
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

USING NOVELTY SEEKING REWARD EVOLUTION STRATEGIES TO

TRAIN GENERATIVE ADVERSARIAL NETWORKS

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

KHALED JABR
Norman, Oklahoma

2018

USING NOVELTY SEEKING REWARD EVOLUTION STRATEGIES TO
TRAIN GENERATIVE ADVERSARIAL NETWORKS

A THESIS APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY

Dr. Amy McGovern, Chair

Dr. Dean Hougen

Dr. Andrew H. Fagg

© Copyright by KHALED JABR 2018
All Rights Reserved.

Acknowledgements

I would like to thank my advisor, Dr. Amy McGovern, for taking me in as a

student, giving me all the space I needed to explore the field of neuroevolution,

and helping me to shape my research experience and ideas. I would also like

to thank people at the OU Supercomputing Center for Education and Research

(OSCER) for providing me with the all necessary support I needed to use their

system.

iv

Table of Contents

Acknowledgements iv

List Of Figures vii

Abstract viii

1 Introduction 1

2 Background and Related Work 4
2.1 Generative Adversarial Networks 4

2.1.1 Mode Collapse . 6
2.2 Natural Evolution Strategies . 9

2.2.1 OpenAI ES . 11
2.2.2 Antithetic Sampling and Fitness Shaping 12
2.2.3 Domains of ES . 14

2.3 Novelty Search and Quality Diversity 15
2.3.1 Novelty Search . 15
2.3.2 Minimal Criteria Novelty Search 16
2.3.3 Quality Diversity Algorithms 17

3 Approach 19
3.1 Approach . 19
3.2 GAN Architecture . 21
3.3 ES-GAN: Evolution Strategies GAN 22
3.4 NSR-ES-GAN: Novelty Seeking Reward Evolution Strategies GAN 24

4 Experiments and Results 30
4.1 Experimental Setup . 30

4.1.1 Experiments with ES-GAN 31
4.1.1.1 Proof-of-Concept Experiment 31
4.1.1.2 Simple GAN Experiments 33

4.1.2 Experiments with NSR-ES-GAN 34
4.1.2.1 Using Archive Average Novelty 34
4.1.2.2 Using the k-Nearest Neighbour Novelty Archive 40

4.1.3 Discussion . 46

v

5 Conclusion and Future Work 47
5.1 Conclusion . 47
5.2 Future Work . 50

Reference List 54

vi

List Of Figures

2.1 Generator cost function as a function of the discriminator re-
sponse on generated images. Image from Goodfellow (2016) . . 6

3.1 A mixture of 8 Gaussians . 20
3.2 Simple GAN architecture. 21
3.3 Without minimal criteria, novelty search on G tends to spread

outwards and away from our target data 26
3.4 To the left, bc(g) met minimal criterion, and will be given a

novelty score. To the right bc(g) failed to meet minimal criterion,
and will be given a novelty of zero 27

3.5 Euclidean distance between different generator behavior charac-
terizations. 28

3.6 Dummy bc is seeded to the novelty archive at the start of train-
ing to ensure that the novelty search has a starting point and a
reference behavioral novelty . 28

4.1 A mixture of three Gaussians 32
4.2 KDE plot for 3 Gaussian ES-GAN 32
4.3 ES-GAN training loss curves for 3 Gaussians 32
4.4 KDE plot for ES-GAN . 33
4.5 Training loss ES-GAN . 33
4.6 KDE plot for NSR-ES-GAN with p = 0.3 34
4.7 Training loss NSR-ES-GAN with p = 0.3 35
4.8 Generator average novelty plot with p = 0.3 35
4.9 KDE plot for NSR-ES-GAN with p = 0.5 36
4.10 Training loss NSR-ES-GAN with p = 0.5 37
4.11 Generator average novelty plot with p = 0.5 37
4.12 KDE plot for NSR-ES-GAN with p = 0.7 38
4.13 Training loss NSR-ES-GAN with p = 0.7 38
4.14 Generator average novelty plot with p = 0.7 39
4.15 KDE plot for NSR-ES-GAN kNN novelty with p = 0.3 40
4.16 Training loss NSR-ES-GAN with p = 0.3 41
4.17 Generator kNN novelty plot with p = 0.3, and k = 10 41
4.18 KDE plot for NSR-ES-GAN kNN novelty with p = 0.5 42
4.19 Training loss NSR-ES-GAN with p = 0.3 42
4.20 Generator kNN novelty plot with p = 0.5, and k = 10 43
4.21 KDE Plot for NSR-ES-GAN kNN novelty with p = 0.7 44
4.22 Training loss NSR-ES-GAN with p = 0.7 44
4.23 Generator kNN novelty plot with p = 0.7, and k = 10 45

vii

Abstract

Generative Adversarial Networks (GANs) are a subclass of deep generative mod-

els that aim to implicitly learn to model a data distribution. While GANs have

gained wide research attention, and achieved much success, when trained with

first-order stochastic gradient descent (SGD), they suffer from training instabil-

ities, such as non-convergence and mode collapse, in which they fail to converge

to the Nash equilibrium of the minimax game, and fail to learn all the modes of

the data distribution, where the samples of the generator lack diversity. To this

end, this thesis investigates the use of evolution strategies (ES) to train GANs,

and address the mode collapse issue. The evolution strategies (ES) algorithm

used in this work is simplified version of natural evolution strategies (NES). ES

achieved very impressive and competitive results against state of the art SGD-

based deep reinforcement learning (RL) algorithms. A quality diversity hybrid

of ES, known as Novelty Seeking Reward Evolution Strategies (NSR-ES), that

aims to encourage exploration and diversity is particularly interesting in rela-

tion to the mode collapse problem is also used. In this work we propose two

algorithms to train GANs, ES-GAN and NSR-ES-GAN, and we carryout exper-

imentation on a constrained GAN setup where mode collapse exits to study how

our algorithms can help overcome the issue. Our results show that using ES and

NSR-ES to train GANs fails to overcome the mode collapse issue, and suggests

that more robust and domain specific techniques are needed to overcome the

problem.

viii

Chapter 1

Introduction

Generative Adversarial Networks (GANs) were first introduced by Goodfellow

et al. (2014). GANs are a subclass of generative models that implicitly aim to

model a real data distribution without directly interacting with it. GANs frame

the generative problem as two competing neural networks playing a minimax

game, where both are trying to minimize their own loss function and reach the

solution to the game. One network, the generator, generates synthetic data

that is intended to resemble data from the real data distribution. The other

network, the discriminator, is responsible for classifying whether the data is

coming from the real distribution or the model distribution. During training,

the discriminator learns a good classifier of synthetic vs real data, while the

generator uses feedback from the discriminator to improve the quality of the

generated samples, effectively learning to fool the discriminator. The GAN

converges when the discriminator is no longer able to classify between real and

generated data, and outputs a classification probability of 0.5 for all the data it

sees whether it came from the real data distribution or the model distribution.

GANs have enjoyed success in since they were first introduced, and have

been used in many domains including, but not limited to, image and video

generation (Karras et al. 2018; Chen et al. 2016; Vondrick et al. 2016), image-

to-image translation (Isola et al. 2017; Zhu et al. 2017), Semi-supervised learning

(Salimans et al. 2016; Kumar et al. 2017), and Reinforcement Learning (Li et al.

1

2017). Though they enjoy a lot of success, GANs have proven notoriously hard

to train at times. Because of their unstable and not well understood training

dynamics, GANs suffer from non-convergence and mode collapse problems, in

which they fail to learn the full real data distribution, and only learn a subset

of the its modes (Salimans et al. 2016; Metz et al. 2016; Mescheder et al. 2017;

Li et al. 2018).

GANs are one component of study in this thesis; the other component is a

highly parallelizable natural evolution strategies (NES) variant introduced by

Salimans et al. (2017). In their work, Salimans et al. (2017) introduced a sim-

plified version of NES, and obtained competitive results on complex and high-

dimensional RL benchmarks in comparison to gradient based state-of-the-art

RL algorithms. For clarity and simplicity reasons, we will refer to this variant

as Evolution Strategies (ES). ES drew attention because of its ability to opti-

mize high-dimensional neural networks in challenging deep RL environments,

contrary to the previously held belief that evolutionary algorithms were only

suitable for low-dimensional problems. ES has been shown to exhibit interest-

ing features such as qualitatively different exploration behavior (Salimans et al.

2017; Conti et al. 2017), faster training wall-clock time than rival first-order

stochastic gradient descent algorithms (Salimans et al. 2017), and the ability

to optimize neural networks with respect to different types of gradients that

could lead the search to a different, yet more robust, areas of the search space

(Lehman et al. 2017; Conti et al. 2017).

The main purpose of this thesis is to investigate the use of ES to train

GANs, and how it could be used to address the problem of mode collapse. We

investigate the use of complementary neuroevolution techniques, namely nov-

elty search (Lehman and Stanley 2008, 2011a) and quality diversity algorithms

2

(Pugh et al. 2015), in aiding ES in training of GANs. We hypothesize that using

a quality diversity variant of ES, dubbed as Novelty Seeking Reward Evolution

Strategies (NSR-ES) (Conti et al. 2017), to train the generator of GANs, while

using ES to train the discriminator, will help GANs avoid the mode collapse

problem by diversifying the output of the generator to cover more modes of the

real data distribution, and avoid mode collapse. We performed experiments on

a low-dimensional and artificial dataset, using a simple GAN setup where mode

collapse is well known and is easy to visualize.

3

Chapter 2

Background and Related Work

2.1 Generative Adversarial Networks

GANs are a subclass of deep generative models based on game theory. GANs

are formulated as a minimax game between two networks: a generator (G)

and a discriminator (D). G aims to learn the true data distribution and to

generate samples that are intrinsically similar to it, while the D aims to learn

discriminate between the real data distribution pr and the model’s distribution

pg. The adversarial term comes from the training process in which G is trying

to maximize the probability of the D being mistaken, while the D is trying

maximize the probability of it being correct. In GANs, both D and G are

assumed to be differential functions, usually represented by neural networks

networks.

GANs are formalized as follows : Let pr be the true data distribution over

real data x. We define the latent variable z ∼ pz, where pz is usually chosen to

be a uniform distribution. We define the generator, G(z) : z → x, as a mapping

from the latent variable to the model distribution, pg, over x. We define the

discriminator, D(x) : x→ [0, 1], to output the probability that x came from pr.

4

Then D and G can be formalized as two players playing a minimax game with

the following value function V (G,D) (Goodfellow et al. 2014):

min
G

max
D

V (D,G) = Ex∼pr [logD(x)] + Ez∼pz [log(1−D(G(z)))]. (2.1)

Using this setup, the GAN is trying to learn an optimal generator , G∗ such

that :

G∗ = arg min
G

V (G,D∗), (2.2)

and

D∗ = arg max
D

V (G,D) (2.3)

where D∗ is the optimal discriminator at each training iteration, and E is the

expectation symbol.

Solving for D∗ at every training iteration is computationally infeasible, espe-

cially when we are using neural networks, instead, we train GANs by alternating

gradient updates on D and G (Goodfellow et al. 2014). At every iteration, we

sample a mini-batch of real data x drawn from pr and a mini-batch of z drawn

from pz, then we train D to maximize Ex∼pr [logD(x)] +Ez∼pz [log(1−D(G(z)))

by ascending its gradient, and we train G to minimize log(1 − D(G(z))) by

descending its gradient.

By minimizing log(1 − D(G(z))), G learns to produce samples that have

a low probability of being synthetic (Goodfellow et al. 2014). This setup is

also commonly referred to as minimax GAN (MM-GAN). In the same paper,

Goodfellow et al. (2014) highlighted that this formulation is does not perform

well in practice at early stages in training because D is able to reject generated

samples with high confidence,i.e D(G(z)) is close to zero, which does not provide

sufficient learning signal to the generator as the term log(1−D(G(z))) saturates,

instead, Goodfellow et al. (2014) suggested an alternative loss objective for

5

G where it learns to generate samples that have a high probability of being

classified as real by maximizing the log(D(G(z))). This formulation is known

as the non-saturating GAN (NS-GAN). The relationship between the cost of G

and D(G(z)) is shown in Figure 2.1. All GANs formulations use the same loss

function for D, but differ in the loss used for G.

Figure 2.1: Generator cost function as a function of the discriminator response

on generated images. Image from Goodfellow (2016)

Minimizing D loss is equivalent to minimizing the Jensen-Shannon Diver-

gence, JSD, between pr and pg (Goodfellow et al. 2014). The GAN con-

verges when JSD(pr||pg) = 0, where G recovers the real pr and the value of

D(xreal) = D(xsynthetic) = 1
2

for all xreal ∈ pr and xsynthetic ∈ pg. This is also

known as Nash equilibrium of the miminmax game, when neither player can

make a move to unilaterally improve its score.

2.1.1 Mode Collapse

Mode collapse is a common problem when training GANs, in which the gener-

ated samples of G lack diversity. While the generator is able to produce data

6

that looks like data from the real distribution, it does not cover all the mode

(classes) of the true data distribution, but only a small subset of it. Mode col-

lapse occurs when the generator learns to map different noise values, z, from

the latent space to the same output (Goodfellow 2016; Lin et al. 2018). Early

on, it was common belief that mode collapse was related to the type of diver-

gence GANs sought to minimize between the pr and pg; however, recent research

and the current belief is that mode collapse is related to the training dynam-

ics of GANs and its instability, which is still an active area of research, where

many aspects are still not well understood(Goodfellow 2016; Metz et al. 2016;

Mescheder et al. 2017; Li et al. 2018; Lin et al. 2018).

The main difficulty in understanding and training GANs and its stability lies

in the way GANs are formulated as a minimax game in Eq. 2.1. The solution

to the minimax game is a saddle point (G∗, D∗), also called Nash equilibrium,

where :

V (G∗, D) ≤ V (G∗, D∗) ≤ V (G,D∗) (2.4)

In game theory, this saddle point exits if :

min
G

max
D

V (G,D) = max
D

min
G
V (G,D) (2.5)

Theoretical guarantees for converging to the saddle point, (G∗, D∗), exist

using alternating updates on D and G when the minimax problem is of convex

outer minimization and concave inner maximization (Goodfellow et al. 2014;

Metz et al. 2016). However, since D and G are both represented by neural net-

works, G is not convex, and D is not concave, thus updates are not constrained

in a theoretical way, and there are no guarantees that the GAN will converge

to (G∗, D∗), thus Eq. 2.5 does not hold when the GAN converges to a solution,

causing mode collapse to happen (Goodfellow et al. 2014; Metz et al. 2016).

7

This underlines one of the major difficulties of training in practice, which is

that it is still a heuristic process.

Another intuitive way to understand mode collapse is through the lens of

catastrophic forgetting (Thanh-Tung et al. 2018). Thanh-Tung et al. (2018)

frames GANs training as a continual learning problem in which at each iter-

ation t, the discriminator has to learn to discriminate between the real data

distribution, pr and generated data distribution, ptg. The problem of mode col-

lapse arises from the fact that at each iteration, D has access to samples from

pr, however, it forgot about previous samples from model distribution, p0
g

: pt−1
G .

This results in D being biased towards separating the current synthetic samples

from the nearby real ones, ignoring distant real samples, and previously seen

synthetic samples. Thanh-Tung et al. (2018) noted that this bias caused D to

overemphasize the importance of the current batch of synthetic samples where

it assigns higher scores to data samples that are further from current synthetic

samples. This makes D unable to guide G correctly to produce more diverse

samples, and cover more modes of the real data distribution. This explanation

bears a resemblance to predator-prey co-evolution (Nolfi and Floreano 1998),

which is left for future work.

Many approaches have been proposed to deal with the issue of mode collapse.

Salimans et al. (2016) used an approach to directly encourage diversity through

feature matching and mini batch discrimination. Metz et al. (2016) takes an

approach where the generator anticipates the counter play of the discriminator

by defining its cost function to be the unrolled optimization of the discriminator,

which they show that it is a good approximation for the optimal discriminator,

D∗. Tolstikhin et al. (2017) approached mode collapse by training multiple

GANs at the same time, where each covers a subset of modes. Wang et al.

8

(2018) used an evolutionary approach in which a population of generators using

different loss functions were evolved to adapt to the discriminator.

2.2 Natural Evolution Strategies

Natural Evolution Strategies (NES) (Wierstra et al. 2008, 2014) is a class of

black-box optimization algorithms that maintains a search distribution that it

iteratively updates using a gradient that follows the direction of higher expected

fitness. The main idea of NES is to use search gradients to seek areas in search

spaces with higher expected fitness. The basic procedure of NES can be sum-

marized into three operations performed at each generation: Sampling from the

search distribution, evaluating sampled solutions fitness, and recombining the

results to estimate a gradient and update the search distribution parameters.

While this procedure is similar to that of evolution strategies (Rechenberg 1973;

Schwefel 1977), it is important to highlight that NES is different in two main

ways: the representation of population as a search distribution, and the use of

search gradients to update search distribution (Wierstra et al. 2014).

NES characterizes the population it uses to estimate the gradient by a search

distribution, and seeks to optimize the expected fitness of population sampled

from the search distribution (Wierstra et al. 2014). More formally, let F be a

function acting on parameters θ. To optimize F with respect to θ, NES defines

a search distribution pψ(θ), where ψ represents the mean and convariance of pψ,

and finds the gradient of objective function being optimized, ∇ψEθ∼pψ{F (θ)},

with respect to ψ as follows :

∇ψEθ∼pψF (θ) = Eθ∼pψ{F (θ)∇ψ log pψ(θ)} (2.6)

9

The NES framework (Wierstra et al. 2014) provides nice and clear deriva-

tions for search gradients using multi-variate Gaussian distributions as follows:

let θ = (µ,Σ), where µ ∈ Rd and ∈ Rd×d are the mean and covariance of

the distribution respectively. To sample from the distribution, we transform a

standard normal vector z ∼ N (0, I) into a sample s ∼ N (µ,Σ) :

z = µ+ ATS, (2.7)

where A ∈ Rd×d is the square root of covariance matrix that satisfies ATA = Σ,

and I ∈ Rd×d is the identity matrix. Next, the density function of the search

distribution N (µ,Σ) is defined as :

π(z|θ) =
1√

(2π)d det(A)
· exp

(
−1

2
(z − µ)TΣ−1(z − µ)

)
(2.8)

Using this formulation, we can calculate the gradient by calculating the

derivatives ∇µ log π(z|θ) and ∇Σ log π(z|θ) by :

∇µ log π(z|θ) = Σ−1 (z − µ) , (2.9)

and

∇Σ log π(z|θ) =
1

2
Σ−1 (z − µ) (z − µ)T Σ−1 − 1

2
Σ−1 (2.10)

Using those derivatives, we can calculate the gradient and update the pa-

rameters the search distribution, θ = (µ,Σ) to a new center and covariance

matrix. The updates can be applied using θt+1 = θt + η∇θ log π(z|θ) where η

is the learning rate, or using optimizers such as Adaptive Moment Estimation

(Adam) optimizer (Kingma and Ba 2014; Salimans et al. 2017). The Adam op-

timizer is a first-order gradient optimization algorithm that adapts the functions

learning rates using the average of the first and second moments of gradients.

Adam is computationally efficient, easy to implement, and is every popular in

the deep learning field.

10

2.2.1 OpenAI ES

Salimans et al. (2017) proposed and used a black-box optimization algorithm

that is a variant of NES to solve challenging deep RL problems. The algorithm

also takes a similar approach to the REINFORCE algorithm (Williams 1992).

Just like NES, the algorithm defines a search distribution, pψ, where the param-

eters of the neural network being optimized, θ, are drawn from. pψ is chosen

to be an isotropic Gaussian with mean ψ and fixed covariance σ2I. Such setup

allows to rewrite our expectation in Eq. 2.6, Eθ∼pψF (θ), directly in terms of

the neural network parameters, θ, as the following:

Eθ∼pψF (θ) = Eε∼N(0,I){F (θ + σε)} (2.11)

where ε is Gaussian noise added to perturb the parameters of the network θ.

Salimans et al. (2017) defines this a Gaussian-blurred version of the original

objective function and argue that it helps deal with the discrete and non-smooth

nature of the optimized neural network. Using the re-parameterization, we can

optimize over the parameters of the network θ directly by means of sampling:

∇θEε∼N(0,I)F (θ + σε) =
1

σ
Eε∼N(0,I){F (θ + σε)ε} ≈ 1

nσ

n∑
i=1

F (θ + εi)εi (2.12)

This simplified version of NES proposed by Salimans et al. (2017) uses a

fixed mutation step size, σ ∈ R, and only updates the mean, θ. For the sake

of clarity, we will refer to this variant of NES as ES for the remaining of the

thesis. Note that ES used in this work is not to be confused by ES introduced

by Schwefel (1977). The full ES algorithm is shown in algorithm 1.

Salimans et al. (2017) were able to scale ES to optimize high-dimensional

neural network scaling up to millions of parameters by introducing a novel com-

munication strategy between parallel workers in which the workers communicate

11

the final evaluation of the fitness function and the random seed responsible for

generating the weight perturbation between each other. This communication

strategy made ES highly parallelizable and extremely low bandwidth. The par-

allelized version of ES is shown in algorithm 2. The implementation of weight

perturbations sampling is done by instantiating a large table of Gaussian noise

at the beginning of training, and then having all the workers share a copy of this

table (Salimans et al. 2017). Thus, random seeds generating perturbations vec-

tors are randomly drawn indices that satisfy 0 ≤ i < S(N)+d−1 , where S(N)

and d are the size of the noise table and the dimensionality (number of trainable

weights) of the neural network being optimized respectively, and workers share

those seeds instead of entire perturbation vectors (Salimans et al. 2017).

2.2.2 Antithetic Sampling and Fitness Shaping

Wierstra et al. (2008) and Salimans et al. (2017) proposed using techniques to

improve the performance of ES, most relevant of which are antithetic sampling

and fitness shaping. Antithetic sampling (Geweke 1988) is a technique where

for each perturbation vector, ε, we evaluate the fitness of both (ε,−ε) to reduce

the variance of the gradient estimation.

Another technique that was proposed by Wierstra et al. (2014) and used

by Salimans et al. (2017) is fitness shaping. Fitness shaping is a technique

to help ES avoid outliers by applying a rank-preserving transformation to the

returns of the population and using the transformation to calculate the gradient.

Rather than using the actual fitness, we rank the individuals of the population

by their fitness returns, and then we apply a utility functions to the individual

fitness returns to produce augmented fitness values that are proportional to the

individual rank in the population.

12

Algorithm 1 ES
1: Input: learning rate η, noise standard deviation σ, population size n, initial network parameters θ0,

optimizer opt, fitness function F

2: for t = 0, 1, ... do

3: for i = 1 to n do

4: Sample εi ∼ N (0, σ2I)

5: Compute f+ = F (θt + σ × εi)

6: Compute f− = F (θt − σ × εi)

7: end for

8: Compute ranked fitness r+ = ranks(f+)

9: Compute ranked fitness r− = ranks(f−)

10: Estimate Gradient : g ≈ 1
nσ

∑n
i=1(εi(r

+
i − r

−
i))

11: Update Network θt+1 = θt + opt(g, η)

12: end for

Algorithm 2 Parallelized ES
1: Input: learning rate η, noise standard deviation σ, population size n, initial network parameters θ0,

optimizer opt, fitness function F

2: for t = 0, 1, ... do

3: for i = 1 to n do

4: Sample εi ∼ N (0, σ2I)

5: Compute f+ = F (θt + σ × εi)

6: Compute f− = F (θt − σ × εi)

7: end for

8: for i = 1 to n do

9: reconstruct εi for i = 1, 2...n using random seeds from other workers

10: Compute ranked fitness r+ = ranks(f+)

11: Compute ranked fitness r− = ranks(f−)

12: Estimate Gradient : g ≈ 1
nσ

∑n
i=1(εi(r

+
i − r

−
i))

13: Update Network θt+1 = θt + opt(g, η)

14: end for

15: end for

13

2.2.3 Domains of ES

The ES algorithm introduced by Salimans et al. (2017), and the competitive

results it obtained in deep RL challenges, sparked interest in using ES, and

other related gradient-fee methods for RL domains (Conti et al. 2017; Such et al.

2017; Mller and Glasmachers 2018; Chrabaszcz et al. 2018). On the other hand,

Zhang et al. (2017) took a different direction and studied how ES performed

in supervised learning classification problem in comparison to traditional, first-

order, stochastic gradient descent (SGD). Zhang et al. (2017) sought to measure

the correlation between gradients computed by SGD and ES by optimizing a

neural network that learns a classifier over the MNIST dataset. Zhang et al.

(2017) also tested and proposed techniques that improved the performance of

ES: limited perturbations, and no-mini batch. In limited perturbation ES, each

worker in the ES algorithm perturbs a subsets of the weights of the neural

network instead of all them, which speeds up the computations related to ES

Zhang et al. (2017). These ideas was originally suggested, but not studied, by

Salimans et al.. In the no-mini batch ES, workers in each iteration evaluate the

perturbed neural network on a unique random subset of data, instead of using

the traditional approach of mini-batch where all the workers in one iteration

would evaluate the same mini-batch for all the batches in the dataset each

iteration. Zhang et al. showed that the no-mini batch approach produced very

smooth curves rates and achieved good results. The work by Zhang et al. (2017)

inspired us to use the no-mini batch approach in our work.

14

2.3 Novelty Search and Quality Diversity

2.3.1 Novelty Search

Novelty Search (NS) is a different type of search that questions the effectiveness

and the optimization pathology of main-stream objective-based search algo-

rithms. The main idea of novelty search is to get rid of the objective function

and instead search for behavioural and functional novelty in the target search

space, and to move in the direction of increased behavioral novelty and, sub-

sequently, complexity (Lehman and Stanley 2008, 2011a). Novelty Search was

inspired by the inability of objective functions to foresee and avoid deception

caused by local optima. Lehman and Stanley (2011a) showed that novelty search

alone outperformed fitness-based methods in deceptive maze and biped walking

tasks.

The two main components of novelty search are behaviour characterization

(bc), and the novelty archive A. Behaviour characterization is a domain de-

pendent metric that characterizes the behaviour of the individual, i.e a neural

network, and it is used to compute its novelty with respect to other individuals

whose behavioral characterizations are stored in the novelty archive. During

training, every time an individual θ is evaluated, its behavioral characterization

bc(θ) is added to the novelty archive A. Novelty archive is an archive that stores

that behavior characterizations of the individuals during training. The novelty

of a specific individual N(θ, A) is calculated by selecting the k-th nearest neigh-

bours, where k is predetermined, of bc(θ) from archive A, then computing the

average of the distances between them :

N(bc(θ)) =
1

|S|
∑
i∈S

dist(bc(θ), bc(θi)) (2.13)

15

where S is the set of k-th nearest neighbours, and dist is a domain dependent

distance metric.

The more we accumulate similar behavior characterizations in A, the novelty

decreases rendering them as less novel, and NS moves away from them. An in-

teresting property of behavior characterization in the context of its relationship

with fitness, is alignment. A highly aligned behavior characterization means

that more novelty usually leads to higher fitness, while a weakly aligned, or an

unaligned one does not impose that relationship (Pugh et al. 2016).

2.3.2 Minimal Criteria Novelty Search

Minimal Criteria Novelty Search (MCNC) is an extension to novelty search that

addresses its open-endedness and unconstrained nature (Lehman and Stanley

2010). The behavior space defined by pure novelty search focuses solely on

pushing the search to more novel areas in the behavior space, without explic-

itly taking into account the environment of interest it is deployed to search.

This could cause issues in some specific domains when the behavior space is

unbounded. Lehman and Stanley (2010, 2011a). To test this phenomenon

Lehman and Stanley designed two experiments where a robot was trained to

solve a maze. For the two maze experiments, the main difference was that one

had closed walls and the other did not. Earlier experiments showed NS being

very successful in finding a solution to the closed-walls maze problem. However,

when NS was deployed to solve the partially opened maze, its performance de-

graded greatly. The reason behind that is, while NS was exploring novel be-

haviours in the behaviour space, it was not doing so efficiently in relation to the

maze exploration task, hence the idea of MCNS. MCNS aims to make NS more

efficient by connecting it to the domain and pruning the behavioral space. The

16

extension of MCNS is simple: at the time of evaluation, MCNS checks whether

the individual meets a certain domain-dependent minimal criteria, if so, the

novelty search proceeds as normal; if not, the novelty of the individual is set to

zero and special behaviour characterization reflecting this failure is added to the

archive or discarded. In the maze example, Lehman and Stanley (2010) set the

minimal criterion to be that the robot must end inside the maze at the end of

each iteration, and the experiments showed success. One main concern is that

at the start of training, MCNS might not have any solution (individual) that

meets the minimal criterion, which would effectively render it a random search

until the first individual that meets the minimal criteria is found. To approach

this, Lehman and Stanley (2010) suggest seeding the initial population with a

solution that meets the minimal criterion.

2.3.3 Quality Diversity Algorithms

Quality Diversity (QD) algorithms (Pugh et al. 2015, 2016) are algorithms that

are concerned with both quality and diversity of evolved individuals. QD algo-

rithms suggest a new way of looking at search in evolutionary algorithm as a

divergent, rather than convergent, search trying to find the best performing in-

dividuals while diversifying their behaviors. For a detailed and historical study

of quality diversity algorithms, refer to Pugh et al. (2016). In NS, the search op-

timizes only for behavioral diversity, and ignores the fitness returns completely,

although it still offers valuable information about the search space. QD algo-

rithms seek to make use of both quality (fitness) and diversity (novelty). This

way, QD searches the problem space for individuals with high fitness and novel

behaviors. A QD algorithm can be developed by augmenting NS in a way such

that the individual is updated based on the average of their novelty and fitness.

17

Conti et al. (2017) hybridized NS with ES to promote directed exploration

while maintaining the scalability of the ES proposed in algorithm 1, named

Novelty Search Reward Evolution Strategies (NSR-ES). In ES, we focus solely

on fitness, in NS, we abandon the fitness completely in favor of novelty, but in

NSR-ES, we are optimizing for the weighted sum of both fitness and novelty

Conti et al. (2017).

Algorithm 3 NSR-ES
1: Input: learning rate η, noise standard deviation σ, population n, initial network parameters θ0 , optimizer

opt, fitness function F , novelty archive A, reward pressure p

2: Compute bc(θ0)

3: Add bc(θ0) to A

4: for t = 0, 1, ... do

5: for i = 1 to n do

6: Sample εi ∼ N (0, σ2I)

7: Compute Novelty N+(bc(θ + σ × εi))

8: Compute Novelty N−(bc(θ − σ × εi))

9: Compute f+ = F (θ + σ × εi)

10: Compute f− = F (θ − σ × εi)

11: end for

12: Compute ranked novelty n+ = ranks(N+)

13: Compute ranked Novelty n− = ranks(N−)

14: Compute ranked fitness r+ = ranks(f+)

15: Compute ranked fitness r− = ranks(f−)

16: Estimate Gradient : g ≈ 1
nσ

∑n
i=1 εi{p× (r+i − r

−
i) + (1− p)× (n+

i − n
−
i)}

17: Update Network θt+1 = θt + opt(g, η)

18: Compute bc(θt+1)

19: Add bc(θt+1) to A

20: end for

18

Chapter 3

Approach

In this section, we discuss our formulation of the problem, and how we plan to

use ES and NSR-ES to train GANs.

3.1 Approach

The main research question in this thesis is to study how can we use ES and its

variant, NSR-ES, to train GANs and avoid the mode collapse problem. To best

understand and analyze this issue, we carry experiments on a small synthetic

2D dataset of a mixture of 8 Gaussians, shown in Figure 3.1, on a fixed neural

network setup that exhibits mode collapse. The advantage of using this setup is

that we are able to easily visualize mode collapse as well as see how our approach

tries to migrate and solve the problem. This small experimentation setup is

also a good fit for ES, since ES can be budget-demanding when optimizing

large neural networks, let alone two at the same time (G and D). We start by

presenting our neural network setup, and then we train it using ES on an even

simpler dataset as a proof of concept that our ES code does indeed work. Then

we move into experimentation where we train our proposed GANs using ES,

then we experiment with NSR-ES

19

Figure 3.1: A mixture of 8 Gaussians

20

3.2 GAN Architecture

We use a GAN architecture where bothD andG are both multilayer perceptrons

(MLPs). Each MLP consists of 2 fully connected layers with 128 hidden units

followed by 1 linear output layer with one neuron for D, and two neurons for G.

Weights are initialized by sampling from a normal distribution with 0 mean and

a standard deviation of 0.05. Rectified Linear Units (Relu) activation functions

are used as the non-linearity between fully connected layers. Batch size is set to

256 and the dimension of the latent code, z, is 256. We use the non-saturating

GAN formulation (NS-GAN). We call it simple GAN, and its architecture is

depicted in Figure 3.2

Figure 3.2: Simple GAN architecture.

Under the theoretical framework of GANs, this GAN architecture should be

able to learn to model the 8 Gaussian datasets presented earlier. However, it

fails to do so, and instead learns to produce one mode only. This is why this

setup is considered a good test bed for ideas and research tackling the mode

21

collapse issues where it acts as a proof of concept for the proposed ideas, which

is a lot harder to do with larger detests and is used widely in GANs research

community (Metz et al. 2016; Nguyen et al. 2017; Akash et al. 2017; Mao et al.

2017; Wang et al. 2018).

3.3 ES-GAN: Evolution Strategies GAN

ES is a blackbox optimization for estimating gradients. ES can be used for

training GANs as a drop-in replacement for stochastic gradient descent(SGD).

The full algorithm of ES-GAN is shown in Algorithm 4. Lines 3-13 are equivalent

to updating the discriminator D, and lines 14-23 are equivalent to updating the

generator G.

For fitness shaping, the returns (Lines 7-8 and 17-18) are ranked by ascending

order, then the following utility function is used to normalize the returns based

on their rank:

ri =
zi

n− 1
− 0.5 (3.1)

where zi is the rank of the i − th best individual in ascending order, and n is

the population size. Since ES is estimating a gradient, we can use optimizers to

update the the parameters of D and G. In our work, we use ADAM optimizer

(Kingma and Ba 2014). The fitness shaping and optimizer choices in this work

are the same as the ones in Salimans et al. (2017) and Conti et al. (2017).

22

Algorithm 4 ES-GAN
1: Input: learning rates (ηd, ηg), noise standard deviations (σd,σg), population n, optimizers (optd,optg),

loss functions (Fd,Fg)

2: for t = 0, 1, ... do

3: for i = 1 to n do

4: Sample minibatch of m examples from real data pr

5: Sample minibatch of m examples from pz

6: Sample εi ∼ N (0, σ2I)

7: Compute f+d = Fd(θdt + σd × εi)

8: Compute f−d = Fd(θdt − σd × εi)

9: end for

10: Compute ranked fitness r+d = ranks(f+d)

11: Compute ranked fitness r−d = ranks(f−d)

12: Estimate D Gradient : gd ≈ 1
nσ

∑n
i=1(εi(r

+
d i − r

−
d i))

13: Update D θdt+1 = θdt + optd(gd, ηd)

14: for i = 1 to n do

15: Sample minibatch of m examples from noise distribution pz

16: Sample εi ∼ N (0, σ2I)

17: Compute f+g = Fg(θgt + σg × εi)

18: Compute f−g = Fg(θgt − σg × εi)

19: end for

20: Compute ranked fitness r+g = ranks(f+g)

21: Compute ranked fitness r−g = ranks(f−g)

22: Estimate D Gradient : gg ≈ 1
nσ

∑n
i=1(εi(r

+
g i − r−g i))

23: Update G θgt+1 = θgt + optg(gg , ηg)

24: end for

23

3.4 NSR-ES-GAN: Novelty Seeking Reward Evolution

Strategies GAN

The main idea behind using NSR-ES is to diversify the output of the generator,

to incentivize diversifying the mappings from the noise vector z to the output of

the generator. We hypothesize that diversifying the output of the generator will

help both the generator and discriminator to make smoother updates in which

the GAN is less likely to suffer from mode collapse. In this work, NSR-ES is

applied only to the generator, as we are seeking to diversify its output, while

the discriminator is trained using ES.

In NSR-ES, we estimate the gradient of G as the following:

g ≈ 1
nσ

∑n
i=1 pfg(θ

i
t)εi + (1− p)N(bc(θit)|A)εi,

where n is the population size, σ is the standard deviation of the noise added

to perturb the weights, ε is the perturbation vector,p ∈ [0, 1] is the reward

pressure, fg(θ) is the loss function of the G, and N(bc(θ)|A) is the novelty of

the generator given its behavior characterization, bc, with respect to the novelty

archive A.

We update G based on novelty and loss (fitness), and both measures are

ranked using fitness shaping to ensure that they are on the same scale. With

p > 0.5, we push the search towards areas with more emphasis on higher fitness.

With p < 0.5, we push the search towards areas with more emphasis on novelty

based on our behavior characterization. The default value for p is 0.5. In our

experiments, we test for p ∈ {0.3, 0.5, 0.7}

24

When using novelty search, we have to specify four main components of

interest to our domain: Behavioral Characteristic, Minimal Criterion, Novelty

Archive, and Distance Function.

We define our behavior characterization on G, and donate it bcg(g). bcg(g)

is defined as the average of n of generator samples. That is, at the end of each

GAN iteration, we pass n randomly sampled noise vectors, z ∼ pz, through

G and average the outputs to a single output sample. Our intuition behind

this behavioural characteristic is to encourage the diversity of the generator's

output which will diversify the mappings from z to x and help alleviate mode

collapse. We set n = 1 for all our experiments. We avoided using n > 1

because, when averaging the samples, it hurt the representation of the behavior

characterization.

Running initial experiments using NSR-ES to train the GAN using bcg(g),

without constraining the behavioural space of novelty search led the generator

output to spreading continually outwards as shown in Figure 3.3. This be-

havior is expected as the generated data is still considered novel under our bc

definition; however, they are not related or constrained to the environment of

interest, which is the dataset to be learned. This is a classic example of why

we need to constrain the behavior space of novelty search using minimal crite-

ria. Our minimal criterion is domain-dependant, and defined as the following:

Two polygons are defined as follows: first is a square that bounds the real data

distribution, poly(mc). The second is a square that bounds bc(g),poly(g). The

minimal criterion is defined by requiring poly(g) to be inside poly(mc). poly(g) is

computed by computing the bounding box of bcg(g). Our minimal criterion is

shown in Figure 3.4. In our implementation, at the end of each iteration, if the

25

bcg(g) fails to meet minimal criterion, the novelty score is assigned zero, and

bcg(g) is discarded.

Figure 3.3: Without minimal criteria, novelty search on G tends to spread

outwards and away from our target data

For the novelty archive, we do not set a specific upper bound for the size

of the archive. For calculating the novelty with respect to the behaviors stored

in the novelty archive, A, we have two main approaches: Average (NAV), and

k-Nearest Neighbour(VkNN). For the average approach, NAV , the novelty of

a proposed bcg(g) is computed by finding its distance with the average of all

the behaviours stored in the novelty archive. In this approach we are effec-

tively searching for behaviours that are novel in average with respect to all the

behaviours encountered since the start of the training. NAV is calculated as

follows:

26

Figure 3.4: To the left, bc(g) met minimal criterion, and will be given a novelty

score. To the right bc(g) failed to meet minimal criterion, and will be given a

novelty of zero

NAV (bc(θ)) = dist(bc(θ),
1

|z|
∑
i∈z

bc(θi)), (3.2)

where z all the behavior characterizations in A, and dist is a domain dependent

distance metric.

The k-Nearest Neighbour approach, NkNN , is the same as originally proposed

by Lehman and Stanley (2011a) in equation 2.13, and k is set to 10. For the

distance function, we have several options, such as Euclidean, Manhattan, or

Hausdorff distance. We choose to follow Lehman and Stanley (2011a) and Conti

et al. (2017). Examples of the use of the Euclidean distance function to calculate

the difference between two different generator behavior characterizations is show

in Figure 3.5.

At the end of each training iteration, our archive is only updated when the

minimal criterion is met, and because of this, the generator behavior charac-

terization, bcg(g), at the start of training needs to be guaranteed to meet this

criterion, otherwise, NSR-ES will act as a random search until we find the first

27

Figure 3.5: Euclidean distance between different generator behavior character-

izations.

bcg(g) that meets the minimal criterion (Lehman and Stanley 2010). To handle

this, at the start of training, if bcg(g) does not meet the minimal criterion, we

seed the novelty archive with a dummy bcg(g) that meets the minimal criterion.

The dummy bcg(g) is a matrix of the same dimension as bcg(g) and sampled

from N (−1, 1) and is shown in Figure 3.6

Figure 3.6: Dummy bc is seeded to the novelty archive at the start of training

to ensure that the novelty search has a starting point and a reference behavioral

novelty

The full NSR-ES-GAN algorithm is show in Algorithm 5.

28

Algorithm 5 NSR-ES-GAN
1: Input: learning rates (ηd, ηg), noise standard deviations (σd,σg), population n, optimizers (optd,optg),

loss functions (Fd,Fg), reward pressure p, minimal criteria MC, dummy bcg(g)

2: Compute and Add bcg(θg0) to novelty archive A if meets MC, else add dummy bcg(g) to A

3: for t = 0, 1, ... do

4: for i = 1 to n do

5: Sample minibatch of m examples from real data pr

6: Sample minibatch of m examples from pz

7: Sample εi ∼ N (0, σ2I)

8: Compute f+d = Fd(θdt + σd × εi)

9: Compute f−d = Fd(θdt − σd × εi)

10: end for

11: Compute ranked fitness r+d = ranks(f+d)

12: Compute ranked fitness r−d = ranks(f−d)

13: Estimate D Gradient : gd ≈ 1
nσ

∑n
i=1(εi(r

+
d i − r

−
d i))

14: Update D θdt+1 = θdt + optd(gd, ηd)

15: for i = 1 to n do

16: Sample minibatch of m examples from noise distribution pz

17: Sample εi ∼ N (0, σ2I)

18: Compute Novelty N+(bc(θgt + σg × εi))

19: Compute Novelty N−(bc(θgt − σg × εi))

20: Compute f+g = Fg(θgt + σg × εi)

21: Compute f−g = Fg(θgt − σg × εi)

22: end for

23: Compute ranked fitness r+g = ranks(f+d)

24: Compute ranked fitness r−g = ranks(f−d)

25: Compute ranked novelty n+
g = normalized ranks(N+

g)

26: Compute ranked novelty n−
g = normalized ranks(N−

g)

27: Estimate G Gradient : gg ≈ 1
nσ

∑n
i=1({(p× (r+g i − r−g i)) + (1− p)× (n+

g i − n−
g i)} × εi)

28: Update G θgt+1 = θgt + optg(gg , ηg)

29: Compute and Add bc(θgt+1) to novelty archive A if meets MC, else discard

30: end for

29

Chapter 4

Experiments and Results

4.1 Experimental Setup

Our hypothesis is that using NSR-ES to train the generator of the GAN, while

using ES to train the discriminator, will help avoid the mode collapse problem

by diversifying the output of the generator to cover more modes of the real data

distribution. In this chapter we describe our experiments to train our GAN, as

proposed in chapter 3, using ES-GAN and NSR-ES-GAN algorithms. For ES-

GAN experiments, we report the generator’s kernel density estimation (KDE)

plot and the training loss curves for D and G. For NSR-ES-GAN, we report the

generator’s KDE plot, the training loss curves for D and G, and best fit plot for

the generator’s novelty during training. For all experiments, we set the number

of iterations to be 25000, and number of workers (perturbations per generation)

to be 39. For the ADAM optimizer (Kingma and Ba 2014), hyper-parameters,

we set β1 = 0.5 and β2 = 0.999 for both D and G. β1 and β2 are the exponential

decay rates for the first and second moment estimates respectively.

To decided on what to use for the learning rates and the standard deviations

for Gaussian noise, we carried out experiments varying both values for σ ∈

{0.0002, 0.002, 0.02} and for η ∈ {0.0001, 0.001, 0.01}, and we found the pair of

{σ = 0.0002, η = 0.001} to be the most suitable for both D and G empirically,

30

because they resulted in the expected behavior of mode collapse in our initial

experiments.

4.1.1 Experiments with ES-GAN

In ES-GAN, we train the GAN as outlined in algorithm 4, where both D and

G are trained using ES.

4.1.1.1 Proof-of-Concept Experiment

In this section, we test our ES-GAN on a dataset of three-Gaussians mixture

model, shown in Figure 4.1, as a proof of concept that the underlying algorithm

code works. We use the same architecture proposed in chapter 3, but we restrict

the dimension of z to be 2, which is the minimum possible dimension of z in

relationship to the dimension of the real data set (Goodfellow 2016). The kernel

density estimate (KDE) plot is shown in Figure 4.1, and the training loss curves

plot is shown in Figure 4.3.

Looking at the results, we can see that the GAN learned all three modes or

our dataset as expected. By the end of training, the G learned to produce all

the mode of the dataset.

31

Figure 4.1: A mixture of three Gaussians

Figure 4.2: KDE plot for 3 Gaussian ES-GAN

Figure 4.3: ES-GAN training loss curves for 3 Gaussians

32

4.1.1.2 Simple GAN Experiments

In this section, we experiment with our proposed ES-GAN algorithm to train

our simple GAN architecture for the 8 Gaussian mixture experiment. The KDE

plot is shown in Figure 4.4, and the training loss plot are shown in Figure 4.5.

Figure 4.4: KDE plot for ES-GAN

Figure 4.5: Training loss ES-GAN

In these experiments, we used ES to train D and G, and we can see that the

GAN collapsed into producing just one mode. This is the classic mode collapse

case, in which the generator exhibits a cyclic behavior of learning one mode

only, forgetting about the previous modes is learned.

33

4.1.2 Experiments with NSR-ES-GAN

In this subsection, we train the simple GAN using our proposed NSR-ES-GAN

algorithm. We train D using ES, while training G using NSR-ES, as outlined

in algorithm 5. We organize our experiments as follows: for each way proposed

to calculate novelty with respect to the novelty archive, (NAV ,NkNN), we carry

out three different types of experiments for p ∈ {0.3, 0.5, 0.7}. For results, we

provide the generator’s KDE plot, training loss curves plot, and the generator’s

novelty plot showing the generator’s novelty over training, and the best fit line

for the results.

4.1.2.1 Using Archive Average Novelty

In these experiments, the novelty of the current generator is calculated by find-

ing the distance of its behavior characterization, bcg(g), with respect to the

average of all the behavior characterizations stored in the novelty archive.

Experiments with reward pressure p = 0.3. For p = 0.3, NSR-ES-GAN

is emphasizing for increasing the generator’s novelty more than minimizing its

loss. The KDE plot is shown in Figure 4.6. The training loss is shown in Figure

4.7. The generator’s novelty over training is shown in Figure 4.8.

Figure 4.6: KDE plot for NSR-ES-GAN with p = 0.3

34

Figure 4.7: Training loss NSR-ES-GAN with p = 0.3

Figure 4.8: Generator average novelty plot with p = 0.3

35

From the KDE plot, we can see that the GAN failed to converge. Looking

at the training loss curves, we notice that, as the discriminator gets better

during training, the generator gets considerably worse, and its loss decreases

dramatically. This suggests that, generator is failing to learn from the signal

that it is getting from the discriminator. Looking at the generator’s novelty

plot, we can see that the novelty fluctuates over the course of training, and it

has an overall decreasing tendency.

Experiments with reward pressure p = 0.5. For p = 0.5, NSR-ES-

GAN is placing the same pressure on increasing the generator’s novelty as well

as minimizing the its loss. The KDE plot is shown in Figure 4.9. The training

loss plot is shown in Figure 4.10. The generator’s novelty over training is shown

in Figure 4.11.

Figure 4.9: KDE plot for NSR-ES-GAN with p = 0.5

36

Figure 4.10: Training loss NSR-ES-GAN with p = 0.5

Figure 4.11: Generator average novelty plot with p = 0.5

37

We can see that the results for p = 0.5 are very similar to the ones for p = 0.3:

the GAN fails to converge, the generator loss decreases dramatically in response

to the discriminator loss increasing, and the novelty shows a downwards trend.

Experiments with reward pressure p = 0.7. For p = 0.7, NSR-ES-GAN

is emphasizing minimizing the generator loss more than increasing its novelty.

The KDE plot is shown in Figure 4.12. The training loss curves plot is shown

in Figure 4.13. The generator’s novelty over training is shown in Figure 4.14.

Figure 4.12: KDE plot for NSR-ES-GAN with p = 0.7

Figure 4.13: Training loss NSR-ES-GAN with p = 0.7

38

Figure 4.14: Generator average novelty plot with p = 0.7

39

The experiments for p = 0.7 show the same trend for both p = 0.3 and 0.5.

ES-NSR-GAN failed to increase novelty based on our behavior characterization,

and the generator failed to learn from the signal of novelty and the discriminator.

The GAN failed to converge to a solution that learned our target dataset.

4.1.2.2 Using the k-Nearest Neighbour Novelty Archive

In this section, we carry out experiments in which we calculate the novelty of

the generator by calculating the average distances between its behavior char-

acterization and the k-nearest neighbours in the novelty archive, as originally

suggested by Lehman and Stanley (2011a). For all our experiments, we set

k = 10.

Experiments with reward pressure p = 0.3. For p= 0.3, NSR-ES-GAN

is emphasizing for increasing the generator’s novelty more than minimizing its

loss. The KDE plot is shown in Figure 4.15. The training loss curves plot is

show in Figure 4.16. The generator’s novelty over training is shown in Figure

4.17

Figure 4.15: KDE plot for NSR-ES-GAN kNN novelty with p = 0.3

40

Figure 4.16: Training loss NSR-ES-GAN with p = 0.3

Figure 4.17: Generator kNN novelty plot with p = 0.3, and k = 10

41

We can see from the results that the GAN fails to converge, and that the

generator reacts badly to improvements in the discriminator. The novelty of the

generator increases over training, however, the overall trend is still downwards.

Experiments with reward pressure p = 0.5. For p= 0.5, NSR-ES-GAN

is placing the same pressure on increasing the generator’s novelty, as well as

minimizing the its loss. The KDE plot is shown in Figure 4.18. The training

loss curves plot is shown in Figure 4.19. The generator’s novelty over training

is shown in Figure 4.20

Figure 4.18: KDE plot for NSR-ES-GAN kNN novelty with p = 0.5

Figure 4.19: Training loss NSR-ES-GAN with p = 0.3

42

Figure 4.20: Generator kNN novelty plot with p = 0.5, and k = 10

43

The results here are similar to our experiments before. The GANs fails

to converge, and the generator’s loss deceases dramatically in response to an

increase of the discriminator’s loss. However, we notice an upward increase in

the generators novelty.

Experiments with reward pressure p = 0.7.For p= 0.7, NSR-ES-GAN

is emphasizing minimizing the generator loss more than increasing its novelty.

The KDE plot is shown in Figure 4.21. The training Loss is show in Figure

4.22. The generator’s novelty over training is shown in Figure 4.23.

Figure 4.21: KDE Plot for NSR-ES-GAN kNN novelty with p = 0.7

Figure 4.22: Training loss NSR-ES-GAN with p = 0.7

44

Figure 4.23: Generator kNN novelty plot with p = 0.7, and k = 10

45

Result from this experiment are very similar to the experiment with p = 5.

4.1.3 Discussion

All the experiments that we carried under our setup failed to converge to a

solution that learned our target dataset. The generator seems to push for nov-

elty, based on our generator’s behavior characterization, however, this behavior

seems to worsen its learning of the true data distribution, and subsequently

causes the GAN to fail to converge, and instead diverging with a dramatic de-

crease in the generator’s loss. Our experiments suggest that, for our proposed

behavior characterization, calculating an individual’s novelty using the kNN

approach, as suggested by Lehman and Stanley (2011a), is the more suitable

approach as the novelty of the generator increased during training. However, it

is important to note that all these results are based on our proposed behavior

characterization, which failed to help the GAN to converge to a solution.

46

Chapter 5

Conclusion and Future Work

In this section we present conclusions that can be drawn for our experiments

and suggest directions for future work.

5.1 Conclusion

In this thesis, we studied the use of Evolution Strategies (ES), and Novelty Seek-

ing Reward Evolution Strategies (NSR-ES) in training Generative Adversarial

Networks (GANs), targeting the issue of mode collapse. We used an architec-

ture setup of GANs where mode collapse exits and is easy to visualize. We

presented algorithms to use ES and NSR-ES to train GANs. We designed NSR-

ES to tackle the issue of mode collapse by incentivizing the generator output to

be more diverse to cover more modes of the real data distribution. However, our

experimentation using this setup and definition of NSR-ES has failed to help the

GAN to converge into a solution that overcame the mode collapse issue, and we

conclude that, under this setup, Novelty Seeking Reward Evolution Strategies

has failed towards helping the GANs overcome the mode collapse issue.

As highlighted earlier, the dynamics of training GANs are still largely not

well understood, thus providing a theoretical analysis of our work work is not an

option at the mean time given the current state of research in GANs. However,

we would like to point out the reasons we believe that using ES and NSR-ES

47

failed to help the GAN converge in our experimentation. Starting with ES-GAN,

we used ES to train both D and G instead of first order stochastic gradient

descent (SGD). ES, just like SGD, estimates the gradient of a loss function.

In our ES-GAN experiments, the GAN collapsed to producing only one mode,

which was identical the the behavior of SGD. This suggests that using ES only

to train GANs, the issue of mode collapse is related to the training dynamics

of GANs, and the interactions between D and G, rather than the optimization

method used, which was the main reason that inspired us to use NSR-ES to

augment the behavior of G.

Moving into our experiments with NSR-ES. We proposed NSR-ES-GAN, in

which D was trained using ES, while G was trained using NSR-ES. We proposed

a behaviour characterization based on the output of G, with the main goal being

to incentive it to be different, as in mode collapse the output of the generator

tends to converge to a single, or few modes of the datasets. We also proposed

two ways to calculate novelty with respect to novelty archive: One that used

10-th nearest neighbours to calculate novelty, and one where we averaged all the

behaviours in the novelty archive, then measured the distance with the current

generator. We also proposed different reward pressures where we sought to

exploit NSR-ES on G to put more pressure on increasing the novelty of the

generator, or minimizing its loss. Throughout our experimentation, our GAN

failed to coverage, not producing any modes of the real dataset. To better

understand what happened, we look at the key difference between ES-GAN,

which suffered from mode collapse, and NSR-ES-GAN, which failed to converge

to a solution. The key difference is the use of novelty search, defined by our

behavior characterization. We believe that the novelty search component of

NSR-ES-GAN failed to provide additional and useful learning signal to the

48

generator, and instead worsened its learning process. This can be seen in our

training loss curves where the loss of the generator decreased dramatically over

training, and failed to converge. There are two main reasons that we believe

caused our novelty signal to be unhelpful to G: the alignment of behaviour

characterization of the generator, and the novelty landscape of GANs.

The alignment of the behavior characterization is defined as the degree to

which finding novel behaviours based on the behavior characterization leads

to higher fitness or, in our case, better G (Pugh et al. 2016). However, our

proposed behavior characterization for the generator was to search for novelty

in terms of diversity, which is, as pointed by Pugh et al. (2016), intrinsically

not aligned with fitness. The main idea of using NSR-ES-GAN is push the

generator to explore new generating diverse output, rather than collapsing to

a single solution, in one hand, and in the other hand using the signal from the

discriminator to drive this diversity towards matching the real data distribution.

This is the main idea of quality diversity (QD) algorithms, and interestingly

enough, much of the published research using QD algorithms to search for high

quality, yet, diverse solutions, employed unaligned behavior characterizations

(Lehman and Stanley 2011b; Cully and Mouret 2013; Mouret and Clune 2015;

Pugh et al. 2016), which was the main motivation of the choice of our behavior

characterization.

Another challenging aspect about using novelty search on the GAN frame-

work is the changing novelty landscape of GANs. The use of novelty search

has been mainly conducted on reinforcement learning problems, in which the

environment stayed constant over the course of training. Unfortunately this is

the not the case in GANs. One can look at GANs as a reinforcement problem,

49

in which the generator (the agent) is trying to reach certain level or objec-

tive by interacting with the discriminator (the environment). In NSR-ES-GAN,

the generator is learning from the discriminator, and is using what it learns to

produce more novel behaviors by using novelty search. The challenge is that

the discriminator (the environment) itself is changing as the discriminator is

learning to be a better classifier, thus the different behaviours produced by the

generator, which are indirectly affected by the signal it learned from the dis-

criminator, may not be as relevant throughout training. Thus, the changing

novelty landscape of the GANs might have severely harmed the usefulness of

the novelty returns, and rendered it useless.

To the best of the author’s knowledge, it is the first time that an ES algo-

rithm has been used in the domain of GANs. The ideas and experimentation

provided here are to be seen as an approach to take into consideration for any

future work or research interest in applying more evolutionary computation al-

gorithms to the same domain. While we had hoped to tackle the issue of mode

collapse, our experiments failed, and instead, we are presented with yet another

layer of complex dynamics in relation to training GANs while leveraging novelty

search. We conclude that this constitutes a good stopping point for the direc-

tion of this particular set of ideas, but we hope more researchers investigate this

line of research.

5.2 Future Work

For future work, there are very interesting ideas that are worth exploring and

taking into consideration, the most important being the behaviour characteriza-

tion used in NSR-ES. We believe that future work should focus on more robust

50

and inclusive behavior characterization of GANs, that would characterize both

the generator and the discriminator together. Researching how to develop and

use a more robust and behavior characterization of GANs will help understand

the need for its alignment with respect to the optimization landscape, which

is yet another interesting question. This could also help in understanding the

necessity of minimal criteria, and further understand whether it is needed, or

could be removed.

On the use of evolutionary algorithms on the domain of GANs, future work

could investigate the use of algorithms other than evolution strategies and nov-

elty search. Two particular approaches that are related to GANs are Predator-

Prey Co-evolution and Speciation. In Predator-Prey Co-evolution, two com-

peting sets of co-evolving populations are trying to learn behaviours against

each other so one population can beat the other. Nolfi and Floreano (1998)

researched the this idea by co-evolving two robots, a predator and a prey, in a

co-evolutionary setup, where the predator was rewarded for touching the prey,

and the prey was rewarded for escaping from the predator. One can draw

the similarities between the co-evolutionary setup and the GAN setup, where

G and D can be view as the predator, prey respectively. In their research,

Nolfi and Floreano (1998) noticed that the basic predator-prey co-evolutionary

setup results in a cycling behavior in which the same behaviours are exhib-

ited by the the predator and prey over and over. The cycling behaviour of the

predator-prey is very similar to that of of the issue of mode collapse and non-

convergence of GANs. To overcome this behavior, Nolfi and Floreano (1998)

proposed the Master Tournament technique, which leveraged the knowledge ac-

cumulated from past generations by testing the best individual of each each

generation of one population with the best individual of all generations of the

51

competing population. Future research could tackle such problems by drawing

from the co-evolutionary research.

Another interesting evolutionary approach is Speciation. Speciation aims

to overcome the issue of genetic drift in evolutionary algorithms (EA), which

is defined as the EA tendency to converge quickly to a single fit solutions

Della Cioppa et al. (2011). In many search spaces, it is of interest to find and

maintain multiple diverse solutions. Niching techniques are the most common

approach to speciation in evolutionary algorithms, where it is used to maintain

and promote diverse sub-population in the search space. Niching has been used

in multi objective optimization (Ursem 2002), genetic algorithms (Goldberg and

Richardson 1987), and in evolution strategies (Shir and Back 2005). In relation

to GANs, future work can frame the mode collapse issue of as lack of diversity

of the generator output, as in this work, and research using niching techniques

to overcome this problem.

Last, the GANs frame has proven to be a very hard test-bed for our ideas

because of the challenges with GANs, and future work should also investigate

the use of novelty seeking evolution strategies with other types of generative

models than GANs such as Variational Auto Encoders (Kingma and Welling

2013)

52

Reference List

Akash, S., V. Lazar, R. Chris, G. M. U., and S. Charles, 2017: Veegan: Reducing
mode collapse in gans using implicit variational learning. Neural Information
Processing Systems .

Chen, X., Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel,
2016: Infogan: Interpretable representation learning by information maximiz-
ing generative adversarial nets. Advances in Neural Information Processing
Systems 29 , D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-
nett, eds., Curran Associates, Inc., 2172–2180.

Chrabaszcz, P., I. Loshchilov, and F. Hutter, 2018: Back to basics: Benchmark-
ing canonical evolution strategies for playing atari.

Conti, E., V. Madhavan, F. P. Such, J. Lehman, K. O. Stanley, and J. Clune,
2017: Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents.

Cully, A. and J.-B. Mouret, 2013: Behavioral repertoire learning in robotics.
Proceedings of the 15th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’13, 175–182.

Della Cioppa, A., A. Marcelli, and P. Napoli, 2011: Speciation in evolutionary
algorithms: Adaptive species discovery. Proceedings of the 13th Annual Con-
ference on Genetic and Evolutionary Computation, GECCO ’11, 1053–1060.

Geweke, J., 1988: Antithetic acceleration of monte carlo integration in bayesian
inference. Journal of Econometrics , 38, 73–89.

Goldberg, D. E. and J. Richardson, 1987: Genetic algorithms with sharing for
multimodal function optimization. Proceedings of the Second International
Conference on Genetic Algorithms on Genetic Algorithms and Their Appli-
cation, 41–49.

Goodfellow, I., 2016: Nips 2016 tutorial: Generative adversarial networks.

Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, 2014: Generative adversarial nets. Advances
in Neural Information Processing Systems 27 , Z. Ghahramani, M. Welling,
C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds., Curran Associates,
Inc., 2672–2680.

Isola, P., J.-Y. Zhu, T. Zhou, and A. A. Efros, 2017: Image-to-image translation
with conditional adversarial networks. CVPR.

53

Karras, T., T. Aila, S. Laine, and J. Lehtinen, 2018: Progressive growing of
GANs for improved quality, stability, and variation. International Conference
on Learning Representations .

Kingma, D. P. and J. Ba, 2014: Adam: A method for stochastic optimization.

Kingma, D. P. and M. Welling, 2013: Auto-encoding variational bayes.

Kumar, A., P. Sattigeri, and T. Fletcher, 2017: Semi-supervised learning with
gans: Manifold invariance with improved inference. Advances in Neural Infor-
mation Processing Systems 30 , I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-
lach, R. Fergus, S. Vishwanathan, and R. Garnett, eds., Curran Associates,
Inc., 5534–5544.

Lehman, J., J. Chen, J. Clune, and K. O. Stanley, 2017: Es is more than just a
traditional finite-difference approximator.

Lehman, J. and K. O. Stanley, 2008: Exploiting open-endedness to solve prob-
lems through the search for novelty. Proceedings of the Eleventh International
Conference on Artificial Life (Alife XI , MIT Press.

—, 2010: Revising the evolutionary computation abstraction: Minimal criteria
novelty search. Proceedings of the 12th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’10, 103–110.

—, 2011a: Abandoning objectives: Evolution through the search for novelty
alone. Evol. Comput., 19, 189–223.

—, 2011b: Evolving a diversity of virtual creatures through novelty search and
local competition. Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, 211–218.

Li, J., A. Madry, J. Peebles, and L. Schmidt, 2018: On the limitations of
first-order approximation in GAN dynamics. Proceedings of the 35th Interna-
tional Conference on Machine Learning , J. Dy and A. Krause, eds., PMLR,
Stockholmsmssan, Stockholm Sweden, volume 80 of Proceedings of Machine
Learning Research, 3005–3013.

Li, Y., J. Song, and S. Ermon, 2017: Infogail: Interpretable imitation learn-
ing from visual demonstrations. Advances in Neural Information Processing
Systems 30 , I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, eds., Curran Associates, Inc., 3812–3822.

Lin, Z., A. Khetan, G. Fanti, and S. Oh, 2018: Pacgan: The power of two
samples in generative adversarial networks. Advances in Neural Information
Processing Systems 31 , S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, eds., Curran Associates, Inc., 1504–1513.

54

Mao, X., Q. Li, H. Xie, R. Y. Lau, Z. Wang, and S. Paul Smolley, 2017: Least
squares generative adversarial networks. The IEEE International Conference
on Computer Vision (ICCV).

Mescheder, L., S. Nowozin, and A. Geiger, 2017: The numerics of gans. Advances
in neural information processing systems .

Metz, L., B. Poole, D. Pfau, and J. Sohl-Dickstein, 2016: Unrolled generative
adversarial networks.

Mouret, J.-B. and J. Clune, 2015: Illuminating search spaces by mapping elites.

Mller, N. and T. Glasmachers, 2018: Challenges in high-dimensional reinforce-
ment learning with evolution strategies.

Nguyen, T., T. Le, H. Vu, and D. Phung, 2017: Dual discriminator genera-
tive adversarial nets. Advances in Neural Information Processing Systems 30 ,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, eds., Curran Associates, Inc., 2667–2677.

Nolfi, S. and D. Floreano, 1998: Coevolving predator and prey robots: Do ”arms
races” arise in artificial evolution? Artif. Life, 4, 311–335.

Pugh, J. K., L. B. Soros, and K. O. Stanley, 2016: Quality diversity: A new
frontier for evolutionary computation. Frontiers in Robotics and AI , 3, 40.

Pugh, J. K., L. B. Soros, P. A. Szerlip, and K. O. Stanley, 2015: Confronting
the challenge of quality diversity. Proceedings of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO ’15, 967–974.

Rechenberg, I., 1973: Evolutionsstrategie; Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Mit einem Nachwort von Manfred
Eigen. Frommann-Holzboog [Stuttgart-Bad Cannstatt], 170 p. pp.

Salimans, T., I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, X. Chen, and
X. Chen, 2016: Improved techniques for training gans. Advances in Neural
Information Processing Systems 29 , D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, eds., Curran Associates, Inc., 2234–2242.

Salimans, T., J. Ho, X. Chen, S. Sidor, and I. Sutskever, 2017: Evolution
strategies as a scalable alternative to reinforcement learning.

Schwefel, H.-P., 1977: Numerische Optimierung von Computer-Modellen mittels
der Evolutionsstrategie, volume 26 of ISR. Birkhaeuser, Basel/Stuttgart, 390
pp.

55

Shir, O. M. and T. Back, 2005: Dynamic niching in evolution strategies with
covariance matrix adaptation. 2005 IEEE Congress on Evolutionary Compu-
tation, volume 3, 2584–2591 Vol. 3.

Such, F. P., V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and J. Clune,
2017: Deep neuroevolution: Genetic algorithms are a competitive alternative
for training deep neural networks for reinforcement learning.

Thanh-Tung, H., T. Tran, and S. Venkatesh, 2018: On catastrophic forgetting
and mode collapse in generative adversarial networks.

Tolstikhin, I., S. Gelly, O. Bousquet, C. J. Simon-Gabriel, and B. Schölkopf,
2017: Adagan: Boosting generative models. Advances in Neural Information
Processing Systems 30 , Curran Associates, Inc., 5430–5439.

Ursem, R. K., 2002: Diversity-guided evolutionary algorithms. Proceedings of
the 7th International Conference on Parallel Problem Solving from Nature,
PPSN VII, 462–474.

Vondrick, C., H. Pirsiavash, and A. Torralba, 2016: Generating videos with
scene dynamics. Advances in Neural Information Processing Systems 29 ,
D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, eds.,
Curran Associates, Inc., 613–621.

Wang, C., C. Xu, X. Yao, and D. Tao, 2018: Evolutionary generative adversarial
networks.

Wierstra, D., T. Schaul, T. Glasmachers, Y. Sun, J. Peters, and J. Schmidhuber,
2014: Natural evolution strategies. J. Mach. Learn. Res., 15, 949–980.

Wierstra, D., T. Schaul, J. Peters, and J. Schmidhuber, 2008: Natural evolution
strategies. 2008 IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), 3381–3387.

Williams, R. J., 1992: Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Mach. Learn., 8, 229–256.

Zhang, X., J. Clune, and K. O. Stanley, 2017: On the relationship between the
openai evolution strategy and stochastic gradient descent.

Zhu, J.-Y., T. Park, P. Isola, and A. A. Efros, 2017: Unpaired image-to-image
translation using cycle-consistent adversarial networkss. Computer Vision
(ICCV), 2017 IEEE International Conference on.

56

