
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

EXTENDED OBSERVATION PARTICLE FILTER WITH SVD

TEMPLATE GENERATION IMPLEMENTED FOR GPU

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

By

JONATHAN DAVID WILLIAMS
Norman, Oklahoma

2018

EXTENDED OBSERVATION PARTICLE FILTER WITH SVD
TEMPLATE GENERATION IMPLEMENTED FOR GPU

A DISSERTATION APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Joseph P. Havlicek

Ronald D. Barnes

Hong Liu

Lei Ding

Sridhar Radhakrishnan

c© Copyright by JONATHAN DAVID WILLIAMS 2018

All Rights Reserved.

This dissertation is dedicated to my parents

Cynthia Maria Avery and Fred Travis Avery,

to Judy Williams, to the memory of Arlen Williams,

and to the memory of my grandparents.

Acknowledgements

I would like to thank:

Dr. Joseph Havlicek for his infinite patience and assistance preparing

this work. My fellow researchers and close friends Dr. Nick Mould for convinc-

ing me to persue a Ph.D. and Dr. Chuong Nguyen for sharing his expansive

knowledge and expertise.

iv

Table of Contents

Acknowledgements iv

List of Tables vii

List of Figures ix

Abstract xi

Chapter 1. Introduction 1

Chapter 2. Target Tracking Review 3

2.1 Target Detection . 3

2.1.1 Segmentation . 4

2.1.2 Identification and Classification 6

2.2 Motion Tracking . 10

2.2.1 Bayesian Filtering . 10

2.2.2 Kalman Filter . 12

2.2.3 Extended Kalman Filter . 14

2.2.4 SIS Particle Filter . 14

2.2.5 Resampling . 16

2.2.6 Auxiliary Particle Filter . 19

2.3 Visual Tracking with Particle Filter 19

2.3.1 SIR Filter and Improvement of the Likelihood Function . . . 20

2.4 Summary . 22

Chapter 3. Problem Statement 24

3.1 Novel SVD Template Generation . 24

3.2 Extended Likelihood Function . 26

3.3 GPU Accelerated Parallel Execution 28

3.4 Experimental Test Parameters . 28

3.4.1 System Dynamics Equation 29

3.4.2 Video Sequences . 29

v

3.4.3 Template Updating Comparisons 30

3.4.4 Likelihood Function Comparisons 30

3.5 Experimental Hardware and Software Setup 30

Chapter 4. Experimental Results 34

4.1 Improvements by Expanded Likelihood Function 34

4.1.1 Expanded Likelihood Function and Particle Degeneracy . . . 35

4.1.2 Extended Likelihood Function and Track Length 36

4.1.3 Extended Likelihood Function and Tracking Error 38

4.2 Improvements by SVD Template Generation 38

4.2.1 SVD Template Generation and Track Length 39

4.2.2 SVD Template Generation and Tracking Error 40

Chapter 5. Conclusion 43

5.1 Future Work . 46

Appendix

Appendix A. Tables 49

A.1 Median Effective Number of Particles Tables 49

A.2 Track Length Tables . 53

A.3 Error Tables . 60

Appendix B. Tensorflow Graphs 67

Bibliography 75

vi

List of Tables

3.1 Video sequences with descriptions. 31

3.2 Experiment Parameters . 31

3.3 Hardware Specifications . 32

4.1 Composite median Neff over likelihood functions 37

4.2 Composite median Neff over likelihood functions as a percentage
of particle count . 38

4.3 Composite track length over likelihood functions 38

4.4 Composite MSE over likelihood functions 39

4.5 Composite average time before track loss over template update
strategies . 41

4.6 Composite MSE Over Template Update Strategies 42

A.1 Effective Number of Particles for N = 100 49

A.2 Effective Number of Particles for N = 300 50

A.3 Effective Number of Particles for N = 700 51

A.4 Effective Number of Particles for N = 1000 52

A.5 Average track length across template update methods for N = 100 53

A.6 Average track length across template update methods for N = 300 54

A.7 Average track length across template update methods for N = 700 54

A.8 Average track length across template update methods for N =
1000 . 55

A.9 Average track length across likelihood functions for N = 100 . . 56

A.10 Average track length across likelihood functions for N = 300 . . 57

A.11 Average track length across likelihood functions for N = 700 . . 58

A.12 Average track length across likelihood functions for N = 1000 . 59

A.13 MSE Over Template Update Strategies for N = 100 60

A.14 MSE Over Template Update Strategies for N = 300 61

A.15 MSE Over Template Update Strategies for N = 700 61

A.16 MSE Over Template Update Strategies for N = 1000 62

A.17 MSE over likelihood functions for N = 100 63

A.18 MSE over likelihood functions for N = 300 64

vii

A.19 MSE over likelihood functions for N = 700 65

A.20 MSE over likelihood functions for N = 1000 66

viii

List of Figures

2.1 Segmentation examples [36] c©ACM 2006: (a) original image,
(b) segmentation by mean-shift, (c) segmentation by normalized
cuts . 5

2.2 Example of segmentation and classification, the YOLO algo-
rithm [25] c©CoRR 2015. Segmentation by possible bounding
boxes(top-center), classification by CNN (bottom-center). 5

2.3 Background modeling for extracting potential targets using Mix-
ture of Gaussians [36] c©ACM 2006: (a) image from video of
pedestrian, (b) mean of Gaussians of highest weight, (c) mean
of Gaussians of second highest weight, (d) result of background
subtraction . 7

2.4 Background modeling based on Eigenspace decomposition [36]
c©ACM 2006: (a) image from video of vehicle with pedestrian,

(b) result of projecting frame on background Eigenspace, (c)
difference image between (b) and (a) 7

2.5 Contour based target tracking [36] c©ACM 2006: (a) single tar-
get, (b) multiple targets with occlusion. 8

2.6 Background leakage example [20] c©IEEE 2004 10

2.7 Wheel representation of resampling methods [24] c©Microelec-
tronics Reliability 2018: (a) Multinomial, (b) Stratified, (c) Sys-
tematic, (d) Residual . 18

3.1 Generation of Tj from window of template candidates Tk 26

3.2 Two examples of SVD template generation from the Car4 se-
quence: (a) after 20 frames, (b) after 100 frames 27

3.3 SIR Batch Viewer window . 33

3.4 Example SIR Tracker View window with Car4 sequence 33

4.1 Effective number of particlesNeff histogram comparison for Dudek
at: (a) N = 100, (b) N = 300, (c) N = 700, (d) N = 1000 . . . 37

B.1 Top level Tensorflow graph . 68

B.2 Expanded Tensorflow graph . 68

B.3 Region-of-interest subgraph . 69

B.4 Interpolations subgraph . 70

B.5 Particle Likelihood function (scoring) subgraph 71

ix

B.6 Resampling subgraph . 71

B.7 Template History and Updating subgraph 72

B.8 Template History and SVD subgraph 72

B.9 Particle ROI points transformation subgraph 73

x

Abstract

EXTENDED OBSERVATION PARTICLE FILTER WITH SVD

TEMPLATE GENERATION IMPLEMENTED FOR GPU

Jonathan David Williams, Ph.D.
The University of Oklahoma, 2018

Supervisor: Joseph P. Havlicek

This work presents a novel template updating strategy based on singular value

decomposition (SVD) together with an expansion and extension of previous

work combining observations across temporally adjacent frames to implement

a likelihood function that provides improvement to velocity refinement in a

particle filter tracker. SVD as a novel approach to template generation is used

to take advantage of the intuitive notion that the largest singular value corre-

sponds to the highest correlate across template candidates which should more

adequately represent the target appearance while rejecting noise and other dis-

tractions for use in a correlation based scoring system such as the proposed

likelihood function extended across temporally adjacent frames. The tracker

is implemented to accelerate computationally expensive operations by moving

them to the GPU for processing. This proposed expanded likelihood function

provides an improvement of 11.2%-12.5% to particle degeneracy as compared

to the previous method in the “Augmented State Vector” approach [4] across

the composite of videos. This improvement to particle degeneracy provides for

xi

a lower requirement in the number of actual particles necessary for implemen-

tation of a particle filter tracker and thus a lower computational requirement

while simultaneously providing similar performance. The proposed SVD tem-

plate generation provides 23.8% increase in time before track loss when com-

paring the best case in each category of update-by-score and update-by-SVD

across the composite of videos. While not bench-marked in this work for quan-

titative comparison, the use of the GPU with Tensorflow-GPU and Python has

allowed the large data set needed for analysis to be obtained in days instead

of the months that would have been required in my original proof-of-concept

work that was targeted solely for CPU in Matlab.

xii

Chapter 1

Introduction

There are many applications in which the ability to track moving targets in

video signals provides intriguing opportunities when automated by computer.

Historically there are situations which have required a human in the loop such

as in video surveillance. Automating these tasks requires overcoming prob-

lems such as noisy video and changing target appearance that humans don’t

intuitively pay much attention to, but that computers have to be able to ac-

commodate.

There are many options available to engineers when confronted with the

task of automated target tracking. A handful of these options and a general

background of the field will be presented in Chapter 2. Particle filter based

tracking is one such option that faces numerous obstacles which will be dis-

cussed. Template updating strategies face many issues that lead to detrimental

performance for visual trackers. Particle filtering, which is plagued by problems

known as particle degeneracy and particle impoverishment, is a method that

can be employed in a target tracker which will be discussed in greater detail

in Chapter 3. It is the intention of this work to confront the problems seen in

template updating and particle degeneracy and add more robust options for

those seeking to use particle filter based target tracking.

The proposed techniques as well as a detailed experimental setup for

1

quantitative assessment of them will be presented in Chapter 3. Particle filter-

ing has many computations that can be performed in parallel. It is therefore

beneficial that the potential for GPU acceleration of particle filter trackers be

examined and the hardware and software platforms chosen will be discussed

here.

The results of the proposed methods are promising. SVD template

generation has provided a time before track loss improvement of up to 25.6%

allowing for more robust tracking. Extension of the importance function across

3 frames has provided an improvement of 12.5% to particle degeneracy provid-

ing for more robust tracking and an option for lower computational cost. A

detailed analysis of the experiment with focus on the improvements to more

robust tracking and better tracking error will be presented and discussed in

Chapter 4.

Lastly this work will conclude and present potential future research

areas in 5.

The main original contributions of this dissertation are as follows:

1. Extended likelihood function for reduction of particle degeneracy.

2. SVD template generation for more robust appearance tracking.

3. GPU accelerated implementation by novel use of Tensorflow-GPU and

Python.

2

Chapter 2

Target Tracking Review

Tracking targets is a visual task that is important in myriad applications, both

commercial and military. Novel applications of target tracking include biomet-

ric identification, surveillance, video content analysis, and autonomous modes

for vehicles [36]. The task of tracking targets in video can be divided into the

subcategories of detection, tracking, and behavior analysis [18, 36]. Each of

these categories are faced with their own unique challenges and are the sub-

ject of intense research today. Detection is the process of identifying targets

within a photo or video. Tracking is the process of identifying the motion of

the targets detected. Behavior analysis is the topic of discovering intent in the

tracked targets once their motions are discovered and is useful for purposes of

surveillance in security, law-enforcement, and military applications.

2.1 Target Detection

Detection is the task of identifying candidate targets within a video and is, by

modest estimate, currently the most intensely researched and broadest of these

subcategories due to advances in computational hardware capabilities. These

advances hold the promise to enable the practical application of deep learning

and sparse representation techniques [29, 33] that were considered impractical

merely a decade ago.

3

2.1.1 Segmentation

Most tracking algorithms first identify potential target regions of interest (ROI)

for further analysis by means of image segmentation or other techniques such as

linear or nonlinear filtering. Potential target ROI detection can be performed

by segmenting the image in various ways such as mean-shift [6] or normalized

cuts [36] as seen in Figure 2.1. Mean-shift can be applied to cluster image pixels

on a multitude of criteria such as pixel intensity, hue, or by texture statistics

in a local region around the pixel such as by intensity histogram. Mean-shift

is a process that iteratively clusters pixels by shifting them to a mean value

of nearby pixels based on the chosen criterion. The process ends when pixels

no longer shift by an appreciable threshold. Each pixel cluster, when reflected

back into the original position of the pixels before mean-shifting, forms an

image segment.

Identification of ROIs in more recent development of the You-Only-

Look-Once (YOLO) algorithm [25, 26] using convolutional neural networks

(CNN) takes advantage of the input stage of a CNN by adoption reuse of the

convolutional computation for use in image segmentation and determination of

ROIs. This input stage consists of a bank of filters that apply various kernels

such as Gabor or wavelet kernels in preparation for input into a pre trained

deep learning neural network. Many of these kernels inherently enhance edges

and connected regions of similar texture. Figure 2.2 shows how the implied

input of convolutional filters (left) are reused for calculation of ROIs as bound-

ing boxes (top) while classification is performed in the normal way of a CNN

(bottom). The result is simultaneous determination of bounding box ROI and

classification (right).

4

(a) (b) (c)

Figure 2.1: Segmentation examples [36] c©ACM 2006: (a) original image, (b)
segmentation by mean-shift, (c) segmentation by normalized cuts

Figure 2.2: Example of segmentation and classification, the YOLO algorithm
[25] c©CoRR 2015. Segmentation by possible bounding boxes(top-center), clas-
sification by CNN (bottom-center).

5

The detection of potetential targets can also be implemented by con-

sidering the inverse problem of identifying what is background and bringing

the compliment of that forward as potential targets before classification [36].

In this way potential targets can be identified by simply being different from

background. We can see examples of this in Figure 2.3 where Gaussian mixture

modeling is used to model the background for target extraction, and in Figure

2.4 that uses an eigenspace decomposition to represent the background as a

subspace in image space from which foreground targets are identified by their

distance from the background’s eigenspace subspace [36].

Segmentation is followed by further analysis of each ROI for the purposes

of classification of those regions as target, not target, or for individual isolation

in the case of multiple target scenarios by a multitude of possible techniques

[2, 3, 6, 14,23,28,33].

2.1.2 Identification and Classification

Target classification techniques are varied, and can range from using something

as simple as a pixel-based template or a histogram of intensities to something

more complex such as a sparse representation or a pre-trained convolutional

neural net [14, 25, 26, 37] as in the YOLO algorithm seen in Figure 2.2, or a

pre-trained heirarchy of features [33]. Targets can also be identified uniquely

from frame to frame by use of an algorithm based on target outline features or

contours as shown in Figure 2.5 [36].

Identifying a target in most cases requires the use of some kind of visual

model of potential target or targets. These models vary widely and should

be evaluated for their applicability in any given tracking problem [29]. Target

6

(a) (b) (c) (d)

Figure 2.3: Background modeling for extracting potential targets using Mixture
of Gaussians [36] c©ACM 2006: (a) image from video of pedestrian, (b) mean of
Gaussians of highest weight, (c) mean of Gaussians of second highest weight,
(d) result of background subtraction

(a) (b) (c)

Figure 2.4: Background modeling based on Eigenspace decomposition [36]
c©ACM 2006: (a) image from video of vehicle with pedestrian, (b) result of

projecting frame on background Eigenspace, (c) difference image between (b)
and (a)

7

(a)

(b)

Figure 2.5: Contour based target tracking [36] c©ACM 2006: (a) single target,
(b) multiple targets with occlusion.

models can consist of features [33] such as conjoined geometric shapes, outlines

and contours, textures, statistics of textures [7, 23], offline or online learning

models based on support vector machines or deep learning [14,37], sparse rep-

resentation as used in the matching-pursuit techniques [2], or any combination

of these [29, 36]. Identified targets are pared down and isolated subsequently

by use of kinematics or statistical models of potential target motion to build

the resulting track [13,18].

Template Update Issues

Target appearance can change dynamically due to a host of different factors

including changes in aspect and range arising from relative motion between the

sensor and target, noise, intermittent glare or shadow, or occlusion. More dras-

tic changes in appearance can arise when the target is a deformable body. One

familiar example is human perambulation which is often handled by employing

an articulated target model [20]. This requires a visual target model to also be

8

dynamic in order to accommodate. Target appearance changes and updating

the model presents yet another type of tracking problem when the appearance

model is considered another form of state that must be tracked and updated

through a kind of visual state space.

There is also a problem that arises when parts of the background behind

a target are captured in an hypothesized target region during update. This

phenomenon known as background-leakage is often cumulative and can result

in an appearance model that includes so much background that track loss occurs

due to the tracking algorithm locking onto background instead of target [20].

This is especially problematic in appearance models that comprise only an

image of the target as demonstrated in Figure 2.6. In the figure, the target

template can be seen in the upper-left corner. From these templates, it can be

seen that the road and some buildings leak into the template over time. Many

of the solutions to this problem involve the use of an exhaustive search in the

form of a convex optimization problem as can be seen in the Lucas-Kanade

algorithm [3,20].

Simply determining when a template update is necessary can be fraught

with challenges unique to the choice of visual model. One of the simplest tech-

niques is to force an update every frame using the current observation [20]

or on a regular time interval. More nuanced techniques make use of a mech-

anism to determine when the target observation is sufficiently different from

the target appearance model. One such technique utilizes the discriminatory

capabilities of multiple AM-FM feature channels to determine when the model

has significant drift from the observed target [28]. In the matching pursuit

(MP) algorithms, template updating occurs when a new target observation is

9

Figure 2.6: Background leakage example [20] c©IEEE 2004

sufficiently different from those in its model by its distance from the visual

space spanned by a dictionary of observations [2]. In the same vein a pixel

based template update can be triggered by a mechanism that determines that

significant drift in appearance has occurred by use of the distance between the

observation and a visual eigen-space generated from a set of observed templates

not unlike the dictionary used in MP algorithms [12].

2.2 Motion Tracking

Target tracking is the task of predicting target movement in order to associate

detected targets from one frame to the next. Targets motion can be sewn to-

gether most simply by proximal location. Tracking the motion can also take

advantage of known target kinematics in order to make predictions about target

movement [18]. Detailed knowledge of target kinematics allows for identified

targets to be linked frame to frame and isolated from other potential targets

and background.

2.2.1 Bayesian Filtering

Under appropriate conditions, Bayesian filtering can be used to accurately es-

timate the target state [1, 10, 30]. Bayesian filtering consists of estimating the

10

posterior probability density (posterior pdf) of the state xt conditioned on the

incoming observations z1:t over all previous times, resulting in the conditional

probability density [1]

p(xt|z1:t). (2.1)

A deterministic model for the change in the system at each time step is

known a priori and is variously called the state update equation, the dynamic

equation, or the state transition equation [1, 10,18,31]; it is given by

xt = f(xt−1,vt−1), (2.2)

where f is a function of the state xt−1 and an i.i.d. process noise vt−1 at a

previous time index.

Application of this update equation to a state pdf results in a new pdf

conditioned on the previous one, and this is described by the conditional pdf [1]

p(xt|xt−1). (2.3)

The observation or measurement equation which must also be known a

priori describes the relationship between the state and what can be observed.

It is given by [1]

zt = h(xt,nt), (2.4)

where xt is the current state and nt is i.i.d. observation noise.

Assuming that the state update depends only on the previous state, that

is, that the process is first-order Markov, one can write the update equation

conditioned on the set of all observations as [1]

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1. (2.5)

11

At each new time step the desired density function (2.1) can be calculated using

Bayes’ rule resulting in the equation [1]

p(x|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2.6)

where the denominator is simply a normalizing constant to ensure the resulting

pdf integrates to one [1]. The output of the filter is simply the expected value

of this density.

Direct use of these equations requires very precise knowledge of the sys-

tem under observation including the update function, the measurement func-

tion, and characteristics of the process and measurement noise. Example opti-

mal solutions mentioned in the Arulampalam tutorial on particle filters [1] are

the Kalman Filter, Extended Kalman Filter (EKF), and grid based methods.

Their use requires exacting knowledge of the system, however, and alternative

techniques must be utilized for more general cases where the system under

investigation might be non-linear or their process and observation noises non-

Gaussian as in the use case of the EKF, or the states are not finite and discrete

as in the case of grid based methods.

2.2.2 Kalman Filter

When the state vector posterior pdf, process noise, and observation noise are

known to be or are assumed to be jointly Gaussian, then these densities can be

represented parametrically and an optimal solution exists known as a Kalman

filter [15]. Let Qt−1 and nt be the covariance matrices of the process noise vt−1

and measurement noise nt, respectively. Let the notation N (x; m, P) indicate

that x is Gaussian distributed with mean m and covariance P as in [15]. If

12

the system is linear, then the state trajectory xt can be modeled by the state

update equation [15]

xt = f(xt−1,vt−1) = Ftxt−1 + vt−1, (2.7)

where Ft is the state update matrix at time t and

zt = h(xt,nt) = Htxt + nt (2.8)

is the observation. In (2.8), Ht is the observation matrix at time t. The

matrices Ft and Ht must be known for all t. Then from the Bayesian filtering

equations (2.5) and (2.6) can be derived a set of recurrence relationships for

the conditional pdfs using linearity and established knowledge of Gaussian pdf

behavior [15]:

p(xt−1|z1:t−1) ∼ N (xt−1; mt−1|t−1, Pt−1|t−1), (2.9)

p(xt|z1:t−1) ∼ N (xt; mt|t−1, Pt|t−1), (2.10)

p(xt|z1:t) ∼ N (xt; mt|t, Pt|t), (2.11)

where

mt|t−1 = Ftmt−1|t−1, (2.12)

Pt|t−1 = Qt−1 + FtPt−1|t−1F
T
t , (2.13)

mt|t = mt|t−1 +Kt(zt −Htmt|t−1), (2.14)

Pt|t = Pt|t−1 −KtHtPt|t−1, (2.15)

and the innovation equation is

St = HtPt|t−1H
T
t +Rt. (2.16)

The so-called “Kalman gain” in (2.14) and (2.15) is then given by [15]

Kt = Pt|t−1H
T
t S
−1
t . (2.17)

13

2.2.3 Extended Kalman Filter

When the state equation (2.2) and measurement function (2.4) are non-linear,

a sub-optimal solution can be obtained by linearizing them about an operating

point x to perform what is known as first-order extended Kalman filtering

(EKF). This allows the same methods used in the Kalman filter to be used

recursively as before, but with substitutions:

F̂t =
dft(x)

dx

∣∣∣∣
x=mt−1|t−1

(2.18)

in place of F in the equation (2.13) and

Ĥt =
dht(x)

dx

∣∣∣∣
x=mt|t−1

(2.19)

in place of H in the equation (2.15) as linearizations about the appropriate

operating points at the mean values mt−1|t−1 and mt|t−1, respectively. The

purpose of this is to allow for the reflection of the Gaussian pdfs as before

through the process and observation functions as if they were linear and well

behaved operations that provide Gaussians from Gaussians through the linear

transformations. The Arulampalam tutorial paper notes that higher order

EKFs can be obtained by expanding (2.18) and (2.19) in higher-order Taylor

series; these are computationally expensive however [1].

2.2.4 SIS Particle Filter

Recursive Bayesian filters can be implemented using a technique known as

particle filtering in order to overcome exceptionally difficult if not impossible

to calculate integrals of their analytic form or to accommodate potentially non-

linear functions or systems that have non-Gaussian process or measurement

14

noises [1]. A particle filter does this by utilizing a Monte Carlo approach by

representing the probability density functions with a collection of point masses

distributed and weighted so as to adequately represent the underlying pdf. The

previously mentioned integral (2.5) becomes a more computationally reasonable

summation. The denominator normalization factor of (2.6) is simply the sum

of the particle weights.

Filtering involves a two-step process making use of (2.3) to predict the

prior (to conditioning on observation) density followed by the filtering step

which updates the weights based on the concept of importance sampling to

produce the posterior (to conditioning on observation) density. This two-step

process is repeated sequentially for every incoming observation and has been

named Sequential Importance Sampling (SIS) [1]. The importance density or

observation function is a function that can be readily evaluated for a given state

x and the incoming observation. This observation function is used to update

the weights of particles on receipt of a new observation using the formula [1]

wit ∝ wit−1
p(zt|xit)p(xit|xit−1)
q(xit|xit−1, zt)

, (2.20)

where p(zt|xit) is the likelihood function, p(xit|xit−1) is the prior density rep-

resented as point masses i ∈ [1, Np]. In (2.20), the denominator q(·) is the

proposal density, also known as the importance density or importance func-

tion. It is an assumed pdf from which the particles are drawn when the SIS

filter is run [1]. Design of the proposal density q(·) is an important issue that

can dramatically affect the filter performance. Performing computation of the

importance function and weight update on each particle, while expensive in

total, can be performed entirely in parallel.

15

2.2.5 Resampling

One of the major drawbacks to the use of SIS particle filtering is that over

merely a few iterations the compounded system noise variance vt can cause

all of the particle weights except one to become negligibly small. When this

occurs, the set of particles and weights no longer adequately represents the un-

derlying pdf and the filter fails. This phenomenon is commonly named particle

degeneracy and due to the inadequate pdf representation it results in an un-

acceptable error in the estimated value. Particle degeneracy is often measured

using an approximate effective sample size Neff given by [1]

Neff =
1

Np∑
i=1

(wit)
2

. (2.21)

To mitigate the effect of particle degeneracy a new set of particles can

be drawn from the existing ones in a technique known as resampling [1,10,31].

In resampling, the new set of particles includes an increased number of particles

located in the state space where they more adequately represent the underlying

pdf. Resampling algorithms are very diverse and are the subject of many

textbooks devoted exclusively to their study [17, 19, 24, 27]. Researchers have

even developed a novel resampling algorithm inspired by the gathering behavior

of spider monkeys [27].

One of the most accessible pedagogical devices for conceptualizing and

understanding multinomial, stratified, systematic, and residual resampling al-

gorithms is the “wheel representation” given in [24] and depicted in Fig. 2.7.

In this representation the wheels represent a cumulative distribution of weights

around a wheel such that a value between zero and one lies at a point on each

16

of these wheels, corresponding to a weight W and its corresponding particle.

Multinomial resampling is performed for each particle in the new set by draw-

ing a random number from zero to one and selecting the corresponding particle

at that location on the wheel [24]. Stratified resampling is performed by first

dividing the wheel into equal sections and choosing a random number that lies

in each section. In this way, particles that span several sections are always cho-

sen unlike multinomial resampling that maintains a probability, however small,

that larger particles may not be selected. Systematic resampling is performed

by generating a random number from zero to one, then taking the particles lo-

cated at equal intervals around the wheel from that point. Residual resampling

is a more complex process involving two steps [24]. These steps can be thought

of in a way similar to long-division except that in this case the whole number

increment is 1
N

, N being the number of particles. The first step draws particles

that have larger weight than 1
N

as many times as 1
N

can fit within the weight of

that particle. The remainder of each particle once the multiples of 1
N

have been

subtracted is then normalized as a whole before the second step. The second

step is the same as multinomial resampling with these weight remainders.

In a particle filter, resampling is typically done when the Neff calcula-

tion in (2.21) falls below a threshold to draw new particles before the prediction

step that generates the prior. The process of resampling introduces another

problem in that sometimes there are only a small number of identical parti-

cles remaining after resampling thereby also inadequately representing the pdf.

This phenomenon is called particle impoverishment [1, 19].

Resampling is notorious for its need to include the entire set of particles

and weights together, typically precluding the use of parallel execution. There

17

Figure 2.7: Wheel representation of resampling methods [24] c©Microelec-
tronics Reliability 2018: (a) Multinomial, (b) Stratified, (c) Systematic, (d)
Residual

18

have recently been developments intended to remove this limitation of the re-

sampling step by application of Metropolis resampling on graphics processing

unit (GPU) hardware [21].

2.2.6 Auxiliary Particle Filter

To lessen the effects of both particle degeneracy and particle impoverishment

a resampling technique known as auxiliary particle resampling has been de-

veloped in what is called an auxiliary particle filter [1]. In auxiliary particle

filtering a set of particles, called auxiliary particles, is generated in the same

manner as the prior pdf in the prediction step, and these are also weighted in

a similar fashion as the filtering set using the current observation. However,

these new particles and weights are only used as a means to resample the state

pdf of the previous time step on margin of the new observation before running

the usual steps of the SIR particle filter. In this way it is like replacing the

re-sampling step at the end of the SIR particle filter with a special auxiliary

re-sampling step at the beginning of each cycle. By performing resampling in

this way particles that have reasonable state representation as determined by

the observation in the new frame are preemptively pared down thereby increas-

ing the number of particles that land in good representational locations when

generating the new prior. Mathematically speaking it is refining the prior pdf

on margin of the new observation by means of the resampling mechanism.

2.3 Visual Tracking with Particle Filter

The likelihood functions used in a particle filter for visual tracking can be

based on pixel-wise templates and correlation, histograms, shapes, and many

19

others [29, 36]. Correlation based likelihood functions typically take the form

of normalized cross correlation (NCC) between the expected target appearance

and the corresponding spatial support hypothesized by a particle within the

frame as follows [3]:

ρit =

∑
ztz

i
t√∑

z2
t

∑
(zit)

2
, (2.22)

where zt is the pixel template at time t biased such that the mean pixel value is

zero and zit is the ROI of a particle indexed by i also biased such that its mean

pixel value is zero, and where the summation is taken over every pixel location

in the template and ROI (indices implied by summation). The numerical range

of NCC takes values from -1 (perfect anti-correlation) to 1 (perfect correlation)

and as such are typically passed through another function to provide a gain

and restrict the results to non-negative values needed to represent a pdf. One

such function composition has a gain k and an exponential (2.23) that forces

the resulting weight to always be greater than zero as follows [4]:

wit ∝ p(zt | xit) = e−k(1−ρ
i
t). (2.23)

2.3.1 SIR Filter and Improvement of the Likelihood Function

The key to using particle filtering in any particular application is the design of

an importance function that represents the pdf of the state vector to the best

extent possible. Poor choice of importance functions can be either too loose or

too tight in the state space, causing higher error in the former, and track loss in

the latter. In worst case, the selected importance function may not represent

the true state trajectory at all and performance of the particle filter will be

extremely poor.

20

The sampling importance resampling (SIR) filter [1, 11] is a particle

filtering algorithm variant that is widely used for visual target tracking. In

the SIR filter, the importance function is set equal to the prior density of the

state vector and resampling is performed at every time step. This implies that

the particle weights are then directly proportional to the likelihood function [1].

Therefore, performance of the SIR filter is driven by the design of the likelihood

function.

In many cases, the likelihood function may neglect or fail to consider

certain state variables, particularly when those variables are unobservable. For

example, velocity is commonly used as a state variable in visual target tracking

filters. However, standard video cameras cannot provide any direct measure-

ment of velocity. Consequently, visual target tracking filters typically include

velocity as a state variable but almost universally omit the velocity from the

likelihood function altogether. In the case of a correlation based particle filter,

an improvement to provide an indirect measurement of velocity and incorpo-

rate it into the likelihood function was presented in [4]. It was shown that

implementing a likelihood function that explicitly incorporated the previous

observation together with the previous location of each particle could improve

performance by providing an indirect measurement of velocity. The likelihood

function used in [4] was given by (2.23) with the normalized cross correlation

defined by

ρ̂it,t−1 =

∑
ztz

i
t +
∑

zt−1z̆
i
t−1√∑

z2
t +

∑
z2
t−1

√∑
(zit)

2
+
∑(

z̆it−1
)2
,

(2.24)

where as in the NCC formula (2.22), the terms are biased to mean zero and

where zt−1 is the actual observation from the previous frame and z̆it−1 is the

21

target appearance hypothesized by particle i in the previously observed video

frame from time t − 1. Intuitively, (2.24) is the normalized cross correlation

(NCC) between the observations and the hypothesis of particle x̂it calculated

across two temporally adjacent frames, thereby providing a means to measure

the velocity indirectly and incorporate it into the likelihood function explicitly.

2.4 Summary

Target tracking in video is a broad and vigorously investigated field with many

potential applications. Finding appropriate models of highly dynamic tar-

get appearance is a significant open problem that includes difficult challenges

such as determining when an appearance model update is needed and how it

should be performed. Challenging problems inherent in updating a template

from video observations include background leakage and dynamic appearance

changes such as those caused by articulation; it is critical to overcome these

problems in order to provide robust tracking performance. Target kinematics

also must be modeled and the state of that model must be iteratively updated

based on observations to be able to track a target across video frames in a

robust way. The use of particle filtering with a kinematic model is faced with

the problems of particle degeneracy, particle impoverishment, and the selection

of an appropriate importance and likelihood functions. Visual tracking using

only frames of video specifically has the unfortunate circumstance that it does

not provide a direct observation of the velocity components of targets in or-

der to accurately observe the state causing the state pdf to be inadequately

pared down on margin of the incoming observations. This limitation in the

observation has been effectively circumvented to some degree by performing

22

the correlation calculations across adjacent frames and templates as described

in [4].

23

Chapter 3

Problem Statement

Target tracking in video by means of particle filters is faced with several short-

comings. In the general case of target tracking it is often difficult to obtain

an appropriate template from the source video [2, 3, 20, 23]. Background leak-

age causes the template to be contaminated with objects and textures from

the background after which tracking error increases and tracking is eventually

lost due to the tracker mistaking background for target. Particle filter based

trackers face issues of particle degeneracy and particle impoverishment inher-

ent in particle filters more generally [1,4,10,27]. In the widely used SIR filter,

design of the likelihood function is critically important for maintaining an ap-

propriate set of particles by observation to adequately represent the pdf of the

target state. Without an adequate observation into the elements of this target

state to maintain the pdf around that elemental dimension, particle degeneracy

generally occurs and substantially degrades the performance of the filter.

3.1 Novel SVD Template Generation

In particle filter based trackers it is common to update a template by identify-

ing the particle across a window of frames that has the highest likelihood value

as seen in the approximate maximum-likelihood (AML) method in [5]. This

value is often influenced by partial occlusion, glare, shadow, or noise which

24

causes the highest score to not be perfectly aligned with the target leading to

the background leakage issue [20]. To address this issue, I propose a novel tem-

plate generation strategy in which the high likelihood scoring template ROIs

are combined by means of Singular Value Decomposition (SVD) as a means to

reject outlying optical effects. The hypothesis here is that by application of the

SVD the optical effects and background textures will tend to be delegated to

the lowest singular values in the decomposition. SVD consists of decomposing

a matrix into three matrices U , Σ, and V where U has unitary columns corre-

sponding to individual diagonal entries of the diagonal matrix Σ that are the

singular values and V is a matrix that can be intuitively though of as a mixing

matrix that provides appropriate linear combinations of the matrix product of

U and Σ to generate the original matrix T before decomposition. The highest

singular value represents the highest correlate across the set of acquired poten-

tial targets making it together with its corresponding column in the matrix U

ideal for use in generation of a composite template to be used as a correlation

based likelihood function. To generate the composite template we collect an

ROI corresponding to the particle evaluated with the highest likelihood func-

tion across all particles, one for every frame over a fixed window up to and

including the current frame. Let Tk represent such a set for k ∈ [t − w, t]

where t is the current frame and w is the width of our window. A matrix Tj

where j ∈ [1, w] is produced by the column-wise assembly of the columnated

elements of Tk as seen in Figure 3.1.

SVD is then performed on the Tj matrix such that

T = UΣV ∗ (3.1)

25

Figure 3.1: Generation of Tj from window of template candidates Tk

Let Uj;k, Σj;k, and Vj;k represent the jth column and kth row of U , Σ, and V

respectively. Then the composite template T̃ is generated by

T̃ = reshape(U1;Σ1;1V1;1), (3.2)

where notation U1; represents the first column of U , and the reshape function

reverses the effect of prior columnation of Tk to provide a 2D template. The

use of V1;1 ensures the resulting composite is not inverted in sign. Examples of

the resulting SVD generated template can be seen in Figure 3.2.

3.2 Extended Likelihood Function

It was shown in section 2.3.1 that by incorporating the particle ROI across

adjacent frames a likelihood function could be built that would improve the

selectivity of the velocity components of particle states. It is the purpose of

this research to determine if adding additional time frames to the likelihood

26

(a) (b)

Figure 3.2: Two examples of SVD template generation from the Car4 sequence:
(a) after 20 frames, (b) after 100 frames

function would provide more improvement. Analysis of the quantitative effect

on Neff of the original technique and a new technique incorporating additional

adjacent time frames will be provided to support the hypothesis that these

techniques improve the particle degeneracy issue. The new likelihood function

introduced incorporates observations and a slight change of notation as follows:

ρ̂it,t−1,t−2 =

∑
ztp

i
t +
∑

zt−1p
i
t−1 +

∑
zt−2p

i
t−2√∑

z2
t +

∑
z2
t−1 +

∑
z2
t−2

√∑
(pit)

2
+
∑(

pit−1
)2

+
∑(

pit−2
)2
,

(3.3)

where the zt is the template from time t biased to mean zero and pit is the ROI

of the ith particle hypothesis at time t biased to mean zero making (3.3) a form

of the normalized cross correlation (NCC) between the ROI of the hypothesis

of a particle x̂it across three temporally adjacent frames and the corresponding

template from those same time instances. The resulting ρ̂it,t−1,t−2 is then passed

through

wit ∝ p(zt | xit) = e−k(1−ρ̂
i
t,t−1,t−2) (3.4)

to produce the resulting likelihood function.

27

3.3 GPU Accelerated Parallel Execution

One of the primary advantages to the use of particle filters is their inherent

support for parallel execution. Recent developments in hardware and soft-

ware targeted toward accelerating the training and execution of artificial neu-

ral networks are ripe for exploitation. The Tensorflow platform is one such

advance in that it has been geared toward optimized use of graphics proces-

sor unit (GPU) and tensor processor unit (TPU) hardware yet presents itself

intuitively as a way to build data-flow and processing diagrams in the form

of Tensorflow graphs. It is in this vein that Tensorflow together with Python

is be the platform of choice to provide hardware acceleration for this set of

experiments. More specifically, Tensorflow has a built-in low-level functions for

multiply-accumulate operations and a high-level operation available to perform

the bilinear interpolation necessary to extract ROIs from incoming frames.

The Tensorflow graphs for this experiment have been automatically gen-

erated using TensorBoard and are cataloged in Appendix B. Likelihood func-

tions for visual trackers often use relatively expensive cross correlation calcu-

lations and these likelihood functions can be evaluated entirely in parallel to

much advantage. Figure B.4 shows the graph for obtaining the ROIs for every

particle, the output of which is fed into the graph of Figure B.5 which embodies

the likelihood function.

3.4 Experimental Test Parameters

The experiment includes ten runs of each combination of parameters discussed

below and listed in Table 3.2 for a grand total of 57,600 runs in the set. The

number of particles proportionally affects the amount of computation that the

28

tracking algorithm uses and in that vein particle counts of 100, 300, 700 and

1000 are used to compare the effects and potential trade off between computa-

tional cost and performance.

3.4.1 System Dynamics Equation

The target state is defined in six dimensions as follows:

xt = [m,n, dm, dn, s, r]T (3.5)

where m and dm are respectively the vertical position and velocity, n and dn are

respectively the horizontal position and velocity, s is the visual scaling factor,

and r is the visual rotation factor in radians, and T is the vector transpose

operation. The state update equation corresponding with Equation (2.2) is:

xt = f(xt−1,vt−1) = Fxt−1 + vt−1 (3.6)

where

F =

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (3.7)

is a constant velocity, magnification, and rotation model wherein vt is i.i.d. pro-

cess noise drawn fromN (0, P) with the covariance P=diag(0, 0, 2, 2, 0.05, 0.02).

It was necessary to choose particularly large covariance values in order to ac-

commodate the diversity of the selected videos.

3.4.2 Video Sequences

A diverse set of twenty videos was selected from Visual Tracker Benchmark

project [34] (visible spectrum), Browncamp [22] (infrared), and AMCOM (in-

29

frared) [8, 9, 16, 32, 35, 36] sets to perform our experimental analysis against.

These were selected to provide variety in resolution, target appearance, and

target motion against which to test our proposed methods. The Visual Tracker

Benchmark videos contain vehicular and human targets in various conditions of

lighting, occlusion, and appearance changes. The Browncamp videos are fixed

camera infrared videos of vehicles driving down a road. The AMCOM videos

are aerial infrared videos of military vehicles performing maneuvers. Table 3.1

provides a detailed description of the selected videos individually.

3.4.3 Template Updating Comparisons

The set includes a traditional update by highest likelihood score and the pro-

posed SVD generation update for comparison. The effect of using varying

history depth for template selection and SVD generation is also observed. The

effect of varying template update intervals is also observed.

3.4.4 Likelihood Function Comparisons

The likelihood functions are given the initials NCC, ASV, ASVHO for nor-

malized cross correlation, 2-timestep correlation, and the proposed 3-timestep

correlation respectively. These initials are inspired by the original work in [4],

the “Augmented State Vector” and the proposed method “Augmented State

Vector of Higher Order”.

3.5 Experimental Hardware and Software Setup

The bulk of this experiment was performed on a system with the specifications

listed in Table 3.3. A GUI was built using PyQt5 for running the experiment

30

Table 3.1: Video sequences with descriptions.

Car4 Van driving in sunlight and under a bridge

CarScale
SUV approaching camera with partial

occlusion and changing orientation

Coke
Soda can with random acceleration,

orientation, and full occlusion
Crossing Fixed camera of pedestrian in cross walk

Dudek
Human head moving randomly as owner

stands, sits, turns, changes facial expressions
Football Football player helmet/head, multiple similar targets

Girl
Girl’s head, owner in front of window

spinning in an office chair

RedTeam
Low resolution, noisy, and long video

of red vehicle navigating a course in open tundra

Skater
Low resolution Olympic ice skater

performing maneuvers

Skater2
Low resolution Olympic ice skater
in all black performing maneuvers

bc1 case3 Fixed camera of car driving away

bc3 case7
Fixed camera of SUV driving away
partially obscured by following car

rng14 15 Truck, target is a small smudge
rng16 18 Tank, target is a small smudge
rng18 16 Truck, indistinguishable from background in first frame
rng19 06 Vehicle thermally obscured by clutter

rng19 13
Tank in a caravan turning and partially

obscured by clutter
rng19 NS Very short sequence of tank

walking
Fixed camera of pedestrian walking
with partial occlusion by lamp post

woman Woman walking with partial occlusion

Table 3.2: Experiment Parameters

.

Particle Counts 100, 300, 700, 1000
Filter Type Resample, Auxiliary

Template Update Methods Best Score, SVD
Template History Depths(frames) 10, 20, 30

Template Update Intervals(frames) 10, 20
Likelihood Functions NCC, ASV, ASVHO

31

Table 3.3: Hardware Specifications

CPU Intel R© CoreTM i5-2550K CPU @ 3.40GHz x 4
Memory 16GB

GPU Nvidia R© GeForceTM GTX 1070
OS Ubuntu 18.04.01 LTS 64-bit

Python 3.6.6
Tensorflow GPU 1.12.0

Qt 5.9.5
PyQt5 5.11.2

and the main interface can be seen in Figure 3.3. This application loads a

JSON configuration file to set up the experimental runs. Qt threads were used

to allow simultaneous execution of experimental runs, four at a time in our

setup. The SIR Batch Viewer in Figure 3.3 loads a batch of SIR particle filters

for processing. Monitoring the progress of runs is seen in the Status column and

indicates when the run is generating the Tensorflow graph, running, complete,

or skipped in the case it finds existing results. To view the run, a click on the

run’s row will bring up the SIR Tracker View as seen in Figure 3.4. The main

view port upper-left corner and the currently used template is in the lower-left

of the plot. Run parameters can be seen in the upper-right. There is a a blue

bounding box at ground-truth and a yellow bounding box at the output of the

tracker in the main view port and a detailed tracker status in text at the lower

right.

32

Figure 3.3: SIR Batch Viewer window

Figure 3.4: Example SIR Tracker View window with Car4 sequence

33

Chapter 4

Experimental Results

The results presented here show that my proposed methods of expanded likeli-

hood function and SVD template generation can substantially improve particle

filter target tracking performance. The improvement to the particle degener-

acy problem by means of the proposed 3-frame likelihood function is shown in

terms of the effective number of particles Neff. The addition of an SVD tem-

plate update strategy is shown to provide a more robust method of tracking as

demonstrated quantitatively by the resulting track length data. The successful

software implementation and collection of the data is evidence that Tensorflow

and Python are a great potential platform for current and future investigation

into particle filter tracking. Data acquisition was performed by filtering frames

so that all collected data are within track tolerance to prevent meaningless

values from contaminating the results.

4.1 Improvements by Expanded Likelihood Function

Expanding the likelihood function has the greatest effect on the effective num-

ber of particles. While these data do not show that it has any significant impact

on the ability to maintain track los for a longer number of frames, a modest

improvement in the mean squared error of the tracked centroid is observed at

the low particle count of 100 as seen in Table 4.4. This result is significant for

34

real-time deployable systems the ability of a track filter to operate with only a

small number of particles is one of the keys to reducing the computational com-

plexity of the particle filtering approach to levels that are feasible for practical

commercial and military systems.

4.1.1 Expanded Likelihood Function and Particle Degeneracy

A visual example for the Dudek sequence can be seen in the set of Neff his-

tograms in Figure 4.1 which show a the dramatic improvement to particle

counts by auxiliary filtering, as well as incremental improvements by extending

the likelihood function across multiple temporal frames.

The resulting composite median Neff calculations over all videos se-

quences in the experiment can be seen in Table 4.1. Their equivalent as a

percentage of particle count is provided in Table 4.2 and in this table it can be

seen that the best improvement to effective number of particles of 37% belongs

to the proposed extended likelihood function (ASVHO) as indicated in bold-

italics. It can be seen from these that the auxiliary particle filtering (ASIR)

provides the largest boost to Neff across all groups. Particle degeneracy with-

out ASIR is intensified by the previously mentioned requirement that we use a

large covariance in our particle prediction step to accommodate such a diverse

set of videos. This large covariance compounds rapidly leading to particle de-

generation. As seen in Table 4.2, only 3%-8% of the particles survive which is

quite a computational waste when over 90% of the remaining particles are not

useful at all in the pdf representation. Without auxiliary filtering the effect on

Neff by improved likelihood functions is negligible in our data; however, with

auxiliary filtering the effect is quite noticeable.

35

It can be seen that there is an improvement to the effective number of

particles with the 2-frame likelihood function, here labeled ASV consistent with

the Augmented State Vector nomenclature established in [4], and the 3-frame

likelihood function (ASVHO) shows further improvement still. This improve-

ment was seen across the board for all particle counts in the set as can be seen

in Table 4.1. When taken as a percentage of particles, the improvement to Neff

can be seen in Table 4.2 to have a similar effect for all particle counts as would

be expected intuitively as there is no difference in the life of the particles for

different particle counts. The improvement to effective number of particles as

a percentage of actual particles with ASV is approximately 4% and the pro-

posed ASVHO across 3 frames has a greater improvement of approximately

10.5%, supporting the original hypothesis that temporally extending the likeli-

hood function would be beneficial to Neff. The Neff results for individual videos

vary, but the general theme of improvement remains the same. Median Neff

values were calculated individually for each video sequence and are provided in

Appendix A.1.

4.1.2 Extended Likelihood Function and Track Length

To investigate the effect of the proposed likelihood function on tracking per-

formance, Table 4.3 hows the average number of frames before track loss, here

called track length. In the collected data set it is seen that the greatest benefit

occurs due to auxiliary particle filtering and the likelihood function has no dis-

cernible impact on track length nor does the number of particles used. This is

likely due to the fact that track loss in each video in most cases occurs due to a

single event in each sequence, such as entering shadow for the Car4 Sequence,

36

NCC RESAMPLE

0 10 20 30 40 50 60 70 80 90 100

ASV RESAMPLE

0 10 20 30 40 50 60 70 80 90 100

ASVHO RESAMPLE

0 10 20 30 40 50 60 70 80 90 100

NCC AUX

0 10 20 30 40 50 60 70 80 90 100

ASV AUX

0 10 20 30 40 50 60 70 80 90 100

ASVHO AUX

0 10 20 30 40 50 60 70 80 90 100

(a)

NCC RESAMPLE

0 50 100 150 200 250 300

ASV RESAMPLE

0 50 100 150 200 250 300

ASVHO RESAMPLE

0 50 100 150 200 250 300

NCC AUX

0 50 100 150 200 250 300

ASV AUX

0 50 100 150 200 250 300

ASVHO AUX

0 50 100 150 200 250 300

(b)
NCC RESAMPLE

0 100 200 300 400 500 600 700

ASV RESAMPLE

0 100 200 300 400 500 600 700

ASVHO RESAMPLE

0 100 200 300 400 500 600 700

NCC AUX

0 100 200 300 400 500 600 700

ASV AUX

0 100 200 300 400 500 600 700

ASVHO AUX

0 100 200 300 400 500 600 700

(c)

NCC RESAMPLE

0 100 200 300 400 500 600 700 800 900 1000

ASV RESAMPLE

0 100 200 300 400 500 600 700 800 900 1000

ASVHO RESAMPLE

0 100 200 300 400 500 600 700 800 900 1000

NCC AUX

0 100 200 300 400 500 600 700 800 900 1000

ASV AUX

0 100 200 300 400 500 600 700 800 900 1000

ASVHO AUX

0 100 200 300 400 500 600 700 800 900 1000

(d)

Figure 4.1: Effective number of particles Neff histogram comparison for Dudek
at: (a) N = 100, (b) N = 300, (c) N = 700, (d) N = 1000

Table 4.1: Composite median Neff over likelihood functions

Particle
count

SIR ASIR
NCC ASV ASVHO NCC ASV ASVHO

100 7.7 7.7 7.8 26.2 32.9 37.0
300 14.2 14.5 14.4 79.0 97.9 110.1
700 24.5 24.3 24.3 186.0 229.5 257.0
1000 30.4 31.1 30.0 266.5 326.0 364.6

that leads to track loss.

37

Table 4.2: Composite median Neff over likelihood functions as a percentage of
particle count

Particle
count

SIR ASIR
NCC ASV ASVHO NCC ASV ASVHO

100 7.7% 7.7% 7.8% 26.2% 32.9% 37.0%
300 4.7% 4.8% 4.8% 26.3% 32.6% 36.7%
700 3.5% 3.5% 3.5% 26.6% 32.8% 36.7%
1000 3.0% 3.1% 3.0% 26.7% 32.6% 36.5%

Table 4.3: Composite track length over likelihood functions

Particle
count

SIR ASIR
NCC ASV ASVHO NCC ASV ASVHO

100 78.2 76.8 77.9 221.9 224.5 223.8
300 127.3 124.7 128.6 226.9 228.7 230.9
700 159.8 163.8 160.3 227.1 226.5 228.5
1000 176.9 174.4 175.8 227.4 229.1 226.7

4.1.3 Extended Likelihood Function and Tracking Error

At low particle counts it can be seen in Table 4.4 that there is only a slightly

noticeable improvement to tracking error. Above this threshold however the

improvement to tracking error is negligible or worsened (at 300 particles) by

the ASV and ASVHO. This is likely due to the way templates are extracted

by means of the greatest likelihood function in both traditional update and

the SVD update strategies. The likelihood function crosses frames and likely

introduces error when locally registering the target in the frame from which its

ROI is extracted.

4.2 Improvements by SVD Template Generation

SVD generated templates show marked improvement to time before track loss

occurs and with one exception show superior tracking error performance. Also

38

Table 4.4: Composite MSE over likelihood functions

Particle
count

SIR ASIR
NCC ASV ASVHO NCC ASV ASVHO

100 373.2 378.8 355.2 166.9 159.6 147.9
300 250.2 260.5 252.4 150.2 165.5 153.0
700 224.2 199.5 210.7 168.0 171.0 167.6
1000 207.5 205.9 201.3 174.2 167.6 168.0

observed is a marked improvement to track length and tracking error due to

simply extending the depth of the template history. The best performing scores

overall in both track length and tracking error belong to the proposed SVD

template update method.

4.2.1 SVD Template Generation and Track Length

The best overall track length score of 243.5 frames belongs to the proposed

SVD template generation strategy and is indicated by bold-italics in Table

4.5. In Table 4.5 the broad category dividing the table in half shows that

Update By SVD improves the time before track loss for every particle count,

template update interval, and the size of the length of the historical window

of extracted template candidates here called the history depth (h). Increased

template history depth at a 10-frame update interval with standard template

updating by likelihood function scoring shows improvement across the board

due to the availability of better templates from which to select. This effect is

not apparent in the longer 20-frame update interval for standard updating by

score. Shorter update intervals increase the effect of background leakage and

are known to generate poorer performance as can be seen here in Table 4.5.

Also expected and apparent from the table is that larger particle counts improve

tracking across the board. The most striking performance improvement that

39

can be seen here is the combination of deep template history with the SVD

template update. Even with a short 10-frame template update interval, SVD

template generation with a deep 30-frame history outperforms the longest 20-

frame update interval in the standard template updating by score.

One of the video sequences, rng16 18, in all cases loses track in fewer

than ten frames as can be seen in Tables A.5, A.6, A.7, and A.8 in the Appendix.

This is due to the fact that the target is very small, only a few pixels in spatial

extent, and is nearly indistinguishable from background in the first frame from

which the template is extracted. It should be noted that particle filter trackers

using a correlation based likelihood function are negatively impacted when the

target used for the comparison is only a handful of pixels.

4.2.2 SVD Template Generation and Tracking Error

The track error was calculated using mean-squared-error (MSE) in the tracked

target centroid over frames before track loss occurs. The error is in units of

pixels squared and lower numbers are better. The best overall tracking error

MSE of 104.9 belongs to the SVD template generation update strategy and

is indicated by bold-italics in Table 4.6. These values are relatively high due

to the use of a template update that has a tendency to move the centroid off

center-target from what has been marked in the ground truth. The effect is

cumulative until track is fully lost. Often the centroid is marked on different

locations of the target as in the CarScale sequence due to the target appearance

change due to rotation of the vehicle changing from passenger front facing the

camera to passenger rear facing the camera at the end of the sequence. As

can be seen in Table 4.6 there is a general trend that longer update intervals

40

Table 4.5: Composite average time before track loss over template update
strategies

Particle
count

Update By Score Update By SVD
interval=10 interval=20 interval=10 interval=20

h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30
100 122.0 127.2 134.4 145.2 136.2 142.9 137.1 160.3 175.4 166.7 175.5 183.0
300 138.0 150.8 156.7 171.7 162.7 171.2 162.0 187.1 213.2 194.9 210.2 215.7
700 149.5 162.5 169.0 192.2 181.3 181.2 168.5 207.1 234.6 216.3 230.7 239.2
1000 154.5 171.3 180.3 198.3 187.5 193.9 176.9 215.1 238.1 223.3 238.0 243.5

improve track error. The same reasoning applies here that background leak-

age compounds faster with shorter update intervals leading to increased error.

Update by SVD for shorter 10-frame template histories with short 10-frame up-

date interval shows that error performance is impacted negatively; the tradeoff

here is improved track length when comparing error here with track length as

in Table 4.5. The remaining combinations show the trend that update by SVD

yields superior error performance over the standard template update by best

likelihood score when all other parameters are equal.

41

Table 4.6: Composite MSE Over Template Update Strategies

Particle
count

Update By Score Update By SVD
interval=10 interval=20 interval=10 interval=20

h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30
100 359.8 248.3 203.8 194.2 176.4 193.9 405.0 217.6 150.7 190.5 155.9 129.9
300 338.3 249.9 210.5 187.6 163.3 158.1 364.5 204.1 134.1 135.0 128.5 117.8
700 331.2 239.1 209.6 175.1 172.3 163.9 409.6 200.8 124.2 117.5 113.8 104.9
1000 350.4 218.3 196.6 163.3 156.0 151.6 447.4 193.2 125.8 119.8 113.5 105.8

Chapter 5

Conclusion

Improvements to the field of visual tracking to reduce computational cost and

provide more robust tracking are highly sought after. Automated visual track-

ing techniques must accommodate complications such as noisy observations

and changing target appearance. In Chapter 2 we touched on several core tech-

niques including image segmentation for identifying potential target regions of

interest, target classification and rejection, and template updating. Sequential

Bayesian methods were introduced that incorporate known target dynamics to

provide for target tracking. Among these techniques, the Monte Carlo method

of particle filtering was shown to allow for the tracking of non-linear target

dynamics that would otherwise be intractable analytically. The phenomenon

of particle degeneracy was discussed as having a detrimental effect, often lead-

ing to track loss, on particle filter based target trackers. Auxiliary particle

filtering and the likelihood function introduced by the “Augmented State Vec-

tor” approach where shown to provide improvement to the particle degeneracy

problem thus providing a means for reducing these detrimental effects. The

issues of background leakage, dynamic appearance changes, and noisy target

observations were identified as key areas that should be a focus for improve-

ment in any proposed template update method due to their impact leading to

poor tracking performance and track loss.

43

In Chapter 3 we proposed a novel SVD based template generation strat-

egy to reduce the detrimental effects of background leakage and to better ac-

commodate for dynamic target appearance changes in order to provide more

robust tracking performance. Also proposed in Chapter 3 was an extension to

the “Augmented State Vector” approach incorporating 3 temporally adjacent

observations to provide better indirect velocity information in the likelihood

function thereby providing a noticeable reduction in particle degeneracy.

The experimental results presented in Chapter 4 show a dramatic 25.6%

improvement in time before track loss using the best results from the SVD and

non-SVD (score) methods, as shown in Table 4.2, indicating significantly more

robust performance. The temporal extension of the likelihood function in an

auxiliary particle filter proved to be a great benefit in the reduction of particle

degeneracy by 11.2%-12.5% when compared to the previous “Augmented State

Vector” approach, as shown in Table 4.1. The increased effective number of

particles Neff will allow for the use of fewer particles in a PF tracker while

maintaining track performance, thereby reducing the requred computational

expense. The extended likelihood function was shown to have no significant

effect on tracking error. Deeper target observation histories did show a trend

towards better performance.

The original contributions of this dissertation include the following:

1. Extended likelihood function incorporating 3 temporally adjacent obser-

vations.

2. SVD based target appearance model generation.

44

3. Implementation using Tensorflow-GPU and Python for GPU coprocess-

ing.

The extended likelihood function provides a noticeable reduction in the

particle degeneracy phenomenon. Calculation of the number of effective parti-

cles of the “Augmented State Vector” technique was provided here to enhance

previous support for use of the method and for use in comparing with the pro-

posed extension. The number of effective particles has a direct effect on the

adequacy of the representation of the state pdf for use in particle filter tracking

and any increase to it improves state pdf representation. This allows for imple-

mentation using fewer real and computationally expensive particles to provide

a similar number of effective particles and thus similarly adequate state pdf

representation.

SVD based target appearance model generation allows for more robust

tracking performance. Building an appearance model by performing SVD from

several candidate target regions of interest allows for reduced influence from

observation noise and intermittent changes in illumination and target appear-

ance. With the exception of a low template history, the SVD is also shown

to improve tracking error as well. Template updating by means of SVD based

template generation has proven to provide a more robust update strategy as

the increased tracking time has shown.

The use of GPU coprocessing has allowed the collection of the experi-

mental results involving 57,600 runs in a reasonable amount of time to allow for

quantitative empirical analysis of the performance benefits that the proposed

SVD template update and extended likelihood functions provide. Implementa-

tion in Tensorflow has shown that it can be used to perform complex tasks other

45

than its primary use in training of neural networks and provides for a unique

GPU accelerated platform for use in further particle filter tracking research.

These proposed methods provide for more robust tracking performance

by use of SVD based template generation to reduce the detrimental effects

of target appearance change and background leakage. It has been shown that

there is improved particle filter adequacy and potential computational cost sav-

ings by reduction of the particle degeneracy phenomenon through the proposed

enhanced likelihood function.

5.1 Future Work

The alternatives available for use as a likelihood function in a particle filter are

boundless and this presents ample opportunity for future work. One alternative

came from a misunderstanding of my own while discussing the work in [4] with

my colleagues. In attempting the first implementation off-the-cuff as it were I

implemented a likelihood function based on the summation of the correlations

in temporally adjacent frames and it did show improvement as well although

only tested with a single video. The terms of that series could also be weighted

in numerous ways such as tapering off over a small window of past frames.

The effects of sub-sampled target signatures should also be investigated. It

would be worth while to observe the extension of observation across even more

temporally adjacent video frames to see where the point of diminishing return

lies.

Sub-sampled targets require far less computation when performing cor-

relation calculation and would provide a potential computational cost savings.

It would therefore be beneficial to compare the trade off between cost savings

46

due to sub-sampling and the effects it has on the ability to track robustly.

As mentioned in Chapter 2 it is more common that a target acquisition

system feeds into target tracking. In this work that job was relegated to the use

of ground-truth to seed the initial target location. It would be very interesting

to see the performance of the proposed improvements in such a system.

47

Appendix

48

Appendix A

Tables

A.1 Median Effective Number of Particles Tables

Table A.1: Effective Number of Particles for N = 100

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 4.4 4.4 4.4 11.3 14.6 17.3

CarScale 4.6 4.0 3.6 27.3 34.8 39.4
Coke 6.1 6.9 6.0 24.3 30.3 36.4

Crossing 5.2 4.5 4.5 25.6 34.8 38.2
Dudek 9.3 9.3 9.4 23.5 29.4 33.3

Football 3.8 3.7 3.7 22.3 28.8 33.0
Girl 4.1 4.6 5.0 27.4 33.1 36.4

RedTeam 4.6 4.6 4.6 37.0 44.8 48.6
Skater 14.8 14.5 14.6 42.4 50.4 54.6
Skater2 10.6 9.9 9.1 24.7 33.1 38.8

bc1 case3 8.2 8.6 8.8 27.0 32.0 35.4
bc3 case7 6.8 7.0 7.1 17.7 21.8 24.9
rng14 15 4.3 4.0 3.8 71.2 74.0 75.6
rng16 18 3.7 3.6 4.6 68.9 75.4 75.3
rng18 16 3.4 2.9 2.7 48.3 56.2 61.8
rng19 06 20.2 29.0 28.0 71.6 79.2 81.8
rng19 13 4.1 5.1 4.7 55.4 62.4 64.7
rng19 NS 3.7 5.3 4.2 52.4 58.8 60.4
walking 3.3 3.1 3.1 13.1 18.6 22.8
woman 4.2 4.3 4.4 20.1 27.6 32.1

49

Table A.2: Effective Number of Particles for N = 300

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 6.0 6.0 5.8 28.5 38.2 44.5

CarScale 10.2 9.7 10.0 81.4 102.1 114.3
Coke 16.2 14.1 13.9 71.0 90.3 100.0

Crossing 11.1 11.0 11.1 81.9 100.3 112.5
Dudek 22.0 22.4 22.1 69.6 86.5 98.5

Football 6.6 7.0 7.2 65.9 86.1 96.3
Girl 11.2 10.3 11.6 77.5 94.2 104.4

RedTeam 7.6 7.6 7.9 112.0 132.6 143.0
Skater 40.2 38.6 39.2 122.7 144.6 158.0
Skater2 18.0 20.1 20.7 67.5 94.3 108.2

bc1 case3 10.7 10.8 10.6 76.1 91.6 101.4
bc3 case7 7.9 7.9 7.8 50.8 63.1 70.7
rng14 15 7.0 6.1 7.9 206.3 212.1 213.7
rng16 18 7.9 6.3 8.2 198.0 206.9 213.5
rng18 16 5.1 4.0 5.1 149.8 167.3 180.9
rng19 06 64.4 57.0 52.5 218.6 230.2 239.2
rng19 13 7.1 6.9 8.1 164.3 181.4 188.8
rng19 NS 7.2 6.7 8.5 152.5 174.4 178.5
walking 5.2 5.6 5.3 39.0 56.5 67.0
woman 10.2 10.0 10.0 57.1 77.1 91.0

50

Table A.3: Effective Number of Particles for N = 700

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 8.4 8.5 8.5 61.9 83.1 99.6

CarScale 20.3 20.5 21.0 187.4 233.8 261.6
Coke 28.0 28.2 33.5 156.7 214.0 234.5

Crossing 24.9 24.1 24.5 192.6 238.4 269.0
Dudek 48.7 48.7 48.9 161.9 201.4 228.7

Football 14.5 14.3 14.9 157.1 195.9 219.5
Girl 21.3 22.6 20.2 177.9 216.6 243.0

RedTeam 13.3 13.3 13.5 262.2 307.7 332.8
Skater 86.7 84.8 87.5 278.9 334.7 370.7
Skater2 32.8 32.1 31.3 164.5 211.5 251.9

bc1 case3 17.7 17.6 17.6 175.9 208.4 229.6
bc3 case7 11.4 11.5 11.7 118.5 147.0 164.7
rng14 15 11.1 15.0 12.7 467.7 486.8 487.4
rng16 18 14.2 11.7 10.8 446.1 478.1 482.3
rng18 16 8.8 5.6 5.9 354.2 383.1 412.4
rng19 06 110.7 125.9 119.6 487.6 532.3 554.1
rng19 13 12.9 13.1 13.0 382.3 415.1 432.1
rng19 NS 14.7 11.0 13.0 364.8 403.6 420.5
walking 10.4 10.4 10.5 93.8 132.4 162.3
woman 21.6 20.9 21.4 130.4 176.1 205.1

51

Table A.4: Effective Number of Particles for N = 1000

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 10.1 10.1 10.0 87.2 116.7 140.5

CarScale 27.7 27.2 26.6 266.1 331.2 370.1
Coke 45.5 42.4 37.2 221.5 298.2 332.6

Crossing 33.1 33.3 33.4 262.2 325.2 367.9
Dudek 69.7 68.7 69.2 232.1 288.3 327.3

Football 19.4 19.9 19.4 223.7 275.5 310.5
Girl 27.6 29.4 27.6 252.4 305.8 334.2

RedTeam 17.2 17.7 17.2 374.5 435.2 472.5
Skater 118.6 119.4 121.2 397.4 480.3 526.7
Skater2 46.9 45.3 43.7 218.9 298.4 324.6

bc1 case3 22.8 22.1 22.1 248.3 296.3 322.8
bc3 case7 13.9 14.0 13.5 170.4 209.3 235.9
rng14 15 17.3 13.1 16.0 658.5 681.3 691.3
rng16 18 18.0 16.6 16.2 653.1 669.6 684.2
rng18 16 9.3 8.1 9.2 482.8 541.2 578.1
rng19 06 168.1 174.0 154.9 710.8 766.8 789.1
rng19 13 17.5 17.0 15.6 545.4 589.8 612.0
rng19 NS 17.4 17.0 15.6 526.3 575.0 603.1
walking 15.2 14.3 14.6 139.7 195.1 232.9
woman 29.1 29.3 27.9 185.8 244.6 293.8

52

A.2 Track Length Tables

Table A.5: Average track length across template update methods for N = 100

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 282.9 295.5 321.1 361.9 304.8 328.4 313.4 421.5 441.8 422.2 433.6 425.0
CarScale 142.7 145.0 145.6 148.4 146.0 145.8 151.1 150.6 156.0 154.7 159.2 169.8

Coke 31.5 32.9 33.5 32.1 29.2 30.0 38.1 40.1 31.5 34.9 34.7 35.5
Crossing 36.4 37.7 38.4 41.3 42.4 42.3 35.5 37.9 42.9 42.9 43.3 40.6
Dudek 752.7 719.5 741.0 754.4 746.6 738.9 752.4 830.9 849.4 853.9 873.9 847.2

Football 153.9 136.9 122.5 130.4 115.8 120.5 176.1 189.0 170.3 158.5 140.6 163.9
Girl 84.8 85.4 78.0 104.0 92.9 89.1 108.8 102.8 100.4 113.9 118.6 122.4

RedTeam 418.9 502.0 571.0 575.4 561.8 639.0 436.8 595.4 837.5 692.5 808.2 933.4
Skater 124.1 119.2 110.1 127.9 114.6 125.0 124.8 130.0 134.8 141.1 143.3 152.7
Skater2 46.3 49.1 53.0 55.1 43.8 43.8 42.5 49.8 59.9 61.0 56.0 61.4

bc1 case3 74.8 91.1 117.8 136.2 130.2 134.7 74.5 102.6 142.2 141.7 140.3 154.7
bc3 case7 103.1 119.2 121.4 126.8 119.4 123.1 119.9 134.9 135.3 141.9 135.8 137.1
rng14 15 26.4 31.9 36.6 48.3 39.8 39.6 53.9 61.4 66.9 60.0 62.0 67.1
rng16 18 8.2 8.2 8.2 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1 8.1
rng18 16 17.2 19.8 28.5 26.6 28.1 30.1 32.5 48.3 39.2 28.0 47.9 40.6
rng19 06 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9
rng19 13 22.9 27.6 27.4 55.8 38.7 43.3 83.0 81.5 82.1 79.7 76.9 81.6
rng19 NS 14.2 14.2 14.0 28.8 19.9 19.9 28.8 28.7 28.9 29.2 29.4 29.1
walking 30.6 36.9 42.8 54.9 55.8 70.7 35.9 48.1 65.1 60.9 62.2 74.4
woman 65.1 68.7 75.1 85.6 82.7 81.9 123.9 141.3 113.0 106.4 134.0 113.3

53

Table A.6: Average track length across template update methods for N = 300

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 310.8 332.8 345.2 428.4 416.9 383.7 349.1 498.7 527.0 504.7 516.3 495.4
CarScale 204.8 202.2 194.5 207.7 207.3 189.5 212.9 213.6 204.8 208.6 210.9 202.5

Coke 35.6 36.9 36.6 33.4 33.3 33.8 40.6 44.9 31.2 36.1 36.7 36.1
Crossing 39.2 38.3 39.3 43.9 45.3 44.1 42.6 40.4 45.5 46.3 54.7 49.4
Dudek 809.3 862.7 905.4 908.9 842.2 920.8 818.1 930.5 998.0 997.0 989.8 996.0

Football 191.5 196.1 156.9 177.0 158.9 164.6 227.0 228.7 238.3 221.9 194.8 209.5
Girl 110.6 108.2 100.0 129.8 121.3 124.7 118.8 136.6 140.5 154.3 157.2 166.7

RedTeam 448.4 549.7 651.1 659.4 617.4 721.3 608.2 726.5 1050.1 779.4 1058.1 1134.7
Skater 140.3 133.9 127.0 138.6 130.6 131.0 138.2 133.9 143.2 149.4 149.1 156.2
Skater2 50.8 65.1 61.3 80.0 69.7 67.6 56.0 59.9 77.9 77.7 58.6 78.3

bc1 case3 83.2 112.6 137.1 149.0 154.5 160.6 84.9 112.4 158.6 154.9 154.8 170.0
bc3 case7 121.3 140.6 141.0 141.4 143.6 143.2 135.1 145.1 155.2 151.3 152.1 152.0
rng14 15 27.0 32.2 33.4 50.7 41.9 49.1 54.1 64.4 80.0 68.5 72.9 83.4
rng16 18 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7
rng18 16 21.9 20.5 20.5 32.0 27.5 30.5 23.0 74.6 70.9 27.6 58.1 39.1
rng19 06 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
rng19 13 28.0 27.6 26.7 55.5 42.5 45.4 92.8 92.9 89.4 87.6 89.2 88.2
rng19 NS 16.5 17.2 17.1 30.0 25.5 25.2 31.1 30.4 30.9 30.5 30.4 30.7
walking 34.2 38.7 43.5 64.0 64.2 73.5 34.5 50.4 77.9 67.9 70.8 86.8
woman 74.8 88.3 86.5 92.2 100.9 104.5 161.0 147.3 133.8 121.9 138.3 127.1

Table A.7: Average track length across template update methods for N = 700

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 310.2 382.4 391.4 487.3 467.2 400.3 338.4 575.7 601.3 594.2 582.8 591.2
CarScale 220.4 228.2 233.9 239.1 247.0 242.4 243.7 243.5 243.4 247.0 233.8 243.4

Coke 34.6 36.9 36.8 33.6 31.0 31.2 41.0 42.7 28.2 41.9 36.1 32.5
Crossing 40.2 41.4 43.2 43.0 43.4 43.4 46.5 43.1 45.7 45.9 65.5 42.7
Dudek 780.7 864.5 932.2 965.3 954.3 905.9 767.1 912.9 998.0 998.0 998.0 998.0

Football 219.2 197.8 180.6 204.0 175.8 178.0 273.2 269.9 269.9 243.6 219.9 256.1
Girl 120.5 119.9 105.5 162.7 105.0 114.0 139.5 155.0 174.0 162.5 182.7 204.8

RedTeam 598.9 677.5 703.7 794.1 742.0 823.6 685.2 928.8 1240.2 970.6 1235.1 1315.3
Skater 146.3 127.0 129.2 145.3 130.1 133.1 136.3 142.6 145.3 152.2 147.0 159.0
Skater2 62.3 63.9 58.1 87.8 70.1 66.2 33.5 51.8 70.5 64.9 57.1 78.2

bc1 case3 87.7 116.1 147.2 164.5 161.0 171.7 88.8 119.5 174.2 174.8 173.1 178.1
bc3 case7 131.0 146.9 151.4 155.8 155.3 156.0 134.2 155.3 163.6 162.1 161.5 164.6
rng14 15 29.9 37.2 37.3 51.5 43.0 44.1 55.6 64.1 78.2 81.0 76.1 103.5
rng16 18 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6 9.6
rng18 16 23.2 21.1 23.7 30.9 36.4 30.4 28.7 73.2 78.5 23.9 50.4 39.8
rng19 06 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
rng19 13 28.8 29.0 29.3 69.2 41.6 43.7 105.5 97.3 97.2 104.3 98.2 99.0
rng19 NS 23.8 24.6 24.9 32.9 30.7 30.7 33.3 33.3 33.7 34.0 34.6 34.8
walking 35.2 43.8 50.5 69.3 72.8 87.0 37.0 51.2 83.8 77.3 79.7 99.0
woman 84.8 79.5 87.8 95.3 107.1 110.3 169.8 169.9 153.1 134.8 169.6 131.4

54

Table A.8: Average track length across template update methods for N = 1000

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 298.0 422.5 399.8 489.1 470.3 481.3 315.9 614.1 637.1 597.9 621.3 569.4
CarScale 226.0 228.1 234.1 245.2 242.8 247.1 247.1 247.1 244.5 247.1 243.5 247.1

Coke 35.0 36.7 36.0 32.4 31.6 31.8 39.0 47.6 28.9 43.6 37.9 32.4
Crossing 45.6 46.3 45.7 48.9 47.2 46.7 46.7 46.9 44.5 45.1 64.7 45.5
Dudek 767.6 828.0 931.9 976.0 935.7 927.9 805.0 950.6 998.0 998.0 998.0 998.0

Football 229.2 201.9 184.2 208.5 189.5 171.2 284.1 279.8 278.0 260.6 196.6 254.6
Girl 115.9 117.3 120.0 159.2 116.2 122.7 134.2 163.2 173.2 173.4 182.1 197.7

RedTeam 705.5 793.5 875.1 854.0 859.9 961.0 781.5 936.9 1227.3 1016.1 1317.0 1394.5
Skater 145.1 132.8 130.4 146.5 119.1 124.1 150.5 146.7 140.3 157.2 153.9 159.0
Skater2 70.2 68.0 66.9 103.4 80.0 85.6 34.4 58.4 73.6 80.7 64.3 81.2

bc1 case3 88.1 117.8 148.8 172.6 161.6 167.5 89.8 124.7 177.2 176.9 176.1 178.3
bc3 case7 132.9 150.4 156.9 159.3 160.2 162.6 141.5 154.4 166.2 164.6 167.0 166.5
rng14 15 33.6 36.8 45.2 57.4 45.3 42.5 60.1 72.1 108.1 89.7 92.8 113.6
rng16 18 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7
rng18 16 24.2 27.9 26.6 35.4 33.3 31.3 26.0 83.0 66.8 26.1 39.7 36.8
rng19 06 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
rng19 13 22.3 20.5 25.0 71.5 35.7 40.9 109.0 106.7 104.3 104.7 104.9 102.3
rng19 NS 21.9 22.2 22.3 36.5 30.6 30.6 36.8 37.4 38.0 37.5 38.1 37.6
walking 34.8 43.3 49.4 67.7 68.9 82.5 37.1 53.1 84.0 77.5 78.3 100.0
woman 82.0 118.5 95.0 89.7 108.8 108.7 187.0 167.4 159.6 157.4 170.5 142.0

55

Table A.9: Average track length across likelihood functions for N = 100

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 158.7 155.0 184.1 548.6 568.9 560.8

CarScale 62.6 53.3 40.5 251.0 250.3 249.7
Coke 28.9 28.3 30.9 39.8 35.7 38.4

Crossing 31.8 30.0 31.1 47.9 52.4 47.5
Dudek 656.8 633.1 659.4 917.8 930.4 932.8

Football 66.5 67.7 43.4 238.6 242.0 231.0
Girl 28.9 33.9 32.3 169.6 163.6 172.2

RedTeam 58.7 56.5 50.9 1203.4 1209.2 1207.3
Skater 118.4 116.5 116.5 141.3 139.2 141.9
Skater2 42.7 39.5 56.3 48.6 65.1 58.7

bc1 case3 89.7 94.2 91.8 149.5 147.8 147.5
bc3 case7 88.6 94.5 90.7 163.1 160.3 161.8
rng14 15 9.1 6.8 8.2 91.4 99.6 81.8
rng16 18 5.1 7.1 6.6 10.0 10.0 10.0
rng18 16 8.1 6.9 7.7 62.4 55.2 53.1
rng19 06 2.9 2.8 2.5 3.0 3.0 3.0
rng19 13 12.2 11.2 10.2 103.5 104.2 108.9
rng19 NS 8.3 9.9 9.1 38.4 36.7 40.2
walking 42.0 41.9 38.8 65.3 66.5 64.7
woman 43.5 47.0 46.2 144.6 149.6 164.7

56

Table A.10: Average track length across likelihood functions for N = 300

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 304.1 257.0 295.9 561.6 569.1 566.7

CarScale 159.7 151.3 170.1 250.3 250.3 247.8
Coke 33.0 30.8 32.1 43.5 40.3 37.9

Crossing 44.7 39.9 35.9 47.5 48.0 48.4
Dudek 887.3 885.9 892.2 912.0 954.2 957.6

Football 140.9 146.4 152.8 243.6 247.8 251.1
Girl 98.1 91.9 95.9 165.4 165.3 167.8

RedTeam 241.0 240.6 249.2 1236.8 1252.7 1281.9
Skater 129.6 130.4 135.9 146.4 145.9 147.7
Skater2 69.6 67.3 72.8 66.5 64.7 60.6

bc1 case3 117.9 122.8 118.0 152.5 150.7 154.4
bc3 case7 123.2 117.9 124.1 164.7 165.7 165.4
rng14 15 14.2 15.3 12.0 89.4 97.8 100.2
rng16 18 8.3 6.6 7.4 10.0 10.0 10.0
rng18 16 8.8 10.1 7.5 73.1 58.0 65.5
rng19 06 3.0 2.9 3.0 3.0 3.0 3.0
rng19 13 19.8 25.8 23.1 115.9 96.7 101.6
rng19 NS 9.1 13.6 11.7 43.1 39.2 41.0
walking 52.3 51.3 54.4 65.7 63.7 65.8
woman 82.1 85.1 78.4 146.5 151.8 144.3

57

Table A.11: Average track length across likelihood functions for N = 700

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 398.3 397.8 395.7 556.8 558.6 554.0

CarScale 236.6 215.8 234.1 247.7 250.3 248.3
Coke 34.0 32.0 32.9 38.6 38.3 37.4

Crossing 43.3 41.1 46.3 41.5 50.1 49.7
Dudek 914.7 947.6 896.0 919.5 909.2 950.4

Football 198.6 185.9 211.4 255.8 248.8 243.5
Girl 128.1 140.6 107.9 158.8 171.1 166.6

RedTeam 486.9 580.3 553.3 1248.5 1247.4 1241.1
Skater 135.2 136.5 135.8 141.1 151.9 146.3
Skater2 66.7 52.8 54.3 71.0 69.8 67.4

bc1 case3 138.1 140.5 138.7 153.5 153.2 154.2
bc3 case7 141.7 140.8 139.8 164.8 165.9 165.9
rng14 15 20.0 14.7 16.7 102.4 90.0 106.8
rng16 18 9.1 9.2 9.1 10.0 10.0 10.0
rng18 16 13.6 10.3 9.3 69.6 65.7 61.6
rng19 06 3.0 3.0 3.0 3.0 3.0 3.0
rng19 13 36.8 40.6 38.6 106.2 97.3 102.2
rng19 NS 23.8 14.3 13.7 43.9 43.0 47.0
walking 63.6 64.0 61.1 67.5 69.3 67.8
woman 103.5 107.5 109.1 141.2 137.9 147.6

58

Table A.12: Average track length across likelihood functions for N = 1000

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 446.3 424.5 429.0 538.7 565.9 554.0

CarScale 242.0 224.3 238.3 248.3 249.7 247.3
Coke 33.5 31.1 34.5 42.0 36.7 38.6

Crossing 45.6 42.5 41.9 50.4 53.4 53.1
Dudek 910.8 927.9 911.3 934.8 937.5 935.1

Football 218.6 205.9 212.2 244.4 244.6 243.3
Girl 126.9 140.8 131.9 153.2 168.2 166.5

RedTeam 717.8 701.7 714.1 1258.6 1248.6 1220.2
Skater 139.6 142.6 138.0 142.9 146.7 143.1
Skater2 62.9 68.8 64.0 73.2 83.2 81.2

bc1 case3 142.4 141.1 144.2 154.9 151.7 155.4
bc3 case7 146.2 148.2 149.9 165.2 166.0 165.7
rng14 15 25.4 20.2 27.9 109.2 110.3 105.8
rng16 18 9.0 10.0 8.9 10.0 10.0 10.0
rng18 16 11.2 13.3 11.8 65.5 62.0 64.9
rng19 06 3.0 3.0 3.0 3.0 3.0 3.0
rng19 13 46.5 41.3 45.8 97.8 94.1 98.3
rng19 NS 30.8 16.8 20.2 40.5 43.5 42.9
walking 62.2 63.0 62.2 67.0 68.7 65.3
woman 118.2 120.8 126.2 148.7 138.1 141.3

59

A.3 Error Tables

Table A.13: MSE Over Template Update Strategies for N = 100

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 161.9 108.4 87.0 82.7 99.1 48.9 142.6 56.5 33.7 37.6 29.8 22.0
CarScale 534.8 214.9 199.1 114.0 166.5 236.4 395.8 148.2 191.4 147.6 256.9 262.5

Coke 159.6 150.8 146.6 113.1 121.4 121.0 109.9 150.9 122.4 124.1 106.4 118.0
Crossing 32.3 30.1 27.5 15.7 19.1 17.8 28.7 21.7 17.5 12.3 15.2 16.4
Dudek 839.8 614.2 495.7 476.3 407.8 511.8 1169.2 607.6 399.5 509.1 394.7 338.2

Football 73.4 61.9 55.5 48.3 44.2 50.6 71.5 59.8 58.1 44.9 46.4 65.5
Girl 59.7 60.6 54.1 77.9 64.5 52.7 68.7 91.5 87.9 92.4 93.9 74.5

RedTeam 26.8 26.5 21.3 22.7 23.3 19.9 10.5 18.1 20.9 20.6 20.3 18.0
Skater 317.3 327.9 372.5 406.1 383.3 376.7 266.1 263.4 285.1 316.6 258.8 178.0
Skater2 744.2 809.9 759.1 1023.6 836.3 845.9 898.1 981.7 820.2 1001.3 918.5 821.2

bc1 case3 42.0 25.6 18.8 9.8 10.7 8.5 46.8 18.8 11.3 9.2 10.9 6.5
bc3 case7 31.2 20.0 16.5 11.5 11.4 9.7 28.4 15.2 10.6 10.0 11.3 8.7
rng14 15 3.5 3.3 3.4 7.6 4.5 3.6 4.0 3.5 4.1 12.1 3.9 4.2
rng16 18 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
rng18 16 3.2 3.4 4.2 3.4 4.0 4.5 4.2 6.0 3.7 3.6 5.5 3.8
rng19 06 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
rng19 13 4.9 4.3 4.4 6.4 4.7 4.4 5.0 4.1 3.8 4.7 4.0 3.9
rng19 NS 4.5 4.4 4.3 4.6 3.7 3.5 2.4 2.3 2.5 2.7 2.7 2.6
walking 67.1 67.6 67.4 58.7 55.5 54.1 73.1 63.4 54.2 62.5 64.4 50.6
woman 64.9 65.5 61.9 120.5 58.1 65.7 102.7 112.6 74.3 99.0 97.6 80.1

60

Table A.14: MSE Over Template Update Strategies for N = 300

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 121.9 71.6 52.9 51.7 68.6 49.6 119.7 34.8 20.5 33.0 20.8 12.0
CarScale 496.3 274.2 331.4 208.2 286.0 230.9 377.0 136.1 188.8 135.3 199.0 288.6

Coke 146.0 147.1 133.6 113.7 128.9 122.7 101.7 162.2 152.3 117.4 101.1 125.5
Crossing 28.4 28.8 27.8 12.4 14.3 13.8 35.5 20.1 16.0 15.0 13.5 12.7
Dudek 807.4 603.2 456.8 446.9 343.8 354.8 1099.9 600.1 357.8 306.1 321.8 291.8

Football 89.5 75.4 60.0 49.9 51.4 55.6 77.5 55.7 58.8 45.9 54.9 69.4
Girl 61.7 61.1 56.0 83.2 61.1 63.3 57.5 69.8 81.4 78.9 96.5 88.5

RedTeam 23.9 22.6 22.3 21.6 24.7 21.7 11.5 17.6 20.2 20.3 20.4 16.2
Skater 278.9 351.2 491.0 378.9 446.2 435.8 260.2 283.5 261.4 289.6 347.1 150.7
Skater2 905.1 769.9 866.6 855.3 634.9 635.2 945.8 821.2 697.2 927.0 730.6 742.7

bc1 case3 41.4 21.3 15.9 7.3 9.0 6.9 40.8 16.0 8.2 7.6 8.7 5.1
bc3 case7 25.2 15.3 12.0 7.0 8.6 7.0 25.7 12.4 7.6 6.8 7.3 5.3
rng14 15 3.0 3.4 3.3 6.9 3.3 7.1 3.7 3.5 5.6 11.2 4.3 5.3
rng16 18 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
rng18 16 3.2 3.1 3.1 3.6 3.0 4.5 3.2 6.4 5.5 3.5 5.2 3.7
rng19 06 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
rng19 13 4.6 5.1 4.6 5.1 4.7 4.4 5.4 4.5 4.0 4.8 4.3 3.7
rng19 NS 4.4 5.6 5.0 4.3 4.2 4.0 2.3 2.3 2.5 2.3 2.3 2.3
walking 62.2 59.8 60.0 56.3 54.2 52.1 67.5 55.0 56.5 55.8 52.5 49.8
woman 51.6 85.5 46.0 65.0 90.5 72.0 136.6 139.0 98.3 80.3 108.6 90.4

Table A.15: MSE Over Template Update Strategies for N = 700

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 82.4 61.7 62.2 52.5 68.6 31.4 124.5 39.1 17.1 23.3 14.3 10.7
CarScale 532.4 332.3 252.7 138.7 219.6 302.6 423.7 142.3 133.2 140.7 185.3 204.7

Coke 150.5 157.8 156.0 165.4 132.8 132.6 101.8 147.1 142.1 121.5 91.4 101.5
Crossing 24.6 22.7 21.4 12.8 13.1 12.9 33.5 21.3 16.6 9.8 12.1 12.5
Dudek 898.7 605.0 482.8 470.8 377.8 357.2 1408.9 664.8 346.4 294.0 299.4 281.5

Football 81.5 63.0 64.3 53.4 51.5 47.5 74.9 58.9 63.3 47.2 62.2 80.3
Girl 56.6 58.3 55.0 79.7 51.6 46.1 59.5 84.9 107.6 95.8 105.7 115.2

RedTeam 23.0 23.5 24.8 22.6 24.5 20.0 10.1 15.3 18.7 18.0 18.7 14.1
Skater 267.4 393.6 570.7 296.8 589.5 665.3 354.3 257.9 263.1 289.3 277.3 156.9
Skater2 765.6 780.5 804.4 650.5 710.7 676.3 967.3 860.9 886.2 804.6 716.1 761.7

bc1 case3 40.0 20.2 14.2 6.6 8.4 6.5 39.1 15.3 8.0 6.9 8.1 4.4
bc3 case7 25.7 15.0 11.5 6.6 7.1 5.9 25.3 11.7 7.0 5.9 6.6 4.7
rng14 15 3.5 4.5 4.5 8.7 3.9 3.6 2.9 2.9 4.6 14.4 4.1 5.9
rng16 18 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
rng18 16 3.8 3.2 3.6 3.1 5.6 3.4 3.5 6.5 6.2 3.4 4.5 4.2
rng19 06 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
rng19 13 5.1 4.2 4.8 4.7 3.9 3.6 5.2 4.5 3.9 4.5 4.2 3.6
rng19 NS 6.0 7.4 6.4 4.9 5.7 5.6 2.5 2.4 2.5 2.8 2.5 2.5
walking 60.1 59.5 61.0 47.8 50.8 46.7 59.2 53.1 53.8 51.2 52.4 44.7
woman 51.1 49.2 52.7 50.9 65.7 81.9 122.7 166.3 139.3 87.4 145.9 48.2

61

Table A.16: MSE Over Template Update Strategies for N = 1000

Sequence
Update By Score Update By SVD

interval=10 interval=20 interval=10 interval=20
h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30 h=10 h=20 h=30

Car4 86.0 75.1 50.4 30.4 76.2 30.4 100.4 32.7 18.1 20.1 14.1 9.5
CarScale 591.3 188.7 230.2 134.8 130.8 212.6 423.7 132.3 153.1 138.8 146.2 209.7

Coke 141.5 144.8 134.0 137.0 137.5 136.6 97.6 182.6 149.2 148.9 119.3 126.9
Crossing 30.8 30.6 30.3 9.8 9.8 9.7 33.6 23.6 17.4 9.3 11.3 11.5
Dudek 992.3 591.3 466.0 424.0 366.3 357.9 1574.8 624.2 344.0 296.9 295.5 280.3

Football 84.1 71.9 62.2 53.7 55.7 44.4 72.7 57.4 64.8 50.9 61.4 81.1
Girl 62.0 52.4 51.4 88.2 51.9 48.7 55.5 94.2 102.0 100.6 112.6 104.7

RedTeam 33.1 30.6 23.9 25.6 21.8 21.5 10.2 15.3 17.9 17.9 18.7 14.2
Skater 297.7 415.4 646.1 289.2 529.9 569.8 389.2 249.3 359.0 287.5 284.3 143.9
Skater2 680.4 803.5 854.4 778.0 724.0 777.0 1101.4 942.4 825.8 802.9 972.0 862.1

bc1 case3 41.3 21.5 16.4 6.5 8.3 6.5 39.3 15.4 7.7 6.5 7.9 4.3
bc3 case7 25.4 13.0 10.2 5.8 6.5 5.5 24.7 11.4 6.8 5.7 6.2 4.6
rng14 15 3.1 3.1 5.0 8.6 4.4 3.0 3.0 2.9 6.2 14.6 5.1 5.9
rng16 18 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
rng18 16 3.5 4.5 3.8 3.4 3.6 2.9 3.1 7.9 6.4 3.3 4.7 3.0
rng19 06 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8
rng19 13 3.6 3.1 3.4 5.1 3.5 3.9 5.2 4.2 3.6 4.3 4.0 3.4
rng19 NS 5.7 6.4 6.2 4.0 4.1 4.0 2.2 2.1 2.1 2.3 2.1 2.4
walking 61.5 58.6 61.0 49.1 48.8 46.2 57.3 55.0 54.2 50.4 51.3 45.4
woman 55.1 115.8 71.0 46.1 63.1 53.7 161.5 175.8 150.4 117.4 143.9 84.5

62

Table A.17: MSE over likelihood functions for N = 100

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 123.3 134.1 102.4 54.9 57.7 53.4

CarScale 378.6 397.5 150.0 227.6 229.9 206.4
Coke 151.1 119.9 151.1 125.3 114.9 114.2

Crossing 22.2 22.7 24.7 20.2 18.3 19.4
Dudek 671.4 684.9 622.6 526.6 492.1 440.6

Football 40.6 36.5 55.4 61.6 60.9 60.3
Girl 44.5 48.6 42.4 79.6 79.6 81.0

RedTeam 19.9 21.3 20.2 20.1 20.9 20.9
Skater 274.4 321.3 305.0 327.7 317.6 300.2
Skater2 996.5 1126.9 997.4 868.9 661.1 742.4

bc1 case3 20.2 20.2 22.1 11.7 12.7 12.5
bc3 case7 24.8 22.8 21.5 10.0 10.8 10.2
rng14 15 2.0 1.2 2.0 4.5 7.0 4.0
rng16 18 1.9 2.1 1.3 0.5 0.5 0.5
rng18 16 3.7 3.1 2.6 5.1 4.2 4.0
rng19 06 1.3 1.0 1.1 1.2 0.9 1.1
rng19 13 6.7 5.6 7.7 4.3 4.3 4.1
rng19 NS 9.3 3.5 7.5 2.5 2.4 2.6
walking 73.5 64.9 95.1 50.2 49.7 49.3
woman 30.9 32.7 34.4 106.0 100.0 103.5

63

Table A.18: MSE over likelihood functions for N = 300

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 79.3 55.9 52.4 46.5 41.4 40.5

CarScale 367.2 316.5 308.5 217.2 237.4 200.7
Coke 100.1 115.4 129.7 157.3 133.0 130.4

Crossing 19.1 22.8 14.2 18.8 21.4 18.9
Dudek 480.8 523.5 497.0 449.2 509.7 459.2

Football 51.2 54.3 60.2 62.4 66.0 70.4
Girl 49.5 46.5 52.4 83.5 89.5 87.6

RedTeam 16.1 16.7 14.7 20.3 21.1 20.7
Skater 302.1 315.5 285.9 324.3 353.2 372.2
Skater2 822.2 704.7 875.3 817.4 694.1 818.8

bc1 case3 14.8 14.8 14.6 11.8 12.2 12.1
bc3 case7 14.9 12.9 12.8 9.8 9.7 9.6
rng14 15 1.8 1.7 1.5 5.1 6.6 5.7
rng16 18 1.7 1.9 1.4 0.4 0.4 0.4
rng18 16 2.8 2.7 2.8 5.0 4.5 4.6
rng19 06 0.9 1.2 1.6 0.8 0.8 0.8
rng19 13 5.4 5.7 5.6 4.3 4.5 4.2
rng19 NS 4.8 6.6 4.5 2.5 2.6 3.0
walking 56.6 67.3 58.4 51.8 52.0 50.8
woman 31.4 47.6 44.4 132.5 124.8 114.3

64

Table A.19: MSE over likelihood functions for N = 700

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 46.9 49.1 41.7 48.5 34.6 40.6

CarScale 279.7 292.7 281.0 200.8 225.8 218.4
Coke 121.0 123.9 121.9 142.9 155.4 127.2

Crossing 18.2 15.8 18.6 16.5 18.7 17.2
Dudek 545.8 465.3 513.4 527.6 533.0 515.5

Football 63.5 57.0 61.0 65.4 65.4 64.4
Girl 64.2 65.3 62.1 79.9 99.0 103.3

RedTeam 17.1 18.2 15.5 19.8 19.7 20.0
Skater 339.8 314.7 335.1 347.5 436.8 357.5
Skater2 581.7 707.2 733.8 891.2 832.3 837.1

bc1 case3 13.1 12.9 12.9 11.5 11.8 11.8
bc3 case7 12.0 11.4 11.2 9.7 10.0 9.8
rng14 15 1.5 1.3 1.7 6.3 6.1 6.8
rng16 18 0.9 1.0 1.7 0.4 0.4 0.4
rng18 16 2.8 2.8 2.6 5.0 4.9 5.3
rng19 06 0.9 0.9 0.8 0.8 0.7 0.7
rng19 13 3.9 4.4 3.7 4.4 4.5 4.5
rng19 NS 5.1 4.6 8.1 3.0 3.1 4.1
walking 50.7 52.6 51.0 52.9 52.8 51.5
woman 54.3 58.6 58.8 141.1 119.1 127.6

65

Table A.20: MSE over likelihood functions for N = 1000

Sequence
SIR ASIR

NCC ASV ASVHO NCC ASV ASVHO
Car4 47.1 42.7 52.5 34.0 35.3 29.3

CarScale 230.3 249.2 229.7 214.4 217.7 195.1
Coke 128.6 129.2 135.8 154.4 149.8 131.4

Crossing 19.2 18.4 17.6 18.9 19.5 18.3
Dudek 551.4 527.7 515.5 555.1 499.5 508.9

Football 64.9 60.9 61.5 65.2 66.5 64.3
Girl 64.7 63.0 68.5 78.4 99.5 105.0

RedTeam 19.0 20.4 20.7 19.9 20.7 20.2
Skater 341.0 340.2 332.6 342.6 402.4 405.9
Skater2 797.8 686.7 828.1 858.8 885.8 870.7

bc1 case3 13.1 13.3 13.2 11.5 12.3 12.0
bc3 case7 10.7 10.6 10.7 9.4 9.5 9.7
rng14 15 1.7 1.5 1.6 7.3 6.3 7.2
rng16 18 0.9 1.1 1.1 0.4 0.4 0.4
rng18 16 2.2 3.2 2.5 5.3 5.0 5.2
rng19 06 0.9 0.7 1.2 0.7 0.7 0.7
rng19 13 3.2 3.4 2.9 4.5 4.6 4.5
rng19 NS 5.1 3.7 5.2 2.5 2.7 2.5
walking 50.7 51.2 53.0 52.4 52.5 51.2
woman 74.4 84.3 88.7 142.0 133.6 145.2

66

Appendix B

Tensorflow Graphs

A Tensorflow subgraph to extract an interpolated ROI can be seen in Figure

B.3. It includes scaling and rotation operations using roi X (lower-left) as ROI

input coordinates, and Tensorflow’s built-in interpolate bilinear at the top of

the graph to generate interpolated pixel values from the incomming image

(lower-right).

Figure B.4 shows incomming interpolation points for 300 regions-of-

interest for corresponding particles (lower-left 300x87x107x2) across incomming

image frame (lower-right 240x360). Here the heavy-lifting is performed by the

interpolate bilinear function available in Tensorflow.

Application of the likelihood function in Tensorflow is shown in Figure

B.5. The incomming template can be seen in the lower left as thin lines.

The incomming particle ROIs in the lower-right and represented as thick lines

on the graph. The nodes on the right in the figure are storage locations for

reusable pieces of the cross-correlation calculations performed by the einsum

nodes. These calculations are given names starting with ’e’ here.

Figure B.6 shows use of Tensorflow’s multinomial resampling capabilities

for generating resample indices for use in selection by a gather operation.

Template history and updates are maintained within the

template update subgraph as seen in Figure B.7. The highest particle likelihood

67

Figure B.1: Top level Tensorflow graph

Figure B.2: Expanded Tensorflow graph

is determined by the ArgMax node here and is used to select from the incoming

particle ROI interpolations seen entering from the lower-right.

Template updating is performed inside of the template history subgraph

of Figure B.8. Here there are graphs for the different modes of template up-

dating. The ArgMax node selects the largest likelihood valued ROI from the

template history queue. SVD is performed by the Svd node, and as can be

seen here is in red due to its incompatibility with Tensor Processing Units

(TPUs). This causes the Svd to be performed on the CPU requiring the pass-

ing of the contents of template history to main memory. The impact on speed

is negligible as compared to the computational requirements of particle ROI

interpolation and the likelihood function calculations.

Transformation of the template grid coordinates by the particle coordi-

68

Figure B.3: Region-of-interest subgraph

69

Figure B.4: Interpolations subgraph

70

Figure B.5: Particle Likelihood function (scoring) subgraph

Figure B.6: Resampling subgraph

71

Figure B.7: Template History and Updating subgraph

Figure B.8: Template History and SVD subgraph

72

Figure B.9: Particle ROI points transformation subgraph

73

nates is shown in Figure B.9. The result of this ensemble calculation is then

passed to the interpolations subgraph of Figure B.4.

74

Bibliography

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on

particle filters for online nonlinear/non-gaussian bayesian tracking,” IEEE

Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, Feb 2002.

[2] T. Bai and Y. Li, “Robust visual tracking with structured sparse

representation appearance model,” Pattern Recognition, vol. 45,

no. 6, pp. 2390 – 2404, 2012, brain Decoding. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0031320311005048

[3] S. Baker and I. Matthews, “Lucas-Kanade 20 years on: A

unifying framework,” International Journal of Computer Vision,

vol. 56, no. 3, pp. 221–255, Feb 2004. [Online]. Available:

https://doi.org/10.1023/B:VISI.0000011205.11775.fd

[4] J. C. F. Bello and J. P. Havlicek, “A state vector augmentation technique

for incorporating indirect velocity information into the likelihood function

of the SIR video target tracking filter,” in 2016 IEEE Southwest Sym-

posium on Image Analysis and Interpretation (SSIAI), March 2016, pp.

109–112.

[5] M. G. S. Bruno, “Sequential importance sampling filtering for target track-

ing in image sequences,” IEEE Signal Processing Letters, vol. 10, no. 8,

pp. 246–249, Aug 2003.

[6] D. Comaniciu and P. Meer, “Mean shift: a robust approach toward fea-

ture space analysis,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 24, no. 5, pp. 603–619, May 2002.

[7] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object tracking,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25,

no. 5, pp. 564–577, May 2003.

[8] A. Dawoud, M. Alam, A. Bal, and C. Loo, “Decision fusion algorithm for

target tracking in infrared imagery,” Optical Eng., vol. 44, pp. 026 401–1–

8, Feb. 2005.

75

[9] C. del Blanco, F. Jaureguizar, N. Garc̀ıa, and L. Salgado, “Robust au-

tomatic target tracking based on a Bayesian ego-motion compensation

framework for airborne FLIR imagery,” in Polarimetric and Infrared In-

frared Processing for ATR, ser. Proc. SPIE, F. Sadjadi and A. Maha-

lanobis, Eds., vol. 7335, 2009, 12 pp.

[10] A. Doucet, N. de Freitas, and N. Gordon, An Introduction to Sequential

Monte Carlo Methods. New York, NY: Springer New York, 2001.

[11] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to

nonlinear/non-gaussian bayesian state estimation,” IEE Proceedings F -

Radar and Signal Processing, vol. 140, no. 2, pp. 107–113, April 1993.

[12] W. Guogang, Z. Zhijia, and W. Ying, “Research on SVD-based template-

updating strategy,” in 2006 5th IEEE International Conference on Cogni-

tive Informatics, vol. 2, July 2006, pp. 944–947.

[13] W. Hu, T. Tan, L. Wang, and S. Maybank, “A survey on visual surveillance

of object motion and behaviors,” IEEE Transactions on Systems, Man,

and Cybernetics, Part C (Applications and Reviews), vol. 34, no. 3, pp.

334–352, Aug 2004.

[14] Z. Huang, “An investigation of deep tracking methods,” in 2017 Confer-

ence on Technologies and Applications of Artificial Intelligence (TAAI),

Dec 2017, pp. 58–61.

[15] R. Kalman, “A new approach to linear filtering and prediction problems,”

Transactions of the ASME - Journal of basic Engineering, vol. 82, pp.

35–45, 01 1960.

[16] J. Khan and M. Alam, “Efficient target detection in cluttered FLIR im-

agery,” in Optical Pattern Recog. XVI, ser. Proc. SPIE, D. Casasent and

T.-H. Chao, Eds., vol. 5816, 2005, pp. 39–53.

[17] T. Li, M. Bolic, and P. M. Djuric, “Resampling methods for particle fil-

tering: Classification, implementation, and strategies,” IEEE Signal Pro-

cessing Magazine, vol. 32, no. 3, pp. 70–86, May 2015.

[18] X. R. Li and V. P. Jilkov, “Survey of maneuvering target tracking. part

i. dynamic models,” IEEE Transactions on Aerospace and Electronic Sys-

tems, vol. 39, no. 4, pp. 1333–1364, Oct 2003.

76

[19] P. Malarvezhi and R. Kumar, “Particle filter with novel resampling

algorithm: A diversity enhanced particle filter,” Wireless Personal

Communications, vol. 84, no. 4, pp. 3171–3177, Oct 2015. [Online].

Available: https://doi.org/10.1007/s11277-015-2793-4

[20] L. Matthews, T. Ishikawa, and S. Baker, “The template update problem,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 26,

no. 6, pp. 810–815, June 2004.

[21] L. Murray, “GPU acceleration of the particle filter: the Metropolis resam-

pler,” 2012.

[22] C. T. Nguyen, J. P. Havlicek, G. Fan, J. T. Caulfield, and M. S. Pattichis,

“Robust dual-band MWIR/LWIR infrared target tracking,” in Proc. 48th

Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Nov. 2-5, 2014,

pp. 78–83.

[23] C. F. Olson, “Maximum-likelihood image matching,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 24, no. 6, pp. 853–857,

June 2002.

[24] K. Pugalenthi and N. Raghavan, “A holistic comparison of the

different resampling algorithms for particle filter based progno-

sis using lithium ion batteries as a case study,” Microelectronics

Reliability, vol. 91, pp. 160 – 169, 2018. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S002627141830814X

[25] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You Only Look

Once: Unified, real-time object detection,” CoRR, vol. abs/1506.02640,

2015. [Online]. Available: http://arxiv.org/abs/1506.02640

[26] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time

object detection with region proposal networks,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149,

June 2017.

[27] R. Rohilla, V. Sikri, and R. Kapoor, “Spider monkey optimisation assisted

particle filter for robust object tracking,” IET Computer Vision, vol. 11,

no. 3, pp. 207–219, 2017.

77

[28] M. Shook, J. Junger, N. Mould, and J. P. Havlicek, “Quantifying infrared

target signature evolution using AM-FM features,” in 2010 IEEE South-

west Symposium on Image Analysis Interpretation (SSIAI), May 2010, pp.

189–192.

[29] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,

and M. Shah, “Visual tracking: An experimental survey,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 36, no. 7, pp.

1442–1468, July 2014.

[30] A. F. M. Smith and A. E. Gelfand, “Bayesian statistics with-

out tears: A sampling-resampling perspective,” The American

Statistician, vol. 46, no. 2, pp. 84–88, 1992. [Online]. Available:

http://www.jstor.org/stable/2684170

[31] L. A. Turner and C. H. Sherlock, “An introduction to particle filtering,”

2013.

[32] V. Venkataraman, G. Fan, J. Havlicek, X. Fan, Y. Zhai, and M. Yeary,

“Adaptive Kalman filtering for histogram-based appearance learning in

infrared imagery,” IEEE Trans. Image Process., vol. 21, no. 11, pp. 4622–

4635, Nov. 2012.

[33] L. Wang, T. Liu, G. Wang, K. L. Chan, and Q. Yang, “Video tracking using

learned hierarchical features,” IEEE Transactions on Image Processing,

vol. 24, no. 4, pp. 1424–1435, April 2015.

[34] Y. Wu, J. Lim, and M.-H. Yang, “Online object tracking: A bench-

mark,” in IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2013.

[35] S. Yi and L. Zhang, “A novel multiple tracking system for UAV platforms,”

in ISR Systems and Applications III, ser. Proc. SPIE, D. Henry, Ed., vol.

6209, 2006, 8 pp.

[36] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,”

ACM Comput. Surv., vol. 38, no. 4, Dec. 2006. [Online]. Available:

http://doi.acm.org/10.1145/1177352.1177355

[37] J. Zhang, L. Yang, and X. Wu, “A survey on visual tracking via convo-

lutional neural networks,” in 2016 2nd IEEE International Conference on

Computer and Communications (ICCC), Oct 2016, pp. 474–479.

78

