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Abstract

MODELING AND CONTROL OF MICROGRID COMPONENTS

Elham Tajik, Ph.D.
The University of Oklahoma, 2018

Supervisor: Thordur Runolfsson

Due to the increase in the integration of renewable energy resources into electrical

power systems, there are various challenges that modern power systems are facing.

A lot of issues in this subject are discussed under the concept of microgrid and

their operational and control concerns.

Power electronic interfaces (converters, inverters) are necessary for connect-

ing generation units based on renewable energy resources to the power grid. Conse-

quently, inverter control is a primary issue in operating microgrids. Fast dynamics

of power electronic interfaces results in different operating concerns and strategies

for inverter-based generation units as compared to large conventional synchronous

generators. To provide simplicity in operating inverter-based generation units,

there are various control strategies based on emulating the critical properties of a

conventional synchronous generator such as inertia and damping. This dissertation

designs a novel operational and control model for controlled power electronic loads

and inverter-based generators inspired by synchronous generators’ equations and

stated in port-Hamiltonian systems’ formulation. This inverter generator controller

is added to the inverter switching controller to enable the generator to behave in

ix



a manner similar to a synchronous generator. We develop a control methodology

based on Interconnection and Damping Assignment Passivity Based Control (IDA-

PBC) strategy for the proposed inverter-based generator dynamics. We prove the

stability of the designed closed loop system and develop a simulation model for

the projected control strategy that includes an example system consisting of a

constant impedance load, a π−modeled line and an inverter-based generator. We

also develop a generic port-Hamiltonian model for loads that allows through the

appropriate selection of structure and controls the mimicking of the behavior of

complex loads that are connected to the grid through controlled power electronic

interfaces.
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Chapter 1

Introduction

For decades remote communities have been supplied by electrical energy through

small grids. Fossil fuel that traditionally has been the primary energy source

for distributed electricity generating units is rapidly being replaced by renewable

energy resources. The integration of renewable energy resources and smart loads

into power systems brings out new operation and control issues.

The relatively new concept of microgrids includes various control and op-

erational challenges that small grids face in integrating renewable enrgy resources

into their electrical power generation plan.

Through protection devices and switches, dependent on the operational

requirements and events, microgrids may function either connected to the main

grid or in an islanded mode. From the control perspective, the main grid sees the

microgrid as an element acting in response to the control signals.

Power electronic devices as the interface between renewable energy resources

and the grid, cause a very different characteristics of generation units based re-

newable energy resources and conventional synchronous machines. The very fast

dynamics of power electronic devices requires appropriate operation and control

schemes.
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1.1 Background and Motivation

Microgrids may include various generation technologies such as traditional syn-

chronous generators, DC generating units like photovoltaics and fuel cells or vari-

able frequency AC units like wind turbines.

A traditional synchronous generator operates as a voltage source with ad-

justable magnitude. An excitation control is normally applied for regulating the

terminal voltage of a synchronous generator. Dependent on the generator impedance,

load current distortion and generator structure cause generator voltage distor-

tion [19].

The shaft torque determines the amount of real power generation in a con-

ventional synchronous generator. Load sharing in steady state operation is per-

formed by governor control design based on droop characteristics of the generator’s

prime mover. This governor design regulate frequency of the stator voltage.

Non traditional generators such as DC generating units and variable fre-

quency AC units, are connected to the grid through inverters. An inverter-based

generator may be operated as either a current or voltage source [3]. The control of

inverter-based generator is very fast and can be considered as instantaneous com-

pared to the rest of grid dynamics. A sinusoidal waveform at the grid frequency

is the desired output of the inverter-based generator. A model for generating a

suitable reference waveform for feeding the pulse generator control of the inverter

is needed. The desired magnitude and frequency of the output waveform as well

as power exchange regulation can be attained by the correct generation of the

reference waveform.

From the control point of view, in the grid-connected mode a microgrid
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perceives the common point as an infinite bus by the voltage and frequency deter-

mined by the main grid, thus the control signals are active and reactive power. A

microgrid in islanded operation mode needs to balance its own demand and supply

and its control schemes are designed to establish the voltage and frequency signals

of the common point.

In the modern power system, such as microgrids, loads are no longer sim-

ple impedance and motor loads but include loads that are interfaced to the grid

through power electronic interfaces. The loads may have built in controllers for

achieving a constant power load or other similar characteristics. Modeling loads of

this type requires new methods for load modeling. In this dissertation, we develop

a model for constant power load in port-Hamiltonian formulation.

1.2 Literature Review

In [2] control of microgrids in three levels is discussed and the main trends in

controlling microgrids are reviewed. For the control purposes and as interface of

distributed generating units supplied by renewable energy resources with the grid,

inverter-based generators are modeled as synchronous generators.

Inverter based generators may be operated in two different operational

modes, i.e. grid connected and isolated. Therefore, for the purpose of design and

control, inverters are usually modeled either to supply the desired values of active

and reactive power while connected to the main grid, called PQ inverter modeling

or the magnitude and frequency of voltage in the stand alone operational condition

[3].

Stand alone operational strategy is applied when frequency regulation is
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needed (e.g. droop control). In this case the inverter is required to supply a desired

value of voltage and frequency. Under PQ strategy, inverter-based generators are

modeled as a current-controlled voltage source. In this case, the inverter-based

generator is modeled to supply the set point of active and reactive power calculated

by power flows of the system.

In a network model of a microgrid with purely inductive lines, active power

flows are mainly functions of frequency and reactive power flows are functions of

voltage magnitudes. Active power droop control and reactive power droop con-

trol are proportional controllers for controlling frequency and voltage magnitude,

respectively [51,54].

Droop control technique is a decentralized proportional control based on

power-speed characteristic of synchronous generators is widely used to direct ac-

tive power sharing in power systems with large scale fossil fuel based conventional

generation units. Droop control has been a common method for regulating active

and reactive power in microgrids with inverter-based generation units. In a mi-

crogrid with several parallel-connected inverter-based generator units, voltage and

frequency droop control is a popular method to control the share of power that is

delivered by each unit [37, 54]. In an inductive system the active and reactive of

each generation unit is

P =
EV sinδ

X
(1.1)

Q =
EV cosδ − V 2

X
(1.2)

where E is the inverter terminal voltage amplitude, V is the common bus volt-

age amplitude, δ is the power angle and X is the output reactance of the in-

verter. As we can see in (1.1Literature Reviewequation.1.2.1) and (1.2Literature
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Reviewequation.1.2.2), a network model of a micro-grid with purely inductive lines

i.e. δ ≈ 0, active power flows are mainly functions of frequency and reactive power

flows are functions of voltage magnitudes. Active power droop control and reac-

tive power droop control are proportional controllers for controlling frequency and

voltage magnitude, respectively.

Active power droop control builds a relation between active power and

frequency that is very similar to the swing equation of synchronous generators [23],

∆ω̇ = −d∆ω − kP (P − Pd) (1.3)

where ∆ω = ω−ωd, d is a damping ratio and ωd (typically ωd = ωr) and Pd are the

desired values of frequency and active power, respectively. Reactive power droop

control is a proportional controller that relates reactive power flows and voltage

magnitudes [23],

∆V̇ = −d∆V − kQ(Q−Qd) (1.4)

where ∆V = V − Vd, Vd and Qd are the desired values of voltage magnitude and

reactive power, respectively. The gains kp and kQ should be selected to satisfy

the operational criteria such as control loop bandwidth and stability [35]. In

systems with considerable line resistance, the original droop control in (1.3Liter-

ature Reviewequation.1.2.3)-(1.4Literature Reviewequation.1.2.4) due to coupling

between P and Q does not produce satisfactory results. Several modified droop

control strategies have been suggested to address this issue [5], [36].

Virtual Synchronous Machines (VSM) control technique is based on em-

ulating the essential properties of a conventional synchronous generator such as

inertia and damping to provide simplicity in operating inverter-based generation

units. The mathematical model of synchronous generators consists of two set of
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equations that describe its mechanical (swing equation) and electrical (the stator

and rotor winding equations) parts. The higher order model of synchronous gen-

erators is applied to calculate the reference values for either virtual stator current

or voltage. From a functional perspective, VSM is a controller that is added to

the inverter switching controller to enable it to behave as a synchronous generator

[3]. The functions in controlling an inverter-based generator can be expressed in

three tasks:

1 To feed the VSM algorithm with voltage/current and frequency measure-

ments.

2 To perform VSM algorithm i.e. applying the mathematical equations that are

emulating electrical and mechanical performance of a synchronous generator

and calculate a reference voltage (current) for Current Source Inverter (CSI)

(Voltage Source Inverter (VSI)) in real time.

3 Employing the calculated reference values for generating the proper pulses

to modulate power electronic switching of the inverter.

Zhong and Weiss in [58] introduce the dynamics and operation of syn-

chronverters based on synchronous generators dynamics and apply frequency- and

voltage-drooping mechanisms to share active and reactive power among parallel

connected synchronverters. The approach in [58] is based on the full synchronous

generator model equations (see e.g. (4.10equation.4.1.10)-(4.11equation.4.1.11)).

However, they make certain steady state simplifications for the electrical part

of generator that result in voltage source model, i.e. an equation of the form

(4.14equation.4.1.14) for the electrical part of the inverter model. The inertial

6



model for the frequency dynamics of the inverter model is a full dynamic model

mimicking a synchronous generator rotational dynamics. Alsiraji and El-Shatshat

in [3] call the control algorithms that emulates the properties of traditional syn-

chronous machines, Virtual synchronous machine (VSM) and categorize these

methods into high and low order models. The low-order VSM models are based

on swing equation and similar to the conventional droop control [12].

Fig 2.2DC-AC voltage conversion by an inverter [21]. (Reprinted with

permission)figure.2.2 illustrates a typical inverter-based distributed generation unit

that consists of an energy source unit that converts renewable energy to DC form

of electricity, a capacitor bank to stabilize the DC link voltage, an inverter that

converts electricity to AC form with the network frequency and a filter to remove

the high frequency contents.

These VSM techniques are basically divided in two categories:

� Current Source Inverter (CSI)- In this methods the grid voltage is measured

and virtual synchronous machine algorithm calculates the reference current

for the pulse generating unit [6, 8, 9].

� Voltage Source Inverter (VSI)- In this methods the pulse generating unit

is fed by the reference voltage that is calculated using the measured phase

currents [4, 48,57,58].

Hill in [20] proposes an approach for adding load dynamics to steady-state

load behavior in order to emulate the dynamical response of loads to a step voltage

change. He defines a nonlinear dynamical relationship between the desired active

and reactive power of the load i.e. Pd and Qd and the load voltage V as,

Ṗd + fP (Pd, V ) = gP (Pd, V )V̇ (1.5)
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and the similar equation for reactive power, i.e.

Q̇d + fQ(Qd, V ) = gQ(Qd, V )V̇ (1.6)

This can be more generalized as a higher order degree,

fP (P
(n)
d , P

(n−1)
d , ..., Ṗd, Pd, V

(m), ..., V̇ , V ) = 0 (1.7)

fQ(Q
(n)
d , Q

(n−1)
d , ..., Q̇d, Qd, V

(m), ..., V̇ , V ) = 0

This model is shown to capture the dynamics of constant impedance load and mo-

tor load. A simpler representation of this model assumes an exponential recovery

to the steady state value [20]. For active power,

TpṖd + Pd = f(V ) + g(V )V̇ (1.8)

where f(V ) = CV αP . The size of power overshoot in (1.8Literature Reviewequation.1.2.8)

is determined by the negative index αP .

Kundu and Hiskens in [31] discuss the effect of significant power quality

events such as large scale voltage sags (more that 20%) on Plug-in Electrical Vehicle

(PEV) charger loads that may be the loss of a large portion of the total loads. For

a PEV charger load with unity power factor the load active power P , voltage V

and the susceptance at the load bus b are modeled to be related as,

f(P, b, V ; r, x, V∞) =
(
(1− bx)2 + (br)2

)
V 4 + (2Pr − V 2

∞)V 2 + P 2(r2 + x2) = 0

(1.9)

where r, V∞ and x are model’s parameters. Equation (1.9Literature Reviewequation.1.2.9)

defines a complex steady state relationship between power and voltage that matches

field data. This complex model could be made into a dynamic model using an ap-

proach similar to [20].

8



Allen and Ilic in [2] show that applying a static or slow dynamic model

for PQ loads while including the transmission line dynamics results in instabilities

around the desired load flow solution. A simple dynamic representation of CPLs

can be found in [1, 2, 43],

ġ =
1

τ

[
Pref −

|il|2

g

]
(1.10)

where Pref is the constant real power that load is expected to consume, g is the

conductance value of the load and its conductance matrix is as G = gI and il is

the load port current in dq0 coordinates. The PQ load model in [2] includes a

dynamic susceptance part (B) for an admittance in the form G+ jB as well.

The CPL dynamics in (1.10Literature Reviewequation.1.2.10) for a rela-

tively long time constant behaves as a constant impedance load. As is shown

in [2] there is a critical value of τ for which the system obtain from the load

(1.10Literature Reviewequation.1.2.10) connected to a transmission line becomes

unstable. Consequently for short time constants, the CPL model in (1.10Litera-

ture Reviewequation.1.2.10) results in instabilities and therefore, this model is not

a good representation of CPL dynamics where time constants are typically very

small.

At the load input terminal, CPLs acts like a negative incremental impedance.

For constant power of the load, the current and voltage at terminals,

|il| =
Pref
|vl|

(1.11)

by (1.11Literature Reviewequation.1.2.11)the voltage drop causes increase in the

current. Therefore, to study small signal stability, some papers apply a negative

impedance model for CPLs. This equivalent impedance of CPLs may be used in

impedance-based small signal stability analysis [7, 44, 45,53].

9



Chapter 2

Overview of modern power system challenges

2.1 Modern Power Systems

A power system is a highly nonlinear, complex and large system whose main ob-

jective is to deliver electricity from generators to loads. Traditionally, electricity is

generated in large generation plants and is transported to the loads by hierarchical

structure of high, medium and low voltage networks while all these equipment and

functions are protected by various protection schemes. Nowadays, introduction of

new technologies has presented new challenges regarding operating and analyzing

of modern power systems:

� Renewable Energy Sources (RES): Energy policies have been developed to

encourage use of renewable energy resources as the primary form of energy.

RES and their potential to decrease fossil fuels consumption and greenhouse

gas emissions generates interest in integrating a large number of RES in

electric power systems. The European Union has set a target of 27% for the

share of renewable energy sources of EU’s final energy consumption by 2030.

Beside all the benefits of integrating renewable energy resources in power

systems, their uncertain nature introduces operational challenges. Unlike

traditional generation, due to their uncertainty, renewable energy based gen-

eration units can not be scheduled. The generated electricity is either in DC

form or variable frequency with much larger bandwidth.
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� Fast responding generation units: In a large conventional synchronous gener-

ator, the rotational part is the interface between the primary energy source

and the grid. Slow mechanical dynamics due to large inertia and damping

results in slower response in case of contingency event. Control and operation

of conventional synchronous generators are based on time scale separation

between mechanical and electrical parts. However, in renewable energy based

generation units, because the interface between primary energy source and

grid is provided by fast power electronics devices, there is no natural time

scale separation, inertia or damping.

� Controllable Loads: New models for studying the performance of loads are

needed. Traditional load models such as constant impedance load and motor

load are no longer sufficient and improved models are needed to capture

dynamics of modern power system in stability studies and their operation.

Furthermore, loads may include generation so they are capable of delivering

energy to the grid that results in two directional power flow.

� Less reserve capacity: Increasing demand results in highly stressed operation

of power systems. Therefore, to insure reliability and security of the system

new operational techniques are required.

2.2 Renewable Energy Sources (RESs)

A small individual generation or storage unit (less than 50-100 MW) that is lo-

cated close to the load is called Distributed Generation (DG) [14]. According to

the definition by the International Council on Large Electric Systems (CIGRE),

generation units that are not centrally planned and dispatched and are sufficiently

11



smaller than central generation units are called DG [14].

There are several problems that are needed to be addressed in order to

integrate renewable energy sources into power systems [39]:

� Scheduling and dispatching generation units based on renewable energy re-

sources considering uncertainties in supply and demand.

� Economical operation of microgrids with high penetration of renewable en-

ergy resources in acceptable reliability.

� Providing proper demand side management scheme.

� Providing proper protection schemes which are capable of dealing with bidi-

rectional power flows.

� Developing proper voltage and frequency control schemes to operate power

electronic interfaces of renewable energy resources and grid.

� Developing proper market mechanisms.

2.3 Microgrid

For decades remote communities have been supplied electrical energy isolated from

the main grids. Small grids with distributed electricity sources at the distribution

level that contain sufficient generation to supply most or all of their demand are

called Micro-grids. Historically, the source of energy for remote grids has mostly

been fossil fuel. Nowadays, integrating RES into micro-grids is a priority and

consequently the electrical power system is dramatically changing from centralized

generation to distributed generation.
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Figure 2.1: A typical Microgrid schematic structure [26]. (Copyright 2008, IEEE)

Fig 2.1A typical Microgrid schematic structure [26]. (Copyright 2008,

IEEE)figure.2.1 shows a typical Microgrid schematic structure that is part of a

distribution network that is connected to the rest of grid through Point of Com-

mon Coupling (PCC). Microgrid in normal operation works while connected to the

grid in PCC so the voltage magnitude and phase at this point is enforced by the

grid. However, mircogrids are capable of working in islanded mode in the event

of a contingency occurrence that leads to accidental islanding or a scheduled dis-

connection from the main grid. Therefore, microgrid must be capable of providing

sufficient power generation to deliver to local loads and be equipped by suitable

control platform that insure the reliable and stable operation of it in stand alone

operational mode.

Within a microgrid, electricity may be provided by two types of Distributed

Generations (DGs). Conventional generation that are usually synchronous gener-
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ators with rotating parts and inverter-based generation units. These two types of

DGs require different control and operation schemes.

Due to uncertainty in renewable energy sources and single-phase loads, mi-

crogrids are subject to large changes. Renewable energy sources are noncontrol-

lable and they are required to maintain an adequate power quality specified by

Grid Code.

To enjoy economical and environmental benefits of higher penetration of

renewable energy source in electric grids, developing reliable control techniques for

operating these distributed power generation units is required. Electricity gener-

ated by RES is either at high variable frequency or DC, therefore it requires power

electronics converters and inverters to get connected to the grid. For example,

photovoltaic arrays generate DC voltage that requires inverter for being connected

to the grid and wind-turbines generate variable frequency voltage that needs to be

first converted to DC and then to the grid frequency by inverters. Thus, inverter-

based generation is gaining ever-increasing interest and is increasingly integrated

into electrical grids. Detailed modeling of power electronics components in a micro-

grid system that includes a large number of inverter-based generation units, results

in increased computing time. Designing fast and at the same time complex enough

techniques to adequately control power electronics circuits at the interface between

the grid and the renewable energy source is vital for delivering high-quality power.

In traditional power generation units, large synchronous generators with

slow dynamics that get connected to the grid are characterized by their large

inertia and damping. In the event of a disturbance or fault in the grid, this

static characteristics of traditional synchronous generators when combined with

protection devices provides support for maintaining the stability of power system.
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Figure 2.2: DC-AC voltage conversion by an inverter [21]. (Reprinted with per-
mission)

.

Fast response of power electronic interface of renewable energy resources and grid,

poses operational challenges to preserve stability.

Fig 2.2DC-AC voltage conversion by an inverter [21]. (Reprinted with

permission)figure.2.2 illustrates a typical inverter-based distributed generation unit

that consists of an energy source unit that converts renewable energy to DC form

of electricity, a capacitor bank to reduce fluctuations and stabilizes the DC link

voltage, an inverter that converts electricity to AC form at the network frequency

and a filter to eliminate the high frequency content.

Inverters consist of semiconductor elements and a pulsing controller is nec-

essary to generate the desired waveform of electricity [26]. By sequential turning

on and off of transistors and diodes in the inverter, the input DC voltage is trans-

formed to AC voltage in its output terminal. The triggering commands are usually

generated in a Pulse Width Modulation (PWM) unit.
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2.4 Power System Control Architecture

The appropriate operation and control scheme of an inverter-based generator de-

pends on the type of microgrid loads and its mode of operation. Most published

literature in microgrid control strategies present the control of microgrid problem

as a hierarchical control in different levels [21]. A DG unit may be dispatchable

and the supervisory control decides its desired amount of output power or nondis-

patchable and its output power is often determined by the optimal operational

condition of its energy source [26].

2.4.1 Energy Management Control

In an electrical power system, a centralized control is responsible for economic

dispatch and scheduling generation. This centralized Energy Management Control

collects data, processes the gathered data and forecasts power need, calculates opti-

mal dispatch/scheduling of generation units and as a supervisory control transmits

control signals to plants.

The recent approach in microgrid supervisory control is consensus-based

control instead of the centralized control. In consensus-based control these are

two-way communications and transferring of data such as voltage and frequency

measurements between each generator and controlled load and its neighbors.

A power and energy management strategy is required for a microgrid with

more than a single generation unit. As a microgrid often has multiple small dis-

tributed generation units with different capacities and characteristics, and because

of the fast response of its renewable energy based generation units, faster power
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and energy management strategies compared to conventional power systems is

essential for stable operation.

A real time energy management controller receives the current and fore-

casted data of market, generation and load and processes these information to

generate control decisions such as power flows. Through energy and power man-

agement strategy active and reactive demand is shared among generation units by

assigning the power set points and enables synchronizing the microgrid with the

main grid.

While connected to the main grid each of the generation units of a micro-

grid supply the desired power and is controlled to act as a PQ or a PV bus and the

main grid is responsible to the difference between the demand and local generation.

In islanded operation, the total of demand must be met by the local generation or

some of the less sensitive loads are shedded to achieve the generation-demand bal-

ance. Power and Energy management control is responsible to provide long-term

energy balance to maintain sufficient reserve capacity by considering requirements

and limitations such as cost, time dependancy and environmental effects of each

generation unit and short-term power balance by providing acceptable dynami-

cal response [26]. Through appropriate load shedding and power sharing among

generation units, power balancing strategy enables local controllers to regulate

voltage and frequency and restore and resynchronize the system in the event of a

contingency.
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2.4.2 DG Control

As shown in Fig 2.3Block Representation of DG units in connection to the grid

[26]. (Copyright 2008, IEEE)figure.2.3 regarding to each DG unit in a microgrid,

there is a primary source of energy, an interface between the energy source and the

electrical part and a switch to connect it to the grid. In a conventional synchronous

generator this interface is its rotor shaft. A governor controls synchronous gener-

ator speed and active power and an Automatic Voltage Regulator (AVR) controls

voltage and reactive power. In the case of renewable energy resources, a power

electronic circuit and its controller perform as interface to generate the desired AC

electricity.

When a significant share of the the total generation is based on renewable

energy sources, operating the grid is complex. To sustain stability and reject

undesirable behaviors, it is beneficial to operate them in a manner that is similar

to traditional synchronous generators. For this purpose, control techniques can be

applied for operating inverter-based generators so that they mimic some crucial

properties of bulky synchronous generators. This is a realistic way for integrating

renewable energy sources in power grids while preserving stability and is based on

applying control techniques that produce virtual inertia and damping by mimicking

the behavior of synchronous generators.

2.5 Summary

Modern power systems that include RES, various types of DGs that are either

conventional and rotatory units or inverter-based generators and controllable loads

that enable demand side management strategies introduce new operational and

analysis challenges. Microgrid concept as a single controllable system that is a
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Figure 2.3: Block Representation of DG units in connection to the grid [26].
(Copyright 2008, IEEE)

cluster of loads and smaller size generation units and provides its local power

demand are reviewed in [32, 33, 39] to provide reliable integration of DGs and

controllable loads into power systems.

The control of a microgrid at different levels and each level in the control

hierarchy is in a different time scale. In this dissertation we focus on the following

two problem:

1 Primary control of inverter-based generators that may be the power gener-

ating units of a microgrid.

2 Framework for modeling and control of complex loads that cannot be modeled

by conventional load modeling methods.
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Chapter 3

Port-Hamiltonian Systems

3.1 Passive Systems

Consider a non-linear system in the form [49]

ẋ = a(x) + b(x)u (3.1)

y = c(x)

where u, y ∈ Rm are input and output port variables of the system and x ∈ Rn

is the system state. This system is passive if there exists an energy function

H : Rn → R with H(x) ≥ 0 for every x, such that

H(x(t))−H(x(0)) ≤
∫ t

0

uT (τ)y(τ)dτ (3.2)

for all inputs and initial conditions and for all t.

This passive system satisfies the energy-balance equation in the form

H(x(t))−H(x(0)) =

∫ t

0

uT (τ)y(τ)dτ − d(t) (3.3)

where d(t) ≥ 0 is called the dissipation function. From (3.3Passive Systemsequation.3.1.3)

we can conclude

� For an unforced system, i.e. u = 0, H(x(t)) = H(x(0))−d(t), thus, H(x(t)) ≤

H(x(0)) that means that the energy function is nonincreasing and in presence

of energy dissipative components in the system, it is decreasing.
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� If the energy get extracted from the system by some input such as u = −Ky

where K = KT > 0 then

H(x(t1))−H(x(0)) = −
∫ t

0

yT (τ)Ky(τ)dτ − d(t) < −d(t) (3.4)

that means the energy decreases with a higher rate.

� A bounded amount of energy can be extracted from the system [56].

H(x(0)) ≥ −
∫ t

0

uT (τ)y(τ)dτ + d(t) ≥ −
∫ t

0

uT (τ)y(τ)dτ (3.5)

Proposition 3.1.1. [55], page 39. If H(x) is differentiable, passivity of the system

(3.1Passive Systemsequation.3.1.1) means

∇xH
T (x)a(x) ≤ 0 (3.6)

and

c(x) = bT (x)∇xH(x) (3.7)

IfH(x∗) = 0 where x∗ is the equilibrium state andH(x) > 0 for x 6= x∗ and d(t) 6= 0

then (3.1Passive Systemsequation.3.1.1) is asymptotically stable at x = x∗. For

lossless system i.e. d(t) = 0, (3.1Passive Systemsequation.3.1.1) at x = x∗ is stable

but not asymptotically stable.

3.2 Port-Hamiltonian System

Dynamical systems may be perceived as devices to transform energy. In this case,

to study its behavior, a complex, nonlinear, multi-physics dynamical system can be

decomposed into simpler energy transforming subsystems interconnected by ports.

Adjusting the behavior of the system can be achieved by manipulating the overall

energy of the system through adding another dynamical system to the main plant
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as the control process and using the interconnections. Due to the fact that energy

is a fundamental physical concept, this modeling scheme is applicable in various

types of energy such as electrical, mechanical, thermal and so on.

A physical system can be described by a power preserving interconnected

set of energy storing elements, energy dissipating elements and ports to interact

with other systems.

A specific form of energy systems is the so-called port-Hamiltonian formu-

lation that provides a general way for modeling, analysis and control of dynamical

systems. Port-Hamiltonian formulation is an effective and systematic method to

model, analyze and control advanced power systems [47], [15]. In this formulation,

a Hamiltonian function is defined for each subsystem of the overall system and

the subsystems are interconnected by input/output ports that transfer power. A

general port-Hamiltonian system has the form,

ẋ = (J(x)−R(x))∇H(x) + g(x)u

y = gT (x)∇H(x)
(3.8)

where H : Rn → R is the Hamiltonian function, J(x) is the interconnection matrix,

R(x) is the dissipation matrix and x ∈ Rn. The interconnection and dissipation

matrices satisfy the following conditions, J(x) = −JT (x), R(x) = RT (x) and

R(x) ≥ 0. u ∈ Rm and y ∈ Rm are the input and output port variables. The

input and output variables are conjugated and their product is power. The Hamil-

tonian function is often the stored energy of the system and the term ∇H(x) is its

gradient with respect to state variables of the system. The time derivative of the

Hamiltonian function is,

Ḣ(x) = ∇HT (x)ẋ = −∇HT (x)R(x)∇H(x) + yTu = PD + PT (3.9)
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where PD is the dissipated power and PT is the exchanged power via the input-

output port, yTu = PT . Therefore, we can say the rate of change in the stored

energy equals the sum of the total power exchanged through input-output ports and

the dissipated power in the system. In electrical systems, currents and voltages are

the signals at input/output ports and in mechanical systems input/output ports’

signals are forces/torques and velocities/frequency.

Many physical systems can be described in port-Hamiltonian framework.

When modeling a complex system, each element is viewed as a device to transfer

energy and can be presented in port-Hamiltonian formulation and then connected

to the other elements by its input-output ports. The total port-Hamiltonian model

has a Hamiltonian function that is equal to sum of the Hamiltonian functions of

all individual components.

Example 3.2.1. Two Port-Hamiltonian system’s interconnection

Consider two port-Hamiltonian systems described by,

ẋ1 = (J1(x1)−R1(x1))∇H1(x1) + g1(x1)u1 + e1(x1)v1 (3.10)

y1 = g1(x1)T∇H1(x1)

and

ẋ2 = (J2(x2)−R2(x2))∇H2(x2) + g2(x2)u2 + e2(x2)v2 (3.11)

y2 = g2(x2)T∇H2(x2)

where u1 and u2 are input ports and v1 and v2 are the control or disturbance inputs.

With the interconnection law y1 = u2 and u1 = −y2 the overall Hamiltonian

function is H(x1, x2) = H1(x1) + H2(x2) and ∇H(x1, x2) =

[
∇H1(x1)
∇H2(x2)

]
. The
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Hamiltonian representation of the overall system is,[
ẋ1

ẋ2

]
= (J(x1, x2)−R(x1, x2))∇H(x1, x2) + E(x1, x2)v (3.12)

where,

J(x1, x2) =

[
J1(x1) −g1(x1)g2(x2)T

g2(x2)g1(x2) J2(x2)

]
v =

[
v1

v2

]
, R(x1, x2) =

[
R(x1) 0

0 R(x2)

]
, E(x1, x2) =

[
e1(x1) 0

0 e2(x2)

]
.

3.2.1 Park-Transformation

Signals in a balanced three phase power system in steady state have the form,

x =
[
Xcos(θ(t)) Xcos(θ(t)− 2π

3
) Xcos(θ(t)− 4π

3
)
]T

(3.13)

where θ(t) = θr(t) + θ0 = ωrt + θ0 and ωr is the nominal frequency. The Park-

transformation [18] maps the 3-phase network dynamical equations into a rotating

framework. Let T (θr) be the Park-transformation matrix [18],

T (θr) =

√
2

3

cos(ωrt) cos(ωrt− 2π
3

) cos(ωrt− 4π
3

)
sin(ωrt) sin(ωrt− 2π

3
) sin(ωrt− 4π

3
)

1√
2

1√
2

1√
2

 (3.14)

and let x̄ = T (θr)x be a transformed coordinate. Consider a linear system of the

form,

ẋ(t) = Ax(t) +Bu(t) (3.15)

y(t) = Cx(t) +Du(t)

where A ∈ R3×3, B ∈ R3×3, C ∈ R3×3, D ∈ R3×3
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Proposition 3.2.1. Assume that A, B, C and D commute with T (θr). Then

x̄(t) = T (θr)x(t) satisfies the equation,

˙̄x(t) = (ωrN + A)x̄(t) +Bū(t) (3.16)

ȳ(t) = Cx̄(t) +Dū(t)

where N =

0 −1 0
1 0 0
0 0 0

 and ū(t) = T (θr)u(t) and ȳ(t) = T (θr)y(t) are the input

and output ports in the rotating coordinates.

Proof - T T (θr)T (θr) = I and thus T−1(θr) = T T (θr).

˙̄x(t) = Ṫ (θr)x(t) + T (θr)ẋ(t)

= Ṫ (θr)T
T (θr)T (θr)x(t) + T (θr)Ax(t) + T (θr)Bu(t)

= (Ṫ (θr)T
T (θr) + A)x̄(t) +Bū(t)

and T (θr)y(t) = T (θr)Cx(t) + T (θr)Du(t) . It is easy to see that,

T T (θr)Ṫ (θr) = ωrN

Thus,

˙̄x = (ωrN + A)x̄(t) +Bū(t)

ȳ(t) = Cx̄(t) +Dū(t)

Remark 3.2.1. In the remainder of the dissertation we refer to the transformed

coordinates as dq0 coordinates. Note that T (θr) is evaluated at the system fre-

quency ωr.

Remark 3.2.2. The matrix T (θr) is a unitary matrix, i.e. T (θr)T
T (θr) = I.

Consequently, ȳT (t)ū(t) = yT (t)T T (θr)T (θr)u(t) = yT (t)u(t).
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Remark 3.2.3. If the input to the system (3.15Park-Transformationequation.3.2.15)

is a three phase steady state signal of the form (3.13Park-Transformationequation.3.2.13)

then the input ū(t) in (3.16equation.3.2.16) is constant ū. Consequently, the trans-

formed system has constant steady state given by (ωrN + A)x̄ + Bū = 0 and the

output has the constant value ȳ = Cx̄+Dū.

3.2.2 Stability in Sense of Lyapunov Theory

Definition [50], page 188. Consider a continuous function V (x) : Rn → R. If

there exist R > 0 such that V (x∗) = 0 and V (x∗) > 0 for |x − x∗| ≤ R, x 6= x∗

we say that V (x) is locally positive definite around x∗. If R → ∞, then V (x) is

positive definite around x∗.

Consider the dynamical system described by an autonomous differential

equation in the form,

ẋ = f(x) (3.17)

where x ∈ Rn is the state and x0 is the initial state. We say that x∗ ∈ Rn is an

equilibrium point of (3.17Stability in Sense of Lyapunov Theoryequation.3.2.17) if

and only if f(x∗) = 0.

� x∗ is stable if for each ε > 0 there exist δ > 0 such that if |x0 − x∗| < δ then

|x(t)− x∗| < ε for all t ≥ 0.

� x∗ is asymptotically stable if it is stable and if |x0−x∗| < δ, then limt→∞ x(t) =

x∗.

Let V : X→ R be a continuous function such that [50],

� V (x) is locally positive definite around x∗.
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� If V̇ (x) ≤ 0 locally in x and for all t, then the equilibrium point x∗ is stable.

� If −V̇ (x) is locally positive definite around x∗ i.e. ∃R > 0 such that V̇ (x) < 0

for |x− x∗| < R and V̇ (x∗) = 0, then the equilibrium point x∗ is asymptoti-

cally stable.

Let V : X→ R be a locally positive definite function such that on the compact set

Ωc = {x ∈ X : V (x) ≤ c} we have V̇ (x) ≤ 0. Define the set S as,

S =
{
x ∈ Ωc : V̇ (x) = 0

}
then Lasalle’s principle states that if S contains no invariant sets of (3.17Stabil-

ity in Sense of Lyapunov Theoryequation.3.2.17) other than x = x∗ then x∗ is

asymptotically stable [50].

3.3 Singular Perturbation Theory

Singular Perturbation Theory [11] can be used to study the behavior of a two-time

scale dynamical system such as

ẋ = f(x, z, ε), x(t0) = x0 (3.18)

εż = g(x, z, ε), z(t0) = z0

where x ∈ Rn is the slow state variable vector, z ∈ Rm is the fast state variable

vector and 0 < ε � 1 is the perturbation parameter that is mostly related to the

ratio of fast to the slow time constants. In the limit ε → 0 the dynamics of the

fast subsystem are assumed to converge to a steady state value characterized by

the relationship g(x, z̄, 0) = 0 resulting in z̄ = φ(x) and the reduced system,

ẋ = f(x, z̄) = f(x, φ(x)) (3.19)
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As a large power system contains various components and interconnections

in different levels, its dynamics involves wide time span responses. There are

various physical observations of time scale differences in power systems.

While performing stability analysis, including all the time scales requires

complex computations and it is difficult to interpret results. However, due to wide

time scale span of power systems dynamics, singular perturbation theory is ap-

plicable in many power systems stability analysis and control designs. Applying

singular perturbation theory in a power system, reduced models with different

approximation degrees may be developed. Chow et al. in [11] illustrates some

applications of the stated time scale separation technique in power system model-

ing. Singular perturbation theory provides a systematic way to obtain simplified

models of power systems components that have two time scales dynamics.

In a synchronous machine, inertia in the rotatory part of the sysyem results

in slower dynamics compared to the electromagnetic dynamics. This physical fact

and application of singular perturbation theory is the foundation of traditional

automatic generation and voltage control of synchronous generators. In control of

a synchronous generator it is assumed that for small changes active power depends

only on internal machine angle, i.e. active power is independent of generator ter-

minal voltage. On the other hand, the terminal voltage of synchronous generator is

regulated by excitation voltage and therefore is dependent on generator’s reactive

power (see section 4.4Generator Controlsection.4.4). This means that for small

changes, frequency and voltage can be modeled, analyzed and regulated indepen-

dently. Excitation voltage control is fast acting and the transients in excitation

voltage control do not have considerable influences on the slow acting power fre-

quency control [38].
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In large power systems, inter-area power transfer results in slower oscillation

of groups of machines as compared to individual machines. This phenomenon is

called “slow coherency” and is caused by relative strength of internal and external

(in each area of machines) connections and is the basis for a coherency approach for

obtaining a reduced model of power system. In this approach, first slow coherent

machines that can be grouped are identified then a reduced model is constructed

[11].

Various studies have developed efficient implementations of composite con-

trol strategies of singular perturbed systems such as feedback control designs that

preserve the time scale structure of the system. In these approaches the fast con-

troller is often designed first to stabilize the fast dynamics of the system and then

the proper stabilizer for the slower dynamics is designed [27]. In a sequential proce-

dure the slow controller is an inner control loop designed to stabilize the modified

slower system while the frequency value of the fast controller is assumed to be

zero [27,29].

In a modern power systems such as microgrid that contains predominately

inverter-based generation the natural time scale separation in traditional power

systems no longer exists and it may be necessary to include all dynamics of the

system in stability and performance analysis. This requires a different approach

to modeling and analysis. The port-Hamiltonian formulation discussed in this

dissertation is one such approach.

3.4 Control of Port-Hamiltonian Systems

Different from the traditional signal-processing approach for designing a controller,

in energy perspective, the effect of a controller can be seen as a dynamical system
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interconnected to the main system to modify its behavior through changes in the

energy of the closed loop system.

In signal-processing controller design, the control objectives are rejecting

the effect of disturbance inputs or uncertainty in inputs and plants and keeping

errors in certain signals small. There is no systemic approach in designing a con-

troller for a nonlinear system in signal-processing platform [40,56].

In energy-based approach we concentrate on how a system behaves and

interacts with its environment. Therefore, we can see a controller as another system

that imposes the desired behavior on the closed loop system. The main system and

its controller perceived as dynamical systems formulated in the port-Hamiltonian

framework can be interconnected through power preserving interconnection laws.

Passivity-based Control (PBC), is a controller design methodology that was

introduced by Ortega and Spong (1989) and achieves stabilization by shaping the

energy of a passive system (3.3Passive Systemsequation.3.1.3). The control objec-

tive of PBC is to achieve a total storage function that is minimum at the desired

equilibrium point [42]. For system (3.1Passive Systemsequation.3.1.1) applying the

control law u = v + β(x), the energy of the closed loop system (Hd(x)) is shaped

to be minimum at a desired state,

Hd(x(t))−Hd(x(0)) =

∫ t

0

vT (τ)y(τ)dτ − dd(t) (3.20)

where dd(t) is the dissipation of the closed loop system, i.e. if there is a function

Ha(x) such that,

−
∫ t

0

βT (x(τ))y(τ)dτ = Ha(x(t)) + κ (3.21)

then with the control law u = v + β(x) the map v → y with energy Hd(x) =

Ha(x) +H(x) is passive where Ha is Hamiltonian function of the controller [40].
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3.4.1 Interconnection and Damping Assignment (IDA) Control

To achieve overall system stability, we shape the energy of the system to a desired

function that is positive semi-definite and whose time-derivative is non-positive

for any initial condition. Interconnection and damping assignment passivity based

control is a method for adjusting the behavior of a nonlinear system. Using this

technique we can assign a desired energy function and structure to the closed

loop system [41]. The desired energy function has minimum value at the desired

equilibrium point and the interconnection and damping matrices are assigned to

provide the approperiate control law [41], [42]. Galaz, Ortega, et al. in [16] apply

this methodology for designing the excitation control of synchronous generators.

The IDA methodology [42], considers a system of the form,

ẋ = f(x) + g(x)u (3.22)

Assume there exist matrices g⊥(x), Jd(x) = −Jd(x)T , Rd(x) = Rd(x)T and a

function Hd : Rn → R that satisfies the PDE

g⊥(x)f(x) = g⊥(x)(Jd(x)−Rd(x))∇Hd(x) (3.23)

where g⊥(x) is a full-rank left annihilator of g(x), that is g⊥(x)g(x) = 0, and Hd(x)

is such that

x∗ = arg min Hd(x) (3.24)

with x∗ ∈ Rn the equilibrium to be stabilized. Then, the closed loop system with

u = β(x), where

β(x) = (gT (x)g(x))−1gT (x) ((Jd(x)−Rd(x))∇Hd(x)− f(x))

takes the form,

ẋ = (Jd(x)−Rd(x))∇Hd (3.25)

31



with x∗ a (locally) stable equilibrium.

Solving (3.23Interconnection and Damping Assignment (IDA) Controlequation.3.4.23)

in general is not an easy task. The main difference between the classical PBC and

Interconnection and Damping Assignment PBC is in the design process. In classi-

cal PBC, first the desired energy function is selected then a controller that ensure

this overall energy function is designed. In IDE PBC strategy, as explained, the

closed loop energy function is obtained by solving (3.23Interconnection and Damp-

ing Assignment (IDA) Controlequation.3.4.23) for the desired interconnection (Jd)

and damping (Rd) matrices [42].
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Chapter 4

Port-Hamiltonian Systems and

Power System Modeling

4.1 Port-Hamiltonian Systems’ Application in Power Sys-
tem Modeling

An electrical power system is a composition of large number of electrical subsystems

that are interconnected through appropriate topological interconnection laws.

As an object-oriented modeling, port-Hamiltonian formulation is used to

model elements of power systems. Therefore, port-Hamiltonian framework pro-

vides a unified and systematic platform for expressing the dynamics of power sys-

tems’ components and implementing performance and stability analysis.

Remark 4.1.1. Throughout this dissertation, we use the notation

col(a1, a2, .) =

a1

a2

.

 and diag(a1, a2, .) =

a1 0 0
0 a2 0
0 0 .

. Furthermore, “0” and “I”

are zero and identity matrices, respectively, whose sizes are compatible with the

equation they appear in.

Example 4.1.1. Transmission Line: π model

To formulate the π model of the line in Fig. 4.1The π line modelfigure.4.1 in port-

Hamiltonian framework, the states are chosen to be [15, 47], x = col(q1,q2,φ),

where q1 and q2 are the vectors of shunt capacitors’ charges at the two ends of the

line and φ is the vector of the flux passing through the inductor. The Hamiltonian

function is defined as, Hline(q1,q2,φ) = 1
2
xTM−1x, where M = diag(C1, C2, L)
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and C1, C2 and L are diagonal matrices of the line capacitance and inductance

values. The gradient of Hamiltonian is, ∇Hline(x) = col(C−1
1 q1, C

−1
2 q2, L

−1φ) =

M−1x = col(v1,v2, il).

The port-Hamiltonian model of the line is,

ẋ = (Jline −Rline)∇Hline + glineuline (4.1)

y = gTline∇Hline(x) =

[
v1

v2

]

where, gline =

−I 0
0 I
0 0

, Jline =

 0 0 I
0 0 −I
−I I 0

 and Rline = diag(G1, G2, R). The

input ports’ signals are the injected currents at the two nodes, i.e. uline =

[
i1
i2

]
.

Expressing (4.1equation.4.1.1) in form of (3.15Park-Transformationequation.3.2.15),

the matrices A, B, C and D are as follows,

A = (Jline − Rline)M
−1, B = gline, C = gTlineM

−1, D = 0. We define the new

coordinates, q1 = T (θr)q1, q2 = T (θr)q2, φ = T (θr)φ, v1 = T (θr)v1, v2 = T (θr)v2,[
i1
i2

]
= uline =

[
T (θr) 0

0 T (θr)

]
uline, y =

[
v1

v2

]
. Then the line dynamics in dq0

coordinates is,

ẋ = (ωrN̄ + A)x+Bu(t) (4.2)

where N̄ = diag(N,N,N), x = col(q1, q2, φ). For a constant input ū = T (θr)u the

state has a steady state value x̄ = (ωrN̄ + A)−1Bū and output ȳ = Cx̄. In dq0

coordination, we define the Hamiltonian function, Hline(x) = 1
2
(x−x̄)TM−1(x−x̄).

The above function is shifted to the equilibrium point x̄. We can rewrite the port-

Hamiltonian model of the line in the new coordinates,

ẋ = (Jline −Rline)∇Hline(x) + glineuline (4.3)

y = gTline∇Hline(x) =

[
v1 − v̄1

v2 − v̄2

]
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Figure 4.1: The π line model.

where x̄ = col(q̄1, q̄2, φ̄) is the equilibrium point and q̄1 = C1v̄1, q̄2 = C2v̄2 and

φ̄ = Līl,

Jline =

ωrNC1 0 I
0 ωrNC2 −I
−I I ωrNL

 and Rline = Rline, uline =

[
i1 − ī1
i2 − ī2

]
.

Remark 4.1.2. Unless otherwise stated, we assume that all the signals in the

remainder of this dissertation are expressed is dq0 coordinates.

Example 4.1.2. Transmission Line: T model

To formulate the T model of the line in Fig. 4.2The T line modelfigure.4.2 in port-

Hamiltonian framework, the states are chosen to be x = col(φ1, φ2,q), where φ1

and φ1 are the vectors of inductance’s fluxes and q is the vector of the middle

capacitor’s charge. The Hamiltonian function is defined as, Hline(φ1, φ2,q) =

1
2
xTM−1x, where M = diag(L1, L2, C) and L1, L2 and C are diagonal matrices

of the line inductance and capacitance values. The gradient of Hamiltonian is,

∇Hline(x) = col(L−1
1 φ1, L

−1
2 φ1, C

−1q) = M−1x = col(i1, i2,vl).

The port-Hamiltonian model of the line is,

ẋ = (Jline −Rline)∇Hline + glineuline (4.4)

y = gTline∇Hline(x) =

[
i1
i2

]
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where, gline =

−I 0
0 I
0 0

, Jline =

 0 0 I
0 0 −I
−I I 0

 and Rline = diag(R1, R2, G). The

input ports’ signals are the enforced voltages at the two nodes, uline =

[
v1

v2

]
.

Expressing (4.4equation.4.1.4) in form of (3.15Park-Transformationequation.3.2.15),

the matrices A, B, C and D are as follows,

A = (Jline − Rline)M
−1, B = gline, C = gTlineM

−1, D = 0. We define the new

coordinates, φ1 = T (θr)φ1, φ2 = T (θr)φ2, q = T (θr)q, i1 = T (θr)i1, i2 = T (θr)i2,[
v1

v2

]
= uline =

[
T (θr) 0

0 T (θr)

]
uline, y =

[
i1
i2

]
. Then the line dynamics in dq0

coordinates is,

ẋ = (ωrN̄ + A)x+Bu(t) (4.5)

where N̄ = diag(N,N,N), x = col(φ1, φ2, q). For a constant input ū = T (θr)u the

state has a steady state value x̄ = (ωrN̄ + A)−1Bū and output ȳ = Cx̄. In dq0

coordination, we define the Hamiltonian function, Hline(x) = 1
2
(x−x̄)TM−1(x−x̄).

The above function is shifted to the equilibrium point x̄. We can rewrite the port-

Hamiltonian model of the line in the new coordinates,

ẋ = (Jline −Rline)∇Hline(x) + glineuline (4.6)

y = gTline∇Hline(x) =

[
i1 − ī1
i2 − ī2

]
where x̄ = col(φ̄1, φ̄2, q̄) is the equilibrium point and φ̄1 = L1ī1, φ̄2 = L2ī2 and

q̄ = Cv̄l,

Jline =

ωrNL1 0 I
0 ωrNL2 −I
−I I ωrNC

 and Rline = Rline, uline =

[
v1 − v̄1

v2 − v̄2

]
.

Remark 4.1.3. In the π model of a line the input port variable is current and

the output is voltage. Consequently, the π line model would be connected to a

source whose output is current, i.e. a “current source”. On the other hand, the
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Figure 4.2: The T line model.

input port variable for the T model of a line is voltage and thus the T line model

would be connected to a source that is a “voltage source”.

Example 4.1.3. Network

The port-Hamiltonian model of an electrical network of interconnected π lines as in

Fig 4.1The π line modelfigure.4.1 in presented in [47]. The lines’ interconnection

matrix is D ∈ RnC×nL where nC is the number of capacitors and nL is the number

of inductors in the network. The capacitors’ charges Q(t) ∈ RnC
and the inductors’

fluxes φ(t) ∈ RnL
are the states x(t) =

[
Q(t)
φ(t)

]
and the Hamiltonian function of

the network is a quadratic function of states:

H(x(t)) =
1

2
xT (t)

[
C−1 0

0 L−1

]
x(t)

where C, L and R are the diagonal matrices of capacitance, inductance and re-

sistance values of the network, respectively. The port-Hamiltonian model of the

network is: [
Q̇(t)

φ̇(t)

]
= (J −R)∇H(Q(t), φ(t)) +

[
InC×nC

0
0 0

]
i(t)

y(t) =

[
InC×nC

0
0 0

]T
∇H(x(t)) = v(t) (4.7)
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where ∇H(x(t)) =

[
C−1Q(t)
L−1φ(t)

]
=

[
v(t)nC×1

il(t)nL×1

]
and J =

[
0 D
−DT 0

]
. The signals

in the above formulation are three phase sinusoidal signals. Applying the Park

transformation (section 3.2.1Park-Transformationsubsection.3.2.1) to the dynamic

equation (4.7equation.4.1.7) the transformed states are,

x̄ = T̆ (θr)

[
Qt

φ(t)

]
=

[
Q̄t

φ̄(t)

]
where T̆ (θr) = (T (θr), ...., T (θr)︸ ︷︷ ︸

nc×nL

). The interconnection matrix,

J̆ = ωrN̆

[
C 0
0 L

]
+ J

where N̆ = (N, ...., N︸ ︷︷ ︸
nc×nL

). the damping matrix is unchanged, i.e. R̆ = R.

Example 4.1.4. Synchronous Generator Port-Hamiltonian Modeled as Current

Source

In this section we briefly review the dynamic equations of synchronous generator

and demonstrate that it can be viewed as a dynamic voltage controlled current

source.

The swing equation of a synchronous generator describes the rotational

dynamics of the machine

Jω̇ = Tm − Te (4.8)

and we also have,

θ̇d = ω (4.9)

In the equation above, Tm is the input mechanical torque and Te is the electrical

torque. When the frequency is regulated to its nominal value ω = ωr, Te = Tm.
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The electrical equations of synchronous generators for the a coordinate (b

and c coordinates are similar) are

λa = Lsia −Msib −Msic +Mfcos(θd)if = (Ls +Ms)ia +Mfcos(θd)if

and the terminal voltage for phase a,

va = −Rsia −
dλa
dt

Here, λa is the flux linkage of phase a and θd is the angle between generator a axis

and d axis of its rotor. The angle between the d axis and b and c generator axes

are θd − 2π
3

and θd − 4π
3

, respectively. The field (rotor) circuit satisfies

λf = Lff if +Mfcos(θd)ia +Mfcos(θd −
2π

3
)ib +Mfcos(θd −

4π

3
)ic

and

vf = Rf if +
dλf
dt

We collect the above equations into a vector differential equation, i.e.

[
λabc
λf

]
=[

λa λb λc λf
]T

, etc. and transform the resulting system into a rotating coordi-

nate system defined by the system frequency ωr. Note that the field variables are

not transformed. The system equations in a port-Hamiltonian formulation have

the form (see, e.g. [47])

˙̄λ = (J(ωr)−R)∇H(λ̄)−M(ωr )̄i− v̄ (4.10)

= (N(ωr)−R)∇H(λ̄)− v̄

where the Hamiltonian function is defined as

H(λ̄) =
1

2
λ̄T L̄−1λ̄ (4.11)
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and v̄ =

[
v̄t
−vf

]
, v̄t is the generator terminal voltage and vf the field voltage. The

system matrices in (4.10equation.4.1.10) and (4.11equation.4.1.11) are

N(ωr) = ωr

 0 −(Ls +Ms) −
√

3
2
Mfsin(∆θ)

Ls +Ms 0
√

3
2
Mfcos(∆θ)

0 0 0

 ,

J̄(ωr) = ωr

 0 −(Ls +Ms) 0
Ls +Ms 0 0

0 0 0

 ,

M(ωr) = ωr

0 0 −
√

3
2
Mfsin(∆θ)

0 0
√

3
2
Mfcos(∆θ)

0 0 0

 ,
L̄ =

[
(Ls +Ms)I Lfm

LTfm Lff

]
, R =

[
RsI 0

0 Rf

]
, Lfm =

√
3
2
Mf

[
cos(∆θ) sin(∆θ)

]T
where λ̄t is the vector of armature flux, Ls and Ms the armature self inductance

and mutual inductance, Lff is the field coil self inductance and Mf is related to

the armature and field mutual inductance, ∆θ = θr − θd, θd = ωt + θd0, θr = ωrt,

θd0 is the “initial” generator angle. In the above model, the output is

y = −∇H(λ̄) = −
[
īt
if

]
(4.12)

We note that due to that fact that 0 element in the transformed of three phase

balanced signals in dq0 coordinates has null value, in the above formulation we have

dropped the “0” coordinate in dq0. Evaluating (4.10equation.4.1.10)-(4.12equation.4.1.12)

in steady state gives the steady state model of the synchronous generator,

is = (N(ωr)−R)−1vs (4.13)

i.e. in steady state the generator has the form of a voltage controlled current

source.
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One control goal of typical generator controllers in power systems is to reg-

ulate the generator terminal voltage. We can rewrite the steady state relationship

as

vs = (N(ωr)−R)is (4.14)

We note that this relationship does not directly correspond to the synchronous gen-

erator dynamical system, i.e. the role of the dependent (output) and independent

(input) variables has been interchanged in the steady state relationship.

Remark 4.1.4. Conventional voltage source models of synchronous generator

(voltage source behind reactance) are based on the inverse relationship (4.14equation.4.1.14).

Example 4.1.5. Synchronous Generator Port-Hamiltonian Modeled as Voltage

Source

We are interested in developing a dynamic voltage source, i.e. a causal system

that mimics the synchronous generator that has current as input and voltage as

output. One such system is a so-called electrostatic generator which is essentially

the dual of a synchronous machine [17,34]. In particular, consider the machine in

Fig. 4.3Electrical Circuit of Three-phase Electrostatic Generatorfigure.4.3 which

has mathematical description for the a-phase

qa = Csva − Cmvb − Cmvc +Nfcos(θd)vf = (Cs + Cm)va +Nfcos(θd)vf

where qa is the charge of phase a and

ia = −Gsva − q̇a

where the b and c phases are described by similar equations with phase differences

−2π
3

and −4π
3

. The “field” equation has the form

qf = Cfvf + CT
rsvabc

41



where Crs = Nf

[
cos(θd) cos(θd − 2π

3
) cos(θd − 4π

3
)
]T
. In three phase vector for-

mat we have

qabc = (Cs + Cm)vabc + Crsvf

iabc = −Gsvabc − q̇abc

if = Gfvf + q̇f

We note that in this model Cs is self capacitance while Cm and Crs are mutual

capacitances. After transferring all the signals to rotational coordinates at the

system frequency ωr

q̇dq = −Gsv̄t +Nqdq − īt

q̇f = −Gfvf + if

where C ′rs
T =

√
3
2
Nf

[
cos(∆θ) sin(∆θ)

]
, q̄ =

[
qTdq qf

]T
. Define the Hamiltonian

function as the total energy stored in the capacitors, i.e. H ′ = 1
2
q̄TC−1q̄, then the

dynamics of electrostatic generator

˙̄q = (J ′(ωr)−R′)∇H ′(q) + gī (4.15)

v̄ = gT∇H ′

where ī =
[̄
iTt if

]T
, g =

[
−I 0
0 1

]
, v̄ =

[
−v̄Tt vf

]T
, ∇H ′ = C−1q̄.

C =

[
(Cs + Cm)I C ′rs

C ′re
T Cf

]

J ′(ωr)−R′ =

 −Gs −(Cs + Cm)ωr −
√

3
2
Nfωrsin(∆θ)

(Cs + Cm)ωr −Gs

√
3
2
Nfωrcos(∆θ)

0 0 −Gf


As in the synchronous generator model we have dropped the “0” component of dq0

signals. The rotational dynamics for the electrostatic generator are identical to
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those of the traditional synchronous machine. In steady state the system equation

(4.15equation.4.1.15) takes the form,

vs = −g−1(J ′(ωr)−R′)−1is (4.16)

i.e. it is a current controlled voltage source. It is of interest to investigate under

what conditions steady state output (4.16equation.4.1.16) corresponds to the non-

causal steady state relationship (4.14equation.4.1.14). In practice if we equate

equations (4.16equation.4.1.16) and (4.14equation.4.1.14), resulting in

Gf =
1

Rs

, Gs =
Rs

K
,Cs = −Ls

K
,Cm = −Ms

K
,Nf = − Mf

Rf

√
K

where K = (Ls +Ms)
2ω2

r +R2
s. We note, in particular that the inductance values

are negative which corresponds to the fact that (4.14equation.4.1.14) corresponds

to an anti-causal machine.

For various technical reasons the electrostatic generator described earlier

cannot be built as an efficient power generator. There are however, several appli-

cations of such machines as MEMS devices [22,28].

4.2 Load Models

As loads play an important role in the analysis of voltage instabilities in power sys-

tems, aggregating proper load models in stability analyses is crucial [20]. As static

load models are not sufficient for these analyses, dynamic models are required. In

this section we review the port-Hamiltonian model of constant impedance loads [47]

and express the dynamics of induction motors in port-Hamiltonian formulation.

Furthermore, we propose a port-Hamiltonian model for Constant Power Loads

(CPLs). As a starting point we note that any port-Hamiltonian load model has
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Figure 4.3: Electrical Circuit of Three-phase Electrostatic Generator.

the standard form,

ẋ = (J(x)−R(x))∇H(x) +Bvl + Eu (4.17)

il = BT∇H(x)

where vl and il are the load terminal voltage and current. H(x) is a Hamiltonian

function, Jx = −JT (x) and Rx = RT (x) ≥ 0 are appropriately chosen intercon-

nection and damping matrices, and u is an external input variable that can be a

complex function of the system state, terminal variables and other external vari-

ables.

4.2.1 Constant Impedance Load

Considering the port-Hamiltonian model of the inductive load shown in Fig. 4.4The

inductive load modelfigure.4.4, we select φl, the vector of the inductive load flux
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as state variable for the Hamiltonian function as [47],

Hload =
1

2
(φl − Llī2)TL−1

l (φl − Llī2) (4.18)

where Ll is the load inductance and ī2 is the load current at an equilibrium point.

The load flux at the equilibrium is, φ̄l = Llī2. The port-Hamiltonian model is,

ẋ = (Jload −Rload) ∇Hload + gloaduload (4.19)

y = gTloaduload = i2 − ī2

where Jload and Rload are the load interconnection and dissipation matrices, respec-

tively. Here, Jload = ωrNLl and Rload = Rl and it is easy to see that JTload = −Jload

and RT
load = Rload. Finally, gload = I and uload = v2 − v̄2, where v2 and v̄2 are the

vector of load voltage and its steady state value.

4.2.2 Induction Motor Load

The electrical equations of phase a of stator and rotor of a doubly fed induction

generator in sinusoidal three phase are,

λsa = (lls + lms)isa + (−1

2
lms)isb + (−1

2
lms)isc (4.20)

+M [cos(θr)ira + cos(θr −
2π

3
)irb + cos(θr −

4π

3
)irc]
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λra = (llr + lms)ira + (−1

2
lms)irb + (−1

2
lms)irc (4.21)

+M [cos(θr)isa + cos(θr −
2π

3
)isb + cos(θr −

4π

3
)isc]

The same equations can be written for the other coils of the stator and rotor. In

all the formulas, rotor variables are returned to the stator side. The voltage drop

for the coil a of stator and rotor

vsa = Rsisa +
dλsa
dt

(4.22)

vra = Rrira +
dλra
dt

(4.23)

Combining all above equations gives

λ = L(θr)i

λ̇ = −Ri+ v

where L(θr) =

[
Ls Lsr
LTsr Lr

]

Ls =

lls + lms − lms

2
− lms

2

− lms

2
lls + lms − lms

2

− lms

2
− lms

2
lls + lms



Lr =

llr + lms − lms

2
− lms

2

− lms

2
llr + lms − lms

2

− lms

2
− lms

2
llr + lms


Lsr = M

 cos(θr) cos(θr − 2π
3

) cos(θr − 4π
3

)
cos(θr − 4π

3
) cos(θr) cos(θr − 2π

3
)

cos(θr − 2π
3

) cos(θr − 4π
3

) cos(θr)

, θr(t) = Ωr(t) + θr0

R =

[
RsI 0

0 RrI

]
, λ =

[
λs
λr

]
, v =

[
vs
vr

]
and i =

[
is
ir

]
where the subscript s and

r are denoted to stator and rotor, respectively. The transformation matrix for

transforming the above equations to stationary frame is,

Υ =

[
T (Ωst) 0

0 T (Ωrt)

]
(4.24)
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where Ωs = Ωr + ∆Ω, Ωr is rotor frequency and Ωs is stator frequency. ∆Ω is a

fixed design value chosen as desired slip. The equations in dq0 coordinates are,[
˙̄λs
˙̄λr

]
=

[
ΩsN 0

0 ΩrN

]
L̄ī−Rī+ v̄ (4.25)

L̄ = TΥL(θr)Υ
T =

[
L̄s L̄sr
L̄Tsr L̄r

]
, L̄s = (lls +

3lms
2

)I

L̄r = (llr +
3lms

2
)I, L̄sr =

3lms
2
I[

ΩsN 0
0 ΩrN

]
L̄ =

[
ΩsNL̄s ΩsNL̄sr
ΩrNL̄

T
sr ΩrNL̄r

]
=

[
ΩsNL̄s ΩsNL̄sr

(Ωs + ∆Ω)NL̄Tsr (Ωs + ∆Ω)NL̄r

]
= ΩsNL̄+

[
0 0

∆ΩNL̄Tsr ∆ΩNL̄r

]
= ΩsNL̄+M(∆Ω)

and Ωs = ωr.

The port-Hamiltonian model of a doubly fed induction generator has the form,[
˙̄λs
˙̄λr

]
= (ωrNL̄−R)̄i−M(∆Ω)̄i+ v̄ (4.26)

ȳ = ī (4.27)

The Hamiltonian function for the model is H = 1
2
λ̄T L̄−1λ̄ and its gradient is

∇H = L̄−1λ̄ = ī. We note that if we include the ∆Ω dynamics the motor model

has the general port-Hamiltonian form of a load.

4.2.3 Constant Power Load

CPLs that consist of solid-state self-regulated power electronic devices are increas-

ing in power systems. The strong nonlinear behavior that CPLs introduces new
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challenges in dynamical studies of power systems. Due to the fast dynamics of

CPLs the application of standard singular perturbation theory (section 3.3Singu-

lar Perturbation Theorysection.3.3) for neglecting load dynamics is not valid.

Allen and Ilic in [2] show that applying a static or slow dynamic model

for PQ loads while including the transmission line dynamics results in instabilities

around the desired load flow solution. A simple dynamic representation of CPLs

can be found in [1, 2, 43],

ġ =
1

τ

[
Pref −

|il|2

g

]
(4.28)

where Pref is the constant real power that load is expected to consume, g is the

conductance value of the load and its conductance matrix is as G = gI and il is

the load port current in dq0 coordinates. The PQ load model in [2] includes a

dynamic susceptance part (B) for an admittance in the form G+ jB as well.

The CPL dynamics in (4.28Constant Power Loadequation.4.2.28) for a rela-

tively long time constant behaves as a constant impedance load. As is shown in [2]

there is a critical value of τ for which the system obtain from the load (4.28Con-

stant Power Loadequation.4.2.28) connected to a transmission line becomes un-

stable. Consequently for short time constants, the CPL model in (4.28Constant

Power Loadequation.4.2.28) results in instabilities and therefore, this model is not

a good representation of CPL dynamics where time constants are typically very

small.

At the load input terminal, CPLs acts like a negative incremental impedance.

For constant power of the load, the current and voltage at terminals,

|il| =
Pref
|vl|

(4.29)
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by (4.29Constant Power Loadequation.4.2.29)the voltage drop causes increase in

the current. Therefore, to study small signal stability, some papers apply a negative

impedance model for CPLs. This equiavalent impedance of CPLs may be used in

impedance-based small signal stability analysis [44, 45,53].

Proposed Constant Power Load

A model for Constant Power load is proposed in the standard port-Hamiltonian

formulation,

ẋ = (Jl(x)−Rl(x))∇H(x) + vl + Eu (4.30)

y = il = Πx

where the Hamiltonian function is,

H(x) =
1

2
xTΠx (4.31)

where Rl(x) is symmetric positive semi-definite, Jl(x) is skew symmetric, Π =

ΠT > 0. The control variable u is the output of a controller that regulates the

active power, e.g.

u = C(s)(Pref − P ) (4.32)

the power P in the above formulation is P = iTl vl where i and v are the output and

input ports of the CPL port-Hamiltonian model. Fig 4.6Block diagram of the pro-

posed CPL modelfigure.4.6 shows the designed block diagram of CPL. The control

law C(s) in (4.32Proposed Constant Power Loadequation.4.2.32) is chosen so that

P (t)→ Pref when vl is at any steady state value. The matrices in (4.30Proposed

Constant Power Loadequation.4.2.30) are chosen by identification of the dynamics

of the load being modeled. For illustrative purposes we performed a simulation for

the above constant power load model. The matrices in our model are constant and
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Figure 4.5: Constant power load.

the controller for the chosen load is selected as a PID controller. Fig. 4.7The active

power of CPL when there is a 20% drop in its terminal voltagefigure.4.7 shows the

output power of CPL when there is a voltage drop of 20% at the load terminal as

seen in Fig. 4.8A 20% drop in terminal voltage of the modeled CPLfigure.4.8.

The reactive power at the load terminal is,

Q = iTNv (4.33)

where N is as before

0 −1 0
1 0 0
0 0 0

. In the proposed load model (4.30Proposed

Constant Power Loadequation.4.2.30) at steady state we have,

0 = iTlsN(Jl(xs)−Rl(xs))∇H(xs) + iTlsNvls + iTlsNEus (4.34)

= iTlsNJl(xs)ils +Q+ iTlsNEus = 0

For simplicity assume Jl = αN for some constant α (note that in dq coordinates

Jl always has the form Jl = ωrN + J1 where J1 is skew symmetric). In this case,

Q = −α|ils|2 − iTlsNEus (4.35)

and the second term in (4.34Proposed Constant Power Loadequation.4.2.34) is,

iTlsNEus = iTlsNEC(0)(Pref − Ps)
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For good regulation of active power this term is relatively small.

The active power can be written as,

P = |i||v|cos(θ) (4.36)

where for a load, cos(θ) is the power factor. If Pref > 0 we must have cos(θ) > 0

and thus θ ∈
[
−π

2
, π

2

]
. Consequently,

∂|il|
∂|vl|

= − Pref
|vl|2cos(θ)

< 0 (4.37)

which agrees with the statement that the negative impedance claim in [44,45,53].

If we look at the reactive power for θ ∈
[
−π

2
, π

2

]
we see that for θ ∈

[
−π

2
, 0
]
,

Q = |i||v|sin(θ) < 0 i.e. the system looks like a capacitive load while for θ ∈
[
0, π

2

]
,

Q > 0 and the load looks inductive.

Note that in (4.30Proposed Constant Power Loadequation.4.2.30) for α > 0

we have from (4.35Proposed Constant Power Loadequation.4.2.35) that Q > 0

while for α < 0 we haveQ < 0. Thus (4.30Proposed Constant Power Loadequation.4.2.30)

can be selected to produce capacitive or inductive type of load by choice of the

interconnection matrix Jl. Fig 4.9The reactive power of the modeled CPL for

different values of αfigure.4.9 illustrates the reactive power of the modeled CPL

for different values of α that model inductive (Q > 0) or capacitive (Q < 0) or

resistive (Q = 0) loads.

4.3 Passivity of inductive loads and network

The Hamiltonian function for a system that includes inductive loads and network

(example 4.1.3exmp.4.1.3 and section 4.2.1Constant Impedance Loadsubsection.4.2.1),

has the quadratic form

Hn(xn) =
1

2
xTnMxn (4.38)
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Figure 4.6: Block diagram of the proposed CPL model.
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Figure 4.7: The active power of CPL when there is a 20% drop in its terminal
voltage.
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Figure 4.8: A 20% drop in terminal voltage of the modeled CPL.
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Figure 4.9: The reactive power of the modeled CPL for different values of α.

where xn includes the fluxes of lines and inductive loads and charges of capacitors

and

M =

C−1 0 0
0 L−1

l 0
0 0 L−1

d


We can rewrite this system in the form

ẋn = (Jn(xn)−Rn(xn))Mxn + gn(xn)un + en(xn)vn (4.39)

yn = gTn (xn)Mxn

Evaluating inequality (3.6equation.3.1.6) in proposition 3.1.1prop.3.1.1 for (4.39Pas-

sivity of inductive loads and networkequation.4.3.39) gives,

∇HT
n (xn)(Jn(xn)−Rn(xn))Mxn = −xTnMRn(xn)Mxn ≤ 0

and (3.7equation.3.1.7) also holds for port-Hamiltonian system (4.39Passivity of

inductive loads and networkequation.4.3.39). Therefore, system (4.39Passivity of

inductive loads and networkequation.4.3.39) is passive.
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4.3.1 Incremental system of inductive load and network

Let x∗n be an equilibrium state of the system (4.39Passivity of inductive loads and

networkequation.4.3.39) and define the incremental variables,

x̃n = xn − x∗n

ũn = un − u∗n

ỹn = yn − y∗n

We know that at the equilibrium state x∗n, we have,

(Jn −Rn)∇Hn(x∗n) + gnu
∗
n = 0 (4.40)

Remark 4.3.1. For the system consisting of inductive loads and network the

interconnection and damping matrices are constant.

SinceHn is in the form (4.38Passivity of inductive loads and networkequation.4.3.38)

we easily get

∇Hn(x̃n) = ∇Hn(xn)−∇H(x∗n)

and, consequently,

ỹn = gTn∇Hn(x̃n) (4.41)

Furthermore,

ẋn = ˙̃xn = (Jn −Rn) (∇Hn(x̃n) +∇H(x∗n)) + gn(ũn + u∗n)

and the incremental dynamics of the system are given by,

˙̃xn = (Jn −Rn)∇Hn(x̃n) + gnũn (4.42)
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Let u∗n be the steady state value of the input un i.e. the desired current at the

port (terminal) of generator where the generator is connected to the reminder

of the system. For this value of u∗n there is a corresponding steady state x∗n of

(4.39Passivity of inductive loads and networkequation.4.3.39) (for vn = 0) given

by,

x∗n = M−1(Jn −Rn)−1gnu
∗
n

where the matrix Jn −Rn is in the form

Jn −Rn =


G D 0 ..... 0
−DT R 0 ..... 0

0 0 (ωrNLload1 −Rload1) ..... 0
0 0 0 . 0
0 0 0 . 0
0 0 0 ..... (ωrNLloadnd

−Rloadnd
)


(4.43)

Here D ∈ Rnc × Rnl , nc the number of nodes and nl the number of lines and nd

the number of loads. If for each load, i ∈ 1, ...., nd, Rloadnd
6= 0 and/or Lloadnd

6= 0

there is a unique nonzero solution for x∗n associated with the generators terminal

operating point that is scheduled by energy management control.

4.4 Generator Control

When we consider the synchronous generator system as a controlled system the

field voltage vf and the mechanical torque Tm are control inputs. In most “clas-

sical” applications the control objective is to regulate the terminal voltage, the

generator frequency and the power output (real and reactive). The most common

approach is to regulate the frequency and real power output is by adjusting the

mechanical power (torque) input Tm (this requires a model of the prime mover

that generates the mechanical torque). The terminal voltage and reactive power
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are regulated by adjusting the field voltage.

For a fixed value of ω say ω = ωr, and rotor phase angle 4θ0 define A =

A(4θ0) = (N(ωR)−RL̄−1(4θ0)) and consider the steady state flux equation

0 = Aλ̄s − v̄s

along with the design constraints

v̄ts = v̄td (4.44)

Pes = ı̄Ttsv̄ts = ı̄Ts v̄s − isfvfs = Ped

Qes = ı̄TtsNv̄ts = Qed

where v̄ts is the terminal voltage part of v̄s, ı̄s = L̄−1(∆θ0)λ̄s and v̄td, Ped and Qed

are the design values for the terminal voltage and terminal real and reactive power.

We can rewrite the steady state equations as

0 = A(4θ0)λ̄s − v̄s = A(4θ0)L̄(4θ0)̄ıs − v̄s (4.45)

= A(4θ0)L̄(4θ0)

[
ı̄ts
ifs

]
−
[
I
0

]
v̄td +

[
0
1

]
vfs

Proposition 4.4.1. For given values of the steady state rotor speed and phase

angle, ω = ωr, 4θ = 4θ0, as well as terminal voltage, v̄ts = v̄td, and terminal

real and reactive powers, Pes = Ped, Qes = Qed there exists a (unique upto phase

shift) steady terminal current, ı̄ts, and field voltage input vfs. The steady state

generator flux is given by λ̄s = L̄(4θ0)

[
ı̄ts
ifs

]
where ifs =

vfs
Rf
.

Proof. From the power design constraints and the terminal voltage constraint we

can (completely) characterize ı̄ts. Indeed, the steady state terminal voltage has

the form v̄Ttd =
[
V cosϕv V sinϕv 0

]
and, similarly, the steady state ter-

minal current has the form ı̄Tts =
[
I cosϕi I sinϕi 0

]
for some I and ϕi.
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From (4.44Generator Controlequation.4.4.44) we get Ped = V I cos(ϕi − ϕv) and

Qed = V I sin(ϕi − ϕv) and thus we see that we can solve for the unknown I and

ϕi. Consider the equation (4.10equation.4.1.10) in steady state i.e.

0 = (J(ωr)−R)∇H(λ̄) +m(ωr,4θ0)if − v̄

Noting that J(ωr) − R =

[
ωr(Ls +Ms)N −RsI 0

0 −Rf

]
and ∇H(λ̄s) = ı̄s we

easily get

0 = (ωr(Ls +Ms)N −RsI) ı̄ts + m̂(ωr,4θ0)ifs − v̄ts

0 = −Rf ifs + vfs

where m̂(ωr,4θ0) are the first three rows of m(ωr,4θ0). In the first equation

everything is known except ifs and the second equation uniquely relates ifs and

vfs. Multiplying the first equation by m̂T (ωr,4θ0) on the left gives

ifs =
m̂T (ωr,4θ0) (v̄ts − (ωr(Ls +Ms)N −RsI) ı̄ts)

3
2
M2

f

.

We finally note that the steady state flux is given by λ̄s = L̄(4θ0)̄ıs where 4θ0 =

θR − θd is the steady state angle.

The control problem can now be formulated as the problem of regulating

the state λ̄ to the steady state value λ̄s and the rotor speed and angle to the design

values ωr,4θ0.

Consider the overall dynamics of the system on the form

d

dt
λ̄ =

(
N(ωr)−RL̄−1(4θ)

)
λ̄− v̄ (4.46)

d4θ
dt

= 4ω

d

dt
4ω =

1

J̄

(
Tm −

Pe
ωr +4ω

)
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Linearizing (4.46Generator Controlequation.4.4.46) around the equilibrium point

given by 4.44Generator Controlequation.4.4.44 gives

d

dt
x = Fx+Gu+Hd

where

F =

 A(4θ0) Rl(4θ0, λ̄s) 0
0 0 1

−a(v̄ts,4θ0)

J̄
− b(v̄ts,4θ0,λ̄s)

J̄
− c(v̄ts,4θ0,λ̄s)

J̄



G =


[

0
1

]
0

0 0
0 1

 , H =


I
0
0

−d(v̄ts,)

J̄
4θ0


x =

 4λ̄δθ
4ω

 =

 4λ̄
4θ −4θ0

4ω


where the control input is input is u =

[
4vf
4T

]
while d = 4v̄t is a disturbance

input and

δθ = (4θ −4θ0)

4T = Tm − Tes,

a(v̄ts,4θ0) =
v̄Tts
[
I 0

]
L̄−1(4θ0)

ωr

b(v̄ts,4θ0, λ̄s) =
v̄Tts
[
I 0

]
l(4θ0, λ̄s)

ωr

c(v̄ts,4θ0, λ̄s) = −Ped
ωr

d(λ̄s,4θ0) =

λ̄Ts L̄
−1(4θ0)

[
I
0

]
ωr

where l(4θ0, λ̄s) = −L̄−1(4θ0)∂L̄(4θ0)
∂4θ L̄−1(4θ0)λ̄s.

The equilibrium point of the linearized system is at the origin, i.e. when

x = 0 we have λ̄ = λ̄s and ω = ωR. We note that when u = 0 we have Tes = Tm.
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The control objective is to regulate the state to zero for all values of the disturbance

input. If we apply a state feedback law u = −Kx to this system we get the closed

loop system

d

dt
x = (F −GK)x+Hd

Applying the Laplace transform to this equation we obtain

x(s) = (sI − (F −GK))−1Hd(s) = (sI − (F −GK))−1Hd(s)

Clearly, in order to reject the disturbance input d the feedback matrix K should

be chosen so that the effect of the d on x is minimized, i.e. Gdx(s,K) = (sI− (F −

GK))−1H should be “small”. The first component of the control law is

4vf (s) =
[

1 0
]
u(s) = −

[
1 0

]
Kx(s)

= −
[

1 0
]
KGdx(s,K)d(s)

= C(s)d(s)

This control law has the familiar form 4vf (s) = C(s)d(s) = C(s) (v̄t − v̄td) , i.e.

exciter control where the objective is to select the exciter control input so as to

regulate the terminal voltage to the zero. Since the terminal voltage is not a

state in the generator system but rather an external input we see that the exciter

control attempts to reject deviations of the terminal voltage from the steady state

reference value.

The second component of the control law has the form

4T =
[

0 1
]
u(s) = −

[
0 1

]
Kx(s)

= −
[

0 1
]
KGdx(s,K)d(s) = D(s)d(s)

Consequently, deviations in the terminal voltage will result in deviations in the

net torque and thus the terminal power output. We note that if K is chosen so
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that Gdx(jω,K)) is small at all frequencies of interest the effect of variations in the

terminal voltage on the generator output (i.e. real and reactive power) is reduced.

As we discussed in Section 5.4Dynamics and Stability of Interconnected

Power System Componentssection.5.4 the stability of the overall power system

depends on the interconnection of the system components. This is a well studied

problem for the swing dynamics of interconnected generators and various stability

conditions exists for synchronous operation. Stability conditions for systems where

the time scale separation between the swing and electrical dynamics is no longer

valid has been limited to linear analysis [46]. A notable exception is [15] where

a full nonlinear synchronous generator connected to a simple load was considered

and clearly this is an open area of research.

In this section we discussed how control laws should be designed to minimize

the effect of small variations in the terminal conditions of a synchronous generator,

i.e. local control that does not have access or knowledge to a model of the rest of

the system.

4.5 Summary

In this chapter, we reviewed dynamical systems modeling and control in sense of

energy. Port-Hamiltonian systems as a class of energy based systems that can be

applied to model power system’s components in a unified approach is reviewed.

Interconnection and Damping Assignment Control as a passivity-based control

method for port-Hamiltonian systems is discussed.
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Chapter 5

Modeling and Control of Inverter-based

Generators

A disadvantage of integrating renewable energy into power systems is the very

short-term electrical storage in power electronic devices applied at their interface

with the grid. Therefore, frequency spikes resulting from transient power unbal-

ances and other incidences in the grid can be considerable. Lack of inertia when

integrating renewable energy into power systems, might cause stability problems.

As the size of generation units that are based on renewable energy resources is

often considerably smaller than conventional synchronous generators, their impact

on transient stability of power systems in lower penetration levels can be neglected.

However, when their share in power generation is considerable, their dynamic be-

havior affects the stability of the whole system [52].

Slootweg and Kling in [52] investigate the impact of various DG technologies

and their penetration level in transient stability of power systems. High penetra-

tion of DGs based on power electronic devices results in large voltage drops at

some nodes after occurrence of a fault. The conventional inverter design neglects

the power quality and is based on transmitting the maximum energy into the grid.

Therefore, to insure the desired voltage profile, a reliable controller is required.

There are various control algorithms for inverters at lower or higher orders

that mimic synchronous machines characteristics and whose goal is to help stability
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of the system by introducing inertia, damping and other dynamic characteristics.

These control algorithms are the basis for Virtual Synchronous Machines (VSM)

[3]. VSM techniques establish the static and dynamic performance of synchronous

generators. Applying these algorithms, despite lack of any actual physical mass

of inertia, the generation units fed by renewable energy resources emulate power

response of a real synchronous generator. Virtual torque and excitation circuit in

VSM enable the grid connected inverters to regulate active and reactive power.

An inverter is a power electronic device that generates AC voltage or current

from a DC input by operating switches. The switches are controlled by a controller

that receives as input the frequency and amplitude of the desired inverter output

AC waveform. Consequently, from a higher level control perspective, the inverter

is an actuator that receives an input reference waveform and generates an output

that traces the input waveform. The inverter power electronics controller and

switches operate at a frequency that is much higher than the frequency of the

output waveform.

The inverter output waveform is generally speaking a piecewise continuous

waveform that approximates the ideal sinusoidal reference signal and even after

notch filtering has a considerably high frequency content that may affect system

stability. This issue is not addressed in this dissertation. We will view the inverter

with its power electronic controller as an ideal voltage or current source whose

frequency and magnitude can be controlled. As stated previously, it is desired to

operate this ideal source so as to mimic some of the behavior of a synchronous

generator when the source is connected to the grid. In order to react to changes

(in voltage, frequency, active power and reactive power) at the terminal of the

inverter a controller is built that generates the reference frequency and magnitude.
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The simplest such model adjusts the frequency and magnitude using a de-

coupled first order models for the frequency and magnitude variations. This con-

trol approach is frequently called droop control. A more sophisticated approach is

based on mimicking the response of a synchronous generator. In particular, a model

that is driven by the terminal voltage and mimic the flux dynamics of a synchronous

machine is built and the output of this model generates the reference current for

the inverter. This control approach is often called a Virtual Synchronous Machine

(VSM) or Synchronverter. Several various of this approach have been suggested

in the literature and are of various degrees of complexity. In section 5.1Droop

Controlsection.5.1 and section 5.2Virtual Synchronous Machinessection.5.2 we re-

view these approaches.

In this dissertation we formulated a novel VSM approach based on a port-

Hamiltonian formulation. We mimic all dynamic behavior of the synchronous

machine to the first order (i.e. by linear model close to a scheduled slowly varying

operating point). Due to the fact that the model is based on port-Hamiltonian

formulation it has the potential of accounting for fast electric transients and dis-

turbances at the interface of the inverter and the rest of the system.

5.1 Droop Control

The control objective of power sharing is to specify the desired steady-state shar-

ing of the power demand among generation units [51]. Droop control technique

is a decentralized proportional control based on power-speed characteristic of syn-

chronous generators is widely used to direct active power sharing in power systems

with large scale fossil fuel based conventional generation units. Droop control

has been a common method for regulating active and reactive power in microgrids
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with inverter-based generation units. In a microgrid with several parallel-connected

inverter-based generator units, voltage and frequency droop control is a popular

method to control the share of power that is delivered by each unit [37,54]. In an

inductive system the active and reactive power of each generation unit is

P =
EV sinδ

X
(5.1)

Q =
EV cosδ − V 2

X
(5.2)

where E is the inverter terminal voltage amplitude, V is the common bus voltage

amplitude, δ is the power angle andX is the output reactance of the inverter. As we

can see in (5.1Droop Controlequation.5.1.1) and (5.2Droop Controlequation.5.1.2),

a network model of a micro-grid with purely inductive lines i.e. δ ≈ 0, active power

flows are mainly functions of frequency and reactive power flows are functions of

voltage magnitudes. Active power droop control and reactive power droop con-

trol are proportional controllers for controlling frequency and voltage magnitude,

respectively.

Active power droop control builds a relation between active power and

frequency that is very similar to the swing equation of synchronous generators [23],

∆ω̇ = −d∆ω − kP (P − Pd) (5.3)

where ∆ω = ω−ωd, d is a damping ratio and ωd (typically ωd = ωr) and Pd are the

desired values of frequency and active power, respectively. Reactive power droop

control is a proportional controller that relates reactive power flows and voltage

magnitudes [23],

∆V̇ = −d∆V − kQ(Q−Qd) (5.4)
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where ∆V = V − Vd, Vd and Qd are the desired values of voltage magnitude and

reactive power, respectively. The gains kp and kQ should be selected to satisfy

the operational criteria such as control loop bandwidth and stability [35]. In

systems with considerable line resistance, the original droop control in (5.3Droop

Controlequation.5.1.3)-(5.4Droop Controlequation.5.1.4) does not produce satis-

factory results. Several modified droop control strategies have been suggested to

address this issue [5], [36].

Droop control techniques are considered as a lower-level VSM algorithm

that corresponds to swing ewuation of a synchronous generator [3, 12, 13,24]. An-

other group of techniques to control and operate inverter-based microgrids that

are based on emulating the electromagnetic equations of synchronous generators

are reviewed next.

5.2 Virtual Synchronous Machines

This control technique is based on emulating the essential properties of a conven-

tional synchronous generator such as inertia and damping to provide simplicity

in operating inverter-based generation units. The mathematical model of syn-

chronous generators consists of two set of equations that describe its mechanical

(swing equation) and electrical (the stator and rotor winding equations) parts. The

higher order model of synchronous generators is applied to calculate the reference

values for either virtual stator current or voltage. As explained above, VSM is a

controller that is added to the inverter switching controller to enable it to behave

as a synchronous generator [3]. The functions in controlling an inverter-based

generator can be expressed in three tasks:
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1 To feed the VSM algorithm with voltage/current and frequency measure-

ments.

2 To perform VSM algorithm i.e applying the mathematical equations that are

emulating electrical and mechanical performance of a synchronous generator

and calculate a reference voltage (current) for CSI (VSI) in real time.

3 Employing the calculated reference values for generating the proper pulses

to trigger power electronic circuit of the inverter.

Zhong and Weiss in [58] introduce the dynamics and operation of syn-

chronverters based on synchronous genrators dynamics and apply frequency- and

voltage-drooping mechanisms to share active and reactive power among parallel

connected synchronverters. The approach in [58] is based on the full synchronous

generator model equations (4.10equation.4.1.10)-(4.11equation.4.1.11). However,

they make certain steady state simplifications that result in voltage source model,

i.e. an equation of the form (4.14equation.4.1.14) for the electrical part of the in-

verter model. The inertial model for the frequency dyncamics of the inverter model

is a full dynamic model mimicing a synchronous generator rotational dynamics.

Alsiraji and El-Shatshat in [3] call the control algorithms that emulates the prop-

erties of traditional synchronous machines, Virtual synchronous machine (VSM)

and categorize these methods into high and low order models. The low-order VSM

models are based on swing equation and similar to the conventional droop control

[12].

Fig 2.2DC-AC voltage conversion by an inverter [21]. (Reprinted with

permission)figure.2.2 illustrates a typical inverter-based distributed generation unit

that consists of an energy source unit that converts renewable energy to DC form
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of electricity, a capacitor bank to stabilize the DC link voltage, an inverter that

converts electricity to AC form with the network frequency and an filter to remove

the high frequency contents.

These VSM techniques are basically divided in two categories:

� Current Source Inverter (CSI)- In this methods the grid voltage is measured

and virtual synchronus machine algorithm calculates the refenrece current

for the pulse generating unit [6, 8, 9].

� Voltage Source Inverter (VSI)- In this methods the pulse generating unit

is fed by the reference voltage that is calculated using the measured phase

currents [4, 48,57,58].

The pulse generating unit that uses these reference signals typically uses

either a hysteresis current control technique (in CSI) or PWM control technique (in

VSI) or extensions/alternatives of these techniques [10]. The choice of modulation

technique affects the Total Harmonic Distortion (THD) of the inverter output [25].

5.2.1 Average Modeling

Modeling of microgrids components to simulate their nonlinearity in reasonable

computing time is required for stable operation and accurate analysis of microgrids.

Therefore, complete and detailed switching models for power electronic systems are

not practical in operation and analysis of microgrids and time-efficient models with

enough accuracy are needed for this purposes.

As in Fig. 5.1A typical 2-level 3-phase structure of inverter-based generator

in a microgrid [25]. (Copyright 2014, IEEE)figure.5.1, a voltage source inverter, is
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connected to a low pass filter that consists of an inductor L1 and a capacitor bank

Cf . Inductor L2 represents the leakage inductance of the microgrid side isolation

transformer and isolates the inverter-based generator from the microgrid. Average

modeling involves representing the output voltage (current) at point of common

coupling as average waveform.

Space Vector Modulation (SVM) [25] is applied to generate gate signals for

the inverter’s switches. In a commonly used 2-level 3-phase inverter Fig. 5.1A

typical 2-level 3-phase structure of inverter-based generator in a microgrid [25].

(Copyright 2014, IEEE)figure.5.1, the pole voltages are Vdc
2

and −Vdc
2

and there are

23 switching states where two of these switching states are null states (represents

zero volts at the terminal) and the rest are active states. SVM is used to produce

the switches gate signals. Fig. 5.2SVM diagram of 2-level 3-phase Voltage Source

Inverter [30]. (Copyright 2017, IEEE)figure.5.2 shows the corresponding vectors

of these eight states. The null states ((000)V0 and (111)V7) have zero value and

are located at the origin. Vectors with 180◦ angle difference, are corresponding

with the same phase, i.e. (100)V1 and (011)V4 represent phase a, (110)V2 and

(001)V5 represent phase b and (101)V6 and (010)V3 represent phase c. Any voltage

vector can be synthesized by altering between to adjacent states e.g. Vref in Fig.

5.2SVM diagram of 2-level 3-phase Voltage Source Inverter [30]. (Copyright 2017,

IEEE)figure.5.2 is located between V1 and V2. As Fig. 5.3Vref is transformed into

on/off signals for switches by a triangular wave (Ts is the switching period.) [30].

(Copyright 2017, IEEE)figure.5.3 shows voltage Vref can be transformed into

on/off signals for each leg in each phase by using a triangular triggering wave.

Note that different approaches in distributions of null state times T0 and T7 result

in different SVM types.

68



Figure 5.1: A typical 2-level 3-phase structure of inverter-based generator in a
microgrid [25]. (Copyright 2014, IEEE)

Figure 5.2: SVM diagram of 2-level 3-phase Voltage Source Inverter [30]. (Copy-
right 2017, IEEE)
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Figure 5.3: Vref is transformed into on/off signals for switches by a triangular wave
(Ts is the switching period.) [30]. (Copyright 2017, IEEE)
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5.3 Proposed Technique for Modeling and Control of Inverter-
based Generator

In this section, a port-Hamiltonian model of an inverter-based generator is pro-

posed where the port variables are the terminal voltage (input) and current (out-

put) produced by the generator. The suggested model is inspired by the syn-

chronous generator equations and two sets of dynamical equations are introduced

for inverter-based generator model that are motivated by the corresponding equa-

tions of a synchronous generator.

We express the inverter-based generator model around the (desired) equi-

librium point.

5.3.1 Generator Model For Current Source Inverter (CSI)

Consider a Hamiltonian function of the form,

HInv(Xe,∆ω,∆θ) =
1

2
(Xe −Xes)

TΓ−1(∆θ)(Xe −Xes) +
1

2
∆ω2 (5.5)

where Xe, ∆ω and ∆θ are the states and Γ(∆θ) is an operator matrix. Here Xes is

an equilibrium state that is derived for a desired operating point of the generator

(e.g. for a scheduled real and reactive power as well as nominal terminal voltage).

The state Xe is related to the terminal currents and an “internal current” through

the relationship,

Xe =

Xed

Xeq

Xef

 = Γ(∆θ)

idiq
if

 =

L1 0 L3

0 L1 L3∆θ
L3 L3∆θ L2

idiq
if

 (5.6)

Here id and iq are the terminal currents in dq reference frame and if is an “internal

current” that is essentially a control variable. We note that we have dropped

the “0” currents in the dq0 formulation and assume that balanced conditions
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where the “0” current is identically zero is valid. Note that Xe = Γ(∆θ)i, where

Γ(∆θ) = Γ0 + Γ1∆θ, i =
[
it if

]T
=
[
id iq if

]T

Γ0 =

L1 0 L3

0 L1 0
L3 0 L2

 and Γ1 =

0 0 0
0 0 L3

0 L3 0

 .
∆ω is deviation of the inverter frequency from the system frequency ωr. The last

element in the state vector Xe, i.e. Xef , corresponds to the so-called excitation

circuit in synchronous generator and is a control variable.

If we define X̃e = Xe −Xes we can write the Hamiltonian function as,

HInv =
1

2

[
X̃T
e ∆ω ∆θ

] Γ−1(∆θ) 0 0
0 1 0
0 0 0

 X̃e

∆ω
∆θ

 (5.7)

The gradient of Hamiltonian function has the form,

∇Hinv =

Γ−1(∆θ)X̃e

∆ω

−1
2
ĩTΓ1ĩ

 =

 ĩ
∆ω
−ĩf ĩqL3

 (5.8)

where ĩ = i− ī, ī is the current vector at the equilibrium point,

ī =
[
ids iqs ifs

]T
The dynamic equations for the port-Hamiltonian inverter model are chosen as, ˙̃Xe

∆ω̇

∆θ̇

 = (Jinv −Rinv)∇Hinv + ginv

 vt − v̄t
uf − ufs
up − ups

 (5.9)

where vt is the terminal voltage, ginv =

−I 0
0 1
0 0

, the skew-symmetric intercon-

nection matrix is defined as,

Jinv =


0 −ωrL1 0 −vds 0

ωrL1 0 ωrL3

2
−vqs 0

0 −ωrL3

2
0 −ufs 0

vds vqs ufs 0 −1
0 0 0 1 0


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and the symmetric positive-semi definite dissipation matrix is,

Rinv =


R1 0 0 0 0
0 R1 −ωrL3

2
0 0

0 −ωrL3

2
R2 0 0

0 0 0 d 0
0 0 0 0 0


Here, L1, L2, L3, R1 are the model coefficients and vds , vqs , ufs are the ele-

ments of the terminal voltage vector v̄t and the control “voltage”, uf at the de-

sired equilibrium point. We note that the control input up and its steady state

value ups correspond to the torque input in the synchronous generator. Further-

more, the terminal input variable in (5.15Generator Model For Voltage Source

Inverter (VSI)equation.5.3.15) is the voltage and the output variable is the current[
it − īt
if − īf

]
= ∇HInv(X̃e,∆ω,∆θ).

The dissipation matrix, Rinv is positive-semi definite provided the following

condition holds,

R1R2 ≥ (
ωrL3

2
)2 (5.10)

We assume this condition is satisfied throughout this dissertation.

5.3.2 Generator Model For Voltage Source Inverter (VSI)

For Voltage Source Inverter, we construct a control law model that is based on

a linearization of electrostatic generator model in example 4.1.5exmp.4.1.5. In

particular, linearizing the generator equations around a given operating point

(4.15equation.4.1.15) results in a system with Hamiltonian function of the form

HInv(Xg,∆ω,∆θ) =
1

2
(Xg −Xgs)

TΛ−1(∆θ)(Xg −Xgs) +
1

2
∆ω2 (5.11)

where Xg, ∆ω and ∆θ are the states and Λ(∆θ) is an operator matrix. Here Xgs

is an equilibrium state obtained from the desired operating point. The state Xg is
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RES vt(abc)

-

+

Inverter

Generator

Modelṽt(dq0)

−
vs(dq0)

+
vt(dq0)

T
−

1(ω
)

T (ω)

∆ω
+

ωr

ω

+

ĩt(dq0)
+

is(dq0)
+

it(dq0)

Pulse Generator
it(abc)

Figure 5.4: Schematic diagram of the open loop inverter-based generator design.
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related to the terminal voltages and an “internal voltage” through the relationship

Xg =

Xgd

Xgq

Xgf

 = Λ(∆θ)

vdvq
vf

 =

λ1 0 λ3

0 λ1 λ3∆θ
λ3 λ3∆θ λ2

vdvq
vf

 (5.12)

Here vd and vq are the terminal voltages in dq reference frame and vf is an “inter-

nal voltage” that is essentially a control variable. Note that Xg = Λ(∆θ)v, where

Λ(∆θ) = Λ0 + Λ1∆θ, v =
[
vt vf

]T
=
[
vd vq vf

]T

Λ0 =

λ1 0 λ3

0 λ1 0
λ3 0 λ2

 and Λ1 =

0 0 0
0 0 λ3

0 λ3 0

 .
∆ω is deviation of the inverter frequency from the system frequency ωr. The last

element in the state vector Xg, i.e. Xgf is a control variable.

If we define X̃g = Xg −Xgs we can write the Hamiltonian function as,

HInv =
1

2

[
X̃T
g ∆ω ∆θ

] Λ−1(∆θ) 0 0
0 1 0
0 0 0

 X̃g

∆ω
∆θ

 (5.13)

The gradient of Hamiltonian function has the form,

∇Hinv =

Λ−1(∆θ)X̃g

∆ω
−1

2
ṽTΛ1ṽ

 =

 ṽ
∆ω

−ṽf ṽqλ3

 (5.14)

where ṽ = v − v̄, v̄ is the voltage vector at the equilibrium point,

v̄ =
[
vds vqs vfs

]T
The dynamic equations for the port-Hamiltonian inverter model are give by, ˙̃Xg

∆ω̇

∆θ̇

 = (Jinv −Rinv)∇Hinv + ginv

 ĩtĩf
ũq

 (5.15)
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where ĩt = it − īt, ĩf = if − ifs , ũq = uq − uqs , it is the terminal current, ginv =−I 0
0 1
0 0

, the skew-symmetric interconnection matrix is defined as,

Jinv =


0 −ωrλ1 0 −ids 0

ωrλ1 0 ωrλ3
2
−iqs 0

0 −ωrλ3
2

0 −ifs 0
ids iqs ifs 0 −1
0 0 0 1 0


and the symmetric positive-semi definite dissipation matrix is,

Rinv =


G1 0 0 0 0
0 G1 −ωrλ3

2
0 0

0 −ωrλ3
2

G2 0 0
0 0 0 d 0
0 0 0 0 0


λ1, λ2, λ3, G1, G2 and d are the model’s coefficients and ids , iqs , ifs are the elements

of the current vector at the desired equilibrium point īt.

The dissipation matrix, Rinv is positive-semi definite provided the following

condition holds,

G1G2 ≥ (
ωrλ3

2
)2 (5.16)

In (5.15Generator Model For Voltage Source Inverter (VSI)equation.5.3.15) ĩf and

ũq are control inputs that can be selected to regulate the frequency (voltage) and

active and reactive power outputs. For a PWM based inverter as shown in Fig.

5.7Schematic diagram of the closed-loop inverter-based controllerfigure.5.7 the gen-

erator model in (5.15Generator Model For Voltage Source Inverter (VSI)equation.5.3.15)

provides the reference value for the inverter PWM control algorithm. We note that

the input to (5.15Generator Model For Voltage Source Inverter (VSI)equation.5.3.15)

is the generator terminal current.
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RES vt(abc)

-

+

Inverter

Generator

Modelĩt(dq0)

−

is(dq0)

+

it(dq0)

T
−

1(ω
)

T
(ω

r )

∆ω
+

ωr

ω

+

ṽt(dq0)
+

vs(dq0)
+

vt(dq0)

Pulse Generator
vtref (abc)

Figure 5.5: The proposed voltage source inverter-based controller.
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5.4 Dynamics and Stability of Interconnected Power Sys-
tem Components

The Hamiltonian model of the electrical dynamics of a virtual CIS synchronous

generator has the form,

˙̃xInv = (JInv −RInv)∇HInv(x̃Inv) + gInvū (5.17)

yInv =

−ĩtĩf
∆ω


where x̃Inv =

 X̃e

∆ω
∆θ

, ū =

 ṽtũf
ũp

. The network and load that is connected to the

generator can be represented by a total Hamiltonian function Hn that is typically

a quadratic function of network and load inductance’s fluxes and capacitance’s

charges,

ẋn = (Jn(xn)−Rn(xn))∇Hn(xn) + gn(xn)un + en(xn)vn (5.18)

yn = gTn (xn)∇Hn(xn)

where yn = ṽt, un = −ĩt are the port variables and vn is an external input. The

system consisting of the synchronous generator and the network and load port-

Hamiltonian model has the overall Hamiltonian function Ht(xg, xn) = Hg(xg) +

Hn(xn) and dynamic equations of the overall system is of the form,[
ẋg
ẋn

]
= (Jt(xg, xn)−Rt)∇Ht(x1, x2) + gtut + E(xn)vn (5.19)

While each individual component Hinv and Hn may be a stable system in isolation,

in general the interconnected system may not be stable for all the operating con-

ditions and stability can only be achieved by an appropriate control design such as

Interconnection and Damping Assignment (IDA) [41, 42] where a desired Hamil-

tonian function is assigned by proper control law design. This requires complete
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knowledge of Hn which in reality mat not be available and thus alternative meth-

ods such as robust IDA may be needed. Such problem will be studied in future

research. Below we present the IDA design for a simple microgrid system.

5.5 Control Design

To achieve overall system stability, we shape the energy of the system to a desired

function that is positive semi-definite and whose time-derivative is non-positive for

any initial condition. Interconnection and damping assignment disscussed in sec-

tion 3.4.1Interconnection and Damping Assignment (IDA) Controlsubsection.3.4.1

provides a methodology for assigning the desired energy function and structure to

the closed loop system [41]. The desired energy function has minimum value at

the desired equilibrium point and the interconnection and damping matrices are

assigned to provide the appropriate control law [41], [42]. Galaz, Ortega, et al.

develope a passivity based control method for adjusting the behavior of a nonlin-

ear system. In [16] this methodology is used to design the excitation control of

synchronous generators.

For a simplified inverter-based microgrid consisting of single line, con-

stant impedance load and single CSI inverter-based generator system described in

section 5.3.1Generator Model For Current Source Inverter (CSI)subsection.5.3.1

(Fig.5.6The open loop system consisting of a Current Source Inverter (CSI), a

line and a load, all modeled as port-Hamiltonian systemsfigure.5.6), the Hamilto-

nian function for the system connected to the CSI inverter-based generator can be

expressed as the sum of two terms,

Hn = Hline +Hload (5.20)
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We write the Hamiltonian function of the overall system in the form,

H(x) =
1

2
(x− xs)TQ(x− xs) (5.21)

where xs is the desired equilibrium point so H(x) is minimum at xs i.e. ∇H|x=xs =

0. The port-Hamiltonian model of the system has the form,

˙̃x = (J̃ − R̃)∇H(x̃) + gũ (5.22)

ũ =

[
uf − ufs
up − ups

]
where the Hamiltonian function is,

H(x̃) =
1

2
x̃TQ(∆θ)x̃ (5.23)

and

R̃ = diag(Rline, Rload, Rinv),

J̃ =

 Jline I B′

−I Jload 0
−B′T 0 Jinv

, B′ =
[
I2×2 02×2

]
,

Q(∆θ) =


K 0 0 0
0 Γ−1(∆θ) 0 0
0 0 1 0
0 0 0 0


The above Hamiltonian function is minimum at xs but matrix Q(∆θ) is not

positive-semi definite. Indeed,

1

2
XT
e Γ−1(∆θ)Xe =

1

2
iTΓ(∆θ)i =

1

2
iT (Γ0 + Γ1∆θ)i

=
1

2
iTΓ0i+

1

2
iTΓ1i∆θ

=
1

2
XT
e Γ−1(∆θ)Γ0Γ−1(∆θ)Xe + L3idiq∆θ
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up

uf
CSI

it

vt
Line

il

vl
Load

Figure 5.6: The open loop system consisting of a Current Source Inverter (CSI), a
line and a load, all modeled as port-Hamiltonian systems.

H(x̃) can be rewritten as,

H(x̃) =
1

2
x̃TQ0(∆θ)x̃+ L3ĩf ĩq∆θ (5.24)

For a π model line with node capacitance values of c1 and c2 and inductance value

of l and an inductive load with inductance value of ll,

Q0(∆θ) =


K 0 0 0
0 Γ−1(∆θ)Γ0Γ−1(∆θ) 0 0
0 0 1 0
0 0 0 0


and K is the orthogonal matrix of load and line capacitance and inductance ma-

trices:

K = diag(C−1
1 , C−1

2 , L−1, L−1
l )

where C1 = c1I, C2 = c2I, L = lI, Ll = llI (I is the identity matrix). For L1 ≥ 0

and L1L2 ≥ L2
3, Q0 is positive semi-definite. We assume this condition is true the

reminder of this paper. Applying IDA methodology in section 3.4.1Interconnec-

tion and Damping Assignment (IDA) Controlsubsection.3.4.1 to the interconnected

power system we choose the desired quadratic energy function Hd as,

Hd =
1

2
x̃TQ(∆θ)x̃+

1

L1(L1L2 − L2
3)

(L3X̃ed − L1X̃ef )2+

1

L1

X̃2
eq +

1

L1L2 − L2
3

X2
ef

+
α

2
∆θ2 =

1

2
x̃TQ0x̃+ L3ĩf ĩq∆θ +

1

L1(L1L2 − L2
3)

(L3X̃ed − L1X̃ef )2+
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1

L1

X̃2
eq +

1

L1L2 − L2
3

X2
ef

+
α

2
∆θ2 (5.25)

where X̃e = Xe −Xes =

X̃ed

X̃eq

X̃f

 and ĩ =

ĩdĩq
ĩf

.

Then the desired overall Hamiltonian function satisfies,

Hd(x̃(t)) = Hd(x̃(0))−
∫ t

0

∇HT (x̃(s))Rd(x̃(t))∇Hd(x̃(s))ds

We seek a state feedback control law uf (x̃) and up(x̃), so that

H(uf (x̃), up(x̃)) = Hd (5.26)

Proposition 5.5.1. The system given in (5.22Control Designequation.5.5.22),

with the state feedback controller:

uf = ufs +
2

3
(
L3

L1

)(R1 + ωrL1∆θ)

(
3̃id + 2

L3

L1

ĩf

)
+

1

3
(
L3

L1

)(2R1∆θ + ωrL1)

(
3̃iq + 2

L3

L1

∆θĩf

)
(5.27)

and

up = 2vds ĩd + 2vqs ĩq + 2
L3

L1

ĩf (vds + ∆θvqs)− α∆θ (5.28)

with the gain α ≥ 0 results in the following closed loop system:

˙̃x = (Jd(x̃)−Rd(x̃))∇Hd(x̃) (5.29)

where

Jd(x̃) =

 Jline I B′

−I Jload 0
−B′T 0 Jdinv

 ,
Rd(x̃) = diag(Rline, Rload, Rdinv

)

Jdinv
(x̃) =


0 −a b −vds 0
a 0 c −vqs 0
−b −c 0 −ufs 0
vds vqs ufs 0 −1
0 0 0 1 0


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and

Rdinv
(x̃) =


R1

3
0 0 0 0

0 R1

3
0 0 0

0 0 R2 0 0
0 0 0 d 0
0 0 0 0 0


where a = ωrL1

3
, b = 2

3
(L3

L1
)(R1 + ωrL1∆θ), c = 1

3
(L3

L1
)(2R1∆θ + ωrL1) and xs is an

equilibrium of the above system.

Proof Substituting (5.27equation.5.5.27) and (5.28equation.5.5.28) into (5.22Con-

trol Designequation.5.5.22) gives (5.29equation.5.5.29) after some manipulations.

Proposition 5.5.2. The closed-loop system (5.29equation.5.5.29) has a unique

equilibrium point at x̃∗ = 0.

Proof At the equilibrium point of (5.29equation.5.5.29),

(Jd −Rd)∇Hd(x̃∗) = 0 (5.30)

Note that,

det(Jd −Rd) =

(
L3

L1

)2(
R2

27
)
(
4(R1 + ωrL1∆θ)2 + (2R1∆θ + ωrL1)2

)
Consequently, the matrix Jd − Rd is nonsingular for all nonzero values of R2 and

L3 and thus (5.26Control Designequation.5.5.26) requires

∇Hd(x̃∗) = 0

We know that ∇Hline|x=xs = 0, ∇Hload|x=xs = 0 and for the inverter-based gener-

ator we must have,

∇Hdinv
|x=xs =


3̃id + 2(L3

L1
)̃if

3̃iq + 2(L3

L1
)∆θĩf

ĩf
∆ω

−ĩf ĩqL3 + α∆θ

 = 0 (5.31)
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Consequently, ĩf = 0, ĩd = 0, ĩq = 0, ∆ω = 0 and ∆θ = 0 thus x̃∗ = 0.

5.6 Stability

In this section we discuss the stability of the open loop microgrid system as well as

the closed loop system with controller (5.27equation.5.5.27)-(5.28equation.5.5.28).

We start with the uncontrolled system.

Proposition 5.6.1. Considering system (5.22Control Designequation.5.5.22) with

constant control ũ = 0 then for any fixed value of ∆θ, system (5.22Control

Designequation.5.5.22) has an equilibrium point. At equilibrium point ∆θ̇ =

∆ω∗ = 0 so ∆θ(t) = ∆θ(0).

For L1 ≥ 0 and L1L2 ≥ L2
3, if |∆θ| ≤

√
L1L2−L2

3

|L3| , we have Q(∆θ) ≥ 0 and thus H(x̃)

is a positive semi-definite function i.e. H(x̃) ≥ 0. Furthermore, if R1R2 ≥ (ωrL3

2
)2

the open loop system is stable.

Proof The open-loop dissipation matrix is, R̃ = diag(Rline, Rload, Rinv),

where Rline, Rload and Rinv represent line, load and inverter-based generator dis-

sipation matrices, respectively. For R1R2 ≥ (ωrL3

2
)2, the matrix R̃ is positive

semi-definite i.e. R̃ ≥ 0. The time-derivative of Hd is,

Ḣ(x̃) = −∇H(x̃)R∇H(x̃) ≤ 0 (5.32)

so Ḣd(x̃) ≤ 0 and consequently the system is stable.

We apply the Lyapunov theorem in the analysis of the stability of the closed

loop system (5.29equation.5.5.29) at the desired equilibrium point. In the port-

Hamiltonian formulation of the system the best candidate for Lyapunov function is

frequently the Hamiltonian function. In the remainder of this section we investigate
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conditions for stability of the controlled system via Lyapunov stability and the

properties of the port-Hamiltonian representation of the system.

The added terms in Hd are a function of inverter-based generator states,

Hd(x̃) = H(x̃) +G(x̃inv)

where x̃inv are the states associated to the inverter-based generator. Note that we

have,

∇Hd = col(∇Hline,∇Hload,∇Hdinv
)

Proposition 5.6.2. For parameter values L1 ≥ 0, L1L2 − L2
3 ≥ 0, L3

L1
≤ 1,

L1L2 ≤ 2.5L3 and L1L2−L2
3 = L3, the closed-loop system with the state feedback

law in proposition 5.5.1prop.5.5.1 is globally asymptotically stable.

Proof By proposition 5.5.2prop.5.5.2, the closed loop Hamiltonian function

has an isolated minimum at the desired equilibrium point i.e. ∇Hd|x=xs = 0. First

we will show that under stated conditions the energy function Hd in (5.25Control

Designequation.5.5.25) is positive definite. We have,

X̃ed = L1ĩd + L3ĩf (5.33)

and

X̃ef = L3ĩd + L3∆θĩq + L2ĩf

Consequently,

L3X̃ed − L1X̃ef = (L2
3 − L1L2)̃if − L3L1∆θĩq

and the first term in (5.25Control Designequation.5.5.25) is,

1

2
x̃TQ0x̃ =

1

2
(L1ĩ

2
d + 2L3ĩdĩq + L1ĩ

2
q + L2ĩ

2
f )
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=
L1

2
(̃id + αĩq)

2 +
L1

2
(1− α2)̃i2q +

L2

2
ĩ2f (5.34)

Let α = L3

L1
≤ 1 and note that L3

L1L2−L2
3

= 1. Then, the second term in (5.25Control

Designequation.5.5.25) becomes,

1

L1(L1L2 − L2
3)

(L3X̃ed − L1X̃ef )2

=
1

L1L3

[
(L2

3 − L1L2)̃if − L1L3∆θĩq
]2

=
L3

L1

(̃i2f + L2
1∆θ2ĩ2q + 2L1∆θĩf ĩq) (5.35)

Now we add (5.34Stabilityequation.5.6.34) and L3ĩf ĩq∆θ to (5.35Stabilityequation.5.6.35),

(
L3

L1

+
L2

2
)̃i2f + L3L1∆θ2ĩ2q + 3L3∆θĩf ĩq (5.36)

that is positive if,

2

√
(
L3

L1

+
L2

2
)
√

(L3L1) ≤ 3L3 (5.37)

then,

L1L2 ≤ 2.5L3

The rest of terms in (5.25Control Designequation.5.5.25) are non-negative. This

shows that Hd(x̃) is a positive definite function with Hd(0) = 0.

The time derivative of the closed loop Hamiltonian function Hd is non-

positive. Indeed,

Ḣd = ∇HT
d

˙̃x = −∇HT
d Rd∇Hd

Rd is positive-semi definite so Ḣd ≤ 0. The state values where Ḣd = 0 are points

of the from (0, 0, ...., 0,∆θ). Since ∆ω = 0 we have ∆θ = ∆θ0 and by Lasalle’s

principle the system is asymptotically stable.
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-

+
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Generator

Modelṽt(dq0)

−
vs(dq0)

+
vt(dq0)

Controller

ũf , ũp X̃e,∆ω,∆θ

T
−

1(ω
)

T
(ω

r )
∆ω

+

ωr

ω

+

ĩt(dq0)
+

is(dq0)
+

it(dq0)

Pulse Generator
it(abc)

Figure 5.7: Schematic diagram of the closed-loop inverter-based controller.
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Figure 5.8: ∆θ in open loop system for initial value π
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Figure 5.9: ∆θ for different values of α in the closed-loop system (α = 106).

5.7 Example

We developed a simulation platform to examine the port-Hamiltonian model of

system consisting of a constant impedance load, a π line and an inverter-based

generator.

First we examined the performance of the open loop inverter-based genera-

tor with a constant input ũp = 0 and ũf = 0. The system is open loop stable with

the selected values of parameters but as Fig. 5.8∆θ in open loop system for initial

value π
6
figure.5.8 show ∆θ(t) does not converge to zero.

The performance of the closed loop system was evaluated for different values of
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Figure 5.10: ∆ω for different values of α in the closed-loop system (α = 106).
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Figure 5.11: Inverter-based generator terminal voltage for different values of α in
the closed-loop system
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Figure 5.12: Generator and load terminal voltage.
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Figure 5.13: ũf when a 50 percent increase in load resistance occurs(α = 106).
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Figure 5.14: ũp when a 50 percent increase in load resistance occurs(α = 106).
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Figure 5.15: Inverter-based generator terminal voltage when a 50 percent increase
in load resistance occurs(α = 106).
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Figure 5.16: Phase angle when a 50 percent increase in load resistance occurs(α =
106).
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Figure 5.17: Frequency deviation when a 50 percent increase in load resistance
occurs(α = 106).
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Figure 5.18: Active power when a 50 percent increase in load resistance occurs(α =
106).
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Figure 5.19: Reactive power when a 50 percent increase in load resistance
occurs(α = 106).

the tuning parameter α. Fig. 5.9∆θ for different values of α in the closed-loop

system (α = 106)figure.5.9 shows that ∆θ converges to zero but convergence rate

depends critically on the controller parameter α as shows in Fig. 5.10∆ω for dif-

ferent values of α in the closed-loop system (α = 106)figure.5.10. Furthermore,

the convergence rate and dynamics of ∆ω depend critically on α. Finally, Fig.

5.11Inverter-based generator terminal voltage for different values of α in the closed-

loop systemfigure.5.11 shows that the generator terminal voltage convergence rate

critically depends on α. Fig. 5.12Generator and load terminal voltagefigure.5.12

shows the performance of the generator and load voltages for a fixed value of

α = 106.

The performance of the controlled system was evaluated as function of a step

change in the load. i.e. the load resistance was changed by 50% (power factor

from 93.58 % to 96.99%). Fig. 5.13ũf when a 50 percent increase in load resis-

tance occurs(α = 106)figure.5.13 and 5.14ũp when a 50 percent increase in load

resistance occurs(α = 106)figure.5.14 show the response of the two control variables

to the load change. Fig. 5.15Inverter-based generator terminal voltage when a 50

percent increase in load resistance occurs(α = 106)figure.5.15 and 5.16Phase angle
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when a 50 percent increase in load resistance occurs(α = 106)figure.5.16 show that

the terminal voltage and the state ∆θ converged to the new steady state values as

function of the load change while the steady state value of the frequency did not

change as is shown in Fig. 5.17Frequency deviation when a 50 percent increase in

load resistance occurs(α = 106)figure.5.17, Fig. 5.18Active power when a 50 per-

cent increase in load resistance occurs(α = 106)figure.5.18 and 5.19Reactive power

when a 50 percent increase in load resistance occurs(α = 106)figure.5.19 show that

the real and reactive powers converge quickly to their new values.

5.8 Summary

In this chapter we have presented a VSM approach for the control of an inverter-

based generator. The developed approach is based on a full dynamical port-

Hamiltonian formulation that emulates synchronous generator behavior. The ap-

proach is developed for both CSI and VSI type of inverters. The results are demon-

strated in a simple example of a generator connected to a simple microgrid.
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Chapter 6

Conclusion

Modern power systems have components that have power electronic interfaces that

are both fast and can have complex controlled behavior at the interfaces. Conse-

quently, time scale separation that is often used in the analysis of power system

dynamics may no longer be valid and traditional load models are not sufficient.

The development of a new modeling and analysis paradigm that does not depend

on time scale separation and is general enough to facilitate the modeling of complex

loads and generators with power electronics is needed.

To provide simplicity in operating inverter-based generation units, there

are various control strategies based on emulating the critical properties of a con-

ventional synchronous generator such as inertia and damping. This dissertation

designs a novel operational and control model for controlled power electronic loads

and inverter-based generators inspired by synchronous generators’ equations and

stated in port-Hamiltonian systems’ formulation. Within the context of Port-

Hamiltonian power system formulation we developed:

� Virtual Synchronous Machine (VSM) control architecture for both Current

Source Inverter (CSI) and Voltage Source Inverter (VSI).

� General load model that incorporate complex loads such as Constant Power

Loads.
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