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Abstract 

 

Cyclopentanone is a promising building block in the conversion of biomass to 

fuels.  It can be readily obtained from furanics derived from biomass and can be converted 

to intermediate products in the molecular weight range compatible with fuels via C-C bond 

forming reactions.  Among them, aldol condensation is a promising route.  Conventional 

MgO catalysts are intrinsically active to catalyze this reaction, but they usually exhibit low 

surface areas and low stability in the presence of liquid water.  The nitrate-citrate 

combustion method results in high-surface-area oxides with high condensation activity, but 

they are still susceptible to water attack.  Here, hydrophobic MgO-based catalysts 

functionalized with octadecyltrichlorosilane (OTS) are shown to exhibit remarkable 

stability in the liquid phase under conditions in which a conventional MgO deactivates in 

short time. 

The second topic addresses another important biomass upgrading process: the 

cross-aldol condensation of cyclopentanone (C) and acetone (A), the latter derived from 

the ketonization of acetic acid.  The four primary products, especially 2-

cyclopentylidenecyclopentanone ([C]C) and 2-isopropylidenecyclopentanone ([C]A), can 

be hydrodeoxygenated into high octane-numbered hydrocarbons.  Here, the cross-aldol 

condensation is catalyzed by MgO-NC, the unmodified solid prepared via nitrate-citrate 

combustion.  Initial rates at 200oC with various A-to-C feed ratios indicate the dominance 

of [C]-activated products.  These runs, combined with DFT calculations and adsorption 

measurements, confirm both the preferential chemisorption and α-H abstraction of 
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cyclopentanone on an MgO surface with respect to acetone.  For each ketone reactant, α-

H abstraction is rate-limiting as the total rate of formation of [C]-activated products 

remains constant, while that of [A]-activated products increases proportionally to the A-

to-C feed ratio.  The product distribution – particularly [C]A-to-[C]C ratio – is however 

controlled by subsequent C-C coupling equilibria, along with molar concentrations of A 

and C in cyclohexane. 

The third topic provides details on how external water affects an MgO-catalyzed 

cyclopentanone self-aldol condensation.  It is first found that a high OTS loading on MgO 

changes the rate-limiting step from α-H abstraction to C-C coupling, mostly due to 

increasing steric hindrance.  Regarding water responses, the initial rate on hydrophilic 

MgO-NC drops rapidly along added water amounts simply due to site blockage.  For 

hydrophobic MgO-OTS, this initial rate is appreciably improved in water vapor and only 

decreases in excess liquid water.  It is proposed that surface OTS molecules drastically 

depopulate active sites for cyclopentanone chemisorption, but the catalytic activity can be 

partially recovered by Mg2+-bound water clusters.  These clusters can polarize free 

cyclopentanone molecules through hydrogen bonds, thus lowering the energy barrier for 

C-C coupling.  Such water assistance is only observed when MgO is functionalized with 

OTS.  Octadecyl-less post-calcined MgO-OTS is shown to experience a sharp rate drop, 

similar to the one observed on silane-free MgO-NC. 
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1. Improving stability of cyclopentanone self-aldol condensation MgO-

based catalysts by surface hydrophobization with organosilanes 

 

1.1. Introduction 

The combination of multistage thermal conversion of biomass and a catalytic 

cascade of C-C bond forming reactions followed by hydrodeoxygenation appears as an 

attractive strategy for the production of biomass-derived fuel components [1-5].  This 

strategy minimizes several drawbacks found in the more conventional 

pyrolysis/hydrotreating approach [6-10].  Furfural is among the most abundant components 

obtained from this multistage thermal conversion process [2].  While furfural is by itself 

an economically important aldehyde used in the synthesis of various chemicals [11-14], it 

is rather unstable and prone to coke formation, which causes rapid catalyst deactivation 

during upgrading.  Recently, Hronec and co-workers [15,16] have called attention to an 

appealing path to produce a much more stable intermediate, cyclopentanone (Figure 1).  

That is, under hydrogen atmosphere and in the presence of water, furfural can be converted 

to cyclopentanone via the Piancatelli rearrangement combined with a two-step selective 

hydrogenation, before and after the arrangement; i.e., first, the -CO group in furfural is 

hydrogenated to –OH and then, the C=C double bond in cyclopentenone is saturated [17-

21].  As a potential coupling agent, this non-toxic cyclic ketone has been utilized in the 

alkylation of phenolic compounds and, more particularly, the self-aldol condensation 

followed by hydrodeoxygenation to form bicyclopentyl, a promising fuel component [22].  

A few attempts to optimize the catalysts that maximize C5-C5 coupling have been described 
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in the literature, using both solid acids and solid bases [23,24].  Yang et al. [25] investigated 

the self-condensation of pure cyclopentanone at 150oC on basic hydrotalcites and alkaline 

earth metal oxides and found high yields to 2-cyclopentylidenecyclopentanone.  Likewise, 

Liang et al. [26] reported 100% selectivity to this dimer at 80% conversion over an MgO-

ZrO2 catalyst at 130oC and 1 atm.  Other authors have also used cyclopentanone as a co-

reactant with aldehydes to obtain a broader range of fuel-resembling intermediates.  For 

example, the combination of cyclopentanone and furfural has been proposed by Ordonez 

et al. [27], using MgO-ZrO2 as a catalyst operating under mild reaction conditions (20 - 

50oC) in an aqueous phase.  At all furfural/cyclopentanone molar ratios (1:1 to 10:1), only 

cross-condensates were obtained due to the high affinity of furfural and the catalyst surface.  

Similarly, 2-cyclopentylidenecyclopentanone was also absent from the product mixtures 

in the study by Huber’s group [28], who used solvent-free conditions for the reaction 

between cyclopentanone and butanal at 140oC.  Despite excess amounts of cyclopentanone 

and excellent activity of the solid base MgAl-HT, only cross-condensation products were 

obtained with 80% selectivity to cyclopentanone-activated adducts.  Due to the very high 

yields and selectivity in which cyclopentanone can be produced from furfural [15,16], it is 

still interesting to investigate the production of the stable compound bicyclopentyl which 

may have desirable fuel properties [29,30]. 

The base-catalyzed self-condensation of cyclopentanone follows a nucleophilic 

addition (AN) mechanism, in which the first step is the generation of an enolate 

intermediate resulting from the abstraction of a proton by the basic site from the C in the α 

position [31].  The second step that involves the C-C bond formation may occur either via 
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reaction of an adsorbed molecule and a molecule in the fluid (Eley-Rideal model) or via a 

bimolecular surface reaction (Langmuir-Hinshelwood model).  In the first case, the enolate 

is bound to the surface while the electrophile is in the fluid phase [32,33].  By contrast, in 

the second case, the electrophile is also adsorbed [34].  The subsequent steps are C-C 

coupling, reprotonation, and dehydration.  The resulting dimeric product (2-

cyclopentylidenecyclopentanone) is also able to donate a proton to the surface for another 

condensation step that yields the trimeric product 2,5-dicyclopentylidenecyclopentanone. 

 

 

 

Figure 1.  Cyclopentanone self-aldol condensation as an intermediate process in 

upgrading biomass-derived furfural. 
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MgO is a typical basic oxide commonly used in aldol-condensation and widely 

investigated [35].  While it is beneficial to enhance the surface area of MgO for higher 

reaction rates, this enhancement also increases the uptake of undesirable nucleophiles such 

as water and product oligomers, which accelerate deactivation, as shown in several studies 

[25,36-38].  Finding catalytic materials that are effective for aldol condensation and at the 

same time more resistant to deactivation than conventional basic catalysts is an appealing 

objective.  Therefore, the main goal of this contribution has been investigating novel 

materials with improved stability during aldol condensation.  We have found that MgO 

modified with mesoporous silica and subsequently grafted with an organosilane (e.g. 

octadecyltrichlorosilane) [39,40] that renders the surface hydrophobic greatly improves 

catalyst stability.  

 

1.2. Experimental 

1.2.1. Synthesis of catalytic materials 

1.2.1.1. Combustion method 

MgO-NC.  A mixture of 25.6 g of Mg(NO3)2.6H2O (Aldrich, 99.9 %, 0.1 mol) and 

30 mL of water was stirred vigorously for 15 mins at 80oC.  Then, a solution containing 

19.2 g of citric acid (Aldrich, 99.5 %, 0.1 mol) in 20 mL of water was added to the mixture, 

which was continuously heated and stirred until half of the liquid vaporized, leaving a 

viscous gel.  This gel was subsequently calcined overnight under static air at 550oC, during 

which time, combustion of citric acid took place, producing a characteristic fluffy, high-
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surface-area MgO material [ 41 , 42 ], noted here as MgO-NC (for nitrate-citrate 

combustion). 

 

1.2.1.2. Hydrophobization method 

MgO@mSiO2 composite.  As demonstrated in previous investigations of 

analogous materials based on TiO2 photo-oxidation catalysts [43,44], it is possible to 

enhance the overall surface area without complete blockage of the TiO2 active sites [45].  

To prepare this hybrid material, 2 g of the parent MgO-NC were stirred vigorously for 15 

mins at room temperature in a mixture of 4 mL of NH4OH (50% v/v) and 40 mL of water.  

Subsequently, a 0.1 M solution of cetyltrimethylammonium bromide (CTAB) in a 1:2 vol. 

ratio of ethanol-water was added to the suspension, while continuously stirring for 30 mins.  

Then, variable amounts of tetraethyl orthosilicate (TEOS) were introduced dropwise.  The 

resulting suspension was stirred overnight, centrifuged, and washed 3 times with ethanol.  

The separated solid was dried at 100oC overnight and calcined under static air at 400oC for 

6 hours to obtain the MgO@mSiO2 composite. 

Functionalization with octadecyltrichlorosilane (OTS).  The following method 

was used to hydrophobize the MgO-based materials.  First, 0.45 mL of water was dropped 

onto 1 g of MgO-NC or MgO@mSiO2, and the resulting wet solid was suspended in a 1:50 

v/v OTS-toluene solution.  Then, the suspension was shaken for 5 mins and stirred 

overnight, followed by centrifugation and 3 washes with ethanol.  The separated solid was 

finally dried overnight at 110oC to yield MgO-OTS (or MgO@mSiO2-OTS), in which OTS 

has reacted with surface OH groups to generate a hydrophobic surface. 
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In this paper, we prepared two types of MgO@mSiO2-OTS and one type of MgO-

OTS with nominal compositions of (49 wt.% MgO – 21 wt.% SiO2 – 30 wt.% OTS), (74 

wt.% MgO – 10 wt.% SiO2 – 16 wt.% OTS) and (70 wt.% MgO – 30 wt.% OTS) 

respectively.  The catalyst with the first nominal composition, which was mainly used to 

study the catalytic activity and stability, would be mostly referred to as MgO@mSiO2-OTS 

for sake of simplicity. 

 

1.2.2. Characterization 

The final content of OTS in the MgO@mSiO2-OTS sample was determined by 

thermogravimetric analysis (TGA).  As MgO and SiO2 are thermally stable under air, only 

OTS was quantitatively oxidized to CO2 and H2O, which were quantified by MS/TGA.  

For this purpose, 47.48 mg of MgO@mSiO2-OTS was analyzed by heating with a linear 

ramp under flow of an Ar-air mixture, starting from 40oC and increased by 2oC.min-1. 

Specific surface areas for samples of MgO-NC, MgO@mSiO2, MgO-OTS, 

MgO@mSiO2-OTS, and commercial MgO were obtained on a Micromeritics 2010 

instrument.  The value obtained for MgO@mSiO2 was combined with mass spectra 

obtained during the TGA of MgO@mSiO2-OTS to quantify the distribution of OTS 

functionalities on the catalyst.  For sake of simplicity, we assume complete hydrolysis of 

the chloro-groups in OTS and monodentate anchoring.  Accordingly,  

x = 
nOTS×NA

AMgO@mSiO2

 = 

mC18H37Si(OH)2O-

MWC18H37Si(OH)2O- 
×NA

mMgO@mSiO2
×SBET MgO@mSiO2
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or 

x = 

mC18H37Si(OH)2O-

MWC18H37Si(OH)2O- 
×NA

[1-mC18H37Si(OH)2O-]×SBET MgO@mSiO2

 

where 

x    =     molecules of OTS, or C18H37Si(OH)2O-, anchored per 

unit area of MgO@mSiO2 in MgO@mSiO2-OTS 

mC18H37Si(OH)2O-  =     TGA-based content of OTS in 

MgO@mSiO2-OTS [g.g catalyst-1] 

mMgO@mSiO2
   =     TGA-based content of MgO@SiO2 in 

MgO@mSiO2-OTS [g.g catalyst-1]  

 

The morphology of MgO-NC was analyzed by TEM (Zeiss 10A).  An SEM image 

of the final MgO@mSiO2-OTS product was recorded in backscattered electron mode, 

combined with EDS analysis to determine whether the OTS had been fully hydrolyzed.  X-

ray diffraction (XRD) was used to confirm the presence of crystalline MgO in the solid 

prepared by the nitrate-citrate combustion. 

The basicity of MgO@mSiO2-OTS was characterized via temperature-

programmed desorption (TPD) of adsorbed CO2 following the method described elsewhere 

[46].  Briefly, in each run, 100 mg of MgO@mSiO2-OTS was heated to 200oC in the TPD 

system with a ramp rate of 10oC.min-1, under a He flow rate of 30 mL.min-1 and then cooled 

down to room temperature.  A CO2 flow rate of 30 mL.min-1 was then passed through the 

sample for 30 mins, followed by a 2-hour purge with He to remove any physisorbed CO2.  
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The TPD was performed under the same He flow rate by heating to 600oC with a ramp rate 

of 10oC.min-1. 

 

1.2.3. Catalytic measurements 

1.2.3.1. Aldol condensation under N2   

In each run, the solid catalyst (MgO-NC or MgO@mSiO2-OTS) suspended in 

cyclohexane was placed into a 100-mL Parr reaction vessel.  Before reaction, the system 

was purged with N2, pressurized to 300 psia and heated to 150 – 200oC.  The 

cyclopentanone reactant was placed in a 30-mL feeding cylinder, pressurized to 450 – 500 

psia of N2 along with an internal standard (toluene) and then injected into the reaction 

system, as soon as the desired temperature was stabilized.  Reaction runs were carried out 

under a stirring speed of 750 rpm for a given reaction time.  All liquids were analyzed by 

GC-MS and GC-FID as previously described [47]. 

 

1.2.3.2. Aldol condensation under H2 

Following a recently proposed approach [48], some of the aldol condensation runs 

were conducted in the presence of a Cu/SiO2 catalyst under H2.  This method has shown to 

be effective in minimizing deactivation in the aldol condensation of acetone in the vapor 

phase [49].  In our case, 250 mg of 10 wt.% Cu/SiO2 were placed into the 100-mL Parr 

reactor vessel along with the MgO-NC catalyst and the cyclohexane solvent.  The system 

was then heated to 270oC for 3 hours under 500 psia of H2 and cooled down to the reaction 

temperature of 150oC.  The cyclopentanone feed was pressurized up to the target H2 
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pressure in a 30-mL feeding cylinder along with toluene.  As above, when the desired 

reaction temperature was stabilized, the feed was injected into the reaction system.  

 

1.2.3.3. Quantification of the extent of catalyst deactivation  

Catalyst deactivation during aldol condensation reactions is a common problem, 

which has been observed in numerous studies [25].  A common practice to model catalyst 

deactivation is to use an exponential decay of activity with time (t) according to the 

expression a = a0 e-kD t, where kD is the deactivation parameter, larger for rapidly 

deactivating cases and smaller for more stable catalysts.  In a steady state, flow reactor, 

determining kD is rather straightforward.  However, evaluating deactivation in a batch 

reactor is much more complicated than on a flow reactor since the concentration C 

continuously changes, and both deactivation and reaction kinetics affect the variation of C 

with time.  An effective method for comparing rates of deactivation in a batch reactor has 

been described by Apesteguia et al. [50,51].  In this method, the evolution of reactant 

concentration is plotted as a function of the product of catalyst mass and time (w x t) for 

two different amounts of catalyst.  When there is no deactivation, the curves on the plot 

should coincide, but when the catalyst deactivates with time, the curves reach a plateau at 

different concentration values.  That is, with a smaller amount of catalyst, a longer time is 

necessary to reach a certain conversion, thus the catalyst experiences more pronounced 

deactivation than in a run with a larger amount of catalyst, which for the same conversion 

has required a shorter period of time, with consequently lower extent of deactivation.  The 

more different the curves with varying catalyst amounts are, the stronger the extent of 
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deactivation is.  By contrast, when there is no deactivation, the curves for the two runs 

should be coincident.  

 

1.2.3.4. Reusability of MgO@mSiO2-OTS   

In addition to the deactivation test using C vs. (w x t) graphs, the stability of 

MgO@mSiO2-OTS was evaluated by re-using the catalyst in consecutive runs.  In this 

experiment, 500 mg of MgO@mSiO2-OTS was used for the first 2-hour reaction at 200oC.  

After each cycle, the spent catalyst was washed with acetone, dried at 100oC and saved for 

the next cycle, keeping the same reaction conditions.  Evolution of conversion as a function 

of reaction cycle gave an estimate of the catalyst stability. 

 

1.3. Results 

1.3.1. Materials characterization 

As depicted in Figure 2, the TGA of MgO@mSiO2-OTS exhibits two distinct 

mass losses.  The first one, from 40 to 200oC, can be ascribed to the evolution of water – 

physically adsorbed on the surface; the second loss, with a maximum at about 410oC, is 

clearly due to the combustion of the functional groups in air.  By quantifying the evolution 

of CO2 and H2O in this region, with the assumption that Cl is no longer present in the 

silanized surface and Si is not evolved during TGA, one can calculate the original loading 

of OTS in the as-prepared catalyst.  The resulting value is about 20 wt.%, which is lower 

than the nominal 30 wt.% initially incorporated in the preparation, indicating that a fraction 

of the OTS initially added to the material is not effectively anchored and is lost during the 
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post-synthesis washing steps in ethanol and centrifugation.  However, the rest is strongly 

anchored and can resist relatively high temperatures before decomposition.  

 

 

Figure 2.  TGA analysis and associated mass spectra of water and CO2 evolved from the 

MgO@mSiO2-OTS sample as a function of temperature. 

 

Table 1 summarizes the specific surface areas of the various materials 

investigated.  The MgO-NC sample prepared by the combustion method exhibits a surface 

area of almost 100 m2.g-1, more than fifty times greater than that of most commercial MgO 

samples, demonstrating the effectiveness of the nitrate-citrate combustion method to 

generate oxide particles of small size.  This value is further enhanced when the MgO 

particles are incorporated onto the structure of mesoporous silica.  As shown below, when 

heated in the presence of mesoporous silica, the MgO particles redisperse and partially lose 

their crystallinity.  Even more important for this work, a relatively high surface area is still 



12 

 

retained on the hybrid material after functionalization with OTS.  By substituting the TGA-

based OTS content of MgO@mSiO2-OTS and the BET surface area of MgO@mSiO2 into 

the equation in Section 1.2.2, we have found that there is approximately one molecule of 

OTS attached to a nm2 of MgO@mSiO2, or as defined above x = 1 nm-2. 

 

Table 1.  Surface area, pore size, and pore volume of various MgO catalysts. 

 

Catalyst 
SBET Pore diameter Pore volume 

m2.g-1 nm cm3.g-1 

MgO (commercial) 1.5 - - 

MgO-NC 97 9.5 0.22 

MgO@mSiO2 448 7 0.80 

MgO-OTS 51 3.8 0.04 

MgO@mSiO2-OTS 173 4.8 0.19 

 

Figure 3 shows the pore size distribution of the four samples.  The original MgO 

material is composed of aggregates of non-porous MgO crystallites (Appendix A).  Thus, 

the observed porosity is simply due to interparticle void spaces in the aggregates.  Clearly, 

the incorporation of MgO onto the mesoporous silica enhances the overall porosity of the 

material and this porosity is partially retained upon functionalization with OTS.   
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Figure 3.  Pore size distribution of functionalized MgO catalysts compared to the parent 

MgO prepared by combustion (MgO-NC). 

 

To further characterize the structure of the different materials investigated, XRD 

was conducted on the three samples: MgO-NC, MgO@mSiO2 and MgO@mSiO2-OTS. 

 

Figure 4.  XRD patterns of functionalized MgO catalysts compared to the parent MgO. 
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As shown in Figure 4, the MgO-NC sample shows the typical XRD pattern of 

crystalline MgO (37.2o, 43.0o and 62.3o), thus verifying the identity and purity of MgO 

prepared via the nitrate-citrate combustion.  By contrast, the subsequent method of 

incorporating the mesoporous silica into the system causes a drastic loss in crystallinity of 

MgO.  As seen in the XRD pattern for the MgO@mSiO2, the peak intensity is largely 

reduced and the peak width is broadened.  That is, the vigorous stirring in aqueous NH4OH, 

followed by interaction with TEOS and surfactant and final calcination at 400oC, used to 

generate the hybrid MgO@mSiO2 material may cause significant alterations in the 

morphology and crystallinity of the MgO particles, resulting in redispersion and spreading 

of the MgO particles onto the silica surface.  It is possible that during this procedure MgO 

may partially dissolve, re-precipitate, and perhaps interact with SiO2 forming highly 

dispersed MgO domains.  In fact, the elemental mapping obtained by EDS/SEM analysis 

(Appendix A) shows a very uniform distribution of Mg and Si.  During the 

functionalization with OTS, the low crystallinity of MgO@mSiO2 experiences a further 

decline, as indicated by the even lower intensity and further broadening of the MgO peaks.   
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Figure 5.  CO2-TPD on MgO-NC, MgO@mSiO2 and MgO@mSiO2-OTS. 

 

To quantify the density of basic sites on the samples, we used the conventional 

TPD of adsorbed CO2.  As shown in Figure 5, the MgO-NC sample exhibits two major 

desorption peaks, a smaller one centered at around 375oC and a dominant peak centered at 

around 450oC.  In agreement with our previous report [46], this sample has a basic site 

density of 420 μmol.g-1.  The MgO@mSiO2 sample exhibits a very similar TPD profile to 

that of MgO-NC, with a total basic site density of 390 μmol.g-1, indicating that despite the 

dramatic changes in the topology of MgO, its surface chemistry remains unchanged after 

incorporation onto the silica surface.  However, almost all sites of high basicity strength 

are eliminated following OTS treatment, leaving a reduced basic density of 240 μmol.g-1.  

Particularly, most of the sites accessible to CO2 are in the region of intermediate basicity 

strength (i.e., the peak centered at 375oC), while only a small desorption peak remains at 

around 500oC, reflecting the presence of a small amount of strong basic sites. 
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MgO@mSiO2-OTS was subsequently tested for buoyancy in water.  A few 

particles of this catalyst was dispersed into 5 mL of water and stirred at 750 rpm for 10 

mins.  Figure 6 shows that MgO@mSiO2-OTS consistently retains on top of the free 

surface despite several mixing attempts.  Such response further indicates that the as-

prepared MgO@mSiO2-OTS catalyst is highly hydrophobic. 

 

  

Figure 6.  Buoyancy of MgO@mSiO2-OTS in water. 

(a) Before mixing.  (b) After mixing. 

Conditions: 10 mg dispersed in 5 mL of water, 750 rpm, 10 mins. 
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1.3.2. Catalytic measurements 

1.3.2.1. Apparent reaction order 

 

Figure 7.  Apparent reaction order for cyclopentanone self-aldol condensation from 

initial rate measurements. 

Reaction conditions: 0.25 g of MgO-NC, 50 mL of feed, 150oC, 450 psia in N2, 20 mins. 

 

In a batch reactor, it is important to decouple the kinetics from the catalyst 

deactivation.  Therefore, to obtain the true reaction order, initial rates of cyclopentanone 

self-aldol condensation were determined in 20-min runs over the MgO-NC catalyst at a 

constant temperature (150oC) and varying initial concentrations of cyclopentanone.  As 

shown in Figure 7, the ln(initial rate) vs. ln(initial concentration) plot gives a straight line 

of a slope near 1.0, clearly showing the first order dependence of this reaction.  This 

apparent order, displayed through a broad range of initial concentrations (0.2 M to 3.0 M), 

might suggest a unimolecular elementary step as the rate-determining step.  As mentioned 

above, the solid base-catalyzed AN mechanism consists of aldehyde/ketone adsorption, α-

proton abstraction (enolate formation), C-C coupling, surface proton abstraction 
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(reprotonation), dehydration and product desorption.  Among these steps, aldehyde/ketone 

adsorption, enolate formation and product desorption follow first-ordered kinetics.  In 

several cases, such as the gas phase self-aldol condensations of propanal or acetone on 

anatase, enolate formation has been found to be rate-limiting [48].  Other rate-determining 

steps have been proposed in the literature to explain both, first- [52] and second-ordered 

kinetics [53,54].   

 

1.3.2.2. Catalyst deactivation  

To determine the extent of catalyst deactivation in the batch reactor, we followed 

the method described above [50,51] and plotted the variation of reactant concentration as 

a function of the catalyst mass x time product (w x t) using two different catalyst masses, 

namely w and 2w.  As shown in Figure 8a, the curves for the as-prepared MgO-NC catalyst 

at 150oC grow clearly apart as a function of w x t, indicating a rather large extent of catalyst 

deactivation.  Clearly, the concentration of cyclopentanone no longer changes after a 

relatively short reaction time.   
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Figure 8.  Evolution of concentration with reaction time as a function of the product 

(weight x time) over various MgO catalysts (with w and 2w) to assess catalyst 

deactivation. 

(a) MgO-NC at 150oC.  (b) MgO-NC + 0.25 g of 10 wt.% Cu/SiO2 (H2) at 150oC.  Solid 

symbols – 400 psia in H2.  Open symbols – 20 psia in H2.  (c) MgO@mSiO2-OTS at 

150oC.  (d) MgO@mSiO2-OTS at 200oC.  (e) MgO-OTS at 150oC. 
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To reduce the extent of deactivation, we conducted the reaction in the presence of 

400 psia of H2 with the addition of a Cu/SiO2 co-catalyst to the liquid mixture.  As seen in 

Figure 8b, the gap between the two curves clearly narrows, indicating a lower extent of 

deactivation.  As previously proposed [48], the presence of Cu/SiO2 as a hydrogenation 

catalyst may saturate the C-C double bond of the product and a portion of the carbonyls to 

non-polymerizable ketones and alcohols, thus reducing coke formation.  This explanation 

is supported by the observed product distribution (Appendix B) after 8 hours, in which 2-

cyclopentylcyclopentanone and 2-cyclopentylcyclopentanol are dominant C10 products.  A 

shortcoming of this approach is the conversion of the cyclopentanone reactant to 

cyclopentanol in the presence of H2, which leads to lower yields of the desired 

condensation product.  By contrast, using a much lower H2 pressure as that used in the gas 

phase experiments [49] results in a higher rate of catalyst deactivation.  In fact, as shown 

in Figure 8b, a large gap is observed between the conversions reached with 0.25 and 0.50 

grams of the catalyst after 480 and 240 mins, respectively, for the runs conducted under 20 

psia of H2 on MgO-NC.  As shown in Appendix C, while operating at this low pressure 

reduces the formation of cyclopentanol, allowing a higher concentration of the feed, the 

formation of the unsaturated dimer (2-cyclopentylidenecyclopentanone) is still observed, 

which may result in catalyst deactivation by coking. 

Therefore, for the cyclopentanone self-aldol condensation reaction, the 

simultaneous incorporation of H2 and a hydrogenation catalyst may be detrimental to the 

rate of condensation.  On the other hand, the hydrophobically modified catalysts MgO-

OTS and MgO@mSiO2-OTS show remarkable stability, even in the absence of H2. 
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As can be seen in Figure 8c and Figure 8d, the curves of different catalyst masses 

for MgO@mSiO2-OTS lie remarkably close, verifying the small extent of catalyst 

deactivation at both 150 and 200oC.  This is remarkable since the non-functionalized 

catalyst deactivates even faster at the higher temperatures.  Interestingly, as illustrated in 

Figure 8e, an increase in catalyst stability is also observed when the hydrophobization was 

directly conducted over the bare MgO substrate.  In fact, as shown in Figure 9a, within the 

first 8 hours the catalytic performance of MgO-OTS is almost the same as that of 

MgO@mSiO2-OTS.  Beyond this time, MgO@mSiO2-OTS shows a higher stability. 

Figure 9b makes a direct comparison of the change in reaction rate for the three 

catalysts.  The unmodified MgO-NC exhibits much greater initial rates than the 

functionalized catalysts.  However, the rate becomes essentially zero after less than 2 hours.  

By contrast, while the initial rates over the hydrophobized MgO@mSiO2-OTS and MgO-

OTS catalysts are lower, the activity remains high for 32 hours, reaching significant levels 

of conversion, eventually higher than that obtained on the non-functionalized catalyst. 
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Figure 9.  Comparison of (a) reactant concentration profiles, and (b) reaction rates on 

MgO-NC, MgO-OTS and MgO@mSiO2-OTS catalysts at 150oC in the batch reactor. 



23 

 

Another important advantage of the functionalized MgO@mSiO2-OTS catalyst is 

its tolerance to added water.  Figure 10 compares the effect of adding 2 mL of water to the 

50-mL reaction mixture over the MgO-NC and MgO@mSiO2-OTS catalysts.  To make the 

comparison at similar conversions (16 - 18%) in the absence of water, the catalyst mass 

and reaction time were 0.25 g - 1 hour for the former and 0.50 g - 4 hours for the latter.  As 

summarized in Table 2, the 2 mL of water added is significantly greater than the amount 

generated by the self-aldol condensation reaction.  The difference in the response to water 

addition is remarkable.  While the MgO-NC sample lost 80% of its activity, the OTS-

functionalized sample kept most of its activity in the presence of excess added water.  In 

addition, these two catalysts were recovered after the reaction including external water and 

analyzed for morphological variation.  Although Figure 11 displays peaks attributed to 

crystalline Mg(OH)2 from both samples, the XRD pattern of spent MgO@mSiO2-OTS 

only slightly differs from that of the fresh one.  On the other hand, there is a clear phase 

transition from MgO to Mg(OH)2 with intensively distinct diffraction peaks regarding 

spent MgO-NC.  In other words, the as-described 80% loss of activity of MgO-NC could 

be ascribed to the irreversible formation of Mg(OH)2 following the exposure of MgO to 2 

mL of added water.   
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Figure 10.  Effect of external water on the catalytic activity of MgO-NC and 

MgO@mSiO2-OTS. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 150oC, 450 psia in N2, 0.25 g – 1 hour for 

MgO-NC, 0.50 g – 4 hours for MgO@mSiO2-OTS. 

 

Figure 11.  XRD patterns of spent MgO and spent MgO@mSiO2-OTS after exposure to 

2 mL of water at 150oC. 
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Table 2.  Different amounts of water involved in cyclopentanone self-aldol condensation. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 150oC, 450 psia in N2. 

 

Catalyst 
Weight Time VH2O added Cproducts VH2O formed  VH2O 

g hr mL M mL mL 

MgO-NC 
0.25 1 0 0.16 0.15 0.15 

0.25 1 2 0.04 0.03 2.03 

MgO@mSiO2-OTS 
0.50 4 0 0.15 0.14 0.14 

0.50 4 2 0.13 0.11 2.11 

  

 

Figure 12.  Conversion and product distribution from consecutive uses of the 

MgO@mSiO2-OTS sample. 

Reaction conditions: 0.50 g of MgO@mSiO2-OTS, Ccyclopentanone 0 = 1.8 M, 200oC, 600 

psia in N2, 2 hours.  
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The positive effect of hydrophobization is also observed on the reusability of the 

catalyst after a reaction cycle.  Figure 12 shows the evolution of activity and selectivity of 

MgO@mSiO2-OTS during consecutive reaction cycles.  Contrary to the relatively high 

reusability of the functionalized catalyst, the non-functionalized one (MgO-NC) loses all 

its activity after the initial cycle. 

To rationalize the dramatic effect of the functionalization on catalyst stability, we 

have to analyze the differences observed in the surface characterization studies.  The two 

obvious changes upon functionalization are the removal of the more basic sites in MgO 

and the conversion of a very hydrophilic surface into a hydrophobic one. 

First, we can expect that the most active sites towards reaction with the Cl groups 

in the organosilane are the most basic sites.  Therefore, eliminating the most basic sites 

should lower the initial activity, but prevent deactivation.  In fact, it is seen that the sample 

with higher basicity (MgO-NC) exhibits higher initial activity but deactivates quickly.  

Also, as shown in Figure 13, a significant amount of trimer (2,5-

dicyclopentylidenecyclopentanone) begins to appear at higher conversions.  It is 

conceivable that trimer and other larger oligomers can lead to accumulation of heavy 

carbonaceous compounds and catalyst deactivation.  One of the additional effects of OTS 

functionalization is the inhibition of the formation of trimer.  In fact, as shown in Figure 

13, the increase in the Ctrimer/Cdimer ratio as a function of overall conversion is much greater 

on the non-functionalized MgO-NC than on any of the OTS-functionalized catalysts.  The 

presence of silica does not seem to have a very significant difference, indicating that the 

silane functionalization is responsible for this change in selectivity. 
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Figure 13.  The ratio of molar concentrations of the trimer and the dimer obtained from 

the MgO-catalyzed cyclopentanone self-aldol condensation with respect to conversion. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 150oC, 450 psia in N2. 

 

 

Figure 14.  Schematic behaviors of hydrophilic and hydrophobic MgO catalysts 

following exposure to in situ water. 
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Second, functionalization with a hydrophobic moiety has the obvious advantage 

of reducing the nucleation of water on the surface and formation of a liquid film that could 

block sites, cause mass transfer limitations, and even attack the MgO surface forming 

inactive Mg(OH)2 [55,56].  One must notice that the aldol condensation reaction generates 

a water molecule for every α,β-unsaturated ketone.  Since the solvent is non-polar 

cyclohexane, upon formation, water would tend to remain on the hydrophilic MgO surface, 

which would act as nucleation sites for the formation of a liquid film (Figure 14).  

Conversely, the hydrophobic surface of MgO@mSiO2-OTS would not nucleate the 

formation of a liquid film, allowing water to phase-separate from the non-polar solvent, in 

line with the minimal effect on activity observed when large amounts of water were added 

to this catalyst, as shown in Figure 10. 
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1.4. Summary 

The main conclusions of the study are the following: 

i. While MgO is an active catalyst for cyclopentanone self-aldol condensation, it 

exhibits a low catalyst stability in the liquid phase, particularly in the presence of 

liquid water. 

ii. Functionalization with organosilanes increases the hydrophobicity of the surface, 

which has important effects on activity, selectivity, and stability.  Specifically: 

 The catalytic activity is maintained for a much longer time than that of the 

non-functionalized material. 

 The resistance to water attack is greatly enhanced. 

 The initial rate is significantly reduced, most probably due to the selective 

titration of the most basic sites on the parent oxide.    

iii. Hydrophobization is more effective than other methods previously investigated 

for preventing deactivation of basic catalysts during aldol condensation.  For 

example, while the addition of a hydrogenation catalyst is an effective method for 

other systems in the gas phase, such a method is less effective for cyclopentanone 

on MgO in the liquid phase.  That is, at elevated H2 pressures, ketone feed 

saturation reduces the overall rate of condensation.  At low H2 pressures, catalyst 

deactivation is significant. 
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2. Cross-aldol condensation of cyclopentanone and acetone on MgO.  

Mechanistic aspects that determine product distribution. 

 

2.1. Introduction 

Thermal pyrolysis is an effective form of converting biomass via thermal 

decomposition at high temperatures followed by condensation, which results in high liquid 

yields [10].  However, the resulting pyrolysis liquid is of limited utility since it is unstable, 

corrosive, and challenging to upgrade catalytically.  Moreover, this liquid contains a wide 

range of components with different chemical functionalities, including a large fraction of 

light (<C6) oxygenates, which are unsuitable for liquid fuels due to their low carbon chain 

length.  Therefore, elimination of oxygen is not the only catalytic upgrading necessary to 

obtain useful biofuel components, but C-C coupling reactions are also indispensable. 

Multistage torrefaction combined with catalytic upgrading of the individual stage 

products is a promising method for overcoming these challenges [1].  The fractional 

decomposition of biomass in sequential stages limits the number of species within each 

fraction, which allows designing the catalytic upgrading after each stage for the specific 

chemistries of the subset of functionalities present in the given range of compounds [2]. 

Two of the most abundant products obtained in relatively high concentrations 

from the individual thermal stages are acetic acid and furfural.  The former can be readily 

converted to acetone via ketonization [21], while the latter can be converted to 

cyclopentanone via hydrogenation/Piancatelli ring rearrangement [15-18].  Both of these 

reactions are well established and can be carried out with high efficiency on different 
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catalysts in terms of yield, selectivity, and catalyst life.  Therefore, it is techno-

economically conceivable that these intermediate ketones could be obtained from biomass 

in industrial scale and with reasonable purities. 

An effective reaction to obtain fuel-range components from these ketones is aldol 

condensation, a well-known reaction catalyzed by bases and acids.  The self-aldol 

condensation of acetone has been studied for many years.  The products from this reaction 

are mesityl oxide, mesitylene, phorone and isophorone.  Several studies have shown that 

mesityl oxide is favored in the presence of either an acid catalyst (e.g. anhydrous HCl, 

concentrated H2SO4) or a base catalyst (e.g. ZrO2, MgO-V2O5) [23,24,57,58].  It has been 

reported that acid-catalyzed condensation tends to form more mesitylene and heavier 

compounds than the base-catalyzed counterpart [59-61].  While the behaviors and trends 

displayed by different catalysts have been well documented, the exact mechanism of this 

well-known reaction is still a matter of investigation.  For example, depending on the 

conditions and specific catalyst used, either the initial deprotonation (α-C-H activation) or 

the C-C coupling step has been proposed to be rate-limiting [49].  Specifically, the former 

seems to be kinetically relevant when the catalyst is anatase TiO2, which exhibits Lewis 

acid-base pairs of moderate strength.  By contrast, the latter governs the overall rate when 

the reaction is catalyzed by acid zeolites [62]. 

The self-aldol condensation of cyclopentanone has been much less investigated 

than that of acetone.  However, the potential use of this compound as a building block in 

biofuel production, as described above, enhances the significance of this C-C bond-forming 

reaction.  Among the few studies involving cyclopentanone, the one by Yang et al. [25] is 
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particularly relevant.  They showed that under solvent-free conditions at 150oC, significant 

yields of 2-cyclopentylidenecyclopentanone were obtained over solid bases, such as 

hydrotalcites, CaO, and MgO, and pointed out that fuel-range C10 - C15 hydrocarbons could 

be obtained after hydrodeoxygenation.  Similarly, Liang et al. [26] showed that 

mesoporous MgO-ZrO2 catalysts produced 100% selectivity to the dimer product up to 

80% conversion at 130°C and atmospheric pressure.  Despite the practical importance of 

these results, little knowledge has been obtained on the mechanism for this reaction. 

In the current study, we have attempted to expand the mechanistic understanding 

of the competing self- and cross-aldol condensations of cyclopentanone and acetone.  

These are two potentially abundant intermediate products derived from biomass, which 

may have importance in practical applications.  Since both carbonyls contain an α-H, the 

self- and cross-aldol condensations can lead to at least four products, with each of the 

reactants acting either as an enolate or an electrophile. 

Both acetone (A) and cyclopentanone (C) can be activated by α-H abstraction to 

form the enolates [A] and [C], respectively, which in turn can attack either an A or a C, 

acting as electrophiles.  Thus, as illustrated in Figure 15, the dimer products include [A]A, 

[A]C, [C]A, and [C]C.  The possible trimers are also included in this schematic figure, but 

they only appear in small amounts, particularly at a certain level of conversion.  One can 

expect that the product distribution might depend on the relative acidity of the α-H in each 

carbonyl as well as their relative initial concentrations [50,63,64].  In other words, if α-H 

abstraction from cyclopentanone is much easier than that from acetone, the two products 

from the initial activation of cyclopentanone, that is, 2-cyclopentylidenecyclopentanone 
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[C]C and 2-isopropylidenecyclopentanone [C]A will dominate, as observed in previous 

works [ 65 - 67 ].  From the practical point of view, the cross-aldol condensation of 

cyclopentanone and acetone may be a promising route to upgrade biofuels since 

condensation products could be further refined by hydrodeoxygenation to generate highly 

branched hydrocarbons in the fuel range (C8-C15) [28,68], which would either enhance 

gasoline octane numbers or improve diesel cloud points. 

 

 

 

Figure 15.  Dimer and trimer products from the self and cross-aldol condensations of 

acetone (A) and cyclopentanone (C). 

 

Along the same lines, a study of the cross-aldol condensation of cyclopentanone 

and pentanal at 130oC and a 5:1 molar ratio [34] showed that the activation of 

cyclopentanone was much more effective, as indicated by the high combined yields of 2-

pentylidenecyclopentanone and 2-cyclopentylidenecyclopentanone, which in all cases 

approximated 90% of the total products.  Interestingly, in another study [69], it was 
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observed that the relative yield of each of the two possible products arising from the initial 

activation of cyclopentanone depended on the catalyst used.  That is, while crystalline MgO 

preferentially favored the cross-aldol condensation product, a zirconophosphate catalyst 

(ZrPO) rendered a more even split of the two products.  Therefore, there is a potential to 

tailor the reaction conditions and catalyst to control the product distribution. 

 

2.2. Experimental 

2.2.1. Synthesis of catalytic materials 

MgO-NC.  The catalyst solely used in this study, MgO-NC, was synthesized via 

nitrate-citrate combustion, a method described elsewhere [ 70 ].  Briefly, 0.1 mol of 

Mg(NO3)2.6H2O (Aldrich, 99.9 %) was dissolved in 30 mL of water and stirred vigorously 

for 15 mins at 80oC.  Then, a 20-mL water solution containing 0.1 mol of citric acid 

(Aldrich, 99.5 %) was added to the Mg(NO3)2 water solution.  The whole mixture was 

continuously stirred until half of the liquid vaporized, leaving a viscous gel being subject 

to an overnight calcination under static air at 550oC.  This calcination involved the 

combustion of citric acid to generate a high-surface-area MgO material [41,42].  The 

obtained MgO is denoted as MgO-NC, where NC stands for nitrate-citrate combustion. 

  

2.2.2. Adsorption measurements 

To compare the relative extents of adsorption of cyclopentanone and acetone from 

the liquid phase, a set of adsorption measurements were conducted.  For these 

measurements, dual feeds with equimolar ratios of acetone/cyclopentanone were prepared 
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at individual concentrations of 0.5 M, 1.0 M and 2.0 M.  In each run, a 100-mL vessel 

(Parr) was first filled with cyclohexane and 2 g of MgO-NC, then pressurized to 400 psia 

of N2 at room temperature.  Next, a liquid mixture containing acetone, cyclopentanone and 

toluene (internal standard) was pressurized to 500 psia of N2 in a 30-mL feeding cylinder 

and injected into the 100-mL vessel.  The total liquid volume in the vessel was 40 mL for 

all runs.  After the reactants entered the vessel, the suspension was stirred at 750 rpm for 1 

hour to achieve adsorption equilibrium, then the filtered liquid was analyzed via GC-FID.  

The uptake of each ketone Г (moles per gram of MgO-NC) is given by the following 

expression: 

Γ = 
(C0 - Ceq) × ΣV

wMgO-NC

 

where 

C0  =  initial molar concentration [mol.L-1] 

Ceq  =  equilibrium molar concentration [mol.L-1] 

 

2.2.3. Catalytic measurements 

2.2.3.1. Reactor operating conditions and analysis methods 

In each run, MgO-NC and cyclohexane were first added into a 100-mL vessel 

(Parr).  The system was purged and pressurized to 300 psia in N2, then heated to the reaction 

temperature.  Next, the individual or dual reactant feed (acetone/cyclopentanone), along 

with toluene (internal standard), were placed in a 30-mL feeding cylinder and pressurized 

to 450 - 500 psia in N2.  This liquid mixture was injected into the vessel when the desired 
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temperature was stabilized.  Reaction runs were carried out under a stirring speed of 750 

rpm.  After reaction, the suspension was centrifuged for 5 mins at 4000 rpm to minimize 

the vaporization of acetone.  All liquids were analyzed by GC-MS and GC-FID as 

previously described [47]. 

 

2.2.3.2. Quantification of active sites under reaction conditions  

The active Mg-O sites were quantified via isothermal titration with propanoic 

acid, following Wang et al. [48], who demonstrated that propanoic acid could strongly 

block acid–base site pairs on TiO2 during acetone self-aldol condensation and allow a 

quantitative estimation of the total number of these sites.  In these measurements, we 

obtained initial rates for cyclopentanone self-aldol condensation at 150oC, with varying 

amounts of propanoic acid in the feed.  The amount of acid irreversibly adsorbed by MgO 

was calculated from the difference between the concentrations in the feed and after 

exposure to the catalyst.  The measured rate decreased proportionally to the amount of 

titrant propanoic acid adsorbed.  Extrapolation to zero rate would provide an estimate of 

the density of acid–base site pairs responsible for the condensation activity.  This density 

per unit mass of catalyst is given by the expression: 

Vpropanoic acid adsorbed × ρ
propanoic acid
150oC

MWpropanoic acid × wcatalyst
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2.2.4. Density Functional Theory calculations* 

The calculations were carried out using periodic plane-wave gradient-corrected 

density functional theory methods implemented in VASP.  The PBE functional was used 

to calculate the exchange correlation energy within the generalized gradient approximation 

(GGA).  The projector augmented wave method (PAW) was employed to describe the 

electron-ion interactions.  The cutoff energy of 400 eV was applied for the plane-wave 

basis set to represent valence electrons.  The DFT-D3 method was used for the correction 

of van der Waals interactions (vdW).  The electronic energies were converged within 10-6 

eV limit, and the force on each atom was converged to below 10-2 eV.Å-1. 

The close-packed 3 × 3 MgO(100) slab surface with four layers and 15 Å vacuum 

in the z-direction was used to model the MgO catalyst.  The bottom two layers were fixed 

at their bulk position while the top two layers were allowed to relax in all optimizations.  

The 4 × 4 × 1 Monkhorst-pack k-point mesh was used to sample the first Brillouin zone.  

The gas phase calculations were carried out spin-polarized using an 18 Å × 18 Å × 18 Å 

unit cell with the Γ only k-point mesh. 

The deprotonation energy (DPE) for the α-H of acetone/cyclopentanone was 

calculated to describe the acidity of each ketone via equation (*), where EAH, EA
- and EH

+ 

were the total energies of the neutral ketone AH, the negatively charged species A- after 

deprotonation, and the proton H+. 

AH → A
-
 + H+ 

                                                        
* DFT calculations were conducted by Dr. Qiaohua Tan. 
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DPEAH = EA
- + EH+  - EAH (*) 

For reaction paths, the transition state searches were performed using the dimer 

method with the initial guesses for the transition state structure and the reaction trajectory 

obtained through the nudged elastic band method (NEB). 

 

2.3. Results 

2.3.1. Adsorption measurements 

 

Figure 16.  Adsorption measurements of cyclopentanone and acetone on MgO-NC. 

Conditions: 2.00 g of MgO-NC, Ccyclopentanone 0 = Cacetone 0, 25oC, 450 psia in N2, 60 mins. 

 

Figure 16 displays the uptakes of cyclopentanone and acetone on the MgO-NC 

sample as a function of equilibrium molar concentration.  It is observed that the adsorbed 

amount of cyclopentanone at room temperature is, at least, 10 – 15 times greater than that 

of acetone.  That is, one should expect that under reaction conditions the surface coverage 

of cyclopentanone should be significantly higher than that of acetone; and if the C-C 
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coupling step in the aldol condensation reaction followed a Langmuir-Hinshelwood model, 

one would anticipate that the rates of formation of [C]C and [A]C would be respectively 

much greater than those of [C]A and [A]A.  We will discuss why this is not the case in the 

following sections. 

 

2.3.2. Catalytic measurements 

2.3.2.1. Quantification of active sites under reaction conditions 

 

Figure 17.  Propanoic acid-controlled cyclopentanone self-aldol condensation initial rates 

on MgO-NC. 

Reaction conditions: 0.50 g of MgO-NC, Ccyclopentanone 0 = 1.8 M, 150oC, 450 psia in N2, 

30 mins. 

 

Since no peaks of propanoic acid were detected from GC-FID profiles, it could 

be stated that MgO-NC irreversibly adsorbed all introduced amounts of propanoic acid.  
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According to Figure 17, it is only up to 12 μL of propanoic acid that the rate decreases 

proportionally to the acid uptake.  In this range, zero-extrapolation to the x-axis yields 14 

μL.  When more acid is added, the rate experiences a much less pronounced decline.  Such 

response could be ascribed to the co-existence of acid-base site pairs with different basic 

strengths, which was confirmed via CO2-TPD by Pham et al. [46].  That is, the first data 

points reflect the strongest basic sites of MgO-NC.  Beyond 14 μL, these sites have been 

fully titrated, leaving the remaining sites of lower basicity to catalyze cyclopentanone self-

aldol condensation.  However, as Pham’s CO2-TPD data indicated the dominance of the 

strongest sites, 14 μL is considered the maximum acid uptake in this study.  As a result, 

the calculated number of active acid-base site pairs is 375 μmol.g-1. 

 

2.3.2.2. Comparison of specific rates and TOF 

Table 3.  The inhibition effect of cyclopentanone upon the deprotonation of acetone. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = Cacetone 0 = 1.0 M, 200oC, 450 

psia in N2, 20 mins. 

Feed 

Rate of formation TOF 

mmol.gcat-1.h-1 h-1 

[C]A [C]C [A]A [A]C [C]A [C]C [A]A [A]C 

Single 

A + A - - 34.92 - - - 93.12 - 

C + C - 84.29 - - - 224.77 - - 

Dual C + A 33.61 46.59 2.06 3.07 89.63 124.24 5.50 8.20 
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As pKa values of cyclopentanone and acetone at standard conditions are 18.4 [71] 

and 19.2 [72] respectively, the deprotonation of the former would be more favorable than 

that of the latter.  This aspect was confirmed through MgO-NC-catalyzed 20-min runs at 

200oC where only one ketone was in the feed with an initial molar concentration of 1.0 M.  

Table 3 shows that the rate of formation of [C]C (or TOF by assuming an intrinsic basicity 

of 375 μmol.g-1) is approximately 2.5 times greater than that of [A]A.  Such results suggest 

the dominance of [C]-activated products from an equimolar dual feed, which is in fact 

verified as the combined selectivity of [A]A and [A]C is only 7%.  Moreover, the 

competitive adsorption of cyclopentanone from the bulk liquid of cyclohexane might have 

also prevented acetone from its own α-H abstraction.  This is because the TOF of [A]-

activated products decreases by 7 times with respect to that of [A]A from the self-aldol 

condensation.  By contrast, acetone hardly affects the TOF of [C]-activated products.  

Clearly, not only the strong chemisorption of cyclopentanone on MgO-NC but its higher 

acidity and inhibiting interaction to acetone also impact on the product distribution of the 

cross-aldol condensation. 
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2.3.2.3. Product distribution 

a. Effect of temperature 

 

Figure 18.  Temperature-based product distribution of cyclopentanone-acetone cross-

aldol condensation. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = Cacetone 0 = 1.0 M, 450 psia in 

N2, 20 mins. 

 

Figure 18 shows the catalytic performance of MgO-NC at 150oC, 200oC and 

250oC.  The most noticeable impact of rising the temperature is increased TOFs for all four 

dimer products.  This increase indicates that beyond 200oC, acetone has a higher chance to 

form an enolate for [A]A and [A]C, but the α-H abstraction of cyclopentanone is 

consistently preferable.  From the perspective of product distribution, all three reaction 

temperatures result in more than 90% of [C]-activated products.  In particular, selectivities 
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to [C]C and [C]A hardly vary despite considerable temperature intervals.  Interestingly, the 

amount of cyclopentanone attacked by cyclopentenolate is only 1.4 times of that of acetone, 

although C has been shown drastically outnumbering A on the MgO-NC surface.  Such 

aspect will be addressed in details following the increase of the acetone-to-cyclopentanone 

feed ratio.  Despite the majority of [C]C and [C]A, 250oC will not be further studied as this 

temperature associates with indispensable amounts of A[C]A, A[C]C and C[C]C.  To 

optimize catalytic activity and selectivities to dimer products, all remaining experiments in 

this study were conducted at 200oC. 

 

b. Evolution of products 

[C]C and [C]A have been shown contributing more than 90% of liquid products 

after the first 20 mins of MgO-NC-catalyzed cross-aldol condensation.  This section 

addresses how the catalytic activity of MgO-NC and selectivities to [C]-activated products 

change along the reaction time. 

Since MgO-NC is prone to deactivation by oligomers and in situ water [70], we 

only evaluated the product distribution of equimolar cross-aldol condensation up to 2 hours 

(Figure 19).  First, within this time range, the conversion of cyclopentanone increases 

rapidly from 18% (20 mins) to 37% (1 hour) and finally 60% (2 hours).  Second, [C]A and 

[C]C remain predominant, with the [C]A-to-[C]C ratio experiencing a moderate but 

noticeably increase from 0.7 to nearly 0.8.  To some extent, such aspect means one can 

attain a [C]A-to-[C]C ratio being close to 1 at longer times.  That is, the [C]A-to-[C]C ratio 

may continue increasing after most cyclopentanone electrophiles have undergone C-C 
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coupling, leaving more acetone electrophiles for the nucleophilic attack of 

cyclopentenolate.  However, this projection is not the case over MgO-NC, as 

concentrations of [C]-activated trimers become sizeable at high conversions of 

cyclopentanone (Appendix D).  In other words, acetone electrophiles are not only limited 

to interaction with cyclopentenolate but can also be subject to nucleophilic attacks of 

dimeric enolates.  Moreover, at 2 hours, the decreased combined selectivity to [C]C and 

[C]A suggests that [C]-activated trimers start accumulating on active site pairs of MgO-

NC and contribute to catalyst deactivation.  To sum up, both Figure 18 and Figure 19 

indicate that MgO-NC – as an initially active catalyst – consistently favors cyclopentanone 

self-aldol condensation from an equimolar feed of cyclopentanone-acetone. 

 

Figure 19.  Evolution of cyclopentanone-acetone cross-aldol condensation products. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = Cacetone 0 = 1.0 M, 200oC, 450 

psia in N2.  
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c. Effect of acetone-to-cyclopentanone feed ratio 

Temperature tests have indicated that the MgO-NC-catalyzed cross-aldol 

condensation of an equimolar dual feed generates exclusive amounts of [C]C and [C]A.  

Here, we investigate whether excess acetone dramatically increases the amounts of [A]A 

and [A]C or simply boosts selectivities to -A condensates. 

 

 

Figure 20.  Acetone-to-cyclopentanone feed ratio-based product distribution of 

cyclopentanone-acetone cross-aldol condensation. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = 1.0 M, 200oC, 450 psia in N2, 

20 mins. 

 

In practice, the initial molar concentration of cyclopentanone was maintained at 

1.0 M while that of acetone was increased to 2.0 M and 4.0 M.  Other reaction conditions 
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were similar to those applied for the equimolar cross-aldol condensation.  A remarkable 

shift between selectivities to [C]A and [C]C is observed in Figure 20.  The decreased 

amount of the latter is almost equal to the concurrent increased amount of the former.  In 

numbers, the [C]A-to-[C]C molar ratio grows proportionally from 0.7 to 1.5 and 3.0, 

approximating 75% of the initial A-to-C ratio in cyclohexane.  Such trend also applies for 

the [A]A-to-[A]C ratio. 

Additionally, it is noteworthy that the nucleophilic attack of propen-2-olate in this 

study only forms [A]A and [A]C.  Neither phorone A[A]A nor mesitylene is detected 

despite a considerably increased acetone population provided from either the MgO-NC 

surface (Langmuir-Hinshelwood model) or the bulk cyclohexane (Eley-Rideal model).  On 

the other hand, newly-formed [C]C and [C]A can adapt monomer species of their proximity 

to generate trimer products A[C]A, A[C]C and C[C]C.  However, these trimer products are 

only detected in trace quantities. 

Finally, although more acetone is added to the system, the TOF of [C]-activated 

products remains considerably greater than that of [A]-activated ones.  In other words, the 

preferential deprotonation of cyclopentanone with respect to acetone continues, being 

similar to which has been observed under temperature tests.  As a result, increasing the A-

to-C feed ratio up to 4:1 only renders [C]A and [A]A more abundant since these species 

are condensates in which acetone is the electrophile. 
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2.3.3. Density Functional Theory calculations*  

 

Figure 21.  DFT-optimized adsorption structure of cyclopentanone (left) and acetone 

(right) on MgO(100). 

 

As shown in Table 3, [C]A and [C]C are dominant with respect to [A]A and [A]C 

when co-feeding cyclopentanone and acetone over MgO-NC at 200oC for 20 mins.  This 

suggests the activation of an α-H of cyclopentanone is more favorable than that of acetone.  

As α-H abstraction occurs at the same basic site of MgO, the reactivity of an α-H depends 

on the acidity of the corresponding ketone.  Deprotonation energies of α-Hs of 

cyclopentanone and acetone in gas phase were calculated to be 1453 kJ.mol-1 and 1461 

kJ.mol-1 respectively.  The lower deprotonation energy of cyclopentanone indicates the 

stronger acidity and a more reactive α-H.  Such calculation is also consistent with the 

reported pKa values of cyclopentanone (18.4) [71] and acetone (19.2) [72] at standard 

conditions. 

                                                        
* DFT calculations were conducted by Dr. Qiaohua Tan. 
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For further confirmation, the deprotonation of cyclopentanone and acetone, 

followed by C-C coupling with a cyclopentanone electrophile were calculated over 

MgO(100).  First, both ketones were adsorbed on MgO(100) at the Mg2+ site through a 

carbonyl O (Figure 21).  Calculated adsorption energies of cyclopentanone and acetone 

were -62 kJ.mol-1 and -55 kJ.mol-1 respectively.  The slightly stronger adsorption of 

cyclopentanone is probably due to its larger molecule, which results in stronger van der 

Waals interactions.  This calculation suggests that cyclopentanone outperforms acetone in 

the competitive adsorption on MgO(100) and dominates the catalytic surface.  After 

adsorption, Mg2+-bound molecules of cyclopentanone and acetone proceeded with 

deprotonation to form cyclopentenolate and propen-2-olate respectively.  As shown in 

Figure 22, on MgO(100), the calculated energy barrier of deprotonation of cyclopentanone 

was 60 kJ.mol-1, being 9 kJ.mol-1 lower than that of deprotonation of acetone.  The energy 

diagram is consistent with aforementioned trends of deprotonation energy and pKa value. 
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Figure 22.  Energy diagram of α-H abstractions of cyclopentanone and acetone, and C-C 

couplings of cyclopentenolate-cyclopentanone (red) and propen-2-olate-cyclopentanone 

(blue) on MgO(100). 

 

After deprotonation, each enolate could then target an adjacent electrophile 

(acetone/cyclopentanone) for C-C coupling, eventually forming the corresponding dimer 

product.  As shown in Figure 22, the energy barrier of C-C coupling between 

cyclopentenolate and cyclopentanone electrophile was 45 kJ.mol-1, considerably lower 

than that of deprotonation of cyclopentanone (60 kJ.mol-1).  This comparison suggests that 

deprotonation is the rate-limiting step.  Similarly, the energy barrier of C-C coupling 
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between propen-2-olate and cyclopentanone electrophile was 35 kJ.mol-1, considerably 

lower than that of deprotonation of acetone (69 kJ.mol-1). 

In conclusion, both the stronger adsorption and the lower deprotonation energy of 

cyclopentanone with respect to those of acetone contribute to the preference of [C]-

activated products on MgO-NC.  For each ketone, deprotonation is kinetically relevant 

since this elementary step requires the highest energy barrier. 

 

2.4. Discussion 

2.4.1. Possible mechanisms.  Rate-limiting step 

According to the literature, the mechanism of a heterogeneous base-catalyzed 

aldol condensation starts with the abstraction of a proton from the α-C with respect to the 

carbonyl moiety [ 73 ].  The resulting enolate – an anionic surface intermediate – 

subsequently attacks an adjacent carbonyl molecule supplied from either the catalytic 

surface (Langmuir-Hinshelwood model) or the continuous phase (Eley-Rideal model) 

(Figure 23).  This C-C coupling shifts the electron density to the oxygen of the carbonyl 

molecule, therefore it readily claims the initially abstracted proton to generate a dimeric 

aldol.  Reviewing such mechanism can help rationalize both the rate-limiting step and the 

product distribution of cyclopentanone-acetone cross-aldol condensation. 
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Figure 23.  Mechanisms for a base-catalyzed aldol condensation. (a) homogeneous base. 

(b) heterogeneous base (e.g. MgO). 
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Figure 24.  Variation of individual rates with the acetone-to-cyclopentanone feed ratio. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = 1.0 M, 200oC, 450 psia in N2, 

20 mins. 

 

According to Figure 24, increasing the acetone content while fixing that of 

cyclopentanone results in a relatively constant rate of formation of [C]-activated products 

at 80 – 90 mmol.g-1.h-1.  Meanwhile, the rate of formation of [A]-activated products 

increases proportionally with the introduced amount of acetone.  The unchanged rate over 

[C]-activated species is also observed when cyclopentanone undergoes an MgO-NC-

catalyzed cross-aldol condensation with benzophenone (B) – a carbonyl without α-Hs – in 

decalin at 250oC (Appendix E).  For each 2-hour run, the concentration of cyclopentanone 

was fixed at 1.0 M while that of benzophenone varied from 0.25 M to 0.75 M.  Results 

show that the total rate of formation of [C]C and [C]B is almost constant at 19 mmol.g-1.h-

1.  In addition, the [C]B-to-[C]C molar ratio is also proportional to the B-to-C feed ratio as 

observed in the scenario between C and A.  This feature will be later discussed, following 
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the comprehension of kinetic models.  Most importantly, it can be affirmed up to this point 

that on MgO-NC, the α-H abstraction of cyclopentanone – which dominates the catalytic 

surface through chemisorption – is kinetically relevant. 

 

2.4.2. Selectivity to self- and cross-aldol condensation products.  Compatibility of 

Langmuir-Hinshelwood- and Eley-Rideal-typed nucleophilic attacks 

 

Figure 25.  Schematic comparison between energy barriers of deprotonation and C-C 

coupling for cyclopentanone-acetone cross-aldol condensation. 

 

Despite deprotonation being rate-limiting in the MgO-NC-catalyzed 

cyclopentanone-acetone cross-aldol condensation, the product distribution can be 

governed by subsequent C-C coupling steps.  In other words, α-H abstraction possesses the 

highest activation energy, but energy barriers for nucleophilic attacks are probably 

indispensable (Figure 25).  In this section, we examine the accordance of the observed 

[C]A-to-[C]C and [A]A-to-[A]C molar ratios with heterogeneous catalysis reaction models 
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proposed by Langmuir-Hinshelwood and Eley-Rideal [32,33].  As deprotonation is 

kinetically relevant at 200oC, this step is assigned a rate constant k1.  Meanwhile, adsorption 

and C-C coupling are pseudo-equilibrated and associate with equilibrium constants.  For 

sake of simplicity, we only correlate the [C]A-to-[C]C ratio to the A-to-C feed ratio since 

cyclopentanone deprotonation is evidently more favorable than that of acetone (Table 3). 

 

Figure 26.  Variation of [C]A-to-[C]C and [A]A-to-[A]C product ratios to the acetone-

to-cyclopentanone feed ratio. 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = 1.0 M, 200oC, 450 psia in N2, 

20 mins. 

 

Both reaction models start with the adsorption of a cyclopentanone molecule from 

liquid cyclohexane to an Mg2+ site * of MgO-NC, followed by α-C-H cleavage to generate 

cyclopentenolate [C]*.  This enolate then attacks an adjacent molecule of C or A provided 

from either the catalytic surface (Langmuir-Hinshelwood) or liquid cyclohexane (Eley-

Rideal).  The newly-formed aldolate eventually adapts the initially removed, O2--bound α-

H, undergoes dehydration and diffuses into liquid cyclohexane.  Also for sake of simplicity, 
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all surface intermediates are displayed here without electric charges.  The molar 

concentration ratio between [C]A and [C]C is then derived as the ratio between their 

corresponding instantaneous rates of formation: 

Langmuir-Hinshelwood model 

C + * ↔ 
 

C*   KC = 
CC*

CCC*

 

A + * ↔ 
 

A*   KA = 
CA*

CAC*

 

C*   →  [C]*   k1 

[C]* + A* ↔ 
 

*[C]A + * KC-A = 
C*[C]AC*

C[C]*CA*

 

[C]* + C* ↔ 
 

*[C]C + * KC-C = 
C*[C]CC*

C[C]*CC*

 

 

C[C]A

C[C]C
=

r[C]A

r[C]C
=

C*[C]A

C*[C]C
=

KC-AC[C]*CA*

C*

KC-CC[C]*CC*

C*

=
KC-ACA*

KC-CCC*

=
KC-A(KACAC*)

KC-C(KCCCC*)
=
KC-AKACA

KC-CKCCC

 

 

Eley-Rideal model 

C + * ↔ 
 

C*   KC = 
CC*

CCC*

 

C*   →  [C]*   k1 

[C]* + A ↔ 
 

*[C]A   KC-A
'  = 

C*[C]A

C[C]*CA

 

[C]* + C ↔ 
 

*[C]C   KC-C
'  = 

C*[C]C

C[C]*CC

 

 

C[C]A

C[C]C
=

r[C]A

r[C]C
=

C*[C]A

C*[C]C
=
KC-A
' C[C]*CA

KC-C
' C[C]*CC

=
KC-A
' CA

KC-C
' CC
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Clearly, both reaction models suggest that the [C]A-to-[C]C ratio increases 

proportionally to the A-to-C feed ratio.  Such correlation also applies to the [A]A-to-[A]C 

feed ratio and agrees with the trend shown in Figure 26.  Additionally, the derived 

equations indicate that the product distribution also depends on C-C coupling equilibrium 

constants.  Since we are unable to determine KC-A, KC-C, K’C-A and K’C-C explicitly, it is hard 

to claim which model best reflects the observed [C]A-to-[C]C and [A]A-to-[A]C ratios.  

The only comparison to be confirmed via experiments and DFT is KC betters KA. 

In case of an equimolar feed, a [C]A-to-[C]C ratio being less than 1 suggests that 

the actual equation also has a slope being less than 1.  Qualitatively, if the equilibrium 

constant of a [C]*-cyclopentanone interaction is higher than that of a [C]*-acetone 

interaction, both reaction models can rationalize the results in Figure 26.  On the other 

hand, if the equilibrium constant of a [C]*-acetone interaction is higher, only the Langmuir-

Hinshelwood model satisfies the observed product distribution.  This is because the 

included adsorption constant ratio – which is consistently less than 1 – can outweigh the 

C-C coupling constant ratio to render the overall slope less than 1.  At 200oC, such 

adsorption constant ratio may significantly increase from that at room temperature but 

remains far from unity. 

Alternatively, the Langmuir-Hinshelwood reaction model allows the [C]A-to-

[C]C ratio to be expressed in terms of surface coverages: 

C[C]A

C[C]C
 = 

r[C]A

r[C]C
 = 
KC-AKACA

KC-CKCCC

 = 
KC-AθA

KC-CθC
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From this equation, we ascribe different concentrations of [C]A and [C]C to 

different amounts of A and C as surface intermediates.  Since KC is greater than KA, an 

equimolar feed means θC is also greater than θA.  That is, cyclopentenolate is probably 

surrounded by a larger population of adsorbed molecules of cyclopentanone.  Meanwhile, 

each C-C coupling equilibrium constant correlates to an activation free energy barrier, 

which consists of enthalpic and entropic terms, according to Wang et al. [74]: 

 

ln (
KC-A

KC-C
)  = -

∆G[C]A
TS

-∆G[C]C
TS

RT
 = -

(∆H[C]A
TS

-T∆S[C]A
TS )-(∆H[C]C

TS
-T∆S[C]C

TS )

RT
 

= 
∆H[C]C

TS
-∆H[C]A

TS

RT
+

∆S[C]A
TS

-∆S[C]C
TS

R
 

 

The authors studied aldol condensations of C2-C4 enolates with formaldehyde 

over TiO2, finding that each cross-aldol condensation product dramatically outnumbered 

the corresponding self-aldol condensation product.  Such result was ascribed to a lower 

activation free energy barrier for the [Ci]-formaldehyde coupling step, due to less negative 

entropy loss with respect to gaseous formaldehyde.  However, in our case, we instead 

compare activation free energy barriers for [C]-C and [C]-A coupling steps with respect to 

adsorbed species.  Analogous to the Ru/TiO2-catalyzed ketonization of carboxylic acids 

[75], both ΔHTS and ΔSTS are positive values.  Due to the larger size of cyclopentanone 

compared to acetone, a [cyclopentenolate…cyclopentanone#] has a higher number of 

conformations than a [cyclopentenolate…acetone#] does.  In other words, ∆S[C]C
TS

 > 

∆S[C]A
TS

.  Nevertheless, the former transition state involves a less electrophilic carbonyl 
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carbon and experiences additional enolate-carbonyl steric repulsion, therefore more energy 

is required for stabilization, or ∆H[C]C
TS

 > ∆H[C]A
TS

.   A possible activation enthalpy – 

activation entropy compensation effect will provide relatively identical values of KC-A and 

KC-C.  Under this circumstance, the remarkably higher cyclopentanone uptake on the MgO-

NC surface becomes the decisive factor contributing to the preference of [C]C over [C]A. 

The analysis above technically requires justification through an energy diagram 

comparing [C]C and [C]A, analogous to Figure 22.  DFT calculations for such diagram 

remain in progress.  Depending on DFT results, we know which factor decides the observed 

[C]A-to-[C]C ratio (less than 1, provided equimolar feed).  If [C]A formation has a lower 

activation free energy, the enthalpic effect is more important.  In this case, [C]A is less 

abundant than [C]C because the lower activation free energy is outweighed by the superior 

surface coverage of C.  Conversely, if [C]C formation has a lower activation free energy, 

the entropic effect is more important.  In this case, both the stability of 

[cyclopentenolate…cyclopentanone#] and the superior surface coverage of C contribute to 

the preference of self-aldol condensation. 
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2.5. Summary 

The main conclusions of the study are the following: 

i. Under the catalysis of basic MgO-NC, the cross-aldol condensation of 

cyclopentanone (C) and acetone (A) provides a predominant combined selectivity 

to [C]-activated dimer products.  This suggests that cyclopentanone is not only 

more acidic than acetone, but the α-H abstraction of the former on MgO-NC also 

significantly inhibits that of the latter. 

ii. MgO-NC renders the α-H abstraction of each ketone reactant rate-limiting.  For 

cyclopentanone, the total rate of formation of [C]-activated dimer products is 

unchanged when excess amounts of acetone are mixed with a fixed 

cyclopentanone content.  Meanwhile, for acetone, the total rate of formation of 

[A]-activated dimer products increases proportionally to such excess amounts.   

iii. The product distribution, particularly the ratio of molar concentrations of [C]A 

and [C]C, is however governed by the C-C coupling step.  Although 

cyclopentanone betters acetone in both chemisorption and deprotonation on 

MgO-NC, the cross-to-self coupling ratio depends on both the feed composition 

and the extent of each cyclopentenolate-electrophile interaction.  So far, for an 

equimolar feed, both Langmuir-Hinshelwood and Eley-Rideal reaction models 

can fit experimental results which show the preference of [C]C over [C]A.  The 

only confirmed factor contributing to such preference is the higher population of 

cyclopentanone electrophiles in proximity to a cyclopentenolate.   
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3. Mechanistic insights of water-induced cyclopentanone self-aldol 

condensation on OTS-functionalized MgO catalysts 

 

3.1. Introduction 

Thermal pyrolysis is one of the most promising approaches to decompose biomass 

into separate stages, all of which can be starting materials for biofuel syntheses [1-10].  

Due to a carbon range compatible to that of gasoline-kerosene (5 – 15 atoms per molecule), 

medium-staged furanic compounds have been subject to several upgrading reactions, 

including C-C couplings [2].  Since furfural – a representative of this stage – is unstable 

and may initiate catalyst coking, it is a good strategy to convert it to the more stable 

cyclopentanone through a two-step metal-catalyzed aqueous hydrogenation known as the 

Piancatelli ring rearrangement [15,16, 76 ].  Among potential transformation routes, 

cyclopentanone can readily undergo aldol condensations to generate α,β-unsaturated 

dimeric ketones, followed by hydrodeoxygenation into consumable biofuels [27,34,69,77].  

Recent works have shown that these aldol condensations are specifically favored in water-

free conditions and under the catalysis of a solid base (e.g. MgO) [25,26,35,78].  Despite 

a high basic density, MgO prepared via nitrate-citrate combustion deactivated rapidly at 

150 – 200oC after short reaction times due to surface accumulation of in situ water and 

over-condensates [70].  Such drawback was overcome by organosilane functionalization 

(e.g. OTS) on either bare MgO or an MgO-SiO2 solid mixture.  The catalytic stability of a 

much less basic hybrid MgO was tremendously increased up to hours along with 

respectable conversions.  As hydrophobic OTS molecules mitigated the formation of an in 
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situ water layer on MgO surface, a sizeable amount of active sites remained accessible for 

cyclopentanone to generate enolates.  Silane groups also facilitated the removal of newly-

formed 2-cyclopentylidenecyclopentanone so that sequential aldol condensations leading 

to oligomerization were minimized.  MgO-OTS and MgO@mSiO2-OTS were initially less 

active than unmodified MgO but eventually outperformed it provided sufficient tolerance 

to poisons.  In addition, OTS-functionalized MgO remarkably resisted the attack of 

external water.  Starting from identical water-free cyclopentanone conversions, MgO and 

MgO@mSiO2-OTS behaved vastly differently following the addition of 2 mL of water to 

the reaction mixture at 150oC.  While unmodified MgO lost about 80% of its original 

activity, MgO@mSiO2-OTS almost retained the water-free performance.  A much smaller 

in situ water volume compared to the added one also highlighted economic benefits of OTS 

functionalization in protecting MgO active sites. 

The influence of water, however, can be more complicated than what has been 

reported.  In general, water can participate in organic syntheses as a reactant, a product, a 

medium or an additive which promotes or inhibits catalytic activity [39,79-102].  The 

Fischer-Tropsch synthesis (FTS) is among reactions in which water exhibits a rate-

enhancing effect [103-109].  Introducing water to the oil phase has been found to lower the 

energy for CO dissociation over certain supported metal catalysts [110-126].  By this 

manner, water helps propagate the hydrocarbon chain, increase the desirable C5+ selectivity 

and alleviate methanation [113,127-140].  Particularly, Shi et al. [141] showed that both a 

condensed aqueous phase and a water-in-decalin emulsion improved the FTS catalytic 

activity and the C5-C20 fraction over Ru/CNT-Al2O3-MgO.  In this case, water functioned 
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as a H-shuttling mediator [142-144] by capturing a surface H to protonate a surface CO 

and thus facilitating the rate-limiting H-assisted CO cleavage [116, 145 ].  Through 

competing with H2 for active sites, water also minimized the secondary hydrogenation of 

newly-formed alkenes and enhanced the chain growth rate [146].  From another study, 

Iglesia [128] suggested that a permanent liquid water content increased the FTS catalytic 

activity by allowing syngas to access sites in narrow porous regions.  Such promotional 

effect was more evident on catalyst supports with a small pore size [147-149].  Iglesia [113] 

later stated that on Co/SiO2, water could hinder chain termination via H abstraction at 

internal positions of alkyl chains, followed by secondary olefin isomerization reactions.  

The ability of water to modify kinetics and product distribution was further addressed when 

Zhao [150] studied furfural hydrogenation over Pd/α-Al2O3.  The author discovered that 

the aqueous phase not only enhanced conversion with respect to that in cyclohexane but 

also shifted the favored primary product from tetrahydrofurfural to furfuryl alcohol.  These 

results were ascribed to a greatly reduced activation energy when a surface water molecule 

shuttled the first H to a carbonyl O.  Such reduction even changed the rate-limiting step 

into the subsequent hydrogenation. 

Apart from biomass upgrading processes, other reactions of high industrial 

importance were investigated and analyzed for the rate-enhancing effect of water [151-

160].  In such reactions, the mechanism for water assistance was not only limited to H-

shuttling but also expanded to solvation [161,162] or selective oxidation of surface species 

[163-166].  That is, water stabilized chemisorbed species (reactants, intermediates and 



63 

 

transition states) through hydrogen-bonding networks and effectively accelerated rate-

limiting steps [167-169]. 

On the other hand, water is inarguably responsible for several rate-inhibiting 

effects on heterogeneous catalysis [170-177].  The competitive adsorption of water is 

mostly associated with detrimental site blockage [178-180].  FTS studies [181-197] 

simultaneously demonstrate that water can condense in pores of a catalyst support, re-

oxidizing metal crystallites (e.g. Co, Fe) and depopulating active sites.  Such damage 

becomes more evident at high CO conversions as water itself is an FTS by-product.  

According to Holmen et al. [198], some water-induced re-oxidation can contribute to both 

catalyst and support sintering processes [199-202].  Regarding oxidation-resistant catalysts 

[203], high concentrations of water may still facilitate the water-gas-shift side reaction to 

generate undesirable CO2.  In fact, Shi [141] highlighted that a water-in-decalin emulsion 

bettered an aqueous phase in stabilizing Ru/CNT-Al2O3-MgO since the former medium 

properly balanced between forming and desorbing C5-C20 products.  For base-catalyzed 

reactions, the negative impacts of water have been so far more apparent.  In our previously 

studied MgO-catalyzed cyclopentanone self-aldol condensation [70], neither rate 

enhancement was observed following exposures of two MgO catalysts to 2 mL of external 

water.  Pure MgO even lost most site pairs due to the formation of inactive layers of 

Mg(OH)2.  The only noteworthy feature was that water clusters [204,205] did less harm to 

the OTS-functionalized MgO.  That is, water in such case formed droplets rather than a 

layer, therefore deactivation occurred much more slowly.  In other words, functionalization 

with organosilanes did not eliminate water susceptibility but instead alleviated this issue to 
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prolong material stability.  However, the fact in which water hardly promoted catalytic 

activity of MgO-based solids can be partially ascribed to its excess amount.  Only a limited 

water content may improve catalytic performance, as shown by other recent studies [206-

210].  Moreover, to our knowledge, no work has been reported on the supportive role of 

water over organic phase aldol condensations.  Therefore, we will address such aspect by 

exposing both MgO and its OTS-modified versions to considerably low water volumes.  

This task also supplements our initial work and helps fully comprehend how water alters 

catalytic behaviors. 

In addition, the current topic will correlate the water-exposed catalytic activity to 

the hydrophobic-hydrophilic nature of an MgO surface.  Previous studies proposed that in 

a non-polar organic phase, water molecules would tend to find the closest polar domain to 

settle down [55,56].  For hydrophilic MgO, water strongly competes for Mg2+-O2- site pairs 

and form a diffusion-limiting film.  Meanwhile, hydrophobic MgO-OTS partially inhibits 

such competitive chemisorption, leaving a sizeable amount of external water molecules in 

the oil phase.  For complete evaluation, we have adjusted the OTS loading on MgO samples 

and found that the density of these moieties significantly affects the chemisorption of both 

cyclopentanone and water under reaction conditions.  Therefore, it is possible to modify 

the hydrophobicity of MgO for appropriately tuning its stability and catalytic activity in 

the presence of water. 
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3.2. Experimental 

3.2.1. Synthesis of catalytic materials 

3.2.1.1. MgO-NC 

MgO-NC was synthesized via nitrate-citrate combustion, the method described 

elsewhere [70].  Briefly, 25.6 g of Mg(NO3)2.6H2O (Aldrich, 99.9%, 0.1 mol) was mixed 

with 30 mL of water and stirred vigorously for 15 mins at 80oC.  Then, a 20-mL water 

solution containing 19.2 g of citric acid (Aldrich, 99.5%, 0.1 mol) was added into the 

mixture.  The resulting solution was continuously heated and stirred until half of the liquid 

vaporized, leaving a viscous gel.  This gel was calcined overnight under static air at 550oC 

to obtain a high-surface-area MgO solid named MgO-NC (for nitrate-citrate combustion). 

 

3.2.1.2. Octadecyltrichlorosilane-functionalized MgO 

The as-prepared MgO-NC was then hydrophobized, starting with the dropwise 

addition of 0.45 mL of water onto 1 g of MgO-NC.  The wetted material was suspended in 

a 1:50 v/v OTS-toluene solution [70,211].  The suspension was shaken vigorously for 10 

mins, stirred overnight at room temperature, centrifuged and washed thrice with ethanol.  

The separated solid was dried overnight at 110oC to yield the OTS-functionalized MgO, in 

which OTS molecules displaced silanol groups to generate a hydrophobic surface.  

Materials synthesized from this method were generalized as MgO(x)-OTS(y).  Such 

denotation means a catalyst nominally containing x wt.% of MgO and y wt.% of OTS. 
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3.2.1.3. Removal of the alkyl chains of MgO-OTS by oxidation 

The as-prepared MgO(70)-OTS(30) was calcined under a temperature program 

for complete combustion of octadecyl groups.  In details, a calculated amount of MgO(70)-

OTS(30) was placed in the middle of a glass tube.  Both ends of the tube were packed with 

glass wool.  The tube was then horizontally connected to a furnace and applied with a 40-

sccm air flow at room temperature.  MgO(70)-OTS(30) was first heated to 300oC under a 

ramp rate of 1oC.min-1.  The temperature was stabilized at 300oC for 1 hour before 

increased to 450oC under the same ramp rate.  The sample was maintained at 450oC for 4 

hours, then cooled down overnight and finally collected.  The obtained solid was denoted 

as MgO(70)-OTS(30) PC.  PC here stands for post-calcination, as this solid was prepared 

through thermal removal of the alkyl chains of MgO(70)-OTS(30). 

 

3.2.2. Characterization 

3.2.2.1. TGA 

The final content of OTS in the MgO(70)-OTS(30) sample was determined by 

thermogravimetric analysis (TGA).  Analogously to Section 1.2.2, 46.91 mg of MgO(70)-

OTS(30) was analyzed by heating with a linear ramp under flow of an Ar-air mixture, 

starting from 40oC and increased by 2oC.min-1. 

 

3.2.2.2. BET 

The specific surface area of MgO(70)-OTS(30) PC was obtained on a 

Micromeritics 2010 instrument.  The values of MgO-NC and MgO(70)-OTS(30) [70] were 
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also used as references.  The former value was combined with mass spectra obtained during 

the TGA of MgO(70)-OTS(30) to quantify the distribution of OTS functionalities on the 

catalyst.  For sake of simplicity, we assume complete hydrolysis of the chloro-groups in 

OTS and monodentate anchoring.  Accordingly,  

x = 
nOTS×NA

AMgO-NC

 = 

mC18H37Si(OH)2O-

MWC18H37Si(OH)2O- 
×NA

mMgO-NC×SBET MgO-NC

 

or 

x = 

mC18H37Si(OH)2O-

MWC18H37Si(OH)2O- 
×NA

[1-mC18H37Si(OH)2O-]×SBET MgO-NC

 

where 

x    =     molecules of OTS, or C18H37Si(OH)2O-, anchored per 

unit area of MgO-NC in MgO(70)-OTS(30) 

mC18H37Si(OH)2O-  =     TGA-based content of OTS in 

MgO(70)-OTS(30) [g.g catalyst-1] 

mMgO-NC   =     TGA-based content of MgO-NC in 

MgO(70)-OTS(30) [g.g catalyst-1]  

 

3.2.2.3. CO2-TPD 

The basic densities of MgO(70)-OTS(30), MgO(70)-OTS(30) PC and MgO(85)-

OTS(15) were characterized via temperature-programmed desorption (TPD) of adsorbed 

CO2 following the method described elsewhere [46].  The CO2-TPD result of MgO-NC 
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[70] was also used as a reference.  Analogously to Section 1.2.2, 100 mg of catalyst was 

heated to 200oC in the TPD system with a ramp rate of 10oC.min-1, under a He flow rate of 

30 mL.min-1 and then cooled down to room temperature.  A CO2 flow rate of 30 mL.min-1 

was then passed through the sample for 30 mins, followed by a 2-hour purge with He to 

remove any physisorbed CO2.  The TPD was performed under the same He flow rate by 

heating to 600oC with a ramp rate of 10oC.min-1. 

 

3.2.3. Estimation of the added water volume 

For each MgO catalyst, a series of reactions were conducted at 200oC with 

increasing added water volumes.  Despite being liquid in the feeding cylinder, water could 

exist in both vapor and condensed states after entering the reactor, resulting in different 

rate trends.  The mole of added water was calculated based on the saturated vapor pressure 

of water at 200oC (15.3 atm).  Using the ideal gas question (Appendix F), with the empty 

volume of the reactor being 50 mL, the highest water vapor volume under given reaction 

conditions was 355 μL.  Different external water amounts – 200 μL, 355 μL, 700 μL, 1000 

μL and 1500 μL – therefore were injected to study the water-induced catalytic activity.  

The first two volumes reflected water vapor, while the remaining three indicated a newly-

formed liquid water phase with respect to the bulk cyclohexane. 
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3.2.4. Catalytic measurements 

3.2.4.1. Reactor operating conditions and analysis methods 

Cyclopentanone self-aldol condensation was conducted in N2 atmosphere as 

described elsewhere [70].  For each run, a cyclohexane-catalyst mixture was introduced 

into a 100-mL Parr reactor.  The system was then purged with N2, compressed to 300 psia 

and heated to 200oC.  The feed – consisting of cyclopentanone, toluene (internal standard) 

and a designated water volume – was injected to a 30-mL feeding cylinder, pressurized to 

800 psia and entered the reactor when the set temperature was stabilized.  The stirring speed 

remained 750 rpm, but the reaction time varied among catalysts and was intentionally 

chosen to measure initial rates with conversions below 20%.  These conversions guaranteed 

that external water significantly outnumbered in situ water.  The post-reaction suspension 

was cooled down in an ice bath and centrifuged for 10 mins.  The separated liquid was 

analyzed by GC-FID. 

   

3.2.4.2. Quantification of active sites under reaction conditions 

Apart from CO2-TPD, active sites of MgO catalysts were quantified via titration 

with propanoic acid.  Titration experiments resembled Wang et al.’s work [48], where 

propanoic acid was added to irreversibly block TiO2 acid-base site pairs during acetone 

self-aldol condensation.  This controlled site blockage helped determine the amount of 

active sites of TiO2.  Analogously, active sites of MgO-NC, MgO(70)-OTS(30) and 

dealkylated MgO(70)-OTS(30) PC were subject to isothermal titration with propanoic acid 

during cyclopentanone self-aldol condensation.  The operating temperature and initial 
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cyclopentanone concentration were respectively fixed at 150oC and 1.8 M, while the mass 

of each catalyst and reaction time were adjusted for initial rates.  Propanoic acid was again 

assumed to block acid-base site pairs via a monodentate mode; that is, one mole of acid 

was irreversibly adsorbed by one mole of Mg2+-O2-.  The acid uptake was the concentration 

difference between time zero – when the acid entered the catalyst-filled reactor – and the 

final time.  If all acid molecules were captured by active sites and no side reactions 

occurred, such difference would be the assigned initial acid concentration, or equivalently, 

the introduced acid volume.  Based on Wang et al.’s work [48], the amount of propanoic 

acid in the feed was increased until it suppressed the self-aldol condensation.  In other 

words, the initial rate was manipulated to decrease continuously from the acid-free value 

to zero as more propanoic acid entered the system.  If the decline was consistently linear 

to the acid uptake, the forecast x-intercept would come directly into the equation in Section 

2.2.3.2 to determine the basic density.  Conversely, if the decline included an initial steep 

drop followed by a more gradual one, zero extrapolation to the x-axis would instead apply 

to the early acid uptakes.  Under this circumstance, isothermal titration with propanoic acid 

would deviate to estimation of the strongest basic sites. 
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3.3. Results and Discussion 

3.3.1. Characterization 

3.3.1.1. TGA 

 

Figure 27.  TGA analysis and mass spectra of CO2 and water evolved from MgO(70)-

OTS(30). 

 

Figure 27 shows two distinct mass losses from the TGA of MgO(70)-OTS(30).  

The first loss, from 40oC to 200oC, is ascribed to the removal of physisorbed water.  The 

second one, from 250oC to around 400oC, results from the combustion of OTS octadecyl 

groups in air.  By quantifying the evolution of CO2 and H2O in this region, provided Cls 

are hydroxyl-substituted and Si is retained during TGA, one can determine the original 

OTS loading in MgO(70)-OTS(30).  The calculated value – approximately 12 wt.% 

(Appendix G) – is lower than the nominal 30 wt.% added during preparation.  Such value 

indicates that a fraction of OTS initially added to MgO-NC is not effectively anchored and 
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is lost during post-synthesis washes in ethanol and centrifugation.  The greater difference 

between actual and nominal OTS contents – with respect to those of MgO@mSiO2-OTS 

[70] – correlates to the absence of mSiO2, which improves chemically displaceable surface 

OHs for OTS.  Nevertheless, the remaining organosilane molecules are firmly anchored, 

thus being able to tolerate high temperatures before decomposition. 

 

3.3.1.2. BET 

Table 4.  Surface area, pore size and pore volume of MgO-OTS PC. 

 

Catalyst 

S
BET

 Pore size Pore volume 

m
2
.g

-1
 nm cm

3
.g

-1
 

MgO-NC 97 9.5 0.22 

MgO(70)-OTS(30) 51 3.8 0.04 

MgO(70)-OTS(30) PC 61 13.1 0.19 

 

Table 4 compares BET properties of MgO-NC, MgO(70)-OTS(30) and 

MgO(70)-OTS(30) PC.  From MgO-NC to MgO(70)-OTS(30), the ratio of surface areas 

(1.9) is relatively close to the ratio of pore diameters (2.5).  The difference in pore radius 

(2.85 nm) is interestingly compatible with the mean thickness of an OTS monolayer (2.6 ± 

0.2 nm) [212].  Substituting the TGA-based content of MgO(70)-OTS(30) and the BET 

surface area of MgO-NC into the equation in Section 3.2.2.2 yields approximately 3 

molecules of OTS attached to a nm2 of MgO-NC, or as defined above x = 3 nm-2.  This 
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areal density is much higher than that of MgO@mSiO2-OTS and considerably limits active 

site pairs to accommodate N2 and cyclopentanone molecules. 

For MgO(70)-OTS(30) PC, temperature-programmed calcination slightly 

increases the surface area with respect to its precursor, MgO(70)-OTS(30).  This is because 

only octadecyl groups are removed as gaseous CO2 and H2O at 450oC.  The inorganic parts 

of OTS, on the other hand, are thermostable and remain chemically bonded to MgO-NC.  

In other words, each C18H37Si(OH)2O- is technically decomposed into CO2, H2O and 

surface-bound SiO2.  Such SiO2 fragments do not redisperse MgO domains as mesoporous 

silica does [70] but exist as anchors with a density resembling that of OTS.  As a result, the 

surface area of MgO(70)-OTS(30) PC is close to that of MgO(70)-OTS(30) rather than to 

that of MgO-NC, despite noticeably reduced mass transfer limitation.    
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3.3.1.3. CO2-TPD 

 

Figure 28.  CO2-TPD on directly OTS-functionalized MgO catalysts. 
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To quantify basic sites of the as-prepared MgO catalysts, we first used the 

conventional TPD of adsorbed CO2.  Calculated basic densities are shown in Table 6, with 

certain values also compared to those obtained from titration with propanoic acid. 

In Figure 28a, while MgO-NC exhibits peaks of both strong and medium basicity, 

MgO(70)-OTS(30) shows much more uniform sites indicated by a single peak centered at 

320oC.  According to Section 1.3.1, this peak is attributed to medium basic strength.  

Analogously to MgO@mSiO2-OTS [70], all of the strongest basic sites are eliminated 

following the deposition of OTS on MgO-NC.  The active sites of MgO(70)-OTS(30) are 

of slightly lower medium basic strength with respect to those of MgO@mSiO2-OTS, 

despite MgO(70)-OTS(30) having a greater basic density.  For MgO(85)-OTS(15), Figure 

28b shows that this catalyst also has uniform sites with the medium basic strength similar 

to that of MgO(70)-OTS(30).  As less OTS molecules are deposited on the bare MgO-NC 

substrate, it is obvious that the amount of active site pairs on MgO(85)-OTS(15) increases. 

For MgO(70)-OTS(30) PC – where MgO(70)-OTS(30) has been dealkylated at 

450oC, Figure 28b still shows a peak centered close to 320oC.  This peak confirms the 

unchanged medium basic strength since post-calcined SiO2 fragments remain chemisorbed 

by the strongest basic sites.  Nevertheless, there is a noticeable increase in the basic density.  

This is because the removal of octadecyl groups might have gained a sizeable amount of 

accessible sites for CO2.  Despite having respectable medium basic strength, such 

additional active sites would not readily chemisorb CO2 while being sterically hindered by 

surface octadecyl groups. 
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3.3.2. Quantification of active sites under reaction conditions 

 

Table 5.  Intrinsic initial activities on various MgO catalysts at 150oC. 

 

Catalyst 
Intrinsic initial activity 

mol.g-1.h-1 

MgO-NC 0.123 

MgO(70)-OTS(30) PC 0.013 

MgO(70)-OTS(30) 0.005 

 

Table 5 displays intrinsic activities of as-prepared MgO catalysts at 150oC.  These 

activities are measured under propanoic acid-free conditions.  The displayed values reflect 

corresponding basic densities obtained from CO2-TPD.  That is, MgO-NC is the strongest 

basic catalyst while MgO(70)-OTS(30) is the weakest one.  Dealkylation of MgO(70)-

OTS(30) through temperature-programmed calcination at 450oC recovers some intrinsic 

activity for the hybrid material. 
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Figure 29.  Propanoic acid-controlled cyclopentanone self-aldol condensation initial rates 

on various MgO catalysts. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 150oC; 0.50 g of MgO-NC – 30 mins; 0.50 g 

of MgO(70)-OTS(30) – 4 hours; 0.325 g of MgO(70)-OTS(30) PC – 2 hours. 

 

Table 6.  Basic densities of MgO-based catalysts. 

 

Catalyst 

CO2-TPD Propanoic acid titration 

Strong sites Medium sites Strong sites Medium sites 

μmol.g-1 μmol.g-1 μmol.g-1 μmol.g-1 

MgO-NC 317 102 375 107 

MgO(70)-OTS(30) - 305 - 295 

MgO(85)-OTS(15) - 375 - - 

MgO(70)-OTS(30) PC - 354 - 330 
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Propanoic acid titration curves of MgO-NC, MgO(70)-OTS(30) and MgO(70)-

OTS(30) PC are shown in Figure 29.  As no single propanoic acid peak was detected from 

GC-FID, MgO-NC, MgO(70)-OTS(30) and MgO(70)-OTS(30) PC irreversibly adsorbed 

all injected acid molecules.  Data points corresponding to MgO(70)-OTS(30) and 

MgO(70)-OTS(30) PC both form linear decreasing trends, confirming that these catalysts 

have uniformly medium-strength basic sites.  Corresponding zero extrapolations to the x-

axis yield acid uptakes of 22 μL.g-1 and 25 μL.g-1.  Using the equation in Section 2.2.3.2, 

the basic densities of MgO(70)-OTS(30) and MgO(70)-OTS(30) PC are 295 and 330 

μmol.g-1 respectively.  These values agree well with CO2-TPD results (Table 6). 

On the other hand, the titration curve of MgO-NC shows two decreasing trends.  

The first linear drop is observed from the acid-free rate to the rate at 24 μL.g-1, while the 

second one appears at higher acid uptakes.  This non-linearity can be ascribed to diverse 

basic strengths of active sites, which is congruent to the CO2-TPD curve of MgO-NC.  

Under such circumstance, the strongest basic sites of MgO-NC preferably attract and 

adsorb propanoic acid molecules.  Only when most of these strongest sites are neutralized 

should the remaining sites – of lower basic strengths – be subject to titration.  There could 

also exist some sites being inaccessible for propanoic acid so that even higher acid volumes 

may not suppress the rate.  In other words, the rate may remain positive up to an acid uptake 

of 40 μL.g-1 (536 μmol.g-1) rather than zero-extrapolated at 28 μL.g-1 (375 μmol.g-1).  As a 

result, it is considerable to quantify the strongest basic sites of each MgO catalyst by using 

the slope from the first data points.  By applying this rule, the acid uptakes to titrate the 

strongest basic sites of MgO(70)-OTS(30) and MgO(70)-OTS(30) PC remain respective 
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x-intercepts in Figure 29.  Conversely, only the first five points of MgO-NC are used to 

obtain an x-intercept at 28 μL.g-1 (375 μmol.g-1), approximating 90% of the overall basic 

density measured from CO2-TPD [46]. 
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3.3.3. Effect of water addition on specific reaction rates 

 

Figure 30.  Effect of water addition on the catalytic performance of various MgO 

catalysts:  (a) Reaction rate, (b) TOF. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 200oC. 
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Figure 30 indicates vastly different catalytic behaviors among MgO-NC, 

MgO(85)-OTS(15) and MgO(70)-OTS(30) when the amount of water added to the reactor 

increases.  For MgO-NC, the rate drops sharply and consistently with increasing water 

contents, regardless of the state of water.  Under this circumstance, water only displays 

negative effects.  These include nucleating a diffusion-limiting film covering the surface, 

blocking active sites as inactive Mg(OH)2 species and strongly inhibiting cyclopentanone 

chemisorption.  Although MgO-NC is more active than MgO(85)-OTS(15) and MgO(70)-

OTS(30) by 2.5 times and 10 times respectively, it has already lost 40% of activity at 355 

μL of water.  In excess water amounts, the rate per gram of MgO-NC drops into the range 

of those of MgO-OTS catalysts and is almost zero at 1500 μL of water. 

For MgO(85)-OTS(15), the rate trend interestingly consists of two separate stages 

with a turning point at 355 μL of water vapor.  From no water to 355 μL, the rate is 

enhanced by 42%.  Beyond 355 μL, liquid water is formed in the bulk cyclohexane and the 

rate decreases rapidly as previously observed over MgO-NC.  From 700 μL of water, the 

rate over MgO(85)-OTS(15) becomes lower than the water-free value, reflecting 

considerable site blockage. 

For MgO(70)-OTS(30), the rate trend also resembles a volcano plot.  Despite a 

water-free value of 4 times less than that over MgO(85)-OTS(15), the rate over MgO(70)-

OTS(30) is analogously maximized at 355 μL of water vapor.  Moreover, the rate 

enhancement is 140%, indicating a more pronounced positive effect of water addition.  It 

is noteworthy that even at 700 μL and 1000 μL of water, the rate remains considerably 

higher than the water-free value.  It is only lower when 1500 μL of water is added to the 
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reaction system; however, the value respectably approximates 70% of the water-free rate.  

Such result, in contrast to the negligible rate over MgO-NC at 1500 μL of water, confirms 

the significantly improved water resistance attained via OTS functionalization.  This 

finding is congruent to one of the claims from our previous study [70].  The then stability 

of MgO-OTS and MgO@mSiO2-OTS was displayed on a mass of catalyst x reaction time 

basis, and now it is supplemented on an external water content basis. 

Catalytic behaviors of MgO-OTS materials confirm that higher OTS loadings 

consume more site pairs of MgO-NC, leaving less sites to chemisorb cyclopentanone and 

thus reducing activity.  Considerably active catalysts with moderate OTS loadings such as 

MgO(85)-OTS(15), however, may not be sufficiently hydrophobic and only tolerate 

limited water amounts.  Once liquid water accumulates, sparsely distributed OTS 

molecules hardly prevent site blockage, therefore such catalysts become as susceptible to 

water as MgO-NC.  From Figure 30, it can be stated that functionalizing MgO with little 

OTS initially displays remarkable water-induced rate enhancement but eventually 

sacrifices the catalytic stability.  The water response of MgO(85)-OTS(15) apparently 

makes it a transition between MgO(70)-OTS(30) and MgO-NC. 

 

3.3.4. Effect of the alkyl chain 

The fact in which added water selectively enhances reaction rates over MgO-OTS 

catalysts suggests an essential role of the organosilane agent.  Such aspect was verified 

through the water response of dealkylated MgO(70)-OTS(30) PC.  Figure 31 shows that 

MgO(70)-OTS(30) PC behaves similarly to MgO-NC; that is, the catalytic activity drops 
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rapidly even in water vapor.  Such response indicates that MgO(70)-OTS(30) PC is 

structurally identical to non-functionalized MgO-NC after octadecyl groups are removed 

during calcination in air at 450oC.  One exception is that the surface of MgO(70)-OTS(30) 

PC remains anchoring SiO2 fragments, which are originally attached to the strongest basic 

sites following functionalization.  Unlike Si4+ cations which are intentionally introduced to 

basic metal oxides to mitigate catalyst poisoning [213-216], these SiO2 fragments hardly 

protect the MgO surface from water and oligomers.  Since cyclopentanone molecules still 

experience diffusion limitation – though much reduced – through such fragments, 

MgO(70)-OTS(30) PC is less catalytically active than MgO-NC.  Should diffusion 

limitation be negligible, the post-calcined catalyst would display a respectably higher 

turnover frequency.  Meanwhile, the higher activity of MgO(70)-OTS(30) PC with respect 

to that of MgO(70)-OTS(30) is ascribed to an increase of accessible sites rather than of 

basic strength.  As mentioned in Section 3.3.1.3, certain unoccupied medium-strength 

basic sites – initially hindered by adjacent octadecyl groups – become available for 

cyclopentanone activation once hydrophobic alkyl chains disappear. 
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Figure 31.  Water response of dealkylated MgO(70)-OTS(30) PC following temperature-

programmed calcination at 450oC: (a) Reaction rate, (b) TOF. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 200oC. 
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3.3.5. The water-induced catalytic activity of MgO-OTS 

3.3.5.1. Reaction order 

Analogously to our previous work [70], it is essential to decouple reaction kinetics 

from catalyst deactivation, particularly through measuring initial rates.  First, such 

measurement helps determine how functionalization with OTS influences the reaction 

order and the rate-limiting step on an MgO surface.  Second, it provides clues on the 

manner by which external water molecules facilitate cyclopentanone self-aldol 

condensation. 

In practice, initial rates over MgO(70)-OTS(30) and MgO(70)-OTS(30) PC were 

measured via 1-hour runs at 200oC, with various initial concentrations of cyclopentanone.  

Initial rates over MgO-NC, meanwhile, were referred from our previous work [70].  

Although MgO-NC was originally tested at 150oC, its superior intrinsic basicity still 

resulted in rates comparable to those of MgO(70)-OTS(30) and MgO(70)-OTS(30) PC. 

Figure 32a and Figure 32b display the initial rate over an MgO-based catalyst as 

a function of the initial concentration.  Apparently, MgO-NC and MgO(70)-OTS(30) PC 

experience linear rate increases while MgO(70)-OTS(30) exhibits a parabolic rate increase 

throughout concentrations below 1.0 M.  From 1.8 M and beyond, all rate vs. concentration 

curves start plateauing.  Such behaviors suggest that at low concentrations, cyclopentanone 

self-aldol condensation is first-order on MgO-NC, second-order on MgO(70)-OTS(30) and 

back to first-order on MgO(70)-OTS(30) PC.  At high concentrations, plateaus observed 

over all three catalysts indicate evident deviations to zeroth-order.  One can state up to this 
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point that functionalizing MgO with OTS not only improves material stability but also 

changes reaction kinetics. 

Among elementary steps of a heterogeneous base-catalyzed nucleophilic addition 

mechanism, both α-H abstraction [48] and C-C coupling [53] can be rate-limiting.  The 

former step is also referred as deprotonation, enolate formation or α-H activation.  The 

latter step can be either a Langmuir-Hinshelwood-typed bimolecular surface reaction or an 

Eley-Rideal-typed reaction between an adsorbed enolate and a liquid cyclopentanone 

molecule [70].  Appendix H shows 3 initial rate equations assuming Langmuir-

Hinshelwood deprotonation, Langmuir Hinshelwood C-C coupling and Eley-Rideal C-C 

coupling as rate-limiting steps.  At low initial concentrations of cyclopentanone, 

corresponding reaction orders from such equations are first, second and second.  At high 

initial concentrations of cyclopentanone, these reaction orders deviate to zeroth, zeroth and 

first respectively.  Clearly, Figure 32b demonstrates that all data series fit one of the 

Langmuir-Hinshelwood reaction models rather than the Eley-Rideal one.  The latter is only 

considerable when a rate vs. concentration curve continues increasing linearly at high 

initial concentrations of cyclopentanone, which is not observed here. 
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Figure 32.  Apparent reaction order for cyclopentanone self-aldol condensation over 

various MgO-based catalysts from initial rate measurements: (a) Ccyclopentanone 0 from 0.1 

M to 1.0 M – shown for clarity, (b) Ccyclopentanone 0 from 0.1 M to 3.0 M. 

Reaction conditions: 50 mL of feed; MgO-NC: 0.25 g – 150oC – 20 mins; MgO(70)-

OTS(30): 0.50 g – 200oC – 1 hour; MgO(70)-OTS(30) PC: 0.325 g – 200oC – 1 hour. 
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The rate-limiting step over each MgO-based catalyst was specified by linearizing 

initial rate equations (Appendix I).  The model whose linearized function provides the 

highest coefficient of determination is the most appropriate reaction mechanism.  Based on 

Figure 32b, linearization helps distinguish Langmuir-Hinshelwood-typed initial rate 

equations which assume deprotonation and C-C coupling as rate-limiting steps.  Despite 

being technically ruled out, the Eley-Rideal-typed initial rate equation was also linearized 

and plotted to compare to Langmuir-Hinshelwood-typed counterparts. 

Figure I-1, Figure I-2 and Figure I-3 (Appendix I) show the compatibility of 

linearized initial rate equations with MgO-NC, MgO(70)-OTS(30) and MgO(70)-OTS(30) 

PC respectively.  For MgO-NC, Langmuir-Hinshelwood deprotonation is the rate-limiting 

step.  MgO(70)-OTS(30) renders Langmuir-Hinshelwood C-C coupling kinetically 

relevant instead.  When alkyl chains of OTS molecules are removed, MgO(70)-OTS(30) 

PC behaves similarly to MgO-NC; that is, the rate-limiting step is again Langmuir-

Hinshelwood deprotonation.  Based on changes in reaction order and reaction model, the 

water effect on MgO-OTS catalysts can be interpreted as a process in which external water 

molecules facilitate C-C coupling.  Such process is addressed in details in Section 3.3.5.3. 
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3.3.5.2. Density Functional Theory simulation of cyclopentanone chemisorption on OTS-

functionalized MgO* 

 

 

Figure 33.  DFT calculation of adsorption of cyclopentanone on OTS-functionalized 

MgO.  

(a) Atomic structure of the hybrid interface, with Mg, O, Si, C, and H colored pink, red, 

blue, cyan, and white, respectively.  OTS density is about 3 per nm2.  (b) Side view of the 

unit cell to show the adsorption configuration of cyclopentanone at the interface.  (c) Top 

view of the unit cell.  The carbon chain in the OTS has been omitted to show the densely 

packed interface.  

                                                        
* DFT calculations were conducted by Dr. Bin Wang. 
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Figure 33 shows the atomic structure of cyclopentanone adsorption at the 

OTS/MgO interface.  Ab initio molecular dynamics simulations were performed first to 

equilibrate the structures of the OTS/MgO over 30 ps at 200 °C, and then a cyclopentanone 

molecule was introduced using one of the snapshots taken from the AIMD simulations.  

The OTS was anchored to the MgO surface through Si-O-Mg covalent bonds.  In this case, 

we assumed one silanol still remained per OTS at the interface.  Figure 33c depicts an 

adsorbed cyclopentanone molecule along with 2 OTS anchors over an 8 Å x 8 Å unit cell, 

being equivalent to 3 OTS anchors per nm2.  Because of this high density of OTS on the 

MgO surface, adsorption of two cyclopentanone molecules in proximity becomes rare.  

This change of cyclopentanone coverage may have a predominant effect in determining 

the reaction kinetics. 

 

3.3.5.3. Mechanistic aspects of water-assisted C-C coupling 

 

Figure 34.  Schematic water-assisted C-C coupling as an elementary step of the 

nucleophilic addition mechanism of cyclopentanone self-aldol condensation. 
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To rationalize vastly different water responses of the as-prepared MgO-based 

catalysts, we first correlate the surface property of each catalyst and the corresponding rate-

limiting step.  If α-C-H cleavage is kinetically relevant, the overall rate is technically 

enhanced by the presence of basic sites.  The subsequent step – C-C coupling – is very fast 

due to the availability of Lewis acid – Bronsted base site pairs.  That is, C-C coupling is 

almost pseudo-equilibrated as several surface-bound electrophilic cyclopentanone 

molecules readily surround a newly-formed enolate.  For MgO-NC, the catalyst with the 

highest basic density and without spatial constraints, it strongly chemisorbs both water and 

cyclopentanone from the bulk cyclohexane.  The absence of hydrophobic alkyl chains 

allows adsorbed water molecules to extensively occupy Lewis acid sites and form a stable 

film.  Such film becomes a separate phase between Mg2+-O2- and cyclohexane, preventing 

a sizeable amount of cyclopentanone molecules from being chemisorbed and deprotonated.  

In other words, the competitive adsorption of water on the MgO-NC surface only inhibits 

catalytic activity.  As shown in Figure 31, this negative effect also occurs on dealkylated 

MgO(70)-OTS(30) PC, whose structure is mostly identical to that of bare MgO-NC. 

On the other hand, OTS functionalization on MgO-NC inhibits the C-C coupling 

step by blocking access of a newly-formed deprotonated cyclopentanone to a neutral 

cyclopentanone molecule.  Although the cyclic ketone can still be chemisorbed and 

deprotonated on MgO(70)-OTS(30), it is increasingly difficult for the resulting enolate to 

find adjacent surface-bound cyclopentanone molecules for nucleophilic attack.  OTS 

functionalization also blocks the access of a neutral cyclopentanone molecule to an Mg2+ 

Lewis acid site, a potential enhancer of catalytic activity via polarization of the C=O bond.  
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As a consequence, C-C coupling replaces deprotonation as the rate-limiting step on 

MgO(70)-OTS(30).  Removal of bulky octadecyl groups essentially eliminates spatial 

constraints for cyclopentanone chemisorption, therefore cyclopentenolate regains the 

chance to target adjacent surface-bound electrophiles.  The energy barrier for C-C coupling 

over dealkylated MgO(70)-OTS(30) PC will be again lower than that of deprotonation. 

Next, we analyze how water addition influences the rate-limiting C-C coupling 

on MgO(70)-OTS(30).  Particularly, the anionic α-C of a deprotonated cyclopentanone 

targets the carbonyl C of a neutral cyclopentanone molecule to form a new C-C bond.  The 

more polar the neutral cyclopentanone C=O bond is, the more electropositive the carbonyl 

C becomes to accelerate the nucleophilic attack of the α-C.  In Langmuir-Hinshelwood 

model, the extent of C=O polarization depends on the bond strength between the carbonyl 

O and a lattice Mg2+.  This Mg2+ is technically one of the sites adjacent to the 

cyclopentenolate-occupied Mg2+.  As earlier mentioned, MgO(70)-OTS(30) renders C-C 

coupling kinetically relevant due to the high density of long alkyl chains which 

tremendously reduces accessible Mg2+ sites for neutral cyclopentanone molecules.  In other 

words, the steric hindrance of OTS prevents a sizeable amount of cyclopentanone from 

associative chemisorption.  Under this circumstance, the electrophilic carbonyl C mainly 

interacts with an adsorbed cyclopentenolate while staying in the organic solvent.  Such 

interaction resembles the Eley-Rideal model; however, C-C coupling is slowed down since 

the neutral cyclopentanone C=O bond is not sufficiently polar.  This issue can be alleviated 

by surface-bound water species adjacent to a cyclopentenolate.  At low contents, a single 

water molecule is attached to an Mg2+ Lewis acid site and functions as a nucleating seed.  
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As more water enters the system, the next molecules hydrogen-bond such seeds and 

generate a water cluster rather than a surface-covering film.  As illustrated in Figure 34, 

external water can provide one of its H atoms to hydrogen-bond the carbonyl O of the 

liquid cyclopentanone.  Such bonding mode polarizes the C=O bond by shifting the 

electron density to the carbonyl O, rendering the carbonyl C sufficiently electropositive to 

interact with the anionic α-C.  From this perspective, water apparently shuttles liquid 

cyclopentanone molecules to accelerate the rate-limiting C-C coupling.  In other words, 

liquid cyclopentanone is not required to accommodate Lewis acid sites, which have already 

been depopulated and hindered by the high OTS loading.  Instead, it is indirectly 

chemisorbed by Mg2+ through the water cluster bridge.  As seen in Figure 35 and Figure 

I-4 (Appendix I), C-C coupling remains rate-limiting following water addition but its 

energy barrier has been considerably reduced (around 7 kJ.mol-1 downhill).  The as-

described water-induced rate enhancement holds until water clusters are over-expanded.  

At this point, polarization of the C=O bond is again negligible, therefore excess water no 

longer promotes the catalytic activity. 
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Figure 35.  Apparent reaction order for water-induced cyclopentanone self-aldol 

condensation over MgO(70)-OTS(30) from initial rate measurements: (a) Ccyclopentanone 0 

from 0.1 M to 1.0 M – shown for clarity, (b) Ccyclopentanone 0 from 0.1 M to 3.0 M. 

Reaction conditions: 50 mL of feed; MgO-NC: 0.25 g – 150oC – 20 mins; MgO(70)-

OTS(30): 0.50 g – 200oC – 1 hour; MgO(70)-OTS(30) PC: 0.325 g – 200oC – 1 hour.  
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3.3.6. Kinetic isotope effect 

 

 

Figure 36.  D2O/H2O kinetic isotope effect on cyclopentanone self-aldol condensation.  

Red symbols – H2O addition. Green symbols – D2O addition. 

Reaction conditions: Ccyclopentanone 0 = 1.8 M, 200oC. 

 

Figure 36 displays changes in reaction rates when D2O is added to the system 

instead of H2O.  A small, but consistent, kinetic isotope effect is observed on OTS-

functionalized MgO but not on bare MgO-NC.  As mentioned in Section 3.3.5.3, the rate-

limiting step on the former is C-C coupling, which can be positively affected by water.  As 

H2O molecules are more mobile than D2O counterparts, a surface-bound H2O cluster may 

interact with a liquid cyclopentanone molecule more readily.  The hydrogen bond between 
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these species therefore can be strengthened, resulting in a more stable 

cyclopentanone…H2O intermediate and a more electropositive carbonyl C.  Meanwhile, 

on MgO-NC, the rate-limiting step is deprotonation, which has been shown negatively 

affected by water.  The only role of water here is blocking sites, in that sense H2O and D2O 

are comparable inhibitors. 
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3.4. Summary 

The main conclusions of the study are the following: 

i. Functionalizing MgO with octadecyltrichlorosilane (OTS) changes the rate-

limiting step of cyclopentanone self-aldol condensation from first-ordered α-H 

abstraction to second-ordered C-C coupling.  This is because high areal densities 

of OTS not only depopulate accessible Mg2+ sites for cyclopentanone but also 

render its chemisorption path more tortuous.  Such scenario significantly increases 

the energy barrier of the bimolecular surface reaction between a cyclopentenolate 

and a cyclopentanone electrophile. 

ii. The dramatically decreased catalytic activity of MgO-OTS with respect to that of 

MgO-NC can be partially recovered by adding moderate amounts of water to the 

reaction system.  The promotional effect of external water only applies when 

octadecyl groups are attached to the MgO surface via Si-O-Mg covalent bonds. 

iii. For MgO-OTS catalysts, external water assists the rate-limiting C-C coupling by 

polarizing the C=O bond of a liquid cyclopentanone molecule through hydrogen-

bonding.  A surface-bound water cluster is proposed to bridge the liquid 

cyclopentanone molecule to an Mg2+ acid site in proximity to the 

cyclopentenolate.  In other words, cyclopentanone from the bulk organic solvent 

is indirectly attached to Mg2+ and thus exempted from the tortuous chemisorption 

path caused by surface silanization.  Hydrogen-bonding with a water cluster 

improves the electrophilicity of a liquid cyclopentanone molecule, thus mitigating 

the energy barrier of aldolate formation. 
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4. Conclusions and Future directions 

 

Cyclopentanone, obtained from the aqueous-phase selective hydrogenation of 

furfural, is an important building block in biomass upgrading processes.  It undergoes 

various aldol condensations to produce α,β-unsaturated ketones which are potentially 

hydrodeoxygenated into biofuels.  MgO-based solids are among basic catalysts commonly 

used to catalyze these aldol condensations.  MgO-NC, prepared through nitrate-citrate 

combustion, has a dramatically improved surface area with respect to that of commercial 

MgO.  Despite a noticeably high activity over cyclopentanone self-aldol condensation, 

hydrophilic MgO-NC is rapidly deactivated due to site blockage of water and oligomeric 

products.  This issue has been solved by surface hydrophobization with 

octadecyltrichlorosilane (OTS), on either an MgO-NC substrate (MgO-OTS) or an MgO-

mesoporous silica fusion (MgO@mSiO2-OTS).  The inevitable decrease in catalytic 

activity following such modification is well compensated by the tremendously enhanced 

tolerance to poisoning agents.  The hydrophobic carbon chains of OTS molecules prevent 

water from agglomerating on the MgO surface, forming a layer which reduces accessible 

active sites for cyclopentanone.  These carbon chains also help desorb in situ water and 

C10+ species, therefore a hybrid MgO retains the activity for considerably long times and 

can be reused for multiple cycles.  Such advantages not only highlight silanization as a 

feasible approach to enhance the stability of MgO but also pave ways for additional 

research to benefit from industrial scales. 
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Analogous to cyclopentanone self-aldol condensation, cyclopentanone-acetone 

cross-aldol condensation is also a promising route to obtain biofuels.  Under the catalysis 

of MgO-NC, calculations on an equimolar reactant mixture show that cyclopentanone is 

not only more strongly chemisorbed but also more acidic than acetone.  It has been found 

that the products are predominantly cyclopentanone-activated dimers, particularly 2-

cyclopentylidenecyclopentanone and 2-isopropylidenecyclopentanone.  As more acetone 

is introduced with respect to a fixed amount of cyclopentanone, the total rate of formation 

of acetone-activated dimers increases proportionally but that of cyclopentanone-activated 

dimers holds.  This feature along with DFT suggest that the cross-aldol condensation is 

limited by the α-H abstraction of a ketone reactant.  Nevertheless, the product distribution 

is alternatively controlled by the C-C coupling between an adsorbed cyclopentenolate and 

an electrophilic acetone/cyclopentanone.  It is shown that the cross-to-self product ratio 

depends on liquid concentrations of the reactants, their populations in proximity to 

cyclopentenolate species and enolate-electrophile interactions. 

Unlike oligomeric residues, water can promote some catalytic activity on 

cyclopentanone self-aldol condensation.  For MgO-OTS catalysts, increasing amounts of 

water shape the rate trend to a volcano plot rather than a straight decline as seen on MgO-

NC.  It is found that OTS molecules play an important role on such catalytic behavior.  

Depositing OTS on MgO greatly reduces accessible active sites for cyclopentanone and 

associates with steric hindrance, therefore the nucleophilic attack of cyclopentenolate to an 

adjacent electrophile becomes increasingly difficult.  In this scenario, C-C coupling 

replaces α-H abstraction as the rate-limiting step.  On MgO-OTS catalysts, external water 
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molecules tend to form clusters rather than a permanent diffusion-limiting film.  Through 

hydrogen-bonding, each cluster connects a cyclopentanone molecule from the bulk organic 

solvent to a lattice Mg2+, resembling a Langmuir-Hinshelwood-typed reaction model.  The 

hydrogen bond helps polarize the C=O bond of the liquid cyclopentanone, rendering its 

carbonyl C sufficiently electrophilic for the rate-limiting C-C coupling.  By this manner, 

water partially recovers the catalytic activity of MgO-OTS, which has been limited with 

respect to that of MgO-NC following surface silanization.  This finding along with the 

appreciable material stability bolster the ambition of OTS functionalization to optimize 

catalytic performances of MgO in other relevant organic syntheses.  
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For better insights on both cyclopentanone aldol condensation and MgO-based 

catalysts, the following works are recommended: 

 MgO@mSiO2-OTS is combined with a metal catalyst (e.g. 3%Pd/α-Al2O3) in a 

biphasic system for a direct transformation of water-soluble furfural into oil-

soluble 2-cyclopentylidenecyclopentanone. 

 MgO-OTS catalysts are also studied for water responses in cyclopentanone-

acetone cross-aldol condensation.  Apart from reaction rates with possible 

maxima, it is also important to learn how external water alters the product 

distribution, particularly trimer-to-dimer molar ratios and yields of 

cyclopentanone-activated dimers. 
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Appendix A.  Electron microscopy images 

 

 

 

Figure A-1.  TEM and SEM images of MgO-NC. 
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Figure A-2.  SEM image, elemental map and EDS spectrum of MgO@mSiO2. 
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Figure A-3.  SEM image, elemental map and EDS spectrum of MgO@mSiO2-OTS. 
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Appendix B.  Identification of cyclopentanone self-aldol condensation products 

at high hydrogen pressures 

 

Reaction conditions: 0.25 g of MgO-NC + 0.25 g of 10 wt.% Cu/SiO2, Ccyclopentanone 0 = 1.8 M, 

150oC, 400 psia in H2, 8 hours. 
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Appendix C.  Identification of cyclopentanone self-aldol condensation products 

at low hydrogen pressures 

 

Reaction conditions: 0.25 g of MgO-NC + 0.25 g of 10 wt.% Cu/SiO2, Ccyclopentanone 0 = 1.8 M, 

150oC, 20 psia in H2, 8 hours. 
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Appendix D.  Identification of cyclopentanone-acetone cross-aldol 

condensation products 

 

Reaction conditions: 0.20 g of MgO-NC, Ccyclopentanone 0 = Cacetone 0 = 1.0 M, 200oC, 450 psia in N2, 

2 hours. 

 

 

  



124 

 

Appendix E.  The cross-aldol condensation of cyclopentanone (C) and 

benzophenone (B) in decalin: rate of formation of [C]-activated products and 

product distribution as functions of the feed ratio 

 

Reaction conditions: 0.25 g of MgO-NC, Ccyclopentanone 0 = 1.0 M, 250oC, 400 psia in N2, 2 hours. 

 

 

 

(*) [C]C, C[C]C and tridane are detectable self-condensates. 

(**)  [C]B is the only detectable cross-condensate. 
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Appendix F.  Estimation of the maximum water vapor volume added to a 

cyclopentanone self-aldol condensation reaction system 

 

First, the maximum mole of water vapor was calculated from the ideal gas equation: 

pV = nRT 

where 

p  =  saturated vapor pressure of water at 473K = 15.3 atm 

V  =  empty space of the Parr reactor = 0.050 L 

R  =  ideal gas constant = 0.082 L.atm.mol-1.K-1 

T  =  reaction temperature = 473K 

n  =  maximum mole of water vapor in the Parr reactor at 473K 

 

n = 
pV

RT
 = 

15.3 atm × 0.050 L

0.082 
L.atm
mol.K

 × 473K
 = 0.0197 mol 

 

Then, the maximum volume of water vapor added to the reaction system was determined from 

molecular weight and density: 

Vwater vapor max = 
m

ρ
 = 

nM

ρ
 = 

0.0197 mol × 18 
g

mol

1 
g

mL

 = 0.355 mL = 355 μL 
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Appendix G.  TGA-based OTS content of OTS-functionalized MgO 

 

The OTS content of an OTS-functionalized MgO was determined from two peaks of the water 

mass spectrum.  Beyond 250oC, a T1 OTS anchor – monodentate-bonded to the catalytic surface – 

undergoes combustion as follows: 

 

C18H37Si(OH)2O- + 27.75 O2 → 18 CO2 + 19.5 H2O + SiO2O- 

 

 MgO@mSiO2-OTS (Figure 2) 

mH2O physisorption = 47.48 mg × 5.22% = 2.48 mg 

mH2O OTS-combustion = 
AOTS-combustion

Aphysisorption

 × mH2O physisorption = 3.34 × 2.48 mg = 8.28 mg 

mC18H37Si(OH)2O- = 
1

19.5
 × 

mH2O OTS-combustion

MWH2O

 × MWC18H37Si(OH)2O- 

= 
1

19.5
 × 

8.28 mg

18 
g

mol

 × 331 
g

mol
 = 7.80 mg 

%wtC18H37Si(OH)2O- = 
mC18H37Si(OH)2O-

msample - mH2O physisorption

 = 
7.80 mg

47.48 mg - 2.48 mg
 × 100% = 17.34% 
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 MgO-OTS (Figure 27) 

mH2O physisorption = 46.91 mg × 6% = 2.81 mg 

mH2O OTS-combustion = 
AOTS-combustion

Aphysisorption

 × mH2O physisorption = 2.01 × 2.81 mg = 5.65 mg 

mC18H37Si(OH)2O- = 
1

19.5
 × 

mH2O OTS-combustion

MWH2O

 × MWC18H37Si(OH)2O- 

= 
1

19.5
 × 

5.65 mg

18 
g

mol

 × 331 
g

mol
 = 5.33 mg 

%wtC18H37Si(OH)2O- = 
mC18H37Si(OH)2O-

msample - mH2O physisorption

 = 
5.33 mg

46.91 mg - 2.81 mg
 × 100% = 12.08% 
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Appendix H.  Derivation of cyclopentanone self-aldol condensation initial rates 

on the MgO-NC catalytic surface 

 

Denotations: 

k rate constant 

K equilibrium constant 

Ct total amount of sites 

DP deprotonation 

C-C C-C coupling 

RP reprotonation 

DH dehydration 

* vacant site 

C 

 

[C] 

 

[OX] 

 

OL 

 

[C]C 

 

W 
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Scenario 1.  Langmuir-Hinshelwood reaction model.  Deprotonation is rate-limiting. 

 

C + * ↔ C*   
 

KC = 
CC*

CCC*

 

C*   → [C]*    kDP 

[C]* + C* ↔ [OX]* + * 
 

KC-C = 
C[OX]*C*

C[C]*CC*

 

[OX]*   ↔ *OL   
 

KRP = 
C*OL

C[OX]*
 

*OL + * ↔ *[C]C + W* 
 

KDH = 
C*[C]CCW*

C*OLC*

 

*[C]C   ↔ [C]C + * 
 

K[C]C
-1

 = 
C[C]CC*

C*[C]C
 

W*   ↔ W + * 
 

KW
-1 = 

CWC*

CW*

 

 

Ct = C*+CC*+C[C]*+C[OX]*+C*OL+C*[C]C+CW* 

CC* = KCCCC* 

C*[C]C = K[C]CC[C]CC* 

CW* = KWCWC* 

C*OL = 
C*[C]CCW*

KDHC*

 = 
(K[C]CC[C]CC*)(KWCWC*)

KDHC*

 = 
K[C]CKW

KDH
C[C]CCWC* 

C[OX]* = 
C*OL

KRP
 = 
K[C]CKW

KRPKDH
C[C]CCWC* 

C[C]* = 
C[OX]*C*

KC-CCC*

 = 

(
K[C]CKW
KRPKDH

C[C]CCWC*) C*

KC-C(KCCCC*)
 = 

K[C]CKW

KC-CKRPKDHKC

C[C]CCW

CC

C* 
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C* =
Ct

1+KCCC+
K[C]CKW

KC-CKRPKDHKC

C[C]CCW

CC
+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW

 

r = kDPCC* = kDP(KCCCC*) 

r =
kDPCtKCCC

1+KCCC+
K[C]CKW

KC-CKRPKDHKC

C[C]CCW

CC
+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW

 

rinitial = 
kDPCtKCCC

1+KCCC

 = 
kKCCC

1+KCCC
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Scenario 2.  Langmuir-Hinshelwood reaction model.  C-C coupling is rate-limiting. 

 

C + * ↔ C*   
 

KC = 
CC*

CCC*

 

C*   ↔ [C]*   
 

KDP = 
C[C]*

CC*

 

[C]* + C* → [OX]* + *  kC-C 

[OX]*   ↔ *OL   
 

KRP = 
C*OL

C[OX]*
 

*OL + * ↔ *[C]C + W* 
 

KDH = 
C*[C]CCW*

C*OLC*

 

*[C]C   ↔ [C]C + * 
 

K[C]C
-1

 = 
C[C]CC*

C*[C]C
 

W*   ↔ W + * 
 

KW
-1 = 

CWC*

CW*

 

 

Ct = C*+CC*+C[C]*+C[OX]*+C*OL+C*[C]C+CW* 

CC* = KCCCC* 

C*[C]C = K[C]CC[C]CC* 

CW* = KWCWC* 

C*OL = 
C*[C]CCW*

KDHC*

 = 
(K[C]CC[C]CC*)(KWCWC*)

KDHC*

 = 
K[C]CKW

KDH
C[C]CCWC* 

C[OX]* = 
C*OL

KRP
 = 
K[C]CKW

KRPKDH
C[C]CCWC* 

C[C]* = KDPCC* = KDPKCCCC* 
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C* =
Ct

1+KCCC+KDPKCCC+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW

 

r = kC-CC[C]*CC* = kC-C(KDPKCCCC*)(KCCCC*) = kC-CKDPKC
2CC

2
C*

2
 

r =
kC-CKDPCt

2
KC
2CC

2

(1+KCCC+KDPKCCC+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW)
2
 

rinitial = 
kC-CKDPCt

2
KC
2CC

2

(1+KCCC+KDPKCCC)2
 = 

k
'
KC
2CC

2

(1+KCCC+KDPKCCC)2
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Scenario 3.  Eley-Rideal reaction model.  C-C coupling is rate-limiting. 

 

C + * ↔ C*   
 

KC = 
CC*

CCC*

 

C*   ↔ [C]*   
 

KDP = 
C[C]*

CC*

 

[C]* + C → [OX]*    kC-C
'

 

[OX]*   ↔ *OL   
 

KRP = 
C*OL

C[OX]*
 

*OL + * ↔ *[C]C + W* 
 

KDH = 
C*[C]CCW*

C*OLC*

 

*[C]C   ↔ [C]C + * 
 

K[C]C
-1

 = 
C[C]CC*

C*[C]C
 

W*   ↔ W + * 
 

KW
-1 = 

CWC*

CW*

 

 

Ct = C*+CC*+C[C]*+C[OX]*+C*OL+C*[C]C+CW* 

CC* = KCCCC* 

C*[C]C = K[C]CC[C]CC* 

CW* = KWCWC* 

C*OL = 
C*[C]CCW*

KDHC*

 = 
(K[C]CC[C]CC*)(KWCWC*)

KDHC*

 = 
K[C]CKW

KDH
C[C]CCWC* 

C[OX]* = 
C*OL

KRP
 = 
K[C]CKW

KRPKDH
C[C]CCWC* 

C[C]* = KDPCC* = KDPKCCCC* 
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C* =
Ct

1+KCCC+KDPKCCC+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW

 

r = kC-C
'

C[C]*CC = kC-C
' (KDPKCCCC*)CC = kC-C

'
KDPKCCC

2
C* 

r =
kC-C
'
CtKDPKCCC

2

1+KCCC+KDPKCCC+
K[C]CKW
KRPKDH

C[C]CCW+
K[C]CKW
KDH

C[C]CCW+K[C]CC[C]C+KWCW

 

rinitial = 
kC-C
'
CtKDPKCCC

2

1+KCCC+KDPKCCC

 = 
k
"
KDPKCCC

2

1+KCCC+KDPKCCC
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Appendix I.  Linearization of cyclopentanone self-aldol condensation initial 

rates derived from Langmuir-Hinshelwood and Eley-Rideal reaction models 

 

Model RDS Initial rate expression Linearized function 

L-H Deprotonation r = 
kKCCC

1+KCCC

 
1

r
 = 

1

kKC

1

CC

+
1

k
 

L-H C-C coupling r = 
k
'
KC
2CC

2

(1+KCCC+KDPKCCC)2
 

1

√r
 = 

1

KC√k'

1

CC

+
1+KDP

√k'
 

E-R C-C coupling r = 
k
''
KDPKCCC

2

1+KCCC+KDPKCCC

 
CC

2

r
 = 

1+KDP

k
''
KDP

CC+
1

k
''
KDPKC
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Figure I-1.  Linearization of initial rates on MgO-NC. 

Reaction conditions: 0.25 g of MgO-NC, 50 mL of feed, 150oC, 20 mins. 
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Figure I-2.  Linearization of initial rates on MgO(70)-OTS(30). 

Reaction conditions: 0.50 g of MgO(70)-OTS(30), 50 mL of feed, 200oC, 1 hour. 
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Figure I-3.  Linearization of initial rates on MgO(70)-OTS(30) PC. 

Reaction conditions: 0.325 g of MgO(70)-OTS(30) PC, 50 mL of feed, 200oC, 1 hour. 
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Figure I-4.  Linearization of initial rates on MgO(70)-OTS(30) with added water. 

Reaction conditions: 0.50 g of MgO(70)-OTS(30), 50 mL of feed, 355 μL of water, 200oC, 1 

hour. 

Slope
MgO-OTS water

Slope
MgO-OTS 

 = 

1

KC√kwater
'

1

KC√k'

 = √
k
'

kwater
'

 = √
kC-CKDPCt

2

kC-C waterKDPCt
2

 = √
kC-C

kC-C water

 

=√exp (- 
Ea C-C - Ea C-C water

RT
) 

Ea C-C water - Ea C-C = 2RTln (
Slope

MgO-OTS water

Slope
MgO-OTS 

) 

= 2 × 8.314 × 10
-3

 
kJ

mol.K
 × 473K × ln (

1.84

4.55
) 

= -7.11 
kJ

mol
 


