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Abstract 

Shales and mudstones tend to exhibit strong anisotropy so that assuming mechanical isotropy in 

wellbore failure analysis and completion design strategies in shale can lead to inaccurate results. 

This dissertation focuses on developing numerical and semi-analytical fracture propagation 

models to study the behavior of hydraulic fractures near and away from the wellbore in anisotropic 

rock. In addition to elastic anisotropy, the effect of fracture toughness anisotropy on hydraulic 

fracture propagation is addressed. A numerical model based on 2D displacement discontinuity 

method (DDM) for fracture deformation is developed. Fluid flow inside the fractures is 

approximated using lubrication equation and is fully coupled with rock deformation. Natural 

fractures are modeled using joint elements that can account for elastic deformation (closure, shear) 

and plastic slip. Thus, hydraulic fracture propagation in a network of natural fracture can be 

simulated. In addition, to better approximate real hydraulic fracturing, a semi-analytical planar 3D 

(P3D) fracture height growth model is developed using the analytical plane strain solution for a 

line fracture in orthotropic rock to investigate the 3D aspects of rock anisotropy on hydraulic 

fracture propagation. The analytical expression for fracture deformation is derived using a singular 

elastic integral equation that relates fracture aperture with net pressure. The semi-analytical P3D 

model is combined with a 2D anisotropic displacement discontinuity (DD) method to enable 

simulation of multiple interacting hydraulic fractures in anisotropic formations (P3D-DD model). 

Moreover, recognizing the importance of using the proper fracture tip aperture solution for 

stability, accuracy and the speed of hydraulic fracture propagation numerical models, fracture tip 

solutions for both viscous- and toughness-dominated propagation regimes are derived for 

orthotropic rock for the first time. The fracture propagation algorithms in this work recognize the 
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regime of propagation at any given time during the injection so that the corresponding tip solution 

is implemented automatically allowing for correct pressure and fracture geometry calculations.  

The models are applied to a number of problems of interest in reservoir geomechanics starting 

with the behavior of a pressurized crack. Analysis of a uniformly pressurized stationary fracture 

in an orthotropic rock indicates that fracture apertures and induced stresses around the fracture are 

functions of fracture orientation with respect to the rock’s axes of elastic symmetry and its degree 

of modulus anisotropy (i.e., ratio of Young’s modulus in the direction parallel to rock fabric to 

Young’s modulus in the direction perpendicular to the rock fabric). The spatial extent of the 

induced normal stresses (“stress shadow”) perpendicular to the fracture surface increases when the 

fracture is aligned with the direction of the least Young’s modulus. Analysis of stress indicates a 

substantial increase in the stress shadow for anisotropic rock even with a degree of anisotropy as 

low as 1.9. Numerical simulations of large scale hydraulic fracture propagation indicate that the 

larger spatial extent of the induced stresses in anisotropic rock leads to early termination of the 

fractures emanating from the inner perforation clusters, resulting in fracture networks with 

dominant outer fractures. In the presence of fracture toughness anisotropy and under low 

differential stress conditions, the fractures deviate towards the plane of the least fracture toughness. 

Near the wellbore, fracture toughness anisotropy results in severe constriction of fracture apertures 

at the locations of fracture turning. This effect becomes more severe with increase in fracture 

toughness anisotropy and perforation misalignment angle. 

Propagation of a single planar hydraulic fracture is considered in a vertical transversely isotropic 

rock (VTI) using the P3D model and the resultant fracture height, length and aperture distribution 

are compared with the isotropic case. The results indicate that isotropic fracture models tend to 

overestimate fracture height and underestimate fracture width. For a rock with degree of anisotropy 
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4, isotropic model underestimates the fracture aperture by 11% and overestimates the fracture 

height by 31% when compared to anisotropic model. Also, fracture aperture distribution in 

anisotropic rock tends to be more uniform compared to the isotropic case. 

Numerical simulations of hydraulic fracture in the presence of natural fractures indicate that the 

induced stress component parallel to the hydraulic fracture surface plays a critical role in the 

evolution of the fracture network. Natural fracture segments that are at a low angle (with respect 

to hydraulic fracture) are affected the most by the hydraulic fracture’s stress shadow. When the in-

situ stress contrast is high (1000 psi), most of the natural fractures never mechanically open, 

however, they do experience slip. Under a low in-situ stress contrast (145 psi), segments of the 

natural fractures that are on the high angle side mechanically open. Under the condition of high 

in-situ stress contrast some natural fractures experienced bi-wing propagation due to higher shear 

stresses acting on the inclined natural fractures causing sufficient slip to initiate natural fracture 

propagation from both tips. The indication is that contrary to conventional wisdom in some cases 

a higher complexity may result under a high stress contrast. Fracture opening along the network 

shows drastic variation even under low in-situ stress contrast, where the lowest fracture apertures 

are observed along the natural fractures and at sites of fracture arrest. 

Numerical analysis of propagation of dense parallel fracture strands show that closely spaced 

fracture strands can occur for a certain range of conditions and operational parameters. The in-situ 

stress contrast, perforations conditions, and injection rates exert a significant influence. Under the 

right conditions, closely-spaced fractures can extend to distances exceeding tens of feet from the 

wellbore. Early termination and/or coalescence of closely spaced fractures can also occur. Higher 

in-situ stress contrast and lower fracture toughness of rock appear to inhibit coalescence of closely 

spaced fractures .Propagation of dense fracture strands require higher net pressures inside fractures 
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to keep them open compared to a single fracture. The increase in net pressure inside the fractures 

is directly proportional to number of fracture strands. Also, it appears that an average increase in 

net pressure required to propagate multiple fractures can be related to net pressure for a single 

fracture, which might allow one to infer the number of fractures propagating simultaneously.  

These results suggest that the spacing between the fractures for optimum growth in anisotropic 

rock must be different from isotropic rock for successful completion design of horizontal wells. 

Moreover, the numerical model can be used as a tool to improve interpretation of micro-seismic 

maps and injection pressure data.
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1  Introduction 

 1.1 Motivation 

Hydraulic fracturing of horizontal wells has been instrumental in unlocking oil and gas reserves 

from tight gas/oil sandstones and mudstones. Successful stimulation of these low to ultra-low 

permeability reservoirs greatly depends on the ability to create effective communication between 

the wellbore and the fracture network which provides the necessary surface area and flow pathway 

in the pay zone. One way to achieve maximum contact with the reservoir is to reduce the spacing 

between the perforation clusters during the stimulation treatment. However, fracture interactions 

and redundant energy input need to be considered in the process. On the other hand, 

communication between a wellbore and the fracture network is primarily controlled by the near 

wellbore fracture geometry. 

Over the years, several numerical and analytical models have been developed to assist the design 

of hydraulic fracture treatments. The early models (Geertsma and deKlerk, 1961; Nordgren, 1972) 

considered single planar fracture from wellbore under plane strain condition. More sophisticated 

models (Palmer and Carroll, 1982; Vandamme and Curran, 1989; Ghassemi, 1997) were later 

developed to capture the evolution of hydraulic fracture in 3D. Subsequently, multiple interacting 

hydraulic fracture propagation models (Kumar and Ghassemi 2016; Weng et al., 2011) were 

proposed for treatment design analysis of multi-cluster multi-stage hydraulic fracturing 

techniques. All these models assume isotropic elastic behavior for rock. However, mudstones or 

shales are more often than not anisotropic. Laboratory measurements on core samples indicate a 

degree of modulus anisotropy (i.e., ratio of Young’s modulus in the direction parallel to rock fabric 

to Young’s modulus in the direction perpendicular to the rock fabric) of 1.4 to 4 in various shales 

(Suarez-Rivera et al., 2011; Sierra et al., 2010; Vachaparampil et al., 2016). In these experiments 
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the anisotropy of elastic properties of shale is attributed to the composition of the shale and 

preferred orientation of platy clay particles. The presence of micro-fractures and strong stress 

contrast can also lead to material anisotropy (Dewhurst and Siggins, 2006). In addition, the 

presence of natural fractures, bedding planes and planes of weaknesses induce mechanical 

anisotropy at large scale. For example, a rock mass with nearly orthogonal sets of natural fractures 

can be treated as an orthotropic rock (Goodman, 1976). Moreover, it is observed that mudstones 

also exhibit strong fracture toughness anisotropy. Fracture toughness measurements on Mancos 

shale indicates fracture toughness values in the direction perpendicular to bedding are 3.7 times 

higher than the values observed in the direction of bedding (Chandler et al., 2016). The effect of 

rock anisotropy on tensile and compressive failure of a deviated wellbore has been well studied 

analytically (Aadnoy, 1987; Ong and Roegiers, 1993; Vahid and Ghassemi, 2011). Also, an 

analytical solution (Chertov, 2012) for fracture apertures in anisotropic rock has been applied to 

optimize completions strategies in shale (Suarez-Rivera et al., 2011). This analytical solution is 

restricted to a single line fracture that is subjected to constant internal pressure in uniform far-field 

stress. In order to capture the complexity of hydraulic fracturing at large scale in anisotropic 

formations one needs more robust numerical model that relax the simplifying assumptions. 

Although considerable research effort has been devoted to laboratory experiments for measuring 

elastic properties of anisotropic rocks, at present hydraulic fracture propagation models that 

account for rock anisotropy (modulus and strength) are not available. Therefore, the effect of rock 

anisotropy on behavior of hydraulic fracture is largely unknown. This work focuses on developing 

numerical and advanced semi-analytical fracture propagation models to study the behavior of 

hydraulic fractures near and away from the wellbore in anisotropic rock. Additionally, the effect 

of natural fractures on hydraulic fracture propagation and multi-stage fracturing is addressed with 
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emphasis on the essential physics and the ability to predict treatment pressure. Finally, the model 

is extended to enable assessment of the conditions for the formation of fracture clusters or fracture 

swarms observed in the field studies. 

 1.2 Background 

Chapter 1 Fracture propagation models that consider all aspects (length, height growth, non-

planarity and poroelasticity) in 3D (Kumar and Ghassemi, 2016 and 2018; Gao and Ghassemi, 

2017) are needed for comprehensive analyses and have been used to analyze multi-stage fracturing 

and the “Frac-Hit” phenomenon (Kumar and Ghassemi, 2017). However, because of increased 

computational cost, 2D and P3D (Simonson et al., 1978; Palmer and Carroll, 1983; Weng et al., 

2011) models have been developed to reduce computational costs while addressing some of the 

shortcoming of early 2D semi-analytical models such as KGD and PKN which assume a fixed 

height. In fact, modeling fracture propagation at field scale by considering all aspects of a complex 

fracture in 3D may not be feasible with the existing computational resources. As a result, numerical 

models are often simplified by trading few aspects for others. For example, finite element methods 

(FEMs) (Fu et al., 2011) can be adopted for heterogeneous medium, however they are severely 

limited by memory allocation requirements. 3D boundary element models (BEMs) (Kumar and 

Ghassemi, 2016 and 2018) are faster than FEMs, however are mostly restricted to isotropic rocks. 

In discontinuous rock systems where complex fracture propagation is expected, 2D models based 

on displacement discontinuity can be considered as an alternative because HF/NF interactions in 

3D are very challenging. For field scale applications, semi-analytical planar 3D (P3D) models 

(Dontsov, 2015; Kresse et al., 2013) or 2D boundary element based models are more suitable as 

they predict fracture characteristics (such as height, length, width and proppant placement) in a 

fraction of computation time required by 3D models. Many 2D and P3D models have been 
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developed in the last few decades (Palmer and Carroll, 1983; Weng et al., 2011; Dontsov, 2015). 

The P3D models are unable to consider multiple fracturing while accounting for fracture 

interactions in a rigorous fashion. 2D DD models generally suffer from several restrictions 

regarding fracture propagation and HF/NF interactions as well as improper boundary conditions 

near the fracture tip. These restrictions result in unreliable and at time erroneous simulation 

outcomes such as net pressure, network geometry, and fracture length and trajectory which are 

remedied in this work. 

1.2.1 Near Tip Hydraulic Fracture Behavior 

The existing 2D boundary element methods for hydraulic fracturing are not only limited to 

isotropic rock but fail to capture the essentials of Linear Elastic Fracture Mechanics. That is, often 

time the critical conditions for fracture propagation is not enforced resulting in erroneous pressure 

and fracture geometries and multi-frac interaction scenarios. The fracture propagation problem 

according to LEFM theory assumes square root variation of opening displacement ( 1/2u x ), near 

the fracture tips, where u is the opening near fracture tip and x is the distance from fracture tip. 

This behavior is modeled by a special fracture tip element in boundary element methods (Yan, 

2004). In LEFM, fracture propagation is governed by a material property called fracture toughness 

which is related to fracture energy. But fracture energy is only one of the sources of energy 

dissipation mechanisms during hydraulic fracture propagation. Energy is also consumed to 

overcome the resistance of flow of viscous fluids in the fracture channel, which is called viscosity 

dissipation. If the viscous energy dissipation is significantly larger than the energy dissipated in 

creating new fracture surfaces, the fracture is assumed to be propagating under a viscosity 

dominated regime. In this scenario, fracture propagation is assumed to be completely governed by 

fluid dynamics of viscous flow and is independent of fracture toughness. This kind of behavior 
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could be observed when fluid is injected into pre-existing fractures (where fracture resistance is 

negligible) or flow of magma in fractures (Spence and Turcotte, 1985) or inducing hydraulic 

fractures using high viscous fluids in petroleum reservoirs. The existing 2D DD models cannot 

capture fracture propagation in the viscous regime. Also, when the near tip behavior of fluid driven 

fracture in different regimes is considered, it is done so in semi-analytical models or numerical 

schemes that are restricted to isotropic rock (Dontsov and Peirce, 2016; Lecampion and Desroches, 

2015; Bunger et al., 2007). The effect of rock anisotropy on near tip behavior of a fracture driven 

by viscous fluid has not been addressed.  

1.2.2 Simplified Fracture Models 

As discussed previously, the computational time required for 3D models to simulate hydraulic 

fracture propagation at field scale make these model almost prohibitive for such applications. As 

a result, fast paced approximate planar 3D models (P3D) were developed. P3D models incorporate 

fracture height growth criterion based on the concept that hydraulic fractures are contained by the 

higher stresses in the layers above and below the payzone (Warpinski et al., 1982; Teufel and 

Clark, 1984). The analytical expression for height growth in these models is developed assuming 

that the mode-1 stress intensity factor at the fracture tips in the vertical plane is always in 

equilibrium with the fracture toughness of the rock (Simonson et al., 1978). However, the 

equilibrium fracture height growth models can only provide the excess fracture height growth into 

the higher stress layers bounding the payzone, and by default assume that the hydraulic fracture 

has a minimum height equal to the payzone thickness. Similarly to the PKN model, in the P3D 

modeling approach the fracture is discretized along its length into small elements, and an analytical 

expression is conventionally used to calculate the fracture apertures using the net pressure inside 

that element. Since the P3D model assumes that aperture of every fracture element is exclusively 
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related to the net pressure of that element alone, when used to solve for fracture growth in the 

lateral direction, it fails to take into account the interaction between fracture elements within a 

hydraulic fracture resulting in a lower system stiffness. As a result, a P3D model over/under 

estimate the fracture aperture and the predicted lateral growth. 

To remedy this problem, Dontsov and Peirce (2015) proposed an enhanced P3D (EP3D) model 

that incorporates interaction between the hydraulic fracture elements along the length of the 

hydraulic fracture using a simplified 3D elastic integral equation in place of the analytical 

expression to relate fracture apertures with pressure. Their results indicate significant improvement 

in fracture length and aperture predictions, but at the cost of increased computational time. 

However, this and other P3D fracture propagation models mentioned above are restricted to planar 

fractures. Currently, only 2D DDM based models (Sesetty and Ghassemi, 2016; 2018a) can 

effectively consider multiple non planar fractures at the field scale. Although fracture propagation 

models based on 2D DDM are formulated on the assumption of infinite fracture height, one can 

incorporate a 3D correction factor to adjust the solution for problems with a fixed fracture height. 

The major drawback of 2D DDM model is its inability to simulate fracture height growth. On the 

other hand, P3D models consider fracture height growth but fail to take interaction between 

multiple fractures in to account. To address this issue one can couple the P3D model with 2D DDM 

(Kresse et al., 2013). The result is a P3D-DD model that considers the stress shadow between 

hydraulic fractures while at the same time considering height growth. Moreover, all existing P3D 

models to date neglect formation anisotropy. 

1.2.3 Complex Fracture Networks 

It is generally accepted that natural fractures exert a significant influence on hydraulic fracturing 

of unconventional plays. Micro-seismic events often associated with stimulation of these 
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reservoirs are attributed to shear displacement of natural fractures caused by induced stresses and 

pore pressure changes. As a result, complex fracture modeling in conjunction with micro-seismic 

imaging is useful for better estimation of the stimulated volume. However, current large scale 

hydraulic fracture models (Kresse et al., 2013; Wu, 2014; McClure, 2012) are either inherently 

incapable of handling complex hydraulic fracture natural fracture interactions or are based on 

unsubstantiated heuristic with insufficient lack of rigor. Although, the uncertainty in the 

characteristics of natural fracture properties is an often cited reason for neglecting the relevant 

physical processes in hydraulic fracture simulations, the fundamental issue is that hydraulic 

fracture propagation in the presence of natural fractures is a complex phenomenon and poses 

significant challenges to numerical modeling. The interaction between hydraulic fracture and 

natural fractures can create extensive fracture branching around the main hydraulic fracture which 

is at times referred to as an “off-balance” fracture growth (Daneshy 2003). A hydraulic fracture 

tip approaching a natural fracture can become arrested, or it can cross the natural fracture along its 

own path or become deflected into the natural fracture depending on the stress regime ahead of the 

fracture tip (Koshelev and Ghassemi 2003; Cook and Underwood 2001; Renshaw and Pollard 

1995; Warpinski et al. 1987; Blanton 1982; Daneshy 1974). To properly account for this behavior 

it is necessary to analyze the stress field near the fracture tip accurately. Fracturing fluid flowing 

into a natural fracture can cause it to slip and dilate or to mechanically open. Various mechanisms 

that affect natural fracture activation are discussed in Daneshy (2016) and Weng et al. (2015). 

Continued fluid injection into natural fracture can result in formation of wing cracks (Kamali and 

Ghassemi 2016; Huang et al. 2013; Jung 2013; Ghassemi 2017; Min et al. 2010; Horii and Nemat-

Nasser 1986; Nemat-Nasser and Horri 1983; Hoek and Bieniawksi 1984; Bombolakis 1973). 

Induced stresses due to fracture deformation combined with pore pressure changes in the reservoir 
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can induce slip (Safari and Ghassemi 2016) on isolated natural fractures (natural fractures that are 

not connected to hydraulic fracture). Natural fractures that are under high compressive normal 

stresses can act as channels for fluid diversion and experience slip, however, they may also remain 

mechanically closed and act as potential sites for proppant bridging. 

Many numerical models have been developed in recent years to capture certain aspects of the 

above described complex interaction between natural and hydraulic fractures. These include the 

displacement discontinuity method (DDM) (Zhang et al. 2006, 2009; Sesetty and Ghassemi 2012) 

XFEM (Dahi-Taleghani and Olson, 2011) and DEM (Zhou et al. 2017) based models which have 

been mainly limited to few small scale fractures. 3D discrete fracture networks (Willis-Richards 

et al. 1996; Wang and Ghassemi 2011; Raihi and Damjanac 2013; Cheng and Ghassemi 2017) are 

more suitable for injection extraction problems and simulation of micro-seismicity in connected 

fracture networks rather than simulating hydraulic fracture propagation. Semi-analytical models 

(Weng et al. 2011) can be implemented at field scale but they fail to take into account the 

interaction between multiple fractures and are not suitable to model shear slip. A numerical model 

that fully couples fracture mechanics with fluid flow and considers all aspects of hydraulic/natural 

fracture interaction at field scale can be quite challenging in terms of numerical stability and 

computation time even in 2D. At present, most of the current literature on complex fracture 

networks is limited to the investigation of hydraulic fracture arrest/crossing behavior with natural 

fractures, and the associated fracture aperture evolution and injection pressure response with time. 

Stress distribution around fractures in the network, shear slip evolution, status of fracture elements 

(i.e., whether they are open/close/slip/stuck) have not been well reported. 

1.2.4 Fracture Swarms 
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Current hydraulic fracture models assume single fracture per perforation cluster. This assumption 

stems from a simplified concept of the stress shadow that inhibit the growth of multiple parallel 

fractures under very tight spacing. Laboratory experiments (van de Ketterij and de Pater, 1999) 

performed on a perforated wellbore indicated poor connectivity of fractures emanating from 

perforations resulting in multi-strands rather than a single fracture. Out of the 21 experiments 

conducted, only two experiments exhibited good fracture connectivity near the wellbore, while the 

rest showed multiple fractures emanating from perforation cluster. The results also indicated that 

lower in-situ horizontal stress contrast favors connectivity between the fractures from individual 

perforations near the wellbore. Due to the limitation of sample size in laboratory experiments, the 

extent of lateral propagation observed by hydraulic fractures from individual perorations is not 

explored and is unknown. Multi-stranded fracture propagation at large scale (i.e. far from the 

wellbore) is also evident from mine-back experiments and cored intervals of hydraulically 

fractured rock. Warpinski et al., (1993) observed 30 hydraulic fractures over a span of just 4 ft. 

along the cored interval, far exceeding the number of perforation clusters which is two. Mine-back 

experiments in coal seams (Jeffrey et al., 1993) also indicated multiple fractures with spacing of 

just 1 ft. Core samples from hydraulic fracturing test site (HFTS) (Gale et al., 2018) and Eagle 

Ford field test (Raterman et al., 2017) indicated hydraulic fractures occurring in swarms. In Eagle 

Ford field test, fracture swarms of densities up to 60 fractures per 50 ft. of cored interval is 

observed. Physical observation of cores and image logs revealed that most of the fractures 

occurring in swarms are parallel to each other. Similar observations are made from core samples 

obtained from HFTS. Since the number of observed hydraulic fractures from HFTS and Eagle ford 

field test are much greater than perforations, multiple fractures emanating from a cluster of 

perforation cannot solely describe the behavior observed at far field. Presence of fracture swarms 
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affect all aspects of hydraulic fracture design such as treatment pressures, fracture widths, and 

length and proppant distribution (Ciezobka et al., 2018). Therefore, fracturing treatment design 

analysis performed using single fracture models can result in significant discrepancies between 

modeling output and field observations. Multiple fracture strands observed in early field test 

(Warpinski et al., 1993) were considered to be unusual (Nolte, 1993) and are attributed to the 

complexity of that specific reservoir (Mesaverde formation) citing re-opening of large number of 

micro-cracks that are aligned parallel to the fracture due to induced fracture tip stresses. On the 

contrary, the recent field studies (Ciezobka et al., 2018; Raterman et al., 2017) indicate that multi-

strand hydraulic fracture propagation is a norm rather than an unusual occurrence. Therefore, it is 

imperative to understand the behavior of closely spaced multi-strand fracture propagation. The 

numerical study of propagation of two closely spaced parallel hydraulic fractures (Jeffery et al., 

1987) indicated rise in the injection pressure compared to single fracture case. However, the two 

fracture analysis is not sufficient to understand the propagation of dense parallel fractures. 

Numerical modeling and analysis of this problem is lacking even in 2D mainly because of the 

complex numerical modeling capability required. 

 1.3 Objectives and Contributions 

The objective of this work is to develop robust, multi-physics 2D and P3D hydraulic fracturing 

models that can simulate realistic hydraulic fracturing scenarios efficiently while capturing the 

impact of rock anisotropy and correctly accounting for near tip behavior, and HF/NF interactions 

in network stimulation. 

The contributions of this work are:  

 Development and verification of a 2D displacement discontinuity method (DDM) for 

anisotropic rock. The influence coefficients of DDM for orthotropic material are derived 
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using the Kelvin’s fundamental solution for the problem of concentrated line force in an 

infinite orthotropic body (Rizzo and Shippy, 1970). The model is used to analyze the effect 

of rock anisotropy on induced stresses and displacements around a fracture.  

 Development, verification and application of a fully coupled model based on 2D DDM for 

multiple hydraulic fracture propagation in isotropic and anisotropic rock. The model has 

been applied to clearly demonstrate the effects of rock anisotropy on fracture extension 

angle and path. In particular, near wellbore fracture tortuosity in anisotropic rock has been 

investigated.  

 Development and implementation of self-similar fracture tip solutions for hydraulic 

fracture propagation in the viscous propagation regime in orthotropic rock, and 

improvement of the 2D DDM fracture propagation model to account for finite fracture 

height to enable simulation of field scale hydraulic fractures.  

 Development of a fully coupled planar height growth fracture (P3D) propagation model 

for anisotropic rock and application to field-scale HF simulations.  

 Development of a complex fracture network model based on 2D DDM that is capable of 

simulating reservoir scale hydraulic/natural fracture interaction.  

 Investigation and analysis of the formation of dense parallel fracture strands observed in 

industry-sponsored field demonstration projects.  
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2 Displacement Discontinuity Method for Anisotropic Rock 

 2.1 Introduction to Material Anisotropy 

Consider a material that is continuous, homogeneous and linearly elastic as in Figure 1-1. Based 

on Hooke’s law, the six components of stress tensor ( ij ) are related to strain tensor ( ije ) through 

material’s elastic constants ijs in the Cartesian coordinate system xyz as:   

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 5

xx xx yy zz yz xz xy

yy xx yy zz yz xz xy

zz xx yy zz yz xz xy

yz xx yy zz yz xz xy

xz xx yy

e s s s s s s

e s s s s s s

e s s s s s s

e s s s s s s

e s s s

           

           

           

           

     3 54 55 56

61 62 63 64 65 66

zz yz xz xy

xy xx yy zz yz xz xy

s s s

e s s s s s s

      

           

                                                    (2.1) 

The coefficients ijs are elastic constants of the material and their relationship with engineering 

constants will be discussed later. The above equation shows a total of 36 independent elastic 

constants that can exist for an elastic material (to stay consistent with the literature (Lekhnitskii, 

1963), we adopted a sign convention of tension positive; therefore contraction strains are negative).  

Inverting Eq. 2.1, we can obtain stress components in terms of strain components and elastic 

constants ijc  as in Eq. 2.2. Note that here constants ijc are obtained through the inversion of Eq. 

2.1 and they are represented in terms of ijs .  
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Figure 0-1. A linear elastic homogeneous material and stress tensor components acting on it 

in the Cartesian coordinate system xyz. 

 

11 12 13 14 15 16

21 22 23 24 25 26

31 32 33 34 35 36

41 42 43 44 45 46

51 52 5

xx xx yy zz yz xz xy

yy xx yy zz yz xz xy
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c e c e c e c e c e c e

c e c e c e c e c e c e

c e c e c e c e c e c e
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      

      

      

      

    3 54 55 56

61 62 63 64 65 66

zz yz xz xy

xy xx yy zz yz xz xy

e c e c e c e

c e c e c e c e c e c e

  

      

                                                      (2.2) 

According to (Lekhnitskii, 1963), there exists a symmetry of the kind, ij jis s , between the elastic 

constants; therefore, the number of independent constants will be reduced to 21 from 36 as shown 

below in Eq. 2.3. 
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11 12 13 14 15 16

12 22 23 24 25 26

13 23 33 34 35 36

14 24 34 44 45 46

15 25 3

xx xx yy zz yz xz xy
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           

           

           

           

     5 45 55 56

16 26 36 46 56 66

zz yz xz xy

xy xx yy zz yz xz xy

s s s

e s s s s s s

      

           

                                                    (2.3) 

2.1.1 Axis of Elastic Symmetry 

Consider a plane cut perpendicular to axis z of the material in Figure 2-1 as shown in Figure 2-2. 

Suppose, A is a point lying on the plane and an elastic constant that relates normal deformation at 

the point A in x-direction with normal stress component in x-direction is s11. If every point in the 

plane xy exhibits the same elastic property in the x-direction then we call the axis x as axis of elastic 

symmetry. If a material consists of two axes of elastic symmetry, then the plane made by these 

two axes is called plane of elastic symmetry. The direction normal to the plane of elastic symmetry 

is referred as principal direction of elastic symmetry. For example, in Figure 2-2, if both x-axis 

and y-axis are the axes of elastic symmetry then, xy is the plane of elastic symmetry and z-axis will 

be the principal direction. The constitutive equations for the case where x and y are axes of elastic 

symmetry can be written as  

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

xx xx yy zz xy

yy xx yy zz xy

zz xx yy zz xy

yz yz xz

xz yz xz

xy xx yy zz xy

e s s s s

e s s s s

e s s s s

e s s

e s s

e s s s s

       

       

       

   

   

       

                                                                            (2.4) 

Note that due to elastic symmetry, the number of independent elastic constants further reduced 

from 21 to 13 (see Lekhnitskii, (1963) for details). 



15 

 

Figure 0-2. A plane cut perpendicular to axis z of the material in Figure 1. A is a point on 

the material and the arrow points towards x-axis. 

 

2.1.2 Orthotropic Material 

For a material such as indicated in Figure 2-1, if all the three orthogonal axes x, y and z are the 

axes of elastic symmetry then such a material is called orthotropic material. Based on the 

definitions given above, in an orthotropic material, there are three principal directions (x, y and z) 

and three planes of elastic symmetry (xz, yz and xy), all orthogonal to each other. Due to this elastic 

symmetry, the number of independent elastic constants in an orthotropic material will be reduced 

to 9 as in Eq. 2.5. 

11 12 13

12 22 23

13 23 33

44

55

66

xx xx yy zz

yy xx yy zz

zz xx yy zz

yz yz

xz xz

xy xy

e s s s

e s s s

e s s s

e s

e s

e s

     

     

     

 

 

 

                                                                                          (2.5) 
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2.1.3 Relationship with Engineering Constants 

The elastic constants ijs  are related to the engineering constants Ei (Young’s modulus), Gij (shear 

modulus) and vij (Poisson’s ratio) in orthotropic rock material as follows: 

11 22 33

12 13 23

44 55 66

1 1 1
, , ,

, , ,

1 1 1
, ,

2 2 2

x y z

yx yzxz

y x y

yz xz xy

s s s
E E E

v vv
s s s

E E E

s s s
G G G

  

     

  

   (2.6) 

where Ei characterize the normal deformation of the material due to tension or compression in the 

direction i, Gij characterize shears in the planes parallel to the plane ij and vij characterize 

contraction or expansion in the direction j when tensile or compressive load is applied in the 

direction i.  

Notice that due to the symmetry of the elastic constants ij jis s as indicated in Eq. 2.3, the 

following relationship between vij and vji must hold: 

ij ji

i j

v v

E E
                                                                                                                        (2.7) 

2.1.4 Transversely Isotropic Material 

Suppose if any of the three planes of elastic symmetry of an orthotropic material possess an elastic 

symmetry such that for all the points lying in that plane, the elastic constants are equal in all the 

directions pointing within that plane, then such a material is called transversely isotropic material. 

In other words, one of the three planes of elastic symmetry must become an isotropic plane. In this 

case, the number of independent elastic constants will be reduced to only 5 as in Eq. 1.8. If the 
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plane xy in Figure 2-1, is taken to be the plane of isotropy, then stress-strain relationship from Eq. 

2.5 can be written as 

11 12 13

12 11 13

13 13 33

44

44

66 11 12( )2

x xx yy zz

y xx yy zz

z xx yy zz

yz yz

xz xz

xy xy xy

e s s s

e s s s

e s s s

e s

e s

e s s s

     

     

     

 

 

    

                                                                                          (2.8) 

2.1.5 Isotropic Material 

A material is considered isotropic if it exhibits same elastic properties in every direction at every 

point. In this case, the number of independent elastic constants will be reduced to 2 and Eq. 2.8 

becomes (in terms of engineering constants) 

1

1

1

1

2

1

2

1

2

x xx yy zz

y xx yy zz

z xx yy zz

yz yz

xz xz

xy xy

v v
e

E E E

v v
e

E E E

v v
e

E E E

e
G

e
G

e
G

     

      

      

 

 

 

                                                                                        (2.9) 

where 

2(1 )

E
G

v



 



18 

 2.2 Plane Problems 

Often we are involved with many 3D problems that can be approximated in two dimensions (i.e., 

in a plane). Such an approximation eases the mathematical difficulty and allows one to construct 

analytical solutions which are exact and computationally fast, and also decreases computational 

burden during numerical analysis. In this work we deal mostly with 2D problems and we will state 

the conditions under which such analysis holds. We will also propose some corrections to 2D 

solutions to incorporate 3D effects. Plane problems can be generalized into two categories. They 

are: 

2.2.1 Plane Stress 

In a plane stress condition we restrict our attention to the stress components in a single plane. All 

other stress components are assumed to be zero. For example, if plane xy (see Figure 2-1) is 

considered to be in the state of plane stress, we take 0zz xz yz     , and the constitutive 

relation for orthotropic material given in Eq. 2.5 becomes 

11 12

12 22

13 23

66

xx xx yy

yy xx yy

zz xx yy

xy xy

e s s

e s s

e s s

e s

   

   

   

 

                                                                                                    (2.10) 

The relationship in terms of strain components can be obtained by inverting Eq. 2.10 and the result 

is given in Eq. 2.11. 

11 12

12 22

66

xx xx yy

yy xx yy

xy xy

c e c e

c e c e

c e

  

  

 

                                                                                                    (2.11) 

where 
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22
11 2
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12
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22 2

11 22 12

66 661/

s
c

s s s

s
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s s s

s
c

s s s

c s











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2.2.2 Plane Strain 

In a plane strain condition we assume that all strain components are zero except for a single plane. 

For example, if plane xy is considered to be in the state of plane strain, we take 0zz xz yze e e   , 

and the constitutive relation for orthotropic material given in Eq. 2.5 becomes 

2

11 33 13 12 33 13 23

33 33

2

12 33 13 23 22 33 23

33 33

66

xx xx yy

yy xx yy

xy xy

s s s s s s s
e

s s

s s s s s s s
e

s s

e s

 
   

 
   

 

                                                                     (2.12) 

Inverting the above equation gives the stress components in terms of strain components and elastic 

constants ijc as: 

11 12

12 22

66

xx xx yy

yy xx yy

xy xy

c e c e

c e c e

c e

  

  

 

                                                                                                    (2.13) 

where 
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 2.3 Transformation Equations 

2.3.1 Elastic Constants 

Consider an orthotropic material where x, y and z are axes of elastic symmetry such as shown in 

Figure 2-3. If the elastic constants ijs for this material that relate the stress-strain components at a 

point in the coordinate system xyz are given, then the elastic constants ijs that relate stress-strain 

components in the coordinate system xyz  which is obtained by rotating the system xyz about axis 

z by  degrees (as in Figure 2-3) are given by following expressions (Lekhnitskii, 1963): 

4 2 2 4

11 11 12 66 22
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                      (2.14) 
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Notice that after the rotation of coordinate system, new elastic constants 
16 26 36 45, , ,s s s s  appeared. 

This is because the new coordinate axes x  and y  are not the axes of elastic symmetry. Therefore, 

in this coordinate system, the stress-strain relationships in terms of the new elastic constants can 

be expressed as in Eq. 2.15 which are similar to Eq. 2.4. 

 

Figure 0-3. An orthotropic material with three axes of elastic symmetry x, y and z.  x and 

y are the new coordinate axes that are obtained after rotating the coordinate system xyz 

about axis z by  degrees. 

 

11 12 13 16

12 22 23 26

13 23 33 36

44 45

45 55

16 26 36 66

xx xx yy zz xy

yy xx yy zz xy

zz xx yy zz xy

yz yz xz

xz yz xz

xy xx yy zz xy

e s s s s

e s s s s

e s s s s

e s s

e s s

e s s s s

   

   

   

 

 

   

   

   

   

 

 

   

                                                                         (2.15) 

Under the condition of plane xy  in the state of plane strain,  

0; 0; 0yz xz zze e e                                                                                                    (2.16) 

Substituting the above values in Eq. 2.15 gives 
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                                 (2.17) 

The above equation can be inverted to represent stress components in terms of strain components 

and material constants ijc as in Eq. 2.18. 
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                                                                                       (2.18)                       

The inverted coefficients ijc  are given in Appendix A. 

If plane xy  is considered to be in the state of plane stress, the following stress components will be 

zero. 

0; 0; 0yz xz zz      

Following the procedure described above, the coefficients ijc  for the case of plane stress can be 

obtained and these are given in Appendix A. 

2.3.2 Stresses 

The stress components in the coordinate system xyz  are related to the stress components in the 

system xyz as follows (only listed plane xy components) 

2 2

2 2

2 2
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  

  

    

                                                  (2.19) 
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 2.4 Equilibrium and Compatibility Conditions 

Consider a differential element of a continuous material in two dimensions (in the plane xy) and 

stresses acting on it in x-direction as in Figure 2-4. If we consider the balance of traction vectors 

in the x-direction we get (assuming zero body forces and inertial forces) 

( ) ( ) 0

0

yxxx
xx xx yx yx

yxxx

dy dx dy dx dy dx
x y

or

x y


   




      

 


 

 

                                      (2.20)       

Similarly considering stresses in y-direction we get,  

0
xy yy

x y

  
 

 
                                                                                                         (2.21) 

The above equation is referred as equilibrium condition of a static material and the stress tensor at 

any point in the material is confined by this condition. To ensure rotational equilibrium of the 

element, xy must be equal to yx . 

 

Figure 0-4. An infinitesimal stress element with stress components acting in the direction x. 

 

If we assume that the displacements in a material can be expressed by a smooth continuous 

differentiable function ( , )u x y in the plane xy, then at any point in the plane, the normal and shear 

strains can be expressed as 
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                                                       (2.22) 

These three strains are related by Eq. 2.23, which is called compatibility condition. 

2 22

2 2

2yy xyxx
e ee

x x x y

 
 

   
                                                                                             (2.23) 

Finally, substituting stress-strain relations in equilibrium equations and using definitions from Eq. 

2.22 we obtain a partial differential equation which can be solved for a given boundary conditions 

for stresses and displacements in an elastic material. Analytical solutions can be obtained for some 

simple boundary values problems, however, for more complex and realistic problems obtaining an 

analytical solution poses extreme mathematical difficulty. In these cases we approximate the 

continuous system as discrete system using numerical finite element or boundary element methods.  

 2.5 Fundamental Solution 

Fundamental singular solutions for elasticity problems have been employed to develop boundary 

element methods using superposition principle. Analytical solution for concentrated line force in 

an infinite orthotropic elastic material was used to develop fictitious stress method (Crouch and 

Starfield, 1983) for orthotropic material. Similarly, analytical solution for unit displacement 

discontinuity in an infinite elastic isotropic material was used to develop displacement 

discontinuity method (Crouch, 1976). Brady and Bray, (1978) extended analytical solution for 

concentrated line force in an isotropic material to the case of opposing concentrated line forces 

separated by a small distance (i.e. dipole) in order to solve problems pertaining to thin elongated 

excavations without the need to model hanging walls and footwalls separately in numerical 

analysis. In boundary element technique, the basic idea is to discretize the material only along its 

boundary and use the fundamental solutions (which are singular) to find strength of singularities 



25 

that has to be distributed along the boundary surface such that the total stress/displacement on each 

boundary element is equal to a known value. Following Brady and  Bray, (1978) and Kimence and 

Erguven, (2005), in this work we use fundamental solution for concentrated line force in an infinite 

elastic orthotropic material to develop two dimensional displacement discontinuity method for 

orthotropic material by establishing relationship between dipole stresses and displacement 

discontinuities.  

2.5.1 Concentrated Line Source 

Consider an infinite orthotropic elastic material that is subjected to a line load of magnitude P per 

unit length (N/m) extending along axis z through z as shown in Figure 2-5. This problem 

can be evaluated under plane strain condition with plane xy being in the state of plane strain as the 

loading conditions on planes perpendicular to z-axis does not vary; that is 

0
P

z





; 

Due to the symmetry of loading conditions along axis z, the strain components  

0;  0;  0z
zz xz yz

u
e e e

z


   


 

If x, y and z are the three axes of elastic symmetry of the orthotropic material, then the stresses and 

displacements at any point in the plane xy due to the load P is given as (Rizzo and Shippy, 1970) 
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                                                                                                    (2.24) 
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where xP  and yP  are force components in the direction of some local coordinate axes x  and y  

respectively (see Figure 2-5), and ijh , ijI are displacement and stress functions (for example, 
22h

gives displacement in y direction for unit force component in y direction and 
11I  gives stress in x 

direction for unit force component in x direction) respectively in the local coordinate system xyz  

(these are given in Appendix B). The displacements are taken positive if a material point moves in 

the direction of positive axis (only positive axes are shown in Figure 2-5). 

 

Figure 0-5. Concentrated line load of magnitude P acting through z  in the plane 

xy.  x and y are the new coordinate axes that are obtained after rotating the coordinate 

system xyz about axis z by  degrees. 

 

2.5.2 Dipole Load 

A dipole load constitutes of two opposing concentrated line loads of equal magnitude that are 

separated by an infinitesimally small distance. If the stress or displacement at a point ( , )r x y  (see 

Figure 2-6) in the plane xy due to a concentrated line load of magnitude Py per unit length is given 

as  

( , ) . ( , )ys x y P f x y                                                                                                     (2.25) 
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where ( , )s x y  denotes stress or displacement at a point ( , )r x y  and ( , )f x y  denotes the 

corresponding influence function which is continues and differentiable.  

 

Figure 0-6. Two concentrated line loads of same magnitude Py acting in y-direction and 

separated by a small distance dy. Origin o is at the mid-point of dy. ( , )r x y  is an arbitrary 

point located in the plane xy. 

 

Then for the pair of opposite line concentrated loads Py per unit length, separated by a small 

distance dy (see Figure 6), the stress or displacement at a point ( , )r x y  in the plane xy is given as 

(Brady and Bray, 1978) 

( , ) ( , )
( , ) ( . ( , ) . ) ( . ( , ) . )

2 2

( , )
( , ) . .

y y y y

y

f x y dy f x y dy
s x y P f x y P P f x y P

y y

or

f x y
s x y dy P

dy

   
 



                       (2.26)          

where dy is twice the distance between the origin o and point of load application. For 

infinitesimally small distance dy (that can be almost viewed as a point) the product, . ydy P , which 

is represented by yQ (as in Eq. 2.27) is defined as dipole stress or dipole intensity per unit length 
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(as in electric dipoles where electric charge substitutes load). Note that when the two forces are 

concentric, the dipole moment about the origin o is zero. 

.y yQ dy P                                                                                                                    (2.27) 

 

Figure 0-7. xy plane view of an infinite orthotropic material with a thin slit of length 2a. x, y 

and z (pointing outwards) are the three axes of elastic symmetry of the material. x  and y  

are the local coordinate axes of the slit. Figure also show far-field stress tensor components 

in the plane xy. 
 

 2.6 Displacement Discontinuity Method 

Consider an infinite elastic orthotropic material with thin slit of length 2a and subjected to far-

field stresses xx , yy and xy  in the plane xy as shown in Figure 2-7. To find the influence 

functions to evaluate induced stresses and displacements at an arbitrary point ( , )r x y  in the plane 

xy due to the slit, we divide the problem in to two steps. In the first strep we assume that the slit 

experiences only normal strain due to external loading while all other strains are restricted. Then 

the particular solutions for stresses and displacements due to normal strain are developed. In the 

next step we follow similar procedure to develop particular solutions for stresses and 
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displacements for the case where only shear strain is non-zero. These two particular solutions that 

satisfy different boundary conditions on the slit can be combined to arrive at the complete solution 

for the general stress condition considered in the Figure 2-7.  

 

Figure 0-8. xy plane view of Figure 2-7. Point 1 (represented by orange dot) is a differential 

element on the slit where normal dipole stresses ,  x yQ Q , and shear dipoles stresses ,  x yS S  

are applied. 

 

As indicated above, first let us consider the following boundary condition at a point 1 on slit (see 

Figure 2-8) 

0,  0yyij
e e                                                                                              (2.28) 

Let the normal strain yye is associated with the dipole stress yQ per unit length as shown in the 

Figure 2-8. The stresses and displacements at a point ( , )r x y  in the plane xy due to this dipole 

stress is obtained by applying Eq. 2.26 to Eq. 2.24, which yields 

12 22

3212 22

,  x y y y

xx y yy y xy y

h h
u Q u Q

y y

II I
Q Q Q

y y y

 
 

 

 
     

  

                                                                (2.29)                               
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However, the dipole stress yQ  will induce contraction strain ( xxe ) in the x direction and shear 

strain ( xye ) according to Eq. 2.17. To cancel the induced strain xxe , we introduce another dipole 

stress of intensity xQ in the x direction as shown in Figure 2-8. From Eq. 2.18, if , 0xx xye e  , xQ  is 

related to yQ  through elastic constants as  

12

22

x y

c
Q Q

c
                                                                                                          (2.30) 

Now the stresses and displacements at a point ( , )r x y  in the plane xy due to dipole stress xQ  is 

obtained using Eqs. 2.24, 2.26& 2.30 which are given Eq. 2.31. 
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                                      (2.31) 

Similarly, to cancel out induced shear strain ( xye ), we must consider two shear dipoles stresses xS

and yS  (note that two shear dipoles must be acting together as a single shear dipole would cause 

rotation of a stress element) acting on the slit as shown in Figure 2-8. The stresses and 

displacements at a point ( , )r x y  in the plane xy due to the these two dipole stresses are 
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                                                                                               (2.32) 
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From Eq. 2.18, if , 0xx xye e  , the shear dipole stress xS is related to normal dipole stress yQ  as 

26

22

x y

c
S Q

c
                                                                                                                 (2.33) 

Due to rotational equilibrium, the shear dipole stress yS  must be equal to xS . Substituting Eq. 2.33 

in Eq. 2.32 gives 
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                                                                                   (2.34) 

Finally, the stresses and displacements at a point ( , )r x y  due to dipole stresses xQ , yQ , xS and yS  

is obtained by combining Eqs. 2.29, 2.31& 2.34, which yields 
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                                            (2.35) 

As a second step, consider the following boundary condition at point 1 on the slit. 
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0,  0xyij
e e                                                                                                             (2.36) 

Let xS and yS are the two shear dipole stresses associated with the shear strain xye . Due to rotational 

equilibrium xS must be equal to yS . Following the procedure described above, the displacements 

and stresses at a point ( , )r x y due to these two shear dipole stresses can be expressed as 
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                                                                                       (2.37) 

The shear dipole stresses will induce normal strains xxe and yye  according to stress-strain 

relationship (Eq. 2.17). Therefore, to cancel out these strains, additional dipole stresses must be 

imposed. In order to nullify xxe , dipole stress xQ  is imposed as in Figure 2-8. From Eq. 2.18, if

, 0xx yye e   , then xQ  is related to xS  as follows 
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x x
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c
                                                                                                                 (2.38) 

In the same manner, to nullify yye , the dipole stress yQ  is applied as shown in Figure 2-8. From 

stress-strain relations in Eq. 2.18, yQ  is related to xS as 
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                                                                                                                 (2.39) 
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Now, the stresses and displacements at an arbitrary point in the plane xy due to the dipole stresses, 

xQ and yQ can be written as (using Eqs. 2.37, 2.38& 2.39) 

16 2611 12 11 12

66 66

16 2621 22 21 22

66 66

16 2611 12 11 12

66 66

16 2621 22 21 22

66 66

x x x x x

y x x x x

xx x x x x

yy x x x x

c ch h h h
u S S S S

c x c y y x

c ch h h h
u S S S S

c x c y y x

c cI I I I
S S S S

c x c y y x

c cI I I I
S S S S

c x c y y

   
   

   

   
   

   

   
    

   

   
    

  

16 31 26 32 31 32

66 66

xy x x x x

x

c I c I I I
S S S S

c x c y y x



   
    

   

                                                       (2.40) 

In order to establish relation between dipole stresses and displacement discontinuities, we follow 

the two step procedure described above (i.e. separating the normal and shear strain components). 

In the first step, we assume all strain components are zero except yye  (Eq. 2.28). For this condition, 

using stress strain relationship (Eq. 2.18), the normal strain yye  can be related to normal stress yy

as 

22yy yyc e                                                                                           (2.41) 

For unit stress element, Eq. 2.41 is equivalent to 

22y yQ c D                                                                                                                 (2.42)                                                       

where yD  is called normal displacement discontinuity which represents difference between the 

displacements of the opposite surfaces of the slit at point 1 in the direction y .  

Similarly, considering the boundary condition from Eq. 2.36 and stress strain relationship from 

Eq. 2.18, shear dipole stress xS  can be related to shear displacement discontinuity xD  as 
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66x xS c D                                                                                                    (2.43) 

Substituting Eqs. 2.42& 2.43 into Eqs. 2.35& 2.40 and using superposition, the stresses and 

displacements in the plane xy are given as 
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                                  (2.44) 

In the above equations the integrals are evaluated analytically and the subscripts n (normal) and s 

(shear) are adopted to distinguish between the induced stress and displacement contributions from 

normal and shear displacement discontinuities. Finally, the problem is posed by discretizing the 

boundary of interest into N small linear elements of length 2a. The fundamental solution for each 

element is superimposed such that the specified (stress/displacement) boundary condition is 

satisfied at all the elements. This procedure will result in linear system of equations with 2N 

unknowns corresponding to induced stresses or displacements as in Eq. 2.45.  
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                                                                                   (2.45) 
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The coefficients
ij

ssA , 
ij

ssB etc. are called influence functions for stresses and displacements. For 

example, 
ij

ssA gives shear stress at ith element due to unit shear displacement discontinuity at jth 

element. By specifying the known values of stresses or displacements at each element on the 

boundary, the unknown normal and shear displacement discontinuities can be found by solving 

the 2N system of equations in Eq. 2.45. The evaluated displacement discontinuities can then be 

used to find stress or displacement distribution in the material. Note that due to the sign convention 

followed for displacements (i.e. displacements are positive for material points that move in the 

direction of positive axis), the positive normal displacement discontinuity indicates slit surfaces 

move towards each other while negative normal displacement discontinuity indicates slit surfaces 

move away from each other similar to the convention adopted in Crouch and Starfield, (1983).  

Note that assuming constant displacement discontinuities over the entire length of an element can 

give erroneous results for fracture opening and ride near the tips. According to linear elastic 

fracture mechanics, near the fracture tip, opening and ride various (Barenblatt, 1962) in the order

1/2r , where r  is distance measured from the fracture tip (the near tip behavior of a fracture will be 

discussed in detail in the upcoming chapters). Although one can incorporate this effect in the 

solution of displacement discontinuity method by discretizing fracture tip regions into very fine 

size elements, such a procedure is not a complete remedy and moreover it is computationally 

expensive. Therefore, in order to improve the accuracy of displacement discontinuities near the 

fracture tips, we use displacement discontinuity elements with a square root shape function shown 

in Eq. 2.46.  
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                                                                        (2.46) 



36 

where yD and are normal and shear displacement discontinues respectively at the mid points of the 

fracture tip elements, and ,y tD and ,x tD represent normal and displacement discontinuity variation 

over the element of length 2a.   is distance along the fracture tip element which is measured from 

origin o and is taken positive in the direction of positive x axis. Now, the influence functions for 

tip elements can be obtained by replacing constant displacement discontinuities yD and yD in Eq. 

2.44 with ,y tD and ,x tD from Eq. 2.46 and subsequent numerical integration. Finally, it should be 

noted that Eq. 2.45 is applicable to both plane strain and plane stress problem, simply by altering 

the material constants ijc which are listed in Appendix A.  

 

Figure 0-9. Fracture tip element with square root variation of displacement discontinuities. 

 

 

 2.7 Fictitious Stress Method 

In problems pertaining to large excavations, tunnels and cavities (such as wellbore), tangential 

stresses on the boundary walls is one of the primary components of the solution to evaluate failure. 

Although displacement discontinuity method can be employed to solve such problems, however, 
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in order to evaluate tangential stresses on the boundaries, it is required to calculate derivatives of 

the tangential displacement components, which can affect accuracy of the computed results. For 

these problems, a more suitable boundary element method is fictitious stress method where 

evaluation of tangential stresses on the boundaries is straightforward (note that fictitious stress 

method cannot model thin slits/cracks due to its inability to distinguish between two opposing 

surfaces).  The fictitious stress method for an isotropic elastic material is developed using 

fundamental solution for concentrated line force in an infinite isotropic elastic material. 

Analogously it is extended to orthotropic material using the fundamental solution for line force in 

an orthotropic material. Similar to displacement discontinuity method, in fictitious method the 

boundary of interest is discretized into small elements where singularities (i.e. fictitious stresses) 

are distributed such that the boundary condition on each element is satisfied. Unlike displacements 

discontinuities which represent relative displacement of crack surfaces in normal and tangential 

directions, the fictitious stresses as the name indicates does not have any physical meaning. The 

influence coefficients for fictitious stress method for both isotropic and orthotropic materials can 

be found in Crouch and Starfield, (1983), therefore not repeated here.    

If we consider an infinite orthotropic elastic material with 1-2-3 as material’s axes of elastic 

symmetry containing a cavity ‘c’ and a fracture ‘f’ as shown in the Figure 2-10. If the boundary of 

the cavity ‘c’ is discretized into M line elements and fractures ‘f’ into N line elements, then using 

superposition the induced normal (
i

n ) and shear (
i

s ) stresses acting on the surface of each 

element can be expressed as (Crouch and Starfield, 1983) 
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where the terms Pn, Ps represent fictitious stresses acting on the surface of the cavity ‘c’ and Dn, 

Ds represent displacement discontinuities of fracture elements. The terms
ij

nsA , etc., are boundary 

stress influence coefficients which give normal/shear stress at the midpoint of ith element due to 

the unit fictitious stress or displacement discontinuity at jth element. Their expressions for, 

1 j M   can be found in Crouch and Starfield, (1983) and for, 1M j N    are given above in Eq. 

2.44. The linear combination of the influences of the fictitious stresses and the displacement 

discontinuities gives stresses on any given cavity/fracture element or at any point in the material. 

Numerical simulations relating to this geometry will be discussed in detail in the subsequent 

chapters. 

 2.8 Verification of anisotropic displacement discontinuity method 

The anisotropic displacement discontinuity (ADDM) method is verified against analytical plane 

strain solution (Azhdari et al., 1999) for a problem of line fracture subjected to uniform far-field 

tension and shear. For verification purpose two different cases are considered. In Case-1, the line 

fracture is subjected to only far-field tensile stress ( xx ) of magnitude 1 MPa perpendicular to 

fracture surface (see Figure 2-10). Whereas in Case-2, the line fracture is subjected to only far-

field shear stress ( xy ) of magnitude 1 MPa. The two axes of elastic symmetry in the plane xy are 

represent by 1 and 2 and they can be rotated in the plane xy. The angle of axis 1 with respect to 

axis x is given by   degrees. Figure 2-11 shows the comparison between fracture normal opening 

and fracture ride along axis y obtained from analytical plane strain solution and ADDM, for a line 

fracture of length 1 m for the cases 1 and 2 and for two different   of 00 and 450. The material is 

orthotropic and its elastic constants are given in Table 2-1 (note that these values do not belong to 

any specific material, they are chosen for the purpose of ADDM verification). In the numerical 
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model, the fracture length along y-axis is discretized into 50 equal sized elements and square root 

elements (see Figure 2-9) are used at fracture tips. The results indicate excellent match between 

ADDM and analytical solution. 

 

 

Figure 0-10. xy plane strain consideration of a line fracture in an infinite orthotropic 

material. 1 and 2 are axes of elastic symmetry and  is angle between axis 1 and axis x. 

 

 

Table 0-1. Elastic constants for orthotropic material. 

E1 E2 E3 G12 v21 v32 v31 

40 MPa 25 MPa 10 MPa 7.5 MPa 0.12 0.18 0.05 
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Figure 0-11. Comparison between analytical (Azhdari et al., 1999) and numerical ADDM 

solutions for fracture normal opening and fracture ride along axis y for cases 1 and 2 and 

for different   (see Figure 11). 

 

 2.9 Verification of Anisotropic Fictitious Stress Method 

Anisotropic fictitious stress method is verified by comparing the numerical results with analytical 

solution of the circular hole in an infinite elastic orthotropic plane under uniaxial tension at infinity 

given by Green and Taylor (1945). The problem is considered in plane stress with material 

properties for spruce board given in Table 2-2. The problem is solved for both cases of tension 

applied parallel and perpendicular to the axis y (see inset in Figure 2-12). The circular hole is 
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discretized into 100 equal sized elements. The numerically obtained tangential stresses at the wall 

of circular hole and stresses along the axes parallel and perpendicular to the direction of applied 

tension are compared with the analytical solution in Figures 2-12& 2-13. The results indicate 

excellent agreement between numerical and analytical solution.  

 

Table 0-2. Elastic constants for spruce board. 

Ex Ey Gxy vxy 

645.16 KPa 17035.77 KPa 869.57 KPa 0.0213 

 

 

 

Figure 0-12. Comparison of tangential stresses between analytical solution [12] and AFSM 

along the wall of the cavity in the spruce board when tension is applied perpendicular to 

the grains. 
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Figure 0-13. Comparison of tangential stresses between analytical solution and AFSM 

along the wall of the cavity in the spruce board when tension is applied parallel to the axis 

y. 
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3 Effect of Rock Anisotropy on Induced Stresses and Displacements around a 

Fracture 

 

In this chapter we study the effect of rock anisotropy on fracture opening, induced stresses and 

displacements around a pressurized fracture. Consider a transversely isotropic rock with planes of 

isotropy (planes 1-3) tilted at an angle with respect to the horizontal plane X-Y as indicated in 

the Figure 3-1a. Suppose ‘f’ is a rectangular fracture with height H (parallel to the vertical principal 

stress V  or axis Z) and length L (parallel to the maximum horizontal principal stress H  or axis X). 

It is assumed that the height of the fracture ‘f’ is contained to the reservoir layer thickness, H, due 

to the stress barriers acting in the outer layers (Warpinski et al., 1982; Teufel and Clark, 1984) and 

that the fracture propagates only along its length. Under this scenario (when L/H 1) it is 

appropriate to consider plane strain (YZ plane). Figure 3-1b shows YZ- plane view of Figure 11a 

with origin located at the midpoint of fracture height H.  

 

Figure 0-14. (a) Transversely isotropic body with bedding planes tilting at . ‘f’ is a 

vertical fracture with height H and length L, where, L/H 1, (b) the Z-Y plane view of 

Figure 11a. 

 

 


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Figure 0-15. Normalized local maximum principal stress distribution in Rock-A around a 

vertical fracture (in the plane Z-Y, see Figure-11b) with an internal net pressure (P) for 

different bedding dip ( ). 

 

For numerical analysis, two transversely isotropic rocks Rock-A and Rock-B are considered and 

will be used throughout this work. Rock-A is an argillaceous shale with a degree of anisotropy 

(i.e., the ratio of Young’s modulus parallel to bedding planes and Young’s modulus perpendicular 

to bedding planes) 4, and its anisotropic elastic constants are listed in Table 3-1. Rock-B is 

Woodford shale with a degree of anisotropy 1.88, and its anisotropic elastic constants are listed in 

Table 3-2. The elastic constants given in Tables 3-1& 3-2 are static measurements in a laboratory 
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on core scale specimens. In the following analysis, to highlight the impact of rock anisotropy, 

isotropic results are also presented. Isotropic results are obtained using the Young’s modulus in 

the direction of minimum principal horizontal stress and isotropic Poisson’s ratio v13 assuming that 

fracture always opens against minimum principal horizontal stress. Considering a single vertical 

plane strain fracture ‘f’ of height H with uniform internal pressure P, the induced stresses and 

fracture displacement discontinuities are reported for rocks with different anisotropic elastic 

properties and for different angles ( ) of the isotropic planes (i.e., bedding planes) with respect 

to the vertical fracture. 

 

Figure 0-16. Normalized maximum principal stress distribution in Rock-B (lower degree of 

anisotropy of 1.88) around a vertical fracture (in the plane Z-Y, see Figure-11) with an 

internal net pressure (P) for dip  =900. 

 

Figure 3-2 shows the normalized maximum principal stress curves around the vertical fracture ‘f’ 

(see Figure 3-1a) for different  in Rock-A. The results indicate that if Rock-A is treated as 

isotropic, these curves appear like circles and the maximum principal stress attains its largest value 

along the line Z=0 (i.e., passing through the midpoint of fracture height). Considering anisotropy 

of Rock-A, when  =00 (this case corresponds to a vertical fracture in a vertical transversely 


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isotropic rock, VTI), the principal stress curves appear like ellipses with major axis parallel to the 

direction of maximum Young’s modulus (i.e., E1). As a result, the stress shadow reach in the 

direction perpendicular to the fracture surface is larger than isotropic case. Also, the maximum 

principal stress attains the largest value along the line Z=0 similar to isotropic case. For the case 

 =450 (this case corresponds to a vertical fracture in a tilted transversely isotropic rock. TTI), the 

principal stress curves have a complex shape.  

 

Table 0-3. Properties of Rock-A 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

KIC 

(MPa.m0.5) 

E1/E2  

40 40 10 0.15 0.185 7.45 2 4.0 

 

  

Table 0-4. Properties of Rock-B 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

KIC 

(MPa.m0.5) 

E1/E2  

19.6 19.6 10.4 0.166 0.25 5.0 2 1.88 
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Figure 0-17. Z-Y plane strain analysis of a rectangular fracture (shown in Figure 11) 

subjected to a constant internal net pressure, P. Normalized induced stress component YY , 

(d) along the line Z=0, (e) in the plane Z-Y for isotropic rock, (f) anisotropy Rock B, (g) 

anisotropic Rock A. 
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Figure 0-18. (h) For anisotropic Rock A and bedding dip 450, (i) anisotropic Rock-A and 

bedding dip 900. 

 

In this case, the largest value of the local maximum principal stress is not attained along the line 

Z=0. It is oriented towards the direction of the maximum Young’s modulus. This can result in 

asymmetric fracture growth which will be illustrated in the following chapters. When  =900 

(corresponding to a vertical fracture in a horizontal transversely isotropic rock, HTI), very near to 

the fracture surface, the principal stress curves have a complex shape (near the fracture surface, 

they appear like butterfly wing and away they become kidney shaped). Similar to the previous 

case, the largest value of the local maximum principal stress is not attained along the line Z=0.  

According to Lekhnitskii (1963), the principal stress curves are fourth-order equations (Eq. 3.1) in 

terms of Y and Z coordinates, with rock elastic constants as coefficients. Depending on the elastic 

constants, the shape these stress curves can change. For example, in Rock-A when  =900, the 

curves appear like ovals as shown in Figure 3-2. However, in Rock-B when  =900, the curves 

attain almost circular shape (away from the fracture) and the local maximum principal stress attains 

its largest value along the line Z=0 according to Figure 3-3 (unlike case of Rock-A).  
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4 2 2 4 2 2

11 12 66 22 1 2 11 22(2 ) ( ) ( ) 0
P

y y z y y z z       


         (3.1) 

Where y and z are coordinates in plane YZ (see Figure 3-1a), ij are elastic constants for an 

anisotropic material and their relationship with engineering constants is given in Eq. (chapter-1). 

1 and 2 are the two complex roots of the characteristic equation (Eq. C.6 in Appendix C)  with 

positive imaginary parts.  

Now, the principal stress curves around a plane strain fracture attain their greatest value along the 

line Z=0 (see Figure 3-1) if 

12 66 22

12 66 22 11 22

2 1.5

2 1.5 ,  8 3 0

or

  

    

 

   

   (3.2) 

From Eqs. 3.1& 3.2, we can see that depending on the elastic constants of the rock, the shape of 

principal stress curves around a fracture can change. For example, in Rock-B when  =900, the 

principal stress curves attain almost circular shape (away from the fracture) and the maximum 

principal stress attains its largest value along the line Z=0 according to Figure 3-3 as the properties 

of Rock-B satisfied Eq. 2. On the other hand in Rock-A when  =900, the curves appear like ovals 

as shown in Figure 3-2, and the greatest value of principal stress around the fracture is no longer 

along the line Z=0 since the properties of Rock-A did not satisfy Eq. 3.2.  

 

The induced stresses around a fracture influences the propagation of adjacent fractures. The above 

analysis indicates that rock anisotropy can impact the induced stress state around a fracture 

significantly. If we consider propagation of multiple parallel fractures interacting with each other 

(as this is one of the prominent techniques of creating large scale fractures in unconventional 
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reservoirs), the induced stress components in the direction perpendicular to the fracture surface 

(i.e., Y component according to Figure 3-1a) plays a prominent role in governing the fracture 

propagation. Due to this reason in this chapter we restricted our attention to stress component
YY . 

The effect of rock anisotropy on other stress components and their role on fracture propagation 

will be discussed in the following chapters dealing with complex fracture networks. 

Figure 3-4d shows normalized values of induced stresses in Y-direction along the line Z=0 for 

different anisotropic rocks and bedding plane dip  from ZY plane strain analysis of the fracture 

‘f’ indicated in Figure 3-1 that is subjected to a constant internal net pressure P. The results indicate 

a gradual increase in YY  with increase in degree of anisotropy when fracture height is 

perpendicular to the direction of maximum Young’s modulus E1 (i.e. =00). For example at Y=H, 

the YY  along the line Z=0 from isotropic approximation is 0.29P. Whereas in the case of 

anisotropic rock with a degree of anisotropy 1.88 (Rock-B), the YY  value is 0.38P. For 

anisotropic rock with a degree of anisotropy 4 (Rock-A), YY  is increased to 0.49P, a 69% increase 

over its value for isotropic rock. This effect is reversed with increase in bedding dip. When degree 

of anisotropy is 4 and bedding plane dip is 450,  at Y=H is 0.24P. For vertical bedding (

=900),  is 0.18P which is 38% decrease over its value for isotropic case. Figures 3-4e-3-5i 

show distribution of normalized induced stresses in the Y-direction around the vertical fracture ‘f’ 

in the plane ZY. There results clearly indicate an increase in the spatial extent of induced stresses 

with increase in degree of rock anisotropy when fracture height is perpendicular to the direction 

of maximum Young’s modulus E1 ( =00). This is an important finding as the increase in induced 

stresses perpendicular to the fracture surface can negatively impact the growth of closely spaced 



YY 

YY


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multiple parallel fractures. On the other hand when bedding planes are tilted ( =450), the induced 

stresses perpendicular to the fracture surface rotated towards the direction of maximum Young’s 

modulus as indicated in Figure 3-5h. This is similar to the behavior of maximum principal stress 

distribution around a fracture in the case of inclined bedding planes as in Figure 3-2. When fracture 

height is parallel to the direction of maximum Young’s modulus E1 ( =900), Figure 3.5i indicates 

shrinkage in spatial extent of induced compared to isotropic case. 

Figures 3-6a, 3-6b and 3-6c shows dimensionless values of normal displacement discontinuity Dn 

(i.e. fracture opening) along the fracture Z-axis for different anisotropic rocks and bedding dip 

angles, obtained from the plane strain (YZ) analysis of the fracture ‘f’ (Figure 3-1) that is subjected 

to a constant internal net pressure P. These results corresponds to the net pressure of 1 MPa. As 

discussed before, the isotropic solution is obtained by using the Young’s modulus parallel to 

minimum principal stress and isotropic plane Poisson’s ratio v13. Figure 3-6a suggests that when 

the fracture height is perpendicular to the direction of maximum Young’s modulus E1 ( =00), the 

isotropic approximation underestimates fracture opening. At the midpoint of fracture height (i.e. 

Z=0), the fracture opening (Dn) from isotropic approximation of Rock A is 4.9E-5xH. When rock 

anisotropy is accounted the fracture opening observed at Z=0 is 7.4E-5xH, which is a 51% increase 

over isotropic approximation. However, this behavior reverses with increase in bedding plane dip 

as indicated by Figures 3-6b and 3-6c. When bedding planes are dipping at an angle of 450, 

isotropic approximation overestimates the fracture opening at Z=0 by 9% in the Rock A (Figure 

3-4b). For a complete vertical bedding (i.e. =900), isotropic solution overestimated fracture 

opening at Z=0 by 32% in Rock A (Figure 3-6c). It will be shown later that the erroneous 

estimation of fracture apertures by isotropic model affect both fracture length and height 

predictions.  





YY




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Another interesting aspect of rock anisotropy is that a fracture under pure mode-1 loading 

experiences shear displacement discontinuity (ride) when it is inclined with respect to the rock’s 

axes of elastic symmetry. This behavior is shown in Figure 3-6d, where the fracture ride is zero 

for the cases =00 and 900, however, non-zero for the case =450 in Rock-A when a vertical 

plane strain fracture ‘f’ is subjected to a constant internal net pressure P (see Figure 3-1a). We can 

explain this behavior by looking at the displacement plots in the directions Y and Z around the 

fracture in Rock-A for different indicated in Figure 3-7 (positive displacements are taken in the 

direction of positive axes). The results show that when bedding planes are inclined with respect to 

the fracture height (i.e., =450), the points on the negative side of fracture surface (left side) 

moved upwards (i.e., towards the direction of lower Young’s modulus) and the points on the 

positive side of fracture surface (right side) moved downwards (i.e., towards the direction of lower 

Young’s modulus) resulting in non-zero shear displacement discontinuity or fracture ride. It will 

be shown later that the non-zero shear ride observed under pure mode-1 loading (as in the example 

considered in this chapter) does not induce mode-2 stress singularity at the fracture tips. 

 







53 

 

Figure 0-19. ZY plane strain analysis of a rectangular fracture (shown in Figure 11) 

subjected to a constant internal net pressure, P. (a-c) Dimensionless normal fracture 

opening (Dn) along the fracture Z-axis for various degrees of rock anisotropy and bedding 

dip ( ) with an internal net pressure (P) of 1 MPa. (d) Dimensionless fracture ride (Ds). 
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Figure 0-20. Z-Y plane strain analysis of a rectangular fracture (shown in Figure 11) 

subjected to a constant internal net pressure, P of 1 MPa. Normalized displacement 

distribution in the directions Y and Z in Rock A for different . Displacements are taken 

positive in the positive directions of coordinate axes. 

 

 

 

 

 

 


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4  Near Tip Processes in Fluid Driven Fracture and Analytical Solutions 

 

Hydraulic fractures are driven by fluid injection. Therefore, the evolution of a hydraulic fracture 

is controlled not only by the rock elastic and fracture properties, but also by fluid properties. Early 

work by Barenblatt, (1962), Spence and Sharp, (1983), Spence and Turcotte, (1985) and Lister, 

(1990) followed by Desroches et al. (1994), recognized that the shape of a fracture tip in a rock 

with zero fracture toughness is different from the case where the rock fracture toughness is non-

zero. In this chapter, first we will review and discuss the effect of fracture toughness of the rock 

and the fluid viscosity on the near tip fracture opening and pressure field in an isotropic rock. The 

second part of the chapter deals with developing global and near-tip self-similar solutions for 

anisotropic rock, and their use in building an efficient numerical hydraulic fracture propagation 

simulator that can automatically implement appropriate boundary conditions near the fracture tip 

depending on the properties of rock and fluid.  

 

Figure 0-21. (a) Edge of an irregular-shaped fracture with inset showing a local fracture 

segment, (b) xy plane view of fracture edge with origin at fracture tip. 
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 4.1 Governing Equations 

Consider a fracture in the plane xz with an arbitrary shape with zero shear loading. Figure 4-1a 

shows the edge of such a fracture and a small segment of it having a radius of curvature R. If the 

length scale associated with the segment is small enough compared to length scale of radius R, we 

can approximate the curved segment as a straight line shown in the inset of Figure 4-1a. The 

deformation in the vicinity of such a segment can be considered to be within the plane xy (i.e.

( ) / 0dw z dz  ), also the fracture dimension in the direction perpendicular to the edge (i.e. x-axis) 

becomes irrelevant and therefore can be taken infinite. Therefore, the resulting elastic integral 

equation that relates fracture apertures ( )w x  with net fluid pressure inside the fracture ( )p x  

corresponds to a plane strain semi-infinite fracture (Barenblatt, 1962): 

0

2

' '( )
( ) ,

4

'
1

E w s ds
p x

x s

E
E

v












         (4.1) 

Where, E is Young's modulus, v is Poisson's ratio and x is distance from the fracture tip to a point 

along the fracture (see Figure 4-1b).   

The above equation can be inverted for w' (see Appendix C): 

0 0

4 ( ) 4 ( )
( ) /

''

p s ds x p s
dw x dx ds

E s x sE x s 

 

 
     (4.2) 

Noting that the first integral on the R.H.S of the above equation is the definition of mode-1 stress 

intensity factor (Rice, 1968), 

0

2 ( )
I

p s ds
K

s



     (4.3) 

and integrating the Eq. 4.2 with respect to x using the tip boundary condition w(0)=0 and Eq. 4.3, 

gives 
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At distances very close to the fracture tip, the above equation is reduced to, 

3/21
0

4 2
( ) ( )

'
x

K x
w x O x

E
      (4.5) 

 

Figure 0-22. Fracture opening profiles very near the tip of a fluid driven semi-infinite 

fracture in a rock with, (a) non-zero fracture toughness and fluid with negligible viscosity, 

(b) zero fracture toughness and fluid with negligible viscosity, and (c) zero fracture 

toughness and high viscous fluid. 

 

If the fracture is driven by a viscous fluid, there exists a fluid front inside the fracture. Assuming 

that the fracture tip and fluid front coincide (i.e. the fluid-lag is zero) the continuity equation can 

be expressed as, 

( ) ( )
0

w x q x

t x

 
 

 
   (4.6) 

However, recognizing that the reference coordinate system x-y-z is at the fracture tip and so it 

moves in term as the fracture propagates (see Figure 4-1(b)), the following convective derivative 

(Eq. 4.7) is applied to Eq. 4.6 

( , ) ( , ) ( , )f x t f x t x f x t

t t t x

   
 

   
   (4.7) 

which results in 

( ) ( ) ( )
0

w x x w x q x

t t x x

   
  

   
   (4.8) 
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where ( )q x is fluid flux. Very near to the fracture tip, the term ( ) /w x t   is negligible (Detournay 

and Peirce, 2014) compared to the term ( ) /w x x    and noting that /x t  is fracture velocity V, 

we obtain 

( ) ( )w x q x
V

x x

 


 
  (4.9) 

Integrating the above equation with the tip boundary conditions of: (0) 0, (0) 0q w   , gives: 

( ) ( ).q x w x V    (4.10) 

The above equation physically means that, very near the fracture tip, the average velocity (i.e.

( ) / ( )q x w x ) of the fluid is equal to the fracture velocity V. The continuity equation (Eq. 10) 

combined with cubic law (Eq. 4.11) gives the lubrication equation (Eq. 4.12) in terms of fracture 

velocity. 

3( )
( )

12

w x dp
q x

dx
   (4.11) 
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'

w x p
V

x





   (4.12) 

Where  is fluid viscosity and ' 12  . Substituting the near tip solution of w(x) from Eq. 4.5 

in the lubrication equation (Eq. 4.12), and after integration, the behavior of fluid pressure very near 

to the fracture tip is, 

0( ) ln( )xp x x     (4.13) 

Note that the logarithmic singularity in pressure distribution is the direct consequence of the term

1/2x from Eq. 4.5. However, if the rock has zero fracture toughness, the logarithmic singularity 

disappears since the first term in Eq. 4.5 must be zero (since, stress concentration cannot exist in 

a rock with zero fracture toughness). In this case, the fracture opening and fluid pressure very near 
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the tip takes the following form (see Appendix C) for a semi-infinite fracture (Desroches et al., 

1994), 

1/3
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      (4.15) 

Where V is the velocity of fracture which is also the velocity of fluid front (because of zero fluid-

lag). Note that the above equations are independent of fracture toughness since it is assumed zero 

from the outset. Therefore, a fracture driven by a viscous fluid in a zero toughness rock assumes a 

fracture tip of shape in the order 2/3x  and fluid pressure with singularity ( 1/3x ), where x is the 

distance measured from fracture tip. 

Figure 4-2 shows comparison between the fracture shapes very near the fracture tip for various 

cases of rock fractures toughness and fluid viscosity. If fracture toughness of the rock is non-zero 

and the fluid viscosity is zero, the aperture profile is of order 1/2x  near the fracture tip according to 

Eq. 4.5 and the corresponding shape of fracture tip is shown in Figure 4-2a. In this case, the fracture 

assumes round shape near the tip.  On the other hand, if both fracture toughness of the rock and 

fluid viscosity are zero, the aperture profile near the fracture is in the order 3/2x  from Eq. 4.5. In 

this case the fracture tip takes on a cusp shape where the two surfaces of the fracture close smoothly 

as shown in Figure 4-2b. Figure 4-2c shows the shape of the fracture tip in a zero toughness rock 

with non-zero viscosity fluid and zero fluid lag. In this case, the aperture profile near the fracture 

tip is of order 2/3x  from Eq. 4.14.  

Note that for the case of viscous fluid driven fracture, the solution for the pressure distribution near 

the fracture tip in rocks with both zero (Eq. 4.15) and non-zero (Eq. 4.13) fracture toughness 

indicates singularity at the fracture tip. But infinite pressure is not physically plausible. To resolve 
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the infinite negative pressure at the tips, one can assume a small region of fluid lag near the fracture 

tip where the absolute pressure is taken to be either zero or equal to the rock pore pressure. This is 

similar to envisioning fracture process zone in LEFM to resolve the theoretical infinite stresses 

near the fracture tip.  

 

Figure 0-23. Fracture opening profiles near the tip of a semi-infinite fracture driven by a 

non-zero viscous fluid in a rock with (a) zero fracture toughness, and (b) non-zero fracture 

toughness. 
kx  denotes the distance along the fracture from the tip where LEFM tip 

solution is valid. 

 

Consider a fracture driven by a viscous fluid in a rock with zero fracture toughness. Let 
kx  be the 

distance from the fracture tip along which LEFM aperture solution (Eq. 4.5) is valid. The existence 

of fluid-lag region (as discussed above) where viscous fluid is not penetrated indicates that fracture 

aperture profile near the tip (i.e.
kx x ) should be of order 3/2x  from Eq. 4.5. Whereas away from 

the region of fluid lag, aperture profile should be of order 2/3 from Eq. 4.14. Therefore, fracture 

opening profile varies from 3/2x to 2/3x with increasing distance from the fracture tip as shown in 

Figure 4-3a. For the same case, however, with non-zero fracture toughness rock, in the vicinity of 

fracture tip, LEFM dictates that fracture aperture profile must be of order 1/2x  (i.e. 
kx x ) from Eq. 

4.5. It will be shown later that far from the fracture tip, the aperture profile will be of order 2/3 
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from Eq. 4.14 as indicated in Figure 4-3b. Note that the distance 
kx  in Figure can extend beyond 

the region of fluid-lag (see below for more details).  

The solution of fracture aperture and pressure very near the fracture tip (from Eqs. 4.14& 4.15) are 

for the limiting case of a hydraulic fracture in a rock with zero fracture toughness. This limiting 

tip solution can be used to construct a numerical model or self-similar solution to model fracture 

propagation in rocks with zero fracture toughness. For a more general case where the rock fracture 

toughness is non-zero, the near tip fracture aperture profile is depicted in Figure 4-3b. Typically 

in any numerical model, the fracture is discretized into small elements and the boundary conditions 

(i.e., fracture tip aperture or pressure solution) are applied on the fracture tip element. If the length 

of fracture tip element is less than 
kx  (see Figure 4-3) then it is appropriate to use LEFM aperture 

solution as tip aperture boundary condition. On the other hand, if the length of the tip element is 

greater than 
kx  it is appropriate to use zero fracture toughness aperture solution as tip aperture 

boundary condition. As will be shown later, kx  depends on rock and fluid properties and evolves 

with time (which means kx  is not a fixed value). Therefore, in order to construct a numerical 

model that can use appropriate tip boundary conditions, it is imperative to evaluate the parameter

kx . In what follows next, we will discuss self-similar solution of fracture opening near the tip, to 

obtain a physical interpretation of the length kx shown in Figure 4-3.  

Once kx  can be evaluated, then the correct tip solution may be used in a numerical algorithm for 

fracture propagation using displacement discontinuity method. The technique is implemented in a 

2D DD procedure. Finally, the fracture tip solutions obtained for isotropic body are extended to 

anisotropic case for use in anisotropic DD fracture model.  
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 4.2 Near Tip Self-Similar Solution 

The set of governing equations (given previously) for a semi-infinite fracture steadily propagating 

with a constant velocity V and without a fluid lag, in an impermeable rock with non-zero fracture 

toughness are repeated below for convenience: 

0

' '( )
( )

4

E w s ds
p x

x s




    (4.11) 
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
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  

 








   (4.16) 

Here x denotes the distance along the fracture interior measured from fracture tip (see Figure 4-1).  

Notice that the near tip solution for a semi-infinite fracture in zero fracture toughness rock (Eq. 

4.14& 4.15) becomes the exterior solution or the solution at infinity (Eq. 4.16) for hydraulic 

fracture in a rock with non-zero fracture toughness as shown by Garagash and Detournay, (2000). 

Using this fact, the self-similar tip solution for the general case of viscous fluid driven fracture in 

a non-zero fracture toughness solid is constructed.   

To reduce the above equations into dimensionless form (the advantage of reducing the governing 

equations into dimensionless form is that the near tip solution once obtained, will be in a self-
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similar form. The self-similarity here means that the solution is independent of time and material 

properties), let  

*

*

*

( )

( )

x L

w x W W

p x P P







   (4.17) 

Where *L , *W  and *P  are characteristic length, aperture and pressure, respectively with their 

respective dimensions. The termsW , P  and   are dimensionless aperture, pressure, and distance 

from the fracture tip, respectively.  

Substituting Eq. 4.17 into the governing equations (Eq. 4.1, 4.12& 4.16) gives: 

*
*

* 0

' '( )
( )

4

E W W s ds
P P

L s


 




    (4.18) 

2 2

* *

*

( )

'

W PW dP
V

L d



 
    (4.19) 

*
0

*

'
( )

'

E W
W

K L
     (4.20) 

Now choose     

*

*

'

'

W K

EL
                                                                                            (4.21) 

So that Eq. 4.20 becomes: 

0( )W       (4.22) 

Substituting Eq. 4.21 in Eq. 4.19 gives 

2 2

*

2

' ( )

' '

K PW dP
V

E d



 
   (4.23) 

Now choose  
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2

* 2

' '

'

E V
P

K


    (4.24) 

So that Eq. 4.23 becomes: 

2 ( ) 1
dP

W
d



    (4.25) 

Similarly choosing *L  and *W  as  

6

* 4 2 2
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* 3

'
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   (4.26) 

And substituting Eq. 4.26 in Eq. 4.18 gives: 

0

1 '( )
( )

4

W s ds
P

s


 




   (4.27) 

and finally by putting W* and l* into Eq. 4.16 (part b): 

1/3 5/6 2/3( ) 2 3W       (4.28) 

Therefore, Eqs. 4.22, 4.25, 4.27& 4.28 are a set of governing equations in dimensionless form for 

a semi-infinite fracture propagating with a constant velocity V with no fluid lag in an isotropic 

medium.  The solution for the fracture aperture and pressure very near to the fracture tip ( 0 ) 

including the higher order terms in dimensionless form is given (Garagash and Detournay, 2000) 

as: 
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0
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P O
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



   

    

   (4.29) 
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Note that the first term in the aperture solution (Eq. 4.29) is the imposed LEFM boundary condition 

(Eq. 4.22). The corresponding term in the pressure solution is, ln  obtained by substituting W   

in the lubrication equation and carrying out the integration to solve for the pressure. The remaining 

terms in the solution are obtained using the procedure in see Garagash and Detournay, (2000) for 

more details). 

Far from the fracture tip,  , the aperture and pressure solutions in dimensionless form 

including the higher order terms are given as: 

1/3 5/6 2/3 0.138673 0.138673

2/3 2/3 1/3 0.86133 0.86133

( ) 2 3 0.0371887 ( )

0.138673cot(0.138673 )
( ) 2 3 0.0371887 ( )

4

W O

P O





   


   



    



  

   
 (4.30) 

Again the first term in the aperture solution (Eq. 4.30) is the imposed zero fracture toughness 

boundary condition (Eq. 4.28). The corresponding term (
1/3  ) in the pressure solution is obtained 

through lubrication equation (see Garagash and Detournay, (2000) for more details on complete 

solution).  
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Figure 0-24. Log-log plot of the near tip self-similar solution (Eqs. 4.29& 4.30) for 

dimensionless fracture aperture W  for the two different limiting solutions as a function of 

dimensionless distance   from the fracture tip in a rock with non-zero fracture toughness. 

From the fracture tip up to the dimensionless distance 4(1 10 )   , the aperture profile is 

dominated by LEFM solution (i.e.,
1/2 ) and then begin to diverge. Beyond the distance

(1 2)e   , the aperture profile is dominated by zero toughness solution (i.e.,
2/3 ). 

 

Figure 4-4 shows dimensionless aperture (W ) variation over dimensionless distance ( ) from 

fracture tip in a semi-infinite fracture.  We see that from the fracture tip to the dimensionless 

distance (1 4)e   , the aperture profile is dominated by the LEFM solution (i.e.
1/2 ). Let us call 

this distance as k , therefore, (1 4)k e   . This corresponds to the dimensional quantity kx  in 

Figure 4-3b. Beyond the distance (1 2)e   , the aperture profile is dominated by zero toughness 

solution (i.e.
2/3 ). In the region (1 4) (1 2)e e    there is no clear dominating aperture profile. 

We call this region as intermediate region where the aperture profile is given by combined LEFM 

and zero fracture toughness solutions.  
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Note that the logarithmic singularity in pressure solution at the fracture tip from Eq. 4.29 indicates 

the need for the presence of fluid lag as discussed previously. However, the fluid lag is not 

considered in the construction of self-similar solutions near the tip since it introduces dependence 

of solution on material properties therefore can’t be considered and so is ignored. Such an 

approximation is not very off from the reality as in a typical hydraulic fracture, the length of the 

fluid lag zone tends to be vanishingly small according to Garagash, (2004).   

As we saw previously, the near tip aperture is either the LEFM or the viscous solution up to a 

distance kx  measured from the tip. When modeling, this distance need be determined to allow the 

correct near tip solution to be implemented. From Figure 4-4, we can find that the dimensionless 

distance k from fracture tip where the LEFM solution is applicable. Through the scaling 

parameter *L  (Eq. 4.26) in Eq. 4-17a and using k  =1 4e  we can obtain physical quantity kx  as, 

6

4 2 2

(1 4) '

' '
k

e K
x

E V


   (4.31) 

Let   be the dimensionless distance from fracture tip where the zero fracture toughness (or the 

viscous) solution begins to apply. From Figure 4-4, we see that this distance in dimensionless 

quantity is (1 2)e   . Through the scaling parameter *L , we can obtain physical quantity x as, 

6

4 2 2

(1 2) '

' '

e K
x

E V





    (4.32) 

If we take the following input values for a typical hydraulic fracture in an unconventional reservoir, 

1/2 12 MPa.m , ' 30 GPa,  1 cP,  0.5 m.sK E V      

The characteristic length will be *L =2319 m and from Eqs. 4.29& 4.30, we obtain  

kx = 0.23 m 
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x =23 m 

If the injection fluid is a thick gel with viscosity 100 cP instead of water (1 cP) and keeping the 

remaining input parameters same, we find  

kx =2.3x10-5 m 

x =2.3x10-3 m 

Note that the physical quantities kx , x  corresponds to the distances from the tip of a semi-infinite 

fracture. This may seem unrealistic, however, for typical input parameters for hydraulic fractures, 

these values are several orders of magnitude smaller than the typical length of a hydraulic fracture 

which is finite not semi-infinite. As a result, the near tip behavior of a hydraulic fracture can be 

adequately described using the solutions derived for a semi-infinite fracture.  Since, the velocity 

of a fracture propagating with constant injection rate decreases with time due to increase in fracture 

length and storage, the parameter kx  (Eq. 4.31), which defines the region near the fracture tip 

where LEFM solution is valid, expands with time.  

 4.3 Fracture Propagation Regimes 

During fracture propagation, if the viscous dissipation due to fluid flow inside the fracture is 

negligible compared to the energy expended in creating the new rock surface, then the fracture 

propagation will be in toughness dominated regime. On the other hand, if the energy expended in 

creating the new rock surface is negligible compared to the viscous energy losses due to fluid flow 

inside the fracture, then the fracture propagation will be in viscous dominated regime. Without 

explicitly calculating the energy losses, we can use the semi-infinite fracture tip solutions to find 

the regime of fracture propagation in a numerical model. For typical input parameters considered 



69 

in the previous section, we find kx =0.23 m for injecting water with a viscosity of 1 cP. Therefore, 

in any numerical model with these input parameters and for a given time period (where velocity is 

a constant), the distance from the fracture tip to the first node of the tip element must be less than 

or equal to 0.23 m with the LEFM tip solution (Eq. 4.5) as the tip solution. Since the fracture 

propagation in this case is dominated by rock fracture toughness, we call the mode of fracture 

propagation as toughness dominated. If the injection fluid is a gel with viscosity of 100 cP, we find 

kx =2.3x10-5 m. Since it is impractical to use a tip element that small in any numerical model, so 

instead, the zero fracture toughness tip solution is used as the tip aperture boundary condition. In 

the latter case, the fracture propagation in this case is independent of fracture toughness and we 

call the mode of fracture propagation as viscosity dominated. 

 

Figure 0-25. A symmetrical line fracture in plane strain condition with half-length a, and 

origin o at fracture center. 

 

 4.4 Semi-Analytical Solution for Plane Strain Fracture in Viscous Regime 

Consider a plane strain fracture of length 2a in an infinite elastic isotropic rock as shown in Figure 

4-5. The elastic integral equation relating the net pressure p(x) inside the fracture with fracture 

apertures w(x) is (Barenblatt, 1962), 

' '( , )
( , )
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x s

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Combining the continuity equation (Eq. 4.44) and cubic law (Eq. 4.11), gives the governing 

equation for fluid flow as, 

3( , ) ( , ) ( , )

'

w x t w x t p x t

t x x
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  
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   (4.45) 

Global mass balance dictates, 

0( , )

a

a

w x t dx Q t


    (4.46) 

At the fracture tip, both aperture and flux are zero 

( , ) 0,  ( , ) 0 { }w x t q x t x a       (4.47) 

If the rock has zero fracture toughness, the mode-1 stress intensity factor at tips must be zero; 

therefore, 

2 2
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( , )
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a
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a x



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To reduce the above equations into dimensionless form let, 
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Where L̂ , T̂  and P̂  are characteristic length, time and pressure respectively with their respective 

dimensions. These can be derived following the procedure given above and they are given as, 
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Substituting the Eq. 4.49 in Eqs. 4.43, 4.45& 4.46 gives, 
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If we express, the dimensionless pressure, aperture and length in power law form (Spence and 

Turcotte, 1985) as 
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where 

( )

x


 
    (4.55) 

and substituting in Eq. 4.51 gives 
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Since   is time dependent dimensionless coordinate (Eq. 4.55), the lubrication equation must be 

modified accordingly using the convective derivative (Eq.4.7) 

From Eq. 4.55,  

( )x t 

 


 
   (4.57) 

Using Eq. 4.7 and Eq. 4.57 in Eq. 4.52 we obtain, 
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Substituting Eq. 4.54 in Eq. 4.58 gives, 

3
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The constant k is obtained by substituting Eq. 4.54 in Eq. 4.3 as, 

1/2
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( )k W d  





 
  
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and the boundary condition is  

( 1) 0W      (4.61) 

Here ( )W   and ( )P   are self-similar fracture aperture and pressure that are independent of time. 

The method of solving Eqs. 4.56, 4.59& 4.60 with condition (Eq. 4.61) for ( )W  , ( )P  and k is 

first proposed by Spence and Sharp, (1985) for the case where fracture toughness is non-zero. 

However, Carbonell and Detournay, (1998) reported inconsistencies in the solutions obtained by 

Spence and Sharp, (1965) especially for problems with low fracture toughness and improvised it 

for the case where fracture toughness of the rock is zero by explicitly using the near tip zero 

toughness solution (Eq. 4.14). The solution method first expresses fracture aperture ( ( )W  ) as 

polynomial expansion up to Nth order accuracy as, 

 
2/3

2 1/6

2 2

1

( ) 1 ( ) ( )
N

n n w

n

W A C BF    



      (4.62) 
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where ( )nC x
are Gegenbauer polynomials, which can be expressed in terms of Jacobi 

polynomials. Notice that zero fracture toughness near tip solution of order 2/3 (Eq. 4.14) is 

explicitly used in the expansion of ( )W  . 

Using lubrication equation (Eq. 4.59), the self-similar solution for net pressure ( ( )P  ) is given as, 
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where 
1 1( .. ,1; .. ; )p q p qF a a b b x is hypergeometric function and ( , )B p q is Beta function. 

The term ( )pF  is included in the solution (Eq. 4.63) to satisfy the condition of discontinuous 

pressure gradient at the inlet and is given by 

( ) 2pF        (4.64) 

The corresponding term in aperture solution is  
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

 
  

 
  (4.65) 

The terms ,nA Band k are constants and the method of evaluating these can found in Spence and 

Sharp. For the problem defined above, these values are listed in Adachi and Detournay, (2002) up 

to n=7.  
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 4.5 Semi-Analytical Solution for Plane Strain Fracture in Toughness Regime 

If we assume that the viscous dissipation inside the fracture due to fluid flow is negligibly small, 

the equilibrium condition near the fracture tip gives (Sneddon and Lowengrub, 1969, Spence and 

Turcotte, 1985), 

( , )
2 ( )

IC
x a

K
p x t

x a
  


   (4.66) 

where ( , )p x t is net pressure inside the fracture, the negative sign here indicates that the tensile 

stresses are taken negative. Substituting Eq. 4.49 in the above equation gives,  
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Defining dimensionless toughness parameter  as 

ˆ'
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    (4.68) 

 And substituting in Eq. 4.67 gives 
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Finally, using self-similarity variables from Eq. 4.54 in Eq. 4.69, we obtain, 

1( )
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P
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   (4.70) 

The elasticity (Eq. 4.56) and lubrication (Eq. 4.59) equations are solved with the boundary 

conditions (Eqs. 4.61& 4.70) and the solution expanded up to first order accuracy is given as 

(Spence and Turcotte, 1985), 

22
2 1/2

1
2

1 1
( ) (1 ) ln

4 1 1

B
W A


 



  
    

   

   (4.71) 
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Compare this solution with the solution for zero fracture toughness rock (Eq. 62) where the leading 

term in aperture expansion is of order 2/3 (In fact this is the major difference between the solution 

techniques of Spence and Sharp, (1985) and Carbonell and Detournay, (1998)) . When 

dimensionless fracture toughness,  >>1, the coefficients A and B are given as, 

4/3
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8/3

2/3

1.4646

0.2331

0.46619
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

  (4.72) 

Note that in this limit, the coefficient B in Eq. 4.71 goes to zero and the fracture assumes an 

elliptical shape (Eq. 4.73) as in the case of a fracture subjected to uniform internal fluid pressure, 

2 1/2

1( ) (1 )W A       (4.73) 

Combining Eqs. 4.72, 4.73 and Eqs. 4.49, 4.50& 4.54, the fracture aperture at injection location 

and fracture half-length in this limit are given as, 
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 

 
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  (4.74) 

Although it is not apparent, it is worth noting that the above results are independent of fluid 

viscosity. 

 

Figure 0-26. Tip region of a semi-infinite fracture in plane strain condition with origin at 

fracture tip. 1-3 are principal axes of the orthotropic material. 
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 4.6 Fracture Tip Region in Anisotropic Rock 

4.6.1 Governing Equations 

Consider an infinite elastic homogeneous orthotropic body with three principal axes of elastic 

symmetry in the directions 1-2-3. As discussed previously, to study the deformation near the edge 

of a fracture, a problem of semi-infinite fracture in plane strain condition is considered as indicated 

in Figure 4-6. Assuming that fracture is free of far-field shear loading, the elastic integral equation 

that relates fracture aperture ( )w x  with net fluid pressure inside the fracture ( )p x  is given as, 

1 2

11 1 2

'( ) '( ) '( ) '( )1 1
( ) 2Real

ˆ ˆ2

a

a

r w r w
p x d

ib x

     


   


     
       

    (4.79) 

where 

1 1 2 1 3 1 4

2 2 1 2 3 2 4

ˆ ( )( )( )

ˆ ( )( )( )

      

      

   

   
 

1 and 2 are the complex roots of characteristic equation (Eq. 4.80) with positive imaginary parts.  
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  (4.80) 

where ija denote material constants in the fracture coordinate system x-y-z. For simplicity we 

restrict ourselves to the case (with significant practical interest, see also discussion) where the 

material’s principal axes coincide with fracture axes (i.e. ψ=0). In this case Eq. 4.79 is reduced to 

Eq. 4.81 as the fracture ride ( )r x  is zero. 

1 2

1 2 11 0

ˆ ˆ 1 '( )
( ) 2Real

ˆ ˆ 2

w s
p x ds

ib x s

 

  

 
  

 
   (4.81) 
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Let the two complex roots ( 1 , 2 ) be 

1 1 1

2 2 2

i

i

  

  

 

 
   (4.82) 

and substituting in Eq. 4.81, we obtain, 

1

11 0 0

'( )
( )

w s
p x ds

b x s





     (4.83) 

where 

   

1 1 2

2 2

0 1 2 1 2 1 2

2( )
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 

     

  

    
   (4.84) 

Note that when principal axes of the material 1-2-3 coincide with the fracture axes x-y-z, the real 

part of the roots ( 1 , 2 ) takes the value 1 = 2 =0.  

The Eq. 4.83 can be inverted for w' (see Appendix-C) 

11 0 11 0

10 01

( ) ( )
'( )

b bp s ds x p s
w x ds

s x sx s 

 
 

 
 

     (4.85) 

Here we use the fact that the stress intensity factors at fracture tip in anisotropic body are 

independent of material properties (Sih et al., 1965) and are identical to isotropic case if the loads 

acting on fracture surface are self-balancing (i.e. the load at a point on the upper surface of the 

fracture should be exactly equal and opposite in direction to the load at corresponding point on the 

lower surface of the fracture). 

Therefore, in anisotropic body the mode-1 stress intensity factor is  

0

2 ( )
I

p s ds
K

s



      (4.86) 

Substituting Eq. 4.86 into Eq. 4.85 and integrating with respect to x with condition (0) 0w   gives, 
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11 0 1 11 0

1 01

2
( ) ln 2 ( )

b K x b x s x
w x p s ds
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    
   
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    (4.87) 

The limiting behavior of the above equation at distances very close to the fracture tip is 

3/211 0 1
0

1

2
( ) ( )x

b K x
w x O x





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
    (4.88) 

The above equation indicates that very close to the fracture tip, fracture aperture is of order 1/2, 

and 3/2, in an anisotropic rock with non-zero and zero fracture toughness respectively similar to 

isotropic case.  

If the fracture is driven by viscous fluid in a zero fracture toughness anisotropic rock, the near tip 

fracture apertures can be written as  

 
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'
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

    (4.89) 

 4.7 Self-Similar Fracture Tip Solution in Orthotropic Rock 

Noting the similarity between the elasticity equations for isotropic (Eq. 4.1) and anisotropic (Eq. 

4.83) bodies, one can straightforwardly use the solutions developed for isotropic body for 

anisotropic case while modifying only the characteristic dimensions. In this section the governing 

equations for fracture propagation in anisotropic body are reduced to dimensionless form so that 

the resultant equations are equivalent to the governing equations for isotropic body, and the 

corresponding characteristic dimensions are given. 

Let us express Eq. 4.83 as 
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The lubrication equation defining fluid flow is 

2 ( )
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w x p
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
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    (4.12) 

Boundary conditions near (Eq. 4.88) and far (Eq. 4.89) from the fracture tip are, 
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    (4.91) 

To make the above equations dimensionless, let us introduce 

*

*

*

( )

( )

x L

w x W W

p x P P







    (4.92) 

with ,  ,  W P denoting dimensionless values of distance from fracture tip, fracture aperture and 

fluid pressure. The terms * * *,  ,  L W P  are characteristic dimensions of length, aperture and pressure 

respectively.  

Substituting Eq. 4.92 into Eqs.4. 90, 4.12& 4.91, we obtain 

*
*

* 0

4 ' '( )
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'

'

W K

EL
                                                                                              (4.96) 

so that Eq. 4.95 becomes 

0( )W        (4.97) 

Putting Eq. 4.96 in Eq. 4.94 gives 
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so that Eq. 4.98 becomes 

2 ( ) 1
dP

W
d



      (4.100) 

Similarly choosing *L  and *W  as 
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and substituting in Eq. 4.93 gives 

0

1 '( )
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4

W s ds
P

s

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
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and finally 
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1/3 5/6 2/3( ) 2 3W  

     (4.103) 

The solution to Eqs. (4.97, 4.100, 4.102& 4.103) is given in Eqs. 4.29& 4.30, and plotted in Figure 

4 which shows that up to dimensionless distance (1 4)e    from fracture tip, fracture aperture 

has square root variation and beyond the distance (1 2)e    from fracture tip, fracture aperture 

varies in the order 2/3. The physical variable kx (see Figure 4-3) for orthotropic rock can be written 

as 

6

4 2 2

(1 4)16 '

' '
k

e K
x

E V


     (4.104) 

For elastic constants given in Table 3-2 (close to Woodford shale, Sierra et al., 2010), and taking 

the following typical values for the remaining parameters 

1/2 12 MPa.m ,  1 cP,  0.5 m.sK V     

give 

kx = 1.86 m 

Which indicates that up to 1.86 m from the fracture tip, fracture aperture is dominated by LEFM 

square root tip solution (Eq. 4.88). 

 

Figure 0-27. A symmetrical line fracture in plane strain condition with half-length a, in an 

orthotropic medium. 1-3 are principal axes of the material. 
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 4.8 Semi-Analytical Solution for Plane Strain Fracture in Viscous Regime in Orthotropic 

Rock 

The governing equations for a finite hydraulic fracture in plane strain condition propagating in a 

zero fracture toughness orthotropic medium can be reduced to dimensionless form as in Eqs. (56, 

59, 60& 61) with solution given by Eqs 62& 63. Following the procedure given above, the 

characteristic dimensions of length, time and pressure for orthotropic body can be deduced as 

0'ˆ
4 '

'ˆ
4 '

ˆ 4 '
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P E
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    (4.105) 

with 

1
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E
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
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



 

 4.9 Semi-Analytical Solution for Plane Strain Fracture in Toughness Regime in 

Orthotropic Rock  

As stated earlier, if the loading on fracture surface is self-balancing, the stress intensity factors at 

fracture tip becomes independent of material properties in an anisotropic body, therefore in the 

case of large fracture toughness, the following equation (Eq. 4.106) can be used as a boundary 

condition to solve the governing Eqs. (4.56, 4.59, 4.60& 4.61). 

( , )
2 ( )

IC
x a

K
p x t

x a
  


    (4.106) 

where a denotes half-length of the fracture and x is distance along the fracture with origin at the 

fracture center (see Figure 4-7).  
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Using Eq. 4.105, the Eq. 4.106 is reduced to, 
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E L



     (4.108) 

where   is defined as dimensionless fracture toughness.  

Finally, using self-similarity variables from Eq. 4.54 in Eq. 4.107, we obtain, 

1( )
2 ( 1)

P
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





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
                 (4.109) 

The solution to this problem (i.e. Eqs. 4.56, 4.59, 4.60, 4.61& 4.109) in dimensionless form in the 

limit  >>1 is given in Eqs. 4.72& 4.73. 

Using Eqs, 4.54& 4.105 the solution for fracture aperture at injection point and half-length as 

function of time in physical variables can be expressed as, 
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   (4.110) 

 

 

Figure 0-28. Tip region of a plane strain fracture in an orthotropic medium. r, θ constitute 

polar coordinate system near the fracture tip. 
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 4.10 Fracture Oriented Arbitrarily with respect to Rock’s Principal Axes 

In previous sections, a simplified case was assumed where fracture axes were parallel to material’s 

principal axes to decouple fracture normal displacement discontinuity from shear displacement 

discontinuity in Eq. 4.79 The resultant Eq. 4.81 is simple to evaluate near tip behavior. However, 

for ψ other than zero (see Figure 4-8), the shear and normal displacements are coupled and the 

resulting elastic integral equation is much complex to invert. Therefore, to examine the validity of 

LEFM tip solution (i.e. 1/2( )w x x ) for the case of a fracture oriented arbitrarily with respect to 

material’s principal axes, we consider the analytical solution for near tip displacements given by 

Sih et al. (1965). 

4.10.1 Toughness Solution 

For the fracture configuration shown in Figure 4-8, the displacements in the local x-axis (u) and y-

axis (v) at a small distance r from fracture tip is given as 

1 2 2 2 1 1 2 2 1 1
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   (4.111) 

where 
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  is measured from the axis of fracture tip and taken positive in clockwise direction. 1 and 2 are 

complex roots of the characteristic Eq. 4.80 with positive imaginary parts. 
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Now, the displacement discontinuity near the fracture tip can be expressed as 

0

0
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   (4.112) 

Substituting Eq. 4.111 into Eq. 4.112 and noting that i takes the values (0, )i  and (0, )i  as   

approaches  and – respectively, we obtain 
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where 
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    (4.114) 

When IIK =0 (which is the case when shear loading on the fracture is zero), near the fracture tip 

from Eq. 4.113, aperture is given by 

 0 21

2
( ) 2x I

x
w x H K


      (4.115) 

Finally, it is worth noting that for the special case considered in the previous section (i.e.  =0), 

the equation for near tip fracture aperture for arbitrarily oriented fracture (i.e. Eq. 4.115) will be 

reduced to Eq. 4.88, 

This can be shown by expressing the complex roots as 
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1 1 2 2,  i i         (4.116) 

and substituting in Eq. 4.114 gives 

1 2
21 22

1 2

( )
H b

 

 


     (4.117) 

For the special case considered, the following property holds (Azhdari et al. 1999), 

 
2 22

1 2

11

b

b
       (4.118) 

From Eqs. 4.117& 4.118, we obtain 

21 1 2 1 2( )H          (4.119) 

and 

 1 2 1 2

2
( ) 2 I

x
w x K   


     (4.120) 

which is same as Eq. 4.88. 

Therefore, the results (Eq. 4.115& 4.88) indicate that for an arbitrarily oriented fracture in an 

anisotropic body with non-zero fracture toughness, near the fracture tip, the aperture has square 

root variation similar to isotropic case. 

4.10.2 Viscous Solution 

The zero toughness near tip solution for a semi-infinite fracture propagating steadily with velocity 

V is derived (Appendix C) for the special case, where the axes of a fracture coincides with 

material’s axes of elastic symmetry. In this special case, the shear dislocation density function

'( )r   is zero when fracture is free of shear stress, therefore the general form of elasticity equation 

(Eq. 4.79) is reduced to Eq. 4.83, which is easy to deal mathematically. For a more general case 

where fracture axes are at arbitrarily angle with respect to the axes of elastic symmetry, it is much 
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harder to obtain solution for elasticity equation (Eq. 4.79), since the shear dislocation density 

function '( )r  will be non-zero. Without going through the complicated mathematical analysis to 

obtain near tip solution for general elasticity equation (Eq. 4.79), in this section, we will seek the 

conditions under which it is appropriate to use the near tip zero toughness solution obtained for 

the special case to a general case.  

Consider a symmetrical fracture of length 2a with uniform net pressure P in plane strain condition 

in an infinite orthotropic body as shown in Figure 4-7. We will consider a case where the directions 

of elastic symmetry 1 and 3 are not aligned with the fracture axis x. For such a general case of 

fracture configuration, if 
1 1i   and 

2 2i   are the two complex roots of the characteristic 

equation (Eq. 4.80), the solution of fracture aperture is given as (Azhdari et al. 2000), 

   2 2 2 2 2 2

11 1 2 2 2 1 1( ) 2w x b a x P           
     (4.121) 

For the special case, based on the elasticity equation (Eq. 4.83), the solution for fracture aperture 

if the pressure inside the fracture is constant can be written as, 

   
2 2

1 2 1 2 1 22 2
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 
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   

  

  (4.122) 

If we rewrite the terms inside the bracket of Eq. 4.121 as, 

    
22 2

1 2 2 1 1 2 1 2 1 2

1 2

         

 

   


    (4.123) 

and comparing Eq. 4.123 with the corresponding term in Eq. 4.122 shows that Eqs. 4.121& 4.122 

are equal if, 

  2 2 2

1 2 2 1 1 2 1 2 1 2( )                (4.124) 

or 
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 
2

1 2 2 1 0C          (4.125) 

Therefore, the general (Eq. 4.121) and special (Eq. 4.122) solutions for fracture aperture will 

converge if the constant C from Eq. 4.125 is negligible.  

We will now consider numerical examples to study the error associated with approximating the 

fracture apertures for a general case with the solution obtained for special case (Eq. 4.122). For 

this, two rocks (Rock-A& Rock-B) are considered which are transversely isotropic. Rock-A has 

degree of anisotropy (
1 3/E E ) 4, and its properties listed in Table 3-1 are closely related to 

argillaceous shale (Suarez-Rivera et al. 2011). Rock-B has degree of anisotropy (
1 3/E E ) 1.8 and 

its properties listed in Table 3-2 belong to Woodford shale (Sierra et al. 2010). Figure 4-9 shows 

comparison of aperture profile over the entire fracture length in dimensionless values obtained 

from complete (Eq. 121) and approximate (Eq. 122) solutions for various values of  in Rock-A 

with P=1 MPa. The corresponding results for Rock-B are shown in Figure 4-10.  
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Figure 0-29. Comparison of fracture opening profiles between complete (Eq. 4.121) and 

approximate (Eq. 4.122) solutions for various orientations of fracture with respect to 

material’s axes of elastic symmetry (see Figure 4-7) in Rock-A with properties given in 

Table 3-1. The net pressure P inside the fracture is 1 MPa. 

 

The results indicate that considerable difference between the two solution is observed in Rock-A 

especially for  =450. In Rock-B, the difference between the two solutions is very small. This can 

be attributed to very low values of C (Eq. 125) observed in this Rock. Interestingly in both rocks, 

very near to the tip (i.e. up to 10% of fracture half-length from the tip) the difference between the 

two solutions is very small. In the region covering up to 5% of the fracture half-length from the 

tip, the difference between the solutions is almost negligible.  
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Figure 0-30. Comparison of fracture opening profiles between complete (Eq. 4.121) and 

approximate (Eq. 4.122) solutions for various orientations of fracture with respect to 

material’s axes of elastic symmetry (see Figure 4-7) in Rock-B with properties given in 

Table 3-2. The net pressure P inside the fracture is 1 MPa. 

 

Since we are only interested in finding the applicability of zero toughness near tip solution derived 

for the special case to a general case, it appears appropriate to ignore the influence of shear 

dislocation density '( )r  in Eq. 79 on the near tip solution. Moreover, the loss of accuracy in global 

solution due to such approximation would be much smaller for materials like Rock-B, where the 

values of constant C are very small. Although, the above analysis is carried out with a uniformly 

pressurized fracture for simplicity, however, we may expect similar behavior in the case of viscous 
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fluid driven fracture considering that much of the fracture length has close to constant pressure, 

while significant pressure drop is limited to the region close to the fracture tips.  

 4.11 Summary 

The near tip behavior of an arbitrary shape planar fracture driven by viscous fluid is considered 

through semi-infinite plane strain fracture in isotropic and anisotropic rocks with zero and non-

zero fracture toughness. The global and near tip self-similar solutions for fracture aperture and 

pressure are extended to anisotropic rock for the special case where the fracture axes coincide with 

material’s principal axes. This special case has significant practical importance considering that 

most shales are transversely isotropic rocks. Therefore, if the hydraulic fracture is vertical and 

bedding planes are horizontal, the fracture axes coincides with material’s principal axes. In 

isotropic rock with non-zero fracture toughness, near the tip of fluid driven fracture, aperture varies 

from the order 1/2 to 2/3 with increase in distance from fracture tip. A similar behavior is observed 

in anisotropic rock for the special case considered. For more general case where a fracture is 

oriented arbitrarily with respect to material’s principal axes, in a non-zero fracture toughness rock, 

the near tip aperture is of order 1/2 as in isotropic case. However, owing to the mathematical 

difficulty, the far-field solution (i.e. vicious solution) for the general case is not yet available. 

The fracture propagation algorithm based on evolving fracture tip theory is dependent on fracture 

velocity (if propagation is in viscous regime) which is a priori unknown. Although one can include 

fracture velocity in the solution implicitly by inverting the zero toughness solution as shown 

previously, this algorithm has certain limitations on the kind of problems it can be applied to solve. 

Since, the zero fracture toughness solution (or viscous solution) is constructed based on the 

assumption that fracture surfaces have discontinuity of normal displacement only, in situations 

where fracture propagation is dominated by mixed mode, this solution is not applicable. Also, its 
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validity in rock with anisotropic fracture toughness is questionable. Therefore, the viscous solution 

from Eq. 4.14 is appropriate only for planar fracture or when radius of fracture curvature is very 

large compared to the scale of tip element where Eq. 4.14 is applied as boundary condition. More 

difficulties arise when complex fracture networks are considered, as the number of fracture tips 

that are subjected to different far-field stresses propagating at any given instant could be many. As 

a result, the propagation algorithm based on fracture front iteration could be inefficient and may 

not be stable. On the other hand, for problems where the aforementioned limitations does not exist, 

the viscous solution offer great computational advantage since the region of validity of viscous 

solution near the tip is much larger compared to LEFM solution. Therefore, this allows one to use 

larger size tip elements where viscous solution is used as boundary condition. Moreover, for rock 

and fluid properties typically associated with petroleum applications, the LEFM tip solution is 

adequate as a tip boundary condition irrespective of the regime of fracture propagation (see Sesetty 

and Ghassemi, 2017a), therefore, in these problems the choice of near tip boundary condition is a 

matter of convenience rather based on near tip physics.  
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5 Coupled Numerical Model for Fracture Propagation 

 5.1 Fracture Propagation Algorithm 

5.1.1 Viscous Regime 

In order to use fracture tip solution for viscous regime (Eq. 4.89) one needs to evaluate fracture tip 

velocity. If we fix the fracture length increment ( dL ) at any given time step, then the mass balance 

provides the time increment ( dt ) as output. Similarly, if we fix the time increment, the mass 

balance provides the length increment of the fracture as output. Since either time or length is an 

unknown for each solution step, the fracture velocity (i.e. /dL dt ) is a priori unknown and is a part 

of the solution. One way to evaluate the fracture tip velocity is to use the lubrication Equation (Eq. 

4.12), near the tip. However, such an approximation for fracture tip velocity can result in serious 

errors because near the tip the aperture approaches zero and pressure approaches a singularity. An 

alternative way is to make use of the zero fracture toughness aperture solution to eliminate the 

explicit use of V in the tip solution as given in Peirce and Detournay, (2008).  

5.1.2 Toughness Regime 

Implementing fracture tip solution for toughness regime is relatively easier compared to fracture 

tip solution for viscous regime. We consider the initial conditions of the problem are given (i.e., 

the initial fracture size and apertures), and let dt be the time increment for the next solution. Using 

a no flow boundary condition at the fracture tips (Eq. 4.47) solve the coupled problem (Eqs. 4.43& 

4.45) for new fracture apertures and pressures. Evaluate stress intensity factors at all fracture tips. 

Using a bracketing method find dt such that the stress intensity factor at least at one of the fracture 

tips is within the tolerance of fracture toughness. For the fractures that met the propagation 

condition (i.e. KI=KIC), add a new element and move the problem to the next time step. It is clear 
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from the above discussion that the accuracy of this algorithm depends on the accuracy of stress 

intensity factors evaluated based on numerical solution. In this work, constant displacement 

discontinuity method is used to solve fracture deformation problem with special square root 

elements at fracture tips. The mode-1 stress intensity factor is evaluated using Eq. 4.5 by replacing 

w(x) with fracture tip element normal displacement discontinuity and x with half-length of fracture 

tip element. 

 5.2 Verification 

In this section the numerical method for coupled fracture propagation problem is verified against 

semi-analytical solutions for two limiting cases that corresponds to viscous regime and toughness 

regime. Figure 5-1 (a, b) shows comparison of self-similar fracture aperture and net pressure 

profiles obtained semi-analytically (Eqs. 4.62& 4.63) and numerically for the case of a line fracture 

(see Figure 4-6) under plane strain condition propagating in zero fracture toughness isotropic 

medium. The results for orthotropic body are shown in Figure 5-1 (c, d). Note that the self-similar 

solutions for fracture aperture and pressure in both isotropic and orthotropic bodies is same. For 

numerical case, the elastic integral equations (Eq. 4.43& 4.83) are approximated using constant 

displacement discontinuity method, while finite difference method is used to approximate 

lubrication equation (Eq. 4.45). In all the numerical examples considered in this work, a uniform 

mesh with element size 0.2 m is used unless stated otherwise. The results show excellent match 

between semi-analytical and numerical solutions. On the other hand, when fracture toughness of 

the rock is significantly high, the numerical solution is compared with the limiting analytical 

solution from Eq. 4.74 with the input 'E =28.8 GPa and 0Q =8.83e-4 m2/s. Figure 5-2 shows 

excellent match between numerical and analytical solutions in this limiting case as well, which 
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reflects the high accuracy achieved in stress intensity factor evaluation trough special square root 

elements.     

 

Figure 0-31. Verification of numerical model with the limiting case zero fracture toughness 

self-similar analytical solution for isotropic body (a, b) and orthotropic body (c, d). Note 

that self-similar solution does not change between isotropic and anisotropic bodies. 
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Figure 0-32. Verification of numerical model with analytical large fracture toughness 

solution for isotropic rock. 

 

 5.3 Comparison with KGD solution 

The fundamental difference between the KGD solution (Khristianovitch; Geertsma and Haafkens, 

1979; Geertsma and DeKlerk, 1969) and the self-similar solutions for the limiting cases (i.e., zero 

fracture toughness and large fracture toughness) given earlier is in the boundary conditions used 

to solve to the governing equations for fracture propagation. Initial work by Zheltov and 

Khristianovitch, (1955) suggested the existence of fluid-lag near the fracture tips in order avoid 

indefinite tensile stresses near the fracture tips associated with LEFM solution. He assumed that a 

fracture with un-wetted region near the fracture tips closes smoothly (as in the case 3/2w x in 

Figure 2b). In such cases, the aperture profile near the fracture tip is, 

,

0
x a a

dw

dx  

    (5.1) 

 

The above condition (i.e. zero slope) is used to solve the elasticity equation (Eq. 4.43). This 

boundary condition also implies that the rock has negligible fracture toughness as discussed 
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previously (see Eq. 4.5). Moreover, the effect of fracture storage on flux changes inside the fracture 

is ignored. Therefore, the continuity equation (Eq. 4.44) is simplified to, 

0
dq

dx
    (5.2) 

Using the conditions (Eqs. 5.1& 5.2), the elasticity equation for a symmetrical line fracture under 

plane strain condition (Eq. 4.43) and fluid flow (Eq. 4.11) are solved for fracture aperture, pressure 

and length. The aperture estimate at injection point and fracture half-length are given as, 
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   (5.3) 

Note that the above expressions are independent of fracture toughness; therefore, we can consider 

KGD solution as an approximate zero fracture toughness solution or viscous solution. Also, in 

KGD solution, consideration of un-wetted region near the tip is simply theoretical and is not 

included in the final solution (Eq. 5.3), since the aperture and length integrations are carried out in 

the limit of the fluid approaching the tip. 

Using the relationship between physical variables and dimensionless constants (Eqs. 4.49, 4.50& 

4.54) and the self-similar solution for the case of zero fracture toughness from Eq. 4.62, the fracture 

aperture at the injection point and fracture half-length can be expressed as 
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   (5.4) 

Let us call this solution as a true solution for the case where fracture toughness can be ignored. 

Comparing the above solution with the KGD solution (Eq. 5.3) indicates that these differ only by 
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a constant multiplication factor. Figure 5-3 shows comparison between KGD solution, true 

solution and numerical solution for the input 'E =28.8 GPa and 0Q =8.83e-4 m2/s.  

 

Figure 0-33. Comparing numerical solution with true and KGD solutions. 

 

The results indicate that KGD solution is significantly off from the true solution especially the 

estimation of fracture aperture. The use of simplified continuity equation (Eq.  5.2), tip boundary 

condition (Eq. 5.1) instead of Eq. 4.14 can be the cause of the error associated with KGD solution. 

Note that most literature do not illustrate these differences in solutions. 
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6 Effect of Rock Anisotropy on Fracture Extension Angle and Path 

 

Consider a straight fracture that is in plane strain condition in an infinite orthotropic body. The x-

y plane view of the orthotropic body is shown in Figure 6-1, where the directions of axes of elastic 

symmetry are represented by 1 and 2. The angle between material’s axis 1 and the coordinate axis 

x is represented by . The angle between fracture major axis and x-axis is denoted by . The 

fracture extension angle is measured from fracture tip axis as shown in Figure 6-1, and is denoted 

by . All angles are taken positive in anticlockwise direction. Since, in a typical anisotropic rock, 

the maximum value of fracture toughness ( ,maxICK ) occurs (Chandler et al. 2015) in the plane 

perpendicular to the direction of maximum Young's modulus (typically the direction of rock 

fibers/bedding planes) and minimum value of fracture toughness ( ,minICK ) is observed in the plane 

parallel to the direction of maximum Young's modulus, the two extrema values ,maxICK and ,minICK

are related through an elliptical equation to find fracture toughness in any arbitrary plane. 

Assuming that anisotropic body is linearly elastic, homogeneous and brittle in nature, in this 

chapter we will review some well recognized criterions available to evaluate fracture propagation 

angle in an orthotropic body. These criterions are straight forward extensions of the theories 

developed for isotropic body based on linear elastic fracture mechanics.  
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Figure 0-34. Cross-section of an infinite orthotropic body showing x-y plane view with a 

straight fracture in plane strain condition. The angle between fracture axis and x-axis is . 

The direction of material fibers or bedding planes (black parallel lines) is indicated by axis 

1 and its angle with respect to x-axis is indicated by . Fracture tip extension angle is 

measured from tip axis is indicated by . All angles are taken positive counterclockwise. 

 

 6.1 Criterions for Fracture Extension Angle 

6.1.1 Maximum Energy Release Rate Criterion 

This criterion is initially postulated by Griffith for isotropic body and is extended to anisotropic 

case by Sih et al 1965. Suppose U is the surface energy (i.e. energy required to break the internal 

bonds to create new surface) of the fracture and W is the decrease in strain energy due to fracture 

extension, then the fracture equilibrium condition implies that 

U W

l l

 


 
   (6.1) 

where W  defines strain energy release due to extension of fracture by length l and U  denotes 

energy required to form the new fracture surface. Since U can be expressed in terms of surface 



101 

tension (which is treated as constant for a given material), we consider /U l   as a material 

property.  

We can also express the energy release due to fracture extension in terms of fracture toughness of 

the material. The energy ( A ) release due to extension of fracture by a small amount ( l ) can be 

expressed as (Barenblatt, 1962)  

n

l

A u l


      (6.2) 

where 
nu denotes normal displacements  is tensile stress field and over the elongation l . For 

isotropic body, under pure mode-1 loading (after substituting the corresponding displacement and 

stress expressions in Eq. 6.2) we get, 

2 2

12 (1 )v K l
A

E

 



    (6.3) 

where 
IK is mode-1 stress intensity factor, v is Poisson’s ratio and E is Young’s modulus. Now the 

fracture equilibrium condition (Eq. 6.1) can be written as 

2 22 (1 ) ICv KW A

l l E

 

 


     (6.4) 

where 
ICK is called critical stress intensity factor or fracture toughness which is a material 

property. The corresponding equation (as Eq. 6.4) for anisotropic body is rather complicated 

however can be evaluated (see Azdhari, 1999) with the stress and displacement terms near the tip 

given in Appendix C. The fracture is assumed to propagate by a length l  in the direction where 

A  from Eq. 6.2 is maximum. 
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6.1.2 Minimum Strain Energy Density Criterion 

This criterion is postulated by Sih, (1974), also called the S-criterion states that fracture tip 

propagates in the direction where the strain energy density has the lowest value. The strain energy 

density can be expressed as 

 
1

2
x x y y xy xy

dW

dV
           (6.5) 

where 
i  and 

i  are near tip stress and strain fields in the coordinate system x-y-z (see Figure 6-

1). Using the equations of stress-strain relationship in orthotropic body and expressions for stress 

distribution near the fracture tip from Appendix C, the strain energy density function in Eq. 6.5 

can be written in terms of stress intensity factors and material elastic constants and it can be 

evaluated for a given fracture extension angle  . Fracture propagation begins when strain energy 

density term in Eq. 6.5 reaches its critical value /cdW V which is obtained by replacing stress 

intensity factors in Eq. A1-A3 with their critical values. In this criterion the directional variation 

of material strength can be easily incorporated (Ye and Ayari, 1994). 

 

6.1.3 Maximum Tangential Stress Criterion 

Another hypothesis for fracture propagation that is based on near tip stress field states that fracture 

tip extends in the direction perpendicular to the maximum tangential stress (i.e. principal value) 

(Erdogan and Sih, 1962; Saouma et al., 1987). The near tip stresses in the coordinate frame x-y-z 

for anisotropic body are given in Appendix C. For isotropic body these stresses can be found in 

(Erdogan and Sih, 1962) and the direction of fracture propagation is given as (Stone and Babuska, 

1997) 
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  (6.6) 

However, in the case of anisotropic body, due to the complexity of stress equations (Appendix C) 

a simple analytical expression for fracture propagation angle (such as Eq. 6) cannot be obtained. 

Instead, a numerical approach (such as bisection method) is considered to find the direction that 

corresponds to the maximum value of tangential stress around the fracture tip. 

For a given fracture under load, if 
IK and 

IIK are mode-1 and mode-2 stress intensity factors 

respectively and  is the fracture propagation angle, then the hypothesis states that in isotropic 

body, fracture is in equilibrium condition when 

1/2 2 3
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2 2 2
I II ICr K K K

 
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   (6.7) 

or 
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      (6.8) 

Using the equations for near tip stress field in an orthotropic body in the coordinate system x-y-z 

(Eq. A1-A3) and equation of stress transformation (Eq. A4), the tangential stress distribution 

around the tip of a fracture in an orthotropic body can be expressed as (Saouma et al., 1987),  

   1 21/2
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where 
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   (6.10) 

1 and 
2 are the complex roots of the characteristic equation (Eq. A6) with positive imaginary 

parts. 

In anisotropic body, one has to account the directionally varying material strength. Therefore, if

 is fracture propagation angle, the fracture equilibrium condition can be expressed as 

   1/2 2 2

1 2 ,max ,min(2 ) Re Re cos ( ) sin ( )I II IC ICr K A B C K A B C K K                      

 (6.11) 

or 
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   (6.12) 

where ,maxICK , ,minICK denotes maximum and minimum fracture toughness values of the material 

and an elliptical equation is used to find fracture toughness in an arbitrary plane. Note that when 

 and are zero (see Figure 6-1), the fracture is perpendicular to the direction of bedding 

planes/fibers and the fracture toughness value becomes maximum ,maxICK in Eqs. 6.11& 6.12. The 

fracture propagation angle  is obtained by maximizing Eq. 6.12 or its normalized equivalent 

given below, 
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In fracture propagation algorithm, if stress intensity factors 
IK and 

IIK at a fracture tip are given, 

first the fracture propagation angle is obtained using Eq. 6.6 for isotropic body or maximizing 

Eq. 6.12/6.13 in anisotropic body. The condition for fracture extension can be verified by 

substituting , 
IK and 

IIK in Eqs. 6.8 and 6.12 for isotropic and anisotropic bodies respectively.  

Finally, it should be noted that there is no clear consensus on single criterion among those 

discussed above that adequately describes fracture propagation path in anisotropic body, since it 

was observed that for the same input parameters different criterions produce different results. For 

example, fracture propagation path considered using energy release rate criterion indicated non-

planar growth when a planar fracture subjected to pure mode-1 loading is inclined with respect to 

material's axes of elastic symmetry, whereas, the other criterions indicated co-linear growth for 

the same problem (Azdhari, 1996; Laubie, 2013). Similarly, fracture propagation angle under 

mixed mode loading evaluated using strain energy density method is different from that obtained 

using maximum tangential stress method (Gdoutos and zacharopoulos, 1989).  In addition, the lack 

of extensive experimental studies demonstrating the effect of fracture strength anisotropy on 

fracture propagation especially in rocks makes it difficult to choose a single criterion. However, 

the few available experiments on rock samples (Ke et al. 2008; Luo et al. 2018) favor the maximum 

tangential stress criterion which will be discussed below in greater detail. Also, experiments on 

composite fibers with significant strength anisotropy (Beuth et al., 1986) revealed that only 

maximum tangential stress theory provides relatively better accuracy in predicting the fracture 

extension angle when compared to the other theories. Due to these reasons, as well as due to the 

mathematical simplicity in evaluating fracture extension angle, in this work we adopt maximum 

tangential stress criterion. Since the hypotheses for fracture propagation direction is based only on 

the near tip stress field, the effect of the fracture loading kind on fracture propagation direction is 
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contributed only through the stress intensity factors. As a result, in fluid driven fractures, the effect 

of viscosity (and the resulting pressure gradient inside the fracture) on fracture propagation 

direction is captured through only stress intensity factors. 

 6.2 Effect of Rock Anisotropy on Fracture Extension Angle 

In this section we will study the effect of material elastic anisotropy and material strength 

anisotropy on fracture extension angle ( ) using maximum tangential stress criterion. First the 

distribution of normalized tangential stresses (
*

  from Eq. 6.13) around a fracture tip is 

investigated for different orientations of fracture with respect to axes of elastic symmetry for a 

case where mode-2 stress intensity factor 
IIK is zero. The material chosen is argillaceous shale 

which is a transversely isotropic rock with degree of anisotropy 4 (defined as the ratio of Young’s 

modulus parallel to the bedding, E1 and Young’s modulus perpendicular to the bedding, E2). For 

simplicity we name this rock as Rock-A and its elastic properties are given in Table 6-1. We also 

define degree of toughness anisotropy (TA) which is the ratio of maximum ( ,maxICK ) and minimum 

( ,minICK ) fracture toughness values. If material has uniform fracture toughness then TA is one. 

 

Table 0-5. Properties of Rock-A 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

KIC,max 

(Mpa.m1/2) 

40 40 10 0.15 0.185 7.45 2.0 

 

Table 0-6. Properties of Rock-E 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

60 60 10 0.15 0.25 7.93 
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Table 0-7. Properties of Rock-B 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

19.6 19.6 10.4 0.16

6 

0.25 5.0 

 

Figure 2a shows normalized tangential stress distribution (
*

 ) around a fracture tip in Rock-A 

for various  when 
IIK =0 and TA=1. The results indicate that stress distribution is symmetric 

around the fracture tip in anisotropic rock only when fracture is aligned with one of the axes of 

elastic symmetry (i.e.  =00/900). However, it appears that the location of maximum tangential 

stress remained unchanged at zero degrees except for the case of  =900. When  =00 (i.e. 

fracture perpendicular to bedding), the distribution of
*

 is characterized by sharp increase at 

=00. On the other hand when  =900 (i.e. fracture parallel to bedding), the distribution of
*

 has 

the shape of a plateau near  =00, and the maximum value of 
*

 slightly shifted away from 

=00 to  =6.20/-6.20. Figure 6-2(b) shows distribution of 
*

 for different TA when  =00. The 

results indicate that with increase in fracture toughness anisotropy, the chances of co-linear 

fracture propagation is reducing as the location of maximum 
*

 shifted from  =00 in uniform 

toughness rock to  =-65.50/65.50 in rock with TA=4. On the other hand when  =900, the 

changes of co-linear propagation increases significantly with increase in fracture toughness 

anisotropy according to Figure 6-2c. Therefore, in this case fracture will propagate along the 

bedding planes/fibers.   
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Figure 6-3 shows fracture extension angle   as a function of   in Rock-A for different values 

of toughness anisotropy when a fracture is subjected to pure mode-1 loading ( /II IK K =0), mixed 

mode loading ( /II IK K =1) and mode-2 dominated loading ( /II IK K =10). The results indicate 

that when fracture toughness is uniform and mode-2 stress intensity factor 
IIK =0, co-linear 

fracture propagation occurs in Rock-A for all  <860.  

When  =900 the fracture extension angle becomes zero only with increase in TA. In all other 

cases, we found that fracture extension angle is non-zero. Under mixed mode and mode-2 

dominated loading it appears that even moderate increase in toughness anisotropy (i.e. TA=2) 

causes considerable change in fracture extension angles. We also observed that under mixed mode 

and mode-2 dominated loading, the orientation of fracture with respect to the axes of elastic 

symmetry (i.e.  ) has considerable effect on fracture extension angles even when TA=1. It is 

interesting to note that, in all the loading types considered, there exists a , where the fracture 

extension angle   is same for degrees of toughness anisotropy (which is represented by an 

intersection point of all the lines in Figure 6-3). Finally it is worth noting that in isotropic rock, 

based on Eq. 6.6, fracture extension angle   for cases /II IK K =0 is 00, /II IK K =1 is -53.130 

and /II IK K =10 is -68.630.  
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Figure 0-35. Distribution of normalized 
*

 around the fracture tip in Rock-A which is 

subjected to pure mode-1 loading. (a) Shows the effect of  when rock fracture toughness 

is uniform (TA=1), (b) the effect of degree of fracture toughness anisotropy (TA) for cases

 =00, (c) and for  =900. 
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Figure 0-36. Shows the effect of loading condition ( /II IK K ), the orientation of bedding 

planes/fibers ( ) and the degree of fracture toughness anisotropy (TA) on fracture 

extension angle ( ) in Rock-A. 
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Figure 0-37. Shows the effect of loading condition ( /II IK K ), the orientation of bedding 

planes/fibers ( ) and the degree of fracture toughness anisotropy (TA) on fracture 

extension angle ( ) in Rock-E. 

 

Figure 6-4 shows fracture extension angle as a function of  for different loading conditions in 

Rock-E, which is a hypothetical transversely isotropic rock with strong degree of anisotropy 6. 

The elastic properties of the rock are given in Table 6-2. The results indicate that the behavior of 

  as a function  is similar to Rock-A. Due to high degree of anisotropy in Rock-E, we see that 

the fracture extension angle under pure mode-1 loading when TA=1 and  =900 is -310 compared 
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to only -6.20 degree in Rock-A. We also notice strong dependency between fracture extension 

angle and under mixed mode and mode-2 dominated loading when TA=1, similar to Rock-A.   

 

Figure 0-38. Shows the effect of loading condition ( /II IK K ), the orientation of bedding 

planes/fibers ( ) and the degree of fracture toughness anisotropy (TA) on fracture 

extension angle ( ) in Rock-B. 

 

Figure 6-5 shows fracture extension angle   as a function of  under different loading conditions 

in Rock-B, which is a transversely isotropic belonging to Woodford shale with degree of 

anisotropy 1.88. The elastic properties of this rock are given in Table 6-3. In this moderately 

anisotropic rock, we found that fracture observe co-linear propagation for all  when fracture 

toughness is uniform, TA=1. Also, it appears that under mixed mode and mode-2 dominated 
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loading, the influence of  on fracture extension angle is not significant when TA=1 unlike in 

Rock-A and Rock-E. The general trend of curves showing the variation for   as a function of 

for different TA is same are previous rocks.  

Overall these results indicate that strong material anisotropy can contribute to non-planar fracture 

propagation even when fracture toughness is uniform if the fracture is oriented along the bedding 

planes (however, this behavior might be unlikely as most strongly anisotropic rocks also have high 

degree of strength anisotropy based on experimental evidence). Also, the effect of material strength 

anisotropy on fracture extension angle is much stronger than the effect of material elastic 

anisotropy.  

 6.3 Effect of Rock Anisotropy on Fracture Propagation Path 

To study the effect of material elastic and strength anisotropy on fracture propagation path, we 

consider propagation of a fluid driven fracture. The problem is considered in two cases, where in 

the first case, a small initial fracture (i.e. perforation) is taken in the direction of maximum 

principal stress (
H ) that is Y-axis (Figure 6-1) and in the second case, an initial fracture inclined 

with maximum principal stress is considered. The difference between 
H  (along Y-axis) and 

minimum principal stress 
h  (along X-axis) is taken as 1 MPa. The initial fracture length is 0.5 m 

and the rock is transversely isotropic argillaceous shale (Rock-A) with elastic properties given in 

Table 6-1. It is assumed that the bedding planes/fibers that define the direction of maximum 

Young’s modulus (E1) are perfectly bonded and do not act as planes of weakness.   
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Figure 0-39. Propagation of a fluid driven fracture from small initial perforation oriented 

in the direction of 
H  (or y-axis) in Rock-A. When fracture toughness is uniform (TA=1) 

appears to have no effect on fracture propagation path. In the presence of fracture 

toughness anisotropy, the fracture initially opened towards the direction of bedding 

planes/fibers and later re-orient towards the direction of
H . 

 

Considering an initial perforation in the direction of H  (i.e.  =900 from Figure 6-1), the fracture 

geometries obtained after injecting slick water (1 cP) at the rate 2.65e-4 m2/s into the perforation 

are shown in Figure 6-6 for different values of . The results indicate that when  =00 (i.e. initial 

fracture is perpendicular to bedding), fracture growth occurs in the direction of H for all TA. 

When TA is high, the fracture path is tortuous. This is due to the combined effect of high degree 
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of fracture toughness anisotropy and far-field differential stress on fracture propagation and it 

should not be confused with the numerical error in fracture path that often occurs at high 

differential stresses (see Stone and Babuska, 1997). As we can see from Figure 6-2b, that when 

 =00, high TA shifts the location of maximum value of 
*

 farther away from azimuth of fracture 

tip which will lead to a kinked fracture. In the next step, the kinked fracture tries to align with far-

field maximum principal stress. As this cycle repeats, the final fracture path although aligned with 

the direction of maximum principal stress when looking at larger scale is tortuous. When  =200, 

in the case of uniform fracture toughness (i.e. TA=1), the fracture observed co-linear propagation. 

In the presence of fracture toughness anisotropy, the fracture initially opened towards the direction 

of fibers/bedding planes, however eventually turned towards the direction of maximum principal 

stress. After fracture re-orientation fracture followed tortuous path when TA=4, similar to the case 

 =00. Similar results are observed for the cases  =450& 600, where fracture initially opened 

towards the bedding planes and gradually re-orienting towards the direction of maximum principal 

stress. Also, for the cases  =450& 600, fracture path is smooth for all TA. This indicates that 

tortuous fracture path will result in the cases where the rock fracture toughness anisotropy is high 

and the angle between bedding planes and maximum principal stress is large. Overall the results 

indicate that in anisotropic rock with uniform fracture toughness, fracture propagation is co-linear 

and is independent of angle between bedding planes and fracture axis (i.e. ). However, in the 

presence of fracture toughness anisotropy, fracture path is dependent on degree of fracture 

toughness anisotropy and . In these cases, fracture initially appears to propagate towards the 

direction of bedding plane and later tends to re-orient towards the direction the maximum principal 

stress.  
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Figure 0-40. Propagation of a fluid driven fracture from small initial perforation that is 

inclined with the direction of 
H  (or y-axis) in Rock-A. When fracture toughness is uniform 

(TA=1)  appears to have no effect on fracture propagation path. In the presence of 

fracture toughness anisotropy, the fracture initially opened towards the direction of 

bedding planes/fibers and later re-orient towards the direction of
H . 

 

These numerical results are supported by recent experiments (Luo et al. 2018) on Longmaxi shale 

which is a weak transversely anisotropy rock with degree of anisotropy 1.3, however with strong 

degree of fracture toughness anisotropy of around 2.5. Fracture propagation under pure mode-1 

loading is considered using 3-point bending test on a notched specimen for different values of . 

The results indicated that for both the cases  =00 and  =900, fracture observed co-linear 
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propagation. On the other hand, when  =600 the fracture initially extended through the bedding 

plane, however, is later observed to re-oriented towards the direction of maximum principal stress. 

Based on these experimental results we conclude that maximum tangential stress criterion can 

adequately describe the fracture path in anisotropic bodies.  

In this example extension of an initial fracture that is inclined with respect to far-field 
H is 

considered. As in previous example the initial size of the fracture is 0.5 m and the differential stress 

is 1 MPa. The inclination angle of fracture with respect to X-axis ( ) is 600. This example is chosen 

to illustrate the behavior of an inclined natural fracture that is subjected to fluid injection in 

complex fracture network problems. The fracture geometries for various  after injecting slick 

water at a constant rate of 2.5e-4 m2/s is shown in Figure 6-7. The results indicate that when 

=00, high TA causes the fracture to propagate towards the direction of fibers for longer distance 

before taking a sharp turn towards the direction of maximum principal stress (similar behavior is 

observed during the propagation of a fracture emanating from a perforation near the wellbore that 

is oriented towards the direction of fibers/bedding planes; see chapter 7). For all other , fracture 

turning towards maximum principal stress appears to be more gradual. For the cases where angle 

between the direction of fibers and maximum principal stress is high, fracture path is tortuous for 

high TA similar to the previous example. Overall the results indicate that in the absence of fracture 

toughness anisotropy, fracture wings emanating from the initial fracture quickly re-oriented 

towards the direction of maximum principal stress. High fracture toughness anisotropy allows the 

fracture wings to propagate towards the direction of fibers/bedding planes for longer distance 

before they eventually reorient towards maximum principal stress. 
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7 Effect of Rock Anisotropy on Fracture Propagation near the Wellbore 

 

In this chapter we use the 2D plane strain numerical model based on displacement discontinuity 

method (DDM) and fictitious stress method (FSM) to simulate fracture propagation from a 

wellbore in isotropic and anisotropic rocks. The FSM is employed to model wellbores, while DDM 

is used to model fractures. The DDM and FSM for anisotropic material are verified using the 

analytical solution for tangential stresses around a hole in an infinite orthotropic body that is 

subjected to far-filed stresses. For numerical simulations, we consider a transversely isotropic rock 

with bedding planes defining the plane of isotropy. Unless stated otherwise, the wellbore axis is 

assumed to lie parallel to the direction of minimum in-situ principal stress with vertical stress being 

the maximum in-situ principal stress. Fracture propagation is considered from a wellbore with 

perforations that are phased at 180 degrees and oriented at various angles with respect to the 

preferred planes of fracture initiation. Fracture growth in vertical direction and re-orientation due 

to the perforation misalignment are discussed. We also considered a case where “bedding” planes 

are inclined with respect to the horizontal plane. The results for near wellbore fracture geometry, 

aperture distribution and fluid injection pressures are reported for anisotropic rock and compared 

with isotropic case.  

 7.1 Numerical Model 

Let us consider an infinite orthotropic body with 1-2-3 as material’s axes of elastic symmetry 

containing a cavity ‘c’ and a fracture ‘f’ as shown in the Figure 7-1. A body that possesses three 

axis of elastic symmetry is known as orthotropic body with nine independent elastic constants. If 

one of the three planes formed by the axes of elastic symmetry (i.e., 1-2, 1-3, and 2-3) is a plane 
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of isotropy, the body is said to be transversely isotropic with five independent elastic constants 

(Lekhnitskii, 1963). If the boundary of the cavity ‘c’ is discretized into M line segments and 

fractures ‘f’ into N line segments, then the total normal (
i

n ) and shear (
i

s ) stresses acting on the 

surface of each segment can be expressed as in Eq. 7.1 (Crouch and Starfield, 1983), 
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   (7.1) 

where the terms Pn, Ps represent fictitious stresses acting on the surface of the cavity ‘c’ and no 
,

so 
 are far-field normal and shear stresses respectively. The terms Dn, Ds represent displacement 

discontinuities of fracture elements and
ij

nsA , etc., are boundary stress influence coefficients which 

give normal/shear stress at the midpoint of ith segment due to the unit fictitious stress or 

displacement discontinuity at jth segment. The linear combination of the influences of the fictitious 

stresses and the displacement discontinuities gives stresses on any given cavity/fracture segment 

or at any point in the rock. The displacement discontinuities (DDs) on fracture segments represent 

fracture opening (Dn, normal DD) and sliding (Ds, shear DD). Although the DDM can also be used 

to model cavities (such as wellbore), provisions must be made to prevent rigid body motion 

(Crouch and Starfield, 1983), and calculation of tangential stresses on cavity edges is relatively 

straightforward with FSM. 
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Figure 0-41. Discretization of cavity ‘c’ and fracture ‘f’ for boundary element method. x’-y’ 

is fracture tip coordinate system.   is fracture tip extension angle. 1-2-3 are the directions 

of material elastic symmetry. V  is principal vertical stress and H  is maximum principal 

horizontal stress. 

 

A series of assumptions are made in the modeling process to simplify the analysis of fracture 

propagation in anisotropic rock. Some are based on experimental evidence while some are based 

on theoretical considerations in the pertinent literature. It is assumed that the initial far-field stress 

state is given and might have been affected by material anisotropy. As a result, the variations of 

the far-field principal stress directions are not studied.  Based on experimental evidence (Ke et al., 

2008; Chandler et al., 2016), the fracture toughness ( ( ))ICK   of an anisotropic rock is taken 

maximum ( ,IC MaxK ) in the plane perpendicular to the bedding and minimum (
,IC MinK ) in the plane 

parallel to the bedding. The fracture toughness for any arbitrary plane   is expressed as an 

elliptical function given by Eq. 7.12 and fracture extension angle is obtained using Eq. 6.13. The 

Young’s modulus of a transversely isotropic rock is taken maximum in the direction of the fabric 
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or bedding planes and is a minimum in the direction perpendicular to it. Finally, it is assumed that 

the bedding planes are perfectly bonded and are not plane of weakness. 

Assuming that the hydraulic fracture propagation is dominated by mode-1 fracture deformation, 

the fracture extension criterion is:  

( )I ICK K     (7.9) 

As previously stated, the fracture toughness ( ( ))ICK   of an anisotropic material is maximum (

,IC MaxK ) in the plane perpendicular to the bedding and minimum ( ,IC MinK ) in the plane parallel to 

the bedding. Assuming 0   in the direction of bedding planes, the fracture toughness for any 

arbitrary plane   is given by the following elliptical expression (Dai and Xia, 2008),   

2 2

max min( ) sin ( ) cos ( )IC IC ICK K K       (7.12) 

The fluid flow inside fractures is approximated as flow between two parallel plates for Newtonian 

and incompressible fluid:  
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   (7.13) 

where q is the volumetric flow rate, H is the fracture height,   is the fluid viscosity and w is the 

fracture aperture. Substituting Eq. 7-13 in the continuity Eq 7.14 and assuming constant height 

throughout the fracture length gives lubrication Eq 7.15. 
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Owing to the ultra-low permeability of shale rocks, fluid leaf-off rate Lq  is neglected in these 

calculations.  
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The partial differential Eq 7.15 is solved using the finite difference scheme with a 1D mesh that 

coincides with the DDM mesh shown in the Figure 7-1. The pressure and aperture are evaluated 

at the mid-point of each element. The wellbore is treated as a single element in the finite difference 

method, where frictional pressure losses are ignored. Therefore, the pressure at the inlet of a 

fracture is equal to the pressure inside the wellbore. Injection rate is prescribed at the center of the 

wellbore element as in Eq 7.16, which must be equal to the sum of flow rates into N fractures 

connected to the wellbore as in Eq 7.17. 

(0, ) oq t Q    (7.16) 

1

N

i o

i

q Q


    (7.17)  

In the case of a single bi-wing symmetrical fracture propagating from a wellbore, the flow rate into 

each fracture wing should be equal to / 2oQ . However, when multiple fractures are propagating from 

different clusters, flow rate into each fracture will be different and comes out as a part of the 

solution. Initial fractures of small size (equal to perforation length) are assumed in the direction of 

perforations with zero aperture as initial condition: 

( ,0) 0w x     (7.18) 

Fracture aperture vanishes at fracture tips (Eq. 7.19) and assuming that the fluid front coincides 

with the fracture front (i.e., zero fluid-lag), a no flow boundary condition (Eq 7.20) is implemented 

at the fracture tips:  

( , ) 0w l t     (7.19) 

 7.2 Numerical Examples 

Let us consider a wellbore in a transversely isotropic rock with the plane of isotropy parallel to the 

plane 1-3 as shown in Figure 7-2. The elastic constants E1 = 40 GPa, E2 = 10 GPa v13 = 0.15 and 
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v12 = 0.85. These values do not belong to any specific formation, however, they fall within the 

range observed in various mudstones (Suarez-Rivera et al., 2011). In order to eliminate the 

possibility of having shear stresses in the tangent plane of wellbore wall, the wellbore is taken 

parallel to the direction of minimum in-situ principal stress (Y-axis) where vertical (Z-axis) stress 

is the maximum principal stress as discussed previously. Additionally, the coordinate system 1-2-

3 representing the rock’s directions of elastic symmetry and is used to define rock properties. For 

sensitivity analysis only the value of E2 is modified based on the degree of anisotropy (E1/E2).   

 

Figure 0-42. Cross-section of a wellbore in a transversely isotropic rock and far-field in-situ 

stresses aligned with coordinate axes X-Y-Z where V H h    . Bedding planes (black 

lines) are defined using the coordinate system 1-2-3 which also represents the directions of 

material elastic symmetry. 

 

Let  denote the angle of inclination of the bedding planes with respect to the horizontal plane X-

Y, measured anticlockwise from the positive X-axis. Therefore, for a horizontal bedding,  =00 (

V  acts perpendicular to E1) and for a vertical bedding,  =900 ( V  acts parallel to E1). For 

isotropic body, the Young’s modulus parallel to bedding planes E1, Poisson ratio v13 and fracture 
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toughness ,IC MaxK  is used. The minimum fracture toughness of the anisotropic rock is obtained 

from the degree of fracture toughness anisotropy ( , ,/IC Max IC MinK K ). The tensile strength is set to 

7 MPa for both isotropic and anisotropic rocks. Perforations are created radially around the 

wellbore wall with 180 degrees phasing. The perforation angle   is measured from positive X-axis 

in anticlockwise direction (see Figure 7-2). The particular problem of fracture growth near a 

wellbore is analyzed in plane strain in the plane X-Z, assuming that fracture extension in the 

direction of wellbore axis during the initial stage of propagation is greater than the fracture wing 

that is growing outwards from the wellbore radially.  

 

Figure 0-43. Normalized tangential stresses (  ) at the wellbore wall in a transversely 

isotropic rock that is subjected to far-field uniaxial compressive stress P. (a) Z-X plane 
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view of Figure 4 with far-field stress P acting along Z-axis, (b) for bedding plane 

orientation  =00, (c)  =900, (d) and  =450. 

 

7.2.1 Effect of Anisotropy on Fracture Initiation Pressure and Location 

In this section we will analyze the effect of rock anisotropy on fracture failure pressure and location 

by studying the stress concentration around a wellbore in anisotropic body and comparing the 

results with isotropic case. For isotropic case the material properties E1 and v12 from previous 

section are used. The wellbore in an infinite rock mass is subjected to uniaxial far-field 

compressive stress P. This simple case of stress loading serves to clearly illustrate the behavior of 

stress distribution around the wellbore. Moreover, the result for this problem in isotropic rock is 

well known and are used here to make comparison with anisotropic case. The conclusions drawn 

here can be extended to more general case of stress state where wellbore is subjected to three 

different far-field principal stresses. Assuming the uniaxial compressive stress P is acting along 

the Z-axis (see Figure 7-3a), we evaluate the tangential stresses (  ) around the wellbore wall 

under the assumption of plane strain in the X-Z plane for 3 possible scenarios of bedding plane 

orientation,  with respect to the horizontal plane X-Y.  

Figure 7-3 shows comparison of normalized tangential stresses ( / P ) obtained from FSM at the 

wellbore wall in isotropic and anisotropic rocks. We notice when the rock is isotropic, the 

tangential stress distribution around the wellbore is symmetrical about the direction of applied 

stress P. Also at  =900, the stress concentration is tensile and is equal to the magnitude of far-

field applied stress P. At  =00, the stress concentration is compressive with 3 times the magnitude 

of far-filed applied stress P. But in the case of an anisotropic body with E1/E2=2 and  =00 (Figure 

7-3b), the tangential stress concentration at  =900 is more tensile (1.2P) compared to the isotropic 
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case (P). For a strongly anisotropic body with E1/E2=4 and  =00, the tensile tangential stress 

concentration is at  =900 is nearly 2P or twice that for the isotropic case (P). As a result, the 

wellbore pressure required to initiate tensile fractures from the wellbore would be less in 

anisotropic body for  =00 compared to isotropic body that is subjected to same far-field stress 

conditions provided that they have same tensile strength. On the other hand, in anisotropic body 

for  =00, the compressive tangential stress concentration at  =00 decreased compared to 

isotropic body. This would affect the compressive failure condition of a wellbore, which can be 

analyzed using Mohr’s coulomb failure criterion. However, we restrict our attention to tensile 

failure of wellbore in this paper.  

In anisotropic body, for  =900 (Figure 7-3c), the tangential stress concentration at  =900 is less 

tensile compared to isotropic body. The tensile stress concentration at  =900 further decreases 

with increase in the degree of material anisotropy. Therefore, in this scenario, we can expect higher 

wellbore pressure to initiate tensile fractures in anisotropic body compared to isotropic body. 

Although the magnitude of stress concentration around a wellbore in anisotropic body (for  =00 

& 900) is different from that in isotropic rock, the variation of  is the same as the isotropic case, 

i.e., it is symmetrical about the axis of far-field stress, P.  

A more interesting scenario is when bedding planes are inclined with respect to the direction of 

far-field principal stress P. For  =450 (Figure 7-3d), the stress concentration at  =900 is slightly 

more tensile (1.05P) in anisotropic body with E1/E2=2 than in isotropic body (P). When E1/E2=4, 

the tensile stress concentration at  =900 has increased to 1.2P, but still less than the magnitude 

observed for  =00 (2P). Interestingly, in this scenario, the locations of maximum tensile and 

compressive stress concentrations around the wellbore wall are shifted from the azimuth of far-
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field principal stresses. For anisotropic body with E1/E2=2, the maximum tensile hoop stress is 

observed at  =1000, which is a 100 shift from the azimuth of applied stress P. In a material with 

much stronger anisotropy (E1/E2=4), the location has shifted further from the azimuth of P (

=900) to  =1080. Therefore, induced tensile fractures in this scenario could follow complex 

trajectories as they try to align with the direction of maximum principal stress P. These conclusions 

hold true for a general case of stress state with three different far-field principal stresses, when the 

wellbore is aligned with one of the two principal horizontal stresses and maximum principal stress 

is acting in the vertical direction. It should be noted that in the case of rock with tensile strength 

anisotropy, the rock tensile strength along with the tangential stress distribution around the 

wellbore wall will influence the location of induced tensile fracture.  

7.2.2 Effect of Anisotropy on Fracture Trace near Wellbore 

For the stress state considered in Figure 7-2, the tensile fracture failure location for different rock 

types can be found from the tangential stress distribution plots shown in Figure 7-3. Tensile failure 

of a wellbore occurs when the tensile hoop stress around the wellbore wall reaches tensile strength 

of the rock. The plane of tensile fracture failure and propagation is called the preferred propagation 

plane. Perforations that are not aligned with preferred planes of fracture propagation can result in 

complex fracture growth near the wellbore. To illustrate this, we consider examples of fracture 

propagation from a wellbore for the cases of low and high perforation misalignment angles. The 

perforations are oriented radially outwards from the wellbore wall and their initial length is 25% 

of the wellbore radius. By using small size perforations we will be able to include the effect of 

wellbore deformation on fracture propagation. As previously discussed, the perforations are 

phased at 180 degrees; therefore, the two fracture wings emanating from the wellbore will be 

symmetrical. The wellbore configurations and the stress state is shown in the Figure 7-2. Under 
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the assumption of plain strain in X-Z plane, fracture propagation from wellbore is simulated in 

isotropic rock and anisotropic rock for two possible orientations of bedding planes with respect to 

the principal stresses. These two selected orientations correspond to a vertical transversely 

isotropic rock (VTI) and a tilted transversely isotropic rock (TTI). The material properties are 

given in previous section are used. The degree of material anisotropy is 4. In addition, to study the 

effect of fracture toughness anisotropy on fracture propagation, we consider a case of anisotropic 

rock with fracture toughness anisotropy (TA). For all the examples considered below, we assume 

12 MPa difference between the vertical principal stress ( V  =82 MPa) and the maximum horizontal 

principal stress ( H =70 MPa). In all numerical examples, slick water (of viscosity 0.001 Pa.s) is 

injected into the wellbore at a constant rate of 0.0002 m2/s until each fracture wing propagating 

from the wellbore achieves a length equal to 6 times the radius of the wellbore. The results obtained 

for fracture geometry, aperture distribution and injection pressure are compared for isotropic and 

anisotropic rocks. 

7.2.3 Perforations Oriented in Preferred Direction (horizontal bedding planes) 

This example discusses fracture propagation from a wellbore when perforations are created along 

the preferred planes of fracture propagation. For anisotropic rock with bedding orientation of

=00 (i.e., VTI), and for isotropic rock the tensile failure can be expected at  =900 and  =2700 

according to Figure 7-3b. 
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Figure 0-44. (a) Fracture trace from wellbore in both isotropic and anisotropic rocks, 

bedding plane orientation =00 indicates horizontal bedding, and TA is degree of fracture 

toughness anisotropy (b) Fracture aperture distribution from injection point to tip along 

one of the symmetrical wings, (c) wellbore pressure vs time, (d) aperture at fracture mouth 

(i.e., fracture inlet) vs time. 

 

With perforations created at these locations, fracture trace, aperture distribution along the fracture 

and injection pressure are compared between isotropic and anisotropic rocks in Figure 7-4. 

Fracture trajectory from Figure 7-4a indicates that the assumed rock anisotropy condition has no 

impact on the fracture path. Planar fracture growth is observed in both isotropic and anisotropic 

rocks. The applied degree of fracture toughness anisotropy is not sufficient to cause fracture 

turning towards the plane of least fracture toughness. Note that for similar configuration, non-
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planar fracture propagation is possible if the degree of material anisotropy is less than 0.5 even 

under uniform fracture toughness condition (Ye and Ayari, 1994 and see Chapter 6). Fracture 

aperture distribution in one of the symmetrical wings from fracture mouth to the tip (Figure 7-4b) 

indicates significant increase in fracture opening in anisotropic rock. Wellbore pressure (Figure 7-

4c) tends to reach a peak value during the early stage of stimulation and decreases thereafter as the 

fracture length grows larger. Higher fracture opening at the injection location results in lower 

injection pressures for the assumed anisotropic condition compared to isotropic case. At the 

fracture mouth (Figure 7-4d), the aperture is gradually increasing with time in both isotropic and 

anisotropic rocks, which is similar to the behavior of single KGD fracture (Geertsma and De Klerk, 

1969). Since the fracture path is in the plane of maximum fracture toughness, the fracture aperture 

and wellbore pressure were not affected by TA. 

7.2.4 Perforations Oriented in Preferred Direction (Inclined bedding planes) 

When the directions of elastic symmetry in an anisotropic material are not aligned with the far-

field principal stresses, the locations of maximum tensile hoop stress around the wellbore shifts 

from the azimuth of maximum principal stress according to the Figure 7-3d. In such cases, 

perforations oriented in the preferred planes can result in non-planar fracture propagation due to 

fracture reorientation towards maximum principal stress. Non-planar fracture propagation is also 

possible even when the perforations are created at the azimuth of maximum principal stress due to 

asymmetrical stress distribution around the wellbore wall about the center line X=0 (see Figure 7-

3d). To illustrate this we consider a case where the bedding planes in a transversely isotropic body 

are oriented at an angle 45 degrees with respect to the horizontal plane X-Y. For this configuration, 

and for E1/E2=4, the failure locations are observed at  =1120 and  =2920 from the Figure 7-5. 

Note that the failure locations observed in this case are not far from values ( =1080 and 2880) 
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observed in the case of uniaxial stress state for the same rock. To study the effect of far-field stress 

magnitudes on failure locations, another stress state of 30 MPa differential stress is considered. 

Figure 7-5 shows failure locations are at  =1090 and  =2890 for this stress state.  This suggests 

that the effect of far-field stress contrast on failure locations around a wellbore is not as significant 

as degree of rock anisotropy in a rock with dipping layers.  

 

Figure 0-45. Tangential stresses (  ) around wellbore wall at failure pressure for the two 

different stress states in a transversely isotropic rock. The bedding dip ( ) is 450. 

 

Fracture propagation from a wellbore is simulated for 2 cases of perforation orientations, where in 

one case perforations are located at failure locations ( =1120 and 2920) and in the other case, 

perforations are located at the azimuth of maximum principal stress ( =900 and 2700). Fracture 

geometry and aperture distribution along the fracture are compared between the two cases in Figure 

7-6.  
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Figure 0-46. Fracture trace for perforation orientations ( =1120 and 2920) and ( =900 

and 2700) in a transversely isotropic rock with bedding plane dip  =450. 

 

Figure 0-47. Aperture distribution along one of the symmetrical wings from fracture 

mouth to tip. 

 

The results indicate non-planar fracture propagation when perforations are oriented in failure 

planes. Close observation shows a slightly non-planar fracture path even when the perforations are 

aligned in the direction of maximum principal stress.  Since the locations of maximum tangential 
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tensile stress are at  =1120 and 2920 for this configuration (see Figure 7-5), the fractures created 

in the direction of the vertical principal stress experience a slight attraction towards the locations 

of tensile stress concentration around the wellbore wall resulting in slight non-planarity. In both 

cases, the presence of fracture toughness anisotropy (i.e. TA=2) caused slight deviation of fractures 

towards the plane of least fracture toughness (i.e., towards the bedding planes) before the fractures 

aligned with maximum principal stress. The aperture distribution (Figure 7-6b) along the fracture 

indicates slight complexity near the wellbore due to the curved fracture path and reduction in 

aperture due to higher compressive normal stresses acting on the fracture surface near the wellbore 

when perforations are oriented in the preferred initiation plane. The apertures along the fracture 

length are slightly higher in this example compared to the previous one (Figure 7-4b) due to 

fractures opening against lower Young’s modulus. Overall, the results indicate that in cases where 

the directions of elastic symmetry are not aligned with the principal stresses, it is still favorable to 

orient the perforations in the direction of the in-plane maximum principal stress although the 

locations of maximum tensile hoop stress are shifted from the azimuth of maximum principal 

stress. 

7.2.5 Perforations with Lower Misalignment Angle 

In this example we consider fracture propagation from wellbore with perforations that are not 

aligned with preferred directions of fracture initiation. The bedding planes of transversely isotropic 

body are taken parallel ( =00) to the horizontal plane X-Y (see Figure 7-2).  



134 

 

Figure 0-48. (a) Fracture trace, (b) aperture distribution along one of the wings from 

fracture mouth to tip, (c) wellbore pressure vs time, and (d) aperture at the fracture mouth 

as function of time in a transversely isotropic rock for case of low perforation misalignment 

angle. 

 

The perforations are located at  =600 and  =2400. As mentioned previously, for this bedding 

plane orientation, the preferred locations of fracture initiation are  =900 and 2700 for both 

isotropic and anisotropic rocks (Figure 7-3b). Therefore, the perforation misalignment angle, 

which is the difference between the preferred fracture initiation angle and the perforation angle is 

30 degrees in this example. The computed fracture geometry, aperture distribution and injection 

pressure at the wellbore are plotted in Figure 7-7 for isotropic and anisotropic cases.  
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The results (Figure 7-7a) indicates rock anisotropy has negligible effect on fracture propagation 

path when the fracture toughness is uniform in the rock. Also, in anisotropic rock with fracture 

toughness anisotropy (i.e. TA= 2& 4), the turning radius of fractures towards the direction of 

maximum principal stress is decreased and fractures appear to align with the centerline of the 

wellbore (X=0). Aperture distribution (Figure 7-7b) indicates, fracture apertures very near to the 

wellbore region in anisotropic rock are lower compared to isotropic case. Fracture toughness 

anisotropy appears to diminish this effect as we see an increase in aperture at fracture mouth in 

anisotropic rock with TA= 2& 4. In the region away from the wellbore, fracture apertures are 

higher in anisotropic rock. However, aperture at fracture mouth is critical since it plays a 

significant role in establishing the commutation between the fractures and wellbore. Aperture at 

fracture mouth vs. time plot (Figure 7-7d) indicates significant drop in aperture at fracture mouth 

in the anisotropic rock during fracture reorientation towards the principal vertical stress, which is 

not seen in isotropic case. Maximum drop in aperture at fracture mouth during reorientation has 

occurred in anisotropic rock with fracture toughness anisotropy due to sharp fracture turning (see 

Figure 7-7a). As the fractures extend in the direction of principal vertical stress, aperture at fracture 

mouth tends to increase with time.  Therefore, proppant can be placed inside fractures after 

sufficient rise in aperture at fracture mouth in anisotropic rock. Pressure at the wellbore (Figure 7-

7c) in this case does not indicate appreciable difference between isotropic and anisotropic rocks. 

Similar to the previous examples, the injection pressures observed during fracture propagation are 

decreasing with time as fracture aperture at injection location and length increases with time. 

However, the injection pressures observed in this case are higher compared to the case where 

perforations are placed along preferred failure plane (Figure 7-7c) since the fractures need to open 

against higher normal compressive stresses.    
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7.2.6 Perforations with Higher Misalignment Angle 

In this example the perforations are located at  =100 and 1900 which is close to the azimuth of 

minimum in plane principal stress. The stress state and bedding planes orientation ( =00) are 

same as in previous example. Therefore, the perforation misalignment angle in this example is 800. 

Figure 7-8 shows comparison of fracture trace, fracture apertures and injection pressures at the 

wellbore for isotropic and anisotropic rocks. 

Fracture trajectory plot (Figure 7-8a) indicates, fractures propagated longer distance in the plane 

of perforation before turning towards the direction of principal vertical stress when compared to 

the case of low perforation misalignment angle (Figure 7-7a). Also, there is no considerable 

difference between the fracture paths in isotropic rock and anisotropic rock with uniform toughness 

similar to the previous examples. In anisotropic rock with fracture toughness anisotropy (i.e. TA= 

2& 4), perforations are oriented closer to the plane of least fracture toughness (i.e. bedding planes). 

In this scenario, it appears that the distance traveled by the fractures in the plane of perforation (or 

towards the plane of least fracture toughness) before making a sharp turn towards the principal 

vertical stress increases with increase in the degree of fracture toughness anisotropy. In 

comparison, fracture turning is more gradual in isotropic rock and in anisotropic rock with uniform 

fracture toughness.  
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Figure 0-49. (a) Fracture trace, (b) aperture distribution along one of the wings from 

fracture mouth to tip, (c) wellbore pressure vs time, (d) aperture at fracture mouth as 

function of time in a transversely isotropic rock with high perforation misalignment angle. 

 

Fracture aperture distribution (Figure 7-8b) in isotropic rock indicates apertures are lowest near 

the region of wellbore and gradually increases along the region that is extended in the direction of 

principal vertical stress. This is due to very high normal compressive stresses acting on the fracture 

surface closer to the wellbore as the perforations are oriented almost perpendicular to in-plane 

maximum principal stress ( V ). In anisotropic rock, fracture opening is higher in the near wellbore 

region compared to isotropic rock, but decreases below the value observed in isotropic rock near 

the region of fracture turning. This effect is exacerbated in anisotropic rock with the increase in 
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fracture toughness anisotropy, which resulted in choking point near the location of fracture turning. 

As the perforations are oriented towards the direction of maximum Young’s modulus (E1), initially 

the fracture opens against lower Young’s modulus in anisotropic rock; hence, higher opening is 

observed in the near wellbore region. The choking effect near the location of fracture turning is 

the result of drastic change in material properties (especially for sharp fracture turning), as the 

fracture turns towards the direction of E2 and opens against E1 (which is 4 times E2). Similar to the 

case of lower perforation misalignment angle (Figure 7-7d), apertures at fracture mouth in 

anisotropic rock dropped during the period of fracture reorientation (Figure 7-8d). However, 

apertures at fracture mouth are not regained after fracture reorientation contrary to previous 

examples. Instead, they tend to reach a constant value (although apertures continue to decrease, 

the rate of aperture drop reduced considerably with time). Despite appreciable increase in aperture 

at fracture mouth in anisotropic rock with fracture toughness anisotropy, choking point (Figure 7-

8b) created at the location of fracture turning can hinder the placement of proppant inside fractures.  

Injection pressures at wellbore (Figure 7-8c) initially decreased with time, which is associated with 

increase in aperture at fracture mouth. During and after fracture reorientation, the injection 

pressure tends to increase in response to keep the fracture near wellbore region from closing due 

to high normal compressive stresses acting on fracture surface, which is in agreement with the 

numerical results for isotropic rock in Zhang and Jeffery (2011). The pressure at wellbore in 

anisotropic rocks is lower compared to isotropic rock but, higher than the values observed in the 

case of lower perforation misalignment (Figure 7-7c).  
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8 Height Correction Factor for Anisotropic Displacement Discontinuity 

Method 

 

Consider a fracture in an orthotropic body such that its height H is parallel to axis Z and length L 

is parallel to axis Y, and is subjected to constant internal net pressure P as shown in Figure 8-1. X-

Y-Z also represents directions of the three far-field principal stresses. The axes of the rock’s elastic 

symmetry 1-2-3 are such that they are parallel to the axes X-Z-Y respectively as shown in Figure 

8-1a. If, L>>H, the plane XZ is considered to be in the state of plane strain, and all physical 

quantities are independent of Y. Similarly, if H>>L, the plane XY is considered to be in the state 

of plane strain, and all physical quantities are independent of Z. Therefore, fracture propagation 

models based on plane strain assumption are restricted to these two limiting conditions. However, 

in reality, a typical hydraulic fracture may have any value for the ratio, L/H. Moreover, in problems 

pertaining to layered media, typically, fracture growth predominantly occurs in the direction of 

length as the height is contained by high stress barriers above and below the payzone. This suggests 

that the problem is truly 3D in nature, however, 3D models come at significantly high 

computational cost. Without losing the computational advantage offered by 2D DDM, Olson 

(2004), proposed the so called 3D correction factor “G” that incorporates the effect of fracture 

height into 2D solution, and the resulting enhanced 2D DDM is more suitable to model large scale 

multiple hydraulic fracture propagation where fracture height can be treated as a fixed value. In 

this section, the 3D correction factor developed for isotropic plane strain DDM is extended to 

anisotropic case. Sensitivity analysis is conducted to study the dependence of 3D correction factor 

for anisotropic DDM on material constants.  
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The 3D correction factor for isotropic body was developed based on the premise that in the limiting 

case L>>h (for the configuration shown in Figure 8-1), when corrected using the G factor, the 

numerically obtained induced stresses normal to the fracture surface ( XX ) along the line passing 

through the fracture center should approach the ( XX ) obtained from XZ plane strain analytical 

solution. Since the induced stress component perpendicular to the fracture surface is the one that 

primarily affects the interaction between multiple parallel fractures, the G factor is derived based 

on it. 

 

Figure 0-50. a) Illustrative figure of orthotropic body containing a rectangular fracture of 

length L and height H, where, L/H>>1. The three axes of elastic symmetry 1-2-3 coincides 

with the three far-field principal stress directions also, the global coordinate axes X-Y-Z, b) 

Z-X plane of Figure 3a. The fracture is subjected to constant internal net pressure P. 

 

 8.1 Development 

If we consider a uniformly pressurized fracture in an orthotropic body (see Figure 8-1) and if plane 

XZ is in the state of plane strain, the analytical solution for induced normal stress components in 

the directions X and Z along the line Z=0 is given as (Azhdari et.al, 2000), 
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The terms 1 and 2 are the complex roots of the following characteristic equation, 
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The material constants ija  are related to engineering constants as, 
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For plane strain problems, the constants ija  in Eq. 8.4 should be replaced with ijb in Eq. 8.5, 
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Eq. 8.5 is obtained by equating the strain components in Z direction to zero in stress-strain relations 

for orthotropic material. Finally, for the condition of plane XZ in the state of plane strain, the 

induced stress component in Y-direction (i.e. parallel to fracture length) can be expressed as, 

 ( 0) 13 ( 0) 23 ( 0) 33/yy z xx z zz za a a          (8.6) 

If a fracture is discretized along its length (a plane cut normal to the fracture height) into N constant 

displacement discontinuity elements, the normal and shear stresses at each element center can be 

represented as, 
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where
ij

nsA , etc., are the influence coefficients that gives normal/shear stress on element i  due to 

unit normal/shear displacement discontinuity acting on element j  in an orthotropic rock. The Eq. 
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8.7 is conventional DD formulation for stress vectors with a correction factor G introduced to 

account for the fact that the fracture height, H, might not be the largest fracture dimension.  

Consider the two limiting cases where H   and 0H   for the configuration depicted in Figure 

8-1. One can argue that the corresponding G factor (in Eq. 8.7) for these two limiting cases must 

be 1 and 0 respectively. This is because, when H  , the Eq. 8.7 should revert back to original 

DDM formulation, as a result G factor must be 1. On the other hand, when 0H  , the induced 

stresses around the fracture must reach zero; thus G factor must be zero in this case. 

Following the approach of Olson (2004), if we write the analytical expression for XX  from Eq. 

8.1 in the following form by replacing X with ijd  (representing the distance between the 

displacement discontinuity elements i  and j ), 
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   (8.8) 

the limiting conditions of G described above are satisfied. Moreover, as we are trying to match the 

numerical solution with analytical solution for the component XX , Eq. 8.1 is obvious choice for 

constructing the G factor. For instance, if the distance ( ijd ) between the elements i and j is 

extremely large compared to the fracture height (H), the ijG goes to zero and the influence of 

element j on element i is nullified in Eq. 8.7. Similarly, if fracture height is extremely large 

compared to the distance between the elements i and j, ijG goes to 1; therefore the influence of 

element j on element i is unaltered from original DD formulation. For all other intermediate values 

of /ijd H , ijG is between 0 and 1 and therefore reduces the strength of influence coefficients between 

the elements i and j by a factor. 
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The constants alpha and beta are curve fitting constants and they are found by trial and error to 

give the best fit between the analytical solution of xx from Eq. 8.1 and the numerical DDM 

solution of xx with G factor from Eq. 8.7 for the problem depicted in Figure 8-1,  when L/H>>1. 

The original values of alpha and beta (i.e. 2 and 1 respectively from Eq. 8.1) can be used as initial 

guesses.  

For an orthotropic material with properties given in Table 8-1 (Young’s modulus values are 

displayed on figures and shear modulus Gxz is obtained using Eq. 8.9), Figure 8-2a shows that 

=1.25 and  =0.98 yield the best fit between the normalized solutions of xx from DDM with ijG

(Eq. 8.7) and analytical formula (Eq. 8.1). Although the best values for  and  are obtained by 

matching only the xx component, comparison of yy (i.e. in the direction of fracture length) 

component between analytical (Eq. 8.6) and numerical (Eq. 8.7) solutions indicate a higher 

deviation (see Figure 8-2b) similar to isotropic case, however is within the acceptable range. 

Overlaid numerical solutions of induced xx and yy components in Figure 8-2 that are obtained 

without using 3D correction factor G indicates gross overestimation of stresses around a fracture, 

when L/H>>1.  
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Figure 0-51. a) Comparison between analytical and numerical solutions of induced stress 

(compressive stresses are positive) components in X and, (b) Y-directions around the 

fracture in a homogeneous elastic orthotropic body shown in Figure 1. Analytical solution 

corresponds to the limiting case of a fracture with finite height H and infinite length. 

Numerical solution corresponds to a fracture of height H and length L, where L/H>>1. 

 

Table 0-8. Elastic constants for orthotropic body in the coordinate system XYZ. 

Elastic constants Value 

YXv  0.25 

ZYv  0.10 

ZXv  0.08 

 

 8.2 Sensitivity 

Unlike isotropic case (Olson, 2004), the 3D correction factor G for anisotropic DDM is not purely 

geometric, since Eq. 8.8 includes material constants. This is because of the directional dependence 

of material properties in an anisotropic body. This also means that the G factor for anisotropic 

body not only adjust the DDM solution for finite fracture height, but also considers the effect of 

material properties in the direction of fracture height. As a result, it is expected that the fitting 
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parameters  and  of G from Eq. 8.8 to have some dependency on material properties. A 

sensitivity analysis is conducted by only varying the elastic parameters EX, EY, EZ, and Gxz while 

keeping the other elastic constants same as in the Table 8-1 to study the effect of material properties 

on curve fitting constants  and  . The results from Figure 8-3 indicate that the empirically 

derived constants  =1.25 and  =0.98 are very stable for a wide range of Young’s modulus 

values, while the Poisson’s ratio values are kept constant in an orthotropic body. On the other hand 

for a transversely isotropic rock with completely different set of properties given in Table 8-2, the 

best values of  and   are found to be 1.15 and 0.97 respectively from Figure 8-4. Nevertheless, 

the G factor for anisotropic DDM can be readily recalibrated (i.e. finding new values of  and 

) for any specific set of orthotropic (or transversely isotropic) rock properties.  
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Figure 0-52. (c-h) Study of sensitivity of fitting parameters  and  to rock properties. 

Analytical solutions correspond to the limiting case of fracture with finite height H and 

infinite length. Numerical solutions correspond to a fracture of height H and length L 

where L/H>>1. 
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Figure 0-53. Normalized induced stress component xx from numerical solution (Eq. 7) 

matched with analytical solution (Eq. 1) with curve fitting parameters  and , 1.15 and 

0.97 respectively. The material properties of the transversely isotropic rock are given in 

Table 8-2. 

 

 

Table 0-9. Elastic constants of a transversely isotropic rock (Figure 1) in the coordinate 

system XYZ 

EX 

(GPa) 

EY 

(GPa) 

EZ 

(GPa) 

v XY v XZ GXZ 

(GPa) 

19.6 19.6 10.4 0.16

6 

0.25 5.0 
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9 Effect of Anisotropy on Hydraulic Fracture Propagation at Field Scale 

 

In the previous chapter, the effect of rock anisotropy on fracture opening and induced stresses is 

discussed using a single uniformly pressurized plane strain fracture. In this chapter, we will 

consider numerical simulations of propagation of simultaneous hydraulic fractures from a 

horizontal wellbore at field scale using enhanced 2D DDM based model and the effect of rock 

anisotropy on fracture geometry and opening is discussed. Figure 9-1 shows cross-sectional view 

of a fracture and anisotropic rock configuration. ‘f’ is a vertical fracture with height ‘H’ parallel to 

axis Z, which is also the direction of principal vertical stress. The length ‘L’ of the fracture ‘f’ is 

taken parallel to the axis X, which is also the direction of maximum principal horizontal stress. 

The minimum principal horizontal stress is in the direction of axis Y and the plane XY is a 

horizontal plane. It is also assumed that the height of the fracture ‘f’ is contained to payzone 

thickness ‘H’ due to high stress barriers acting above and below it. Therefore, fracture propagation 

occurs only along the lateral direction. Axes 1, 2 and 3 indicate the axes of rock’s elastic symmetry. 

For a vertical transversely isotropic rock (VTI) the horizontal plane 1-3 is isotropic.  

The configuration of multiple vertical fractures from top view (i.e. XY plane view) is shown in 

Figure 9-2. In multi-stage hydraulic fracturing, multiple horizontal wells (typically 2 to 4) are 

stimulated in multiple stages (ranging 10-15) sequentially or simultaneously from toe to heel 

(Waters et al. 2009). A fracturing stage typically consists of 4 to 7 clusters of perforations that are 

evenly spaced. Traditionally, in all fracture models a single fracture per cluster is assumed. Based 

on this assumption, Figure 9-2 shows two fracturing stages that are created sequentially (i.e. Stage-

2 follows Stage-1) from toe to heel with each stage containing three hydraulic fractures that 

emerged from three perforation clusters. Following the rock and fracture configuration depicted in 
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Figures 9-1& 9-2, we will consider single and multi-stage hydraulic fracturing numerical examples 

to study the effect of rock anisotropy on resultant fracture lengths and apertures.  

 

Figure 0-54. Geometry of a vertical fracture ‘f’ in an anisotropic rock. Fracture height H is 

contained. 1, 2 and 3 are the three axes of rock’s elastic symmetry. If the horizontal plane 

1-3 is isotropic, the rock is called vertical transversely isotropic rock. 
 

For all the examples consider below, the injection fluid is taken as slick water with viscosity 1 cP. 

The injection rate for each stage is 50 bpm and injection time for each stage is 17 min. We assume 

that the rock is impermeable and the effect of fluid leak-off is ignored. All fractures have a constant 

height of 30 m, whose effect in the solution of displacement discontinuity method is considered 

using a correction factor (see Chapter 8). The stress contrast in the horizontal plane is taken as 1 

MPa to encourage complex fracture growth. Unless otherwise mentioned, in all examples (both 

isotropic and anisotropic) fracture toughness is taken as 2 MPa.m0.5 and perforation friction is 

ignored. 
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Figure 0-55. Layout of a single lateral with two stages created sequentially from toe to heel. 

Each stage contains multiple perforation clusters, where a single fracture is emerged from 

each cluster. 

 

 

Table 0-10. Properties of Rock-A 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

KIC 

(Mpa.m1/2) 

40 40 10 0.15 0.185 7.45 2.0 
 

 

 9.1 Numerical Examples 

9.1.1 Example-1 Single Stage Hydraulic Fracture Simulation in Rock-A 

The first example investigates the effect of rock anisotropy on single stage hydraulic fracturing. 

Two different vertical transversely isotropic rocks are considered. The first one is Argillaceous 

shale (which is referred hereon as Rock-A) with high degree of anisotropy 4 (see Table 9-1), and 

the second one is Woodford shale (which is referred hereon as Rock-B) with moderate degree of 

anisotropy 1.88 (see Table 9-2). To highlight the effects of rock anisotropy on the results, isotropic 
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results are also presented for comparison. Isotropic results are obtained using the Young’s modulus 

and Poisson’s ratio of the isotropic plane in VTI rock (i.e. E1 and v13 according to Figure 9-1).  

 

Figure 0-56. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-A using 

anisotropic model. 
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Figure 0-57. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-A using isotropic 

model. 

 

The fracturing stage contains 6 perforation clusters with even spacing of 30 m (i.e. the ratio of 

spacing to fracture height is 1). Assuming an initial fracture of length 2 m from each perforation 

cluster, the numerical results after 17 min of fluid injection are shown in Figures 9-3& 9-4 for 

Rock-A from anisotropic and isotropic models.  

At the first glance, one can see that the isotropic model overestimated lengths of all 4 inner 

fractures and underestimated the apertures of 2 outermost fractures. Both isotropic and anisotropic 

models predicted early termination of fractures adjacent to the dominant outer ones. However, in 

anisotropic model this effect is much more pronounced. Based on the analysis of induced stresses 

around a single static plane strain fracture from the previous chapter, we note that in VTI rock, the 

induced stresses normal to the surface of a vertical fracture increases in magnitude and areal extent 
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with increase in degree of anisotropy compared to isotropic case. As a result, the 30 m spacing 

between the clusters is insufficient in Rock-A to avoid early termination of inner fractures due to 

stress shadow effect. Also, note that based on the analysis of a single static plane strain fracture 

from the previous chapter, a vertical fracture in a VTI rock would observe much higher opening 

compared to isotropic case. However, in the case of closely spaced multiple fractures, only outer 

fractures observed increase in fracture apertures. The increased effect of stress shadow between 

the fractures in anisotropic rock suppressed both lateral growth and opening of inner fractures as 

seen from Figure 9-3. 

 

Table 0-11. Properties of Rock-B 

E1 

(GPa) 

E3 

(GPa) 

E2 

(GPa) 

v 13 v 12 G12 

(GPa) 

KIC 

(Mpa.m1/2) 

19.6 19.6 10.4 0.16

6 

0.25 5.0 2.0 

 

9.1.2 Example-2 Single Stage Hydraulic Fracture Simulation in Rock-B 

In this example we consider fracture propagation in Rock-B which is moderately anisotropic 

compared to Rock-A, while keeping the remaining input parameters same as in Example-1. The 

results obtained using isotropic and anisotropic models are presented in Figures 9-5& 9-6. One 

can see that even in the case of a moderately anisotropic rock, the effect of rock anisotropy on 

fracture propagation is evident. The anisotropic model predicts much smaller lengths and apertures 

for inner fractures due to increase in stress shadow effect between the fractures. Another interesting 

aspect of these results is that the predicted lengths of inner fractures adjacent to the dominant 

outermost fractures by isotropic model for Rock-B are much lower compared to isotropic model 
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results for Rock-A. From previous chapter, we note that the induced stresses normal to fracture 

surface are independent of elastic properties in isotropic rock for the case of single static uniformly 

pressured plane strain fracture. Although this is generally the case for a single fracture in isotropic 

rock, however, in the case of multiple fractures, relative opening of each fracture is important since 

the flow partition into fractures is proportional to the cube of fracture opening at the inlet (based 

on cubic law). The lower Young’s modulus of Rock-B (which is about 50% of Rock-A’s isotropic 

Young’s modulus) facilitated higher opening of outer fractures, allowing them to take the most 

fluid and resulting in early termination of inner fractures adjacent it. This analysis suggests the 

strong coupling nature of simultaneously propagating multiple fractures where a simple predictive 

relationships between fracture lengths and rock elastic properties cannot be defined.  
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Figure 0-58. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-B using 

anisotropic model. 
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Figure 0-59. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-B using isotropic 

model. 

 

Table 0-12. Properties of Rock-C. 

E1 (GPa) E3 (GPa) E2 (GPa) v 13 v 12 v 23 G13 (GPa) G12 (GPa) G23 (GPa) KIC (Mpa.m1/2) 

19.6 11.85 10.4 0.16 0.25 0.25 6.56 5.0 5.0 2.0 

 

9.1.3 Example-3 Single Stage Hydraulic Fracture Simulation in Rock-C 

In the previous examples, propagation of multiple hydraulic fractures is considered in vertical 

transversely isotropic rocks. Although most of the laboratory experiments on core size shale 

samples characterize shale as transversely isotropic, in general, rock masses can possess additional 

degree of anisotropy due to the presence of natural fractures sets or rock stratification. For 

example, an isotropic rock mass containing three orthogonal sets of natural fractures can be treated 

as orthotropic rock when deformation is viewed at large scale. If a rock has dense network of 
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natural fractures with well-defined orientation as indicated in Figure 9-7, modeling every natural 

fracture explicitly is impractical due to unreasonable computation time. Rather it is much easier 

and computationally efficient to treat such rocks as anisotropic. This is illustrated in this example 

by considering a vertical transversely isotropic rock (Rock-B) with evenly distributed vertical 

natural fractures (indicated by black lines in the plane XY) that are oriented at an angle  with 

respect to minimum principal horizontal stress direction (i.e. Y-axis) as indicated in Figure 9-7.  

Assuming the directions parallel and perpendicular to the natural fractures as the directions of the 

axes of elastic symmetry 1 and 2 in the plane XY, and d is the spacing between the natural fractures, 

the new elastic constants in the plane 1-2 are given as (Goodman, 1976), 

1 1

1
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1 /
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E E
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






                                                                                                          (9.1)                                                 

where Kn and Ks are natural fractures normal and shear stiffness respectively. Taking the elastic 

constants of Rock-B given in Table 9-2 and Kn, Ks as 30 GPa/m, and the spacing between natural 

fractures d as 1 m, the induced degree of anisotropy due to the presence of natural fractures in the 

plane 1-3 (E1/E3) is 1.65 using Eq. 9.1. Note that plane 1-3 is isotropic before including the effect 

of natural fractures. Therefore, a transversely isotropic rock (Rock-B) with natural fractures gives 

an equivalent anisotropic rock that is orthotropic and will be referred as Rock-C hereon. The 

complete list of nine independent elastic constants of Rock-C is given in Table 9-3. 
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Figure 0-60. Cross section of a vertical transversely isotropic rock with vertical natural 

fracture sets (indicated by black lines) with spacing d and orientating at an angle  with 

respect to the direction of minimum principal horizontal stress (i.e. axis Y). 
 

Figure 9-8 shows computed fracture geometry and apertures for Rock-C using anisotropic model 

while keeping the other input parameters same as previous examples. This result belongs to the 

case where the orientation of natural fractures is parallel to minimum principal horizontal stress or 

Y-axis (i.e.  =00). It can be seen that the predicted lengths and apertures of all four inner fractures 

are much smaller than those observed for Rock-B. The presence of anisotropy in the horizontal 

plane XY further enhanced the stress shadow effect between the fractures which negatively 

impacted the growth of inner fractures while creating dominant outer fractures with much higher 

fracture opening compared to those observed in Rock-B (see Figures 9-5& 9-6).  
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Figure 0-61. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-C with  =00. The 

presence of rock anisotropy in the horizontal plane further enhanced the interaction 

between the fractures affecting the lateral growth of inner fractures negatively. 

 

To study the effect of the orientation of the axes of elastic symmetry with respect to the direction 

of fracture propagation, we considered a case where  =450 and the computed results are 

presented in Figure 9-9. The results indicate early termination of all four inner fractures and growth 

of two dominant outer fractures with very high apertures. We noted from the stress analysis of a 

single pressurized plane strain fracture that the induced stresses normal to the fracture surface will 

gradually decline as the direction of maximum Young’s modulus is rotated from its direction 

perpendicular to the fracture surface (see Chapter 2). The observed results from Figure 9-9 are 

contrary to this where all inner fracture growth is highly suppressed. This is because, as the 

direction of maximum Young’s modulus is rotated from its direction perpendicular to the fracture 
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surface, the fractures will open against lower Young’s modulus. As noted in Example-2, the lower 

Young’s modulus creates high fracture opening in outermost fractures allowing them to take most 

fluid while leaving the inner fractures unstimulated. 

The last variation of this example is a case where the rock possess fracture toughness anisotropy. 

As discussed previously (see Chapter 7), we assume that minimum fracture toughness of the rock 

is observed in the direction parallel to the natural fractures (i.e. direction 1 in Figure 9-7) and 

maximum fracture toughness of the rock is observed in the direction perpendicular to the natural 

fractures (i.e. direction 2). For any arbitrary direction, the fracture toughness is obtained using an 

elliptical expression shown in Eq 7.12 from Chapter 7. Taking the maximum value of fracture 

toughness as 2 MPa.m0.5 and minimum value of fracture toughness as 1 MPa.m0.5 (i.e. the degree 

of fracture toughness anisotropy is 2), the computed results for Rock-C with  =450 are presented 

in Figure 9-10.  

 

Figure 0-62. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-C with  =450. In 
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this case, the fractures opened against the direction of much lower Young’s modulus which 

created higher fracture opening in outermost fractures that allowed them to take most 

fluid while leaving the inner ones unstimulated. 

 

Two different observations can be made from this result. The first one is that the lengths of the 

inner most fractures are greatly improved compared to the previous two cases and the second one 

is asymmetrical lateral growth of inner fractures. The improvement in the lateral growth of inner 

fractures can be attributed to decrease in rock’s resistance for fracture propagation (due to fracture 

toughness anisotropy) and decrease in stress shadow effect between the fractures as the fractures 

are no longer perpendicular to the direction of maximum Young’s modulus since  =450. The 

asymmetry in lateral growth of inner fractures can be attributed to rotation of stress shadow 

towards the direction of maximum Young’s modulus (see Figure 3-2) due to which the growth of 

fractures in the direction of maximum Young’s modulus is suppressed to an extent. In this 

example, the degree of rock anisotropy in the horizontal plane XY is just 1.65. For much higher 

degree of anisotropy in the horizontal plane, a greater asymmetry in the fracture lengths can be 

expected. We can also notice some tilt in the direction of fracture growth in the XY plane (note 

that the amount of tilt appears in Figure 9-10 is exaggerated due to distorted scale in the XY plane). 

This is due to fact that the fractures trying to orient towards the direction of least fracture toughness 

(which is at 450 with respect to Y-axis). 
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Figure 0-63. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-C with  =450. 

The rock has fracture toughness anisotropy of degree 2 in XY plane. Note that the amount 

of fracture tilt appears in the figure is exaggerated due to distorted scale in the XY plane. 

 

Nevertheless, even in the presence of fracture toughness anisotropy, all fractures still appear to 

propagate towards the direction of maximum principal horizontal stress (i.e. along X-axis) 

although the stress contrast is just 1 MPa. This result is consistent with the results of near wellbore 

fracture propagation (Sesetty and Ghassemi, 2018), where far-field stress directions are observed 

to have dominant control on fracture paths compared to fracture toughness anisotropy. 

9.1.4 Example-4 Multi-Stage Hydraulic Fracture Simulation in Rock-B 

In this example we will consider numerical simulation of multi-stage hydraulic fracturing of a 

single lateral well. The well and fracture layout is shown in Figure 9-2. The well is stimulated in 

three stages working from toe to heel with each stage consisting of six perforation clusters. Each 
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stage has a span of 200 m along the lateral with 40 m spacing between perforation clusters. The 

spacing between outermost fractures of two subsequent stages is also 40 m (this is usually referred 

as stage spacing). Each fracturing stage is stimulated for 17 min by injecting slick water at 50 bpm.  

In field, prior to the stimulation of later stages, previous stages are either propped or kept 

pressurized by preventing fluid flow-back to avoid closure of created fracture network. Due to 

gradual leaf-off of fluid into formation and stress shadowing from the current stage fractures, the 

previous stage fractures will experience some fracture closure. In numerical simulations, this 

behavior can be simplified by assigning a specified amount of closure to previous stage fractures. 

The induced stresses due to the retained apertures of fractures from previous stages on the current 

stage fractures is explicitly calculated at every time step. This approximation considers closure of 

fractures from previous stages and their stress shadowing effect on current stage fractures without 

involving high computational effort that would be required if all fractures from all stages (previous 

and current) are solved as a coupled system. In this example, all previous stages fractures are 

assumed to hold only 70% for their total widths (note that the fracture apertures displayed in the 

results are total values obtained at the end of injection into each stage).  
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Figure 0-64. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into each of the three stages in Rock-B using anisotropic model. 

 

Figure 0-65. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into each of the three stages in Rock-B using isotropic model. 
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Figure 0-66. Comparison of injection pressure profiles for all 3 stages for Rock-B obtained 

from anisotropic model. 

 

 

Figure 0-67. Comparison of injection pressure profiles for all 3 stages for Rock-B obtained 

from isotropic model. 

 

The numerical results for Rock-B from isotropic and anisotropic models are shown in Figures 9-

11& 9-12. In Stage-1, which was created at the toe of the well, all the six clusters were stimulated 

in both isotropic and anisotropic models. However, in Stages 2& 3, only 5 clusters were stimulated 

in isotropic model. Anisotropic model shows stimulation of only 4 clusters from Stage-2 and 5 

clusters from Stage-3. This is due to stress shadow effect from previous stage fractures. Moreover, 

the outermost fracture on the heel side of Stages 2& 3 appear to achieve largest length among all 
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fractures especially in anisotropic model. This phenomenon is generally referred as “heel bias” 

and has been well reported in micro-seismic data from field operations (Waters et al. 2009).  The 

increased stress shadow effect due to rock anisotropy exerted significant negative influence on 

lateral growth of inner fractures in all three stages, thereby allowing the outer most fractures (on 

the heel side) to achieve the largest lengths. One can also see that the predicted fracture lengths 

and apertures in each stage is markedly different between isotropic and anisotropic models even 

for a rock with degree of anisotropy just 1.88.  

The net injection pressure at the wellbore during all three fracturing stages from isotropic and 

anisotropic models is given in Figures 9-13& 9-14. The injection pressure initially observed drop 

and later approached an almost constant value (a slight upwards trend can be noticed due to height 

containment and fractures attaining PKN geometry) in all stages. Appreciable increase in injection 

pressures in subsequent stages (i.e. Stages 2& 3) is not observed in both isotropic and anisotropic 

models. There is a misconception that subsequent stage fractures observe higher injection 

pressures compared to previous stage fractures as the new fractures are created in the presence of 

stress shadow. This could be true for the case of a single fracture created in the presence of high 

stress shadow. However, when multiple clusters are present spanning a large area, the injected 

fluid can migrate into clusters that are least affected by the stress shadow, thereby acting as a 

pressure relief mechanism while leaving the clusters most affected by stress shadow unstimulated 

(see Figures 9-11& 9-12). This phenomenon is also mentioned in (Waters et al., 2009) where 

increasing trend of injection pressures was not observed when stimulating a lateral from toe to heel 

in a field operation.  
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Table 0-13. Perforation properties. 

n 

(number of perforations per cluster) 

D 

(diameter of perforation, inch) 

C 

Perforation coefficient 

15 0.4 0.5 

 

9.1.5 Example-5 Effect of Perforation Friction 

Previous examples demonstrated the effect of rock properties on simultaneous propagation of 

multiple hydraulic fractures in the absence of perforation friction. When perforation friction is not 

accounted, the injection pressure in the wellbore and fluid pressure inside the fractures at their 

inlet will be very close and the flow partition into each fracture will be primarily controlled by 

fracture opening at the inlet (which is affected by stress shadow). The fractures with relatively 

higher opening will take the most fluid while leaving the remaining clusters unstimulated. By 

introducing perforation friction, the flow partition between the clusters can be equalized by 

overcoming the effect of stress shadow. This example demonstrates the effect of perforation 

friction on hydraulic fracture propagation. The Example-1 is repeated with the perforation 

parameters given in Table 9-4 and the computed result using anisotropic model is given in Figure 

9-15. 
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Figure 0-68. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-A considering 

perforation friction. 

 

One can see equal fracture growth from all perforation clusters in this case. By introducing 

perforation friction the net injection pressure in the wellbore is kept at higher value than the net 

pressure inside the fractures as indicated in Figure 9-16. The difference between these values is 

perforation friction. Since the pressure drop at each cluster inlet is proportional to the square of 

the flow rate into that cluster (according to Eq.), as the flow rate into a cluster dominates, its 

pressure drop increases, thereby forcing to the fluid into other clusters that are taking less fluid. 

The method of optimizing flow partition between the clusters has been demonstrated before 

(Cheng et al. 2016) and is referred as “Limited Entry Technique”. Although this technique should 

work in theory, however, in practice the perforation friction deteriorates with time due to 

perforation erosion from injection rates higher than the rated values and abrasive proppant (Crump 

and Conway, 1988) and affects fracture propagation. To demonstrate this, we repeated the above 
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example with perforation erosion where perforation friction deteriorates with time and the 

computed results are shown in Figures 9-13& 9-14. The perforation properties given in Table 9-4 

are altered with time as follows 

0.4 inch, C=0.5 : 0-200 sec

0.6 inch, C=0.7 : 201-500 sec

0.8 inch, C=0.9 : 501-1000 sec

D

D

D







 

We note that the inner fractures still observed appreciable growth, however is less than the case 

where perforations are not eroded (see Figure 9-11). Also, in these example we assumed that all 

15 perforations (Table 9-4) in a clusters are in communication with injection fluid. However, in 

practice some clusters can have poor perforation connectivity where all 15 perforations may not 

be in communication with the fluid. This can alter the flow partition between the clusters 

considerably and should be accounted.  

 

 

 

 

Figure 0-69. Net injection pressure at wellbore and maximum net pressure inside fractures 

at inlet for the numerical simulation shown in Figure 9-11. The difference between these 

two values gives perforation friction. 
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Figure 0-70. Fracture geometry and aperture distribution obtained after injection 17 min 

of slick water injection into six perforation clusters spaced 30 m in Rock-A for the case 

with deteriorating perforation friction. 

 

 

Figure 0-71. Net injection pressure at wellbore and maximum net pressure inside fractures 

at inlet for the numerical simulation shown in Figure 12. The difference between these two 

values gives perforation friction. After some time, the perforation friction drops to zero due 

to erosion. 
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 9.2 Summary 

In this chapter numerical examples illustrating simultaneous and sequential multiple hydraulic 

fracture propagation at field scale considering both rock modulus anisotropy and strength 

anisotropy are presented. A 2D DDM based fracture propagation model is employed for numerical 

simulations. All fractures are assumed to have a fixed height and the effect of fracture height in 

the solution of 2D DDM is accounted using a correction factor.  

Analysis of field-scale fracture propagation shows the importance of rock anisotropy on interaction 

between simultaneously propagating multiple parallel fractures. One might consider rock 

anisotropy to be advantageous since the opening of a vertical fracture is enhanced with increase in 

degree of anisotropy in a VTI body as discussed in Chapter 7, however, the increase in induced 

normal stresses perpendicular to the fracture surface (see Figure 3-2) will negatively impact the 

fracture growth when fractures are closely spaced (which is critical to maximize stimulated 

reservoir volume). One of the shortcomings of 2D models is the assumption of infinite fracture 

height. However, the correction factor developed herein (see Chapter 8) can remedy this aspect to 

a large extent. On the other hand, semi-analytical planar 3D height growth models (see Chapter 9) 

do not account for the interaction between multiple fractures and are limited only to planar 

fractures. The fixed height plane strain numerical models such as 2D DDM with height correction 

factor are computationally efficient and can assess field scale non-planar fracture propagation and 

complex fracture networks while capturing the main features of the problem. For example, 

comparison between the 2D DDM and 3D results of fracture opening and length for the problem 

of a single planar fracture propagating between two symmetrical stress barriers indicates very close 

match for two different values of fracture toughness corresponding to viscous and toughness 
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regimes (see Chapter 3). The results of zipper fracturing from isotropic 2D DDM (Sesetty and 

Ghassemi, 2015) compares well with fully 3D isotropic DDM model (Kumar and Ghassemi, 

2016). Also, the injection pressures and fracture trace (non-planar) from 2D DDM (Sesetty and 

Ghassemi, 2017a) is in very good agreement with laboratory results of Kear et al. (2013). In 

situations where fracture height growth cannot be ignored, and consideration of out of zone issues 

are needed, a complete 3D model is essential. Such models have been developed but even DD-

based models come with additional computational costs and with the present computational 

resources they are not suitable for field-scale simulations. On the other hand 2D DDM simulations 

can be performed in reasonable time. The examples demonstrated in this chapter shows fractures 

where their lengths reach up to 800 m. The typically computation time for simulating a single stage 

with 6 clusters at field scale is around 3 hours on a desktop.  

Field scale multi-cluster multi-stage fracturing simulations indicate the strongly coupled nature of 

the problem. The results are very sensitive to cluster spacing, rock stiffness, modulus anisotropy, 

fracture toughness, fracture toughness anisotropy and perforation parameters. These results 

indicated that rock modulus anisotropy enhances stress shadow effect between the fractures and 

therefore for spacing consideration between perforation clusters, the rock anisotropy must be 

accounted for optimal fracture growth from all perforation clusters. It is also interesting to note 

than even with low differential stress (1 MPa), fractures in all the stages have well defined 

azimuths pointing almost towards the direction of maximum principal stress (i.e. axis X). The 

rotation of these fractures was unlikely due to moderate net pressure buildup (see Figures 9-13& 

9-14) that decreases with time and is not significant to cause stress reversal near the fractures. 

Also, when injecting fluid into multiple clusters, the fluid can always migrate into a fracture, which 

has least resistance (i.e. fracture which is least affected by stress shadowing of other fractures) to 
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opening thereby creating dominant fractures. Note that coalescence between fractures is possible 

under low differential stress conditions provided the spacing between the fractures is very low and 

the injection fluid is forced into the clusters by artificially elevating the injection pressures using 

perforation friction to overcome stress shadow between the fractures.  

Overall, including rock anisotropy in fracture propagation models can be beneficial as they provide 

better understating of micro-seismic cloud patterns observed during multi-stage fracture 

stimulation process and facilitate optimization of completion strategies to achieve maximum 

stimulated reservoir volume.   
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10 Planar Height Growth Model for Anisotropic Rock 

 

Fracture propagation models that consider all aspects (length, height growth, non-planarity and 

poroelasticity) in 3D (Kumar and Ghassemi, 2016& 2018) increase computational cost and could 

even become prohibitive to model multiple fractures at field-scale. Hence P3D (Planar-3D) models 

have been developed to reduce computational costs while addressing the shortcoming of early 2D 

models such as KGD and PKN. Both of these models are used to describe evolution of length and 

apertures of a vertical fracture while assuming a fixed fracture height.  

In order to study the effect of material elastic anisotropy on hydraulic fracture height growth, in 

this work, the P3D model is extended to orthotropic rock for the case of a single fracture. Then, 

the single fracture P3D model is extended to the case of multiple fractures using the anisotropic 

2D DDM to simulate interaction between the fractures. The DD approach includes the new 3D 

correction factor (see chapter 8) derived to improve the accuracy of induced stress calculations. 

The model is used to simulate and analyze hydraulic fracturing in anisotropic rock. Results for a 

single fracture P3D and 2D DDM in isotropic body are compared with 3D model results to assess 

the model accuracy. Then, simulations of large-scale simultaneous propagation of multiple 

fractures are carried out to compare fracture interactions in anisotropic and isotropic formations.  
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Figure 0-1. Infinite orthotropic body with line segment ‘f’ of length 2a parallel to Z-axis 

and extends to infinity in the direction of Y-axis. 1-2-3 are the material’s axes of elastic 

symmetry. X-Y-Z and 1-2-3 are in the same plane. 

 

Consider an infinite elastic homogeneous orthotropic body with three principal axes of elastic 

symmetry in the directions 1, 2 and 3 as indicated in Figure 10-1. It is assumed that: (i) line segment 

‘f’ has length 2a in the direction of Z-axis and extends to infinity in the direction of Y-axis (i.e. 

perpendicular to the plane X-Z), (ii) as a result, the plane strain condition applies in the plane X-

Z. Noting that the coordinate systems 1-2-3 and X-Y-Z lie in same planes, the induced stress in 

the X-direction at any point p (z, 0) along the line segment due to a single edge dislocation vector 

b (indicated by red color in Figure 10-1) on the line segment at a distance   from point p (z, 0) is 

given as (Azhdari et al., 1999; Obata et al., 1989), 
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In the above equation, xb  and zb  are edge dislocations in the directions X and Z respectively. μ1, 

etc., are complex roots of the characteristic equation (Eq. 10.2) that always occur as conjugates 

(i.e.
3 1 4 2 and       ). For consistency with the reference material, 1 and 2 always indicate 

complex roots of characteristic equation (Eq. 10.2) with positive imaginary parts.  
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where ija are material constants in the new coordinate system 1’-2’-3’ with 
00  and 090  ( is 

rotation angle of coordinate system 1-2-3 about axis 3, and  is rotation angle of coordinate system 

1-2-3 about axis 2). Their relationship with engineering constants is given in Appendix C.  

The solution given in Eq. 1 can be generalized for continuous distribution of dislocations (of 

different magnitudes) along the entire length of 2a using principal of superposition, and the 

resultant induced stress in the X-direction at a point (z,0) on the line segment ‘f’ is (Azhdari et al., 

1999; Crouch and Starfield, 1983), 
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where ( )xb  and ( )zb  are dislocation density functions in X and Z directions respectively and they 

are related to fracture opening ( ( )w  ) and fracture ride ( ( )r  ) as  
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   (10.4) 

When ( )zb  is zero (which is the case when crack is free of shear stresses and when the crack axes 

X-Y-Z coincides with the material axes 1-2-3), and noting that induced normal stresses on crack 

face ( ,0)XX z  is equal to the net pressure inside the crack ( )p z , the Eq. 10.3 is simplified to Eq. 

10.5. (The complex situations that arise when material axes 1-2-3 are not aligned with fracture 

axes X-Y-Z are discussed later)  
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The equivalent expression for isotropic body is given as (Spence and Sharp, 1985) in Eq. 10.6.  
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where G is shear modulus and v is Poisson’s ratio. 

Noting the symmetry in pressure and aperture profiles about the center of the crack the Eq. 10.5 

can be further simplified to Eq. 10.7.  

1

2 2

11 0 0

2 '( )
( )

a
w

p z d
b z

 


 




     (10.7) 

which is inverted using Hilbert transform (see Spence and Sharp, 1985) to give '( )w z as in Eq. 

10.8. 
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where 'C  is a constant which is taken as zero to bound 'w  at z=0. Finally, integrating the above 

equation with respect to z (see Spence and Sharp, 1985) with the boundary condition ( )w a =0 

gives an integral equation that relates fracture aperture with pressure distribution inside a line 

fracture of length 2a in an orthotropic rock body.  
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Figure 0-2. Geometry of a symmetrical planar fracture ‘f’ with length L and height h such 

that L/h>>1. H is the thickness of payzone. 

 

 10.1 Formulation of a Single Fracture P3D Model 

10.1.1 Fracture Aperture 

Consider an infinite orthotropic formation subjected to far-field compressive stress of magnitude 

σ in the X-direction over a thickness H (payzone) as indicated in Figure 10-2. The payzone is 

bounded by two symmetrical higher stress zones that extends to infinity, where far-field stress 
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magnitude in X-direction is σ+σb. Also, the maximum principal stress is always parallel to Z-axis. 

If we consider a symmetrical fracture ‘f’ with geometry shown in Figure 10-2, that extends into 

the higher stress zones and has a total height ‘h’ that is much greater than its length L, it is 

appropriate to use plane strain condition in the plane X-Z. Moreover, we assume that fracture ‘f’ 

is free of far-field shear stresses and the axes of elastic symmetry coincides with the fracture axes 

X-Y-Z. Under these conditions and choosing origin ‘o’ at the center of payzone H (i.e. midpoint 

of fracture height h), one can use Eq. 10.9 to perform piece wise integration over the entire height 

h to obtain fracture aperture distribution for a given constant net pressure P inside the fracture. The 

resultant equation that relates fracture aperture, net pressure and height is given as, 

  

2 2 2 2
2 2

2 2 2 2

2 211 0 0 11

2 2 2 2
1 1

2 2 2 2

4 2
4 arcsin ln

4 2
( ) ( ) 4

2 4
ln

2 4

b
b

H H h z z h H
h z z

h H h z z h Hb b
w z P h z

H h z h H

h z h H






    
   

       
     

     
 

    

       (10.10) 

  

The equivalent expression for isotropic body is (Adachi et al., 2010)  
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where z is measured from the midpoint of payzone thickness H. The above equations can be used 

to calculate aperture profile in the plane X-Z (i.e. along fracture height) for a symmetrical fracture 

with three stress layers in isotropic or orthotropic bodies. In below sections Eq. 10.10/10.11 is used 

to develop P3D using a criterion that describes fracture height growth into the layers of higher 

stress. 
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10.1.2 Fracture Height 

Equilibrium fracture height growth model is developed based on the assumption that fluid pressure 

variation along the fracture height is negligible. In other words, viscous dissipation in the direction 

of fracture height is zero, therefore fracture growth is completely controlled by fracture toughness. 

The assumption of negligible viscous dissipation in the direction of fracture height is valid only 

when the rate of growth of fracture height is very small compared to rate of growth of fracture in 

the lateral direction. Therefore, equilibrium fracture height growth modeling only applies in 

situations where fracture height growth is restricted, such in the case of formation payzone 

surround by high stress barriers. Consider a vertical fracture in an orthotropic body as shown in 

Figure 10-2. Assuming plane strain condition in the plane X-Z, the mode-1 stress intensity factor 

due to distributed net pressure ( )p   along the entire fracture height 2h is given as (Barnett and 

Asaro, 1972), 

 1
( )

a

I

a

a
K p d

aa


 

 





                                                                                    (10.12) 

As stated above, fracture height growth is assumed to occur in toughness dominated regime, 

therefore the mode-1 stress intensity factor (KI) at fracture tips in the plane X-Z (see Figure 10-2) 

is always at equilibrium with fracture toughness of the rock (KIC). For a symmetrical fracture ‘f’ 

(Figure 10-2) in three stress layer formation, using the bounding conditions given in Eq. 10.13 and 

performing piece wise integration of Eq. 10.12 gives Eq. 10.14. 
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The above equation can be used to evaluate fracture height h, given the net pressure P inside the 

fracture, payzone thickness H, fracture toughness KIC and excess confining stress in bounding 

layers 
b . Note that equilibrium fracture height equation derived for anisotropic body (Eq. 10.14) 

is independent of material properties and is identical to isotropic case (Simonson et al., 1976). This 

is because the mode-1 (KI)  and mode-2 (KII) stress intensity factors in anisotropic body are 

independent of material properties (Sih et al., 1965) when the conditions of plane strain/stress 

exists and the loading on the fracture surface is self-balanced (i.e. net load on fracture is zero) as 

in the case of pressurized fractures (or hydraulic fractures). Note that in situations where viscous 

dissipation cannot be ignored in the direction of fracture height (such as in the cases of extremely 

low fracture toughness or inadequate fracture containment), Eq. 10.14 gives erroneous estimation 

for fracture height. As a remedy, Dontsov and Pierce (2015) proposed a correction term called 

apparent fracture toughness that can be added to the fracture toughness of the rock (KIC) to improve 

the accuracy of fracture height calculated from Eq. 10.14, however, the correction term is limited 

to a single plane strain fracture.  

The analytical expressions for fracture width and fracture height given in Eqs. 10.10/10.11& 10.14 

respectively for a plane strain fracture in a formation with multi-stress layers is used to develop a 

P3D model. Take a fracture with geometry depicted in Figure 10-2 and discretize it into small 

grids with each grid having its own height as shown in Figure 10-3. Assuming that X-Z plane 

strain condition holds for every grid, the height and aperture distribution along each grid segment 

can be related to the pressure inside that grid according to Eq. 10.10/10.11& 10.14 respectively. 

In order to account for viscous dissipation in the fracture lateral direction, fluid flow inside fracture 

is formulated as shown below.  
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Figure 0-3. A planar fracture having non-uniform height can be approximated by number 

of small segment grids each having its own height. 

 

10.1.3 Fluid Flow 

Assuming fracture as two smooth parallel plates, the fluid flux in the fracture in lateral direction 

is given by  
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where q is volumetric flow rate in the direction s per unit thickness of plate, µ is dynamic viscosity 

of the injection fluid, dp/ds is pressure gradient, and w is separation between parallel plates.  

As indicated before, pressure gradient is taken zero in the direction of fracture height; therefore, 

fluid flow approximation becomes one dimensional (i.e. along the fracture length). Eqs. 10.10& 

10.11 indicate that fracture aperture varies along height, as a result, the expression for flow rate 

given in Eq. 10.15 is replaced with an expression for average volumetric flow rate per unit payzone 

thickness inside fractures as (Dontsov and Peirce, 2015; Adachi et al., 2010),  
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The integral term in the above equation accounts for variation of fracture aperture along fracture 

height, which can be evaluated numerically for a given pressure and height using Eqs 10.10/10.11.  

Finally, the continuity equation inside fracture (excluding leak-off) is given as 
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where /w t   indicates storage (i.e. change in average aperture over a small change in time). The 

average aperture w  is defined as in Eq. 10.18 to account for variation of fracture aperture along 

fracture height and 
0Q  is volumetric injection rate of source which is prescribed.  
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Using the following initial and boundary conditions, the partial differential equation (Eq. 10.17) 

is approximated using finite difference method. 
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Eq. 10.19 indicates that initial fracture apertures are zero 
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Eq. 10.20 indicates no flow boundary condition at fracture tips assuming zero fluid-lag. 

 

 

 

10.1.4 Fracture Length 

Based on linear elastic fracture mechanics, fracture propagation in the plane XY (see Figure 10-2) 

takes place when mode-1 stress intensity factor reaches fracture toughness (Eq. 10.21) in isotropic 

(Erdogan and Sih, 1962) and anisotropic (Wu, 1967) bodies assuming that stresses near fracture 



184 

tips due to skew symmetric loading is negligible. It is also shown (Sih et al., 1965) that the order 

of stress singularity near fracture tips in anisotropic bodies is 1/2r  (where r is distance from 

fracture tip) as in isotropic material. Also, the fracture aperture varies in the order 1/2r near fracture 

tip in anisotropic body similar to isotropic case (therefore, fracture propagating in toughness 

regime takes square root asymptote near fracture tip in anisotropic body similar to isotropic case).  

The fracture tip displacement discontinuities are related with stress intensity factors according to 

Eq. 10.22 and Eq. 10.23 in isotropic (Yan, 2004) and anisotropic (Chang and Liao, 2014) bodies 

respectively. 
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where G is shear modulus, v is Poisson’s ratio and r is the half length of the fracture tip element. 

The terms Hij are related to material constants (see section 4.10.1). Note that mode-1 and mode-2 

stress intensity factors are exclusively related to normal and shear displacement discontinuities 

respectively in isotropic body. Whereas, in the case of anisotropic body, mode-1 and mode-2 stress 

intensity factors are related to both normal and shear displacement discontinuities. 

Although the above equations for stress intensity factor calculation are formulated strictly for using 

with fracture tip displacement discontinuities that are provided by the displacement discontinuity 

method, we assume that they are valid when the normal displacement discontinuity (Dn) is replaced 

with maximum aperture of fracture tip element evaluated using Eq. 10.10/10.11 Since P3D is only 

a planar model, the fracture ride (Ds) cannot be captured and is assumed zero.  
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Finally, in both isotropic and orthotropic rocks, toughness asymptote (Eq. 10.21) is used at the 

fracture tips (Sesetty and Ghassemi, 2018b) irrespective of fracture propagation regime.  

According to Sesetty and Ghassemi (2017a) toughness asymptote can provide sufficiently accurate 

results for fracturing input parameters typically used in unconventional reservoirs.  

10.1.5 Solution Method 

For every fracture grid (see Figure 10-3), there are three unknowns which are pressure, aperture 

and height. Eq. 10.14 provides relation between fracture height and pressure for every grid. The 

continuity equation for every grid can also be expressed in terms of fracture height and pressure 

since fracture apertures are related to pressure and height. Therefore, the continuity equation (Eq. 

10.17) together with equilibrium height equation (Eq. 10.14) provides the necessary set of two 

equations for each grid that can be solved (using a non-linear solver) for the unknowns fracture 

height and pressure. This is achieved by first assuming initial guess values of fracture height and 

pressure for each grid and small time interval Δt. New estimates for fracture height and pressure 

are obtained using newton iteration until converged solution is obtained (i.e. solution fracture 

height and pressure satisfy Eqs. 10.14& 10.17 simultaneously). 

Once fracture height and pressure for each grid is determined, the aperture profile for the entire 

fracture can be obtained using Eq. 10.10/10.11 Note that the equilibrium height equation is valid 

only when fracture height h is greater than payzone thickness H. Therefore, during the newton 

iteration process of solving the Eqs. 10.14& 10.17, if fracture height h is observed to be less than 

payzone thickness H for any grid, Eq. 10.14 for that grid is removed from the system of equations 

and fracture height h for that grid is made equal to payzone thickness H.  

To check for fracture propagation condition, KI is evaluated from Eqs. 10.22/10.23 using 

maximum aperture at fracture tips. For any fracture tip, if the difference between KI and KIC is 
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within the prescribed tolerance limit (1 percent in this work), a new grid is added to that fracture 

tip and the problem is moved to the next time step. On the other hand, if fracture propagation 

condition is not satisfied at least at one of the fracture tips, a new Δt is used to solve Eq. 10.14& 

10.17. This is repeated until fracture propagation condition is met at least at one of the fracture 

tips. Notice that this is a way of implementing square root tip asymptote at fracture tips and requires 

solving equations (Eq. 10.14 and 10.17) multiples times which is time consuming. To speed up 

the process, in this work, we adopted the bisection method that typically takes 3-4 iterations to 

find Δt for a tolerance limit of 1 percent.  

 10.2 Comparison of P3D Model with 3D Model 

Propagation of a single planar hydraulic fracture is considered using the P3D and 2D DDM models 

and the results are compared with a 3D modeling result from the literature (Dontsov and Peirce, 

2015).  The input parameters used for simulation are given in Table 10-1. These values are from a 

lab scale hydraulic fracture experiment (Jeffery and Bunger, 2009). The payzone thickness (H) is 

0.05 m and the excess confining stress ( b ) in the two symmetrical bounding layers above and 

below the payzone is 4.3 MPa. Since the 2D DDM model cannot simulate fracture height growth, 

a fixed fracture height equal to payzone thickness is assumed throughout the simulation. The 

propagation of hydraulic fracture is considered in two cases. The first case has high fracture 

toughness (0.94 MPa.m1/2) and the second one has low fracture toughness (0.16 MPa.m1/2). Figure 

10-3a shows comparison of the maximum fracture aperture from the center of the fracture to its 

tip at time 604 sec for high fracture toughness case. The results indicate that the P3D model 

overestimates fracture length and underestimates width compared to 3D simulation. The fracture 

length and aperture profile obtained by 2D DDM (with the 3D correction factor G) are much closer 

to 3D results. Also, the P3D model indicates no growth into bounding layers according to Figure 
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10-3b. The 3D model indicates slight growth (around 6 mm on both sides) of fracture into the 

bounding layers. For the case of low fracture toughness, the estimation of fracture length and 

maximum fracture aperture profile by both P3D and 2D DDM (with the 3D correction factor) 

models is close to the 3D model (Figure 10-3c). Moreover, P3D model in this case gives a better 

estimation of fracture height growth according to Figure 10-3d. Overall, these results indicate that 

when fracture toughness is high, the P3D model poorly estimates all characteristics of a hydraulic 

fracture (such as fracture length, aperture and height). This could be due to the lack of mechanical 

interaction between the fracture elements as we assume fracture aperture and height of each grid 

is exclusively related to the pressure in that grid. This will result in erroneous estimation of mode-

1 stress intensity factor using Eq. 10.22/10.23 which controls lateral fracture propagation. On the 

other hand, the 2D DDM model with height correction gives better estimation of fracture length 

and aperture in both high and low fracture toughness cases even though it assumes a constant 

fracture height. 
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Figure 0-4. Comparison of results from 3D, P3D and 2D DDM models for a planar fracture 

propagation in isotropic body for the case of high fracture toughness (a) maximum 

aperture, (b) fracture half height from fracture center to its tip, and low fracture toughness 

(c) maximum aperture, (d) fracture half-height from fracture center to tis tip. 

 

Table 0-1. Input parameters used for P3D and 2D DDM validation 

 

E 

(GPa) 

v μ (cP) H (m) Q0 

(mm3/s) 
b (MPa) 

3.3 0.4 30200 0.05 1.7 4.3 
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 10.3 Effect of Rock Anisotropy on Fracture Aperture, Length and Height 

The P3D model developed in this work is used to simulate single planar hydraulic fracture 

propagation in an anisotropic rock. To highlight the effects of rock anisotropy on fracture 

parameters, the anisotropic results are compared with those obtained from isotropic P3D model. 

The elastic and strength properties of anisotropic rock (Rock-A) are given in Table 6-1. Rock-A 

is a vertical transversely isotropic rock (VTI) with degree of anisotropy 4 (ratio of the bedding 

plane parallel and bedding plane perpendicular Young’s moduli, E1/E3). These elastic constants 

are close to those of the argillaceous shale from Suarez-Rivera et al. (2011). For isotropic P3D 

model, we use Young’s modulus parallel to the bedding planes (E1) and Poisson’s ratio v12 (fracture 

toughness anisotropy is not considered in this study, therefore both isotropic and anisotropic rock 

have same KIC (see Sesetty and Ghassemi, (2016) for fracture toughness anisotropy effect on 

fracture propagation). Slick water (1 cP) is injected at 10 bpm for 300 sec into a small perforation 

of initial length 3 ft. Other input parameters are given in Table 10-2. 

Figure 10-5 compares the fracture aperture distribution, half-length, half-height and net injection 

pressure between anisotropic and isotropic rocks. The results indicate higher fracture aperture in 

anisotropic rock compared to isotropic case. On the other hand, isotropic model predicts higher 

height growth into the bounding layers (for b =1 MPa) compared to anisotropic model. This is 

because of lower net injection pressures obtained during the propagation of the fracture in 

anisotropic rock. Since fracture height growth is directly proportional to net pressures inside the 

fracture according to Eq. 10.14, lower net pressures inside the fractures in anisotropic rock resulted 

in lesser height growth compared to isotropic case. Significant difference in fracture length is not 

observed between isotropic and anisotropic rocks. Overall, these results indicate that simplifying 

a VTI rock as isotropic rock will result in underestimation of fracture apertures and overestimation 
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of fracture height (note that these results are applicable only for VTI rocks with vertical fracture 

that has dominant growth in horizontal direction and is free of shear stresses). 

 

Figure 0-5. Comparison of (a, b) fracture aperture distribution, (c) fracture half-height and 

(d) net injection pressures between isotropic and anisotropic P3D models for a single 

planar fracture. 

 

 

 

Table 0-2. Simulation input parameters. 

Q0 

(bpm) 

μ (cP) H (ft) 
b (MPa) 

10 1 100 1 
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 10.4 Extension of P3D Model for Multiple Fractures in Anisotropic Rock 

The analytical expression for fracture aperture in the P3D model is developed based on the 

assumption of single plane strain fracture in an infinite body. When multiple fractures are present, 

the Eqs. 10.10& 10.11 need to be modified to account for interaction between the fractures. We 

extend the P3D model to the case of multiple hydraulic fractures based on the following 

assumptions, (i) fractures are always free of shear loading and do not exert shear stresses on 

adjacent fractures, (ii) therefore, interaction between multiple fractures is only due to induced 

normal stresses, (iii) and plane strain condition applies in the plane XZ. Under these assumptions, 

Eqs. 10.10& 10.11 can be used for simulating growth of multiple parallel fractures by replacing 

far-field stress, , with total stress (the sum of the far-field stress and induced normal stress). 

Since fractures are assumed to be free of shear loading in the P3D model, induced shear by 

neighboring fractures is not considered. As a result, the model is limited to planar hydraulic 

fracture propagation. We will show that this assumption can be justified when considering 

propagation of parallel hydraulic fractures from multiple clusters even when far-field horizontal 

stress contrast is as low as 1 MPa if spacing between the clusters is sufficiently large. Note that 

because the 2D DDM model does not have these limitations, it can handle simultaneous 

propagation of multiple non-planar hydraulic fractures. 

To simulate simultaneous propagation of parallel hydraulic fractures from multiple perforation 

clusters using P3D model, at the end of every time step, the solution of pressure inside fractures, 

fracture length and height are used to solve 2D DDM (with 3D correction factor G) to evaluate 

displacement discontinuities, which are then used to calculate induced normal stresses in the rock 

next to every fracture element. In the next time step, these induced normal stresses are added to 
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far-field stress. This way of externally calculating induced stresses using a 2D DDM after every 

time step mimics interaction between multiple fractures. In addition, an expression that describes 

flow partition into each perforation cluster needs to be included in the system of coupled fracture 

deformation and fluid flow equations. Ignoring the wellbore friction, Eq. 10.28 (Elbel et al., 1992) 

is used to calculate frictional pressure drop in perforations (i.e. perfP ). Flow balance equation (Eq. 

10.29) and perforation friction equation (Eq. 10.28) for each cluster provides N+1 additional 

equations to solve for injection pressure and flow rates ( iq ) into N clusters.   
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 10.5 Evaluation of Induced Stresses near P3D Fracture Using Displacement Discontinuity 

Method 

As discussed previously, we use 2D DDM with 3D correction factor to evaluate induced stresses 

on adjacent fracture elements after every time step to mimic interaction between fractures. To 

assess the accuracy of this technique, we consider an example of a single P3D fracture propagating 

in isotropic and anisotropic rocks. In order to facilitate direct comparison of numerically evaluated 

induced normal stresses with analytical solution (Eq. 10.27), the confining stress in bounding 

layers is assumed to be very large, so that fracture height growth is negligible (therefore, h=H). 

The thickness of the payzone is 100 ft. Slick water is injected at 10 bpm for 180 sec into a small 

perforation of length 3 ft. As the fracture grows, induced stresses in the direction normal to the 

fracture surface are calculated using 2D DDM with 3D correction factor at two different locations. 
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The first location is at a distance (X) of h/2 from the injection point along the line Z=0 and the 

second location is at a distance h from the injection point along the line Z=0. The numerically 

obtained induced stresses at these locations are normalized with net pressure at injection point 

(Pinjp).  

 

Figure 0-6. (a) Induced stress component perpendicular to fracture surface at a distance 

from injection point along the line Z=0 (fracture geometry in Figure 2a) normalized with 

net injection pressure Pinjp, (a) in anisotropic rock, (b) isotropic rock. 

 

Figure 10-6 indicates that as fracture grows in length (while height being constant due to high 

confining stresses in bounding layers), the normalized induced stress at X/h=0.5 and X/h=1 reaches 

0.8 Pinjp 0.47 Pinjp respectively . These values are very close to analytical solution given in Figure 

3-4. Similarly, in isotropic body, numerically evaluated induced stress at X/h=0.5 and X/h=1 are 

approaching 0.67 Pinjp and 0.3 Pinjp respectively which is also close to analytical solution according 

to Figure 3-4. These results indicate that, by using a proper correction factor, the 2D DDM can be 

used to predict induced stresses around P3D fracture accurately in both isotropic and anisotropic 

rocks.  
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Table 0-3. Perforation properties. 

n 

(number of perforations per cluster) 

D 

(diameter of perforation, inch) 

C 

Perforation coefficient 

80 0.6 0.9 

 

 10.6 Simultaneous Propagation of Multiple Fractures 

To illustrate the effect of stress shadow on simultaneous growth of multiple parallel fractures, the 

P3D and 2D DDM models are used to simulate large scale fracture propagation in anisotropic rock, 

and the results are compared with isotropic case. 

A single fracturing stage, span 260 ft of the wellbore is considered with five perforation clusters 

that are spaced 60 ft apart. The thickness of the payzone (H) is 100 ft and the difference between 

maximum and minimum principal horizontal stress is 1 MPa. Perforation properties are given in 

Table 10-3. Higher number of perforations and large perforation diameter is selected intentionally 

to eliminate the effect of perforation friction on flow partition into each cluster. As a result, the 

flow partition into each cluster (which is a part of the solution) is completely controlled by stress 

shadow between the fractures. In order to allow comparison of P3D results with the results 

obtained from fixed height 2D DDM model, very high excess confining stress ( b ) of magnitude 

4 MPa is used to restrict the fracture height growth into the bounding layers above and below the 

payzone in P3D model. Rock elastic and strength properties are given in Table 6-1. For isotropic 

P3D model, we use Young’s modulus parallel to the bedding planes (E1) and Poisson’s ratio v 12. 

Assuming an initial fracture of length 3 ft in the direction of maximum principal horizontal stress 

from each perforation cluster, slick water (1 cP) is injected at rate of 50 bpm for 250 sec into the 

wellbore to enter the clusters. The resultant fracture geometry and aperture distribution obtained 
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from P3D and 2D DDM models in isotropic and anisotropic rock (Rock-A) are displayed in Figure 

10-7.  

Fracture geometry from both P3D and 2D DDM models show early termination of fractures from 

clusters in the immediate vicinity of the outer fractures in both isotropic and anisotropic rocks. 

This indicates significant interaction between the parallel hydraulic fractures at the spacing 

considered in this example (which is 60 percent of the payzone thickness). Moreover, the 

centermost fracture in anisotropic rock has lower apertures and lesser growth compared to the 

centermost fracture in isotropic rock. This effect is more visible in the results from 2D DDM model 

(Figure 10-7d). This is due to increase in stress shadow effect between the fractures in anisotropic 

rock as discussed previously (see Figures 3-2& 3-4).  Facture aperture distribution in anisotropic 

rock is more uniform compared to isotropic case where there is a significant variation from fracture 

centers to their tips. Fracture aperture prediction from 2D DDM method is very close to P3D result. 

Also, the results (both 2D DDM and P3D) indicate very little difference in fracture lengths of the 

outermost clusters in isotropic and anisotropic rocks. However, overall the P3D model predicts 

much longer fractures compared to ones obtained from 2D DDM model. This is probably due to 

the lack of interaction between fracture elements that makes implementing toughness asymptote 

(Eq. 10.21) at the fracture tips less accurate in the P3D model. Although a 3D solution for this 

problem (in both isotropic and anisotropic rocks) is not readily available, the analysis of a single 

planar fracture in isotropic body presented above indicates that when height growth is limited, 2D 

DDM gives better prediction of fracture lengths compared to P3D model. Nevertheless, the results 

from both P3D and 2D DDM models show much stronger interaction between fractures in 

anisotropic rock compared to isotropic case when fracture spacing is about 60 percent of payzone 

thickness (note that in this example both P3D and 2D DDM models have same fracture height 
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which is equal to payzone thickness (100 ft.) as height growth is restricted by using very large 

excess confining stress in bounding layers). 

 

 

Figure 0-7. Comparison of fracture geometry and aperture distribution obtained from 

simultaneous propagation of fractures from multiple clusters using P3D and 2D DDM 

models in, (a-c-e) isotropic rock and (b-d-f) anisotropic rock (Rock-A). 

 

As mentioned previously, the P3D model for multiple fractures is simplified by assuming that 

fracture planes are always free of shear stresses. As a result, fractures propagate in their own plane. 

For the current cluster spacing of 60% of payzone height, the fracture trace obtained from the 2D 

DDM model in the plane XY shown in Figures 10-7e and 10-7f indicate nearly planar fractures 
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even when contrast between far- field horizontal principal stresses is as low as 1 MPa (this is due 

to the fact that the system as a whole tends to minimize the energy required for fracture propagation 

so when multiple clusters are available, the fractures can avoid curving as long as a path of least 

resistance for another fracture in a different cluster is available-see Tarasov and Ghassemi, 2014). 

Moreover, for the current spacing, ignoring induced shear stresses due to interaction between the 

fractures appears to have little effect on fracture apertures since the fracture apertures obtained 

from P3D and 2D DDM models are close. 

Figure 10-8 shows comparison of fracture geometry obtained in isotropic and anisotropic rock 

(Rock-B) with properties given in Table 6-3. All other input parameters used in the simulation are 

same as previous example. In the isotropic formation, close to uniform fracture growth is observed 

from outer and centermost clusters. Similar to previous example, aperture distribution is more 

uniform in fractures in anisotropic rock. The important observation from this example is that, even 

when the degree of anisotropy is low (i.e., 1.88), the inner fractures feel strong interaction from 

the dominant outer fractures in anisotropic rock. As a result, fracture growth from centermost 

cluster is more restricted in anisotropic rock compared to isotropic case.  
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Figure 0-8. Comparison of fracture geometry and aperture distribution obtained from 

simultaneous propagation of fractures from multiple clusters using P3D and 2D DDM 

models in, (a-c-e) isotropic rock and (b-d-f) anisotropic rock (Rock-B). 

 

In the previous examples, we restricted height growth in P3D model to study the effect of rock 

elastic properties on interaction mechanisms and allow comparison of results with 2D DDM 

model. To study the effect of elastic anisotropy on height growth, the excess confining stress in 

the bounding layers ( b ) is reduced from 4 MPa (previous examples) to 1 MPa.  

 

 



199 

 

Figure 0-9. Comparison of fracture geometry and aperture distribution obtained from 

simultaneous propagation of fractures from multiple clusters using P3D model in, (a) 

isotropic rock and (b) anisotropic rock (Rock-A) with 90 ft cluster spacing and 1 MPa 

excess confining stress in the bounding layers ( b ). 

 

Figure 10-9 shows the resultant fracture geometry and aperture distribution in isotropic and 

anisotropic rock (Rock-A) after injecting slick water for 250 sec at 50 bpm into 5 perforation 

clusters spaced at 90 ft (i.e., fracture spacing equal to payzone thickness). Rock elastic and strength 

properties are given in Table 6-1. In this case, the outermost fractures in anisotropic rock observed 

higher opening compared to isotropic case. Also, the outermost fractures in isotropic rock show 

significant growth in height (more than double the payzone thickness) near the location of fluid 

entry. Fracture height growth in anisotropic rock is lower compared to the isotropic case. Most 

importantly, the fractures adjacent to the outermost fractures in anisotropic rock have been 

terminated early even for the fracture spacing of 90 ft. Whereas, in isotropic rock, all fractures 

continued to propagate (at different rates) until the end of injection period (although the inner 

fractures show much less apertures). This further confirms our suggestion (Sesetty and Ghassemi 

2018a) that cluster spacing needs in anisotropic rock are different than that of isotropic rock.  
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 10.7 Complex Scenarios 

10.7.1 Rock Mass with Orthogonal Sets of Natural Fractures 

In the previous examples, hydraulic fracture propagation in a vertical transversely isotropic rocks 

is considered. Although most of the laboratory experiments on core size shale samples characterize 

shale as transversely isotropic, most rock masses can possess additional degree of anisotropy due 

to the presence of natural fractures or rock stratification. For example, an isotropic rock mass 

containing orthogonal sets of natural fractures can be treated as orthotropic rock when deformation 

is viewed at large scale. If a rock has dense network of natural fractures with well-defined 

orientation as indicated in Figure 10-10, modeling every natural fracture using DDM is impractical 

due to unreasonable computation time. Rather it is much easier and computationally efficient to 

treat such rocks as anisotropic. This is illustrated using an example by considering a vertical 

transversely isotropic rock (Rock-B) with evenly distributed vertical natural fractures (indicated 

by orange lines) that are oriented in the direction of minimum principal horizontal stress (X-axis) 

as indicated in Figure 10-10.  
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Figure 0-10. Cross section of a rock mass with bedding planes parallel to the plane X-Y and 

vertical natural fractures (indicated by orange lines) with spacing d in the direction of X-

axis. 1-2-3 are the axes of elastic symmetry of the rock. 

 

If natural fractures are aligned in the direction 1 and d is the spacing between the natural fractures, 

the new elastic constants in the plane 1-2 are given as (Goodman, 1976), 
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where Kn and Ks are natural fractures normal and shear stiffness respectively. Taking the elastic 

constants of Rock-B given in Table 6-3 and Kn, Ks as 30 GPa/m, and the distance between natural 

fractures d as 1 m, the induced degree of anisotropy due to the presence of natural fractures in the 

plane 1-2 (E1/E2) is 1.65 using Eq. 10.30. Note that plane 1-2 is isotropic before including the 

effect of natural fractures. Therefore, a transversely isotropic rock (Rock-B) with natural fractures 

gives an equivalent anisotropic rock which is orthotropic and will be called as Rock-C. 
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Figure 0-11. Comparison of fracture geometry and aperture distribution obtained from 

simultaneous propagation of fractures from multiple clusters using P3D and 2D DDM 

models in, (a-c-e) isotropic rock and (b-d-f) anisotropic rock (Rock-C). 

 

The full list of nine independent elastic constants of Rock-C are given in Table 6-4. 

The problem of Hydraulic fracture propagation in Rock-C is considered using the P3D model 

developed in this work. Note that hydraulic fractures and natural fractures do not interact directly, 

since natural fractures are not explicitly modeled in this problem. The effect of natural fractures 

on hydraulic fractures is considered by altering the material properties of the rock. The elastic 

constants of the Rock-C given in Table 6-4 are used. For isotropic approximation, E1 and v12 are 

used. The excess confining stress in the bounding layers is 1 MPa.  
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Four perforation clusters are considered with 125 ft spacing. Slick water is injected at a rate of 50 

bpm for 250 sec into the wellbore where fluid is parted into clusters. Ignoring perforation friction 

and leak-off, the resultant fracture network at the end of injection period in isotropic and 

orthotropic rocks is shown in Figure 10-11. Results indicate that in orthotropic rock, the fractures 

from inner clusters tend to terminate earlier than in isotropic rock due to increase in stress shadow 

effect. Also, fracture outer fractures in orthotropic rock observed higher fracture apertures 

compared to isotropic case. It appears that the P3D model tend to overestimate fracture lengths as 

in previous examples, due to lack of interaction between the fracture elements.  

10.7.2 Tilted Transversely Isotropic Rock 

In an anisotropic body if all the axes of a fracture does not coincide with the material’s axes of 

elastic symmetry, the fracture will experience shear displacement discontinuity even under pure 

mode-1 loading. Therefore, the anisotropic P3D model is developed based on the critical 

assumption that the fracture axes are always aligned with the material’s axes of elastic symmetry.  

This assumption will allow to decouple fracture normal displacement discontinuity from shear 

displacement discontinuity (see Eq. 10.3). If we consider a fracture ‘f’ in an infinite orthotropic 

body such that L/h>>1 as the one depicted in Figure 10-12, the closed form solution for fracture 

aperture ( )w z  and ride ( )r z  if the net pressure inside the fracture P is constant is given as, 

      2 2 2 2 2 2

11 1 2 2 2 1 1 1 2 2 1( ) 4 XZw z b h z P                 
 

                              (10.31) 

   2 2

11 1 2 2 1 1 2( ) 4 XZr z b h z P                                                       (10.32) 

where 
1 2,  and 

1 2,  are real and imaginary parts of respectively of the two complex roots 
1

and
2 of characteristic equation (Eq. C.6 in Appendix C), XZ is shear loading on fracture surface. 

The rotation angle of material coordinate system 1-2-3 with respect to X-axis is angle θ degrees. 
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The coefficients ijb of the characteristic equation are evaluated in the coordinate system 1’-2’-3’ 

for  =900.  

From Eqs. 10.31& 10.32, we can see that in anisotropic body, fracture ride ( )r z  is non-zero even 

when shear load ( XZ ) on fracture is zero if, 

 1 2 2 1 0        (10.33) 

Similarly, fracture aperture ( )w z  is non-zero under pure mode-2 loading provided Eq. 10.33 is 

true.  

The requirement in Eq. 10.33 is always satisfied when any of the three axes of a fracture (i.e. X-

Y-Z) is not aligned with axes of elastic symmetry (i.e. 1-2-3) in an anisotropic body. Therefore if 

we consider a problem of vertical hydraulic fracture in a transversely isotropic rock with planes of 

isotropy inclined with respect to horizontal plane as in Figure 10-12, the hydraulic fracture will 

experience some ride and therefore the P3D analytical expression for fracture aperture in Eq. 10.1 

can give erroneous solution since the assumption of zero fracture ride is violated. In order to assess 

the accuracy of P3D solution in such cases, we use closed form solution given in Eq. 10.31 for 

fracture aperture and compare it with the P3D result. 
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Figure 0-12. Cross section of a rock mass with bedding planes dipping at θ0 with respect to 

the plane X-Y and vertical fracture ‘f’ has height h, where L/h>>1. 1-2-3 are the axes of 

elastic symmetry of the rock. 

 

Consider a transversely isotropic rock with bedding planes rotated by 300 (θ) counterclockwise 

with respect to the horizontal plane X-Y. If a vertical fracture ‘f’ is taken such that L/h>>1, fracture 

apertures in the plane X-Z can be calculated using Eq. 10.31 for a constant net pressure P inside 

the fracture. Constants 
1 2,  and 

1 2,  are obtained in the coordinate system 1’-2’-3’ with  =900. 

The material constants in the coordinate system 1-2-3 are given in Table 6-1 (Rock-A). Similarly, 

we can use P3D model to calculate fracture apertures in the plane X-Z using Eq. 10.10.   



206 

 

Figure 0-13. Comparison of fracture apertures obtained from Eq. 10.31 and P3D model for 

a vertical plane strain fracture in a transversely isotropic rock with bedding inclination 

angle θ=300 (See Figure 10-12). The net pressure inside the fracture is 2 MPa and elastic 

constants are given in Table-6-1. 

 

From Figure 10-13, comparison of P3D result with closed form solution from Eq. 10.31 indicates 

that the difference between the two solutions is not insignificant, however, the maximum error 

between the solutions which is 8.7% is within the acceptable range. Note that based on Eqs. 10.1& 

10.31, the error between P3D and closed form solutions is not expected to change with fracture 

geometry and net pressure, however, is only sensitive to material elastic constants. Since the 

example rock (Rock-A) has a degree of anisotropy 4, which on the higher end side for a typical 

shale, we can expect that the error in fracture aperture approximation for anisotropic rocks where 

fractures are not aligned with material’s axes of elastic symmetry using P3D typically falls in the 

same range as observed in Figure 10-13.  
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Figure 0-14. Fracture geometry and apertures from P3D model in a transversely isotropic 

rock with bedding inclination angle θ=300 (See Figure 10-12). Rock elastic constants are 

given in Table 6-1. 

 

The equilibrium height expression in Eq. 10.14 is still valid irrespective of bedding plane 

inclination θ with respect to the fracture ‘f’ in Figure 10-12, provided that the fracture ‘f’ is free of 

shear loading. This is because the stress intensity factors (Eq. 10.12) at the tips of a plane strain 

fracture are independent of material elastic constants for self-equilibrium loading. Also, non-zero 

fracture ride (Eq. 10.32) does not produce mode-2 stress singularity near fracture tips as long as 

the fracture is free of shear loading (i.e. XZ =0). Therefore, Eqs. 10.1& 10.14 can be used to model 

hydraulic fracture propagation in anisotropic body where material’s axes of elastic symmetry are 

inclined with respect to fracture’s axes by ignoring the error associated with evaluation of fracture 

apertures.  

Figure 10-14 shows fracture apertures and geometry after injecting slick water at the rate of 50 

bpm into four perforation clusters spaced 90 ft. As before, leak-off and perforation friction are 

ignored. The input properties of rock in the coordinate system 1-2-3 is given in Table 6-1 (Rock-

A) and bedding planes are inclination angle θ is 300. Figure 10-14 indicates that fracture geometry 
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is symmetric about the line X=0, as in previous examples. However, according to Sesetty and 

Ghassemi (2016), when fractures in an anisotropic body are not aligned with material’s axes of 

elastic symmetry, the induced compressive normal stresses in the direction perpendicular to the 

fracture surface tend to rotate towards the direction of maximum Young’s modulus, due to which 

asymmetric fracture growth is observed when closely spaced multiple fractures are propagated 

simultaneously. Since in the example considered here, the direction of maximum Young’s 

modulus E1 is at an angle 300 counterclockwise from X-axis, the stress shadow rotation towards 

the direction of E1 is expected to have some effect on fracture height growth. However, in P3D 

model the induced stresses are evaluated only at the midpoint of fracture height to account 

interaction between adjacent fractures; therefore, the effect of rock anisotropy on induced stress 

variation along fracture height cannot be captured. As a result, fracture height growth is not 

affected by stress shadow rotation in P3D model.  

To study the effect of induced stress rotation in the plane X-Z on fracture height growth we use 

2D DDM. Consider a transversely isotropic rock with bedding planes inclined at 300 from X-axis. 

Using the material constants from Table 6-1 (i.e. Rock-A), simultaneous growth of fractures from 

two perforation clusters is considered using 2D DDM assuming X-Z plane strain condition (since 

L>>h). Note that X-Z plane indicates fracture height growth. The problem is considered in three 

cases, where in the first case we assume that there are no stress barriers above and below the 

payzone. In the second case we take two symmetrical stress barriers bounding the payzone, and in 

the third case we consider asymmetric stress barrier. The thickness of the payzone (H) is 90 ft. 

Slick water is injected into two clusters spaced 30 ft apart along the line Z=0 at a rate 0.66 bpm/ft 

until at least one of the fracture wings reach half-height of 100 ft. The fracture geometry and 

aperture distribution at the end of injection for all three cases are shown in Figure 10-15.  
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Figure 0-15. Comparison of height growth between fractures from two perforation clusters 

spaced 30 ft under different conditions of far-field horizontal confining stress. The rock is 

transversely isotropic with bedding inclination angle θ= 300 (see Figure 10-12). Rock elastic 

constants are given in Table 6-1. 

 

Fracture geometry in the plane X-Z (i.e. fracture height growth) for the case with no stress barrier 

and the case with symmetrical stress barrier are similar from Figures 10-15a and 10-15b. The 

results indicate asymmetric fracture height growth that can be attributed to rotation of induced 

stress towards E1 which is 300 counterclockwise from X-axis. Due to the rotation of stress shadow, 

the growth of bottom wing of left fracture and top wing of right fracture is restricted. An interesting 

result is observed when the stress barrier is asymmetric from Figure 10-15c. In this case, the left 
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and right fractures have completely different height, where the left fracture dominant in height 

growth. This is because the bottom wings of both left and right fractures are restricted due to higher 

stress barrier. Additionally, stress shadow rotation towards E1 restricted the growth of top wing of 

right fracture. Therefore, in this case, the combined effect of asymmetric stress barrier and stress 

shadow rotation resulted in uneven fracture height growth. Note that the differences in apertures 

in all the three cases is due to difference in far-field confining stress.  

These results indicate that material anisotropy can result in complex fracture geometries depending 

on the orientation of fractures with respect to material’s axes of elastic symmetry. Although, plane 

strain models such as DDM or P3D can be used to approximate fracture apertures and geometry 

for simple rock and fracture configurations such as those discussed in the previous examples, for 

complex rock and fracture configurations, where fractures are orientated at any arbitrary angle 

with respect to rock’s elastic axes of symmetry, a complete 3D model may be necessary to model 

accurate fracture geometries. Moreover, natural fractures, fracture toughness anisotropy can have 

significant effect of fracture propagation and complicates the problem further. Overall, the analysis 

of hydraulic fracture propagation in anisotropic rock shows that rock anisotropy has significant 

effect on fracture geometry and apertures. Not accounting rock anisotropy in completion 

optimization can result in undesirable results.  

 10.8 Summary 

This work describes development and application of a new P3D model for hydraulic fracturing in 

orthotropic reservoirs. As 2D DDM model is based on the assumption that hydraulic fractures are 

perfectly contained, its results could be less accurate when this assumption is not satisfied. 

Analytical expression for fracture aperture and height growth have been developed for orthotropic 

body and used to study the effect of rock anisotropy on fracture height growth where hydraulic 
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fracture is not well contained. Also, a 2D DDM with 3D correction factor has been used to extend 

the single fracture P3D model to the case of simultaneously propagating multiple fractures.  

Analysis of a single fracture propagating in an isotropic body with multi-stress layers indicate 

lower accuracy for P3D results when compared to 3D results when fracture toughness is high. In 

the case of low fracture toughness, the accuracy of P3D result becomes much better. This is 

because the fracture tip aperture (in the lateral direction), which is used to calculate mode-1 stress 

intensity factor cannot be solved accurately in P3D model due to the lack of interaction between 

fracture elements. Therefore, when fracture propagation is in the toughness dominated regime (as 

in the case of high fracture toughness), fracture growth in the lateral direction is affected due to 

error in stress intensity factor calculation. On the other hand, 2D DDM model yields results with 

sufficient accuracy in both high and low fracture toughness cases.  

Modeling of propagation of uncontained single planar fracture in isotropic and vertical 

transversely isotropic rocks using P3D model indicates that fracture height growth in isotropic 

rock is significantly higher than that in anisotropic rock. Apertures of the fracture in VTI rock are 

higher than the isotropic case. Induced normal stresses perpendicular to the fracture surface around 

a single plane strain fracture is 69% higher in a VTI rock with the degree of anisotropy of 4. The 

effect of stress increase in anisotropic rock can be observed in large-scale simulations of multiple 

hydraulic fractures. When well contained fractures propagate from multiple clusters 

simultaneously, the fractures from the inner clusters experience a significant reduction in length 

in anisotropic rock compared to the isotropic case. This effect can be seen even when the degree 

of anisotropy is just 1.88. Also, in large-scale simulations, when fractures are very well contained, 

fracture aperture prediction by both 2D DDM and P3D models are close (especially for outermost 
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fractures), however fracture length prediction by P3D model is larger than results from 2D DDM 

model (due to lack of interaction between fracture elements as discussed previously).  

Finally, it should be noted that models based on plane strain assumption have some limitations. In 

situations where rock and fracture configuration are complex, such as in the case of a multiple 

vertical fractures propagating in tilted transversely isotropic (TTI) rock, accurate predictions for 

fracture length and height are hard to obtain. For example, simulation of propagation of two 

simultaneous vertical hydraulic fractures in a TTI rock using 2D DDM indicated asymmetric 

fracture height growth due to rotation of stress shadow. However, such details are eluded in P3D 

model since it is incapable of considering variation of induced stresses in vertical direction. 

Therefore, one would need a complete 3D model to fully understand the effects of rock anisotropy 

on fracture propagation in complex rock and fracture configurations. Since a full 3D model that 

can simulate large-scale hydraulic fracture is not available yet, one can make the use of both 2D 

DDM and P3D model to look at different aspects of effect of rock anisotropy on possible outcomes 

for fracture geometry. Moreover, these model can assist in better understanding and interpreting 

of microseismic data. Overall, the numerical analysis presented in this work indicates that 

formation anisotropy has a significant impact on hydraulic fracture geometry, aperture variation, 

and height. Therefore, rock anisotropy needs to be considered during spacing optimization and 

proppant selection to maximize productivity from unconventional reservoirs.  
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11 Complex Fracture Networks 

 

In this chapter we present a complex fracture model based on 2D DDM that is capable of 

simulating reservoir scale hydraulic/natural fracture interaction. The natural fractures are modeled 

using linear joint displacement discontinuity (DD) elements. Fluid flow inside the fractures is 

modeled using the lubrication equation and is fully coupled with fracture deformation. The non-

linear system of fracture deformation and fluid flow equations are solved using globally 

convergent Newton-Raphson method. Based on LEFM, quasi static fracture propagation is 

considered where propagating fracture’s mixed-mode equivalent stress intensity factor is always 

at equilibrium with fracture toughness of the rock. Special crack tip elements (Yan 2004) are used 

to calculate stress intensity factors accurately. Fracture crossing/arrest criterion (Gu and Weng 

2010; Renshaw and Pollard 1995), is extended and implemented for cases where hydraulic fracture 

tip is not aligned with principal stresses. In this paper, the model is first used to present a detailed 

analysis of the interaction of a single hydraulic fracture with two inclined natural fractures to study 

the formation of wing fractures. Then, field scale numerical examples are considered using a 

randomly generated natural fracture network. The results for fracture network geometry, aperture 

distribution and slip profile are presented for low and high in-situ stress contrasts. The numerical 

model presented in this paper can act as a useful tool in understanding the behavior of complex 

fracture networks that can be integrated with MEQ to optimize completion design. Also, this 

numerically robust model can be used to validate simplified, less computational field scale models. 

 

To quantify and explore the evolution of shear slip at field scale, numerical simulations are 

conducted using the newly developed complex fracture network model. Simulating hydraulic 
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fracture propagation in the presence of natural fracture pose a significant challenge. As hydraulic 

fracture approaches natural fracture it may either cross or arrest and deflect into natural fracture 

depending on the mechanical properties of rock and natural fracture, and stresses state ahead of 

the hydraulic fracture tip (Cook and Underwood 2001, Renshaw and Pollard 1995). Furthermore, 

fluid penetration into favorably oriented natural fractures that are intersected by hydraulic fracture 

can cause slippage of natural fractures if sufficient fluid pressure has built up. Since the constitutive 

equations involving natural fractures depend on their state (i.e., slipped/unslipped) which itself is 

a part of the solution requires this problem to be solved in an iterative manner. As a result, a 

numerical model that fully couples fracture mechanics with fluid flow and considers all aspects of 

fracture interaction described above at field scale can be quite challenging in terms of numerical 

stability and computation time.  

The complex fracture model has following characteristics: (a) boundary element based 

displacement discontinuity method (Crouch and Starfield 1983) is used to model fracture 

deformation; (b) Newtonian fluid flow inside the fractures is governed by lubrication equation; (c) 

extended fracture crossing/arrest criterion (Gu and Weng 2010) based on stress field a head of 

hydraulic fracture tip is used; (d) fracture extension is based on maximum tangential stress 

hypothesis (Erdogan and Sih 1962) assuming rock as a brittle material; (c) hydraulic fracture tip 

extension is allowed only when mode-1 stress intensity reaches fracture toughness of the rock; (d) 

a diffusion based pressure dependent model is used to calculate fluid leak off into the matrix; (e) 

finally, the model can distinguish between open element (i.e., element supported solely by fluid) 

and  closed element (i.e., element supported by both asperities and fluid) that are in slipped and 

unslipped condition. 



215 

For numerical simulations a randomly generated network of natural fractures is selected. Rock and 

natural fracture mechanical properties obtained from experiments are used as input for numerical 

model. Hydraulic fracture propagation in a network of random natural fractures is considered 

under low (145 psi) and high (1000 psi) in-situ horizontal stress anisotropic conditions. Numerical 

results show fracture geometry, state of all fractures (open/close/slipped/unslipped), shear slip 

magnitudes, fluid pressure distribution and fracture apertures distribution at the end of fluid 

injection.  

 11.1 Numerical Model 

11.1.1 Fracture Deformation 

The deformation of natural and hydraulic fractures is modeled using displacement discontinuity 

method (Crouch and Starfield 1983) where a thin crack is discretized into N constant line elements 

and the total normal (
i

n ) and shear stresses (
i

s ) acting on each element is expressed as, 
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In the above equation 0( )i

n


 and 0( )i

n


 are far-field normal and shear stresses acting on fracture 

elements. Dn is normal displacement discontinuity (DD) which indicates difference in normal 

displacement between two sides of a fracture element. Similarly, Ds is shear displacement 

discontinuity (DD) which indicates difference in shear displacement between two sides of a 

fracture element. The terms
ij

nsA , etc., gives normal/shear stress at ith element due to unit 

normal/shear DD at jth element. The parameter Gij varies between 0 and 1 and considers the effect 
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of fracture height on fracture opening/sliding (see chapter 8). To be consistent with the sign 

convention used in the reference (Crouch and Starfield 1983), fracture opening is represented by 

a negative Dn. Therefore, fluid driven fracture elements with negative Dn are supported solely by 

fluid pressure (i.e., their effective stress is zero) as in shown Figure 11-1a, and are identified as 

mechanically opened elements. Whereas fracture elements with a positive Dn are called 

mechanically closed elements which are supported by both fluid and asperities (effective stress 

greater than zero) as shown in Figure 11-1b. Although positive Dn has no physical meaning for 

fracture elements (since fracture surface overlap is not possible mechanically), it is physically 

meaningful for natural fractures or joints since they have some thickness due to asperities. In this 

case, Eq. 11.1 can be modified for natural fractures by introducing linear spring elements: 

0

1 1

( )
N Ni

i i i ij j j ij j j

n n n ns s nn n

j j

P K D G A D G A D 

 

        (11.2a) 
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i i ij j j ij j j

s s s ss s sn n
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K D G A D G A D 

 

        (11.2b) 

In the above equations, a positive Dn indicates the amount of closure experienced by the spring 

element/asperity. Kn and Ks represents normal and shear stiffness of natural fractures which are 

measured experimentally and P is fluid pressure. The term 
i

i

n nK D indicates effective stress of the 

ith natural fracture element. Natural fractures that are under compressive stresses at depth 

experience some closure (Goodman 1976; Barton et al. 1985). Laboratory measurements suggest 

that the amount of closure experienced by a fracture due to compressive normal stresses acting on 

it is limited. In this paper, the maximum possible closure experienced by a natural fracture which 

is also equal to its thickness is taken as 0.1 mm. Although the relationship between fracture closure 

and normal stress is non-linear, the linear model used in this paper can sufficiently describe the 

behavior of joint closure under lower effective stress conditions (Sesetty and Ghassemi 2012).  
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During the solution processes the status of an ith element can change from close to open and vice 

versa, which is found based on the sign of
i

nD . Since open elements cannot support shear stresses, 

the total shear stress 
i

s  acting on any open element must be zero. A closed element can experience 

frictional sliding when total shear stress acting on it reaches yielding limit. Using simple Coulomb 

frictional law, the yield stress of a closed natural fracture element is expressed as: 

( ) tani i i

y nc P        (11.3) 

Where, 
i

y  and 
i

n  are yield stress and total normal stress for the ith fracture element respectively, 

c is cohesion, iP is fluid pressure inside ith fracture element and   is friction angle. The condition 

for slip of an ith fracture element is:  

i i

s y     (11.4) 

Combining Eq. 11.1 and Eq. 11.3 gives the governing Eq. 11.5 for shear deformation of a slipping 

element: 
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The state of a slipped element is changed back to stick state if Eq. 11.4 is no longer valid on that 

particular element. For such elements (i.e., elements that have previously undergone slip) shear 

deformation can be expressed as in Eq.11.6. 

1 1
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Where, k denotes time step number and the terms
1( )i k

s


,
1( )i k

sD 
 indicate total shear stress and 

shear DD on the ith element during time step (k-1) respectively. 
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Therefore, hydraulic fracture elements (i.e., open elements) are governed by equation (1). Closed 

elements of natural fractures under stick condition (i.e., i i

s y   ) are modeled using Eq. 11.2 and 

Eq. 11.6. Under the condition of slip, Eq. 11.2b is replaced with Eq. 11.5 for closed elements. In 

order to reduce computational cost, Eqs. 11.1-11.6 exclude the elements of natural fractures that 

were not intersected by hydraulic fracture. Therefore, a hydraulic fracture cannot interact with 

surrounding natural fractures until they intersect. Such an approximation does not alter the solution 

if natural fractures have high stiffness or good frictional strength (Sesetty and Ghassemi 2017a). 

 

 

Figure 0-16. Natural fracture element (a) opened mechanically and supported solely by 

fluid, (b) mechanically closed element supported by fluid and asperities, (c) section of 

natural fracture making >900 with respect to hydraulic fracture is called high angle section, 

whereas, section making <900 is called low angle section. 
 

 

11.1.2 Fluid Flow 

Experimental evidence (Gale 1982) suggest that fluid flow inside hydraulic fractures and narrow 

channels of mechanically closed segments of natural fractures can be approximated using cubic 

law:  
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   (11.7) 

Where q is volumetric flow rate, µ is dynamic viscosity of the injection fluid, and w, h are fracture 

total width and height, respectively.  

Fracture total width w can be directly equated to the normal DD (-Dn) obtained from Eq. 11.1 for 

fracture elements created during propagation and are opened mechanically. These newly created 

fracture elements can experience complete closure (i.e. Dn=0) due to stress shadow effect. 

However, in order to continue fluid flow through them, these elements are assigned small residual 

aperture 0w . On the other hand, pre-existing fractures can be conductive even under high effective 

stresses as they retain residual apertures due to surface roughness. The closure experienced by 

natural fractures under compressive stresses can be reversed by decrease in effective stress due to 

increase in fluid pressure. Assuming 
mcV  as the maximum possible closure value for a natural 

fracture element and 
t

mcV  as the closure value during fluid injection at time t, the effective gain in 

natural fracture aperture during the time t, is t

mc mcV V  (neglecting hysteresis). Also, shear slip causes 

dilation of natural fractures due to their surface roughness. The total dilation (limited to a 

maximum value of 0.05 mm) can be expressed in terms of shear slip (Ds) and dilation angle ( ) 

which is experimentally measured. When effective stress acting on a natural fracture element 

reaches zero, the element begins to open mechanically. The total width w of a natural fracture 

element can be expressed as sum of the residual aperture (w0), reversal in closure ( t

mc mcV V ), shear 

dilation ( tansD  ) and mechanical opening (wm) as: 

0 ( ) tant

mc mc m sw w V V w D         (11.10) 
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Where, wm is zero when the effective stress acting on a natural fracture element is greater than zero 

(i.e. closed elements) and t

mcV is zero when effective stress is zero. Note that residual aperture is 

required to allow fluid flow through closed elements. Assuming very low values for residual 

aperture can lead to very high net pressures inside the fractures to compensate high frictional 

pressure losses (Zhang and Jeffrey 2009). In this work, we set 0w to 0.05 mm.    

The continuity Eq. 11.11 along with cubic law, Eq. 11.9 governs fluid flow inside the fractures: 

   (11.11) 

Where A is the cross-sectional area of the fracture and qL is the fluid leak-off volume rate per unit 

length of the fracture which is ignored in this model. Substituting Eq. 11.9 in Eq. 11.11 and 

assuming that the fracture height is constant with time and along the length of all fractures, gives 

the lubrication Eq. 11.12 which is solved using finite difference approximation. 
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   (11.12) 

11.1.3 Fracture Propagation 

Quasi-static fracture growth is considered where mixed-mode equivalent stress intensity factor for 

propagating fractures is always at equilibrium with fracture toughness of the rock as in Eq. 11.7 

(Erdogan and Sih 1963). Therefore, tensile wing fractures can be initiated from natural fracture 

tips due to their slippage even if they are under mechanically closed state (i.e., KI=0). The stress 

intensity factors are evaluated using fracture tip displacement discontinuities. Special square root 

elements are implemented at fracture tips to improve the accuracy of stress intensity factors.  
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Fracture tips that meet propagation condition Eq. 11.7 are extended in the direction θ (Stone and 

Babuska 1997), calculated from Eq. 11.8,  
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11.1.4 Fracture Crossing and Arrest 

The fracture crossing/arrest criterion used in this work is based on the stress field ahead of the 

hydraulic fracture tip approaching a natural fracture. This criterion, initially developed by 

Renshaw and pollard (1995) for orthogonal intersections, checks if both the no slip and tensile 

failure conditions on a natural fracture are satisfied due to the stress field ahead of the approaching 

fracture tip and if so, fracture crossing occurs. In the event that of one of the above two conditions 

is not met, the approaching fracture is assumed to terminate at the natural fracture. This criterion 

can be simply extended to non-orthogonal fracture intersections and situations where hydraulic 

fracture tip is not aligned with a far-field principal stresses (i.e., 0IIK  ) as in Gu and Weng, 

(2010). Note that in this criterion, fracture crossing/arrest is decided before fracture intersection 

and is independent of the injection fluid properties (Weng et al. 2014). In the event of fracture 

arrest, fluid is allowed to flow into the natural fracture and the potential locations for new fracture 

initiation along the natural fracture can be found by analyzing the tangential stresses on its surface 

(Chuprakov et al. 2014; Cook and Underwood 2001; Zhang and Jeffery 2009). Although this can 

be easily implemented in this model as the stresses along the natural fracture surfaces are readily 

available, for simplicity we assume new fracture initiation from a natural fracture will always occur 
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at its tips if the propagation condition given in Eq. 11.7 is met. Square root elements are replaced 

with ordinary DD elements at the fracture tips that remain arrested after intersection. 

11.1.5 Solution Procedure 

Since a slight change in the fluid pressure inside fracture affects its deformation which in turn 

affects fluid pressures, this problem is strongly non-linear and coupled. Moreover, the effective 

stress changes on closed natural fracture elements can cause slip and eventually change their status 

from closed to open elements. As a result, the problem of hydraulic fracture propagation in a 

network of natural fractures is much more complex than simulating hydraulic fractures alone. 

Along with the unknown fracture widths and pressures, the status (i.e., open, close, stick and slip) 

of every natural fracture element must be obtained as a solution. At the beginning of each time 

step, the status of all natural fracture elements are fixed to close. Similarly, the status of all closed 

elements are fixed to stick. Using the trail status of all the natural fracture elements, the system of 

Eqs. 11.1, 11.2& 11.12 are solved for unknown values of fracture apertures and pressures for a 

time interval t . Natural fracture elements with negative Dn are changed to open elements and 

condition for slip on closed elements is checked using Eq. 11.4.With the updated status of all 

natural fracture elements, the system of Eqs. 11.1, 11.2, 11.5, 11.6& 11.12 are solved for the same 

time interval t . This process is repeated until the statuses of all fracture elements converge. 

Before advancing to the next time step, stress intensity factors are evaluated using fracture tip 

displacement discontinuities. Fracture tips that meet the propagation criterion Eq. 11.7 are 

extended by adding a new element in the direction evaluated from Eq. 11.8. (Although it is possible 

to add more number of elements at fracture tips after each time step to save computation time, it 

decreases the accuracy of fracture propagation path). If fracture propagation condition is not met 

at least at one of the fracture tips, the above procedure is repeated with different time interval t . 
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It is obvious from the above discussion that the two most computationally intensive steps are 

iterating over natural fracture element statuses and finding exact t to satisfy propagation condition 

since it requires the Eqs. 11.1, 11.2, 11.5, 11.6& 11.12 to be solved multiple times. Although root 

finding algorithms like bisection method used in this model reduces the number of iterations 

required to achieve satisfactory convergence on Eq. 11.7, it is still computationally burdensome. 

The numerical model developed in this paper, typically finds t in 3-4 iterations for simple fracture 

trajectories, however can take up to 20 iterations for complex fracture trajectories (typically 

encountered during the re-orientation of natural fracture wings).  

 

Table 0-4.  Experimentally determined Input parameters for numerical model (Zhi et al. 

2018). 

 

Parameter Value Units 

Young’s modulus 

25.55 

(3.70×106) 

GPa (psi) 

Poisson’s ratio 0.287  

Tensile strength  9.39 (1362) MPa (psi) 

Normal stiffness of 

natural fractures 

377 

(1.39×106) 

GPa/m 

(psi/inch) 

Shear stiffness of natural 

fractures 

300 

(1.11×106) 

GPa/m 

(psi/inch) 

Cohesion  0 (0) MPa (psi) 

Coefficient of friction 0.752  
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Table 0-5. Assumed Input parameters for numerical model. 

Parameter Value Units 

Minimum principal horizontal 

stress (σh) 

40 (5800) MPa (psi) 

Hydraulic/Natural fracture height 

(all examples) 

30 (100) m (ft) 

Injection fluid viscosity 1 cP 

Fracture toughness 1.65 (1500) 

MPa.m0.5 

(psi.inch0.5) 

Maximum closure value of natural 

fractures 

0.1 (0.004) mm (inch) 

Residual aperture 0.05 (0.002) mm (inch) 

Dilation angle 2 degrees 

 

 11.2 Wing Fractures 

The behavior of a hydraulic fracture approaching two natural fractures that are at equal distance 

from the injection point (0, 0) (shown by red circle) in Figure 11-2a is studied in this example. The 

natural fractures are discretized into constant elements of size 0.6 ft and same size elements are 

used for newly added fractures during propagation. The two natural fractures are initially in 

mechanically closed state under zero pore pressure, however, they are hydraulically conductive 

from residual opening.  A constant fracture height of 100 ft is assumed for all fracture elements. 

The fracture height is in Z-direction; therefore X-Y plots show a top view of fracture networks. 

Experimentally (Zhi et al. 2018) obtained mechanical properties of rock and natural fracture listed 



225 

in Table 11-1 are used as input to the simulator. Input parameters that are not available from 

experiments are assumed and these are listed in Table 11-2. The horizontal in-situ stress contrast 

for this example is 725 psi (5 MPa). The orientation of natural fractures is taken as 270 w.r.t the 

X-axis so that the hydraulic fracture will arrest at the locations of fracture intersection based on 

the crossing/arrest criterion.  Water is injected at 10 bpm for 110 sec into a small perforation having 

an initial length of 3 ft in the direction of Y-axis and with midpoint (0, 0). Neglecting fluid leak-

off, the fracture geometry, aperture distribution, pressure distribution, shear displacements and 

status of all elements at the end of injection period are shown in Figure 11-2. 
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Figure 0-17. (a) location of natural fractures and injection point with input parameters, (b) 

net injection pressure profile vs time, (c) status of each fracture element at 36 sec, (d) status 

of each fracture element at 110 sec (inset showing propagation angle at natural fracture 

tip). 

 

 

The net injection fluid pressure vs time plot from Figure 11-2b shows a decreasing trend from 

point A as the hydraulic fracture propagates in the direction of the maximum far-field principal 

stress. The hydraulic fracture arrest at the intersection with the two natural fractures is indicated 

by point B where the fluid pressure starts to rise. The rise in net injection pressure is continued 

until point C to about 280 psi, where one of the tips of both natural fractures meets the propagation 

condition, after which the net injection pressure starts to fall and stabilizes at around 170 psi 
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(although the net injection pressure appears to increase with time, the rate of increase is very small; 

this could be due to increase in compressive YY on natural fracture elements with increase in main 

hydraulic fracture opening (see Figure 11-4b) or transition of fracture geometry to PKN (i.e. L>H) 

). The drop in injection pressure after natural fracture propagation is due to the re-orientation of 

the natural fracture wings towards the direction of local maximum principal stress. The magnitude 

of the net pressure increase required to initiate propagation from the natural fracture tips is a 

function of the contrast between the far-field principal stresses and the natural fractures orientation 

with respect to them. Fracture geometry and status of all fracture elements immediately after 

natural fractures started propagation is shown in Figure 11-2c. A four color system is used to 

represent the status of each fracture element. The color red represents mechanically open elements. 

Green color indicates a mechanically closed element that is currently undergoing slip whereas the 

color blue indicates a mechanically closed element that is currently in stick condition but 

experienced slip previously. White color elements are mechanically closed and never slipped. 

From Figure 11-2c, we can see that natural fractures propagation initiated from their tips only 

because of slippage. Figure 11-2c also indicates some of the natural fracture elements that slipped 

are going back to the stick state due to sudden drop in the injection pressure. Since the injection 

pressure (Figure 11-2b) never exceeded the normal stress acting on the natural fractures (6380 psi 

or 44 MPa), the natural fracture elements cannot mechanically open so that the mode-1 stress 

intensity factor (KI) at the natural fracture tips must be zero. When KI=0, the angle of fracture 

propagation is 70.50 anticlockwise from the axis of the fracture tip based on Eq. 11.8. This can be 

observed by taking a closer look at the natural fracture tip as in Figure 11-2d. Substituting KI=0 

and  =70.50 in Eq. 11-7 gives KII ≈ 0.86 KIC which is the condition to initiate propagation from a 

natural fracture tip due to slippage while in a mechanically closed state.  
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Figure 0-18. (e) pressure , (f) shear DD, (g) aperture distribution at 110 sec, (h) fracture 

geometry and element status for a case with very low in-situ horizontal stress contrast. 

 

Figure 11-2d shows that at 110 sec, both natural fractures remained mechanically closed. Only the 

main hydraulic fracture and natural fracture wings which are now aligned with the maximum far-

field principal stress are mechanically opened. Also notice that slippage occurred only on the high 

angle (see Figure 11-1c) sections of the natural fractures. The low angle (see Figure 11-1c) sections 

of natural fractures never experienced slip. This is despite the high fluid pressure (close to 6000 

psi) buildup inside these sections of the natural fractures as indicated in Figure 11-3e.  Figure 11-

3f shows shear DD’s of all fracture elements. The maximum shear DD has occurred along high 

angle sections of natural fractures. Although the main hydraulic fracture is aligned with the 
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maximum far-field principal stress, it has experienced shear deformation due to slippage of the 

natural fractures and the associated shear stress shadow. The natural fracture wings that are almost 

aligned with the maximum far-field principal stress did not experience considerable shear DD. The 

aperture distribution (Figure 11-3g) has a large variation along the fracture network; higher 

fracture apertures occur along those network segments that opened against the minimum principal 

stress (i.e. along the main hydraulic fracture and natural fracture wings). At the locations of fracture 

intersection there is a sudden drop in fracture apertures. Therefore, fluid from the main hydraulic 

fracture has to pass through extremely narrow channels in natural fractures to flow to their wings.   
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Figure 0-19. Distribution of induced stresses (compressive positive) in (a) X-direction, (b) 

Y-direction, (c) shear stresses 

 

Figure 11-4 shows the induced normal and shear stress distributions around the fractures at 110 

sec. An increase in compressive stresses up to 170 psi is evident near the surface of the main 

hydraulic fracture in the direction normal to it (Figure 11-4a). The induced compressive XX  along 

the line Y=0 drops to 125 psi at 20 ft from the fracture surface and to 30 psi at 100 ft from it.  

Tensile XX stresses of up to 100 psi are induced near the high angle sections of both natural 

fractures due to their slippage. Induced ( YY ) from Figure 11-4b indicate increased compressive 

stresses (up to 100 psi) on the low angle sections of the natural fractures. As a result, the low angle 
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sections of the natural fractures neither mechanically open nor slip. On the other hand, the high 

angle sections of the natural fractures experience a decrease in the compressive stresses acting on 

them due to the induced tensile stresses. This means mechanical slippage on high angle sections 

of the natural fractures can occur at a lower pressure. This is the reason for eventual slip (Figure 

11-2d) of all high angle natural fracture elements even after the drop in injection pressure (Figure 

11-2b) once they began to propagate. It is interesting to note that even under the scenario of a very 

low far-field principal horizontal stress contrast of 30 psi (0.2 MPa), the effect of induced YY still 

exists on the low angle sections of natural fractures as propagation occurs only from the high angle 

sections as indicated by Figure 11-3h. Figure 11-4c shows the distribution of the induced shear 

stresses component ( XY ); it has a high magnitude of 130 psi near the edges of the high angle 

sections of the natural fractures due to their slippage. It is interesting to note that the induced shear 

stresses are observed only on one side of natural fractures that is facing towards the main hydraulic 

fracture. The induced shear stresses have the potential to destabilize any surrounding natural 

fractures that are critically oriented. On the other hand the induced compressive normal stresses 

will have a stabilizing effect. As a result, the stability of natural fractures in the region of stress 

perturbation is a function of overall stress state (initial plus induced) and the pore pressure 

(Warpinski 2001).   
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Figure 0-20. Randomly generated networks of natural fractures. Left picture is Network-1 

and right picture is Network-2. Perforation locations are indicated by red circles. Far-field 

maximum in-situ stress is acting along north. 

 

 11.3 Complex Fracture Network Numerical Simulations 

To numerically model hydraulic fracture growth in a naturally fractured rock, the experimentally 

obtained mechanical properties of rock and natural fracture listed in Table 11-1 are used as input. 

Input parameters that are not available from experiments are assumed and these are listed in Table 

11-2. Figure 11-5a shows a randomly generated network of vetical natural fractures (blue lines). 

The length of these natural fractures are in the range of 20-60 ft. and their height is fixed at 100 ft. 

The perforation is located at (0, 0) and is indicated by red circle in Figure 11-5a. 

11.3.1 Network-1 (Low In-situ Horizontal Stress Contrast) 

As a first case we consider hydraulic fracture propagation from perforation location under low in-

situ stress anisotropic condition. The in-situ horizontal stress anisotropy in this case is 145 psi with 

maximum principal horizontal stress acting along the direction of Y-axis (see Figure 15a). Slick 
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water (1 cP) is injected at a constant rate of 30 bpm for 160 sec and the resultant fracture network 

is shown in Figures (11-6)-(11-9). Figure 11-7 indicates the state of all the fractures at end of 

injection period. A three color scheme is used to represent the state of each fracture. Mechanically 

opened (i.e. asperities of fracture surfaces are not in contact) fracture segments are shown in red 

color. Blue color shows fracture segments that are mechanically closed (i.e. asperities of fracture 

surfaces are in contact) and unslipped. Green color shows fracture segments that are mechanically 

closed, however are slipped. We can make the following observations from Figures (11-6)-(11-9).  

All the natural fractures that are not intersected by hydraulic fracture remained in mechanically 

closed state at end of the stimulation (Figure 11-7). The combined effect of induced stresses around 

the fractures and pore pressure rise did not cause any slip on these isolated fractures. Most of the 

segments of natural fractures that are intersected by hydraulic fracture are still in mechanically 

closed state. This is due to the effect of stress shadow between the fracture wings. Fluid penetration 

(through native hydraulic aperture) and eventual increase in net pressure inside the natural 

fractures that are intersected by hydraulic fracture caused their slippage. The magnitude if shear 

slip along the segments of natural fracture that are mechanically closed is in the order of 0.005-

0.09 inch (Figure 11-8). Due to shear slip induced fracture dilation, the fracture conductivity of 

slipped elements increased up to 2 md-ft (Figure 11-9).  
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Figure 0-21. Aperture distribution in complex fracture network with in-situ horizontal 

stress anisotropy of 145 psi. Initial fracture network is shown in Figure 11-5a.  

 

 

Figure 0-22. Status of all fracture elements 
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Figure 0-23. Slip distribution 

 

 

Figure 0-24.  Fracture conductivities on natural fractures due to dilation 

 

Fracture apertures (Figure 11-6) varied extremely in the final network where fracture opening 

along the segments that are under higher compressive stress is restricted. This can result in 

proppant screen-out issues. Fracture geometry is complex and asymmetric where propagation is 

dominated towards north.  
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11.3.2 Network-1 (High In-situ Horizontal Stress Contrast) 

In this case we consider hydraulic fracture propagation under high in-situ horizontal stress 

anisotropy of 1000 psi. Slick water (1 cP) is injected at perforation location (see Figure 11-5a) at 

a constant rate of 30 bpm for 100 sec. Fracture network obtained at the end of stimulation is shown 

in Figures (11-10)-(11-13). The results indicate that fracture network outcome is dependent on 

stress anisotropy, as hydraulic fracture growth is dominated towards south in this case (contrary to 

the case of low stress anisotropy where fracture propagation is dominated towards north). Also, 

hydraulic fracture simply crossed natural fractures with low inclination angle. Natural fractures 

that are unconnected by hydraulic fracture are in mechanically closed and unslipped state (Figure 

11-10). Only natural fractures that are at high inclination angle and connected by hydraulic fracture 

have experienced slip. The shear slip (Figure 11-12) experienced by mechanically closed segments 

of natural fractures in this case is higher (0.02-0.2 inch) in magnitude compared to the case of low 

stress anisotropy (0.005-0.09 inch). As a result, higher fracture conductivity is observed in 

mechanically closed and slipped elements (Figure 11-13). This is due to higher shear stresses 

acting on the inclined surfaces of natural fracture in the case of high stress anisotropy. Aperture 

distribution (Figure 11-11) in the fracture network indicates considerable variation similar to the 

case of low stress anisotropy. Aperture drop at fracture intersections can lead to screenout issues. 
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Figure 0-25. Element status in complex fracture network with in-situ horizontal stress 

anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5a. 

  

 

Figure 0-26. Aperture distribution 
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Figure 0-27. Slip distribution 

 

 

Figure 0-28. Fracture conductivities 
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Figure 0-29. Comparison of net injection pressures at wellbore for network 11-5a for high 

and low in-situ stress contrast cases. 

 

 

Figure 0-30. State of all fracture elements at time 3 min (stress anisotropy is 1000 psi). 

 

 

11.3.3 Injection pressure response 
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Propagation of a planar hydraulic fracture typically produces smooth injection pressure profile. 

However, in the case of complex fracture networks, simultaneous propagation of multiple fracture 

tips and continuous change of stresses on natural fracture elements and their status results in a 

complex injection pressure profile. Figure 11-14 shows comparison of net injection pressure 

response with time for the cases of low and high in-situ stress contrast. The results indicates that 

net injection pressure drops initially when a planar hydraulic fracture is initiated and propagates 

in the direction of maximum principal stress. Injection pressure starts to rise (indicated by point 

A) after hydraulic fracture is arrested at the intersection with natural fractures (4 and 5) on both 

sides (i.e., north and south). According to Sesetty and Ghassemi (2018), the magnitude of injection 

pressure rise depends on the in-situ stress contrast and the orientation of natural fractures with 

respect to the in-situ principal stresses. The increase in injection pressure is continued until 

propagation is initiated from the tip of natural fracture 6 (indicated by point B). The instantaneous 

pressure drop at natural fracture propagation can be attributed to creation of new fracture elements 

in the direction of local maximum principal stress direction that do not require much pressure to 

open mechanically. In the case of low in-situ stress contrast, injection pressure continues to drop 

after this point and almost stabilized. On the other hand, injection pressure continues to increase 

during the propagation of natural fracture wings (from Fractures 4 and 6; see Figure 11-5a) in the 

case of high in-situ stress contrast. This is because the natural fractures are mechanically closed in 

this case and create a higher resistance to fluid flow from injection point through narrow sections 

of natural fractures to their tips. This increase in injection pressure is responsible for higher 

opening observed along the segments of hydraulic fracture that are oriented almost parallel to 

maximum principal stress when in-situ stress contrast is high compared to the case of low in-situ 

stress contrast. Injection pressure drop of up to 150 psi at around 3 min (indicated by point C in 
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Figure 11-14) is observed in the case of high stress contrast during the propagation of Fracture 8 

after hydraulic fracture arrested on both sides of the network at Fractures 1 and 8. This is due to 

mechanical opening of high angle sections of natural fractures 5, 6 and 8, which provide the path 

of least resistance for the fluid to flow towards the south wing of the hydraulic fracture as indicated 

by Figure 11-15. This effect is temporary (as the Fracture 5 eventually closed according to Figure 

11-10) and the injection pressure gradually increases to 350 psi and is almost maintained that level 

as the the hydraulic fracture propagates towards the south by crossing Fractures 9, 10 and 11. Note 

that the steep drops observed in injection pressure profile corresponds to the onset of propagation 

from natural fractures, whereas small disturbances observed are due to change of stresses on 

fracture elements as their status change between slip and stick. 

11.3.4 Effect of fluid leak-off 

To study the effect of fluid leak-off on fracture network outcome, the case of high in-situ stress 

contrast is repeated by including pressure dependent leak-off term in fluid flow equation. Using 

the input parameters given in Tables 11-1 and 11-2, and assuming the permeability of the matrix 

to be 0.5 md, the simulation results are shown in Figures (11-16)-(11-19). It is interesting to note 

that fluid leak-off has not affected the fracture network geometry considerably. Fracture apertures 

observed are slightly lower than the case with no leak-off due to continuous loss of pressure in 

fracture elements with the passage of time. Pressure loss in fracture elements due to leak-off has 

affected slippage (see Figure 11-17) of natural fractures, where slip is not observed on natural 

fractures 1, 7 and 10 (compare this with Figure 11-10) that were intersected by natural fractures. 

On the contrary, some unconnected natural fractures experience slip when fluid leak-off is 

included. From Figure 11-18, significant increase in pore pressure can be observed up to 40 ft from 

the surfaces of the connected fractures. The increases in pore pressure decreases the total (in-situ 
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plus induced) compressive normal stresses acting on natural fractures and causes slip. Finally, the 

net injection pressure profile with fluid leak-off (Figure 11-20) shows similar behavior to the case 

of no leak-off (Figure 11-14). The injection pressure drops over 200 psi during the propagation of 

Fracture 8 at around 10 min. Later, the injection pressure gradually increases and stabilizes at a 

value of about 300 psi as the hydraulic fracture continues to propagate towards the south by 

crossing Fractures 9, 10 and 11, similar to the case of no leak-off. Note that when fluid leak-off is 

included, steep drops in injection pressure also indicate hydraulic fracture tip contact with natural 

fracture (which enhances fluid leak-off) apart from initiation of propagation from natural fractures. 

 

 

 

Figure 0-31. Aperture distribution in complex fracture network with in-situ horizontal 

stress anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5a. Matrix 

permeability is 0.5 md.  
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Figure 0-32. Element status in complex fracture network with in-situ horizontal stress 

anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5a. Matrix 

permeability is 0.5 md.  

 

 

Figure 0-33. Pore pressure distribution in complex fracture network generation with in-situ 

horizontal stress anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5a. 

Matrix permeability is 0.5 md.  
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Figure 0-34. Fracture conductivities in complex fracture network generation with in-situ 

horizontal stress anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5a. 

Matrix permeability is 0.5 md.  

 

 

 

Figure 0-35. Comparison of net injection pressures at wellbore for network 11-5a for high 

and low in-situ stress contrast cases. Matrix permeability is 0.5 md. 

 

11.3.5 Network-2 
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In this example we consider a randomly generated network of natural fractures as shown in Figure 

11-5b. The natural fractures indicated by thick blue lines vary from 30-60 ft. in length. The height 

of all natural fractures is fixed at 100 ft. along the Z-axis. Two perforations of initial size 3 ft. and 

spacing 30 ft. are located along the line Y=0 at X=0 ft. and 30 ft. (note that the wellbore included 

in the Figure 11-5b is for illustration purpose only. It does not interact with fractures 

mechanically). Since isolated natural fractures do not enter the system of Eqs. (11.1-11.6), their 

slip is found by evaluating the stresses on them at every time step and applying the Mohr-Coulomb 

criterion. The effects of perforation and wellbore friction on fluid flow partition into each cluster 

is ignored in this paper. Therefore, the location of the fluid source along the wellbore does not 

impact the flow rate division into each cluster which is obtained as a part of the solution. Water is 

injected at a constant rate of 20 bpm into both clusters simultaneously until hydraulic fractures go 

beyond the boundaries of the natural fracture zone. Other input parameters used in simulator are 

given in Tables 11-1& 11-2. Assuming all natural fractures are initially mechanically closed with 

zero pore pressure, and neglecting leak-off and related pore pressure changes, the effect of far-

field horizontal stress contrast on complex fracture network evolution is studied. 
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Figure 0-36. Element status in complex fracture network with in-situ horizontal stress 

anisotropy of 1000 psi. Initial fracture network is shown in Figure 11-5b.  
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Figure 0-37. Element status in complex fracture network with in-situ horizontal stress 

anisotropy of 145 psi. Initial fracture network is shown in Figure 11-5b.  

 

Figures 11-21& 11-22 show fracture networks obtained under high (1000 psi) and low (145 psi) 

in-situ stress contrast situations. In both cases hydraulic fractures from the two perforation clusters 

ultimately merged to form a single fracture propagating towards N-S (i.e., in the direction of 

maximum in-situ stress). When the in-situ stress contrast is low, the natural fractures have 

extended only from one of their tips. Whereas, under the condition of high in-situ stress contrast 

some natural fractures have experienced bi-wing propagation (i.e., fracture propagation occurred 

from both tips of natural fractures). This is due to higher shear stresses acting on the inclined 

natural fractures in this case causing sufficient slip to initiate natural fracture propagation from 

both tips. The indication is that in some cases a higher complexity may result under a high stress 

contrast in disagreement with conventional wisdom. Figures 11-21& 11-22 show several natural 

fracture elements are transitioning between slip and stick state. This can be mainly attributed to 
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pressure and stress changes in the network especially during natural fracture wings re-orientation. 

It can also be seen that natural fractures that are not favorably oriented (such as A, B, C, and D 

from Figure 11-21) and natural fracture segments under low inclination angle never opened or 

even slipped. Few fractures have experienced slip on their low angle sections, however, this is 

limited to very small magnitudes even when in-situ stress contrast is low according to Figures 11-

23& 11-23. This is due to the effect of induced compressive normal stresses acting directly on the 

natural fracture surfaces that are at low angle. Stress redistribution around the fracture network did 

not cause slip along the isolated natural fractures (i.e., natural fractures that are not connected to 

main hydraulic fracture) in both cases (this is not the case, however, in the presence of pore 

pressure and leak-off as shown previously).  

 

Figure 0-38. Shear displacement discontinuities for stress contrast of 1000 psi. 
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Figure 0-39. Shear displacement discontinuities for stress contrast of 145 psi. 

 

Cumulative shear DD from Figure 11-23 &11-24 indicates almost threefold increase in shear DD 

magnitude along the inclined surfaces of natural fractures in the case of high in-situ stress contrast 

(1000 psi) compared to the case of low in-situ stress contrast (145 psi). Natural fractures that are 

almost perpendicular to the maximum in-situ stress and the natural fracture segments that are at 

low angle have experienced little to no shear deformation. Aperture profile from Figures 11-25& 

11-26 indicate extreme variation along the network with sharp drops near the locations of fracture 

arrest in both cases. Higher magnitude of fracture apertures are observed in the network with high 

in-situ stress contrast. This can be attributed to higher net pressures of over 300 psi generated 

inside fractures in the network with high in-situ stress contrast compared with low in-situ stress 

contrast from Figures 11-27& 11-28. 
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Figure 0-40. Aperture distribution for stress contrast of 1000 psi. 

 

 

Figure 0-41. Aperture distribution for stress contrast of 145 psi. 
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Figure 0-42. Pressure distribution for stress contrast of 1000 psi. 

 

 

Figure 0-43. Pressure distribution for stress contrast of 145 psi. 
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While high angle sections of natural fractures experienced slip, most of them are under 

mechanically closed state in the case of high in-situ stress contrast. Also, some fracture elements 

that are created during propagation also experienced closure due to stress shadow effect as 

indicated in Figure 11-21. In these sections the fluid has to flow through the narrow hydraulic 

apertures assigned to them. On the other hand, high angle sections of natural fractures are 

mechanically opened when in-situ stress contrast is low, suggesting that the net pressures 

generated inside the fractures are sufficient to keep them open in this case. 

 

Figure 0-44. Comparison of net injection pressure at wellbore for high and low stress 

contrast cases. 

 

Figure 11-29 shows a comparison of the net injection pressure obtained for the networks with low 

and high in-situ stress contrast. Injection pressure is characterized by initial decreasing trend in 

both cases similar to previous examples. Once the hydraulic fractures hit natural fractures, there is 

a pressure rise in the case of high in-situ stress contrast while the pressure profile for the low in-

situ stress contrast remains nearly stable with few peaks which are due to the change in pressure 

requirements during fracture propagation and stress redistribution on fracture elements. The 

Injection pressure peaks appears to diminish with reduction in in-situ stress contrast. Under high 
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in-situ stress contrast, the net injection pressure gradually increases before stabilizing around 350 

psi. Higher net injection pressures are necessary in this case to compensate for higher pressure 

losses in narrow sections of the mechanically closed natural fractures. On the other hand the net 

injection pressures does not rise substantially in the case of the low in-situ stress contrast (as in 

this case high angle natural fracture segments are opened mechanically) and stabilized around 100 

psi. 

 11.4 Summary 

Results obtained from a numerical model based on 2D DDM and LEFM indicate potentially 

complex behavior of hydraulic fractures in the presence of pre-existing natural fractures. Detailed 

analysis of the example of a hydraulic fracture propagating in between two natural fractures 

inclined to the in-situ stress served to illustrate the fundamental mechanisms involved in HF/NF 

interaction using a crossing criterion based on the stress field ahead of hydraulic fracture tip 

approaching a natural fracture. 

Analysis of the stress distribution around the resulting simple fracture network has revealed the 

effect of induced stresses on the evolving network. Induced compressive stress ( YY ) in the 

direction parallel to the hydraulic fracture surface due to its opening acts directly on the low angle 

sections of natural fractures  restricting their propagation and in some cases even their ability to 

slip. On the other hand, induced tensile stress along the high angle sections of natural fractures 

facilitates slippage even at low pressures. Induced stresses around the fracture network do not 

cause slippage on isolated natural fractures that are not within the zone of influence of the induced 

stresses. For a network under high in-situ stress contrast, most natural fractures remain 

mechanically closed restricting flow only through the residual aperture. In the case of low in-situ 

stress contrast, most sections of natural fractures that are at high angle are opened. In both the low 
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and high stress contrast scenarios, fracture apertures show a high degree of variability along the 

network with the lowest aperture observed along low angle sections of the natural fractures and at 

fracture arrest sites. Severe restriction of the fracture opening along these segments can create 

difficulties for proppant transport. The numerical analysis presented in this paper captures the 

fundamental physics of HF/NF interaction by rigorous modeling of the natural fracture constitutive 

behavior and fracture mechanics involved in hydraulic fracturing. Yet, the model is relatively 

efficient in simulating large scale multi-cluster cases. It is a useful tool for not only gaining insights 

in the role of in-situ stress contrast and induced stresses on evolution of fracture networks but also 

for optimizing cluster spacing, and for better interpretation of micro-seismic signals. A key 

assumption made in this work is that the rock is isotropic. HF/NF interactions in anisotropic rock 

is and will be the subject of a future work. 
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12 Numerical Analysis of Fracture Swarms Observed in Field Studies 

 

Coring adjacent to a hydraulically fractured horizontal well in Eagle Ford shale by Conoco-Phillips 

has revealed several closely spaced parallel hydraulic fractures (separated only by few inches) 

propagating in the direction perpendicular to the wellbore axis. The number of observed hydraulic 

fractures greatly exceed the number of clusters according to the recent paper titled “Sampling a 

Stimulated Rock Volume: An Eagle Ford Example”. The observed behavior is contrary to the 

conventional practice of hydraulic fracture modeling where often a single fracture from each 

perforation cluster.  

Hydraulic fractures segmentation can occur due to its interaction with bedding planes, natural 

fractures and faults. Field observations (Pollard et al., 1982; Baer, 1991) show vertical 

segmentation of hydraulic fracture at the bedding interfaces as the fracture grows in height. The 

resultant fracture is an echelon type fracture rather than a single continuous one. Similarly, 

presence of natural fractures can cause fracture offsets after hydraulic fracture intersection 

(Anderson, 1981; Warpinski and Teufel, 1987), which can lead to segmentation of hydraulic 

fracture as it grows laterally. Moreover, secondary fractures can initiate from weak flaws along 

the natural fractures if the injection pressure is sufficiently high (Zhang and Jeffrey, 2006). Other 

significant factors that contribute to multi-stranded hydraulic fracture propagation are rock 

heterogeneity (in both elastic and strength properties) (Stadulis, 1995), spatial variation of in-situ 

stress (Weijers et al., 2000) and mode-3 fracture splitting (Wu and Germanovich, 2009). Note that 

the results from Eagle ford field test indicates sparse distribution of natural fractures, suggesting 

that the complexity of hydraulic fracture propagation cannot be attributed to the the presence of 

natural fractures alone.  
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With mounting evidence gathered from hydraulic fracturing field tests from different sites, the 

single planar fracture models show to be less reliable for unconventional stimulation design. 

Presence of fracture swarms affect all aspects of hydraulic fracture design such as treatment 

pressures, fracture widths, and length and proppant distribution (Ciezobka et al., 2018). Therefore, 

it is imperative to understand the behavior of closely spaced multi-strand fracture propagation. In 

this chapter, the implications of fractures propagating as dense parallel strands (without 

considering the mechanisms of fracture branching) is discussed. For this, a 2D displacement 

discontinuity based hydraulic fracture propagation model is used to simulate fracture propagation 

from individual perforations in a single cluster near the wellbore. Factors (in-situ horizontal stress 

contrast, fracture toughness of medium, and perforation properties) affecting near wellbore 

fracture connectivity and fracture lateral growth are discussed. The effect of extremely small 

spacing between the fractures on fracture widths, injection pressure, net pressure inside the 

fractures and the ability of the fractures to grow overcoming stress shadow effect is studied. The 

results of multi-stranded fractures are compared with the results obtained using single planar 

fracture to highlight the differences. Although the analysis is performed for multiple fractures 

emanating from a cluster of perforations near the wellbore, these results in general should be 

applicable to fracture strands observed at far-field (see Figure 12-1) in understanding the effects 

of close spacing on fracture widths and net pressures. Fracture non-planarity, coalescence, 

coupling between fracture deformation/fluid flow and perforation friction, near tip processes are 

considered in great detail. 
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 12.1 Model Description 

Fracture deformation is modeled using 2D displacement discontinuity method (DDM). It is 

assumed that all fracture have constant height and the effect of finite fracture height on DDM 

solution is accounted using a 3D correction factor. Fluid flow inside fractures are approximated 

using lubrication equation neglecting fluid leak-off. Finally it is imperative to consider the role of 

perforation friction pressure drop on fracture propagation as high perforation pressure drop keeps 

the wellbore pressure high enough to initiate and force multiple fractures to propagate. The 

perforation friction drop is calculated using Eq. 10.28. Fracture propagation is approximated in 

small time steps, where at every time step, the fracture deformation equation, fluid flow equation, 

perforation friction and mass balance are solved simultaneously.  

 

Figure 0-45. Fractures emanating from a cluster of perforations phased at 1800 near the 

wellbore. Fracture segmentation far from wellbore causing fracture strands. Artwork re-

created from (Weijers et al., 2000). 
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 12.2 Numerical Experiment Setup 

For numerical simulations, a horizontal wellbore with 20 perforations over an interval of 5 ft with 

1800 phasing is considered. Figure 12-1 shows placement of perforations on the wellbore and 

hydraulic fractures emanating from them. We assume 10 bi-wing fractures from 20 perforations 

in a cluster. For modeling purposes, small initial fractures of size 0.15 ft from each perforation on 

both sides of the wellbore are placed in the direction of maximum in-situ horizontal principal 

stress. Although fracture propagation near a wellbore can be affected by wellbore deformation (see 

chapter 7), in this study, the wellbore effect is ignored assuming that fractures quickly grow out 

from the zone of wellbore influence. The input parameters used in numerical simulations are listed 

in Table 12-1. The elastic properties (Young’s modulus and Poisson’s ratio) given are averaged 

values from static measurements (Jansen, 2014) for Eagle Ford shale. All fractures have a fixed 

height of 30 ft. For sensitivity analysis, some input parameters are modified in the later sections. 

For all the examples, the injection fluid is water (1 cP) and injection rate is 20 bpm. In the DD 

model, fractures are discretized into very fine line elements of size 0.06 ft, therefore requires about 

17 elements to simulate fracture of size 1 ft and increases the computational time considerably, 

nevertheless it is required to capture the non-planar fracture growth accurately. Moreover, 

selecting elements that are larger than the spacing between the fractures induces high numerical 

errors in the solution. 

  

 

 

 

 



259 

Table 0-6. Input parameters used in numerical model.  

Parameter Value Units 

Minimum principal horizontal 

stress (σh) 

5655 psi 

Young’s modulus 4.0 Mpsi 

Poisson’s ratio 0.27  

Hydraulic/Natural fracture 

height (all examples) 

30  ft 

Injection fluid viscosity (all 

examples) 

1 cP 

Injection rate (all examples) 20 bpm 

Perforation diameter  0.4 inch 

Coefficient of discharge 0.45  

  

 12.3 Results 

12.3.1 Effect of in-situ horizontal stress contrast 

Figure 12-2 shows fracture geometry and aperture distribution for three different horizontal in-situ 

stress contrast conditions at the end of fluid injection (note that a common scale is not used due 

large variation observed in results between different cases). The fractures are numbered for 

identification. For low stress contrast value of 145 psi, of the 10 fractures, 3 factures on the left 

side (Frac-2, 3& 4) and 3 fractures on the right side (Frac-7, 8& 9) curved away from the center 

fractures (Frac-5& 6) connected at a distance about 2 ft from the wellbore to form single fractures. 
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The two center fractures appear to grow parallel to maximum principal stress without coalescing. 

Widths at fracture inlets are maximum for center fractures and lowest for outermost fractures (see 

Figure 12-3a; note that due to problem symmetry, result for only 5 fractures are displayed). The 

lower opening of outer fractures can be attributed to induced compressive stresses on the 

midsections of the fractures due to curving. We can also notice that near the location of fracture 

intersections, widths are greatly reduced. 

 

Figure 0-46. Fractures emanating from individual perforations from wellbore and their 

apertures for in-situ horizontal stress contrast of (a) 145 psi, (b) 350 psi and (c) 1000 psi. 

Fracture toughness, KIC is 1800 psi.inch0.5. 
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Figure 0-47. Width at the inlet of each fracture as a function of time for in-situ horizontal 

stress contrast of (a) 145 psi, (b), 350 psi and (c) 1000 psi, (d) net pressure at fracture inlet 

and wellbore as a function of time for in-situ horizontal stress contrast of 145 psi, (e) 350 

psi, (d) 1000 psi. Fracture toughness, KIC is 1800 psi.inch0.5. Note that due to problem 

symmetry results for only 5 fractures are displayed. 
 

 

For moderate stress contrast value of 350 psi, fractures appear to grow farther from wellbore before 

coalescence occurred (Figure 12-2b). Of the 10 fractures, the 8 inner fractures connected with 
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other fractures to form 4 fractures about 4 ft from the wellbore. Further coalescence among 

fractures is not observed. The inner most coalesced fractures appear to grow parallel to maximum 

principal stress. Similar to the case of low stress contrast, here widths at fracture inlets are 

maximum for center fractures (see Figure 12-3b) as the outer fractures curve away.  

For the case of high stress contrast of 1000 psi, fracture connection near the wellbore is not 

observed (Figure 12-2c). As indicated before, the fracture height is 30 ft and spacing between 

adjacent fractures is 0.5 ft. This gives spacing ratio, x/H (x is spacing between fractures and H is 

fracture height) of 0.016, which is very small compared to the spacing ratio’s used in conventional 

fracture models that range from 0.1-1. For the small spacing ratio considered, the inner fractures 

were able to achieve fracture half-lengths up to 20 ft before they terminated. Of the 10 fractures, 

only 4 fractures extended beyond 20 ft from the wellbore and continue to grow as doublets on both 

sides of the cluster.  Even though the inner fractures (Frac-3 to Frac-8) achieved lengths up to 40 

ft, their widths are extremely low (only about 0.005 inch) throughout the injection period (see 

Figure 12-3c). Although the aperture distribution is very uniform (according to Figure 12-2c) along 

the lengths of 4 dominant outer fractures (Frac-1, 2, 9& 10), at the fracture inlet, apertures are 

highest for the end fractures (i.e. Frac-1& 10) which is about 0.03 inch (see Figure 12-3c). At the 

inlet of inner fractures (Frac-2& 9), apertures are only about 0.008 inch. 

Figures (12-3d)-(12-3f) show net pressure (pressure above minimum horizontal stress) at wellbore 

and fracture inlets as a function of time. The difference between wellbore pressure and fracture 

inlet pressure is pressure drop due to perforation friction. The results indicate significantly high 

net pressures inside simultaneously propagating multiple fractures (later we will compare these 

results with single fracture model). The magnitude of net pressures appear to be greatest for 

innermost fractures when fractures are propagating parallel to maximum stress according to Figure 
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12-3f for the case of high stress contrast of 1000 psi. This is due to very low widths observed for 

inner fractures (Figure 12-3c) which increases the resistance for fluid flow inside them. The peaks 

observed in net pressure plot (Figure 12-3f) in the period 3 to 4 sec corresponds to termination of 

fractures due to stress shadow effect. The termination of each fracture increases the available 

injection fluid for other fractures and also perforation friction which is reflected in the injection 

pressure rise. Note that in practice, the rise in injection pressure might re-open the closed fracture, 

however, this effect is not considered in the numerical model for simplicity. Based on Figure 12-

3f, the order of fracture closure is Frac-4& 7; Frac-5& 6; Frac-3& 8. The results also indicate that 

the magnitude of the net pressure inside fracture is a strong function of the number of fractures 

propagating at a given time. As the inner fractures close, the net pressure inside outer fractures 

tend to drop. After the closure of 6 inner fractures (i.e. Frac-3 to Frac-8), the net pressure inside 

outer fractures dropped to about 370 psi and stabilized (Figure 12-3f). 

12.3.2 Effect of fracture toughness 

Figure 12-4 shows fracture geometries and aperture distribution obtained at the end of fluid 

injection for 3 different values for in-situ horizontal stress contrast when the fracture toughness of 

rock is reduced by 4 times (KIC=450 psi.inch0.5) compared to previous example (KIC=1800 

psi.inch0.5). The other input parameters can be found in Table 12-1. In this case, connection 

between the fractures is not observed even for low stress contrast value of 145 psi (Figure 12-4a). 

The fractures appear to curve away from each other due to stress shadow effect, however, the 

degree of fracture curving depends on magnitude of stress contrast. For the case of stress contrast 

of 145 psi, aperture at the fracture inlet is greatest for innermost fractures (Frac-4, 5, 6& 7) similar 

to previous example (Figure 12-5a). For high (1000 psi) and moderate (350 psi) stress contrast 

values, highest opening at fracture inlet is observed for outer fractures as in these cases fracture 
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curving is not significant. Moreover, the lateral growth of inner fractures is significantly improved 

compared to the previous example (compare Figure 12-3c and 12-4c). For stress contrast of 1000 

psi, the 6 inner fractures (Frac-3 to Frac-8) achieved about 70 ft length before they terminated, and 

similar to the previous example, the 4 outer fractures (Frac-1, 2, 9, & 10) propagate as doublets on 

both sides of the cluster after the termination of inner fractures. Aperture distribution at fracture 

inlet show that about 60 percent of the fracture opening is accounted by the end members (Frac-

1& 10), while the rest of the fractures contribute only 40 percent of fracture opening at the inlet 

by the end of injection in case where stress contrast is 1000 psi (see Figure 12-5c). 
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Figure 0-48. Fractures emanating from individual perforations from wellbore and their 

apertures for in-situ horizontal stress contrast of (a) 145 psi, (b) 350 psi and (c) 1000 psi. 

Fracture toughness, KIC is 450 psi.inch0.5. 

 

 

The lack of connection between the fractures in this example is due to decrease in the extent of the 

region influenced by induced stresses at fracture tips. According to LEFM, the induced stress (Δσ) 

at a fracture tip due to mode-1 stress intensity factor is given by (see also Nolte, 1993) 

2
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r



     (12.1) 
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Where r is distance from fracture tip. Eq. 12.1 shows direct proportionality between tip stresses 

and fracture toughness of the rock. As a result, when fracture toughness of the rock is reduced, the 

interaction between fracture tips is also reduced as observed in this example of closely spaced 

multiple fractures (Figure 12-4). On the other hand, the compressive stresses induced near the mid-

sections of fractures pushed the fracture away causing them to curve. 

We also observed that decrease in rock’s fracture toughness improved growth of inner fractures.  

According to LEFM, fracture widths very near the tips can be expressed as 

24 (1 ) 2
( ) IC

tip

K v x
w x

E


    (12.2) 

The above equation indicates that lower fracture toughness of the rock allows propagation of thin 

fractures as seen from the results shown in Figure 12-4. Alternatively, one can argue that in rock 

with low fracture toughness, the energy required to create new surface area would be less (based 

on the relation between Griffith energy and fracture toughness), therefore for a given energy input, 

fractures with larger length can be created. Conversely, high fracture toughness rock results in 

wide and short fractures. 

 



267 

 

Figure 0-49. Width at the inlet of each fracture as a function of time for in-situ horizontal 

stress contrast of (a) 145 psi, (b), 350 psi and (c) 1000 psi, (d) net pressure at fracture inlet 

and wellbore as a function of time for in-situ horizontal stress contrast of 145 psi, (e) 350 

psi, (d) 1000 psi. Fracture toughness, KIC is 450 psi.inch0.5. Note that due to problem 

symmetry results for only 5 fractures are displayed. 
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Figures (12-5d)-(12-5f) shows net pressure as a function of time at wellbore and fracture inlets for 

the 3 cases considered. Similar to previous example, we observe high net pressure inside the 

fractures. Net pressures appear to quickly drop from the initial peak and stabilizes as the fractures 

grow laterally. For the case of stress contrast of 1000 psi, maximum net pressures are observed at 

the inlet of innermost fractures (Frac-5& 6), where the value is about 600 psi. After 7 sec of 

injection, the inner fractures (Frac-3 to Frac-8) terminated almost at once, after which the net 

pressures inside outer fractures (Frac-1& 2; Frac-9& 10) dropped to about 260-350 psi and 

stabilized as they continue to grow.  

 12.4 Discussion 

In this work propagation of closely spaced multiple hydraulic fractures with very small spacing 

ratio compared to those typically used in conventional fracture models is considered. Near 

wellbore fracture connectivity, fracture lateral growth, fracture widths and net pressures are 

investigated. The results indicate that propagation of closely spaced fractures (at the scale observed 

in recent field tests) is possible. The results do not indicate coalescence of near wellbore fractures 

to form a single dominant fracture as traditionally assumed in single fracture models. Moreover, 

fracture coalescence is suppressed by increase in far-field stress contrast and decrease in fracture 

toughness. In a rock with low fracture toughness, reduced interaction between the fracture tips 

prevented fracture coalescence even for case with low stress contrast. Also growth of inner 

fractures is enhanced in low fracture toughness rock. Aperture profile indicate that fracture 

opening at the inlet is mostly dominated by exterior fractures except for the case where stress 

contrast is very low. When fracture curving is negligible (as in the case of high stress contrast), 

the end fractures (Frac-1& 10) account for up to 60 percent of total widths at fracture inlets for the 

spacing considered in these examples. The effect of stress shadow suppressed opening of inner 
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fractures and eventually led to their termination. The results also indicate that fracture propagation 

under very tight spacing generate significant net pressures in the fractures to keep the fractures 

open overcoming the stress shadow effect. For the case of stress contrast of 1000 psi and KIC=1800 

psi.inch0.5, it can be seen from Figure 12-3f that when 10 fractures propagate simultaneously, the 

net pressure inside the fractures vary from 700 psi in the centermost fractures (Frac-5& 6) to 500 

psi in the outermost fractures (Frac-1& 10). A simple analytical expression that relates the net 

pressure (Pn) required to propagate multiple parallel fractures with the net pressure (Ps) required 

for single fracture is given as (Palmer and Veatch, 1990) 

n sP P n    (12.4) 

Where n is number of parallel propagating fractures. The above equation is obtained based on the 

assumption that all n fractures have equal widths and equal net pressure. The numerical results for 

net pressure for the case of high stress contrast of 1000 psi and KIC=1800 psi.inch0.5 from Figure 

12-3f show an average net pressure (average of all 10 fractures) of about 600 psi at 2 sec into 

injection while 10 parallel fractures are propagating simultaneously. At 7 sec the number of 

propagating fractures are only 4 and the average net pressure is dropped to about 300 psi. The 

corresponding values for net pressures at these times obtained from a single fracture model (using 

the same input parameters) can be found in Figure 12-6a; they are 160 psi and 140 psi respectively. 

Now according to Eq. 12.3, using n as 10 and Ps as 160 psi, we get Pn as 500 psi which is somewhat 

close the prediction (600 psi) by numerical model for 10 fractures. For n=4 and Ps =140 psi, Eq. 

12.3 predicts Pn as 280 psi which is consistent with result (300 psi) obtained from numerical model 

for multiple fractures. Similarly for the case of 1000 psi stress contrast and KIC=450 psi.inch0.5, 

we seen an average net pressure of 510 psi when 10 fractures are propagating simultaneously at 7 

sec from Figure 12-5f. The corresponding value obtained from single fracture model is 150 psi. 
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Using n as 10 and Ps as 145 psi we obtained Pn as 475 psi, which is again close to the numerical 

result (510 psi). This analysis suggest that it might be possible to infer the number of parallel 

fractures propagating simultaneously based on net pressure data by comparing single fracture 

model predictions with field data. However, the pressure indicated at wellbore also include friction 

losses and in some cases their contribution could be far greater that the net pressure increase inside 

the fractures (see wellbore pressure in Figures 12-3f& 12-5f). This behavior has also been reported 

in field studies (Crump and Conway, 1988) where friction pressure losses (due to perforations or 

near wellbore tortuosity) account for significant increase in injection pressures. Therefore, 

misinterpreting friction losses as net pressure increase due to multiple fractures could lead to 

overestimation of number of fractures.  

 

 

Figure 0-50. Net pressure at fracture inlet and wellbore obtained using single fracture 

model for (a) fracture toughness, KIC= 1800 psi.inch0.5, (b) 450 psi.inch0.5. Other input 

parameters can be found in Table 1.   

The numerical results indicate that higher injection pressure is needed for multiple closely spaced 

fractures to grow simultaneously by overcoming the negative effect of stress shadow. In these 

numerical simulations higher injection pressure at wellbore is achieved using perforation friction. 

If the injection pressure at wellbore and fluid pressure at fracture inlet are very close, the flow 

partition into each fracture will be primarily controlled by fracture opening at the inlet (which is 
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affected by stress shadow). The fractures with relatively higher opening will take the most fluid 

while leaving the remaining unstimulated. By elevating the wellbore pressure to a much higher 

value than fracture inlet pressures, fluid can be forced into the inner fractures with lower widths, 

therefore ensuring their growth. Figure 12-7 shows fracture geometry and apertures at the end of 

fluid injection for the case where perforation friction is reduced by increasing the diameter of 

perforations from 0.4 inch to 0.6 inch and coefficient of discharge from 0.45 to 0.9. The stress 

contrast for this example is 1000 psi and KIC is 1800 psi.inch0.5. The other input parameters can be 

found in Table 12-1. The results indicate growth of only 4 outer fractures (Frac-1, 2, 9& 10) while 

the rest terminated near the wellbore. In this case the effect of stress shadow on fracture 

propagation is prevalent causing the early termination of inner fractures due to lower injection 

pressure (in this case wellbore is kept at about only 100 psi above the fracture inlet pressures. For 

the cases with high friction losses, this value is almost 500 psi; compare Figures 12-3f, 12-5f and 

12-7b) at wellbore as seen from the Figure 12-7b. Another important factor that can affect lateral 

growth of fractures is fracture height. In this study we assume a constant fracture height of 30 ft 

which results in spacing ratio of 0.015. For much higher fracture height the spacing ratio gets even 

smaller. As the induced normal stresses in the direction perpendicular to the fracture surface are 

inversely proportional to the spacing ratio (see Figure 3-4), very low values of spacing ratio can 

inhibit growth of inner fractures. On the other hand segmentation of fracture in vertical direction 

(which has been observed in field studies) increases the spacing ratio and can enhance propagation 

of inner fractures in a closely spaced fracture strand. 
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Figure 0-51. (a) Fracture geometry and apertures obtained using low perforation friction. 

Perforation diameter is 0.6 inch and discharge coefficient is 0.9, (b) the corresponding net 

pressure at fracture inlets and wellbore. 

 

 

To understand the implications of treating a multiple fracture strand as a single fracture in 

numerical modeling for hydraulic fracture design analysis, we consider propagation of a single 

planar fracture with the input parameters given in Table 12-1. Figure 12-8 shows width at fracture 

inlet as a function of time for two different values of fracture toughness considered previously. 

The result from single fracture model (solid red line) is compared with the result from multiple 

fracture model (dashed green line), which indicates the sum of fracture widths at inlets for all the 

10 fractures that are almost parallel (see Figures 12-3c& 12-5c) for the case of 1000 psi stress 

contrast. The step like decrease in the results of multiple fractures correspond to the closure of 

inner fractures. Results show that treating 10 parallel fractures as a single fracture grossly 

underestimates fracture widths (note that the error appears to decrease with closure of inner 

fractures). As discussed previously, propagation of multiple fractures result in net pressure 

increase inside the fractures. This increased injection pressure can be accounted in single fracture 

model by increasing the fracture toughness of the rock according to (Notle, 1993). Figure 12-9 
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shows comparison of net pressure and width at fracture inlet obtained from single fracture model 

with the corresponding values from multiple fracture model after matching injection pressure of 

single fracture model by increasing fracture toughness of the rock from 450 psi.inch0.5 to 12600 

psi.inch0.5. It can be seen from the Figure 12-9 that injection pressure matching substantially 

reduced the difference between the results of single fracture and multiple fracture models. 

However, one should note that the prediction of fracture widths by single fracture model can only 

account for the total widths and it does not reflect the values of fracture widths observed by 

individual fractures in a strand which can be substantially lower than the total widths. Therefore, 

the standard single fracture models result in erroneous estimation of fracture widths which can 

impact proppant transport analysis.  

 

 

Figure 0-52. Comparison of total widths of all 10 fractures at their inlets with the result 

obtained using single fracture model for (a) fracture toughness KIC, is 1800 psi.inch0.5 and 

(b) KIC, is 450 psi.inch0.5. Stress contrast is 1000 psi. Note that the step like decrease in total 

width obtained from multiple fracture model corresponds to closure of inner fractures (see 

Figure 2c and 4c). 
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Figure 0-53. (a) Matching net pressure obtained from multiple fracture model (see Figure 

5f) using single fracture model by altering fracture toughness. (b) Comparison of total 

widths of all 10 fractures at their inlets with the result obtained using single fracture model 

after net pressure matching.  For multiple fracture model KIC, is 450 psi.inch0.5 and stress 

contrast is 1000 psi. For single fracture model KIC, is 12600 psi.inch0.5. 

 

 12.5 Summary 

Numerical modeling of multiple hydraulic fracture propagation from a cluster of perforations does 

not indicate coalescence of fractures to form a single dominant fracture. Higher in-situ stress 

contrast and lower fracture toughness of rock appear to inhibit coalescence of closely spaced 

fractures. Propagation of multiple fractures at the spacing scales observed in recent field studies 

require significantly higher net pressures inside fractures to keep them open compared to a single 

fracture. The increase in net pressure inside the fractures is directly proportional to number of 

simultaneously propagating fractures. Also, it appears that an average increase in net pressure 

required to propagate multiple fractures can be related to net pressure for a single fracture, which 

might allow one to infer the number of fractures propagating simultaneously. Calibration of single 

fracture model using injection pressure matching can remedy error in estimation of total widths of 

fracture strands, however, the aperture distribution of individual strand cannot be obtained which 

is a critical parameter for proppant transport. 
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Appendix A 

The material constants ijc  for plane strain condition (see Eq. 2.18) are given as 
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For the case of plane stress, the material constants ijc  are 
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Appendix B 

The fundamental solution for stresses and displacements in an orthotropic material for the problem 

of concentrated line force can be expressed as 
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   (B.1) 

where x, y and z are the three axes of elastic symmetry of the orthotropic material. xP  and yP are 

concentrated line force components in directions x and y respectively.  

The influence functions ijv and ijw  in the coordinate system xyz are defined as below (Rizzo and 

Shippy, 1970) 
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Appendix C 

 

The stress field near the fracture tip in an orthotropic body in the coordinate system x-y-z (see 

Figure 6.1) is given as, 
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where IK  and IIK are mode-1 and mode-2 stress intensity factors, 1 and 2 are complex roots of 

the characteristic equation (Eq C.6) with positive imaginary parts. The above equations can be 

transformed to polar coordinates r  and   using Eq. A.4 
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The near tip normal and shear displacement field is given as  
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The following material constants are given in the coordinate system 1-2-3 (see Figure 6.1). 
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Using the above definitions and plane strain condition we define ijb  
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The above constants are used to solve the following characteristic equation 
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