
 

UNIVERSITY OF OKLAHOMA 

 

GRADUATE COLLEGE 

 

 

 

 

 

 

 

PORE CONNECTIVITY IN SHALE FORMATIONS 

 

 

 

 

 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE FACULTY 

 

in partial fulfillment of the requirements for the 

 

Degree of 

 

DOCTOR OF PHILOSOPHY 

 

 

 

 

 

 

 

 

 

By 

 

DAVUD DAVUDOV 

 Norman, Oklahoma 

2018  



 

 

 

 

 

PORE CONNECTIVITY IN SHALE FORMATIONS 

 

 

A DISSERTATION APPROVED FOR THE 

MEWBOURNE SCHOOL OF PETROLEUM AND GEOLOGICAL ENGINEERING 

 

 

 

 

 

 

 

 

BY 

 

 

 

     

Dr. Rouzbeh G. Moghanloo, Chair 

 

 

Dr. Dimitrios V. Papavassiliou 

 

 

Dr. Carl Sondergeld 

 

 

Dr. Deepak Devegowda 

 

 

Dr. Siddharth Misra 

 

 

Dr. Omid Mohammadzadeh 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by DAVUD DAVUDOV 2018 

All Rights Reserved. 



iv 

 

 

 

Dedication 

To my father and mother, Sarraf and Kemale 

for their unconditional love and support 

 

To my sister and nephew, Mahsati and Samsinur 

& 

To Vusale and Masume 

for always being joy and love in my life 

  



v 

Acknowledgements 

Once a dream, now reality; this journey would not be possible without the guidance, 

encouragement, continuous support of my advisor, Dr. Rouzbeh Ghanbarnezhad Moghanloo. I 

deeply appreciate him for guiding and challenging me to accomplish my dreams.  

I am also extremely grateful to my committee members, Dr. Dimitrios V. Papavassiliou, Dr. 

Carl Sondergeld, Dr. Deepak Devegowda, Dr. Siddharth Misra and Dr. Omidreza 

Mohammadzadeh for their guidance and support of my research.  

I also thank Unconventional Shale Gas Consortium, Dr. Ali Tinni, Dr. Mark Curtis and Joseph 

Comisky for providing the experimental data that make this research possible.  

I want to express my gratitude to the Mewbourne School of Petroleum and Geological 

Engineering for their support. Thanks to all the friends in Oklahoma for our joyful time we spend 

together.  

To my father, mother, and only sister, thank you for encouraging me in all my pursuits and 

supporting me to follow my dreams, even when they took me thousands of miles away from you. 

I owe my deepest appreciation to all of you for your unconditional love and support. I am 

everything I am, because of you.  

Last but not the least I would like to say thanks to my wife and daughter Masume, who have 

always been by my side and have been joy in my life.  

Above all, I owe all my gratitude to God; for all that I am and ever hope to be. 



vi 

Table of Contents 

Acknowledgements ..........................................................................................................................v 

Table of Contents ........................................................................................................................... vi 

List of Tables ................................................................................................................................. ix 

List of Figures ..................................................................................................................................x 

Abstract ..........................................................................................................................................xv 

Chapter 1 - Introduction ...................................................................................................................1 

1.1 Pore Connectivity in Shales ................................................................................................ 4 

1.2 Permeability Models – Pore Connectivity .......................................................................... 7 

1.3 Objective and Outline ......................................................................................................... 8 

Chapter 2 - Permeability Model Based on Critical Path Analysis .................................................12 

2.1 Introduction ....................................................................................................................... 12 

2.2 New Critical Path Analysis Model ................................................................................... 16 

2.3 Evaluation of Permeability Models .................................................................................. 18 

2.3.1 Results for Tight Sandstone Samples ...................................................................... 19 

2.3.2 Results for Shale Samples ........................................................................................ 25 

2.4 Discussion ......................................................................................................................... 29 

2.4.1 Correlation Between Calculated Parameters ........................................................... 29 

2.4.2 Limitations of the CPA-based Models ..................................................................... 34 

2.4.3 Advantages of the CPA-based Models .................................................................... 36 

2.5 Conclusions ....................................................................................................................... 36 

Chapter 3 - Scale Dependent Connectivity of Shale Matrix ..........................................................38 

3.1 Introduction ....................................................................................................................... 38 



vii 

3.2 Accessible Porosity and Permeability ............................................................................... 39 

3.2.1 Accessible Porosity .................................................................................................. 39 

3.2.2 Permeability ............................................................................................................. 44 

3.3 Connected Porosity and Hydraulic Connectivity – Percolation Theory ........................... 46 

3.3.1 Accessible/Connected Porosity ................................................................................ 46 

3.3.2 Hydraulic Conductivity and Coordination Number ................................................. 47 

3.4 Conclusions ....................................................................................................................... 49 

Chapter 4 - Impact of Connectivity Loss on Permeability Reduction ...........................................50 

4.1 Introduction ....................................................................................................................... 50 

4.2 Effect of Pore Compressibility and Connectivity Loss..................................................... 52 

4.3 Results ............................................................................................................................... 54 

4.4 Conclusions ....................................................................................................................... 66 

Chapter 5 – Permeability Based on SEM Images ..........................................................................68 

5.1 Introduction ....................................................................................................................... 68 

5.2 Methodology ..................................................................................................................... 70 

5.2.1 Direct Pore Scale Modelling – Lattice Boltzmann Method ..................................... 70 

5.2.2 Pore Connectivity – Euler Poincare characteristics ................................................. 74 

5.3 Results ............................................................................................................................... 75 

5.3.1 Static Properties ....................................................................................................... 75 

5.3.2 LBM Simulation Results.......................................................................................... 79 

5.4 Conclusions ....................................................................................................................... 85 

Chapter 6 – Accessible Porosity based on MICP ..........................................................................87 

6.1 Introduction ....................................................................................................................... 87 



viii 

6.2 Mathematical Model ......................................................................................................... 88 

6.2.1 Pore Compressibility Calculation ............................................................................ 88 

6.2.2 Accessible Pore Calculation .................................................................................... 93 

6.3 Results and Discussion ..................................................................................................... 94 

6.3.1 Pore Compressibility Results ................................................................................... 94 

6.3.2 Comparison with Ultrasonic Velocity Measurements ............................................. 98 

6.3.4 Accessible porosity ................................................................................................ 101 

6.4 Applications .................................................................................................................... 105 

6.5 Conclusions ..................................................................................................................... 108 

Chapter 7 – Relative Permeability Model Based on Percolation Theory ....................................109 

7.1 Introduction ..................................................................................................................... 109 

7.2 Relative Permeability Model - Phase Connectivity ........................................................ 114 

7.2.1 Residual Saturation ................................................................................................ 117 

7.3 Conclusions ..................................................................................................................... 120 

Chapter 8 – Conclusions and Future Recommendations .............................................................121 

8.1 Major Contributions and Conclusions ............................................................................ 121 

8.2 Recommendations for Future Work................................................................................ 122 

References ....................................................................................................................................124 

  



ix 

List of Tables 

Table 2.1: Input parameters for 60 sandstone samples ................................................................. 21 

Table 2.2: Input parameters for 10 shale samples......................................................................... 26 

Table 3.1: Summary of sample properties obtained with FTIR method....................................... 39 

Table 3.2: Summary porosity and permeability values for different sample sizes ....................... 45 

Table 4.1: Porosity and permeability data for sandstone samples under effective stress ............. 55 

Table 4.2: Porosity and permeability data for shale samples under effective stress ..................... 55 

Table 4.3: Calculated parameters for sandstone samples under effective stress .......................... 60 

Table 4.4: Calculated parameters for shale samples under effective stress .................................. 62 

Table 5.1: Porosity obtained from 2D slices for Eagle Ford sample ............................................ 77 

Table 5.3: Summary of results for Eagle Ford sample as a function of sample size .................... 85 

Table 6.1: Parameters of power law fit function of pore and grain compressibility .................... 97 

 



x 

List of Figures 

Figure 1.1: Methods used to study the pore structure of shales  ..................................................... 2 

Figure 1.2: SEM images of a) Barnett and b) Haynesville shale .................................................... 3 

Figure 1.3: Pore aspect ratio of the a) Barnett and b) Haynesville  ................................................ 4 

Figure 1.4: Three dimensional volumes constructed from SEM images a) all pores b) connected 

pores ................................................................................................................................................ 5 

Figure 1.5: Porous media considering the valve effects of pore throats ......................................... 8 

Figure 2.1: A 12×12 square lattice model with a) 𝑝 = 0.51 and b) 𝑝 = 0.62 .............................. 12 

Figure 2.2: Demonstration of critical pore throat radius obtained from MICP data ..................... 14 

Figure 2.3: Illustration of finding critical pore throat radius from MICP data ............................. 20 

Figure 2.4: Illustration of finding pore space fractal dimension from MICP data ....................... 20 

Figure 2.5: Comparison of calculated and measured permeability values (comparative plots) for 

tight sandstone samples................................................................................................................. 25 

Figure 2.6: Comparison of calculated and measured permeability values (comparative plots) for 

shale samples ................................................................................................................................ 29 

Figure 2.7: Interplay among key parameters for sandstone samples a) Maximum pore throat radius 

as a function of critical pore throat radius; b) Measured permeability as a function of maximum 

pore throat radius; c) Measured permeability as a function of critical pore throat radius ............ 31 

Figure 2.8: Interplay among key parameters for shale samples a) Maximum  pore throat radius as 

a function of critical pore throat radius; b) Measured permeability as a function of maximum pore 

throat radius ; c) Measured permeability as a function of critical pore throat radius ................... 33 

Figure 2.9: MICP test results for unconfined and 7000 psia confining pressure cases ................ 35 



xi 

Figure 3.1: Mercury injection capillary pressure data for Barnett samples a) Incremental volume 

b) Cumulative volume................................................................................................................... 40 

Figure 3.2: Mercury injection capillary pressure data for Haynesville samples a) Incremental 

volume b) Cumulative volume...................................................................................................... 41 

Figure 3.3: Fraction of accessible porosity as a function of sample size (without corrections) ... 42 

Figure 3.4: Fraction of accessible porosity as a function of sample size after conformance and 

compression corrections................................................................................................................ 43 

Figure 3.5: Histogram of the MICP porosity fraction from 45 samples in plug size for the a) Barnett 

and b) Haynesville ........................................................................................................................ 43 

Figure 3.6: Predicted permeability as a function of sample size .................................................. 45 

Figure 3.7: Average coordination number as a function of sample size for the Barnett and 

Haynesville shale samples a) Daigle model b) Proposed model .................................................. 48 

Figure 4.1: Porosity as a function of effective stress .................................................................... 56 

Figure 4.2: Permeability as a function of effective stress ............................................................. 57 

Figure 4.3: Interconnectivity parameter and coordination number as a function of effective stress 

for a) sandstone #1 b) sandstone #2 .............................................................................................. 58 

Figure 4.4: Permeability reduction as a function of effective stress for a) sandstone #1 b) sandstone 

#2................................................................................................................................................... 59 

Figure 4.5: Plot of (𝐾/𝐾0)1/3 as a function of 𝑙𝑛(𝑃𝑒/𝑃𝑜) for a) shale #1 b) shale #2 .................. 61 

Figure 4.6: Interconnectivity parameter and coordination number as a function of effective stress 

calculated from proposed model (after micro-crack closure corrected) for a) shale #1 b) shale #2

....................................................................................................................................................... 63 



xii 

Figure 4.7: Permeability reduction as a function of effective stress calculated from proposed model 

(after micro-crack closure corrected) for a) shale #1 b) shale #2 ................................................. 64 

Figure 4.8: Coordination number ratio as a function of effective stress for different fractal 

dimension numbers ....................................................................................................................... 65 

Figure 4.9: Shale gas permeability considering the combined effects of Non-Darcy flow regimes, 

pore volume shrinkage and pore connectivity loss (solid line) .................................................... 66 

Figure 5.1: Example of 2D grayscale and binary images from Eagle Ford sample ..................... 69 

Figure 5.2: Major workflow of Chapter 5 ..................................................................................... 69 

Figure 5.3: Velocity discretization in D3Q19 lattice scheme ....................................................... 72 

Figure 5.4: Boundary conditions in the LBM ............................................................................... 73 

Figure 5.5: Euler values for ideal solid objects ............................................................................. 75 

Figure 5.6: Pore size distribution obtained from 2D slices for Eagle Ford sample ...................... 76 

Figure 5.7: 3D total and connected porosity for Eagle Ford sample as a function of sample size 78 

Figure 5.8: 3D view of Eagle Ford shale sample for a) 1 μm b) 2 μm c) 3 μm d) 4 μm .............. 79 

Figure 5.9: LBM Simulation through bundle of tubes a) initial structure b) fluid velocity profile

....................................................................................................................................................... 80 

Figure 5.10: 3D view of Berea sandstone a) matrix b) pore ......................................................... 81 

Figure 5.11: Velocity magnitude through pore structure Berea sandstone ................................... 82 

Figure 5.12: 3D view of Eagle Ford shale sample a) matrix b) pore ............................................ 82 

Figure 5.13: Velocity magnitude through pore structure of Eagle Ford sample .......................... 83 

Figure 5.14: Connected porosity and permeability as a function of sample size ......................... 84 

Figure 5.15: Connected porosity, permeability, and EPC connectivity as a function of sample size

....................................................................................................................................................... 85 



xiii 

Figure 6.1: Three stages during MICP experiment. ...................................................................... 90 

Figure 6.2: MICP curve divided into 3 stages. ............................................................................. 90 

Figure 6.3: Pore compressibility for a) Barnett b) Haynesville .................................................... 96 

Figure 6.4: Grain compressibility for a) Barnett b) Haynesville .................................................. 97 

Figure 6.5: Comparison of bulk compressibility calculated from MICP and velocity measurements 

for Haynesville samples a) H-2 b) H-3 c) H-4 d) H-5 ................................................................ 100 

Figure 6.6: Comparison of bulk compressibility calculated from MICP and velocity measurements

..................................................................................................................................................... 101 

Figure 6.7: Results for 11 Barnett samples a) Accessible porosity vs total porosity b) Accessible 

pore fraction vs total porosity c) Accessible porosity vs MICP porosity without any corrections d) 

Accessible porosity vs conformance and grain compression corrected MICP porosity ............. 102 

Figure 6.8: Results for 11 Haynesville samples a) Accessible porosity vs total porosity b) 

Accessible pore fraction vs total porosity c) Accessible porosity vs MICP porosity without any 

corrections d) Accessible porosity vs intrusion corrected MICP porosity ................................. 103 

Figure 6.9: Contribution of each correction factor on calculated accessible porosity a) Barnett b) 

Haynesville ................................................................................................................................. 105 

Figure 6.10: Volume contribution from intrusion and compaction (Sample B11) ..................... 106 

Figure 6.11: Mercury saturation curve from MICP data (Sample B1) ....................................... 107 

Figure 6.12: Pore size distribution calculated from MICP data (Sample B1) ............................ 107 

Figure 7.1: Relative permeability results for shale sample #1 (Calmar) .................................... 112 

Figure 7.2: Relative permeability results for shale sample #2 (Colorado) ................................. 113 

Figure 7.3: Illustration of phase connectivity as a function of saturation ................................... 114 

Figure 7.4: Coordination number of the saturating phase as a function of saturation ................ 116 



xiv 

Figure 7.5: Relative permeability estimated from Eq. 7.14 ........................................................ 117 

Figure 7.6: Difference between mercury intrusion and extrusion versus pore body to throat ratio 

shows a directly proportional relationship .................................................................................. 119 

Figure 7.7: Residual saturation as a function of phase connectivity........................................... 120 



xv 

Abstract 

Shale formations demonstrate distinct characteristics, such as a wide spectrum of pore size from 

micro-scale to nano-scale, ultra-low permeability, and complex pore network system. Despite 

extensive research work over years to characterize details of shale and extremely tight formations, 

the interplay between pore connectivity and permeability still remains to be understood. In this 

research, analytic and numerical methods were used in tandem with experimental data to 

characterize and evaluate pore and hydraulic connectivity of shale formations.  Impact of sample 

size, effective stress, pore structure and topology on the connectivity were evaluated.  

A new analytic model is proposed and developed using percolation theory and critical path analysis 

to explicitly express permeability as a function of pore connectivity. The definition of critical pore 

throat radius and electrical conductivity were revisited and reformulated from previously 

developed Katz & Thompson model. The new permeability model is expressed as a function of 

maximum pore radius, porosity, fractal dimension, and percolation threshold/average coordination 

number that makes it suitable for exploring the impact of pore connectivity on permeability. 

Next, accessible porosity and interconnected porosity is evaluated using mercury injection 

capillary pressure (MICP) data. Several samples from Barnett and Haynesville formations with 

different sizes are used to understand the effect of sample size on accessible and interconnected 

porosity. MICP data combined with percolation theory were used to explain the connectivity loss 

with increasing sample size. 

Additionally, a novel approach is presented to explain intrinsic permeability reduction of shale 

samples as a function of effective stress. Experimental results have shown orders of magnitude 

reduction in permeability as effective stress increases; this permeability reduction is usually 

explained through closure of micro-fracture while impact of pore connectivity loss is often 
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neglected. Thus, an alternative approach is proposed here through which permeability reduction is 

described owing to combination of three main mechanisms: (1) micro crack closure (2) pore 

shrinkage and (3) connectivity loss due to bond breakage between interconnected pores.  

Next, a complementary study was conducted to model fluid flow through three-dimensional (3D) 

pore structure constructed using stacked focused ion beam scanning electron microscopy (FIB-

SEM) images. Lattice Boltzmann Method (LBM) is used to simulate fluid flow to calculate 

permeability of the 3D pore volume. Finally, pore connectivity is quantified based on Euler-

Poincare Characteristics as a function of sample size and impact of pore connectivity on 

permeability calculations is analyzed.  

Furthermore, accessible/fluid saturated porosity values calculated using mercury injection 

capillary pressure (MICP) data are evaluated for Barnett and Haynesville shale samples. A general 

approach is proposed consisting of three distinct corrections to accurately estimate the accessible 

porosity of shale sample using MICP data: (1) conformance, (2) grain compressibility, and (3) 

inaccessible pore compressibility. Accessible porosity calculated for both Barnett and Haynesville 

formations have been analyzed and compared to understand the impacts of pore structure and 

topology on the connectivity. 

Finally, a two-phase relative permeability model based on percolation theory is proposed and 

impact of the phase connectivity on relative permeability curves is investigated. Additionally, 

major factor dominating residual saturation is discussed. 

The result of this study suggests that in shale formations accessible porosity and permeability are 

strong function of pore/hydraulic connectivity. Moreover, unlike conventional formations, pore 

connectivity can significantly vary depending on pore structure, pore geometry, sample size, and 

the effective stress. 
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Chapter 1 - Introduction 

As production from shale plays maintain its role as one of the main energy resources in the U.S., 

prediction of formation deliverability during the production life becomes a decision-making factor 

for future investments. Shale formations have distinct characteristics such as low porosity, nano-

scale pores, extremely low permeability, and complicated microstructure; hence, production from 

these very tight formations becomes very challenging and expensive. According to International 

Union of Pure and Applied Chemistry (IUPAC) definition, shale matrix can be considered a 

combination of microporous, mesoporous, and macroporous systems depending upon the scale we 

select to study. IUPAC defines microporous material a system where pores have diameters of less 

than 2 nm; mesoporous material a system with pore diameters between 2 nm and 50 and 

macroporous material where pore diameters are greater than 50 nm. 

The complexity of shale reservoirs can, in part, be attributed to the geological and petrophysical 

heterogeneity of the reservoir rocks themselves. Shales are fine-grained sedimentary rocks with 

more than 67% of their grains smaller than 5 µm in diameter comprised of common minerals such 

as silica dioxide; the shale matrix also may contain considerable amounts of clays, silt, mud and 

organic matter (Kuila et al., 2012; Sondergeld et al., 2010a, 2010b).  

Microstructure, pore structure and characteristics of unconventional reservoirs are critical 

parameters which control storage capacity and flow properties of reservoir. However, because of 

their ultra-fine size associated with broad pore size distribution makes it challenging to 

characterize these microstructures. Thus, as summarized in Figure 1.1, an extensive research with 

hybrid techniques including combination of fluid intrusion, imaging and/or radiation methods have 

been conducted to study shale microstructure features from micrometer to nanometer scale (Bustin 

et al., 2008; Chalmers et al., 2012; Clarkson et al., 2012; Curtis et al., 2011).  
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Shale reservoirs are mainly composed of the inorganic minerals and the organic matter; wherein, 

the latter is an essential constituent of a productive shale gas reservoir (Potter et al., 2005). Because 

of their completely unlike nature and properties, these components will also affect the reservoir 

characteristics significantly. Generally, 70-94% by volume of rock composition is composed of 

the inorganic minerals such as clays, carbonate and quartz (Tinni, 2015). On the other hand, 

organic matter is usually quantified by total organic carbon (TOC) and might be in both solid and 

liquid forms.  

 

Figure 1.1: Methods used to study the pore structure of shales (Bustin et al., 2008) 

 

Small grains combined with the clay minerals generate multifarious types of pore with different 

shape and geometry. Pores are observed at various locations inside the shale matrix; the porosity 

in the Barnett is dominantly within the organic matter (Loucks et al., 2012, 2009), where the 
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porosity in the Haynesville shale is most prevalent in the inorganic part (Chalmers et al., 2012; 

Curtis et al., 2011).  

High resolution images obtained from scanning electron microscopy (SEM) technique are widely 

used to analyze the high degree heterogeneity at desired spatial scale in shale formations. A 

distribution of nanometer size of inorganic and organic pores has been observed and investigated 

based on SEM imaging technique  (Curtis et al., 2011, 2010, Loucks et al., 2012, 2009; Pommer 

and Milliken, 2015; Tran et al., 2017). Figure 1.2 illustrates an example for SEM images obtained 

from Barnett and a Haynesville shale samples (Davudov et al., 2016; Davudov and Ghanbarnezhad 

Moghanloo, 2016). In the Barnett sample, the darker material is the organic matter, while the 

lighter gray matrix is composed mostly of quartz and clays. It is observed that most of the porosity 

resides within the organic matter, with only a few pores located within the inorganic matrix. 

Grayscale segmentation of the pores resulted in a porosity of 3.2% by area, and an average aspect 

ratio of 1.61. The average aspect ratio indicates that most of the pores tend to be more circular in 

nature. In contrast, the porosity in the Haynesville shale image (segmented porosity 4.7%) is 

located primarily in the inorganic matrix.  

 

Figure 1.2: SEM images of a) Barnett and b) Haynesville shale (Davudov et al., 2016) 
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Due to the host material, the shape of the pores in this image are more elongated than those 

observed in Barnett samples, with an average aspect ratio of 2.77. Histograms of the aspect ratios 

for both samples are shown in Figure 1.3. The Haynesville has a significant population of pores 

with aspect ratios greater than 2.00 (Davudov and Ghanbarnezhad Moghanloo, 2016). 

 
Figure 1.3: Pore aspect ratio of the a) Barnett and b) Haynesville (Davudov et al., 2016) 

 

1.1 Pore Connectivity in Shales 

Pore connectivity is one of the crucial parameters affecting effective porosity and fluid 

transport/permeability. Numerous studies have constructed three-dimensional volume of shale 

sample obtained from the scanning electron microscopy (SEM) technique (Curtis et al., 2012b, 

2011; Sisk et al., 2010) and further analyzed for total and connected pore system as illustrated in 

Figure 1.4. 

Mercury injection capillary pressure (MICP) is another widely used experimental techniques to 

evaluate pore throat size and pore connectivity in shale formations. Compared to other 

experimental techniques, the major advantages of MICP test is that they give direct information 

about pore throats which is the key parameter for hydraulic conductivity and fluid transport (Hu 

et al., 2015; King et al., 2015; Klaver et al., 2015). Moreover, in the literature it has been reported 
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that shale porosity calculated from MICP test is strong function of sample size; mercury porosity 

is decreasing with increasing sample size and it has been suggested that this is due to the effect of 

restricted pore connectivity (Comisky et al., 2011; Tinni et al., 2014).  

 

Figure 1.4: Three dimensional volumes constructed from SEM images a) all pores b) 

connected pores (Curtis et al., 2012b) 

To further investigate pore connectivity, numerous studies have used Wood’s metal injection into 

shale samples (Hu et al., 2014; Klaver et al., 2015), which later SEM images of the samples are 

analyzed to understand how and which part of the pores are connected. It has been observed that 

Wood’s metal essentially penetrated the edge pores, and micro-cracks, where the concentration of 

Wood’s metal in the middle section of sample can be as low as 0.1% of the concentration at the 

edges (Hu et al., 2014). Moreover, since shales have pores associated with the inorganic minerals 

and the organic matter Tinni (2012) has suggested to consider effect of pore wettability on pore 

connectivity as well.  
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Alternatively, some studies have evaluated pore connectivity in terms of average pore throat 

number, usually defined as coordination number. After analyzing 3D shale microstructure 

constructed from SEM images, pore network is extracted and coordination number in shale is 

calculated in the range of 3 (Ma et al., 2014; Yang et al., 2015), where this value is around 6-8 in 

sandstone samples. 

More importantly, in conventional samples, pore connectivity is considered a constant parameter 

that remains intact in most of the applications; however, asphaltene deposition and fines migration 

may adversely affect and plug the flow path (Davudov and Moghanloo, 2019; Moghanloo et al., 

2018). Because pore connectivity is high in conventional rock samples, tortuosity parameter is 

often considered as the primary parameter in permeability models and calculations.  

However, it has been well accepted that the pore connectivity in shale formations is very weak and 

unlike conventional formations, pore connectivity in shale formations might be further reduced 

due to mechanisms like sample size, effective stress, deposition of precipitates such as asphaltene 

deposition during production life. As an example, based on experimental research it has been 

reported that during huff and puff gas injection permeability of the Eagle Ford shale sample has 

been reduced as much as 300%; 83% of total permeability is reduced owing to pore blockage and 

17 % reduction was due to adsorption mechanism (Shen and Sheng, 2017). Consequently, 

conventional approaches used to characterize and formulate pore connectivity in shale formations 

are not sufficient enough; hence, tortuosity appears to become the secondary parameter affecting 

fluid transport, in the absence of “strong” pore connectivity. Thus, the main question remains to 

be addressed (the main goal of this dissertation) is how to quantify the connectivity or connectivity 

loss in shale and ultra-tight formations. 
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1.2 Permeability Models – Pore Connectivity 

The interplay between porosity/storage and permeability/hydraulic conductivity has been studied 

for decades. As a result, many theoretical models have been developed to estimate permeability of 

porous media (Bernabe et al., 2010; Civan, 2001; Doyen, 1988; Pape et al., 2000), where many 

early models were considering porous media as a bundle of capillary tubes. One of the fundamental 

permeability models is Kozeny-Carmen (KC) equation (Carman, 1937), which relates 

permeability to porosity ( ), tortuosity (τ), hydraulic pore radius (𝑟ℎ), and constant term (c): 

2

hrK
c




= ,                                (1.1)

 

Many variations of the KC model have been proposed in the literature. Based on the assumption 

that the electrical field lines and the fluid stream lines are identical, the equivalent channel model 

is proposed (Walsh and Brace, 1984): 

2

h b

w

r
K

c




= ,                                (1.2)

 

where 𝑟ℎ is hydraulic radius, 𝜎𝑏 is bulk electrical conductivity, and 𝜎𝑤 is saturating fluid electrical 

conductivity (Han and Misra, 2018; Tathed et al., 2018). 

Later, Civan (2011) suggested that the KC equation cannot properly address the gate /valve effect 

and predict permeability when pore throats are blocked. The blockage of pore throats creates 

isolated pores; therefore, the KC equation needs to be modified to include an interconnectivity 

parameter, Γ as: 

2

1
k







 
=   

− 
                                (1.3)

 

where 𝜂 is the exponent usually considered as 1 and Γ is a measure of the pore space connectivity 

which represents the valve effect of the pore throats (Figure 1.5). The number of pore throats 
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(coordination number) and the valve effect controls the pore and hydraulic connectivity in an 

interconnected network (Civan, 2011). Consequently, Eq. 2.3 predicts that permeability can 

become zero even if the porosity is nonzero.  

 

Figure 1.5: Porous media considering the valve effects of pore throats (Civan, 2011) 

Although KC type equations are widely used, these models cannot address pore/hydraulic 

interconnectivity effect properly. Thus, alternative models based on percolation theory which is 

the study of pathways in disordered media (Hunt and Gee, 2002; Hunt, 2001; Sahimi, 1995) were 

developed to address issues associated with bundle of capillary tube hypothesis.  

Percolation theory is considered one of the best approaches to model permeability while 

accounting the impact of pore connectivity (Bernabe et al., 2010; Hu et al., 2015). The most 

important advantage of percolation theory-based permeability models is that the pore connectivity 

can be expressed explicitly, which will allow to evaluate it separately.  

1.3 Objective and Outline 

This dissertation examines effect of various parameters on pore connectivity in shale and ultra-

tight formations. The research is driven by the following hypothesis: Pore connectivity is a scale-
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dependent property governing fluid flow in shale formations and additional connectivity loss may 

occur because of pore throat closure and/or two-phase phenomena. 

The main objectives of the work are as follows: 

Obj. 1: Develop an analytic permeability model based on percolation theory to evaluate impact of 

pore connectivity  

Obj. 2: Evaluate pore connectivity loss as a function of sample size and under effective stress.  

Obj. 3: Assess permeability of shale sample obtained from stacked SEM images and evaluate 

impact of connectivity on permeability calculations.  

Obj. 4: Evaluate accessible porosity based on mercury injection capillary pressure (MICP) data. 

Obj. 5: Investigate connectivity loss in two phase flow systems. 

In Chapter 2, the first objective is addressed where a new permeability model is developed using 

critical path analysis (CPA). In CPA based models, critical pore throat radius and electrical 

conductivity are considered as the key parameters of the pore network. The definition of both 

parameters in Katz and Thompson model is revisited and a new permeability model is developed 

as a function of maximum pore throat radius, porosity, fractal dimension, and percolation 

threshold/average coordination number. Two different datasets are used to validate proposed 

model: 1) experimental data obtained for 60 tight sandstone samples and 2) 9 shale samples with 

experimentally measured permeability values.  

Chapter 3 addresses the second objective where pore and hydraulic connectivity of shale 

formations is investigated based on mercury injection capillary pressure (MICP) data and 

percolation theory for different sample sizes. Using MICP data measured at the laboratory for 

different sample sizes, accessible porosity and permeability are estimated for Barnett and 
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Haynesville samples. Next, pore and hydraulic connectivity (average coordination number) for 

both Barnett and Haynesville samples are evaluated using percolation theory.  

In Chapter 4, aligned with second objective, a novel approach is examined to describe how 

connectivity loss impacts intrinsic permeability of shale formations under effective stress levels. 

Significant permeability reduction under effective stress is observed for shale samples; the 

permeability reduction is often explained due to micro-fracture closure and impact of pore 

connectivity loss is often neglected. Thus, an alternative model is proposed here through which 

permeability reduction is described owing to combination of three main mechanisms: (1) micro 

crack closure at early stage (2) pore shrinkage and (3) connectivity loss due to bond breakage 

between interconnected pores at later stage. 

Chapter 5 presents numerical simulation of fluid flow through intrinsic pore structure of Eagle 

Ford shale sample obtained from stacked SEM images to address the third objective. Permeability 

values obtained from simulation models are analyzed to understand impact of sample size on 

permeability reduction in shale formations. Further, pore connectivity of studied shale sample has 

been evaluated which is defined based on Euler Poincare Characteristics. 

Chapter 6 examines the fourth objective where a novel approach is proposed to correct 

accessible/fluid saturated porosity values calculated using mercury injection capillary pressure 

(MICP) for shale samples. A mathematical model is developed consisting of three distinct 

corrections to accurately estimate accessible porosity of shale sample using MICP data: (1) 

conformance, (2) grain compressibility, and (3) inaccessible pore compressibility. Samples from 

both Barnett and Haynesville shale plays (11 samples for each shale plays) are used to validate the 

proposed methodology.  
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In Chapter 7, the fifth objective is addressed. In this chapter, percolation theory has been applied 

to expresses relative permeability for two phase flow system. Previously developed models with 

their underlying assumptions and limitations have been discussed and an alternative model is 

proposed to improve limitations of previous models. Experimentally measured relative 

permeability results from literature were then used to validate the proposed models. Furthermore, 

impact of phase connectivity on the relative permeability and residual saturation of non-wetting 

phase is discussed. 

Finally, Chapter 8 provides a summary of this dissertation’s findings, conclusions, and future 

suggestions. 
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Chapter 2 - Permeability Model Based on Critical Path Analysis 

2.1 Introduction 

In this chapter, Obj. 1 is sought to develop a permeability model, based on critical path analysis, 

such that impact of pore connectivity can be explicitly evaluated. As discussed earlier, traditional 

permeability models based on capillary tube hypothesis are not sophisticated enough to address 

the complex pore network in tight formations. Thus, percolation theory-based models were 

developed to address issues associated with bundle of capillary tube models.  

In percolation theory, the minimum fraction of pore volume required to be filled to form a 

connected cluster is called critical percolation threshold (𝑝𝑐). The percolation threshold is an 

important parameter, as the flow behavior drastically changes at that point. A typical square site 

model is illustrated in Figure 2.1 where 51% of sites in left figure and 62% of sites in right side 

figure are occupied. Percolation threshold for 2D square lattice is around 59.75%, which is why 

connected cluster can be only formed in the right case. 

 

Figure 2.1: A 12×12 square lattice model with a) 𝒑 = 𝟎. 𝟓𝟏 and b) 𝒑 = 𝟎. 𝟔2. Grey boxes are 

occupied parts, however the largest cluster (red) which connects left and right boundaries 

occurs above percolation threshold 
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Based on percolation theory, in cylindrical pores, the electrical conductance, 𝑔𝑒 is expressed as: 

2

w
e

r
g

l


= ,                                (2.1)

 

Correspondingly hydraulic conductance, 𝑔ℎ is given as: 

4

8
h

r
g

l




= ,                                (2.2)

 

where 𝜎𝑤 is the electrical conductivity of the fluid saturating the pore, μ is dynamic viscosity, and 

l is the pore length along which fluid flows. Friedman and Seaton (1998) and Hunt (2001) have 

suggested that in porous media macroscopic conductance is equal to critical conductance (𝑔𝑚 =

𝑔𝑐). Thus, combing Eq. 2.1 and 2.2 permeability can be related to electrical conductivity and 

critical pore diameter which is the bases of critical path analysis (CPA) (Skaggs 2011): 
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c b

w
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c




= ,                                (2.3)

 

where, 𝑟𝑐 is critical pore radius which is defined as the largest value of radius for which an 

interconnected path may exist across the system length from one side toward the other side (Figure 

2.2). Katz and Thompson (1986, 1987) model was one of the earliest attempts to apply CPA; they 

defined electrical conductivity as a function of porosity, critical pore radius, pore throat radius 

corresponding to the optimal path of electrical conductivity, 𝑟𝑒 , and volume fraction associated 

with the connected pore space that includes pore throat sizes 𝑟𝑒 and greater, 𝑆(𝑟𝑒), as: 

( )
2

c e
e

c

r r
k S r

c r
=                           (2.4) 

Alternatively, they have expressed permeability as a function of the effective pore throat diameter 

corresponding to the highest hydraulic conductance, 𝑟ℎ: 

( )
2

h h
h

c

r r
k S r

c r
=                           (2.5) 
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Katz and Thompson (1986, 1987) argued that both critical pore radius and formation factor can be 

estimated from mercury intrusion capillary pressure (MICP) data and used a set of 50 samples with 

absolute permeability ranging from 0.005 to 5000 md to validate their model. 

 

Figure 2.2: Demonstration of critical pore throat radius obtained from MICP data 

(Adopted from Daigle and Johnson 2015) 

Later, Hunt (2001) integrated fractal and percolation theories to express critical pore radius as a 

function of maximum pore radius, 𝑟𝑚, fractal dimension, 𝐷, and critical porosity corresponding to 

the critical pore radius, 𝜙𝑐 as: 

( )
1

3
m 1 D

c cr r  −= −                             (2.6) 

He also defined electrical conductivity as: 

2
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w
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w r

 



 
=  

 
                          (2.7) 

where 𝑤 is a constant representing uniform aspect ratio.  



15 

By combining Eq. 2.5 and 2.7, Hunt (2001) suggested to formulate permeability as: 

( )
2

2 2 4
m 3
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1
8

c c D
c

r r r
k

w c r w

 
 −

 
= = − 

 
                          (2.8) 

In similar form, Daigle (2016) expressed critical pore-throat size as: 

1

3

m 1
D

c cr r p




− 
= − 

 

                          (2.9) 

where 𝜙 is porosity, 𝛽 is the ratio of pore volume to the sum of the pore and solid volumes in the 

fractal model, and 𝑝𝑐 is critical percolation threshold. Alternatively, electrical conductivity has 

been formulized as (Ghanbarian et al., 2014): 

( )
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

 

− 
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− 
                          (2.10) 

Combining Eq. 2.8 and 2.10, Daigle (2016) formulated permeability as: 

( )
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                          (2.11) 

Eq. 2.11 has further simplified for tight formations as (Davud Davudov and Moghanloo, 2018a): 

( )
2 2

m 31
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D
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k p

c


+
−= −                           (2.12) 

More recently, Ghanbarian et al. (2017) formulized critical pore radius as: 

1

3

m 1
D

c
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p
r r





− 
= − 

 
                          (2.13) 

where 𝛽 𝜙⁄ = 𝑟𝑚
3−𝐷 (𝑟𝑚

3−𝐷 − 𝑟𝑜
3−𝐷)⁄  and can be approximated as 1 in case 𝑟𝑚 ≫ 𝑟𝑜  (Ghanbarian 

et al. 2017). They further modified electrical conductance originally defined by KT as: 
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Finally, by combining Eq. 2.13 and 2.14, Ghanbarian et al. (2017) formulated permeability as: 

2
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(2.15) 

2.2 New Critical Path Analysis Model 

In this section, percolation theory is combined with Katz-Thompson (KT) model to formulate an 

alternative permeability model as a function of explicitly expressed hydraulic connectivity. In the 

KT model (Eq. 2.4), formulated permeability is strong function of electrical conductivity and 

critical pore throat radius. Using fractal and percolation theories, both parameters are substituted 

with equivalent terms explicitly functions of critical percolation threshold (average coordination 

number). 

Critical pore throat radius:  Assuming probability density function of pore throat sizes, f (r), 

follows a power law function, it can be expressed as (Skaggs 2011; Ghanbarian et al. 2017): 

𝑓(𝑟) =
𝐷

𝑟𝑜
−𝐷−𝑟𝑚

−𝐷 𝑟−𝐷−1,                         (2.16)

 

where 𝑟𝑚 is the maximum accessible pore throat size, 𝑟𝑜 is the minimum pore throat radius, and 𝐷 is 

the fractal dimension of the pore space. 

Integrating Eq. 2.16, porosity, 𝜙 can be expressed as (Ghanbarian et al. 2017): 

𝜙 = ∫ 𝑠𝑓(𝑟)𝑟3𝑑𝑟
𝑟𝑚

𝑟𝑜
= 𝑠

𝐷

𝑟𝑜
−𝐷−𝑟𝑚

−𝐷

𝑟𝑚
3−𝐷−𝑟𝑜

3−𝐷

3−𝐷
,                         (2.17)

 

where 𝑠 is shape factor. Similarly, critical porosity, 𝜙𝑐 corresponding to critical percolation 

threshold, 𝑝𝑐 can be expressed as: 
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𝜙𝑐 = 𝜙𝑝𝑐 = ∫ 𝑠𝑓(𝑟)𝑟3𝑑𝑟
𝑟𝑚

𝑟𝑐
= 𝑠

𝐷

𝑟𝑜
−𝐷−𝑟𝑚

−𝐷

𝑟𝑚
3−𝐷−𝑟𝑐

3−𝐷

3−𝐷
,                         (2.18)

 

Combining Eq. 2.17 and 2.18, critical percolation threshold, 𝑝𝑐 can be formulized as: 

𝑝𝑐 =
𝑟𝑚

3−𝐷 − 𝑟𝑐
3−𝐷

𝑟𝑚
3−𝐷 − 𝑟𝑜

3−𝐷 =  
𝛽

𝜙
[1 − (

𝑟𝑐

𝑟𝑚
)

3−𝐷

]                         (2.19)

 

where
𝛽

𝜙
 is 

𝑟𝑚
3−𝐷

𝑟𝑚
3−𝐷−𝑟𝑜

3−𝐷. Rearranging Eq. 2.19, critical pore throat size, 𝑟𝑐 can be written as follow: 

𝑟𝑐 = 𝑟𝑚 (1 −
𝜙

𝛽
𝑝𝑐)

1

3−𝐷
,                         (2.20)

 

Electrical conductivity: Following Kirkpatrick (1979), Katz and Thompson (1987) defined 

electrical conductivity as: 

𝜎𝑏

𝜎𝑤
= 𝜙[𝑝(𝑟𝑒) − 𝑝𝑐]𝑡,                             (2.21)

 

where 𝑝(𝑟𝑒) is the probability of a given pore throat radius to be equal or greater than 𝑟𝑒 and 𝑡 is 

universal constant equal to 2 (Sahimi 1995). However, in several studies it has been shown that, 

best correlation for the entire electrical conductivity can be expressed as (Bernabé and Bruderer, 

1998; Montaron, 2009; Zhou et al., 1997): 

𝜎𝑏

𝜎𝑤
∝ [

𝑝−𝑝𝑐

1−𝑝𝑐
]

𝑡

,                          (2.22)

 

Thus, instead of Eq. 2.21, electrical conductivity can be formulated as: 

𝜎𝑏

𝜎𝑤
= 𝜙 [

𝑝(𝑟𝑒)−𝑝𝑐

1−𝑝𝑐
]

𝑡

,                         (2.23)

 

Following the same methodology from Eq. 2.19, 𝑝(𝑟𝑒) can be easily defined as a function of 

corresponding pore throat radius:  

𝑝(𝑟𝑒) =
𝛽

𝜙
[1 − (

𝑟𝑒

𝑟𝑚
)

3−𝐷

] =
𝛽

𝜙
[1 − (

𝑟𝑒

𝑟𝑐

𝑟𝑐

𝑟𝑚
)

3−𝐷

]                         (2.24)

 

Eq. 2.19 and 2.24 can be plugged into Eq. 2.23 and after some rearrangement, electrical 

conductance can be written as: 
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𝜎𝑏

𝜎𝑤
= 𝜙 [

(
𝑟𝑐

𝑟𝑚
)

3−𝐷
(1−(

𝑟𝑒
𝑟𝑐

)
3−𝐷

)

𝜙

𝛽
 −1+(

𝑟𝑐
𝑟𝑚

)
3−𝐷 ]

𝑡

,                         (2.25)

 

Finally, combining Eq. 2.4 and 2.25, permeability can be estimated as: 

𝑘 =
𝑟𝑐

2

𝑐
𝜙 [

(
𝑟𝑐

𝑟𝑚
)
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)

𝜙
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 −1+(
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3−𝐷 ]

𝑡

,                         (2.26)

 

Further assuming  
𝑟𝑒

𝑟𝑐
=

1

1+𝑡
 (Katz and Thompson 1986), Eq. 2.26 can be written as: 

𝑘 =
𝑟𝑐
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𝑐
𝜙 [

(
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𝑟𝑚
)
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)
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)

𝜙

𝛽
 −1+(

𝑟𝑐
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)
3−𝐷 ]

𝑡

,                         (2.27)

 

When  𝑟𝑚 ≫ 𝑟𝑜, then 
𝜙

𝛽
≈ 1 (Ghanbarian et al 2017) and Eq. 2.27 can be simplified as: 

𝑘 =
𝑟𝑐

2

𝑐
𝜙 [1 − (

1

1+𝑡
)

3−𝐷

]
𝑡

,                         (2.28)

 

In case Eq. 2.21 is used to formularize electrical conductivity instead of Eq. 2.23, then 

permeability can be alternatively expressed as: 

𝑘 =
𝑟𝑐

2

𝑐
𝜙 [(1 − 𝑝𝑐) (1 − (

1

1+𝑡
)

3−𝐷

)]
𝑡

,                         (2.29)

 

Please note that critical pore throat radius appears in all CPA-based permeability models discussed 

in this chapter is described using a similar formulation originated by Hunt (2001); the contribution 

of this work lies upon a different formulation for electrical conductivity term compared to the 

existing models. 

2.3 Evaluation of Permeability Models 

 Previously discussed CPA-based permeability models (Eq. 2.4, 2.8, 2.11, 2.15, and 2.28) are 

evaluated and compared for two datasets: experimental data for 60 tight sandstone samples and 9 
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shale samples. To assess the accuracy of the models, the root mean square log-transformed error 

(RMSLE) is used: 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑁
∑[𝑙𝑜𝑔(𝑘𝑚𝑒𝑎𝑠) − 𝑙𝑜𝑔(𝑘𝑐𝑎𝑙)]2

𝑁

1

                                (2.30) 

2.3.1 Results for Tight Sandstone Samples 

All discussed permeability models are evaluated using 60 tight sandstone samples from six 

different shale plays within the US and Argentina for which the permeability values have been 

experimentally measured. In these samples, porosity values range from 0.6 to 21 % and measured 

permeability values fall between 3E-4 – 6.4E-1 md. All permeability measurements were 

conducted at 70º F temperature and 800 psia confining pressure. For all samples, Klinkenberg 

corrected values were determined and implemented using the Jones-Owens method (Jones and 

Owens, 1980). All experimental data for tight sandstone samples are obtained through personal 

communication with Mr. Joseph Comisky.  To determine parameters needed for permeability 

models MICP data is used. First entry pressure is determined after blank and conformance 

corrections and maximum pore throat radius (𝑟𝑚) corresponding to the first entry pressure is 

calculated based on Washburn model (Washburn, 1921). Next, following Katz and Thompson 

(1986) critical pore throat radius (𝑟𝑐) values are obtained from the point on the logarithmic-scale 

differential intrusion plot with the highest ordinate (Figure 2.3). Finally, fractal dimension of pore 

space is predicted as fitting parameter to mercury saturation from Eq. 2.31 as illustrated in Figure 

2.4 (Ghanbarian and Sahimi, 2017): 

𝑆𝐻𝑔(𝑟) =
𝑟𝑚

3−𝐷 − 𝑟3−𝐷

𝑟𝑚
3−𝐷 − 𝑟𝑜

3−𝐷                          (2.31) 

All calculated parameters for tight sandstone samples are summarized in Table 2.1. 
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      Figure 2.3: Illustration of finding critical pore throat radius from MICP data 

 

 

      Figure 2.4: Illustration of finding pore space fractal dimension from MICP data  
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Table 2.1: Input parameters for 60 sandstone samples  

Sample # 𝜙 Measured K, md 𝒓𝒎, µm 𝒓𝒄, µm 𝑫 

S1 0.053 3.0E-04 0.07 0.041 2.18 

S2 0.006 4.0E-04 0.10 0.059 2.00 

S3 0.067 6.0E-04 0.07 0.035 2.24 

S4 0.010 7.0E-04 0.16 0.071 2.49 

S5 0.008 8.0E-04 0.13 0.077 2.47 

S6 0.017 9.0E-04 0.21 0.045 2.04 

S7 0.075 1.0E-03 0.07 0.024 2.27 

S8 0.071 1.2E-03 0.23 0.112 2.37 

S9 0.015 1.4E-03 0.13 0.054 2.03 

S10 0.064 1.4E-03 0.08 0.038 2.28 

S11 0.085 1.5E-03 0.18 0.059 2.46 

S12 0.021 1.8E-03 0.19 0.077 2.17 

S13 0.008 2.0E-03 0.23 0.111 2.47 

S14 0.071 2.0E-03 0.16 0.045 2.41 

S15 0.058 2.5E-03 0.10 0.078 2.29 

S16 0.074 3.0E-03 0.23 0.123 2.46 

S17 0.032 3.2E-03 0.36 0.121 2.35 

S18 0.101 3.2E-03 0.19 0.071 2.51 

S19 0.070 4.1E-03 0.19 0.085 2.43 

S20 0.086 5.0E-03 0.30 0.148 2.46 

S21 0.064 6.0E-03 0.21 0.077 2.42 

S22 0.051 6.0E-03 0.33 0.158 2.43 

S23 0.052 6.1E-03 0.13 0.077 2.31 

S24 0.072 7.0E-03 0.37 0.177 2.44 

S25 0.078 7.0E-03 0.25 0.132 2.48 

S26 0.094 9.0E-03 0.43 0.194 2.51 

S27 0.065 9.0E-03 0.28 0.136 2.39 

S28 0.078 9.5E-03 0.33 0.160 2.51 

S29 0.075 1.1E-02 0.52 0.195 2.48 

S30 0.096 1.3E-02 0.52 0.255 2.56 

S31 0.083 1.3E-02 0.73 0.227 2.59 

S32 0.084 1.4E-02 0.52 0.233 2.50 

S33 0.086 1.6E-02 0.36 0.208 2.54 

S34 0.104 1.8E-02 0.39 0.173 2.58 

S35 0.091 1.8E-02 0.63 0.279 2.53 

S36 0.083 1.8E-02 0.57 0.278 2.51 

S37 0.080 1.8E-02 0.33 0.145 2.51 

S38 0.082 1.9E-02 0.47 0.189 2.55 

S39 0.099 2.0E-02 0.35 0.208 2.56 

S40 0.085 2.1E-02 0.69 0.305 2.49 

S42 0.095 2.2E-02 0.36 0.100 2.56 
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S42 0.090 2.5E-02 1.07 0.178 2.58 

S43 0.094 2.6E-02 0.61 0.325 2.59 

S44 0.086 2.6E-02 0.63 0.177 2.54 

S45 0.085 2.8E-02 0.51 0.271 2.56 

S46 0.092 3.0E-02 1.17 0.304 2.59 

S47 0.098 3.6E-02 0.56 0.325 2.59 

S48 0.109 3.9E-02 0.35 0.271 2.58 

S49 0.094 4.0E-02 1.28 0.334 2.59 

S50 0.151 4.6E-02 0.42 0.189 2.65 

S51 0.066 4.7E-02 0.52 0.306 2.52 

S52 0.109 6.1E-02 1.37 0.510 2.67 

S53 0.118 1.7E-01 2.56 1.367 2.71 

S54 0.080 1.8E-01 0.87 0.667 2.59 

S55 0.160 1.8E-01 0.73 0.356 2.70 

S56 0.122 1.9E-01 1.50 1.046 2.69 

S57 0.083 2.0E-01 1.49 0.721 2.62 

S58 0.156 2.2E-01 0.52 0.364 2.67 

S59 0.210 6.0E-01 0.68 0.525 2.74 

S60 0.134 6.4E-01 2.14 1.496 2.72 

 

When CPA-based permeability models are compared with experimentally measured permeability 

values for tight sandstone samples, for KT model (Eq. 2.4) the RMSLE to achieve through around 

0.53 (Figure 2.5a) and best result for Hunt model (Eq. 2.8) is achieved for 𝑤 value of 89 and 

𝑐 being 8 with RMSLE of 0.49 (Figure 2.5b). Daigle model (Eq. 2.12) manifests the minimum 

error with RMSLE = 0.46 (Figure 2.5c) with constant c being 56.5 and t being considered as 1.2. 

Ghanbarian (Eq. 2.15) and proposed models (Eq. 2.28) yield the most accurate predictions with 

RMSLE ~ 0.32 (Figure 2.5d and e). Overall results suggest that, CPA-based models are accurate 

enough for permeability estimation from tight sandstone samples.  Out of 60 samples studied 

around 6 to 8 of them falls outside range of factor of three boundary lines (three times greater or 

smaller) based on results calculated from Eq. 2.15 and 2.28. 
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Figure 2.5: Comparison of calculated and measured permeability values (comparative plots) 

for tight sandstone samples (Solid and dashed line represents 1:1 and factor of three 

boundary lines respectively). 

2.3.2 Results for Shale Samples 

Similarly, for the 16 shale samples studied all permeability models are evaluated and compared 

with experimental measurements. In these samples, porosity values range from 1.5 to 8 % and 

measured permeability values fall between 2.1E-3 – 1.7E-5 md. All permeability measurements 

were conducted using nitrogen gas under confining pressure ranging between 3000 – 6000 psi. 

The permeability measurement for all shale samples has been conducted by Unconventional Shale 

Gas Consortium at the University of Oklahoma. 
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(𝑟𝑚) is calculated based on Washburn (1921) equation. Critical pore throat radius (𝑟𝑐) values are 

obtained from the point on the logarithmic-scale differential intrusion plot with the highest 

ordinate. However, for 2 samples peak point has not been reached and for 5 samples experimental 

error have been observed thus are excluded from calculations. Finally, fractal dimension of pore 

space is predicted as fitting parameter to mercury saturation from Eq. 2.31. All calculated 

parameters for tight sandstone samples are summarized in Table 2.2. 

Table 2.2: Input parameters for 10 shale samples  

Sample # 𝜙 Measured K, md 𝒓𝒎, µm 𝒓𝒄, µm 𝑫 

S1 0.05 1.70E-05 5.4E-03 3.2E-03 2.50 

S2 0.07 6.30E-05 7.6E-03 3.2E-03 2.40 

S3 0.01 1.04E-04 3.8E-02 1.2E-02 2.23 

S4 0.05 1.27E-04 1.0E-02 2.7E-03 2.05 

S5 0.05 1.38E-04 8.1E-03 2.7E-03 2.21 

S6 0.06 2.89E-04 2.9E-02 1.0E-02 2.00 

S7 0.06 6.31E-04 7.6E-03 3.6E-03 2.31 

S8 0.07 1.29E-03 4.8E-02 7.2E-03 2.59 

S9 0.08 1.72E-03 1.3E-02 5.4E-03 2.38 

When CPA-based permeability models are evaluated for shale samples, for KT model (Eq. 2.4) 

RMSLE is around 0.72 (Figure 2.6a) and best result for Hunt model (Eq. 2.8) is achieved for 𝑤 

value of 2 and 𝑐 being 8 with RMSLE = 0.82 (Figure 2.6b). For Daigle model (Eq. 2.11) the 

minimum RMSLE of 0.51 can be achieved when constant 𝑐 is considered 32.5 and when 

parameter, 𝑡 replaced with 1.3 instead of original value of 2 (Figure 2.6c). If exponent 2 is used 

in calculations that RMSLE will be as high as 2.78 (not shown as figure). For Ghanbarian model 

(Eq. 2.15) RMSLE is calculated as 0.54 with c being 3 (Figure 2.6d) and proposed model (Eq. 

2.28) yield one of the most accurate predictions with RMSLE ~ 0.54 (Figure 2.6e) with 𝑡 being 

1.75. 



27 

 

 

 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

C
al

cu
la

te
d

 K
, m

d

Measured K, md

Katz and Thompson – Eq. 2.4

RMSLE = 0.72

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

C
al

cu
la

te
d

 K
, m

d

Measured K, md

Hunt – Eq. 2.8

RMSLE = 0.82



28 

 

 

 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

C
al

cu
la

te
d

 K
, m

d

Measured K, md

Daigle – Eq. 2.11

RMSLE = 0.51

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

C
al

cu
la

te
d

 K
, m

d

Measured K, md

Ghanbarian et al. – Eq. 2.15 

RMSLE = 0.54 

 



29 

 

Figure 2.6: Comparison of calculated and measured permeability values (comparative plots) 

for shale samples (Solid and dashed line represents 1:1 and factor of five boundary lines 

respectively). 

 

When compared with tight sandstone results, CPA-based models are less accurate for shale 
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Moreover, consistent with Eq. 2.20, exponent in power law function is close to 1; i.e. a linear 

relation is deduced. 

Figure 2.7b demonstrates measured permeability as a function of maximum pore throat radius and 

Figure 2.7c illustrates the correlation between measured permeability and critical pore throat 

radius. When fitted with power law function, the exponent becomes 1.85 in both cases, consistent 

with the universal value of exponent 𝑡 (≈ 2) used in the analytic permeability models.  
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Figure 2.7: Interplay among key parameters for sandstone samples a) Maximum pore throat 

radius as a function of critical pore throat radius; b) Measured permeability as a function of 

maximum pore throat radius; c) Measured permeability as a function of critical pore throat 

radius 
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Similarly, for shale samples Figure 2.8a shows strong correlation (R2 = 0.78) between maximum 

pore throat radius and critical pore throat radius with exponent in power law function being around 

1.2. 

Figure 2.8b and c illustrates measured permeability as a function of maximum and critical pore 

throat radius and after 2 outliners are excluded, power law correlation with exponent being around 

1.65 and 3.38 are observed, respectively.  
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Figure 2.8: Interplay among key parameters for shale samples a) Maximum  pore throat 

radius as a function of critical pore throat radius; b) Measured permeability as a function of 

maximum pore throat radius ; c) Measured permeability as a function of critical pore throat 

radius 
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2.4.2 Limitations of the CPA-based Models 

Although CPA-based permeability models can accurately predict permeability of tight formations, 

there are certain limitations that needs to be discussed, especially for shale formations. As it has 

been discussed previously, error for shale samples are higher than that of tight sandstone samples. 

Moreover, in most cases calculated permeability values are underestimated if critical pore throat 

radius, 𝑟𝑐 obtained from MICP is used for calculations. This might be due to higher estimation of 

experimental results because of micro-crack effect. Another possible reason for this might be due 

to the effect of compression stage during MICP measurements which may lead to significant pore 

structure change because of pore connectivity loss/collapse. Recently several experiments have 

been conducted to evaluate the effect of confining pressure on MICP test results (Guise et al., 

2018). They have shown that, when confining pressure is applied, MICP test results might 

significantly shift. As illustrated in Figure 2.9, under 7000 psi confining pressure, critical pore 

throat radius reduces to 0.008 μm from base case value of 0.046 μm. 

Moreover, as it has been discussed in the literature, during MICP test if pressure values are smaller 

than critical intrusion/entry pressure, then pressure value will not be sufficient for mercury to 

intrude into samples and at this stage, pores and grains are compressed owing to effective pressure 

(Lan et al. 2017; Bailey 2009). Thus, the confining pressure occurred during compression stage 

may cause to pore connectivity loss and consequently smaller critical pore throat size estimation.      
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Figure 2.9: MICP test results for unconfined and 7000 psia confining pressure cases 

(modified from Guise et al., 2018) 
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(Daigle et al. 2015; Daigle 2016). 

Another major assumption is that pore throat size distribution of samples fit power law function 
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0.00

0.20

0.40

0.60

0.80

1.00

1 10 100 1000 10000 100000

d
V

/d
lo

g 
(R

)

Pc, psi

Unconfined 7000 psi

𝑟𝑐 − 0.046 μm

𝑟𝑐 −0.008 μm



36 

2.4.3 Advantages of the CPA-based Models 

The major advantage of the proposed model is that the impact of interconnectivity can be easily 

accounted and evaluated as it explicitly appears in equations. Replacing critical pore-throat radius 

as a function of maximum pore-throat size from Eq. 2.20 and further expressing percolation 

threshold, (𝑝𝑐), as a function of average coordination number, (𝑧), as 𝑝𝑐 = 1.5 𝑧⁄  (Hunt et al., 

2014; Sahimi, 2011), Eq. 2.28 can be rewritten as: 

𝑘 =
𝑟𝑚

2

𝑐
𝜙 [1 − (

1

1+𝑡
)

3−𝐷

]
𝑡

(
𝑧−1.5

𝑧
)

2

3−𝐷
,                         (2.32)

 

Alternatively, based on cumulant expansion method, percolation threshold is estimated in terms of 

coordination number as (Hori and Yonezawa, 1977): 

2
1 expcp

z

 
= − − 

 
,                                                (2.33)

 

Substituting Eq. 2.33 into Eq. 2.28 yields alternative form of permeability model as: 

𝑘 =
𝑟𝑚

2

𝑐
𝜙 [1 − (

1

1+𝑡
)

3−𝐷

]
𝑡

𝑒𝑥𝑝 (−
𝜂

𝑧
),                                 (2.34)

 

where 
4

3 D
 =

−
.  

It is obvious from Eq. 2.32 and 34 that 
𝑟𝑚𝑎𝑥

2

𝑐
𝜙 represents maximum achievable permeability and 

(
𝑧−1.5

𝑧
)

2

3−𝐷
 or 𝑒𝑥𝑝 (−

𝜂

𝑧
) represents pore/hydraulic conductivity. By analyzing Eq. 2.32 or 34, the 

impact of connectivity can be distinguished and evaluated separately. 

2.5 Conclusions 

In this chapter, a new permeability model based on critical path analysis is developed. Critical pore 

throat radius and electrical conductivity used in Katz and Thompson model is revisited and 
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redefined. The permeability in the new model is a function of the maximum pore throat radius, 

porosity, fractal dimension and percolation threshold. The proposed model is compared with 

previously developed CPA-based permeability models and validated with experimental data for 

tight sandstone and shale sample. Comparing to previous model, proposed model performs the 

better results. The other advantage of the new model is that the impact of pore 

interconnectivity/hydraulic conductivity can be easily accounted and evaluated as it explicitly 

appears in the equation. 
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Chapter 3 - Scale Dependent Connectivity of Shale Matrix 

3.1 Introduction 

This chapter addresses Obj. 2 where impact of sample size on pore connectivity is investigated 

based on mercury injection capillary pressure (MICP) data. In previous studies, shale porosity 

based on MICP test for different particle sizes has been investigated by several researchers 

(Comisky et al., 2011; Tinni et al., 2014). Based on experimental results it has been concluded that 

mercury porosity is decreasing with increasing particle size and suggested that this is due to the 

effect of restricted pore connectivity. This is consisted with Hu et al., (2014) results where the 

concentration of injected Wood’s metal significantly decreases in the middle section of the sample 

when compared to the edges and surfaces. In this study, MICP porosity for different sample sizes 

are investigated and then accessible porosity defined as fraction of pore volume that has been 

invaded by mercury and hydraulic connectivity based on experimental data coupled with 

percolation theory is analyzed (D. Davudov and Moghanloo, 2018). 

To analyze accessible and interconnected porosity, samples from Barnett, and Haynesville 

formations with several different sizes are selected with MICP data. The sample sizes analyzed in 

this study is obtained after 1-inch core plug samples are crushed, and series of mesh size are used 

to break out several sample sizes from the same depth interval. Particles with average sizes of 

25.4mm (core plug), 5.7mm, 3.5mm, 1.6mm, and 0.7mm are selected for MICP tests. The 

properties of the selected shale samples are summarized in Table 3.1. All experimental 

measurements used for this chapter have been conducted by Unconventional Shale Gas 

Consortium at the University of Oklahoma. 
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Table 3.1: Summary of sample properties obtained with FTIR method. 

Sample 
Quartz + 

Feldspars (wt %) 

Clays 

(wt %) 

Carbonates 

(wt %) 

TOC 

(wt %) 

Others 

(wt %) 

Barnett 21 65 4 5 5 

Haynesville 5 42 43 2 8 

  

To evaluate fraction of accessible pore volume, ratio of porosity calculated from MICP test to 

absolute total porosity, (ϕ𝐿𝑃𝑃) are calculated. Total porosity values are estimated from crushed 

sample low-pressure pycnometer (LPP) test results which all samples were obtained from the same 

depths as the samples used for MICP. 

3.2 Accessible Porosity and Permeability 

The basis for this study is to measure and compare accessible porosity and permeability values 

based on MICP test on a variety of sample sizes for Barnett and Haynesville shale samples. Next 

by applying percolation theory, accessible (fluid saturated) porosity, pore connectivity and 

permeability are evaluated as a function of sample size.  

 3.2.1 Accessible Porosity 

Pore volume values calculated based MICP test data are considered as accessible pore volume 

invaded with mercury (ϕ𝑎), where absolute total porosity (ϕ𝐿𝑃𝑃) is determined based on crushed 

sample LPP test and fraction of accessible porosity (ϕ𝑎/ϕ𝐿𝑃𝑃) is analyzed to determine impact of 

sample size on accessible porosity. The calculated LPP porosity is around 5.9% and 5.4% for 

Barnett and Haynesville samples, respectively. Since LPP porosity represents absolute (total) 

porosity, it is assumed that it will be same for all particle size (based on definition of REV). 

Incremental and cumulative mercury volume measured in milliliters per gram (ml/g) for all sample 

sizes are illustrated in Figure 3.1 & 3.2 for both formations. As it can be seen for the both samples, 

as sample size increases cumulative mercury volume and porosity decreases.  
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Figure 3.1: Mercury injection capillary pressure data for Barnett samples a) Incremental 

volume b) Cumulative volume 
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Figure 3.2: Mercury injection capillary pressure data for Haynesville samples a) Incremental 

volume b) Cumulative volume 
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MICP data has been corrected considering conformance and pore compression corrections 

(Comisky et al., 2011; Davudov et al., 2018a). Results show a dramatic difference between 

porosity values measured from MICP as a function of particle size for any given sample as 

illustrated in Figure 3.3 and 3.4. It can be observed that, in all cases, accessible porosity is smallest 

for the core plug and largest for finest particle size range. This can be explained through 

diminishing of the pore connectivity as sample size increases which results in less amount of 

mercury gets intruded, consistent with reduction in accessible porosity for larger samples. In 

addition, results indicate that for all sample sizes, accessible pore fraction for Barnett is higher 

than Haynesville.   Results suggest that around 30 % of pores are saturated and accessible in 

Barnett shale sample whereas this value is around 15% for Haynesville.  

 

Figure 3.3: Fraction of accessible porosity (𝝓𝑴𝑰𝑪𝑷/𝝓𝑳𝑷𝑷)  as a function of sample size 

(without corrections) 
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Figure 3.4: Fraction of accessible porosity as a function of sample size after conformance 

and compression corrections 

Further, 45 core plug (1-inch) samples from each shale play with MICP and LPP measured porosity 

values are chosen and accessible pore fraction (ϕ𝑎/ϕ𝐿𝑃𝑃) are calculated as shown in Figure 3.5a 

and 3.5b. Results show that average accessible pore volume for Barnett samples is around 53%, 

which this value is around 43% for Haynesville samples. Additionally, results show that the lowest 

value in Barnett samples is 30% but this number can be as low as 5 % in Haynesville. 

 

 

 

 

 

 

 

 

 

Figure 3.5: Histogram of the MICP porosity fraction (𝝓𝒂/𝝓𝑳𝑷𝑷) from 45 samples in plug size 

for the a) Barnett and b) Haynesville 
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It is worth mentioning that pore accessibility depends on the pore network as well as fluid 

saturation; thus, the estimated accessible pore fractions is likely different for various fluids. 

Moreover, since pores present both in inorganic part and the organic matter of shale matrix, the 

wettability can significantly affect pore connectivity (Tinni 2012).  Which is why, with MICP test, 

only connectivity of the rock that partially saturated with mercury can be measured; pores smaller 

than 3 nm which mercury cannot intrude will not be evaluated using the methodology discussed 

here. Thus, while acknowledging the limitations of MICP test, current study can still provide 

important evaluation to understand pore connectivity in shale formations.  

3.2.2 Permeability 

For further evaluation of matrix hydraulic connectivity, intrinsic permeability values for different 

sample sizes based on MICP data are calculated and analyzed. Swanson is one of the most 

widespread permeability estimation models used based on MICP data (Comisky et al., 2007). 

Swanson, (1981) used the apex of bulk volume mercury saturation, (𝑆𝑏) to capillary pressure ratio, 

(𝑆𝑏/𝑝𝑐𝑎𝑝)
𝐴

 to represent the critical point at which major connected pore volumes contributing to 

permeability have been intruded with mercury. Based on 319 samples studied, Swanson, (1981) 

suggested that permeability can be determined as a function of (𝑆𝑏/𝑝𝑐𝑎𝑝)
𝐴

: 

1.691

399 b

cap A

S
k

p

 
=  

  

,                                (3.1) 

Table 3.2 and Figure 3.6 summarizes results of predicted permeability values using MICP data 

for different sample sizes for both Barnett and Haynesville. Results indicate that permeability is 

also strong function of sample size, which with increasing size permeability values decrease. This 

is an anticipated result since permeability is a strong function of interconnected porosity and as 

discussed before accessible porosity values decrease with increasing sample size. Although 
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permeability values for Haynesville is slightly higher than Barnett for small sample size ranges, 

but at the same time decline rate with increasing sample size is much higher than Barnett. For core 

plug size samples, calculated permeability value for Barnett is 0.29 μd, where this number is 

around 0.011 μd for Haynesville. Permeability results at core-scale from both formations are 

similar to that measured by (Bhandari et al., 2015; Kang et al., 2011; Vermylen, 2011) for Barnett 

samples and by (Dewers et al., 2012; Tinni et al., 2012) for Haynesville samples 

 

Figure 3.6: Predicted permeability as a function of sample size  

 

Table 3.2: Summary porosity and permeability values for different sample sizes 
 

 Barnett Shale Sample Haynesville Shale Sample 

Sample Size 
MICP Porosity, 

% 
K (Swanson), µd 

MICP Porosity, 

% 
K (Swanson), µd 

0.7 3.62 38.1 2.96 58.9 

1.6 2.91 16.6 1.53 11.7 

3.5 2.48 3.90 0.98 12.9 
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25.4 1.95 0.29 0.76 0.0114 
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3.3 Connected Porosity and Hydraulic Connectivity – Percolation Theory 

3.3.1 Accessible/Connected Porosity 

Percolation theory predicts that in a 3-D material with constant total porosity and low connectivity, 

the portion of porosity that is accessible will decrease with distance, 𝑙, from the exterior in 

proportion to 𝑙−𝑚, until distance exceeds some crossover distance, χ (Ewing et al., 2012, 2010; 

Ewing and Horton, 2002; Hu et al., 2015, 2012). Beyond this crossover distance, the accessible 

porosity either reaches to stable value if pore connectivity is above the critical percolation 

threshold, 𝑝𝑐 or gets zero if connectivity is below the threshold, which it means fluid will not be 

able to percolate from that rock sample. Rock samples with high connectivity may have χ on the 

order of a single pore and accessible porosity will be close to the total porosity, but as pore 

connectivity decreases, this crossover distance χ will increase and it becomes close to half the 

thickness of the sample, when connectivity is close to percolation threshold (Ewing et al., 2012, 

2010; Ewing and Horton, 2002; Hu et al., 2015, 2012).  

Accessible porosity changes with intragranular distance, 𝑙 to the grain’s exterior and it can be 

formulized as (Ewing et al., 2010):  

( , )

m

p

a

l for l x
l p

for l x






− 
= 



 (3.2)

 

where 𝑝 represents the probability of accessible pore, 𝑙 is the sample size, χ is correlation length 

beyond which value of accessible pore becomes constant, and 𝑚 is power law function exponent. 

If experimental data is fitted to power law function (Eq. 3.2), exponent 𝑚 is 0.18 for Barnett and 

0.35 for Haynesville, which indicates that accessible porosity in Haynesville decreases faster with 

increasing sample size when compared with Barnett results (Figure 3.4). 
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3.3.2 Hydraulic Conductivity and Coordination Number 

Two alternative CPA based permeability models discussed in Chapter 2 will be used to analyze 

pore connectivity as a function of sample size. Permeability model proposed by Daigle (2016) can 

be simplified if it is assumed that in clay-bearing rocks, 1 − 𝜙𝑝𝑐 ≈ 1 (Revil, 2002), and also 

𝛽 𝜙⁄ = 1, then Eq. 2.11 can be written as: 

( )
2 2

22max 31
8

D
c

r
k p

+
−= − ,                                                (3.3) 

Moreover, critical percolation threshold, 𝑝𝑐 can be expressed in terms of coordination number as 

𝑝𝑐 = 1.5/𝑧 (Hunt and Sahimi, 2017; Sahimi, 1995): 

2
22

3
2max 1.5
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Dr z
k

z


+
−− 

=  
 

                                                (3.4) 

Alternatively, new permeability model developed (Eq. 2.32) can be used: 

𝑘 =
𝑟𝑚

2

𝑐
𝜙 [1 − (

1

1+𝑡
)

3−𝐷

]
𝑡

(
𝑧−1.5

𝑧
)

2

3−𝐷
,                      (3.5)

 

To analyze impact of sample size on pore connectivity/average coordination number, permeability 

results obtained from MICP data with the Swanson method are evaluated based on Eq. 3.4 and 

3.5. Maximum pore throat radius, 𝑟𝑚 is estimated as 2.24 μm and 1.96 μm for Barnett and 

Haynesville samples respectively based on first intrusion pressure of mercury. Furthermore, 

following Yu and Li, (2001), fractal dimension is estimated as a function of porosity, and pore 

throat radius as: 

( )

( )min max

ln
3

ln
D

r r


= −                                              (3.6) 

Using Eq. 3.6, fractal dimension is estimated as 2.6 for both samples; finally, coordination number 

as a function of sample size is estimated using Eq. 3.4 and 3.5 as shown in Figure 3.7.  
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Figure 3.7: Average coordination number as a function of sample size for the Barnett and 

Haynesville shale samples a) Daigle model b) Proposed model 
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at plug size based on Daigle model. In case of proposed model used, coordination number is 

decreasing from their initial value of 2.04 and 2.13 to 1.67 and 1.57 for Barnett and Haynesville 

shale samples respectively. Although permeability reduction is two to three orders of magnitude 

with increasing sample size (Table 3.2), this can be explained with reduction in average 

coordination.  

3.4 Conclusions 

In this chapter, accessible/interconnected porosity and hydraulic connectivity as a function of 

sample size for Barnett and Haynesville shale formations are evaluated. Moreover, coordination 

number for both formations are estimated using percolation theory.  The main contributions of this 

chapter are as follows: 

• MICP measured accessible porosity values and matrix permeability strongly depends on the 

sample size; both of them decrease with increasing sample size. 

• Accessible porosity and permeability reduction with sample size is more pronounced in 

Haynesville than Barnett for the samples studied here. 

• The estimated average coordination number for both shale plays decreases with the sample size, 

which can be possible explanation of significant permeability reduction.  
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Chapter 4 - Impact of Connectivity Loss on Permeability Reduction 

4.1 Introduction 

In this chapter, aligned with Obj. 2, a novel approach is proposed to describe how connectivity 

loss impacts intrinsic permeability of shale samples under effective stress. One of many challenges 

for tight formations is that the permeability and porosity change with effective stress is a very 

complex process. Various experimental studies have been conducted to show permeability 

variation with respect to effective stress in shale samples (Dong et al., 2010; Metwally and 

Sondergeld, 2011; Tinni et al., 2012) and results show a nonlinear reduction in permeability with 

increasing effective stress, where this reduction might be as much as two orders of magnitude. 

This severe reduction in permeability is often explained through micro-crack closure and pore 

volume reduction, whereas connectivity loss due to bond breakage between interconnected pores 

is neglected.  

To describe the relationship between permeability reduction and porosity change under effective 

stress researchers have suggested several empirical models. Shi and Wang, (1986) suggested that 

the relationship between effective stress and rock permeability should follow a power law, which 

can be expressed as follow: 

e

o o

PK

K P

−
 

=  
 

,                                (4.1)

 

where K denotes the permeability under the net effective stress 𝑃𝑒, 𝐾𝑜 represents the reference 

permeability under atmospheric pressure 𝑃𝑜 and ε is a material constant.  

On the other hand, David et al., (1994) and Evans et al., (1997) suggested an exponential 

relationship to model permeability change as a function of effective stress expressed as follow: 

( )exp e o

o

K
P P

K
= − −   , 

                               (4.2)

 

ω is a material constant. 
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 Later, Kwon et al., (2001) suggested modified version of Gangi, (1978) permeability (Cubic law) 

model which reduction in crack permeability of fractured rocks with increasing effective stress, 𝑃𝑒 

can be described by cubic law function as: 

3

*
1

o

q

f e

f

K P

K P

  
= −  

   
,                                (4.3)

 

where 𝐾𝑓 denotes the micro-crack permeability under the net effective stress 𝑃𝑒, 𝐾𝑓𝑜
 represents 

the reference crack permeability at zero effective stress and parameters 𝑞 and 𝑃∗
 are constants 

associated with geometry and pore surface topography. “Cubic law” model is one of the most used 

equation to explain permeability decrease caused because of micro crack closure, the flaw of the 

equation is also noticeable, which it gives negative 𝐾 when 𝑃𝑒 is larger than 𝑃∗
. 

 

Alternatively, Walsh, (1981) suggested to model fractured permeability reduction as: 
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1 ln

o

f e

f o o

K Ph

K a P

    
= −     
    

,                                (4.4)

 

 

where ℎ is the root mean square of the surface roughness and 𝑎𝑜 is the half width of fracture 

aperture.  Eq. 4.4 predicts that the plot of (𝐾𝑓 𝐾𝑓𝑜
⁄ )

1 3⁄

 as function of 𝑙𝑛(𝑃𝑒 𝑃𝑜⁄ ) will be straight 

line if the permeability reduction is due to crack closure. However, a deviation from the straight 

line will be observed when rock permeability is not controlled by fractures (Tinni et al., 2012). 

Since, permeability is a function of porosity and pore structure, researchers have also studied 

permeability-porosity relationship under effective stress. David et al., (1994) proposed power law 

relationship to describe the permeability–porosity relationship induced by mechanical compaction: 

o o
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,                                (4.5)
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where 𝛼 is a material constant named the porosity sensitivity exponent. Based on Dong et al., 

(2010) experimental results, porosity sensitivity exponents for sandstone, range from 3 to 6, where 

these values ranged from 25 to 55 for the tested silty-shale samples. The porosity sensitivity 

exponent for the silty-shale is considerably higher than that of the sandstone, which clearly 

indicates that lightly decreased porosity causes dramatic decrease in permeability for shale 

formations. Kwon et al., (2004) suggested that this large and nonrecoverable decreases observed 

in permeability of shale samples are due to closure of critical pore links in network and permanent 

reductions in connected pore space, while the small recoverable changes in permeability represent 

the elastic response of the pore space. 

In this chapter, pore connectivity and the impact of connectivity loss on permeability reduction is 

investigated under effective stress. Specifically, fractal and percolation theories are used to analyze 

the effects of pore shrinkage and connectivity loss. Main purpose of this study is to show that pore 

connectivity might be one of most important factors is shale formations and connectivity reduction 

under effective stress is significantly high when compared to conventional reservoirs.  

4.2 Effect of Pore Compressibility and Connectivity Loss 

As discussed before conventional KC type permeability models are not sophisticated enough to 

model complex pore connectivity in tight formations. Thus, percolation theory-based models are 

essentially developed to address issues associated with bundle of capillary tube hypothesis. Once 

again, two CPA-based permeability models (Daigle and proposed models) will be used to analyze 

pore connectivity reduction as a function of effective stress. As discussed before, permeability 

model proposed by Daigle (2016) can be simplified as: 

2
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                                            (4.6) 
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Alternatively, proposed permeability model is expressed as: 

𝑘 =
𝑟𝑚

2

𝑐
𝜙 [1 − (

1

1+𝑡
)

3−𝐷

]
𝑡

(
𝑧−1.5

𝑧
)

2

3−𝐷
,  (4.7)

 

Assuming pores to be cylindrical (𝑟𝑚
2 𝑟m _𝑜

2 = 𝜙 𝜙𝑜⁄⁄ ), based on the permeability model described 

in Eq. 4.7, the effects of both pore shrinkage and bond breakage on permeability reduction can be 

analyzed as:  
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                                        (4.8)

 

 

where first and second terms on the right side of Eq. 4.8 express permeability reduction due to 

pore volume shrinkage/pore compressibility and connectivity loss, respectively. Alternatively, if 

Daigle model (Eq. 4.6) is used instead, then permeability reduction can be expressed as: 
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From Eq. 4.8 and 4.9, 𝑧𝑜 is initial coordination number and it can be estimated as a function of 

initial porosity (Bernabe et al., 2010; Doyen, 1988) as: 

( )logoz A B = + ,                                (4.10) 

where both A and B are constants. Bernabe et al., (2010) suggested that for a two-dimensional 

system A is 10.4 and B is equal to 6.25. It is worth to mention that, there are very limited studies 

to understand initial average coordination number in shale formations and it needs further 
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investigations. However, Ma et al., (2014) and Yang et al., (2015) suggested that coordination 

number in shale is in the range of 3.  

Moreover, by comparing Eq. 4.8 with Civan (2001) model (Eq. 2.3), interconnectivity reduction 

(𝛤 𝛤𝑜⁄ ) can be expressed as: 
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In case where connectivity loss is negligible and thus coordination number does not vary with 

increasing pressure (𝑧 𝑧𝑜⁄ = 1), last term in Eq. 4.8 and 4.9 will be equal to 1 and permeability 

reduction can be estimated as a function of pore volume shrinkage only: 
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                                         (4.12)

 

Please note that, if Daigle model (Eq. 4.6) is used, the exponent will become m+1 instead of 2. 

4.3 Results 

To evaluate impact of both pore compressibility and bond breakage on permeability reduction, 

experimental data for two sandstone and two shale samples are selected from literature (Dong et 

al., 2010). To measure porosity and intrinsic permeability Dong et al., (2010) conducted 

experiments by gradually increasing the confining pressure from 435 to 725 psia, then to 1450 

psia, and finally up to 17,000 psia (in 1450 psia increments), while keeping pore pressure constant. 

Table 4.1 and Table 4.2 summarizes experimental data for sandstone and shale samples 

respectively.  
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Table 4.1: Porosity and permeability data for sandstone samples under effective stress 

(Adopted from Dong et al., 2010) 

Sandstone # 1 Sandstone # 2 

Net Stress, psi Porosity, % 
Permeability, 

md 
Net Stress, psi Porosity, % 

Permeability, 

md 

545 18.0 76.1 694 17.6 73.0 

1250 17.4 66.3 1421 17.1 66.3 

2734 16.8 59.3 2881 16.7 61.2 

4180 16.5 55.8 4260 16.4 57.9 

5665 16.3 53.3 5744 16.2 56.3 

7091 16.2 52.6 7265 16.1 54.7 

8556 16.1 50.3 8560 16.0 54.1 

10040 16.0 48.8 10043 15.9 52.7 

11505 15.9 46.7 11488 15.8 51.8 

12951 15.8 44.6 12784 15.8 51.2 

14397 15.7 43.3 14265 15.7 50.2 

15881 15.7 41.4 15636 15.6 49.2 

17346 15.6 40.2 17079 15.6 48.7 

 

 

Table 4.2: Porosity and permeability data for shale samples under effective stress (Adopted 

from Dong et al., 2010) 

Shale # 1 Shale # 2 

Net Stress, psi Porosity, % 
Permeability, 

µd 
Net Stress, psi Porosity, % 

Permeability, 

µd 

388 9.1 1.28 1113 10.69 9.71 

1236 8.9 0.36 1881 10.56 4.51 

1904 8.8 0.28 2571 10.46 2.32 

2684 8.7 0.25 4081 10.28 0.95 

3408 8.7 0.23 5512 10.16 0.53 

4112 8.6 0.21 7000 10.07 0.35 

5579 8.5 0.17 8468 10.00 0.23 

7046 8.4 0.13 9992 9.93 0.17 

8473 8.4 0.12 11401 9.87 0.14 

9883 8.3 0.09 12847 9.81 0.13 

11387 8.3 0.08 14295 9.74 0.10 

12871 8.2 0.07 15799 9.67 0.09 

14337 8.1 0.06 17246 9.61 0.07 

15726 8.1 0.06    

17249 8.1 0.05    
 

Figure 4.1 illustrates porosity reduction/porosity ratio, (𝜙 𝜙𝑜⁄ ) under effective stress for both 

sandstone and shale samples. Results indicate that when effective stress reaches 17,000 psi, 



56 

porosity reduction in sandstone samples are close to 13%, and 11% whereas this value is around 

9-10% for both shale samples. On the other hand, when permeability reduction rates are compared 

for the both samples, it can be observed that, permeability values for two shale samples are 99% 

and 96% less than their initial point when effective stress is increased to 17,250 psi; whereas for 

sandstone samples, these values are 47% and 33%. (Figure 4.2). These two observations clearly 

indicate the importance of bond breakage and connectivity loss in the shale samples.  

 

Figure 4.1: Porosity as a function of effective stress (Dong et al. 2010) 
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Figure 4.2: Permeability as a function of effective stress (Dong et al. 2010) 

To evaluate connectivity loss under effective stress, interconnectivity ratio is estimated based on 

Eq. 4.11 and coordination number reduction is calculated from Eq. 4.8. In all calculations, fractal 

dimension, D is assumed to be equal to 2.5 and formation factor exponent, 𝑚 is considered as a 

universal exponent equal to 2 (Clerc et al., 2000; Daigle, 2016; Stauffer and Aharony, 1994). 

Based on proposed permeability model, results indicate that when effective stress exceeds 17,000 

psi for sandstone samples, coordination number has reduced 19%: from its initial value of 5.72 to 

4.62 for the first sample and 10% for the second sample: from 5.62 to 5.06. Interconnectivity 

reduction is 30% and 15% respectively as shown in Figure 4.3 and Table 4.3. Thus, it can be 

concluded that for sandstone samples, permeability reduction is mainly dominated by pore volume 

shrinkage and impact of connectivity loss is insignificant (Figure 4.4). 

Alternatively, if Daigle model (Eq. 4.6) is used, then coordination number reduction is only 7% 

and 1.5%, whereas interconnectivity reduction is around 19% and 4% for the first and second 

sandstone samples, respectively.  
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Figure 4.3: Interconnectivity parameter and coordination number as a function of effective 

stress calculated from proposed model for a) sandstone #1 b) sandstone #2 
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Figure 4.4: Permeability reduction as a function of effective stress calculated from proposed 

model for a) sandstone #1 b) sandstone #2 
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Table 4.3: Calculated parameters for sandstone samples under effective stress  

Sandstone # 1 Sandstone # 2 

Net Stress, psi 
Interconnectivity 

Ratio (𝜞 𝜞𝒐⁄ ) 

Coordination 

Number, z 
Net Stress, psi 

Interconnectivity 

Ratio (𝜞 𝜞𝒐⁄ ) 

Coordination 

Number, z 

545 1.00 5.72 694 1.00 5.62 

1250 0.93 5.45 1421 0.96 5.46 

2734 0.89 5.29 2881 0.93 5.36 

4180 0.87 5.20 4260 0.91 5.27 

5665 0.85 5.13 5744 0.90 5.26 

7091 0.84 5.10 7265 0.89 5.22 

8556 0.83 5.06 8560 0.89 5.22 

10040 0.81 5.01 10043 0.88 5.18 

11505 0.79 4.91 11488 0.88 5.15 

12951 0.76 4.82 12784 0.87 5.14 

14397 0.74 4.76 14265 0.86 5.11 

15881 0.72 4.67 15636 0.85 5.06 

17346 0.70 4.62 17079 0.85 5.06 

 

On the other hand, for the shale sample, if permeability reduction (𝐾 𝐾𝑜⁄ ) is estimated only as a 

function of porosity ratio (𝜙 𝜙𝑜⁄ ), then porosity sensitivity exponent, 𝛼 should be as high as 50, 

which indicates that slightly change in porosity results in drastic permeability decrease and clearly 

shows the impact of fracture closure and connectivity loss on permeability reduction. To identify 

and differentiate micro crack closure region, Walsh model (Eq. 4.4) is used as shown in Figure 

4.5. As discussed before, if permeability reduction is dominated by fracture closure, then the plot 

of (𝐾 𝐾𝑜⁄ )1 3⁄  as function of 𝑙𝑛(𝑃𝑒 𝑃𝑜⁄ ) will be straight line. A deviation from the straight line at 

later stage is attributed to pore volume shrinkage and connectivity loss (Tinni et al., 2012). Based 

on Walsh model (Eq. 4.4), results indicate that all micro-cracks are closed at 1236 psi for the first 

sample and at 2570 psi for the second sample and thus, impact of pore shrinkage and connectivity 

loss is estimated after these effective stresses. 
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Figure 4.5: Plot of (𝑲 𝑲𝒐⁄ )𝟏 𝟑⁄  as a function of 𝒍𝒏(𝑷𝒆 𝑷𝒐⁄ ) for a) shale #1 b) shale #2 
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shale samples, when effective stress exceeds 17,000 psi, coordination number has reduced 36%: 

from its initial value of 3.84 to 2.48 for the first sample and 51% for the second sample: from 4.29 

to 2.1. Interconnectivity reduction is 83% and 96%, respectively as shown in Figure 4.6 and Table 

4.4. When impact of pore shrinkage and connectivity loss are compared for shale samples, it is 

clear that effect of pore bond breakage (coordination number reduction) is dominant as shown in 

Figure 4.7. If Daigle model is used alternatively, then coordination number reduction is around 

22% and 38%, whereas interconnectivity reduction is estimated as 81% and 96% for shale samples. 

Thus, permeability reduction under effective stress for shale samples can be summarized as micro 

crack closure dominated at early stage and connectivity loss dominated at later stage.  

 

Table 4.4: Calculated parameters for shale samples under effective stress  

Shale # 1 Shale # 2 

Net Stress, psi 
Interconnectivity 

Ratio (𝜞 𝜞𝒐⁄ ) 

Coordination 

Number, z 
Net Stress, psi 

Interconnectivity 

Ratio (𝜞 𝜞𝒐⁄ ) 

Coordination 

Number, z 

388   1113   

1236 1.00 3.84 1881   

1904 0.78 3.51 2571 1.00 4.29 

2684 0.73 3.44 4081 0.43 3.16 

3408 0.67 3.35 5512 0.24 2.76 

4112 0.62 3.27 7000 0.16 2.55 

5579 0.52 3.10 8468 0.11 2.39 

7046 0.41 2.93 9992 0.08 2.31 

8473 0.37 2.85 11401 0.07 2.24 

9883 0.30 2.73 12847 0.06 2.22 

11387 0.25 2.64 14295 0.05 2.15 

12871 0.24 2.62 15799 0.04 2.13 

14337 0.20 2.53 17246 0.04 2.10 

15726 0.19 2.51    

17249 0.17 2.48    
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Figure 4.6: Interconnectivity parameter and coordination number as a function of effective 

stress calculated from proposed model (after micro-crack closure corrected) for a) shale #1 

b) shale #2 
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Figure 4.7: Permeability reduction as a function of effective stress calculated from proposed 

model (after micro-crack closure corrected) for a) shale #1 b) shale #2 
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Finally, for shale sample #1, effect of fractal dimension on calculated coordination number 

reduction is analyzed. As illustrated in Figure 4.8 fractal dimension values are increased 

coordination number reduction decreases. 

 
Figure 4.8: Coordination number ratio as a function of effective stress for different fractal 

dimension numbers 
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the above effects may dominate matrix permeability. However, non-Darcy flow regimes and their 

effect on permeability is beyond the scope of the present chapter and is not discussed further here. 

 

Figure 4.9: Shale gas permeability considering the combined effects of Non-Darcy flow 

regimes, pore volume shrinkage and pore connectivity loss (solid line) (Davud Davudov and 

Moghanloo, 2018b).  

 

4.4 Conclusions 

In this chapter, a new approach to model permeability reduction under effective stress in tight 

formations is developed. The impact of pore compressibility and bond breakage on permeability 

reduction was analyzed using the percolation theory-based permeability model. Major outcomes 

of this study are as follows: 

•  Permeability reduction in shale plays can be explained with a combination of micro-crack 

closure at early stage and pore shrinkage and connectivity loss at later stage. As observed 

in shale samples studied, if significant permeability reduction is accompanied by limited 

porosity change, then connectivity loss can be expressed as the main reason. 



67 

• While connectivity loss is slight in sandstone samples, it is identified as the main 

mechanism controlling permeability reduction in shale samples studied. 

• When effective stress exceeds 17,000 psi, average coordination number has significantly 

reduced 36 and 51% resulting in 7- and 33-times reduction in permeability for two shale 

samples studied here. 
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Chapter 5 – Permeability Based on SEM Images 

5.1 Introduction 

This chapter presents numerical simulation results of fluid flow through intrinsic 3D pore structure 

of an Eagle Ford shale sample obtained from stacked 2D SEM images to address Obj. 3. With 

increased computational capabilities, direct pore scale modeling has become feasible and reliable 

method to evaluate fluid flow and transport properties while preserving the complex structure of 

the constructed porous media. In this chapter three-dimensional (3D) pore structure of an Eagle 

Ford shale sample is constructed and compiled from two-dimensional (2D) image obtained with 

focused ion beam-scanning electron microscope (FIB-SEM) technique. The compiled 3D pore 

structure is further analyzed to determine static petrophysical properties as well as permeability 

measurements using numerical fluid flow simulations. One of the main objectives is to understand 

and evaluate impact of sample size on the calculated parameters and to understand the pore 

connectivity effect on fluid flow and permeability. 

 The studied Eagle Ford sample is composed of 600 stacked images with 2321 x 1986 pixels and 

the resolution of 10 nm/pixel in all three directions. The original gray-scale images are converted 

to binary (black and white) forms with an appropriate segmentation method as shown in Figure 

5.1. All SEM images for Eagle Ford shale samples have been provided by Unconventional Shale 

Gas Consortium at the University of Oklahoma. 

Before simulating fluid flow through pore space, basic static properties, such as pore size 

distribution, total porosity, and the connected porosity are evaluated using ImageJ®, an open-

source image analysis software. Next, Lattice Boltzmann Method (LBM) is used to simulate fluid 

flow through the constructed 3D pore space to calculate permeability of studied sample. Finally, 
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the pore connectivity is quantified based on Euler-Poincare Characteristics (EPC) as a function of 

sample size. The workflow of this work is summarized in Figure 5.2. 

    

    

Figure 5.1: Example of 2D grayscale and binary images from Eagle Ford sample  

 

 

Figure 5.2: Major workflow of this chapter 
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5.2 Methodology 

5.2.1 Direct Pore Scale Modelling – Lattice Boltzmann Method 

For fluid flow through complex systems, such as porous media, the LBM is often considered as 

one of the most efficient and accurate simulation methods. The most important advantage of LBM 

is its capability to be applied directly to the real complex pore space without any need for 

simplified and/or approximated pore structure models (Chi and Heidari, 2016; Succi, 2001; Sukop 

and Thorne, 2007). Fundamentally, the LBM considers a collection of particles as a unit cloud of 

particles and solves the discretized Boltzmann equation for these specified particle units as they 

evolve in space-time domain and interact on a regular lattice.  

The LBM algorithm consists of two steps: Step 1: streaming (advection), in which particles moves 

to the closest node in the direction of their velocity, and Step 2: collision, at which particles interact 

with each other based on the defined collision rules at particular node, while conserving mass and 

momentum. Similar to the kinetic equation of the lattice gas cellular automata, discretized form of 

LBM is usually expressed as follow: 

( , ) ( , ) ( ( , ))i i i if x c t t t f x t f x t+  + − = , (5.1) 

where 𝑓𝑖(𝑥, 𝑡) is the particle distribution function at location x and time t, Ω𝑖 is the collision 

operator, and 𝑐𝑖 is the local particle velocity, proportional to a constant lattice velocity: 𝑐 = Δ𝑥 Δ𝑡⁄  

(Guiet, et al., 2011).  

The collision operator in Eq. 5.2 is often defined with the Bhatnagar-Gross-Krook (BGK) operator 

since it allows to solve the Boltzmann equation in a computationally efficient method. BGK is 

derived from linearization of the collision operator around the equilibrium state, neglecting the 

higher-order terms (Bhatnagar et al., 1954; Guiet et al., 2011): 
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1
( ( , ) ( , ))eq

i i if x t f x t


 = − , (5.2) 

where τ is the relaxation time and 𝑓𝑖
𝑒𝑞

 is the local equilibrium state. Relaxation time is directly 

related to the kinematic viscosity, ν as follow: 

2

3 1

2t c


 = +

 
, (5.3) 

It is clear from Eq. 5.3 that for numerical stability, relaxation time should be higher than 1 2⁄ . 

Moreover, it has been discussed in the literature that the best practice to maintain the numerical 

stability is to set relaxation time equal to 1. 

The equilibrium distribution 𝑓𝑖
𝑒𝑞

 from BGK operator corresponds to an ideal state derived from 

the second order approximation of a Maxwellian distribution function and expressed in terms of 

macroscopic flow parameters under low-Mach assumption to ensure fluid incompressibility (Guiet 

et al., 2011): 

( )
2 2

2 4 2

3 9 3
( ,u) 1

2 2

eq

i i i if w c u c u u
c c c

 
 

= +  +  − 
 

     (5.4) 

where 𝑤𝑖 is the weighting parameters specifically defined for each lattice scheme. Finally, 

macroscopic flow characteristics (mass and momentum) are calculated as follow: 

( , ) ( , )eq

i i

i i

f x t f x t = =       (5.5) 

 

2 2

( , ) ( , )eq

i i
i i

i i

f x t f x t
u c c

c c
 = =       (5.6) 

The set of Eqns. 5.1-5.6 along with specific boundary conditions help us simulate fluid flow using 

the lattice Boltzmann framework. Very often, for simplicity Δ𝑥 Δ𝑡 = 1⁄  is chosen, since it enables 

us to work with c equal to 1 (Guiet et al., 2011). In this work, D3Q19 scheme is implemented for 
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LBM simulations which describes motion in 3D with 19 possible velocity distributions, as shown 

in Figure 5.3. 

 
Figure 5.3: Velocity discretization in D3Q19 lattice scheme 

 

LBM Implementation with Palabos: To calculate permeability for the selected shale sample, the 

open-source LBM library Palabos, written in C++ is used (Latt, 2009). Single phase, single 

component (SPSC) fluid flow simulations are modelled using the constructed 3D pore structures. 

To construct the pore structure, 2D binary images obtained from FIB-SEM have been binarized as 

0 for pore space (dark blue), 1 for the wall of the pores (light blue) and 2 for the rest of the matrix 

(yellow) as shown in Figure 5.4. Accordingly, two types of boundary conditions were applied to 

rock gains (solid part of matrix); bounce-back (no-slip boundaries) and ‘no dynamics’ boundaries. 

As illustrated in Figure 5.4, if there is any pore space in the vicinity of solid part of the matrix 

(light blue color), then for those grid blocks bounce-back boundary condition is applied. It is a 

common practice to use bounce-back boundary condition for LBM simulation which corresponds 

to the no-slip boundary condition in fluid mechanics. The basic idea behind bounce-back boundary 
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condition is that after particles hit a solid wall node, they will be “bounced back” to their previous 

node in the pore space which they have moved from. On the other hand, for the grids that are 

located deep in the matrix with no immediate proximity to pore space (yellow), no dynamics 

boundary condition (no transport phenomenon) is considered to reduce the computational cost of 

simulation (Degruyter et al., 2010). Finally, the inlet and outlet boundaries are characterized by 

the constant pressure boundary conditions. Once the simulation reaches steady state, average 

velocity and further permeability, k, is calculated from Darcy equation. 

    

Figure 5.4: Boundary conditions in the LBM (adapted from Bultreys et al., 2016) 

Even though Palabos simulations can be efficiently conducted in a parallel computing 

environment, still LBM modelling of fluid flow through complex pore space can be 

computationally expensive: 3D matrix with more than a 2.7 billion voxel (2321 x 1986 x 600) can 

equate to a matrix of around 52 billion data points since each voxel has 19 nodes in D3Q19 scheme 

(Kelly et al., 2016). Therefore, grid coarsening might be essential and time saving while admitting 

that some of the smaller pores on the order of the original resolution pixel will be lost during 

upscaling. Thus, since Palabos is equipped with a parallel computing environment, the fluid flow 

simulations were conducted, after grid coarsening process using a super-computer (OSCER) 

facility at University of Oklahoma.  
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Moreover, it is worth mentioning that there are be many other physical phenomena occurred at 

nanoscale pores which may impact fluid flow through those narrow pores (Kelly et al., 2016). 

However, for the purpose of this study, from SEM images with LBM simulations only intrinsic 

(geometric) permeability, which is a function of the geometric parameters of the constructed pore 

structure (porosity, pore size distribution, pore connectivity), is calculated. Thus, it can be expected 

that the calculated intrinsic permeability value may underestimate gas permeability for low 

pressure conditions since it does not consider slip flow and Knudsen diffusion effect at smaller 

pores.  

5.2.2 Pore Connectivity – Euler Poincare characteristics 

Previous studies have suggested numerous ways to quantify pore connectivity in porous media. 

Although several other methods have been suggested to analyze pore connectivity and 

coordination number of 3D porous media, Euler Poincare characteristic (EPC) approach is 

considered as one of the reliable and simply model to characterize pore connectivity (Chi and 

Heidari, 2016; Jiang et al., 2011; Vogel, 2008; Vogel et al., 2010). With EPC exact number of the 

pores and throats cannot be calculated, instead the average coordination number of porous media 

can be implicitly estimated (Arns et al., 2001; Vogel et al., 2010). In this work, EPC approach is 

applied to quantify pore connectivity because of its simplicity to use on 3D pore structures. EPC 

is usually defined as number of object components, which is isolated pore structures in a 3D rock 

sample, N, minus the number of tunnels (redundant pore-system connections), C, plus the number 

of cavities (isolated solids within the pore space), H, which is zero in practice: 

3De N C H= − +      (5.7) 
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Figure 5.5 illustrates N, C and H for ideal solid objects and their respective calculated 3D EPC 

from Eq. 5.7; the higher the C value, the lower calculated EPC and the higher the connectivity will 

become. 

 

Figure 5.5: Euler values for ideal solid objects (Wildenschild and Sheppard, 2013)  

For 3D system EPC can be estimated using parameters obtained from 2D slices as: 
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3

2

2

2

n
i i i i

D

i

e e e
e

− − 

=

+ −
=      (5.8) 

where 𝑒2,𝑖−1∩𝑖 represent 2D EPC calculated for overlapping of ith and (i-1)-th images. Chi and 

Heidari (2016) have suggested that, positive value of 3D EPC is an indication of poor pore 

connectivity, while negative value corresponds to the well-connected pore structure. The EPC as 

a function of sample size was estimated using ImageJ software ®. 

 

5.3 Results 

5.3.1 Static Properties 

Prior to fluid flow simulation and estimation of rock permeability, pore size distribution, 2D 

porosity, 3D total porosity, and connected porosity are computed as a function of sample size. 

Assuming cylindrical shape for the pores, the pore size distribution (PSD) are calculated for several 

images (Image #1, #50, #100, # 200, #300, #400, #500 and #600). As shown in Figure 5.6, it can 
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be observed that the number of pores decreases as pore size increases and for this particular sample 

more than 93% of the pores are less than 200 nm.  

 
 

 

 

 

Figure 5.6: Pore size distribution obtained from 2D slices for Eagle Ford sample 
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Next, porosity values for the same 2D images are estimated and summarized in Table 5.1. Results 

indicate that, calculated porosity values are in the range of 12-17% for the first 300 images and it 

reduces significantly to the range of 6% for the last 200 images. More interestingly, although most 

of the pores (more than 93%) are less than 200 nm, the fraction of porosity with the pores smaller 

than 200 nm is only between 10% to 20%, while 80% to 90% percent of porosity is because of the 

contribution of pores larger than 200 nm. Thus, it can be suggested that while 7% of the pores with 

pore size bigger than 200 nm represents storage capacity, the rest of the 93% pores with less than 

200 nm is significant for pore connectivity, and fluid transport.  

Table 5.1: Porosity obtained from 2D slices for Eagle Ford sample 

Image # 1 50 100 200 300 400 500 600 

2D Porosity 0.128 0.149 0.162 0.159 0.147 0.112 0.063 0.064 

Fraction of Pores 

(PSD < 200nm) 
0.93 0.95 0.95 0.96 0.95 0.96 0.94 0.96 

Fraction of Pores 

(PSD > 200nm) 
0.07 0.05 0.05 0.04 0.05 0.04 0.06 0.04 

Fraction of 2D 

Porosity 

(PSD < 200nm) 

0.105 0.095 0.094 0.108 0.128 0.181 0.200 0.272 

Fraction of 2D 

Porosity (PSD > 

200nm) 

0.895 0.905 0.906 0.892 0.872 0.819 0.800 0.728 

 

Finally, total and connected porosity obtained from 3D pore structure is calculated as a function 

of sample size (stacked 3D images). As illustrated in Figure 5.7, results have shown that total 

porosity obtained from 3D images is around 15% when sample size is less than 4 μm and reduces 

slightly to the range of 12.5% when sample size is about 6 μm. This is expected because 2D 

porosity of images decreases with the size of samples that leads to smaller total porosity as shown 

in Figure 5.7. When connected porosity is evaluated, the estimated values are in the range of 11 

to 14% for sample size of 2 μm and significantly decreases to the range of 6% when the sample 

size is 6 μm.  
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When 2D porosity, pore size distribution, 3D total and connected porosity are all compared, it can 

be concluded that the results are consistent; 3D total and connected porosity values decrease while 

the number of smaller pores increase as a function of sample size (Figure 5.8). Thus, it is logical 

to expect that there will be a significant permeability reduction with increasing the sample size 

that will be evaluated with LBM simulations and will be discussed in the next section.  

 

 

Figure 5.7: 3D total and connected porosity for Eagle Ford sample as a function of sample 

size  
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Figure 5.8: 3D view of Eagle Ford shale sample for a) 1 μm b) 2 μm c) 3 μm d) 4 μm 

 

5.3.2 LBM Simulation Results 

As discussed in the previous sections, fluid flow and permeability is evaluated using LBM 

simulations to understand the interplay between pore connectivity loss and permeability reduction. 

Before further analysis and evaluation of the shale sample, first the accuracy of the LBM 

simulation is validated by comparing the simulation results with analytical solution for simple and 

ideal geometry representing bundle of tubes model. In the next step of verification, the simulation 

d) 
c) 

b) a) 
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results are compared with experimentally measured permeability values for Berea sandstone 

sample with micro-CT images obtained from literature (Dong 2007). 

Validation with bundle of tubes model: Simple and ideal bundle of tubes model is created with 

4 identical straight tubes with their radius of 10.7 pixels and total porosity of 40% as shown in 

Figure 5.8a. Analytically, permeability from straight tubes can be calculated as: 

2 2 2

28 8

r n r r
k

W

 
=  =      (5.8) 

where 𝑟 is the radius of tubes, 𝑛 is the number of tubes, and 𝑊 is the with of the system, which is 

60 pixels in this example. Thus based on Eq. 5.8, the permeability is calcuted to be 5. 73 pixel2 

compared with LBM simulations result of 5.72 pixel2, more than 99% accuaracy. Moreover, as 

expected, velocity magnitude is higher in the middle of the pores because of laminar flow and zero 

velcoity at the walls (no-slip baundary condition) assumptions as illustared in Figure 5.9b. 

     

Figure 5.9: LBM Simulation through bundle of tubes a) initial structure b) fluid velocity 

profile 

 

Validation with Berea sandstone sample: After validating with analytical solution for ideal 

system, further evaluation has been conducted for Berea sandstone sample with experimentally 

measured permeability values and micro-CT images obtained from the Petroleum Engineering and 

Rock Mechanics group at Imperial College London (Dong and Blunt, 2007). This particular 

sample has 19.6% porosity with 1286 md measured permeability and it is composed of 400 micro-

a) b) 
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CT stack images with the size of 400 x 400 pixels and the resolution of 5.345 μm/pixel. The matrix 

and pore structure of this studied sample is shown in Figure 5.10 which has been constructed for 

LBM simulations. 

 

                
Figure 5.10: 3D view of Berea sandstone a) matrix b) pore 

After conducting simulations, permeability results obtained from LBM has been converted from 

lattice units to physical units by multiplying with square of image resolution. Permeability 

calculated from LBM simulations is around 1342 md, comparable with experimentally measured 

of 1286 md. The relative velocity profile obtained from simulations is illustrated in Figure 5.11. 

It can be observed that the pores are extremely well connected, expected for this high porosity, 

high permeability sample. Moreover, the EPC parameter estimated for this sample is around -2000, 

which is indicator of a greater number of pore tunnels (C from Eq. 5.7) than number of pore 

structures (N from Eq. 5.7), representing a well-connected pore structure.   

a) b) 
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Figure 5.11: Velocity magnitude through pore structure Berea sandstone  

 

Results for Eagle Ford shale sample: After validating with analytical solutions and experimental 

results, further simulations are conducted to estimate permeability for Eagle Ford shale sample. 

The matrix and pore structure of the whole sample (23.2x19.9x6 μm) is shown in Figure 5.12.  

       

Figure 5.12: 3D view of Eagle Ford shale sample a) matrix b) pore 

The calculated permeability from LBM simulations is around 1.17 μd, consistent with the literature 

(Driskill et al., 2013; Walls and Break, 2011) and also it is an expected result for this shale sample 

because of its comparable high porosity. The velocity profile obtained from LBM simulations is 

shown in Figure 5.13. As it can be observed, the connections between pores are very limited 

a) b) 
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resulting a very low permeability. Meantime, the EPC value calculated for the whole sample is 

around 9431, suggesting a very poor pore connectivity.  

 

Figure 5.13: Velocity magnitude through pore structure of Eagle Ford sample 

 

Next, permeability and pore connectivity are further analyzed as the sample size increases. As 

discussed before, for this sample although reduction in total porosity is not significant but the 

connected porosity significantly decreases as the sample size increases. Similarly, when 

permeability is estimated as sample size increases, the results indicate that there is substantial 

decline from 17.62 md when the sample size is only 1 μm (100 images) to 1.17 μd when the sample 

size is 6 μm, which corresponds to more than 15000 times reduction (Figure 5.14). It should be 

noted that this huge reduction is not only because of the pore connectivity effect, but also because 

of pore and/or pore throat sizes that contributes to fluid flow at different scales. As it can be seen 

from Figure 5.7, fluid can flow through the biggest pores in the system since they are well 

connected when sample size is below 3 μm, while these pores are restricted with much smaller 

pore throats when sample size is bigger than 4 μm. However, reducing pore (throat) size is not the 

only factor that affects permeability. Similarly, when pore connectivity defined with EPC is 



84 

calculated for each sample size, it is observed that all calculated values are consistent with the 

permeability results as sample size increases (Figure 5.15). All results have been summarized in 

Table 5.2.  

Finally, when connected porosity fraction (𝜙𝑐𝑜𝑛𝑛 𝜙𝑡𝑜𝑡𝑎𝑙⁄ ), normalized connected porosity 

(𝜙𝑐𝑜𝑛𝑛 𝜙𝑐𝑜𝑛𝑛_𝑚𝑎𝑥⁄ ), permeability and EPC connectivity are analyzed together, a similar and 

consistent trend can be observed. Moreover, it can be suggested that, based on results from all 

parameters, REV for this particular sample is around 4 μm (Figure 5.15). 

 

Figure 5.14: Connected porosity and permeability as a function of sample size for shale 
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Figure 5.15: Connected porosity, permeability, and EPC connectivity as a function of 

sample size for shale sample 

 

Table 5.2: Summary of results for Eagle Ford sample as a function of sample size 
 

Sample Size, 

μm 

Total 

Porosity 

Connected 

Porosity 
𝜙con/𝜙con_max K, μd K/Kmax EPC EPCmax/EPC 

0.5 0.153 0.139 1.00 16155.2 0.92 2068 1.00 

1 0.147 0.136 0.98 17618.1 1.00 3177 0.65 

2 0.16 0.122 0.88 16134.0 0.92 5648 0.37 

3 0.157 0.057 0.41 3604.2 0.21 6512 0.32 

4 0.151 0.072 0.52 2.44 1.4E-4 8735 0.24 

5 0.136 0.062 0.45 1.80 1.0E-4 9091 0.23 

6 0.125 0.061 0.44 1.17 6.6E-5 9431 0.22 

 

5.4 Conclusions  

In this chapter, 3D pore structure of an Eagle Ford shale sample constructed by stacking 600 SEM 

images is analyzed to understand the impact of pore connectivity on permeability reduction as a 

function sample size. First, static pore structure parameters are studied and then LBM simulations 
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are conducted to model steady state, laminar fluid flow through constructed 3D pore space. The 

main conclusions can be summarized as follows: 

• Total porosity of studied Eagle ford shale sample is around 12.5 % which reduces slightly 

with increasing sample size. On the other hand, the connected porosity of the system 

decreases more than 50% when sample size is around 6 μm. 

• Permeability calculated from LBM simulations is around 1.17 μd for whole sample; 

moreover, the calculated permeability value is also a strong function of sample size; i.e. 

15000 times reduction when sample size is at 6 μm.  

• Finally, pore connectivity estimated from EPC is negative for sandstone sample which is 

an indicator of high pore connectivity and positive for all shale sample sizes which is an 

indicator of poor pore connectivity. Moreover, consistent with the connected porosity and 

permeability results, pore connectivity significantly decreases with increasing sample size. 
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Chapter 6 – Accessible Porosity based on MICP 

6.1 Introduction 

This chapter addresses Obj. 4 where a novel approach is proposed to correct accessible porosity 

values calculated using mercury injection capillary pressure (MICP) for shale samples. MICP is 

one of the most widely used experimental techniques. One of the major advantages of MICP test 

us that they give direct information about pore throats which is the key parameter for 

connectivity/conductivity (King et al., 2015). Traditionally, volume of mercury recorded during 

MICP test is corrected to consider for conformance. Conformance is the amount of mercury needed 

to envelope the external shape of a sample before intrusion happens and it is a function of sample 

shape irregularities and sample size. 

In addition to conformance correction, following Bailey (2009) and Comisky et al., (2011) has 

suggested to consider intrusion correction (pore compression correction). They suggested to 

determine volume of mercury recorded during compression stage (until intrusion/entry pressure) 

and subtract that amount from total volume. However, simply subtracting volume of mercury 

measured during compression stage is not an accurate way, because in this mode: 1) grain 

compression is not considered, 2) during compression stage both accessible and inaccessible pores 

are compressed simultaneously, which in correction only inaccessible pore compression should be 

considered, and 3) inaccessible pore compression should be considered not only during 

compression stage but until the final pressure (Davudov et al., 2018a).  

Recently, Peng et al., (2017) has suggested to considered conformance correction and grain 

compressibility effect on accurate estimation of porosity from MICP data. However, in this study 

also, contribution of inaccessible pore compressibility has not been considered. Though it is also 

crucial to correct for compression of inaccessible pores, since inaccessible pore volume 



88 

compaction has been observed and reported around the unfilled regions of samples (Giesche, 2006; 

Yao and Liu, 2012). The fraction of inaccessible/unfilled pores will strongly depend on the rock 

pore network and as well as fluid type; unsaturated part of the rock will be affected because of the 

pore throats smaller than 3 nm which mercury cannot intrude. 

Therefore, three distinct corrections are suggested which are essential for accurate estimation of 

accessible porosity from MICP data: (1) conformance, (2) grain compression, (3) inaccessible pore 

compression. In this chapter mathematical model is developed to predict pore volume 

compressibility and accessible porosity from MICP data and next results for Barnett, and 

Haynesville samples are compared and evaluated. 

6.2 Mathematical Model 

In this section, a new model is proposed to estimate pore and grain compressibility from MICP 

data and correct calculated accessible porosity while considering above-mentioned corrections. 

6.2.1 Pore Compressibility Calculation 

Bailey (2009) have suggested that Due to the extremely limited pore connectivity and sub-micron 

pore radii, during MICP test, shale samples will observe three different stages; conformance, 

compression, and intrusion; pore volume compressibility can be determined based on mercury 

volume recorded during compression stage. 

When pressure reaches to conformance pressure (𝑃𝑐𝑓), the volume of mercury recorded is due to 

core sample conformance that needs to be corrected for accurate pore volume calculations. For 

pressure values larger than conformance pressure yet smaller than critical intrusion/entry pressure 

(Pint), pressure value is not sufficient for mercury to intrude into samples. However, in this stage 

pores and grains are compressed owing to effective pressure and mercury volume recorded at this 

stage is the sum of the volume change due to pore and grain shrinkage. 
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Mercury intrusion to accessible pores starts to happen after pressure gets to Pint, since intrusion is 

the point at which the capillary pressure exceeds the critical entry value. At intrusion pressure and 

beyond, mercury begins filling the rock pore volume and when pressure reaches to final pressure 

(Pf), all accessible pores with pore throats larger than 3 nm have been intruded.  

Thus, compression of inaccessible pores has not been considered in Bailey’s model and 

furthermore, grain compressibility is assumed to be negligible. However, Dang et al., (2017) 

proposed that grain compressibility in shale formations cannot be ignored suggesting that during 

compression stage only bulk compressibility can be estimated. 

Recently, Lan et al., (2017) proposed a new dual compressibility model to estimate pore 

compressibility from MICP data. The model suggests a division of the pore space of the sample 

based on MICP entry pressure, and then incorporation of the inaccessible pores into the grain 

volume of the material; pore volume is separated as accessible pore and inaccessible part of the 

rock and their compressibility values are calculated as two different and independent entities. 

In this study, a new model is proposed, which is modified version of  Lan et al., (2017) models. 

Dissimilar to Bailey’s model, in this model, during compression stage accessible pores, 

inaccessible pores and grain are compressed simultaneously; i.e., as suggested by Dang et al., 

(2017), bulk compressibility can be calculated from this stage. Moreover, single pore 

compressibility value is considered for both accessible and inaccessible pores, while also grain 

compressibility is included in calculations. For a thourough comparison of different methods, 

please refer to Lan et al., (2017) and Davudov et al., (2018b).  

When pressure reaches critical threshold the mercury intrusion starts, and accessible pores are 

filled with mercury, yet inaccessible pores and grain still get compressed until final pressure 

(Figure 6.1).   
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Figure 6.1: Three stages during MICP experiment.  

 

 

Figure 6.2: MICP curve divided into 3 stages. Blue curve is calculated bulk compressibility 

while red curve corresponds to cumulative mercury volume (Lan et al., 2017). 

As suggested by Bailey (2009) compressibility of tight formations can be expressed as a power 

law function with respect to pressure, thus, compression stage can be determined as linear line 

from log-log plot of incremental mercury volume change with respect to pressure. Any deviation 

from linear line is either due to conformance on low pressure portion or due to intrusion at high 

pressure region. Figure 6.2 displays various stages that a shale sample undergoes during MICP 

test. 

 

 

 

 

 

Figure 2.  

1) Conformance  2) Compression  3) Intrusion 
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Based on the above discussions, bulk compressibility is estimated using data acquired during 

compression stage and decomposed to separately calculate both grain and pore compressibility 

values. The main assumptions of this model are as follow: 

• There is no mercury intrusion into pores until injection pressure exceeds entry pressure. 

• Both pore and grain compressibility can be expressed as power law function with respect 

to confining pressure. 

• Porosity measured with crushed sample low-pressure pycnometer method is considered as 

absolute total porosity. 

The bulk volume of the rock sample can be expressed as the sum of grain and total pores including 

both accessible pore, and inaccessible pore: 

     𝑉𝑏 = 𝑉𝑝 + 𝑉𝑔                                                             (6.1) 

where 𝑉𝑏 represents bulk volume, 𝑉𝑝 is the volume of total pores, and 𝑉𝑔 is the volume of grain. 

Relationship between compressibility terms with respect to confining pressure can be expressed 

as follow (Zimmerman et al., 1986): 

     𝐶𝑏 = 𝜙𝐿𝑃𝑃𝐶𝑝 + 𝐶𝑔  (6.2) 

where 𝐶𝑏 , 𝐶𝑝 and 𝐶𝑔 represent compressibility of the bulk, pore and grain respectively, and 𝜙𝐿𝑃𝑃 

is total porosity including both accessible and inaccessible pores. If it is assumed that 

compressibility can be expressed as a power law function with respect to pressure, Eq. 6.2 can be 

rewritten as: 

    𝑘b𝑃𝑚 = 𝜙𝐿𝑃𝑃𝑘pP𝑚 + 𝑘g𝑃𝑚                (6.3) 

where 𝑘b, 𝑘p, and 𝑘g are the coefficients in the power law function for bulk, pore, and grain 

respectively. It is further assumed that the exponent of power law function, 𝑚, is same for bulk, 



92 

pore, and grain compressibility values. For more discussion about exponent, 𝑚, please read 

Davudov et al., (2018b). 

As discussed earlier, linear trend from log-log plot of incremental mercury volume change vs. 

pressure (Figure 6.2) is used to identify compression stage and calculate bulk compressibility. 

Thus 𝑘b and m can be determined.  However, to estimate other two unknowns (𝑘p, and 𝑘g) two 

equations are needed, which Eq. 6.3 can be considered as the first equation. 

Additionally, when injection pressure reaches to intrusion pressure (end of compression stage), all 

accessible pore, inaccessible pore and grain are compressed without any mercury intrusion into 

pores. At this stage volume of mercury recorded is due to only conformance and sample 

compression and it can be expressed as:  

𝑉𝐻𝑔 (𝑃𝑖𝑛𝑡) = [𝑉𝑝𝑖 − 𝑉𝑝 (𝑃𝑖𝑛𝑡)] + [𝑉𝑔𝑖 − 𝑉𝑔(𝑃𝑖𝑛𝑡)] + 𝑉cf  (6.4) 

where 𝑉𝑝𝑖 is pore volume at initial stage, 𝑉𝑔𝑖 is grain volume at initial stage, 𝑉𝐻𝑔 is the volume of 

mercury recorded at specific pressure, and 𝑉𝑐𝑓 is volume of mercury needed to envelope the 

external surface of the sample (conformance correction). Volume of pores or grain at given 

pressure can be calculated based on compressibility equation as: 

i i i

P P P

m

P P P

dV
C dP kP dP

V
− = =    (6.5) 

After integrating Eq. 6.5, volume of the pores at specific pressure can be written as: 

( )1 1

(P)

exp
1

m m

i

V
V

k
P P

m

+ +

=
 

− 
+ 

 
(6.6) 

By combining Eq. 6.4 with Eq. 6.6, volume of mercury recorded at intrusion pressure (end of 

compression stage) can be rewritten as: 
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𝑉𝐻𝑔 (𝑃𝑖𝑛𝑡) = 𝑉𝑝𝑖 −
𝑉𝑝𝑖

exp [
𝑘p

𝑚 + 1
(𝑃𝑖𝑛𝑡

𝑚+1 − 𝑃𝑖
𝑚+1)]

+ 𝑉𝑔𝑖 −
𝑉𝑔𝑖

exp [
𝑘g

𝑚 + 1
(𝑃𝑖𝑛𝑡

𝑚+1 − 𝑃𝑖
𝑚+1)]

+ 𝑉cf  (6.7) 

Eq. 6.3 and 6.7 are solved simultaneously to calculate both pore and grain compressibility values 

separately. Note that, it is often found that conformance pressure is close to initial pressure 

(atmospheric pressure), thus it is reasonable to assume that 
𝑘p

𝑚+1
(𝑃𝑐𝑓

𝑚+1 − 𝑃𝑖
𝑚+1) approximates zero. 

6.2.2 Accessible Pore Calculation 

Based on the proposed compressibility model for accurate estimation of accessible pore volume 

from MICP test, three different corrections are needed: conformance, grain compressibility and 

inaccessible pore compressibility. For conformance correction, the volume of mercury recorded at 

conformance pressure, 𝑃conf is simply subtracted from total volume measured. After conformance 

correction, accessible pore volume needs to be further corrected due to compression of grain and 

inaccessible pore: 

𝑉𝑎 = 𝑉𝐻𝑔 (𝑃𝑓) −  𝑉𝑐𝑓 − [𝑉𝑖𝑛𝑎 (𝑃𝑖) − 𝑉𝑖𝑛𝑎 (𝑃𝑓)] − [𝑉𝑔 (𝑃𝑖) − 𝑉𝑔 (𝑃𝑓)],  (6.8) 

where 𝑉𝑎 is volume of accessible pores, and 𝑉𝑖𝑛𝑎 is volume of inaccessible pores. Setting accessible 

porosity, 
𝑉𝑎

𝑉𝑏
 as 𝜙𝑎, and inaccessible porosity 

𝑉𝑖𝑛𝑎

𝑉𝑏
 as (𝜙𝐿𝑃𝑃 − 𝜙𝑎) then Eq. 6.8 can be rewritten to 

express corrected accessible porosity calculated as: 
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(6.9) 
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Eq. 6.9 can be solved to calculate accessible porosity, 𝜙𝑎 which includes corrections due to 

conformance, grain compression, and inaccessible pore compression.  

6.3 Results and Discussion 

In this study, samples from Barnett, and Haynesville plays (11 each) are selected for accessible 

porosity calculations. All MICP measurements for shale samples have been conducted by 

Unconventional Shale Gas Consortium at University of Oklahoma. Barnett and Haynesville shale 

plays have their own characteristics when it comes into pore distribution; the porosity in the 

Barnett is dominantly within the organic matter (Curtis et al., 2012b; Davudov et al., 2016) where 

the porosity in the Haynesville shale is most prevalent in the inorganic part (Chalmers et al., 2012; 

Curtis et al., 2012a). Porosity values denoted as 𝛟𝑯𝒈 represents calculated values from MICP test 

before any corrections i.e., total measured volume of mercury is assumed to be due to pore filling.  

Additionally, 𝛟𝒄𝒇, 𝛟𝒈, 𝛟𝒂 expresses porosity values calculated from MICP data with conformance 

correction only, both conformance and grain compression corrections and with all three corrections 

(conformance, grain compression and inaccessible pore compression), respectively.  

 6.3.1 Pore Compressibility Results 

Pore compressibility values, expressed in terms of pressure as 𝐶𝑝 = 𝑘𝑝𝑃𝑚, are calculated and 

analyzed for all samples studied. Average value of 𝑘𝑝 is 0.0021, and 0.0014 and average value of 

m is -0.75, and -0.69 for Barnett, and Haynesville samples, respectively. As shown in Figure 6.3 

results indicate that pore compressibility values are higher than anticipated values in the range 

of 1E-5 1/psi for shale samples at lower pressure. When pressure reaches to 6000 psi, pore 

compressibility reduces to the range of 1E-6 1/psi in most of the cases. Pore compressibility values 

for 11 Barnett samples show relatively close outcomes; likewise, results obtained from Haynesville 

samples with two exceptions are similar and comparable to those of Barnett as well (Figure 6.3).  
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Additionally, grain compressibility expressed in terms of confining pressure as, 𝐶𝑔 = 𝑘𝑔𝑃𝑚, is 

illustrated in Figure 6.4. Average value of 𝑘𝑔 is 7.2E-5, and 6.0E-5 for Barnett and Haynesville 

formations, respectively. Results show that at initial pressure grain compressibility is mostly in the 

range of 1E-6 1/psi, where it drops to the range of 1E-8 1/psi at higher pressure. Table 6.1 

summarizes all parameters of power law functions for both compressibility terms.  
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Figure 6.3: Pore compressibility for a) Barnett b) Haynesville  
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Figure 6.4: Grain compressibility for a) Barnett b) Haynesville  

 

 

Table 6.1: Parameters of power law fit function of pore and grain compressibility  
 Barnett Haynesville 

Sample # m 𝒌𝒑 𝒌𝒈 m 𝒌𝒑 𝒌𝒈 

1 -0.91 5.6E-03 3.0E-05 -0.80 2.05E-03 8.90E-05 

2 -0.77 2.7E-03 7.7E-05 -0.52 4.58E-04 8.46E-06 

3 -0.76 3.3E-03 6.0E-05 -0.73 1.74E-03 1.88E-04 

4 -0.83 1.9E-03 2.6E-04 -0.70 1.57E-03 1.17E-04 

5 -0.85 2.4E-03 3.3E-05 -0.88 3.77E-03 4.21E-05 

6 -0.74 1.2E-03 1.0E-04 -0.51 9.28E-05 3.70E-05 

7 -0.69 1.0E-03 4.2E-05 -0.93 2.44E-03 7.34E-05 

8 -0.65 8.3E-04 3.2E-05 -0.60 6.69E-04 2.67E-06 

9 -0.73 2.2E-03 1.6E-05 -0.57 5.77E-04 4.83E-05 

10 -0.66 6.9E-04 4.4E-05 -0.79 1.55E-03 1.59E-05 

11 -0.66 9.1E-04 1.0E-04 -0.65 8.05E-04 3.85E-05 
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6.3.2 Comparison with Ultrasonic Velocity Measurements 

 Assuming isotropic core samples, bulk compressibility values can alternatively be estimated using 

measured shear velocity, 𝑉𝑠, compressional velocity and sample bulk density as (Dang et al., 2017; 

Davudov et al., 2018b): 

𝐶𝑏 =
1

𝜌 (𝑉𝑝
2 −

4
3 𝑉𝑠

2)
                                                               (6.10) 

Bulk compressibility values obtained from MICP data is compared with the values calculated from 

velocity measurements for 4 samples as shown in Figure 6.5. Moreover, for two samples, both 

horizontal and vertical velocity measurements are conducted. Results indicate that bulk 

compressibility calculated from MICP data is overestimated at lower pressure range and slightly 

underestimated for higher pressure range when compared with values obtained from sonic 

measurements. This comparison can clearly be seen from Figure 6.6. The major reason for 

overestimation might be due to “no mercury intrusion into pores” assumption and results may 

differ based on methodology of first entry pressure determination. Further studies need to be 

conducted for accurate estimation of entry pressure during MICP test. 

When bulk compressibility calculated from horizontal and vertical sonic data are compared, as 

expected values obtained from horizontal measurements (parallel to bedding) is significantly lower 

than that of vertical measurements (vertical to bedding), especially at lower pressure ranges. 
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Figure 6.5: Comparison of bulk compressibility calculated from MICP and velocity 

measurements for Haynesville samples a) H-2 b) H-3 c) H-4 d) H-5 
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Figure 6.6: Comparison of bulk compressibility calculated from MICP and velocity 

measurements 

6.3.4 Accessible porosity 

Based on proposed model (Eq. 6.9) accessible porosity values are calculated and compared for 

both formations. Figure 6.7 illustrates comparison of accessible porosity for 11 Barnett samples. 

Expectedly, accessible porosity, ϕ𝑎 is less than total porosity, ϕ𝐿𝑃𝑃  values measured from crush 

sample low-pressure pycnometer (LPP) method (Figure 6.7a); also, it can be observed that the 

ratio of accessible pores to total porosity (ϕ𝑎/ϕ𝐿𝑃𝑃) increases with an increase in total porosity 

(Figure 6.7b). This indicates that for Barnett samples, accessible pore fraction is positively related 

to total porosity. Moreover, results show that if corrections are not considered, porosity values 

calculated from MICP, ϕ𝐻𝑔  will be overestimated (Figure 6.7c). This difference occurs owing to 

implementation of all three corrections including conformance, grain compressibility, and 

inaccessible pore compressibility. The results for Barnett samples are summarized in Table 6.2.  
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Figure 6.7: Results for 11 Barnett samples a) Accessible porosity vs total porosity b) 

Accessible pore fraction vs total porosity c) Accessible porosity vs MICP porosity without 

any corrections d) Accessible porosity vs conformance and grain compression corrected 

MICP porosity 

When outcomes are analyzed for Haynesville samples, the results are similar to that of Barnett 

samples, accessible porosity increases with an increase in total porosity, although the increasing 

slope is relatively low (Figure 6.8a). However, surprisingly, results indicate that fraction of 

accessible porosity (ϕ𝑎/ϕ𝐿𝑃𝑃) decreases with an increase in total porosity as it is shown in Figure 

6.8b, although relationship is comparably weak. This inverse relation might seem surprising, 

however if ratio of mercury porosity (without any corrections) to total porosity (ϕ𝐻𝑔/ϕ𝐿𝑃𝑃) is 

plotted it also shows a negative relationship with total porosity. Thus, it can be speculated that, 

a) b) 

c) d) 
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this inverse relationship is characteristics of Haynesville formation, which can be related to 

porosity type (inorganic) and porosity shape (slit).  On the other hand, accessible porosity values 

are strongly and directly related to results from MICP without any correction, ϕ𝐻𝑔 and with 

conformance and grain compression correction, ϕ𝑔 (Figure 6.8c-d). Once again, any deviation 

from unit slope is due to compressibility effect as discussed before.  

    

    

Figure 6.8: Results for 11 Haynesville samples a) Accessible porosity vs total porosity b) 

Accessible pore fraction vs total porosity c) Accessible porosity vs MICP porosity without 

any corrections d) Accessible porosity vs intrusion corrected MICP porosity  

 

Figure 6.9 summarizes and illustrates the contribution of each correction on the calculated 

porosity fraction values (ϕ/ϕ𝐻𝑔).  In general, conformance correction has the least effect while 

a) b) 

c) d) 
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inaccessible pore compression correction is the one with highest impact. This influence can be 

observed more distinguished in the case of Barnett samples. When effect of grain compression is 

investigated it can be concluded that it is as dominant as inaccessible pore compression correction 

and, in most cases, it can significantly alter results, which is why the compression correction should 

also be included in the porosity calculations.  

It is worth mentioning that pore accessibility is dynamic and depends on the pore network as well 

as fluid saturation; thus, the estimated accessible porosity values are likely to be different for 

various fluids. Which is why, with MICP test, only connectivity of the rock that partially saturated 

with mercury can be measured; pores smaller than 3 nm which mercury cannot intrude will not be 

evaluated using the methodology discussed here.  
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Figure 6.9: Contribution of each correction factor on calculated accessible porosity a) 

Barnett b) Haynesville  

6.4 Applications 

Correcting MICP data will have additional impacts on calculation of saturation curve and pore size 

distribution. Since suggested corrections reduce volume of mercury that is actually associated with 

pore volume filling, it does not come as surprise that it will have substantial effect on results. 

While not being part of the calculation for compressibility, it is important to establish a general 

form of volume balance for injected mercury. Total mercury volume at any given pressure is the 

summation of enveloping mercury volume (conformance), accessible pore intrusion and 

compression of accessible pores, inaccessible pores and grain. 

𝑉𝐻𝑔 (P) = 𝑆𝑖(𝑃)𝑉
𝑎𝑖

+ [(1 − 𝑆𝑖(𝑃))𝑉𝑎𝑖 −
(1 − 𝑆𝑖(𝑃))𝑉𝑎𝑖

exp [
𝑘p

𝑚 + 1
(𝑃𝑚+1 − 𝑃𝑖

𝑚+1)]
] + [𝑉𝑖𝑛𝑎𝑖 −

𝑉𝑖𝑛𝑎𝑖

exp [
𝑘p

𝑚 + 1
(𝑃𝑚+1 − 𝑃𝑖

𝑚+1)]
] + 

 

                            + [𝑉𝑔𝑖 −
𝑉𝑔𝑖

exp[
𝑘g

𝑚+1
(𝑃𝑚+1−𝑃𝑖

𝑚+1)]
] + 𝑉cf                                                                  (6.11) 
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where 𝑆𝑖 denotes the fraction of accessible pores intruded by mercury. The first four terms on the 

right-hand side of Eq. 6.11 represent volume contribution from accessible pore intrusion, 

accessible pore compression, inaccessible pore compression and grain compression, respectively. 

Please note that, 𝑆𝑖 remains zero until intrusion pressure (during compression stage), which Eq. 

6.11 will converge to Eq. 6.7 and at final pressure, 𝑆𝑖 becomes 1 and Eq. 6.11 will converge to 

Eq. 6.9. The volume contribution of intrusion, compression in accessible pores, inaccessible pores, 

and grains during MICP test calculated using Eq. 6.11 is illustrated in Figure 6.10 for one of the 

samples (B11).  

 

Figure 6.10: Volume contribution from intrusion and compaction (Sample B11) 

 

It is important to deduce how much each correction will affect the final interpretation of the MICP 

curve. As an example of cumulative saturation curve including effects of corrections for sample 

B1 is shown in Figure 6.11, which indicates that results can significantly change when corrections 

are considered in the calculations. As a result, this will also have an effect on pore size distribution 
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as shown in Figure 6.12 suggesting that pore size shifts toward smaller pores when corrections 

are considered. 

 

Figure 6.11: Mercury saturation curve from MICP data (Sample B1) 

 

 

Figure 6.12: Pore size distribution calculated from MICP data (Sample B1) 
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6.5 Conclusions 

In this chapter accessible porosity is calculated from MICP data for Barnett and Haynesville 

samples while including effect of pore compressibility. Results suggest that the new system of 

corrections for conformance, intrusion (pore compressibility during compression stage), and 

inaccessible pore compressibility after intrusion should be considered to avoid significant reserve 

overestimation. The main contributions of this chapter are as follows: 

• Mathematical model is developed to estimate pore compressibility from MICP. 

• Accessible/fluid saturated porosity was calculated considering conformance, grain 

compressibility and inaccessible pore compressibility corrections.  

• Petrophysical properties such as accessible porosity, saturation curve and pore size 

distribution may change significantly (unfavorably from an operator point of view) 

according to the proposed model.   
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Chapter 7 – Relative Permeability Model Based on Percolation Theory 

7.1 Introduction 

In this chapter, the Obj. 5 is addressed, where percolation theory has been applied to expresses 

relative permeability for two phase flow system. Relative permeability, which is a function of fluid 

saturation, wettability, pore structure, and connectivity is a critical parameter for modeling of 

multiphase flow in porous media. Although experimental work is a common method to measure 

relative permeability, alternatively analytical models have been also developed. Based on bundle 

of tubes model, Corey, (1954) proposed empirical relative permeability model that later was 

extended by Brooks and Corey, (1964) using capillary pressure data. Similarly, percolation theory-

based relative permeability models has been also studied, extensively (Daigle et al., 2015; 

Ghanbarian-Alavijeh and Hunt, 2012; Ojha et al., 2017c). Using the percolation theory and 

assuming a power law fit to pore size distribution, critical porosity can be expressed as:  

𝜙𝑐 = 𝜙𝑝𝑐 = ∫ 𝑠𝑓(𝑟)𝑟3𝑑𝑟
𝑟𝑚

𝑟𝑐
= 𝑠

𝐷

𝑟𝑜
−𝐷−𝑟𝑚

−𝐷

𝑟𝑚
3−𝐷−𝑟𝑐

3−𝐷

3−𝐷
, 

                        (7.1)

 

Rearranging Eq. 7.1, critical pore size, 𝑟𝑐 can be written as: 

𝑟𝑐 = 𝑟𝑚 (1 −
𝜙

𝛽
𝑝𝑐)

1

3−𝐷
, 

                        (7.2)

 

Similarly, for undersaturated condition Eq. 7.1 and 7.2 can be expressed as: 

𝜙𝑐 = 𝜙𝑝𝑐 = ∫ 𝑠𝑓(𝑟)𝑟3𝑑𝑟
𝑟

𝑟𝑐(𝑠)
= 𝑠

𝐷

𝑟𝑜
−𝐷−𝑟𝑚

−𝐷

𝑟3−𝐷−𝑟𝑐
3−𝐷(𝑠)

3−𝐷
, 

                        (7.3)

 

and  

𝑟𝑐(𝑆) = 𝑟𝑚 ((
𝑟

𝑟𝑚
)

3−𝐷
−

𝜙

𝛽
𝑝𝑐)

1

3−𝐷

, 
                        (7.4)

 

It should be noted that one of the major assumptions in Eq. 7.4 is that, critical porosity and critical 

percolation threshold is not function of saturation; critical percolation threshold remain for both 
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saturated and undersaturated conditions, whereas critical pore throat radius, 𝑟𝑐, is changing as a 

function of saturation: 

( )3 33 3

max

3 3 3 3

max min max min

D DD D
cc

c D D D D

r r Sr r
p

r r r r

− −− −

− − − −

−−
= =

− −
                          (7.5) 

Next, relative permeability is estimated as the third power of critical pore throat radius ratio 

obtained from Eq. 7.2 and 7.4: 

𝑘𝑟𝑤 =
𝑟𝑐

3(𝑆)

𝑟𝑐
3 = (

(
𝑟

𝑟𝑚
)

3−𝐷
−

𝜙

𝛽
𝑝𝑐

1−
𝜙

𝛽
𝑝𝑐

)

3

3−𝐷

, 
                        (7.6)

 

Eq. 7.6 can be further re-expressed as: 

3

3

1
D

w c

rw

c

S S

k

S








− 
− + − 

 =
 − 
 

, 
                        (7.7)

 

Since relative permeability should yield to zero when 𝑆𝑤  → 𝑆𝑐, Ghanbarian and Hunt (2012) 

suggested to add crossover saturation (𝑆𝑑) and modified Eq. 7.7 as: 
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                        (7.8)

 

In case 𝛽 𝜙⁄ ≈ 1, Eq. 7.8 can be simplified as: 
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                        (7.9)
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The power 𝑚 from Eq. 7.9 has been reported as 1 or 2. Later, Ohja et al. (2017) extended this 

model for bimodal fractal pore size distribution cases. 

Relative permeability of non-wetting phase was expressed as: 

( )

( )( )

( )

( )

2

,
1

, 1
1

c

c nw x

x c c

rnw

c

x nw

c

S S
S S S

S S S
k

S S
S S

S

 −
 

− −
= 

−
  −

 
                         (7.10) 

where 𝑆𝑥 = 𝑆𝑐 +
𝜙

𝑧
 with z representing coordination number.  

Relative permeability models developed based on percolation theory (Eq. 7.8 and 7.10) are 

evaluated for 2 sets of experimental data obtained from Bennion and Bachu, (2008). They have 

conducted series of CO2 brine drainage and imbibition tests for two shale samples from Alberta. 

To determine parameters needed for the model, MICP test data is used. However, residual 

saturations are not calculated from equations; instead, experimentally measured values are used. 

Results for sample #1 and sample #2 are illustrated in Figure 7.1 & 7.2 respectively. As it can be 

observed for sample #1, experimental data and percolation theory-based models fits considerably 

well for both wetting and non-wetting phases. However, for sample #2 results does not match as 

good as the first sample; nevertheless, it should be noted that these percolation theory-based 

relative permeability models have numerous assumptions that will be discussed in the next section 

and limit their practical applications. For more discussion about application of these models, 

readers can refer to Ojha et al., (2018, 2017b); they have studied several shale samples in light of 

various kerogen maturity, and kerogen content. 
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Figure 7.1: Relative permeability results for shale sample #1 (Calmar) 
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Figure 7.2: Relative permeability results for shale sample #2 (Colorado) 
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7.2 Relative Permeability Model - Phase Connectivity  

Although relative permeability models described by Eq. 7.8 and 7.10 have been previously applied 

to porous media, they suffer from several limitations. One of the major assumptions of these 

models is that they consider relative permeability for wetting phase to be function of 𝑟𝑐
3(𝑆) 𝑟𝑐

3⁄ . 

However, relative permeability would be much more accurate if it is calculated as the ratio of 

undersaturated and saturated permeability as: 

𝑘𝑟 =
𝑟𝑐

2(𝑆)

𝑟𝑐
2

𝜎𝑏(𝑆)

𝜎𝑏
, 

                        (7.11)

 

Another key and probably the most crucial assumption of these models is that, critical percolation 

threshold,  𝑝𝑐 is considered to be equivalent for both saturated and undersaturated pore systems 

(Eq. 7.5). However, numerous studies based on experimental data have shown that, in two phase 

flow system instead of pore connectivity, phase connectivity should be considered (Alpak et al., 

2018; Berg et al., 2016; Blunt, 2017; Herring et al., 2018, 2015, 2013; Liu et al., 2017).  

 

Figure 7.3: Illustration of phase connectivity as a function of saturation (Berg et al. 2016) 

As shown in Figure 7.3, phase connectivity is increasing with increasing saturation; thus, 

connectivity described with percolation threshold,  𝑝𝑐 is strong function of fluid saturation and 
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time. Considering dynamic phase connectivity/percolation threshold altering with fluid saturation 

and time, and further combining Eq. 7.11 with permeability model developed based on percolation 

theory (Eq. 2.32), relative permeability model can be rewritten as: 

𝑘𝑟 =

𝑟𝑚
2

𝑐 𝜙𝑆 [1 − (
1

1 + 𝑡)
3−𝐷

]

𝑡

(1 − 𝑝𝑐(𝑆))
2

3−𝐷

𝑟𝑚
2

𝑐 𝜙 [1 − (
1

1 + 𝑡)
3−𝐷

]

𝑡

(1 − 𝑝𝑐(𝑠 = 1))
2

3−𝐷

 
                        (7.12)

 

which can be further simplified considering the same maximum pore throat radius and fractal 

dimension for both undersaturated and saturated porous media: 

𝑘𝑟 = 𝑆 (
1 − 𝑝𝑐(𝑆)

1 − 𝑝𝑐(𝑠 = 1)
)

2
3−𝐷

 
                        (7.13)

 

Alternatively, substituting from Daigle (2016) permeability model (Eq. 2.12), relative 

permeability relation can be expressed as: 

𝑘𝑟 = 𝑆2 (
1 − 𝑝𝑐(𝑆)

1 − 𝑝𝑐(𝑠 = 1)
)

2
3−𝐷

+2

 
                        (7.14)

 

To validate the new proposed model (Eq. 7.13), two sets of experimental data from the literature 

(strongly water-wet sintered glass (Robuglass) and Bentheimer sandstone) are used (Liu et al., 

2017); in their study, fluid spatial distribution of the samples has been imaged and analyzed using 

the Euler Poincare Characteristics (EPC). Finally, relative permeability is estimated for each 

sample using Lattice Boltzmann Method (LBM). They have observed that, non-wetting phase 

relative permeability is strong function of Euler characteristics of saturated phase, which they have 

correlated as a power law function. Following Blunt (2017), EPC can be expressed in terms of 

coordination number as: 

3 (1 2)D p t pe N C n n n z= − = − = −      (7.15) 
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where N is the number of isolated pore structures in a 3D rock sample, C is the number of tunnels 

(redundant pore-system connections), 𝑛𝑝 is the number of pore bodies, 𝑛𝑡 is the number of pore 

throats, and 𝑧 is the average coordination number. Expressing percolation threshold as a function 

of coordination number as 𝑝𝑐 = 1.5/𝑧 (Sahimi 1995), Eq. 7.15 can be rearranged as: 

3

3

0.25
1

p D

c

p D

n e
p

n e

−
− =

−
     (7.16) 

Using EPC and relative permeability values reported by Liu et al., (2017), Eq. 7.13 and the effect 

of phase connectivity are studied here. First, the normalized average coordination number of the 

saturating phase as a function of fluid saturation is evaluated. As shown in Figure 7.4, there is a 

strong relationship between phase connectivity described by coordination number and phase 

saturation, as expected.  

 

Figure 7.4: Coordination number of the saturating phase as a function of saturation  
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relationship 𝑎(1 − 𝑝𝑐(𝑠))𝑏. Please note that, the exponent from power law function, 𝑏 corresponds 

to 
2

3−𝐷
, where constant term, 𝑎 corresponds to 

1

(1−𝑝𝑐(𝑠=1))
2

3−𝐷

 . 

 

 

Figure 7.5: Relative permeability estimated from Eq. 7.14  

 

7.2.1 Residual Saturation 

Another challenging assumption in the previously developed models is that residual saturation has 

been related to critical percolation threshold, 𝑝𝑐 of pore structure. Thus, those models predict that 

both wetting phase and non-wetting phases have the same residual saturations. Which is why to 

match the relative permeability data from shale samples (Figure 7.1 & 7.2), experimentally 

measured residual saturation are used instead of analytically determined values. 

However, it has been discussed in the literature that, residual saturation for wetting phase is due to 
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snap-off will occur can be expressed based on the ratio of the threshold capillary pressures for 

snap-off, 𝑃𝑐
𝑠𝑛𝑎𝑝

 and piston-like advance, 𝑃𝑐
𝑝𝑖𝑠𝑡𝑜𝑛

  (Blunt 2017): 

( )1 tan tansnap
p AI c

cR piston

c t I

rP
P

P r C

 −
= =      (7.17) 

where 𝑟𝑝 is pore body radius, 𝑟𝑡 is pore throat radius, 𝜃𝑅 is advancing contact angle, 𝛽 is the corner 

half-angle, and 𝐶𝐼 is coefficient depending on pore geometry and contact angle being between 1 

and 2.  Based on Eq. 7.17, Blunt (2017) suggested that, there are mainly four parameters that 

control the trapping of non-wetting phase. Two parameters favoring the snap-off are the smaller 

corner half-angle and stronger wetting condition (smaller 𝑡𝑎𝑛𝜃𝑅and 𝑡𝑎𝑛𝛽).  

Another important parameter is pore body to throat aspect ratio, 𝑟𝑝/𝑟𝑡, which needs to be more 

than 2 to allow occurrence of trapping. To understand impact of aspect ratio on residual saturation, 

Tran (2017) have analyzed the pore size distribution obtained from SEM images and MICP test 

data, where former represents pore body and the latter corresponds to pore throat size. Next, he 

investigated the relationship between the ratio of pore body obtained from SEM images to pore 

throat from MICP to the amount of mercury trapped inside the samples after MICP unloading (the 

intrusion/extrusion difference), which a strong correlation has been observed (Figure 7.6). The 

results obtained from Tran (2017) study is consistent with the experimental observations from 

Wardlaw and McKellar, (1981) and Chatzis et al., (1983). In both studies, the most dominant factor 

on the amount of trapping is the pore to throat aspect ratio and the effect of connectivity on residual 

saturations is secondary. 
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Figure 7.6: Difference between mercury intrusion and extrusion versus pore body to throat 

ratio shows a directly proportional relationship (Adopted from Tran 2017). 

 

Finally, although it has been implicitly expressed in Eq. 7.17, another important factor to affect 
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Figure 7.7: Residual saturation as a function of phase connectivity (modified from Herring 

et al. 2015) 

7.3 Conclusions 

In this chapter, percolation theory has been utilized to develop relative permeability to model 

multiphase flow in porous media. Unlike previously developed models, in the proposed model, 

dynamic phase connectivity changing with fluid saturation and time has been considered. The new 

model was validated using experimental data obtained from the literature. Moreover, the major 

factors affecting non-wetting phase trapping (smaller corner half-angle, stronger wetting 

condition, pore body to throat ratio, and pore connectivity) were also discussed.  
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Chapter 8 – Conclusions and Future Recommendations 

This chapter entails the main conclusions and contributions of this dissertation and discusses the 

recommendations for future research. 

8.1 Major Contributions and Conclusions 

• Analytic permeability model is developed based on critical path analysis (CPA) which is 

explicitly function of pore connectivity. After redefining critical pore throat, radius, and electrical 

conductivity from Katz & Thompson model, the new permeability model is expressed as a function 

of maximum pore radius, porosity, fractal dimension, and average coordination number. When 

compared with experimental data for tight sandstone and shale sample, proposed model can 

accurately predict permeability, especially for tight sandstone. In case of shale, higher observed 

error can be due to miscalculation of critical pore throat radius from MICP test data and/or due to 

higher estimation of experimentally measured permeability values because of micro-crack effect. 

• Accessible porosity and hydraulic connectivity as a function of sample size for Barnett and 

Haynesville shale formations are evaluated based on MICP data. It has been observed that MICP 

measured accessible porosity values and matrix permeability decreases significantly with 

increasing sample size, where this reduction can be explained with pore connectivity/average 

coordination number reduction. 

• Based on CPA-based permeability model explicitly function of pore connectivity impact of 

connectivity loss under effective stress has been analyzed for shale samples. Orders of magnitude 

permeability reduction observed under effective stress is explained with micro-crack closure at 

early stage and pore shrinkage and connectivity loss due to bond breakage at later stage. Based on 

two samples studied average coordination number has reduced 36% and 51% when effective stress 

is around17,000 psi. 



122 

• A complementary study was conducted to analyze impact of pore connectivity on permeability 

for the Eagle Ford shale sample. Permeability of 3D pore structure constructed using SEM images 

is estimated simulating fluid flow using LBM. Additionally, pore connectivity is quantified based 

on Euler-Poincare Characteristics as a function of sample size. Results indicate that, permeability 

is around 1.17 μd sample size is at 6 μm, where this value is more than 16 md when sample size 

is 1 μm; 15000 times reduction is observed. Moreover, the pore connectivity determined through 

EPC method is consistent with LBM results. 

• Accessible/fluid saturated porosity values calculated using mercury injection capillary 

pressure (MICP) are evaluated for Barnett and Haynesville shale samples. A general approach is 

proposed to accurately estimate the accessible porosity of shale sample from MICP data 

considering conformance, grain compressibility, and inaccessible pore compressibility 

corrections. Accessible porosity calculated for both formations have been analyzed and compared 

to understand the impacts of pore structure and topology on the connectivity.  

• A two-phase relative permeability model based on percolation theory is proposed and impact 

of the phase connectivity on relative permeability curves is investigated. Validating with 

experimental data, it has been concluded that, dynamic phase connectivity/percolation threshold 

should be considered to accurately estimate relative permeability. Moreover, pore connectivity is 

one of major factors determining the amount non-wetting phase saturation. 

 

8.2 Recommendations for Future Work 

The proposed future research topics based on the outcomes of this dissertation are listed as follows: 

• As extensively discussed in Chapter 2, although CPA-based permeability models have 

significant advantages including an explicit expression for the pore connectivity, there are some 
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limitations associated with these models, especially for shale samples. The discrepancy between 

calculated and experimentally measured values in this dissertation, might be either due to higher 

estimation of experimental results because of micro-crack effect or miscalculation of critical pore 

throat radius, 𝑟𝑐 obtained from MICP.   These limitations associated with shale formations can be 

extensively investigated with a larger dataset. Since LBM simulations can provide intrinsic 

permeability values without micro-crack effect, permeability values measured experimentally can 

be compared with LBM simulation results to understand impact of micro-cracks on permeability 

measurements. Moreover, LBM simulations results can be compared with MICP based analytic 

models for the same samples to evaluate accuracy of CPA-based models.  

• Moreover, impact of connectivity loss can be evaluated depending on formation and pore type. 

It can be expected that in slit shape pores connectivity loss will be more pronounced. 

• One of the limitations associated with LBM simulations is that, the results obtained from 

simulations strongly depend upon image resolution and thresholding technique. The effect of 

resolution and thresholding can be further investigated for more shale samples.   

• Percolation theory based relative permeability model can be applied to shale samples after 

obtaining saturation dependent image stacks. The challenging part of this approach is that, different 

SEM image stacks for the same sample should be obtained for numerous saturations and then used 

to calculate saturation-dependent effective permeability through LBM simulations; although this 

is a comprehensive combined experimental and computational work.  
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