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Abstract

In this thesis, efficient computational approaches for treatment of transformed path

integrals (TPIs) are proposed. The TPI-based method allows us to calculate the time

evolution probability density functions (PDFs) using a short time propagator matrix that

accounts for the transition probability in a transformed domain. A grid-based implemen-

tation of the TPI, in contrast to the conventional fixed-grid implementation of a path inte-

gral (PI), allows the propagation of the PDF to be performed on a dynamically adaptive

grid parametrized by the mean and covariance of the PDF. TPI-based methods generate

PDFs from all possible paths within the transformed space, and while these methods are

found to be highly effective at capturing tail information in systems with large drifts, dif-

fusions, and concentrations, they can become somewhat computationally expensive when

applied to systems that must be represented by large numbers of data points. The pur-

pose of this thesis is to develop computationally efficient TPI-based methods that largely

preserve the accuracy and other desirable features of the original TPI method.

The first proposed method, referred to as the bandlimited TPI (BL-TPI) method, takes

advantage of the fact that the transition probability is often concentrated around a set of

peaks, with one natural peak occurring for each source state. This allows us to consider

sparse matrix representations of the transition probability matrix operator and consider a

region of importance about the peak transition probability curve for consideration in PDF

propagation while neglecting all values outside of this region. With the use of sparse ma-

trix tools, the BL-TPI enables us to perform PDF propagation using far fewer operations

than the standard implementation. In the second proposed method, a TPI implementation

based on the Symmetric Fast Gauss Transform (SFGT) is proposed. This method uti-

lizes a Taylor series expansion of the Gaussian kernel in the propagator matrix to reduce

the convolution operation for the PDF to an infinite sum of moments. This allows us to

xiii



perform calculations involving source and target terms separately, eliminating their con-

volution and in the process potentially reducing the associated computational complexity.

In order to demonstrate the effectiveness of the proposed approaches, comparisons

with the standard TPI implementation are performed for canonical problems in one-

dimensional and multi-dimensional state spaces. The results from the BL-TPI method

appear promising and indicate that the method is applicable to a wide range of cases. In

contrast, the effectiveness of the SFGT approach is found to be inherently conditional,

and the computational cost of this method can exceed that of the standard TPI method in

many cases.
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1 Introduction

1.1 Stochastic Differential Equations and the Fokker-Planck Equa-

tion

A stochastic process refers to any process whose outcome is dependent on a series

of variables that can be considered random due to internal and external factors that are

uncontrollable or unpredictable. The study of these processes and the stochastic differ-

ential equations (SDEs) used to solve them are paramount to many fields of science,

engineering, and mathematics, with applications ranging from particle physics, to ther-

modynamics, to structural and fluid mechanics, to vehicles navigating complex and tur-

bulent environments. This wide range of uses for SDEs gives tremendous value to the

development of efficient and accurate methods for solving them.

The state of a stochastic system at a given time can be modeled using a probability

density function (PDF), and by assuming that the random excitation processes of the sys-

tem occur in Wiener increments that follow the Markov property, the time evolution of

the PDF that characterizes the system can in many cases be accurately predicted. In such

cases, the time evolution of a PDF is governed by the Fokker-Planck equation (FPE), a

second order differential equation which accounts for both the system dynamics and the

random excitations through a drift vector function and a diffusion coefficient matrix, re-

spectively. No general analytical solution to the FPE currently exists, so outside of a few

specific circumstances the time evolution of a PDF must be either analytically approxi-

mated or numerically estimated.

Among the most commonly used numerical solutions are Monte Carlo (MC) meth-

ods, which are a class of numerical methods that construct an approximate PDF from

a series of random samples. MC methods are particularly useful for representing infor-
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mation about statistical properties of the PDF as a whole, such as mean and covariance.

However, they often suffer from sampling errors that tend to result in loss of accuracy

in representations of tail regions of the PDF, such regions representing extreme but not

impossible events. Grid-based Finite Difference (FD) and Finite Element (FE) methods

can more precisely capture tail information of the PDF over small time intervals and few

iterations, but tend to be computationally expensive. Furthermore, such methods are tra-

ditionally implemented on a fixed grid which may not be able to accurately capture the

transient behavior of the PDF for systems that are expanding, contracting, or translating.

1.2 Introduction to the Transformed Path Integral

The Path Integral (PI) solution to the Fokker-Planck equation utilizes a short time

propagator to yield a solution that is exact in the short time limit. In conventional fixed

grid implementations of the PI, the short time propagator is realized as a propagator matrix

comprised of the transition probabilities between all source and target states. This prop-

agator matrix is then used to find the new state PDF at the current time using a weighted

sum of these "paths". Early formulations of Path Integrals were developed by Norbert

Wiener as a theoretical tool to address Brownian motion, and have been found to have

many appealing features, such as preserving the non-negativity of PDFs. Furthermore, in

the short time limit as the time increment approaches zero, the PDF propagation is an ex-

act solution of the FPE; however, similar to the aforementioned finite difference and finite

element methods, traditional grid-based PI implementations struggle with the limitations

of fixed grid formulations, and consequently have not found widespread practical usage.

To address these limitations, the Transformed Path Integral (TPI) method was devel-

oped as a robust alternative to the fixed grid PI (e.g., Subramaniam et al., 2017). This

formulation of the propagator matrix utilizes a dynamic state space transformation that
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continuously shifts and distorts the computational domain according to the mean and co-

variance of the probability state. The TPI inherits several of the desirable features of the

PI, while through the aforementioned transformation maintaining an efficient resolution

of a relevant state space. The latter feature allows the TPI to avert many common prob-

lems associated with conventional fixed grid approaches caused by large drift dynamical

systems and large diffusion white noise excitations, as well as to ensure sufficient reso-

lution to accurately capture PDF peak information in contracting systems that necessitate

finer grid spacing over time.

1.3 Objective and Structure

The goal of this study is to develop, test, and compare new formulations based on the

TPI method; to determine their respective computational efficiencies compared to that of

the standard TPI method; to develop guidelines for their application; and to identify their

limitations and areas for further research. Though it has many appealing features, the

standard TPI implementation can be made more computationally efficient. In the stan-

dard implementation, the the convolution operation in the PDF propagation is reduced to

a matrix-vector multiplication. This involves O(N2) operations in a computational grid

with N grid points. In this study, we propose two classes of methods for improving the

efficiency of the TPI formulation. The first of these methods, bandlimiting, takes advan-

tage of the concentration of transition probability values in a relatively small region about

a set of peaks, while the second method, based on the symmetric fast Gauss transform

(SFGT), manipulates the Gaussian nature of the kernel in the propagator matrix to split

the source and target terms in the convolution operation. For either method the number of

operations reduces to O(kN) for some k << N. In the BL-TPI method, k corresponds to

bandwidth, while in the SFGT-TPI method, it corresponds to the size of the Taylor series

3



summation; in both cases it can be adjusted based on the desired accuracy.

In Chapter 2, we examine the mathematical formulation of Transformed Path Inte-

grals and develop new TPI-based formulations that incorporate principles of bandlimiting

and the Symmetric Fast Gauss Transform. In Chapter 3, we perform an analysis of the

BL-TPI by comparing its performance for different bandwidths when applied to canonical

SDOF systems. We then extend this analysis to MDOF systems to arrive at recommen-

dations for an optimal bandwidth and conditions for optimal performance of the BL-TPI

method. In Chapter 4, we analyze the SFGT TPI formulation and develop a framework for

estimating the number of moments needed to produce accurate results within specific pa-

rameters and, conversely, to establish approximate boundaries within which the solution

from the SFGT TPI method may be considered accurate. We then estimate the number

of moments needed to accurately solve canonical stochastic systems, and measure the ac-

curacy of the PDF propagation over a single time step for these systems within different

boundary precisions. In Chapter 5 we study and compare the relative performances of the

BL-TPI and the SFGT TPI to develop recommendations based on the results of this study.

Chapter 6 presents our conclusions and Chapter 7 outlines the areas for future research to

build upon these findings.
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2 Mathematical Formulation

In this chapter, the definition of the Transformed Path Integral is outlined and its

structure and properties are examined as a basis for bandlimiting and Symmetric Fast

Gauss Transform formulations. Expressions for the peak states in the transition proba-

bility matrix and for an optimal bandwidth about this set of states are obtained for single

degree of freedom (SDOF) systems, allowing us to develop bandlimited implementations

of the TPI method. Different approaches for extending the bandlimited TPI (BL-TPI)

formulations into multiple degree of freedom (MDOF) dynamical systems are also pre-

sented. Additionally, the formulation for the computational procedure symmetric fast

Gauss transform (SFGT) is examined. New SFGT-based TPI implementations for both

SDOF and MDOF systems are developed, while use of the Gauss-Hermite quadrature to

improve efficiency is also illustrated.

2.1 Transformed Path Integral

A dynamical system subjected to random excitations may be modeled by an Itô

stochastic differential equation, as shown below

dx(t) = f(x(t), t)dt + A(x(t), t)dw (1)

in which x ∈ RNs×1, f ∈ RNs×1, and A ∈ RNs×Nw represent the state vector, the

nonrandom drift, and the diffusion coefficient matrix, respectively, while dw(t) ∈ RNw×1

represents the Wiener increment at time t. These increments form a set of vectors with

the distribution w(t)−w(s) ∼ N(µ, σ2) where µ = 0 and σ2 = t− s. When applied to

5



SDOF systems, Eq. (1) reduces to

dx(t) = f (x(t), t)dt + A(x(t), t)dw (2)

The evolution of the state probability for the process in Eq. (1) may be expressed in

terms of a transition probability density function which represents the conditional prob-

ability of systems reaching a target state given a source state. The transition probability

for a system with N discrete source and target states can be expressed as a N × N ma-

trix. In the short-time limit, i.e. for a small time increment dt, the matrix represents the

short-time propagator for the system. For the dynamical system described by Eq. (1),

each element of the short-time propagator matrix is given by

p(x, t|x′, t′) = (4πdt)−Ns/2 {det
[
G(x′, t′)

]}−1/2

× exp
{
− 1

4dt
[
x− x′ − f(x′, t′)dt

]T [G(x′, t′)
]−1 [x− x′ − f(x′, t′)dt

]}
(3)

where dt = t− t′ and G = 1
2(AAT). In the case of SDOF systems, Eq. (3) reduces to

p(x, t|x′, t′) =
1

2πA2(x, t)dt
× exp

{
− [x− x′ − f (x′, t′)dt]2

2A2(x′, t′)dt

}
(4)

With the above expressions for the short-time propagator matrix, the PDF propagation

is performed via the Chapman-Kolmogorov equation.

p(x, t) =
∫

p(x, t|x′, t′)× p(x′, t′)dx′ (5)

p(x, t) =
∫

p(x, t|x′, t′)× p(x′, t′)dx′ (6)

Grid-based numerical implementations of Eqs. (5) and (6) reduce the convolution

6



operation to a matrix-vector multiplication. While fixed grid implementations of the path

integral method are accurate, numerically stable, and maintain non-negativity of probabil-

ity, such implementations face challenges in accurately describing the transient behavior

of PDFs in systems with large drift, diffusion, or concentration of probability.

The transformed path integral approach offers a robust alternative to the conventional

fixed grid implementation of path integrals. The TPI method is able to better address

the challenges due to drift, diffusion, or concentration of the PDF through a dynamic

transformation of the state space based on the mean and covariance of the state variables.

This dynamic transformation is given by

zt = (xt − µt)/σt (7)

for SDOF systems, where xt and zt are the absolute coordinates and transformed coor-

dinates at time t, respectively, and µt and σ2
t are the mean and covariance of xt. The

equivalent transformation for MDOF systems is given by

zt = R−1
t (xt − µt) (8)

where Σ ≡ RtRT
t denotes the covariance matrix of xt at time t.

Based on the transformation in Eq. (7), we obtain the new formulation of the short-

time propagator in the transformed space for SDOF systems:

p(z, t|z′, t′) =
σ√

2πÃ2(z′, t′)dt
× exp

{
−
[
σz− σ′z′ − δ f̃ (z′, t′)dt

]2
2Ã2(z′, t′)dt

}
(9)

where f̃ (zt, t) = f (σtzt + µt, t), Ã(zt, t) = A(σtzt + µt, t), and δ f (xt, t) = f (xt, t)−

7



〈 f (xt, t)〉xt . Similarly, the formulation for MDOF systems is derived from Eq. (8) as

p(z, t|z′, t′) = (4πdt)−Ns/2
{

det
[
R−1G̃(z′, t′)R−T

]}−1/2

× exp
{
− 1

4dt

[
zT

e G̃−1
(z′, t′)ze

]}
(10)

where ze = Rz−R′z′− δf̃(z′, t′)dt, f̃(z, t) = f(Rz+ µ, t), and G̃(z, t) = G(Rz+ µ, t).

The mean and covariance are updated using the equations

µt+dt = µt + 〈 f̃ (zt, t)〉zt dt (11)

σ2
t+dt = σ2

t + 〈Ã2(zt, t)〉zt dt + 2σt〈δ f̃ (zt, t)zt〉zt dt + 〈[δ f̃ (zt, t)]2〉zt dt2 (12)

for SDOF systems and

µt+dt = µt + 〈f̃(zt, t)〉zt dt (13)

Σt+dt = Σt + 2〈G̃(zt, t)〉zt dt

+ 〈[Rtzt]
[
δf̃(zt, t)

]T
+
[
δf̃(zt, t)

]
[Rtzt]

T〉zt dt + 〈
[
δf̃(zt, t)

] [
δf̃(zt, t)

]T〉zt dt2 (14)

for MDOF systems.

The update equation between times t and t + dt for a discrete representation of the

PDF is given as

Pt+dt = Bt,dtPt (15)

where Pt is a vector comprised of the PDF values corresponding to the grid points in the

transformed space at time t and B is the short-time propagator matrix derived from Eqs.

(9) and (10), for SDOF and MDOF systems respectively, for all source and target states.
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The mean and covariance update equations (Eqs. (11), (12), (13), and (14)) are similarly

discretized as weighted averages.

In order to better maintain the stability and accuracy of the TPI, it is desirable to

ensure that the propagator matrix B obeys the zeroth moment condition of a Markov

transition matrix ∫
p(z, t|z′, t′)dz = 1 (16)

through the following normalization process:

Bnew
i,j =

Bold
i,j

∑i Bij(t, dt)∆zi
(17)

where ∆zi is the transformed mesh size. Likewise, the zeroth moment condition can be

preserved in the updated Pt+dt through a similar normalization.

pnew
i (t + dt) =

pold
i (t + dt)

∑i pi(t)∆zi
(18)

Enforcing these zeroth moment properties through normalization allows us to main-

tain greater accuracy in numerical implementations.

2.2 Bandlimiting

In signal theory, bandlimiting is the practice of restricting a signal’s representation to

a specific domain, beyond which all values are considered negligible and assumed to be

zero. To apply bandlimiting to the propagator matrix of the TPI, we recognize that for

every source state, there is a single most probable target state about which all significant

probability is concentrated. By developing a function of the source state, we obtain a

set of peaks hereafter referred to as the peak transition probability set (PTPS). We then

9



designate a bandwidth based on the Gaussian distribution of the Wiener process, which

we use to reduce the computation and storage demands of the propagator matrix by only

obtaining the matrix values within that specified bandwidth about the PTPS.

Figure 1: Model of a bandlimited propagator matrix for simple diffusion on a fixed grid
(left) and transformed grid (right), with peak states in red.

2.2.1 Peak Transition Probability Curve

Each element Bij in the short-time propagator matrix B represents the probability of

the system reaching the ith target state from the jth source state in the transformed space.

Since random excitation is modeled as a Gaussian Wiener process, there is a single peak

target state for each source state. These peaks corresponds to the states obtained from the

deterministic path in Eqs. (1) and (2), i.e., by setting the random excitation term to zero

and, in the context of the transformed path integral method, incorporating the dynamic

transformation in Eqs. (7) and (8). The PTPS can also be obtained by setting the gradient

of p(z, t|z′, t′) in Eqs. (9) and (10) to zero and isolating the target state z. In terms of

transformed coordinates, the expressions for the peak states in SDOF and MDOF systems

are, respectively, given by

zpeak =
σ′z′ + δ f̃ (z′, t)dt

σ
(19)
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zpeak = R−1 [R′z′ + δf̃(z′, t)
]

(20)

The peak for each discrete source state can then be rounded to the nearest indexed

target state. The resulting curve is the basis for developing an efficient bandlimited prop-

agator matrix.

2.2.2 Diffusion Range

Because a Wiener process is characterized by Gaussian distribution, a reasonable

range surrounding the PTPS can be calculated in terms of the strength A of the diffusion

process in absolute space and Ã in the transformed space, corresponding to a single stan-

dard deviation of its Gaussian distribution. In SDOF systems, any independent Wiener

increment is characterized by the distribution w(t + dt) − w(t) ∼ N(0, dt). Conse-

quently, a single standard deviation of the transformed random excitation term Ãdw is

given as

σnoise = Ã
√

dt (21)

By multiplying the factor Nσ, hereafter referred to as the "bandwidth strength", by

the diffusion range, the semi-bandwidth—that is, the distance between the PTPS and the

outer boundary of the bandlimited space, equal to half of the total bandwidth—can be

obtained. Given a bandwidth strength Nσ, the bandlimited propagator matrix represents

all transition probability within Nσ standard deviations of the Gaussian Wiener process

about the PTPS.

In MDOF systems, there are multiple approaches to defining a suitable range about

the PTPS. We begin by obtaining the principal semi-axes ũ of the ellipse represented

by the transformed diffusion coefficient matrix Ã, which can be accomplished using the

principal axis theorem. If Ã is a diagonal matrix then these axes align with the axes of the
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evaluated space and Ã
√

dt can be used as a basis for the bandwidth along each axis, but

if that is not the case then an approximation is needed.

One approach is to apply the length of the maximum principal semi-axis |ũmax|
√

dt

as the basis for all axes, though this approach inevitably overestimates anisotropic diffu-

sion processes. As an alternative, for each ith degree of freedom we recommend using the

maximum component vector ũi,max among all principal semi-axes along the correspond-

ing cardinal axis.

σi,noise = ũi,max
√

dt (22)

Similar to the SDOF case, this value must be multiplied by the user’s chosen band-

width strength Nσ and then converted to a number of indexed terms in both directions

along each degree of freedom. This can be obtained from the relation dx = Rdz.

Due to the dynamic nature of the transformation used in TPI methods, the diffusion

range must be recalculated at each iteration to keep it scaled to the transformed space.

This increases the long-term efficiency of the TPI method when applied to expanding

systems, while ensuring that accuracy is not lost over time in concentrating systems. In

systems with state-invariant diffusion processes, to which we restrict our research in this

study, only one range needs to be obtained at each discrete time step.

2.2.3 Bandlimiting for SDOF Case

Using the PTPS and semi-bandwidth values obtained in the previous two sections, it

is possible to set boundaries beyond which all values in the short-time propagator matrix

B are considered zero. In doing so we obtain a sparse matrix C as an approximation of the

full propagator matrix B, thereby reducing the computational cost and storage demands

and potentially increasing the speed of the TPI implementation. By combining the upper

and lower limits of the transformed data points z with the upper and lower limits of the
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diffusion range about the PTPS, a set of boundaries can be obtained within which to gather

data for a sparse matrix.

From these, the contents of the matrix C can be obtained and C can be substituted for

B using sparse matrix software tools. This reduces the number of operations required to

calculate all data points from O(N2) to O(bN), where b is the total bandwidth in terms

of indexed values. In the MDOF case, there is a bandwidth bi for each individual ith

degree of freedom, such that the total bandwidth is b = Πn
i=1(bi) for an n-dimensional

diffusion process. Because a sparse matrix indexes each data point in C by its coordinates

and value, i.e. (i, j, Cij), the total storage space required for a sparse matrix is O(3bN).

Therefore, if 3b < N, then the storage space required by the BL-TPI is less than that of

the standard TPI method.

2.2.4 Bandlimiting for MDOF Case

In order to extend the BL-TPI method to systems with n > 1 degrees of freedom,

we examine two general approaches: bulk bandlimiting and operator splitting. The bulk

bandlimiting method, which evaluates every data point within an n-dimensional space

developed about the PTPS, is the more computationally expensive method but is able to

capture more complex and detailed probability data. Operator splitting is examined as an

alternative method that separates the MDOF BL-TPI implementation into a sequence of

SDOF operations.

2.2.4.1 Bulk Bandlimiting

The most accurate approach to bandlimiting for MDOF systems is to use the diffusion

range σnoise along each axis to generate an n-orthotope or n-ellipsoid about each state

in the PTPS. While an ellipsoid is theoretically more efficient, its boundaries are more

complex and difficult to accurately and effectively code. Therefore, for the purpose of
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this study, we will be developing an orthotope space about the PTPS whose lengths along

each axis are the corresponding bandwidths.

2.2.4.2 Operator Splitting

An alternative to bulk bandlimiting considered in this thesis is the method of opera-

tor splitting. Operator splitting approximation exploits the property y1 = e(L1+L2)ty0 =

eL1teL2ty0 to separate a single convoluted system into a set of SDOF systems that operate

along each degree of freedom. By approximating the MDOF short-time propagator ma-

trix B as a sequence of SDOF propagations, an approximation of the time-transformed

PDF can be obtained. In a 2D problem, the simplest form of operator splitting, hereafter

referred to as "simple splitting", is implemented through the following steps:

p̃t′ = eLz1 dt pt′ (23)

pt = eLz2 dt p̃t′ (24)

Alternative forms of the operator splitting process include Strang splitting, derived

from the identity e(L1+L2)dty0 = e(
1
2 L1+L2+

1
2 L1)dty0 and implemented through the steps

p̃t′ = eLz1
dt
2 pt′ (25)

pt′ = eLz2 dt p̃t′ (26)

pt = eLz1
dt
2 pt′ (27)

and high-order splitting, derived from the identity e(L1+L2)dty0 = e(L2+L1)dty0, imple-

mented through the steps

p̃t′,1 = eLz1 dt pt′ (28)
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pt,1 = eLz2 dt p̃t′,1 (29)

p̃t′,2 = eLz2 dt pt′ (30)

pt,2 = eLz1 dt p̃t′,2 (31)

pt =
1
2
(pt,1 + pt,2) (32)

Expanding these methods to systems with three or more degrees of freedom is beyond

the scope of this study, but variants of the operator splitting process for higher dimensions

may be developed by substituting e(Ln+Ln+1)dt for eLndt.

The accuracy of the operator splitting process can be improved if the update equations

for the mean and variance (Eqs. (13) and (14)) are performed between operations. This

can be accomplished by reducing all but the nth rows of f̃(zt, t) and G̃(zt, t) to zero when

operating along the nth axis. The overall accuracy of the operator splitting method is

also found to improve when the normalization process, Eq. (18), is performed between

operations.

2.3 Symmetric Fast Gauss Transform

The Symmetric Fast Gauss Transform (SFGT) is a method in the family of Fast Mul-

tipole Methods intended to reduce the computational complexity of convolution opera-

tions like path integrals by separating convoluted terms (e.g., Di Paola et al., 2009). This

method is obtained from the path integral solution using the following key substitution:

exp
{
− (x− x′)2

l2

}
= exp

{
−
(

x− s
l

)2
}

exp

{
−
(

x′ − s
l

)2
}

×
∞

∑
k=0

2k

k!

{
x− s

l

}k {x′ − s
l

}k

(33)

15



This relationship can be proven by recognizing that (x− x′)2 = [(x− s)− (x′ − s)]2 =

(x− s)2 + (x′ − s)2 − 2(x− s)(x′ − s) and applying Taylor series expansion to the ex-

ponential function exp
{

2 (x−s)
l

(x′−s)
l

}
. This enables us to separate the convolution of x

and x′.

2.3.1 SDOF Transformed SFGT Formulation

The purpose of an SFGT path integral formulation is to separate source and target

terms. For single degree of freedom systems, this formulation can be obtained by substi-

tuting g(x′, t′) = x′ − f (x′, t′)dt for x′, setting s = 0 and l = A
√

2dt, and applying the

relation in Eq. (33) to the PI formulation, Eqs. (4) and (6).

p(x, t) =
1

l
√

π

∞

∑
k=0

2k

k!
exp

{
−
(x

l

)2
}{x

l

}k

×
∫

exp

{
−
(

g(x′, t′)
l

)2
}{

g(x′, t′)
l

}k

p(x′, t′)dx′ (34)

In order to create a TPI formulation of the SFGT, Eq. (34) can be revised to iterate

in the transformed space. By incorporating the relation in Eq. (7), a new TPI SFGT

formulation is obtained

p(z, t) =
1

l̃
√

π

∞

∑
k=0

2k

k!
exp

{
−
(

z
l̃

)2
}{

z
l̃

}k

×
∫

exp

{
−
(

g̃(z′, t′)
l̃

)2
}{

g̃(z′, t′)
l̃

}k

p(z′, t′)dz′ (35)

where l̃ = l/σ and g̃(z′, t′) = (σ′z′ − δ f̃ (z′, t′)dt)/σ.

Because the convolution of z and z′ is separated, the integral component of the Eq.

(35) can be calculated separately. Given a finite summation size of K, the integral com-
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ponent of is of computational complexity O(KN) for a space with N possible states, and

the subsequent application of the obtained results to the summation is of equal complex-

ity. The total computational complexity of the SFGT formula in SDOF cases is therefore

O(2KN). A larger K value results in greater accuracy, such that as K approaches infinity,

the solution to the SFGT formulation approaches that of the TPI.

2.3.2 MDOF Transformed SFGT

The SFGT formulation in Eq. (35) can be extended to MDOF systems using the

MDOF equivalent of Eq. (33). In this context, M ≡ LLT and is therefore always sym-

metrical. Because of this symmetry, xTM−1x′ = x′TM−1x, resulting in the following

equation:

exp
{
−(x− x′)TM−1(x− x′)

}
= exp

{
−(x− s)TM−1(x− s)

}
× exp

{
−(x′ − s)TM−1(x′ − s)

}
×

∞

∑
k=0

2k

k!

{
L−1(x− s)

}[k]T {
L−1(x′ − s)

}[k]

(36)

Here x[k] represents the Kronecker power, which is the k-fold Kronecker product of

x, i.e., x⊗ x⊗ ...⊗ x.

Setting s = 0, L = A
√

2dt and substituting Gx(x′, t′) = x′ − f (x′, t′)dt for x′

allows us to obtain the following formulation for the fixed grid MDOF SFGT path integral

implementation.

p(x, t) = {π}−Ns/2 {det(M)}−1/2 ×
∞

∑
k=0

2k

k!
exp

{
−xTM−1x

}{
L−1x

}[k]T

×
∫

exp
{
−Gx(x′, t′)TM−1Gx(x′, t′)

}{
L−1Gx(x′, t′)

}[k]
p(x′, t′)ΠNs

n=1(dx′n) (37)
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Applying the transformation in Eq. (8) to this relation allows us to obtain the MDOF

SFGT TPI formulation.

p(z, t) = {π}−Ns/2 {det(M̃)
}−1/2 ×

∞

∑
k=0

2k

k!
exp

{
−zTM̃−1z

}{
L̃−1z

}[k]T

×
∫

exp
{
−G̃z(z′, t′)TM̃−1G̃z(z′, t′)

}{
L̃−1G̃z(z′, t′)

}[k]
p(z′, t′)ΠNs

n=1(dz′n) (38)

The inclusion of a Kronecker product significantly increases the computational com-

plexity of the SFGT method in MDOF systems. Given a summation size of K and a

dimensionality of n, the complexity can be approximated from the maximum Kronecker

power nK to be O(2nKKN) for a space with N possible states.

2.3.3 Gauss-Hermite Quadrature

A prospective method for further reducing the cost of the TPI method that is compati-

ble with the SFGT formulation is through the use of the Gauss-Hermite quadrature, which

is a method for approximating an integral using a relatively small number of weighted data

points. The Gauss-Hermite quadrature can be applied to integrals of the form

I =
∫ ∞

−∞
exp

{
−x2

}
f (x)dx (39)

to create the following discrete approximation

Î ≈
n

∑
i=1

wi f (ζi) (40)

Here ζi are the roots of the nth order Physicist’s Hermite polynomial and wi =

2n−1n!
√

π
n2[Hn−1(ζi)]2

. For any nth order Hermite polynomial there exist n roots and weights. The
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Physicist’s Hermite polynomial is given as

Hn(z) = (−1)n exp
{

z2
} dn

dzn exp
{
−z2

}
(41)

In order to incorporate the Gauss-Hermite quadrature into the SFGT formulation, Eq.

(35) must be rewritten in order for the integral component to match the form of the left

side of Eq. (39). We rewrite it as follows:

p(z, t) =
1

l̃
√

π

∞

∑
k=0

Ak(z)Bk (42)

Ak(z) =
2k

k!
exp

{
−
(

z
l̃

)2
}{

z
l̃

}k
(43)

Bk =
∫

exp
{
−z′2

}
exp

{
z′2 −

(
g̃(z′, t′)

l̃

)2
}{

g̃(z′, t′)
l̃

}k

p(z′, t′)dz′ (44)

In this form, the source term component Bk can be discretized. The discrete approxi-

mation of Eq. (44) is given as

Bk ≈
n

∑
i=1

wi f (ζi) (45)

f (ζi) = exp

{
ζ ′2i −

(
g̃(ζ ′i , t′)

l̃

)2
}{

g̃(ζ ′i , t′)
l̃

}k

p(ζ ′i , t′) (46)

The Gauss-Hermite quadrature formulation can then be rewritten in terms of ζi.

p(ζi, t) =
1

l̃
√

π

∞

∑
k=0

Ak(ζi)Bk (47)

Because there is no uniform grid size dz, the resulting PDF can instead be normalized

19



using the corresponding weights and abscissas.

pnew
i (t + dt) =

pold
i (t + dt)

∑i wi exp
{

ζ2
i
}

pold
i (t + dt)

(48)

In order to generalize the Gauss-Hermite quadrature to address MDOF systems, we

consider the multivariate integral of Ns dimensions

I =
∫

...
∫

exp

{
−

Ns

∑
i=1

(x2
i )

}
f (x1, ..., xNs)

Ns

∏
i=1

(dxi) (49)

This integral can be discretely approximated as

Î ≈
n

∑
i1=1

...
n

∑
iNs=1

Ns

∏
j=1

(wj) f (ζi1 , ..., ζiNs
) (50)

Eq. (38) can then be rewritten in the form of Eq. (49).

p(z, t) = {π}−Ns/2 {det(M̃)
}−1/2 ×

∞

∑
k=0

Ak(z)Bk (51)

Ak(z) =
2k

k!
exp

{
−zTM̃−1z

}{
L̃−1z

}[k]T
(52)

Bk =
∫

...
∫

exp
{
−ΣNs

n=1(z
2
n)
}
× exp

{
ΣNs

n=1(z
2
n)− G̃z(z′, t′)TM̃−1G̃z(z′, t′)

}
×
{

L̃−1G̃z(z′, t′)
}[k]

p(z′, t′)
Ns

∏
n=1

(dz′n) (53)

This takes advantage of the scalar nature of G̃z(z′, t′)TM̃−1G̃z(z′, t′). From this, Bk

can be discretized as

Bk ≈
n

∑
i1=1

...
n

∑
iNs=1

Ns

∏
j=1

(wj)f(ζ′i, t′) (54)
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f(ζ′i, t′) = exp

{
Ns

∑
n=1

(z2
n)− G̃z(z′, t′)TM̃−1G̃z(z′, t′)

}

×
{

L̃−1G̃z(z′, t′)
}[k]

p(z′, t′)
Ns

∏
n=1

(dz′n) (55)

Finally, the MDOF formulation for the Gauss-Hermite quadrature can be obtained in

terms of ζi.

p(ζi, t) = {π}−Ns/2 {det(M̃)
}−1/2 ×

∞

∑
k=0

Ak(ζi)Bk (56)
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3 Bandlimiting Results and Analysis

In this chapter we demonstrate the effectiveness of the bandlimited transformed path

integral (BL-TPI) method by applying it to a set of canonical systems and performing

error analysis in comparison to the standard TPI implementation. In order to develop a

recommended bandwidth, in Examples 1-4 we compare the performance of the BL-TPI

method at multiple bandwidths in single degree of freedom (SDOF) systems. Through

these examples, we demonstrate the ability of the BL-TPI method to solve systems char-

acterized by pure diffusion, constant drift, the Ornstein-Uhlenbeck process, and nonlin-

ear drift processes. We compare the PDFs of the TPI and BL-TPI methods—p0 and p

respectively—using the root mean squares (RMS) method of error analysis, in which N

denotes the number of data points.

εRMS =

√√√√ 1
N

N

∑
n=1

(p0(n)− p(n))2 (57)

We then examine a series of canonical multiple degree of freedom (MDOF) systems

in Examples 5-8, in which we examine the effectiveness of the simple, Strang, and high-

order methods of operator splitting, the bulk bandlimiting method, and the standard TPI.

Through comparative error analysis, we develop recommendations for which bandlimit-

ing method to use. Through these examples, we find that while the bulk BL-TPI produces

consistently accurate results for all systems, it is also the most computationally expensive

method of MDOF bandlimiting; in systems that meet certain conditions, which we discuss

later, we find that operator splitting formulations of the BL-TPI can match the accuracy

of the bulk formulation, and therefore recommend their usage over the bulk formulation

under such conditions.
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3.1 Single Degree of Freedom Systems

We begin by observing the effectiveness of the bandlimited TPI method in one dimen-

sional state spaces in order to demonstrate the accuracy of this method and to develop a

recommended bandwidth. It is worth noting that at higher bandwidths, the PDF output

of the BL-TPI method approaches that of the standard TPI, not the exact solution of the

system. Consequently, once the error of the standard TPI is closely matched, there is little

benefit to extending the bandwidth further.

3.1.1 Example 1: Pure Diffusion in 1D

Figure 2: PDF of pure diffusion in the in absolute space at t = 0 s (left) and t = 4 s
(right), as determined with the BL-TPI at a strength of 5.

Systems of pure diffusion—that is, systems experiencing zero nonrandom drift—are

rudimentary examples of the time transformation of a PDF, as well as a useful baseline for

demonstrating the effectiveness of the TPI method. In an Itô stochastic system with zero

drift, the peak target state is always identical to its source state in absolute space. In the

case of the standard PI formulation, this behavior manifests in the short-time propagator

matrix as a perfectly diagonal PTPS.

By contrast, the principal diagonal of the short-time propagator matrix of the TPI
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Figure 3: Comparison of the time evolution of RMS error relative to the complete TPI at
different bandlimiting strengths Nσ in a system under pure diffusion.

method does not necessarily represent zero movement along its principal diagonal. This

is due to the dynamic nature of the transformation, resulting in the source positions and

target positions existing in different transformed spaces. In a simple diffusion case, the

function for the peak states simplifies to zpeak = σ′z′/σ.

In this example, we evaluate the simple diffusion process governed by the following

stochastic equation

dxt = Adwt (58)

where the strength of the Wiener process is set to A =
√

2. A time increment of dt =

0.01 s is iterated over the time period of 0 s to 4 s. The initial Gaussian distribution

p(x, t0) ∼ N(µ0, σ2
0 ) has a mean µ0 = 1 and a covariance σ2

0 = 1, and the initial grid

extends from -4 to 6 in absolute space over 201 grid points.

Because the drift and diffusion are both constant and therefore independent of the

PDF and any error therein, there is zero error in the update equations for the mean and
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variance (Eqs. (11) and (12)), and therefore loss of resolution is not a concern. The error

that occurs even at Nσ = 1 is so small that a visual comparison with the complete TPI is

not useful; however, a comparison of the time evolution of RMS error demonstrates the

increase in accuracy that results from using a greater bandwidth.

Fig. 3.1.1 shows error analysis of the BL-TPI method with bandwidth strengths from

1 to 5. There is a clear decrease in error that accompanies each increase in bandwidth, and

at a strength of 5 the error curve of the BL-TPI method is nearly identical to that of the

standard TPI; t = 4 s, the difference in error between the BL-TPI, 6.74× 10−7, and the

standard TPI, 6.72× 10−7, becomes insignificant. Furthermore, all error curves indicate

convergence, indicating that the BL-TPI method is a numerically stable approach.

3.1.2 Example 2: Constant Drift and Diffusion

Figure 4: PDF of constant drift and diffusion in absolute space at t = 0 s (left) and t = 4
s (right), as determined with the BL-TPI at a strength of 5.

One of the most useful features of the TPI method is its ability to account for drift in

order to limit the tail loss that occurs outside the boundaries of the grid. When applied to a

system with constant drift, the transformed grid of the TPI shifts continuously to evaluate

the translating system with the same accuracy and effectiveness as a stationary system of

pure diffusion. Consequently, the BL-TPI method can also be expected to demonstrate
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Figure 5: Comparison of the time evolution of RMS error at different bandlimiting
strengths Nσ in a system under constant drift and diffusion.

similar accuracy to that seen in Example 1 when applied to a system of constant drift.

For this example, we evaluate a system governed by the equation

dxt = κdt + Adwt (59)

Here the drift is given as κ = 3 and the white noise strength is given as A = 1
3 . This

process is iterated in increments of dt = 0.01 s over a period from t = 0 s to t = 4 s. The

initial Gaussian distribution is set to p(x, t0) ∼ N(1, 2), and the number of grid points

is 201, as in Example 1. We begin with bounds of [1− 5
√

2, 1 + 5
√

2] in absolute space

which, given an initial covariance of σ2 = 2, becomes [−5; 5] in the transformed space.

Like in the case of pure diffusion, both the mean and variance update equations are in-

dependent of the PDF and therefore error-free. Unlike in Example 1, however, the results

of the bandlimited TPI are very close to those of the complete TPI even at a bandwidth

strength of 1. Transient RMS error analysis demonstrates a similar pattern of an initial
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rise in error, followed by a trend toward convergence. Notably because a relatively small

white noise strength is used in this example, the accuracy of the BL-TPI is very high even

at a bandwidth strength of 1. Additionally, close examination reveals that the errors at

bandwidth strengths 1 and 2 are exactly identical, at 9.01× 10−7, while the errors for

all higher bandwidths from 3 to 5 are also identical at 8.88× 10−7. This is a product

of the reliance of this bandlimiting method on rounding, such that for systems with very

small diffusion terms, different bandwidth strengths can sometimes round to the same

bandwidth.

3.1.3 Example 3: OU Process

Figure 6: PDF of the OU process in absolute space at t = 0 s (left) and approaching the
steady state solution at t = 10 s (right), as determined with the BL-TPI at a strength of 5.

The Ornstein-Uhlenbeck (OU) process is a common and simple form of nonuniform

linear drift characterized by a single fixed point and the concentration of the PDF toward

that point. The TPI is equipped to accurately solve problems of this nature because it

is able to maintain an effective resolution as the concentration necessitates a finer grid.

When applied to an OU process, the bandwidth about the PTPS is expected to expand

over time because the diffusion coefficient, held constant, becomes larger relative to the

shrinking transformed space.
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The differential equation of the OU process is given as

dxt = −β(x− θ)dt + Adwt (60)

Here β = 1
2 and θ = 1, and the white noise strength is A = 0.1. We choose to run an

initial distribution of p(x, t0) ∼ N(1, 0.25) in a space bounded by [−2, 4] and divided

into 241 grid points.

The OU process is known to approach an analytical steady state solution of the Gaus-

sian distribution p(x, t∞) ∼ N(µ, A2/2β) = N(1, 0.01), which can be compared to

the result of the TPI after 10 seconds in this example. The complete TPI produces an

error of 2.42× 10−3, and even at a bandwidth strength of 1, the BL-TPI method yields

a similar error of 2.96× 10−3. All subsequent errors at higher strengths approach the

exact accuracy of the standard TPI method more closely, and at Nσ = 5 the BL-TPI error

of 2.42× 10−3 is identical to that of the standard TPI within three significant figures. It

should be noted that while a smaller bandwidth is needed to converge to the error of the

standard TPI in this example, that error is much larger in this example than in Examples

1 and 2.

3.1.4 Example 4: Nonlinear Drift Process

We next observe the applicability of the BL-TPI method to systems that demonstrate

complex nonlinear drift processes and facilitate transformations into non-Gaussian PDFs.

To illustrate the effectiveness of this method, we apply the BL-TPI to the following pro-

cess

dxt = −γx(x2 − δ)dt + Adwt (61)

28



Figure 7: Comparison of PDFs of a nonlinear drift process at t = 16 s in the transformed
space (left), and in absolute space (right) for the standard TPI and the BL-TPI at Nσ = 1
and Nσ = 3.

where γ = 1
16 , δ = 16, and the white noise strength is A = 3. The initial distribution is

given as p(x, t0) ∼ N(1, 2), and the process is iterated in increments of dt = 0.01 s over

a time period of 16 seconds.

Unlike in previous examples, the mean and covariance update equations do not ex-

actly reproduce the results of the TPI when applied to this system. As a consequence, at

small bandwidths the difference in shape in the transformed space between the BL-TPI

and the standard TPI is very pronounced, as seen in Figure 6. Interestingly, when compar-

ing the PDFs in absolute space, the error is found to be quite small even when the mean

and covariance diverge significantly. This suggests that error in the update equations does

not directly impact the overall accuracy of the BL-TPI method, beyond the error asso-

ciated with smaller bandwidths in general. Nonetheless, it is still desirable to minimize

error in the mean and covariance calculations in order to avoid complications due to loss

of tail information and resolution. As seen in Figure 3.1.4, at a bandlimiting strength

of Nσ = 1 the PDF is shown to have concentrated significantly by t = 16, potentially

straining its resolution. By contrast, at Nσ = 3 the deviations in mean and covariance

are much smaller and the resulting transformed space retains dimensions very close to the
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results of the complete TPI.

To the author’s knowledge at the time of writing, no transient solutions to this exam-

ple exist. The steady state solution, however, is known and given by

p(x, t∞) =
1
η

exp
{
−γ

x2

A2

(
x2

2
− δ

)}
(62)

where η is the normalization factor. At t = 16 s the TPI is accurate to this solution with

an RMS error of εRMS = 6.45× 10−4. At a bandwidth strength of 1, the bandlimited

TPI is found to be reasonably accurate to this solution, at εRMS = 9.40× 10−4, despite

the apparent loss of resolution in the transformed space. As documented in Table 1 in

the following section, the error at a bandwidth strength of 4 is surprisingly smaller than

those of both the standard TPI and the BL-TPI at a strength of 5. This phenomenon

demonstrates that as the accuracy of the BL-TPI converges to that of the complete TPI, it

can potentially err slightly toward the analytical solution rather than away from it.

3.1.5 Error Analysis

Table 1: Time and error of the standard TPI vs. the bandlimited TPI at different bandlim-
iting strengths in 1D.

Pure Diffusion (4 s) OU Process (10 s) Nonlinear Drift (16 s)
Tcomp (s) εRMS Tcomp (s) εRMS Tcomp (s) εRMS

TPI 1.36× 100 6.72× 10−7 1.36× 100 2.42× 10−3 4.97× 100 6.45× 10−4

Nσ = 1 7.28× 10−1 1.98× 10−3 7.30× 10−1 2.96× 10−3 2.21× 100 9.40× 10−4

Nσ = 2 7.39× 10−1 2.92× 10−4 7.38× 10−1 2.81× 10−3 2.25× 100 8.23× 10−4

Nσ = 3 7.45× 10−1 1.71× 10−5 7.45× 10−1 2.52× 10−3 2.33× 100 6.47× 10−4

Nσ = 4 7.58× 10−1 9.49× 10−7 7.56× 10−1 2.43× 10−3 2.35× 100 6.44× 10−4

Nσ = 5 7.64× 10−1 6.74× 10−7 7.63× 10−1 2.42× 10−3 2.42× 100 6.45× 10−4

As shown in Table 1, when applied to SDOF examples, the BL-TPI becomes approx-
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imately twice as fast as the complete TPI. The number of data points in all examples is

between 200 and 250. Due to the Gaussian nature of the Wiener process, the bandwidth

required for a system is directly proportional to the white noise strength of that system.

Therefore it can be expected that for larger data sets with relatively small white noise

strengths, the amount of time saved will be greater, especially when applied to expanding

systems over long periods of time.

Interestingly, the effect of increasing or decreasing the bandlimiting strength on the

computation time appears minimal, though this may be due to a limitation of the software

and code used for this study rather than a fundamental property of the process. It must be

emphasized that the exact speed of the BL-TPI method is beyond the scope of this study.

The effectiveness of the BL-TPI implementation will largely depend on how cleanly and

skillfully it is programmed.

While increasing the bandlimiting strength of this formulation is shown to reduce

the error of the results, it also increases the time and storage space requirements to run a

simulation, and as such we wish to establish a recommended bandlimiting strength. At

Nσ = 5 the error of the BL-TPI becomes nearly identical to that of the complete TPI in all

examples, though in some systems the difference in error is very small at strengths of as

little as Nσ = 3. Whether the error at a bandlimiting strength of 3 or 4 is acceptable or not

will depend on one’s individual criteria and judgment; based on the results of this study,

we believe that a strength of 5 can be generally recommended as a reliable convention.

3.2 Multiple Degree of Freedom Systems

In MDOF systems, we examine two general approaches to combining the bandlimit-

ing ranges developed for each axis: operator splitting and bulk bandlimiting. For the pur-

pose of this study we focus on three operator splitting processes: simple splitting, Strang
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splitting, and high-order splitting. While operator splitting methods are faster and less

computationally expensive compared to bulk bandlimiting, their effectiveness appears to

be highly situational. When specific conditions are met, we find that bandlimiting with

operator splitting can match the accuracy of bulk bandlimiting and the conventional TPI

exactly. When these conditions are not met, the resulting error is found in some cases to

be significantly greater than that of the standard TPI, and to not converge toward the exact

outcome of the TPI at higher bandwidth strengths.

3.2.1 Example 5: Isotropic Diffusion in 2D

Figure 8: PDF of isotropic 2D pure diffusion in absolute space at t = 0 s (left), and at
t = 3 s (right), as determined with the bulk bandlimited TPI at a strength of 5.

As with SDOF systems previously, we begin by examining pure diffusion in 2D as a

rudimentary example of both the standard TPI and the bandlimited TPI. We model a 2D

system under pure diffusion using the following governing equation:

dxt = Adwt (63)

For this example, we set the diffusion coefficient matrix G = 1
2(AAT) = [2, 0; 0, 2].

We apply this to an initial PDF with Gaussian distribution characterized by a mean of
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Figure 9: Comparison of the time evolution of RMS error in isotropic 2D pure diffusion
calculated via different bandlimiting methods relative to the analytical solution (left) and
relative to the TPI (right). In this example, high-order splitting and bulk bandlimiting are
functionally identical to simple splitting.

µ0 = [2, 2]T, a diagonal covariance matrix Σ0 = [4, 0; 0, 4], a domain of | − 4, 8| along

both axes, and a 51 × 51 grid, over time increments of dt = 0.01 s for a period of 3

seconds.

Like in the SDOF case, the update equations for the mean and variance of this system

are independent of the PDF and therefore error-free. This system can also be solved

analytically as a function of time, allowing us to perform transient error analysis. We find

that at large bandwidths, the solutions given by simple splitting, high-order splitting, bulk

bandlimiting, and the complete TPI have the same error within at least three significant

figures, at 1.13× 10−4. Only Strang splitting diverges noticeably from this outcome, at

2.16× 10−4.

A more nuanced comparison between BL-TPI methods comes from performing er-

ror analysis on the respective PDFs of the four bandlimiting methods—that is, the three

operator splitting processes and bulk bandlimiting—relative to that of the standard TPI.

Error taken by way of comparison to the standard TPI solution is hereafter referred to

as "relative error", so as to distinguish from error taken through comparison to the given
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analytical solution, or "absolute error".

Simple splitting, high-order splitting, and bulk bandlimiting all display excellent ac-

curacy that is, again, identical within at least three significant figures, at 1.13× 10−13.

Strang splitting is noticeably less accurate, at 1.17× 10−4, and though the difference in

absolute accuracy is not disqualifying, simple splitting is both cheaper and more accurate.

The difference in ability to exactly reproduce the outcome of the TPI can be explained by

the fact that that 2D Gaussian Wiener process, such as in this system, can be exactly mod-

eled as two independent 1D Wiener processes, one along each axis. Because of this, op-

erating along each axis individually, as in operator splitting, is in this case mathematically

identical to operating along all axes simultaneously, as in the case of bulk bandlimiting.

This also explains why Strang splitting, which performs two half-step operations along

one axis for each time step, yields a different PDF from the other two operator splitting

processes, which only perform full-step operations.

3.2.2 Example 6: Anisotropic Diffusion in 2D

Figure 10: Surface plot (left) and contour plot (right) of a PDF of anisotropic 2D pure
diffusion at t=2s, as determined with the bulk bandlimited TPI at a strength of 5.
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Figure 11: Comparison of the time evolution of RMS error in anisotropic 2D pure diffu-
sion calculated via different bandlimiting methods relative to the analytical solution (left)
and relative to the TPI (right). In this example, the difference in error between operator
splitting methods is very small so only simple splitting is shown.

To determine the effect of an anisotropic noise term on the accuracy of the BL-TPI,

and specifically on operator splitting formulations thereof, we examine a diffusion process

characterized by a non-diagonal diffusion coefficient matrix—that is, a diffusion process

with principal axes that do not correspond to the axes of the state space. For this example

we use the same initial conditions as Example 5, applied to a system with a diffusion co-

efficient matrix of G = 1
2(AAT) = [3,

√
3

2 ;
√

3
2 , 1] and iterated for 2 seconds at dt = 0.1

s. Interestingly, the errors in simple, Strang, and high-order splitting are very close to one

another, at 5.62× 10−4, 5.58× 10−4, and 5.57× 10−4, respectively; the phenomenon of

Strang splitting displaying error that diverges significantly from those of the other opera-

tor splitting processes is absent. Additionally, the errors of all operator splitting processes

are an order of magnitude greater than that of bulk bandlimiting and the standard TPI, at

5.19× 10−5.

While the error of the bandlimited TPI appears numerically stable, as shown in Figure

10, and therefore might still be acceptable depending on one’s individual needs, such an

increase in error between the 1D and 2D cases indicates that when applied to systems
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characterized by non-diagonal transformed diffusion coefficient matrices Ã, the operator

splitting method in its current form is not a promising option. Although there are no

canonical problems with which to confirm this, we also surmise that a similar problem

can surface when a process with a diagonal diffusion coefficient matrix is applied to a

PDF with a distribution characterized by a non-diagonal covariance matrix. We therefore

find that bandlimiting is most accurate when the principal axes of the diffusion process of

the system and the distribution of the PDF are aligned.

3.2.3 Example 7: Uncoupled Nonlinear Drift in 2D

Figure 12: Surface plot (left) and contour plot (right) of a PDF of an uncoupled nonlinear
drift process at t=2s, as determined with the bulk bandlimited TPI at a strength of 5.

Setting aside the diffusion coefficient matrix, it is also necessary that the bandlimited

TPI is able to solve stochastic processes with complex nonlinear drift components. In this

example we evaluate a stochastic system experiencing nonlinear drift.

dxt = f(xt)dt + Adwt (64)

This system is characterized by the drift process f(x) = [x1 − x3
1; x2 − x3

2] and the
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diffusion coefficient matrix G = AAT/2 = [2, 0; 0, 2]. The initial multivariate Gaussian

distribution is given as p(x, t0) ∼ N(0, [0.25, 0; 0, 0.25]), the initial domain is |-4,4| along

each axis in absolute space, and the process is iterated over 2 seconds at a time step of

dt = 0.01 s. This process is known to result in a non-Gaussian distribution over time,

which the TPI method is capable of effectively capturing, as seen in Figure 11. The

analytical steady state solution to this process is given as follows:

p(x1, x2, t∞) =
1
η

exp

−
[

x2
1 x2

2

]
A−1A−T

1
2

x2
1

x2
2

−
1

1



 (65)

As in Example 5, the simple splitting, high-order splitting, and bulk bandlimiting

methods are all able to accurately reproduce the results of the standard TPI method with

excellent accuracy, at a relative error of 2.04 × 10−9 and an absolute error of 4.01 ×

10−4. While the bulk bandlimiting formulation has been thus far found to be the most

consistently reliable MDOF bandlimiting formulation, these results indicate that operator

splitting TPI formulations are well-suited to solving systems with both uncoupled drift

processes and diagonal diffusion coefficient matrices.

Also similar to Example 5, Strang splitting is shown to diverge significantly, but

here, Strang splitting errs noticeably toward the analytical solution rather than away from

it, resulting in a smaller absolute error than the TPI. While such outcomes are possible

when the relative error of the Strang splitting method is of comparable magnitude to the

absolute error of the standard TPI method, there is no known way to anticipate when this

outcome will be favorable, especially when evaluating systems without known analytical

solutions.
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Figure 13: Surface plot (left) and contour plot (right) of a PDF of a coupled nonlinear
drift process at t=2s, as determined with the bulk bandlimited TPI at a strength of 5.

3.2.4 Example 8: Coupled Nonlinear Drift in 2D

Another limitation of operator splitting methods surfaces when solving systems with

coupled drift processes. In Eq. (64), we set f(x) = [−γx1(x2
1 + x2

2 − c2);−γx2(x2
1 +

x2
2− c2)] where γ = c = 1, and G = AAT/2 = [0.5, 0; 0, 0.5]. Given an initial Gaussian

distribution of p(x, t0) ∼ N(0, [4/49, 0; 0, 4/49]) and an initial domain of |-1,1| along

each axis in absolute space, this process is iterated in dt = 0.01 s increments up to 2

seconds. The system simulated in this example converges to the following steady state

solution, where η is the normalization factor and G11 = G22 = g = 0.5.

p(x1, x2, t∞) =
1
η

exp
{
− γ

4g

(
x2

1 + x2
2

) (
x2

1 + x2
2 − 2c2

)}
(66)

The error of the standard TPI method given these parameters is 6.57× 10−4. While

bulk bandlimiting method is able to match the TPI’s output almost exactly with a relative

error of 9.26× 10−10, simple, Strang, and high-order operator splitting all err favorably

toward the exact solution by 20− 30%, as indicated in Table 2. It is noteworthy that here,

unlike in Example 6, all three operator splitting processes have relative errors less than
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the absolute error of the standard TPI. Based on these results, operator splitting appears to

be an imperfect but viable alternative to the complete TPI for solving coupled nonlinear

systems with diagonal noise terms. Still, further research is needed to determine how well

this holds for systems with many degrees of freedom.

3.2.5 Error Analysis

Table 2: Time and error of the complete TPI vs. the bandlimited TPI with operator
splitting and the bulk bandlimited TPI in 2D. A bandwidth strength of Nσ = 5 is used for
all bandlimiting processes.

Isotropic Diffusion (3 s) Anisotropic Diffusion (2 s)
Tcomp (s) εRMS εRMS,TPI Tcomp (s) εRMS εRMS,TPI

TPI 1.59× 102 1.13× 10−4 0 8.92× 101 5.19× 10−5 0
Simple 1.32× 102 1.13× 10−4 7.76× 10−13 8.12× 101 5.62× 10−4 5.49× 10−4

Strang 2.10× 102 2.16× 10−4 1.17× 10−4 1.28× 102 5.58× 10−4 5.45× 10−4

H.O. 2.93× 102 1.13× 10−4 7.76× 10−13 1.72× 102 5.57× 10−4 5.44× 10−4

Bulk 3.48× 102 1.13× 10−4 7.76× 10−13 2.01× 102 5.19× 10−5 5.66× 10−9

Uncoupled Nonlinear Drift (2 s) Coupled Nonlinear Drift (2 s)
Tcomp (s) εRMS εRMS,TPI Tcomp (s) εRMS εRMS,TPI

TPI 1.59× 102 4.01× 10−4 0 8.92× 101 6.57× 10−4 0
Simple 1.41× 102 4.01× 10−4 2.04× 10−9 8.12× 101 5.32× 10−4 1.77× 10−4

Strang 2.10× 102 3.17× 10−4 1.35× 10−4 1.28× 102 5.03× 10−4 5.42× 10−4

H.O. 2.93× 102 4.01× 10−4 2.04× 10−9 1.72× 102 5.32× 10−4 1.77× 10−4

Bulk 3.48× 102 4.01× 10−4 2.04× 10−9 2.01× 102 6.57× 10−4 9.26× 10−10

As indicated in Table 2, despite all BL-TPI formulations requiring requiring far fewer

calculations and less storage space than the standard TPI method, in practice only the

simple splitting formulation is reliably faster than the standard TPI, and in all cases the

difference is slight. As in the SDOF case, we believe that this can be attributed to the

limitations of the prototype code used to test these methods rather than an inherent flaw

of the methods themselves, so the time data in Table 2 should not be considered definitive.
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It can be observed that in all cases, the accuracy of the simple splitting method is

equal or nearly equal that of the high-order splitting method. We also observe that Strang

splitting tends to have the greatest relative error of all operator splitting processes, except

in systems with non-diagonal diffusion coefficient matrices, which we have found to be

ill-suited to operator splitting methods in general. Therefore, in most cases where operator

splitting is viable, simple splitting can be considered the best option, as any benefits

of the Strang or high-order methods do not justify the accompanying increase in cost.

Particularly, in systems with both diagonal noise terms and uncoupled drift processes, the

accuracy of simple splitting matches that of bulk bandlimiting close to exactly.

In systems with non-diagonal diffusion coefficient matrices, however, while the bulk

bandlimiting method remains effective if somewhat slow, the operator splitting methods

of bandlimiting become significantly less reliable; in Example 6, the difference in error

between bulk bandlimiting and operator splitting formulations was found to be an order

of magnitude. This difference in error can be attributed to the fact that principal axes of

such diffusion processes do not coincide with the axes along which operators are split.

While all examples in this study use isotropic initial conditions, note that the diffusion

coefficient matrix must be diagonal in the transformed space; when applied to PDFs with

non-diagonal covariance matrices, isotropic diffusion can be expected to err in ways sim-

ilar to the behavior seen in Example 6.

The errors of the operator splitting methods are also known to diverge from that of the

standard TPI method when applied to systems with coupled drift processes, but unlike in

anisotropic diffusion cases, here the error is comparable to that of the TPI and may even

err favorably toward the exact solution. Still, additional research is needed to determine

how this error manifests in similar problems with three or more degrees of freedom.

Overall, whereas Examples 1-4 indicate that bandlimiting is a viable alternative to
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the standard TPI method for solving SDOF systems, Examples 5-8 demonstrate that the

bulk bandlimiting method is the most consistently reliable MDOF bandlimiting variant,

but that in cases with both uncoupled noise processes and diffusion processes whose

principal axes align with the distribution of the PDF, simple operator splitting can be

substituted flawlessly. Simple splitting might also be a viable alternative in some systems

with coupled drift processes, though further research is necessary.
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4 Symmetric Fast Gauss Transform Analysis

The symmetric fast Gauss transform (SFGT) formulation, as an infinite sum, ap-

proaches exact recreation of the transformed path integral (TPI) solution, but in practice

it must be finite. For the SFGT to have practical value, it must generate a sufficiently accu-

rate approximation of the TPI from a sufficiently small number of terms in the summation.

As the SFGT implementation involves the multiplication and division of very large num-

bers that exceed software limitations at a high number of terms kmax, in the context of

this study kmax cannot exceed 400 when applied to single degree of freedom (SDOF) sys-

tems, a limitation which becomes more stringent for multiple degree of freedom (MDOF)

systems. This is found to be insufficient for many problems that are solvable with the

conventional TPI formulation, including the examples given in Chapter 3. Due to the

severe loss of tail information that results from these software limitations, experimental

studies of the accuracy of the SFGT formulation over multiple time steps are unfeasible

in this study.

In order to meaningfully study the accuracy and effectiveness of the SFGT approach,

this chapter instead focuses on mathematical analysis of the formulation of this method to

estimate the number of terms kmax needed to produce an accurate solution within the de-

sired number of standard deviations zmax. To test the usefulness of this estimate, the error

of the SFGT implementation over a single time step is measured within the boundaries

[−zmax, zmax] using multiple different parameters for calculating kmax. The goal of this

research is to develop a recommended formula for the minimum number of terms needed

to produce results that can be considered "sufficiently accurate".
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4.1 Single Degree of Freedom Systems

We begin by examining the behaviors of the individual terms in the SDOF SFGT

summation. Because the SFGT formulation approaches an exact recreation of the TPI

solution, a sufficiently close approximation can be reasonably assumed to retain the sta-

bility of the TPI in the long run, assuming the number of terms is adjusted accordingly.

Given this assumption, and given that we are iterating over only a single time step, we do

not anticipate the resulting error data to differ in any noteworthy way between examples

with different drift processes.

We therefore focus our analysis on the system of pure diffusion used in Example 1 of

the previous chapter

dxt = Adwt

where A =
√

2, applied to a system with an initial distribution of N ∼ (1, 1) over 4

seconds in increments of dt = 0.01 s. In symmetrical systems such as this one, odd-

numbered moments in the SFGT summation are zero. Individual moments of the summa-

tion over a single iteration are plotted against the TPI solution, and the results are shown

in Figure 13.

As indicated by this figure, for the SDOF case the k = 0 moment of the SFGT

manifests as a single Gaussian curve that peaks at z = 0, while all subsequent moments

manifest as two Gaussian curves that meet at and are symmetrical about z = 0. As k

increases, the peaks of these curves move further from zero in either direction, while

also generally decreasing in amplitude, though incidental increases may occur in non-

Gaussian PDF curves.
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Figure 14: Comparison of the TPI solution to moments k=0 (top left), k=2 (top right),
k=4 (middle left), k=10 (middle right), k=20 (bottom left), and k=50 (bottom right) of the
SFGT for pure diffusion.

4.1.1 Relationship between Number of Moments and Accuracy

An equation for the locations of the peaks of the kth moment of the SFGT can be

obtained from the gradient with respect to z of the SFGT formulation, that is Eq. (35).

By setting the gradient equal to zero, the positions of the peaks of each moment in the
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summation can be determined.

zpeak = ±
A
σ

√
kdt (67)

Note that σ here specifically refers to the projected variance at time t, distinct from

the initial variance at time t′. The square root of Eq. (12) may be substituted in order to

rewrite this formula in terms of σ′. Similarly, we find that the variance of the singular

Gaussian curve at k = 0 is equal to σk = A
σ

√
dt while the variances of the two separate

Gaussian curves for all subsequent terms are universally equal to σk = A
2σ

√
dt. These

properties hold mathematically for the Gauss-Hermite quadrature formulation as well, as

the formulation shares the separation of source and target terms of the SFGT formulation.

For the peak corresponding to any given moment k, the subsequent peak at k + 2

(recalling that odd-numbered moments behave differently from even-numbered moments)

tends to be both close and similar in magnitude. This suggests that statistically significant

probability contributions can be made by the k + 2th moment to the space bounded by

[−zpeak, zpeak] where zpeak corresponds to the kth moment. To address this property,

we propose that the SFGT iteration may be considered accurate within the boundaries

[−(zpeak − Nkσk), (zpeak − Nkσk)], where Nk is a factor that can be adjusted according

to the desired precision, hereafter referred to as the peak offset factor. All subsequent

probability contributions to this bounded space by additional moments k+ n where n ≥ 1

can be considered negligible.

Substituting zpeak = zmax + Nkσk, where ±zmax is the range within which the PDF

is considered accurate in standard deviations, Eq. (67) can be rewritten in terms of kmax

to calculate the required number of terms to yield an accurate solution within a desired

semi-span zmax.

zmax =
A
σ

√
kmaxdt− Nkσk (68)
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kmax =
(zmax + Nkσk)

2σ2

A2dt
(69)

Consequently, when an insufficient number of moments zmax is used such that kmax is

less than the desired semi-span, the PDF given over single time step adheres very closely

to that of the standard TPI method at data points close to zero, but drops sharply near

the zmax position corresponding to kmax. For example, in the pure diffusion problem

described previously, the projected covariance after a single time step is σ2 = 1.02. Given

a desired zmax of 5 and an Nk of 1 yields a kmax of nearly 1350 terms, far exceeding the

previously stated limit of 400. Conversely, at kmax = 400, the corresponding zmax given

a peak offset factor of Nk = 1 is 2.66, beyond which the solution ceases to be accurate as

seen in Figure 14.

Figure 15: Comparison of the TPI solution to the SFGT at kmax = 400 for pure diffusion,
shown to diverge at approximately ±2.66.
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For systems with constant white noise strengths, this presents a significant dilemma.

For a system with a small white noise strength A relative to the variance σ of the PDF to

which it is applied, a large number of moments k is needed to avoid significant loss of tail

information. One way to mitigate this problem is to iterate over a large time step size, but

this may compromise the accuracy of the results when applied to systems with sensitive,

high-gradient drift processes.

Conversely, a system with a large white noise strength may initially warrant a rela-

tively small number of moments, but systems with large diffusion processes tend to ex-

pand. This means that the variance of the PDF become progressively larger relative to the

white noise strength, gradually requiring more moments in order to accurately reproduce

the TPI in later iterations. In concentrating systems such as the OU process this is not the

case, but the white noise strengths of such systems tend to be very small relative to their

initial variances, resulting in a large initial hurdle. Due to shared target components of

their formulations, these limitations extend to the Gauss-Hermite quadrature formulation

of the SFGT as well.

We note that the behaviors described are not emergent properties of the TPI formu-

lation of the SFGT method, but are inherited from the fixed grid SFGT. In the SFGT

formulation of the path integral solution, rather than an equal number of terms covering

a different amount of transformed space in later time steps, the same amount of abso-

lute space is covered given the same number of terms, but distribution of the PDF itself

changes, and with it the amount of coverage needed. Therefore, the limitations of the

SFGT described thus far cannot be sidestepped using the fixed grid PI solution.

Importantly, PDFs within the boundaries [−zmax, zmax] should not be considered

reliable over multiple time steps, as the inaccurate portions of the PDF outside of these

boundaries at one discrete point in time can contribute inaccurate information to the space
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inside the boundaries when generating a PDF for the next point in time.

4.1.2 Error Analysis and Computational Requirements

While the symmetric fast Gauss transform cannot be accurately iterated over many

time steps within the limitations of this study, both the accuracy of the SFGT method

within a single time step and the evolution of its required number of terms can be eval-

uated. We first return to the conditions for 1D pure diffusion used in Example 1 and

examine the accuracy of this process over a single time step within boundaries obtained

from different Nk values using RMS error analysis, Eq. (57). In this case, p is the proba-

bility of the PDF yielded by the SFGT implementation and p0 is that of the standard TPI,

which p approaches exactly as kmax approaches infinity. For the purpose of this compari-

son, neither PDF is normalized, as the total probability of the PDF iterated via the SFGT

in each example is significantly less than 1 and the normalization process would distort

the results.

Table 3: Accuracy of pure diffusion after a single time step dt = 0.01 s using kmax = 200
and kmax = 400, within the boundaries determined using peak offset factors Nk from 0
to 3.

kmax = 200 kmax = 400
zmax εRMS zmax εRMS (s)

Nk = 0 ±1.98 3.15× 10−3 ±2.80 4.79× 10−4

Nk = 1 ±1.84 2.39× 10−4 ±2.66 5.49× 10−5

Nk = 2 ±1.70 1.30× 10−5 ±2.52 8.38× 10−7

Nk = 3 ±1.56 1.48× 10−7 ±2.38 1.22× 10−7

It is found that at both kmax = 400 and kmax = 200, the accuracy is greater within

the smaller boundaries created by setting larger peak offset factors. At a smaller number

of terms, this increase is more abrupt, which is likely due to the relatively large amplitude
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of the peaks and rate of increase in the peak displacement zpeak. As seen in Table 3, the

same offset factor yields PDF with a smaller error at a greater distance zmax and number

of terms kmax. This can be attributed to the size of the probability measurements generally

being smaller at greater distances from the mean, as well as the lower amplitudes of each

additional moment further in the series. Based on this trend, we surmise that a sufficiently

large zmax may be considered equal to zpeak.

To confirm the viability of this approximation, we modify Example 1 by increas-

ing the time step dt = 0.01 s to 0.1 s. In this version of the problem, σ2 = 1.2, but

all else remains the same. Given these conditions, covering a total range of zmax = 5

requires a kmax of 233 for peak offset factor of Nk = 3, which yields an error of

εRMS = 1.17 × 10−7. Similarly, at a peak offset factor of Nk = 0, with a kmax of

150, the PDF error is nearly identical, at εRMS = 1.20× 10−7. This indicates that at

large ranges, [−zpeak, zpeak] may be considered an accurate set of boundaries for the PDF

with no need for a peak offset factor.

While running full simulations over large numbers of time steps is not feasible within

this study, it is possible to determine the computational requirements for such simulations

based on the conventional TPI implementation. Setting a zmax of 5 and assuming that

Nk = 0 is acceptable at this peak distance, we determine the required kmax for the initial

and final time steps of Examples 1, 3, and 4 from Chapter 3.

Table 4: Initial and final required number of terms kmax (rounded up) for the SFGT TPI
to be accurate within a range of zmax = 5 with a peak offset factor of Nk = 0.

Pure Diffusion (4 s) OU Process (10 s) Nonlinear Drift (16 s)
σ2 kmax σ2 kmax σ2 kmax

Initial 1.020 1275 0.2476 61900 2.108 586
Final 9.020 11275 0.03891 9728 13.36 3712
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As predicted, systems that initially require relatively few moments tend to expand,

while the system with the largest initial requirement is the OU process, which is contract-

ing. For a discrete PDF comprised of N terms, the propagator matrix for the standard

TPI for each problem is a N× N matrix, whereas the SFGT implementation requires the

calculation of N× (kmax + 1) terms, and while the processes by which the terms in each

method are calculated and developed differ, as a general rule the average kmax should not

be larger than N, or else the SFGT offers little benefit. For a PDF with N = 201 terms,

the minimum kmax far exceeds N in all examples given. Additionally, because high k

values rely on the multiplication and division of very large numbers, software limitations

may limit the possible kmax that can be used, as is the case in this study. Consequently,

the SFGT in its current form appears to be ill-suited to solving SDOF systems that require

high precision and must be iterated over small time steps.

4.1.3 SDOF Gauss-Hermite Quadrature

Because Eqs. (67), (68), and (69) can be identically derived from the formulation

for the Gauss-Hermite quadrature, the limitations of the SFGT as outlined in the previous

section persist in the quadrature formulation. However, the Gauss-Hermite quadrature

implementation still has the potential to improve on the SFGT substantially. Because

this method approximates N data points as n weighted abscissas, the number of terms

that must be calculated in the Quadrature SFGT becomes approximately n× (kmax + 1),

or n/N times that of the standard SFGT. In order to cover a range of zmax = 5 in the

transformed space, n must be at least 18; to ensure that there is an abscissa at the exact

center z = 0 of the space we instead use the odd number n = 19, as opposed to N = 201.

Returning to the pure diffusion system of Example 1, we again apply a white noise

strength of A =
√

2, a time step size of dt = 0.01, and an initial distribution of p(x, t0) =
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N(1, 1). At kmax = 200, assigning a peak offset factor of Nk = 3, zmax is found to be

±1.56. The middle 7 roots of the 19th Hermite polynomial fall into the range of [-

1.560,1.560], which appears consistent with the results of iterating the Gauss-Hermite

quadrature over a single time step, as indicated in Figure 15.

Figure 16: Comparison of the TPI solution to the Gauss-Hermite quadrature at n = 19
and kmax = 200 iterated over a single time step of dt = 0.01s (left) and dt = 0.1s (right).

The error of this method, however, is found to be significantly greater than that of the

standard SFGT, at εRMS = 2.149× 10−3. Additional experimentation reveals that this

error can be somewhat mitigated by increasing the number of abscissas. At n = 29, the

error reduces to εRMS = 8.078× 10−4, though this is still relatively large. Furthermore,

increasing the time step size to dt = 0.1s such that kmax > 5 does not greatly improve

the overall accuracy of the quadrature formulation, yielding an error of εRMS = 2.205×

10−3 at n = 19 and εRMS = 2.109× 10−3 at n = 29. From this error analysis it can be

confirmed that the Gauss-Hermite quadrature does not converge to the exact TPI solution,

and based on these results this implementation of the SFGT does not seem promising.
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4.2 Multiple Degree of Freedom Systems

Similar to the SDOF case, we begin our analysis of the MDOF formulation by exam-

ining the behavior of individual terms in the SFGT sum, for which we return to Example 5

from Chapter 3. Due to additional technical limitations that occur in the MDOF formula-

tion, we increase the time step to dt = 0.2 s to make the difference more pronounced. In

the 2D case, we find that the 0th moment displays Gaussian distribution about the mean

and origin, while subsequent moments take on the shapes of "rings" that move outward at

higher k terms, with the peak values of each ring following an elliptical pattern about the

origin.

4.2.1 Relationship between Number of Moments and Accuracy

An MDOF equivalent to Eq. (67) can be developed in order to obtain a vector zpeak

containing the maximum from zero of the "peak ellipse" along each axis. Here k is a

Ns × 1 column vector where each term is equal to k.

zpeak = ±R−1A
√

kdt (70)

The individual components of the vector zpeak correspond to the principal axes of

the peak ellipse. Similar to the SDOF case, the update equation for R, Eq. (14), can be

incorporated into the above relation to rewrite it in terms of R′. The moment at k = 0

is a simple Gaussian distribution of variance Rk = R−1A
√

dt centered at the origin. All

subsequent moments concentrate about an elliptical set of peaks rather than a singular

point, forming a series of probability rings. The "thickness" of each of these rings—that

is, the distance toward and away from the origin within which probability contributions of

these rings can be considered significant—corresponds to the ellipse Rk = 1
2R−1A

√
dt.
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Figure 17: Moments k=0 (top left), k=2 (top center), k=4 (top right), k=8 (bottom left),
k=12 (bottom center), and k=16 (bottom right) of the SFGT for 2D pure diffusion.

Echoing our SDOF analysis, we substitute zpeak = zmax + RkNk, Nk being a column

vector whose terms are all equal to the desired precision Nk.

zmax = R−1A
√

kmaxdt−RkNk (71)

√
kmax =

1√
dt

A−1 [R(zmax + RkNk)] (72)

Since a summation cannot be multiple sizes at once, we defer to the maximum com-

ponent of the resulting vector kmax.
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4.2.2 Error Analysis and Computational Requirements

Figure 18: Comparison of the PDF for pure diffusion of a single time step dt = 0.1 s
taken with the conventional TPI (left) and the SFGT at kmax = 16 (right).

Due to the dependence of the MDOF SFGT on repeated Kronecker multiplication,

the computational requirements for higher k terms become very large. By k = 20, a 2× 1

vector to the Kronecker power of 20 becomes a 1048576× 1 vector, and two such vectors

are needed to calculate each data point. We therefore limit our results to kmax = 16,

which we apply to the pure diffusion case from Example 5 with an increased time step of

dt = 0.1. The characteristic behavior of the 1D SFGT is found to persist in the 2D case,

in which the data points nearest the mean follow the TPI outcome quite closely but the

PDF’s accuracy drops off abruptly past a certain distance. At k = 16, zpeak = [1.26; 1.26]

and Rk = 0.158I, which gives us the constraints needed to develop an accurate range for

this simulation. The error is taken using offset factors from 0 to 3 and recorded in Table 5.

As in the 1D case, the error is found to steadily improve toward the center of the evaluated

space.

Though they are not feasible within this experiment, we also examine the computa-

tional requirements to produce accurate results for 2D problems, using Examples 5, 7,

and 8 from Chapter 3. Like in the 1D case, there is a tendency for the required number of
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Table 5: Accuracy of 2D pure diffusion after a single time step dt = 0.1 s using kmax =
16 within the boundaries determined using peak offset factors Nk from 0 to 3.

kmax = 16
zmax εRMS

Nk = 0 ±1.26 4.50× 10−4

Nk = 1 ±1.10 9.38× 10−5

Nk = 2 ±0.94 1.35× 10−5

Nk = 3 ±0.79 1.01× 10−6

terms to expand over time.

Table 6: Initial and final required number of terms kmax (rounded up) for the 2D SFGT
TPI to be accurate within a range of zmax = 3 with a peak offset factor of Nk = 0.

Pure Diffusion (3 s) Uncoupled Drift (2 s) Coupled Drift (2 s)
Σ ktarget Σ ktarget Σ ktarget

Initial 4.040I 909 0.2913I 66 0.09274I 84
Final 16.04I 3609 1.287I 290 0.6444I 580

While the prohibitive limitations of this study seems to have damning implications

for the SFGT, this behavior can be largely attributed to the use of the Kronecker product.

If a workaround is developed in future research that reduces the sizes of the vectors used

in this process, this method could become far more viable. As formulated and tested in

this paper, however, the SFGT has too many problems to recommend, especially when

applied to MDOF systems.
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5 Summary and Comparison

Through our experimentation and analysis, we find that of the two methods proposed,

bandlimiting is the more universally applicable approach, as evidenced by our success

in recreating a wide variety of simulations of stochastic differential equations, in both

SDOF and MDOF cases. For every problem we considered in this study, at least one

bandlimiting formulation is able to match the results of the standard TPI with a high

degree of accuracy. While some bandlimited simulations in this experiment are found

to run slower than the standard TPI, this can be attributed to the use of prototype code.

Theoretically, a well-coded bandlimiting program should be faster than the standard TPI

implementation in most if not all cases. Additionally, the propagator matrix developed for

a bandlimited TPI requires greatly reduced storage space compared to that of the standard

TPI, increasing the upper size limit of simulations that can be run given the same software

capacity.

When applied to MDOF systems, bulk bandlimiting is found to be the most con-

sistently accurate form of bandlimiting, but in systems with diagonal noise terms and

uncoupled drift processes, operator splitting is equally accurate. In the case of a coupled

drift process, the accuracy of operator splitting is still found to be acceptable, but further

research is needed to determine how this will hold when applied to systems with three or

more degrees of freedom. In a system with a non-diagonal diffusion term, the accuracy of

the operator splitting methods is significantly worse than that of the standard TPI or bulk

bandlimiting and therefore its usage is not recommended.

While the symmetric fast Gauss transform, like bandlimiting, is theoretically capable

of matching the accuracy of the standard TPI, unlike bandlimiting it is not only possible

but common for the computational demands of the SFGT method to exceed those of the

standard TPI before the threshold of sufficient accuracy is reached. This formulation is
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found to demand a large number of moments to yield an accurate result for all examples,

and in many cases the number of moments required tends to increase over time. Sys-

tems for which this requirement instead decreases, such as OU processes, tend to have

prohibitive initial requirements and converge at quantities that are still too large to be

reasonable.

This also poses a problem because the SFGT implementation depends on multiplying

and dividing very large numbers—specifically exponents and factorials—which may for

high k values overtake the limits of the computers being used. These problems can be

mitigated by using a larger time step, which greatly reduces the size of the required sum,

but doing so may be detrimental to the accuracy of the results when evaluating sensitive

systems. Another problem arises when the SFGT is applied to MDOF problems, due to

its dependence on the Kronecker products of vectors, which further increases the storage

and processing demands of the algorithm.

Despite these flaws, this study should not be construed as discrediting the SFGT

implementation entirely. If an alternative to the Kronecker product is developed in future

work, the demands of the MDOF SFGT could be greatly reduced, at which point its

potential should be reevaluated. It is also worth noting that the SFGT is best-suited to

solving systems with large white noise strengths that can be implemented over large time

steps, which are also the systems for which bandlimiting offers the least benefit due to the

relationship between white noise strength, time step size, and required bandwidth.
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6 Conclusion

The goal of this thesis is to develop an alternate formulation of the Transformed Path

Integral that, for an acceptably small trade-off in accuracy, retains its desirable features

while improving on its computational efficiency. To that end, we propose and examine

two general approaches to modifying the TPI. The first method, bandlimiting, takes ad-

vantage of the relative smallness of most terms in the propagator matrix in order to set

boundaries outside of which all values are considered negligible. The second method,

based on the Symmetric Fast Gauss Transform, manipulates the Gaussian kernel of the

propagator matrix formulation to separate the source and target terms in the convolution

operation. We find that both proposed methods are shown to approach the solution of the

standard TPI, but bandlimiting is found to be the more dependable of the two approaches.

At a bandwidth strength of 5, which we propose as the generally recommended band-

width, the bandlimited TPI is found to reproduce the TPI effectively in all examined cases.

In MDOF systems, we find that the computationally inexpensive simple operator splitting

method approaches the standard TPI solution for systems with uncoupled drift processes

and diagonal white noise covariance matrices, and it is also reasonably accurate for sys-

tems with coupled drift processes, though further research is needed for the latter. In

contrast, while bulk bandlimiting is the most expensive form of bandlimiting, it always

approaches the standard TPI solution and can be recommended when the conditions for

accurate operator splitting are not met

Our studies indicate that the SFGT method does not fare as well, because while it

approaches an exact solution of the TPI, the summation size required by its Taylor se-

ries component causes it to far overtake the computational demands of the standard TPI.

Furthermore, the large numbers involved in computing higher Taylor series terms exceed

the limits of the software available for this study, and in cases of expanding systems, the
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required Taylor series size increases over time, making the SFGT not only expensive but

often unfeasible. This is further exacerbated in systems of two or more degrees of free-

dom, for which the SFGT depends on the repeated Kronecker multiplication of vectors,

straining the limits of storage capacity at relatively small Taylor series summation sizes.

Because of this flaw, the SFGT implementation cannot be generally recommended,

but in stable systems that can be iterated in large time steps, which require fewer Taylor

series moments, it may prove beneficial. Furthermore, if an alternative to the use of

Kronecker products can be developed in future research, the viability of the SFGT when

applied to MDOF systems can be expected to greatly improve. A further modification to

the SFGT, the Gauss-Hermite quadrature, is also considered, but its accuracy is found to

be too poor to recommend its usage.

The TPI itself is a very new tool for numerical analysis, and since both bandlimiting

and SFGT approaches are derived from its formulation, they have inherited its challenges.

As the TPI method is further researched and developed to address issues relating to the

curse of dimensionality and singular diffusion matrices, these alternative formulations

will need to be updated and given new consideration in light of future developments.

Based on these findings, we recommend the use of bandlimiting to improve the effi-

ciency of the TPI. Bandlimiting implementations greatly reduce the storage requirements

involved in the TPI solution, and we believe that with optimal coding the speed can be

significantly improved as well. Our findings also indicate that further research and im-

provements are necessary in the formulation of a TPI method based on the symmetric

fast Gauss transform. We find that the computational requirements of the current method

often exceed those of the standard TPI and in many cases tend to further increase over

time.
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7 Future Work

At the time of writing this thesis, the Transformed Path Integral is still a very new

method that remains untested in many conditions. Notably, the stochastic systems for

which the TPI has been proven effective have all had state-invariant, or uniform, diffusion

processes, and only 1D and 2D state spaces have been tested, which this study reflects.

Further research and testing are needed to better understand the stability of the TPI in

higher dimensions and how well it holds up against the curse of dimensionality, as well

as if and in what ways its behavior is affected by nonuniform diffusion. Pending such

studies, the relative effectiveness of the SFGT and bandlimiting methods should be re-

evaluated in that context.

With regard to bandlimiting, we find that for stochastic systems with white noise pro-

cesses defined by non-diagonal matrices, operator splitting methods tend to be ineffective.

One possible alteration to the current operator splitting bandlimiting formulation worth

considering would be to develop a splitting process that operates along the principal axes

of the diffusion process, rather than along the axes of the transformed space. If opera-

tor splitting can be made accurate for all systems regardless of noise or drift, them the

relatively expensive bulk bandlimiting process could be made obsolete.

Additionally, we emphasize that the codes used to run the simulations in this study

are essentially prototypes, and the recorded computation times reflect this fact. Through

code optimization, we believe that the performance of both bandlimiting and SFGT meth-

ods can be further improved. On a related note, as floating point size limitations severely

restrict the analysis of the symmetric fast Gauss transform-based method that is possible

within this study, further studies that address this limitation are warranted. Developing a

method to reduce the Kronecker power in the MDOF SFGT to something more manage-

able is also worth researching.
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Software limitations aside, one concept worth considering for the improvement of

the SFGT formulation is that of an evolving time step relative to the current transformed

space. If the time step size is made to increase over time in proportion to the PDF and its

resolution, this could potentially negate the increase over time in the required number of

moments for expanding systems, while also decreasing the number of time steps needed

to reach a certain time. If it is found that this proposed modification is not significantly

detrimental to the accuracy of the results, such a method could also be applied to the

standard and bandlimited TPI.

Finally, because the SFGT is the sum of a series of PDFs that each individually exhibit

Gaussian behavior, it is possible to apply bandlimiting to the components of the Taylor

series that comprises the SFGT. Notably, the formulas for locating the peaks of these

Gaussian distributions have already been identified in Chapter 4. It may also be possible to

apply the principles of bandlimiting to an SFGT-based TPI method; while such a method

would not reduce the required summation size, it would reduce the computational cost

of each element of the sum. We believe such a synthesis would be worth examining as

SFGT-based methods and their potential uses are further researched.
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