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Abstract 

The complex dynamics of fluid and particles flowing through pore space demands 

some relaxation time for particles to catch up with fluid velocity which manifest 

themselves as non-equilibrium (NE) effect. Previous studies have shown that NE effect in 

particulate transport can have significant consequences when relaxation time is 

comparable to the characteristic time associated with the fluid flow field. However, the 

existing models are lacking to account for this complicated relation between particles and 

fluid. 

In this thesis study, the general form of harmonic oscillation equation is adapted 

to describe NE effects in particulate flow system. The NE effect is evaluated by solving 

coupled mass balance equations with computational fluid dynamic (CFD) techniques 

within COMSOL Multiphysics®. Simplified straight tube model, periodic converging-

diverging tube model and SEM image of a real pore network are applied in the NE 

analyses.  

The results indicate that two key parameters of oscillator equation, amplitude (A) 

and damping ratio (ζ) can be used to explain the NE effect between particle and fluid. 

The former parameter represents the magnitude of NE and the latter is an indication of 

flow path geometry as well as time needed to attain equilibrium. The sensitivity analyses 

imply that fluid viscosity, flow channel size, and flow pattern affect the magnitude of the 

NE effect. By conducting simulation on the SEM image of a real pore structure, the 

equivalent radii of the pores that particles move through were obtained.
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Chapter 1: Introduction 

1.1  Scope of the Problem 

Particle transport behavior is the issue that petroleum engineers attempted to solve 

for many years because particulate flow systems exist in a wide range of petroleum 

related processes, for example the injection of seawater during water flooding, invasion 

of filtrate during drilling, and micro enhanced oil recovery (Yuan et al. 2016). The 

formation damage caused by fine particle retention and detachment highly effect the 

productivity and injectivity of wells (Bedrikovetsky et al. 2011). A large amount of fines 

production may also result in equipment erosion, flowlines plugging, and other potential 

hazards (Marquez et al. 2014). In the asphaltene deposition problem, asphaltene particles 

can change to accumulate or adsorb onto the pore surfaces, which leads to pore plugging 

in the reservoir and finally affects the flow rate within the wellbore (Davudov et al. 

2018). During proppant placement process, the performance of proppant packs in 

hydraulic fracture plays a significant role in fracture conductivity and production 

behavior (Fan et al. 2018). It is believed that uniform distribution of proppant provides 

highest fracture conductivity. However, it is very challenging to sustain uniform 

distribution because of proppant settlement and embedment (Yu and Sepehrnoori. 2013). 

Therefore, it is extremely important for petroleum engineers to understand particle 

transport behavior in order to apply it in those aforementioned petroleum processes. 

Engineers have derived many mathematical models and conducted several experiments to 

investigate the particle transport mechanisms in particulate systems. In the previous 

researches of particle transport in particulate flow through porous media, it has been 
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observed that the particle velocity does not necessarily have the same velocity as its 

carrier fluid when moving through pore networks. This complex dynamic between 

particle and fluid in porous media has drawn people’s attention to investigate the 

mechanism behind it and how it influences particle transport behavior.  

1.2  Thesis Objectives 

The objectives of this thesis are as follows: 

1. Applying finite element software to model the NE effect between particles and 

the carrier fluid. 

2. Evaluating the NE effects in particulate flow system quantitatively using adapted 

harmonic oscillation equation. Then use the non-equilibrium equation to 

decouple particle transport equation from fluid flow equation. 

3. Investigating how fluid property and flow channel geometry affect the NE effects 

4. Using NE study to obtain the equivalent tube radii for a pore structure through 

which particles move.  

1.3  Thesis Outline 

The thesis is driven by the following hypothesis: the linear theory of stability can 

explain non-equilibrium evolution in particulate systems through general form of 

harmonic oscillation equation. Chapter 2 presents a background and literature review of 

the mechanism of particle-fluid interaction in the porous media. Moreover, practical 

particle transport problems including fines migration and enhance oil recovery (EOR) 

using nanoparticle flooding are covered. Meanwhile, the non-equilibrium effects in fluid-

fluid system is reviewed to give idea to model particle-fluid non-equilibrium effects. 
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Finally, how petroleum engineers use computational fluid dynamics (CFD) techniques to 

model particle transport process is presented.  

Chapter 3 provides the methodology of using CFD technique to model particle 

transport in fluid flow and adapting harmonic oscillation equation to describe the NE 

effect between particle and carrier fluid.   

Chapter 4 covers the modeling of particle transport behavior in simplified flow 

geometries, including straight tube and periodic converging-diverging tube. The NE 

effects between particle and fluid were investigated. Moreover, the sensitivity analyses 

on fluid property in different flow path geometries are included in this chapter. 

Chapter 5 covers the continuous study of non-equilibrium effect in particulate 

flow through actual pore structure. The determination of equivalent tube radii for the 

complex pore structure that particles move through is addressed.  

Chapter 6 highlights the conclusions and outcomes of this thesis study as well as 

the future recommendations. 
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Chapter 2: Literature Review 

2.1 Fluid-Fluid Interaction and Non-equilibrium Phenomena 

Bottero et al (2011) conducted series of experiment of injecting PCE 

(etrachloroethylene) to fully water-saturated column using high pressure to investigate 

non-equilibrium capillarity effects in two phase flow. The non-equilibrium effects 

equation of capillary pressure was derived by Hassanizadeh and Gray (1990) and 

Kalaydjian (1992), and it can be seen in Eq. 2.1.  

( ) ( ) w
n w c w w

S
P P P S S

t



− = −


                                                                                        (2.1) 

It relates the difference of two fluids pressure (𝑃𝑛 − 𝑃𝑤) with capillary pressure (𝑃𝑐) and 

changing of water saturation with time. 𝜏  is a dynamic capillarity coefficient. The 

experiment results in shown in Fig 2.1. They observed that the non-equilibrium occurred 

mainly at the early stage of the experiment. In addition, the non-equilibrium pressure 

difference between wetting and non-wetting phase can only observed at high pressure 

injection experiment. In Fig 2.1 (c) and (f), the pressure differences increase significantly 

to overshoot values and then get decrease and finally stabilized in a certain value. This 

behavior is caused by non-equilibrium effect at the interface of wetting and non-wetting 

phase.  
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Figure 2.1: Results of non-equilibrium experiments. (c) and (f) present the 

differential pressures of wetting and non-wetting phases during the experiment 

(Bottero et al. 2011).  

 

Yassin et al (2017) has studied and observed the non-equilibrium effect during 

CO2/oil interaction. They conducted an experiment of injecting CO2 in gas, liquid, and 

superficial states to oil to visualize the interaction of two phase under non-equilibrium 

condition. They found that there were pressure declines from the buildup pressure under 

socking processes at the interface of CO2 and oil. One of the soaking process is 

demonstrated in Fig 2.2. It was observed that the extracting flow, which flowed upward 

and the condensing flow, which flowed downward appeared at the interface of CO2 liquid 

and oil phase. The liquid CO2 dissolved into oil phase during socking process. Moreover, 
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there were solid precipitates attached on the glass near the interface. It was because of the 

asphaltenes deposition under a specific molar fraction of CO2 and a certain pressure.  

 

 

Figure 2.2: The visualized non-equilibrium phenomena occurred at the interface of 

liquid CO2 and oil (top) and the pressure drop during the experiment (bottom) 

(Yassin et al. 2017).  
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2.2 Particle-Fluid Interaction 

2.2.1 Liner Momentum Coupling 

Linear momentum coupling between phases happens because of mass transfer and 

interface drag and lift (Crowe. Et al. 2012). The general form of liner momentum 

coupling between particle and fluid can be expressed as Eq. 2.2. 

( )

( )
( )

( )

2
2

2 22
2 2

1/20

3
24

241 3

2 40 2

iji
i d c i i i

i j

t i i i

c d i i i c

c

dv p D
m mg V D u v u

dt x x

d d u v D ud D
V u v u D d

dt v t





  

 

   
= + − + + − +         

 − +  
 + − +  + 
 −   



       (2.2) 

where m is the mass of particle. The first term on the right side of the equation is called 

body force due to gravity. The second term represents the pressure and shear stress in 

undisturbed flow. The third terms is the steady state drag force. The last two terms are the 

virtual mass term and Basset term, respectively. They can only be used in unsteady state 

flow.  

2.2.2 Steady-State Drag Forces 

The steady state drag force is the drag force acting on the particle in the velocity 

field that generated by carrier fluid when there is no acceleration of the relative velocity 

between particle and fluid (Crowe. Et al. 2012).  The basic equation can be expressed as 

( )
3

2

, 3
8

ss i c i i c i

D
F D u v u  = − +                                                                               (2.3) 

The second term of the equation is called Faxen force, which is used to correlate to 

Stokes drag for the curvature of velocity field. As for a straight flow field, the Faxen 

force equal to zero.  
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For straight fluid flow, the drag force can be written in terms of drag coefficient 

as  

( ),

1

2
ss i c D i i i iF C A u v u v= − −                                                                                       (2.4) 

where 𝐶𝐷 is the drag coefficient, A is the area of the particle, 𝑢𝑖 and 𝑣𝑖 are the continuous 

phase (fluid) velocity and disperse phase (particle) velocity. The drag coefficient highly 

depends on the Reynolds number. Fig 2.3 demonstrates the relationship between drag 

coefficients with Reynolds number. 

 

Figure 2.3: Change of the drag coefficient with Reynolds number (Crowe. Et al. 

2012) 

 

The flow at low Reynolds number (Re < 1) where drag coefficient changes 

inversely with Re number is referred to as Stocks flow regime. In the Stocks flow, the 

inertial terms in the Navier-Stokes equations are not important; therefore, they can be 

neglected. The governing equation is  

2

i
c

i i j

up

x x x



=

  
                                                                                                              (2.5) 



9 

Drag force is generated because there is pressure difference on two sides of spherical 

particle. The force that moves the fluid adjacent to the surface has to against the shear 

force. The two forces can be written as 

p cF DU=                                                                                                                    (2.6) 

2 cF UD =                                                                                                                  (2.7) 

The total drag force is the sum of the two contributions, and it can be expressed as  

3D cF DU=                                                                                                                 (2.8) 

Put the drag force equation back to Eq. 2.4, the drag coefficient can be obtained  

24

Re
D

r

C =                                                                                                                        (2.9) 

where 𝑅𝑒𝑟 is the Reynolds number base on relative velocity.  

2.2.3 Unsteady-State Drag Forces 

When small fluid drop or particle flows in a viscous fluid at a small Reynolds 

number not only influenced by Stokes drag but also another drag force called memory-

integral drag, also known as Boussinesq-Basset drag (the last term in Eq. 2.2), particles 

can experience an oscillatory motion under the effect of external forces (Hassan et al, 

2017). In this case, the resonance curve including shape, amplitude, and quality of 

oscillator become important. Those characteristics of particle oscillator under the effect 

of Stokes drag has already been investigated.  
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2.3 Fines Migration Problem  

2.3.1 Mechanism of Fine Detachment  

 The forces acting on single particle that attach to grain surface are drag force (Fd) 

from viscous fluid flow, electrostatic force (Fe), lifting force (Fl), and buoyancy force (Fg) 

(Yuan et al. 2015). The force balance of single particle is illustrated in Fig 2.4. 

 

Figure 2.4: Schematic of forces exerting on single fine particle (Yuan et al. 2015) 

 

Particle will be detached if the detaching torque of drag and lifting forces exceeds the 

attaching torque generated by electrostatic force and gravity force; otherwise the particle 

will attach on the grain surface (Oliveira et al. 2014).  

2.3.2 Governing Equations for Fines Migration 

The commonly used governing equation of fines migration involves particle 

suspension, retention and straining (Yu et al. 2018). The mass balance equation is 

described as  

( )( ) ( )
0

s c cf
U

t x

    + 
+ =

 
                                                                                  (2.10) 
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where, 𝜙 is porosity, s is accessibility factor, c is suspended fines concentration, 𝜎 is 

retained fines concentration, U is Darcy velocity, and f is drift-delay factor. The rate of 

fines straining is defined as 

( ) ( )f Uc
t


  


=


                                                                                                    (2.11) 

where, 𝜆 is the filtration coefficient. 

Yuan and Shapiro (2010) had observed that the velocity of particle that near the 

pore surface is less than the velocity of its carrier fluid. To model the fine particle 

velocity, a drift-delay factor (alpha) is introduced to describe the slow particle motion 

near the pore surface (Oliveira et al. 2014). The drift-delay factor is defined as 

sUf

s U
 = =                                                                                                                   (2.12) 

where 𝑈𝑠  is the fines rolling velocity. The drife-delay factor can be used to decouple 

particle and fluid veloctiy when solving particle and fluid equation (Russel et al. 2018). 

2.3.3 Experiment of Water Flooding with Fines Migration 

Hu et al (2016) conducted a core flooding experiment to explain nanoparticle 

assists water flooding during EOR process. The experiment instrument is presented in 

Fig 2.5.  
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Figure 2.5: Schematic of experiment apparatus and flow diagram for water flooding 

(Hu et al. 2016) 

 

The fluid was injected through the core sample vertically upward. The whole core 

flooding process contains three stages: 1). water-flooding with only the synthetic brine 2). 

water-flooding with the synthetic brine and the nanoparticle stabilizer, and 3). nano-

flooding with different concentrations of nanoparticles. They investigated the 

nanoparticle migration behavior during flooding. The experimental results can be seen as 

Fig 2.6. 
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Figure 2.6: Differential pressure profile for brine, brine with surfactant, and nano-

fluid flooding (Hu et al. 2016)   
 

The results shown that nanoparticle flood had higher pressure drop compared with that of 

brine flooding. In nanoparticle flooding, there was a pressure increase, which is 

highlighted in the figure. It is because nanoparticles were temporarily stuck in the core, 

which is called log jamming.  

Russel et al (2018) had same observation during their experiment on coreflood of 

artificial sand-kaolinite core. They measured the pressure drop during the injection 

period. The result is shown in Fig 2.7. It has been observed that there were pressure drop 

decreases during the coreflood experiment.  
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Figure 2.7: Coreflood experiment data with the model for velocity-induced fines 

migration. Core Impedance refer to as dimensionless pressure drop. PVI stands for 

the number of pore volume injected (Russel et al. 2018) 

 

Log jamming is one of the mechanisms that cause pore plugging (Sun et al. 2017). 

The mechanism is demonstrated in Fig 2.8. When nanofluid flows from pores to throats, 

the flowing channel area become narrow causing the increase of nanofluid velocity. The 

fluid velocity will become faster than nanoparticles. It causes nanoparticles accumulate at 

the entrance of pore throat.  

 

Figure 2.8: Schematic of pore clogging caused by log-jamming (Sun et al. 2017) 
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2.4 Colloids Transport in Saturated Porous Media 

Auset and Keller (2004) conducted experiments to investigate the particle 

transport behavior in porous media. They used polydimethylsilxane (PDMS) to create 

several micro-models to represent porous media. The models are demonstrated in Fig 2.9. 

In general, the pattern for those microscope models are quadrilateral network of 100 pore 

bodies with 60 μm diameter. Fig. 2.9 (a), (b) and (c) present networks with channel width 

of 10 μm, 20 μm, as well as combined 10 and 20 μm, respectively.  

 

  

 

Figure 2.9: Optic microscope images of the polymer replica containing channel 

patterns with three different channel widths. (Auset and Keller, 2004)  
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They injected four sizes of microspherical paticles with 2, 3, 5, and 7 μm in diameter into 

the porous media that fully saturated with water. The particle trajectories were obtained 

and the results for 3 μm diameter case is demonstrated in Fig. 2.10. The picture on left 

illustrates several randomly chosen trajectories in the pore network with channel width of 

20 μm (regular). The picture on the right demonstrates trajectories in combined 10 and 20 

μm channel width pore network (irregular). It had been observed that particles took more 

detours in irregular pore network because of the more complex structure.  

 

Figure 2.10: Trajectories of 3 μm particles. Picture on the left is for regular shaped 

channel, and the right one is for irregular shaped channel. (Auset and Keller, 2004) 

 

In addition, they observed that those particles travel in the center streamlines have low 

possibility to detour. In terms of particle size, larger particles are more likely to travel in 

the center part of the flow, therefore, they preferentially flow in straighter pathways. 

However, smaller particles are more likely to detour from straighter pathways because 

they always travel near the pore wall. Therefore, the dispersion of colloids depends on 

both flow path geometry and colloid size.  
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Sirivithayapakorn and Keller (2003) also investigated the pore size exclusion 

effect during colloid transport process. The pore size exclusion effect is a phenomenon 

that the colloids are restricted to flow in high velocity streamlines in large pores. They 

used pore scale micro model that made of a thin slice of fine sand. The imaged and 

digitized picture of the porous media is demonstrated in Fig. 2.11. The size of the image 

is approximately 509 × 509 μm. The pore throats are between 3 to 20 μm in diameter. 

The colloid size that they used were 0.05, 1, 2, and 3 μm. Three different pressure were 

set for the experiment.  

 

Figure 2.11: Composite image of pore network (Sirivithayapakorn and Keller, 

2003).  

 

They observed that at high pressure, large colloids only flowed through large pore 

throats. At low pressure, large colloid could flow to other large pores. In contrast, small 

colloids were more likely flow into small pore throats. In addition, it had been discovered 
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that 3 μm colloids flowed into different pore throats at different pressures, which is an 

evidence of size exclusion effect. The preferential paths for different colloids are depicted 

in Fig 2.12. The 0.05 μm colloids had the most pathways, which indicates highest particle 

dispersion. It can be explained that small particle can be easier to move through wide 

range of pores in comparison to large particle.   

 

Figure 2.12: Trajectories of colloids with different diameters (Sirivithayapakorn 

and Keller, 2003).  
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2.4 Solving Particle Transport Problem Using CFD Technique 

When addressing the issue of large-scale proppant transportation in fractures, 

petroleum engineers rely on two methods: (1) the velocity model saying that viscosity 

produce the influence of the proppant load on the fluid, and (2) the mixed phase model in 

which the proppant and fluid are considered as different phases with different velocities 

(Roy et al. 2015). The first model is not sophisticated because it only applicable for high 

viscosity fluids, and it cannot describe the correct particle behavior in low viscosity fluid. 

The reason is that proppant transport behavior will be affected by the friction with the 

fracture surface, particle jamming, and proppant pack formation, which result in the 

velocity difference between proppant and fluid. The second model (mixed phase model) 

tracks particle and fluid separately, therefore, it can capture the complex behavior 

between them. 

There are two computational fluid dynamic (CFD) approaches that treat particle 

and fluid separately when dealing with transport problem in hydraulic fracture or porous 

media. The first one is called Lagrangian approach, also referred to as particle tracking 

method or Discrete Phase Model (DPM) (Kong et al. 2016). This method treats the fluid 

as a continuum phase by solving the Navier- Stokes (N-S) equation, and then tracks each 

particle as discrete phase by coupling them with the flow field. The limitation of this 

method is the volume of disperse phase cannot employed because DPM assumes particle 

loading is low compared with whole domain and particle-particle interaction is not being 

considered. However, if DPM is coupled with DEM (Disperse Element Method), the 

particle-particle and particle-wall interactions can be captured. DEM is the method of 
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applying Newton’s law to particles to obtain their motions. The second method is the 

Euler-Euler approach, which treats each phase as an interpenetrating continuous phase. It 

solves a set of momentum and mass balance equations for both solid and liquid phase. 

Solid phase is considered as continuum fluid phase of particle. The Euler-Euler model is 

the most complex and computationally intensive among the multiphase models.  

Tong and Mohanty (2016) introduced a Dense Discrete Phase Model (DDPM), 

which is the combination of the two approaches mentioned above. The difference 

between DDPM and the other two models is that the solid particle phase is tracked by 

Lagrangian approach, and then mapped back to Eulerian grid. The advantage of this 

method is that particles are regarded as parcel groups, therefore computation can be 

reduced.  

2.5 Meshing in Finite Element Method 

Finite element method (FEM) is one of the most common methods to solve partial 

differential equations that engineers use to model physical behaviors (Haaland. 2016). In 

finite element analysis, meshing generation enables a model being divided into finite 

number of elements with certain number of node points. The calculation is completed at 

those limited number of node points and then interpolate the results for the entire model 

domain.  

The mesh shape and size in FEM highly affects the accuracy of the calculation. In 

COMSOL Multiphysic, meshing utilizes four different element types: tetrahedra (tets), 

hexahedra (bricks), triangular prisms (prisms), and pyramids. Those shapes can be seen 

below as Fig 2.13. 

https://www.comsol.com/blogs/meshing-your-geometry-various-element-types/
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Figure 2.13: Image of different element types (Haaland. 2016). 

 

Haaland used COMSOL to model two drilling fluid behavior in the well. The 

model that he built was a 2-D pipe that contained two drilling fluids. He used free 

triangular elements with three different sizes for mesh generation in COMSOL. At the 

interface part of the model, a finer mesh was generated and more elements where 

distributed near that area. As for the model boundary, elements were coarser distributed. 

For the rest domain of the model, an extremely coarse mesh was generated. Since the 

expected results could mainly be obtained at the interface part of the model, finer mesh 

was implemented. Choosing different sizes of mesh based on model requirement can 

reduce the total number of elements and finally reduce the computational cost.  
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Chapter 3: Methodology 

3.1 Simulation Software 

The simulation software that used in this thesis is COMSOL Multiphysics® (also 

refer to as COMSOL). It is a finite element analysis simulator which can be used to deal 

with coupled multiple physics problem. The two interfaces that were implemented in this 

thesis are computational fluid dynamic (CFD) module and particle tracing module. 

In CFD module, the laminar flow and creeping flow interfaces were used to 

model steady state flow at relatively low Reynolds number for Newtonian fluids. The 

velocity field can be calculated by solving Navier-Stokes equation.  

Particle tracing module were used to model Euler-Lagrange multiphase flow 

problem, where particles or droplets are considered as rigid particles. The interaction 

between particle and fluid were obtained by coupling the CFD interface with particle 

tracing interface.  

3.2 Model Assumptions  

In all simulations, fluid velocities were calculated assuming that particle does not 

affect fluid properties. Next, calculated fluid velocity values were used to determine 

particle velocity as a function of time and space. The major assumptions of this study are 

as follow: 

1. Incompressible flow 

2. Laminar Darcy fluid flow 

3. No particle-particle interaction is considered 

4. Fluid properties are not affected by particle flow 
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5. No slip boundary condition at the wall 

6. All particles are naturally buoyant; drag force is the dominant factor 

3.3 Governing Equation for Particle Transport in Fluid Flow  

To model laminar flow in the tube, the CFD module was implemented. The 

governing equations solved for incompressible fluid flow are as follow: 

( ) ( )( )
( ) 0

Tu
u u pI u u F

t

u

  



  +  =  − +  +  +
  

  =

                                                      (3.1) 

where 𝜌 is fluid density, u is the fluid velocity, 𝜇 is fluid viscosity and F is additional 

forces acting on fluid.  

Once the flow interface being calculated, the Particle Tracing module was added 

to model particulate flow. In this model, it is assumed that all particles are naturally 

buoyant; therefore, the gravity and buoyancy forces can be ignored and the drag force 

(𝐹𝐷)  is the dominant factor in determining the particle trajectories. The governing 

equation for particle motion is 

( )p

D

d m v
F

dt
=                                                                                                                  (3.2) 

where 𝑢 is fluid velocity and 𝑣 is particle velocity, 𝑚𝑃 is the mass of the particle, and 𝐹𝐷 

is drag force. The initial velocity of particles was set same as the initial velocity of fluid 

flow. In general drag force can be defined as: 

( )
1

D p

p

F m u v


= −                                                                                                          (3.3) 

where 𝜏𝑃 is relaxation time and can be expressed as: 
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−
                                                                                                           (3.4) 

where 𝜌𝑃 is particle density, 𝑑𝑃 is particle diameter, and 𝐶𝐷 is drag force coefficient. The 

appropriate formulation of 𝐶𝐷 , depends on the relative Reynolds number (𝑅𝑒𝑟) of the 

particle in the fluid. For a spherical particle the relative Reynolds number is: 

Re
p

r

u v d



−
=                                                                                                            (3.5)                                                                                                                                                     

Based on Stokes drag law, for 𝑅𝑒𝑟 ≪ 1, the drag force coefficient, 𝐶𝐷 can be estimated 

as: 

24

Re
D

r

C =                                                                                                                        (3.6)                                                                                                                                                                  

Combining Eqs. 3.4-3.6, the particle relaxation time yields to be: 

2
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p p

p

d



=                                                                                                                      (3.7) 

To model the velocity difference between particle and fluid, the NE effect is 

defined as a function of particle velocity and local fluid velocity, which can be written as 

1
u

NE
v

= −                                                                                                                      (3.8) 

3.4 Adapt Harmonic Oscillator Equation to Describe NE Effects 

Viscous damping occurs when the damping force generated is proportional to the 

velocity of the particles. One way that viscous damping arises in jarring analysis is from 

the interaction of a solid and liquid at their interface (Lake. 2006). 
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In particulate flow system, particle and its carrier fluid have interaction at their 

interface. In order to describe the non-equilibrium (NE) effects between particle and 

fluid, harmonic oscillator equation is carried out. 

In mechanical vibration system, the harmonic oscillator equation with damping is 

driven by solving Newton’s second law equation, which is 

2
2

0 02
2 0

d x dx
x

dt dt
 + + =                                                                                                (3.9)   

where  

0

k

m
 =  is called the un-damped angular frequency of the oscillator, 

2

c

mk
 =  is called the damping ratio. 

The system behavior depends on the value of damping ratio (ζ).  

• Over-damped (ζ >1): The system returns to steady state without oscillating. 

Larger values of the damping ratio ζ return to equilibrium more slowly. 

• Critically damped (ζ =1): The system returns to steady state as quickly as possible 

without oscillating  

• Underdamped (ζ <1): The system oscillates with the amplitude gradually 

decreasing to zero.  

If ζ > 1, an imaginary number is involved when solving Eq. 3.8. Also, ζ > 1 implies that 

the system returns the equilibrium state without oscillation. Therefore, it is not a good 

approach to explain the NE behavior. In order to have a specific equation to describe the 

NE, the underdamped behavior (ζ < 1) will be applied to describe the vibration behavior 

https://en.wikipedia.org/wiki/Angular_frequency
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between particle velocity and fluid. The general solution of Eq. 3.9 for ζ < 1 can be 

written as                  

( )0 2

0( ) sin 1
t

x t Ae t
   −

= − +                                                                                 (3.10)   

The NE effect parameter is proposed to be  

( )0 2

01 sin 1
p t

f

v
NE Ae t

v

   −
= − = − +                                                                    (3.11)           

where A is oscillation amplitude, ζ is damping ratio. In this thesis, it is hypothesized that 

A represents the magnitude of NE and ζ represents time needed to attain equilibrium. 

High amplitude implies large NE between particle and fluid, whereas low damping ratio 

indicates the particle need long time to get equilibrium with its carrier fluid.  

3.5 Curve Fitting Using MATLAB® 

MATLAB codes were designed to match the harmonic oscillation equation with 

the simulation data. For curve fitting, the equation that used is  

( )sinbxy ae cx d−= +                                                                                                     (3.11)           

Once all the coefficients (a, b, c, and d) are obtained, the ζ and 𝜔0 can be determined by 

2 2

b

b c
 =

+
                                                                                                               (3.12)           

2 2

0 b c = +                                                                                                                (3.13) 
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Chapter 4: Non-Equilibrium Effects in Straight and Periodic 

Converging-Diverging Tubes 

4.1 Straight Tube Model 

4.1.1 Model Set Up 

The basic geometry schematic of the straight tube model can be seen below as Fig 

4.1. A straight tube with a uniform radius of 100 μm and a total length of 250 μm was 

modeled. In order to reduce computational cost, the geometry was cut to a quarter of the 

original tube along the symmetry line.  

 

Figure 4.1: Basic schematic of straight tube generated in COMSOL. 

 

Fluid was given a velocity of 0.004 m/s at the inlet boundary. The outlet boundary was 

set as p=0 refer to inlet boundary. Particles with different diameters were injected from 

different positions at inlet boundary to outlet boundary for different cases (each case had 

identical particle diameter). The details of the simulation model are listed in Table 4.1. 
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Table 4.1: Simulation inputs for straight tube model 

Parameter Value Unit 

Fluid density 750 kg/m3 

Fluid viscosity 0.5, 1, 3, 5 cp 

Initial velocity 0.004 m/s 

Particle diameter 25 μm 

Particle density 2000 kg/m3 

 

Mesh independent study was performed with different mesh sizes. The meshing 

result is shown in Fig 4.2. The final mesh that being used in the simulation was free 

tetrahedral shape with a maximum element size of 3 μm and a minimum element size of 

1 μm. The reason why tetrahedral shape is chosen is because it can be easily generated to 

be conforming where adjacent elements share a whole edge or a whole face (Ho-Le. 

1988). 

 

 

Figure 4.2: Mesh generation with tetrahedral shape. 
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4.1.2 Fluid Velocity Profile and Particle Trajectory 

The velocity profile of μ = 1 cp case is illustrated in Fig 4.3. The flow velocity 

distribution across the tube follows the character of Poiseuille flow. The maximum 

velocity, which is approximately 0.006 m/s occurs at the center of the tube, and the 

velocity at the flow boundary is equal to zero.  

 

 

 

Figure 4.3: Velocity profiles in the cross section (top) and along the z-axis (bottom). 
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Using Hagen-Poiseuille Law, the fluid velocity at any given radius (r) inside the 

tube can be express as Eq. 4.1. 

2

max( ) 1f

r
v r v

R

  
= −  

   

                                                                                                  (4.1) 

where 𝑣𝑚𝑎𝑥 is the maximum fluid velocity inside the tube, and 𝑅 is the radius of the tube. 

In this case 𝑣𝑚𝑎𝑥 is around 0.006 m/s, and 𝑅 equals 100 μm (0.0001m). Plugging them 

into Eq. 4.1, the velocity distribution inside tube yields to be  

2

4
( ) 0.006 1

1 10
f

r
v r

−

  
= −  

   

                                                                                       (4.2) 

The particle trajectory is shown in Fig 4.4. With only drag force, particles are 

affected by the velocity field generated by fluid flow, so they move along the flow stream 

line. Therefore, particles at the center part of the tube have high velocities. 

 

Figure 4.4: Particle trajectories inside the tube. Color scale represents the 

magnitude of particle velocities. 
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4.1.3 Non-Equilibrium Parameter Determination 

The NE parameter (1 −
𝑣𝑝

𝑣𝑓
) was evaluated within COMSOL. Simulation results 

were matched with harmonic oscillator equation to obtain the magnitude (A) and 

damping ratio (ζ) values. P10, P50, and P90 values on cumulative distribution functions 

(CDF) of A and ζ were recorded separately. P50 was used to represent the most likely 

value, whereas P10 and P90 were used to determine uncertainty. 

For the fluid viscosity of 1cp, the NE parameter as a function of time for one of 

the 50 particles is plotted in Fig 4.5. During early stage (when particle is just injected into 

the tube), there is velocity difference between particle and fluid. In that time period, 

particle velocity is always less than fluid velocity. After a certain time, particle and fluid 

reach same velocity, which can be described as equilibrium state.  

 

Figure 4.5: NE parameter as a function of time solved with COMSOL. 
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To model the NE, the adapted harmonic oscillation equation (Eq. 3.11) was 

implemented to match with simulation results. A perfect match with 𝑅2 =0.98 was 

obtained and it can be seen in Fig 4.6.  

 

Figure 4.6: Curve fitting for single particle with MATLAB.  

 

Same curve fitting process was performed for all 50 particles. The statistic results 

for two key factors of NE, A and ζ are presented in Fig 4.7. The P50 values of A and ζ at 

their cumulative distribution function are 0.025 and 0.977, respectively.  
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Figure 4.7: Histograms and CDFs of A and ζ values obtained from curve fitting for 

case of 𝝁 = 𝟏 cp. 

 

4.1.4 Decouple Particle Equation from Fluid Equation  

 The ω0  and φ  values were also determined by using P50 value on their 

cumulative distribution functions. All coefficients in the harmonic oscillation equation 

were obtained and they are listed in Table 2.2. 

Table 4.2: Coefficients of harmonic oscillation equation for straight tube obtained 

from curve fitting 

Coefficient P50 P10 P90 

A 0.025 0.009 0.104 

ζ 0.977 0.73 0.999 

ω0 305 245 780 

φ 100 100 100 

 

Plug the P50 values of those coefficients into Eq 3.11, the equation yields to be 

( )2981 0.025 sin 66 100
p t

f

v
e t

v

−− = +                                                                                  (4.3) 
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Combine Eq. 4.2 with Eq. 4.3, the particle velocity for any given radius (r) and time (t) 

for the case of 𝜇 = 1 cp is determined to be  

( )
2

298

4
( , ) 0.006 1 1 0.025 sin 66 100

1 10

t

p

r
v r t e t−

−

  
 = − − +       

                                    (4.4) 

4.1.5 Sensitivity Analysis  

Sensitivity analysis was performed on fluid viscosity to investigate how fluid 

viscosity affect NE parameters. Pure dodecane and Earlsboro crude whose viscosities are 

1.34 cp and 4.6 cp were used in EOR experiment (Wang et al. 2018). Simulations were 

built for cases of μ = 5 cp, 3cp and 0.5 cp. Other inputs were kept same with previous 

case. The histograms and cumulative distribution functions for A and ζ values are 

presented in Figs 4.8-4.10 

 

  

Figure 4.8: Histograms and CDFs of A and ζ values obtained from curve fitting for 

case of 𝝁 = 𝟓 cp. 
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Figure 4.9: Histograms and CDFs of A and ζ values obtained from curve fitting for 

case of 𝝁 = 𝟑 cp. 

 

   

Figure 4.10: Histograms and CDFs of A and ζ values obtained from curve fitting for 

case of 𝝁 = 𝟎. 𝟓 cp. 

 

P50 values of A and ζ for cases of μ = 5cp, 3 cp, 1cp and 0.5 cp are plotted in Fig 

4.11. It can be observed that a high fluid viscosity value yields a low magnitude of NE 

between particle and fluid. High viscosity fluid makes particle and fluid get equilibrium 

state quickly compared with low viscosity fluid. The damping ratios (ζ) for all cases are 
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close to 1, which indicates that particles and fluid will reach equilibrium states as quick 

as possible in straight tube with uniform radius. 

 

 

Figure 4.11: Comparisons of A and ζ values at different fluid viscosities. 

 

4.2 Periodic Converging-Diverging Tube Model  

4.2.1 Model Set Up 

The basic schematic of the converging-diverging shaped tube model is 

demonstrated in Fig 4.12. Two diverging shaped tubes and one converging shaped tube 

connect with each other. Each tube has a maximum radius of 100 μm and a minimum 

radius of 50 μm as well as a tube length of 250 μm.  
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Figure 4.12: Basic schematic of periodic converging-diverging tube generated in 

COMSOL. 

 

Particles were injected at the same velocity with the initial fluid velocity from the inlet 

boundary to outlet boundary. The details of the simulation are listed in Table. 4.3. 

Table 4.3: Simulation inputs for periodic converging-diverging model 

Parameter Value Unit 

Fluid Density 750 kg/m3 

Fluid Viscosity 0.5, 1, 4 cp 

Initial Velocity 0.008 m/s 

Particle Diameter 25 μm 

Particle Density 2000 kg/m3 

 

4.2.2 Fluid Velocity Profile and Particle Trajectory  

The velocity profile of μ = 1 cp case is illustrated in Fig 4.13. Similar to tube 

with uniform radius, the velocity distribution in periodic converging-diverging tube 

follows the character of Poiseuille flow. Fluid velocity magnitude is higher in small 

radius region compared with that of big radius region.  

Inlet 

Outlet 
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Figure 4.13: Fluid velocity distribution inside the periodic converging-diverging 

tube. 

 

The velocity distributions along the z-axis for cross-sections with maximum and 

minimum radii were evaluated in COMSOL and they can be seen below as Fig. For the 

cross-sections with radius of 100 μm and 50 μm, the maximum velocities are 

approximately 0.0045 m/s and 0.014 m/s, respectively.  
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Figure 4.14: Velocity distributions along the z-axis in maximum cross-section (top) 

and minimum cross-section (bottom). 

 

The velocity profile 𝑣(𝑟, 𝑧)  in a tube whose cross-section area is gradually 

changing with the distance along the flow direction remains parabolic (Bahrami et al. 

2008). The schematic velocity profile can be seen below as Fig 4.15.  
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Figure 4.15: Schematic of varying cross-section tube (Bahrami et al. 2008).  

 

Therefore, the axial velocity needs to be described as  

2

( , ) 2 ( ) 1
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r
u r z u z

a z

  
= −  

   

                                                                                       (4.5) 

where 𝑢𝑚(𝑧) is the average velocity at the axial location z, 𝑎(𝑧) is the tube radius at 

location z. By applying conservation of mass 
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                                                                                                       (4.6) 

where 𝑎0 is the tube radius at initial point. Combining Eq. 4.5 and Eq. 4.6, the axial 

velocity equation yields to be  

2 2

0
,0( , ) 2 1

( ) ( )
m

a r
u r z u

a z a z

    
= −   

     

                                                                             (4.7) 

For a convergent shaped tube, 

( )min max min( )
L z

a z R R R
L

−
= + −                                                                                     (4.8) 
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where 𝑅𝑚𝑖𝑛, 𝑅𝑚𝑎𝑥 and 𝐿 are the minimum tube radius, maximum tube radius, and tube 

length respectively.  

Similar for a divergent shaped tube, 

( )min max min( )
z

a z R R R
L

= + −                                                                                          (4.9) 

Combining Eq. 4.7 with Eq. 4.8, we get the generalized velocity equation in a 

converging tube, which is  

( ) ( )

2 2

0
,0

min max min min max min
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a r
u r z u
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R R R R R R
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 = −   − −   + − + −
     

         (4.10) 

Combining Eq. 4.7 with Eq. 4.9, we can get the generalized velocity equation in a 

diverging tube, which is  

( ) ( )
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0
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min max min min max min

( , ) 2 1m

a r
u r z u

z z
R R R R R R

L L

    
   
 = −   
   + − + −
     

                    (4.11) 

Plug Rmin = 5 × 10−5 m , Rmax = 1 × 10−4 m , L = 2.5 × 10−4 m , and 2𝑢𝑚,0 =0.0045 

m/s into Eq. 4.10, the fluid equation for any given radius (r) and axial length (z) inside 

the convergent tube yields to be 
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 =  −   
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                                              (4.12) 

Plug 2𝑢𝑚,0=0.014 m/s into Eq. 4.11, the particle equation for any given radius (r) and 

axial length (z) inside the divergent tube yields to be 
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 The particle trajectories in periodic converging-diverging tube is demonstrated in 

Fig 4.16. The particle motions were only affected by the fluid flow field, therefore, high 

velocity is be observed at the tube with small radius.  

 

Figure 4.16: Particle trajectories inside the periodic converging-diverging tube. 

Color scale represents the magnitude of particle velocities. 

 

4.2.3 Non-Equilibrium Parameter Determination 

Followed the same steps with straight tube model, the NE parameters were 

evaluated within COMSOL. Simulation results were matched with harmonic oscillator 

equation to obtain the magnitude (A) and damping ratio (ζ) values. P10, P50, and P90 on 

cumulative distribution functions (CDF) of A and ζ were recorded separately. 
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The NE parameter as a function of time for 1 cp fluid viscosity case can be seen 

below as Fig 4.17. According to the figure, the particle experiences three mains stages 

depending on the flow path geometry. The flow geometry for the first stage is divergent 

shaped flow path. The NE parameter is less than zero, which means that particle velocity 

exceeds fluid velocity when the tube radius getting bigger. At early time, there is big 

difference between particle velocity and fluid velocity. At late time, particle velocity gets 

close to fluid velocity indicating they are close to equilibrium state. After the first stage, 

the flow path geometry switch to convergent shape. The NE parameter is larger than zero. 

It implies that particle velocity is always less than fluid velocity. In contrary to system 

behavior in divergent flow path, particle and fluid velocity will never getting close to 

each other, which indicates that the non-equilibrium will always happen. The reason for 

the NE parameter drops at late time is because the flow path geometry transit from 

converting to diverging pattern. When particle flows into another divergent flow path, 

which is the third stage, the behavior of particle and fluid is same with that of the first 

stage. 
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Figure 4.17: NE parameter as a function of time in periodic converging-diverging 

tube solved with COMSOL. 

 

The harmonic oscillation equation was implemented to match with simulation 

results for different stages separately. The initial time for all three stages were normalized 

to zero for curve fitting. The curve fitting result for a single particle in stage 2 can be seen 

below as Fig 4.18. The A and ζ values were determined to be 2.4 × 10−5 and -0.978. In 

frictional vibration, negative damping causes system instability (Chen, 2014). In this 

situation, it indicates that the NE parameter get increased. Since particle flowed in 

converging tube, it can be concluded that negative ζ implies convergent flow path 

geometry. In analysis, the linear stability is able to predict the existence of system 

instability. The level of instability can be obtained through non-linear analysis, but in this 
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case, there is no need for analysis of its behavior since system will never achieve 

equilibrium. 

 

Figure 4.18: Curve fitting for single particle in stage 2 using MATLAB. 

 

Stage 1 and stage 3 had same particle-fluid behavior, the fitting curve is shown in Fig 

4.19. The A and ζ values were determined to be 0.026 and 0.94. In this case, ζ equals a 

positive number. It means that the NE parameter decreases over time. Since particle 

flowed in diverging flow path, it can be concluded that positive ζ value is an indication of 

divergent flow pattern.  
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Figure 4.19: Curve fitting for single particle in stage 1 and 3 using MATLAB. 

 

After matching all 50 particles data, the histograms and cumulative distributions 

function for A and ζ in divergent and convergent flow patterns were obtained separately. 

The statistic results for two different flow patterns are shown in Fig 4.20 and Fig 4.21. In 

the case of μ = 1 cp, the P50 values of A and ζ for convergent flow pattern are 1.9 ×

10−5 and -0.894, respectively. As for divergent flow path geometry, P50 values for A 

and ζ are 0.015 and 0.926, respectively. The result complies with single particle case that 

ζ is negative when flow pattern is convergent shape, whereas ζ is positive when flow 

pattern is divergent shape. Moreover, the result indicates that the A value for convergent 

flow pattern is smaller than that of divergent flow pattern. 
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Figure 4.20: Histograms and CDFs of A and ζ values in convergent flow pattern 

condition for case of 𝝁 = 𝟏 cp. 

 

 

  

Figure 4.21: Histograms and CDFs of A and ζ values in divergent flow pattern 

condition for case of 𝝁 = 𝟏 cp. 

 

4.2.5 Decouple Particle Equation from Fluid Equation 

The particle transport equation is obtained by combining fluid equation with NE 

equation. All coefficients in harmonic oscillation equation that used to describe NE were 
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obtained from P50 values on their cumulative distribution functions. Coefficients for 

convergent flow path geometry is shown in Table 4.4.  

Table 4.4: Coefficients in harmonic oscillation equation for converging flow pattern 

Coefficient P50 P10 P90 

A 1.9 × 10−5 2.8 × 10−6 5.1 × 10−5 

ζ -0.894 -0.999 -0.471 

ω0 421 182 1900 

φ 100 100 100 

 

Plug P50 values of those coefficients into Eq 3.11, the NE equation for convergent flow 

pattern yields to be 

( )5 3761 1.9 10 sin 189 100
p t

f

v
e t

v

−− =  +                                                                           (4.14) 

Combine Eq. 4.12 with Eq. 4.14, we can get the particle velocity equation for any given 

radius (r), axial location (z), and time (t) in convergent tube, which is  
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 (4.15) 

Coefficients for divergent flow path geometry is shown in Table 4.5.  

Table 4.5: Coefficients in harmonic oscillation equation for diverging flow pattern 

Coefficient P50 P10 P90 

A 0.015 0.008 0.058 

ζ 0.926 0.268 0.999 

ω0 237 85 394 

φ 100 100 100 
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Plug P50 values of those coefficients into Eq 3.11, the NE equation for divergent flow 

pattern is obtained to be  

( )2201 0.015 sin 90 100
p t

f

v
e t

v

−− = +                                                                                 (4.16) 

Combine Eq. 4.12 with Eq. 4.16, the particle velocity equation for any given radius (r), 

axial location (z), and time (t) in convergent tube is determined to be 
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 (4.17) 

4.2.4 Sensitivity Analysis 

Sensitivity analysis was performed on fluid viscosity to investigate how viscosity 

affect NE parameters. Simulations were set for another two cases, which are μ = 4cp and 

0.5 cp.  The histograms and cumulative distribution functions for two cases are presented 

in Figs 4.22-4.23.  

In the case of μ = 4 cp, the P50 values of A and ζ for convergent flow pattern 

were determined to be 6.1 × 10−6 and -0.911, respectively. For divergent flow pattern, 

the P50 values of A and ζ values were determined to be 2.43 × 10−3  and 0.999, 

respectively.  

In the case of μ = 0.5 cp,  the P50 values for A and ζ for convergent flow pattern 

were determined to be 1.42 × 10−3and 0.724, respectively. For divergent flow pattern, 

the P50 values of A and ζ values were determined to be 0.69 and 0.741, respectively. 
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Both cases have consistent results with the case of  μ = 1 cp  that ζ value is 

negative in convergent flow path geometry, whereas ζ value is positive for divergent flow 

pattern. 

  

(a)                                                                      (b) 

  

(c)                                                                      (d) 

Figure 4.22: Statistic results for the case of 4 cp. (a) and (b) are the histograms and 

CDFs of A and ζ for convergent flow pattern. (c) and (d) are the histograms and 

CDFs of A and ζ for divergent flow pattern. 
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     (a)                                                                  (b) 

  

     (c)                                                                  (d) 

Figure 4.23: Statistic results for the case of 0.5 cp. (a) and (b) are the histograms and 

CDFs of A and ζ for convergent flow pattern. (c) and (d) are the histograms and 

CDFs of A and ζ for divergent flow pattern. 

 

 

The A and ζ values for different flow patterns are plotted separately. Since in 
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viscosity under this situation. The comparison results can be seen below as Fig 4.24. In 

terms of NE oscillation amplitude, high viscosity fluid has low value of A for both 

convergent and divergent flow patterns indicating there are small magnitudes of NE 

effect between particle and fluid in high viscosity fluid. As for damping ratio, reducing 

fluid viscosity leads to a decreased value of ζ. It implies that in high viscosity fluid, it 

takes shorter time for particle to attain equilibrium with its carrier fluid in divergent flow 

pattern.  

  

(a)                                                               (b) 

Figure 4.24: Relationship between NE parameter with fluid viscosity. (a) 

demonstrates the relationship between A value and fluid viscosity in convergent 

flow pattern. (b)  represents the trends of A and ζ changing with fluid viscosity. 
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Chapter 5: Non-Equilibrium Effect in Actual Pore Network 

5.1 Scanning Electron Microscope Image of Pore Network 

5.1.1 Extract Geometry Pattern from Rock Sample  

In this chapter, the Non-Equilibrium effect study is performed using actual pore 

network. Sirivithayapakorn and Keller (2003) created some scanning electron microscope 

(SEM) images of thinly sliced rock samples by etching the geometry patterns to silicon 

wafers. It can be seen in Fig 5.1.  

 

Figure 5.1: SEM image of the geometry patterns in the silicon wafer.  

 

Using image processing technique, the SEM image was digitized and transferred to 

binary image, which can be seen below as Fig 5.2. The size of the image is 640 μm by 

320 μm. The black region represents the pore space. The white region represents the rock 

grain.  
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Figure 5.2: Binary image of the SEM pore structure.  

 

5.1.2 Porosity and Pore Size Distribution from SEM Image 

The pore area is evaluated by using surface integration over the pore space within 

COMSOL. The total pore area and porosity are determined to be 109547.5 μm2 and 

0.553. 

The pore size distribution is determined by using MATLAB code designed by 

Rabbani et al (2014). It is based on watershed segmentation algorithm, which can detect 

and separate pores by cutting the image on the watershed ridge line. The cut structure is 

illustrated in Fig 5.3. 
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Figure 5.3: Separation of pores base on watershed segmentation algorithm. The 

white lines are watershed ridge lines 

 

Assuming that each segment is circle shape, the pore radius can be determined. The pore 

size distribution is shown below as Fig 5.4. The average pore radius is 15 μm.  

 

Figure 5.4: The pore size distribution of the SEM pore structure. 
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5.2 Model set up 

The first step of the research is to investigate the single particle transport behavior 

in porous media. The SEM image was transferred to DXF file, which can be imported 

into COMSOL. The imported image is shown in Fig 5.5. The laminar flow interface in 

COMSOL was implemented to solve fluid flow equation, and particle tracing interface 

was used to calculate particle motion. Single particle was injected from the inlet to outlet 

boundary in the same velocity as fluid velocity. The particle and fluid properties are 

listed in Table 5.1. 

 

Figure 5.5: SEM image of pore structure in COMSOL format.  

 

 

 

 

Inlet 

Outlet 
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Table 5.1: Simulation inputs for SEM pore structure. 

Parameter Value Unit 

Fluid Density 750 kg/m3 

Fluid Viscosity 1 cp 

Initial Velocity 0.004 m/s 

Particle Diameter 10 μm 

Particle Density 2000 kg/m3 

 

5.3 Fluid Velocity Profile and Particle Trajectory 

The fluid velocity distribution inside the pore structure is demonstrated in Fig 5.5. 

The velocity profile follows Poiseuille’s law that high velocity occurs at small pore 

throats, and low velocity occurs at big pore channels. 

 

Figure 5.6: Fluid velocity field in the pore network solved with CFD module in 

COMSOL. 
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The single particle trajectory is shown below as Fig 5.7. With only the effect of 

drag force generated by fluid flow field, particle moving behavior is similar to fluid 

flowing behavior, which manifest that particle moves faster in tiny pores, and moves 

slower in big pores.  

 

Figure 5.7: The simulated particle trajectory inside the pore network. The rainbow 

color represents the magnitude of particle velocity. 

 

5.4 Non-Equilibrium Parameter Determination 

The NE effect for single particle was evaluated in COMSOL. The NE as a 

function of time for single particle injection is plotted in Fig 5.8. Due to the complexity 

of the pore structure, the trends of NE variation over time are not identical. As discussed 

in chapter 4, NE larger than zero indicates particles move through converging flow 

pattern, whereas NE less than zero implies particles move in diverging flow pattern. In 
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addition, different shaped pores are supposed to have different oscillation behaviors, 

which manifest as distinct curve shapes in the figure. Therefore, based on the flow pattern 

criteria and the shape of NE curve, the NE curve can be divided into several stages. For 

example, from t=0 to t=0.01s, the NE is above zero, which is an indication of converging 

flow path geometry. Meanwhile, there are two distinct curve shapes, which means that 

particle moves in two different pores.  

 

Figure 5.8: NE as a function of time for single particle injection. 

 

After detecting the flow path and the curve shape, 20 stages were identified. In 

order to investigate particle transport behavior, the harmonic oscillation equation was 
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obtained and demonstrated in Table 5.2. The results present that in converging flow 

pattern, ζ values are less than zero, which consists with the results obtained in chapter 4. 

It means that particle velocity is always less than fluid velocity, and they can never 

achieve equilibrium with each other. In diverging flow pattern, the result shows that ζ 

values are greater than zero. It also consists with previous observation. As discussed 

previously, particle velocity is greater than fluid velocity in diverging flow path. In 

addition, by comparing A and ζ values with the pore geometry for each stage, it was 

observed that the more divergent the pore shape is, the higher A and ζ values will be 

obtained. It means that highly divergent flow pattern has large magnitude of NE, but it 

takes short time for particle and fluid to attain equilibrium state.  

Table 5.2: A and ζ values for 20 stages obtained from curve fitting. The flow pattern 

for each stage is indicated. 

Stages A ζ Flow Pattern 

1 0.05851 0.996 divergent 

2 0.00048 -0.779 convergent 

3 0.00586 0.124 divergent 

4 0.00014 -0.967 convergent 

5 0.24265 0.996 divergent 

6 0.00225 0.122 divergent 

7 0.00052 -0.975 convergent 

8 0.01425 0.922 divergent 

9 0.00123 -0.286 convergent 

10 0.00015 -0.941 convergent 

11 0.00100 -0.616 convergent 

12 0.01388 0.223 divergent 

13 0.00214 -0.287 convergent 

14 0.03774 0.944 divergent 

15 0.00070 -0.013 convergent 

16 0.00143 0.221 divergent 

17 0.00017 -0.953 convergent 

18 0.00408 0.024 divergent 

19 0.00107 -0.975 convergent 

20 0.12454 0.955 divergent 
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Using all coefficients (A, ζ, ω0, φ) gotten from the curve fitting, the matched NE curve 

for all stages can be obtained and they can be seen below as Fig 5.9. The fitted curve has 

good match with the original NE curve that evaluated in simulation. 

 

Figure 5.9: NE curve obtained by curve fitting. Each color represents one stage. 
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Table 5.3: Simulation inputs for multiple particles injection 

Parameter Value Unit 

Fluid density 750 kg/m3 

Fluid viscosity 1 cp 

Initial velocity 0.004 m/s 

Particle diameter 0.5 μm 

Particle density 2000 kg/m3 

Number of particles 5-20 - 

 

The first simulation was performed on 5 particles injection. The particle 

trajectories are demonstrated in Fig 5.10. Comparing with the fluid velocity distribution 

inside the pore network (Fig 5.6), particles tend to move in high velocity region with the 

effect of drag force.   

 

Figure 5.10: Particle trajectories for 5 particles injection. The color scale represents 

the magnitude of particle velocity. 
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After the simulation results were obtained, MATLAB code was designed to 

identify different stages in which particles move through different size of pores, and then 

use harmonic oscillation equation to match with results for all stages to obtain the A 

values. The histograms of A values for convergent and divergent flow patterns can be 

seen in Fig 5.11. 

 

Figure 5.11: Histograms of A value for convergent and divergent flow patterns in 

the case of 5 particles injection. 

 

5.4.2 Estimate the Equivalent Tube Radius for Each Stage 

Purcell proposed the first theoretical pore-network model called the bundle-of-tube 

model to characterize the porous media of sandstone formations (Zheng. 2018). This model 

determines series of parallel circular tubes with different radii based on mercury drainage 

experiments. 

The rationale for defining an equivalent radius is that since each stage has its 

corresponding A value in the multiple particles injection simulation, it is hypothesized 

that there is an equivalent tube radius that can give the same A value for each stage. In 

0

1

2

3

4

5

6

7

F
re

q
u

en
cy

A

A for convergent flow pattern

0
1
2
3
4
5
6
7
8
9

F
re

q
u

en
cy

A

A for divergent flow pattern



64 

order to determine the equivalent pore radii for all stages, another converging-diverging 

model simulation, which has been discussed in chapter 4 was performed. According to 

the pore size distribution of the pore structure, the minimum and maximum pore radii are 

4.81 μm and 43 μm, respectively. The converging-diverging models were set up with a 

fixed minimum tube radius of 5 μm, and variable maximum tube radius ranging from 10 

μm to 45 μm. The length of each tube was set to be 50 μm. The schematic model is 

demonstrated in Fig 5.12. 

 

 

Figure 5.12: Schematic cross-section of converging-diverging tube. 

 

Harmonic oscillation equation was applied to match with simulation results for 

convergent and divergent flow pattern separately to obtain A values in different flow 

patterns. The relationships between maximum radius and A value for convergent and 

divergent flow patterns are shown in Fig 5.13. The results indicate that there are 
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approximately linear relationships between tube radius and A value for different flow 

patterns.  

 

 

                                       (a)                                                              (b) 

Figure 5.13: Corresponding A values for different maximum radius in (a) 

convergent flow pattern, and (b) divergent flow pattern. 

 

Using the trend line equations, the maximum radius for each A value can be determined. 
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The estimated pore radius distribution for paths that 5 particles move through is shown in 

Fig 5.14. Similar to the pore size distribution of the rock sample, most radii are between 

16-28 μm. 

 

Figure 5.14: Histogram for estimated tube radius for 5 particles injection. 
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characterization of the pore space that particle move through, there is no need to inject 

too many particles because they may have repeated paths, which yields over-estimation 

of equivalent pores number. Among those results, 5 particles injection provides better 

characterization of the pore network, and the equivalent tube radius distribution (Fig. 

5.14) can be used to represent pore spaces that particle move through in this pore 

network. 
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Figure 5.15: Particle trajectories (top) and histogram of estimated tube radius 

(bottom) for 10 particles injection. 
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Figure 5.16: Particle trajectories (top) and histogram of estimated tube radius 

(bottom) for 15 particles injection. 
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Figure 5.17: Particle trajectories (top) and histogram of estimated tube radius 

(bottom) for 20 particles injection. 
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Chapter 6: Conclusions and Recommended Future Work 

6.1 Conclusions 

In this thesis, the NE effect in particulate flow system was investigated by 

developing particle transport models in straight tube, periodic converging-diverging 

shaped tube, and actual pore structure. Adapted harmonic oscillation equation was 

implemented to describe the NE effect between particle and carrier fluid. The thesis was 

hypothesizing whether the linear theory of stability can explain non-equilibrium 

evolution in particulate systems through general form of harmonic oscillation equation. 

The determination of oscillation parameters was achieved by using curve fitting in 

MATLAB. The influence of fluid viscosity, tube radius, and flow path geometry on the 

NE effect were addressed. The main conclusions are drawn as follows: 

1. The time variation of the NE effect complies with the theory of stability. 

Harmonic oscillation equation can be used to characterize the NE effect in 

particulate flow system.  

2. Two key parameters of oscillator equation are amplitude (A) and damping ratio 

(ζ). The former represents the magnitude of NE and the latter is an indication of 

flow path geometry as well as time needed to attain equilibrium.  

3. In divergent flow path geometry, ζ value is between 0 and 1. Reducing the fluid 

viscosity leads to a reduced ζ value indicating that it will take longer for particle 

to reach to equilibrium state. Reducing fluid viscosity yields an increased value of 

A indicating a larger magnitude of NE effect. 
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4. In convergent flow path geometry, ζ value is between 0 and -1. The NE effect 

increases as a function of time implying that particle velocity always remains less 

than the fluid velocity; hence, the system will never achieve an equilibrium state. 

In this situation, non-linear analysis should be used. 

5. The flow simulations of SEM image present consistent results with diverging and 

converging flow results. The equivalent tube radii of complex pore geometries 

where particles move through are obtained. Particles without repeated moving 

paths have better assistance on the determination of equivalent pore radii using 

NE study. 

The outcome of this work can shed light upon explaining the complex NE effects 

in porous media. The generalized equation to model NE can help temporarily decouple 

particle transport equation from fluid equations facilitating much advanced particulate 

flow modeling in the large-scale problems. 

6.2 Recommended Future Work 

In order to have an integrated understanding of the NE effects in particulate flow 

system, several other works can be addressed in the future: 

1. Particle-particle and particle-wall interactions can be investigated.  

2. Forces other than drag force, for example, gravity, lifting, buoyancy, Brownian, 

and electrostatic forces can be taken into considerations. 

3. The study can be repeated when several fluids are present. 
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