagram
HP+q(FPC/Fp+1C) k" Hp+q+1(FP+lc/Fp+nC)
k
Hp+q+ (Fp+1C)

is commutative. Therefore

£Psa . im {HP*9(EPc/FP* ey 0 WP A rPe/FP ey )

n

- - [] ] - > Cou g
im {HP*4°L (@4 ey KL pPrapPey 1 pPrasPe/pPt le))

If n > max (p,q+1), then DE+1,q = 0.and thus

2% = kL am ™ hy/5U ker i™7h
n=1 n=1-

ker k
sker (1" LPYEPC) > PO D

im (BPY4(FPc) 1 WPt (Pc/rP* ey

in (P /Py B PPy 4 Pt Pe/rPt o))

£Psd.
n

R

Furthermore, the zig-zag exact pile-up gives

k
. —r;- DE-.n+2’,q.+n-2

111'1 j K
pp-+l,arn-1g gp,a g pprlq
n n

n
i

and since pP-1*25q+n-2 _ WPy, pp-tl,qtn-1 Py,
n : n '

58
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D§+l’q - YL pPrley C o) it follows that

pPrd . _im {i:HP+q(EpC)>+_Hp+q(C)}
n im {i:HPY 9P ) > HPY9(Cy)

This proves (2) of the proposition.

By Proposition 5.1, B2 = kiltim i?-l)/jl(ker i?_l). This fact is

represented by the following diagram:

Hp+q+1(Fp+nc)

1

Y

i
:

Hp+q+l(Fp+2C)

i
HP* A (pPe) 4 pPrA(pPe/rP ey K pprarl pprle
\i'

Hp+q{Fp-1C)

Y

i

A

Hp+q(pp-n+1c)

If p < 0, then FPC/FP+1C is the trivial cochain complex so that
Hp+q(FPC/FP+1C) =-0. Thus, Eg’q = 0, If q < 0, then consideration of

the cochain complex
Pr P+l (2P P+l 0 PpreP*laP+q _
FFC/FY “C:(FYC/FF "C)~ > =+ > (EEC/FY °C) = 0> eee

shows immediately that Hp+q(FPC/FP+1C) = 0, and again gP*q = 0, This
g n

completes the proof of the proposition, A
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Proposition 5.3: If {E_ ,d | n > 1} is derived from G = {C,8,F}
with strictly convergent filtration F, then H*(C) is filtered by E_ by

defining Fan(C) =.im {i:Hn(FrC) - Hn(g)}, so that

) = FOH ) DFH ) D .- DR ) DR ) -

1
o

is a finite sequence of submodules with

PR C) /P ) = BT

forn>r1r > 0.

It should be noted that the above filtration for H*(C) enables one

to compute the cohomolegy of C, up to module extension, in terms of E_.
Pairing of Spectral Sequences .

Lét N be a subgroup of a group m, and let P be a m-module. Definev
a decreasing filtration F of the cochain complex C = Homz(w)(B(w),P) as
follows: FPC = C for p < 0. Forp > 0, one sets.0 = FPct if.p > n, and
for p < n define FPc™ to be the group of all elements f e c" for which
f(Yl,"',Yn) = 0 whenever n-p+1 of the arguments belong, to the subgroup
N. Evidentiy, F.is a strictly convergent decreasing filtration for C.

Let P, Q, S be m-modules such that P and Q are paired with respect
to S by th¢ Z(r)-pairing 6 (see II.1). Let C(P) = Homzcw)(B(n),P), c(Q)
= Homz(ﬂ)(B(n),Q), C(S) = Homzcﬂ)(B(n),S). Then the\Je-product at the

cochain level
P @) ® ¢4Q + PTs)

is defined explicitly by the formula
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(Errg8) (vys oo ou¥py) = ecf(Yla"'.Yp)‘QD“Yl'"ng(Yp+l,"',Yp+q)) ,

for f ¢ CP(P) and g € Cq(Q).‘ Furthermore, the filtration F is compatible

with cup products in the sense that if the complexes C(P), C(Q), C(S) are

filtered by F described above, then
v, :FPC() @ Fle(@ ~ P c(s)

In particular, suppose f ¢ ﬁpCP+r(P), g € ﬁchfs(Q), and r+s+1 of the

elements Yyst©® are in N. Then;(f\Jbg)(yl,o-p ) =0,

’ Yp+ T+qQ+Ss > Yp+ r+Qq+s
because -if at least r+l of :the elements Yl"..’Yp+r are in N then

f(Yl’...’Ypfr) = 0; if the listing Yl’...’Yp+r contains less than r+l

elements .of N, then at least s+l of the elements y are

p*r+l’ " ’Yp+r+q+s
) = 0. Therefore,

in N and it f0110ws“that’g(Yp+r+l"°"Yp+r+q+s
g € FPHIcPTTHA*S (s,

Let {Er,dr | v > 1}, {EL,d! | r > 1}, {EL",d! | > 1} denote the
spectral sequences derived from G = {C(P),&P,FP}5 G' = {C(Q),GQ,FQ},
G'' = {C(S),GS,FS}, respectively. Since\v® satisfies the usual

coboundary formula, it induces.a pairing
1 1 !
wiER ) @ R 9 @ - ERTP AT ()

defined by (a ® 8) = f\g, where a = e EII)"q and B = g ¢ E?"q', In

notation,wia ® 8) = a \UB.
Hochschild-Serre Spectral Sequence.

In the case where N is normal in w, the Hochschild-Serre spectral
sequence is introduced by defining a second filtration F of the cochain
complex C = Homzcﬂ)(B(w),P). The filtration F has the defect of not

being compatible .with cup product.but it is most useful in computations.
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Again define FPc =.C for p < 0. For p > 0, set FPc = 0 if p > n and for

p < n define FPc" to be the group of .all elements f ¢ c" for which

...’Y

f(y1,°f°,yn) depends.only;onwyl,-°°,yﬁ ‘and the cosets . n-p+1? 0

-P
It is easy to see that‘FpC is a subcomplex of ‘FPC for all p.

Prqusition 5.4: If Er’ Er denote the terms of the spectral

sequences derived from the filtrations.F, ﬁ, respectively, then the

injections i:FPc -~ FPc induce.isomorphis.ms_Er e Er’ for each r > 1.
Proof: See Proposition 1 in [19].

If P is a m-module, the cochain isomorphism HomZ(ﬂ)(B(w),P)

=*Homzcﬂ)(§(w),P) has previously been calculated (see II.4). For fixed

p >0, let I¥ = HomZ(Eb(n/N),HomZ(EIN),p)).be the cochain complex

0
g R0 S5 WPl L L yPea 85 ypiarl

with XP°9 = homztﬁﬁ(ﬂ/N),homztﬁa(N),p)), and Sf = &£, for £ e ¥, where

5N is the coboundary operator for HomZ(EIN),P).~ Define the cochain map

rp:FpC > ¥P by

(rpf)(El’.'.’éf)(hl’...’hq) = f(h1’°",hq:g1’..'agp)

for £ ¢ FPCP™ where g, em is a representative of the coset E; and

hj e N. If¥ e'Fp+1Cp+q then,

(rpw)(gls'f':gb)(hl:"{:hq) = W(hl’...’hq’gl’...’gp)‘= 0

-because W(hl,---,hq,gl,---,gp) depends only on hl,---,,hq_1 and the cosets
H€_= 5} E&,---,EE. Thus the restriction of rp to the subcomplex
FP+1C C:ch_is the trivial map. Hence rp induces a cochain map

RP;FPC/FP*lc > ¥P defined by R,(B) = 0, £ ¢ FPc/FP*Y | and
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consequently a homomorphism»<I>:Hp+q(FPC/FP+1

¢ » H'@#). 1In fact, it is
shown in, [19] that ¢ is an isomorphism.
P q <Py - q :
Now the claim is that H*(§%) homZ(ﬂ/N)(Bp(W/N)’H (N,P)). Since
Z(m) = Z(N) ® Z(7/N), B(m) is a projective resolution of the trivial

N-module Z. By pull-back along the injection i:N =+ m, iP is a N-module.

It follows.that,
H*(N,P) = H*(HQmZ(N)(B(ﬂ),P))

However, HomZEN)(N(q),P) is a w/N—cochain complex by defining
@Y) (x) = g¥(g  x), for ¥ ¢ Hom, () (B(T),P), & & /N, x ¢ B(r). Hence

H*(N,P) is a m/N-module. Thus

Ht (¥P)

hom, (B_ (n/N) , 1 (hom, (B(N) ,P)))

n

homz(ﬁb(ﬂ/N),Hq(N,P))

2 (n/N) (B (/) JHE(N,P))

= hom
Theorem 5.1: There exists an isomorphism

ePsq . q
¢.E1 = homZ(W/N)(Bp(ﬂ/N),H-(N,P)) ,

where ¢ is induced by the cochain map rp:FPC > Ip.

An investigation of Eg’q is now made. Consider the diagram

p.q 2 q
El homZ('n‘/N) (BP(TT/N)’H (N,P)

dll SN

where d1 is the 1-st differential of the Hochschild-Serre spectral
sequence and GW/N is -the coboundary operator of the cochain complex

Homz(ﬂ/N)(B(W/N),Hq(N,P)) induced by the boundary of B(n/N). It is shown
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in [5] that.
= q
The following is then readily verified.

' . s s *
Theorem 5.2: The isomorphism ¢ of El‘onto Homz(ﬂ/N)(B(ﬂ/N),H (N,P)).

induces an isomorphism

Eg’q = WP (r/N,HL(N,P))

Some Theorems Involving E

First recall a few facts about .the maps restriction and inflation.
If N is a subgroup of 7 and P is a w-module, the injection x:N - =

induces a homomorphism
res:Hn(ﬁ,P) +,Hn(N,P)

called restriction, If N is normal in m, PN (see I1.4) is a w/N-module.,
The projection og:m - /N and the injection j:PN > P together induce a.

homomorphism
inf:H (n/N,PN) > H(n,P)

called inflation. Furthermore, for N normal in =, the image of

/N

restriction lies in the m/N-module Hn(N,P) (see V.4).

In the Hochschild-Serre spectral sequence, the edge terms are

200 = WP (n/N, O (4, P)) = HP (/N PY) ’
ES’q = 10 /N, HA N, P)) = HA(N,P) ™/

and
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E)*9 = hom,

1 2 (/) Bo (/N HIOL,P)) = BN, P)

There exist maps

O,n O,n
H'(n,P) > E’" + E,’

with the first map epic, the second map monic, and the composition is the

restriction map. There are also maps

n,0

n,0
5 > By -~ H(n,P)

with the first map epic, the second map.monic, and the composition is the
inflation map.

Let_{En.,dn l n > 1} be the spectral sequence derived from
G = {C,8,F} with strictly convergent filtration F. Associated with the

short exact sequence

0+ Fc»cC~c/Flco0

one has -the following commutative diagram with exact rows and exact
columns (q > 1):

ik i
se e Dog’q_l JEO’q—lJ Di’q-l_—.__l_+ Dg-)"q > esve

1 1 -
&\1;\\u B
q,0
F H /Ez
d °B

0 - Eo:q".l_h_> Eo’q'lJ Eq-!o ______.__>£ Eq."o > 0

q+l q / q q+1

0

g €

where the maps o, e,, £ are projections, the maps h, en, W, T are

BJ

injections, and dq is the g-th differential of the spectral sequence.
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Let
= {xe E?’q_l'| k (x) ¢ im v}

The elements of T are called transgressive elements of Eg’q'l. Note that
T is a submodule of Eg’q_l*and that T = im er.

Definition 5.2: A transgression t is a homomorphism

t:T > Eg’o/ker v such that t({x) = y—lkl(x) for all transgressive elements

X.

B’ T-= 1m eF

£fy) = eB(y) is an isomorphism, a transgression t is a homomorphism

Since y = ue , and f:Eg’o/ker Y > Eg’o'defined by
: DGO s 3 0,q-1 .
t:T »> Eq satisfying t(x) —_dq(z)! where z € Eq is such that

eF(z) = X. Thus, a transgression t is essentially the q-th differential
d :EO,q-l ~ g3 0,
q q q

The material introduced in this .section can be combined to get the.
following theorems for an analysis of H*(w,P).. Proofs of the theorems

are straightforward and can be found in {51, [19], or [22].

The following result is the well known decomposition theorem.

Theorem 5,3§ If N is a normal subgroup of the finite group 7 with
index p = [m:N] relatively prime to its order q = [N:1], then for each

m-module P and each n > 0, there is a split exact sequence

0 » /N, PNy 25 P (n,p) 288 Py, )N o
which gives an isomorphism Hn(ﬂ,P) = Hn(ﬂ/N,PN) 0 Hn(N,P)ﬂ/N. Moreover,

this decomposition is multiplicative with respect to cup products.

Multiplicative with respect to cup products has the following
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meaning. Choose integers a and b such that ap + bq =1. If xe Hn(ﬂ,P),
set a(x) = apx, B(x) = bgx, so that x = a(x) + B(x). If P is a

Z(m)-module algebra (see II.1), x a;Hn(w,P), y € Hm(ﬂ,P), then

xwy = ox) wvaly) + B(x) v B(y) s
or
auuy)=Mﬁan)
and
Bxwy) = B(x) wB(y)

If m > 1 and Hn(N,P) = 0 for 0:< n <m, then
ihfZHnCﬂ/N,PN) > H*(n,P) is an isomorphism for n.< m. Moreover, the\
transgression t.in dimension m corresponds canonically to the
el of the Héchschild-Serre spectral sequence. These

observations .yield Serre's.5-tprm exact sequence.

(m+1)-differential d

Theorem 5.4: Let N be normal in 7 and let P be a m-module. Let

m > 1, and assume Hn(N,P) = 0 for 0 <n < m. Then the 5-term sequence
0+ Hh(a/N, Py 22 1P (r,py 225 v, py /N B “p o+l Ny Anf el

is exact.

Another 5-term exact sequence is given.by

Theorem 5.5% Let m > 1 and assume that,Hn(N,P) =0 for 1 <n <m.

For 0 < n < m there is an exact sequence.

inf N 1nf n+1

H /N, PN 285 B (n,p) > B oy HE (n,P)) > EP L Gy, PNy AR (r,P)

The following form of the cup product reduction theorem of
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Eilenberg-MacLane [11] is due to Hochschild-Serre [19].-

Theorem 5.6: Let m be a group, N a normal subgroup of m which
operates trivially on the mw-module P. Let;dé denote the-homomorphism of

Hn"l(ﬂ/N,homZ(N,P))-into Hn+1(ﬂ/N,P) which corresponds to

.on-1,1 n+1,0
d2.E2 -> E2 .

extension .

Let ¢ be the characteristic class of the group

0 -~ N/[N,N] - n/[N,N] > /N> 1
Then, for every o ¢ Hn_l(w/N,homZ(N,P)), d,(a) = -z wa.

Given the hypothesis of Theorem 5.6, in prin;iple it should be
possible to compute the cohomelogy ring H*(w,P). Practically, however,
this seems to be impossible in general.

The computation of E2 by Hochschild-Serre shows,thatvE2 depends only
on (A) the groups N and 7/N, and (B) the.structure of H*(N,P) as a
m/N-module. Thus E2 is a rather crude approximation to H*(m,P). Charlap
and Vasquez [6] determined the 2-nd differential d2 (and hence ES) of the
Hochschild-Serre spectral sequence and showed that it depends not only on
(A) and (B), but also on a.characteristic class o € HZ(W/N,N),. The
following discussion is-a generalization of their work.

Let N be a subgroup of 7 and let P be a m-module such that PN =P,

Then-P, N/[N,N], and Hl(N/[N,N],P)‘can all be considered as m/N-modules.

For f e H (N/[N,N1,P), X € N/[N,N], the map
o:H' (N/[N,N],P) ®N/[N,N] » P

defined by 6(f ® X) = £(x) is a Z(m/N)-pairing. Thus cup product is a

pairing (see V.3)
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o ER At v/ IN,NDLPY) @ ERAv/ [N,ND) - ERTP 0 p)
By Theorem 5,2,

ER ey = WY (o, H OV NN P) ’
and

-1,0,..1 ~1 0 1
B, ' (H (N/IN,N1LPY) = H' (n/N,H (V/ [N,NTLH N/ [N,N]LP))).
Consequently, if 7t is the isomorphism

el ey o D0 v/ IN,NDL P)

then dzzEg'l’l(P) > E2+1’0(P) satisfies the property
m
dy(@) = (1)t oz ,
for
o € E;l—l’l(P\) s

where ¢ is the characteristic class of the group extension

0 - N/[N,N] -+ n/[N,N] > n/N > 0



CHAPTER VI

FURTHER COMPUTATIONS OF COHOMOLOGY

ALGEBRAS FOR FINITE GROUPS

In this chapter detailed computations are made of the cohomology .
algebra of groups by employing the techniques developed in previous

chapters.
Cohomology Algebra H*(ZZ,ZZ)

In Chapter IV topological .methods were used to compute. the
cohomology algebrajH*(Zz,Zz). This section is devoted to a purely
algebraic computation involving the Hochschild-Serre spectral sequence.
(see V.4).

Consider the group extension (see Definition 2.11)

E:0 »~ Z ;,Z > Z2 >1

where 2 maps Z onto 2Z in Z. By Proposition 2.5, there is only one

Zz—module structure for the coefficient module Z, and it is obtained by

2

letting 22 act trivially on Z By Proposition 2.3

2.

H(2,2,) =

0 ; otherwise

Let £ and n denote the generators of Hl(Z,Z ) and of HO(Z,ZZ),

70 .
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respectively. If'{Er,»dr | v > 1} is the Hochschild-Serre spectral
sequence associated with the group. extension E; then E?’q is isomorphic

to homZ(Bp(Zz),Hq(Z,Z )) by Theorem 5.1. Hence

P,q . . =
EY homZ(Bp(Zz),Z (8)) 3 9q=1,p>0

0 ; otherwise

Since Bp(ZZ) is normalized, the generators of Eﬁ*q for q.= 0,1 are given.

by maps
t t soe t = .
1p(Lele] e[t = n
p-factors
and
t ([t]t]---[tD = &
P
p-factors:
where t is the generator of\ZZ. Hence
2y05) 3a=0,p20
p’q o . =
E;T ZZCTP) ;4q=1,p>0
0 ; otherwise

Consider the first differentials\dleﬁ’o > E€+1’0 and

dleg’l > E€+1’l. Since

£]) + c-l)P*llpc[t eth =0

dy G CLe]=e- D) = £y (L] -

(p+1)-factors -

and similarly d)(t ) = 0, all 1-st differentials d; are trivial. It

follows that-
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( 2L 5a=0,p20
P.q . c g =
EZ = 9 ZZ([TP]) » 9= 1, Pz 0

0 ; othexrwise .

\
By Theorem 5.2, Eg’q = HP(ZZ,HQ(Z,Z }), so that‘Hp(Zz,Zz) = Z2 for every
p > 0. This is exactly,what\was calculated in Theorem 4.2 and Proposi-
tion 4.2,

| Now investigate higher differentials of the spectral sequence. The

claim is that dr is trivial for r > 3. The sequences
d d
Ep-r,r_;g_Ep,l__s Ep+r,2-r
T T T

and

d, . d
Ep-r,r-l__;; Ep,O ;EAEp+r,l-r
T T “Tr

give Eg—r,z-r = Eg-r,r-l = 0 for r > 3, and Eg'r’r = E£+r,1-r = 0 for

r > 2, Thei‘efore,,dr = 0 for r > 3, so that Eg’q = P9, However,

Hp+q(Z;ZZ) = 0 for p+q > 2 and, by Propositien 5.3,

PPz, 2, ) /PP P (2,2,) = BB

for p+q > 2. It follows that for p > 0, dz:Eg,l . E123+2,0

maps the
generator [Tp] to the generator [lp+2]°
Defining the pairing e:zz(a) @)Zz(n) - ZZ(E) in the.obvigus way, one

can defiﬁe the cup product

1
W

.wP,0 0,1 D>
By @ ET > B

by [lp] \J[TO]. The equalities
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(1pu 1) ([t t[) 9(1P([t
6(E®n)

= g ’

t]) ® 7,([ 1))

establish [lp] \J[TO] =ﬂ[TP].
Now let Zz(n) and Zz(n)‘be paired with respect to Zz(n) by the

pairing e':zzcn) @)Zz(n) > Zz(n}vwith 6' defined by 6'(n ® n) = n. Then

(1w 1) (TEft]) = 0t (i ([t @ 14 ([tD) = n :

and thus [11]2 = [12]. Assume that‘[ll]p = [Ip]. Since cup product

satisfies the coboundary formula (see II.3),

However, [1p] ) [TO] = [TP] and dZ([;p]) = [1P+2]. Hence
[l vl = [P o [yl = P2

These facts are summarized in the following Ez-table:

%0 ' EpJ,o )
2
n n

Consequently, H*(ZZ,ZZ) is the polynomial algebra PZ [n] over 22 on one
_ : ) ,
generator n of degree 1.
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Cohomology Ring,H*(ZS,Z)

In Chapter IV the cohomology ring H*(ZS,Z)kwas.computed using the.
Steenrod resolution I' and the explicit formula for the A-chain map
h:T > T ® I'. This ring is now calculated using the tools developed in
Chapter V. It is noted here.thatlthe procedure ,used in the_previous
section cannot practically be applied to this seemingly simple case; the.
reason being that there are more maps than one can effectively work.with.

Consider the group extension

E:0 >~ 3Z ~» Z ~ Z3 + 0 R
and let Z be a Zs-module by letting Z3 act trivially on,Z. By Proposi-
tion 2.3,
M;n=0,l1
HY (Z,M) =
0 ; otherwise s

for any Z(Z)-module M,

First the module structure of H*(ZS,Z) is computed by employing
methods different from those used in Chépter¢IV. By Theorem 5.5, for all
m > 2, one has the 5-term exact sequence

(1)
. dl

H(2,,2) > H(2,2) » B Lz 0 (32,2)) S H™ 2,2y - 1T 2,2)
Setting m = 2, the last four terms yield

0+ H' (Z5,2) > H (Z5,2) 0

Thus H;(ZS,Z) = HSCZS,Z). Setting m = 4,6,-++,2n (n > 2), one obtains
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1 3 5 2n+1
H (Zs’z) = H (Zsiz) = H (Zs’z) ‘g e = H (Zsiz)

Similarly, by setting m = 3,5,7,°++2n+l (n > 1), one obtains
2 4 6 2n
H (ZSJZ) = H (Zs,Z) = H° (23’2) @ eee = H (ZS’Z)

By Proposition 2.3, Hl(Zs,Z) = homZ(Z s2) =0, so that H (Z Z) =
for all n > 0. Theorem 5.4 gives Serre's 5-term exact sequence

(2)

Z. d! .
0+ Hl(Z ,2) 325yl (z,2) 228 ylaz,z) 52 HZ(ZS,Z) inf 22,2

1 2 1 ' 1 Z3
Since H (ZS’Z) = H"(Z,Z) = 0, H (Z,Z) = homz(Z,Z), and H (32,Z)
= Hl(SZ,Z) = homz(SZ,Z), then H2(ZS,Z) o 23. Then the module structure

of H*(ZS,Z) is given by

Z ;n=20

. o < .
Hn(ZS,Z) Z3 ; N even

0 : n odd
Next observe that d2 in the exact sequences (1), (2) is

m-1,1 m+1,0
d,:E (z) » E2

2 2
4, E Lezy > Eg’ (2) is epic, while dj:E} Llgy s
morphism for m > 1. By the cup product reduction theorem (Theorem 5.6),
dz(e) = 7(B) w a for any B sﬂHm_l(ngHl(SZ,Z)) - gill

2
o e»HZ(ZS,SZ) = E2 0(32) is the characteristic class of the group

(Z) up to isaqmorphism for m > 1. Hence

Em +1, O(Z) is an iso-

(Z), where

extension E and

T:Em-l’l(Z) N Em-l,O

2L 0t (sz,2)) = 0z W (32,0 (32,2)))

is the canonical isomorphism. Note that a pairing
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1
8:H (32,2) ® 3Z ~ Z

defined by 6(£ ® 3k) = £(3k) for £ ¢ H (32,2) = hom, (32,2), is used in

-the cup product

mjl,O
2

m+1,0

. 1 2,0 21
y:E (1 (32,2)) ® B (32) > E) 7 (2)

n

Let v be a generator of E%’O(Z) such.that»-Sf = f' where £ and £°'

“s
are representative cocycles for y and o, respectively. It is now shown
that~d2(8) =.Y2 for a generator B of Eg’l(Z).' If g is a representative
cocycle for 8, then 1(B) is representgd by.h € homz(ﬁé(zs), H1(32,Z)) such
that g(x) = h(x)([ 1) for any x ¢ §é(23). Since 1(B) is a generator of
E%’O(Hl(SZ,Z)), h can be chosen as a cocycle satisfying the property

h(x) ([ 1)(3) = £(x) for any x & B,(Z;). Then for x, y ¢ B,(Z,),

-h v (x®@y) = -h(x)([ DE ) -
= -h () ([ D(3£0))
= £(y)-h(x)([ D(3)
= £(y)-£(x)

= (Efvixoy

Hence ~-1(B) W a = YZ so that\y2 is a generator of Eg’O(Z),-

Let B ¢ Eg’l(Z) be a generator and let h be a representative of

T(B) € E;’O(H1(3Z,Z)). Since‘y2 is a generator of Eg’O(Z), h can .be
chosen as h(x)([ 1D(3) = (fuwf)(x) for x e ﬁA(Zs). Then for x ¢ ﬁa(zs)
and y‘eiBZ(ZS)’
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SO (x®Y) = -h) ([ DE'G))
h(x) ([ 1) (3£(y))
£07)*h () ([ 1) (3)
(£ U () £0)

(foufuf)x®y)

n

n

Hence dZ(B) = ~t(B)wa= ys, which is a generator of ES*O(Z).

Continuing this process, it is concluded that

1(252) = 260) 0 P 11/ () ,

where sz[y] is the polynomial algebra over Z3 with one. generator y of
3

degree 2.
Cohomology Ring H*(Z3 X ZZ’Z)
It has previously been shown.(see II1.4) that

. i 3
E:0 -~ Z‘3 > Z, X 22 22 > 1

3

is exact, where i(t) = (t,1) and p(t,s) = o for generators t, ¢ of 23,

ZZ’ respectively. If-Z3 X Z2 acts trivially on Z, then because the index

2 = [Z3 X 22:23] is relatively prime to the order of Z,, the decompesi-

3
tion theorem (Theorem 5.3), gives an isomorphism
B (2, x 2,,2) = H'(z,,2) @ H(Z Z)Z2 ,
3 2° 2° -3
In Chapter V the usual method of giving the cohomology modules
Hn(ZS,Z) the structureiof a Zz—moduleiwas discussed. However, in gener-
al, this method is a very cumbersome one. The introduction of a pro-

cedure developed by Charlap-Vasquez [7] will allow the use of the

Steenrod resolution (see IV.3) to give H*(ZB,Z) a Zz-module structure,
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This method is. discussed inﬂmore,gen§ra1ity than is necessary for this.
particular case because the same technique will be used in the next sec-
tioen.

Let Zr act on Zs by at = t4 where\qrbé‘l (mod s). Here ¢ and t .are
the generators of multiplicative cyqlic groups Zrband ZS of order r and

s, respectively. Let
o= 1+ t+ oo + tq-l‘s,Z(Zs)

and let T

78%x 2x ¢ e dX «eoe T

0 1 n

be the Steenrod resolution for the_ZS-module Z. Define

An:Zr - homz(xn,xn)

by

Ay (@) = &, Ay () (1) = o'

A
[
A
H
1
=]
H

Define‘An(cl) = i-fold iteration of A_ (o) for 0 <

f ¢ Hom

Z(ZS)(xan) define of by

(0£) (x) = o(E(A_(57)x )

Then this action induces an action of Zr on H*(ZS,Z); furthermore, this
action coinc¢ides with the action defined in Chapter V. For a.proof, see
Proposition 2 in [7].

For the particular problem of this.section, Z, = {1,0} acts on

2

Z3 = {l,t,tz} by ot =.t. Then a = 1 -and it follows easily that
7 ,
H (Z,,2) 2 . H' (2,,2).

The same techniques previously used to calculate the cohomology ring
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H*(ZS,Z) (see .IV.4 or VI.2) can-be used to show H*(ZZ,Z)~is

Z(BO) ® PZ [B]/(BO), where‘PZ_[B] is the polynomial algebra over 22
2 2

one generatdr B of degree 2. Thus the module structure of

on

H*(Z3 X ZZ,Z) is given by

Z ;n=20
n o2 - o .
H (Z3 X ZZ’Z) = 22 ® Z3 Z6 ; 1 even

0 ; otherwise

L

Since the decomposition given by Theorem 5.3 is multiplicative with

respect to cup product, it follows that

H* (2 x 2,,7) = 2(8") @ (Pzz[s]/(s°> 0 st[a]/(aQ))

where Pz [B] is the polynomial algebra over 22
2

degree 2, and PZ [¢] is the polynomial algebra on one. generator a of
3

3-

on one generator B of

degree 2 over Z
Cohemology Ring H*(SS,Z}
Consider the short exact sequence.

0~ Z3 i S3 - 22.» 1

where»S3 denotes the symmetric group of.degree 3 and

it =G :H

for the generator t of Zyg.
If S3 acts on Z trivially, then because the index 2 = [SS;ZS] is

relatively prime to the order of 23, the decomposition theorem (Theorem

5.3) gives an isomorphism
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z
.yl n 2
Hn(SS,Z) = H'(2,,2) @ ' (Z5,2)

Using the method of Charlap-Vasquez [7] discussed in the previous sec-

tion, one has in this case Z, = {1,0} acting on Z, ='{1,t,t2} by ot = t2,

2

Then An:Z > homz(xn,xn) is defined by.

2

A @) = WS, Ay @ M) = () .

Since Hn(ZS,Z] = 0 for odd n (see V.2), one need not consider the odd

cases. First consider H4k+2

H4k+2

(ZS’Z)* k = 0,1,«++, The generator 1 of

(ZS,Z)-has coset representation.?'where f ¢ hom Z) is

2(2,5) Kae2?

defined by f(1) = 1. Then of:X + Z is defined by

4k+2
(65 (1) = 0f (A, (I (1)) = £(re)? Ny = 221
Now (of - £)(1) = (of)(1) - £(1) = 2v2k+1 -1, and 22k+1 is not a multiple.

of 3. Since 64k(g)(1) is a multiple of 3 for all g € hom Z), it

Z(ZS)(x4k’
follows that of - £ ¢ .im 64k. Hence

7
H4k+2(ZS,Z) 2.0, k=012, .

Z

4k+4(ZS,Z) 2, for k.= 0,1;2,+-+. Again, the generator t

Next consider H

of Hk+4 7 is

(ZS’Z] has coset representation f where f e homZ(ZS)(x4k+4’

defined by £(1) = 1. Then cf:X4 + Z is defined by.

k+4

(6£) (1) = 0E(A,,, (I (1)) = £(r)?*%y = P2

and (of - £)(1) = 3m for some positive integer.m. If one defines-

g:X,, ;> Zby g(1) = m, then 6*K*3

H4k+4(ZS,Z) 2 . H4k+4(ZS,Z), and the module structure for H*(SS,Z) is

g =of-- £f. Whence

given by
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Z s;n=20
n 22 ;no= 4k+2, k = 0,1,2,
H (SS’Z) 2 4
' 22 + Z3 = 26 ; n=4k+d, k = 0,1,2,
0 ; otherwise

Since the decomposition given by Theorem 5.3 is multiplicative with

respect to cup product, it follows that.
. L0 0 0
H*(S.,2) = Z(B") & (P, [B]/(B") ® P, [a]/(a"))
3 ZZ- Z3 g

where PZ [B] is the polynomial algebra over Z, on one generator B of

2
2
degree 2, and PZ [a] is the polynomial algebra over Z
3

3 on one generator

a of .degree 4.



CHAPTER VII
CONCLUSION

This dissertation has centered around two main objectives, an
investigation of the essential complexities involved in the cohomology
theory of groups and the derivation of most of the known tools.that
facilitate the calculation of cohomology.algebras. This chapter is con-
cerned—with.proéosed research topics and/or problems which are closely
allied to the material presented in this dissertationm.

As was shown in Chapter III, the cohomology of .a group m.can be
interpreted as.the cohomology of an arcwise-connected aspherical space
with fundamental group m. It is therefore natural to utilize the previ- .
ous work of Adams [1] and Uehara [28] in an investigation pertaining te
the special features of the cohomology.of a group.which are induced by
the behavior of the Steenrod p-th powers.

Chapters V and VI document :the important role played by spectral
sequences in the cohomology theory.of groups. In order to increase the
applicative utility of these sequences, it is proposed to determine
whether or not the terms of the Lyndon spectral sequence [21] are iso-
morphic to those of the Hochschild-Serre spectral sequence [19].

In relation to the recent work in homolegy theory by gilton-
stammbach [17], it is proposed to dualize and extend to the cohomology
case (with cup product) their study of higher differentials in the

Lyndon and Hochschild-Serre spectral sequences associated with a group

82
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extension.

Calculation of the cohomology algebra of finite groups has occupied
the central position in Chapters IV and VI. Wall [31], although success-
ful in the homology case; could not determine the cohomology algebra of
meta-cyclic. groups. In his celebrated paper ''Characters and Cohomology,
of Finite Groups", Atiyah‘[Z]! [3] considered relations between the
integral cohomology.ring H*(m,Z) and the ring R(m) of unitary.characters,
In conjunction with this work, Wall [32] failed to compute the complete

algebraic structure of the cohomology.groups of 7 = Z4 e Z It is

2
therefore proposed to find more effective computational tools to facili-
tate the calculation of cohomology algebras of finite groups.

As an immediate step towards this goal,.a,épecifié;pxoblem to
investigate,the Z(m)-module structure of the cohomology of a. Z(m)-module
N for a group ring Z(w) is proposed. In the author's opinion, in spite
of efforts made by Charlap and Vasquez [7], this problem has remained
‘unsettled to the extent that a general theory in relative homological

algebra will be developed in order to fully find a proper solution for

the problem.
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