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Abstract

Interplanetary journeys are long; taking anywhere between 6 months to a few

years. Studies performed with astronauts in the various space missions have

provided insights on adverse effects of microgravity on the human body. Arti-

ficial gravity provides a solution to keep humans healthy in such long duration

interplanetary journey. Various designs have been studied to create artificial

gravity, out of which, a tethered spinning system is the most promising due to

its compact structure and ability to vary the radius of rotation. Though theo-

retically the most promising, little investigation has been done concerning the

tethered system for artificial gravity. Speculative studies and some experiments

on manned and unmanned missions have been done to analyze the rotating

tethered system in Earth’s orbit. These studies were performed in the Lower

Earth Orbit. Such studies provide an excellent opportunity to speculate about

the conditions during a trajectory to Mars.

The primary purpose of this thesis is to investigate the amount of propellant

required to spin the tethered system and tether materials, and also to find the

deployment velocity on a trajectory to Mars. This system will increase the

radius of rotation to reach a distance of 1 km from the center of rotation. To

create artificial gravity, the capsules will be spun using thrusters till they reach

a distance of 1 km each. This increase in the radius of rotation creates the

x



need to investigate the amount of propellant to spin-up and spin-down (varying

the radius of rotation), as well as the rate of deployment of the tether. Ion

thrusters are selected to propel the capsules, because of its low thrust and

better controllability.

The propellant requirement is estimated using the rocket equation. Tra-

ditionally, the equation is used to determine the propellant required for long-

distances. In this thesis, we will use the same concept for a smaller change in

velocity for the spin-up procedure. To find the amount of propellant required

we have considered three scenarios in which the propellant could be used by

incrementing energy, radius, and velocity in steps. The steps are crucial in

determining the change in tangential velocities, and by extension mass of pro-

pellant required. A balance of deployment velocity and thruster engagement

will ensure constant acceleration on the floor.

The results from the simulation indicate that approximately 165 kg of fuel

is required for the spin-up procedure when deployed at a gradually increasing

rate, never exceeding 3 m/s. The deployment rate will help in ensuring humans

in the capsules feel comfortable. This outcome will provide insight into the

further investigation in the tethered system for controlled artificial gravity for

human factors, tether material, and tether control. With growing interest in

manned missions, an economical option needs to be investigated thoroughly.

The outcome of this will provide insights on areas of further investigation to

make the tethered system a reality.
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Chapter 1

Introduction

In 1961 Yuri Gagarin became the first man to travel in space. We have come a

long way ever since. We have developed technology to send people to the moon

and back successfully. With the continuous improvement in space technology,

we have sent rovers and satellites increase the knowledge about the Red Planet

and paving a way forward for human exploration. Several missions have been

sent to the planets in our solar system to improve our understanding of our solar

system. Based on the findings from these missions, manned missions to other

planets (especially Mars) has been a topic of interest for decades. Although

Rovers have provided us the essential data, human missions are important where

human judgment is required. It is speculated that manned missions to the Mars

would become a reality in the 2030s[1].

A fuel efficient journey to Mars can take anywhere between 6 to 9 months[2].

Humans undergo physiological deconditioning due to long-term exposure to mi-

crogravity. The most prominent problems are muscle and bone density loss, car-

diovascular problems, disturbance in ocular pressure due to uneven body fluid

distribution[3]. To mitigate this, we need artificial gravity for long-duration
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space travel. Various studies have conflicting opinions about the need for arti-

ficial gravity, but it is a valid option to keep humans healthy.

1.1 Background on Artificial Gravity and Mo-

tivation Behind the Study

Konstantin Tsiolkovsky, the influential Russian space visionary, discussed the

idea in his manuscript Free Space that he wrote in 1883. This manuscript was

first published in English in 1956[3]. In 1928, inspired by the pioneering projec-

tions of Hermann Oberth, Hermann Noordung introduced a detailed engineering

proposal for a space station that employed artificial gravity which consisted of a

wheel-shaped structure for living quarters, a power generating station attached

to one end of the central hub, and an astronomical observation station. Later,

different designs were proposed in order to create artificial gravity such Flexible

I also known as the tethered systems.

Figure 1.1: Stanford Torus - A torus concept design[4]
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One of the teams working on the concept of creating artificial gravity using

tethered system is CU Artificial Gravity team[5] at Cornell University. The

team is working on conceptualizing the tethered system using cubesats. The

team shared their work in the form of reports, in which they have primarily

come up with a design for the 3-body tethered system as shown in Figure 1.2.

Figure 1.2: Concept design of CU Artificial Gravity Satellite Team[6]

The team has developed the concept with a mindset of testing it in Lower

Earth Orbit. This concept has motivated us to investigate that if the same

system is used on a journey to Mars, how much fuel would be required and

what is required to make the system work in theory?

1.2 Rationale for Investigation and Research

Questions

The most significant advantage of the tethered system is that large radius of

rotation can be achieved - resulting in low Coriolis effect - without adding much

3



mass to the system. Coriolis effect interferes with human comfort while mov-

ing their head. Since the tethered system comprises of 3 objects, it becomes a

compact structure which will inevitably reduce the cost. The challenges asso-

ciated with tether material, geometry, and control also provide an opportunity

to investigate further. The lack of fully theory and implemented experiments

on this subject provides the perfect conditions for developing a thesis topic.

Based on the rationale provided for investigation, we have identified a gap

which leads us to a primary and a secondary research question.

Gap: Investigation of the tethered system for creating artificial gravity for

manned missions in the context of Thrusters/fuel and tether material.

Primary Research Question:

How much fuel is required to spin the system to create a constant acceleration

and what tether material could be used?

Research Hypothesis:

Analyzing the system under different scenarios viz. radius, velocity, and energy

steps to estimate the mass of fuel will provide insights for the amount of fuel to

be carried as well as the time required to spin up or down. The characteristics

of tether material will be crucial in determining the feasibility of the tethered

system to create artificial gravity.

Secondary Research Question:

What is the deployment velocity of the tether to maintain the required acceler-

ation and time required to spin-up?

Research Hypothesis:

As the tether is deployed, the radius of rotation increases which decreases the

acceleration. The thrusters will engage (perpendicular to the plane or rotation)

to increase the angular velocity to maintain the acceleration. However, if the
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deployment velocity of the tether exceeds the tension limit, the tether will snap.

The deployment velocity should be variable.

The outline of the thesis is discussed in Section 1.3 which is anchored in the

research questions and their hypothesis above.

1.3 Outline of the Thesis

In this thesis, we consider a manned mission to Mars with 2 capsules each

of 80000 kg[7] connected with a tether in between spinning to create artificial

gravity. The main requirement is to create a constant acceleration (Equivalent

to Mars’ gravity) of 0.3g.

The structure of the thesis is given in Figure 1.3. Chapters 1 and 2 are foun-

dational to address the research questions in terms of providing a rationale for

investigation and identifying assumptions from a critical literature review. In

chapter 2, we have done a critical literature review of artificial gravity, tethered

missions, human factors, and thrusters/fuel. This leads to defining the assump-

tions and parameters to work with, encompassing human comfort in spinning

spacecraft and thrusters to be used.

Chapters 3, 4, and 5 comprise the body of the thesis. Chapter 3, covers the

explanation of the physics of the rotating tethered spacecraft which includes

angular velocities to keep constant acceleration, the energy required to spin

the system and fuel required to keep the system spinning. In this chapter, we

describe the system to be investigated bounded by the assumptions discussed

in Chapter 3. Chapter 4, comprises of the mathematical framework required to

determine the mass of propellant required and the velocity profiles with tether

deployment. This chapter is foundational to answering the research questions.
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In Chapter 5, we will discuss the results gained from the simulations viz. the

velocity profiles, fuel usage, and time required to spin-up and spin-down. As we

present the results, we verify the results by seeing if they comply with human

comfort parameters from the literature review. Discussion of tethered spacecraft

without tethers would be incomplete.

Chapter 6 is a result of the special studies report, which addresses the tether

design criteria, potential materials for such application (space environment and

loading conditions) and deployment mechanism. Towards the end of the thesis,

we summarize the findings from the research and present a way forward by

presenting new gaps and research hypotheses.

6



Figure 1.3: Thesis Outline - Connectivity between chapters and relevance to
the topic
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Chapter 2

Critical Literature Review

The idea of artificial gravity is not novel; its roots are in 19th century in con-

cepts of Konstantin Tsiolkovski and there appeared many paper concepts during

the last century. However, very little was actually realized. In this Chapter,

literature about the previous artificial gravity concepts, tethered missions, and

past experiments for artificial gravity in space is critically evaluated. Further,

the literature on tethered system in context of artificial gravity is considered

and analyzed.

Our aim with this Chapter is to look at the information from previous stud-

ies, concepts, and experiments with respect to tethered system to create artificial

gravity, note key information for assumptions, and justify the research question.

The review is conducted from 6 major sources published as well as unpublished.

By the end of this chapter, we will have identified the current state of artificial

gravity using tethered system and methods used to propel such systems and

related systems (spacecrafts). We will further discuss the parameters with re-

spect to human comfort, propulsion system used, and the method to calculate

amount of propellant required which is elaborated on in Chapters 3 and 4.
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2.1 Past Artificial Gravity Experiments in Space

Despite the long-standing interest in artificial gravity, experimental results ob-

tained in space are quite limited. There were a few space missions early on that

were devoted to animal studies. Rats were centrifuged continuously at 1g for

several days and showed no signs of physiological deconditioning. A 2.5 m radius

centrifuge was planned for installation on board the ISS to afford the opportu-

nity to examine the adequacy of various levels of artificial gravity in protecting

rodents during spaceflight. However, this project was cancelled. Human ex-

periments with artificial gravity are even more limited. They include anecdotal

reports of the crew on the lunar surface, during space missions with tethered

and spinning vehicles, during orbital maneuvering systems burn, or when riding

eccentric rotating chairs and sleds used by scientists for investigations of the

vestibular system in orbit[3].

The first animals to be centrifuged in space were flown on the 20-day Cosmos-

782 mission in 1975, when fish and turtles housed in containers were centrifuged

at 1g. The center of the containers was placed at 37.5 cm from the center of

a platform rotating at 52 rpm. After the flight, the physiology and behavior

of the centrifuged animals was indistinguishable from their 1-g ground and 0-g

flight controls. Furthermore, turtles centrifuged at 0.3g showed no of the muscle

wasting[8].

In the 1966, Gemini-11 [9] tested the tethered spinning formation flight with

Agena booster, where the crew experienced acceleration of 0.0005g. Though

the acceleration wasn’t big enough for crew to feel simulated gravity pull and

to study physiological effects, it did provide some insights related to tether dy-

namics. In 1973, astronauts in Skylab conducted artificial gravity exercise by

9



running in the cushioned ring in the large open space compartment [3]. In the

year 1992, the STS-42 SpaceLab Shuttle mission involved linear sled which ex-

posed test subjects to linear accelerations in the range 0.2 - 1g, however constant

acceleration was possible only 0.05 g due to the short trajectory [3]. STS-90

NeuroLab mission in 1998[10] then systematically tested short-radius centrifuge,

where test subjects were tested in 10 minutes centrifuge runs every other day.

Even smaller doses of the acceleration were increasing the resistance against

vestibular system malfunctioning and its decreased performance [9]. There were

also experiments with animals and plants such as Cosmos-782, Cosmos-936, var-

ious experiments aboard Skylab, Salyut, Mir, SpaceLab and ISS [3]. Currently

the ISS is equipped with European Modular Cultivation System (ECMS) Rotor

providing artificial gravity 0.001g to 2.0g in 600 mm centrifuge [11].

2.2 Studies and Experiments on Tethered Mis-

sions

In 1992, one of the primary mission objectives of STS-46 was the deployment of

the European Space Agency’s EURECA (European Retrievable Carrier). The

EURECA carried the apparatus for the TSS (Tethered Satellite System) de-

ployment. During deployment, the satellite reached a maximum distance of

only 860 feet from the orbiter instead of the planned 12.5 miles because of a

jammed tether line. After numerous attempts over several days to free the

tether, TSS operations were curtailed, and the satellite was stowed for return

to Earth. It would be re-flown in 1996 on STS-75[12]. The primary objective of

STS-75 was to carry the Tethered Satellite System Reflight (TSS-1R) into orbit
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and to deploy it spaceward on a conducting tether. The mission scientists hoped

to deploy the tether to a distance of 20.7 kilometers (12.9 mi). The tether broke

after being deployed for over 19 kilometers[13]. Multiple unmanned experi-

ments on tethered systems have been performed such as Tempo3[14], ProSEDS,

Yes2[15], and simulation experiments such as CU Artificial Gravity[16]. The

findings from CU Artificial Gravity have given insights on controlling the tether

and maintaining stability in 2 axes and also about the mode of propulsion being

the torque coils.

2.3 Artificial Gravity Concepts

NASA’s fascination during 1960s and 1970s to make space colonies is evident

in the multiple studies [17][10][18][19]. One of the concepts worked out was the

Discovery II spaceship[19] which was used in the movie ‘2001 - A Space Odyssey’.

The spacecraft produced an artificial gravity of 0.2g with a rotation rate of 3.25

rpm and the rotation arm 17 m. This accounted to a gravity gradient of 12

milli-g/m. In contrast to the design of Discovery II, Professor O’Neill and his

students at the Stanford university worked out the concept rotating cylinders to

create artificial gravity with radius up to 32 km creating 1g. It was designed to

be stationed in one of the Lagrange points[19] and powered by solar energy. It

was an elaborate description with rigorous calculations, the concept never took

shape due to funding constraints and shift in focus to other missions[18].
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Table 2.1: Systematic representation of the sources and the parameters taken
into consideration for literature review in context of the problem statement

Papers/Books T
eth

ered
S
p
acecrafts

H
u
m

an
F

actors

P
rop

u
lsion

R
eelin

g/U
n
reelin

g
T

ravel
D

u
ration

T
ravel

d
u
ration

Comments

Space Architecture [20] x x Discussion on Human comfort
factors.

Artificial Gravity[9] x x x x Discussion on human factors,
tethered spacecrafts, propellant
use

CU Artificial Gravity [5] x x x Discussion on propulsion sys-
tem, extensive analysis of tether
dynamics

Schultz [7] x x x x x Duration of mission and corre-
sponding propellant required

Space Vehicle Design[21] x Tsiolkovski equation to deter-
mine mass of propellant re-
quired

Ion Propulsion[22] x Discussion about electric
propulsion. Information about
how thrusters are used.

Table 2.1 represents the synthesis matrix to organize the literature. The

matrix has references on the vertical axis and attributes on the horizontal axis.

The ‘x’marking represents the presence of a particular attribute in a particular

reference (a book or a paper).

The unpublished material, provided by the CU Artificial Gravity team at the
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Cornell University[5], considered a tethered satellite system with 2, 3U cubesats

with a tether deployment mechanism. The team has done an extensive analysis

on determining the shortfalls of torus shaped and a rigid I shaped designs,

which provides a rationale for investigating tethered system for artificial gravity.

They have considered torque coils to spin-up the cubesats. This is a good

consideration when experimenting in Earth’s orbit where the magnetic field is

strong but might not be applicable for interplanetary missions. In addition,

the team discussed only about one orientation, which is rotation after complete

deployment, but it is unclear what would happen if the system is slowly deployed

after starting the rotation. This aspect is worthy of investigation.

Clement [3] discusses a variety of aspects about human comfort factors in

Chapter 3. According to the chapter, humans are most comfortable with ro-

tation speed of 6rpm or less, which CU gravity team and Hall[23][20] agrees

with. The gravity gradient is an important consideration for human comfort.

Clement and Hall agree that smaller the ratio of acceleration felt from head to

toe, better is the comfort which is about 2%. The gradient is more for radii less

that 12 m. Hence, in this thesis, we will assume the rate of rotation to never

exceed 6rpm and a minimum radius of 12m.

Schultz[7] has data and discussion which is the most relevant to propelling

the tethered system for spinning up and down. The author estimated that for a

tethered system with modules having mass 80000 kg[7], approximately 14400 kg

of cryogenic propellant would be required for 1 cycle and 1 contingency cycle.

Schultz[7] has not exclusively provided the calculation, but it is evident that he

has used the rocket equation for calculating the amount of propellant required.

The rocket equation is described in the book Space Vehicle Design [21]. If any

changes are to be made for maneuvers in space, either thrusters are used, or
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gravity assist is used to change the delta v which can be predetermined based

on the mission time. Based on the paper[7] the ratio of mass of propellant and

mass of module is 0.18. It is clear that it is better to have this value as close

to 0 as possible which will make the mission more cost efficient due to the fact

that the propellant is the most expensive parameter in space missions.

2.4 Discussion on Thrusters for Creating Arti-

ficial Gravity

Many tethered experiments have been conducted in the lower earth orbits. The

thrusters for this application (creating artificial gravity) needs to create a slow

thrust which should be easy to control. A gradual increase in thrust will result

a gradual increase in acceleration. A sudden increase in acceleration results in

jerk. Not only will this make the system difficult to control, but might cause

discomfort to the astronauts inside the capsules.

There are different types of thrusters that could be used for this application

such as ion thrusters, cold gas thrusters or cryogenic propellant. Cryogenic

propellant[7][24] usually comprises of liquid propellant + oxidizer. This is a

bulky apparatus. Moreover, the thrust provided is more than cold gas or ion,

and hence would create unstable dynamics which will be difficult to control, and

uneasiness in astronauts. Ion thrusters have a compact structure, a low thrust

but high exhaust velocity. This makes them very effecient and, the spacecraft

easy to control, but takes long to spin up or down. Cold gas thrusters are

typically used for attitude control, or by astronauts for Extra Vehicular Activity.

In case of cold gas thruster, it has a compact structure where thrust produced
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is nor too high nor too low, but the probability of leakage is high[25], which

does not make it a great fit for the application.

Based on the literature, Schultz[7] has estimated that 14400 kg cryogenic

propellant would be required for 1 cycle and 1 contingency cycle for a 80,000

kg module. The calculation was anchored in the rocket equation.

mp = md[e
(dv/vex) − 1]

mp = md[e
(dv/Isp.g0) − 1]

(2.1)

Before starting to estimate the propellant required we will discuss the 3 most

common thrusters:

Table 2.2: Commonly used thrusters and their parameters

Thruster Isp vex Thrust

Cryogenic[26] 433 4330 m/s 66.7 x 103 N

X3 Ion thruster[27] 4190 30000 m/s 5.4 N

Cold gas (Nitrogen)[28] 80 800 m/s 0.01 N

Schultz [7] has used the rocket equation to find the mass of propellant re-

quired. According to this for a module of mass md = 80000 kg will require

14400 kg of propellant considering dv = 716 m/s. From this example we know

that rocket equation works for smaller change in velocity. In this thesis, we will

use an ion thruster instead of the cryogenic thruster mainly because of rapid

advancement in ion propulsion [22]. The Isp is high which means we would need

less propellant to produce a certain amount of thrust. This will allow us to use

a compact structure, which would not make the apparatus too heavy.
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Based on the literature review, it is worth investigating the scenario of vary-

ing radius of rotation and the amount of propellant required to spin up and

down as discussed by Schultz[7]. CU gravity[5] and Schultz[7] have considered

fixed radius rotation, hence, it will be interesting to find what steps could be

taken to use the propellant efficiently for varying radius or rotation. This will

be a critical factor in addressing my main problem statement which is to create

artificial gravity to reduce the effects of long duration exposure to micro-gravity

and not make them feel sick.

2.5 Synopsis of Chapter 2

In this Chapter, we have critically reviewed past and current studies, concepts

and experiments on tethered missions and artificial gravity and identified the key

assumptions and parameters crucial for investigation of the research questions.

In Chapter 4, we will discuss the requirements for the model to be analyzed in

order to answer the questions anchored in the literature review.
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Chapter 3

The Physics behind Artificial

Gravity using a Tethered System

In Chapter 2, we have briefly discussed on the concepts to generate artificial

gravity. The underlying principle is that the system spins to create an outward

force which enables a person to stand, similar to that of Earth. Artificial gravity

using tethers have a working principle similar to (but not the same as) the

example of string and ball. Consider a ball attached at the end of a string as

shown in Figure 3.1. When we spin the ball, the angular speed (ω) increases.

As a result, the string becomes taut when the angular speed creates enough

reaction force - centrifugal force - resulting in radially outward acceleration.

Artificial gravity created by spinning a spacecraft works on the same principle.
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Figure 3.1: Ball spun using a string in horizontal plane

Table 3.1: Parameters and constraints from literature review

Parameters Values
Angular Velocity (ω) < 6 rpm
Minimum radius of rotation (rmin) 12 m
acceleration 0.3g (Mars’ gravity)

3.1 System Setup

The summary of the key findings from the literature review is presented in Table

3.1. In addition to these findings, we have assumed the dry mass of the capsule

to be 80,000 kg[7] and the maximum radius of rotation of 1000 m, beyond which

the Coriolis effect reduces significantly[3]. Based on these parameters, we set

up the system to be analyzed. The tethered system would consist of 3 major

components - a long tether or pieces of tethers, 2 capsules at each end of the

tether, and a center block with deployment mechanism (containing a spool and

reel controlling mechanism) as shown in Figure 3.2. The Cornell University

Artificial Gravity Team[16] have provided an extensive analysis of why a three-

body system works better than a 2-body system in their report.
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Figure 3.2: Pictorial depiction of the 3 body-system (Not to scale)

In the illustration created in Figure 3.2, the two rods attached to the spool

serve as components to keep the capsules at a minimum radius of rotation1. The

2 rods will contain tether from the spool. The mass of the two capsules is 80000

kg[7] each. We want to simulate Mars’ gravity of 0.3g or 2.94 m/s2 at the floor

of the capsule. Denis Zanutto in the Chapter 8 his PhD Dissertation[29] has

done an extensive study on selection of the tether spool based on deployment

strategies. Based on his work, a standard spool in the center block is assumed

to be of 2x2 m. A habitable module such as Orion capsule has a height of

3.3 m[30]. To satisfy the condition of initial radius to be a stable 12 m, we

considered a rod of 9 m on either side.

In order analyze the system, we have considered some assumptions. It is

important that the end masses are the same or at least similar to ensure the

simulated gravity in both the capsules is the same. The tether dynamics is not

taken into consideration for simplicity. Further, it is assumed that the tether

will have some tension due to the outward force pulling it and the angular

1This is a hypothetical system and the rods serve only as fillers to maintain the minimum
radius of rotation. The distance can be maintained by using other components
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momentum is conserved.

3.2 Spinning the System

If we were to consider a system as mentioned in Section 3.1, there are 2 ways

in which the system could spin: deploy first and then spin the system, or spin

first and then deploy the tether.

In the first scenario, if the tether is deployed to its full length and then

spun, 2 major problems arise. First, realistically, the tether dynamics makes

controlling the spin difficult and second, since the overall angular velocity will

not be the same in all the 3 blocks[16], the tether might tangle before the

momentum builds up. In addition, if the central block (containing the tether

spool) has distinct edges, the tether will get damaged, and even break, if it winds

about the central block. If the tether is deployed completely and then spun-up,

the tether dynamics remains of unpredictable nature even if a mechanism like

torque coils[31] are used.

In the second scenario, we spin-up the system first and then deploy. This

serves two purposes. First, the angular velocity is built up with the initial

spin. When we spin the system up to 6 rpm all the three bodies have the

same rpm, but as the radius increases, the center block will stay constant (6

rpm) while the other 2 modules will become slow. Now, we increase the rpm

to keep the acceleration constant. So, if center block is 6 rpm, the system is

deployed till 1000 m, the angular velocity needs to be
√

0.3 ∗ 9.81/1000 = 0.07

rad/s. Because this is the case, the torque coil [16]. like mechanism is needed

to control the rpm of the central block to avoid tether entanglement. Secondly,

the pull force created by the spinning system coupled with an outward velocity
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will create enough tension to spin-up (reducing the uncertainty associated with

tether dynamics in reality.)[9]

It is possible to have different ways of spin-up and deployment sequences. In

this thesis, having analyzed the 2 scenarios, spinning first and then deploying

reduces the problem of tension in the tether along with over-all angular velocity,

and hence, is the foundation of the working principle of the spinning tethered

system.

In Section 3.2, we will look at the system in two main stages of initial spin-up

and deployment.

3.2.1 Stages of the Tethered System to Create Artificial

Gravity

Table 3.2: Stages of tethered system to create artificial gravity

Stage 0 Stage 1: Spin-up Stage 2: Tether Deploy-

ment

r = 12 m r = 12 m r = 12 to 1000 m

w = 0 w = 0 to 6 rpm w = 0.6 to 0.07 rad/s

a = 0 a = 0 to 4m/s2 a = 4 to 3.93m/s2

Change in tangential veloc-

ity: 0 to 7.4 m/s

Change in tangential veloc-

ity: 7.4 to 54.6 m/s

In table 3.2, it is clear that there is a change in velocity in stages 1 and 2.

This implies we need to engage thrusters to maintain a constant acceleration.

This will give the help us calculate the amount of propellant required for one

spin-up procedure. With increasing radius of rotation, the acceleration at the
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floor would reduce and hence, requires to increase the angular velocity. This

process is described in detail in Chapter 4. Throughout the process of unreeling,

theoretically, the centripetal force should not exceed the tensile strength of the

material of the tether. In practice, interference of different factors such as change

in spin rates, wobbling nature of the satellites, etc. would make it difficult to

determine (mathematically model) exact forces on the tether.

3.2.2 Reeling Procedure

The first step in reeling would be to start reeling the tether first which will

increase the angular velocity. The thrusters need to be engaged similar to the

unreeling procedure. The tension in the tether is equal to mrω2, hence, when

we reel the net force is will be equal to force+tension. This can create more

stress on the tether. Since the tether is pulling the capsule in, the net force

on the tether would be twice as much as the original tension mrω2. This is

something that needs to be taken into consideration while reeling. Stress =

Net Force/Cross-sectional area of the tether. Since the thrusters need to be

engages in similar way, it is reasonable to estimate the fuel to be twice as much

as unreeling procedure.

Having laid the foundation of the spin up and spin down method, we will

focus on: Producing an acceleration of 1g. (Earth’s gravity)
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3.3 Relations between Radius, Velocities, and

Rotational Kinetic Energy

From the literature review, we have chosen the maximum rate of rotation to be

6 rpm (0.6 rad/s). By using the spinning method discussed in Section 3.2, we

spin the system to an initial angular velocity of 0.6 rad/s. Then as the radius

increases, the rotation speed reduces as shown in Figure 3.3.

(a) Radius vs Tangential Velocity (b) Radius vs Angular Velocity

Figure 3.3: Change in tangential and angular velocity with increasing radius

The Figure 3.3 gives the trend of change in angular and tangential velocities

as the radius of rotation increases to 1000 m for creating an acceleration of 0.3g.

The tangential velocity increases to approximately 54 m/s while the angular

velocity decreases to 0.07 rad/s.

Also, it is important to note how angular momentum increases as the ra-

dius increases. The change in angular momentum implies more energy (and by

extension more fuel) is required to change the angular velocity at a given radius.

E =
1

2
Iω2 =

1

2
mdv

2 (3.1)
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We know that I = mr2 for point mass and acceleration in a circular motion is

a = rω2. Hence,

E =
1

2
mdr

2ω2 =
1

2
mdar (3.2)

Equation 3.1 indicates the Energy at a given radius is directly proportional

for a given acceleration.

L = Iω

E =
1

2
Lω

(3.3)

Where,

E: Rotational Kinetic Energy

I: Moment of Inertia

ω : Angular Velocity

L: Angular Momentum

r: Radius of Rotation

v: Tangential Velocity

md: Dry Mass

From Equation 3.3 it can be inferred that the amount of energy required is

proportional to the angular momentum, and hence, larger radius will require

more energy to increase the angular velocity due to conservation of angular

momentum.

In the next section, we will look at estimating the mass of fuel to spin-up or

spin-down the system.
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3.4 Mass of Propellant Required

Tsiolvski, the father of rocket science, came up with an equation which helps us

find the amount of fuel required to accelerate from initial to final velocity. To

find the mass of propellant required to make the human module to rotate is to

3m/s2 we use the following equation.[21]

vi − vf = dv = vexln
md

md +mp

(3.4)

Where, md: dry mass, mp: mass of propellant vex: exit velocity of the

propellant Hence, we used the equation to determine the mass of propellant

required for every the change in tangential velocity.

mp = md[e
(dv/vex) − 1] (3.5)

In Equation 3.5, the change in velocity is associated to the mass of propellant

required. We assume that a constant thrust is being applied to the system, which

implies fuel is used until the system is completely deployed. This estimation

will help with carrying an appropriate amount of fuel.

For the system under consideration, the assumption is that we are creating

an acceleration of 0.3g or 2.94 m/s2, at the floor of the module. As the radius

increases, the tangential velocity increases if we are to keep the acceleration

constant. To make corresponding changes in tangential velocity, we need to use

some propellant which is governed by the rocket equation.

The deployment velocity depends on the thrust required to change the tan-

gential velocity in order to create constant acceleration. In stage 2, as mentioned

in 3.2, the tether needs to be deployed up to 1 km. The results on deployment
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velocity are discussed in Chapter 5.

3.5 Synopsis of Chapter 3

In Chapter 3, we describe the system under consideration, propose and elab-

orate the method to answer the research questions. We began by illustrating

the tethered system based on the key findings in Chapter 2. Then, based on

the details, we discussed and analyzed the spin-up procedure briefly, thereafter

establishing stages of spin-up. In Section 3.3, we looked at the relation be-

tween radius, velocities, and energy, and their relation with mass of propellant

required and deployment velocity. In Chapter 4, we will setup a logic for simu-

lation, important to determine the results.
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Chapter 4

Simulation of the Tethered

System

Simulating artificial gravity in space has its own limitations. A computer sim-

ulation helps us understand the system behaviour and estimate requirements.

However, depicting the real system requires accurate mathematical modelling

of the tether and its dynamics, capsules, temperature, wobble, and much more.

In this Chapter, we will look at the framework required for simulation with a

rough mathematical model2. This framework aids us to answer the research

questions of estimating the mass of propellant required deployment velocity.

4.1 Trapezoidal Rule of Numerical Analysis

In numerical analysis the trapezoidal rule (also known as the trapezoid rule

or trapezium rule) is a technique for approximating the definite integral. The

trapezoidal rule works by approximating the region under the graph of the

2A rough mathematical model is simplifying the complexities by making assumptions in
the system to create a rough estimation
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function as a trapezoid and calculating its area[32]. It follows that:

∫ b

a

f(x)dx =
∆x

2
[f(x0) + 2f(x1) + 2f(x2) + .......+ 2f(xn−1) + f(xn)] (4.1)

Where, ∆x = b−a
n

and xi = a+ ∆x

In this thesis, we use this principle to find the total mass of propellant

required by integrating over small changes in change in velocities (dv). The

small intervals provides us an opportunity to look at the deployment velocity

profile.

4.2 Mathematical Framework to Simulate Teth-

ered System

4.2.1 Estimating Propellant Mass

In Chapter 3, we have laid out two stages for system spin-up and deployment.

It is also established that fuel is required for each of these two stages. The

rocket equation 3.5 is dependent on the change in velocity dv. In stage 2, as

the radius of rotation gradually increases, the tangential velocity remains the

same, which reduces the acceleration at the floor of the capsule due to law of

conservation of momentum. Thrusters are required to increase the tangential

velocity in order to keep the acceleration constant. In Figure 3.3 it is evident

that the tangential velocity increases as the radius of rotation increases. This

corresponds of the desired velocity at that radius of rotation, hence, the change

in velocity is the difference between the desired velocity and the velocity before
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thrusters are applied.

In context of this section, the trapezoid rule is modified to be used to calcu-

late the sum and not the area under the curve. For analysis, we have considered

a very small step-size (h) for the 3 scenarios,

1. Equal radius steps

2. Equal energy steps

3. Equal velocity steps

In all the three scenarios, the dv is different to keep the acceleration constant.

Equal Radius Steps

To calculate the mass of propellant required, the following steps are carried out.

Figure 4.1: Trapezoidal rule to estimate propellant for radius steps

Here,

hr =
rf − ri

Number of steps

dv = v2 − v1 =
√
ar2 −

√
ar1

mp = md(e
√
ar2−

√
ar1/vex − 1)

(4.2)
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Equal Energy Steps

To calculate the mass of propellant required, the following steps are carried out.

Figure 4.2: Trapezoidal rule to estimate propellant for energy steps

Here, the dv is calculated

he =
Ef − Ei

Number of steps

dv = v2 − v1 =

√
2E2

md

−
√

2E1

md

mp = md(e

√
2E2
md
−
√

2E1
md

/vex − 1)

(4.3)

Equal Velocity Steps

To calculate the mass of propellant required, the following steps are carried out.

Figure 4.3: Trapezoidal rule to estimate propellant for energy steps
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hv =
vf − vi

Number of steps

dv = v2 − v1

mp = md(e
v2−v1/vex − 1)

(4.4)

In the Equations 4.2, 4.3, and 4.4, hr, he, hv are the intervals for radius steps,

energy steps, and velocity steps respectively. The simulation runs for initial and

final parameters with an interval of h as shown in Figures 4.3, 4.2, and 4.1. The

interval h becomes smaller as the number of steps increases.

We then calculate the change in velocities for those intervals and calculate

the mass of propellant required. The simulation is setup in a way that it adds the

propellant mass calculated with each step, giving the total mass of propellant in

the end. The same principle is true for time required for spin-up and deployment

velocity.

4.2.2 Time Required to Spin-up and/or Spin-down

The time required to spin-up or down is given by the equation

dt =
mddv

Thrust
(4.5)

This equation is derived from the Newtons second law of motion F = ma =

mdv
dt

. The thrust provided by the thrusters provides an external force required

to change the tangential velocity. The total time required is calculated by

integrating the equation and is estimated using numerical approximation.
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Figure 4.4: Method to calculate time required to spin-up and deployment ve-
locity

Figure 4.4 shows the simulation logic to calculate the time required to spin-

up the system. This logic is executed in the same loop as that of the mass

of propellant loop in Section 4.2.1. Hence, the plot generated will help us

understand how fast or slow the tether needs to be deployed with respect to

time.

4.2.3 Deployment Velocity

Expanding on Chapter 3, Section 3.2 the deployment velocity is directed radially

outward. Mathematically, deployment velocity = dr/dt. This is also calculated

in the same loop as 4.4.

In radius steps, the dr is the same as h and dt is calculated as described in

Section 4.2.2. In energy steps, we use the Equation 3.1 r = aE/m to calculate

the corresponding radius at that instance, and then calculate dr. Similarly, in

velocity steps, the corresponding radius is calculated using Figure 3.3 based on

the equation r = v2/a. The plot of dr/dt in Chapter 5 gives us the trend of

deployment velocity.

Understanding how fast to deploy the tether is equally important to maintain

tension in tether. Mathematically this will be a plot of dr/dt vs time.
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Deployment Using Polar Plot

Polar plots are useful to capture the motion of a rotating object; in this case,

the tethered capsule. The simulation setup to determine the capsule profile is

given below. The simulation runs for 900000 seconds3

Stage 1: The initial conditions for the capsule is r=12, w=0, a=0. The

thrusters with 5.4 N thrust are engaged and the system starts to spin-up. From

Newton’s second law of motion,

F = mda

Thrust = md
dv

dt

dv =
Thrust

md

dt

(4.6)

We know that, r = 12 (constant) for Stage 1. Hence,

a =
v2

r

ω =
v

r

θ = ωt

(4.7)

With a constant thrust, the tangential velocity of the capsule increases until

an acceleration of 0.3g is produced. Then, in Stage 2, the capsules deploy to

3900000 seconds is the approximate time required to deploy the system completely using
1 thruster.
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maintain constant acceleration on the floor of the capsule. Mathematically,

dv =
Thrust

md

dt

r =
v2

a

ω =
v

r

θ = ωt

(4.8)

The values of θ and radius are then used for polar plot. These results are

presented in Section 5.6.

4.3 Synopsis of Chapter 4

Having laid the foundation of the system under consideration to create artificial

gravity, in this chapter we have created a mathematical framework to simulate

the tethered system described in Section 3.2. This framework aids us to answer

the primary research question of estimating the mass of propellant required un-

der the given set of assumptions and secondary research question of deployment

velocity. In Section 4.1, trapezoidal rule of numerical approximation is used to

estimate the mass of fuel and deployment velocity. This method is useful be-

cause it can be used in different scenario such as estimating the fuel requirement

for tethered system with cubesats or even torus design for artificial gravity. The

next chapter will comprise of results from the simulation with discussion.
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Chapter 5

Results and Discussion

We created a mathematical framework in Chapter 4 to address the research

questions in Chapter 1. In this chapter, we will look at the results from the

simulation. Later, we will verify the results by looking at the human factors.

These results also help in developing the future work section of Chapter 7.

In Chapter 3, we have described two stages to simulate gravity, first being

the spin-up stage and second being the deployment stage. We will first look at

the plots of Tension vs Radius and Energy vs Radius.

5.1 Parameters to Keep Constant Acceleration

as Tether Deploys

In order to keep constant acceleration, Kinetic Energy required to reach 1000

m is 1.176x108 J and produces a tension of 235.2 kN when fully deployed. The

energy and tension gradually increases as the radius of rotation increases. The

amount of tension calculated here is useful in determining the tensile stress on

the tether in Chapter 6.
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(a) Energy vs Radius (b) Tension vs Radius

Figure 5.1: Change in Energy and Tension in the tether as radius of rotation
increases

Figure 5.1a represents the kinetic energy corresponding to the radius of

rotation. It can be seen that as the radius of rotation increases, the energy

required to move the mass increases. This interpretation corresponds with the

fact that more tangential velocity (as shown in Figure 3.3) is required at larger

radii of rotation which is anchored in the Equation 3.1

In Figure 5.1b, the initial increase in tension corresponds to stage 1, where

the centripetal force (mrω2) increases with constant radius. Since the simulation

is set-up to create a constant acceleration, the tension is constant in stage 2,

deployment.

5.2 Results for Spin-up to 6 rpm

Before increasing the radius of rotation gradually, we spin up the system to

6rpm at a radius of 12 m in Stage 1. This step is important from the results

gained about behavior of the tether, from the tether experiment from Gemini
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program as discussed in 2. Fuel required is given by rocket equation:

mp = md(e
dv/vex − 1)

The change in velocity for initial spin-up is dv = 7.2 m/s at 12 m radius, and

the exhaust velocity of ion thruster is 30 km/s[22].

Hence, the fuel required for initial spin-up is 19 kg which takes 29 hours to

spin-up with 1 ion thrusters and 2 hours with 10 ion thrusters.

5.3 Preliminary Results

In the scenarios below, we have discussed how the dv changes, which will give

mass of propellant required.

5.3.1 Equal Radius Steps

In this scenario, the thrusters are engaged at radius of rotation increasing at

equal intervals.

In Table 5.1, mp is the mass of propellant for radius steps and i corresponds

to the number of steps. The number of steps could be increased to gain more

accurate results. dv is the change in tangential velocity corresponding to the

radius. (See Equation 4.2)
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Table 5.1: Mass of propellant per capsule for scenario 1

i r(m) dv(m/s) mp(kg)

1 12 100 10.12051 26.99257

2 100 200 7.174389 19.13399

3 200 300 5.505103 14.68162

4 300 400 4.641016 12.377

5 400 500 4.088817 10.90426

6 500 600 3.696573 9.858136

7 600 700 3.39935 9.065447

8 700 800 3.164038 8.437879

9 800 900 2.971729 7.925004

10 900 1000 2.810732 7.495635

Total 146.0739

5.3.2 Equal Energy Steps

Similar to the equal radius steps scenario, the energy required to move the

capsule is given by equation 3.1 To spin up the system from 12 to 1000 m,

which corresponds to 1.411x106 J to 12x107 J. Equation 4.3 captures the way

in which the mass of propellant is calculated using equal energy steps.
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Table 5.2: Mass of propellant per capsule for scenario 2

i Energy(J) dv(m/s) mp(kg)

1 1.411x106 - 1x107 8.611388 22.967

2 1x107- 2x107 6.549291 17.46668

3 2 x107 - 3x107 5.025448 13.40232

4 3 x107- 4x107 4.236649 11.29853

5 4 x107 - 5x107 3.732562 9.954119

6 5 x107 - 6x107 3.374494 8.999158

7 6 x107 - 7x107 3.103168 8.275542

8 7 x107 - 8x107 2.888358 7.702659

9 8 x107 - 9 x107 2.712805 7.234475

10 9 x107 - 10x107 2.565835 6.84252

11 10 x107 - 11x107 2.440442 6.508111

12 11 x107 - 12x107 2.331813 6.218411

Total 146.0718

5.3.3 Equal Velocity Steps

If we consider the velocity changes by 4 m/s till it reaches the final velocity of

54 m/s (see Figure 3), the mass of propellant required is given by substituting

dv = 4 for 12 steps in Equation 4.4 which results in 144.01 kg.
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5.4 Estimation using Trapezoidal Rule of Nu-

merical Analysis

In Section 5.3 the propellant required is estimated using large steps. This gives

us a rough estimation. As discussed in Chapter 4, we can estimate the propellant

required more accurately using trapezoidal rule of numerical analysis. For the

analysis, we selected 10,000 steps for each scenario. The results are presented

based on the scenarios discussed in Chapter 4.

(a) Fuel required to spin-up to 1000 m in
radius steps

(b) Deployment velocity using radius
steps

Figure 5.2: Results using radius steps

In Figure 5.2, the plot represents the fuel requirement, deployment velocity,

and time required for radius steps. Here h = 0.0988. The fuel required to

spin-up the system is 128.88 kg with a gradually increasing deployment rate.
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(a) Fuel required to spin-up to 1000 m in
energy steps

(b) Deployment velocity using energy
steps

Figure 5.3: Results using energy steps

In Figure 5.3, the plot represents the fuel requirement, deployment velocity,

and time required for energy steps. Here, h = 11630.736. The fuel required to

spin-up the system is 128.87 kg with a gradually increasing deployment rate.

(a) Fuel required to spin-up to 1000 m in
velocity steps

(b) Deployment velocity using velocity
steps

Figure 5.4: Results using velocity steps
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In Figure 5.4, the plot represents the fuel requirement, deployment velocity,

and time required for velocity steps. Here, h = 0.0048. The fuel required to

spin-up the system is 128.83 kg with a gradually increasing deployment rate.

Since we are using numerical analysis for estimation, the accuracy of the

results increases as the number of steps increase. A large number of steps also

provide an opportunity to view the system as a continuum.

5.5 Rate of Deployment Velocity

Deployment velocity is essentially the velocity at which the tether should unreel

as we increase the radius. The deployment velocity should be just enough to

keep the tether tense while not snapping it.

As shown in Figure 5.5, the deployment velocity increases gradually with

time never exceeding 2.5x10−3(m/s)/s. Since we are simulating Mars’ gravity

of 0.3g or 3 m/s2, it is important to note the deployment velocity is not only

crucial for human comfort, but also for maintaining the tension in tether4 .

4We are creating an acceleration of 3 m/s2. This implies that if the deployment velocity
is any more than 3 m/s, the tether is being deployed at a rate beyond which acceleration is
not enough to keep a proper tension in the tether. A slack in tether could lead to undesired
tether dynamic, which may be difficult to control
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(a) Deployment velocity vs t for radius
steps

(b) Deployment velocity vs t for energy
steps

(c) Deployment rate vs time for velocity
steps

Figure 5.5: Rate of deployment for the three cases.

We know from the Equation 4.2, time for spin-up depends on the thrust.

Hence, if we hypothetically increase the number of ion thrusters, they will pro-

duce a higher thrust. Table 5.3 helps us understand that if we increase the

thrust by 1000, it will take only 800 s to spin-up while maintaining the tension

in the tether.

43



Table 5.3: Change in spin-up time and deployment rate with number of thrusters

No. of Thrusters Rate of Deployment(m/s)/s Time (s) Number of Turns

1 0.0025 800000 33

10 0.025 80000 3

100 0.25 8000 0

1000 2.5 800 0

This result is also helpful in determining the thruster for spin-up procedure.

A cryogenic propellant system itself creates a thrust of 66.7 kN (see Table 2.2)

of thrust, which is undesirable. Having said that, if the goal was to simulate

1g which is 9.81 m/s2, cryogenic propulsion system could suit well. However, a

proper trade-off analysis needs to be done to determine the feasibility.

5.6 Deployment Using Polar Plot

So far, we have determined that the number of thrusters reduce the deployment

time. A better way to visualize the deployment velocity is by using polar plot

(r,θ). This will help us understand the profile the capsule will trace in 2-D space.

The simulation is setup to align with the Stage 1 and Stage 2 as described in

Chapter 3. Figures 5.6, 5.7, 5.8, 5.9 represent the deployment profiles for 1, 10,

100, and 1000 thrusters respectively. In the plots below, the numbers around

the circle are the angles (θ) while the numbers inside the plot from 100 to 1000

represent the radius(r).
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Figure 5.6: Deployment profiles for 1 thruster

Figure 5.7: Deployment profiles for 10 thrusters
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Figure 5.8: Deployment profiles for 100 thrusters

Figure 5.9: Deployment profiles for 1000 thrusters
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Recalling the figures for deployment velocity from Figure 5.5, it is clear that

the deployment of the tether needs to gradually increase with time, in order to

maintain a constant acceleration. This trend can be clearly seen in Figure 5.6.

In addition to the deployment profile, it can be noted in Table 5.3 that the

number of turns each capsule makes decrease with increased thrust. With 1000

thrusters it takes 800 seconds to deploy and intuitively, will take a less turns to

reach 1000 m. Similarly, 1 thruster requires approx. 9 days, which takes more

turns than 1000 thrusters. Although, a 1000 thrusters may deploy the system

faster, the deployment may not be smooth. Further analysis based on these

results would be helpful in understanding the optimal thrust value to avoid

jerky movements.

5.7 Verification: Effect of the Results on Hu-

mans

The first research question is pertinent to human safety and comfort, and hence,

it is critical to verify that the forces on the human inside the tethered system

are safe. One of the factors to look at is the ‘pull force’should not exceed the

human tolerance limit. According to the findings from the paper in a journal

pertinent to the human survivability [33], the compression of the vertebrae, can

occur with +Gz (vertical axis) decelerations of 20 to 25 gee and accelerations

up to 15 gee. From Figures 5.5a, 5.5c, and 5.5b deployment velocity will create

slight changes in the net acceleration of 0.3g, the astronauts will be safe and

comfortable.
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5.7.1 Human Comfort and Safety

Because the gravity level varies along the radius of the centrifuge, an astronaut

lying in a centrifuge along a radius with her feet positioned at the rim will have

her head closer to the axis or rotation than her feet. The head will have a

smaller radius of rotation. Consequently, the gravity level at her head will have

a lesser magnitude than the gravity level at her feet. The variation in artificial

gravity level as a function of distance from the center of rotation is referred to

as the gravity gradient. Hence, gravity gradient is related to the posture felt by

the astronaut. The mathematical relation is given by:

According to Clement[3], for an astronaut of height h = 2 m in a rotating

environment with a radius of 100 m, this ratio is 98%, which corresponds to

a gravity gradient of 2%. An individual would not likely perceive a difference

of only 2%. However, for radii of rotation less than 10 m, the gravity gradient

ranges from 20 to 100%, which may be perceived as a bent posture.

Having identified the initial radius of rotation to be 12 m, the gravity gra-

dient is approximately 17% at initial spin-up which resembles partially bent

posture. The gravity gradient decreases and becomes negligible in effect after

100 m, which takes about 63 hours to spin-up as per the results from Figure 5.2.

Using thrust equivalent to that of 10 thrusters, the time reduces to 6 hours.

5.7.2 Nausea (Coriolis Effect)

Although subjects at rest in a rotating system feel only the sensation of weight,

that is, the gravity level generated by the centrifugal force, when they move,

another force, called Coriolis force, is felt. The Coriolis acceleration is a direct

result of any linear movement within the rotating reference frame and is equal
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Figure 5.10: Gravity Gradient a function of radius of rotation for an astronaut
height of 2 m standing on the floor of a spinning vehicle or lying on an internal
centrifuge with their feet pointing outward towards the rim along a radius.[3]

to twice the cross product of the angular velocity vector and the linear velocity

vector v of the moving object, person, or body part. The direction of the

Coriolis acceleration is perpendicular to the plane formed by ω and v in a right-

hand-rule sense in accordance with vector calculus. Of course, the resulting

force is obtained by multiplying the mass of the moving object or person by the

acceleration, so the magnitude of the Coriolis force is as shown in the following

equation[3].

For instance, if individuals in a spacecraft climb and descend ladders, they

would feel the effects of the Coriolis acceleration in the form of a force that

would tend to push them to one side or the other as illustrated in figure 5.11. If
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Figure 5.11: Coriolis effect in a rotating frame of reference[3]

the spacecraft was rotating in the counter-clockwise direction and the astronaut

was climbing a ladder towards the center of the vehicle in the manner shown in

the figure, he or she would feel a force pushing to the right. When descending

the ladder, the force would seem to be pushing them to the left.

With this understanding of Coriolis effect in rotating systems, it is important

to note that the Coriolis force is independent of the radius of centrifugation.

But it is also evident that the Coriolis force will reduce with decreased angular

velocity ω. In the case of the system under consideration for this thesis, the

angular velocity decreases to 0.06 rad/s as the radius of rotation reaches 1000

m. This implies that if a person moves at a certain velocity, the Coriolis force

will be less and hence, will feel less sick (this is not considering the sickness

induced due to head movement).
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5.8 Synopsis of Chapter 5

Chapter 5 comprises of the results from the simulation and a discussion of their

significance with respect to determining the feasibility of the mission followed

by a discussion of additional parameters. In Section 5.4, we found that the

simulation results are:

1. Approximately 165 kg of fuel for spin-up.

2. The deployment velocity gradually decreases with increase in radius, never

exceeding 3 m/s.

3. Time required for spin-up procedure depends on the thrust produced.

Thrust more than 1000 times that of thrust produced by ion thruster may

create a slack in the tether during deployment.

These results are then verified using the information pertinent to human

factors gathered in Chapter 2. The forces as a result of the deployment velocity

are within the comfort zone as discussed by Clement[9] based on figure 5.11.

The tension in the tether is equivalent to the centripetal force. This result is

used in Chapter 6 for determining the tensile stress.
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Chapter 6

Characteristics of the Tether for

Artificial Gravity

Discussion about tethered spacecraft without a discussion of tethers would be

incomplete. We will discuss the consideration that needs to be taken to design

the tether viz material, external factors etc. with concentration on artificial

gravity.

6.1 Material Selection Criteria

Before looking into the discussion of materials, it is important to understand

important characteristics a tether should possess. The NASAs Space Tether:

Design Criteria [34] provide a systematic process for the selection of tethers for

space applications. Enlisted are some common criteria:

1. The strength should not be a driving parameter in tether design, i.e.,

they should possess enough inherent durability and robustness to support

a normal amount of mishandling and damage.[34]
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2. To achieve maximum performance and low cost, tethers need to be made

of materials with high strength to mass ratio.

3. Space tethers would be exposed to temperatures up to -270◦ C on the

journey to Mars. However, the temperature will fluctuate between -13◦ C

to -100◦ C [35].

4. It is desirable that the tether can be wound and unwound without signif-

icant bending and torsional stiffness or shape memory. This affects the

deployment performance and predictability of the dynamics of the tether.

5. The material should ideally display low friction levels and little abra-

sion.[15]

6.2 Materials

Some current tether designs use crystalline plastics such as Ultra-High Molecu-

lar Weight Polyethylene (Dyneema Spectra), Aramid (Kevlar) or carbon fiber.

A possible future material would be Carbon NanoTubes, which have an esti-

mated tensile strength between 140 and 177 GPa (20.3-25.6 million psi), and a

proven tensile strength in the range 50-60 GPa for some individual nanotubes.

The members of the Cornell University - Artificial Gravity team have done their

analysis by considering a tether made of Dyneema, of the diameter 0.5mm. In

the following subsections, we will discuss the three materials and their charac-

teristics.
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6.2.1 Kevlar

Polyaramid is a classic candidate for space tether material also known for bullet

vests. It has high strength and can withstand temperatures up to 500◦ C. It has

a rough surface and high yarn to yarn friction ratio. It tends to crack and flake

when bent repeatedly around a small radius. Detectable strength loss occurs

after 1000 bucklings and severe strength loss after 20,000[36] which is a lot more

that 1 buckling as is considered in this thesis.

6.2.2 Dyneema

Ultra-High Molecular Polyethylene is another promising candidate for space

tether material. It can withstand temperatures up to 144 to 152 ◦C. It has a

smooth surface and low yarn to yarn friction ratio. Dyneema is subject to creep

under continuous load but is UV resistant. It has high resistance to elasticity.

6.2.3 CNT yarn

Carbon Nano Tubes (CNT) are a topic of interest in the past few decades

considering its strength and other properties[37]. It has a high melting point up

to 1000◦ C. CNT yarn is considered to resistant to creep and can withstand huge

loads, but tests need to be performed in order to determine other characteristics

such as working temperatures, effect of radiation, etc. for diameters more than

5 mm.

Table 1 displays a comparison of properties between Kevlar, Dyneema and

CNT yarn. This comparison gives an insight to which would be a good choice

for artificial gravity.

The tether is exposed to a load of 240,000 N for a duration of approximately
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Table 6.1: Comparison of material properties

Parameters Kevlar[36] Dyneema[38] CNT yarn [39]
Specific Strength
(kNm/kg)

2514 3711 46268

Breaking Length
(km)

256 378 4716

Density (kg/m3) 1440 970 1600
Tensile Strength
(GPa)

3.7 3.5 60

Diameter (µm) 12 12 12
UV resistance UV resistant UV resistant Reduces strength

over a long period
Creep Under continuous

load
Under continuous
load

Resistant to creep

Temperature Kevlar shows
essentially no
embrittlement or
degradation at
temperatures as
low as -196◦C.

Brittle below
-150◦C

Not tested.

6 to 9 months. We know that the σ = F/A where A = π
4
D2. Based on the

calculations presented in Chapter 4, F = 240 kN.

In Table 6.2, we have calculated the diameter required to withstand the

tensile force of 240 kN. by using the equation d =
√

4F
πσ

. Although the diameter

may not be uniform based on the geometry, it is a reasonable assumption to

consider the tether with uniform diameter. Based on the diameter of the tether,

we calculate the number of strands that would make up the tether using the

equation N = D/d where N is the number of strands, D is the diameter of the

tether and d is the diameter of the individual strand.

From the calculations the tension on the tether would be 235000 N and hence,

a tether with diameter 5 mm Dyneema seems the most promising. It should be

taken into consideration that CNTs and their yarns are still in the developmental
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Table 6.2: Number of fibers required for a particular diameter of the tether (The
diameter corresponds to the tensile strength of a particular material. More the
diameter, more are the number of fibers required)

Parameters Kevlar[36] Dyneema[38] CNT yarn [39]
Diameter required
to bear the load of
240 kN (mm)

9.21 5.13 2.25

Number of fibers
required

768 428 188

Mass of 3km
tether (kg)

287.8 60.14 19.08

stages and conclusions cannot be made due to the lack of experimentation on

characteristics such as resistance to creep, fatigue, and radiation.

6.2.4 Discussion

To create artificial gravity for a human capsule, there are a variety of criteria

we need to consider as discussed in Section 6.1. Three materials are selected for

the study Kevlar, Dyneema, and CNT - from a perspective of the mentioned

criteria. Tables 6.1 and 6.2 lay a comparison between the three materials.

In Table 6.1, we begin by comparing the specific strength (strength - weight

ratio) which indicates the higher specific strength is, the higher strength and

lighter weight the material is. Carbon Nano Tubes have the highest specific

strength indicating its capability to withstand high stresses well suited for

the application of artificial gravity. Then we look at the breaking length or self-

support length. Though this concept is pertinent to vertical column of material,

it is important to note that while creating artificial gravity, the tether will be

stretched and needs to have high breaking length. Based on the first criteria

mentioned in Section 6.1, CNT seems promising.
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Further, we compare the temperatures and radiations the materials can with-

stand, and its response to creep. These parameters tie to Criteria 2 (temper-

ature), Criteria 3 (physical characteristics such as creep) and Criteria 6 (space

environment). Kevlar and Dyneema are resistant to UV radiations but pro-

longed exposure reduces its strength. Additionally, they decrease their strength

under continuous load. CNT has not been extensively tested for radiation creep

or for temperatures, but it is theorized that it is resistant to creep, radiations

and can withstand a large range of temperatures.

In Table 6.2, we calculate the diameter of the tether, and the number of

strands in the tether, of those respective materials. From the calculations in

Appendix B, Dyneema can pull a 240 kN force with a 5 mm tether, whereas

Kevlar and CNT needs a smaller diameter up to 2.25 mm. It is also important

to note that CNT has a higher specific strength and a larger breaking length

compared to Kevlar and Dyneema.

6.3 Effects of External Factors

6.3.1 Micro-meteoroid

All space tethers are susceptible to space debris or micro-meteoroids. Therefore,

mission designers need to decide whether or not a protective coating is needed.

It is also important to take into consideration that longer the tether, larger is

the probability of micro meteor impact. The meteoroid environment consists of

particles of natural origin, and most are generated by comets and asteroids. The

average mass density for a meteoroid is 0.5 g/cm3. There are approximately 200

kg (440 lb) of meteoroids within the 2,000 km (1,080 nm) altitude. The average
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impact velocity of a meteoroid relative to an orbiting spacecraft is estimated to

be 19 km/sec. The probability of tether impact with a micro-meteoroid of mass

greater than 0.1 gram was calculated as 0.1% for a mission of 420 days.[3] In

case of severed tether, the result could be loss of mission, loss of satellite, and

end-body entanglement due to recoil of the tether remnant. This is especially

critical for missions where the safety of end-bodies is of paramount importance,

such as those involving manned spacecraft like the space shuttle or space station.

For applications that exert high tensile forces on the tether like creating

artificial gravity, the tether should withstand high tensile stress and be light

weight. Light weight tethers are desirable as they provide high strength to

mass ratio. Considering these aspects, we will now look into the materials that

could be used.

6.3.2 Impact of Radiation on Materials

The journey to Mars may take from 6 to 9 months. This means long term

exposure to radiation. The potential material should be able to retain its

strength with a long-term exposure. Below, we have discussed the effect of

UV on Dyneema and Kevlar in form of a literature review.

Dyneema

HMPE is one of the most UV resistant high modulus fibers. The line strength

drops relatively rapidly during the first in approximately 18 months of UV expo-

sure and then much more slowly after the surface of the fibers has been burned.

How much strength is lost will vary depending on the lines specific construction

(diameter, braiding angle and tightness, type and amount of coatings) and the
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location (UV intensity). The graph below shows the results from two different

tests (two different locations with two different lines, but both 8 mm diameter),

which bracket the likely strength loss (e.g. all the other empirical evidence falls

between these two tests). This shows that HMPE single braid will lose about

20 to 35 % of their tensile strength (leaving 65 to 80 % of the original tensile

strength) within 20 months of continuous exposure and at five years will retain

about 50 to 75 % of its tensile strength, and 40 to 70% at 10 years. Single braid

line size (or double braid with the core exposed at the splices) should be selected

to compensate for this UV reduction in tensile strength. 3/16 inch stainless wire

has a tensile strength around 3800 lbs, while 3/16-inch HMPE single braid has

tensile strength around 5,800 lbs. So, picking the same size HMPE as wire will

roughly allow for equal strength after five years of intense UV.

Figure 6.1: Effect of UV radiation on strength of Dyneema [40]

Kevlar

Like other polymeric materials, Kevlar is sensitive to UV (ultraviolet) light.

Unprotected yarn tends to discolor from yellow to brown after prolonged expo-
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sure. Extended exposure to UV can also cause loss of mechanical properties,

depending on wavelength, exposure time, radiation intensity and product ge-

ometry. Discoloration of fresh yarn after exposure to ordinary room light is

normal and is not indicative of degradation. Figure 6.2 shows the absorption

spectrum of Kevlar, along with that of sunlight. The overlap region of these

two curvesespecially between 300 nm to 450 nm should be considered when

specifying outdoor use of unprotected Kevlar. This range includes the near

UV and part of the visible region. For effective protection of Kevlar from UV

degradation, this kind of light must be excluded.

Figure 6.2: Overlap of the absorption spectrum of Kevlar with the solar spec-
trum.[36]

Having established the single fiber characteristics, Kevlar is intrinsically self-

screening. External fibers form a protective barrier that shields interior fibers

in a filament bundle or fabric. UV stability increases with size the denier of a
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yarn, the thickness of the fabric or the diameter of a rope. Extra UV protection

can be provided by encapsulation:

1. By over-braiding with other fibers or,

2. By applying an extruded jacket over ropes and cables.

6.3.3 Degradation due to Space Environment

The potential causes of the inadvertent tether severing include manufacturing

defects, system malfunctions, material degradation, and collision with space-

borne matter. Material degradation could be caused by space radiation en-

vironments, which are Galactic Cosmic Radiation, Geomagnetically Trapped

Radiation, and Solar Proton Events (solar flares). Due to the tether being ex-

posed to radiation and varying stresses and friction, heat might get trapped in

the tether with no way to dissipate the heat, creating undesirable changes in

the material.

As mentioned earlier in Section 6.1 space between Earth and Mars can be

extremely cold. However, the tether can be kept under working temperatures

by absorbing the heat from the sun. In the Tethers in Space Handbook[35]

it is discussed that the tether in lower earth orbit (altitude < 140 km) the

temperature can vary drastically between day and night cycles. The calculation

is as follows:

Heat transfer through radiation:

Teq =
4

√
ΣQeq

Aεσ
(6.1)

ΣQeq = Qin −Qemitted
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Qin = Qsolar +Qinternal +Qaerodynamic +Qalbedo +QEarth

Qemitted = AεσT 4

Where,

T: Temperature (K)

Qin: Total Heat

A: Cross-sectional Area

ε: Emmisivity = 0.9 for non-metals

σ: Stephan-Boltzman Constant = 5.73 x 10−8(Wb/m2K)

Based on their calculations, the temperature varied between -13◦ C to -93◦ C

over one orbit around earth.

The same principle can be used to calculate the temperature of the tether

during the interplanetary travel. The equation would ideally reduce to Qin =

Qsolar + Qinternal, since, there would be no heat from aerodynamic, albedo,

or Earth/Mars unless the tether is near the planets. It is also worth noting

that the tether is rotating and hence will have incident radiation at different

angles. This increases the complexity of calculating the temperature of the

tether. Nevertheless, based on observation, the we can consider only the solar

and internal heat for an interplanetary journey, unless the system is close to

any planet that adds to the tether heat.
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6.4 Discussion on Desired Characteristics in any

Material

6.4.1 Fatigue

Fatigue is the property where the material weakens due to repeated change in

loading conditions. It affects the tensile stress adversely. It is important to

note that in application such as creating artificial gravity, the loading change is

complex in nature. As discussed in Chapter 3, the system spins up first and then

starts the spin-up procedure. As the radius increases and the angular velocity

is changed to keep the acceleration constant, the load on the tether changes

continuously. Similarly, during the spin down procedure, the tension changes.

Due to this, the material chosen should be tested for its fatigue. Higher the

number of cycles, better it is for the material.

6.4.2 Creep

With increasing static load and temperature, the fiber elongates irreversibly.

This is called creep. To create artificial gravity, the material needs to have

resistance to creep. It is important to consider that the creep characteristic

changes with temperature and hence the tether material should be tested for a

static load in a constant low temperature.

6.4.3 Torsional and Bend Radius

The tether is wound over a spool. The bend radius should not decrease strength.

Also the system spins about the center. Hence, it should withstand torsion. A

pre-twist can be provided to decrease the torsional stress on the tether[29].
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6.5 Remarks

There is no better way to study a space tether accurately than to experiment

with them. Since it is difficult to create space-like environment on earth, and

mathematically modelling the tether is very complex, this study only serves as

a ballpark. Tethers have been widely used for experiments in lower earth orbit,

which has a different space environment than an interplanetary journey. The

primary assumption in this study is that the pull force is uniform throughout

and has a rod like geometry. More accurate results can be generated using

specific geometry. Also, because this study is based on a lot of assumptions, no

solid conclusion can be drawn in terms of selection of a particular material.

Future work is anchored in the Section 6.2 where we have presented a com-

parison and discussion of the three tether materials selected. Given the limita-

tions identified above and ongoing research on CNT, it opens research avenues

to investigate the characteristics of CNT yarn for high tensile stress applica-

tions such as creating artificial gravity. Moreover, experiments on the desired

characteristics mentioned in Section 6.4 would help making a working model of

tethers to create artificial gravity.
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Chapter 7

Closure and Future Work

Creating artificial gravity in reality poses challenges of its own. Till then, the

best we can do is study and investigate as much as possible in order to make it

a reality. The motivation behind this thesis is to try and add to what is already

known about tethered system for creating artificial gravity.

7.1 Summary of the Thesis

The primary goal achieved in this thesis is to estimate the mass of propellant

required to spin-up and down for 2 cycles, and the deployment velocity required

during this maneuver, which is a crucial factor in checking the feasibility of

the tethered system for controlled artificial gravity. A large part of this was

justifying the gaps identified through critical literature review, formulating a

simulation model anchored in the key findings from the literature, and inter-

preting the results with regards to feasibility of the system for controlled AG.

This will provide an avenue to investigate the system further and provide a path

toward experimental missions.
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In Chapter 1, the foundation for the thesis is laid. We began with an intro-

duction to artificial gravity and methods to create it. A review of these methods

leads to a motivation section where we provide the rationale for investigation.

From this process, two research questions are defined and the connectivity to

the overall theme of the thesis is identified in Section 1.2. Once the questions

are posed and a strategy for their solution is created, significant engineering

and scientific contributions of the work are discussed in Section 1.3.

In Chapter 2, a critical review of the literature is presented, in context

of Artificial Gravity using tethered system from Sections 2.1 through 2.3. In

Section 2.3 the review of the literature is summarized and connectivity between

the gaps and review established. This chapter is foundational for Chapters 3

through 6.

In Chapter 3, we described the system under consideration, and propose and

elaborate the method to answer the research gaps. We began by illustrating the

tethered system based on the key findings in Section 3.1. Then, based on the

details, we discussed the method proposed as hypothesis in Section 3.2 to answer

the research questions. The proposed methods are tested in Chapters 4 and 5.

In Chapter 4, having laid the foundation of the system under consideration

to create artificial gravity. In this chapter we have created a mathematical

framework to simulate the tethered system described in Section 3.1 and 3.2.

This framework aids us to answer the primary research question of estimating

the mass of propellant required under the given set of assumptions and the

secondary research question of deployment velocity. In Section 4.1 and 4.2,

trapezoidal rule of numerical approximation is used to estimate the mass of

fuel and deployment velocity. This method is useful because it can be used in

different scenario such as estimating the fuel requirement for tethered system
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with cubesats or even torus design for artificial gravity.

In Chapter 5, we presented the results from the simulation and a discussion

of their significance with respect to determining the feasibility of the mission

followed by a discussion of additional parameters. In Section 5.2, we found that

144 kg of fuel is required for one spin-up procedure, with a gradually decreasing

deployment velocity. This spin-up procedure takes 9 days using 1 ion thruster

and 22 hours using 10 ion thrusters. These results are then verified in Section

5.7 using the information pertinent to human factors gathered in Chapter 2.

In Chapter 6, we have looked at the tether materials and its selection crite-

ria. In Section 6.1 we looked at the considerations that need to be taken into

account for its application in creating artificial gravity (AG). In later sections,

we discussed three potential tether materials - Kevlar, Dyneema, and CNT -

for creating AG which are selected from the literature review. In Section 6.3,

we discuss the effects of space environment which was helpful to gain insight to

find a way forward (elaborated in this chapter).

7.2 Answering the Research Questions

Primary Research Question

How much fuel is required to spin the system to create a constant acceleration

and what tether material could be used?

To answer this question, one of the first things to determine was the type

of thruster to be used. The propulsion system should provide adequate control

and smooth transition (no jerks) while thrusting which is achieved using an ion

thruster. The ion propulsion also has an advantage of using less fuel which

indicates lower mass of propellant as discussed in the Chapter 3.
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Using ion thrusters, we estimate the fuel required for spin-up per capsule is

approximately 165 kg. Considering the spin-down procedure utilizes approxi-

mately the same amount of fuel, the total fuel required will be 660 kg for one

cycle for both the capsules. In addition to the mass of propellant, we found

that the deployment rate gradually increases to keep a constant acceleration.

Determining the tether material for a particular application is difficult with-

out experimental data. However, in Chapter 6, we have discussed the criteria

of selection of tether for high tensile stress application such as creating artificial

gravity. The characteristics of Kevlar, Dyneema, and Carbon Nano Tubes are

compared to determine a plausible material. We came to a conclusion that,

although, Kevlar and Dyneema have been experimented on, CNT yarn is a

promising candidate for artificial gravity missions due to its high strength to

mass ratio, and high tensile strength.

Secondary Research Question

What is the deployment velocity of the tether to maintain the required acceler-

ation and time required to spin-up?

Deployment velocity is the increase in radius of rotation over time. In Chap-

ters 4 and 5, we have discussed the method used to investigate the propellant

mass which are radius steps and energy steps. With these steps, an approximate

radius vs time profile is generated using trapezoidal rule of numerical solution.

The results indicate that, the time required to spin-up does not vary if

deployed using different scenarios, but will depend on the thrust5. We found

that it takes 9 days to spin-up completely using 1 ion thruster producing 5.4

5The time required to produce required acceleration also depends in which method to
produce the acceleration. For instance, the time required to simulate 0.3g will differ if we
deploy the tether first and then spin the system3.2
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N thrust, 22 hours for 10 ion thrusters, and 2 hours for 100 ion thrusters, but

with a 1000 ion thrusters the system can be deployed faster which takes 13.33

minutes.

This thesis is based on speculation. This provides a lot of prospects for

future research work, some of which are discussed in the next section.

7.3 Future work

The analysis in this thesis is based on assumptions. In order to progress towards

execution, aspects such as tether control, accurate mathematical modelling,

transition, need to be investigated. In a paper about tether control[41], the

author discusses that the tether can remain stable with slight change in forces

in the end mass. Such a control system for tether could be investigated further.

From the results in Chapter 5, we know that the deployment rate is sufficient for

human comfort and tether tension. A further study could be ensure a smooth

transition from deployment to constant radius at fully deployed radius. One

way to do this would be to gradually start reeling the tether as the desired

radius of rotation approaches.

Since we are dealing with tethered system, the most important aspect is to

investigate and test more tether materials. The discussion is limited to three

materials and a theoretical approximation is made to give an insight for which

material is best suited for the application of artificial gravity. A further study

inclined towards experimentation would be helpful to provide an insight on the

tether material for such application. This can be addressed in two ways. First

way to do so is to look at upcoming (promising) materials such as graphene and

investigate its characteristics in space conditions (vacuum, cold temperatures,
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etc.). Second way will be to look into coatings - and their reaction with the

material - which protect the tether material from radiation and temperature

variation.

The next thing would be to ensure human safety for such missions. In any

spinning system, a human body reacts to the Coriolis effect and varying forces.

From Chapter 2, we know that spinning in a system with large radius of rotation

will be safe enough not to cause physical damage. But, since the system under

investigation is an ideal one, it opens an avenue to detailed analysis of its effect

on the human body, especially while reeling and unreeling the tether. Bioas-

tronautics is a field of study for humans in space. From the results, researchers

could either simulate these conditions in laboratories or on a computer. Scru-

tinizing this aspect of the problem would eventually help in the mission design

and decisions pertinent with safe-guarding the travelers.

We are living in an exciting era for space exploration. This is all the more

reason to keep researching on artificial gravity and human factors in space.
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